WorldWideScience

Sample records for seismic monitoring annual

  1. ANZA Seismic Network- From Monitoring to Science

    Science.gov (United States)

    Vernon, F.; Eakin, J.; Martynov, V.; Newman, R.; Offield, G.; Hindley, A.; Astiz, L.

    2007-05-01

    The ANZA Seismic Network (http:eqinfo.ucsd.edu) utilizes broadband and strong motion sensors with 24-bit dataloggers combined with real-time telemetry to monitor local and regional seismicity in southernmost California. The ANZA network provides real-time data to the IRIS DMC, California Integrated Seismic Network (CISN), other regional networks, and the Advanced National Seismic System (ANSS), in addition to providing near real-time information and monitoring to the greater San Diego community. Twelve high dynamic range broadband and strong motion sensors adjacent to the San Jacinto Fault zone contribute data for earthquake source studies and continue the monitoring of the seismic activity of the San Jacinto fault initiated 24 years ago. Five additional stations are located in the San Diego region with one more station on San Clemente Island. The ANZA network uses the advance wireless networking capabilities of the NSF High Performance Wireless Research and Education Network (http:hpwren.ucsd.edu) to provide the communication infrastructure for the real-time telemetry of Anza seismic stations. The ANZA network uses the Antelope data acquisition software. The combination of high quality hardware, communications, and software allow for an annual network uptime in excess of 99.5% with a median annual station real-time data return rate of 99.3%. Approximately 90,000 events, dominantly local sources but including regional and teleseismic events, comprise the ANZA network waveform database. All waveform data and event data are managed using the Datascope relational database. The ANZA network data has been used in a variety of scientific research including detailed structure of the San Jacinto Fault Zone, earthquake source physics, spatial and temporal studies of aftershocks, array studies of teleseismic body waves, and array studies on the source of microseisms. To augment the location, detection, and high frequency observations of the seismic source spectrum from local

  2. Annual Hanford seismic report - fiscal year 1996

    International Nuclear Information System (INIS)

    Hartshorn, D.C.; Reidel, S.P.

    1996-12-01

    Seismic monitoring (SM) at the Hanford Site was established in 1969 by the US Geological Survey (USGS) under a contract with the US Atomic Energy Commission. Since 1980, the program has been managed by several contractors under the US Department of Energy (USDOE). Effective October 1, 1996, the Seismic Monitoring workscope, personnel, and associated contracts were transferred to the USDOE Pacific Northwest National Laboratory (PNNL). SM is tasked to provide an uninterrupted collection and archives of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) located on and encircling the Hanford Site. SM is also tasked to locate and identify sources of seismic activity and monitor changes in the historical pattern of seismic activity at the Hanford Site. The data compiled are used by SM, Waste Management, and engineering activities at the Hanford Site to evaluate seismic hazards and seismic design for the Site

  3. Advances in crosshole seismic instrumentation for dam safety monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Anderlini, G.; Anderlini, C. [BC Hydro, Burnaby, BC (Canada); Taylor, R. [RST Instruments Ltd., Coquitlam, BC (Canada)

    2009-07-01

    Since 1996, crosshole shear wave velocity measurements have been performed annually at the WAC Bennett Dam in order to monitor the performance of the dam core and integrity of the 1997 sinkhole repairs. As the testing showed to be responsive to embankment conditions and capable of detecting subtle changes, the testing program was expanded to include the development of an electrical shear wave source capable of carrying out crosshole seismic testing in Mica and Revelstoke Dams over distances of 100 metres and depths of 250 metres. This paper discussed the development and capabilities of the crosshole seismic instrumentation and presented preliminary results obtained during initial testing. Specific topics that were discussed included conventional crosshole seismic equipment; design basics; description of new crosshole seismic equipment; and automated in-situ crosshole seismic system (ACSS) system description and operation. It was concluded that the ACSS and accompanying electrical shear wave source, developed as part of the project, has advanced and improved on traditional crosshole seismic equipment. 7 refs., 9 figs.

  4. Time-Independent Annual Seismic Rates, Based on Faults and Smoothed Seismicity, Computed for Seismic Hazard Assessment in Italy

    Science.gov (United States)

    Murru, M.; Falcone, G.; Taroni, M.; Console, R.

    2017-12-01

    In 2015 the Italian Department of Civil Protection, started a project for upgrading the official Italian seismic hazard map (MPS04) inviting the Italian scientific community to participate in a joint effort for its realization. We participated providing spatially variable time-independent (Poisson) long-term annual occurrence rates of seismic events on the entire Italian territory, considering cells of 0.1°x0.1° from M4.5 up to M8.1 for magnitude bin of 0.1 units. Our final model was composed by two different models, merged in one ensemble model, each one with the same weight: the first one was realized by a smoothed seismicity approach, the second one using the seismogenic faults. The spatial smoothed seismicity was obtained using the smoothing method introduced by Frankel (1995) applied to the historical and instrumental seismicity. In this approach we adopted a tapered Gutenberg-Richter relation with a b-value fixed to 1 and a corner magnitude estimated with the bigger events in the catalogs. For each seismogenic fault provided by the Database of the Individual Seismogenic Sources (DISS), we computed the annual rate (for each cells of 0.1°x0.1°) for magnitude bin of 0.1 units, assuming that the seismic moments of the earthquakes generated by each fault are distributed according to the same tapered Gutenberg-Richter relation of the smoothed seismicity model. The annual rate for the final model was determined in the following way: if the cell falls within one of the seismic sources, we merge the respective value of rate determined by the seismic moments of the earthquakes generated by each fault and the value of the smoothed seismicity model with the same weight; if instead the cells fall outside of any seismic source we considered the rate obtained from the spatial smoothed seismicity. Here we present the final results of our study to be used for the new Italian seismic hazard map.

  5. Development and seismic evaluation of the seismic monitoring analysis system for HANARO

    International Nuclear Information System (INIS)

    Ryu, J. S.; Youn, D. B.; Kim, H. G.; Woo, J. S.

    2003-01-01

    Since the start of operation, the seismic monitoring system has been utilized for monitoring an earthquake at the HANARO site. The existing seismic monitoring system consists of field sensors and monitoring panel. The analog-type monitoring system with magnetic tape recorder is out-of-date model. In addition, the disadvantage of the existing system is that it does not include signal-analyzing equipment. Therefore, we have improved the analog seismic monitoring system except the field sensors into a new digital Seismic Monitoring Analysis System(SMAS) that can monitor and analyze earthquake signals. To achieve this objective for HANARO, the digital type hardware of the SMAS has been developed. The seismic monitoring and analysis programs that can provide rapid and precise information for an earthquake were developed. After the installation of the SMAS, we carried out the Site Acceptance Test (SAT) to confirm the functional capability of the newly developed system. The results of the SAT satisfy the requirements of the fabrication technical specifications. In addition, the seismic characteristics and structural integrity of the SMAS were evaluated. The results show that the cabinet of SMAS can withstand the effects of seismic loads and remain functional. This new SMAS is operating in the HANARO instrument room to acquire and analyze the signal of an earthquake

  6. Induced Seismicity Monitoring System

    Science.gov (United States)

    Taylor, S. R.; Jarpe, S.; Harben, P.

    2014-12-01

    There are many seismological aspects associated with monitoring of permanent storage of carbon dioxide (CO2) in geologic formations. Many of these include monitoring underground gas migration through detailed tomographic studies of rock properties, integrity of the cap rock and micro seismicity with time. These types of studies require expensive deployments of surface and borehole sensors in the vicinity of the CO2 injection wells. Another problem that may exist in CO2 sequestration fields is the potential for damaging induced seismicity associated with fluid injection into the geologic reservoir. Seismic hazard monitoring in CO2 sequestration fields requires a seismic network over a spatially larger region possibly having stations in remote settings. Expensive observatory-grade seismic systems are not necessary for seismic hazard deployments or small-scale tomographic studies. Hazard monitoring requires accurate location of induced seismicity to magnitude levels only slightly less than that which can be felt at the surface (e.g. magnitude 1), and the frequencies of interest for tomographic analysis are ~1 Hz and greater. We have developed a seismo/acoustic smart sensor system that can achieve the goals necessary for induced seismicity monitoring in CO2 sequestration fields. The unit is inexpensive, lightweight, easy to deploy, can operate remotely under harsh conditions and features 9 channels of recording (currently 3C 4.5 Hz geophone, MEMS accelerometer and microphone). An on-board processor allows for satellite transmission of parameter data to a processing center. Continuous or event-detected data is kept on two removable flash SD cards of up to 64+ Gbytes each. If available, data can be transmitted via cell phone modem or picked up via site visits. Low-power consumption allows for autonomous operation using only a 10 watt solar panel and a gel-cell battery. The system has been successfully tested for long-term (> 6 months) remote operations over a wide range

  7. Seismicity and seismic monitoring in the Asse salt mine

    International Nuclear Information System (INIS)

    Flach, D.; Gommlich, G.; Hente, B.

    1987-01-01

    Seismicity analyses are made in order to assess the safety of candidate sites for ultimate disposal of hazardous wastes. The report in hand reviews the seismicity history of the Asse salt mine and presents recent results of a measuring campaign made in the area. The monitoring network installed at the site supplies data and information on the regional seismicity, on seismic amplitudes under ground and above ground, and on microseismic activities. (DG) [de

  8. Crosshole seismic measurements to characterise and monitor the internal condition of embankment dams

    Energy Technology Data Exchange (ETDEWEB)

    Vazinkhoo, S. [Horizon Engineering Inc., North Vancouver, BC (Canada); Gaffran, P. [BC Hydro, Burnaby, BC (Canada)

    2002-12-01

    A sinkhole was discovered at the Bennett Dam in June 1996. The discovery was immediately followed by an investigation consisting 14 geophysical techniques, of which crosshole seismic testing was the most successful. The Bennett Dam Sinkhole Investigation Project resulted in remedial action which involved compaction grouting to repair the defects. Crosshole seismic testing has been carried out annually since 1996 to verify that the integrity of the repaired zone is being maintained. Large amounts of data have been collected since initial testing to augment other acquired data from more conventional geotechnical techniques. Both data sets have provided a unique opportunity to correlate seismic velocities to mechanical soil properties. The condition of the dam can now be readily assessed through the prediction of seismic velocities for a range of soil properties at any point in the dam. The study has resulted in a better understanding of measured velocities with respect to dam behaviour. Results confirm that seismic velocity testing is a useful, non-intrusive tool for monitoring the performance of embankment dams. 13 refs., 2 tabs., 8 figs.

  9. Annual Hanford Seismic Report for Fiscal Year 2010

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Clayton, Ray E.; Sweeney, Mark D.; Devary, Joseph L.; Hartshorn, Donald C.

    2010-12-27

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. During FY 2010, the Hanford Seismic Network recorded 873 triggers on the seismometer system, which included 259 seismic events in the southeast Washington area and an additional 324 regional and teleseismic events. There were 210 events determined to be local earthquakes relevant to the Hanford Site. One hundred and fifty-five earthquakes were detected in the vicinity of Wooded Island, located about eight miles north of Richland just west of the Columbia River. The Wooded Island events recorded this fiscal year were a continuation of the swarm events observed during fiscal year 2009 and reported in previous quarterly and annual reports (Rohay et al. 2009a, 2009b, 2009c, 2010a, 2010b, and 2010c). Most events were considered minor (coda-length magnitude [Mc] less than 1.0) with the largest event recorded on February 4, 2010 (3.0Mc). The estimated depths of the Wooded Island events are shallow (averaging approximately 1.5 km deep) placing the swarm within the Columbia River Basalt Group. Based upon the last two quarters (Q3 and Q4) data, activity at the Wooded Island

  10. Processing Approaches for DAS-Enabled Continuous Seismic Monitoring

    Science.gov (United States)

    Dou, S.; Wood, T.; Freifeld, B. M.; Robertson, M.; McDonald, S.; Pevzner, R.; Lindsey, N.; Gelvin, A.; Saari, S.; Morales, A.; Ekblaw, I.; Wagner, A. M.; Ulrich, C.; Daley, T. M.; Ajo Franklin, J. B.

    2017-12-01

    Distributed Acoustic Sensing (DAS) is creating a "field as laboratory" capability for seismic monitoring of subsurface changes. By providing unprecedented spatial and temporal sampling at a relatively low cost, DAS enables field-scale seismic monitoring to have durations and temporal resolutions that are comparable to those of laboratory experiments. Here we report on seismic processing approaches developed during data analyses of three case studies all using DAS-enabled seismic monitoring with applications ranging from shallow permafrost to deep reservoirs: (1) 10-hour downhole monitoring of cement curing at Otway, Australia; (2) 2-month surface monitoring of controlled permafrost thaw at Fairbanks, Alaska; (3) multi-month downhole and surface monitoring of carbon sequestration at Decatur, Illinois. We emphasize the data management and processing components relevant to DAS-based seismic monitoring, which include scalable approaches to data management, pre-processing, denoising, filtering, and wavefield decomposition. DAS has dramatically increased the data volume to the extent that terabyte-per-day data loads are now typical, straining conventional approaches to data storage and processing. To achieve more efficient use of disk space and network bandwidth, we explore improved file structures and data compression schemes. Because noise floor of DAS measurements is higher than that of conventional sensors, optimal processing workflow involving advanced denoising, deconvolution (of the source signatures), and stacking approaches are being established to maximize signal content of DAS data. The resulting workflow of data management and processing could accelerate the broader adaption of DAS for continuous monitoring of critical processes.

  11. Seismic monitoring: a unified system for research and verifications

    International Nuclear Information System (INIS)

    Thigpen, L.

    1979-01-01

    A system for characterizing either a seismic source or geologic media from observational data was developed. This resulted from an examination of the forward and inverse problems of seismology. The system integrates many seismic monitoring research efforts into a single computational capability. Its main advantage is that it unifies computational and research efforts in seismic monitoring. 173 references, 9 figures, 3 tables

  12. The seismic monitoring network of Mt. Vesuvius

    Directory of Open Access Journals (Sweden)

    Massimo Orazi

    2013-11-01

    Full Text Available Mt. Vesuvius (southern Italy is one of the most hazardous volcanoes in the world. Its activity is currently characterized by moderate seismicity, with hypocenters located beneath the crater zone with depth rarely exceeding 5 km and magnitudes generally less than 3. The current configuration of the seismic monitoring network of Mt. Vesuvius consists of 18 seismic stations and 7 infrasound microphones. During the period 2006-2010 a seismic array with 48 channels was also operative. The station distribution provides appropriate coverage of the area around the volcanic edifice. The current development of the network and its geometry, under conditions of low seismic noise, allows locating seismic events with M<1. Remote instruments continuously transmit data to the main acquisition center in Naples. Data transmission is realized using different technological solutions based on UHF, Wi-Fi radio links, and TCP/IP client-server applications. Data are collected in the monitoring center of the Osservatorio Vesuviano (Italian National Institute of Geophysics and Volcanology, Naples section, which is equipped with systems for displaying and analyzing signals, using both real-time automatic and manual procedures. 24-hour surveillance allows to immediately communicate any significant anomaly to the Civil Protection authorities.

  13. INL Seismic Monitoring Annual Report: January 1, 2007 - December 31, 2007

    Energy Technology Data Exchange (ETDEWEB)

    S. J. Payne; N. S. Carpenter; J. M. Hodges; R. G. Berg

    2008-09-01

    During 2007, the INL Seismic Monitoring Program evaluated 2,515 earthquakes from around the world, the western United States, and local region of the eastern Snake River Plain. 671 earthquakes and man-made blasts occurred within the local region outside and within a 161-km (or 100-mile) radius of INL. Of these events, eleven were small to moderate size earthquakes ranging in magnitude from 3.0 to 4.8. 341 earthquakes occurred within the 161-km radius of INL and the majority of these earthquakes were located in active regions of the Basin and Range Province that surrounds the ESRP. Three earthquakes were located within the ESRP at Craters of the Moon National Monument. The earthquakes were of Mc 0.9, 1.4, and 1.8. Since 1972, INL has recorded 36 small-magnitude microearthquakes (M < 2.0) within the ESRP.

  14. Bayesian Inference for Signal-Based Seismic Monitoring

    Science.gov (United States)

    Moore, D.

    2015-12-01

    Traditional seismic monitoring systems rely on discrete detections produced by station processing software, discarding significant information present in the original recorded signal. SIG-VISA (Signal-based Vertically Integrated Seismic Analysis) is a system for global seismic monitoring through Bayesian inference on seismic signals. By modeling signals directly, our forward model is able to incorporate a rich representation of the physics underlying the signal generation process, including source mechanisms, wave propagation, and station response. This allows inference in the model to recover the qualitative behavior of recent geophysical methods including waveform matching and double-differencing, all as part of a unified Bayesian monitoring system that simultaneously detects and locates events from a global network of stations. We demonstrate recent progress in scaling up SIG-VISA to efficiently process the data stream of global signals recorded by the International Monitoring System (IMS), including comparisons against existing processing methods that show increased sensitivity from our signal-based model and in particular the ability to locate events (including aftershock sequences that can tax analyst processing) precisely from waveform correlation effects. We also provide a Bayesian analysis of an alleged low-magnitude event near the DPRK test site in May 2010 [1] [2], investigating whether such an event could plausibly be detected through automated processing in a signal-based monitoring system. [1] Zhang, Miao and Wen, Lianxing. "Seismological Evidence for a Low-Yield Nuclear Test on 12 May 2010 in North Korea". Seismological Research Letters, January/February 2015. [2] Richards, Paul. "A Seismic Event in North Korea on 12 May 2010". CTBTO SnT 2015 oral presentation, video at https://video-archive.ctbto.org/index.php/kmc/preview/partner_id/103/uiconf_id/4421629/entry_id/0_ymmtpps0/delivery/http

  15. Hanford annual second quarter seismic report, fiscal year 1998: Seismicity on and near the Hanford Site, Pasco, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Hartshorn, D.C.; Reidel, S.P.; Rohay, A.C.

    1998-06-01

    Hanford Seismic Monitoring provides an uninterrupted collection of high quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the US Department of Energy and its contractors. The staff also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of an earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (ENN) consist of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The operational rate for the second quarter of FY98 for stations in the HSN was 99.92%. The operational rate for the second quarter of FY98 for stations of the EWRN was 99.46%. For the second quarter of FY98, the acquisition computer triggered 159 times. Of these triggers 14 were local earthquakes: 7 (50%) in the Columbia River Basalt Group, 3 (21%) in the pre-basalt sediments, and 4 (29%) in the crystalline basement. The geologic and tectonic environments where these earthquakes occurred are discussed in this report. The most significant seismic event for the second quarter was on March 23, 1998 when a 1.9 Mc occurred near Eltopia, WA and was felt by local residents. Although this was a small event, it was felt at the surface and is an indication of the potential impact on Hanford of seismic events that are common to the Site.

  16. An assessment of seismic monitoring in the United States; requirement for an Advanced National Seismic System

    Science.gov (United States)

    ,

    1999-01-01

    This report assesses the status, needs, and associated costs of seismic monitoring in the United States. It sets down the requirement for an effective, national seismic monitoring strategy and an advanced system linking national, regional, and urban monitoring networks. Modernized seismic monitoring can provide alerts of imminent strong earthquake shaking; rapid assessment of distribution and severity of earthquake shaking (for use in emergency response); warnings of a possible tsunami from an offshore earthquake; warnings of volcanic eruptions; information for correctly characterizing earthquake hazards and for improving building codes; and data on response of buildings and structures during earthquakes, for safe, cost-effective design, engineering, and construction practices in earthquake-prone regions.

  17. Seismic and Geodetic Monitoring of the Nicoya, Costa Rica, Seismic Gap

    Science.gov (United States)

    Protti, M.; Gonzalez, V.; Schwartz, S.; Dixon, T.; Kato, T.; Kaneda, Y.; Simila, G.; Sampson, D.

    2007-05-01

    The Nicoya segment of the Middle America Trench has been recognized as a mature seismic gap with potential to generate a large earthquake in the near future (it ruptured with large earthquakes in 1853, 1900 and 1950). Low level of background seismicity and fast crustal deformation of the forearc are indicatives of strong coupling along the plate interface. Given its high seismic potential, the available data and especially the fact that the Nicoya peninsula extends over large part of the rupture area, this gap was selected as one of the two sites for a MARGINS-SEIZE experiment. With the goal of documenting the evolution of loading and stress release along this seismic gap, an international effort involving several institutions from Costa Rica, the United States and Japan is being carried out for over a decade in the region. This effort involves the installation of temporary and permanent seismic and geodetic networks. The seismic network includes short period, broad band and strong motion instruments. The seismic monitoring has provided valuable information on the geometry and characteristics of the plate interface. The geodetic network includes temporary and permanent GPS stations as well as surface and borehole tiltmeters. The geodetic networks have helped quantify the extend and degree of coupling. A continuously recording, three- station GPS network on the Nicoya Peninsula, Costa Rica, recorded what we believe is the first slow slip event observed along the plate interface of the Costa Rica subduction zone. We will present results from these monitoring networks. Collaborative international efforts are focused on expanding these seismic and geodetic networks to provide improved resolution of future creep events, to enhanced understanding of the mechanical behavior of the Nicoya subduction segment of the Middle American Trench and possibly capture the next large earthquake and its potential precursor deformation.

  18. Connection with seismic networks and construction of real time earthquake monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Heon Cheol; Lee, H. I.; Shin, I. C.; Lim, I. S.; Park, J. H.; Lee, B. K.; Whee, K. H.; Cho, C. S. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2000-12-15

    It is natural to use the nuclear power plant seismic network which have been operated by KEPRI(Korea Electric Power Research Institute) and local seismic network by KIGAM(Korea Institute of Geology, Mining and Material). The real time earthquake monitoring system is composed with monitoring module and data base module. Data base module plays role of seismic data storage and classification and the other, monitoring module represents the status of acceleration in the nuclear power plant area. This research placed the target on the first, networking the KIN's seismic monitoring system with KIGAM and KEPRI seismic network and the second, construction the KIN's Independent earthquake monitoring system.

  19. Connection with seismic networks and construction of real time earthquake monitoring system

    International Nuclear Information System (INIS)

    Chi, Heon Cheol; Lee, H. I.; Shin, I. C.; Lim, I. S.; Park, J. H.; Lee, B. K.; Whee, K. H.; Cho, C. S.

    2000-12-01

    It is natural to use the nuclear power plant seismic network which have been operated by KEPRI(Korea Electric Power Research Institute) and local seismic network by KIGAM(Korea Institute of Geology, Mining and Material). The real time earthquake monitoring system is composed with monitoring module and data base module. Data base module plays role of seismic data storage and classification and the other, monitoring module represents the status of acceleration in the nuclear power plant area. This research placed the target on the first, networking the KIN's seismic monitoring system with KIGAM and KEPRI seismic network and the second, construction the KIN's Independent earthquake monitoring system

  20. Pennsylvania seismic monitoring network and related tectonic studies

    International Nuclear Information System (INIS)

    Alexander, S.S.

    1991-06-01

    This report summarizes the results of the operation of the Pennsylvania Seismic Monitoring Network during the interval May 1, 1983--March 31, 1985 to monitor seismic activity in Pennsylvania and surrounding areas, to characterize the earthquake activity in terms of controlling tectonic structures and related tectonic stress conditions in the crust, and to obtain improved crustal velocity models for hypocentral determinations. Most of the earthquake activity was concentrated in the Lancaster, PA area. The magnitude 4.2 mainshock that occurred there on April 23, 1984 was the largest ever recorded instrumentally and its intensity of VI places it among the largest in the historic record for that area. Other activity during the monitoring interval of this report was confined to eastern Pennsylvania. The very large number of quarry explosions that occur regularly in Pennsylvania account for most of the seismic events recorded and they provide important crustal velocity data that are needed to obtain accurate hypocenter estimates. In general the earthquakes that occurred are located in areas of past historic seismicity. Block-tectonic structures resulting from pre-Ordovician tectonic displacements appear to influence the distribution of contemporary seismicity in Pennsylvania and surrounding areas. 17 refs., 5 figs

  1. Hanford Seismic Annual Report and Fourth Quarter Report for Fiscal Year 1999

    Energy Technology Data Exchange (ETDEWEB)

    AC Rohay; DC Hartshorn; SP Reidel

    1999-12-07

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network. (EWRN) consist of 40 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. A major reconfiguration of the HSN was initiated at the end of this quarter and the results will be reported in the first quarter report for next fiscal year (FY2000). For the HSN, there were 390 triggers during the fourth quarter of fiscal year(FY) 1999 on the primary recording system. With the implementation of dual backup systems during the second quarter of the fiscal year and an overall increase observed in sensitivity, a total of 1632 triggers were examined, identified, and processed during this fiscal year. During the fourth quarter, 24 seismic events were located by the HSN within the reporting region of 46 degrees to 47 degrees north latitude and 119 degrees to 120 degrees west longitude 9 were earthquakes in the Columbia River Basalt Group, 2 were earthquakes in the pre-basalt sediments, 10 were earthquakes in the crystalline basement; and 2 were quarry blasts. One earthquake appears to be related to a major geologic structure, 14 earthquakes occurred in known swarm areas, and 7 earthquakes were random occurrences.

  2. Optimizing Seismic Monitoring Networks for EGS and Conventional Geothermal Projects

    Science.gov (United States)

    Kraft, Toni; Herrmann, Marcus; Bethmann, Falko; Stefan, Wiemer

    2013-04-01

    In the past several years, geological energy technologies receive growing attention and have been initiated in or close to urban areas. Some of these technologies involve injecting fluids into the subsurface (e.g., oil and gas development, waste disposal, and geothermal energy development) and have been found or suspected to cause small to moderate sized earthquakes. These earthquakes, which may have gone unnoticed in the past when they occurred in remote sparsely populated areas, are now posing a considerable risk for the public acceptance of these technologies in urban areas. The permanent termination of the EGS project in Basel, Switzerland after a number of induced ML~3 (minor) earthquakes in 2006 is one prominent example. It is therefore essential for the future development and success of these geological energy technologies to develop strategies for managing induced seismicity and keeping the size of induced earthquakes at a level that is acceptable to all stakeholders. Most guidelines and recommendations on induced seismicity published since the 1970ies conclude that an indispensable component of such a strategy is the establishment of seismic monitoring in an early stage of a project. This is because an appropriate seismic monitoring is the only way to detect and locate induced microearthquakes with sufficient certainty to develop an understanding of the seismic and geomechanical response of the reservoir to the geotechnical operation. In addition, seismic monitoring lays the foundation for the establishment of advanced traffic light systems and is therefore an important confidence building measure towards the local population and authorities. We have developed an optimization algorithm for seismic monitoring networks in urban areas that allows to design and evaluate seismic network geometries for arbitrary geotechnical operation layouts. The algorithm is based on the D-optimal experimental design that aims to minimize the error ellipsoid of the linearized

  3. GSETT-3: testing the experimental international seismic monitoring system

    International Nuclear Information System (INIS)

    Ringdal, Frode

    1995-01-01

    Global seismic monitoring system has been developed by the Conference on Disarmaments (CDs) ad hoc group of scientific experts to consider international cooperative measures to detect and identify seismic events (the GSE), based in Geneva. In the course of its work, the GSE has conducted two large-scale global technical tests, Global Seismic Events Technical Test-1 (GSETT-1) in 1984 and GSETT-2 in 1991. The GSE has now embarked upon its third and most ambitious technical test, GSETT-3, which will encompass the development, testing and evaluation of a working prototype of the eventual Comprehensive Test Ban Treaty (CTBT) seismic monitoring system

  4. Seismic monitoring experiment of raise boring in 2014

    International Nuclear Information System (INIS)

    Saari, J.; Malm, M.

    2015-01-01

    In Olkiluoto, Posiva Oy has operated a local seismic network since February 2002. The purpose of the microearthquake measurements at Olkiluoto is to improve understanding of the structure, behaviour and long term stability of the bedrock. The studies include both tectonic and excavation-induced microearthquakes. An additional task of monitoring is related to safeguarding of ONKALO. The possibility to excavate an illegal access to ONKALO has been concerned when the safeguards are discussed. Therefore all recorded explosions in the Olkiluoto area and in ONKALO are located. If a concentration of explosions is observed, the origin of that is found out. Also a concept of hidden illegal explosions, detonated at the same time as the real excavation blasts, has been examined. According to the experience gained in Olkiluoto, it can be concluded that, as long the seismic network is in operation and the results are analysed by a skilled person, it is practically impossible to do illegal undetected excavation by blasting within the Olkiluoto seismic network area. In this report a possibility of seismic monitoring of undeclared excavation done by tunnel boring machine (TBM) has been investigated. In the earlier investigations the instruments were at the ground surface and the sensors were triaxial short period (1 Hz) geophones or broadband geophones. The characteristics (frequency content, polarity and amplitude) of the continuous seismic vibration generated by TMB were studied. The onset time of the seismic signal were not distinguished. Altogether 16 new 10 kHz accelerometers were installed in boreholes inside ONKALO March 2012. The sensors comprised a new subnetwork that monitored the raise boring of two shafts done 2014, from the level -455 m to the level -290 m. The aim was to record the seismic signal generated when the drill bit hits the rock at the moment the tunnel boring begins. Altogether 113 seismic signals generated by the drill bit were located during the

  5. Seismic monitoring experiment of raise boring in 2014

    Energy Technology Data Exchange (ETDEWEB)

    Saari, J.; Malm, M. [AaF-Consult Oy, Espoo (Finland)

    2015-01-15

    In Olkiluoto, Posiva Oy has operated a local seismic network since February 2002. The purpose of the microearthquake measurements at Olkiluoto is to improve understanding of the structure, behaviour and long term stability of the bedrock. The studies include both tectonic and excavation-induced microearthquakes. An additional task of monitoring is related to safeguarding of ONKALO. The possibility to excavate an illegal access to ONKALO has been concerned when the safeguards are discussed. Therefore all recorded explosions in the Olkiluoto area and in ONKALO are located. If a concentration of explosions is observed, the origin of that is found out. Also a concept of hidden illegal explosions, detonated at the same time as the real excavation blasts, has been examined. According to the experience gained in Olkiluoto, it can be concluded that, as long the seismic network is in operation and the results are analysed by a skilled person, it is practically impossible to do illegal undetected excavation by blasting within the Olkiluoto seismic network area. In this report a possibility of seismic monitoring of undeclared excavation done by tunnel boring machine (TBM) has been investigated. In the earlier investigations the instruments were at the ground surface and the sensors were triaxial short period (1 Hz) geophones or broadband geophones. The characteristics (frequency content, polarity and amplitude) of the continuous seismic vibration generated by TMB were studied. The onset time of the seismic signal were not distinguished. Altogether 16 new 10 kHz accelerometers were installed in boreholes inside ONKALO March 2012. The sensors comprised a new subnetwork that monitored the raise boring of two shafts done 2014, from the level -455 m to the level -290 m. The aim was to record the seismic signal generated when the drill bit hits the rock at the moment the tunnel boring begins. Altogether 113 seismic signals generated by the drill bit were located during the

  6. Monitoring Instrument Performance in Regional Broadband Seismic Network Using Ambient Seismic Noise

    Science.gov (United States)

    Ye, F.; Lyu, S.; Lin, J.

    2017-12-01

    In the past ten years, the number of seismic stations has increased significantly, and regional seismic networks with advanced technology have been gradually developed all over the world. The resulting broadband data help to improve the seismological research. It is important to monitor the performance of broadband instruments in a new network in a long period of time to ensure the accuracy of seismic records. Here, we propose a method that uses ambient noise data in the period range 5-25 s to monitor instrument performance and check data quality in situ. The method is based on an analysis of amplitude and phase index parameters calculated from pairwise cross-correlations of three stations, which provides multiple references for reliable error estimates. Index parameters calculated daily during a two-year observation period are evaluated to identify stations with instrument response errors in near real time. During data processing, initial instrument responses are used in place of available instrument responses to simulate instrument response errors, which are then used to verify our results. We also examine feasibility of the tailing noise using data from stations selected from USArray in different locations and analyze the possible instrumental errors resulting in time-shifts used to verify the method. Additionally, we show an application that effects of instrument response errors that experience pole-zeros variations on monitoring temporal variations in crustal properties appear statistically significant velocity perturbation larger than the standard deviation. The results indicate that monitoring seismic instrument performance helps eliminate data pollution before analysis begins.

  7. INL Seismic Monitoring Annual Report: January 1, 2012 - December 31, 2012

    Energy Technology Data Exchange (ETDEWEB)

    Payne, S. J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bruhn, D. F. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hodges, J. M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Berg, R. G. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    During 2012, the Idaho National Laboratory Seismic Monitoring Program evaluated 17,329 independent triggers that included earthquakes from around the world, the western United States, and local region of the Snake River Plain. Seismologists located 1,460 earthquakes and man-made blasts within and near the 161-km (or 100-mile) radius of the Idaho National Laboratory. Of these earthquakes, 16 had small-to-moderate size magnitudes (M) from 3.0 to 3.6. Within the 161-km radius, the majority of 695 earthquakes (M < 3.6) occurred in the active regions of the Basin and Range Provinces adjacent to the eastern Snake River Plain. Only 11 microearthquakes occurred within the Snake River Plain, four of which occurred in Craters of the Moon National Monument. The earthquakes had magnitudes from 1.0 to 1.7 and occurred at deep depths (11-24 km). Two events with magnitudes less than 1.0 occurred within the Idaho National Laboratory boundaries and had depths less than 10 km.

  8. Monitoring Seasonal Changes in Permafrost Using Seismic Interferometry

    Science.gov (United States)

    James, S. R.; Knox, H. A.; Abbott, R. E.

    2015-12-01

    The effects of climate change in polar regions and their incorporation in global climate models has recently become an area of great interest. Permafrost holds entrapped greenhouse gases, e.g. CO2 and CH4, which are released to the atmosphere upon thawing, creating a positive feedback mechanism. Knowledge of seasonal changes in active layer thickness as well as long term degradation of permafrost is critical to the management of high latitude infrastructures, hazard mitigation, and increasing the accuracy of climate predictions. Methods for effectively imaging the spatial extent, depth, thickness, and discontinuous nature of permafrost over large areas are needed. Furthermore, continuous monitoring of permafrost over annual time scales would provide valuable insight into permafrost degradation. Seismic interferometry using ambient seismic noise has proven effective for recording velocity changes within the subsurface for a variety of applications, but has yet to be applied to permafrost studies. To this end, we deployed 7 Nanometrics Trillium posthole broadband seismometers within Poker Flat Research Range, located 30 miles north of Fairbanks, Alaska in a zone of discontinuous permafrost. Approximately 2 years worth of nearly continuous ambient noise data was collected. Using the python package MSNoise, relative changes in velocity were calculated. Results show high amounts of variability throughout the study period. General trends of negative relative velocity shifts can be seen between August and October followed by a positive relative velocity shift between November and February. Differences in relative velocity changes with both frequency and spatial location are also observed, suggesting this technique is sensitive to permafrost variation with depth and extent. Overall, short and long term changes in shallow subsurface velocity can be recovered using this method proposing seismic interferometry is a promising new technique for permafrost monitoring. Sandia

  9. Advances in crosshole seismic measurements to characterise and monitor the internal condition of embankment dams

    Energy Technology Data Exchange (ETDEWEB)

    Vazinkhoo, S.; Anderlini, C.; Gaffran, P. [BC Hydro, Burnaby, BC (Canada); Jefferies, M. [Golder Associates Ltd., Vancouver, BC (Canada)

    2008-07-01

    The WAC Bennett Dam Sinkhole investigation project was launched in June 1996 in British Columbia following the discovery of a sinkhole. This paper provided information on crosshole seismic velocity testing that was conducted at the WAC Bennett Dam, along with background information on the methods developed to interpret the results of crosshole seismic testing that has been conducted on an annual basis at the dam since 1996. Additional laboratory and field testing conducted at the Mica and Revelstoke dams were also reviewed with particular focus on how the results have improved the interpretation and assessment methods. This paper described the laboratory testing program which consisted of bender element tests, in which shear wave velocities were measured under controlled void ratio, stress and fines content conditions, and critical state triaxial tests to determine the Critical State Lines (CSLs). It was concluded that crosshole seismic shear wave velocity measurements have proven to be a very useful tool for monitoring void ratio and stress conditions at the WAC Bennett Dam and continue to be employed at the dam on an annual basis. Variations in shear wave velocity can be correlated to local construction features at the WAC Bennett and other BC Hydro dams. 16 refs., 4 tabs., 7 figs.

  10. A guidebook for the operation and maintenance of HANARO seismic monitoring analysis system

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Jeong Soo; Yoon, Doo Byung; Kim, Hyung Kyoo

    2003-09-01

    Systems and structures related to HANARO safety are classified as seismic category I. Since 1995, the seismic monitoring system has been utilized for monitoring an earthquake at the HANARO site. The existing seismic monitoring system consists of field sensors and monitoring panel. The analog-type monitoring system with magnetic tape recorder is out-of-date model. In addition, the disadvantage of the existing system is that it does not include signal-analyzing equipment. Therefore, we have improved the analog seismic monitoring system into a new digital Seismic Monitoring Analysis System(SMAS) that can offer precise and detail information of the earthquake signals. This newly developed SMAS is operating at the HANARO instrument room to acquire and analyze the signal of an earthquake. This document is a guidebook for the operation and maintenance of the SMAS. The first chapter gives an outline of the SMAS. The second chapter describes functional capability and specification of the hardware. Chapters 3 and 4 describe starting procedure of the SMAS and how to operate the seismic monitoring program, respectively. Chapter 5 illustrates the seismic analysis algorithm used in the SMAS. The way of operating the seismic analysis program is described in chapter 6. Chapter 7 illustrates the calibration procedure for data acquisition module. Chapter 8 describes the symptoms of common malfunctions and its countermeasure suited to the occasions.

  11. Quarterly seismic monitoring report 96B

    International Nuclear Information System (INIS)

    Reidel, S.P.

    1996-01-01

    This report summarizes the location, magnitude, and other pertinent information on earthquakes recorded on and near the Hanford Site by Westinghouse Seismic Monitoring during the period encompassing January 1, 1996 to March 31, 1996

  12. Local seismic network at the Olkiluoto site. Annual report for 2010

    International Nuclear Information System (INIS)

    Saari, J.; Malm, M.

    2011-11-01

    Excavation of the underground characterisation facility (the ONKALO) started in 2004. Before that, in February 2002, Posiva Oy established a local seismic network of six stations on the island of Olkiluoto. After that the number of seismic stations has increased gradually. In 2010 Posiva's permanent seismic network consists of 15 seismic stations and 20 triaxial sensors. The purpose of the microearthquake measurements at Olkiluoto is to improve understanding of the structure, behaviour and long term stability of the bedrock. The investigation area includes two target areas. The larger target area, called seismic semiregional area, covers the Olkiluoto Island and its surroundings. The purpose is to monitor explosions and tectonic earthquakes in regional scale inside that area. The smaller target area is called the seismic ONKALO block, which is a 2 km *2 km *2 km cube surrounding the ONKALO. It is assumed that all the expected excavation induced events occur within this volume. At the moment the seismic ONKALO block includes ten seismic stations. An additional task of monitoring is related to safeguarding of the ONKALO. This report gives the results of microseismic monitoring during 2010. In March 2010, the seismic network was upgraded by a new triaxial borehole seismometer in order to improve the sensitivity and the depth resolution inside the ONKALO block. The sensor is the second one inside the ONKALO. New PC for data processing and analysis with the new version of Linux operating system was installed. Also all software packages for data processing and analysis and for visualization were upgraded. The network has operated continuously in 2010. Altogether 1089 events have been located in the Olkiluoto area, in reported time period. Most of them (943) are explosions occurred inside the seismic semi-regional area and especially inside the seismic ONKALO block (895 events). The magnitudes of the observed explosions inside the semi-regional area range from M L = -1

  13. Real-time monitoring of seismic data using satellite telemetry

    Directory of Open Access Journals (Sweden)

    L. Merucci

    1997-06-01

    Full Text Available This article describes the ARGO Satellite Seismic Network (ARGO SSN as a reliable system for monitoring, collection, visualisation and analysis of seismic and geophysical low-frequency data, The satellite digital telemetry system is composed of peripheral geophysical stations, a centraI communications node (master sta- tion located in CentraI Italy, and a data collection and processing centre located at ING (Istituto Nazionale di Geofisica, Rome. The task of the peripheral stations is to digitalise and send via satellite the geophysical data collected by the various sensors to the master station. The master station receives the data and forwards them via satellite to the ING in Rome; it also performs alI the monitoring functions of satellite communications. At the data collection and processing centre of ING, the data are received and analysed in real time, the seismic events are identified and recorded, the low-frequency geophysical data are stored. In addition, the generaI sta- tus of the satellite network and of each peripheral station connected, is monitored. The procedure for analysjs of acquired seismic signals allows the automatic calculation of local magnitude and duration magnitude The communication and data exchange between the seismic networks of Greece, Spain and Italy is the fruit of a recent development in the field of technology of satellite transmission of ARGO SSN (project of European Community "Southern Europe Network for Analysis of Seismic Data"

  14. Local seismic network at the Olkiluoto site. Annual report for 2011

    International Nuclear Information System (INIS)

    Saari, J.; Malm, M.

    2012-06-01

    This report gives the results of microseismic monitoring during 2011. Excavation of the underground characterisation facility called ONKALO started in 2004. Before that, in February 2002, Posiva Oy established a local seismic network of six stations on the island of Olkiluoto. After that the number of seismic stations has increased gradually. In 2011 Posiva's permanent seismic network consists of 15 seismic stations and 20 triaxial sensors. The purpose of the microearthquake measurements at Olkiluoto is to improve understanding of the structure, behaviour and long term stability of the bedrock. The investigation area includes two target areas. The larger target area, called seismic semiregional area, covers the Olkiluoto Island and its surroundings. The purpose is to monitor explosions and tectonic earthquakes in regional scale inside that area. The smaller target area is called the seismic ONKALO block, which is a 2 km x 2 km x 2 km cube surrounding ONKALO. It is assumed that all the expected excavation induced events occur within this volume. At the moment the seismic ONKALO block includes ten seismic stations. An additional task of monitoring is related to safeguarding of the construction of ONKALO. The configuration of the seismic network as well as the software packages applied in data processing and analyses have remained during the previous year. The design model of ONKALO and the brittle fault zone model of the Olkiluoto of the seismic visualization package Jdi were upgraded in 2011. The network has operated nearly continuously. There was a 14 minutes and 30 second long operation failure in December 2011. That was the first network operation failure in five years. Altogether 1223 events have been located in the Olkiluoto area, in the reported time period. Most of them (1098) are explosions that occurred inside the seismic semiregional area and especially inside the seismic ONKALO block (1064 events). The magnitudes of the observed explosions inside the semi

  15. Local seismic network at the Olkiluoto site. Annual report for 2011

    Energy Technology Data Exchange (ETDEWEB)

    Saari, J.; Malm, M. [AF-Consult Oy, Espoo (Finland)

    2012-06-15

    This report gives the results of microseismic monitoring during 2011. Excavation of the underground characterisation facility called ONKALO started in 2004. Before that, in February 2002, Posiva Oy established a local seismic network of six stations on the island of Olkiluoto. After that the number of seismic stations has increased gradually. In 2011 Posiva's permanent seismic network consists of 15 seismic stations and 20 triaxial sensors. The purpose of the microearthquake measurements at Olkiluoto is to improve understanding of the structure, behaviour and long term stability of the bedrock. The investigation area includes two target areas. The larger target area, called seismic semiregional area, covers the Olkiluoto Island and its surroundings. The purpose is to monitor explosions and tectonic earthquakes in regional scale inside that area. The smaller target area is called the seismic ONKALO block, which is a 2 km x 2 km x 2 km cube surrounding ONKALO. It is assumed that all the expected excavation induced events occur within this volume. At the moment the seismic ONKALO block includes ten seismic stations. An additional task of monitoring is related to safeguarding of the construction of ONKALO. The configuration of the seismic network as well as the software packages applied in data processing and analyses have remained during the previous year. The design model of ONKALO and the brittle fault zone model of the Olkiluoto of the seismic visualization package Jdi were upgraded in 2011. The network has operated nearly continuously. There was a 14 minutes and 30 second long operation failure in December 2011. That was the first network operation failure in five years. Altogether 1223 events have been located in the Olkiluoto area, in the reported time period. Most of them (1098) are explosions that occurred inside the seismic semiregional area and especially inside the seismic ONKALO block (1064 events). The magnitudes of the observed explosions inside the

  16. SIG-VISA: Signal-based Vertically Integrated Seismic Monitoring

    Science.gov (United States)

    Moore, D.; Mayeda, K. M.; Myers, S. C.; Russell, S.

    2013-12-01

    Traditional seismic monitoring systems rely on discrete detections produced by station processing software; however, while such detections may constitute a useful summary of station activity, they discard large amounts of information present in the original recorded signal. We present SIG-VISA (Signal-based Vertically Integrated Seismic Analysis), a system for seismic monitoring through Bayesian inference on seismic signals. By directly modeling the recorded signal, our approach incorporates additional information unavailable to detection-based methods, enabling higher sensitivity and more accurate localization using techniques such as waveform matching. SIG-VISA's Bayesian forward model of seismic signal envelopes includes physically-derived models of travel times and source characteristics as well as Gaussian process (kriging) statistical models of signal properties that combine interpolation of historical data with extrapolation of learned physical trends. Applying Bayesian inference, we evaluate the model on earthquakes as well as the 2009 DPRK test event, demonstrating a waveform matching effect as part of the probabilistic inference, along with results on event localization and sensitivity. In particular, we demonstrate increased sensitivity from signal-based modeling, in which the SIGVISA signal model finds statistical evidence for arrivals even at stations for which the IMS station processing failed to register any detection.

  17. Annual report on the KSRS seismic array operation

    Energy Technology Data Exchange (ETDEWEB)

    Jun, Myung-Soon; Jeon, Jeong-Soo; Kang, Ik-Bum [Korea Institute of Geology Mining and Materials, Taejon (KR)] (and others)

    1999-12-01

    Wonju KSRS (PS31) is one of the primary seismic stations under the IMS of CTBT. Korean NDC has been transmitting real time seismic data to IDC successfully during 1999. We have installed four elements seismo-acoustic array KISS(Korea Infrasound and Seismic Station) to detect and identify the seismic events in and around the Korean peninsula as a joint cooperation between KIGAM and SMU(Southern Methodist University). Continuous data from KSRS, KISS and other stations were automatically detected and analyzed using KEMS(Korea Earthquake Monitoring System) at KIGAM. KEMS has automatically detected and analyzed 1943 events between 1998.12.10 and 1999.12.22 and 876 events were reviewed by analyst and listed. Some electric poles used for data transmission inside the KSRS were eliminated and replaced to radio transmission. To increase the accuracy of earthquake observation velocity structure under the Korean peninsula was studied. To develop the Magnitude scale in Korea, the same approach which Richter applied in USA, 1935, was studied using Korean data. (author). 23 refs., 13 tabs., 89 figs.

  18. Hanford annual first quarter seismic report, fiscal year 1998: Seismicity on and near the Hanford Site, Pasco Basin, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Hartshorn, D.C.; Reidel, S.P.; Rohay, A.C.

    1998-02-01

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the US Department of Energy and its contractors. The staff also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of an earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 41 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The operational rate for the first quarter of FY98 for stations in the HSN was 98.5%. The operational rate for the first quarter of FY98 for stations of the EWRN was 99.1%. For the first quarter of FY98, the acquisition computer triggered 184 times. Of these triggers 23 were local earthquakes: 7 in the Columbia River Basalt Group, and 16 in the crystalline basement. The geologic and tectonic environments where these earthquakes occurred are discussed in this report. The most significant earthquakes in this quarter were a series of six events which occurred in the Cold Creek depression (approximately 4 km SW of the 200 West Area), between November 6 and November 11, 1997. All events were deep (> 15 km) and were located in the crystalline basement. The first event was the largest, having a magnitude of 3.49 M{sub c}. Two events on November 9, 1997 had magnitudes of 2.81 and 2.95 M{sub c}, respectively. The other events had magnitudes between 0.7 and 1.2 M{sub c}.

  19. Local seismic network at the Olkiluoto site. Annual report for 2013

    International Nuclear Information System (INIS)

    Saari, J.; Malm, M.

    2014-06-01

    This report gives the results of microseismic monitoring during 2013. Excavation of the underground rock characterisation facility called ONKALO started in 2004. Before that, in February 2002, Posiva Oy established a local seismic network of six stations on the island of Olkiluoto, where there are currently 17 seismic stations and 21 triaxial sensors. The network has operated continuously in 2013. The purpose of the microearthquake measurements at Olkiluoto is to improve understanding of the structure, behaviour and long term stability of the bedrock. The investigation area includes two target areas, of which the larger one, the seismic semiregional area, includes the Olkiluoto island and its surroundings. The purpose is to monitor explosions and tectonic earthquakes in regional scale inside that area. All the expected excavation induced events are assumed to occur inside the smaller target area, the seismic ONKALO block, which is a 2 km x 2 km x 2 km cube surrounding the ONKALO and includes 13 seismic stations. An additional task of monitoring is related to safeguarding of the construction of ONKALO. Upgrade and unification of the whole seismic network was done in August 2013. The upgrade included communication, data acquisition, server equipment in Olkiluoto, network configuration and software. The bedrock models and the ONKALO design model applied in the visualisation of the seismicity remained the same in 2013. The number of located events was much smaller than during previous years due to break in the excavation. Altogether 436 events have been located in the Olkiluoto area, in the reported time period. Nearly half of the observed explosions (237) in 2013 occurred inside the seismic semi-regional area and especially inside the seismic ONKALO block (137). The magnitudes of the explosions inside the semi-regional area range from M L = -1.6 to M L = 1.5 (M L = magnitude in local Richter's scale). One small induced earthquake (ML = -1.8) was detected on 9 May 2013

  20. Anisotropic analysis for seismic sensitivity of groundwater monitoring wells

    Science.gov (United States)

    Pan, Y.; Hsu, K.

    2011-12-01

    Taiwan is located at the boundaries of Eurasian Plate and the Philippine Sea Plate. The movement of plate causes crustal uplift and lateral deformation to lead frequent earthquakes in the vicinity of Taiwan. The change of groundwater level trigged by earthquake has been observed and studied in Taiwan for many years. The change of groundwater may appear in oscillation and step changes. The former is caused by seismic waves. The latter is caused by the volumetric strain and reflects the strain status. Since the setting of groundwater monitoring well is easier and cheaper than the setting of strain gauge, the groundwater measurement may be used as a indication of stress. This research proposes the concept of seismic sensitivity of groundwater monitoring well and apply to DonHer station in Taiwan. Geostatistical method is used to analysis the anisotropy of seismic sensitivity. GIS is used to map the sensitive area of the existing groundwater monitoring well.

  1. Hazard Monitoring of Growing Lava Flow Fields Using Seismic Tremor

    Science.gov (United States)

    Eibl, E. P. S.; Bean, C. J.; Jónsdottir, I.; Hoskuldsson, A.; Thordarson, T.; Coppola, D.; Witt, T.; Walter, T. R.

    2017-12-01

    An effusive eruption in 2014/15 created a 85 km2 large lava flow field in a remote location in the Icelandic highlands. The lava flows did not threaten any settlements or paved roads but they were nevertheless interdisciplinarily monitored in detail. Images from satellites and aircraft, ground based video monitoring, GPS and seismic recordings allowed the monitoring and reconstruction of a detailed time series of the growing lava flow field. While the use of satellite images and probabilistic modelling of lava flows are quite common tools to monitor the current and forecast the future growth direction, here we show that seismic recordings can be of use too. We installed a cluster of seismometers at 15 km from the vents and recorded the ground vibrations associated with the eruption. This seismic tremor was not only generated below the vents, but also at the edges of the growing lava flow field and indicated the parts of the lava flow field that were most actively growing. Whilst the time resolution is in the range of days for satellites, seismic stations easily sample continuously at 100 Hz and could therefore provide a much better resolution and estimate of the lava flow hazard in real-time.

  2. Local seismic network at the Olkiluoto site. Annual Report for 2007

    International Nuclear Information System (INIS)

    Saari, J.; Lakio, A.

    2008-05-01

    In February 2002, Posiva Oy established a local seismic network of six stations on the island of Olkiluoto. Later, in June 2004, the seismic network was expanded with two new seismic stations. At that time started the excavation of the underground characterisation facility (the ONKALO) and the basic operation procedure was changed more suitable for the demands of the new situation. In the beginning of 2006, the target area of the seismic monitoring expanded to semiregional scale. Four new seismic stations started in the beginning of February 2006 and the focus of interpretation was expanded to an area, called the seismic semi-regional area. At the end of 2006, two new borehole geophones were installed in order to improve the sensitivity and the depth resolution of the measurements inside the ONKALO block. The purpose of the microearthquake measurements at Olkiluoto is to improve understanding of the structure, behaviour and long term stability of the bedrock. The studies include both tectonic and excavation-induced microearthquakes. An additional task of monitoring is related to safeguarding of the ONKALO. This report gives the results of microseismic monitoring during the year 2007. Also the changes in the structure and the operation procedure of the network are described. The true orientation of the borehole sensor OL-OS13 was calculated. The correct orientation of triaxial seismometer is essential when the fault plane solution of an earthquake is calculated. The other borehole sensor OL-OS14 was permanently disconnected in October 2007. The network has operated continuously in 2007. Altogether 2207 events have been located in the Olkiluoto area, in reported time period. Altogether 2207 events have been located in 2007. Most of them (1912) are explosions occurred inside the seismic semiregional area and especially inside the ONKALO block (1891 events). The magnitudes of the observed events inside the semi-regional area range from ML = -2.1 to ML = 1.5 (ML

  3. Seismic Monitoring of Bedload Transport in a Steep Mountain Catchment

    Science.gov (United States)

    Roth, D. L.; Finnegan, N. J.; Brodsky, E. E.; Turowski, J. M.; Wyss, C. R.; Badoux, A.

    2014-12-01

    Predicting river channel evolution relies on an understanding of when and at what rate coarse sediment moves in a channel. Unfortunately, our predictive abilities are limited by the logistical challenges and potential dangers inherent in current techniques for monitoring sediment transport during flood events, especially in steep, highly active landscapes. However, the use of seismic signals near rivers shows promise as a safe, low-cost method for studying sediment transport in these settings. Seismic signals near rivers are partially generated by both water turbulence and bedload sediment particles impacting the river bed during transport. Here, we attempt to isolate the seismic signatures of discharge and bedload transport in a steep mountain channel by examining high-frequency broadband seismic data from the well-studied Erlenbach stream (local slope of ~10%) in the Swiss Prealps. The extensive monitoring infrastructure and long history of sediment transport data at this field site allow us to independently constrain discharge, precipitation, and bedload transport during flood events over a two month field campaign. We perform a general linear least squares inversion of the seismic data, exploiting times with isolated rain or discharge events, to identify the spectral signals of water turbulence, rain, and bedload sediment transport. We find that the signal generated by rain exhibits a roughly broadband spectrum, while discharge and sediment transport exhibit power primarily in lower frequency bands. Our preliminary results indicate that with only precipitation and discharge data, it is possible to isolate the seismic signal of bedload transport in steep fluvial environments. Seismic studies may therefore have the potential to revolutionize our ability to monitor and understand these environments.

  4. Seismic monitoring of the Yucca Mountain facility

    International Nuclear Information System (INIS)

    Garbin, H.D.; Herrington, P.B.; Kromer, R.P.

    1997-01-01

    Questions have arisen regarding the applicability of seismic sensors to detect mining (re-entry) with a tunnel boring machine (TBM). Unlike cut and blast techniques of mining which produce impulsive seismic signals, the TBM produces seismic signals which are of long duration. (There are well established techniques available for detecting and locating the sources of the impulsive signals.) The Yucca Mountain repository offered an opportunity to perform field evaluations of the capabilities of seismic sensors because during much of 1996, mining there was progressing with the use of a TBM. During the mining of the repository's southern branch, an effort was designed to evaluate whether the TBM could be detected, identified and located using seismic sensors. Three data acquisition stations were established in the Yucca Mountain area to monitor the TBM activity. A ratio of short term average to long term average algorithm was developed for use in signal detection based on the characteristics shown in the time series. For location of the source of detected signals, FK analysis was used on the array data to estimate back azimuths. The back azimuth from the 3 component system was estimated from the horizontal components. Unique features in the timing of the seismic signal were used to identify the source as the TBM

  5. The development of the operational program for seismic monitoring system of Uljin Unit 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.R.; Heo, T.Y.; Cho, B.H. [Korea Electric Power Research Institute, Taejeon (Korea, Republic of); Kang, T.G.; Kim, H.M.; Kim, Y.S.; Oh, S.M.; Kang, Y.S. [Korea Electric Power Data Network Co., Seoul (Korea, Republic of)

    1997-12-31

    Due to aging of the imported seismic monitoring system of Uljin of t 1 and 2 units it is difficult for this system to provide enough functions needed for the security of seismic safety and the evaluation of the earthquake data from the seismic instrumentation. For this reason, it is necessary to replace the seismic monitoring system of Uljin 1 and 2 units with a new system which has the localized and upgraded hardware and corresponding software. In the part of standardization of existing seismic monitoring system, furthermore, it is necessary to develop the seismic wave analysis system which incorporate newly developed software and can real-timely analyze the seismic wave. This report is the finial product of research project ``The development of the operational program for seismic monitoring system of Uljin Unit 1 and 2`` which have been performed from June 1996 to June 1997 by KEPRI and KDN. Main accomplishments - Review of regulatory criteria for seismic monitoring system -Analysis and upgrade of hardware system -Analysis and upgrade of software system - Development of seismic wave analysis system. (author). 17 refs., 49 figs., 6 tabs.

  6. INL Seismic Monitoring Annual Report: January 1, 2013 to December 31, 2013

    Energy Technology Data Exchange (ETDEWEB)

    Payne, Suzette Jackson [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bockholt, Blaine Matthew [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hodges, Jed M [Idaho National Lab. (INL), Idaho Falls, ID (United States); Berg, Robert Gene [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-12-01

    During 2013, the Idaho National Laboratory (INL) recorded 14,011 independent triggers and 7,355 triggers were manmade blasts and distant, regional, and local earthquakes. Within the region, the INL Seismic Monitoring program located 2,085 earthquakes and 150 man-made blasts. Near and within the 161-km radius of INL, 38 of these earthquakes had small to moderate size magnitudes that ranged from 3.0 to 4.2. Residents near 19 of the M>3.0 earthquakes reported ground shaking affects of these earthquakes to the U.S. Geological Survey. Also, five new seismic stations with broadband seismometers and accelerometers were installed near INL facility areas. These new stations were installed to collect earthquake data that can be used in future INL probabilistic seismic hazard analyses to reduce uncertainties of ground motion models. In 2013, 1,013 earthquakes were located within the 161-km radius of INL and three occurred within the eastern Snake River Plain (ESRP). The earthquakes included three swarms and a mainshock-aftershock sequence. The earthquakes were located northwest of the INL in the Basin and Range regions of Idaho and Montana and southeast of the ESRP in the Basin and Range region along the Idaho-Wyoming border. A swarm of >180 earthquakes occurred at Driggs, Idaho; the largest events had local magnitudes (ML) of 2.8 and 3.1 and were felt by residents. A less intense swarm of 64 earthquakes was located west of Jackson, Wyoming along the Idaho-Wyoming border. The largest event was a MW 3.8 that was felt by local residents. Southeast of Pocatello, Idaho an earthquake of ML 4.2 was followed by 18 aftershocks that included a ML 3.6. Both earthquakes were felt by residents near to the epicenters. Three earthquakes occurred within the ESRP and three other earthquakes were located at the northwest edge of the ESRP. The coda magnitude (Mc) 1.3 earthquake was located in the center of ESRP north of the Great Rift and at a depth of 45 km. To the west, an earthquake of Mc 0

  7. INL Seismic Monitoring Annual Report: January 1, 2013 to December 31, 2013

    International Nuclear Information System (INIS)

    Payne, Suzette Jackson; Bockholt, Blaine Matthew; Hodges, Jed M; Berg, Robert Gene

    2016-01-01

    During 2013, the Idaho National Laboratory (INL) recorded 14,011 independent triggers and 7,355 triggers were manmade blasts and distant, regional, and local earthquakes. Within the region, the INL Seismic Monitoring program located 2,085 earthquakes and 150 man-made blasts. Near and within the 161-km radius of INL, 38 of these earthquakes had small to moderate size magnitudes that ranged from 3.0 to 4.2. Residents near 19 of the M>3.0 earthquakes reported ground shaking affects of these earthquakes to the U.S. Geological Survey. Also, five new seismic stations with broadband seismometers and accelerometers were installed near INL facility areas. These new stations were installed to collect earthquake data that can be used in future INL probabilistic seismic hazard analyses to reduce uncertainties of ground motion models. In 2013, 1,013 earthquakes were located within the 161-km radius of INL and three occurred within the eastern Snake River Plain (ESRP). The earthquakes included three swarms and a mainshock-aftershock sequence. The earthquakes were located northwest of the INL in the Basin and Range regions of Idaho and Montana and southeast of the ESRP in the Basin and Range region along the Idaho-Wyoming border. A swarm of >180 earthquakes occurred at Driggs, Idaho; the largest events had local magnitudes (ML) of 2.8 and 3.1 and were felt by residents. A less intense swarm of 64 earthquakes was located west of Jackson, Wyoming along the Idaho-Wyoming border. The largest event was a MW 3.8 that was felt by local residents. Southeast of Pocatello, Idaho an earthquake of ML 4.2 was followed by 18 aftershocks that included a ML 3.6. Both earthquakes were felt by residents near to the epicenters. Three earthquakes occurred within the ESRP and three other earthquakes were located at the northwest edge of the ESRP. The coda magnitude (Mc) 1.3 earthquake was located in the center of ESRP north of the Great Rift and at a depth of 45 km. To the west, an earthquake of Mc 0

  8. Local Technical Resources for Development of Seismic Monitoring in Caucasus and Central Asia - GMSys2009 Data Acquisition System

    Science.gov (United States)

    Chkhaidze, D.; Basilaia, G.; Elashvili, M.; Shishlov, D.; Bidzinashvili, G.

    2012-12-01

    Caucasus and Central Asia represents regions of high seismic activity, composing a significant part of Alpine-Himalayan continental collision zone. Natural catastrophic events cause significant damage to the infrastructure worldwide, among these approximately ninety percent of the annual loss is due to earthquakes. Monitoring of Seismic Activity in these regions and adequate assessment of Seismic Hazards represents indispensible condition for safe and stable development. Existence of critical engineering constructions in the Caucasus and Central Asia such as oil and gas pipelines, high dams and nuclear power plants dramatically raises risks associated with natural hazards and eliminates necessity of proper monitoring systems. Our initial efforts were focused on areas that we are most familiar; the geophysical community in the greater Caucuses and Central Asia experiencing many of the same problems with the monitoring equipment. As a result, during the past years GMSys2009 was develop at the Institute of Earth Sciences of Ilia State University. Equipment represents a cost-effective, multifunctional Geophysical Data Acquisition System (DAS) to monitor seismic waves propagating in the earth and related geophysical parameters. Equipment best fits local requirements concerning power management, environmental protection and functionality, the same time competing commercial units available on the market. During past several years more than 30 units were assembled and what is most important installed in Georgia, Armenia, Azerbaijan and Tajikistan. GMSys2009 utilizes standard MiniSEED data format and data transmission protocols, making it possible online waveform data sharing between the neighboring Countries in the region and international community. All the mentioned installations were technically supported by the group of engineers from the Institute of Earth Sciences, on site trainings for local personnel in Armenia, Azerbaijan and Tajikistan was provided creating a

  9. Seismic monitoring of the unstable rock slope at Aaknes, Norway

    Science.gov (United States)

    Roth, M.; Blikra, L. H.

    2009-04-01

    The unstable rock slope at Aaknes has an estimated volume of about 70 million cubic meters, and parts of the slope are moving at a rate between 2-15 cm/year. Amongst many other direct monitoring systems we have installed a small-scale seismic network (8 three-component geophones over an area of 250 x 150 meters) in order to monitor microseismic events related to the movement of the slope. The network has been operational since November 2005 with only a few short-term outages. Seismic data are transferred in real-time from the site to NORSAR for automatic detection processing. The resulting detection lists and charts and the associated waveform are forwarded immediately to the early warning centre of the Municipality of Stranda. Furthermore, we make them available after a delay of about 10-15 minutes on our public project web page (http://www.norsar.no/pc-47-48-Latest-Data.aspx). Seismic monitoring provides independent and complementary data to the more direct monitoring systems at Aaknes. We observe increased seismic activity in periods of heavy rain fall or snow melt, when laser ranging data and extensometer readings indicate temporary acceleration phases of the slope. The seismic network is too small and the velocity structure is too heterogeneous in order to obtain reliable localizations of the microseismic events. In summer 2009 we plan to install a high-sensitive broadband seismometer (60 s - 100 Hz) in the middle of the unstable slope. This will allow us to better constrain the locations of the microseismic events and to investigate potential low-frequency signals associated with the slope movement.

  10. Local seismic network at the Olkiluoto site. Annual report for 2009

    International Nuclear Information System (INIS)

    Saari, J.; Malm, M.

    2010-06-01

    Excavation of the underground characterisation facility (the ONKALO) started in 2004. Before that, in February 2002, Posiva Oy established a local seismic network of six stations on the island of Olkiluoto. After that the number of seismic stations has increased gradually. In 2009 Posiva's seismic network consists of 14 seismic stations and 19 triaxial sensors. The purpose of the microearthquake measurements at Olkiluoto is to improve understanding of the structure, behaviour and long term stability of the bedrock. The investigation area includes two target areas. The larger target area, called seismic semiregional area, covers the Olkiluoto Island and its surroundings. The purpose is to monitor explosions and tectonic earthquakes in regional scale inside that area. The smaller target area is called the seismic ONKALO block, which is a 2 km *2 km *2 km cube surrounding the ONKALO. It is assumed that all the expected excavation induced events occur within this volume. At the moment the seismic ONKALO block includes ten seismic stations. An additional task of monitoring is related to safeguarding of the ONKALO. This report gives the results of microseismic monitoring during 2009. Also the changes in the structure and the operation procedure of the network are described. The upgrades in 2009 are limited to the processing, interpretation and reporting practices. The latest upgrades of the equipment were done in November 2008. The final technical tuning and tests related to the upgrade were done in the beginning of 2009. The network has operated continuously in 2009. Altogether 1256 events have been located in the Olkiluoto area, in reported time period. Most of them (1161) are explosions occurred inside the seismic semi-regional area and especially inside the seismic ONKALO block (1135 events). The magnitudes of the observed events inside the semi-regional area range from ML = -1.5 to ML = 1.6 (ML = magnitude in local Richter's scale). Most of them are explosions. Two

  11. INL Seismic Monitoring Annual Report: January 1, 2011 - December 31, 2011

    Energy Technology Data Exchange (ETDEWEB)

    S. J. Payne; J. M. Hodges; R. G. Berg; D. F. Bruhn

    2012-12-01

    During 2011, the Idaho National Laboratory Seismic Monitoring Program evaluated 21,928 independent triggers that included earthquakes from around the world, the western United States, and local region of the Snake River Plain. Seismologists located 2,063 earthquakes and man-made blasts within and near the 161-km (or 100-mile) radius of the Idaho National Laboratory. Of these events, 16 were small-to-moderate size earthquakes ranging in magnitude (M) from 3.0 to 4.4. Within the 161-km radius, the majority of 941 earthquakes (M < 4.4) occurred in the active regions of the Basin and Range Province with only six microearthquakes occurring in the Snake River Plain. In the northern and southeastern Basin and Range, eight earthquake swarms occurred and included over 325 events. Five of the Snake River Plain earthquakes were located within and near the northern and southern ends of the Great Rift volcanic rift zone. All have anomalously deep focal depths (16 to 38 km) and waveforms indicative of fluid movement at mid- and lower-crustal levels and are a continuation of activity observed at Craters of the Moon National Monument since 2007. Since 1972, the Idaho National Laboratory has recorded 55 small-magnitude microearthquakes (M = 2.2) within the eastern Snake River Plain and 25 deep microearthquakes (M = 2.3) in the vicinity of Craters of the Moon National Monument.

  12. New Seismic Monitoring Station at Mohawk Ridge, Valles Caldera

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Peter Morse [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-20

    Two new broadband digital seismic stations were installed in the Valles Caldera in 2011 and 2012. The first is located on the summit of Cerros del Abrigo (station code CDAB) and the second is located on the flanks of San Antonio Mountain (station code SAMT). Seismic monitoring stations in the caldera serve multiple purposes. These stations augment and expand the current coverage of the Los Alamos Seismic Network (LASN), which is operated to support seismic and volcanic hazards studies for LANL and northern New Mexico (Figure 1). They also provide unique continuous seismic data within the caldera that can be used for scientific studies of the caldera’s substructure and detection of very small seismic signals that may indicate changes in the current and evolving state of remnant magma that is known to exist beneath the caldera. Since the installation of CDAB and SAMT, several very small earthquakes have already been detected near San Antonio Mountain just west of SAMT (Figure 2). These are the first events to be seen in that area. Caldera stations also improve the detection and epicenter determination quality for larger local earthquakes on the Pajarito Fault System east of the Preserve and the Nacimiento Uplift to the west. These larger earthquakes are a concern to LANL Seismic Hazards assessments and seismic monitoring of the Los Alamos region, including the VCNP, is a DOE requirement. Currently the next closest seismic stations to the caldera are on Pipeline Road (PPR) just west of Los Alamos, and Peralta Ridge (PER) south of the caldera. There is no station coverage near the resurgent dome, Redondo Peak, in the center of the caldera. Filling this “hole” is the highest priority for the next new LASN station. We propose to install this station in 2018 on Mohawk Ridge just east of Redondito, in the same area already occupied by other scientific installations, such as the MCON flux tower operated by UNM.

  13. A Fiber-Optic Borehole Seismic Vector Sensor System for Geothermal Site Characterization and Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Paulsson, Bjorn N.P. [Paulsson, Inc., Van Nuys, CA (United States); Thornburg, Jon A. [Paulsson, Inc., Van Nuys, CA (United States); He, Ruiqing [Paulsson, Inc., Van Nuys, CA (United States)

    2015-04-21

    Seismic techniques are the dominant geophysical techniques for the characterization of subsurface structures and stratigraphy. The seismic techniques also dominate the monitoring and mapping of reservoir injection and production processes. Borehole seismology, of all the seismic techniques, despite its current shortcomings, has been shown to provide the highest resolution characterization and most precise monitoring results because it generates higher signal to noise ratio and higher frequency data than surface seismic techniques. The operational environments for borehole seismic instruments are however much more demanding than for surface seismic instruments making both the instruments and the installation much more expensive. The current state-of-the-art borehole seismic instruments have not been robust enough for long term monitoring compounding the problems with expensive instruments and installations. Furthermore, they have also not been able to record the large bandwidth data available in boreholes or having the sensitivity allowing them to record small high frequency micro seismic events with high vector fidelity. To reliably achieve high resolution characterization and long term monitoring of Enhanced Geothermal Systems (EGS) sites a new generation of borehole seismic instruments must therefore be developed and deployed. To address the critical site characterization and monitoring needs for EGS programs, US Department of Energy (DOE) funded Paulsson, Inc. in 2010 to develop a fiber optic based ultra-large bandwidth clamped borehole seismic vector array capable of deploying up to one thousand 3C sensor pods suitable for deployment into ultra-high temperature and high pressure boreholes. Tests of the fiber optic seismic vector sensors developed on the DOE funding have shown that the new borehole seismic sensor technology is capable of generating outstanding high vector fidelity data with extremely large bandwidth: 0.01 – 6,000 Hz. Field tests have shown

  14. The passive seismic aftershock Monitoring system: testing program and preliminary results

    International Nuclear Information System (INIS)

    Mokhtari, M.

    2005-01-01

    The paper is dedicated to testing program (phase of the passive seismic aftershock monitoring system with RefTek equipment (Refraction Technology, Inc., USA) for On-Site Inspection purposes that was carried out near Vienna International Centre in 2000. Equipment and applied software are described. Testing results were analyzed; in particular, least needs in maintenance personnel during operation. Development perspectives of passive seismic aftershock monitoring system for On-Site Inspection have been discussed. (author)

  15. New seismic array solution for earthquake observations and hydropower plant health monitoring

    Science.gov (United States)

    Antonovskaya, Galina N.; Kapustian, Natalya K.; Moshkunov, Alexander I.; Danilov, Alexey V.; Moshkunov, Konstantin A.

    2017-09-01

    We present the novel fusion of seismic safety monitoring data of the hydropower plant in Chirkey (Caucasus Mountains, Russia). This includes new hardware solutions and observation methods, along with technical limitations for three types of applications: (a) seismic monitoring of the Chirkey reservoir area, (b) structure monitoring of the dam, and (c) monitoring of turbine vibrations. Previous observations and data processing for health monitoring do not include complex data analysis, while the new system is more rational and less expensive. The key new feature of the new system is remote monitoring of turbine vibration. A comparison of the data obtained at the test facilities and by hydropower plant inspection with remote sensors enables early detection of hazardous hydrodynamic phenomena.

  16. Annual Hanford Seismic Report for Fiscal Year 2008

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2008-12-29

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. During fiscal year 2008, the Hanford Seismic Network recorded 1431 triggers on the seismometer system, which included 112 seismic events in the southeast Washington area and an additional 422 regional and teleseismic events. There were 74 events determined to be local earthquakes relevant to the Hanford Site. The highest-magnitude event (3.7 Mc) occurred on May 18, 2008, and was located approximately 17 km east of Prosser at a depth of 20.5 km. With regard to the depth distribution, 13 earthquakes were located at shallow depths (less than 4 km, most likely in the Columbia River basalts), 45 earthquakes were located at intermediate depths (between 4 and 9 km, most likely in the pre-basalt sediments), and 16 earthquakes were located at depths greater than 9 km, within the crystalline basement. Geographically, 54 earthquakes were located in swarm areas and 20 earthquakes were classified as random events. The May 18 earthquake was the highest magnitude event recorded since 1975 in the vicinity of the Hanford Site (between 46 degrees and 47 degrees north latitude and

  17. Dynamic characteristics of background seismic noise according to records of nuclear monitoring seismic stations in Kazakstan

    International Nuclear Information System (INIS)

    Belyashova, N.N.; Sinyova, Z.I.; Komarov, I.I.; Mikhailova, N.N.

    1998-01-01

    The seismic stations of Kazakstan, included into nuclear monitoring network (see fig.1) are equipped with broad hand seismometers; seismic data are recorded in digital format. All this allows to investigate spectral and time characteristics of seismic background noise in very large frequency diapason (more than 3-5 orders), for all three components of oscillation vector. The spectral density of background seismic noise for vertical and both horizontal components (fig.2) was calculated for all of the observation points. The regular features of structure of noise spectra, inherent for all of the studied observation points, as well as some features, specific for studied places were found. The curves of spectral noise density were compared with global noise model, determined by the data of Global Seismological Network (GSN)

  18. Local seismic network at the Olkiluoto site. Annual report 2002-2004

    Energy Technology Data Exchange (ETDEWEB)

    Saari, J. [Enprima Oy, Vantaa (Finland)

    2005-09-15

    In Olkiluoto, Posiva Oy has operated a local seismic network since February 2002. In the beginning, the network consisted of six seismic stations. Later, in June 2004, the seismic network was expanded with two new seismic stations. At that time started the excavation of the underground characterisation facility (the ONKALO) and the basic operation procedure was changed more suitable for the demands of the new situation. The purpose of the microearthquake measurements at Olkiluoto is to improve understanding of the structure, behaviour and long term stability of the bedrock. The studies include both tectonic and excavation-induced microearthquakes. An additional task of monitoring is related to safeguarding of the ONKALO. This report gives the results of microseismic monitoring during the years 2002 - 2004. Also the changes in the structure and the operation procedure of the network are described. The network has operated nearly continuously. The longest interruption occurred 16.-17.6.2004, when two new seismic stations were installed in the network and the operation procedure was changed. Altogether 757 events have been located in the Olkiluoto area. The magnitudes of the observed events range from ML = -3.5 to ML = 1.2. All of them are explosions or other artificial events. So far, none of the 757 observed events can be classified as microearthquakes. Five of the events have characteristics that make the origin of the recorded signal uncertain. They are quite unlikely microearthquakes, but they are not typical examples of artificial seismic signals either. When the experience and the data set of the Olkiluoto microearthquakes increase the identification of events will be more definite. Evidence of activity that would has influence on the safety of the ONKALO, have not found. (orig.)

  19. Local seismic network at the Olkiluoto site. Annual report 2002-2004

    International Nuclear Information System (INIS)

    Saari, J.

    2005-09-01

    In Olkiluoto, Posiva Oy has operated a local seismic network since February 2002. In the beginning, the network consisted of six seismic stations. Later, in June 2004, the seismic network was expanded with two new seismic stations. At that time started the excavation of the underground characterisation facility (the ONKALO) and the basic operation procedure was changed more suitable for the demands of the new situation. The purpose of the microearthquake measurements at Olkiluoto is to improve understanding of the structure, behaviour and long term stability of the bedrock. The studies include both tectonic and excavation-induced microearthquakes. An additional task of monitoring is related to safeguarding of the ONKALO. This report gives the results of microseismic monitoring during the years 2002 - 2004. Also the changes in the structure and the operation procedure of the network are described. The network has operated nearly continuously. The longest interruption occurred 16.-17.6.2004, when two new seismic stations were installed in the network and the operation procedure was changed. Altogether 757 events have been located in the Olkiluoto area. The magnitudes of the observed events range from ML = -3.5 to ML = 1.2. All of them are explosions or other artificial events. So far, none of the 757 observed events can be classified as microearthquakes. Five of the events have characteristics that make the origin of the recorded signal uncertain. They are quite unlikely microearthquakes, but they are not typical examples of artificial seismic signals either. When the experience and the data set of the Olkiluoto microearthquakes increase the identification of events will be more definite. Evidence of activity that would has influence on the safety of the ONKALO, have not found. (orig.)

  20. Regional passive seismic monitoring reveals dynamic glacier activity on Spitsbergen, Svalbard

    Directory of Open Access Journals (Sweden)

    Andreas Köhler

    2015-12-01

    Full Text Available Dynamic glacier activity is increasingly observed through passive seismic monitoring. We analysed near-regional-scale seismicity on the Arctic archipelago of Svalbard to identify seismic icequake signals and to study their spatial–temporal distribution within the 14-year period from 2000 until 2013. This is the first study that uses seismic data recorded on permanent broadband stations to detect and locate icequakes in different regions of Spitsbergen, the main island of the archipelago. A temporary local seismic network and direct observations of glacier calving and surging were used to identify icequake sources. We observed a high number of icequakes with clear spectral peaks between 1 and 8 Hz in different parts of Spitsbergen. Spatial clusters of icequakes could be associated with individual grounded tidewater glaciers and exhibited clear seasonal variability each year with more signals observed during the melt season. Locations at the termini of glaciers, and correlation with visual calving observations in situ at Kronebreen, a glacier in the Kongsfjorden region, show that these icequakes were caused dominantly by calving. Indirect evidence for glacier surging through increased calving seismicity was found in 2003 at Tunabreen, a glacier in central Spitsbergen. Another type of icequake was observed in the area of the Nathorstbreen glacier system. Seismic events occurred upstream of the glacier within a short time period between January and May 2009 during the initial phase of a major glacier surge. This study is the first step towards the generation and implementation of an operational seismic monitoring strategy for glacier dynamics in Svalbard.

  1. Proposed Construction of Boulder Seismic Station Monitoring Sites, Boulder, Wyoming. Environmental Assessment

    Science.gov (United States)

    2009-02-01

    boreholes at the Boulder Seismic Station for research, development, test, and evaluation (RDT&E) as part of the U.S. Nuclear Treaty monitoring...14 LIST OF FIGURES Figure 1. Location of the proposed Boulder Seismic Station, borehole locations and associated buffers...juncture of Spring Creek and Scab Creek Road (Figure 1). Currently, the Boulder Seismic Station has a 13-element array of seismometers on the property

  2. A Seismic Transmission System for Continuous Monitoring of the Lithosphere : A Proposition

    NARCIS (Netherlands)

    Unger, R.

    2002-01-01

    The main objective of this thesis is to enhance earthquake prediction feasibility. We present the concept and the design layout of a novel seismic transmission system capable of continuously monitoring the Lithosphere for changes in Earth physics parameters governing seismic wave propagation.

  3. Seismic monitoring of in situ combustion process in a heavy oil field

    International Nuclear Information System (INIS)

    Zadeh, Hossein Mehdi; Srivastava, Ravi P; Vedanti, Nimisha; Landrø, Martin

    2010-01-01

    Three time-lapse 3D seismic surveys are analysed to monitor the effect of in situ combustion, a thermal-enhanced oil recovery process in the Balol heavy oil reservoir in India. The baseline data were acquired prior to the start of the in situ combustion process in four injection wells, while the two monitor surveys were acquired 1 and 2 years after injection start, respectively. We present the results of baseline and second monitor surveys. Fluid substitution studies based on acoustic well logs predict a seismic amplitude decrease at the top reservoir and an increase at the base reservoir. Both the amplitude dimming at the top reservoir and the brightening at the base reservoir are observed in the field data. The extent of the most pronounced 4D anomaly is estimated from the seismic amplitude and time shift analysis. The interesting result of seismic analysis is that the anomalies are laterally shifted towards the northwest, rather than the expected east, from the injector location suggesting a northwest movement of the in situ combustion front. No clear evidence of air leakage into other sand layers, neither above nor below the reservoir sand, is observed. This does not necessarily mean that all the injected air is following the reservoir sand, especially if the thief sand layers are thin. These layers might be difficult to observe on seismic data

  4. Annual Hanford Seismic Report for Fiscal Year 2009

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2009-12-31

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. During FY 2009, the Hanford Seismic Network recorded nearly 3000 triggers on the seismometer system, which included over 1700 seismic events in the southeast Washington area and an additional 370 regional and teleseismic events. There were 1648 events determined to be local earthquakes relevant to the Hanford Site. Nearly all of these earthquakes were detected in the vicinity of Wooded Island, located about eight miles north of Richland just west of the Columbia River. Recording of the Wooded Island events began in January with over 250 events per month through June 2009. The frequency of events decreased starting in July 2009 to approximately 10-15 events per month through September 2009. Most of the events were considered minor (coda-length magnitude [Mc] less than 1.0) with 47 events in the 2.0-3.0 range. The estimated depths of the Wooded Island events are shallow (averaging less than 1.0 km deep) with a maximum depth estimated at 2.3 km. This places the Wooded Island events within the Columbia River Basalt Group (CRBG). The highest-magnitude event (3.0Mc

  5. Seismic monitoring of the Creys-Malville plant - Problems raised by the seismic behaviour of a fast breeder reactor

    International Nuclear Information System (INIS)

    Descleve, P.; Barrau, P.

    1988-01-01

    CREYS-MALVILLE reached full power in December 1986 and is presently the largest sodium cooled reactor in operation. Well established procedures of safety evaluation have been used for the design but for a large size reactor special attention must be paid to the effects of seismic disturbances. This paper describes the seismic protection and monitoring system of the plant, the core behaviour which is specific to fast reactors and the test performed to verify the analyses. Finally the seismic impact on the construction can be established as an indication for future plants. (author)

  6. The roles of the seismic safety and monitoring systems in the PEC fast reactor

    International Nuclear Information System (INIS)

    Masoni, P.; Di Tullio, E.M.; Massa, B.; Martelli, A.; Sano, T.

    1988-01-01

    Two different seismic systems are foreseen in the case of PEC: the seismic safety system, that provides the automatic scram, and the seismic monitoring system. During earthquake, three triaxial seismic switches are triggered if a threshold value of the ground acceleration is exceeded. In this case, the signals from the seismic switches are processed by the safety system (with a 2/3 logic) and the shutdown system is triggered. Peak acceleration is the parameter used by the safety system to quantify the seismic event. This way, however, no information is obtained with regard to earthquake frequency content. Thus, reactor safety is guaranteed by adopting a threshold considerably lower than the Z.P.A. of the Design Basis Earthquake. Furthermore, in the case of significant earthquakes, the seismic motion is measured by about 20 triaxial accelerometers, located both in the free field and on the plant's structures. Data are digitazed and recordered by the seismic monitoring system. This system also elaborates the recordered time-histories providing floor response spectra and compares such spectra to the design values. The above-mentioned elaborations and comparisons are performed in short time for two triaxial measuring positions, thus allowing the Operator to immediately get a more complete information on the seismic event. The complete set of data recorded by the seismic monitoring system also allows the actual dynamic response of the plant to be determined and compared to the design values. On the basis of this comparison the necessary safety analysis can be carried out to verify whether the design limits of the plant were respected: in the positive case the reactor can be restarted. (author)

  7. Feasibility study and technical proposal for seismic monitoring of tunnel boring machine in Olkiluoto

    Energy Technology Data Exchange (ETDEWEB)

    Saari, J.; Lakio, A. (AF-Consult Ltd, Vantaa (Finland))

    2009-01-15

    In Olkiluoto, Posiva Oy has operated a local seismic network since February 2002. The purpose of the microearthquake measurements at Olkiluoto is to improve understanding of the structure, behaviour and long term stability of the bedrock. The studies include both tectonic and excavation-induced microearthquakes. An additional task of monitoring is related to safeguarding of the ONKALO. The possibility to excavate an illegal access to the ONKALO, have been concerned when the safeguards are discussed. Therefore all recorded explosions in the Olkiluoto area and in the ONKALO are located. If a concentration of explosions is observed, the origin of that is found out. Also a concept of hidden illegal explosions, detonated at the same time as the real excavation blasts, has been examined. According to the experience gained in Olkiluoto, it can be concluded that, as long the seismic network is in operation and the results are analysed by a skilled person, it is practically impossible to do illegal excavation by blasts. In this report a possibility of seismic monitoring of illegal excavation done by tunnel boring machine (TBM) has been investigated. Characteristics of the seismic signal generated by the raise boring machine are described. According to this study, it can be concluded that the generated seismic signal can be detected and the source of the signal can be located. However, this task calls for different kind of monitoring system than that, which is currently used for monitoring microearthquakes and explosions. The presented technical proposal for seismic monitoring of TBM in Olkiluoto is capable to detect and locate TBM coming outside the ONKALO area about two months before it would reach the ONKALO. (orig.)

  8. Feasibility study and technical proposal for seismic monitoring of tunnel boring machine in Olkiluoto

    International Nuclear Information System (INIS)

    Saari, J.; Lakio, A.

    2009-01-01

    In Olkiluoto, Posiva Oy has operated a local seismic network since February 2002. The purpose of the microearthquake measurements at Olkiluoto is to improve understanding of the structure, behaviour and long term stability of the bedrock. The studies include both tectonic and excavation-induced microearthquakes. An additional task of monitoring is related to safeguarding of the ONKALO. The possibility to excavate an illegal access to the ONKALO, have been concerned when the safeguards are discussed. Therefore all recorded explosions in the Olkiluoto area and in the ONKALO are located. If a concentration of explosions is observed, the origin of that is found out. Also a concept of hidden illegal explosions, detonated at the same time as the real excavation blasts, has been examined. According to the experience gained in Olkiluoto, it can be concluded that, as long the seismic network is in operation and the results are analysed by a skilled person, it is practically impossible to do illegal excavation by blasts. In this report a possibility of seismic monitoring of illegal excavation done by tunnel boring machine (TBM) has been investigated. Characteristics of the seismic signal generated by the raise boring machine are described. According to this study, it can be concluded that the generated seismic signal can be detected and the source of the signal can be located. However, this task calls for different kind of monitoring system than that, which is currently used for monitoring microearthquakes and explosions. The presented technical proposal for seismic monitoring of TBM in Olkiluoto is capable to detect and locate TBM coming outside the ONKALO area about two months before it would reach the ONKALO. (orig.)

  9. Monitoring of geothermal fields by seismic networks. Guidelines and chances; Monitoring geothermaler Felder durch seismische Netzwerke. Vorgaben und Chancen

    Energy Technology Data Exchange (ETDEWEB)

    Barth, Andreas [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Geophysikalisches Inst.; Gaucher, Emmanuel [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Abt. Geothermie

    2012-07-01

    The monitoring of geothermal power plants requires seismic networks in order to quantify ground motions at the earth's surface in the case of a possible micro seismicity or to describe spatio-temporal seismicity distribution in the reservoir. The first case requires official needs. The second case may help to develop the reservoirs. An optimal configuration of the seismic network may adequate for both tasks. It also can be a chance for a long-term investment for the overall benefit.

  10. Spectral characteristics of seismic noise using data of Kazakhstan monitoring stations

    International Nuclear Information System (INIS)

    Mikhajlova, N.N.; Komarov, I.I.

    2006-01-01

    Spectral specifications of seismic noise research for PS23-Makanchi, Karatau, Akbulak, AS057-Borovoye and new three-component station AS059-Aktyubinsk was done. Spectral noise density models were obtained for day and night time and spectral density values variation. Noise close to low-level universal noise model is peculiar for all stations, which provides their high efficiency while seismic monitoring. Noise parameters dependence on seismic receivers installation conditions was investigated separately. Based on three stations (Makanchi, Borovoye, and Aktyubinsk), spectral density change features are shown after borehole equipment installation. (author)

  11. Earthquake Monitoring: SeisComp3 at the Swiss National Seismic Network

    Science.gov (United States)

    Clinton, J. F.; Diehl, T.; Cauzzi, C.; Kaestli, P.

    2011-12-01

    The Swiss Seismological Service (SED) has an ongoing responsibility to improve the seismicity monitoring capability for Switzerland. This is a crucial issue for a country with low background seismicity but where a large M6+ earthquake is expected in the next decades. With over 30 stations with spacing of ~25km, the SED operates one of the densest broadband networks in the world, which is complimented by ~ 50 realtime strong motion stations. The strong motion network is expected to grow with an additional ~80 stations over the next few years. Furthermore, the backbone of the network is complemented by broadband data from surrounding countries and temporary sub-networks for local monitoring of microseismicity (e.g. at geothermal sites). The variety of seismic monitoring responsibilities as well as the anticipated densifications of our network demands highly flexible processing software. We are transitioning all software to the SeisComP3 (SC3) framework. SC3 is a fully featured automated real-time earthquake monitoring software developed by GeoForschungZentrum Potsdam in collaboration with commercial partner, gempa GmbH. It is in its core open source, and becoming a community standard software for earthquake detection and waveform processing for regional and global networks across the globe. SC3 was originally developed for regional and global rapid monitoring of potentially tsunamagenic earthquakes. In order to fulfill the requirements of a local network recording moderate seismicity, SED has tuned configurations and added several modules. In this contribution, we present our SC3 implementation strategy, focusing on the detection and identification of seismicity on different scales. We operate several parallel processing "pipelines" to detect and locate local, regional and global seismicity. Additional pipelines with lower detection thresholds can be defined to monitor seismicity within dense subnets of the network. To be consistent with existing processing

  12. Passive seismic monitoring of the Bering Glacier during its last surge event

    Science.gov (United States)

    Zhan, Z.

    2017-12-01

    The physical causes behind glacier surges are still unclear. Numerous evidences suggest that they probably involve changes in glacier basal conditions, such as switch of basal water system from concentrated large tunnels to a distributed "layer" as "connected cavities". However, most remote sensing approaches can not penetrate to the base to monitor such changes continuously. Here we apply seismic interferometry using ambient noise to monitor glacier seismic structures, especially to detect possible signatures of the hypothesized high-pressure water "layer". As an example, we derive an 11-year long history of seismic structure of the Bering Glacier, Alaska, covering its latest surge event. We observe substantial drops of Rayleigh and Love wavespeeds across the glacier during the surge event, potentially caused by changes in crevasse density, glacier thickness, and basal conditions.

  13. Dark Fiber and Distributed Acoustic Sensing: Applications to Monitoring Seismicity and Near-Surface Properties

    Science.gov (United States)

    Ajo Franklin, J. B.; Lindsey, N.; Dou, S.; Freifeld, B. M.; Daley, T. M.; Tracy, C.; Monga, I.

    2017-12-01

    "Dark Fiber" refers to the large number of fiber-optic lines installed for telecommunication purposes but not currently utilized. With the advent of distributed acoustic sensing (DAS), these unused fibers have the potential to become a seismic sensing network with unparalleled spatial extent and density with applications to monitoring both natural seismicity as well as near-surface soil properties. While the utility of DAS for seismic monitoring has now been conclusively shown on built-for-purpose networks, dark fiber deployments have been challenged by the heterogeneity of fiber installation procedures in telecommunication as well as access limitations. However, the potential of telecom networks to augment existing broadband monitoring stations provides a strong incentive to explore their utilization. We present preliminary results demonstrating the application of DAS to seismic monitoring on a 20 km run of "dark" telecommunications fiber between West Sacramento, CA and Woodland CA, part of the Dark Fiber Testbed maintained by the DOE's ESnet user facility. We show a small catalog of local and regional earthquakes detected by the array and evaluate fiber coupling by using variations in recorded frequency content. Considering the low density of broadband stations across much of the Sacramento Basin, such DAS recordings could provide a crucial data source to constrain small-magnitude local events. We also demonstrate the application of ambient noise interferometry using DAS-recorded waveforms to estimate soil properties under selected sections of the dark fiber transect; the success of this test suggests that the network could be utilized for environmental monitoring at the basin scale. The combination of these two examples demonstrates the exciting potential for combining DAS with ubiquitous dark fiber to greatly extend the reach of existing seismic monitoring networks.

  14. Earthquake Monitoring with the MyShake Global Smartphone Seismic Network

    Science.gov (United States)

    Inbal, A.; Kong, Q.; Allen, R. M.; Savran, W. H.

    2017-12-01

    Smartphone arrays have the potential for significantly improving seismic monitoring in sparsely instrumented urban areas. This approach benefits from the dense spatial coverage of users, as well as from communication and computational capabilities built into smartphones, which facilitate big seismic data transfer and analysis. Advantages in data acquisition with smartphones trade-off with factors such as the low-quality sensors installed in phones, high noise levels, and strong network heterogeneity, all of which limit effective seismic monitoring. Here we utilize network and array-processing schemes to asses event detectability with the MyShake global smartphone network. We examine the benefits of using this network in either triggered or continuous modes of operation. A global database of ground motions measured on stationary phones triggered by M2-6 events is used to establish detection probabilities. We find that the probability of detecting an M=3 event with a single phone located 20 nearby phones closely match the regional catalog locations. We use simulated broadband seismic data to examine how location uncertainties vary with user distribution and noise levels. To this end, we have developed an empirical noise model for the metropolitan Los-Angeles (LA) area. We find that densities larger than 100 stationary phones/km2 are required to accurately locate M 2 events in the LA basin. Given the projected MyShake user distribution, that condition may be met within the next few years.

  15. Evolution of seismic monitoring systems of nuclear power plants. Improvements and practical applications

    International Nuclear Information System (INIS)

    Sanchez Cabanero, J. G.; Jimenez Juan, A.

    2010-01-01

    The II. NN. Spanish have a seismic monitoring system (SVS) covering two objectives relevant to nuclear security: determining earthquake leave operation, and specific data that serve to limit or reduce the uncertainties associated with the seismic source, the site and design. Since its construction, the major SVS II. NN. have been equipped with the best time of seismic instrumentation to record earthquakes strong, but with limited resolution for recording in the free field and appropriately moderate earthquakes.

  16. Local seismic monitoring east and north of Toronto - Volume 1

    International Nuclear Information System (INIS)

    Mohajer, A.A.; Doughty, M.

    1996-08-01

    Monitoring of small magnitude ('micro') earthquakes in a dense local network is one of the techniques used to delineate currently active faults and seismic sources. The conventional wisdom is that smaller, but more frequent, seismic events normally occur on active fault planes and a log linear empirical relation between frequency and magnitude can be used to estimate the magnitude and recurrence (frequency) of the larger events. A program of site-specific seismic monitoring has been supported by the AECB since 1991, to investigate the feasibility of microearthquake detection in suburban areas of east Toronto in order to assess the rate activity of local events in the vicinity of the nuclear power plants at Pickering and Darlington. For deployment of the seismic stations at the most favorable locations an extensive background noise survey was carried out. This survey involved measuring and comparing the amplitude response of the ambient vibration caused by natural phenomena (e.g. wind blow, water flow, wave action) or human activities such as farming, mining and industrial work at 25 test sites. Subsequently, a five-station seismic network, with a 30 km aperture, was selected between the Pickering and Darlington nuclear power plants on Lake Ontario, to the south, and Lake Scugog to the north. The detection threshold obtained for two of the stations allows recording of local events M L =0-2, a magnitude range which is usually not detected by regional seismic networks. An analysis of several thousand triggered signals resulted in the identification of about 120 local events, which can not be assigned to any source other than the natural release of crustal stresses. The recurrence frequency of these microearthquakes shows a linear relationship which matches that of larger events in the last two centuries in this region. The preliminary results indicate that the stress is currently accumulating and is being released within clusters of small earthquakes

  17. Seismic fragility analyses

    International Nuclear Information System (INIS)

    Kostov, Marin

    2000-01-01

    In the last two decades there is increasing number of probabilistic seismic risk assessments performed. The basic ideas of the procedure for performing a Probabilistic Safety Analysis (PSA) of critical structures (NUREG/CR-2300, 1983) could be used also for normal industrial and residential buildings, dams or other structures. The general formulation of the risk assessment procedure applied in this investigation is presented in Franzini, et al., 1984. The probability of failure of a structure for an expected lifetime (for example 50 years) can be obtained from the annual frequency of failure, β E determined by the relation: β E ∫[d[β(x)]/dx]P(flx)dx. β(x) is the annual frequency of exceedance of load level x (for example, the variable x may be peak ground acceleration), P(fI x) is the conditional probability of structure failure at a given seismic load level x. The problem leads to the assessment of the seismic hazard β(x) and the fragility P(fl x). The seismic hazard curves are obtained by the probabilistic seismic hazard analysis. The fragility curves are obtained after the response of the structure is defined as probabilistic and its capacity and the associated uncertainties are assessed. Finally the fragility curves are combined with the seismic loading to estimate the frequency of failure for each critical scenario. The frequency of failure due to seismic event is presented by the scenario with the highest frequency. The tools usually applied for probabilistic safety analyses of critical structures could relatively easily be adopted to ordinary structures. The key problems are the seismic hazard definitions and the fragility analyses. The fragility could be derived either based on scaling procedures or on the base of generation. Both approaches have been presented in the paper. After the seismic risk (in terms of failure probability) is assessed there are several approaches for risk reduction. Generally the methods could be classified in two groups. The

  18. Evaluation of seismic characteristics and structural integrity for the cabinet of HANARO seismic monitoring analysis system

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Jeong Soo; Yoon, Doo Byung

    2003-06-01

    The HANARO SMAS(Seismic Monitoring Analysis System) is classified as Non-Nuclear Safety(NNS), seismic category I, and quality class T. It is required that this system can perform required functions, which are to preserve its structural integrity during and after an OBE or SSE. In this work, the structural integrity and seismic characteristics of the cabinet of the newly developed SMAS have been estimated. The most parts of the cabinet are identically designed with those of Yonggwhang and Gori Nuclear Power Plants(NPPs), unit 1 that successfully completed the required seismic qualification tests. The structure of the cabinet of the SMAS is manufactured by the manufacturer of the cabinet of Yonggwhang and Gori NPPs. To evaluate the seismic characteristics of the SMAS, the RRS(Required Response Spectra) of the newly developed cabinet are compared with those of Yonggwhang and Gori NPPs, unit 1. In addition, natural frequencies of the cabinet of HANARO, Yonggwhang, and Gori NPPs were measured for the comparison of the seismic characteristics of the installed cabinets. In case of HANARO, the bottom of the cabinet is welded to the base plate. The base plate is fixed to the concrete foundation by using anchor bolts. For the evaluation of the structural integrity of the welding parts and the anchor bolts, the maximum stresses and forces of the welding parts and the anchor bolts due to seismic loading are estimated. The analysis results show that maximum stresses and forces are less than the allowable limits. This new SMAS is operating at HANARO instrument room to acquire and analyze the signal of earthquake.

  19. Establishing seismic design criteria to achieve an acceptable seismic margin

    International Nuclear Information System (INIS)

    Kennedy, R.P.

    1997-01-01

    In order to develop a risk based seismic design criteria the following four issues must be addressed: (1) What target annual probability of seismic induced unacceptable performance is acceptable? (2). What minimum seismic margin is acceptable? (3) Given the decisions made under Issues 1 and 2, at what annual frequency of exceedance should the Safe Shutdown Earthquake ground motion be defined? (4) What seismic design criteria should be established to reasonably achieve the seismic margin defined under Issue 2? The first issue is purely a policy decision and is not addressed in this paper. Each of the other three issues are addressed. Issues 2 and 3 are integrally tied together so that a very large number of possible combinations of responses to these two issues can be used to achieve the target goal defined under Issue 1. Section 2 lays out a combined approach to these two issues and presents three potentially attractive combined resolutions of these two issues which reasonably achieves the target goal. The remainder of the paper discusses an approach which can be used to develop seismic design criteria aimed at achieving the desired seismic margin defined in resolution of Issue 2. Suggestions for revising existing seismic design criteria to more consistently achieve the desired seismic margin are presented

  20. Passive seismic data management and processing to monitor heavy oil steaming operations

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, J.R.; Wang, L. [Society of Petroleum Engineers, Richardson, TX (United States)]|[ExxonMobil Upstream Research Co., Houston, TX (United States); Searles, K.H.; Smith, R.J.; Keith, C.M. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[Imperial Oil Ltd., Burnaby, BC (Canada)

    2008-10-15

    Cyclic steam injection (CSS) is a cost-effective means to produce heavy oil at the Cold Lake field in Alberta, Canada. The primary obstacle to economic production is the high viscosity of the bitumen. However the bitumen viscosity decreases significantly with temperature. Steam is injected at fracturing conditions, resulting in dilation and recompaction which propagates stress and strain fields in the overburden. An important design consideration involves the mechanical loads on wells resulting from this production process. A seismic production monitoring system was developed in 1995 in the Cold Lake field in order to provide early detection of casing failures and possible fracturing of the overburden. The method was shown to detect a high percentage of casing failures in the production monitoring system. This paper discussed the use and application of methods developed for passive seismic data analysis. The Cold Lake passive seismic system (CLPS) has evolved into an integrated process with a daily workflow. Personnel have identified roles and responsibilities. The paper provided a discussion of the development of a web-based platform running on the operator's internal network called PSWeb. The progression of work in microseismic monitoring of fracture stimulation treatments was also discussed along with the development of FIDO, which used graphical event processing methods to facilitate data analysis and interpretation. Further development of these tools is ongoing to improve casing failure detection and to incorporate more information from seismic data to understand the impact of the CSS process on overburden integrity. 15 refs., 12 figs., 1 appendix.

  1. Combined GPS and seismic monitoring of a 12-story structure in a region of induced seismicity in Oklahoma

    Science.gov (United States)

    Haase, J. S.; Soliman, M.; Kim, H.; Jaiswal, P.; Saunders, J. K.; Vernon, F.; Zhang, W.

    2017-12-01

    This work focuses on quantifying ground motions and their effects in Oklahoma near the location of the 2016 Mw 5.8 Pawnee earthquake, where seismicity has been increasing due to wastewater injection related to oil and natural gas production. Much of the building inventory in Oklahoma was constructed before the increase in seismicity and before the implementation of earthquake design and detailing provisions for reinforced concrete (RC) structures. We will use combined GPS/seismic monitoring techniques to measure ground motion in the field and the response of structures to this ground motion. Several Oklahoma State University buildings experienced damage due to the Pawnee earthquake. The USGS Shake Map product estimated peak ground acceleration (PGA) ranging from 0.12g to 0.15g at campus locations. We are deploying a high-rate GPS sensor and accelerometer on the roof and another accelerometer at ground level of a 12-story RC structure and at selected field sites in order to collect ambient noise data and nearby seismicity. The longer period recording characteristics of the GPS/seismic system are particularly well adapted to monitoring these large structures in the event of a significant earthquake. Gross characteristics of the structural system are described, which consists of RC columns and RC slabs in all stories. We conducted a preliminary structural analysis including modal analysis and response spectrum analysis based on a finite element (FE) simulation, which indicated that the period associated with the first X-axis bending, first torsional, and first Y-axis bending modes are 2.2 s, 2.1 s, and 1.8 s, respectively. Next, a preliminary analysis was conducted to estimate the range of expected deformation at the roof level for various earthquake excitations. The earthquake analysis shows a maximum roof displacement of 5 and 7 cm in the horizontal directions resulting from earthquake loads with PGA of 0.2g, well above the noise level of the combined GPS/seismic

  2. Learnings from the Monitoring of Induced Seismicity in Western Canada over the Past Three Years

    Science.gov (United States)

    Yenier, E.; Moores, A. O.; Baturan, D.; Spriggs, N.

    2017-12-01

    In response to induced seismicity observed in western Canada, existing public networks have been densified and a number of private networks have been deployed to closely monitor the earthquakes induced by hydraulic fracturing operations in the region. These networks have produced an unprecedented volume of seismic data, which can be used to map pre-existing geological structures and understand their activation mechanisms. Here, we present insights gained over the past three years from induced seismicity monitoring (ISM) for some of the most active operators in Canada. First, we discuss the benefits of high-quality ISM data sets for making operational decisions and how their value largely depends on choice of instrumentation, seismic network design and data processing techniques. Using examples from recent research studies, we illustrate the key role of robust modeling of regional source, attenuation and site attributes on the accuracy of event magnitudes, ground motion estimates and induced seismicity hazard assessment. Finally, acknowledging that the ultimate goal of ISM networks is assisting operators to manage induced seismic risk, we share some examples of how ISM data products can be integrated into existing protocols for developing effective risk management strategies.

  3. Active Seismic Monitoring Using High-Power Moveable 40-TONS Vibration Sources in Altay-Sayn Region of Russia

    Science.gov (United States)

    Soloviev, V. M.; Seleznev, V. S.; Emanov, A. F.; Kashun, V. N.; Elagin, S. A.; Romanenko, I.; Shenmayer, A. E.; Serezhnikov, N.

    2013-05-01

    The paper presents data of operating vibroseismic observations using high-power stationary 100-tons and moveable 40-tons vibration sources, which have been carried out in Russia for 30 years. It is shown that investigations using high-power vibration sources open new possibilities for study stressedly-deformed condition of the Earth`s crust and the upper mantle and tectonic process in them. Special attention is given to developing operating seismic translucences of the Earth`s crust and the upper mantle using high-power 40-tons vibration sources. As a result of experimental researches there was proved high stability and repeatability of vibration effects. There were carried out long period experiments of many days with vibration source sessions of every two hours with the purpose of monitoring accuracy estimation. It was determined, that repeatability of vibroseismic effects (there was researched time difference of repeated sessions of P- and S-waves from crystal rocks surface) could be estimated as 10-3 - 10-4 sec. It is ten times less than revealed here annual variations of kinematic parameters according to regime vibroseismic observations. It is shown, that on hard high-speed grounds radiation spectrum becomes narrowband and is dislocated to high frequency; at the same time quantity of multiple high-frequency harmonic is growing. At radiation on soft sedimentary grounds (sand, clay) spectrum of vibration source in near zone is more broadband, correlograms are more compact. there Correspondence of wave fields from 40-tons vibration sources and explosions by reference waves from boundaries in he Earth`s crust and the upper mantle at record distance of 400 km was proved by many experiments in various regions of Russia; there was carried out the technique of high-power vibration sources grouping for increase of effectiveness of emanation and increase of record distance. According to results of long-term vibroseismic monitoring near Novosibirsk (1997-2012) there are

  4. Nuclear Explosion Monitoring History and Research and Development

    Science.gov (United States)

    Hawkins, W. L.; Zucca, J. J.

    2008-12-01

    Within a year after the nuclear detonations over Hiroshima and Nagasaki the Baruch Plan was presented to the newly formed United Nations Atomic Energy Commission (June 14, 1946) to establish nuclear disarmament and international control over all nuclear activities. These controls would allow only the peaceful use of atomic energy. The plan was rejected through a Security Council veto primarily because of the resistance to unlimited inspections. Since that time there have been many multilateral, and bilateral agreements, and unilateral declarations to limit or eliminate nuclear detonations. Almost all of theses agreements (i.e. treaties) call for some type of monitoring. We will review a timeline showing the history of nuclear testing and the more important treaties. We will also describe testing operations, containment, phenomenology, and observations. The Comprehensive Nuclear Test Ban Treaty (CTBT) which has been signed by 179 countries (ratified by 144) established the International Monitoring System global verification regime which employs seismic, infrasound, hydroacoustic and radionuclide monitoring techniques. The CTBT also includes on-site inspection to clarify whether a nuclear explosion has been carried out in violation of the Treaty. The US Department of Energy (DOE) through its National Nuclear Security Agency's Ground-Based Nuclear Explosion Monitoring R&D Program supports research by US National Laboratories, and universities and industry internationally to detect, locate, and identify nuclear detonations. This research program builds on the broad base of monitoring expertise developed over several decades. Annually the DOE and the US Department of Defense jointly solicit monitoring research proposals. Areas of research include: seismic regional characterization and wave propagation, seismic event detection and location, seismic identification and source characterization, hydroacoustic monitoring, radionuclide monitoring, infrasound monitoring, and

  5. Synthetic seismic monitoring using reverse-time migration and Kirchhoff migration for CO2 sequestration in Korea

    Science.gov (United States)

    Kim, W.; Kim, Y.; Min, D.; Oh, J.; Huh, C.; Kang, S.

    2012-12-01

    During last two decades, CO2 sequestration in the subsurface has been extensively studied and progressed as a direct tool to reduce CO2 emission. Commercial projects such as Sleipner, In Salah and Weyburn that inject more than one million tons of CO2 per year are operated actively as well as test projects such as Ketzin to study the behavior of CO2 and the monitoring techniques. Korea also began the CCS (CO2 capture and storage) project. One of the prospects for CO2 sequestration in Korea is the southwestern continental margin of Ulleung basin. To monitor the behavior of CO2 underground for the evaluation of stability and safety, several geophysical monitoring techniques should be applied. Among various geophysical monitoring techniques, seismic survey is considered as the most effective tool. To verify CO2 migration in the subsurface more effectively, seismic numerical simulation is an essential process. Furthermore, the efficiency of the seismic migration techniques should be investigated for various cases because numerical seismic simulation and migration test help us accurately interpret CO2 migration. In this study, we apply the reverse-time migration and Kirchhoff migration to synthetic seismic monitoring data generated for the simplified model based on the geological structures of Ulleung basin in Korea. Synthetic seismic monitoring data are generated for various cases of CO2 migration in the subsurface. From the seismic migration images, we can investigate CO2 diffusion patterns indirectly. From seismic monitoring simulation, it is noted that while the reverse-time migration generates clear subsurface images when subsurface structures are steeply dipping, Kirchhoff migration has an advantage in imaging horizontal-layered structures such as depositional sediments appearing in the continental shelf. The reverse-time migration and Kirchhoff migration present reliable subsurface images for the potential site characterized by stratigraphical traps. In case of

  6. A new seismic station in Romania the Bucovina seismic array

    International Nuclear Information System (INIS)

    Grigore, Adrian; Grecu, Bogdan; Ionescu, Constantin; Ghica, Daniela; Popa, Mihaela; Rizescu, Mihaela

    2002-01-01

    Recently, a new seismic monitoring station, the Bucovina Seismic Array, has been established in the northern part of Romania, in a joint effort of the Air Force Technical Applications Center, USA, and the National Institute for Earth Physics, Romania. The array consists of 10 seismic sensors (9 short-period and one broad band) located in boreholes and distributed in a 5 x 5 km area. On July 24, 2002 the official Opening Ceremony of Bucovina Seismic Array took place in the area near the city of Campulung Moldovenesc in the presence of Romanian Prime Minister, Adrian Nastase. Starting with this date, the new seismic monitoring system became fully operational by continuous recording and transmitting data in real-time to the National Data Center of Romania, in Bucharest and to the National Data Center of USA, in Florida. Bucovina Seismic Array, added to the present Seismic Network, will provide much better seismic monitoring coverage of Romania's territory, on-scale recording for weak-to-strong events, and will contribute to advanced seismological studies on seismic hazard and risk, local effects and microzonation, seismic source physics, Earth structure. (authors)

  7. Monitoring Unstable Glaciers with Seismic Noise Interferometry

    Science.gov (United States)

    Preiswerk, L. E.; Walter, F.

    2016-12-01

    Gravity-driven glacier instabilities are a threat to human infrastructure in alpine terrain, and this hazard is likely to increase with future changes in climate. Seismometers have been used previously on hazardous glaciers to monitor the natural englacial seismicity. In some situations, an increase in "icequake" activity may indicate fracture growth and thus an imminent major break-off. However, without independent constraints on unstable volumes, such mere event counting is of little use. A promising new approach to monitor unstable masses in Alpine terrain is coda wave interferometry of ambient noise. While already established in the solid earth, application to glaciers is not straightforward, because the lack of inhomogeneities typically suppresses seismic coda waves in glacier ice. Only glaciers with pervasive crevasses provide enough scattering to generate long codas. This is requirement is likely met for highly dynamic unstable glaciers. Here, we report preliminary results from a temporary 5-station on-ice array of seismometers (corner frequencies: 1 Hz, array aperture: 500m) on Bisgletscher (Switzerland). The seismometers were deployed in shallow boreholes, directly above the unstable tongue of the glacier. In the frequency band 4-12 Hz, we find stable noise cross-correlations, which in principle allows monitoring on a subdaily scale. The origin and the source processes of the ambient noise in these frequencies are however uncertain. As a first step, we evaluate the stability of the sources in order to separate effects of changing source parameters from changes of englacial properties. Since icequakes occurring every few seconds may dominate the noise field, we compare their temporal and spatial occurrences with the cross-correlation functions (stability over time, the asymmetry between causal and acausal parts of the cross-correlation functions) as well as with results from beamforming to assess the influence of these transient events on the noise field.

  8. Downhole seismic monitoring with Virtual Sources

    Science.gov (United States)

    Bakulin, A.; Calvert, R.

    2005-12-01

    Huge quantities of remaining oil and gas reserves are located in very challenging geological environments covered by salt, basalt or other complex overburdens. Conventional surface seismology struggles to deliver images necessary to economically explore them. Even if those reserves are found by drilling successful production critically depends on our ability to ``see" in real time where fluids are drawn from and how pressure changes throughout the reservoirs. For relatively simple overburdens surface time-lapse (4D) seismic monitoring became industry choice for aerial reservoir surveillance. For complex overburdens, 4D seismic does not have enough resolution and repeatability to answer the questions of reservoir engineers. For instance, often reservoir changes are too small to be detected from surface or these changes occur in such pace that all wells will be placed before we can detect them which greatly reduces the economical impact. Two additional challenges are present in real life that further complicate active monitoring: first, near-surface condition do change between the surveys (water level movement, freezing/thawing, tide variations etc) and second, repeating exact same acquisition geometry at the surface is difficult in practice. Both of these things may lead to false 4D response unrelated to reservoir changes. Virtual Source method (VSM) has been recently proposed as a way to eliminate overburden distortions for imaging and monitoring. VSM acknowledges upfront that our data inversion techniques are unable to unravel the details of the complex overburdens to the extent necessary to remove the distortions caused by them. Therefore VSM advocates placing permanent downhole geophones below that most complex overburden while still exciting signals with a surface sources. For instance, first applications include drilling instrumented wells below complicated near-surface, basalt or salt layer. Of course, in an ideal world we would prefer to have both downhole

  9. Time-Lapse Monitoring of Subsurface Fluid Flow using Parsimonious Seismic Interferometry

    KAUST Repository

    Hanafy, Sherif

    2017-04-21

    A typical small-scale seismic survey (such as 240 shot gathers) takes at least 16 working hours to be completed, which is a major obstacle in case of time-lapse monitoring experiments. This is especially true if the subject that needs to be monitored is rapidly changing. In this work, we will discuss how to decrease the recording time from 16 working hours to less than one hour of recording. Here, the virtual data has the same accuracy as the conventional data. We validate the efficacy of parsimonious seismic interferometry with the time-lapse mentoring idea with field examples, where we were able to record 30 different data sets within a 2-hour period. The recorded data are then processed to generate 30 snapshots that shows the spread of water from the ground surface down to a few meters.

  10. Towards Quantification of Glacier Dynamic Ice Loss through Passive Seismic Monitoring

    Science.gov (United States)

    Köhler, A.; Nuth, C.; Weidle, C.; Schweitzer, J.; Kohler, J.; Buscaino, G.

    2015-12-01

    Global glaciers and ice caps loose mass through calving, while existing models are currently not equipped to realistically predict dynamic ice loss. This is mainly because long-term continuous calving records, that would help to better understand fine scale processes and key climatic-dynamic feedbacks between calving, climate, terminus evolution and marine conditions, do not exist. Combined passive seismic/acoustic strategies are the only technique able to capture rapid calving events continuously, independent of daylight or meteorological conditions. We have produced such a continuous calving record for Kronebreen, a tidewater glacier in Svalbard, using data from permanent seismic stations between 2001 and 2014. However, currently no method has been established in cryo-seismology to quantify the calving ice loss directly from seismic data. Independent calibration data is required to derive 1) a realistic estimation of the dynamic ice loss unobserved due to seismic noise and 2) a robust scaling of seismic calving signals to ice volumes. Here, we analyze the seismic calving record at Kronebreen and independent calving data in a first attempt to quantify ice loss directly from seismic records. We make use of a) calving flux data with weekly to monthly resolution obtained from satellite remote sensing and GPS data between 2007 and 2013, and b) direct, visual calving observations in two weeks in 2009 and 2010. Furthermore, the magnitude-scaling property of seismic calving events is analyzed. We derive and discuss an empirical relation between seismic calving events and calving flux which for the first time allows to estimate a time series of calving volumes more than one decade back in time. Improving our model requires to incorporate more precise, high-resolution calibration data. A new field campaign will combine innovative, multi-disciplinary monitoring techniques to measure calving ice volumes and dynamic ice-ocean interactions simultaneously with terrestrial laser

  11. Strong Motion Network of Medellín and Aburrá Valley: technical advances, seismicity records and micro-earthquake monitoring

    Science.gov (United States)

    Posada, G.; Trujillo, J. C., Sr.; Hoyos, C.; Monsalve, G.

    2017-12-01

    The tectonics setting of Colombia is determined by the interaction of Nazca, Caribbean and South American plates, together with the Panama-Choco block collision, which makes a seismically active region. Regional seismic monitoring is carried out by the National Seismological Network of Colombia and the Accelerometer National Network of Colombia. Both networks calculate locations, magnitudes, depths and accelerations, and other seismic parameters. The Medellín - Aburra Valley is located in the Northern segment of the Central Cordillera of Colombia, and according to the Colombian technical seismic norm (NSR-10), is a region of intermediate hazard, because of the proximity to seismic sources of the Valley. Seismic monitoring in the Aburra Valley began in 1996 with an accelerometer network which consisted of 38 instruments. Currently, the network consists of 26 stations and is run by the Early Warning System of Medellin and Aburra Valley (SIATA). The technical advances have allowed the real-time communication since a year ago, currently with 10 stations; post-earthquake data is processed through operationally near-real-time, obtaining quick results in terms of location, acceleration, spectrum response and Fourier analysis; this information is displayed at the SIATA web site. The strong motion database is composed by 280 earthquakes; this information is the basis for the estimation of seismic hazards and risk for the region. A basic statistical analysis of the main information was carried out, including the total recorded events per station, natural frequency, maximum accelerations, depths and magnitudes, which allowed us to identify the main seismic sources, and some seismic site parameters. With the idea of a more complete seismic monitoring and in order to identify seismic sources beneath the Valley, we are in the process of installing 10 low-cost shake seismometers for micro-earthquake monitoring. There is no historical record of earthquakes with a magnitude

  12. Annual environmental monitoring report, January-December 1984

    International Nuclear Information System (INIS)

    1985-03-01

    Non-radioactive monitoring program involved: repair of a leaking waste paint and solvent tank, installation of a pretreatment facility for liquid effluents from a plating shop; and construction discharge. Radioactivity was monitored for air with comparisons to the average annual population dose from neutron radiation and tritium in the waste water effluents

  13. Annual environmental monitoring report, January--December 1977

    International Nuclear Information System (INIS)

    1978-05-01

    Environmental monitoring results continue to demonstrate that, except for penetrating radiation, environmental radiological impact due to SLAC operation is not distinguishable from natural environmantal sources. During 1977, the maximum neutron dose near the site boundary was 8.2 mrem. This represents about 8.2% of the annual dose from natural sources at this elevation, and 1.6% of the technical standard of 500 mrem per person annually

  14. A dense microseismic monitoring network in Korea for uncovering relationship between seismic activity and neotectonic features

    Science.gov (United States)

    Kang, T.; Lee, J. M.; Kim, W.; Jo, B. G.; Chung, T.; Choi, S.

    2012-12-01

    A few tens of surface traces indicating movements in Quaternary were found in the southeastern part of the Korean Peninsula. Following both the geological and engineering definitions, those features are classified into "active", in geology, or "capable", in engineering, faults. On the other hand, the present-day seismicity of the region over a couple of thousand years is indistinguishable on the whole with the rest of the Korean Peninsula. It is therefore of great interest whether the present seismic activity is related to the neotectonic features or not. Either of conclusions is not intuitive in terms of the present state of seismic monitoring network in the region. Thus much interest in monitoring seismicity to provide an improved observation resolution and to lower the event-detection threshold has increased with many observations of the Quaternary faults. We installed a remote, wireless seismograph network which is composed of 20 stations with an average spacing of 10 km. Each station is equipped with a three-component Trillium Compact seismometer and Taurus digitizer. Instrumentation and analysis advancements are now offering better tools for this monitoring. This network is scheduled to be in operation over about one and a half year. In spite of the relatively short observation period, we expect that the high density of the network enables us to monitor seismic events with much lower magnitude threshold compared to the preexisting seismic network in the region. Following the Gutenberg-Richter relationship, the number of events with low magnitude is logarithmically larger than that with high magnitude. Following this rule, we can expect that many of microseismic events may reveal behavior of their causative faults, if any. We report the results of observation which has been performed over a year up to now.

  15. Comprehensive seismic monitoring of the Cascadia megathrust with real-time GPS

    Science.gov (United States)

    Melbourne, T. I.; Szeliga, W. M.; Santillan, V. M.; Scrivner, C. W.; Webb, F.

    2013-12-01

    We have developed a comprehensive real-time GPS-based seismic monitoring system for the Cascadia subduction zone based on 1- and 5-second point position estimates computed within the ITRF08 reference frame. A Kalman filter stream editor that uses a geometry-free combination of phase and range observables to speed convergence while also producing independent estimation of carrier phase biases and ionosphere delay pre-cleans raw satellite measurements. These are then analyzed with GIPSY-OASIS using satellite clock and orbit corrections streamed continuously from the International GNSS Service (IGS) and the German Aerospace Center (DLR). The resulting RMS position scatter is less than 3 cm, and typical latencies are under 2 seconds. Currently 31 coastal Washington, Oregon, and northern California stations from the combined PANGA and PBO networks are analyzed. We are now ramping up to include all of the remaining 400+ stations currently operating throughout the Cascadia subduction zone, all of which are high-rate and telemetered in real-time to CWU. These receivers span the M9 megathrust, M7 crustal faults beneath population centers, several active Cascades volcanoes, and a host of other hazard sources. To use the point position streams for seismic monitoring, we have developed an inter-process client communication package that captures, buffers and re-broadcasts real-time positions and covariances to a variety of seismic estimation routines running on distributed hardware. An aggregator ingests, re-streams and can rebroadcast up to 24 hours of point-positions and resultant seismic estimates derived from the point positions to application clients distributed across web. A suite of seismic monitoring applications has also been written, which includes position time series analysis, instantaneous displacement vectors, and peak ground displacement contouring and mapping. We have also implemented a continuous estimation of finite-fault slip along the Cascadia megathrust

  16. Monitoring El Hierro submarine volcanic eruption events with a submarine seismic array

    Science.gov (United States)

    Jurado, Maria Jose; Molino, Erik; Lopez, Carmen

    2013-04-01

    A submarine volcanic eruption took place near the southernmost emerged land of the El Hierro Island (Canary Islands, Spain), from October 2011 to February 2012. The Instituto Geografico Nacional (IGN) seismic stations network evidenced seismic unrest since July 2012 and was a reference also to follow the evolution of the seismic activity associated with the volcanic eruption. From the beginning of the eruption a geophone string was installed less than 2 km away from the new volcano, next to La Restinga village shore, to record seismic activity related to the volcanic activity, continuously and with special interest on high frequency events. The seismic array was endowed with 8, high frequency, 3 component, 250 Hz, geophone cable string with a separation of 6 m between them. The analysis of the dataset using spectral techniques allows the characterization of the different phases of the eruption and the study of its dynamics. The correlation of the data analysis results with the observed sea surface activity (ash and lava emission and degassing) and also with the seismic activity recorded by the IGN field seismic monitoring system, allows the identification of different stages suggesting the existence of different signal sources during the volcanic eruption and also the posteruptive record of the degassing activity. The study shows that the high frequency capability of the geophone array allow the study of important features that cannot be registered by the standard seismic stations. The accumulative spectral amplitude show features related to eruptive changes.

  17. The Canarian Seismic Monitoring Network: design, development and first result

    Science.gov (United States)

    D'Auria, Luca; Barrancos, José; Padilla, Germán D.; García-Hernández, Rubén; Pérez, Aaron; Pérez, Nemesio M.

    2017-04-01

    Tenerife is an active volcanic island which experienced several eruptions of moderate intensity in historical times, and few explosive eruptions in the Holocene. The increasing population density and the consistent number of tourists are constantly raising the volcanic risk. In June 2016 Instituto Volcanologico de Canarias started the deployment of a seismological volcano monitoring network consisting of 15 broadband seismic stations. The network began its full operativity in November 2016. The aim of the network are both volcano monitoring and scientific research. Currently data are continuously recorded and processed in real-time. Seismograms, hypocentral parameters, statistical informations about the seismicity and other data are published on a web page. We show the technical characteristics of the network and an estimate of its detection threshold and earthquake location performances. Furthermore we present other near-real time procedures on the data: analysis of the ambient noise for determining the shallow velocity model and temporal velocity variations, detection of earthquake multiplets through massive data mining of the seismograms and automatic relocation of events through double-difference location.

  18. Submarine seismic monitoring of El Hierro volcanic eruption with a 3C-geophone string: applying new acquisition and data processing techniques to volcano monitoring

    Science.gov (United States)

    Jurado, Maria Jose; Ripepe, Maurizio; Lopez, Carmen; Blanco, Maria Jose; Crespo, Jose

    2015-04-01

    A submarine volcanic eruption took place near the southernmost emerged land of the El Hierro Island (Canary Islands, Spain), from October 2011 to February 2012. The Instituto Geografico Nacional (IGN) seismic stations network evidenced seismic unrest since July 2011 and was a reference also to follow the evolution of the seismic activity associated with the volcanic eruption. Right after the eruption onset, in October 2011 a geophone string was deployed by the CSIC-IGN to monitor seismic activity. Monitoring with the seismic array continued till May 2012. The array was installed less than 2 km away from the new vol¬cano, next to La Restinga village shore in the harbor from 6 to 12m deep into the water. Our purpose was to record seismic activity related to the volcanic activity, continuously and with special interest on high frequency events. The seismic array was endowed with 8, high frequency, 3 component, 250 Hz, geophone cable string with a separation of 6 m between them. Each geophone consists on a 3-component module based on 3 orthogonal independent sensors that measures ground velocity. Some of the geophones were placed directly on the seabed, some were buried. Due to different factors, as the irregular characteristics of the seafloor. The data was recorded on the surface with a seismometer and stored on a laptop computer. We show how acoustic data collected underwater show a great correlation with the seismic data recorded on land. Finally we compare our data analysis results with the observed sea surface activity (ash and lava emission and degassing). This evidence is disclosing new and innovative tecniques on monitoring submarine volcanic activity. Reference Instituto Geográfico Nacional (IGN), "Serie El Hierro." Internet: http://www.ign.es/ign/resources /volcanologia/HIERRO.html [May, 17. 2013

  19. Multi-functional smart aggregate-based structural health monitoring of circular reinforced concrete columns subjected to seismic excitations

    International Nuclear Information System (INIS)

    Gu, Haichang; Song, Gangbing; Moslehy, Yashar; Mo, Y L; Sanders, David

    2010-01-01

    In this paper, a recently developed multi-functional piezoceramic-based device, named the smart aggregate, is used for the health monitoring of concrete columns subjected to shake table excitations. Two circular reinforced concrete columns instrumented with smart aggregates were fabricated and tested with a recorded seismic excitation at the structural laboratory at the University of Nevada—Reno. In the tests, the smart aggregates were used to perform multiple monitoring functions that included dynamic seismic response detection, structural health monitoring and white noise response detection. In the proposed health monitoring approach, a damage index was developed on the basis of the comparison of the transfer function with the baseline function obtained in the healthy state. A sensor-history damage index matrix is developed to monitor the damage evolution process. Experimental results showed that the acceleration level can be evaluated from the amplitude of the dynamic seismic response; the damage statuses at different locations were evaluated using a damage index matrix; the first modal frequency obtained from the white noise response decreased with increase of the damage severity. The proposed multi-functional smart aggregates have great potential for use in the structural health monitoring of large-scale concrete structures

  20. Vibration monitoring of long bridges and their expansion joints and seismic devices

    Directory of Open Access Journals (Sweden)

    Islami Kleidi

    2015-01-01

    Full Text Available This paper presents a number of recently installed Structural Health Monitoring (SHM systems: a on a 2km double suspension bridge; b on a long railway viaduct that has experienced cracking; and c on a steel arch bridge in a seismically active area. Damage detection techniques have been applied based on high-frequency measurements of vibrations, pressure and strain, enabling a proper understanding of the structures’ behaviour to be gained. The diverse range of applications presented, designed in collaboration with structure owners and design engineers, includes damage detection on expansion joints of suspension bridges, crack analysis and correlation with accelerations of high-speed trains, and high-frequency performance monitoring of seismic devices. These case studies, based on both static and dynamic approaches, demonstrate the usefulness and ease of use of such systems, and the enormous gains in efficiency they offer.

  1. Design and Implementation of the National Seismic Monitoring Network in the Kingdom of Bhutan

    Science.gov (United States)

    Ohmi, S.; Inoue, H.; Chophel, J.; Pelgay, P.; Drukpa, D.

    2017-12-01

    Bhutan-Himalayan district is located along the plate collision zone between Indian and Eurasian plates, which is one of the most seismically active region in the world. Recent earthquakes such as M7.8 Gorkha Nepal earthquake in April 25, 2015 and M6.7 Imphal, India earthquake in January 3, 2016 are examples of felt earthquakes in Bhutan. However, there is no permanent seismic monitoring system ever established in Bhutan, whose territory is in the center of the Bhutan-Himalayan region. We started establishing permanent seismic monitoring network of minimum requirements and intensity meter network over the nation. The former is composed of six (6) observation stations in Bhutan with short period weak motion and strong motion seismometers as well as three (3) broad-band seismometers, and the latter is composed of twenty intensity meters located in every provincial government office. Obtained data are transmitted to the central processing system in the DGM office in Thimphu in real time. In this project, DGM will construct seismic vault with their own budget which is approved as the World Bank project, and Japan team assists the DGM for site survey of observation site, designing the observation vault, and designing the data telemetry system as well as providing instruments for the observation such as seismometers and digitizers. We already started the operation of the six (6) weak motion stations as well as twenty (20) intensity meter stations. Additionally, the RIMES (Regional Integrated Multi-hazard Early Warning System for Africa and Asia) is also providing eight (8) weak motion stations and we are keeping close communication to operate them as one single seismic monitoring network composed of fourteen (14) stations. This network will be definitely utilized for not only for seismic disaster mitigation of the country but also for studying the seismotectonics in the Bhutan-Himalayan region which is not yet precisely revealed due to the lack of observation data in the

  2. Development of real time monitor system displaying seismic waveform data observed at seafloor seismic network, DONET, for disaster management information

    Science.gov (United States)

    Horikawa, H.; Takaesu, M.; Sueki, K.; Takahashi, N.; Sonoda, A.; Miura, S.; Tsuboi, S.

    2014-12-01

    Mega-thrust earthquakes are anticipated to occur in the Nankai Trough in southwest Japan. In the source areas, we have deployed seafloor seismic network, DONET (Dense Ocean-floor Network System for Earthquake and Tsunamis), in 2010 in order to monitor seismicity, crustal deformations, and tsunamis. DONET system consists of totally 20 stations, which is composed of six kinds of sensors, including strong-motion seismometers and quartz pressure gauges. Those stations are densely distributed with an average spatial interval of 15-20 km and cover near the trench axis to coastal areas. Observed data are transferred to a land station through a fiber-optical cable and then to JAMSTEC (Japan Agency for Marine-Earth Science and Technology) data management center through a private network in real time. After 2011 off the Pacific coast of Tohoku Earthquake, each local government close to Nankai Trough try to plan disaster prevention scheme. JAMSTEC will disseminate DONET data combined with research accomplishment so that they will be widely recognized as important earthquake information. In order to open DONET data observed for research to local government, we have developed a web application system, REIS (Real-time Earthquake Information System). REIS is providing seismic waveform data to some local governments close to Nankai Trough as a pilot study. As soon as operation of DONET is ready, REIS will start full-scale operation. REIS can display seismic waveform data of DONET in real-time, users can select strong motion and pressure data, and configure the options of trace view arrangement, time scale, and amplitude. In addition to real-time monitoring, REIS can display past seismic waveform data and show earthquake epicenters on the map. In this presentation, we briefly introduce DONET system and then show our web application system. We also discuss our future plans for further developments of REIS.

  3. Romanian Data Center: A modern way for seismic monitoring

    Science.gov (United States)

    Neagoe, Cristian; Marius Manea, Liviu; Ionescu, Constantin

    2014-05-01

    The main seismic survey of Romania is performed by the National Institute for Earth Physics (NIEP) which operates a real-time digital seismic network. The NIEP real-time network currently consists of 102 stations and two seismic arrays equipped with different high quality digitizers (Kinemetrics K2, Quanterra Q330, Quanterra Q330HR, PS6-26, Basalt), broadband and short period seismometers (CMG3ESP, CMG40T, KS2000, KS54000, KS2000, CMG3T,STS2, SH-1, S13, Mark l4c, Ranger, gs21, Mark l22) and acceleration sensors (Episensor Kinemetrics). The data are transmitted at the National Data Center (NDC) and Eforie Nord (EFOR) Seismic Observatory. EFOR is the back-up for the NDC and also a monitoring center for the Black Sea tsunami events. NIEP is a data acquisition node for the seismic network of Moldova (FDSN code MD) composed of five seismic stations. NIEP has installed in the northern part of Bulgaria eight seismic stations equipped with broadband sensors and Episensors and nine accelerometers (Episensors) installed in nine districts along the Danube River. All the data are acquired at NIEP for Early Warning System and for primary estimation of the earthquake parameters. The real-time acquisition (RT) and data exchange is done by Antelope software and Seedlink (from Seiscomp3). The real-time data communication is ensured by different types of transmission: GPRS, satellite, radio, Internet and a dedicated line provided by a governmental network. For data processing and analysis at the two data centers Antelope 5.2 TM is being used running on 3 workstations: one from a CentOS platform and two on MacOS. Also a Seiscomp3 server stands as back-up for Antelope 5.2 Both acquisition and analysis of seismic data systems produce information about local and global parameters of earthquakes. In addition, Antelope is used for manual processing (event association, calculation of magnitude, creating a database, sending seismic bulletins, calculation of PGA and PGV, etc.), generating

  4. A seismic monitoring system for response and failure of structures with intentionally reduced seismic strength

    International Nuclear Information System (INIS)

    Takanashi, Koichi; Ohi, Kenichi

    1988-01-01

    A group of steel and reinforced concrete scaled structures with intentionally reduced seismic strength to 1/3 to 1/2 were constructed in 1983 for long term observation in order to collect precise data of earthquake response and grasp failure mechanisms during earthquakes. A monitoring system was installed in the structures as well as in the surrounding soil. Some reliable data have been successfully recorded since then, which can be available for verification of analytical models. (author)

  5. Data Analysis of Seismic Sequence in Central Italy in 2016 using CTBTO- International Monitoring System

    Science.gov (United States)

    Mumladze, Tea; Wang, Haijun; Graham, Gerhard

    2017-04-01

    The seismic network that forms the International Monitoring System (IMS) of the Comprehensive Nuclear-test-ban Treaty Organization (CTBTO) will ultimately consist of 170 seismic stations (50 primary and 120 auxiliary) in 76 countries around the world. The Network is still under the development, but currently more than 80% of the network is in operation. The objective of seismic monitoring is to detect and locate underground nuclear explosions. However, the data from the IMS also can be widely used for scientific and civil purposes. In this study we present the results of data analysis of the seismic sequence in 2016 in Central Italy. Several hundred earthquakes were recorded for this sequence by the seismic stations of the IMS. All events were accurately located the analysts of the International Data Centre (IDC) of the CTBTO. In this study we will present the epicentral and magnitude distribution, station recordings and teleseismic phases as obtained from the Reviewed Event Bulletin (REB). We will also present a comparison of the database of the IDC with the databases of the European-Mediterranean Seismological Centre (EMSC) and U.S. Geological Survey (USGS). Present work shows that IMS data can be used for earthquake sequence analyses and can play an important role in seismological research.

  6. Annual report on radioactive discharges and monitoring of the environment 1992. V. 1

    International Nuclear Information System (INIS)

    1993-01-01

    This Annual Report supplements the Company's Health and Safety Annual Report by providing more detailed information on radioactive discharges, monitoring of the environment and critical group doses. BNFL has published Annual Reports on Radioactive Discharges and Monitoring of the Environment, covering the period from 1977 to the present. For 1990 this report has been sub-divided into two complementary parts. Volume I includes annual data for each of the Company sites on radioactive discharges into the environment and the associated environmental monitoring programmes. Volume II reproduces the Certificates of Authorisation under which the Company operates and the statutory environmental monitoring programmes which relate to them. (author)

  7. Annual report on radioactive discharges and monitoring of the environment 1990. V. 1

    International Nuclear Information System (INIS)

    1991-01-01

    This Annual Report supplements the Company's Health and Safety Annual Report by providing more detailed information on radioactive discharges, monitoring of the environment and critical group doses. BNFL has published Annual Reports on Radioactive Discharges and Monitoring of the Environment, covering the period from 1977 to the present. For 1990 this report has been sub-divided into two complementary parts. Volume I includes annual data for each of the Company sites on radioactive discharges into the environment and the associated environmental monitoring programmes. Volume II reproduces the Certificates of Authorisation under which the Company operates and the statutory environmental monitoring programmes which relate to them. (author)

  8. Annual report on radioactive discharges and monitoring of the environment 1990. V. 2

    International Nuclear Information System (INIS)

    1991-01-01

    This Annual Report supplements the Company's Health and Safety Annual Report by providing more detailed information on radioactive discharges, monitoring of the environment and critical group doses. BNFL has published Annual Reports on Radioactive Discharges and Monitoring of the Environment, covering the period from 1977 to the present. For 1990 this report has been sub-divided into two complementary parts. Volume I includes annual data for each of the Company sites on radioactive discharges into the environment and the associated environmental monitoring programmes. Volume II reproduces the Certificates of Authorisation under which the Company operates and the statutory environmental monitoring programmes which relate to them. (author)

  9. Local seismic network at the Olkiluoto site. Annual Report for 2006

    International Nuclear Information System (INIS)

    Saari, J.; Lakio, A.

    2007-05-01

    In February 2002, Posiva Oy established a local seismic network of six stations on the island of Olkiluoto. Later, in June 2004, the seismic network was expanded with two new seismic stations. At that time started the excavation of the underground characterisation facility (the ONKALO) and the basic operation procedure was changed more suitable for the demands of the new situation. The purpose of the microearthquake measurements at Olkiluoto is to improve understanding of the structure, behaviour and long term stability of the bedrock. The studies include both tectonic and excavation-induced microearthquakes. An additional task of monitoring is related to safeguarding of the ONKALO. This report gives the results of microseismic monitoring during the year 2006. Also the changes in the structure and the operation procedure of the network are described. The network has operated continuously in 2006. In the beginning of 2006, the target area of the seismic monitoring expanded to semi-regional scale. Four new seismic stations started in the beginning of February 2006. At the end of the year, two new borehole geophones were installed in order to improve the sensitivity and the depth resolution of the measurements inside the ONKALO block. This report presents also new interpretations of the excavation induced earthquakes that occurred in the ONKALO in 2005. Altogether 2041 events have been located in the Olkiluoto area, in reported time period. The magnitudes of the observed events range from ML = -1.1 to ML = 3.1 (ML magnitude in local Richter's scale). Most of them are explosions. Two of the observed events are be classified as microearthquakes. Evidence of activity that would have influence on the safety of the ONKALO, have not been found. The observed earthquakes occurred in 2006 were small, ML = -0.6 and ML= -0.9. The earthquakes relate to small movements in brittle deformation zones OL-BFZ043 and OL-BFZ034 presented in the geological model of the Olkiluoto site

  10. Ambient seismic noise monitoring of a clay landslide: Toward failure prediction

    Science.gov (United States)

    Mainsant, Guénolé; Larose, Eric; Brönnimann, Cornelia; Jongmans, Denis; Michoud, Clément; Jaboyedoff, Michel

    2012-03-01

    Given that clay-rich landslides may become mobilized, leading to rapid mass movements (earthflows and debris flows), they pose critical problems in risk management worldwide. The most widely proposed mechanism leading to such flow-like movements is the increase in water pore pressure in the sliding mass, generating partial or complete liquefaction. This solid-to-liquid transition results in a dramatic reduction of mechanical rigidity in the liquefied zones, which could be detected by monitoring shear wave velocity variations. With this purpose in mind, the ambient seismic noise correlation technique has been applied to measure the variation in the seismic surface wave velocity in the Pont Bourquin landslide (Swiss Alps). This small but active composite earthslide-earthflow was equipped with continuously recording seismic sensors during spring and summer 2010. An earthslide of a few thousand cubic meters was triggered in mid-August 2010, after a rainy period. This article shows that the seismic velocity of the sliding material, measured from daily noise correlograms, decreased continuously and rapidly for several days prior to the catastrophic event. From a spectral analysis of the velocity decrease, it was possible to determine the location of the change at the base of the sliding layer. These results demonstrate that ambient seismic noise can be used to detect rigidity variations before failure and could potentially be used to predict landslides.

  11. Annual environmental monitoring report, January--December 1976

    International Nuclear Information System (INIS)

    1977-05-01

    Environmental monitoring results continue to demonstrate that, except for penetrating radiation, environmental radiological impact due to SLAC operation is not distinguishable from natural environmental sources. During 1976 the maximum neutron dose near the site boundary was 3.4 mrem. This represents about 3.4% of the annual dose from natural sources at this elevation and 0.68% of the technical standard of 500 mrem per person annually. There have been no measurable increases in radioactivity in ground water attributable to SLAC operations. Airborne radioactivity released from SLAC also continues to make only a negligible environmental impact and result in a site boundary annual dose of less than 0.01 mrem, which represents less than 0.01% of the annual dose from the natural radiation environment and about 0.002% of the technical standard

  12. The SISMA Project: A pre-operative seismic hazard monitoring system.

    Science.gov (United States)

    Massimiliano Chersich, M. C.; Amodio, A. A. Angelo; Francia, A. F. Andrea; Sparpaglione, C. S. Claudio

    2009-04-01

    Galileian Plus is currently leading the development, in collaboration with several Italian Universities, of the SISMA (Seismic Information System for Monitoring and Alert) Pilot Project financed by the Italian Space Agency. The system is devoted to the continuous monitoring of the seismic risk and is addressed to support the Italian Civil Protection decisional process. Completion of the Pilot Project is planned at the beginning of 2010. Main scientific paradigm of SISMA is an innovative deterministic approach integrating geophysical models, geodesy and active tectonics. This paper will give a general overview of project along with its progress status and a particular focus will be put on the architectural design details and to the software implementation choices. SISMA is built on top of a software infrastructure developed by Galileian Plus to integrate the scientific programs devoted to the update of seismic risk maps. The main characteristics of the system may be resumed as follow: automatic download of input data; integration of scientific programs; definition and scheduling of chains of processes; monitoring and control of the system through a graphical user interface (GUI); compatibility of the products with ESRI ArcGIS, by mean of post-processing conversion. a) automatic download of input data SISMA needs input data such as GNSS observations, updated seismic catalogue, SAR satellites orbits, etc. that are periodically updated and made available from remote servers through FTP and HTTP. This task is accomplished by a dedicated user configurable component. b) integration of scientific programs SISMA integrates many scientific programs written in different languages (Fortran, C, C++, Perl and Bash) and running into different operating systems. This design requirements lead to the development of a distributed system which is platform independent and is able to run any terminal-based program following few simple predefined rules. c) definition and scheduling of

  13. A multi-disciplinary approach for the structural monitoring of Cultural Heritages in a seismic area

    Science.gov (United States)

    Fabrizia Buongiorno, Maria; Musacchio, Massimo; Guerra, Ignazio; Porco, Giacinto; Stramondo, Salvatore; Casula, Giuseppe; Caserta, Arrigo; Speranza, Fabio; Doumaz, Fawzi; Giovanna Bianchi, Maria; Luzi, Guido; Ilaria Pannaccione Apa, Maria; Montuori, Antonio; Gaudiosi, Iolanda; Vecchio, Antonio; Gervasi, Anna; Bonali, Elena; Romano, Dolores; Falcone, Sergio; La Piana, Carmelo

    2014-05-01

    In the recent years, the concepts of seismic risk vulnerability and structural health monitoring have become very important topics in the field of both structural and civil engineering for the identification of appropriate risk indicators and risk assessment methodologies in Cultural Heritages monitoring. The latter, which includes objects, building and sites with historical, architectural and/or engineering relevance, concerns the management, the preservation and the maintenance of the heritages within their surrounding environmental context, in response to climate changes and natural hazards (e.g. seismic, volcanic, landslides and flooding hazards). Within such a framework, the complexity and the great number of variables to be considered require a multi-disciplinary approach including strategies, methodologies and tools able to provide an effective monitoring of Cultural Heritages form both scientific and operational viewpoints. Based on this rationale, in this study, an advanced, technological and operationally-oriented approach is presented and tested, which enables measuring and monitoring Cultural Heritage conservation state and geophysical/geological setting of the area, in order to mitigate the seismic risk of the historical public goods at different spatial scales*. The integration between classical geophysical methods with new emerging sensing techniques enables a multi-depth, multi-resolution, and multi-scale monitoring in both space and time. An integrated system of methodologies, instrumentation and data-processing approaches for non-destructive Cultural Heritage investigations is proposed, which concerns, in detail, the analysis of seismogenetic sources, the geological-geotechnical setting of the area and site seismic effects evaluation, proximal remote sensing techniques (e.g. terrestrial laser scanner, ground-based radar systems, thermal cameras), high-resolution aerial and satellite-based remote sensing methodologies (e.g. aeromagnetic surveys

  14. Seismic intrusion detector system

    Science.gov (United States)

    Hawk, Hervey L.; Hawley, James G.; Portlock, John M.; Scheibner, James E.

    1976-01-01

    A system for monitoring man-associated seismic movements within a control area including a geophone for generating an electrical signal in response to seismic movement, a bandpass amplifier and threshold detector for eliminating unwanted signals, pulse counting system for counting and storing the number of seismic movements within the area, and a monitoring system operable on command having a variable frequency oscillator generating an audio frequency signal proportional to the number of said seismic movements.

  15. Recent developments in seismic seabed oil reservoir monitoring applications using fibre-optic sensing networks

    International Nuclear Information System (INIS)

    De Freitas, J M

    2011-01-01

    This review looks at recent developments in seismic seabed oil reservoir monitoring techniques using fibre-optic sensing networks. After a brief introduction covering the background and scope of the review, the following section focuses on state-of-the-art fibre-optic hydrophones and accelerometers used for seismic applications. Related metrology aspects of the sensor such as measurement of sensitivity, noise and cross-axis performance are addressed. The third section focuses on interrogation systems. Two main phase-based competing systems have emerged over the past two decades for seismic applications, with a third technique showing much promise; these have been compared in terms of general performance. (topical review)

  16. Risk based seismic design criteria

    International Nuclear Information System (INIS)

    Kennedy, R.P.

    1999-01-01

    In order to develop a risk based seismic design criteria the following four issues must be addressed: (1) What target annual probability of seismic induced unacceptable performance is acceptable? (2) What minimum seismic margin is acceptable? (3) Given the decisions made under Issues 1 and 2, at what annual frequency of exceedance should the safe-shutdown-earthquake (SSE) ground motion be defined? (4) What seismic design criteria should be established to reasonably achieve the seismic margin defined under Issue 2? The first issue is purely a policy decision and is not addressed in this paper. Each of the other three issues are addressed. Issues 2 and 3 are integrally tied together so that a very large number of possible combinations of responses to these two issues can be used to achieve the target goal defined under Issue 1. Section 2 lays out a combined approach to these two issues and presents three potentially attractive combined resolutions of these two issues which reasonably achieves the target goal. The remainder of the paper discusses an approach which can be used to develop seismic design criteria aimed at achieving the desired seismic margin defined in resolution of Issue 2. Suggestions for revising existing seismic design criteria to more consistently achieve the desired seismic margin are presented. (orig.)

  17. Reprint of "Seismic monitoring of the Plosky Tolbachik eruption in 2012-2013 (Kamchatka Peninsula Russia)"

    Science.gov (United States)

    Senyukov, S. L.; Nuzhdina, I. N.; Droznina, S. Ya.; Garbuzova, V. T.; Kozhevnikova, T. Yu.; Sobolevskaya, O. V.; Nazarova, Z. A.; Bliznetsov, V. E.

    2015-12-01

    The active basaltic volcano Plosky Tolbachik (Pl. Tolbachik) is located in the southern part of the Klyuchevskoy volcano group on the Kamchatka Peninsula. The previous 1975-1976 Great Tolbachik Fissure Eruption (1975-1976 GTFE) occurred in the southern sector of Pl. Tolbachik. It was preceded by powerful earthquakes with local magnitudes between 2.5 and 4.9 and it was successfully predicted with a short-term forecast. The Kamchatka Branch of Geophysical Survey (KBGS) of the Russian Academy of Science (RAS) began to publish the results of daily seismic monitoring of active Kamchatka volcanoes on the Internet in 2000. Unlike the 1975-1976 GTFE precursor, (1) seismicity before the 2012-2013 Tolbachik Fissure Eruption (2012-2013 TFE) was relatively weak and earthquake magnitudes did not exceed 2.5. (2) Precursory earthquake hypocenters at 0-5 km depth were concentrated mainly under the southeastern part of the volcano. (3) The frequency of events gradually increased in September 2012, and rose sharply on the eve of the eruption. (4) According to seismic data, the explosive-effusive 2012-2013 TFE began at 05 h 15 min UTC on November 27, 2012; the outbreak occurred between the summit of the Pl. Tolbachik and the Northern Breakthrough of the 1975-1976 GTFE. (5) Because of bad weather, early interpretations of the onset time and the character of the eruption were made using seismological data only and were confirmed later by other monitoring methods. The eruption finished in early September 2013. This article presents the data obtained through real-time seismic monitoring and the results of retrospective analysis, with additional comments on the future monitoring of volcanic activity.

  18. Proceedings of the 26th Seismic Research Review: Trends in Nuclear Explosion Monitoring

    International Nuclear Information System (INIS)

    Chavez, Francesca C.; Benson, Jody; Hanson, Stephanie; Mark, Carol; Wetovsky, Marvin A.

    2004-01-01

    These proceedings contain papers prepared for the 26th Seismic Research Review: Trends in Nuclear Explosion Monitoring, held 21-23 September, 2004 in Orlando, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  19. Proceedings of the 23rd Seismic Research Symposium: Worldwide Monitoring of Nuclear Explosions

    International Nuclear Information System (INIS)

    Warren, N. Jill; Chavez, Francesca C.

    2001-01-01

    These proceedings contain papers prepared for the 23rd Seismic Research Review: Worldwide Monitoring of Nuclear Explosions, held 2-5 October, 2001 in Jackson Hole, Wyoming. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Technical Applications Center (AFTAC), the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  20. Proceedings of the 26th Seismic Research Review: Trends in Nuclear Explosion Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, Francesca C [Editor; Benson, Jody [Editor; Hanson, Stephanie [Editor; Mark, Carol [Editor; Wetovsky, Marvin A [Editor

    2004-09-21

    These proceedings contain papers prepared for the 26th Seismic Research Review: Trends in Nuclear Explosion Monitoring, held 21-23 September, 2004 in Orlando, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  1. Annual environmental monitoring report, January--December 1975

    International Nuclear Information System (INIS)

    1976-04-01

    Environmental monitoring results continue to demonstrate that, except for penetrating radiation, environmental radiological impact due to SLAC operation is not distinguishable from natural environmental sources. During 1975 the maximum neutron dose near the site boundary was 15.8 mrem. This represents about 16 percent of the annual dose from natural sources at this elevation and 3.2 percent of the technical standard of 500 mrem per person annually. There have been no measurable increases in radioactivity in ground water attributable to SLAC operations. Airborne radioactivity released from SLAC also continues to make only a negligible environmental impact and results in a site boundary annual dose of less than 2.4 mrem, which represents less than 2.4 percent of the annual dose from the natural radiation environment and about 0.5 percent of the technical standard

  2. A study of the feasibility of monitoring sealed geological repositories using seismic sensors

    International Nuclear Information System (INIS)

    Garbin, H.D.; Herrington, P.B.; Kromer, R.P.

    1999-01-01

    Questions have arisen regarding the applicability of seismic sensors to detect mining (re-entry) with a tunnel boring machine (TBM). Unlike cut and blast techniques of mining which produce impulsive seismic signals, the TBM produces seismic signals which are of long duration. (There are well established techniques available for detecting and locating the sources of the impulsive signals). The Yucca Mountain repository offered an opportunity to perform field evaluations of the capabilities of seismic sensors because during much of 1996, mining there was progressing with the use of a TBM. During the mining of the repository's southern branch, an effort was designed to evaluate whether the TBM could be detected, identified and located using seismic sensors. Three data acquisition stations were established in the Yucca Mountain area to monitor the TBM activity. A ratio of short term average to long term average algorithm was developed for use in detection based on the characteristics shown in the time series. For location of the source of detected signals, FK analysis was used on the array data to estimate back azimuths. The back azimuth from the 3 component system was estimated from the horizontal components. Unique features in the timing of the seismic signal were used to identify the source as the TBM. (author)

  3. A study of the feasibility of monitoring sealed geological repositories using seismic sensors

    International Nuclear Information System (INIS)

    Garbin, H.D.; Herrington, P.B.; Kromer, R.P.

    1997-10-01

    Questions have arisen regarding the applicability of seismic sensors to detect mining (re-entry) with a tunnel boring machine (TBM). Unlike cut and blast techniques of mining which produce impulsive seismic signals, the TBM produces seismic signals which are of long duration. (There are well established techniques available for detecting and locating the sources of the impulsive signals.) The Yucca Mountain repository offered an opportunity to perform field evaluations of the capabilities of seismic sensors because during much of 1996, mining there was progressing with the use of a TBM. During the mining of the repository's southern branch, an effort was designed to evaluate whether the TBM could be detected, identified and located using seismic sensors. Three data acquisition stations were established in the Yucca Mountain area to monitor the TBM activity. A ratio of short term average to long term average algorithm was developed for use in detection based on the characteristics shown in the time series. For location of the source of detected signals, FK analysis was used on the array data to estimate back azimuths. The back azimuth from the 3 component system was estimated from the horizontal components. Unique features in the timing of the seismic signal were used to identify the source as the TBM

  4. Annual report on radioactive discharges and monitoring of the environment 1991. V. 1

    International Nuclear Information System (INIS)

    1992-01-01

    This Annual Report supplements and updates British Nuclear Fuel plc's Health and Safety and the Environment Annual Report by providing more detailed information on radioactive discharges, monitoring of the environment and critical groups doses. BNFL has published Annual Reports on Radioactive Discharges and Monitoring of the Environment since 1977. This year the report is again sub-divided into two complementary volumes. Volume I includes, for each of the Company's sites, annual data on radioactive discharges into the environment and the associated environmental monitoring programmes. Critical groups doses for each site are presented in summary tables at the beginning of each chapter. (author)

  5. Geophysical Observatory in Kamchatka region for monitoring of phenomena connected with seismic activity

    Science.gov (United States)

    Uyeda, S.; Nagao, T.; Hattori, K.; Hayakawa, M.; Miyaki, K.; Molchanov, O.; Gladychev, V.; Baransky, L.; Chtchekotov, A.; Fedorov, E.; Pokhotelov, O.; Andreevsky, S.; Rozhnoi, A.; Khabazin, Y.; Gorbatikov, A.; Gordeev, E.; Chebrov, V.; Sinitzin, V.; Lutikov, A.; Yunga, S.; Kosarev, G.; Surkov, V.; Belyaev, G.

    Regular monitoring of some geophysical parameters in association with seismicity has been carried out since last year at the Japan-Russian Complex Geophysical Observatory in the Kamchatka region. This observatory was organized in connection with the ISTC project in Russia and was motivated by the results of the FRONTIER/RIKEN and FRONTIER/NASDA research projects in Japan. The main purpose of the observations is to investigate the electromagnetic and acoustic phenomena induced by the lithosphere processes (especially by seismic activity). The seismicity of the Kamchatka area is analyzed and a description of the observatory equipment is presented. At present, the activity of the observatory includes the seismic (frequency range ∆F = 0.5 - 40 Hz) and meteorological recordings, together with seismo-acoustic (∆F = 30 - 1000 Hz) and electromagnetic observations: three-component magnetic ULF variations ( ∆F = 0.003 - 30 Hz), three-component electric potential variations ( ∆F < 1.0 Hz), and VLF transmitter's signal perturbations ( ∆F ~ 10 - 40 kHz).

  6. Proceedings of the 24th Seismic Research Review: Nuclear Explosion Monitoring: Innovation and Integration

    International Nuclear Information System (INIS)

    Warren, N. Jill

    2002-01-01

    These proceedings contain papers prepared for the 24th Seismic Research Review: Nuclear Explosion Monitoring: Innovation and Integration, held 17-19 September, 2002 in Ponte Vedra Beach, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  7. Proceedings of the 24th Seismic Research Review: Nuclear Explosion Monitoring: Innovation and Integration

    Energy Technology Data Exchange (ETDEWEB)

    Warren, N. Jill [Editor

    2002-09-17

    These proceedings contain papers prepared for the 24th Seismic Research Review: Nuclear Explosion Monitoring: Innovation and Integration, held 17-19 September, 2002 in Ponte Vedra Beach, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  8. Annual report on radioactive discharges and monitoring of the environment 1992. V. 1

    International Nuclear Information System (INIS)

    1993-01-01

    This Annual Report supplements and updates the Company's Environment Annual Report by providing more detailed information on radioactive discharges, monitoring of the environment and critical group doses. BNFL has published Annual Reports on Radioactive Discharges and Monitoring of the Environment since 1977. This year the report is again sub-divided into two complementary volumes. Volume I consists of site papers, one for each of the Company's sites and includes annual data on radioactive discharges into the environment and the associated environmental monitoring programmes. Critical group doses for each site are presented in summary tables at the beginning of each Site paper. Volume II reproduces the Certificates of Authorisation regulating the Company's discharges and the statutory environmental monitoring programmes which relate to them. (Author)

  9. Formation of Ground Truth Databases and Related Studies and Regional Seismic Monitoring Research

    Science.gov (United States)

    2006-06-01

    experiments (1997-1999) in the former Semipalatinsk test site , Proceedings of the 22nd Annual DoDLDOE Seismic Research Symposium, Vol. I, U. S. Department of...DefenselEnergy, 55-66. Kim, Won-Young (1998), Waveform Data Information Product: Calibration Explosions at Semipalatinsk Test Site , Kazakstan...from the aftershocks of a 100 ton chemical explosion at the Degelen, Kazakh Test Site on 22 August 1998 (Omega-1). Epicentral locations, based on P

  10. Proceedings of the 22nd Annual DoD/DOE Seismic Research Symposium: Planning for Verification of and Compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT)

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, James W., LTC [Editor

    2000-09-15

    These proceedings contain papers prepared for the 22nd Annual DoD/DOE Seismic Research Symposium: Planning for Verification of and Compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT), held 13-15 September 2000 in New Orleans, Louisiana. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Technical Applications Center (AFTAC), Department of Defense (DoD), US Army Space and Missile Defense Command, Defense Special Weapons Agency (DSWA), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  11. Passive monitoring for near surface void detection using traffic as a seismic source

    Science.gov (United States)

    Zhao, Y.; Kuzma, H. A.; Rector, J.; Nazari, S.

    2009-12-01

    In this poster we present preliminary results based on our several field experiments in which we study seismic detection of voids using a passive array of surface geophones. The source of seismic excitation is vehicle traffic on nearby roads, which we model as a continuous line source of seismic energy. Our passive seismic technique is based on cross-correlation of surface wave fields and studying the resulting power spectra, looking for "shadows" caused by the scattering effect of a void. High frequency noise masks this effect in the time domain, so it is difficult to see on conventional traces. Our technique does not rely on phase distortions caused by small voids because they are generally too tiny to measure. Unlike traditional impulsive seismic sources which generate highly coherent broadband signals, perfect for resolving phase but too weak for resolving amplitude, vehicle traffic affords a high power signal a frequency range which is optimal for finding shallow structures. Our technique results in clear detections of an abandoned railroad tunnel and a septic tank. The ultimate goal of this project is to develop a technology for the simultaneous imaging of shallow underground structures and traffic monitoring near these structures.

  12. Geophysical Monitoring at the CO2SINK Site: Combining Seismic and Geoelectric Data

    Science.gov (United States)

    Giese, R.; Lüth, S.; Cosma, C.; Juhlin, C.; Kiessling, D.; Schütt, H.; Schöbel, B.; Schmidt-Hattenberger, C.; Schilling, F.; Co2SINK Group

    2009-04-01

    The CO2SINK project at the German town of Ketzin (near Berlin), is aimed at a pilot storage of CO2, and at developing and testing efficient integrated monitoring procedures (physical, chemical, and biological observations) for assessing the processes triggered within the reservoir by a long term injection operation. In particular, geophysical methods as seismic and geoelectric measurements have delivered the structural framework, and they enable to observe the reaction of the reservoir and the caprock to CO2 propagation at locations which are not accessible for direct observations. We report on the seismic monitoring program of the CO2SINK project which comprises baseline and repeat observations at different scales in time and space, combined with comprehensive geoelectrical monitoring performed in the Ketzin wells and on the surface. The main objectives of the 3D seismic survey (carried out in spring 2005) were to provide the structural model around the location of the Ketzin wells, to verify earlier geologic interpretations of structure based on vintage 2D seismic and borehole data, as well as providing a baseline for future seismic surveys. The uppermost 1000 m are well imaged and show an anticlinal structure with an east-west striking central graben on its top. The 3D baseline survey was extended by VSP (vertical seismic profiling), MSP (moving source profiling) on 7 profiles, and crosshole tomographic measurements. 2D "star" measurements were carried out on the 7 MSP profiles in order to tie-in the down-hole surveys with the 3D baseline survey. These measurements provide enhanced resolution in time (faster and more cost effective than a full 3D survey) and space (higher source and receiver frequencies). Three crosshole measurements were performed, one baseline survey in May 2008, and two repeats in July and August 2008, respectively. A third crosshole repeat is planned for a later stage in the project when a steady state situation has been reached in the

  13. Seismic safety margin assessment program (Annual safety research report, JFY 2010)

    International Nuclear Information System (INIS)

    Suzuki, Kenichi; Iijima, Toru; Inagaki, Masakatsu; Taoka, Hideto; Hidaka, Shinjiro

    2011-01-01

    Seismic capacity test data, analysis method and evaluation code provided by Seismic Safety Margin Assessment Program have been utilized for the support of seismic back-check evaluation of existing plants. The summary of the program in 2010 is as follows. 1. Component seismic capacity test and quantitative seismic capacity evaluation. Many seismic capacity tests of various snubbers were conducted and quantitative seismic capacities were evaluated. One of the emergency diesel generator partial-model seismic capacity tests was conducted and quantitative seismic capacity was evaluated. Some of the analytical evaluations of piping-system seismic capacities were conducted. 2. Analysis method for minute evaluation of component seismic response. The difference of seismic response of large components such as primary containment vessel and reactor pressure vessel when they were coupled with 3-dimensional FEM building model or 1-dimensional lumped mass building model, was quantitatively evaluated. 3. Evaluation code for quantitative evaluation of seismic safety margin of systems, structures and components. As the example, quantitative evaluation of seismic safety margin of systems, structures and components were conducted for the reference plant. (author)

  14. Annual report on radioactive discharges and monitoring of the environment 1992. V. 2

    International Nuclear Information System (INIS)

    1993-01-01

    This Annual Report supplements British Nuclear Fuel plc's Health and Safety Annual Report by providing more detailed information on radioactive discharges, monitoring of the environmental and critical group doses. BNFL has published Annual Reports on Radioactive Discharges and Monitoring of the Environment, covering the period from 1977 to the present. For 1991 this report has been sub-divided into two complementary parts. Volume II reproduces the Certificates of Authorisation under which the Company operates and the statutory environmental monitoring programmes which relate to them. (author)

  15. Annual report on radioactive discharges and monitoring of the environment 1991. V. 2

    International Nuclear Information System (INIS)

    1992-01-01

    This Annual Report supplements British Nuclear Fuel plc's Health and Safety Annual Report by providing more detailed information on radioactive discharges, monitoring of the environmental and critical group doses. BNFL has published Annual Reports on Radioactive Discharges and Monitoring of the Environment, covering the period from 1977 to the present. For 1991 this report has been sub-divided into two complementary parts. Volume II reproduces the Certificates of Authorisation under which the Company operates and the statutory environmental monitoring programmes which relate to them. (author)

  16. Martian seismicity

    International Nuclear Information System (INIS)

    Goins, N.R.; Lazarewicz, A.R.

    1979-01-01

    During the Viking mission to Mars, the seismometer on Lander II collected approximately 0.24 Earth years of observations data, excluding periods of time dominated by wind-induced Lander vibration. The ''quiet-time'' data set contains no confirmed seismic events. A proper assessment of the significance of this fact requires quantitative estimates of the expected detection rate of the Viking seismometer. The first step is to calculate the minimum magnitude event detectable at a given distance, including the effects of geometric spreading, anelastic attenuation, seismic signal duration, seismometer frequency response, and possible poor ground coupling. Assuming various numerical quantities and a Martian seismic activity comparable to that of intraplate earthquakes, the appropriate integral gives an expected annual detection rate of 10 events, nearly all of which are local. Thus only two to three events would be expected in the observational period presently on hand and the lack of observed events is not in gross contradiction to reasonable expectations. Given the same assumptions, a seismometer 20 times more sensitive than the present instrument would be expected to detect about 120 events annually

  17. Geophysical Observatory in Kamchatka region for monitoring of phenomena connected with seismic activity

    Directory of Open Access Journals (Sweden)

    S. Uyeda

    2001-01-01

    Full Text Available Regular monitoring of some geophysical parameters in association with seismicity has been carried out since last year at the Japan-Russian Complex Geophysical Observatory in the Kamchatka region. This observatory was organized in connection with the ISTC project in Russia and was motivated by the results of the FRONTIER/RIKEN and FRONTIER/NASDA research projects in Japan. The main purpose of the observations is to investigate the electromagnetic and acoustic phenomena induced by the lithosphere processes (especially by seismic activity. The seismicity of the Kamchatka area is analyzed and a description of the observatory equipment is presented. At present, the activity of the observatory includes the seismic (frequency range ∆F = 0.5 – 40 Hz and meteorological recordings, together with seismo-acoustic (∆F = 30 – 1000 Hz and electromagnetic observations: three-component magnetic ULF variations ( ∆F = 0.003 – 30 Hz, three-component electric potential variations ( ∆F 1.0 Hz, and VLF transmitter’s signal perturbations ( ∆F ~ 10 – 40 kHz.

  18. 4-D High-Resolution Seismic Reflection Monitoring of Miscible CO2 Injected into a Carbonate Reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Richard D. Miller; Abdelmoneam E. Raef; Alan P. Byrnes; William E. Harrison

    2007-06-30

    The objective of this research project was to acquire, process, and interpret multiple high-resolution 3-D compressional wave and 2-D, 2-C shear wave seismic data in the hopes of observing changes in fluid characteristics in an oil field before, during, and after the miscible carbon dioxide (CO{sub 2}) flood that began around December 1, 2003, as part of the DOE-sponsored Class Revisit Project (DOE No.DE-AC26-00BC15124). Unique and key to this imaging activity is the high-resolution nature of the seismic data, minimal deployment design, and the temporal sampling throughout the flood. The 900-m-deep test reservoir is located in central Kansas oomoldic limestones of the Lansing-Kansas City Group, deposited on a shallow marine shelf in Pennsylvanian time. After 30 months of seismic monitoring, one baseline and eight monitor surveys clearly detected changes that appear consistent with movement of CO{sub 2} as modeled with fluid simulators and observed in production data. Attribute analysis was a very useful tool in enhancing changes in seismic character present, but difficult to interpret on time amplitude slices. Lessons learned from and tools/techniques developed during this project will allow high-resolution seismic imaging to be routinely applied to many CO{sub 2} injection programs in a large percentage of shallow carbonate oil fields in the midcontinent.

  19. Monitoring daily and sub-daily variations in crustal strain with seismic arrays

    Science.gov (United States)

    Mao, S.; Campillo, M.; van der Hilst, R. D.; Brenguier, F.; Hillers, G.

    2017-12-01

    We demonstrate that we can monitor deformation of the shallow crust (with hourly temporal resolution) directly with seismic waves, by measuring relative seismic wave speed changes (dv/v) due to relatively known periodical forcing (tides and changes in atmospheric temperature) at Piton de la Fournaise Volcano (PdF), La Réunion. We use ambient seismic noise recorded (for one month) at VolcArray, an experiment with three arrays of 49 vertical-component geophones deployed on a 7x7 grid of approximately 80 m spacing. Through noise-based coda wave interferometry we infer for each array the average relative changes in propagation speed of seismic waves (dv/v) as a function of time, which relate to temporal changes in medium properties within 100m depth. The variations in dv/v ( 0.05%) on time-scales longer than a day are best explained by effects of precipitation on pore pressure. In contrast, the (weaker) daily and sub-daily fluctuations of dv/v ( 0.01%) are likely to be caused by tidal and thermal effects. We verify that the inferred variations of dv/v are unrelated to spatiotemporal changes of noise wavefields. We further compare the power spectrum of dv/v with spectra of simulated tide-induced volumetric strain, temperature records, very broadband (VBB) seismograms, and borehole tilt records. In all five types of data, dominant peaks are found at around diurnal, semi-diurnal, and ter-diurnal frequencies. A comparison of phase and spectra of the data suggests that the tidal and thermal effects on dv/v are of similar magnitude but vary with frequency. Theoretical modeling of tide- and temperature-induced strain in different frequency bands agrees with the relative magnitude of the two effects on dv/v from passive monitoring.

  20. GISMO: A MATLAB toolbox for seismic research, monitoring, & education

    Science.gov (United States)

    Thompson, G.; Reyes, C. G.; Kempler, L. A.

    2017-12-01

    GISMO is an open-source MATLAB toolbox which provides an object-oriented framework to build workflows and applications that read, process, visualize and write seismic waveform, catalog and instrument response data. GISMO can retrieve data from a variety of sources (e.g. FDSN web services, Earthworm/Winston servers) and data formats (SAC, Seisan, etc.). It can handle waveform data that crosses file boundaries. All this alleviates one of the most time consuming part for scientists developing their own codes. GISMO simplifies seismic data analysis by providing a common interface for your data, regardless of its source. Several common plots are built-in to GISMO, such as record section plots, spectrograms, depth-time sections, event count per unit time, energy release per unit time, etc. Other visualizations include map views and cross-sections of hypocentral data. Several common processing methods are also included, such as an extensive set of tools for correlation analysis. Support is being added to interface GISMO with ObsPy. GISMO encourages community development of an integrated set of codes and accompanying documentation, eliminating the need for seismologists to "reinvent the wheel". By sharing code the consistency and repeatability of results can be enhanced. GISMO is hosted on GitHub with documentation both within the source code and in the project wiki. GISMO has been used at the University of South Florida and University of Alaska Fairbanks in graduate-level courses including Seismic Data Analysis, Time Series Analysis and Computational Seismology. GISMO has also been tailored to interface with the common seismic monitoring software and data formats used by volcano observatories in the US and elsewhere. As an example, toolbox training was delivered to researchers at INETER (Nicaragua). Applications built on GISMO include IceWeb (e.g. web-based spectrograms), which has been used by Alaska Volcano Observatory since 1998 and became the prototype for the USGS

  1. Proceedings of the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marvin A. [Editor; Benson, Jody [Editor; Patterson, Eileen F. [Editor

    2005-09-20

    These proceedings contain papers prepared for the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 20-22 September, 2005 in Rancho Mirage, California. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  2. Proceedings of the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    International Nuclear Information System (INIS)

    Wetovsky, Marvin A.; Benson, Jody; Patterson, Eileen F.

    2005-01-01

    These proceedings contain papers prepared for the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 20-22 September, 2005 in Rancho Mirage, California. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  3. Proceedings of the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marvin A. [Editor; Benson, Jody [Editor; Patterson, Eileen F. [Editor

    2006-09-19

    These proceedings contain papers prepared for the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 19-21 September, 2006 in Orlando, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  4. Proceedings of the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    International Nuclear Information System (INIS)

    Wetovsky, Marvin A.; Benson, Jody; Patterson, Eileen F.

    2006-01-01

    These proceedings contain papers prepared for the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 19-21 September, 2006 in Orlando, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  5. Effective seismic acceleration measurements for low-cost Structural Health Monitoring

    Science.gov (United States)

    Pentaris, Fragkiskos; Makris, John P.

    2015-04-01

    There is increasing demand on cost effective Structural Health Monitoring systems for buildings as well as important and/or critical constructions. The front end for all these systems is the accelerometer. We present a comparative study of two low cost MEMS accelaration sensors against a very sensitive, high dynamic range strong motion accelerometer of force balance type but much more expensive. A real experiment was realized by deploying the three sesnors in a reinforced concrete building of the premises of TEI of Crete at Chania Crete, an earthquake prone region. The analysis of the collected accelararion data from many seismic events indicates that all sensors are able to efficiently reveal the seismic response of the construction in terms of PSD. Furthermore, it is shown that coherence diagrams between excitation and response of the building under study, depict structural characteristics but also the seismic energy distribution. This work is supported by the Archimedes III Program of the Ministry of Education of Greece, through the Operational Program "Educational and Lifelong Learning", in the framework of the project entitled "Interdisciplinary Multi-Scale Research of Earthquake Physics and Seismotectonics at the front of the Hellenic Arc (IMPACT-ARC)" and is co-financed by the European Union (European Social Fund) and Greek national funds.

  6. Unified Geophysical Cloud Platform (UGCP) for Seismic Monitoring and other Geophysical Applications.

    Science.gov (United States)

    Synytsky, R.; Starovoit, Y. O.; Henadiy, S.; Lobzakov, V.; Kolesnikov, L.

    2016-12-01

    We present Unified Geophysical Cloud Platform (UGCP) or UniGeoCloud as an innovative approach for geophysical data processing in the Cloud environment with the ability to run any type of data processing software in isolated environment within the single Cloud platform. We've developed a simple and quick method of several open-source widely known software seismic packages (SeisComp3, Earthworm, Geotool, MSNoise) installation which does not require knowledge of system administration, configuration, OS compatibility issues etc. and other often annoying details preventing time wasting for system configuration work. Installation process is simplified as "mouse click" on selected software package from the Cloud market place. The main objective of the developed capability was the software tools conception with which users are able to design and install quickly their own highly reliable and highly available virtual IT-infrastructure for the organization of seismic (and in future other geophysical) data processing for either research or monitoring purposes. These tools provide access to any seismic station data available in open IP configuration from the different networks affiliated with different Institutions and Organizations. It allows also setting up your own network as you desire by selecting either regionally deployed stations or the worldwide global network based on stations selection form the global map. The processing software and products and research results could be easily monitored from everywhere using variety of user's devices form desk top computers to IT gadgets. Currents efforts of the development team are directed to achieve Scalability, Reliability and Sustainability (SRS) of proposed solutions allowing any user to run their applications with the confidence of no data loss and no failure of the monitoring or research software components. The system is suitable for quick rollout of NDC-in-Box software package developed for State Signatories and aimed for

  7. Application of Time-Lapse Seismic Monitoring for the Control and Optimization of CO2 Enhanced Oil Recovery Operations

    Energy Technology Data Exchange (ETDEWEB)

    Brian Toelle

    2008-11-30

    This project, 'Application of Time-Lapse Seismic Monitoring for the Control and Optimization of CO{sub 2} Enhanced Oil Recovery Operations', investigated the potential for monitoring CO{sub 2} floods in carbonate reservoirs through the use of standard p-wave seismic data. This primarily involved the use of 4D seismic (time lapse seismic) in an attempt to observe and map the movement of the injected CO{sub 2} through a carbonate reservoir. The differences between certain seismic attributes, such as amplitude, were used for this purpose. This technique has recently been shown to be effective in CO{sub 2} monitoring in Enhanced Oil Recovery (EOR) projects, such as Weyborne. This study was conducted in the Charlton 30/31 field in the northern Michigan Basin, which is a Silurian pinnacle reef that completed its primary production in 1997 and was scheduled for enhanced oil recovery using injected CO{sub 2}. Prior to injection an initial 'Base' 3D survey was obtained over the field and was then processed and interpreted. CO{sub 2} injection within the main portion of the reef was conducted intermittently during 13 months starting in August 2005. During this time, 29,000 tons of CO{sub 2} was injected into the Guelph formation, historically known as the Niagaran Brown formation. By September 2006, the reservoir pressure within the reef had risen to approximately 2000 lbs and oil and water production from the one producing well within the field had increased significantly. The determination of the reservoir's porosity distribution, a critical aspect of reservoir characterization and simulation, proved to be a significant portion of this project. In order to relate the differences observed between the seismic attributes seen on the multiple 3D seismic surveys and the actual location of the CO{sub 2}, a predictive reservoir simulation model was developed based on seismic attributes obtained from the base 3D seismic survey and available well data. This

  8. Annual Report of Groundwater Monitoring at Everest, Kansas, in 2012

    Energy Technology Data Exchange (ETDEWEB)

    LaFreniere, Lorraine M. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2013-07-01

    In March 2009, the CCC/USDA developed a plan for annual monitoring of the groundwater and surface water (Argonne 2009). Under this plan, approved by the KDHE (2009), monitoring wells are sampled by using the low-flow procedure, and surface water samples are collected at five locations along the intermittent creek. Vegetation sampling is conducted as a secondary indicator of plume migration. Results of annual sampling in 2009-2011 for volatile organic compounds (VOCs) and water level measurements (Argonne 2010a, 2011a,b) were consistent with previous observations (Argonne 2003, 2006a,d, 2008). No carbon tetrachloride was detected in surface water of the intermittent creek or in tree branch samples collected at locations along the creek banks. This report presents the results of the fourth annual sampling event, conducted in 2012.

  9. Training toward Advanced 3D Seismic Methods for CO2 Monitoring, Verification, and Accounting

    Energy Technology Data Exchange (ETDEWEB)

    Christopher Liner

    2012-05-31

    The objective of our work is graduate and undergraduate student training related to improved 3D seismic technology that addresses key challenges related to monitoring movement and containment of CO{sub 2}, specifically better quantification and sensitivity for mapping of caprock integrity, fractures, and other potential leakage pathways. We utilize data and results developed through previous DOE-funded CO{sub 2} characterization project (DE-FG26-06NT42734) at the Dickman Field of Ness County, KS. Dickman is a type locality for the geology that will be encountered for CO{sub 2} sequestration projects from northern Oklahoma across the U.S. midcontinent to Indiana and Illinois. Since its discovery in 1962, the Dickman Field has produced about 1.7 million barrels of oil from porous Mississippian carbonates with a small structural closure at about 4400 ft drilling depth. Project data includes 3.3 square miles of 3D seismic data, 142 wells, with log, some core, and oil/water production data available. Only two wells penetrate the deep saline aquifer. In a previous DOE-funded project, geological and seismic data were integrated to create a geological property model and a flow simulation grid. We believe that sequestration of CO{sub 2} will largely occur in areas of relatively flat geology and simple near surface, similar to Dickman. The challenge is not complex geology, but development of improved, lower-cost methods for detecting natural fractures and subtle faults. Our project used numerical simulation to test methods of gathering multicomponent, full azimuth data ideal for this purpose. Our specific objectives were to apply advanced seismic methods to aide in quantifying reservoir properties and lateral continuity of CO{sub 2} sequestration targets. The purpose of the current project is graduate and undergraduate student training related to improved 3D seismic technology that addresses key challenges related to monitoring movement and containment of CO{sub 2

  10. Passive monitoring of a sea dike during a tidal cycle using sea waves as a seismic noise source

    Science.gov (United States)

    Joubert, Anaëlle; Feuvre, Mathieu Le; Cote, Philippe

    2018-05-01

    Over the past decade, ambient seismic noise has been used successfully to monitor various geological objects with high accuracy. Recently, it has been shown that surface seismic waves propagating within a sea dike body can be retrieved from the cross-correlation of ambient seismic noise generated by sea waves. We use sea wave impacts to monitor the response of a sea dike during a tidal cycle using empirical Green's functions. These are obtained either by cross-correlation or deconvolution, from signals recorded by sensors installed linearly on the crest of a dike. Our analysis is based on delay and spectral amplitude measurements performed on reconstructed surface waves propagating along the array. We show that localized variations of velocity and attenuation are correlated with changes in water level as a probable consequence of water infiltration inside the structure. Sea dike monitoring is of critical importance for safety and economic reasons, as internal erosion is generally only detected at late stages by visual observations. The method proposed here may provide a solution for detecting structural weaknesses, monitoring progressive internal erosion, and delineating areas of interest for further geotechnical studies, in view to understanding the erosion mechanisms involved.

  11. Multicomponent seismic applications in coalbed methane development

    Energy Technology Data Exchange (ETDEWEB)

    Lawton, D.; Trend, S. [Calgary Univ., AB (Canada). Dept. of Geology and Geophysics

    2004-07-01

    Seismic applications for coalbed methane (CBM) development are used to address the following challenges: lateral continuity of coal zones; vertical continuity of coal seams; permeability of cleats and fractures; coal quality and gas content; wet versus dry coal zones; and, monitoring storage of greenhouse gases. This paper presented a brief description of existing seismic programs, including 2-D and 3-D surface seismic surveys; multicomponent seismic surveys; vertical seismic profiles; cross-well seismic surveys; and, time-lapse seismic surveys. A comparative evaluation of their use in the Horseshoe Canyon Formation and the Ardley Formation was presented. The study showed that variations in reservoir properties resulting from gas production and dewatering can be effectively imaged using seismic surveys. Seismic surveys are useful in reservoir management, monitoring sweep efficiency during enhanced natural gas from coal (NGC) production, monitoring disposal of produced water and verifying storage of carbon dioxide for carbon credits. tabs., figs.

  12. Annual environmental monitoring report, January--December 1978

    International Nuclear Information System (INIS)

    1979-04-01

    Environmental monitoring results continue to demonstrate that, except for penetrating radiation, environmental radiological impact due to SLAC operation is not distinguishable from natural environmental sources. During 1978, the maximum neutron dose near the site boundary was 6.6 mrem. This represents about 6.6% of the annual dose from natural sources at this elevation, and 1.3% of the technical standard of 500 mrem per person annually. There have been no measurable increases in radioactivity in ground water attributable to SLAC operations since 1966. Because of major new construction, well water samples were not collected and analyzed during 1978. Construction activities have also temporarily placed our sampling stations for the sanitary and storm sewers out of service. They will be re-established as soon as construction activities permit. Airborne radioactivity released from SLAC continues to make only a negligible environmental impact, and results in a site boundary annual dose of less than 0.01 mrem; this represents less than 0.01% of the annual dose from the natural radiation environment, and about 0.002% of the technical standard

  13. Real-time monitoring of seismicity and deformation during the Bárdarbunga rifting event and associated caldera subsidence

    Science.gov (United States)

    Jónsdóttir, Kristín; Ófeigsson, Benedikt; Vogfjörd, Kristín; Roberts, Matthew; Barsotti, Sara; Gudmundsson, Gunnar; Hensch, Martin; Bergsson, Bergur; Kjartansson, vilhjálmur; Erlendsson, Pálmi; Friðriksdóttir, Hildur; Hreinsdóttir, Sigrún; Guðmundsson, Magnús; Sigmundsson, Freysteinn; Árnadóttir, Thóra; Heimisson, Elías; Hjorleifsdóttir, Vala; Soring, Jón; Björnsson, Bogi; Oddsson, Björn

    2015-04-01

    We present a monitoring overview of a rifting event and associated caldera subsidence in a glaciated environment during the Bárðarbunga volcanic crisis. Following a slight increase in seismicity and a weak deformation signal, noticed a few months before the unrest by the SIL monitoring team, an intense seismic swarm began in the subglacial Bárðarbunga caldera on August 16 2014. During the following two weeks, a dyke intruded into the crust beneath the Vatnajökull ice cap, propagating 48 km from the caldera to the east-north-east and north of the glacier where an effusive eruption started in Holuhraun. The eruption is still ongoing at the time of writing and has become the largest eruption in over 200 years in Iceland. The dyke propagation was episodic with a variable rate and on several occasions low frequency seismic tremor was observed. Four ice cauldrons, manifestations of small subglacial eruptions, were detected. Soon after the swarm began the 7x11 km wide caldera started to subside and is still subsiding (although at slower rates) and has in total subsided over 60 meters. Unrest in subglacial volcanoes always calls for interdisciplinary efforts and teamwork plays a key role for efficient monitoring. Iceland has experienced six subglacial volcanic crises since modern digital monitoring started in the early 90s. With every crisis the monitoring capabilities, data interpretations, communication and information dissemination procedures have improved. The Civil Protection calls for a board of experts and scientists (Civil Protection Science Board, CPSB) to share their knowledge and provide up-to-date information on the current status of the volcano, the relevant hazards and most likely scenarios. The evolution of the rifting was monitored in real-time by the joint interpretation of seismic and cGPS data. The dyke propagation could be tracked and new, updated models of the dyke volume were presented at the CPSB meetings, often daily. In addition, deformation

  14. Seismic monitoring at Deception Island volcano (Antarctica): the 2010-2011 survey

    Science.gov (United States)

    Martín, R.; Carmona, E.; Almendros, J.; Serrano, I.; Villaseñor, A.; Galeano, J.

    2012-04-01

    As an example of the recent advances introduced in seismic monitoring of Deception Island volcano (Antarctica) during recent years, we describe the instrumental network deployed during the 2010-2011 survey by the Instituto Andaluz de Geofísica of University of Granada, Spain (IAG-UGR). The period of operation extended from December 19, 2010 to March 5, 2011. We deployed a wireless seismic network composed by four three-component seismic stations. These stations are based on 24-bit SL04 SARA dataloggers sampling at 100 sps. They use a PC with embedded linux and SEISLOG data acquisition software. We use two types of three-component seismometers: short-period Mark L4C with natural frequency of 1 Hz and medium-period Lennartz3D/5s with natural frequency of 0.2 Hz. The network was designed for an optimum spatial coverage of the northern half of Deception, where a magma chamber has been reported. Station locations include the vicinity of the Spanish base "Gabriel de Castilla" (GdC), Obsidianas Beach, a zone near the craters from the 1970 eruptions, and the Chilean Shelter located south of Pendulum Cove. Continuous data from the local seismic network are received in real-time in the base by wifi transmission. We used Ubiquiti Networks Nanostation2 antennas with 2.4 GHz, dual-polarity, 10 dBi gain, and 54 Mbps transmission rate. They have shown a great robustness and speed for real-time applications. To prioritize data acquisition when the battery level is low, we have designed a circuit that allows independent power management for the seismic station and wireless transmission system. The reception antenna located at GdC is connected to a computer running SEISCOMP. This software supports several transmission protocols and manages the visualization and recording of seismic data, including the generation of summary plots to show the seismic activity. These twelve data channels are stored in miniseed format and displayed in real time, which allows for a rapid evaluation of

  15. Detection capability of the IMS seismic network based on ambient seismic noise measurements

    Science.gov (United States)

    Gaebler, Peter J.; Ceranna, Lars

    2016-04-01

    All nuclear explosions - on the Earth's surface, underground, underwater or in the atmosphere - are banned by the Comprehensive Nuclear-Test-Ban Treaty (CTBT). As part of this treaty, a verification regime was put into place to detect, locate and characterize nuclear explosion testings at any time, by anyone and everywhere on the Earth. The International Monitoring System (IMS) plays a key role in the verification regime of the CTBT. Out of the different monitoring techniques used in the IMS, the seismic waveform approach is the most effective technology for monitoring nuclear underground testing and to identify and characterize potential nuclear events. This study introduces a method of seismic threshold monitoring to assess an upper magnitude limit of a potential seismic event in a certain given geographical region. The method is based on ambient seismic background noise measurements at the individual IMS seismic stations as well as on global distance correction terms for body wave magnitudes, which are calculated using the seismic reflectivity method. From our investigations we conclude that a global detection threshold of around mb 4.0 can be achieved using only stations from the primary seismic network, a clear latitudinal dependence for the detection threshold can be observed between northern and southern hemisphere. Including the seismic stations being part of the auxiliary seismic IMS network results in a slight improvement of global detection capability. However, including wave arrivals from distances greater than 120 degrees, mainly PKP-wave arrivals, leads to a significant improvement in average global detection capability. In special this leads to an improvement of the detection threshold on the southern hemisphere. We further investigate the dependence of the detection capability on spatial (latitude and longitude) and temporal (time) parameters, as well as on parameters such as source type and percentage of operational IMS stations.

  16. Annual environmental monitoring report, January-December 1982

    International Nuclear Information System (INIS)

    1983-03-01

    Environmental monitoring results continue to demonstrate that environmental radiological impact due to SLAC operation is not distinguishable from natural environmental sources. During 1982, the maximum measured neutron dose near the site boundary was not distinguishable from the cosmic ray neutron background. There have been no measurable increases in radioactivity in ground water attributable to SLAC operations since operation began in 1966. Airborne radioactivity released from SLAC continues to make only a negligible environmental impact, and results in a site boundary annual dose of less than 0.3 mrem; this represents less than 0.3% of the annual dose from the natural radiation environment, and about 0.06% of the technical standard

  17. Integrated Reflection Seismic Monitoring and Reservoir Modeling for Geologic CO2 Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    John Rogers

    2011-12-31

    The US DOE/NETL CCS MVA program funded a project with Fusion Petroleum Technologies Inc. (now SIGMA) to model the proof of concept of using sparse seismic data in the monitoring of CO{sub 2} injected into saline aquifers. The goal of the project was to develop and demonstrate an active source reflection seismic imaging strategy based on deployment of spatially sparse surface seismic arrays. The primary objective was to test the feasibility of sparse seismic array systems to monitor the CO{sub 2} plume migration injected into deep saline aquifers. The USDOE/RMOTC Teapot Dome (Wyoming) 3D seismic and reservoir data targeting the Crow Mountain formation was used as a realistic proxy to evaluate the feasibility of the proposed methodology. Though the RMOTC field has been well studied, the Crow Mountain as a saline aquifer has not been studied previously as a CO{sub 2} sequestration (storage) candidate reservoir. A full reprocessing of the seismic data from field tapes that included prestack time migration (PSTM) followed by prestack depth migration (PSDM) was performed. A baseline reservoir model was generated from the new imaging results that characterized the faults and horizon surfaces of the Crow Mountain reservoir. The 3D interpretation was integrated with the petrophysical data from available wells and incorporated into a geocellular model. The reservoir structure used in the geocellular model was developed using advanced inversion technologies including Fusion's ThinMAN{trademark} broadband spectral inversion. Seal failure risk was assessed using Fusion's proprietary GEOPRESS{trademark} pore pressure and fracture pressure prediction technology. CO{sub 2} injection was simulated into the Crow Mountain with a commercial reservoir simulator. Approximately 1.2MM tons of CO{sub 2} was simulated to be injected into the Crow Mountain reservoir over 30 years and subsequently let 'soak' in the reservoir for 970 years. The relatively small plume

  18. Natural Gas Storage Seismic Monitoring Suivi sismique des stockages de gaz naturel

    Directory of Open Access Journals (Sweden)

    Mari J.L.

    2011-02-01

    Full Text Available IFP Energies nouvelles, CGGVeritas and GDF Suez have conducted together, since 1980, a series of seismic monitoring experiments in order to detect and follow the movements of the gas plume in natural gas geologic storages. Surface and well seismic surveys were carried out at different stages of the storage life. Permanent receiver arrays have been set down in wells. Permanent sources have been designed. Sources and receivers have been used to follow continuously the storage cycle during several years, providing time measurement accuracy within a tenth of a millisecond. Gas intrusion into an aquifer leads to an increase in the arrival times of reflections beneath the storage reservoir and to a variation of the reflection amplitudes at top and bottom of the reservoirs. Progressive variations of the seismic parameters may be followed during the initial infill period. Further movements of the gas plume with the annual in/out cycles are more difficult to follow, because of the simultaneous presence of gas and water in the pores. Arrival time variations of some tenths of a millisecond may be detected and measured. Saturations, using accurate picking of the arrival times, can be estimated in favourable cases. Because of the higher density of carbon dioxide, when stored in a supercritical phase, sensitivity of the seismic parameters, velocity, density and acoustic impedance to saturation variations will be about twice smaller for CO2 storages than it is for methane. IFP Energies nouvelles, la CGGVeritas et GDF Suez ont mené ensemble, depuis 1980, de nombreuses expériences de monitoring sismique afin de détecter et de suivre les mouvements du gaz dans des stockages géologiques de gaz naturel. Des acquisitions ont été réalisées à différents stades de la vie du stockage tant en sismique de surface qu’en sismique de puits. Des antennes de récepteurs permanentes ont été construites et implantées dans des puits. Des sources permanentes ont

  19. 296-B-5 Stack monitoring and sampling system annual system assessment report

    International Nuclear Information System (INIS)

    Ridge, T.M.

    1995-02-01

    The B Plant Administration Manual requires an annual system assessment to evaluate and report the present condition of the sampling and monitoring system associated with Stack 296-B-5 at B Plant. The sampling and monitoring system associated with stack 296-B-5 is functional and performing satisfactorily. This document is an annual assessment report of the systems associated with the 296-B-5 stack

  20. National Seismic Station

    International Nuclear Information System (INIS)

    Stokes, P.A.

    1982-06-01

    The National Seismic Station was developed to meet the needs of regional or worldwide seismic monitoring of underground nuclear explosions to verify compliance with a nuclear test ban treaty. The Station acquires broadband seismic data and transmits it via satellite to a data center. It is capable of unattended operation for periods of at least a year, and will detect any tampering that could result in the transmission of unauthentic seismic data

  1. Seismicity within the Irpinia Fault System As Monitored By Isnet (Irpinia Seismic Network) and Its Possible Relation with Fluid Storage

    Science.gov (United States)

    Festa, G.; Zollo, A.; Amoroso, O.; Ascione, A.; Colombelli, S.; Elia, L.; Emolo, A.; Martino, C.; Mazzoli, S.; Orefice, A.; Russo, G.

    2014-12-01

    ISNet (http://isnet.fisica.unina.it) is deployed in Southern Apennines along the active fault system responsible for the 1980, M 6.9 Irpinia earthquake. ISNet consists of 32 seismic stations equipped with both strong motion and velocimetric instruments (either broadband or short-period), with the aim of capture a broad set of seismic signals, from ambient noise to strong motion. Real time and near real time procedures run at ISNet with the goal of monitoring the seismicity, check possible space-time anomalies, detect seismic sequences and launch an earthquake early warning in the case of potential significant ground shaking in the area. To understand the role of fluids on the seismicity of the area, we investigated velocity and attenuation models. The former is built from accurate cross-correlation picking and S wave detection based onto polarization analysis. Joint inversion of both P and S arrival times is then based on a linearized multi-scale tomographic approach. Attenuation is instead obtained from inversion of displacement spectra, deconvolving for the source effect. High VP/VS and QS/QP >1 were found within a ~15 km wide rock volume where intense microseismicity is located. This indicates that concentration of seismicity is possibly controlled by high pore fluid pressure. This earthquake reservoir may come from a positive feedback between the seismic pumping that controls the fluid transmission through the fractured damage zone and the low permeability of cross fault barrier, increasing the fluid pore pressure within the fault bounded block. In this picture, sequences mostly occur at the base of this fluid rich layer. They show an anomalous pattern in the earthquake occurrence per magnitude classes; main events evolve with a complex source kinematics, as obtained from backprojection of apparent source time functions, indicating possible directivity effects. In this area sequences might be the key for understanding the transition between the deep

  2. Proceedings of the 25th Seismic Research Review -- Nuclear Explosion Monitoring: Building the Knowledge Base

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, Francesca C. [Editor; Mendius, E. Louise [Editor

    2003-09-23

    These proceedings contain papers prepared for the 25th Seismic Research Review -- Nuclear Explosion Monitoring: Building the Knowledge Base, held 23-25 September, 2003 in Tucson, Arizona. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  3. Proceedings of the 25th Seismic Research Review -- Nuclear Explosion Monitoring: Building the Knowledge Base

    International Nuclear Information System (INIS)

    Chavez, Francesca C.; Mendius, E. Louise

    2003-01-01

    These proceedings contain papers prepared for the 25th Seismic Research Review -- Nuclear Explosion Monitoring: Building the Knowledge Base, held 23-25 September, 2003 in Tucson, Arizona. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  4. Second and Third Quarters Hanford Seismic Report for Fiscal Year 1999

    Energy Technology Data Exchange (ETDEWEB)

    Hartshorn, Donald C.; Reidel, Stephen P.; Rohay, Alan C.

    1999-10-08

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site.

  5. Laboratory scale micro-seismic monitoring of rock faulting and injection-induced fault reactivation

    Science.gov (United States)

    Sarout, J.; Dautriat, J.; Esteban, L.; Lumley, D. E.; King, A.

    2017-12-01

    The South West Hub CCS project in Western Australia aims to evaluate the feasibility and impact of geosequestration of CO2 in the Lesueur sandstone formation. Part of this evaluation focuses on the feasibility and design of a robust passive seismic monitoring array. Micro-seismicity monitoring can be used to image the injected CO2plume, or any geomechanical fracture/fault activity; and thus serve as an early warning system by measuring low-level (unfelt) seismicity that may precede potentially larger (felt) earthquakes. This paper describes laboratory deformation experiments replicating typical field scenarios of fluid injection in faulted reservoirs. Two pairs of cylindrical core specimens were recovered from the Harvey-1 well at depths of 1924 m and 2508 m. In each specimen a fault is first generated at the in situ stress, pore pressure and temperature by increasing the vertical stress beyond the peak in a triaxial stress vessel at CSIRO's Geomechanics & Geophysics Lab. The faulted specimen is then stabilized by decreasing the vertical stress. The freshly formed fault is subsequently reactivated by brine injection and increase of the pore pressure until slip occurs again. This second slip event is then controlled in displacement and allowed to develop for a few millimeters. The micro-seismic (MS) response of the rock during the initial fracturing and subsequent reactivation is monitored using an array of 16 ultrasonic sensors attached to the specimen's surface. The recorded MS events are relocated in space and time, and correlate well with the 3D X-ray CT images of the specimen obtained post-mortem. The time evolution of the structural changes induced within the triaxial stress vessel is therefore reliably inferred. The recorded MS activity shows that, as expected, the increase of the vertical stress beyond the peak led to an inclined shear fault. The injection of fluid and the resulting increase in pore pressure led first to a reactivation of the pre

  6. Monitoring and impact mitigation during a 4D seismic survey near a population of gray whales off Sakhalin Island, Russia

    NARCIS (Netherlands)

    Bröker, Koen Cornelis Arthur; Gailey, Glenn; Muir, Judy; Racca, Roberto

    2015-01-01

    A 4D seismic survey was conducted in 2010 near the feeding grounds of gray whales off Sakhalin Island, Russia. To minimize disruptions to the whales’ feeding activity and enhance understanding of the potential impacts of seismic surveys on gray whales Eschrichtius robustus, an extensive monitoring

  7. Feasibility study for seismic monitoring of gas injection; Atsunyu gasu monitaringu no kanosei hyoka ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Nishida, A.; Ogawa, T.; Yokota, T.; Shimada, N.; Onozuka, S.; Kono, F.; Miyagi, T. [Japan National Oil Corp., Tokyo (Japan)

    1998-10-30

    In this study, seismic monitoring of injected gas in a carbonate reservoir was investigated using multidisciplinary approach which consisted of geological/reservoir modeling, reservoir flow simulation, rock physics and seismic modeling. A case study was conducted over Lower Cretaceous carbonate reservoir offshore Abu Dhabi. The gas saturation and reservoir pressure data were obtained from the reservoir flow simulation. The velocity data of dry rock samples under the various conditions were also obtained from rock physics study. These outputs were converted to the velocity model using Gassmann's equation. The calculated velocity from Gassmann's equation is well correlated with velocity from laboratory measurements. Therefore we con confirm that the Gassmann's equation is applicable to estimate the velocity of the gas saturated reservoir rock. Based on the velocity model, synthetic seismic sections before and after gas injection were constructed in order to verify the influence of gas flood. As the results, amplitude difference between the two synthetic seismograms was observed at top and bottom reflectors of the reservoir zone. This amplitude variation is caused by both gas saturation change and pressure change. Although further investigation is needed to detect the cause of the variation, this study indicates the possibility of seismic reservoir monitoring. (author)

  8. Radon continuous monitoring in Altamira Cave (northern Spain) to assess user's annual effective dose

    International Nuclear Information System (INIS)

    Lario, J.; Sanchez-Moral, S.; Canaveras, J.C.; Cuezva, S.; Soler, V.

    2005-01-01

    In this work, we present the values of radon concentration, measured by continuous monitoring during a complete annual cycle in the Polychromes Hall of Altamira Cave in order to undertake more precise calculations of annual effective dose for guides and visitors in tourist caves. The 222 Rn levels monitored inside the cave ranges from 186 Bq m -3 to 7120 Bq m -3 , with an annual average of 3562 Bq m -3 . In order to more accurately estimate effective dose we use three scenarios with different equilibrium factors (F=0.5, 0.7 and 1.0) together with different dose conversion factors proposed in the literature. Neither effective dose exceeds international recommendations. Moreover, with an automatic radon monitoring system the time remaining to reach the maximum annual dose recommended could be automatically updated

  9. Current challenges in monitoring, discrimination, and management of induced seismicity related to underground industrial activities: A European perspective

    Science.gov (United States)

    Grigoli, Francesco; Cesca, Simone; Priolo, Enrico; Rinaldi, Antonio Pio; Clinton, John F.; Stabile, Tony A.; Dost, Bernard; Fernandez, Mariano Garcia; Wiemer, Stefan; Dahm, Torsten

    2017-06-01

    Due to the deep socioeconomic implications, induced seismicity is a timely and increasingly relevant topic of interest for the general public. Cases of induced seismicity have a global distribution and involve a large number of industrial operations, with many documented cases from as far back to the beginning of the twentieth century. However, the sparse and fragmented documentation available makes it difficult to have a clear picture on our understanding of the physical phenomenon and consequently in our ability to mitigate the risk associated with induced seismicity. This review presents a unified and concise summary of the still open questions related to monitoring, discrimination, and management of induced seismicity in the European context and, when possible, provides potential answers. We further discuss selected critical European cases of induced seismicity, which led to the suspension or reduction of the related industrial activities.

  10. Sandia National Laboratories California Environmental Monitoring Program Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Holland, Robert C.

    2007-03-01

    The annual program report provides detailed information about all aspects of the SNL/CA Environmental Monitoring Program for a given calendar year. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. The 2006 program report describes the activities undertaken during the past year, and activities planned in future years to implement the Environmental Monitoring Program, one of six programs that supports environmental management at SNL/CA.

  11. Environmental monitoring at the Savannah River Plant. Annual report, 1983

    International Nuclear Information System (INIS)

    Ashley, C.; Padezanin, P.C.; Zeigler, C.C.

    1984-06-01

    This annual report presents data for 1983 radioactivity and radioisotope concentrations in the air, water, plants, and animals of the Savannah River Plant. Additional monitoring was performed for chemical contaminants such as mercury and chlorocarbons. All concentrations were within applicable federal and state limits or not detectable with state-of-the-art monitoring equipment

  12. Active Sites Environmental Monitoring Program. FY 1993: Annual report

    International Nuclear Information System (INIS)

    Morrissey, C.M.; Ashwood, T.L.; Hicks, D.S.; Marsh, J.D.

    1994-08-01

    This report continues a series of annual and semiannual reports that present the results of the Active Sites Environmental Monitoring Program (ASEMP) monitoring activities. The report details monitoring data for fiscal year (FY) 1993 and is divided into three major areas: SWSA 6 [including tumulus pads, Interim Waste Management Facility (IWMF), and other sites], the low-level Liquid-Waste Solidification Project (LWSP), and TRU-waste storage facilities in SWSA 5 N. The detailed monitoring methodology is described in the second revision of the ASEMP program plan. This report also presents a summary of the methodology used to gather data for each major area along with the results obtained during FY 1993

  13. Deployment of a seismic array for volcano monitoring during the ongoing submarine eruption at El Hierro, Canary Islands

    Science.gov (United States)

    Abella, R.; Almendros, J.; Carmona, E.; Martin, R.

    2012-04-01

    On 17 July 2011 there was an important increase of the seismic activity at El Hierro (Canary Islands, Spain). This increase was detected by the Volcano Monitoring Network (Spanish national seismic network) run by the Instituto Geográfico Nacional (IGN). As a consequence, the IGN immediately deployed a dense, complete monitoring network that included seismometers, GPS stations, geochemical equipment, magnetometers, and gravity meters. During the first three months of activity, the seismic network recorded over ten thousand volcano-tectonic earthquakes, with a maximum magnitude of 4.6. On 10 October 2011 an intense volcanic tremor started. It was a monochromatic signal, with variable amplitude and frequency content centered at about 1-2 Hz. The tremor onset was correlated with the initial stages of the submarine eruption that occurred from a vent located south of El Hierro island, near the village of La Restinga. At that point the IGN, in collaboration with the Instituto Andaluz de Geofísica, deployed a seismic array intended for volcanic tremor monitoring and analysis. The seismic array is located about 7 km NW of the submarine vent. It has a 12-channel, 24-bit data acquisition system sampling each channel at 100 sps. The array is composed by 1 three-component and 9 vertical-component seismometers, distributed in a flat area with an aperture of 360 m. The data provided by the seismic array are going to be processed using two different approaches: (1) near-real-time, to produce information that can be useful in the management of the volcanic crisis; and (2) detailed investigations, to study the volcanic tremor characteristics and relate them to the eruption dynamics. At this stage we are mostly dedicated to produce fast, near-real-time estimates. Preliminary results have been obtained using the maximum average cross-correlation method. They indicate that the tremor wavefronts are highly coherent among array stations and propagate across the seismic array with an

  14. Monitoring the West Bohemian earthquake swarm in 2008/2009 by a temporary small-aperture seismic array

    Science.gov (United States)

    Hiemer, Stefan; Roessler, Dirk; Scherbaum, Frank

    2012-04-01

    The most recent intense earthquake swarm in West Bohemia lasted from 6 October 2008 to January 2009. Starting 12 days after the onset, the University of Potsdam monitored the swarm by a temporary small-aperture seismic array at 10 km epicentral distance. The purpose of the installation was a complete monitoring of the swarm including micro-earthquakes ( M L 0.0). In the course of this work, the main temporal features (frequency-magnitude distribution, propagation of back azimuth and horizontal slowness, occurrence rate of aftershock sequences and interevent-time distribution) of the recent 2008/2009 earthquake swarm are presented and discussed. Temporal changes of the coefficient of variation (based on interevent times) suggest that the swarm earthquake activity of the 2008/2009 swarm terminates by 12 January 2009. During the main phase in our studied swarm period after 19 October, the b value of the Gutenberg-Richter relation decreases from 1.2 to 0.8. This trend is also reflected in the power-law behavior of the seismic moment release. The corresponding total seismic moment release of 1.02×1017 Nm is equivalent to M L,max = 5.4.

  15. Annual report on radioactive discharges and monitoring of the environment 1990. V. 2

    International Nuclear Information System (INIS)

    1991-01-01

    This Annual Report supplements the Health and Safety Annual Report of British Nuclear Fuels plc by providing more detailed information on radioactive discharges, monitoring of the environment and critical group doses. This report has been sub-divided into two complementary parts. Volume I includes annual data for each of the Company sites on radioactive discharges into the environment and the associated environmental monitoring programmes. The sites involved are: Sellafield where the main activities are irradiated nuclear fuel reprocessing and the Calder Hall nuclear station; the Drigg radioactive waste storage and disposal site; the Chapelcross nuclear power station; Springfields Works which manufactures nuclear fuels; Capenhurst Works where uranium isotopic enrichment plants are operated. Volume II reproduces the Certificates of Authorisation under which the Company operates and the statutory environmental monitoring programmes which relate to them. (author)

  16. Annual report on radioactive discharges and monitoring of the environment 1990. V. 1

    International Nuclear Information System (INIS)

    1991-01-01

    This Annual Report supplements the Health and Safety Annual Report of British Nuclear Fuels plc by providing more detailed information on radioactive discharges, monitoring of the environment and critical group doses. This report has been sub-divided into two complementary parts. Volume I includes annual data for each of the Company sites on radioactive discharges into the environment and the associated environmental monitoring programmes. The sites involved are: Sellafield where the main activities are irradiated nuclear fuel reprocessing and the Calder Hall nuclear station; the Drigg radioactive waste storage and disposal site; the Chapelcross nuclear power station; Springfields Works which manufactures nuclear fuels; Capenhurst Works where uranium isotopic enrichment plants are operated. Volume II reproduces the Certificates of Authorisation under which the Company operates and the statutory environmental monitoring programmes which relate to them. (author)

  17. Detection and localization capability of an urban seismic sinkhole monitoring network

    Science.gov (United States)

    Becker, Dirk; Dahm, Torsten; Schneider, Fabian

    2017-04-01

    Microseismic events linked to underground processes in sinkhole areas might serve as precursors to larger mass dislocation or rupture events which can cause felt ground shaking or even structural damage. To identify these weak and shallow events, a sensitive local seismic monitoring network is needed. In case of an urban environment the performance of local monitoring networks is severely compromised by the high anthropogenic noise level. We study the detection and localization capability of such a network, which is already partly installed in the urban area of the city of Hamburg, Germany, within the joint project SIMULTAN (http://www.gfz-potsdam.de/en/section/near-surface-geophysics/projects/simultan/). SIMULTAN aims to monitor a known sinkhole structure and gain a better understanding of the underlying processes. The current network consists of six surface stations installed in the basement of private houses and underground structures of a research facility (DESY - Deutsches Elektronen Synchrotron). During the started monitoring campaign since 2015, no microseismic events could be unambiguously attributed to the sinkholes. To estimate the detection and location capability of the network, we calculate synthetic waveforms based on the location and mechanism of former events in the area. These waveforms are combined with the recorded urban seismic noise at the station sites. As detection algorithms a simple STA/LTA trigger and a more sophisticated phase detector are used. While the STA/LTA detector delivers stable results and is able to detect events with a moment magnitude as low as 0.35 at a distance of 1.3km from the source even under the present high noise conditions the phase detector is more sensitive but also less stable. It should be stressed that due to the local near surface conditions of the wave propagation the detections are generally performed on S- or surface waves and not on P-waves, which have a significantly lower amplitude. Due to the often

  18. Annual report of groundwater monitoring at Everest, Kansas, in 2010.

    Energy Technology Data Exchange (ETDEWEB)

    LaFreniere, L. M. (Environmental Science Division)

    2011-03-21

    The Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) began its environmental investigations at Everest, Kansas, in 2000. The work at Everest is implemented on behalf of the CCC/USDA by Argonne National Laboratory, under the oversight of the Kansas Department of Health and Environment (KDHE). The results of the environmental investigations have been reported in detail (Argonne 2001, 2003, 2006a,b). The lateral extent of the carbon tetrachloride in groundwater over the years of investigation has been interpreted as shown in Figure 1.1 (2001-2002 data), Figure 1.2 (2006 data), Figure 1.3 (2008 data), and Figure 1.4 (2009 data). The pattern of groundwater flow and inferred contaminant migration has consistently been to the north-northwest from the former CCC/USDA facility toward the Nigh property, and then west-southwest from the Nigh property (e.g., Figure 1.5 [2008 data] and Figure 1.6 [2009 data]). Both the monitoring data for carbon tetrachloride and the low groundwater flow rates estimated for the Everest aquifer unit (Argonne 2003, 2006a,b, 2008) indicate slow contaminant migration. On the basis of the accumulated findings, in March 2009 the CCC/USDA developed a plan for annual monitoring of the groundwater and surface water. This current monitoring plan (Appendix A in the report of monitoring in 2009 [Argonne 2010]) was approved by the KDHE (2009a). Under this plan, the monitoring wells are sampled by the low-flow procedure, and sample preservation, shipping, and analysis activities are consistent with previous work at Everest. The annual sampling will continue until identified conditions at the site indicate a technical justification for a change. The first annual sampling event under the new monitoring plan took place in April 2009. The results of analyses for volatile organic compounds (VOCs) and water level measurements were consistent with previous observations (Figures 1.1-1.4). No carbon tetrachloride was detected in surface

  19. Cross-correlation analysis of 2012-2014 seismic events in Central-Northern Italy: insights from the geochemical monitoring network of Tuscany

    Science.gov (United States)

    Pierotti, Lisa; Facca, Gianluca; Gherardi, Fabrizio

    2015-04-01

    Since late 2002, a geochemical monitoring network is operating in Tuscany, Central Italy, to collect data and possibly identify geochemical anomalies that characteristically occur before regionally significant (i.e. with magnitude > 3) seismic events. The network currently consists of 6 stations located in areas already investigated in detail for their geological setting, hydrogeological and geochemical background and boundary conditions. All these stations are equipped for remote, continuous monitoring of selected physicochemical parameters (temperature, pH, redox potential, electrical conductivity), and dissolved concentrations of CO2 and CH4. Additional information are obtained through in situ discrete monitoring. Field surveys are periodically performed to guarantee maintenance and performance control of the sensors of the automatic stations, and to collect water samples for the determination of the chemical and stable isotope composition of all the springs investigated for seismic precursors. Geochemical continuous signals are numerically processed to remove outliers, monitoring errors and aseismic effects from seasonal and climatic fluctuations. The elaboration of smoothed, long-term time series (more than 200000 data available today for each station) allows for a relatively accurate definition of geochemical background values. Geochemical values out of the two-sigma relative standard deviation domain are inspected as possible indicators of physicochemical changes related to regional seismic activity. Starting on November 2011, four stations of the Tuscany network located in two separate mountainous areas of Northern Apennines separating Tuscany from Emilia-Romagna region (Equi Terme and Gallicano), and Tuscany from Emilia-Romagna and Umbria regions (Vicchio and Caprese Michelangelo), started to register anomalous values in pH and CO2 partial pressure (PCO2). Cross-correlation analysis indicates an apparent relationship between the most important seismic

  20. Third Quarter Hanford Seismic Report for Fiscal Year 2005

    Energy Technology Data Exchange (ETDEWEB)

    Reidel, Steve P.; Rohay, Alan C.; Hartshorn, Donald C.; Clayton, Ray E.; Sweeney, Mark D.

    2005-09-01

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 41 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. For the Hanford Seismic Network, there were 337 triggers during the third quarter of fiscal year 2005. Of these triggers, 20 were earthquakes within the Hanford Seismic Network. The largest earthquake within the Hanford Seismic Network was a magnitude 1.3 event May 25 near Vantage, Washington. During the third quarter, stratigraphically 17 (85%) events occurred in the Columbia River basalt (approximately 0-5 km), no events in the pre-basalt sediments (approximately 5-10 km), and three (15%) in the crystalline basement (approximately 10-25 km). During the first quarter, geographically five (20%) earthquakes occurred in swarm areas, 10 (50%) earthquakes were associated with a major geologic structure, and 5 (25%) were classified as random events.

  1. Burar seismic station: evaluation of seismic performance

    International Nuclear Information System (INIS)

    Ghica, Daniela; Popa, Mihaela

    2005-01-01

    A new seismic monitoring system, the Bucovina Seismic Array (BURAR), has been established since July 2002, in the Northern part of Romania, in a joint effort of the Air Force Technical Applications Center, USA, and the National Institute for Earth Physics (NIEP), Romania. The small-aperture array consists of 10 seismic sensors (9 vertical short-period and one three-component broad band) located in boreholes and distributed in a 5 x 5 km 2 area. At present, the seismic data are continuously recorded by the BURAR and transmitted in real-time to the Romanian National Data Center in Bucharest and National Data Center of the USA, in Florida. Based on the BURAR seismic information gathered at the National Data Center, NIEP (ROM N DC), in the August 2002 - December 2004 time interval, analysis and statistical assessments were performed. Following the preliminary processing of the data, several observations on the global performance of the BURAR system were emphasized. Data investigation showed an excellent efficiency of the BURAR system particularly in detecting teleseismic and regional events. Also, a statistical analysis for the BURAR detection capability of the local Vrancea events was performed in terms of depth and magnitude for the year 2004. The high signal detection capability of the BURAR resulted, generally, in improving the location solutions for the Vrancea seismic events. The location solution accuracy is enhanced when adding BURAR recordings, especially in the case of low magnitude events (recorded by few stations). The location accuracy is increased, both in terms of constraining hypocenter depth and epicentral coordinates. Our analysis certifies the importance of the BURAR system in NIEP efforts to elaborate seismic bulletins. Furthermore, the specific procedures for array data processing (beam forming, f-k analysis) increase significantly the signal-to-noise ratio by summing up the coherent signals from the array components, and ensure a better accuracy

  2. Toward 2D Seismic Wavefield Monitoring: Seismic Gradiometry for Long-Period Seismogram and Short-Period Seismogram Envelope applied to the Hi-net Array

    Science.gov (United States)

    Maeda, T.; Nishida, K.; Takagi, R.; Obara, K.

    2015-12-01

    The high-sensitive seismograph network Japan (Hi-net) operated by National Research Institute for Earth Science and Disaster Prevention (NIED) has about 800 stations with average separation of 20 km. We can observe long-period seismic wave propagation as a 2D wavefield with station separations shorter than wavelength. In contrast, short-period waves are quite incoherent at stations, however, their envelope shapes resemble at neighbor stations. Therefore, we may be able to extract seismic wave energy propagation by seismogram envelope analysis. We attempted to characterize seismic waveform at long-period and its envelope at short-period as 2D wavefield by applying seismic gradiometry. We applied the seismic gradiometry to a synthetic long-period (20-50s) dataset prepared by numerical simulation in realistic 3D medium at the Hi-net station layout. Wave amplitude and its spatial derivatives are estimated by using data at nearby stations. The slowness vector, the radiation pattern and the geometrical spreading are extracted from estimated velocity, displacement and its spatial derivatives. For short-periods at shorter than 1 s, seismogram envelope shows temporal and spatial broadening through scattering by medium heterogeneity. It is expected that envelope shape may be coherent among nearby stations. Based on this idea, we applied the same method to the time-integration of seismogram envelope to estimate its spatial derivatives. Together with seismogram envelope, we succeeded in estimating the slowness vector from the seismogram envelope as well as long-period waveforms by synthetic test, without using phase information. Our preliminarily results show that the seismic gradiometry suits the Hi-net to extract wave propagation characteristics both at long and short periods. This method is appealing that it can estimate waves at homogeneous grid to monitor seismic wave as a wavefield. It is promising to obtain phase velocity variation from direct waves, and to grasp wave

  3. Seismic protection

    International Nuclear Information System (INIS)

    Herbert, R.

    1988-01-01

    To ensure that a nuclear reactor or other damage-susceptible installation is, so far as possible, tripped and already shut down before the arrival of an earthquake shock at its location, a ring of monitoring seismic sensors is provided around it, each sensor being spaced from it by a distance (possibly several kilometres) such that (taking into account the seismic-shock propagation velocity through the intervening ground) a shock monitored by the sensor and then advancing to the installation site will arrive there later than a warning signal emitted by the sensor and received at the installation, by an interval sufficient to allow the installation to trip and shut down, or otherwise assume an optimum anti-seismic mode, in response to the warning signal. Extra sensors located in boreholes may define effectively a three-dimensional (hemispherical) sensing boundary rather than a mere two-dimensional ring. (author)

  4. Annual report on radioactive discharges from Winfrith and monitoring the environment 1987

    International Nuclear Information System (INIS)

    1988-04-01

    The 1987 Annual Report on radioactive discharges from Winfrith Atomic Energy Establishment and monitoring of the environment is given. The report covers waste discharges to the sea and the earth atmosphere and the associated environmental monitoring. (UK)

  5. Calendar Year 2016 Annual Groundwater Monitoring Report.

    Energy Technology Data Exchange (ETDEWEB)

    Copland, John R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jackson, Timmie Okchumpulla [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Li, Jun [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mitchell, Michael Marquand [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Skelly, Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-06-01

    Sandia National Laboratories, New Mexico (SNL/NM) is a government-owned/contractoroperated laboratory. National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., manages and operates SNL/NM for the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA). The DOE/NNSA Sandia Field Office administers the contract and oversees contractor operations at the site. Two types of groundwater surveillance monitoring are conducted at SNL/NM: (1) on a site-wide basis as part of the SNL/NM Long-Term Stewardship (LTS) Program’s Groundwater Monitoring Program (GMP) Groundwater Surveillance Task and (2) on a site-specific groundwater monitoring at LTS/Environmental Restoration (ER) Operations sites with ongoing groundwater investigations. This Annual Groundwater Monitoring Report summarizes data collected during groundwater monitoring events conducted at GMP locations and at the following SNL/NM sites through December 31, 2016: Burn Site Groundwater Area of Concern (AOC); Chemical Waste Landfill; Mixed Waste Landfill; Technical Area-V Groundwater AOC; and the Tijeras Arroyo Groundwater AOC. Environmental monitoring and surveillance programs are required by the New Mexico Environment Department (NMED) and DOE Order 436.1, Departmental Sustainability, and DOE Order 231.1B, Environment, Safety, and Health Reporting.

  6. Study on structural seismic margin and probabilistic seismic risk. Development of a structural capacity-seismic risk diagram

    International Nuclear Information System (INIS)

    Nakajima, Masato; Ohtori, Yasuki; Hirata, Kazuta

    2010-01-01

    Seismic margin is extremely important index and information when we evaluate and account seismic safety of critical structures, systems and components quantitatively. Therefore, it is required that electric power companies evaluate the seismic margin of each plant in back-check of nuclear power plants in Japan. The seismic margin of structures is usually defined as a structural capacity margin corresponding to design earthquake ground motion. However, there is little agreement as to the definition of the seismic margin and we have no knowledge about a relationship between the seismic margin and seismic risk (annual failure probability) which is obtained in PSA (Probabilistic Safety Assessment). The purpose of this report is to discuss a definition of structural seismic margin and to develop a diagram which can identify a relation between seismic margin and seismic risk. The main results of this paper are described as follows: (1) We develop seismic margin which is defined based on the fact that intensity of earthquake ground motion is more appropriate than the conventional definition (i.e., the response-based seismic margin) for the following reasons: -seismic margin based on earthquake ground motion is invariant where different typed structures are considered, -stakeholders can understand the seismic margin based on the earthquake ground motion better than the response-based one. (2) The developed seismic margin-risk diagram facilitates us to judge easily whether we need to perform detailed probabilistic risk analysis or only deterministic analysis, given that the reference risk level although information on the uncertainty parameter beta is not obtained. (3) We have performed numerical simulations based on the developed method for four sites in Japan. The structural capacity-risk diagram differs depending on each location because the diagram is greatly influenced by seismic hazard information for a target site. Furthermore, the required structural capacity

  7. Advances in Rotational Seismic Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Pierson, Robert [Applied Technology Associates, Albuquerque, NM (United States); Laughlin, Darren [Applied Technology Associates, Albuquerque, NM (United States); Brune, Robert [Applied Technology Associates, Albuquerque, NM (United States)

    2016-10-19

    Rotational motion is increasingly understood to be a significant part of seismic wave motion. Rotations can be important in earthquake strong motion and in Induced Seismicity Monitoring. Rotational seismic data can also enable shear selectivity and improve wavefield sampling for vertical geophones in 3D surveys, among other applications. However, sensor technology has been a limiting factor to date. The US Department of Energy (DOE) and Applied Technology Associates (ATA) are funding a multi-year project that is now entering Phase 2 to develop and deploy a new generation of rotational sensors for validation of rotational seismic applications. Initial focus is on induced seismicity monitoring, particularly for Enhanced Geothermal Systems (EGS) with fracturing. The sensors employ Magnetohydrodynamic (MHD) principles with broadband response, improved noise floors, robustness, and repeatability. This paper presents a summary of Phase 1 results and Phase 2 status.

  8. Vibration monitoring of long bridges and their expansion joints and seismic devices

    OpenAIRE

    Islami Kleidi

    2015-01-01

    This paper presents a number of recently installed Structural Health Monitoring (SHM) systems: a) on a 2km double suspension bridge; b) on a long railway viaduct that has experienced cracking; and c) on a steel arch bridge in a seismically active area. Damage detection techniques have been applied based on high-frequency measurements of vibrations, pressure and strain, enabling a proper understanding of the structures’ behaviour to be gained. The diverse range of applications presented, desig...

  9. Seismic array processing and computational infrastructure for improved monitoring of Alaskan and Aleutian seismicity and volcanoes

    Science.gov (United States)

    Lindquist, Kent Gordon

    We constructed a near-real-time system, called Iceworm, to automate seismic data collection, processing, storage, and distribution at the Alaska Earthquake Information Center (AEIC). Phase-picking, phase association, and interprocess communication components come from Earthworm (U.S. Geological Survey). A new generic, internal format for digital data supports unified handling of data from diverse sources. A new infrastructure for applying processing algorithms to near-real-time data streams supports automated information extraction from seismic wavefields. Integration of Datascope (U. of Colorado) provides relational database management of all automated measurements, parametric information for located hypocenters, and waveform data from Iceworm. Data from 1997 yield 329 earthquakes located by both Iceworm and the AEIC. Of these, 203 have location residuals under 22 km, sufficient for hazard response. Regionalized inversions for local magnitude in Alaska yield Msb{L} calibration curves (logAsb0) that differ from the Californian Richter magnitude. The new curve is 0.2\\ Msb{L} units more attenuative than the Californian curve at 400 km for earthquakes north of the Denali fault. South of the fault, and for a region north of Cook Inlet, the difference is 0.4\\ Msb{L}. A curve for deep events differs by 0.6\\ Msb{L} at 650 km. We expand geographic coverage of Alaskan regional seismic monitoring to the Aleutians, the Bering Sea, and the entire Arctic by initiating the processing of four short-period, Alaskan seismic arrays. To show the array stations' sensitivity, we detect and locate two microearthquakes that were missed by the AEIC. An empirical study of the location sensitivity of the arrays predicts improvements over the Alaskan regional network that are shown as map-view contour plots. We verify these predictions by detecting an Msb{L} 3.2 event near Unimak Island with one array. The detection and location of four representative earthquakes illustrates the expansion

  10. Mobility Effect on Poroelastic Seismic Signatures in Partially Saturated Rocks With Applications in Time-Lapse Monitoring of a Heavy Oil Reservoir

    Science.gov (United States)

    Zhao, Luanxiao; Yuan, Hemin; Yang, Jingkang; Han, De-hua; Geng, Jianhua; Zhou, Rui; Li, Hui; Yao, Qiuliang

    2017-11-01

    Conventional seismic analysis in partially saturated rocks normally lays emphasis on estimating pore fluid content and saturation, typically ignoring the effect of mobility, which decides the ability of fluids moving in the porous rocks. Deformation resulting from a seismic wave in heterogeneous partially saturated media can cause pore fluid pressure relaxation at mesoscopic scale, thereby making the fluid mobility inherently associated with poroelastic reflectivity. For two typical gas-brine reservoir models, with the given rock and fluid properties, the numerical analysis suggests that variations of patchy fluid saturation, fluid compressibility contrast, and acoustic stiffness of rock frame collectively affect the seismic reflection dependence on mobility. In particular, the realistic compressibility contrast of fluid patches in shallow and deep reservoir environments plays an important role in determining the reflection sensitivity to mobility. We also use a time-lapse seismic data set from a Steam-Assisted Gravity Drainage producing heavy oil reservoir to demonstrate that mobility change coupled with patchy saturation possibly leads to seismic spectral energy shifting from the baseline to monitor line. Our workflow starts from performing seismic spectral analysis on the targeted reflectivity interface. Then, on the basis of mesoscopic fluid pressure diffusion between patches of steam and heavy oil, poroelastic reflectivity modeling is conducted to understand the shift of the central frequency toward low frequencies after the steam injection. The presented results open the possibility of monitoring mobility change of a partially saturated geological formation from dissipation-related seismic attributes.

  11. Seismic monitoring at the Decatur, Ill., CO2 sequestration demonstration site

    Science.gov (United States)

    Kaven, Joern; Hickman, Stephen H.; McGarr, Arthur F.; Walter, Steve R.; Ellsworth, William L.

    2014-01-01

    The viability of carbon capture and storage (CCS) to reduce emissions of greenhouse gases depends on the ability to safely sequester large quantities of CO2 over geologic time scales. One concern with CCS is the potential of induced seismicity. We report on ongoing seismic monitoring by the U.S. Geological Survey (USGS) at a CCS demonstration site in Decatur, IL, in an effort to understand the potential hazards posed by injection-induced seismicity associated with geologic CO2 sequestration. At Decatur, super-critical CO2 is injected at 2.1 km depth into the 550-m-thick Mt. Simon Sandstone, which directly overlies granitic basement. The primary sealing cap rock is the Eau Claire Shale, a 100- to 150-m-thick unit at a depth of roughly 1.5 km. The USGS seismic network consists of 12 stations, three of which have surface accelerometers and three-component borehole geophones. We derived a one-dimensional velocity models from a vertical seismic profile acquired by Archer-Daniels-Midland (ADM) and the Illinois State Geological Survey (ISGS) to a depth of 2.2 km, tied into shallow acoustic logs from our borehole stations and assuming a 6 km/sec P-wave velocity for granite below 2.2 km. We further assume a constant ratio of P- to S-wave velocities of 1.83, as derived from velocity model inversions. We use this velocity model to locate seismic events, all of which are within the footprint of our network. So far magnitudes of locatable events range from Mw = -1.52 to 1.07. We further improved the hypocentral precision of microseismic events when travel times and waveforms are sufficiently similar by employing double-difference relocation techniques, with relative location errors less than 80 m horizontally and 100 m vertically. We observe tend to group in three distinct clusters: ∼0.4 to 1.0 km NE, 1.6 to 2.4 km N, and ∼1.8 to 2.6 km WNW from the injection well. The first cluster of microseismicity forms a roughly linear trend, which may represent a pre-existing geologic

  12. The Global Detection Capability of the IMS Seismic Network in 2013 Inferred from Ambient Seismic Noise Measurements

    Science.gov (United States)

    Gaebler, P. J.; Ceranna, L.

    2016-12-01

    All nuclear explosions - on the Earth's surface, underground, underwater or in the atmosphere - are banned by the Comprehensive Nuclear-Test-Ban Treaty (CTBT). As part of this treaty, a verification regime was put into place to detect, locate and characterize nuclear explosion testings at any time, by anyone and everywhere on the Earth. The International Monitoring System (IMS) plays a key role in the verification regime of the CTBT. Out of the different monitoring techniques used in the IMS, the seismic waveform approach is the most effective technology for monitoring nuclear underground testing and to identify and characterize potential nuclear events. This study introduces a method of seismic threshold monitoring to assess an upper magnitude limit of a potential seismic event in a certain given geographical region. The method is based on ambient seismic background noise measurements at the individual IMS seismic stations as well as on global distance correction terms for body wave magnitudes, which are calculated using the seismic reflectivity method. From our investigations we conclude that a global detection threshold of around mb 4.0 can be achieved using only stations from the primary seismic network, a clear latitudinal dependence for the detection thresholdcan be observed between northern and southern hemisphere. Including the seismic stations being part of the auxiliary seismic IMS network results in a slight improvement of global detection capability. However, including wave arrivals from distances greater than 120 degrees, mainly PKP-wave arrivals, leads to a significant improvement in average global detection capability. In special this leads to an improvement of the detection threshold on the southern hemisphere. We further investigate the dependence of the detection capability on spatial (latitude and longitude) and temporal (time) parameters, as well as on parameters such as source type and percentage of operational IMS stations.

  13. Annual environmental monitoring report, January-December 1983

    International Nuclear Information System (INIS)

    1984-03-01

    Environmental monitoring results continue to demonstrate that environmental radiological impact due to SLAC operation is not easily distinguishable from natural environmental sources. During 1983, the maximum approximated neutron dose near the site boundary was 5 mrem. There have been no measurable increases in radioactivity in ground water attributable to SLAC operations since operation began in 1966. We have never found any evidence of radioactivity in ground water in excess of natural background radioactivity from uranium and thorium decay chains and potassium-40. Airborne radioactivity released from SLAC continues to make only a negligible environmental impact, and results in a site-boundary annual dose of less than 0.3 mrem; this represents less than 0.3% of the annual dose from the natural radiation environment, and about 0.06% of the technical standard. 8 references, 5 figures, 4 tables

  14. Joint inversion of geophysical data for site characterization and restoration monitoring. 1998 annual progress report

    International Nuclear Information System (INIS)

    Berge, P.A.; Berryman, J.G.; Roberts, J.J.; Wildenschild, D.

    1998-01-01

    'The purpose of this project is to develop a computer code for joint inversion of seismic and electrical data, to improve underground imaging for site characterization and remediation monitoring. The computer code developed in this project will invert geophysical data to obtain direct estimates of porosity and saturation underground, rather than inverting for seismic velocity and electrical resistivity or other geophysical properties. This is intended to be a significant improvement in the state-of-the-art of underground imaging, since interpretation of data collected at a contaminated site would become much less subjective. Potential users include DOE scientists and engineers responsible for characterizing contaminated sites and monitoring remediation of contaminated sites. In this three-year project, the authors use a multi-phase approach consisting of theoretical and numerical code development, laboratory investigations, testing on available laboratory and borehole geophysics data sets, and a controlled field experiment, to develop practical tools for joint electrical and seismic data interpretation. This report summarizes work after about 1.7 years of a 3-year project. Progress on laboratory measurements is described first, followed by progress on developing algorithms for the inversion code to relate geophysical data to porosity and saturation.'

  15. Proceedings of the 21st Seismic Research Symposium: Technologies for Monitoring The Comprehensive Nuclear Test-Ban Treaty

    Energy Technology Data Exchange (ETDEWEB)

    Warren, N. Jill [Editor

    1999-09-21

    These proceedings contain papers prepared for the 21st Seismic Research Symposium: Technologies for Monitoring The Comprehensive Nuclear-Test-Ban Treaty, held 21-24 September 1999 in Las Vegas, Nevada. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Technical Applications Center (AFTAC), Department of Defense (DoD), the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  16. Seismic risk mitigation in deep level South African mines by state of the art underground monitoring - Joint South African and Japanese study

    Science.gov (United States)

    Milev, A.; Durrheim, R.; Nakatani, M.; Yabe, Y.; Ogasawara, H.; Naoi, M.

    2012-04-01

    Two underground sites in a deep level gold mine in South Africa were instrumented by the Council for Scientific and Industrial Research (CSIR) with tilt meters and seismic monitors. One of the sites was also instrumented by JApanese-German Underground Acoustic emission Research in South Africa (JAGUARS) with a small network, approximately 40m span, of eight Acoustic Emission (AE) sensors. The rate of tilt, defined as quasi-static deformations, and the seismic ground motion, defined as dynamic deformations, were analysed in order to understand the rock mass behavior around deep level mining. In addition the high frequency AE events recorded at hypocentral distances of about 50m located at 3300m below the surface were analysed. A good correspondence between the dynamic and quasi-static deformations was found. The rate of coseismic and aseismic tilt, as well as seismicity recorded by the mine seismic network, are approximately constant until the daily blasting time, which takes place from about 19:30 until shortly before 21:00. During the blasting time and the subsequent seismic events the coseismic and aseismic tilt shows a rapid increase.Much of the quasi-static deformation, however, occurs independently of the seismic events and was described as 'slow' or aseismic events. During the monitoring period a seismic event with MW 2.2 occurred in the vicinity of the instrumented site. This event was recorded by both the CSIR integrated monitoring system and JAGUARS acoustic emotion network. The tilt changes associated with this event showed a well pronounced after-tilt. The aftershock activities were also well recorded by the acoustic emission and the mine seismic networks. More than 21,000 AE aftershocks were located in the first 150 hours after the main event. Using the distribution of the AE events the position of the fault in the source area was successfully delineated. The distribution of the AE events following the main shock was related to after tilt in order to

  17. Environmental monitoring at the Savannah River Plant. Annual report, 1984

    International Nuclear Information System (INIS)

    Zeigler, C.C.; Lawrimore, I.B.; O'Rear, W.E.

    1985-06-01

    Ensuring the radiation safety of the public in the vicinity of the Savannah River Plant was a foremost consideration in the design of the plant and has continued to be a primary objective during 31 years of SRP operations. An extensive surveillance program has been continuously maintained since 1951 (before SRP startup) to determine the concentrations of radionuclides in the environment of the plant. The results of this comprehensive monitoring program are reported annually in two publications. The first, ''Savannah River Plant Environmental Report for 1984'' [DPSPU85-30-1], contains radiation dose data, routine radiological and nonradiological environmental surveillance activities, summaries of environmental protection programs that are in progress, summaries of sitewide environmental research and management programs, and a summary of National Environmental Policy Act (NEPA) activities. This report is the second and contains primarily radiation dose data and radiological and nonradiological monitoring data both onsite and offsite. It is placed in Department of Energy (DOE) reading rooms and is available to the public upon request. A listing of corresponding reports that have been issued since before plant startup is presented in Appendix A. The scope of the environmental monitoring program at SRP has increased significantly during the years since plant startup. The change is reflected in annual reports. Prior to the mid-1970's the reports contained primarily radiological monitoring data. Beginning in the mid-1970's the reports started including more and more nonradiological monitoring data as those programs increased. The nonradiological monitoring program now approaches the size and extensiveness of the radiological monitoring program

  18. Piezoelectric dynamic strain monitoring for detecting local seismic damage in steel buildings

    International Nuclear Information System (INIS)

    Kurata, Masahiro; Li, Xiaohua; Fujita, Kohei; Yamaguchi, Mayako

    2013-01-01

    This research presents a methodology for damage detection along with a sensing system for monitoring seismic damage in steel buildings. The system extracts the location and extent of local damage, such as fracture at a beam–column connection, from changes in the bending moment distribution in a steel moment-resisting frame. We developed a dynamic strain-based sensing system utilizing piezoelectric film sensors and wireless sensing techniques to estimate the bending moments resisted by individual structural members under small amplitude loadings such as ambient vibrations and minor earthquakes. We introduce a new damage index that extracts local damage information from the comparative study of the dynamic strain responses of the structural members before and after a large earthquake event. The damage detection scheme was examined both analytically and numerically using a simple frame example. Then, the entire local damage detection scheme was verified through a series of vibration tests using a one-quarter-scale steel testbed that simulated seismic damage at member ends. (paper)

  19. Seismic Studies

    Energy Technology Data Exchange (ETDEWEB)

    R. Quittmeyer

    2006-09-25

    This technical work plan (TWP) describes the efforts to develop and confirm seismic ground motion inputs used for preclosure design and probabilistic safety 'analyses and to assess the postclosure performance of a repository at Yucca Mountain, Nevada. As part of the effort to develop seismic inputs, the TWP covers testing and analyses that provide the technical basis for inputs to the seismic ground-motion site-response model. The TWP also addresses preparation of a seismic methodology report for submission to the U.S. Nuclear Regulatory Commission (NRC). The activities discussed in this TWP are planned for fiscal years (FY) 2006 through 2008. Some of the work enhances the technical basis for previously developed seismic inputs and reduces uncertainties and conservatism used in previous analyses and modeling. These activities support the defense of a license application. Other activities provide new results that will support development of the preclosure, safety case; these results directly support and will be included in the license application. Table 1 indicates which activities support the license application and which support licensing defense. The activities are listed in Section 1.2; the methods and approaches used to implement them are discussed in more detail in Section 2.2. Technical and performance objectives of this work scope are: (1) For annual ground motion exceedance probabilities appropriate for preclosure design analyses, provide site-specific seismic design acceleration response spectra for a range of damping values; strain-compatible soil properties; peak motions, strains, and curvatures as a function of depth; and time histories (acceleration, velocity, and displacement). Provide seismic design inputs for the waste emplacement level and for surface sites. Results should be consistent with the probabilistic seismic hazard analysis (PSHA) for Yucca Mountain and reflect, as appropriate, available knowledge on the limits to extreme ground

  20. Seismic Studies

    International Nuclear Information System (INIS)

    R. Quittmeyer

    2006-01-01

    This technical work plan (TWP) describes the efforts to develop and confirm seismic ground motion inputs used for preclosure design and probabilistic safety 'analyses and to assess the postclosure performance of a repository at Yucca Mountain, Nevada. As part of the effort to develop seismic inputs, the TWP covers testing and analyses that provide the technical basis for inputs to the seismic ground-motion site-response model. The TWP also addresses preparation of a seismic methodology report for submission to the U.S. Nuclear Regulatory Commission (NRC). The activities discussed in this TWP are planned for fiscal years (FY) 2006 through 2008. Some of the work enhances the technical basis for previously developed seismic inputs and reduces uncertainties and conservatism used in previous analyses and modeling. These activities support the defense of a license application. Other activities provide new results that will support development of the preclosure, safety case; these results directly support and will be included in the license application. Table 1 indicates which activities support the license application and which support licensing defense. The activities are listed in Section 1.2; the methods and approaches used to implement them are discussed in more detail in Section 2.2. Technical and performance objectives of this work scope are: (1) For annual ground motion exceedance probabilities appropriate for preclosure design analyses, provide site-specific seismic design acceleration response spectra for a range of damping values; strain-compatible soil properties; peak motions, strains, and curvatures as a function of depth; and time histories (acceleration, velocity, and displacement). Provide seismic design inputs for the waste emplacement level and for surface sites. Results should be consistent with the probabilistic seismic hazard analysis (PSHA) for Yucca Mountain and reflect, as appropriate, available knowledge on the limits to extreme ground motion at

  1. A test of a global seismic system for monitoring earthquakes and underground nuclear explosions

    International Nuclear Information System (INIS)

    Bowman, J.R.; Muirhead, K.; Spiliopoulos, S.; Jepsen, D.; Leonard, M.

    1993-01-01

    Australia is a member of the Group of Scientific Experts (GSE) to consider international cooperative measures to detect and identify events, an ad hoc group of the United Nations Conference on Disarmament. The GSE conducted a large-scale technical test (GSETT-2) from 22 April to 9 June 1991 that focused on the exchange and analysis of seismic parameter and waveform data. Thirty-four countries participated in GSETT-2, and data were contributed from 60 stations on all continents. GSETT-2 demonstrated the feasibility of collecting and transmitting large volumes (around 1 giga-byte) of digital data around the world, and of producing a preliminary bulletin of global seismicity within 48 hours and a final bulletin within 7 days. However, the experiment also revealed the difficulty of keeping up with the flow of data and analysis with existing resources. The Final Event Bulletins listed 3715 events for the 42 recording days of the test, about twice the number reported routinely by another international agency 5 months later. The quality of the Final Event Bulletin was limited by the uneven spatial distribution of seismic stations that contributed to GSETT-2 and by the ambiguity of associating phases detected by widely separated stations to form seismic events. A monitoring system similar to that used in GSETT-2 could provide timely and accurate reporting of global seismicity. It would need an improved distribution of stations, application of more conservative event formation rules and further development of analysis software. 8 refs., 9 figs

  2. Probing dynamic hydrologic system of slowly-creeping landslides with passive seismic imaging: A comprehensive landslide monitoring site at Lantai, Ilan area in Taiwan

    Science.gov (United States)

    Huang, H. H.; Hsu, Y. J.; Kuo, C. Y.; Chen, C. C.; Kuo, L. W.; Chen, R. F.; Lin, C. R.; Lin, P. P.; Lin, C. W.; Lin, M. L.; Wang, K. L.

    2017-12-01

    A unique landslide monitoring project integrating multidisciplinary geophysics experiments such as GPS, inclinometer, piezometer, and spontaneous potential log has been established at Lantai, Ilan area to investigating the possible detachment depth range and the physical mechanism of a slowly creeping landslide. In parallel with this, a lately deployed local seismic network also lends an opportunity to employ the passive seismic imaging technique to detect the time-lapse changes of seismic velocity in and around the landslide area. Such technique that retrieves Green's functions by cross-correlation of continuous ambient noise has opened new opportunities to seismologically monitoring the environmental and tectonic events such as ground water variation, magma intrusion under volcanos, and co-seismic medium damage in recent years. Integrating these geophysical observations, we explore the primary controls of derived seismic velocity changes and especially the hydrological response of the landslide to the passage of Megi typhoon in the last September 2016, which could potentially further our understanding of the dynamic system of landslides and in turn help the hazard mitigation.

  3. Monitoring and Characterizing the Geysering and Seismic Activity at the Lusi Mud Eruption Site, East Java, Indonesia

    Science.gov (United States)

    Karyono, Karyono; Obermann, Anne; Mazzini, Adriano; Lupi, Matteo; Syafri, Ildrem; Abdurrokhim, Abdurrokhim; Masturyono, Masturyono; Hadi, Soffian

    2016-04-01

    The Lusi eruption began on May 29, 2006 in the northeast of Java Island, Indonesia, and to date is still active. Lusi is a newborn sedimentary-hosted hydrothermal system characterized by continuous expulsion of liquefied mud and breccias and geysering activity. Lusi is located upon the Watukosek fault system, a left lateral wrench system connecting the volcanic arc and the bakarc basin. This fault system is still periodically reactivated as shown by field data. In the framework of the Lusi Lab project (ERC grant n° 308126) we conducted several types of monitoring. Based on camera observations, we characterized the Lusi erupting activity by four main behaviors occurring cyclically: (1) Regular activity, which consists in the constant emission of water and mud breccias (i.e. viscous mud containing clay, silt, sand and clasts) associated with the constant expulsion of gas (mainly aqueous vapor with minor amounts of CO2 and CH4) (2) Geysering phase with intense bubbling, consisting in reduced vapor emission and more powerful bursting events that do not seem to have a regular pattern. (3) Geysering phase with intense vapor and degassing discharge and a typically dense plume that propagates up to 100 m height. (4) Quiescent phase marking the end of the geysering activity (and the observed cycle) with no gas emissions or bursts observed. To investigate the possible seismic activity beneath Lusi and the mechanisms controlling the Lusi pulsating behaviour, we deployed a network of 5 seismic stations and a HD camera around the Lusi crater. We characterize the observed types of seismic activity as tremor and volcano-tectonic events. Lusi tremor events occur in 5-10 Hz frequency band, while volcano tectonic events are abundant in the high frequencies range from 5 Hz until 25 Hz. We coupled the seismic monitoring with the images collected with the HD camera to study the correlation between the seismic tremor and the different phases of the geysering activity. Key words: Lusi

  4. Monitoring the West Bohemian earthquake swarm in 2008/2009 by a temporary small-aperture seismic array

    DEFF Research Database (Denmark)

    Hiemer, Stefan; Rössler, Dirk; Scherbaum, Frank

    2012-01-01

    The most recent intense earthquake swarm in West Bohemia lasted from 6 October 2008 to January 2009. Starting 12 days after the onset, the University of Potsdam monitored the swarm by a temporary small-aperture seismic array at 10 km epicentral distance. The purpose of the installation...

  5. Annual Report of Monitoring at Everest, Kansas, in 2015

    Energy Technology Data Exchange (ETDEWEB)

    LaFreniere, Lorraine M. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-04-01

    In March 2009, the CCC/USDA developed a plan for annual monitoring of the groundwater and surface water (Argonne 2009). Under this plan, approved by the KDHE (2009), monitoring wells are sampled by using the low-flow procedure (Puls and Barcelona 1996; Yeskis and Zavala 2002), and surface water samples are collected at five locations along the intermittent creek. Vegetation sampling is conducted as a secondary indicator of plume migration. As of 2015, the frequency of surface water sampling has been decreased to once yearly, per the approval of the KDHE (2015).

  6. Annual report on radioactive discharges and monitoring of the environment 1988

    International Nuclear Information System (INIS)

    1989-01-01

    This report supplements BNFL's Health and Safety Annual Report and lists 1988 discharges and environmental monitoring for the following sites: Sellafield, Chapelcross, Drigg Storage and Disposal Site, Springfields Works, Capenhurst Works. (UK)

  7. Monitoring of radiation exposure. Annual report 2000

    International Nuclear Information System (INIS)

    Rantanen, E.

    2001-03-01

    At the end of 2000, there were 1,779 valid safety licenses in Finland for the use of radiation. In addition, there were 2,038 responsible parties for dental x-ray diagnostics. The registry Radiation and Nuclear Safety Authority (STUK) listed 13,754 radiation sources and 270 radionuclide laboratories. In the year 2000 360 inspections were made concerning the safety licences and 53 concerning dental x-ray diagnostics. The import of radioactive substances amounted to 175,836 GBq and export to 74,420 GBq. Short-lived radionuclides produced in Finland amounted to 55,527 GBq. In the year 2000 there were 10,846 workers monitored for radiation exposure at 1,171 work sites. Of these employees, 27% received an annual dose exceeding the recording level. The annual effective dose limit was not exceeded. The total dose recorded in the dose registry(sum of the individual dosemeter readings) was 6.5 Sv in 2000

  8. Annual environmental monitoring report, January-December 1979

    International Nuclear Information System (INIS)

    1980-05-01

    Environmental monitoring results continue to demonstrate that, except for penetrating radiation, environmental radiological impact due to SLAC operation is not distinguishable from natural environmental sources. During 1979, the maximum measured neutron dose near the site boundary was not distinguishable from the cosmic ray neutron background. There have been no measurable increases in radioactivity in ground water attributable to SLAC operations since 1966. Because of major new construction, well water samples were not collected and analyzed during 1979. Construction activities have also temporarily placed our sampling stations for the sanitary and storm sewers out of service. They will be reestablished as soon as construction activities permit (mid 1980). Airborne radioactivity released from SLAC continues to make only a negligible environmental impact, and results in a site boundary annual dose of less than 0.3 mrem; this represents less than 0.3% of the annual dose from the natural radiation environment, and about 0.06% of the technical standard

  9. Geomechanics for interpreting SAGD monitoring using micro-seismicity and surface tiltmeters

    International Nuclear Information System (INIS)

    De Pater, H.; De Koning, J.; Maxwell, S.; Walters, D.

    2008-01-01

    This paper described a procedures for history matching surface movements resulting from the warm-up phases of a steam assisted gravity drainage (SAGD) project in Saskatchewan. Surface movements were measured using tilt meters that covered the area influenced by the steam injection processes. A thermal reservoir model was then coupled to a geo-mechanical model in order to calculate the surface movements. Surface heave was computed by matching a minimum curvature surface to the tilt vectors. Surface heave data were extracted in order to facilitate comparisons between observed and simulated heave. Injection constraints were defined from measured injection rates in order to match pressure histories. The study showed that the coupled model accurately interpreted monitoring data. Seismic signatures indicated strike slip and potential overthrust fault slippage or casing failures. Uplift was largest at the heel of the well. Results were explained by reservoir heterogeneities. Surface heave was accurately measured using the tiltmeters. Micro-seismic data were used to constrain failure mechanisms and provide information needed to identify conformance and potential cap rock breaches. It was concluded that the model can be used effectively to optimize injection conformance and recovery. 10 refs., 4 tabs., 28 figs

  10. Geomechanics for interpreting SAGD monitoring using micro-seismicity and surface tiltmeters

    Energy Technology Data Exchange (ETDEWEB)

    De Pater, H.; De Koning, J.; Maxwell, S. [Pinnacle Technologies, Calgary, AB (Canada); Walters, D. [Taurus Reservoir Solutions Ltd., Calgary, AB (Canada)

    2008-10-15

    This paper described a procedures for history matching surface movements resulting from the warm-up phases of a steam assisted gravity drainage (SAGD) project in Saskatchewan. Surface movements were measured using tilt meters that covered the area influenced by the steam injection processes. A thermal reservoir model was then coupled to a geo-mechanical model in order to calculate the surface movements. Surface heave was computed by matching a minimum curvature surface to the tilt vectors. Surface heave data were extracted in order to facilitate comparisons between observed and simulated heave. Injection constraints were defined from measured injection rates in order to match pressure histories. The study showed that the coupled model accurately interpreted monitoring data. Seismic signatures indicated strike slip and potential overthrust fault slippage or casing failures. Uplift was largest at the heel of the well. Results were explained by reservoir heterogeneities. Surface heave was accurately measured using the tiltmeters. Micro-seismic data were used to constrain failure mechanisms and provide information needed to identify conformance and potential cap rock breaches. It was concluded that the model can be used effectively to optimize injection conformance and recovery. 10 refs., 4 tabs., 28 figs.

  11. Third Quarter Hanford Seismic Report for Fiscal Year 2000

    Energy Technology Data Exchange (ETDEWEB)

    DC Hartshorn; SP Reidel; AC Rohay

    2000-09-01

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and its con-tractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (E WRN) consist of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The HSN uses 21 sites and the EWRN uses 36 sites; both networks share 16 sites. The networks have 46 combined data channels because Gable Butte and Frenchman Hills East are three-component sites. The reconfiguration of the telemetry and recording systems was completed during the first quarter. All leased telephone lines have been eliminated and radio telemetry is now used exclusively. For the HSN, there were 818 triggers on two parallel detection and recording systems during the third quarter of fiscal year (FY) 2000. Thirteen seismic events were located by the Hanford Seismic Network within the reporting region of 46-47{degree} N latitude and 119-120{degree} W longitude; 7 were earthquakes in the Columbia River Basalt Group, 1 was an earthquake in the pre-basalt sediments, and 5 were earthquakes in the crystalline basement. Three earthquakes occurred in known swarm areas, and 10 earthquakes were random occurrences. No earthquakes triggered the Hanford Strong Motion Accelerometers during the third quarter of FY 2000.

  12. Quantitative monitoring of CO2 injection at Sleipner using seismic full waveform inversion in the time lapse mode and rock physics modeling

    International Nuclear Information System (INIS)

    Queisser, M.P.

    2012-01-01

    Carbon capture and sequestration is a technology to achieve a considerable deceleration of CO 2 emission promptly. Since 1996 one of the largest CO 2 storage projects is taking place at Sleipner in the Norwegian North Sea. In order to monitor injected CO 2 , time lapse seismic monitoring surveys have been carried out. Estimating subsurface parameters from the Sleipner seismic data is a challenging problem due to the specific geology of the storage reservoir, which is further complicated by injected CO 2 . Most seismic imaging methods enable only qualitative insights into the subsurface. Motivated by the need for a quantitative seismic monitoring of the injected CO 2 , I have applied 2D seismic full waveform inversion to seismic data sets from Sleipner from 1994 (baseline), 1999 and 2006 along three seismic lines to infer subsurface parameters and parameter changes in the storage reservoir. The P-wave velocity is the major parameter, as it is the most sensitive to CO 2 injection. An energy preconditioning of the gradient has been implemented. The usual source wavelet calibration did not prove to be reliable. An alternative source calibration has been successfully applied. By comparing seismic images with inversion results, I found that using seismic images to locate CO 2 accumulations in the subsurface may be misleading. The quantitative imaging approach using full waveform inversion resulted in a consistent evolution of the model parameter with time. Major reductions in P-wave velocity and hence the CO 2 accumulations could be quantitatively imaged down to a resolution of 10 m. Observed travel time shifts due to CO 2 injection are comparable to those derived from the inversion result. In order to estimate CO 2 saturations, rock physical concepts have been combined and extended to arrive at a rock physical formulation of the subsurface at Sleipner. I used pseudo Monte Carlo rock physics modeling to assess the influence of lithologic heterogeneity on the CO 2

  13. Sandia National Laboratories, California Environmental Monitoring Program annual report for 2011.

    Energy Technology Data Exchange (ETDEWEB)

    Holland, Robert C.

    2011-03-01

    The annual program report provides detailed information about all aspects of the SNL/California Environmental Monitoring Program. It functions as supporting documentation to the SNL/California Environmental Management System Program Manual. The 2010 program report describes the activities undertaken during the previous year, and activities planned in future years to implement the Environmental Monitoring Program, one of six programs that supports environmental management at SNL/California.

  14. Passive seismic tomography application for cave monitoring in DOZ underground mine PT. Freeport Indonesia

    International Nuclear Information System (INIS)

    Nurhandoko, Bagus Endar B.; Wely, Woen; Setiadi, Herlan; Riyanto, Erwin

    2015-01-01

    It is already known that tomography has a great impact for analyzing and mapping unknown objects based on inversion, travel time as well as waveform inversion. Therefore, tomography has used in wide area, not only in medical but also in petroleum as well as mining. Recently, tomography method is being applied in several mining industries. A case study of tomography imaging has been carried out in DOZ ( Deep Ore Zone ) block caving mine, Tembagapura, Papua. Many researchers are undergoing to investigate the properties of DOZ cave not only outside but also inside which is unknown. Tomography takes a part for determining this objective.The sources are natural from the seismic events that caused by mining induced seismicity and rocks deformation activity, therefore it is called as passive seismic. These microseismic travel time data are processed by Simultaneous Iterative Reconstruction Technique (SIRT). The result of the inversion can be used for DOZ cave monitoring. These information must be used for identifying weak zone inside the cave. In addition, these results of tomography can be used to determine DOZ and cave information to support mine activity in PT. Freeport Indonesia

  15. Passive seismic tomography application for cave monitoring in DOZ underground mine PT. Freeport Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Nurhandoko, Bagus Endar B.; Wely, Woen; Setiadi, Herlan [WISFIR Laboratory, Earth Physics and Complex System Division, Physics Department, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung (Indonesia); Riyanto, Erwin [Geotechnical and Hydrology PT. Freeport Indonesia wonbin-ww@hotmail.com (Indonesia)

    2015-04-16

    It is already known that tomography has a great impact for analyzing and mapping unknown objects based on inversion, travel time as well as waveform inversion. Therefore, tomography has used in wide area, not only in medical but also in petroleum as well as mining. Recently, tomography method is being applied in several mining industries. A case study of tomography imaging has been carried out in DOZ ( Deep Ore Zone ) block caving mine, Tembagapura, Papua. Many researchers are undergoing to investigate the properties of DOZ cave not only outside but also inside which is unknown. Tomography takes a part for determining this objective.The sources are natural from the seismic events that caused by mining induced seismicity and rocks deformation activity, therefore it is called as passive seismic. These microseismic travel time data are processed by Simultaneous Iterative Reconstruction Technique (SIRT). The result of the inversion can be used for DOZ cave monitoring. These information must be used for identifying weak zone inside the cave. In addition, these results of tomography can be used to determine DOZ and cave information to support mine activity in PT. Freeport Indonesia.

  16. Calibration of Seismic Attributes for Reservoir Characterization; ANNUAL

    International Nuclear Information System (INIS)

    Pennington, Wayne D.; Acevedo, Horacio; Green, Aaron; Len, Shawn; Minavea, Anastasia; Wood, James; Xie, Deyi

    2002-01-01

    This project has completed the initially scheduled third year of the contract, and is beginning a fourth year, designed to expand upon the tech transfer aspects of the project. From the Stratton data set, demonstrated that an apparent correlation between attributes derived along 'phantom' horizons are artifacts of isopach changes; only if the interpreter understands that the interpretation is based on this correlation with bed thickening or thinning, can reliable interpretations of channel horizons and facies be made. From the Boonsville data set , developed techniques to use conventional seismic attributes, including seismic facies generated under various neural network procedures, to subdivide regional facies determined from logs into productive and non-productive subfacies, and developed a method involving cross-correlation of seismic waveforms to provide a reliable map of the various facies present in the area. The Teal South data set provided a surprising set of data, leading us to develop a pressure-dependent velocity relationship and to conclude that nearby reservoirs are undergoing a pressure drop in response to the production of the main reservoir, implying that oil is being lost through their spill points, never to be produced. The Wamsutter data set led to the use of unconventional attributes including lateral incoherence and horizon-dependent impedance variations to indicate regions of former sand bars and current high pressure, respectively, and to evaluation of various upscaling routines

  17. Seismic surface wave tomography of waste sites. 1997 annual progress report

    International Nuclear Information System (INIS)

    Long, T.L.

    1997-01-01

    'The objective of the Seismic Surface Wave Tomography of Waste Sites is to develop a robust technique for field acquisition and analysis of surface wave data for the interpretation of shallow structures, such as those associated with the burial of wastes. The analysis technique is to be developed and tested on an existing set of seismic data covering the K-901 burial site at the East Tennessee Technology Park. Also, a portable prototype for a field acquisition system will be designed and developed to obtain additional data for analysis and testing of the technique. The K-901 data have been examined and a preliminary Single Valued Decomposition inversion has been obtained. The preliminary data indicates a need for additional seismic data to ground-truth the inversion. The originally proposed gravity data acquisition has been dropped because sufficient gravity data are now available for a preliminary analysis and because the seismic data are considered more critical to the interpretation. The proposed prototype for the portable acquisition and analysis system was developed during the first year and will be used in part of the acquisition of additional seismic data.'

  18. Development of seismic hazard analysis in Japan

    International Nuclear Information System (INIS)

    Itoh, T.; Ishii, K.; Ishikawa, Y.; Okumura, T.

    1987-01-01

    In recent years, seismic risk assessment of the nuclear power plant have been conducted increasingly in various countries, particularly in the United States to evaluate probabilistically the safety of existing plants under earthquake loading. The first step of the seismic risk assessment is the seismic hazard analysis, in which the relationship between the maximum earthquake ground motions at the plant site and their annual probability of exceedance, i.e. the seismic hazard curve, is estimated. In this paper, seismic hazard curves are evaluated and examined based on historical earthquake records model, in which seismic sources are modeled with area-sources, for several different sites in Japan. A new evaluation method is also proposed to compute the response spectra of the earthquake ground motions in connection with estimating the probabilistic structural response. Finally the numerical result of probabilistic risk assessment for a base-isolated three story RC structure, in which the frequency of seismic induced structural failure is evaluated combining the seismic hazard analysis, is described briefly

  19. Seismic Monitoring Prior to and During DFDP-2 Drilling, Alpine Fault, New Zealand: Matched-Filter Detection Testing and the Real-Time Monitoring System

    Science.gov (United States)

    Boese, C. M.; Chamberlain, C. J.; Townend, J.

    2015-12-01

    In preparation for the second stage of the Deep Fault Drilling Project (DFDP) and as part of related research projects, borehole and surface seismic stations were installed near the intended DFDP-2 drill-site in the Whataroa Valley from late 2008. The final four borehole stations were installed within 1.2 km of the drill-site in early 2013 to provide near-field observations of any seismicity that occurred during drilling and thus provide input into operational decision-making processes if required. The basis for making operational decisions in response to any detected seismicity had been established as part of a safety review conducted in early 2014 and was implemented using a "traffic light" system, a communications plan, and other operational documents. Continuous real-time earthquake monitoring took place throughout the drilling period, between September and late December 2014, and involved a team of up to 15 seismologists working in shifts near the drill-site and overseas. Prior to drilling, records from 55 local earthquakes and 14 quarry blasts were used as master templates in a matched-filter detection algorithm to test the capabilities of the seismic network for detecting seismicity near the drill site. The newly detected microseismicity was clustered near the DFDP-1 drill site at Gaunt Creek, 7.4 km southwest of DFDP-2. Relocations of these detected events provide more information about the fault geometry in this area. Although no detectable seismicity occurred within 5 km of the drill site during the drilling period, the region is capable of generating earthquakes that would have required an operational response had they occurred while drilling was underway (including a M2.9 event northwest of Gaunt Creek on 15 August 2014). The largest event to occur while drilling was underway was of M4.5 and occurred approximately 40 km east of the DFDP-2 drill site. In this presentation, we summarize the setup and operations of the seismic network and discuss key

  20. 1995 annual water monitoring report, LEHR environmental restoration, University of California at Davis

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, D.L.; Smith, R.M.; Sauer, D.R. [and others

    1996-03-01

    This 1995 Annual Water Monitoring Report presents analytical data collected between January and December 1995 at the Laboratory for Energy-Related Health Research (LEHR) located at the University of California (UC), Davis. This report has been prepared by Pacific Northwest National Laboratory in compliance with the Water Monitoring Plan for the LEHR site, which contains the sample collection, analysis, and quality assurance/quality control procedures and reporting requirements. Water monitoring during 1995 was conducted in conjunction with the Remedial Investigation/Feasibility Study currently being implemented at the LEHR site as part of a US Department of Energy (DOE)-sponsored environmental restoration program. Based on a review of historical groundwater monitoring data compiled since the fall of 1990, the list of analytes included in the program was reduced and the schedule for analyzing the remaining analytes was revised. The revision was implemented for the first time in the summer monitoring period. Analytes eliminated from the program were those that were (1) important for establishing baseline groundwater chemistry (alkalinity, anions, Eh, total organic carbon, and chemical oxygen demand); (2) important for establishing sources of contamination; (3) not detected in water samples or not from the LEHR site; and (4) duplicates of another measurement. Reductions in the analytical schedule were based on the monitoring history for each well; the resultant constituents of concern list was developed for individual wells. Depending on its importance in a well, each analyte was analyzed quarterly, semi-annually, or annually. Pollutants of major concern include organic compounds, metals, and radionuclides.

  1. 1995 annual water monitoring report, LEHR environmental restoration, University of California at Davis

    International Nuclear Information System (INIS)

    Stewart, D.L.; Smith, R.M.; Sauer, D.R.

    1996-03-01

    This 1995 Annual Water Monitoring Report presents analytical data collected between January and December 1995 at the Laboratory for Energy-Related Health Research (LEHR) located at the University of California (UC), Davis. This report has been prepared by Pacific Northwest National Laboratory in compliance with the Water Monitoring Plan for the LEHR site, which contains the sample collection, analysis, and quality assurance/quality control procedures and reporting requirements. Water monitoring during 1995 was conducted in conjunction with the Remedial Investigation/Feasibility Study currently being implemented at the LEHR site as part of a US Department of Energy (DOE)-sponsored environmental restoration program. Based on a review of historical groundwater monitoring data compiled since the fall of 1990, the list of analytes included in the program was reduced and the schedule for analyzing the remaining analytes was revised. The revision was implemented for the first time in the summer monitoring period. Analytes eliminated from the program were those that were (1) important for establishing baseline groundwater chemistry (alkalinity, anions, Eh, total organic carbon, and chemical oxygen demand); (2) important for establishing sources of contamination; (3) not detected in water samples or not from the LEHR site; and (4) duplicates of another measurement. Reductions in the analytical schedule were based on the monitoring history for each well; the resultant constituents of concern list was developed for individual wells. Depending on its importance in a well, each analyte was analyzed quarterly, semi-annually, or annually. Pollutants of major concern include organic compounds, metals, and radionuclides

  2. Passive seismic monitoring of natural and induced earthquakes: case studies, future directions and socio-economic relevance

    Science.gov (United States)

    Bohnhoff, Marco; Dresen, Georg; Ellsworth, William L.; Ito, Hisao; Cloetingh, Sierd; Negendank, Jörg

    2010-01-01

    An important discovery in crustal mechanics has been that the Earth’s crust is commonly stressed close to failure, even in tectonically quiet areas. As a result, small natural or man-made perturbations to the local stress field may trigger earthquakes. To understand these processes, Passive Seismic Monitoring (PSM) with seismometer arrays is a widely used technique that has been successfully applied to study seismicity at different magnitude levels ranging from acoustic emissions generated in the laboratory under controlled conditions, to seismicity induced by hydraulic stimulations in geological reservoirs, and up to great earthquakes occurring along plate boundaries. In all these environments the appropriate deployment of seismic sensors, i.e., directly on the rock sample, at the earth’s surface or in boreholes close to the seismic sources allows for the detection and location of brittle failure processes at sufficiently low magnitude-detection threshold and with adequate spatial resolution for further analysis. One principal aim is to develop an improved understanding of the physical processes occurring at the seismic source and their relationship to the host geologic environment. In this paper we review selected case studies and future directions of PSM efforts across a wide range of scales and environments. These include induced failure within small rock samples, hydrocarbon reservoirs, and natural seismicity at convergent and transform plate boundaries. Each example represents a milestone with regard to bridging the gap between laboratory-scale experiments under controlled boundary conditions and large-scale field studies. The common motivation for all studies is to refine the understanding of how earthquakes nucleate, how they proceed and how they interact in space and time. This is of special relevance at the larger end of the magnitude scale, i.e., for large devastating earthquakes due to their severe socio-economic impact.

  3. OGS improvements in 2012 in running the Northeastern Italy Seismic Network: the Ferrara VBB borehole seismic station

    Science.gov (United States)

    Pesaresi, Damiano; Romanelli, Marco; Barnaba, Carla; Bragato, Pier Luigi; Durì, Giorgio

    2013-04-01

    The Centro di Ricerche Sismologiche (CRS, Seismological Research Center) of the Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS, Italian National Institute for Oceanography and Experimental Geophysics) in Udine (Italy) after the strong earthquake of magnitude M=6.4 occurred in 1976 in the Italian Friuli-Venezia Giulia region, started to operate the Northeastern Italy Seismic Network: it currently consists of 17 very sensitive broad band and 18 simpler short period seismic stations, all telemetered to and acquired in real time at the OGS-CRS data center in Udine. Real time data exchange agreements in place with other Italian, Slovenian, Austrian and Swiss seismological institutes lead to a total number of about 100 seismic stations acquired in real time, which makes the OGS the reference institute for seismic monitoring of Northeastern Italy. The southwestern edge of the OGS seismic network stands on the Po alluvial basin: earthquake localization and characterization in this area is affected by the presence of soft alluvial deposits. OGS ha already experience in running a local seismic network in high noise conditions making use of borehole installations in the case of the micro-seismicity monitoring of a local gas storage site for a private company. Following the ML=5.9 earthquake that struck the Emilia region around Ferrara in Northern Italy on May 20, 2012 at 02:03:53 UTC, a cooperation of Istituto Nazionale di Geofisica e Vulcanologia, OGS, the Comune di Ferrara and the University of Ferrara lead to the reinstallation of a previously existing very broad band (VBB) borehole seismic station in Ferrara. The aim of the OGS intervention was on one hand to extend its real time seismic monitoring capabilities toward South-West, including Ferrara and its surroundings, and on the other hand to evaluate the seismic response at the site. We will describe improvements in running the Northeastern Italy Seismic Network, including details of the Ferrara VBB

  4. Hanford quarterly seismic report - 97B seismicity on and near the Hanford Site, Pasco Basin, Washington, January 1, 1997--March 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Hartshorn, D.C.; Reidel, S.P.

    1997-05-01

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and contractors. The staff also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for activities ranging from waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organizations works with the Hanford Site Emergency Services Organization to provide assistance in the event of an earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 41 individual sensor sites and 15 radio relay sites maintained by the Seismic Monitoring staff. Most stations and five relay sites are solar powered. The operational rate for the second quarter of FY97 for stations in the HSN was 97.23% and for stations of the EWRN was 99.93%. For fiscal year (FY) 1997 second quarter (97B), the acquisition computer triggered two hundred and forth-eight times. Of these triggers three were local earthquakes: one in the pre-basalt sediments, and two in the crystalline basement. The geologic and tectonic environments are discussed in the report.

  5. Hanford quarterly seismic report - 97B seismicity on and near the Hanford Site, Pasco Basin, Washington, January 1, 1997 - March 31, 1997

    International Nuclear Information System (INIS)

    Hartshorn, D.C.; Reidel, S.P.

    1997-05-01

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and contractors. The staff also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for activities ranging from waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organizations works with the Hanford Site Emergency Services Organization to provide assistance in the event of an earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 41 individual sensor sites and 15 radio relay sites maintained by the Seismic Monitoring staff. Most stations and five relay sites are solar powered. The operational rate for the second quarter of FY97 for stations in the HSN was 97.23% and for stations of the EWRN was 99.93%. For fiscal year (FY) 1997 second quarter (97B), the acquisition computer triggered two hundred and forth-eight times. Of these triggers three were local earthquakes: one in the pre-basalt sediments, and two in the crystalline basement. The geologic and tectonic environments are discussed in the report

  6. Large-Strain Monitoring Above a Longwall Coal Mine With GPS and Seismic Measurements

    Science.gov (United States)

    Swanson, P. L.; Andreatta, V.; Meertens, C. M.; Krahenbuhl, T.; Kenner, B.

    2001-12-01

    As part of an effort to evaluate continuous GPS measurements for use in mine safety studies, a joint GPS-seismic experiment was conducted at an underground longwall coal mine near Paonia, Colorado in June, 2001. Seismic and deformation signals were measured using prototype low-cost monitoring systems as a longwall panel was excavated 150 m beneath the site. Data from both seismic and GPS instruments were logged onto low-power PC-104 Linux computers which were networked using a wireless LAN. The seismic system under development at NIOSH/SRL is based on multiple distributed 8-channel 24-bit A/D converters. The GPS system uses a serial single-frequency (L1) receiver and UNAVCO's "Jstream" Java data logging software. For this experiment, a continuously operating dual-frequency GPS receiver was installed 2.4 km away to serve as a reference site. In addition to the continuously operating sites, 10 benchmarks were surveyed daily with short "rapid-static" occupations in order to provide greater spatial sampling. Two single-frequency sites were located 35 meters apart on a relatively steep north-facing slope. As mining progressed from the east, net displacements of 1.2 meters to the north and 1.65 meters of subsidence were observed over a period of 6 days. The east component exhibited up to 0.45 meters of eastward displacement (toward the excavation) followed by reverse movement to the west. This cycle, observed approximately two days earlier at the eastern L1 site, is consistent with a change in surface strain from tension to compression as the excavation front passed underneath. As this strain "wave" propagated across the field site, surface deformation underwent a cycle of tension crack nucleation, crack opening (up to 15 cm normal displacements), subsequent crack closure, and production of low-angle-thrust compressional deformation features. Analysis of seismic results, surface deformation, and additional survey results are presented.

  7. Correlation between Earthquakes and AE Monitoring of Historical Buildings in Seismic Areas

    Directory of Open Access Journals (Sweden)

    Giuseppe Lacidogna

    2015-12-01

    Full Text Available In this contribution a new method for evaluating seismic risk in regional areas based on the acoustic emission (AE technique is proposed. Most earthquakes have precursors, i.e., phenomena of changes in the Earth’s physical-chemical properties that take place prior to an earthquake. Acoustic emissions in materials and earthquakes in the Earth’s crust, despite the fact that they take place on very different scales, are very similar phenomena; both are caused by a release of elastic energy from a source located in a medium. For the AE monitoring, two important constructions of Italian cultural heritage are considered: the chapel of the “Sacred Mountain of Varallo” and the “Asinelli Tower” of Bologna. They were monitored during earthquake sequences in their relative areas. By using the Grassberger-Procaccia algorithm, a statistical method of analysis was developed that detects AEs as earthquake precursors or aftershocks. Under certain conditions it was observed that AEs precede earthquakes. These considerations reinforce the idea that the AE monitoring can be considered an effective tool for earthquake risk evaluation.

  8. First Quarter Hanford Seismic Report for Fiscal Year 2001

    Energy Technology Data Exchange (ETDEWEB)

    Hartshorn, Donald C.; Reidel, Stephen P.; Rohay, Alan C.; Valenta, Michelle M.

    2001-02-27

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 41 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. For the HSN, there were 477 triggers during the first quarter of fiscal year (FY) 2001 on the data acquisition system. Of these triggers, 176 were earthquakes. Forty-five earthquakes were located in the HSN area; 1 earthquake occurred in the Columbia River Basalt Group, 43 were earthquakes in the pre-basalt sediments, and 1 was earthquakes in the crystalline basement. Geographically, 44 earthquakes occurred in swarm areas, 1 earthquake was on a major structure, and no earthquakes were classified as random occurrences. The Horse Heaven Hills earthquake swarm area recorded all but one event during the first quarter of FY 2001. The peak of the activity occurred over December 12th, 13th, and 14th when 35 events occurred. No earthquakes triggered the Hanford Strong Motion Accelerometers during the first quarter of FY 2001.

  9. Cooperative New Madrid seismic network

    International Nuclear Information System (INIS)

    Herrmann, R.B.; Johnston, A.C.

    1990-01-01

    The development and installation of components of a U.S. National Seismic Network (USNSN) in the eastern United States provides the basis for long term monitoring of eastern earthquakes. While the broad geographical extent of this network provides a uniform monitoring threshold for the purpose of identifying and locating earthquakes and while it will provide excellent data for defining some seismic source parameters for larger earthquakes through the use of waveform modeling techniques, such as depth and focal mechanism, by itself it will not be able to define the scaling of high frequency ground motions since it will not focus on any of the major seismic zones in the eastern U.S. Realizing this need and making use of a one time availability of funds for studying New Madrid earthquakes, Saint Louis University and Memphis State University successfully competed for funding in a special USGS RFP for New Madrid studies. The purpose of the proposal is to upgrade the present seismic networks run by these institutions in order to focus on defining the seismotectonics and ground motion scaling in the New Madrid Seismic Zone. The proposed network is designed both to complement the U.S. National Seismic Network and to make use of the capabilities of the communication links of that network

  10. Neural network approach to the prediction of seismic events based on low-frequency signal monitoring of the Kuril-Kamchatka and Japanese regions

    Directory of Open Access Journals (Sweden)

    Irina Popova

    2013-08-01

    Full Text Available Very-low-frequency/ low-frequency (VLF/LF sub-ionospheric radiowave monitoring has been widely used in recent years to analyze earthquake preparatory processes. The connection between earthquakes with M ≥5.5 and nighttime disturbances of signal amplitude and phase has been established. Thus, it is possible to use nighttime anomalies of VLF/LF signals as earthquake precursors. Here, we propose a method for estimation of the VLF/LF signal sensitivity to seismic processes using a neural network approach. We apply the error back-propagation technique based on a three-level perceptron to predict a seismic event. The back-propagation technique involves two main stages to solve the problem; namely, network training, and recognition (the prediction itself. To train a neural network, we first create a so-called ‘training set’. The ‘teacher’ specifies the correspondence between the chosen input and the output data. In the present case, a representative database includes both the LF data received over three years of monitoring at the station in Petropavlovsk-Kamchatsky (2005-2007, and the seismicity parameters of the Kuril-Kamchatka and Japanese regions. At the first stage, the neural network established the relationship between the characteristic features of the LF signal (the mean and dispersion of a phase and an amplitude at nighttime for a few days before a seismic event and the corresponding level of correlation with a seismic event, or the absence of a seismic event. For the second stage, the trained neural network was applied to predict seismic events from the LF data using twelve time intervals in 2004, 2005, 2006 and 2007. The results of the prediction are discussed.

  11. Redatuming of sparse 3D seismic data

    NARCIS (Netherlands)

    Tegtmeier, S.

    2007-01-01

    The purpose of a seismic survey is to produce an image of the subsurface providing an overview of the earth's discontinuities. The aim of seismic processing is to recreate this image. The seismic method is especially well suited for the exploration and the monitoring of hydrocarbon reservoirs. A

  12. Active sites environmental monitoring program FY 1997 annual report

    International Nuclear Information System (INIS)

    Morrissey, C.M.; Marshall, D.S.; Cunningham, G.R.

    1998-03-01

    This report summarizes the activities conducted by the Active Sites Environmental Monitoring Program (ASEMP) from October 1996 through September 1997. The purpose of the program is to provide early detection and performance monitoring at active low-level waste (LLW) disposal sites in Solid Waste Storage Area (SWSA) 6 and transuranic (TRU) waste storage sites in SWSA 5 North. This report continues a series of annual and semiannual reports that present the results of ASEMP monitoring activities. This report details monitoring results for fiscal year (FY) 1997 from SWSA 6, including the Interim Waste Management Facility (IWMF) and the Hillcut Disposal Test Facility (HDTF), and (2) TRU-waste storage areas in SWSA 5 N. This report presents a summary of the methodology used to gather data for each major area along with the FY 1997 results. Figures referenced in the text are found in Appendix A and data tables are presented in Appendix B

  13. Status of initial phase of site-specific seismic monitoring: Basalt Waste Isolation Project

    International Nuclear Information System (INIS)

    Rohay, A.C.

    1981-01-01

    This report presents the status of the initial phase of site-specific seismic monitoring work conducted under the Basalt Waste Isolation Project. This work is currently organized under two main elements: (1) a portable array; and (2) a baseline data collection array. Progress toward the development of each array is discussed along with an interpretation of preliminary data obtained from the test of a borehole seismometer at potential repository depths. The text is supplemented by nine figures and one table. 9 figs., 1 tab

  14. Study on the seismic monitoring system development against the adjacent countries nuclear test

    International Nuclear Information System (INIS)

    Min, Kyung Sik; Ahn, Jong Sung; Lee, Jong Wook; Chang, In Soon; Seo, In Seok; Kwak, Eun Ho

    1995-12-01

    The project was carried out to construct foundation for the monitoring of the neighboring countries's nuclear test by seismic method. For this, we collected, organized and analyzed the information about the Comparative Test Ban Treaty (CTBT) and investigated theoretical backgrounds of the elastic wave generation by the Nuclear test and the identification of the nuclear tests from the natural earthquakes. And the computer system was setup to obtain realtime data from the broadband seismograph in Inchon of the Korean Meteorological Agency. 15 refs. (Author)

  15. Second Quarter Hanford Seismic Report for Fiscal Year 2000

    International Nuclear Information System (INIS)

    Hartshorn, D.C.; Reidel, S.P.; Rohay, A.C.

    2000-01-01

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the US Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The HSN uses 21 sites and the EWRN uses 36 sites; both networks share 16 sites. The networks have 46 combined data channels because Gable Butte and Frenchman Hills East are three-component sites. The reconfiguration of the telemetry and recording systems was completed during the first quarter. All leased telephone lines have been eliminated and radio telemetry is now used exclusively. For the HSN, there were 506 triggers on two parallel detection and recording systems during the second quarter of fiscal year (FY) 2000. Twenty-seven seismic events were located by the Hanford Seismic Network within the reporting region of 46--47degree N latitude and 119--120degree W longitude; 12 were earthquakes in the Columbia River Basalt Group, 2 were earthquakes in the pre-basalt sediments, 9 were earthquakes in the crystalline basement, and 5 were quarry blasts. Three earthquakes appear to be related to geologic structures, eleven earthquakes occurred in known swarm areas, and seven earthquakes were random occurrences. No earthquakes triggered the Hanford Strong Motion

  16. Second Quarter Hanford Seismic Report for Fiscal Year 2000

    Energy Technology Data Exchange (ETDEWEB)

    DC Hartshorn; SP Reidel; AC Rohay

    2000-07-17

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the US Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The HSN uses 21 sites and the EWRN uses 36 sites; both networks share 16 sites. The networks have 46 combined data channels because Gable Butte and Frenchman Hills East are three-component sites. The reconfiguration of the telemetry and recording systems was completed during the first quarter. All leased telephone lines have been eliminated and radio telemetry is now used exclusively. For the HSN, there were 506 triggers on two parallel detection and recording systems during the second quarter of fiscal year (FY) 2000. Twenty-seven seismic events were located by the Hanford Seismic Network within the reporting region of 46--47{degree} N latitude and 119--120{degree} W longitude; 12 were earthquakes in the Columbia River Basalt Group, 2 were earthquakes in the pre-basalt sediments, 9 were earthquakes in the crystalline basement, and 5 were quarry blasts. Three earthquakes appear to be related to geologic structures, eleven earthquakes occurred in known swarm areas, and seven earthquakes were random occurrences. No earthquakes triggered the Hanford Strong Motion

  17. First quarter Hanford seismic report for fiscal year 2000

    Energy Technology Data Exchange (ETDEWEB)

    DC Hartshorn; SP Reidel; AC Rohay

    2000-02-23

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the US Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The HSN uses 21 sites and the EW uses 36 sites; both networks share 16 sites. The networks have 46 combined data channels because Gable Butte and Frenchman Hills East are three-component sites. The reconfiguration of the telemetry and recording systems was completed during the first quarter. All leased telephone lines have been eliminated and radio telemetry is now used exclusively. For the HSN, there were 311 triggers on two parallel detection and recording systems during the first quarter of fiscal year (FY) 2000. Twelve seismic events were located by the Hanford Seismic Network within the reporting region of 46--47{degree}N latitude and 119--120{degree}W longitude; 2 were earthquakes in the Columbia River Basalt Group, 3 were earthquakes in the pre-basalt sediments, 9 were earthquakes in the crystalline basement, and 1 was a quarry blast. Two earthquakes appear to be related to a major geologic structure, no earthquakes occurred in known swarm areas, and 9 earthquakes were random occurrences. No earthquakes triggered the Hanford Strong Motion Accelerometers

  18. OGS improvements in 2012 in running the North-eastern Italy Seismic Network: the Ferrara VBB borehole seismic station

    Science.gov (United States)

    Pesaresi, D.; Romanelli, M.; Barnaba, C.; Bragato, P. L.; Durì, G.

    2014-07-01

    The Centro di Ricerche Sismologiche (CRS, Seismological Research Centre) of the Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS, Italian National Institute for Oceanography and Experimental Geophysics) in Udine (Italy) after the strong earthquake of magnitude M=6.4 occurred in 1976 in the Italian Friuli-Venezia Giulia region, started to operate the North-eastern Italy Seismic Network: it currently consists of 17 very sensitive broad band and 18 simpler short period seismic stations, all telemetered to and acquired in real time at the OGS-CRS data centre in Udine. Real time data exchange agreements in place with other Italian, Slovenian, Austrian and Swiss seismological institutes lead to a total number of about 100 seismic stations acquired in real time, which makes the OGS the reference institute for seismic monitoring of North-eastern Italy. The south-western edge of the OGS seismic network (Fig. 1) stands on the Po alluvial basin: earthquake localization and characterization in this area is affected by the presence of soft alluvial deposits. OGS ha already experience in running a local seismic network in high noise conditions making use of borehole installations in the case of the micro-seismicity monitoring of a local gas storage site for a private company. Following the ML = 5.9 earthquake that struck the Emilia region around Ferrara in Northern Italy on 20 May 2012 at 02:03:53 UTC, a cooperation of Istituto Nazionale di Geofisica e Vulcanologia, OGS, the Comune di Ferrara and the University of Ferrara lead to the reinstallation of a previously existing very broad band (VBB) borehole seismic station in Ferrara. The aim of the OGS intervention was on one hand to extend its real time seismic monitoring capabilities toward South-West, including Ferrara and its surroundings, and on the other hand to evaluate the seismic response at the site. We will describe improvements in running the North-eastern Italy Seismic Network, including details of

  19. Hanford Quarter Seismic Report - 98C Seismicity On and Near the Hanford Site, Pasco Basin, Washington: April 1, 1998 Through June 30, 1998

    Energy Technology Data Exchange (ETDEWEB)

    DC Hartshorn, SP Reidel, AC Rohay

    1998-10-23

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and its contractors. The staff also locates aud identifies sources of seismic activity and monitors changes in the hi~orical pattern of seismic activity at the Hanford Site. The data are. compiled archived, and published for use by the Hanford Site for waste management Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of zin earthquake on the Hanford Site. The HSN and Ihe Eastern Washington Regional Network (EN/RN) consist-of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The operational rate for the third quarter of FY 1998 for stations in the HSN was 99.99%. The operational rate for the third quarter of FY 1998 for stations of the EWRN was 99.95%. For the third quarter of FY 1998, the acquisition computer triggered 133 times. Of these triggers 11 were local earthquakes: 5 (45Yo) in the Columbia River Basalt Group, 2(1 8%) in the pre-basalt sediments, and 4 (36%) in the crystalline basement. The geologic and tectonic environments where these earthquakes occurred are discussed in this report.

  20. Interpretaion of synthetic seismic time-lapse monitoring data for Korea CCS project based on the acoustic-elastic coupled inversion

    Science.gov (United States)

    Oh, J.; Min, D.; Kim, W.; Huh, C.; Kang, S.

    2012-12-01

    Recently, the CCS (Carbon Capture and Storage) is one of the promising methods to reduce the CO2 emission. To evaluate the success of the CCS project, various geophysical monitoring techniques have been applied. Among them, the time-lapse seismic monitoring is one of the effective methods to investigate the migration of CO2 plume. To monitor the injected CO2 plume accurately, it is needed to interpret seismic monitoring data using not only the imaging technique but also the full waveform inversion, because subsurface material properties can be estimated through the inversion. However, previous works for interpreting seismic monitoring data are mainly based on the imaging technique. In this study, we perform the frequency-domain full waveform inversion for synthetic data obtained by the acoustic-elastic coupled modeling for the geological model made after Ulleung Basin, which is one of the CO2 storage prospects in Korea. We suppose the injection layer is located in fault-related anticlines in the Dolgorae Deformed Belt and, for more realistic situation, we contaminate the synthetic monitoring data with random noise and outliers. We perform the time-lapse full waveform inversion in two scenarios. One scenario is that the injected CO2 plume migrates within the injection layer and is stably captured. The other scenario is that the injected CO2 plume leaks through the weak part of the cap rock. Using the inverted P- and S-wave velocities and Poisson's ratio, we were able to detect the migration of the injected CO2 plume. Acknowledgment This work was financially supported by the Brain Korea 21 project of Energy Systems Engineering, the "Development of Technology for CO2 Marine Geological Storage" program funded by the Ministry of Land, Transport and Maritime Affairs (MLTM) of Korea and the Korea CCS R&D Center (KCRC) grant funded by the Korea government (Ministry of Education, Science and Technology) (No. 2012-0008926).

  1. Third Quarter Hanford Seismic Report for Fiscal Year 2010

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2010-09-29

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. The Hanford Seismic Network recorded 23 local earthquakes during the third quarter of FY 2010. Sixteen earthquakes were located at shallow depths (less than 4 km), five earthquakes at intermediate depths (between 4 and 9 km), most likely in the pre-basalt sediments, and two earthquakes were located at depths greater than 9 km, within the basement. Geographically, twelve earthquakes were located in known swarm areas, 3 earthquakes occurred near a geologic structure (Saddle Mountain anticline), and eight earthquakes were classified as random events. The highest magnitude event (3.0 Mc) was recorded on May 8, 2010 at depth 3.0 km with epicenter located near the Saddle Mountain anticline. Later in the quarter (May 24 and June 28) two additional earthquakes were also recorded nearly at the same location. These events are not considered unusual in that earthquakes have been previously recorded at this location, for example, in October 2006 (Rohay et al; 2007). Six earthquakes were detected in the vicinity of Wooded Island, located about eight miles north of Richland just

  2. Annual report on the environmental radiation monitoring around Tokai Reprocessing Plant. FY 2001. Document on present state of affairs

    International Nuclear Information System (INIS)

    Shinohara, Kunihiko; Takeishi, Minoru; Miyagawa, Naoto

    2002-06-01

    Environmental radiation monitoring around the Tokai Reprocessing Plant has been performed since 1975, based on ''Safety Regulations for the Tokai Reprocessing Plant, Chapter IV - Environmental Monitoring''. This annual report presents the results of the environmental monitoring and the dose estimation to the hypothetical inhabitant due to the radioactivity discharged from the plant during April 2001 to March 2002. Appendices present comprehensive information, such as monitoring program, monitoring results, meteorological data and annual discharges from the plant. (author)

  3. Link Between the Seismic Events and the Different Seismic Precursor Phenomena

    Directory of Open Access Journals (Sweden)

    Mirela GHEORGHITA

    2009-12-01

    Full Text Available This article presents an analysis of the earthquake prediction methods, highlighting mainly the VLF and LF electromagnetic waves seismic precursors’ monitoring method and the correlation among these in order to obtain a more precise result. It is well known the fact that there are lots of links between the seismic events occurrence and different phenomena that predict their occurrence, such as theelectromagnetic field, Earth movement, gaseous content of radon and hydrogen within the soil, or within the underground waters. This paper aims to demonstrate the close link between the seismic events and the electromagnetic wave propagation anomalies, which are recorded before the advent of an earthquake.

  4. Weldon Spring, Missouri: Annual environmental monitoring report, calendar year 1987

    International Nuclear Information System (INIS)

    1987-01-01

    Radiological monitoring at the WSS during 1987 measured uranium, Radium-226, and Thorium-230 concentrations in surface water, groundwater, and sediment; radon gas concentrations in air; all long-lived natural series isotopes in air particulates; and external gamma radiation exposure rates. Potential radiation doses to the public were calculated based on assumed exposure periods and the above measurements. Radon concentrations, external gamma exposure rates, and radionuclide concentrations in groundwater and surface water at the site were generally equivalent to previous years' levels. The maximum calculated annual radiation dose to a hypothetically exposed individual at the WSRP and WSCP area was 1 mrem, or 1 percent of the DOE radiation protection standard of 100 mrem. The maximum calculated annual radiation dose to a hypothetically exposed individual at the WSQ was 14 mrem, or about 14 percent of the standard. Thus the WSS currently complies with DOE Off-site Dose Standards. Chemical contamination monitoring at the WSS during 1987 measured nitroaromatics, total organic carbon and the inorganic anions chloride, nitrate, fluoride and sulfate in surface water, groundwater and sediment. 22 refs., 26 figs., 21 tabs

  5. Seismic monitoring of small alpine rockfalls – validity, precision and limitations

    Directory of Open Access Journals (Sweden)

    M. Dietze

    2017-10-01

    Full Text Available Rockfall in deglaciated mountain valleys is perhaps the most important post-glacial geomorphic process for determining the rates and patterns of valley wall erosion. Furthermore, rockfall poses a significant hazard to inhabitants and motivates monitoring efforts in populated areas. Traditional rockfall detection methods, such as aerial photography and terrestrial laser scanning (TLS data evaluation, provide constraints on the location and released volume of rock but have limitations due to significant time lags or integration times between surveys, and deliver limited information on rockfall triggering mechanisms and the dynamics of individual events. Environmental seismology, the study of seismic signals emitted by processes at the Earth's surface, provides a complementary solution to these shortcomings. However, this approach is predominantly limited by the strength of the signals emitted by a source and their transformation and attenuation towards receivers. To test the ability of seismic methods to identify and locate small rockfalls, and to characterise their dynamics, we surveyed a 2.16 km2 large, near-vertical cliff section of the Lauterbrunnen Valley in the Swiss Alps with a TLS device and six broadband seismometers. During 37 days in autumn 2014, 10 TLS-detected rockfalls with volumes ranging from 0.053 ± 0.004 to 2.338 ± 0.085 m3 were independently detected and located by the seismic approach, with a deviation of 81−29+59 m (about 7 % of the average inter-station distance of the seismometer network. Further potential rockfalls were detected outside the TLS-surveyed cliff area. The onset of individual events can be determined within a few milliseconds, and their dynamics can be resolved into distinct phases, such as detachment, free fall, intermittent impact, fragmentation, arrival at the talus slope and subsequent slope activity. The small rockfall volumes in this area require significant supervision during data

  6. The April 16th 2016 Pedernales Earthquake and Instituto Geofisico efforts for improving seismic monitoring in Ecuador

    Science.gov (United States)

    Ruiz, M. C.; Alvarado, A. P.; Hernandez, S.; Singaucho, J. C.; Gabriela, P.; Landeureau, A.; Perrault, M.; Acero, W.; Viracucha, C.; Plain, M.; Yepes, H. A.; Palacios, P.; Aguilar, J.; Mothes, P. A.; Segovia, M.; Pacheco, D. A.; Vaca, S.

    2016-12-01

    On April 16th, 2016, Ecuador's coastal provinces were struck by a devastating earthquake with 7.8 Mw magnitude. This event caused the earthquake-related largest dead toll in Ecuador (663 fatalities) since 1987 inland event. It provoked also a widespread destruction of houses, hotels, hospitals, affecting economic activities. Damaged was very worthy in the city of Pedernales, one of the nearest localities to the epicenter. Rupture area extended about a 100 km from the southern limit marked by the aftershock area of the 1998, 7.1 Mw earthquake to its northern limit controlled by the Punta Galera-Mompiche seismic zone, which is one of the several elongated swarms oriented perpendicular to the trench that occurred since 2007. Historical accounts of the Ecuador Colombia subduction zone have few mentions of felt earthquakes in the XVIII and XIX century likely related to poor communication and urban settlements in this area. A cycle of noticeable earthquakes began in 1896, including the 1906 8.8 Mw event and three earthquakes with magnitudes larger than 7.7 in the period 1942-1979, that preceded the 2016 earthquake. The Instituto Geofiísico of the Escuela Politécnica Nacional (IGEPN) has been monitoring the coastal area through the National Seismic Network (RENSIG) since 30 years back and recently enhanced through SENASCYT and SENPLADES supported projects. International collaboration from Japanese JICA and French IRD also contributed to expand the network and implement research projects in the area. Nowadays, the RENSIG has 135 seismic stations including 105 broadband and 5 strong motion velocimeters. Processing performed by Seiscomp3 software allows an automatic distribution of seismic parameters. A joint cooperation between IGEPN, the Navy Oceanographic Institute and the National Department for Risk Management is in charge of tsunami monitoring.

  7. Seismic Monitoring with NetQuakes: The First 75 in the Pacific Northwest

    Science.gov (United States)

    Bodin, P.; Vidale, J. E.; Luetgert, J. H.; Malone, S. D.; Delorey, A. A.; Steele, W. P.; Gibbons, D. A.; Walsh, L. K.

    2011-12-01

    NetQuakes accelerographs are relatively inexpensive Internet-aware appliances that we are using as part of our regional seismic monitoring program in the Pacific Northwest Seismic Network (PNSN). To date we have deployed approximately 65 units. By the end of 2011, we will have at least 75 systems sited and operating. The instruments are made by Swiss manufacturer GeoSig, Ltd., and have been obtained by PNSN through several cooperative programs with the US Geological Survey (USGS). The NetQuakes systems have increased the number of strong-motion stations in the Pacific Northwest by ~50%. NetQuakes instruments connect to the Internet via wired or wireless telemetry, obtain accurate timing vie Network Time Protocol, and are designed to be located in the ground floor of houses or small buildings. At PNSN we have concentrated on finding NetQuakes hosts by having technologically savvy homeowners self-identify as a response to news reports about the NetQuakes project. Potential hosts are prioritized by their proximity to target sites provided by a regional panel of experts who studied the region's strong-ground-motion monitoring needs. Recorded waveforms, triggered by strong motion or retrieved from a buffer of continuous data, are transmitted to Menlo Park, and then on to PNSN in Seattle. Data are available with latency of a few minutes to a little over an hour, and are automatically incorporated with the rest of PNSN network data for analysis and the generation of earthquake products. Triggered data may also be viewed by the public via the USGS website, [http://earthquake.usgs.gov/monitoring/netquakes/map/pacnw]. We present examples of ground motion recordings returned to date. Local earthquakes up to M4 (at a distance of ~60 km) reveal interesting patterns of local site effects. The 11 March M9 Tohoku, Japan earthquake produced ground motions recorded on the PNSN accelerographs, including many NetQuakes systems, that reveal the extent and severity of basin

  8. A report on upgraded seismic monitoring stations in Myanmar: Station performance and site response

    Science.gov (United States)

    Thiam, Hrin Nei; Min Htwe, Yin Myo; Kyaw, Tun Lin; Tun, Pa Pa; Min, Zaw; Htwe, Sun Hninn; Aung, Tin Myo; Lin, Kyaw Kyaw; Aung, Myat Min; De Cristofaro, Jason; Franke, Mathias; Radman, Stefan; Lepiten, Elouie; Wolin, Emily; Hough, Susan E.

    2017-01-01

    Myanmar is in a tectonically complex region between the eastern edge of the Himalayan collision zone and the northern end of the Sunda megathrust. Until recently, earthquake monitoring and research efforts have been hampered by a lack of modern instrumentation and communication infrastructure. In January 2016, a major upgrade of the Myanmar National Seismic Network (MNSN; network code MM) was undertaken to improve earthquake monitoring capability. We installed five permanent broadband and strong‐motion seismic stations and real‐time data telemetry using newly improved cellular networks. Data are telemetered to the MNSN hub in Nay Pyi Taw and archived at the Incorporated Research Institutions for Seismology Data Management Center. We analyzed station noise characteristics and site response using noise and events recorded over the first six months of station operation. Background noise characteristics vary across the array, but indicate that the new stations are performing well. MM stations recorded more than 20 earthquakes of M≥4.5 within Myanmar and its immediate surroundings, including an M 6.8 earthquake located northwest of Mandalay on 13 April 2016 and the Mw 6.8 Chauk event on 24 August 2016. We use this new dataset to calculate horizontal‐to‐vertical spectral ratios, which provide a preliminary characterization of site response of the upgraded MM stations.

  9. Hanford quarterly seismic report - 97C seismicity on and near the Hanford Site, Pasco Basin, Washington. Quarterly report, April 1, 1997--June 30, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Hartshorn, D.C.; Reidel, S.P.; Rohay, A.C.

    1997-08-01

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and contractors. The staff also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for activities ranging from waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of an earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 41 individual sensor sites and 15 radio relay sites maintained by the Seismic Monitoring staff. Most stations and five relay sites are solar powered. The operational rate for the second quarter of FY97 for stations in the HSN was 100% and for stations of the EWRN was 99.99%. For fiscal year (FY) 1997 third quarter (97C), the acquisition computer triggered 183. Of these triggers twenty one were local earthquakes: sixteen in the Columbus River Basalt Group, one in the pre-basalt sediments, and four in the crystalline basement. The geologic and tectonic environments are discussed in the report.

  10. First Quarter Hanford Seismic Report for Fiscal Year 1999

    Energy Technology Data Exchange (ETDEWEB)

    DC Hartshorn; SP Reidel; AC Rohay

    1999-05-26

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and its contractors. They also locate and identify sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consists of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The operational rate for the first quarter of FY99 for stations in the HSN was 99.8%. There were 121 triggers during the first quarter of fiscal year 1999. Fourteen triggers were local earthquakes; seven (50%) were in the Columbia River Basalt Group, no earthquakes occurred in the pre-basalt sediments, and seven (50%) were in the crystalline basement. One earthquake (7%) occurred near or along the Horn Rapids anticline, seven earthquakes (50%) occurred in a known swarm area, and six earthquakes (43%) were random occurrences. No earthquakes triggered the Hanford Strong Motion Accelerometer during the first quarter of FY99.

  11. Application of Newly Developed Rotational Sensor for Monitoring of Mining Induced Seismic Events in The Karvina region

    Czech Academy of Sciences Publication Activity Database

    Kaláb, Zdeněk; Knejzlík, Jaromír; Lednická, Markéta

    2013-01-01

    Roč. 10, č. 2 (2013), s. 197-205 ISSN 1214-9705 Institutional support: RVO:68145535 Keywords : rotational ground motion * rotational sensor * seismic monitoring Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.667, year: 2013 http://www.irsm.cas.cz/materialy/acta_content/2013_02/acta_170_09_Kalab_197-205.pdf

  12. Annual report on radioactive discharges and monitoring of the environment 1993. V. 2: Certificates of authorisation and environmental monitoring programmes

    International Nuclear Information System (INIS)

    1994-01-01

    British Nuclear Fuels plc's Certificates of Authorisation, under which it operates, are reproduced in the second volume of the 1993 Annual Report on Radioactive Discharges and Monitoring of the Environment. The report also includes environmental monitoring programmes relating to discharge authorisation for each of the Sellafield, Drigg, Chapelcross, Springfields and Capenhurst sites. (UK)

  13. Air quality monitoring programme. Annual summary for 2003

    International Nuclear Information System (INIS)

    Kemp, K.; Palmgren, F.

    2004-06-01

    The Danish Air Quality Monitoring Programme (LMP IV) has been revised in accordance with the Framework Directive and the first three daughter directives of SO 2 , NO x /NO 2 , PM IO , lead, benzene, CO and ozone. Only a PM 10 monitor at an urban background location in Odense is missing. The data sets for year 2003 are almost complete for all stations. The monitoring programme consists of 10 stations plus 2 extra stations under the Municipality of Copenhagen. The limit value of the annual average of NO 2 was in 2003 exceeded at three street stations. At one station (Copenhagen/1103) the limit value + the margin of tolerance (56 μg/m 3 in 2003) was, exceeded. The trend seems to have been constant after several years of decrease. The ozone level was in 2003 - more or less - the same at all rural and urban background stations and no clear trend is observed. The information threshold on 180 μg/m 3 was not exceeded. The target values were not exceeded, but the long-term objectives of max 8 hours on 120 μg/m 3 were exceeded at all urban background and rural stations. The long term objective for AOT40 at 6000 μg/m 3 *hours were exceeded in a few Gases. The limit value of PM 10 on 50 μg/m 3 , not to be exceeded more than 35 times per year and to comply with in 2005, was in 2003 exceeded at 2 out of 4 street stations. At all stations both proposal limits values to be met in 2010 (annual average value on 20 μg/m 3 and 50 μg/m 3 not to be exceeded more than 7 times per year) were exceeded at all stations (including the rural station Keldsnor). PM 10 is 60-70% of TSP. The trend of TSP has been clear decreasing the last 15 years, except at HCAB. The SO 2 and lead levels are still decreasing and far below the limit values. The limit values for benzene and CO are not exceeded and the levels are Glose to the levels in year 2002. Actual data, quarterly reports, annual summaries and summaries over many year are available at the homepage of NERI on 'luft.dmu.dk'. (au)

  14. Second and Third Quarters Hanford Seismic Report for Fiscal Year 1999

    Energy Technology Data Exchange (ETDEWEB)

    DC Hartshorn; SP Reidel; AC Rohay

    1999-11-09

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. For the HSN, there were 270 triggers during the second quarter of fiscal year (FY) 1999 and 229 triggers during the third quarter on the primary recording system. During the second quarter, 22 seismic events were located; 11 were earthquakes in the Columbia River Basalt Group, 6 were earthquakes in the crystalline basement, and 5 were quarry blasts. Two earthquakes appear to be related to major geologic structures, eight earthquakes occurred in known swarm areas, and seven earthquakes were random occurrences. During the third quarter, 23 seismic events were located; 11 were earthquakes in the Columbia River Basalt Group, 4 were earthquakes in the pre-basalt sediments, 4 were earthquakes in the crystalline basement, and 4 were quarry blasts. Five earthquakes occurred in known swarm areas, six earthquakes formed a new swarm near the Horse Heavens Hills and Presser, Washington, and eight earthquakes were random occurrences. No earthquakes triggered the Hanford Strong Motion Accelerometers during the second or third quarters of FY 1999.

  15. Evaluation of induced seismicity forecast models in the Induced Seismicity Test Bench

    Science.gov (United States)

    Király, Eszter; Gischig, Valentin; Zechar, Jeremy; Doetsch, Joseph; Karvounis, Dimitrios; Wiemer, Stefan

    2016-04-01

    Induced earthquakes often accompany fluid injection, and the seismic hazard they pose threatens various underground engineering projects. Models to monitor and control induced seismic hazard with traffic light systems should be probabilistic, forward-looking, and updated as new data arrive. Here, we propose an Induced Seismicity Test Bench to test and rank such models. We apply the test bench to data from the Basel 2006 and Soultz-sous-Forêts 2004 geothermal stimulation projects, and we assess forecasts from two models that incorporate a different mix of physical understanding and stochastic representation of the induced sequences: Shapiro in Space (SiS) and Hydraulics and Seismics (HySei). SiS is based on three pillars: the seismicity rate is computed with help of the seismogenic index and a simple exponential decay of the seismicity; the magnitude distribution follows the Gutenberg-Richter relation; and seismicity is distributed in space based on smoothing seismicity during the learning period with 3D Gaussian kernels. The HySei model describes seismicity triggered by pressure diffusion with irreversible permeability enhancement. Our results show that neither model is fully superior to the other. HySei forecasts the seismicity rate well, but is only mediocre at forecasting the spatial distribution. On the other hand, SiS forecasts the spatial distribution well but not the seismicity rate. The shut-in phase is a difficult moment for both models in both reservoirs: the models tend to underpredict the seismicity rate around, and shortly after, shut-in. Ensemble models that combine HySei's rate forecast with SiS's spatial forecast outperform each individual model.

  16. SW England seismic monitoring for the HDR geothermal programme in Cornwall 1989 to September 1991

    International Nuclear Information System (INIS)

    Walker, A.B.

    1992-01-01

    The potential for earthquakes to be triggered by fluid injected into boreholes has been recognised for 25 years and natural earthquakes in Cornwall have been reported for over 250 years. As a result, the Geothermal Steering Committee advising the Hot Dry Rock project recommended that background seismic monitoring be undertaken around the HDR experimental site at Rosemanowes. A network of seismographs was established for this purpose by the British Geological Survey (BGS) in late 1980 and has been operated continuously through September 1991. The primary aim of the network has been to provide an independent, continuous assessment of all vibrational transients in order to discriminate between those caused by the Hot Dry Rock experiments and those of natural origin or from other man-made sources. In this respect, the work provides an insurance against claims that extraneous seismic activity is related to those experiments. (author)

  17. Environmental radiation monitoring data for Point Lepreau Generating Station, 1988. Annual publication

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, J K

    1989-01-01

    Annual report presenting a compilation of the 1988 environmental radiation monitoring program data from samples collected around the Point Lepreau Nuclear Generating Station (PLNGS) and at reference stations remote from PLNGS. About 1,700 analyses were made on 1,200 samples to monitor environmental radiation, including air filters, airborne water vapour, sea water, well water, milk, beach sediments, clams, fish, lobster, dulse, crabs, scallops and lichen. Background radiation is measured by thermoluminescence dosimetry.

  18. Environmental radiation monitoring data for Point Lepreau Generating Station, 1987. Annual publication

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, J K

    1988-01-01

    Annual report presenting a compilation of the 1987 environmental radiation monitoring program data from samples collected around the Point Lepreau Nuclear Generating Station (PLNGS) and at reference stations remote from PLNGS. About 1,800 analyses were made on 1,300 samples to monitor environmental radiation, including air filters, airborne water vapour, sea water, well water, milk, beach sediments, clams, fish, lobster, dulse, crabs, scallops and periwinkles. Background radiation is measured by thermoluminescence dosimetry.

  19. Feasibility of 4D multicomponent seismic methods for monitoring CO2 storage in the Redwater Leduc Reef, Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Sodagar, Taher M.; Lawton, Don C. [University of Calgary, Calgary, Alberta (Canada)], email: tmysodag@ucalgary.ca

    2011-07-01

    The study area lies northeast of Edmonton, Alberta, in the Redwater region. The Redwater reef complex is roughly triangular and has an area of about 527 km2. It is found at a depth of about 1000 m and its thickness varies from 160 to 300 m. The main task of the study was a mapping, based on seismic character, of the facies variations that are found in the Redwater Leduc reef and a characterization of the reef members and formations below the reef with the help of a 3D geological model of the southern margin of the Redwater reef. A major goal targeted the Upper Leduc member interval, where time-lapse 3D multicomponent seismic modeling with 40% CO2 saturation was performed. Results showed fairly good amplitude differences at the top and base of this interval; this confirmed that the CO2 saturation within the Redwater reef can be monitored by repeated 3D multicomponent seismic surveys.

  20. Explosion Monitoring with Machine Learning: A LSTM Approach to Seismic Event Discrimination

    Science.gov (United States)

    Magana-Zook, S. A.; Ruppert, S. D.

    2017-12-01

    The streams of seismic data that analysts look at to discriminate natural from man- made events will soon grow from gigabytes of data per day to exponentially larger rates. This is an interesting problem as the requirement for real-time answers to questions of non-proliferation will remain the same, and the analyst pool cannot grow as fast as the data volume and velocity will. Machine learning is a tool that can solve the problem of seismic explosion monitoring at scale. Using machine learning, and Long Short-term Memory (LSTM) models in particular, analysts can become more efficient by focusing their attention on signals of interest. From a global dataset of earthquake and explosion events, a model was trained to recognize the different classes of events, given their spectrograms. Optimal recurrent node count and training iterations were found, and cross validation was performed to evaluate model performance. A 10-fold mean accuracy of 96.92% was achieved on a balanced dataset of 30,002 instances. Given that the model is 446.52 MB it can be used to simultaneously characterize all incoming signals by researchers looking at events in isolation on desktop machines, as well as at scale on all of the nodes of a real-time streaming platform. LLNL-ABS-735911

  1. Seismic displacements monitoring for 2015 Mw 7.8 Nepal earthquake with GNSS data

    Science.gov (United States)

    Geng, T.; Su, X.; Xie, X.

    2017-12-01

    The high-rate Global Positioning Satellite System (GNSS) has been recognized as one of the powerful tools for monitoring ground motions generated by seismic events. The high-rate GPS and BDS data collected during the 2015 Mw 7.8 Nepal earthquake have been analyzed using two methods, that are the variometric approach and Precise point positioning (PPP). The variometric approach is based on time differenced technique using only GNSS broadcast products to estimate velocity time series from tracking observations in real time, followed by an integration procedure on the velocities to derive the seismic event induced displacements. PPP is a positioning method to calculate precise positions at centimeter- or even millimeter-level accuracy with a single GNSS receiver using precise satellite orbit and clock products. The displacement motions with accuracy of 2 cm at far-field stations and 5 cm at near-field stations with great ground motions and static offsets up to 1-2 m could be achieved. The multi-GNSS, GPS + BDS, could provide higher accuracy displacements with the increasing of satellite numbers and the improvement of the Position Dilution of Precision (PDOP) values. Considering the time consumption of clock estimates and the precision of PPP solutions, 5 s GNSS satellite clock interval is suggested. In addition, the GNSS-derived displacements are in good agreement with those from strong motion data. These studies demonstrate the feasibility of real-time capturing seismic waves with multi-GNSS observations, which is of great promise for the purpose of earthquake early warning and rapid hazard assessment.

  2. Probabilistic seismic hazard assessment. Gentilly 2

    International Nuclear Information System (INIS)

    1996-03-01

    Results of this probabilistic seismic hazard assessment were determined using a suite of conservative assumptions. The intent of this study was to perform a limited hazard assessment that incorporated a range of technically defensible input parameters. To best achieve this goal, input selected for the hazard assessment tended to be conservative with respect to selection of attenuation modes, and seismicity parameters. Seismic hazard estimates at Gentilly 2 were most affected by selection of the attenuation model. Alternative definitions of seismic source zones had a relatively small impact on seismic hazard. A St. Lawrence Rift model including a maximum magnitude of 7.2 m b in the zone containing the site had little effect on the hazard estimate relative to other seismic source zonation models. Mean annual probabilities of exceeding the design peak ground acceleration, and the design response spectrum for the Gentilly 2 site were computed to lie in the range of 0.001 to 0.0001. This hazard result falls well within the range determined to be acceptable for nuclear reactor sites located throughout the eastern United States. (author) 34 refs., 6 tabs., 28 figs

  3. Imaging Stress Transients and Fault Zone Processes with Crosswell Continuous Active-Source Seismic Monitoring at the San Andreas Fault Observatory at Depth

    Science.gov (United States)

    Niu, F.; Taira, T.; Daley, T. M.; Marchesini, P.; Robertson, M.; Wood, T.

    2017-12-01

    Recent field and laboratory experiments identify seismic velocity changes preceding microearthquakes and rock failure (Niu et al., 2008, Nature; Scuderi et al., 2016, NatureGeo), which indicates that a continuous monitoring of seismic velocity might provide a mean of understanding of the earthquake nucleation process. Crosswell Continuous Active-Source Seismic Monitoring (CASSM) using borehole sources and sensors has proven to be an effective tool for measurements of seismic velocity and its temporal variation at seismogenic depth (Silver, et al, 2007, BSSA; Daley, et al, 2007, Geophysics). To expand current efforts on the CASSM development, in June 2017 we have begun to conduct a year-long CASSM field experiment at the San Andreas Fault Observatory at Depth (SAFOD) in which the preceding field experiment detected the two sudden velocity reductions approximately 10 and 2 hours before microearthquakes (Niu et al., 2008, Nature). We installed a piezoelectric source and a three-component accelerometer at the SAFOD pilot and main holes ( 1 km depth) respectively. A seismic pulse was fired from the piezoelectric source four times per second. Each waveform was recorded 150-ms-long data with a sampling rate of 48 kHz. During this one-year experiment, we expect to have 10-15 microearthquakes (magnitude 1-3) occurring near the SAFOD site, and the data collected from the new experiment would allow us to further explore a relation between velocity changes and the Parkfield seismicity. Additionally, the year-long data provide a unique opportunity to study long-term velocity changes that might be related to seasonal stress variations at Parkfield (Johnson et al., 2017, Science). We will report on initial results of the SAFOD CASSM experiment and operational experiences of the CASSM development.

  4. Installation of a digital, wireless, strong-motion network for monitoring seismic activity in a western Colorado coal mining region

    Energy Technology Data Exchange (ETDEWEB)

    Peter Swanson; Collin Stewart; Wendell Koontz [NIOSH, Spokane, WA (USA). Spokane Research Laboratory

    2007-01-15

    A seismic monitoring network has recently been installed in the North Fork Valley coal mining region of western Colorado as part of a NIOSH mine safety technology transfer project with two longwall coal mine operators. Data recorded with this network will be used to characterize mining related and natural seismic activity in the vicinity of the mines and examine potential hazards due to ground shaking near critical structures such as impoundment dams, reservoirs, and steep slopes. Ten triaxial strong-motion accelerometers have been installed on the surface to form the core of a network that covers approximately 250 square kilometers (100 sq. miles) of rugged canyon-mesa terrain. Spread-spectrum radio networks are used to telemeter continuous streams of seismic waveform data to a central location where they are converted to IP data streams and ported to the Internet for processing, archiving, and analysis. 4 refs.

  5. Monitoring of the atmospheric ozone layer and natural ultraviolet radiation: Annual report 2011

    Energy Technology Data Exchange (ETDEWEB)

    Svendby, T.M.; Myhre, C.L.; Stebel, K.; Edvardsen, K; Orsolini, Y.; Dahlback, A.

    2012-07-01

    This is an annual report describing the activities and main results of the monitoring programme: Monitoring of the atmospheric ozone layer and natural ultraviolet radiation for 2011. 2011 was a year with generally low ozone values above Norway. A clear decrease in the ozone layer above Norway during the period 1979-1997 stopped after 1998 and the ozone layer above Norway seems now to have stabilized.(Author)

  6. The GNSS Component of the Seismic Monitoring System in Chile

    Science.gov (United States)

    Barrientos, S. E.

    2016-12-01

    Chile is amongst the most seismically active countries in the world. Since mid-XVI Century, a magnitude 8 or more earthquake has taken place every dozen of years, as an average. In the last 100 years, more than ten events with magnitudes around 8 or larger have taken place in this part of world. Three events with M>8 have taken place only in the last six years. The largest earthquake ever recorded took place in May, 1960, in southern Chile. Such extreme seismic activity is the result of the interaction of the Nazca, Antarctic, Scotia and South American plates in southwestern South America where Chile is located. These megathrust earthquakes exhibit long rupture regions reaching several hundreds of km with fault displacements of several tens of meters. At least eighteen of these earthquakes have generated local tsunamis with runups larger than 4 m -including events in 2010, 2014 and 2015- therefore it is mandatory to establish a system with capabilities to rapidly evaluate the tsunamigenic potential of these events. In 2013, the newly created National Seismological Center (CSN) of the University of Chile was tasked to upgrade the countrýs seismic network by increasing the numbers of real-time monitoring stations. The most important change to previous practices is the establishment of a GNSS network composed by 130 devices, in addition to the incorporation of 65 new collocated broadband and strong motion instruments. Additional 297 strong motion instruments for engineering purposes complement the system. Forty units -of the 130 devices- present an optional RTX capability, where satellite orbits and clock corrections are sent to the field device producing a 1-Hz position stream at 4-cm level. First records of ground displacement -using this technology-were recorded at the time of the largest aftershock (Mw=7.6) of the sequence that affected northern Chile in 2014. The CSN is currently developing automatic detectors and amplitude estimators of displacement from the

  7. Theoretical models for crustal displacement assessment and monitoring in Vrancea-Focsani seismic zone by integrated remote sensing and local geophysical data for seismic prognosis

    International Nuclear Information System (INIS)

    Zoran, Maria; Ciobanu, Mircea; Mitrea, Marius Gabriel; Talianu, Camelia; Cotarlan, Costel; Mateciuc, Doru; Radulescu, Florin; Biter Mircea

    2002-01-01

    The majority of strong Romanian earthquakes has the origin in Vrancea region. Subduction of the Black Sea Sub-Plate under the Pannonian Plate produces faulting processes. Crustal displacement identification and monitoring is very important for a seismically active area like Vrancea-Focsani. Earthquake displacements are very well revealed by satellite remote sensing data. At the same time, geomorphologic analysis of topographic maps is carried out and particularly longitudinal and transverse profiles are constructed, as well as structural-geomorphologic maps. Faults are interpreted by specific features in nature of relief, straightness of line of river beds and their tributaries, exits of springs, etc. Remote sensing analysis and field studies of active faults can provide a geologic history that overcomes many of the shortcomings of instrumental and historic records. Our theoretical models developed in the frame of this project are presented as follows: a) Spectral Mixture Analysis model of geomorphological and topographic characteristics for Vrancea region proposed for satellite images analysis which assumes that the different classes present in a pixel (image unit) contribute independently to its reflectance. Therefore, the reflectance of a pixel at a particular frequency is the sum of the reflectances of the components at that frequency. The same test region in Vrancea area is imaged at several different frequencies (spectral bands), leading to multispectral observations for each pixel. It is useful to merge different satellite data into a hybrid image with high spatial and spectral resolution to create detailed images map of the abundance of various materials within the scene based on material spectral fingerprint. Image fusion produces a high-resolution multispectral image that is then unmixed into high-resolution material maps. b) Model of seismic cross section analysis which is applied in seismic active zones morphology. Since a seismic section can be

  8. Umatilla Hatchery Monitoring and Evaluation, 1999-2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Chess, Dale W.; Cameron, William A.; Stonecypher, Jr., R. Wes (Oregon Department of Fish and Wildlife, Salem, OR)

    2003-12-01

    Umatilla River at Three Mile Dam and South Fork Walla Walla adult facilities for salmon; steelhead adults were monitored at Minthorn adult facility. A new addition to this year's report is the effort to bring together an overview of fish health monitoring results including historical and year to date pathogen information. This information is in table form (Appendix Tables A-28, A-29 and A-30). A summary of juvenile disease outbreaks at Umatilla Hatchery is also included (Appendix Table A-31). REPORT C: Fish Health Monitoring and Evaluation, 2001 Fiscal Year--Results from the 2001 annual report cover the 10th year of Fish Health Monitoring in the Umatilla Hatchery program. Efforts were again made to provide up to date fish health and juvenile disease outbreak loss summary tables from the beginning of the Umatilla Hatchery program (Appendix Tables A-27, A-28, A-29 and A-30). Outmigrant Fish Health Monitoring results were included in this report since this was part of the fish health work statement for this report period. The discussion section for the 2001 and 2002 annual reports are combined in the 2002 report due to time constraints and consolidation efforts to complete this report by the end of May 2003.

  9. Monitoring of seismic events from a specific source region using a single regional array: A case study

    Science.gov (United States)

    Gibbons, S. J.; Kværna, T.; Ringdal, F.

    2005-07-01

    In the monitoring of earthquakes and nuclear explosions using a sparse worldwide network of seismic stations, it is frequently necessary to make reliable location estimates using a single seismic array. It is also desirable to screen out routine industrial explosions automatically in order that analyst resources are not wasted upon detections which can, with a high level of confidence, be associated with such a source. The Kovdor mine on the Kola Peninsula of NW Russia is the site of frequent industrial blasts which are well recorded by the ARCES regional seismic array at a distance of approximately 300 km. We describe here an automatic procedure for identifying signals which are likely to result from blasts at the Kovdor mine and, wherever possible, for obtaining single array locations for such events. Carefully calibrated processing parameters were chosen using measurements from confirmed events at the mine over a one-year period for which the operators supplied Ground Truth information. Phase arrival times are estimated using an autoregressive method and slowness and azimuth are estimated using broadband f{-} k analysis in fixed frequency bands and time-windows fixed relative to the initial P-onset time. We demonstrate the improvement to slowness estimates resulting from the use of fixed frequency bands. Events can be located using a single array if, in addition to the P-phase, at least one secondary phase is found with both an acceptable slowness estimate and valid onset-time estimate. We evaluate the on-line system over a twelve month period; every event known to have occured at the mine is detected by the process and 32 out of 53 confirmed events were located automatically. The remaining events were classified as “very likely” Kovdor events and were subsequently located by an analyst. The false alarm rate is low; only 84 very likely Kovdor events were identified during the whole of 2003 and none of these were subsequently located at a large distance from

  10. Seismic risk assessment and application in the central United States

    Science.gov (United States)

    Wang, Z.

    2011-01-01

    Seismic risk is a somewhat subjective, but important, concept in earthquake engineering and other related decision-making. Another important concept that is closely related to seismic risk is seismic hazard. Although seismic hazard and seismic risk have often been used interchangeably, they are fundamentally different: seismic hazard describes the natural phenomenon or physical property of an earthquake, whereas seismic risk describes the probability of loss or damage that could be caused by a seismic hazard. The distinction between seismic hazard and seismic risk is of practical significance because measures for seismic hazard mitigation may differ from those for seismic risk reduction. Seismic risk assessment is a complicated process and starts with seismic hazard assessment. Although probabilistic seismic hazard analysis (PSHA) is the most widely used method for seismic hazard assessment, recent studies have found that PSHA is not scientifically valid. Use of PSHA will lead to (1) artifact estimates of seismic risk, (2) misleading use of the annual probability of exccedance (i.e., the probability of exceedance in one year) as a frequency (per year), and (3) numerical creation of extremely high ground motion. An alternative approach, which is similar to those used for flood and wind hazard assessments, has been proposed. ?? 2011 ASCE.

  11. Environmental monitoring for the hot dry rock geothermal energy development project. Annual report, July 1975--June 1976

    Energy Technology Data Exchange (ETDEWEB)

    Pettitt, R.A. (comp.)

    1976-09-01

    The objectives of this environmental monitoring report are to provide a brief conceptual and historical summary of the Hot Dry Rock Geothermal Project, a brief overview of the environmental monitoring responsibilities and activities of the Los Alamos Scientific Laboratory, and descriptions of the studies, problems, and results obtained from the various monitoring programs. Included are descriptions of the work that has been done in three major monitoring areas: (1) water quality, both surface and subsurface; (2) seismicity, with a discussion of the monitoring strategy of regional, local, and close-in detection networks; and (3) climatology. The purpose of these programs is to record baseline data, define potential effects from the project activities, and determine and record any impacts that may occur.

  12. Four years of experience with a permanent seismic monitoring array at the Ketzin CO2 storage pilot site

    NARCIS (Netherlands)

    Paap, B.F.; Verdel, A.R.; Meekes, J.A.C.; Steeghs, T.P.H.; Vandeweijer, V.P.; Neele, F.P.

    2014-01-01

    CO2 was injected into a saline aquifer near the town of Ketzin in Germany from July 2008 to August 2013. To monitor CO2- migration close to the injection well, TNO installed a fixed 2D seismic array of 120 meters length in 2009, with 3- component (3- C) geophones at the surface, 4-component

  13. Modeling of time-lapse multi-scale seismic monitoring of CO2 injected into a fault zone to enhance the characterization of permeability in enhanced geothermal systems

    Science.gov (United States)

    Zhang, R.; Borgia, A.; Daley, T. M.; Oldenburg, C. M.; Jung, Y.; Lee, K. J.; Doughty, C.; Altundas, B.; Chugunov, N.; Ramakrishnan, T. S.

    2017-12-01

    Subsurface permeable faults and fracture networks play a critical role for enhanced geothermal systems (EGS) by providing conduits for fluid flow. Characterization of the permeable flow paths before and after stimulation is necessary to evaluate and optimize energy extraction. To provide insight into the feasibility of using CO2 as a contrast agent to enhance fault characterization by seismic methods, we model seismic monitoring of supercritical CO2 (scCO2) injected into a fault. During the CO2 injection, the original brine is replaced by scCO2, which leads to variations in geophysical properties of the formation. To explore the technical feasibility of the approach, we present modeling results for different time-lapse seismic methods including surface seismic, vertical seismic profiling (VSP), and a cross-well survey. We simulate the injection and production of CO2 into a normal fault in a system based on the Brady's geothermal field and model pressure and saturation variations in the fault zone using TOUGH2-ECO2N. The simulation results provide changing fluid properties during the injection, such as saturation and salinity changes, which allow us to estimate corresponding changes in seismic properties of the fault and the formation. We model the response of the system to active seismic monitoring in time-lapse mode using an anisotropic finite difference method with modifications for fracture compliance. Results to date show that even narrow fault and fracture zones filled with CO2 can be better detected using the VSP and cross-well survey geometry, while it would be difficult to image the CO2 plume by using surface seismic methods.

  14. Time-lapse seismic - repeatability versus usefulness and 2D versus 3D

    Science.gov (United States)

    Landro, M.

    2017-12-01

    Time-lapse seismic has developed rapidly over the past decades, especially for monitoring of oil and gas reservoirs and subsurface storage of CO2. I will review and discuss some of the critical enabling factors for the commercial success of this technology. It was early realized that how well we are able to repeat our seismic experiment is crucial. However, it is always a question of detectability versus repeatability. For marine seismic, there are several factors limiting the repeatability: Weather conditions, positioning of sources and receivers and so on. I will discuss recent improvements in both acquisition and processing methods over the last decade. It is well known that repeated 3D seismic data is the most accurate tool for reservoir monitoring purposes. However, several examples show that 2D seismic data may be used for monitoring purposes despite lower repeatability. I will use examples from an underground blow out in the North Sea, and repeated 2D seismic lines acquired before and after the Tohoku earthquake in 2011 to illustrate this. A major challenge when using repeated 2D seismic for subsurface monitoring purposes is the lack of 3D calibration points and significantly less amount of data. For marine seismic acquisition, feathering issues and crossline dip effects become more critical compared to 3D seismic acquisition. Furthermore, the uncertainties arising from a non-ideal 2D seismic acquisition are hard to assess, since the 3D subsurface geometry has not been mapped. One way to shed more light on this challenge is to use 3D time lapse seismic modeling testing various crossline dips or geometries. Other ways are to use alternative data sources, such as bathymetry, time lapse gravity or electromagnetic data. The end result for all time-lapse monitoring projects is an interpretation associated with uncertainties, and for the 2D case these uncertainties are often large. The purpose of this talk is to discuss how to reduces and control these

  15. Virtual Seismometers for Induced Seismicity Monitoring and Full Moment Tensor Inversion

    Science.gov (United States)

    Morency, C.; Matzel, E.

    2016-12-01

    Induced seismicity is associated with subsurface fluid injection, and puts at risk efforts to develop geologic carbon sequestration and enhanced geothermal systems. We are developing methods to monitor the microseismically active zone so that we can ultimately identify faults at risk of slipping. The virtual seismometer method (VSM) is an interferometric technique that is very sensitive to the source parameters (location, mechanism and magnitude) and to the Earth structure in the source region. VSM works by virtually placing seismometers inside a micro events cloud, where we can focus on properties directly between induced micro events, and effectively replacing each earthquake with a virtual seismometer recording all the others. Here, we show that the cross-correlated signals from seismic wavefields triggered by two events and recorded at the surface are a combination of the strain field between these two sources times a moment tensor. Based on this relationship, we demonstrate how we can use these measured cross-correlated signals to invert for full moment tensor. The advantage of VSM is to allow to considerably reduce the modeled numerical domain to the region directly around the micro events cloud, which lowers computational cost, permits to reach higher frequency resolution, and suppresses the impact of the Earth structural model uncertainties outside the micro events cloud. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  16. A Framework for Understanding Uncertainty in Seismic Risk Assessment.

    Science.gov (United States)

    Foulser-Piggott, Roxane; Bowman, Gary; Hughes, Martin

    2017-10-11

    A better understanding of the uncertainty that exists in models used for seismic risk assessment is critical to improving risk-based decisions pertaining to earthquake safety. Current models estimating the probability of collapse of a building do not consider comprehensively the nature and impact of uncertainty. This article presents a model framework to enhance seismic risk assessment and thus gives decisionmakers a fuller understanding of the nature and limitations of the estimates. This can help ensure that risks are not over- or underestimated and the value of acquiring accurate data is appreciated fully. The methodology presented provides a novel treatment of uncertainties in input variables, their propagation through the model, and their effect on the results. The study presents ranges of possible annual collapse probabilities for different case studies on buildings in different parts of the world, exposed to different levels of seismicity, and with different vulnerabilities. A global sensitivity analysis was conducted to determine the significance of uncertain variables. Two key outcomes are (1) that the uncertainty in ground-motion conversion equations has the largest effect on the uncertainty in the calculation of annual collapse probability; and (2) the vulnerability of a building appears to have an effect on the range of annual collapse probabilities produced, i.e., the level of uncertainty in the estimate of annual collapse probability, with less vulnerable buildings having a smaller uncertainty. © 2017 Society for Risk Analysis.

  17. Seismic monitoring of ground caving processes associated with longwall mining of coal

    International Nuclear Information System (INIS)

    Hatherly, P.; Luo, X.; Dixon, R.; McKavanagh, B.

    1997-01-01

    At the Gordonstone Coal Mine in Central Queensland, Australia, a microseismic monitoring study was undertaken to investigate the extent of ground failure caused by longwall mining. Twenty seven triaxial geophones were deployed in three vertical boreholes and over a six week period more than 1200 events were recorded. The seismicity correlated with periods of longwall production and occurred mainly within the 250 m wide mining panel. There was an arcuate zone of activity which extended from behind the face, at the sides of the panel and up to 70 m ahead of the face in the middle. There was lesser activity to a depth of about 30 m into the floor. The focal mechanisms show that reverse faulting was dominant. The presence of activity and reverse faulting ahead of the face was an unexpected result. However, piezometer readings at the time of the study and subsequent numerical modelling have supported this finding. This was the first detailed microseismic monitoring study of caving in an Australian underground coal mine. 9 refs., 6 figs

  18. Romanian seismic network

    International Nuclear Information System (INIS)

    Ionescu, Constantin; Rizescu, Mihaela; Popa, Mihaela; Grigore, Adrian

    2000-01-01

    The research in the field of seismology in Romania is mainly carried out by the National Institute for Earth Physics (NIEP). The NIEP activities are mainly concerned with the fundamental research financed by research contracts from public sources and the maintenance and operation of the Romanian seismic network. A three stage seismic network is now operating under NIEP, designed mainly to monitor the Vrancea seismic region in a magnitude range from microearthquakes to strong events: - network of 18 short-period seismometers (S13); - Teledyne Geotech Instruments (Texas); - network of 7 stations with local digital recording (PCM-5000) on magnetic tape, made up of, S13 geophone (T=2 s) on vertical component and SH1 geophone (T=5 s) on horizontal components; - network of 28 SMA-1 accelerometers and 30 digital accelerometers (Kinemetrics - K2) installed in the free field conditions in the framework of the joint German-Romanian cooperation program (CRC); the K2 instruments cover a magnitude range from 1.4 to 8.0. Since 1994, MLR (Muntele Rosu) station has become part of the GEOFON network and was provided with high performance broad band instruments. At Bucharest and Timisoara data centers, an automated and networked seismological system performs the on-line digital acquisition and processing of the telemetered data. Automatic processing includes discrimination between local and distant seismic events, earthquake location and magnitude computation, and source parameter determination for local earthquakes. The results are rapidly distributed via Internet, to several seismological services in Europe and USA, to be used in the association/confirmation procedures. Plans for new developments of the network include the upgrade from analog to digital telemetry and new stations for monitoring local seismicity. (authors)

  19. Volcano dome dynamics at Mount St. Helens: Deformation and intermittent subsidence monitored by seismicity and camera imagery pixel offsets

    Science.gov (United States)

    Salzer, Jacqueline T.; Thelen, Weston A.; James, Mike R.; Walter, Thomas R.; Moran, Seth C.; Denlinger, Roger P.

    2016-01-01

    The surface deformation field measured at volcanic domes provides insights into the effects of magmatic processes, gravity- and gas-driven processes, and the development and distribution of internal dome structures. Here we study short-term dome deformation associated with earthquakes at Mount St. Helens, recorded by a permanent optical camera and seismic monitoring network. We use Digital Image Correlation (DIC) to compute the displacement field between successive images and compare the results to the occurrence and characteristics of seismic events during a 6 week period of dome growth in 2006. The results reveal that dome growth at Mount St. Helens was repeatedly interrupted by short-term meter-scale downward displacements at the dome surface, which were associated in time with low-frequency, large-magnitude seismic events followed by a tremor-like signal. The tremor was only recorded by the seismic stations closest to the dome. We find a correlation between the magnitudes of the camera-derived displacements and the spectral amplitudes of the associated tremor. We use the DIC results from two cameras and a high-resolution topographic model to derive full 3-D displacement maps, which reveals internal dome structures and the effect of the seismic activity on daily surface velocities. We postulate that the tremor is recording the gravity-driven response of the upper dome due to mechanical collapse or depressurization and fault-controlled slumping. Our results highlight the different scales and structural expressions during growth and disintegration of lava domes and the relationships between seismic and deformation signals.

  20. Academia Sinica, TW E-science to Assistant Seismic Observations for Earthquake Research, Monitor and Hazard Reduction Surrounding the South China Sea

    Science.gov (United States)

    Huang, Bor-Shouh; Liu, Chun-Chi; Yen, Eric; Liang, Wen-Tzong; Lin, Simon C.; Huang, Win-Gee; Lee, Shiann-Jong; Chen, Hsin-Yen

    Experience from the 1994 giant Sumatra earthquake, seismic and tsunami hazard have been considered as important issues in the South China Sea and its surrounding region, and attracted many seismologist's interesting. Currently, more than 25 broadband seismic instruments are currently operated by Institute of Earth Sciences, Academia Sinica in northern Vietnam to study the geodynamic evolution of the Red river fracture zone and rearranged to distribute to southern Vietnam recently to study the geodynamic evolution and its deep structures of the South China Sea. Similar stations are planned to deploy in Philippines in near future. In planning, some high quality stations may be as permanent stations and added continuous GPS observations, and instruments to be maintained and operated by several cooperation institutes, for instance, Institute of Geophysics, Vietnamese Acadamy of Sciences and Technology in Vietnam and Philippine Institute of Volcanology and Seismology in Philippines. Finally, those stations will be planed to upgrade as real time transmission stations for earthquake monitoring and tsunami warning. However, high speed data transfer within different agencies is always a critical issue for successful network operation. By taking advantage of both EGEE and EUAsiaGrid e-Infrastructure, Academia Sinica Grid Computing Centre coordinates researchers from various Asian countries to construct a platform to high performance data transfer for huge parallel computation. Efforts from this data service and a newly build earthquake data centre for data management may greatly improve seismic network performance. Implementation of Grid infrastructure and e-science issues in this region may assistant development of earthquake research, monitor and natural hazard reduction. In the near future, we will search for new cooperation continually from the surrounding countries of the South China Sea to install new seismic stations to construct a complete seismic network of the

  1. Recent Seismicity in Texas and Research Design and Progress of the TexNet-CISR Collaboration

    Science.gov (United States)

    Hennings, P.; Savvaidis, A.; Rathje, E.; Olson, J. E.; DeShon, H. R.; Datta-Gupta, A.; Eichhubl, P.; Nicot, J. P.; Kahlor, L. A.

    2017-12-01

    The recent increase in the rate of seismicity in Texas has prompted the establishment of an interdisciplinary, interinstitutional collaboration led by the Texas Bureau of Economic Geology which includes the TexNet Seismic Monitoring and Research project as funded by The State of Texas (roughly 2/3rds of our funding) and the industry-funded Center for Integrated Seismicity Research (CISR) (1/3 of funding). TexNet is monitoring and cataloging seismicity across Texas using a new backbone seismic network, investigating site-specific earthquake sequences by deploying temporary seismic monitoring stations, and conducting reservoir modeling studies. CISR expands TexNet research into the interdisciplinary realm to more thoroughly study the factors that contribute to seismicity, characterize the associated hazard and risk, develop strategies for mitigation and management, and develop methods of effective communication for all stakeholders. The TexNet-CISR research portfolio has 6 themes: seismicity monitoring, seismology, geologic and hydrologic description, geomechanics and reservoir modeling, seismic hazard and risk assessment, and seismic risk social science. Twenty+ specific research projects span and connect these themes. We will provide a synopsis of research progress including recent seismicity trends in Texas; Fort Worth Basin integrated studies including geological modeling and fault characterization, fluid injection data syntheses, and reservoir and geomechanical modeling; regional ground shaking characterization and mapping, infrastructure vulnerability assessment; and social science topics of public perception and information seeking behavior.

  2. Environmental radiation monitoring data for Point Lepreau Generating Station, 1990. Annual publication

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, J K

    1991-01-01

    Annual report presenting a compilation of the 1990 environmental radiation monitoring program data from samples collected around the Point Lepreau Nuclear Generating Station (PLNGS) and at reference stations remote from PLNGS. About 1,500 analyses were made on 1,100 samples to monitor environmental radiation, including air particulates, airborne water vapour, carbon dioxide in air, sea water, well water, milk, beach sediments, clams, fish, lobster, dulse, crabs, scallops, periwinkles, sea plants and lichen. Background radiation is measured by thermoluminescence dosimetry. Radon is not assessed.

  3. Seismic (SSE) evaluation for the 291Z stack at the Hanford Site -- Addition of environmental monitoring penetrations

    International Nuclear Information System (INIS)

    Baxter, J.T.

    1994-01-01

    The purpose of this 291Z stack analysis is to determine the structural effects of chipping additional holes into the stacks concrete walls. The proposed holes are for new environmental monitoring sample probes to be installed at three different elevations. The approximate elevations proposed at this time are 50 ft, 135 ft and 175 ft. There will be four holes required at each of the elevations to support two sample probes extending across the diameter of the stack. A structural sensitivity study has been completed to assess the effect of the proposed holes on the baseline seismic qualification of the stack completed by URS/John A. Blume ampersand Associates, Engineers, San Francisco, California (URS/Blume) in August, 1988. Results of the sensitivity study indicate that the stack would still have adequate structural moment capacity if the new holes were drilled cutting the vertical strength reinforcing steel, or if existing penetrations added since original construction have inadvertently cut vertical rebars. For current and future modifications, no vertical rebar should be cut. A limited number of horizontal rebar, no more than 2, may be cut at the new hole locations without significantly influencing the stack structural shear capacity. New penetrations in the 291Z stack should not be located below elevation 47 ft., 4 in. due to rebar layout and the fact that maximum seismic structural loads occur below this elevation. No vertical rebar should be cut when chipping the new penetrations in the stack concrete wall for the environmental monitoring equipment. Wind load qualification was reviewed. Seismic loads govern over wind loads for all structural load cases; therefore no additional wind analyses are required

  4. Monitoring changes in seismic velocity related to an ongoing rapid inflation event at Okmok volcano, Alaska

    Science.gov (United States)

    Bennington, Ninfa; Haney, Matt; De Angelis, Silvio; Thurber, Clifford; Freymueller, Jeff

    2015-01-01

    Okmok is one of the most active volcanoes in the Aleutian Arc. In an effort to improve our ability to detect precursory activity leading to eruption at Okmok, we monitor a recent, and possibly ongoing, GPS-inferred rapid inflation event at the volcano using ambient noise interferometry (ANI). Applying this method, we identify changes in seismic velocity outside of Okmok’s caldera, which are related to the hydrologic cycle. Within the caldera, we observe decreases in seismic velocity that are associated with the GPS-inferred rapid inflation event. We also determine temporal changes in waveform decorrelation and show a continual increase in decorrelation rate over the time associated with the rapid inflation event. Themagnitude of relative velocity decreases and decorrelation rate increases are comparable to previous studies at Piton de la Fournaise that associate such changes with increased production of volatiles and/ormagmatic intrusion within the magma reservoir and associated opening of fractures and/or fissures. Notably, the largest decrease in relative velocity occurs along the intrastation path passing nearest to the center of the caldera. This observation, along with equal amplitude relative velocity decreases revealed via analysis of intracaldera autocorrelations, suggests that the inflation sourcemay be located approximately within the center of the caldera and represent recharge of shallow magma storage in this location. Importantly, there is a relative absence of seismicity associated with this and previous rapid inflation events at Okmok. Thus, these ANI results are the first seismic evidence of such rapid inflation at the volcano.

  5. Origins of a national seismic system in the United States

    Science.gov (United States)

    Filson, John R.; Arabasz, Walter J.

    2016-01-01

    This historical review traces the origins of the current national seismic system in the United States, a cooperative effort that unifies national, regional, and local‐scale seismic monitoring within the structure of the Advanced National Seismic System (ANSS). The review covers (1) the history and technological evolution of U.S. seismic networks leading up to the 1990s, (2) factors that made the 1960s and 1970s a watershed period for national attention to seismology, earthquake hazards, and seismic monitoring, (3) genesis of the vision of a national seismic system during 1980–1983, (4) obstacles and breakthroughs during 1984–1989, (5) consensus building and convergence during 1990–1992, and finally (6) the two‐step realization of a national system during 1993–2000. Particular importance is placed on developments during the period between 1980 and 1993 that culminated in the adoption of a charter for the Council of the National Seismic System (CNSS)—the foundation for the later ANSS. Central to this story is how many individuals worked together toward a common goal of a more rational and sustainable approach to national earthquake monitoring in the United States. The review ends with the emergence of ANSS during 1999 and 2000 and its statutory authorization by Congress in November 2000.

  6. Sandia National Laboratories California Environmental Monitoring Program Annual Report for Calendar Year 2005.

    Energy Technology Data Exchange (ETDEWEB)

    Holland, Robert C.

    2006-02-01

    The annual program report provides detailed information about all aspects of the SNL/CA Environmental Monitoring Program for a given calendar year. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. The 2005 Update program report describes the activities undertaken during the past year, and activities planned in future years to implement the Environmental Monitoring Program, one of six programs that supports environmental management at SNL/CA.

  7. Preliminary consideration on the seismic actions recorded during the 2016 Central Italy seismic sequence

    Science.gov (United States)

    Carlo Ponzo, Felice; Ditommaso, Rocco; Nigro, Antonella; Nigro, Domenico S.; Iacovino, Chiara

    2017-04-01

    health monitoring'' and by the "Centre of Integrated Geomorphology for the Mediterranean Area - CGIAM" within the Framework Agreement with the University of Basilicata "Study, Research and Experimentation in the Field of Analysis and Monitoring of Seismic Vulnerability of Strategic and Relevant Buildings for the purposes of Civil Protection and Development of Innovative Strategies of Seismic Reinforcement".

  8. Status of the seismic upgrading programme at Mochovce NPP

    International Nuclear Information System (INIS)

    Zajicek, T.; Dolnik, R.; Stevko, M.

    2001-01-01

    The paper provides an overview of the seismic characterisation of the Mochovce site in Slovakia. Particularly, emphasis is given to differences between the original siting and design procedures and the re-evaluation approach, much more based on the data from the micro-earthquake monitoring system installed at the site. Details are also provided for the seismic monitoring of the buildings, as confirmation of the design assumptions. (author)

  9. An experimental study on developing seismic damage indicator appearing OBE exceedance

    International Nuclear Information System (INIS)

    Park, D. S.; Kwon, K. J.; Lee, J. L.

    2000-01-01

    Immediate measurement should be taken depending on the level of seismic damage to nuclear power plants when an earthquake exceeds Operating Base Earthquake by NRC regulatory guide. An earthquake at nuclear plant site is felt with seismic instrument and analyzed by seismic monitoring systems. However, if operators of insufficient knowledge to earthquake can recognize the intensity of the earthquake with a subsidiary indicating model, more immediate response can be conducted. This subsidiary indicating model is called seismic damage indicator. In this regard, an experimental study using shaking table was conducted to develop the seismic damage indicator by CAV and OBE compatible with NRC standard response spectrum. In this test result, stacked acrylic cylinders were manufactured to behave consistently for each direction of seismic load. If the developed SDI is installed in nuclear power plants, it is seemed to be useful in easily determining OBE exceedance easily, and counteracting by plant operator along with the existing seismic monitoring systems

  10. Criteria for the PNE seismic network

    International Nuclear Information System (INIS)

    Pruvost, N.L.

    1978-01-01

    A 1976 treaty between the United States and the Soviet Union permits a local seismic network to be deployed at the site of a peaceful nuclear explosion to monitor the event. Criteria for the design and selection of the data-acquisition equipment for such a network are provided. Constraints imposed by the protocol of the treaty, the environment, and the expected properties of seismic signals (based on experiences at the Nevada Test Site) are discussed. Conclusions are drawn about the desired operating mode. Criteria for a general seismic instrumentation system are described

  11. Seismic investigations for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Barrows, L.J.

    1984-01-01

    Evaporite rocks in the Delaware Basin in southeastern New Mexico are being investigated as a possible site for nuclear waste disposal. Seismic studies have been conducted to establish seismic design criteria and to investigate relations between seismicity and geologic structures. In the initial phase of this study, historical and available seismic data were interpreted with respect to geology. Local instrumentation became available in 1974 when New Mexico Tech installed and began operating a seismic station in the area. Data and interpretation for 1974 through 1979 have been published. In 1980 seismic monitoring of the Northern Delaware Basin was extended to include a six station network of self-contained radio-telemetered seismometers. 9 references, 13 figures

  12. Development of a time synchronization methodology for a wireless seismic array

    Science.gov (United States)

    Moure-García, David; Torres-González, Pedro; del Río, Joaquín; Mihai, Daniel; Domínguez Cerdeña, Itahiza

    2017-04-01

    Seismic arrays have multiple applications. In the past, the main use was nuclear tests monitoring that began in mid-twentieth century. The major difference with a seismic network is the hypocenter location procedure. With a seismic network the hypocenter's 3D coordinates are calculated while using an array, the source direction of the seismic signal is determined. Seismic arrays are used in volcanology to obtain the source azimuth of volcanic signals related to fluids movement, magma and/or gases, that do not show a clear seismic phases' onset. A key condition in the seismic array operativity is the temporal synchronization of all the sensors, better than 1 microsecond. Because of that, usually all sensors are connected to the acquisition system by cable to ensure an identical sampling time. In this work we present the design of a wireless low-cost and low-power consumption volcanic monitoring seismic array where all nodes (sensors) acquire data synchronously and transmit them to the center node where a coherent signal is pursued in near real time.

  13. Monitoring methane emission of mud volcanoes by seismic tremor measurements: a pilot study

    Directory of Open Access Journals (Sweden)

    D. Albarello

    2012-12-01

    Full Text Available A new approach for estimating methane emission at mud volcanoes is here proposed based on measurements of the seismic tremor on their surface. Data obtained at the Dashgil mud volcano in Azerbaijan reveal the presence of energy bursts characterized by well-determined features (i.e. waveforms, spectra and polarization properties that can be associated with bubbling at depth. Counting such events provides a possible tool for monitoring gas production in the reservoir, thus minimizing logistic troubles and representing a cheap and effective alternative to more complex approaches. Specifically, we model the energy bursts as the effect of resonant gas bubbles at depth. This modelling allows to estimate the dimension of the bubbles and, consequently, the gas outflow from the main conduit in the assumption that all emissions from depth occur by bubble uprising. The application of this model to seismic events detected at the Dashgil mud volcano during three sessions of measurements carried out in 2006 and 2007 provides gas flux estimates that are in line with those provided by independent measurements at the same structure. This encouraging result suggests that the one here proposed could be considered a new promising, cheap and easy to apply tool for gas flux measurements in bubbling gas seepage areas.

  14. Annual environmental monitoring report, 1974

    International Nuclear Information System (INIS)

    Stephens, L.D.; Cantelow, H.

    1975-04-01

    The Lawrence Berkeley Laboratory, a large multi-disciplinary research institute, is located in the hills above the University of California and the City of Berkeley. Nuclear Physics and Nuclear Chemistry research are the main contributors to the environmental radiation. In order to pursue this research effort, large particle accelerators have been built and are operated almost continuously. Other research may also involve the use of radioisotopes. These research activities result in a small but finite population dose to the general population which works or resides in the area surrounding the Laboratory. The annual maximum permissible dose equivalent (MPD) for members of the general population is recommended to be 500 mrem, however, Laboratory policy is to keep the population exposure as low as practicable at all times. In order to assure that this is done, several environmental monitoring stations are maintained which continuously telemeter radiation information to a central location. This information is presented here along with studies of the population distribution, in order to provide a total man-rem estimate. Using the data in this report the population dose due to laboratory operation ranges from 0.4 percent to 5.7 percent of the MPD. (U.S.)

  15. Geothermal Induced Seismicity National Environmental Policy Act Review

    Energy Technology Data Exchange (ETDEWEB)

    Levine, Aaron L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Cook, Jeffrey J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Beckers, Koenraad J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Young, Katherine R [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-10-04

    In 2016, the U.S. Bureau of Land Management (BLM) contracted with the National Renewable Energy Laboratory (NREL) to assist the BLM in developing and building upon tools to better understand and evaluate induced seismicity caused by geothermal projects. This review of NEPA documents for four geothermal injection or EGS projects reveals the variety of approaches to analyzing and mitigating induced seismicity. With the exception of the Geysers, where induced seismicity has been observed and monitored for an extended period of time due to large volumes of water being piped in to recharge the hydrothermal reservoir, induced seismicity caused by geothermal projects is a relative new area of study. As this review highlights, determining the level of mitigation required for induced seismic events has varied based on project location, when the review took place, whether the project utilized the International Energy Agency or DOE IS protocols, and the federal agency conducting the review. While the NEPA reviews were relatively consistent for seismic monitoring and historical evaluation of seismic events near the project location, the requirements for public outreach and mitigation for induced seismic events once stimulation has begun varied considerably between the four projects. Not all of the projects were required to notify specific community groups or local government entities before beginning the project, and only one of the reviews specifically stated the project proponent would hold meetings with the public to answer questions or address concerns.

  16. Fluid injection and induced seismicity

    Science.gov (United States)

    Kendall, Michael; Verdon, James

    2016-04-01

    The link between fluid injection, or extraction, and induced seismicity has been observed in reservoirs for many decades. In fact spatial mapping of low magnitude events is routinely used to estimate a stimulated reservoir volume. However, the link between subsurface fluid injection and larger felt seismicity is less clear and has attracted recent interest with a dramatic increase in earthquakes associated with the disposal of oilfield waste fluids. In a few cases, hydraulic fracturing has also been linked to induced seismicity. Much can be learned from past case-studies of induced seismicity so that we can better understand the risks posed. Here we examine 12 case examples and consider in particular controls on maximum event size, lateral event distributions, and event depths. Our results suggest that injection volume is a better control on maximum magnitude than past, natural seismicity in a region. This might, however, simply reflect the lack of baseline monitoring and/or long-term seismic records in certain regions. To address this in the UK, the British Geological Survey is leading the deployment of monitoring arrays in prospective shale gas areas in Lancashire and Yorkshire. In most cases, seismicity is generally located in close vicinity to the injection site. However, in some cases, the nearest events are up to 5km from the injection point. This gives an indication of the minimum radius of influence of such fluid injection projects. The most distant events are never more than 20km from the injection point, perhaps implying a maximum radius of influence. Some events are located in the target reservoir, but most occur below the injection depth. In fact, most events lie in the crystalline basement underlying the sedimentary rocks. This suggests that induced seismicity may not pose a leakage risk for fluid migration back to the surface, as it does not impact caprock integrity. A useful application for microseismic data is to try and forecast induced seismicity

  17. 296-B-10 stack monitoring and sampling system annual system assessment report

    International Nuclear Information System (INIS)

    Ridge, T.M.

    1995-01-01

    B Plant Administration Manual, requires an annual system assessment to evaluate and report the present condition of the sampling and monitoring system associated with stack 296-B-10 at B Plant. The ventilation system of WESF (Waste Encapsulation and Storage Facility) is designed to provide airflow patterns so that air movement throughout the building is from areas of lesser radioactivity to areas of greater radioactivity. All potentially contaminated areas are maintained at a negative pressure with respect to the atmosphere so that air flows into the building at all times. The exhaust discharging through the 296-B-10 stack is continuously monitored and sampled using a sampling and monitoring probe assembly located approximately 17.4 meters (57 feet) above the base of the stack. The probe assembly consists of 5 nozzles for the sampling probe and 2 nozzles to monitor the flow. The sampling and monitoring system associated with Stack 296-B-10 is functional and performing satisfactorily

  18. Advancing internal erosion monitoring using seismic methods in field and laboratory studies

    Science.gov (United States)

    Parekh, Minal L.

    embankment surface. Analysis of root mean squared amplitude and AE threshold counts indicated activity focused at the toe in locations matching the sand boils. This analysis also compared the various detection methods employed at the 2012 test to discuss a timeline of detection related to observable behaviors of the structure. The second area of research included designing and fabricating an instrumented laboratory apparatus for investigating active seismic wave propagation through soil samples. This dissertation includes a description of the rigid wall permeameter, instrumentation, control, and acquisitions systems along with descriptions of the custom-fabricated seismic sensors. A series of experiments (saturated sand, saturated sand with a known static anomaly placed near the center of the sample, and saturated sand with a diminishing anomaly near the center of the sample) indicated that shear wave velocity changes reflected changes in the state of stress of the soil. The mean effective stress was influenced by the applied vertical axial load, the frictional interaction between the soil and permeameter wall, and the degree of preloading. The frictional resistance was sizeable at the sidewall of the permeameter and decreased the mean effective stress with depth. This study also included flow tests to monitor changes in shear wave velocities as the internal erosion process started and developed. Shear wave velocity decreased at voids or lower density zones in the sample and increased as arching redistributes loads, though the two conditions compete. Finally, the social and political contexts surrounding nondestructive inspection were considered. An analogous approach utilized by the aerospace industry was introduced: a case study comparing the path toward adopting nondestructive tools as standard practices in monitoring aircraft safety. Additional lessons for dam and levee safety management were discussed from a Science, Technology, Engineering, and Policy (STEP

  19. Historical seismicity in France. Its role in the assessment of seismic risk on French nuclear sites

    International Nuclear Information System (INIS)

    Levret, A.

    1987-11-01

    Since 1975 in order to be in conformity with the requirements of the French nuclear program, a review of historical seismicity was undertaken in France. The assessment of seismic hazard for the safety of nuclear plants is in fact based upon a seismotectonic approach which needs to take into account the seismic activity over as long a period of time as possible. The method adopted for reviewing historical earthquakes entails a systematic consultation of the original sources and a critical analysis there of in the light of the historical, geographical and political contexts of the time. The same standards apply where the acquisition of new elements of information is involved. Each item of information is assigned a degree of reliability, then compiled in a computer file, up-dated annually; this file currently contains more than 4.500 events covering a period of time of about a millenary

  20. National Earthquake Information Center Seismic Event Detections on Multiple Scales

    Science.gov (United States)

    Patton, J.; Yeck, W. L.; Benz, H.; Earle, P. S.; Soto-Cordero, L.; Johnson, C. E.

    2017-12-01

    The U.S. Geological Survey National Earthquake Information Center (NEIC) monitors seismicity on local, regional, and global scales using automatic picks from more than 2,000 near-real time seismic stations. This presents unique challenges in automated event detection due to the high variability in data quality, network geometries and density, and distance-dependent variability in observed seismic signals. To lower the overall detection threshold while minimizing false detection rates, NEIC has begun to test the incorporation of new detection and picking algorithms, including multiband (Lomax et al., 2012) and kurtosis (Baillard et al., 2014) pickers, and a new bayesian associator (Glass 3.0). The Glass 3.0 associator allows for simultaneous processing of variably scaled detection grids, each with a unique set of nucleation criteria (e.g., nucleation threshold, minimum associated picks, nucleation phases) to meet specific monitoring goals. We test the efficacy of these new tools on event detection in networks of various scales and geometries, compare our results with previous catalogs, and discuss lessons learned. For example, we find that on local and regional scales, rapid nucleation of small events may require event nucleation with both P and higher-amplitude secondary phases (e.g., S or Lg). We provide examples of the implementation of a scale-independent associator for an induced seismicity sequence (local-scale), a large aftershock sequence (regional-scale), and for monitoring global seismicity. Baillard, C., Crawford, W. C., Ballu, V., Hibert, C., & Mangeney, A. (2014). An automatic kurtosis-based P-and S-phase picker designed for local seismic networks. Bulletin of the Seismological Society of America, 104(1), 394-409. Lomax, A., Satriano, C., & Vassallo, M. (2012). Automatic picker developments and optimization: FilterPicker - a robust, broadband picker for real-time seismic monitoring and earthquake early-warning, Seism. Res. Lett. , 83, 531-540, doi: 10

  1. Monitoring deep geodynamic processes within Vrancea intermediate-depth seismic zone by geodetic means

    Science.gov (United States)

    Besutiu, Lucian; Zlagnean, Luminita

    2015-04-01

    Background Located in the bending zone of East Carpathians, the so-called Vrancea zone is one of the most active seismic regions in Europe. Despite many years of international research, its intermediate-depth seismicity within full intra-continental environment still represents a challenge of the 21st century. Infrastructure In the attempt to join the above-mentioned efforts, the Solid Earth Dynamics Department (SEDD) in the Institute of Geodynamics of the Romanian Academy has developed a special research infrastructure, mainly devoted to gravity and space geodesy observations. A geodetic network covering the epicentre area of the intermediate-depth earthquakes has been designed and implemented for monitoring deep geodynamic processes and their surface echoes. Within each base-station of the above-mentioned network, a still-reinforced concrete pillar allows for high accuracy repeated gravity and GPS determinations. Results Starting from some results of the previously run CERGOP and UNIGRACE European programmes, to which additional SEDD repeated field campaigns were added, an unusual geodynamic behaviour has been revealed in the area. 1) Crust deformation: unlike the overall uprising of East Carpathians, as a result of denudation followed by erosion, their SE bending zone, with Vrancea epicentre area exhibits a slight subsidence. 2) Gravity change: more than 200 microgals non-tidal gravity decrease over a 20 years time-span has been noticed within the subsiding area. Extended observations showed the gravity lowering as a nowadays continuing process. Interpretation This strange combination of topography subsidence and gravity lowering has been interpreted in terms of crust stretching in the Vrancea epicentre zone due to the gravity pull created by densification of the lower crust as a result of phase-transform processes taking place in the lithospheric compartment sunken into the upper mantle. The occurrence of crust earthquakes with vertical-extension focal

  2. Second Quarter Hanford Seismic Report for Fiscal Year 2008

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2008-06-26

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The Hanford Seismic Assessment Team locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. For the Hanford Seismic Network, seven local earthquakes were recorded during the second quarter of fiscal year 2008. The largest event recorded by the network during the second quarter (February 3, 2008 - magnitude 2.3 Mc) was located northeast of Richland in Franklin County at a depth of 22.5 km. With regard to the depth distribution, two earthquakes occurred at shallow depths (less than 4 km, most likely in the Columbia River basalts), three earthquakes at intermediate depths (between 4 and 9 km, most likely in the pre-basalt sediments), and two earthquakes were located at depths greater than 9 km, within the crystalline basement. Geographically, five earthquakes occurred in swarm areas and two earthquakes were classified as random events.

  3. Seismic qualification of a commercial grade emergency diesel generator system in high seismic zones

    International Nuclear Information System (INIS)

    Khan, Mohsin R.; Chen, Wayne W.H.; Chu, Winnie S.

    2004-01-01

    The paper presents the seismic qualification of a commercially procured emergency diesel generator (EDG) system for use in a nuclear power plant. Response spectrum analyses of finite element models, validated using in situ vibration test data, were performed to qualify the skid and floor mounted mechanical components whose functional capacity and structural integrity can be analyzed. Time history analyses of these models were also performed to obtain the amplified response spectra for seismic testing of small valves, electrical and electro-mechanical components whose functional capacity can not be analyzed to establish the seismic qualification. The operational loads were obtained by in-plant vibration monitoring. Full scale shake table testing was performed for auxiliary electrical cabinets. It is concluded that with some minor structural modifications, a commercial grade EDG system can be qualified for safety-related applications in nuclear power plants located in high seismic zones. (author)

  4. Using Seismic Interferometry to Investigate Seismic Swarms

    Science.gov (United States)

    Matzel, E.; Morency, C.; Templeton, D. C.

    2017-12-01

    Seismicity provides a direct means of measuring the physical characteristics of active tectonic features such as fault zones. Hundreds of small earthquakes often occur along a fault during a seismic swarm. This seismicity helps define the tectonically active region. When processed using novel geophysical techniques, we can isolate the energy sensitive to the fault, itself. Here we focus on two methods of seismic interferometry, ambient noise correlation (ANC) and the virtual seismometer method (VSM). ANC is based on the observation that the Earth's background noise includes coherent energy, which can be recovered by observing over long time periods and allowing the incoherent energy to cancel out. The cross correlation of ambient noise between a pair of stations results in a waveform that is identical to the seismogram that would result if an impulsive source located at one of the stations was recorded at the other, the Green function (GF). The calculation of the GF is often stable after a few weeks of continuous data correlation, any perturbations to the GF after that point are directly related to changes in the subsurface and can be used for 4D monitoring.VSM is a style of seismic interferometry that provides fast, precise, high frequency estimates of the Green's function (GF) between earthquakes. VSM illuminates the subsurface precisely where the pressures are changing and has the potential to image the evolution of seismicity over time, including changes in the style of faulting. With hundreds of earthquakes, we can calculate thousands of waveforms. At the same time, VSM collapses the computational domain, often by 2-3 orders of magnitude. This allows us to do high frequency 3D modeling in the fault region. Using data from a swarm of earthquakes near the Salton Sea, we demonstrate the power of these techniques, illustrating our ability to scale from the far field, where sources are well separated, to the near field where their locations fall within each other

  5. The annual report on the environmental monitoring around the Ningyo-toge. 2005. Okayama

    International Nuclear Information System (INIS)

    Tago, Itaru; Ono, Takayuki; Kawasaki, Satoru

    2007-03-01

    The Ningyo-toge Environmental Engineering Center of the Japan Atomic Energy Agency performs the environmental monitoring around the Ningyo-toge and the waste rock sites according to the agreements with local governments, Okayama and Tottori prefectures. Environmental monitoring of plutonium has been also performed around the Ningyo-toge regarding the practical application study on the reprocessed uranium conversion, which was carried out from 1994 to 1999 at the Ningyo-toge. The prefectural committees on the environmental monitoring evaluate the monitoring data annually. This report summarized the results of the environmental monitoring mentioned above in the fiscal year 2005. The results show that the levels of the radiation and the radioactive concentrations in the environmental samples were within natural variations, and that the waste rock sites have been well maintained. The committees concluded the environmental impacts from the sites were negligible. (author)

  6. Installation of a very broad band borehole seismic station in Ferrara (Emilia)

    OpenAIRE

    Pesaresi, Damiano; Dall'Olio, Lorella; Rovelli, Antonio; Romanelli, Marco; Barnaba, Carla; Abu Zeid, Nasser

    2012-01-01

    The Istituto Nazionale di Geofisica e Vulcanologia (INGV) is the Italian agency devoted to monitor in real time the seismicity on the Italian territory. The seismicity in Italy is of course variable in time and space, being also very much dependant on local noise conditions. Specifically, monitoring seismicity in an alluvial basin like the Po one is a challenge, due to consistent site effects induced by soft alluvial deposits and bad coupling with the deep bedrock (Steidl et al., 1996). This...

  7. PARAMETERS OF KAMCHATKA SEISMICITY IN 2008

    Directory of Open Access Journals (Sweden)

    Vadim A. Saltykov

    2010-01-01

    Full Text Available The paper describes seismicity of Kamchatka for the period of 2008 and presents 2D distribution of background seismicity parameters calculated from data published in the Regional Catalogue of Kamchatka Earthquakes. Parameters under study are total released seismic energy, seismic activity A10, slope of recurrence graph γ, parameters of RTL, ΔS and Z-function methods, and clustering of earthquakes. Estimations of seismicity are obtained for a region bordered by latitude 50.5–56.5N, longitude 156E–167E, with depths to 300 km. Earthquakes of energy classes not less than 8.5 as per the Fedotov’s classification are considered. The total seismic energy released in 2008 is estimated. According to a function of annual seismic energy distribution, an amount of seismic energy released in 2008 was close to the median level (Fig. 1. Over 2/3 of the total amount of seismic energy released in 2008 resulted from three largest earthquakes (МW ≥ 5.9. About 5 percent of the total number of seismic events are comprised of grouped earthquakes, i.e. aftershocks and swarms. A schematic map of the largest earthquakes (МW ≥ 5.9 and grouped seismic events which occurred in 2008 is given in Fig. 2; their parameters are listed in Table 1. Grouped earthquakes are excluded from the catalogue. A map showing epicenters of independent earthquakes is given in Fig. 3. The slope of recurrence graph γ and seismic activity A10 is based on the Gutenberg-Richter law stating the fundamental property of seismic process. The recurrence graph slope is calculated from continuous exponential distribution of earthquakes by energy classes. Using γ is conditioned by observations that in some cases the slope of the recurrence graph decreases prior to a large earthquake. Activity A10 is calculated from the number of earthquakes N and recurrence graph slope γ. Average slopes of recurrence graph γ and seismic activity A10 for the area under study in 2008 are calculated; our

  8. Annual Report for 2008 - 2009 Detection Monitoring at the Environmental Management Waste Management Facility, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Walker J.R.

    2010-03-01

    This annual Environmental Monitoring Report (EMR) presents results of environmental monitoring performed during fiscal year (FY) 2009 (October 1, 2008 - September 30, 2009) at the Environmental Management Waste Management Facility (EMWMF). The EMWMF is an operating state-of-the-art hazardous waste landfill located in Bear Creek Valley (BCV) west of the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee (Appendix A, Fig. A.1). Opened in 2002 and operated by a DOE prime contractor, Bechtel Jacobs Company LLC (BJC), the EMWMF was built specifically to accommodate disposal of acceptable solid wastes generated from Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) remedial actions for former waste sites and buildings that have been impacted by past DOE operations on the ORR and at DOE sites off the ORR within the state of Tennessee. Environmental monitoring at the EMWMF is performed to detect and monitor the impact of facility operations on groundwater, surface water, stormwater, and air quality and to determine compliance with applicable or relevant and appropriate requirements (ARARs) specified in governing CERCLA decision documents. Annually, the EMR presents an evaluation of the groundwater, surface water, stormwater, and air monitoring data with respect to the applicable EMWMF performance standards. The purpose of the evaluation is to: (1) identify monitoring results that indicate evidence of a contaminant release from the EMWMF to groundwater, surface water, stormwater, or air, and (2) recommend appropriate changes to the associated sampling and analysis requirements, including sampling locations, methods, and frequencies; field measurements; or laboratory analytes that may be warranted in response to the monitoring data. Sect. 2 of this annual EMR provides background information relevant to environmental monitoring at the landfill, including

  9. Development of seismic tomography software for hybrid supercomputers

    Science.gov (United States)

    Nikitin, Alexandr; Serdyukov, Alexandr; Duchkov, Anton

    2015-04-01

    Seismic tomography is a technique used for computing velocity model of geologic structure from first arrival travel times of seismic waves. The technique is used in processing of regional and global seismic data, in seismic exploration for prospecting and exploration of mineral and hydrocarbon deposits, and in seismic engineering for monitoring the condition of engineering structures and the surrounding host medium. As a consequence of development of seismic monitoring systems and increasing volume of seismic data, there is a growing need for new, more effective computational algorithms for use in seismic tomography applications with improved performance, accuracy and resolution. To achieve this goal, it is necessary to use modern high performance computing systems, such as supercomputers with hybrid architecture that use not only CPUs, but also accelerators and co-processors for computation. The goal of this research is the development of parallel seismic tomography algorithms and software package for such systems, to be used in processing of large volumes of seismic data (hundreds of gigabytes and more). These algorithms and software package will be optimized for the most common computing devices used in modern hybrid supercomputers, such as Intel Xeon CPUs, NVIDIA Tesla accelerators and Intel Xeon Phi co-processors. In this work, the following general scheme of seismic tomography is utilized. Using the eikonal equation solver, arrival times of seismic waves are computed based on assumed velocity model of geologic structure being analyzed. In order to solve the linearized inverse problem, tomographic matrix is computed that connects model adjustments with travel time residuals, and the resulting system of linear equations is regularized and solved to adjust the model. The effectiveness of parallel implementations of existing algorithms on target architectures is considered. During the first stage of this work, algorithms were developed for execution on

  10. Seismic verification of the Italian PEC fast reactor and effects of seismic conditions on the design

    International Nuclear Information System (INIS)

    Martelli, A.; Cecchini, F.; Masoni, P.; Maresca, G.; Castoldi, A.

    1988-01-01

    This paper deals with the aseismic design features of the Italian PEC fast reactor and the effects of seismic conditions on the reactor design. More precisely, after some notes on the main plant features, the paper reports on the design earthquakes adopted, the seismic monitoring procedures and the related actions, the design requirements, criteria and methods, and also provides a brief summary of the main research and development studies performed in support of design analysis. For the above-mentioned items, comparisons with the other fast reactors of the European Community countries are presented. Furthermore, the paper stresses the design modifications adopted to guarantee PEC seismic safety

  11. Annual report 1990/91 for the Hamburg air monitoring network

    International Nuclear Information System (INIS)

    Goemer, D.; Hache, W.; Matzen, D.; Reich, T.

    1992-01-01

    In addition to measured results form the stationary air monitoring network from 1990 (detailed report) and 1991 (brief version), the annual report 1990/91 presents results form special measuring programs of the dynmao car area and from measurements made on the street dating from 1990/91. After a detailed presentation of the meteorological frame conditions in 1990, distinguishing by a relatively good air exchange, a detailed discussion of the air load during this period and a brief survey about the air quality in 1991 follows. (orig.) [de

  12. Assessing the seismic risk potential of South America

    Science.gov (United States)

    Jaiswal, Kishor; Petersen, Mark D.; Harmsen, Stephen; Smoczyk, Gregory M.

    2016-01-01

    We present here a simplified approach to quantifying regional seismic risk. The seismic risk for a given region can be inferred in terms of average annual loss (AAL) that represents long-term value of earthquake losses in any one year caused from a long-term seismic hazard. The AAL are commonly measured in the form of earthquake shaking-induced deaths, direct economic impacts or indirect losses caused due to loss of functionality. In the context of South American subcontinent, the analysis makes use of readily available public data on seismicity, population exposure, and the hazard and vulnerability models for the region. The seismic hazard model was derived using available seismic catalogs, fault databases, and the hazard methodologies that are analogous to the U.S. Geological Survey’s national seismic hazard mapping process. The Prompt Assessment of Global Earthquakes for Response (PAGER) system’s direct empirical vulnerability functions in terms of fatality and economic impact were used for performing exposure and risk analyses. The broad findings presented and the risk maps produced herein are preliminary, yet they do offer important insights into the underlying zones of high and low seismic risks in the South American subcontinent. A more detailed analysis of risk may be warranted by engaging local experts, especially in some of the high risk zones identified through the present investigation.

  13. Continuous recording of seismic signals in Alpine permafrost

    Science.gov (United States)

    Hausmann, H.; Krainer, K.; Staudinger, M.; Brückl, E.

    2009-04-01

    Over the past years various geophysical methods were applied to study the internal structure and the temporal variation of permafrost whereof seismic is of importance. For most seismic investigations in Alpine permafrost 24-channel equipment in combination with long data and trigger cables is used. Due to the harsh environment source and geophone layouts are often limited to 2D profiles. With prospect for future 3D-layouts we introduce an alternative of seismic equipment that can be used for several applications in Alpine permafrost. This study is focussed on controlled and natural source seismic experiments in Alpine permafrost using continuous data recording. With recent data from an ongoing project ("Permafrost in Austria") we will highlight the potential of the used seismic equipment for three applications: (a) seismic permafrost mapping of unconsolidated sediments, (b) seismic tomography in rock mass, and (c) passive seismic monitoring of rock falls. Single recording units (REFTEK 130, 6 channels) are used to continuously record the waveforms of both the seismic signals and a trigger signal. The combination of a small number of recording units with different types of geophones or a trigger allow numerous applications in Alpine permafrost with regard to a high efficiency and flexible seismic layouts (2D, 3D, 4D). The efficiency of the light and robust seismic equipment is achieved by the simple acquisition and the flexible and fast deployment of the (omni-directional) geophones. Further advantages are short (data and trigger) cables and the prevention of trigger errors. The processing of the data is aided by 'Seismon' which is an open source software project based on Matlab® and MySQL (see SM1.0). For active-source experiments automatic stacking of the seismic signals is implemented. For passive data a program for automatic detection of events (e.g. rock falls) is available which allows event localization. In summer 2008 the seismic equipment was used for the

  14. Development of methodology and computer programs for the ground response spectrum and the probabilistic seismic hazard analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Joon Kyoung [Semyung Univ., Research Institute of Industrial Science and Technol , Jecheon (Korea, Republic of)

    1996-12-15

    Objective of this study is to investigate and develop the methodologies and corresponding computer codes, compatible to the domestic seismological and geological environments, for estimating ground response spectrum and probabilistic seismic hazard. Using the PSHA computer program, the Cumulative Probability Functions(CPDF) and Probability Functions (PDF) of the annual exceedence have been investigated for the analysis of the uncertainty space of the annual probability at ten interested seismic hazard levels (0.1 g to 0.99 g). The cumulative provability functions and provability functions of the annual exceedence have been also compared to those results from the different input parameter spaces.

  15. Seismic hazard and seismic risk assessment based on the unified scaling law for earthquakes: Himalayas and adjacent regions

    Science.gov (United States)

    Nekrasova, A. K.; Kossobokov, V. G.; Parvez, I. A.

    2015-03-01

    For the Himalayas and neighboring regions, the maps of seismic hazard and seismic risk are constructed with the use of the estimates for the parameters of the unified scaling law for earthquakes (USLE), in which the Gutenberg-Richter law for magnitude distribution of seismic events within a given area is applied in the modified version with allowance for linear dimensions of the area, namely, log N( M, L) = A + B (5 - M) + C log L, where N( M, L) is the expected annual number of the earthquakes with magnitude M in the area with linear dimension L. The spatial variations in the parameters A, B, and C for the Himalayas and adjacent regions are studied on two time intervals from 1965 to 2011 and from 1980 to 2011. The difference in A, B, and C between these two time intervals indicates that seismic activity experiences significant variations on a scale of a few decades. With a global consideration of the seismic belts of the Earth overall, the estimates of coefficient A, which determines the logarithm of the annual average frequency of the earthquakes with a magnitude of 5.0 and higher in the zone with a linear dimension of 1 degree of the Earth's meridian, differ by a factor of 30 and more and mainly fall in the interval from -1.1 to 0.5. The values of coefficient B, which describes the balance between the number of earthquakes with different magnitudes, gravitate to 0.9 and range from less than 0.6 to 1.1 and higher. The values of coefficient C, which estimates the fractal dimension of the local distribution of epicenters, vary from 0.5 to 1.4 and higher. In the Himalayas and neighboring regions, the USLE coefficients mainly fall in the intervals of -1.1 to 0.3 for A, 0.8 to 1.3 for B, and 1.0 to 1.4 for C. The calculations of the local value of the expected peak ground acceleration (PGA) from the maximal expected magnitude provided the necessary basis for mapping the seismic hazards in the studied region. When doing this, we used the local estimates of the

  16. NCSRR digital seismic network in Romania

    International Nuclear Information System (INIS)

    Aldea, A.; Albota, E.; Demetriu, S.; Poiata, N.; Kashima, T.

    2007-01-01

    Digital seismic instrumentation donated by Japan International Cooperation Agency (JICA) to the National Center for Seismic Risk Reduction (NCSRR, Romania) allowed the installation in 2003 of a new Romanian seismic network. In 2005-2006 the network was developed by investments from NCSRR within the budget ensured by Ministry of Transports, Construction and Tourism (MTCT). The NCSRR seismic network contains three types of instrumentation: (i) free-field stations - outside the capital city Bucharest (8 accelerometers), (ii) instrumented buildings - in Bucharest (5 buildings), and (iii) stations with free-field and borehole sensors - in Bucharest (8 sites with ground surface sensor and sensors in 15 boreholes with depths up to 153 m). Since its installation, the NCSRR network recorded more than 170 seismic motions from 26 earthquakes with moment magnitudes ranging from 3.2 to 6.0. The seismic instrumentation was accompanied by investigations of ground conditions and site response: PS logging tests, single-station and array microtremor measurements. The development of seismic monitoring in Romania is a major contribution of JICA Project, creating the premises for a better understanding and modelling of earthquake ground motion, site effects and building response. (authors)

  17. Second annual report of the Environmental Restoration Monitoring and Assessment Program at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Clapp, R.B.; Watts, J.A.

    1993-09-01

    This report summarizes the salient features of the annual efforts of environmental monitoring and field investigations conducted to support the Environmental Restoration (ER) Program at the Oak Ridge National Laboratory (ORNL). This report focuses on the watershed scale, striving to provide an ORNL site-wide perspective on types, distribution, and transport of contamination. Results are used to enhance the conceptual understanding of the key contaminants and the sources, fluxes, and processes affecting their distribution and movement. This report summarizes the efforts of the Waste Area Grouping (WAG) 2 and Site Investigations (SI) program. WAG 2 is the lower portion of the White Oak Creek (WOC) system which drains the major contaminated sites at ORNL and discharges to the Clinch River where public access is allowed. The remedial investigation for WAG 2 includes a long-term multimedia environmental monitoring effort that takes advantage of WAG 2's role as an integrator and conduit of contaminants from the ORNL site. This report also includes information from other site-specific remedial investigations and feasibility studies (RI/FS) for contaminated sites at ORNL and data from other ongoing monitoring programs conducted by other organizations [e.g., the National Pollutant Discharge Elimination System (NPDES) compliance monitoring conducted by the Environmental Surveillance and Protection Section]. This information is included to provide an integrated basis to support ER decision making. This report summarizes information gathered through early 1993. Annual data, such as annual discharges of contaminants, are reported for calendar year 1992

  18. Improving the Detectability of the Catalan Seismic Network for Local Seismic Activity Monitoring

    Science.gov (United States)

    Jara, Jose Antonio; Frontera, Tànit; Batlló, Josep; Goula, Xavier

    2016-04-01

    The seismic survey of the territory of Catalonia is mainly performed by the regional seismic network operated by the Cartographic and Geologic Institute of Catalonia (ICGC). After successive deployments and upgrades, the current network consists of 16 permanent stations equipped with 3 component broadband seismometers (STS2, STS2.5, CMG3ESP and CMG3T), 24 bits digitizers (Nanometrics Trident) and VSAT telemetry. Data are continuously sent in real-time via Hispasat 1D satellite to the ICGC datacenter in Barcelona. Additionally, data from other 10 stations of neighboring areas (Spain, France and Andorra) are continuously received since 2011 via Internet or VSAT, contributing both to detect and to locate events affecting the region. More than 300 local events with Ml ≥ 0.7 have been yearly detected and located in the region. Nevertheless, small magnitude earthquakes, especially those located in the south and south-west of Catalonia may still go undetected by the automatic detection system (DAS), based on Earthworm (USGS). Thus, in order to improve the detection and characterization of these missed events, one or two new stations should be installed. Before making the decision about where to install these new stations, the performance of each existing station is evaluated taking into account the fraction of detected events using the station records, compared to the total number of events in the catalogue, occurred during the station operation time from January 1, 2011 to December 31, 2014. These evaluations allow us to build an Event Detection Probability Map (EDPM), a required tool to simulate EDPMs resulting from different network topology scenarios depending on where these new stations are sited, and becoming essential for the decision-making process to increase and optimize the event detection probability of the seismic network.

  19. Relays undergo seismic tests

    International Nuclear Information System (INIS)

    Burton, J.C.

    1977-01-01

    Utilities are required by the Nuclear Regulatory Commission to document that seismic vibration will not adversely affect critical electrical equipment. Seismic testing should be designed to determine the malfunction level (fragility testing). Input possibilities include a continuous sine, a decaying sine, a sine beat, random vibrations, and combinations of random vibrations and sine beat. The sine beat most accurately simulates a seismic event. Test frequencies have a broad range in order to accommodate a variety of relay types and cabinet mounting. Simulation of motion along three axes offers several options, but is best achieved by three in-phase single-axis vibration machines that are less likely to induce testing fatigue failure. Consensus on what constitutes relay failure favors a maximum two microsecond discontinuity. Performance tests should be conducted for at least two of the following: (1) nonoperating modes, (2) operating modes, or (3) the transition above the two modes, with the monitoring mode documented for all three. Results should specify a capability curve of maximum safe seismic acceleration and a graph plotting acceleration with sine-beat frequency

  20. Performance of an island seismic station for recording T-phases

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, J. A., LLNL

    1998-05-01

    As part of the International Monitoring System (IMS) a worldwide hydroacoustic network consisting of 6 hydrophone and 5 island seismic stations has been planned which will monitor for underwater or low altitude atmospheric explosions. Data from this network is to be integrated with other IMS networks monitoring the Comprehensive Nuclear Test-Ban Treaty. The seismic (T-phase) stations are significantly less sensitive than hydrophones to ocean borne acoustic waves. T-phase signal strength at seismic stations depends on the amplitude of the signal in the water column, the hydroacoustic-seismic conversion efficiency, and loss on the seismic portion of the path through the island. In order to understand how these factors influence the performance of T-phase stations seismic and hydroacoustic data are examined from instruments currently deployed on or around Ascension Island in the South Atlantic Ocean. T-phase recordings for the last 3 years have been collected from the GSN seismic station ASCN on Ascension Island. Surrounding the island are 5 hydrophones which are part of the U.S. Air Force Missile Impact Locating System (MILS). Data from this system have been obtained for some of the events observed at ASCN. Four of the hydrophones are located within 30 km of the coast while the fifth instrument is 100 km to the south. Amplitude spectral estimates of the signal-to-noise levels (SNL) are computed and generally peak between 3 and 8 Hz for both the seismometer and hydrophone data. The seismic SNL generally decays to 1 between 10 and 15 Hz while the hydrophone SNL is still large well above 20 Hz. The ratios of the hydrophone-to-seismometer SNL, at their peak in energy, range between 10 and 100 (20-40 dB) unless a hydrophone is partially blocked by the Ascension Island landmass.

  1. Seismic signal of near steady uniform flows

    Science.gov (United States)

    Mangeney, A.; Bachelet, V.; Toussaint, R.; de Rosny, J.

    2017-12-01

    The seismic signal generated by rockfalls, landslides or avalanches is a unique tool to detect, characterize and monitor gravitational flow activity. A major challenge in this domain is to retrieve the dynamic properties of the flow from the emitted seismic signal. In this study, we propose laboratory experiments where the dynamic properties of the flow (velocity, granular temperature, density, etc.) are measured together with the generated seismic signal. We investigate near steady uniform flows made of glass beads of 2mm diameter, flowing throughout a thin rectangular channel of 10 cm width, with tunable tilt angle and height flow, thanks to an adjustable opening gate. The flow is monitored from the spine with a fast camera (5000 fps), and the emitted waves are recorded by accelerometers (10Hz - 54 kHz), stuck on the back side of the bottom of the channel. Among others, three seismic parameters are analyzed: the power radiated by the flow, the mean frequency of the signal, and the modulation of its amplitude. We show that they are linked to three dynamical properties: the mean kinetic energy of the flow, the speed of collisions between beads and the vertical oscillation of the beads, respectively.

  2. The Seismic Aftershock Monitoring System (SAMS) for OSI - Experiences from IFE14

    Science.gov (United States)

    Gestermann, Nicolai; Sick, Benjamin; Häge, Martin; Blake, Thomas; Labak, Peter; Joswig, Manfred

    2016-04-01

    An on-site inspection (OSI) is the third of four elements of the verification regime of the Comprehensive Nuclear-Test-Ban Treaty (CTBT). The sole purpose of an OSI is to confirm whether a nuclear weapon test explosion or any other nuclear explosion has been carried out in violation of the treaty and to gather any facts which might assist in identifying any possible violator. It thus constitutes the final verification measure under the CTBT if all other available measures are not able to confirm the nature of a suspicious event. The Provisional Technical Secretariat (PTS) carried out the Integrated Field Exercise 2014 (IFE14) in the Dead Sea Area of Jordan from 3 November to 9. December 2014. It was a fictitious OSI whose aim was to test the inspection capabilities in an integrated manner. The technologies allowed during an OSI are listed in the Treaty. The aim of the Seismic Aftershock Monitoring System (SAMS) is to detect and localize aftershocks of low magnitudes of the triggering event or collapses of underground cavities. The locations of these events are expected in the vicinity of a possible previous explosion and help to narrow down the search area within an inspection area (IA) of an OSI. The success of SAMS depends on the main elements, hardware, software, deployment strategy, the search logic and not least the effective use of personnel. All elements of SAMS were tested and improved during the Built-Up Exercises (BUE) which took place in Austria and Hungary. IFE14 provided more realistic climatic and hazardous terrain conditions with limited resources. Significant variations in topography of the IA of IFE14 in the mountainous Dead Sea Area of Jordan led to considerable challenges which were not expected from experiences encountered during BUE. The SAMS uses mini arrays with an aperture of about 100 meters and with a total of 4 elements. The station network deployed during IFE14 and results of the data analysis will be presented. Possible aftershocks of

  3. Recorded earthquake responses from the integrated seismic monitoring network of the Atwood Building, Anchorage, Alaska

    Science.gov (United States)

    Celebi, M.

    2006-01-01

    An integrated seismic monitoring system with a total of 53 channels of accelerometers is now operating in and at the nearby free-field site of the 20-story steel-framed Atwood Building in highly seismic Anchorage, Alaska. The building has a single-story basement and a reinforced concrete foundation without piles. The monitoring system comprises a 32-channel structural array and a 21-channel site array. Accelerometers are deployed on 10 levels of the building to assess translational, torsional, and rocking motions, interstory drift (displacement) between selected pairs of adjacent floors, and average drift between floors. The site array, located approximately a city block from the building, comprises seven triaxial accelerometers, one at the surface and six in boreholes ranging in depths from 15 to 200 feet (???5-60 meters). The arrays have already recorded low-amplitude shaking responses of the building and the site caused by numerous earthquakes at distances ranging from tens to a couple of hundred kilometers. Data from an earthquake that occurred 186 km away traces the propagation of waves from the deepest borehole to the roof of the building in approximately 0.5 seconds. Fundamental structural frequencies [0.58 Hz (NS) and 0.47 Hz (EW)], low damping percentages (2-4%), mode coupling, and beating effects are identified. The fundamental site frequency at approximately 1.5 Hz is close to the second modal frequencies (1.83 Hz NS and 1.43 EW) of the building, which may cause resonance of the building. Additional earthquakes prove repeatability of these characteristics; however, stronger shaking may alter these conclusions. ?? 2006, Earthquake Engineering Research Institute.

  4. First Quarter Hanford Seismic Report for Fiscal Year 2008

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2008-03-21

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The Hanford Seismic Assessment Team locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 41 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. For the Hanford Seismic Network, forty-four local earthquakes were recorded during the first quarter of fiscal year 2008. A total of thirty-one micro earthquakes were recorded within the Rattlesnake Mountain swarm area at depths in the 5-8 km range, most likely within the pre-basalt sediments. The largest event recorded by the network during the first quarter (November 25, 2007 - magnitude 1.5 Mc) was located within this swarm area at a depth of 4.3 km. With regard to the depth distribution, three earthquakes occurred at shallow depths (less than 4 km, most likely in the Columbia River basalts), thirty-six earthquakes at intermediate depths (between 4 and 9 km, most likely in the pre-basalt sediments), and five earthquakes were located at depths greater than 9 km, within the crystalline basement. Geographically, thirty-eight earthquakes occurred in swarm areas and six earth¬quakes were classified as random events.

  5. Bedload transport rates in a gravel bedded-river derived from high-resolution monitoring using seismic impact plates

    Science.gov (United States)

    Downs, Peter; Soar, Philip

    2015-04-01

    Accurate characterisation of bedload transport rates is critical for a better understanding of geomorphological process dynamics, aquatic habitats, sediment budgets and strategies for catchment-scale initiatives in sediment management under conditions of climate change. However, rate estimation is challenging in practice: direct measurements are costly and logistically difficult to achieve with acceptable accuracy over geomorphologically-relevant time periods, and the uncertainty in transport rates predicted from empirical formulae and numerical simulation is rarely below 50 per cent. Partly reflecting these issues, passive technologies for continuous bedload monitoring are becoming increasingly popular. Sensors such as seismic impact plates offer the opportunity to characterise bedload activity at exceptionally high resolution - monitoring from the River Avon, (Devon, UK) indicated that despite significant intra-event and between-plate differences in apparent bedload transport aggregated over 5-minute periods, the magnitude-frequency product of discharge and impact frequency result in a highly plausible effective discharge, supporting the potential value of impact plates as indicators of relative sediment transport loads over annual timescales. Whereas the focus in bedload rate estimation to date has been on developing satisfactory sediment rating curves from detection signals, we instead develop a method for directly estimating bedload transport rates from impact plate data as a function of intensity of transport (count, n, per second), bed material mass (kg) and cross-stream transport variability. Bulk sediment samples are converted to a mass in transit for each instantaneous discharge according to the intensity of transport and a Monte Carlo simulation of the load in transit determined at random from the bed material particle size distribution. The lower detection threshold is determined using experimental calibration and the upper size limit is determined from

  6. Seismic monitoring of soft-rock landslides: the Super-Sauze and Valoria case studies

    Science.gov (United States)

    Tonnellier, Alice; Helmstetter, Agnès; Malet, Jean-Philippe; Schmittbuhl, Jean; Corsini, Alessandro; Joswig, Manfred

    2013-06-01

    This work focuses on the characterization of seismic sources observed in clay-shale landslides. Two landslides are considered: Super-Sauze (France) and Valoria (Italy). The two landslides are developed in reworked clay-shales but differ in terms of dimensions and displacement rates. Thousands of seismic signals have been identified by a small seismic array in spite of the high-seismic attenuation of the material. Several detection methods are tested. A semi-automatic detection method is validated by the comparison with a manual detection. Seismic signals are classified in three groups based on the frequency content, the apparent velocity and the differentiation of P and S waves. It is supposed that the first group of seismic signals is associated to shearing or fracture events within the landslide bodies, while the second group may correspond to rockfalls or debris flows. A last group corresponds to external earthquakes. Seismic sources are located with an automatic beam-forming location method. Sources are clustered in several parts of the landslide in agreement with geomorphological observations. We found that the rate of rockfall and fracture events increases after periods of heavy rainfall or snowmelt. The rate of microseismicity and rockfall activity is also positively correlated with landslide displacement rates. External earthquakes did not influence the microseismic activity or the landslide movement, probably because the earthquake ground motion was too weak to trigger landslide events during the observation periods.

  7. Georgia-Armenia Transboarder seismicity studies

    Science.gov (United States)

    Godoladze, T.; Tvaradze, N.; Javakishvili, Z.; Elashvili, M.; Durgaryan, R.; Arakelyan, A.; Gevorgyan, M.

    2012-12-01

    In the presented study we performed Comprehensive seismic analyses for the Armenian-Georgian transboarder active seismic fault starting on Armenian territory, cutting the state boarder and having possibly northern termination on Adjara-Triealeti frontal structure in Georgia. In the scope of International projects: ISTC A-1418 "Open network of scientific Centers for mitigation risk of natural hazards in the Southern Caucasus and Central Asia" and NATO SfP- 983284 Project "Caucasus Seismic Emergency Response" in Akhalkalaki (Georgia) seismic center, Regional Summer school trainings and intensive filed investigations were conducted. Main goal was multidisciplinary study of the Javakheti fault structure and better understanding seismicity of the area. Young scientists from Turkey, Armenia, Azerbaijan and Georgia were participated in the deployment of temporal seismic network in order to monitor seisimity on the Javakheti highland and particularly delineate fault scarf and identify active seismic structures. In the scope of international collaboration the common seismic database has been created in the southern Caucasus and collected data from the field works is available now online. Javakheti highland, which is located in the central part of the Caucasus, belongs to the structure of the lesser Caucasus and represents a history of neotectonic volcanism existed in the area. Jasvakheti highland is seismicalu active region devastating from several severe earthquakes(1088, 1283, 1899…). Hypocenters located during analogue network were highly scattered and did not describe real pattern of seismicity of the highland. We relocated hypocenters of the region and improved local velocity model. The hypocenters derived from recently deployed local seismic network in the Javakheti highland, clearly identified seismically active structures. Fault plane solutions of analogue data of the Soviet times have been carefully analyzed and examined. Moment tensor inversion were preformed

  8. On-line Data Transmission, as Part of the Seismic Evaluation Process in the Buildings Field

    Science.gov (United States)

    Sorin Dragomir, Claudiu; Dobre, Daniela; Craifaleanu, Iolanda; Georgescu, Emil-Sever

    2017-12-01

    The thorough analytical modelling of seismic actions, of the structural system and of the foundation soil is essential for a proper dynamic analysis of a building. However, the validation of the used models should be made, whenever possible, with reference to results obtained from experimental investigations, building instrumentation and monitoring of vibrations generated by various seismic or non-seismic sources. In Romania, the permanent seismic instrumentation/monitoring of buildings is part of a special follow-up activity, performed in accordance with the P130/1999 code for the time monitoring of building behaviour and with the seismic design code, P100-2013. By using the state-of-the-art modern equipment (GeoSIG and Kinemetrics digital accelerographs) in the seismic network of the National Institute for Research and Development URBAN-INCERC, the instrumented buildings can be monitored remotely, with recorded data being sent to authorities or to research institutes in the field by a real-time data transmission system. The obtained records are processed, computing the Fourier amplitude spectra and the response spectra, and the modal parameters of buildings are determined. The paper presents some of the most important results of the institute in the field of building monitoring, focusing on the situation of some significant instrumented buildings located in different parts of the country. In addition, maps with data received from seismic stations after the occurrence of two recent Vrancea (Romania) earthquakes, showing the spatial distribution of ground accelerations, are presented, together with a comparative analysis, performed with reference to previous studies in the literature.

  9. 1993 Annual Report: San Francisco estuary regional monitoring program for trace substances

    Science.gov (United States)

    Thompson, B.; Lacy, Jessica; Hardin, Dane; Grovhaug, Tom; Taberski, K.; Jassby, Alan D.; Cloern, James E.; Caffrey, J.; Cole, B.; Schoellhamer, David H.

    1993-01-01

    This first annual report of the San Francisco Estuary Regional Monitoring Program contains the results of monitoring measurements made in 1993. Measurements of conventional water quality parameters and trace contaminant concentrations were made at 16 stations throughout the Estuary three times during the year: the wet period (March), during declining Delta outflow (May), and during the dry period (September). Water toxicity tests were conducted at 8 of those stations. Measurements of sediment quality and contaminant concentrations were made at the same 16 stations during the wet and dry sampling periods. Sediment toxicity was measured at 8 of those stations. Transplanted, bagged bivalve bioaccumulation and condition was measured at 11 stations during the wet and dry sampling periods.

  10. Site response assessment using borehole seismic records

    Energy Technology Data Exchange (ETDEWEB)

    Park, Donghee; Chang, Chunjoong; Choi, Weonhack [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    In regions with high seismic activity, such as Japan, the Western United States and Taiwan, borehole seismometers installed deep underground are used to monitor seismic activity during the course of seismic wave propagation at various depths and to study the stress changes due to earthquakes and analyze the connection to fault movements. The Korea Meteorological Administration (KMA) and the Korea Institute of Geology and Mining (KIGAM) have installed and are operating borehole seismometers at a depth of 70∼100 meters for the precise determination of epicenters. Also, Korea Hydro and Nuclear Power Co., Ltd. (KHNP) has installed and is operating 2 borehole seismic stations near Weolseong area to observe at a depth of 140 meters seismic activities connected to fault activity. KHNP plans to operate in the second half of 2014 a borehole seismic station for depths less than 300 and 600 meters in order to study the seismic response characteristics in deep strata. As a basic study for analyzing ground motion response characteristics at depths of about 300 to 600 meters in connection with the deep geological disposal of spent nuclear fuel, the present study examined the background noise response characteristics of the borehole seismic station operated by KHNP. In order to analyze the depth-dependent impact of seismic waves at deeper depths than in Korea, seismic data collected by Japan's KIK-net seismic stations were used and the seismic wave characteristics analyzed by size and depth. In order to analyze the borehole seismic observation data from the seismic station operated by KHNP, this study analyzed the background noise characteristics by using a probability density function.

  11. Site response assessment using borehole seismic records

    International Nuclear Information System (INIS)

    Park, Donghee; Chang, Chunjoong; Choi, Weonhack

    2014-01-01

    In regions with high seismic activity, such as Japan, the Western United States and Taiwan, borehole seismometers installed deep underground are used to monitor seismic activity during the course of seismic wave propagation at various depths and to study the stress changes due to earthquakes and analyze the connection to fault movements. The Korea Meteorological Administration (KMA) and the Korea Institute of Geology and Mining (KIGAM) have installed and are operating borehole seismometers at a depth of 70∼100 meters for the precise determination of epicenters. Also, Korea Hydro and Nuclear Power Co., Ltd. (KHNP) has installed and is operating 2 borehole seismic stations near Weolseong area to observe at a depth of 140 meters seismic activities connected to fault activity. KHNP plans to operate in the second half of 2014 a borehole seismic station for depths less than 300 and 600 meters in order to study the seismic response characteristics in deep strata. As a basic study for analyzing ground motion response characteristics at depths of about 300 to 600 meters in connection with the deep geological disposal of spent nuclear fuel, the present study examined the background noise response characteristics of the borehole seismic station operated by KHNP. In order to analyze the depth-dependent impact of seismic waves at deeper depths than in Korea, seismic data collected by Japan's KIK-net seismic stations were used and the seismic wave characteristics analyzed by size and depth. In order to analyze the borehole seismic observation data from the seismic station operated by KHNP, this study analyzed the background noise characteristics by using a probability density function

  12. Perspectives of Cross-Correlation in Seismic Monitoring at the International Data Centre

    Science.gov (United States)

    Bobrov, Dmitry; Kitov, Ivan; Zerbo, Lassina

    2014-03-01

    We demonstrate that several techniques based on waveform cross-correlation are able to significantly reduce the detection threshold of seismic sources worldwide and to improve the reliability of arrivals by a more accurate estimation of their defining parameters. A master event and the events it can find using waveform cross-correlation at array stations of the International Monitoring System (IMS) have to be close. For the purposes of the International Data Centre (IDC), one can use the spatial closeness of the master and slave events in order to construct a new automatic processing pipeline: all qualified arrivals detected using cross-correlation are associated with events matching the current IDC event definition criteria (EDC) in a local association procedure. Considering the repeating character of global seismicity, more than 90 % of events in the reviewed event bulletin (REB) can be built in this automatic processing. Due to the reduced detection threshold, waveform cross-correlation may increase the number of valid REB events by a factor of 1.5-2.0. Therefore, the new pipeline may produce a more comprehensive bulletin than the current pipeline—the goal of seismic monitoring. The analysts' experience with the cross correlation event list (XSEL) shows that the workload of interactive processing might be reduced by a factor of two or even more. Since cross-correlation produces a comprehensive list of detections for a given master event, no additional arrivals from primary stations are expected to be associated with the XSEL events. The number of false alarms, relative to the number of events rejected from the standard event list 3 (SEL3) in the current interactive processing—can also be reduced by the use of several powerful filters. The principal filter is the difference between the arrival times of the master and newly built events at three or more primary stations, which should lie in a narrow range of a few seconds. In this study, one event at a

  13. Active and passive electrical and seismic time-lapse monitoring of earthen embankments

    Science.gov (United States)

    Rittgers, Justin Bradley

    In this dissertation, I present research involving the application of active and passive geophysical data collection, data assimilation, and inverse modeling for the purpose of earthen embankment infrastructure assessment. Throughout the dissertation, I identify several data characteristics, and several challenges intrinsic to characterization and imaging of earthen embankments and anomalous seepage phenomena, from both a static and time-lapse geophysical monitoring perspective. I begin with the presentation of a field study conducted on a seeping earthen dam, involving static and independent inversions of active tomography data sets, and self-potential modeling of fluid flow within a confined aquifer. Additionally, I present results of active and passive time-lapse geophysical monitoring conducted during two meso-scale laboratory experiments involving the failure and self-healing of embankment filter materials via induced vertical cracking. Identified data signatures and trends, as well as 4D inversion results, are discussed as an underlying motivation for conducting subsequent research. Next, I present a new 4D acoustic emissions source localization algorithm that is applied to passive seismic monitoring data collected during a full-scale embankment failure test. Acoustic emissions localization results are then used to help spatially constrain 4D inversion of collocated self-potential monitoring data. I then turn to time-lapse joint inversion of active tomographic data sets applied to the characterization and monitoring of earthen embankments. Here, I develop a new technique for applying spatiotemporally varying structural joint inversion constraints. The new technique, referred to as Automatic Joint Constraints (AJC), is first demonstrated on a synthetic 2D joint model space, and is then applied to real geophysical monitoring data sets collected during a full-scale earthen embankment piping-failure test. Finally, I discuss some non-technical issues related to

  14. Retrospective application of the "guidelines for monitoring mining subsurface activities for hydrocarbons exploitation, re-injection and storage activities (ILG)": insights from the analysis of 2012-2013 Emilia seismic sequence at the Cavone oilfield pilot site (Italy)

    Science.gov (United States)

    Buttinelli, M.; Chiarabba, C.; Anselmi, M.; Pezzo, G.; Improta, L.; Antoncecchi, I.

    2017-12-01

    In recent years, the debate on the interactions between wastewater disposal and induced seismicity is increasingly drawing the attention of the scientific community, since injections by high-rate wells have been directly associated to occurrence of even large seismic events. In February 2014, the Italian Ministry of Economic Development (MiSE), within the Commission on Hydrocarbon and Mining Resources (CIRM), issued the "guidelines for monitoring mining subsurface activities for hydrocarbons exploitation, re-injection and storage activities (ILG)". The ILG represent the first action in italy aimed at keeping the safety standards mostly in areas where the underground resources exploitation can induce seismicity, ground deformations and pore pressure changes of the reservoirs. Such guidelines also launched a "traffic light" operating system, for the first time defining threshold values and activation levels for such monitored parameters. To test the ILG implications (in particular of the traffic light system) we select the Cavone oilfield (Northern Italy) as test case, since this area was interested during the 2012-2013 by the Emilia Seismic sequence. Moreover, the potential influence of the Cavone oilfield activities in the 2012 earthquake trigger was debated for a long time within the scientific and not contexts, highlighting the importance of seismic monitoring in hydrocarbons exploitation, re-injection and storage areas. In this work we apply the ILG retrospectively to the Cavone oilfield and surrounding areas, just for the seismicity parameter (pore pressure and ground deformation were not taken into account because out of the traffic light system). Since each seismicity catalogue available for the 2012 sequence represents a different setting of monitoring system, we carefully analyzed how the use of such catalogues impact on the overcoming of the threshold imposed by the ILG. In particular, we focus on the use of 1D and 3D velocity models developed ad hoc or

  15. Seismic network at the Olkiluoto site and microearthquake observations in 2002-2013

    International Nuclear Information System (INIS)

    Saari, J.; Malm, M.

    2014-05-01

    This report describes the structure and operation of Posiva's seismic network after the comprehensive upgrade performed in 2013 and presents a summary of its micro-earthquake observations in 2002 - 2013. Excavation of the underground rock characterisation facility called ONKALO started in 2004. Before that, in February 2002, Posiva Oy established a local seismic network of six stations on the island of Olkiluoto. The number of seismic stations has increased gradually and communication, hardware and software have developed in over ten years. The upgrade in 2013 included data transmission, the equipment in several seismic stations, the server responsible for the data processing in Olkiluoto and software applied in operation and analysis of observations. After the upgrade Posiva's permanent seismic network consists of 17 seismic stations and 21 triaxial sensors. The purpose of the microearthquake measurements at Olkiluoto is to improve understanding of the structure, behaviour and long term stability of the bedrock. The investigation area includes two target areas, of which the larger one, the seismic semi-regional area, includes the Olkiluoto island and its surroundings. The aim is to monitor explosions and tectonic earthquakes in regional scale inside that area. All the expected excavation induced events are assumed to occur inside the smaller target area, the seismic ONKALO block, which is a 2 km x 2 km x 2 km cube surrounding the ONKALO. An additional task of monitoring is related to safeguarding of the construction of the ONKALO.In the beginning the network monitored tectonic earthquakes in order to characterise the undisturbed baseline of seismicity in Olkiluoto. After August 2004, the network also monitored excavation induced seismicity. The first three excavation induced earthquakes were recorded in September 2005. At the moment the total number of excavation induced earthquakes is 17. During the same time about 10 000 excavation blasts were located. The

  16. Results of Monitoring at Olkiluoto in 2010. Rock Mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Lahti, M [ed.; Siren, T

    2011-12-15

    The rock mechanical monitoring at Olkiluoto concentrates on the assessment of potential tectonic movements and stability of the bedrock. The construction of ONKALO is not expected to induce large-scale movements of the rock blocks or affect the rate of isostatic uplift but the evaluation of any tectonic events is important for the safety assessment. The monitoring consists of seismic measurements, GPS measurements and precise levelling campaigns at Olkiluoto and vicinity and extensometer and convergence measurements carried out in ONKALO. Posiva established a local seismic network of six stations on the island of Olkiluoto in 2002. After that the number of seismic stations has increased gradually. In 2010 the permanent seismic network consists of 15 seismic stations and 20 triaxial sensors. The purpose of the microearthquake measurements at Olkiluoto is to improve understanding of the structure, behaviour and long term stability of the bedrock. The investigation area includes two target areas. The larger target area, called seismic semiregional area, covers the Olkiluoto Island and its surroundings. The purpose is to monitor explosions and tectonic earthquakes in regional scale inside that area. The smaller target area is called the seismic ONKALO block, which is a 2 km *2 km *2 km cube surrounding the ONKALO. It is assumed that all the expected excavation induced events occur within this volume. At the moment the seismic ONKALO block includes ten seismic stations. An additional task of monitoring is related to safeguarding of the ONKALO. This report gives the results of microseismic monitoring during 2010.

  17. Results of Monitoring at Olkiluoto in 2010. Rock Mechanics

    International Nuclear Information System (INIS)

    Lahti, M.; Siren, T.

    2011-12-01

    The rock mechanical monitoring at Olkiluoto concentrates on the assessment of potential tectonic movements and stability of the bedrock. The construction of ONKALO is not expected to induce large-scale movements of the rock blocks or affect the rate of isostatic uplift but the evaluation of any tectonic events is important for the safety assessment. The monitoring consists of seismic measurements, GPS measurements and precise levelling campaigns at Olkiluoto and vicinity and extensometer and convergence measurements carried out in ONKALO. Posiva established a local seismic network of six stations on the island of Olkiluoto in 2002. After that the number of seismic stations has increased gradually. In 2010 the permanent seismic network consists of 15 seismic stations and 20 triaxial sensors. The purpose of the microearthquake measurements at Olkiluoto is to improve understanding of the structure, behaviour and long term stability of the bedrock. The investigation area includes two target areas. The larger target area, called seismic semiregional area, covers the Olkiluoto Island and its surroundings. The purpose is to monitor explosions and tectonic earthquakes in regional scale inside that area. The smaller target area is called the seismic ONKALO block, which is a 2 km *2 km *2 km cube surrounding the ONKALO. It is assumed that all the expected excavation induced events occur within this volume. At the moment the seismic ONKALO block includes ten seismic stations. An additional task of monitoring is related to safeguarding of the ONKALO. This report gives the results of microseismic monitoring during 2010

  18. Development of a Real-Time GPS/Seismic Displacement Meter: Seismic Component and Communications

    Science.gov (United States)

    Vernon, F.; Bock, Y.

    2002-12-01

    In two abstracts, we report on an ongoing effort to develop an Integrated Real-Time GPS/Seismic System for Orange and Western Riverside Counties, California, spanning three major strike-slip faults in southern California (San Andreas, San Jacinto, and Elsinore) and significant populations and civilian infrastructure. The system relying on existing GPS and seismic networks will collect and analyze GPS and seismic data for the purpose of estimating and disseminating real-time positions and total ground displacements (dynamic, as well as static) covering all phases of the seismic cycle, from fractions of seconds to years. Besides its intrinsic scientific use as a real-time displacement meter (transducer), the GPS/Seismic System will be a powerful tool for local and state decision makers for risk mitigation, disaster management, and structural monitoring (dams, bridges, and buildings). Furthermore, the GPS/Seismic System will become an integral part of California's spatial referencing and positioning infrastructure, which is complicated by tectonic motion, seismic displacements, and land subsidence. This development is taking place under the umbrella of the California Spatial Reference Center, in partnership with local (The Counties, Riverside County Flood and Water Conservation District, Southern California Metropolitan Water District), state (Caltrans), and Federal agencies (NGS, NASA, USGS), the geophysics community (SCEC2/SCIGN), and the private sector (RBF Consulting). The project is leveraging considerable funding, resources, and research and development from SCIGN, CSRC and two NSF-funded IT projects at UCSD and SDSU: RoadNet (Real-Time Observatories, Applications and Data Management Network) and the High Performance Wireless Research and Education Network (HPWREN). These two projects are funded to develop both the wireless networks and the integrated, seamless, and transparent information management system that will deliver seismic, geodetic, oceanographic

  19. Quasi-seismic scaling processes in sea ice

    International Nuclear Information System (INIS)

    Chmel, A; Smirnov, V N

    2011-01-01

    The cracking, shearing and stick–slip motions in sea ice are similar to those in fracturing geostructures. In this work, the fracture-related, quasi-seismic activity in the Arctic ice pack was monitored during a large-scale ice cover fragmentation that occurred in March 2008. This fragmentation resulted in the formation of a two-dimensional 'fault' clearly seen in satellite images. The energy distribution in elastic waves detected by seismic tiltmeters follows the power law in pre- and post-faulting periods. The power exponent decreases as the 'catastrophe' approaches, and exhibits a trend to restore its initial value after the large-scale perturbation. The detected fracture events are correlated in time in the sense of a scaling relation. A quiescent period (very low quasi-seismic activity) was observed before 'faulting'. A close similarity in scaling characteristics between the crustal seismicity and quasi-seismic activity observed in the ice pack is discussed from the viewpoint of the role of heterogeneity in the behavior of large-scale critical systems

  20. Application of Double-Difference Seismic Tomography to Carbon Sequestration Monitoring at the Aneth Oil Field, Utah

    Directory of Open Access Journals (Sweden)

    Nino Ripepi

    2013-10-01

    Full Text Available Double difference seismic tomography was performed using travel time data from a carbon sequestration site at the Aneth oil field in southeast Utah as part of a Department of Energy initiative on monitoring, verification, and accounting (MVA of sequestered CO2. A total of 1211 seismic events were recorded from a borehole array consisting of 23 geophones. Artificial velocity models were created to determine the likelihood of detecting a CO2 plume with an unfavorable event and receiver arrangement. In tests involving artificially modeled ray paths through a velocity model, ideal event and receiver arrangements clearly show velocity reductions. When incorporating the unfavorable event and station locations from the Aneth Unit into synthetic models, the ability to detect velocity reductions is greatly diminished. Using the actual, recorded travel times, the Aneth Unit results show differences between a synthetic baseline model and the travel times obtained in the field, but the differences do not clearly indicate a region of injected CO2. MVA accuracy and precision may be improved through the use of a receiver array that provides more comprehensive ray path coverage, and a more detailed baseline velocity model.

  1. Seismic monitoring of effusive-explosive activity and large lava dome collapses during 2013-2015 at Volcán de Colima, Mexico

    Science.gov (United States)

    Arámbula-Mendoza, Raúl; Reyes-Dávila, Gabriel; Vargas-Bracamontes Dulce, M.; González-Amezcua, Miguel; Navarro-Ochoa, Carlos; Martínez-Fierros, Alejandro; Ramírez-Vázquez, Ariel

    2018-02-01

    Volcán de Colima, the most active volcano in Mexico, started a new eruptive cycle in January 2013. Since this date, the volcano has presented effusive and explosive activity. The beginning of the cycle was marked by a moderate Vulcanian explosion which had hyperbolical behavior in its precursory seismicity, possibly related to a shallow rupture process. Then, during the whole eruptive stage, the effusive activity was accompanied by low to moderate explosions. The explosions had energies mainly of 106 joules and were located between 0 and 1600 m below the crater, whereas the locations of tremor sources were found to be deeper, reaching up to 3800 m beneath the crater. Very-long-period signals (VLPs) have been observed with Vulcanian explosions that produce pyroclastic flows. A few number of volcano-tectonic events (VTs) were recognized during the studied period (2013-2015), indicating that the volcano is an open system. This was particularly evidenced in July 2015, when a new batch of magma rose rapidly without large precursors, only an accelerated increase in the number of rockfalls and associated RSEM. This event generated two large lava dome collapses with several pulses of material and pyroclastic flows that travelled up to 10.3 km from the summit. The seismic monitoring of Volcán de Colima is currently the only tool in real-time employed to assess the state of the volcanic activity. It is thus necessary to integrate new seismic methods as well as other geophysical monitoring techniques able to detect precursory signals of an impending hazardous event.

  2. Second Quarter Hanford Seismic Report for Fiscal Year 2010

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2010-06-30

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. The Hanford Seismic Network recorded 90 local earthquakes during the second quarter of FY 2010. Eighty-one of these earthquakes were detected in the vicinity of Wooded Island, located about eight miles north of Richland just west of the Columbia River. The Wooded Island events recorded this quarter were a continuation of the swarm events observed during the 2009 and 2010 fiscal years and reported in previous quarterly and annual reports (Rohay et al; 2009a, 2009b, 2009c, and 2010). Most of the events were considered minor (coda-length magnitude [Mc] less than 1.0) with only 1 event in the 2.0-3.0 range; the maximum magnitude event (3.0 Mc) occurred February 4, 2010 at depth 2.4 km. The average depth of the Wooded Island events during the quarter was 1.6 km with a maximum depth estimated at 3.5 km. This placed the Wooded Island events within the Columbia River Basalt Group (CRBG). The low magnitude of the Wooded Island events has made them undetectable to all but local area residents. The Hanford Strong Motion Accelerometer (SMA) network was triggered several times

  3. Dynamic evaluation of seismic hazard and risks based on the Unified Scaling Law for Earthquakes

    Science.gov (United States)

    Kossobokov, V. G.; Nekrasova, A.

    2016-12-01

    We continue applying the general concept of seismic risk analysis in a number of seismic regions worldwide by constructing seismic hazard maps based on the Unified Scaling Law for Earthquakes (USLE), i.e. log N(M,L) = A + B•(6 - M) + C•log L, where N(M,L) is the expected annual number of earthquakes of a certain magnitude M within an seismically prone area of linear dimension L, A characterizes the average annual rate of strong (M = 6) earthquakes, B determines the balance between magnitude ranges, and C estimates the fractal dimension of seismic locus in projection to the Earth surface. The parameters A, B, and C of USLE are used to assess, first, the expected maximum magnitude in a time interval at a seismically prone cell of a uniform grid that cover the region of interest, and then the corresponding expected ground shaking parameters. After a rigorous testing against the available seismic evidences in the past (e.g., the historically reported macro-seismic intensity or paleo data), such a seismic hazard map is used to generate maps of specific earthquake risks for population, cities, and infrastructures. The hazard maps for a given territory change dramatically, when the methodology is applied to a certain size moving time window, e.g. about a decade long for an intermediate-term regional assessment or exponentially increasing intervals for a daily local strong aftershock forecasting. The of dynamical seismic hazard and risks assessment is illustrated by applications to the territory of Greater Caucasus and Crimea and the two-year series of aftershocks of the 11 October 2008 Kurchaloy, Chechnya earthquake which case-history appears to be encouraging for further systematic testing as potential short-term forecasting tool.

  4. A Dynamic Programming Model for Optimizing Frequency of Time-Lapse Seismic Monitoring in Geological CO2 Storage

    Science.gov (United States)

    Bhattacharjya, D.; Mukerji, T.; Mascarenhas, O.; Weyant, J.

    2005-12-01

    Designing a cost-effective and reliable monitoring program is crucial to the success of any geological CO2 storage project. Effective design entails determining both, the optimal measurement modality, as well as the frequency of monitoring the site. Time-lapse seismic provides the best spatial coverage and resolution for reservoir monitoring. Initial results from Sleipner (Norway) have demonstrated effective monitoring of CO2 plume movement. However, time-lapse seismic is an expensive monitoring technique especially over the long term life of a storage project and should be used judiciously. We present a mathematical model based on dynamic programming that can be used to estimate site-specific optimal frequency of time-lapse surveys. The dynamics of the CO2 sequestration process are simplified and modeled as a four state Markov process with transition probabilities. The states are M: injected CO2 safely migrating within the target zone; L: leakage from the target zone to the adjacent geosphere; R: safe migration after recovery from leakage state; and S: seepage from geosphere to the biosphere. The states are observed only when a monitoring survey is performed. We assume that the system may go to state S only from state L. We also assume that once observed to be in state L, remedial measures are always taken to bring it back to state R. Remediation benefits are captured by calculating the expected penalty if CO2 seeped into the biosphere. There is a trade-off between the conflicting objectives of minimum discounted costs of performing the next time-lapse survey and minimum risk of seepage and its associated costly consequences. A survey performed earlier would spot the leakage earlier. Remediation methods would have been utilized earlier, resulting in savings in costs attributed to excessive seepage. On the other hand, there are also costs for the survey and remedial measures. The problem is solved numerically using Bellman's optimality principal of dynamic

  5. Seismic-reflection and ground penetrating radar for environmental site characterization. 1998 annual progress report

    International Nuclear Information System (INIS)

    Plumb, R.; Steeples, D.W.

    1998-01-01

    'The project''s goals are threefold: (1) to examine the complementary site-characterization capabilities of modern, three-component shallow-seismic techniques and ground-penetrating radar (GPR) methods at depths ranging from 2 to 8 m at an existing test site; (2) to demonstrate the usefulness of the two methods when used in concert to characterize, in three-dimensions, the cone of depression of a pumping well, which will serve as a proxy site for fluid-flow at an actual, polluted site; and (3) to use the site as an outdoor mesoscale laboratory to validate existing three-dimensional ground-penetrating radar and seismic-reflection computer models developed at the Univ. of Kansas. To do this, useful seismic and GPR data are being collected along the same line(s) and within the same depth range. The principal investigators selected a site in central Kansas as a primary location and, although the site itself is not environmentally sensitive, the location chosen offers particularly useful attributes for this research and will serve as a proxy site for areas that are contaminated. As part of an effort to evaluate the strengths of each method, the authors will repeat the seismic and GPR surveys on a seasonal basis to establish how the complementary information obtained varies over time. Because the water table fluctuates at this site on a seasonal basis, variations in the two types of data over time also can be observed. Such noninvasive in-situ methods of identifying and characterizing the hydrologic flow regimes at contaminated sites support the prospect of developing effective, cost-conscious cleanup strategies in the near future. As of the end of May 1998, the project is on schedule. The first field work was conducted using both of the geophysical survey methods in October of 1997, and the second field survey employed both methods in March of 1998. One of the stated tasks is to reoccupy the same survey line on a quarterly basis for two years to examine change in both

  6. Visualization of volumetric seismic data

    Science.gov (United States)

    Spickermann, Dela; Böttinger, Michael; Ashfaq Ahmed, Khawar; Gajewski, Dirk

    2015-04-01

    Mostly driven by demands of high quality subsurface imaging, highly specialized tools and methods have been developed to support the processing, visualization and interpretation of seismic data. 3D seismic data acquisition and 4D time-lapse seismic monitoring are well-established techniques in academia and industry, producing large amounts of data to be processed, visualized and interpreted. In this context, interactive 3D visualization methods proved to be valuable for the analysis of 3D seismic data cubes - especially for sedimentary environments with continuous horizons. In crystalline and hard rock environments, where hydraulic stimulation techniques may be applied to produce geothermal energy, interpretation of the seismic data is a more challenging problem. Instead of continuous reflection horizons, the imaging targets are often steep dipping faults, causing a lot of diffractions. Without further preprocessing these geological structures are often hidden behind the noise in the data. In this PICO presentation we will present a workflow consisting of data processing steps, which enhance the signal-to-noise ratio, followed by a visualization step based on the use the commercially available general purpose 3D visualization system Avizo. Specifically, we have used Avizo Earth, an extension to Avizo, which supports the import of seismic data in SEG-Y format and offers easy access to state-of-the-art 3D visualization methods at interactive frame rates, even for large seismic data cubes. In seismic interpretation using visualization, interactivity is a key requirement for understanding complex 3D structures. In order to enable an easy communication of the insights gained during the interactive visualization process, animations of the visualized data were created which support the spatial understanding of the data.

  7. Micromachined silicon seismic accelerometer development

    Energy Technology Data Exchange (ETDEWEB)

    Barron, C.C.; Fleming, J.G.; Montague, S. [and others

    1996-08-01

    Batch-fabricated silicon seismic transducers could revolutionize the discipline of seismic monitoring by providing inexpensive, easily deployable sensor arrays. Our ultimate goal is to fabricate seismic sensors with sensitivity and noise performance comparable to short-period seismometers in common use. We expect several phases of development will be required to accomplish that level of performance. Traditional silicon micromachining techniques are not ideally suited to the simultaneous fabrication of a large proof mass and soft suspension, such as one needs to achieve the extreme sensitivities required for seismic measurements. We have therefore developed a novel {open_quotes}mold{close_quotes} micromachining technology that promises to make larger proof masses (in the 1-10 mg range) possible. We have successfully integrated this micromolding capability with our surface-micromachining process, which enables the formation of soft suspension springs. Our calculations indicate that devices made in this new integrated technology will resolve down to at least sub-{mu}G signals, and may even approach the 10{sup -10} G/{radical}Hz acceleration levels found in the low-earth-noise model.

  8. Lunar seismicity, structure, and tectonics

    Science.gov (United States)

    Lammlein, D. R.; Latham, G. V.; Dorman, J.; Nakamura, Y.; Ewing, M.

    1974-01-01

    Natural seismic events have been detected by the long-period seismometers at Apollo stations 16, 14, 15, and 12 at annual rates of 3300, 1700, 800, and 700, respectively, with peak activity at 13- to 14-day intervals. The data are used to describe magnitudes, source characteristics, and periodic features of lunar seismicity. In a present model, the rigid lithosphere overlies an asthenosphere of reduced rigidity in which present-day partial melting is probable. Tidal deformation presumably leads to critical stress concentrations at the base of the lithosphere, where moonquakes are found to occur. The striking tidal periodicities in the pattern of moonquake occurrence and energy release suggest that tidal energy is the dominant source of energy released as moonquakes. Thus, tidal energy is dissipated by moonquakes in the lithosphere and probably by inelastic processes in the asthenosphere.

  9. Geophysical monitoring of the Purace volcano, Colombia

    Directory of Open Access Journals (Sweden)

    M. Arcila

    1996-06-01

    Full Text Available Located in the extreme northwestern part of the Los Coconucos volcanic chain in the Central Cordillera, the Purace is one of Colombia's most active volcanoes. Recent geological studies indicate an eruptive history of mainly explosive behavior which was marked most recently by a minor ash eruption in 1977. Techniques used to forecast the renewal of activity of volcanoes after a long period of quiescence include the monitoring of seismicity and ground deformation near the volcano. As a first approach toward the monitoring of the Purace volcano, Southwest Seismological Observatory (OSSO, located in the city of Cali, set up one seismic station in 1986. Beginning in June 1991, the seismic signals have also been transmitted to the Colombian Geological Survey (INGEOMINAS at the Volcanological and Seismological Observatory (OVS-UOP, located in the city of Popayan. Two more seismic stations were installed early in 1994 forming a minimum seismic network and a geodetic monitoring program for ground deformation studies was established and conducted by INGEOMINAS.

  10. Annual monitoring report for the Gunnison, Colorado, wetlands mitigation plan

    International Nuclear Information System (INIS)

    1995-10-01

    The US Department of Energy (DOE) administers the Uranium Mill Tailings Remedial Action (UMTRA) Project to clean up uranium mill tailings and other surface contamination at 24 abandoned uranium mill sites in 10 states. One of these abandoned mill sites is near the town of Gunnison, Colorado; surface remediation and the environmental impacts of remedial action are described in the Gunnison environmental assessment (EA) (DOE, 1992). Remedial action resulted in the elimination of 4.3 acres (ac) 1.7 hectares (ha) of wetlands and mitigation of this loss of wetlands is being accomplished through the enhance of 18.4 ac (7.5 ha) of riparian plant communities in six spring feed areas on Bureau of Land Management (BLM) land. The description of the impacted and mitigation wetlands is provided in the Mitigation and Monitoring Plan for Impacted Wetlands at the Gunnison UMTRA Project Site, Gunnison, Colorado (DOE, 1994), which is attached to the US Army corps of Engineers (USACE) Section 404 Permit. As part of the wetlands mitigation plan, the six mitigation wetlands were fenced in the fall of 1993 to exclude livestock grazing. Baseline of grazed conditions of the wetlands vegetation was determined during the summer of 1993 (DOE, 1994). A 5-year monitoring program of these six sites has been implemented to document the response of vegetation and wildlife to the exclusion of livestock. This annual monitoring report provides the results of the first year of the 5-year monitoring period

  11. Study on seismic reliability for foundation grounds and surrounding slopes of nuclear power plants. Proposal of evaluation methodology and integration of seismic reliability evaluation system

    International Nuclear Information System (INIS)

    Ohtori, Yasuki; Kanatani, Mamoru

    2006-01-01

    This paper proposes an evaluation methodology of annual probability of failure for soil structures subjected to earthquakes and integrates the analysis system for seismic reliability of soil structures. The method is based on margin analysis, that evaluates the ground motion level at which structure is damaged. First, ground motion index that is strongly correlated with damage or response of the specific structure, is selected. The ultimate strength in terms of selected ground motion index is then evaluated. Next, variation of soil properties is taken into account for the evaluation of seismic stability of structures. The variation of the safety factor (SF) is evaluated and then the variation is converted into the variation of the specific ground motion index. Finally, the fragility curve is developed and then the annual probability of failure is evaluated combined with seismic hazard curve. The system facilitates the assessment of seismic reliability. A generator of random numbers, dynamic analysis program and stability analysis program are incorporated into one package. Once we define a structural model, distribution of the soil properties, input ground motions and so forth, list of safety factors for each sliding line is obtained. Monte Carlo Simulation (MCS), Latin Hypercube Sampling (LHS), point estimation method (PEM) and first order second moment (FOSM) implemented in this system are also introduced. As numerical examples, a ground foundation and a surrounding slope are assessed using the proposed method and the integrated system. (author)

  12. Seismic activity in northeastern Brazill-new perspectives

    Science.gov (United States)

    Ferreira, J. M.; Do Nascimento, A. F.; Vilar, C. S.; Bezerra, F. H.; Assumpcao, M.; Berrocal, J.; Fuck, R. A.

    2007-05-01

    Northeastern Brazil is the most seismic active region in the country. Some earthquakes with magnitude above 5.0 and intensity VII MM associated with swam-like seismic activity lasting for many years are a serious social concern. Since the 1980's macroseismic and instrumental surveys have been carried out in this region and they are an important data archive which allows the composition of a reliable catalogue of seismic activity for this region. Among the many scientific results it was possible to identify the main seismogenic areas, obtain reliable hypocentres and focal mechanisms. As a consequence, it was possible also to analyse the relationship between seismicity and geological features. It was also possible to determined maximum horizontal stress direction for the region. An important induced seismic activity case has also been reported in the area as being a classical example of pore pressure diffusion triggering mechanism. The majority of the results were obtained using analogic data. Recently, a new research project is being conducted and will allow us to provide a regional scale monitoring with 6 broad-band stations and a new portable six station digital seismic network equipped with short- period sensors. Thus, with the continuous seismic activity in the area we trust that the results of this project will increase the present knowledge of seismic activity in northeastern Brazil.

  13. GFRP seismic strengthening and structural heath monitoring of Portage Creek Bridge concrete columns

    International Nuclear Information System (INIS)

    Huffman, S.; Bagchi, A.; Mufti, A.; Neale, K.; Sargent, D.; Rivera, E.

    2006-01-01

    Located in Victoria British Columbia (BC), Canada, the Portage Creek Bridge is a 124m long, three-span structure with a reinforced concrete piers and abutments on H piles. The bridge was designed prior to the introduction of current bridge seismic design codes and construction practices. Therefore it was not designed to resist the earthquake forces as required by today's standards. The bridge is on a route classified as a Municipal Disaster Route scheduled to be retrofitted to prevent collapse during a design seismic event, with a return period of 475 years (i.e., an event with 105 probability of exceedance in 50 years). Conventional materials and methods were used to retrofit most of the bridge. The dynamic analysis of the bridge predicted the two tall columns of Pier No. 1 will form plastic hinges under an earthquake resulting an additional shear to the short columns of Pier No. 2. A non-liner static pushover analysis indicated the short columns will not be able to form plastic hinges prior to failure in shear. The innovative solution of Fiber Reinforced Polymer wraps (FRPs) was chosen to strengthen the short columns for shear without increasing the moment capacity. The FRP wraps and the bridge were instrumented as one of 36 demonstration projects across Canada sponsored by ISIS (Intelligent Sensing for Innovative Structure) Canada, federally funded Network of Centers of Excellence, to access the performance of FRP and the use of FOS (Fiber Optic Sensors) for Structural Health Monitoring (SHM). The two columns of the bridge pier were strengthened with GFRP (Glass Fiber Reinforced Polymer) wraps with eight bi-directional rosette type strain gauges and four long gauge fiber optic sensors attached to the outer layer of the wraps. In addition, two 3-D Crossbow accelerometers are installed on the pier cap above the columns and a traffic web-cam mounted above the deck at the pier location. The data is collected through high sped internet line to an interactive web page

  14. Progress in using real-time GPS for seismic monitoring of the Cascadia megathrust

    Science.gov (United States)

    Szeliga, W. M.; Melbourne, T. I.; Santillan, V. M.; Scrivner, C.; Webb, F.

    2014-12-01

    We report on progress in our development of a comprehensive real-time GPS-based seismic monitoring system for the Cascadia subduction zone. This system is based on 1 Hz point position estimates computed in the ITRF08 reference frame. Convergence from phase and range observables to point position estimates is accelerated using a Kalman filter based, on-line stream editor. Positions are estimated using a short-arc approach and algorithms from JPL's GIPSY-OASIS software with satellite clock and orbit products from the International GNSS Service (IGS). The resulting positions show typical RMS scatter of 2.5 cm in the horizontal and 5 cm in the vertical with latencies below 2 seconds. To facilitate the use of these point position streams for applications such as seismic monitoring, we broadcast real-time positions and covariances using custom-built streaming software. This software is capable of buffering 24-hour streams for hundreds of stations and providing them through a REST-ful web interface. To demonstrate the power of this approach, we have developed a Java-based front-end that provides a real-time visual display of time-series, vector displacement, and contoured peak ground displacement. We have also implemented continuous estimation of finite fault slip along the Cascadia megathrust using an NIF approach. The resulting continuous slip distributions are combined with pre-computed tsunami Green's functions to generate real-time tsunami run-up estimates for the entire Cascadia coastal margin. This Java-based front-end is available for download through the PANGA website. We currently analyze 80 PBO and PANGA stations along the Cascadia margin and are gearing up to process all 400+ real-time stations operating in the Pacific Northwest, many of which are currently telemetered in real-time to CWU. These will serve as milestones towards our over-arching goal of extending our processing to include all of the available real-time streams from the Pacific rim. In addition

  15. A high-resolution ambient seismic noise model for Europe

    Science.gov (United States)

    Kraft, Toni

    2014-05-01

    In the past several years, geological energy technologies receive growing attention and have been initiated in or close to urban areas. Some of these technologies involve injecting fluids into the subsurface (e.g., oil and gas development, waste disposal, and geothermal energy development) and have been found or suspected to cause small to moderate sized earthquakes. These earthquakes, which may have gone unnoticed in the past when they occurred in remote sparsely populated areas, are now posing a considerable risk for the public acceptance of these technologies in urban areas. The permanent termination of the EGS project in Basel, Switzerland after a number of induced ML~3 (minor) earthquakes in 2006 is one prominent example. It is therefore essential to the future development and success of these geological energy technologies to develop strategies for managing induced seismicity and keeping the size of induced earthquake at a level that is acceptable to all stakeholders. Most guidelines and recommendations on induced seismicity published since the 1970ies conclude that an indispensable component of such a strategy is the establishment of seismic monitoring in an early stage of a project. This is because an appropriate seismic monitoring is the only way to detect and locate induced microearthquakes with sufficient certainty to develop an understanding of the seismic and geomechanical response of the reservoir to the geotechnical operation. In addition, seismic monitoring lays the foundation for the establishment of advanced traffic light systems and is therefore an important confidence building measure towards the local population and authorities. Due to this development an increasing number of seismic monitoring networks are being installed in densely populated areas with strongly heterogeneous, and unfavorable ambient noise conditions. This poses a major challenge on the network design process, which aims to find the sensor geometry that optimizes the

  16. Seismic wave interaction with underground cavities

    Science.gov (United States)

    Schneider, Felix M.; Esterhazy, Sofi; Perugia, Ilaria; Bokelmann, Götz

    2016-04-01

    Realization of the future Comprehensive Nuclear Test Ban Treaty (CTBT) will require ensuring its compliance, making the CTBT a prime example of forensic seismology. Following indications of a nuclear explosion obtained on the basis of the (IMS) monitoring network further evidence needs to be sought at the location of the suspicious event. For such an On-Site Inspection (OSI) at a possible nuclear test site the treaty lists several techniques that can be carried out by the inspection team, including aftershock monitoring and the conduction of active seismic surveys. While those techniques are already well established, a third group of methods labeled as "resonance seismometry" is less well defined and needs further elaboration. A prime structural target that is expected to be present as a remnant of an underground nuclear explosion is a cavity at the location and depth the bomb was fired. Originally "resonance seismometry" referred to resonant seismic emission of the cavity within the medium that could be stimulated by an incident seismic wave of the right frequency and observed as peaks in the spectrum of seismic stations in the vicinity of the cavity. However, it is not yet clear which are the conditions for which resonant emissions of the cavity could be observed. In order to define distance-, frequency- and amplitude ranges at which resonant emissions could be observed we study the interaction of seismic waves with underground cavities. As a generic model for possible resonances we use a spherical acoustic cavity in an elastic full-space. To solve the forward problem for the full elastic wave field around acoustic spherical inclusions, we implemented an analytical solution (Korneev, 1993). This yields the possibility of generating scattering cross-sections, amplitude spectrums and synthetic seismograms for plane incident waves. Here, we focus on the questions whether or not we can expect resonant responses in the wave field scattered from the cavity. We show

  17. Cetaceans and chelonians stranding coastal monitoring: fundamental tool to mitigate impacts of seismic survey activities; Projeto de monitoramento costeiro de encalhes de cetacoes e quelonios: ferramenta fundamental para mitigacao de impactos em atividades de pesquisa sismica

    Energy Technology Data Exchange (ETDEWEB)

    Amaro, Thays P.C.; Carloni, Giuliano G; Erber, Claudia; Sabino, Carla M [Ecologus Engenharia Consultiva, Rio de Janeiro, RJ (Brazil); Uller, George A [CGGVeritas, Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The objective of this research is to highlight PMVE implementation as a basic tool to conservation of marine cetaceans and turtles. These organisms are threaten to extinction and are pointed out as the organisms potentially affected by the seismic survey. The monitoring of the seismic survey activity realized in blocks BM-C-26 e BM-C-27 lasted six months embracing 200 km of beaches, from Rio de Janeiro North up to the Espirito Santo South coasts. It was realized by thirty four monitors, who covered a beach section daily registering the founded animal. 159 chelonians occurrence registers were realized and fifteen registers of cetaceans. The results gotten in PMVE give additional information for the evaluation of possible impacts of seismic survey's activities in registered species. Besides, these information contribute to increase technical scientific knowledge related to effect of seismic survey activity in marine biot at Campos Basin. (author)

  18. Cetaceans and chelonians stranding coastal monitoring: fundamental tool to mitigate impacts of seismic survey activities; Projeto de monitoramento costeiro de encalhes de cetacoes e quelonios: ferramenta fundamental para mitigacao de impactos em atividades de pesquisa sismica

    Energy Technology Data Exchange (ETDEWEB)

    Amaro, Thays P.C.; Carloni, Giuliano G.; Erber, Claudia; Sabino, Carla M. [Ecologus Engenharia Consultiva, Rio de Janeiro, RJ (Brazil); Uller, George A. [CGGVeritas, Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The objective of this research is to highlight PMVE implementation as a basic tool to conservation of marine cetaceans and turtles. These organisms are threaten to extinction and are pointed out as the organisms potentially affected by the seismic survey. The monitoring of the seismic survey activity realized in blocks BM-C-26 e BM-C-27 lasted six months embracing 200 km of beaches, from Rio de Janeiro North up to the Espirito Santo South coasts. It was realized by thirty four monitors, who covered a beach section daily registering the founded animal. 159 chelonians occurrence registers were realized and fifteen registers of cetaceans. The results gotten in PMVE give additional information for the evaluation of possible impacts of seismic survey's activities in registered species. Besides, these information contribute to increase technical scientific knowledge related to effect of seismic survey activity in marine biot at Campos Basin. (author)

  19. Seismic assessment of a site using the time series method

    International Nuclear Information System (INIS)

    Krutzik, N.J.; Rotaru, I.; Bobei, M.; Mingiuc, C.; Serban, V.; Androne, M.

    1997-01-01

    To increase the safety of a NPP located on a seismic site, the seismic acceleration level to which the NPP should be qualified must be as representative as possible for that site, with a conservative degree of safety but not too exaggerated. The consideration of the seismic events affecting the site as independent events and the use of statistic methods to define some safety levels with very low annual occurrence probability (10 -4 ) may lead to some exaggerations of the seismic safety level. The use of some very high value for the seismic acceleration imposed by the seismic safety levels required by the hazard analysis may lead to very costly technical solutions that can make the plant operation more difficult and increase maintenance costs. The considerations of seismic events as a time series with dependence among the events produced, may lead to a more representative assessment of a NPP site seismic activity and consequently to a prognosis on the seismic level values to which the NPP would be ensured throughout its life-span. That prognosis should consider the actual seismic activity (including small earthquakes in real time) of the focuses that affect the plant site. The paper proposes the applications of Autoregressive Time Series to issue a prognosis on the seismic activity of a focus and presents the analysis on Vrancea focus that affects NPP Cernavoda site, by this method. The paper also presents the manner to analyse the focus activity as per the new approach and it assesses the maximum seismic acceleration that may affect NPP Cernavoda throughout its life-span (∼ 30 years). Development and applications of new mathematical analysis method, both for long - and short - time intervals, may lead to important contributions in the process of foretelling the seismic events in the future. (authors)

  20. Monitoring Seismic Velocity Change to Explore the Earthquake Seismogenic Structures

    Science.gov (United States)

    Liao, C. F.; Wen, S.; Chen, C.

    2017-12-01

    Studying spatial-temporal variations of subsurface velocity structures is still a challenge work, but it can provide important information not only on geometry of a fault, but also the rheology change induced from the strong earthquake. In 1999, a disastrous Chi-Chi earthquake (Mw7.6; Chi-Chi EQ) occurred in central Taiwan and caused great impacts on Taiwan's society. Therefore, the major objective of this research is to investigate whether the rheology change of fault can be associated with seismogenic process before strong earthquake. In addition, after the strike of the Chi-Chi EQ, whether the subsurface velocity structure resumes to its steady state is another issue in this study. Therefore, for the above purpose, we have applied a 3D tomographic technique to obtain P- and S-wave velocity structures in central Taiwan using travel time data provided by the Central Weather Bureau (CWB). One major advantage of this method is that we can include out-of-network data to improve the resolution of velocity structures at deeper depths in our study area. The results show that the temporal variations of Vp are less significant than Vs (or Vp/Vs ratio), and Vp is not prominent perturbed before and after the occurrence of the Chi-Chi EQ. However, the Vs (or Vp/Vs ratio) structure in the source area demonstrates significant spatial-temporal difference before and after the mainshock. From the results, before the mainshock, Vs began to decrease (Vp/Vs ratio was increased as well) at the hanging wall of Chelungpu fault, which may be induced by the increasing density of microcracks and fluid. But in the vicinities of Chi-Chi Earthquake's source area, Vs was increasing (Vp/Vs ratio was also decreased). This phenomenon may be owing to the closing of cracks or migration of fluid. Due to the different physical characteristics around the source area, strong earthquake may be easily nucleated at the junctional zone. Our findings suggest that continuously monitoring the Vp and Vs (or

  1. Microseismic monitoring of CO2-injection-induced seismicity

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Huang, Lianjie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-03

    This presentation's Objectives: Studying moment tensors of microseismic sources; Imaging fracture zones and subsurface structure; Obtaining three-dimension seismic velocity model and improved moment tensors.

  2. The Danish air quality monitoring programme. Annual summary for 2012

    Energy Technology Data Exchange (ETDEWEB)

    Ellermann, T.; Klenoe Noejgaard, J.; Nordstroem, C.; Brandt, J.; Christensen, Jesper; Ketzel, M.; Jansen, S.; Massling, A.; Solvang Jensen, S.

    2013-10-15

    The air quality in Danish cities has been monitored continuously since 1982 within the Danish Air Quality Monitoring network. The aim is to follow the concentration levels of toxic pollutants in the urban atmosphere and to provide the necessary knowledge to assess the trends, to perform source apportionment, and to understand the governing processes that determine the level of air pollution in Denmark. In 2012 the air quality was measured in four Danish cities and at two background sites. In addition model calculations were carried out to supplement the measurements. At one street station (H.C. Andersens Boulevard) in Copenhagen NO{sub 2} was found in concentrations above EU limit values while NO{sub 2} levels in Odense, Aarhus and Aalborg were below the limit value. Model calculations indicate exceedances of NO{sub 2} limit values at several streets in Copenhagen. Annual averages of PM{sub 10} and PM{sub 2.5} were below limit values at all stations. The concentrations for most pollutants have been decreasing during the last decades. (Author)

  3. Seismic Search Engine: A distributed database for mining large scale seismic data

    Science.gov (United States)

    Liu, Y.; Vaidya, S.; Kuzma, H. A.

    2009-12-01

    The International Monitoring System (IMS) of the CTBTO collects terabytes worth of seismic measurements from many receiver stations situated around the earth with the goal of detecting underground nuclear testing events and distinguishing them from other benign, but more common events such as earthquakes and mine blasts. The International Data Center (IDC) processes and analyzes these measurements, as they are collected by the IMS, to summarize event detections in daily bulletins. Thereafter, the data measurements are archived into a large format database. Our proposed Seismic Search Engine (SSE) will facilitate a framework for data exploration of the seismic database as well as the development of seismic data mining algorithms. Analogous to GenBank, the annotated genetic sequence database maintained by NIH, through SSE, we intend to provide public access to seismic data and a set of processing and analysis tools, along with community-generated annotations and statistical models to help interpret the data. SSE will implement queries as user-defined functions composed from standard tools and models. Each query is compiled and executed over the database internally before reporting results back to the user. Since queries are expressed with standard tools and models, users can easily reproduce published results within this framework for peer-review and making metric comparisons. As an illustration, an example query is “what are the best receiver stations in East Asia for detecting events in the Middle East?” Evaluating this query involves listing all receiver stations in East Asia, characterizing known seismic events in that region, and constructing a profile for each receiver station to determine how effective its measurements are at predicting each event. The results of this query can be used to help prioritize how data is collected, identify defective instruments, and guide future sensor placements.

  4. Korea-Japan Joint Research on Development of Seismic Capacity Evaluation and Enhancement Technology Considering Near-Fault Effect (Final Report)

    Energy Technology Data Exchange (ETDEWEB)

    Choun, Young Sun; Choi, In Kil; Kim, Min Kyu [KAERI, Daejeon (Korea, Republic of); Ohtori, Yasuki; Shiba, Yoshiaki; Nakajima, Masato [Central Research Institute of Electric Power Industry, Tokyo (Japan)

    2006-12-15

    We compiled the results of the source analysis obtained under the collaboration research. Recent construction scheme for source modeling adopted in Japan is described, and strong-motion prediction is performed assuming the scenario earthquakes occurring in the Ulsan fault system, Korea. Finally Qs values beneath the Korean inland crust are estimated using strong-motion records in Korea from the 2005 Off West Fukuoka earthquake (M7.0). Probabilistic seismic hazard for four NPP sites in Korea are evaluated, in which the site specific attenuation equations with Index SA developed for NPP sites are adopted. Furthermore, the uniform hazard spectra for the four NPP sites in Korea are obtained by conducting the PSHA by using the attenuation equations with the index of response spectra and seismic source model cases with maximum weights. The supporting tools for seismic response analysis, the evaluation tool for evaluating annual probability of failure, and system analysis program were developed for the collaboration. The tools were verified with theoretical results, the results written in the reference document of EQESRA, and so forth. The system analysis program was applied for the investigation of the effect of improving the seismic capacity of equipment. We evaluated the annual probability of failure of isolated and non-isolated EDG at Younggwang NPP site as the results of the collaboration. The input ground motion for generating the seismic fragility curve was determined based on the seismic hazard analysis. It was found that the annual probability of failure of isolated EDG is lower than that of non-isolated EDG.

  5. Effect of daily noise exposure monitoring on annual rates of hearing loss in industrial workers.

    Science.gov (United States)

    Rabinowitz, Peter M; Galusha, Deron; Kirsche, Sharon R; Cullen, Mark R; Slade, Martin D; Dixon-Ernst, Christine

    2011-06-01

    Occupational noise-induced hearing loss (NIHL) is prevalent, yet evidence on the effectiveness of preventive interventions is lacking. The effectiveness of a new technology allowing workers to monitor daily at-ear noise exposure was analysed. Workers in the hearing conservation program of an aluminium smelter were recruited because of accelerated rates of hearing loss. The intervention consisted of daily monitoring of at-ear noise exposure and regular feedback on exposures from supervisors. The annual rate of change in high frequency hearing average at 2, 3 and 4 KHz before intervention (2000-2004) and 4 years after intervention (2006-2009) was determined. Annual rates of loss were compared between 78 intervention subjects and 234 controls in other company smelters matched for age, gender and high frequency hearing threshold level in 2005. Individuals monitoring daily noise exposure experienced on average no further worsening of high frequency hearing (average rate of hearing change at 2, 3 and 4 KHz = -0.5 dB/year). Matched controls also showed decelerating hearing loss, the difference in rates between the two groups being significant (p hearing loss showed a similar trend but the difference was not statistically significant (p = 0.06). Monitoring daily occupational noise exposure inside hearing protection with ongoing administrative feedback apparently reduces the risk of occupational NIHL in industrial workers. Longer follow-up of these workers will help determine the significance of the intervention effect. Intervention studies for the prevention of NIHL need to include appropriate control groups.

  6. Annual dose distribution of Nuclear Malaysia radiation workers for monitoring period from year 2003 to 2007

    International Nuclear Information System (INIS)

    Hairul Nizam Idris; Azimawati Ahmad; Norain Ab Rahman

    2008-08-01

    Estimation of radiation dose (external exposure) received by Nuklear Malaysia's radiation workers are measured by using personal dosimetry device which are provided by SSDL-Nuklear Malaysia. Dose assessment report for monitoring period from year 2003 - 2007 shows that almost all radiation workers received annual doses less than 20 mSv, only in very small percentage of radiation workers received annual doses between 20.1 to 50 mSv and none of the workers received doses higher than 50 mSv/year. Exposure dose below 20 mSv/year (the new annual dose limit to be used in Malaysia soon) could be fully achieved by improving the compliance with the safety regulations and enhancing the awareness about radiation safety among the workers. (Author)

  7. Environmental monitoring in the vicinity of the Savannah River Plant. Annual report for 1979

    International Nuclear Information System (INIS)

    1980-01-01

    An extensive surveillance program has been continuously maintained since 1951 (before SRP startup) to determine the concentrations of radionuclides in a 1200-square-mile area in the environs of the plant and the radiation exposure of the population resulting from SRP operations. The results of this monitoring program are reported annually to the public. This document summarizes the 1979 results

  8. Monitoring glacier albedo as a proxy to derive summer and annual surface mass balances from optical remote-sensing data

    Science.gov (United States)

    Davaze, Lucas; Rabatel, Antoine; Arnaud, Yves; Sirguey, Pascal; Six, Delphine; Letreguilly, Anne; Dumont, Marie

    2018-01-01

    Less than 0.25 % of the 250 000 glaciers inventoried in the Randolph Glacier Inventory (RGI V.5) are currently monitored with in situ measurements of surface mass balance. Increasing this archive is very challenging, especially using time-consuming methods based on in situ measurements, and complementary methods are required to quantify the surface mass balance of unmonitored glaciers. The current study relies on the so-called albedo method, based on the analysis of albedo maps retrieved from optical satellite imagery acquired since 2000 by the MODIS sensor, on board the TERRA satellite. Recent studies revealed substantial relationships between summer minimum glacier-wide surface albedo and annual surface mass balance, because this minimum surface albedo is directly related to the accumulation-area ratio and the equilibrium-line altitude. On the basis of 30 glaciers located in the French Alps where annual surface mass balance data are available, our study conducted on the period 2000-2015 confirms the robustness and reliability of the relationship between the summer minimum surface albedo and the annual surface mass balance. For the ablation season, the integrated summer surface albedo is significantly correlated with the summer surface mass balance of the six glaciers seasonally monitored. These results are promising to monitor both annual and summer glacier-wide surface mass balances of individual glaciers at a regional scale using optical satellite images. A sensitivity study on the computed cloud masks revealed a high confidence in the retrieved albedo maps, restricting the number of omission errors. Albedo retrieval artifacts have been detected for topographically incised glaciers, highlighting limitations in the shadow correction algorithm, although inter-annual comparisons are not affected by systematic errors.

  9. Results of monitoring at Olkiluoto in 2009. Rock mechanics

    International Nuclear Information System (INIS)

    Lahti, M.; Hakala, M.

    2010-09-01

    The rock mechanical monitoring at Olkiluoto concentrates on the assessment of potential tectonic movements and stability of the bedrock. The construction of ONKALO is not expected to induce large-scale movements of the rock blocks or affect the rate of isostatic uplift but the evaluation of any tectonic events is important for the safety assessment. The monitoring consists of seismic measurements, GPS measurements and precise levelling campaigns at Olkiluoto and vicinity and additionally extensometer and convergence measurements carried out in ONKALO. Posiva established a local seismic network of six stations on the island of Olkiluoto in 2002. The number of seismic stations has increased gradually being in 2009 altogether 14. The purpose of the microearthquake measurements at Olkiluoto is to improve understanding of the structure, behaviour and long term stability of the bedrock. The investigation area includes two target areas. The larger target area, called seismic semi-regional area, covers the Olkiluoto Island and its surroundings. The purpose is to monitor explosions and tectonic earthquakes in regional scale. The smaller target area is s called the seismic ONKALO block, which is a 2 km *2 km *2 km cube surrounding the ONKALO. All the expected excavation induced events assumingly occur within this volume. At the moment the seismic ONKALO block includes 10 seismic stations. An additional task of monitoring is related to safeguarding of the ONKALO. The seismic network has operated continuously in 2009 and during the year altogether 1256 events have been located in the Olkiluoto area. Most of them (1161) are explosions that occurred inside the seismic semi-regional area and especially inside the seismic ONKALO block (1135 events)

  10. Robust satellite techniques for remote sensing of seismically active areas

    Energy Technology Data Exchange (ETDEWEB)

    Tramutoli, V; Di Bello, G [Potenza Univ., Potenza (Italy). Dipt. di Ingegneria e Fisica dell' Ambiente; Pergola, N; Piscitelli, S [Consiglio Nazionale delle Ricerche, Istituto di Metodologie Avanzate di Analisi Ambientale, Potenza (Italy)

    2001-04-01

    Several satellite techniques have been recently proposed to remotely map seismically active zones and to monitor geophysical phenomena possibly associated with earthquakes. Even if questionable in terms of their effective applicability, all these techniques highlight as the major problem, still to be overcome, the high number of natural factors (independent of any seismic activity) whose variable contributions to the investigated signal can be so high as to completely mask (or simulate) the space-time anomaly possibly associated to the seismic event under study. A robust approach (RAT) has recently been proposed (and successfully applied in the field of the monitoring of the major environmental risks) which, better than other methods, seems suitable for recognising space-time anomalies in the satellite observation field also in the presence of highly variable contributions from atmospheric (transmittance), surface (emissivity and morphology) and observational (time/season, but also solar and satellite zenithal angles) conditions. This work presents the first preliminary results, based on several years of NOA A/AVHRR observations, regarding its extension to satellite monitoring of thermal anomalies possibly associated to seismically active areas of Southern Italy. The main merits of this approach are its robustness against the possibility of false events detection (specially important for this kind of applications) as well as its intrinsic exportability not only to different geographic areas but also to different satellite instrumental packages.

  11. Robust satellite techniques for remote sensing of seismically active areas

    Directory of Open Access Journals (Sweden)

    S. Piscitelli

    2001-06-01

    Full Text Available Several satellite techniques have been recently proposed to remotely map seismically active zones and to monitor geophysical phenomena possibly associated with earthquakes. Even if questionable in terms of their effective applicability, all these techniques highlight as the major problem, still to be overcome, the high number of natural factors (independent of any seismic activity whose variable contributions to the investigated signal can be so high as to completely mask (or simulate the space-time anomaly possibly associated to the seismic event under study. A robust approach (RAT has recently been proposed (and successfully applied in the field of the monitoring of the major environmental risks which, better than other methods, seems suitable for recognising space-time anomalies in the satellite observational field also in the presence of highly variable contributions from atmospheric (transmittance, surface (emissivity and morphology and observational (time/season, but also solar and satellite zenithal angles conditions.This work presents the first preliminary results, based on several years of NOAA/AVHRR observations, regarding its extension to satellite monitoring of thermal anomalies possibly associated to seismically active areas of Southern Italy. The main merits of this approach are its robustness against the possibility of false events detection (specially important for this kind of applications as well as its intrinsic exportability not only to different geographic areas but also to different satellite instrumental packages.

  12. Production induced subsidence and seismicity in the Groningen gas field - can it be managed?

    Science.gov (United States)

    de Waal, J. A.; Muntendam-Bos, A. G.; Roest, J. P. A.

    2015-11-01

    Reliable prediction of the induced subsidence resulting from gas production is important for a near sea level country like the Netherlands. Without the protection of dunes, dikes and pumping, large parts of the country would be flooded. The predicted sea-level rise from global warming increases the challenge to design proper mitigation measures. Water management problems from gas production induced subsidence can be prevented if measures to counter its adverse effects are taken timely. This requires reliable subsidence predictions, which is a major challenge. Since the 1960's a number of large, multi-decade gas production projects were started in the Netherlands. Extensive, well-documented subsidence prediction and monitoring technologies were applied. Nevertheless predicted subsidence at the end of the Groningen field production period (for the centre of the bowl) went from 100 cm in 1971 to 77 cm in 1973 and then to 30 cm in 1977. In 1984 the prediction went up again to 65 cm, down to 36 cm in 1990 and then via 38 cm (1995) and 42 cm (2005) to 47 cm in 2010 and 49 cm in 2013. Such changes can have large implications for the planning of water management measures. Until 1991, when the first event was registered, production induced seismicity was not observed nor expected for the Groningen field. Thereafter the number of observed events rose from 5 to 10 per year during the 1990's to well over a hundred in 2013. The anticipated maximum likely magnitude rose from an initial value of less than 3.0 to a value of 3.3 in 1993 and then to 3.9 in 2006. The strongest tremor to date occurred near the village of Huizinge in August 2012. It had a magnitude of 3.6, caused significant damage and triggered the regulator into an independent investigation. Late 2012 it became clear that significantly larger magnitudes cannot be excluded and that values up to magnitude 5.0 cannot be ruled out. As a consequence the regulator advised early 2013 to lower Groningen gas production by as

  13. Annual environmental monitoring report of the Lawrence Berkeley Laboratory, 1977

    International Nuclear Information System (INIS)

    Stephens, L.D.

    1978-03-01

    The data obtained from the Environmental Monitoring Program of the Lawrence Berkeley Laboratory for the Calendar year 1977 are described and general trends are discussed. The general trend of decreasing radiation levels at our site boundary due to accelerator operation during past years has leveled off during 1977 and in some areas shows a slight but not statistically significant increase as predicted in last year's summary. There were changes in both ion beams as well as current which have resulted in shifts in maxima at the monitoring stations. The gamma levels are once again reported as zero. There is only one period of detectable gamma radiation due to accelerator operation. The annual dose equivalent are reported from the environmental monitoring stations since they have been established. Radiation levels at the Olympus Gate Station have shown a steady decline since 1959 when estimates were first made. The Olympus Gate Station is in direct view of the Bevatron and most directly influenced by that accelerator. Over the past several years the atmospheric sampling program has, with the exception of occasional known releases, yielded data which are within the range of normal background. The surface water program always yields results within the range of normal background. As no substantial changes in the quantities of radionuclides used are anticipated, no changes are expected in these observations

  14. Emergency preparedness incident response and radiation monitoring in Finland. Annual report 1999

    International Nuclear Information System (INIS)

    Ristonmaa, S.

    2000-04-01

    The Radiation and Nuclear Safety Authority (STUK) publishes annually a report about STUK's preparedness measures. The report describes notifications received by STUK's on duty system and further measures carried out after receiving a message. In addition, the emergence exercises STUK participated in during the year are described. The radiation situation in Finland is continuously monitored. STUK is the authority who carries out a wide range of environmental measurements, sampling and sensitive laboratory analyses. The measurement results are presented in the form of tables and graphically. (editor)

  15. Emergency preparedness incident response and radiation monitoring in Finland. Annual report 1998

    International Nuclear Information System (INIS)

    Ristonmaa, S.

    1999-03-01

    The Radiation and Nuclear Safety Authority (STUK) publishes annually a report about STUK's preparedness measures. The report describes notifications received by STUK's on duty system and further measures carried out after receiving a message. In addition, the emergence exercises STUK participated in during the year are described. The radiation situation in Finland is continuously monitored. STUK is the authority who carries out a wide range of environmental measurements, sampling and sensitive laboratory analyses. The measurement results are presented in the form of tables and graphically. (editor)

  16. Seismic activity and environment protection in rock burst areas

    International Nuclear Information System (INIS)

    Travnicek, L.; Holecko, J.; Knotek, S.

    1993-01-01

    The significance is pointed out of seismic activity caused by mining activities in rock burst areas of the Ostrava-Karvinna district. The need is emphasized of the monitoring of the seismic activity at the Czech-Poland border as needed by the Two-party international committee for exploitation of coal supplies on the common border. The adverse effect of rock burst on the surface is documented by examples provided by the Polish party. The technique is described of investigating the DPB seismic polygon, allowing to evaluate the adverse impact of rock burst on the environment. (author) 1 fig., 8 refs

  17. Regional Seismic Threshold Monitoring

    National Research Council Canada - National Science Library

    Kvaerna, Tormod

    2006-01-01

    ... model to be used for predicting the travel times of regional phases. We have applied these attenuation relations to develop and assess a regional threshold monitoring scheme for selected subregions of the European Arctic...

  18. Relative seismic shaking vulnerability microzonation using an ...

    Indian Academy of Sciences (India)

    the relative seismic shaking vulnerability for built structures of different height categories within adjacent ..... monitor for possible changes in the microzonation results over time ..... The vehicle's ... A Garmin GPS 12XL was used to determine the.

  19. Fifteen years of seismic monitoring at the Las Tres Virgenes, BCS, geothermal field; Quince anos de monitoreo sismico en el campo geotermico de Las Tres Virgenes, BCS

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz Prieto, Irais; Lorenzo Pulido, Cecilia [Comision Federal de Electricidad, Gerencia de Proyectos Geotermoelectricos, Morelia, Michoacan (Mexico)]. E-mail: cecilia.lorenzo@cfe.gob.mx

    2009-07-15

    Seismic monitoring at the Las Tres Virgenes, BCS, geothermal field started in 1992 with an analog station of vertical components detecting a large number of earthquakes of varying magnitudes. In February 1993, a seismic network was installed, composed of six digital stations DR-2000-with S-6000 and S-5000 sensors and three registration channels (N-S, E-W and vertical). This was the basis for the development of a program to correct arrival-time data for P and S waves due to instrument drift. From January to April 1994 and May to August 1995, based on the 170 seismic events recorded, a velocity model was proposed. From December 1995 to July 1996, seismic data were processed and interpreted, and zones of occurrence were determined for events according to magnitude and the predominant noise in the field. From September 2003 to December 2004, 10 seismic stations (permanent and temporary) were installed and monitored and it was concluded the most active fault system was El Volcan. From September to December 2004, production wells LV-4 and LV-13 were acid-stimulated and seismic monitoring during this period allowed for the definition of two important seismic zones, both related to the El Volcan fault system and to injection well LV-8. After reopening these production wells, it was concluded an increase in seismic activity had occurred. From May to August 2006, information was compiled from the seismic network and it was concluded El Partido had became the most active fault system. Presently the seismic network in this field is composed of one SARA station and four K2 units. The SARA station is telemetrically connected to the base station. [Spanish] En el campo geotermico de Las Tres Virgenes, BCS, el monitoreo sismico empezo a partir de 1992 con una sola estacion analogica de registro vertical, la cual detecto una gran cantidad de temblores de distintas magnitudes. En febrero de 1993 se instalo una red sismica con seis estaciones digitales DR-2000 con sensores S-6000 y S

  20. Annual low-cost monitoring of a coastal site in Greece by an unmanned aerial vehicle

    Science.gov (United States)

    Hoffmeister, Dirk; Bareth, Georg

    2016-04-01

    Coastal areas are under permanent change and are also the result of past processes. These processes are for example sediment transport, accumulation and erosion by normal and extreme waves (storms or tsunamis). As about 23% of the World's population lives within a 100 km distance of coasts, knowledge about coastal processes is important, in particular for possible changes in the nearby future. The past devastating tsunami events demonstrated profoundly the high vulnerability of coastal areas. In order to estimate the different effects, coastal monitoring approaches are of interest. Several different methods exist in order to determine changes in the sedimentary budget and coastline configuration. In order to estimate constant annual changes, we have applied terrestrial laser scanning (TLS) in an annual monitoring approach (2009-2011). In 2014, we changed to an approach based on dense imaging and structure-from-motion, applying an unmanned aerial vehicle (UAV) in order to conduct an annual monitoring of a coastal site in western Greece. Therefore, a GoPro Hero 3+ and a Canon PowerShot S110 mounted on a DJI-Phantom 2 were used. All surveys were conducted in a manually structured image acquisition with a huge overlap. Ground control points (GCP) were measured by tachymetric surveying. This successful approach was repeated again in 2015 with the Canon camera. The measurements of 2014 were controlled by an additional TLS survey, which revealed the high accuracy and more suitable coverage for the UAV-based data. Likewise, the large picture datasets were artificially reduced in order to estimate the most efficient number of images for dense point cloud processing. In addition, also the number of GCPs was decreased for one dataset. Overall, high-resolution digital elevation models with a ground resolution of 10 mm and an equal accuracy were achieved with this low-cost equipment. The data reveals the slight changes on this selected site.

  1. Seismic instrumentation for nuclear power plants

    International Nuclear Information System (INIS)

    Senne Junior, M.

    1983-01-01

    A seismic instrumentation system used in Nuclear Power Plants to monitor the design parameters of systems, structures and components, needed to provide safety to those Plants, against the action of earthquakes is described. The instrumentation described is based on the nuclear standards in force. The minimum amount of sensors and other components used, as well as their general localization, is indicated. The operation of the instrumentation system as a whole and the handling of the recovered data are dealt with accordingly. The various devices used are not covered in detail, except for the accelerometer, which is the seismic instrumentation basic component. (Author) [pt

  2. Seismic restraint means for radiation detector

    International Nuclear Information System (INIS)

    Underwood, R.H.; Todt, W.H.

    1983-01-01

    Seismic restraint means are provided for mounting an elongated, generally cylindrical nuclear radiation detector within a tubular thimble in a nuclear reactor monitor system. The restraint means permits longitudinal movement of the radiation detector into and out of the thimble. Each restraint means comprises a split clamp ring and a plurality of symmetrically spaced support arms pivotally mounted on the clamp ring. Each support arm has spring bias means and thimble contact means eg insulating rollers whereby the contact means engage the thimble with a constant predetermined force which minimizes seismic vibration action on the radiation detector. (author)

  3. High-resolution seismic survey for the characterization of planned PIER-ICDP fluid-monitoring sites in the Eger Rift zone

    Science.gov (United States)

    Simon, H.; Buske, S.

    2017-12-01

    The Eger Rift zone (Czech Republic) is a intra-continental non-volcanic region and is characterized by outstanding geodynamic activities, which result in earthquake swarms and significant CO2 emanations. Because fluid-induced stress can trigger earthquake swarms, both natural phenomena are probably related to each other. The epicentres of the earthquake swarms cluster at the northern edge of the Cheb Basin. Although the location of the cluster coincides with the major Mariánské-Lázně Fault Zone (MLFZ) the strike of the focal plane indicates another fault zone, the N-S trending Počátky-Plesná Zone (PPZ). Isotopic analysis of the CO2-rich fluids revealed a significant portion of upper mantle derived components, hence a magmatic fluid source in the upper mantle was postulated. Because of these phenomena, the Eger Rift area is a unique site for interdisciplinary drilling programs to study the fluid-earthquake interaction. The ICDP project PIER (Probing of Intra-continental magmatic activity: drilling the Eger Rift) will set up an observatory, consisting of five monitoring boreholes. In preparation for the drilling, the goal of the seismic survey is the characterization of the projected fluid-monitoring drill site at the CO2 degassing mofette field near Hartoušov. This will be achieved by a 6 km long profile with dense source and receiver spacing. The W-E trending profile will cross the proposed drill site and the surface traces of MLFZ and PPZ. The outcome of the seismic survey will be a high-resolution structural image of potential reflectors related to these fault zones. This will be achieved by the application of advanced pre-stack depth migration methods and a detailed P-wave velocity distribution of the area obtained from first arrival tomography. During interpretation of the seismic data, a geoelectrical resistivity model, acquired along the same profile line, will provide important constraints, especially with respect to fluid pathways.

  4. High temporal resolution mapping of seismic noise sources using heterogeneous supercomputers

    Science.gov (United States)

    Gokhberg, Alexey; Ermert, Laura; Paitz, Patrick; Fichtner, Andreas

    2017-04-01

    Time- and space-dependent distribution of seismic noise sources is becoming a key ingredient of modern real-time monitoring of various geo-systems. Significant interest in seismic noise source maps with high temporal resolution (days) is expected to come from a number of domains, including natural resources exploration, analysis of active earthquake fault zones and volcanoes, as well as geothermal and hydrocarbon reservoir monitoring. Currently, knowledge of noise sources is insufficient for high-resolution subsurface monitoring applications. Near-real-time seismic data, as well as advanced imaging methods to constrain seismic noise sources have recently become available. These methods are based on the massive cross-correlation of seismic noise records from all available seismic stations in the region of interest and are therefore very computationally intensive. Heterogeneous massively parallel supercomputing systems introduced in the recent years combine conventional multi-core CPU with GPU accelerators and provide an opportunity for manifold increase and computing performance. Therefore, these systems represent an efficient platform for implementation of a noise source mapping solution. We present the first results of an ongoing research project conducted in collaboration with the Swiss National Supercomputing Centre (CSCS). The project aims at building a service that provides seismic noise source maps for Central Europe with high temporal resolution (days to few weeks depending on frequency and data availability). The service is hosted on the CSCS computing infrastructure; all computationally intensive processing is performed on the massively parallel heterogeneous supercomputer "Piz Daint". The solution architecture is based on the Application-as-a-Service concept in order to provide the interested external researchers the regular access to the noise source maps. The solution architecture includes the following sub-systems: (1) data acquisition responsible for

  5. Present-Day Mars' Seismicity Predicted From 3-D Thermal Evolution Models of Interior Dynamics

    Science.gov (United States)

    Plesa, A.-C.; Knapmeyer, M.; Golombek, M. P.; Breuer, D.; Grott, M.; Kawamura, T.; Lognonné, P.; Tosi, N.; Weber, R. C.

    2018-03-01

    The Interior Exploration using Seismic Investigations, Geodesy and Heat Transport mission, to be launched in 2018, will perform a comprehensive geophysical investigation of Mars in situ. The Seismic Experiment for Interior Structure package aims to detect global and regional seismic events and in turn offer constraints on core size, crustal thickness, and core, mantle, and crustal composition. In this study, we estimate the present-day amount and distribution of seismicity using 3-D numerical thermal evolution models of Mars, taking into account contributions from convective stresses as well as from stresses associated with cooling and planetary contraction. Defining the seismogenic lithosphere by an isotherm and assuming two end-member cases of 573 K and the 1073 K, we determine the seismogenic lithosphere thickness. Assuming a seismic efficiency between 0.025 and 1, this thickness is used to estimate the total annual seismic moment budget, and our models show values between 5.7 × 1016 and 3.9 × 1019 Nm.

  6. 2012 Groundwater Monitoring and Inspection Report Gnome-Coach, New Mexico, Site

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-03-01

    Gnome-Coach was the site of a 3-kiloton underground nuclear test conducted in 1961. Surface and subsurface contamination resulted from the underground nuclear testing, post-test drilling, and a groundwater tracer test performed at the site. Surface reclamation and remediation began after the underground testing. A Completion Report was prepared, and the State of New Mexico is currently proceeding with a conditional certificate of completion for the surface. Subsurface corrective action activities began in 1972 and have generally consisted of annual sampling and monitoring of wells near the site. In 2008, the annual site inspections were refined to include hydraulic head monitoring and collection of samples from groundwater monitoring wells onsite using the low-flow sampling method. These activities were conducted during this monitoring period on January 18, 2012. Analytical results from this sampling event indicate that concentrations of tritium, strontium-90, and cesium-137 were generally consistent with concentrations from historical sampling events. The exceptions are the decreases in concentrations of strontium-90 in samples from wells USGS-4 and USGS-8, which were more than 2.5 times lower than last year's results. Well USGS-1 provides water for livestock belonging to area ranchers, and a dedicated submersible pump cycles on and off to maintain a constant volume in a nearby water tank. Water levels in wells USGS-4 and USGS-8 respond to the on/off cycling of the water supply pumping from well USGS-1. Well LRL-7 was not sampled in January, and water levels were still increasing when the transducer data were downloaded in September. A seismic reflection survey was also conducted this year. The survey acquired approximately 13.9 miles of seismic reflection data along 7 profiles on and near the site. These activities were conducted from February 23 through March 10, 2012. The site roads, monitoring well heads, and the monument at surface ground zero were in

  7. 2012 Groundwater Monitoring and Inspection Report Gnome-Coach, New Mexico, Site

    International Nuclear Information System (INIS)

    2013-01-01

    Gnome-Coach was the site of a 3-kiloton underground nuclear test conducted in 1961. Surface and subsurface contamination resulted from the underground nuclear testing, post-test drilling, and a groundwater tracer test performed at the site. Surface reclamation and remediation began after the underground testing. A Completion Report was prepared, and the State of New Mexico is currently proceeding with a conditional certificate of completion for the surface. Subsurface corrective action activities began in 1972 and have generally consisted of annual sampling and monitoring of wells near the site. In 2008, the annual site inspections were refined to include hydraulic head monitoring and collection of samples from groundwater monitoring wells onsite using the low-flow sampling method. These activities were conducted during this monitoring period on January 18, 2012. Analytical results from this sampling event indicate that concentrations of tritium, strontium-90, and cesium-137 were generally consistent with concentrations from historical sampling events. The exceptions are the decreases in concentrations of strontium-90 in samples from wells USGS-4 and USGS-8, which were more than 2.5 times lower than last year's results. Well USGS-1 provides water for livestock belonging to area ranchers, and a dedicated submersible pump cycles on and off to maintain a constant volume in a nearby water tank. Water levels in wells USGS-4 and USGS-8 respond to the on/off cycling of the water supply pumping from well USGS-1. Well LRL-7 was not sampled in January, and water levels were still increasing when the transducer data were downloaded in September. A seismic reflection survey was also conducted this year. The survey acquired approximately 13.9 miles of seismic reflection data along 7 profiles on and near the site. These activities were conducted from February 23 through March 10, 2012. The site roads, monitoring well heads, and the monument at surface ground zero were in good

  8. The Lusi seismic experiment: An initial study to understand the effect of seismic activity to Lusi

    Energy Technology Data Exchange (ETDEWEB)

    Karyono, E-mail: karyonosu@gmail.com [Agency for Meteorology, Climatology and Geophysics (BMKG), Jakarta (Indonesia); OSLO University (Norway); Padjadjaran University (UNPAD), Bandung (Indonesia); Mazzini, Adriano; Sugiharto, Anton [OSLO University (Norway); Lupi, Matteo [ETH Zurich (Switzerland); Syafri, Ildrem [Padjadjaran University (UNPAD), Bandung (Indonesia); Masturyono,; Rudiyanto, Ariska; Pranata, Bayu; Muzli,; Widodo, Handi Sulistyo; Sudrajat, Ajat [Agency for Meteorology, Climatology and Geophysics (BMKG), Jakarta (Indonesia)

    2015-04-24

    The spectacular Lumpur Sidoarjo (Lusi) eruption started in northeast Java on the 29 of May 2006 following a M6.3 earthquake striking the island [1,2]. Initially, several gas and mud eruption sites appeared along the reactivated strike-slip Watukosek fault system [3] and within weeks several villages were submerged by boiling mud. The most prominent eruption site was named Lusi. The Lusi seismic experiment is a project aims to begin a detailed study of seismicity around the Lusi area. In this initial phase we deploy 30 seismometers strategically distributed in the area around Lusi and along the Watukosek fault zone that stretches between Lusi and the Arjuno Welirang (AW) complex. The purpose of the initial monitoring is to conduct a preliminary seismic campaign aiming to identify the occurrence and the location of local seismic events in east Java particularly beneath Lusi.This network will locate small event that may not be captured by the existing BMKG network. It will be crucial to design the second phase of the seismic experiment that will consist of a local earthquake tomography of the Lusi-AW region and spatial and temporal variations of vp/vs ratios. The goal of this study is to understand how the seismicity occurring along the Sunda subduction zone affects to the behavior of the Lusi eruption. Our study will also provide a large dataset for a qualitative analysis of earthquake triggering studies, earthquake-volcano and earthquake-earthquake interactions. In this study, we will extract Green’s functions from ambient seismic noise data in order to image the shallow subsurface structure beneath LUSI area. The waveform cross-correlation technique will be apply to all of recordings of ambient seismic noise at 30 seismographic stations around the LUSI area. We use the dispersive behaviour of the retrieved Rayleigh waves to infer velocity structures in the shallow subsurface.

  9. General discrimination technique to determine between earthquake and nuclear test with seismic data

    International Nuclear Information System (INIS)

    Bashillah Baharuddin; Alawiah Musa; Roslan Mohd Ali

    2007-01-01

    The Comprehensive Nuclear-Test-Ban Treaty (CTBT) was developed to ban of any nuclear weapon test explosion moreover will restrict the development and qualitative improvement of nuclear weapons and end the development of advanced new types of these weapons. The Treaty provides for a comprehensive global verification regime, which includes an International Monitoring System (IMS). The IMS comprises a network of 321 monitoring stations and 16 radionuclide laboratories that monitor the Earth for evidence of nuclear explosions, which cover underground, underwater and atmosphere environments. Presently, Malaysia receives seismic, infrasound, hydroacoustic and radionuclide data from the International Data Centre (IDC) of the CTBT. In order to maximise the use of the data for the purposes of the CTBT, the Malaysian Nuclear Agency is developing capability to analyse the data in order to detect nuclear weapon test, with an initial focus on the seismic data. Through the CTBT IMS, seismic data is constantly being obtained to monitor and detect nuclear explosions. However, in the process, other natural and man-made activities that generate seismic waves, especially earthquakes and large man-made explosions, are also detectable through the IMS, and need to be differentiated and discriminated before any nuclear explosions can be identified. The detection capability by using seismological methods was proven through simulated explosion tests at selected nuclear weapon test sites. This is supported by data previously collected from a total of 2089 nuclear weapon tests that have been carried out globally, out of which 1567 were underground, 514 in the atmosphere, including outer space, and 8 underwater. The discrimination of seismic data to detect nuclear explosions from natural earthquake and explosions can be undertaken through the identification of the epicentre location, hypocentre depth, magnitude and short-period discrimination of the seismic events. (Author)

  10. Summary of annual site Environmental Monitoring Reports, January-December 1983

    International Nuclear Information System (INIS)

    Hawley, K.A.; Washburn, D.K.

    1984-01-01

    This summary presents information obtained from 35 annual Environmental Monitoring Reports submitted to the US Department of Energy (DOE). These reports, covering calendar year 1983, contain data on 44 separate sites where work is conducted for DOE. The purpose of each document is to provide an assessment of the overall potential impact of DOE operations on people and the environment in the vicinity of each site. This summary document provides a general overview of the sites, their operations, and their potential impact on the environment, based on data in those annual reports. During the 1983 calendar year, estimated potential radiation exposures to offsite populations from Department of Energy nuclear facilities were consistently within DOE limits. The maximum reported invidual whole-body dose to a member of the public from any DOE nuclear site was calculated to be 34 mrem for the year. The combined population dose estimates for individuals living within an 80-km (50-mile) radius of these sites in 1983 was about 300 person-rem from DOE nuclear operations. Releases of nonradioactive pollutants in DOE nuclear or nonnuclear site effluents were generally within EPA regulatory and/or state limits. Several facilities had pollution abatement projects planned or under construction to ensure compliance with regulations. 8 figures, 9 tables

  11. High Voltage Seismic Generator

    Science.gov (United States)

    Bogacz, Adrian; Pala, Damian; Knafel, Marcin

    2015-04-01

    This contribution describes the preliminary result of annual cooperation of three student research groups from AGH UST in Krakow, Poland. The aim of this cooperation was to develop and construct a high voltage seismic wave generator. Constructed device uses a high-energy electrical discharge to generate seismic wave in ground. This type of device can be applied in several different methods of seismic measurement, but because of its limited power it is mainly dedicated for engineering geophysics. The source operates on a basic physical principles. The energy is stored in capacitor bank, which is charged by two stage low to high voltage converter. Stored energy is then released in very short time through high voltage thyristor in spark gap. The whole appliance is powered from li-ion battery and controlled by ATmega microcontroller. It is possible to construct larger and more powerful device. In this contribution the structure of device with technical specifications is resented. As a part of the investigation the prototype was built and series of experiments conducted. System parameter was measured, on this basis specification of elements for the final device were chosen. First stage of the project was successful. It was possible to efficiently generate seismic waves with constructed device. Then the field test was conducted. Spark gap wasplaced in shallowborehole(0.5 m) filled with salt water. Geophones were placed on the ground in straight line. The comparison of signal registered with hammer source and sparker source was made. The results of the test measurements are presented and discussed. Analysis of the collected data shows that characteristic of generated seismic signal is very promising, thus confirms possibility of practical application of the new high voltage generator. The biggest advantage of presented device after signal characteristics is its size which is 0.5 x 0.25 x 0.2 m and weight approximately 7 kg. This features with small li-ion battery makes

  12. Ambient Seismic Noise Interferometry on the Island of Hawai`i

    Science.gov (United States)

    Ballmer, Silke

    Ambient seismic noise interferometry has been successfully applied in a variety of tectonic settings to gain information about the subsurface. As a passive seismic technique, it extracts the coherent part of ambient seismic noise in-between pairs of seismic receivers. Measurements of subtle temporal changes in seismic velocities, and high-resolution tomographic imaging are then possible - two applications of particular interest for volcano monitoring. Promising results from other volcanic settings motivate its application in Hawai'i, with this work being the first to explore its potential. The dataset used for this purpose was recorded by the Hawaiian Volcano Observatory's permanent seismic network on the Island of Hawai'i. It spans 2.5 years from 5/2007 to 12/2009 and covers two distinct sources of volcanic tremor. After applying standard processing for ambient seismic noise interferometry, we find that volcanic tremor strongly affects the extracted noise information not only close to the tremor source, but unexpectedly, throughout the island-wide network. Besides demonstrating how this long-range observability of volcanic tremor can be used to monitor volcanic activity in the absence of a dense seismic array, our results suggest that care must be taken when applying ambient seismic noise interferometry in volcanic settings. In a second step, we thus exclude days that show signs of volcanic tremor, reducing the dataset to three months, and perform ambient seismic noise tomography. The resulting two-dimensional Rayleigh wave group velocity maps for 0.1 - 0.9 Hz compare very well with images from previous travel time tomography, both, for the main volcanic structures at low frequencies as well as for smaller features at mid-to-high frequencies - a remarkable observation for the temporally truncated dataset. These robust results suggest that ambient seismic noise tomography in Hawai'i is suitable 1) to provide a three-dimensional S-wave model for the volcanoes and 2

  13. Seventeen Years of Geodynamic Monitoring of a Seismic Gap that was Partially Filled by the Nicoya, Costa Rica, Mw=7.6 Earthquake of September 5th, 2012

    Science.gov (United States)

    Protti, M.; Gonzalez, V. M.; Schwartz, S. Y.; Dixon, T. H.; Newman, A. V.; Lundgren, P.; Kaneda, Y.; Kato, T.

    2013-05-01

    Nicoya is a segment of the subduction zone at the Middle American Trench, where the Cocos plate subducts under the Caribbean plate. Nicoya had large earthquakes (Mw>7) in 1853, 1900, 1950 and in 2012. The September 5th, 2012, Mw=7.6, Nicoya earthquake ruptured mainly the deeper portion of the seismogenic zone. Pre, co and post earthquake deformation data suggests that the shallow portion of the plate interface might still be locked. Since 1995 a geodynamic control network has been built up over a around what was defined as the Nicoya seismic gap. The aim of this network was to map and understand the seismogenic zone, as well as to record deformation changes at different stages within the earthquake cycle. The Nicoya peninsula sits on top of the seismogenic zone allowing monitoring crustal deformation in the near field at a much lower cost than on most subduction zones in the world. With the goals of finding the upper and lower limits of the seismogenic zone and for documenting the evolution of loading and stress release along this seismic gap, an international effort involving several institutions from Costa Rica, the United States and Japan has been carried out in the region. This effort involved the installation of temporary and permanent seismic and geodetic networks. We will be presenting the history and results of these networks, including co-seismic records from the September 5th, 2012 Nicoya earthquake and will emphasize on the importance of continuous monitoring for the understanding of subduction zone processes.

  14. First annual report RCRA post-closure monitoring and inspections for the U-3fi waste unit. Final report, July 1995--October 1996

    International Nuclear Information System (INIS)

    Emer, D.F.

    1997-01-01

    This annual Neutron Soil Moisture Monitoring report provides an analysis and summary for site inspections, meteorological information, and neutron soil moisture monitoring data obtained at the U-3fi RCRA Unit, located in Area 3 of the Nevada Site (NTS), Nye County, Nevada during the July 1995 to October 1996 period. Inspections of the U-3fi RCRA Unit are conducted to determine and document the physical condition of the covers, facilities, and any unusual conditions that could impact the proper operation of the waste unit closure. The objective of the neutron logging is to monitor the soil moisture conditions along the 420 ft ER3-3 borehole and detect changes that may be indicative of moisture movement in the regulated interval. This is the first annual report on the U-3fi closure and includes the first year baseline monitoring data as well as one quarter of compliance monitoring data

  15. Seismic verification of underground explosions

    International Nuclear Information System (INIS)

    Glenn, L.A.

    1986-01-01

    The principal tools for monitoring compliance with a comprehensive test ban treaty (CTBT), prohibiting all testing of nuclear weapons, are seismic networks and surveillance satellites. On-site inspections might also be required to resolve ambiguous events. The critical element of the monitoring system is the network of seismic stations, and in particular the in-country station. Internal stations provide much more useful data than do stations outside the borders of testing nations. For large events that are not eliminated by depth or location, one of the most useful discriminants is based on the ratio of surface-wave to body-wave magnitudes (M /sub s/ :m /sub b/ ). If an explosion and an earthquake have the same body-wave magnitude, the surface-wave magnitude for the earthquake is generally larger. It has yet to be proven that M /sub s/ :m /sub b/ is useful at low magnitudes, expecially when explosions are set off in long tunnels or odd-shaped cavities. A number of other promising regional discriminants have been suggested. Evasion opportunities and cavity decoupling are discussed

  16. Production induced subsidence and seismicity in the Groningen gas field – can it be managed?

    Directory of Open Access Journals (Sweden)

    J. A. de Waal

    2015-11-01

    Full Text Available Reliable prediction of the induced subsidence resulting from gas production is important for a near sea level country like the Netherlands. Without the protection of dunes, dikes and pumping, large parts of the country would be flooded. The predicted sea-level rise from global warming increases the challenge to design proper mitigation measures. Water management problems from gas production induced subsidence can be prevented if measures to counter its adverse effects are taken timely. This requires reliable subsidence predictions, which is a major challenge. Since the 1960's a number of large, multi-decade gas production projects were started in the Netherlands. Extensive, well-documented subsidence prediction and monitoring technologies were applied. Nevertheless predicted subsidence at the end of the Groningen field production period (for the centre of the bowl went from 100 cm in 1971 to 77 cm in 1973 and then to 30 cm in 1977. In 1984 the prediction went up again to 65 cm, down to 36 cm in 1990 and then via 38 cm (1995 and 42 cm (2005 to 47 cm in 2010 and 49 cm in 2013. Such changes can have large implications for the planning of water management measures. Until 1991, when the first event was registered, production induced seismicity was not observed nor expected for the Groningen field. Thereafter the number of observed events rose from 5 to 10 per year during the 1990's to well over a hundred in 2013. The anticipated maximum likely magnitude rose from an initial value of less than 3.0 to a value of 3.3 in 1993 and then to 3.9 in 2006. The strongest tremor to date occurred near the village of Huizinge in August 2012. It had a magnitude of 3.6, caused significant damage and triggered the regulator into an independent investigation. Late 2012 it became clear that significantly larger magnitudes cannot be excluded and that values up to magnitude 5.0 cannot be ruled out. As a consequence the regulator advised early 2013 to lower Groningen gas

  17. Oklahoma seismic network

    International Nuclear Information System (INIS)

    Luza, K.V.; Lawson, J.E. Jr.; Univ. of Oklahoma, Norman, OK

    1993-07-01

    The US Nuclear Regulatory Commission has established rigorous guidelines that must be adhered to before a permit to construct a nuclear-power plant is granted to an applicant. Local as well as regional seismicity and structural relationships play an integral role in the final design criteria for nuclear power plants. The existing historical record of seismicity is inadequate in a number of areas of the Midcontinent region because of the lack of instrumentation and (or) the sensitivity of the instruments deployed to monitor earthquake events. The Nemaha Uplift/Midcontinent Geophysical Anomaly is one of five principal areas east of the Rocky Mountain front that has a moderately high seismic-risk classification. The Nemaha uplift, which is common to the states of Oklahoma, Kansas, and Nebraska, is approximately 415 miles long and 12-14 miles wide. The Midcontinent Geophysical Anomaly extends southward from Minnesota across Iowa and the southeastern corner of Nebraska and probably terminates in central Kansas. A number of moderate-sized earthquakes--magnitude 5 or greater--have occurred along or west of the Nemaha uplift. The Oklahoma Geological Survey, in cooperation with the geological surveys of Kansas, Nebraska, and Iowa, conducted a 5-year investigation of the seismicity and tectonic relationships of the Nemaha uplift and associated geologic features in the Midcontinent. This investigation was intended to provide data to be used to design nuclear-power plants. However, the information is also being used to design better large-scale structures, such as dams and high-use buildings, and to provide the necessary data to evaluate earthquake-insurance rates in the Midcontinent

  18. Pre-seismic anomalies from optical satellite observations: a review

    Science.gov (United States)

    Jiao, Zhong-Hu; Zhao, Jing; Shan, Xinjian

    2018-04-01

    Detecting various anomalies using optical satellite data prior to strong earthquakes is key to understanding and forecasting earthquake activities because of its recognition of thermal-radiation-related phenomena in seismic preparation phases. Data from satellite observations serve as a powerful tool in monitoring earthquake preparation areas at a global scale and in a nearly real-time manner. Over the past several decades, many new different data sources have been utilized in this field, and progressive anomaly detection approaches have been developed. This paper reviews the progress and development of pre-seismic anomaly detection technology in this decade. First, precursor parameters, including parameters from the top of the atmosphere, in the atmosphere, and on the Earth's surface, are stated and discussed. Second, different anomaly detection methods, which are used to extract anomalous signals that probably indicate future seismic events, are presented. Finally, certain critical problems with the current research are highlighted, and new developing trends and perspectives for future work are discussed. The development of Earth observation satellites and anomaly detection algorithms can enrich available information sources, provide advanced tools for multilevel earthquake monitoring, and improve short- and medium-term forecasting, which play a large and growing role in pre-seismic anomaly detection research.

  19. Protect Anadromous Salmonids in the Mainstem Corridor, Monitoring and Evaluation, Annual Report 200-2001.

    Energy Technology Data Exchange (ETDEWEB)

    Vigg, Steven; Johnson, John

    2002-02-01

    In this annual Monitoring & Evaluation (M&E) report to the Bonneville Power Administration (BPA), we summarize significant activities and performance measures resultant from enhanced protection by Columbia River Inter-Tribal Fisheries Enforcement (CRITFE) in the mainstem corridor (BPA Project 2000-056). This report covers the Fiscal Year (FY) 2000 performance period -- May 15, 2000 to May 14, 2001. Quarterly progress reports have previously been submitted to BPA and are posted on the M&E Web site (www.Eco-Law.net) -- for the time period April-December 2000 (Vigg 2000b,c,d) and for the period January-June 2001 (Vigg 2001a,b). We also present comprehensive data representing the first quarter of year 2000 in this report for a pre-project comparison. In addition, we have analyzed specific annual enforcement statistics to evaluate trends during the baseline period 1996-2000. Additional statistics and more years of comprehensive baseline data are now being summarized, and will be presented in future M&E annual reports--to provide a longer time series for evaluation of trends in input, output and outcome performance standards.

  20. The ADN project : an integrated seismic monitoring of the northern Ecuadorian subduction

    Science.gov (United States)

    Nocquet, Jean-Mathieu; Yepes, Hugo; Vallee, Martin; Mothes, Patricia; Regnier, Marc; Segovia, Monica; Font, Yvonne; Vaca, Sandro; Bethoux, Nicole; Ramos, Cristina

    2010-05-01

    The subduction of the Nazca plate beneath South America has caused one of the largest megathrust earthquake sequence during the XXth century with three M>7.7 earthquakes that followed the great 1906 (Mw = 8.8) event. Better understanding the processes leading to the occurrence of large subduction earthquakes requires to monitor the ground motion over a large range of frequencies. We present a new network (ADN) developed under a collaboration between the IRD-GeoAzur (Nice, France) and the IG-EPN (Quito, Ecuador). Each station of the ADN network includes a GPS recording at 5 Hz, an accelerometer and a broadband seismometer. CGPS data will quantify the secular deformation induced by elastic locking along the subduction interface, enabling a detailed modelling of the coupling distribution. CGPS will be used to monitor any transient deformation induced by Episodic Slip Event along the subduction, together with broadband seismometers that can detect any tremors or seismic signatures that may accompany them. In case of any significant earthquake, 5 Hz GPS and accelerometer will provide near field data for earthquake source detailed study. Finally, the broadband seismometers will be used for study of the microseismicity and structure of the subduction zone. The network includes 9 stations, operating since 2008 and covering the coastal area from latitude 1.5°S to the Colombian border. In this poster, we will present preliminary assessment of the data, first hypocenters location, magnitude and focal mechanism determination, as well as results about an episodic slip event detected in winter 2008.

  1. Peak Ground Velocities for Seismic Events at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    K. Coppersmith; R. Quittmeyer

    2005-01-01

    This report describes a scientific analysis to bound credible horizontal peak ground velocities (PGV) for the repository waste emplacement level at Yucca Mountain. Results are presented as a probability distribution for horizontal PGV to represent uncertainties in the analysis. The analysis also combines the bound to horizontal PGV with results of ground motion site-response modeling (BSC 2004 [DIRS 170027]) to develop a composite hazard curve for horizontal PGV at the waste emplacement level. This result provides input to an abstraction of seismic consequences (BSC 2004 [DIRS 169183]). The seismic consequence abstraction, in turn, defines the input data and computational algorithms for the seismic scenario class of the total system performance assessment (TSPA). Planning for the analysis is documented in Technical Work Plan TWP-MGR-GS-000001 (BSC 2004 [DIRS 171850]). The bound on horizontal PGV at the repository waste emplacement level developed in this analysis complements ground motions developed on the basis of PSHA results. In the PSHA, ground motion experts characterized the epistemic uncertainty and aleatory variability in their ground motion interpretations. To characterize the aleatory variability they used unbounded lognormal distributions. As a consequence of these characterizations, as seismic hazard calculations are extended to lower and lower annual frequencies of being exceeded, the ground motion level increases without bound, eventually reaching levels that are not credible (Corradini 2003 [DIRS 171191]). To provide credible seismic inputs for TSPA, in accordance with 10 Code of Federal Regulations (CFR) 63.102(j) [DIRS 156605], this complementary analysis is carried out to determine reasonable bounding values of horizontal PGV at the waste emplacement level for annual frequencies of exceedance as low as 10 -8 . For each realization of the TSPA seismic scenario, the results of this analysis provide a constraint on the values sampled from the

  2. Ambient seismic noise tomography for exploration seismology at Valhall

    Science.gov (United States)

    de Ridder, S. A.

    2011-12-01

    Permanent ocean-bottom cables installed at the Valhall field can repeatedly record high quality active seismic surveys. But in the absence of active seismic shooting, passive data can be recorded and streamed to the platform in real time. Here I studied 29 hours of data using seismic interferometry. I generate omni-directional Scholte-wave virtual-sources at frequencies considered very-low in the exploration seismology community (0.4-1.75 Hz). Scholte-wave group arrival times are inverted using both eikonal tomography and straight-ray tomography. The top 100 m near-surface at Valhall contains buried channels about 100 m wide that have been imaged with active seismic. Images obtained by ASNT using eikonal tomography or straight-ray tomography both contain anomalies that match these channels. When continuous recordings are made in real-time, tomography images of the shallow subsurface can be formed or updated on a daily basis, forming a very low cost near-surface monitoring system using seismic noise.

  3. Building M7-0505 Treatment Tank (SWMU 039) Annual Performance Monitoring Report

    Science.gov (United States)

    2015-01-01

    This Annual Performance Monitoring Report presents a summary of Interim Measure (IM) activities and an evaluation of data collected during the third year (June 2014 to September 2015) of operation, maintenance, and monitoring (OM&M) conducted at the Building M7-505 (M505) Treatment Tank area, Kennedy Space Center (KSC), Florida ("the Site"). Under KSC's Resource Conservation and Recovery Act Corrective Action Program, the M505 Treatment Tank area was designated Solid Waste Management Unit 039. Arcadis U.S., Inc. (Arcadis) began IM activities on January 10, 2012, after completion of construction of an in situ air sparge (IAS) system to remediate volatile organic compounds (VOCs) in groundwater at concentrations exceeding applicable Florida Department of Environmental Protection (FDEP) Chapter 62-777, Florida Administrative Code, Natural Attenuation Default Concentrations (NADCs). This report presents a summary of the third year of OM&M activities conducted between June 2014 and September 2015.

  4. Finite-Frequency Seismic Tomography of Body Waves and Surface Waves from Ambient Seismic Noise: Crustal and Mantle Structure Beneath Eastern Eurasia

    National Research Council Canada - National Science Library

    Ren, Yong; Zhang, Wei; Yang, Ting; Shen, Yang; Yang, Xiaoping

    2008-01-01

    To improve seismic calibration for nuclear explosion monitoring, we use 3D sensitivity kernels of finite-frequency body and surface waves to develop models of the crustal and mantle structures beneath eastern Eurasia...

  5. Annual report on radioactive discharges from Winfrith and monitoring the environment 1989

    International Nuclear Information System (INIS)

    1990-03-01

    The numerical values of the authorised limits are based on past performance, future requirements and the application of BPM. As a 'back-stop', discharges at the limits must not result in doses to the most potentially exposed part of the local population -the critical group - exceeding 0.5 mSv per year. The limit of the International Commission on Radiological Protection (ICRP) for dose to a member of the general public is 1.0 mSv per year. During 1989 some small changes took place in our discharge patterns, our environmental monitoring and in the assessment of critical group doses. These changes are discussed in the introductions to the two parts of this report where the relevant Authorisations are also discussed. This report, the fifth of our annual series, has as its aim the provision, to the general public, of full information on discharges from the SGHWR reactor and other smaller sources at Winfrith and the associated environmental monitoring programmes. Some improvements in presentation have been made. The data, mainly provided graphically in the main text, are still compared with authorised limits or derived levels, but numerical values are now given. The graphs refer to specifically authorised radio-nuclides e.g. tritium, rather than to gross activity. Previous reports were restricted to monitoring at the site boundary and to off-site monitoring. Some data are now given in the report for on-site monitoring. (author)

  6. SHEAT: a computer code for probabilistic seismic hazard analysis, user's manual

    International Nuclear Information System (INIS)

    Ebisawa, Katsumi; Kondo, Masaaki; Abe, Kiyoharu; Tanaka, Toshiaki; Takani, Michio.

    1994-08-01

    The SHEAT code developed at Japan Atomic Energy Research Institute is for probabilistic seismic hazard analysis which is one of the tasks needed for seismic Probabilistic Safety Assessment (PSA) of a nuclear power plant. Seismic hazard is defined as an annual exceedance frequency of occurrence of earthquake ground motions at various levels of intensity at a given site. With the SHEAT code, seismic hazard is calculated by the following two steps: (1) Modeling of earthquake generation around a site. Future earthquake generation (locations, magnitudes and frequencies of postulated earthquakes) is modelled based on the historical earthquake records, active fault data and expert judgement. (2) Calculation of probabilistic seismic hazard at the site. An earthquake ground motion is calculated for each postulated earthquake using an attenuation model taking into account its standard deviation. Then the seismic hazard at the site is calculated by summing the frequencies of ground motions by all the earthquakes. This document is the user's manual of the SHEAT code. It includes: (1) Outlines of the code, which include overall concept, logical process, code structure, data file used and special characteristics of the code, (2) Functions of subprograms and analytical models in them, (3) Guidance of input and output data, and (4) Sample run results. The code has widely been used at JAERI to analyze seismic hazard at various nuclear power plant sites in japan. (author)

  7. The U.S. Geological Survey Amphibian Research and Monitoring Initiative-2011 Annual Update

    Science.gov (United States)

    Adams, M.J.; Muths, E.; Grant, E.H.C.; Miller, David A.; Waddle, J.H.; Ball, L.C.

    2012-01-01

    Welcome to the inaugural issue of ARMI's Annual Update. This update provides highlights and significant milestones of this innovative program. ARMI is uniquely qualified to provide research and monitoring results that are scalable from local to national levels, and are useful to resource managers. ARMI has produced nearly 400 peer-reviewed publications, including 18 in 2011. Some of those publications are highlighted in this fact sheet. ARMI also has a new Website (armi.usgs.gov). You can now use it to explore an up-to-date list of ARMI products, to find summaries of research topics, to search for ARMI activities in your area, and to obtain amphibian photographs. ARMI's annual meeting was organized by Walt Sadinski, Upper Midwest Environmental Science Center, and held in St Louis, Missouri. We met with local scientists and managers in herpetology and were given a tour of the herpetology collection at the St. Louis Zoo.

  8. Evaluation of Seismic Response Trends from Long-Term Monitoring of Two Instrumented RC Buildings Including Soil-Structure Interaction

    Directory of Open Access Journals (Sweden)

    Faheem Butt

    2012-01-01

    Full Text Available This paper presents analyses of the seismic responses of two reinforced concrete buildings monitored for a period of more than two years. One of the structures was a three-storey reinforced concrete (RC frame building with a shear core, while the other was a three-storey RC frame building without a core. Both buildings are part of the same large complex but are seismically separated from the rest of it. Statistical analysis of the relationships between maximum free field accelerations and responses at different points on the buildings was conducted and demonstrated strong correlation between those. System identification studies using recorded accelerations were undertaken and revealed that natural frequencies and damping ratios of the building structures vary during different earthquake excitations. This variation was statistically examined and relationships between identified natural frequencies and damping ratios, and the peak response acceleration at the roof level were developed. A general trend of decreasing modal frequencies and increasing damping ratios was observed with increased level of shaking and response. Moreover, the influence of soil structure interaction (SSI on the modal characteristics was evaluated. SSI effects decreased the modal frequencies and increased some of the damping ratios.

  9. A microseismic workflow for managing induced seismicity risk as CO2 storage projects

    Energy Technology Data Exchange (ETDEWEB)

    Matzel, E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Morency, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pyle, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Templeton, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); White, J. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-27

    It is well established that fluid injection has the potential to induce earthquakes—from microseismicity to large, damaging events—by altering state-of-stress conditions in the subsurface. While induced seismicity has not been a major operational issue for carbon storage projects to date, a seismicity hazard exists and must be carefully addressed. Two essential components of effective seismic risk management are (1) sensitive microseismic monitoring and (2) robust data interpretation tools. This report describes a novel workflow, based on advanced processing algorithms applied to microseismic data, to help improve management of seismic risk. This workflow has three main goals: (1) to improve the resolution and reliability of passive seismic monitoring, (2) to extract additional, valuable information from continuous waveform data that is often ignored in standard processing, and (3) to minimize the turn-around time between data collection, interpretation, and decision-making. These three objectives can allow for a better-informed and rapid response to changing subsurface conditions.

  10. Preliminary Seismic Performance Evaluation of RPS Cabinet in a Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kwag, Shinyoung; Oh, Jinho; Lee, Jongmin; Kim, Youngki [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    This RPS cabinet mainly provides the operators with the physical interface to monitor and handle the RPS. The objective of this paper is to perform seismic analyses and evaluate the preliminary structural integrity and seismic capacity of the RPS cabinet. For this purpose, a 3-D finite element model of the RPS cabinet is developed and its modal analyses are carried out for analyzing the dynamic characteristics. Response time history analyses and related safety evaluation are performed for the RPS cabinet subjected to seismic loads. Finally, the seismic margin and seismic fragility of the RPS cabinet are investigated. The seismic analysis, and preliminary structural integrity and seismic margin of the RPS cabinet under self weight and seismic load have been evaluated. For this purpose, 3-D finite element models of the RPS cabinet were developed. A modal analysis, response time history analysis, and seismic fragility analysis were then performed. From the structural analysis results, the RPS cabinet is below the structural design limit under PGA 0.3g (hor.) and 0.2g (ver.) and structurally withstands until PGA 3g (hor.) and 2g (ver.)

  11. Field site investigation: Effect of mine seismicity on groundwater hydrology

    International Nuclear Information System (INIS)

    Ofoegbu, G.I.; Hsiung, S.; Chowdhury, A.H.

    1995-04-01

    The results of a field investigation on the groundwater-hydrologic effect of mining-induced earthquakes are presented in this report. The investigation was conducted at the Lucky Friday Mine, a silver-lead-zinc mine in the Coeur d'Alene Mining District of Idaho. The groundwater pressure in sections of three fracture zones beneath the water table was monitored over a 24-mo period. The fracture zones were accessed through a 360-m-long inclined borehole, drilled from the 5,700 level station of the mine. The magnitude, source location, and associated ground motions of mining-induced seismic events were also monitored during the same period, using an existing seismic instrumentation network for the mine, augmented with additional instruments installed specifically for the project by the center for Nuclear Waste Regulatory Analyses (CNWRA). More than 50 seismic events of Richter magnitude 1.0 or larger occurred during the monitoring period. Several of these events caused the groundwater pressure to increase, whereas a few caused it to decrease. Generally, the groundwater pressure increased as the magnitude of seismic event increased; for an event of a given magnitude, the groundwater pressure increased by a smaller amount as the distance of the observation point from the source of the event increased. The data was examined using regression analysis. Based on these results, it is suggested that the effect of earthquakes on groundwater flow may be better understood through mechanistic modeling. The mechanical processes and material behavior that would need to be incorporated in such a model are examined. They include a description of the effect of stress change on the permeability and water storage capacity of a fracture rock mass; transient fluid flow; and the generation and transmission of seismic waves through the rock mass

  12. Annual report on radioactive discharges and monitoring of the environment 1980

    International Nuclear Information System (INIS)

    1981-07-01

    A report is given on radioactive discharges through authorised outlets and on environmental monitoring for all of British Nuclear Fuels Limited Works and Sites, i.e. the Windscale and Calder Works and the Drigg Storage and Disposal Site; Chapelcross Works; Springfields Works and the Ulnes Walton Disposal Site; and Capenhurst Works. The report includes information on liquid and airborne radioactive effluents and solid radioactive waste at each of the Company's Works and Sites. Assessments are made of maximum radiological exposures to individual members of the public expressed in terms of limits based on ICRP recommendations and in accordance with advice given by the NRPB. The report showed that at no time during 1980 did discharges and disposals of radioactive wastes through authorised outlets at any of the Works exceed those laid down in any of the Authorisations. Environmental monitoring studies also showed that the radiation exposure in 1980 of the most highly exposed groups of the general population was significantly lower than the Annual Limit recommended by the ICRP. (U.K.)

  13. Processing of seismic signals from a seismometer network

    International Nuclear Information System (INIS)

    Key, F.A.; Warburton, P.J.

    1983-08-01

    A description is given of the Seismometer Network Analysis Computer (SNAC) which processes short period data from a network of seismometers (UKNET). The nine stations of the network are distributed throughout the UK and their outputs are transmitted to a control laboratory (Blacknest) where SNAC monitors the data for seismic signals. The computer gives an estimate of the source location of the detected signals and stores the waveforms. The detection logic is designed to maintain high sensitivity without excessive ''false alarms''. It is demonstrated that the system is able to detect seismic signals at an amplitude level consistent with a network of single stations and, within the limitations of signal onset time measurements made by machine, can locate the source of the seismic disturbance. (author)

  14. The RING and Seismic Network: Data Acquisition of Co-located Stations

    Science.gov (United States)

    Falco, L.; Avallone, A.; Cattaneo, M.; Cecere, G.; Cogliano, R.; D'Agostino, N.; D'Ambrosio, C.; D'Anastasio, E.; Selvaggi, G.

    2007-12-01

    The plate boundary between Africa and Eurasia represents an interesting geodynamical region characterized by a complex pattern of deformation. First-order scientific problems regarding the existence of rigid blocks within the plate boundary, the present-day activity of the Calabrian subduction zone and the modes of release of seismic deformation are still awaiting for a better understanding. To address these issues, the INGV (Istituto Nazionale Geofisica e Vulcanlogia) deployed a permanent, integrated and real-time monitoring GPS network (RING) all over Italy. RING is now constituted by about 120 stations. The CGPS sites, acquiring at 1Hz and 30s sampling rate, are integrated either with broad band or very broad band seismometers and accelerometers for an improved definition of the seismically active regions. Most of the sites are connected to the acquisition centre (located in Rome and duplicated in Grottaminarda) through a satellite system (VSAT), while the remaining sites transmit data by Internet and classical phone connections. The satellite data transmission and the integration with seismic instruments makes this network one of the most innovative CGPS networks in Europe. The heterogeneity of the installed instrumentation, the transmission types and the increasing number of stations needed a central monitoring and acquisition system. A central acquisition system has been developed in Grottaminarda in southern Italy. Regarding the seismic monitoring we chose to use the open source system Earthworm, developed by USGS, with which we store waveforms and implement automatic localization of the seismic events occurring in the area. As most of the GPS sites are acquired by means of Nanometrics satellite technology, we developed a specific software (GpsView), written in Java, to monitor the state of health of those CGPS. This software receives GPS data from NaqsServer (Nanometrics acquisition system) and outputs information about the sites (i.e. approx position

  15. Seismic response analysis of the deep saturated soil deposits in Shanghai

    Science.gov (United States)

    Huang, Yu; Ye, Weimin; Chen, Zhuchang

    2009-01-01

    The quaternary deposits in Shanghai are horizontal soil layers of thickness up to about 280 m in the urban area with an annual groundwater table between 0.5 and 0.7 m from the surface. The characteristics of deep saturated deposits may have important influences upon seismic response of the ground in Shanghai. Based on the Biot theory for porous media, the water-saturated soil deposits are modeled as a two-phase porous system consisting of solid and fluid phases, in this paper. A nonlinear constitutive model for predicting the seismic response of the ground is developed to describe the dynamic characters of the deep-saturated soil deposits in Shanghai. Subsequently, the seismic response of a typical site with 280 m deep soil layers, which is subjected to four base excitations (El Centro, Taft, Sunan, and Tangshan earthquakes), is analyzed in terms of an effective stress-based finite element method with the proposed constitutive model. Special emphasis is given to the computed results of accelerations, excess pore-water pressures, and settlements during the seismic excitations. It has been found that the analysis can capture fundamental aspects of the ground response and produce preliminary results for seismic assessment.

  16. Development of a 400 Level 3C Clamped Downhole Seismic Receiver Array for 3D Borehole Seismic Imaging of Gas Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Bjorn N. P. Paulsson

    2006-09-30

    Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to perform high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology has been hampered by the lack of acquisition technology necessary to record large volumes of high frequency, high signal-to-noise-ratio borehole seismic data. This project took aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array has removed the technical acquisition barrier for recording the data volumes necessary to do high resolution 3D VSP and 3D cross-well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that promise to take the gas industry to the next level in their quest for higher resolution images of deep and complex oil and gas reservoirs. Today only a fraction of the oil or gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of detailed compartmentalization of oil and gas reservoirs. In this project, we developed a 400 level 3C borehole seismic receiver array that allows for economic use of 3D borehole seismic imaging for reservoir characterization and monitoring. This new array has significantly increased the efficiency of recording large data volumes at sufficiently dense spatial sampling to resolve reservoir complexities. The receiver pods have been fabricated and tested to withstand high temperature (200 C/400 F) and high pressure (25,000 psi), so that they can operate in wells up to 7,620 meters (25,000 feet) deep. The receiver array is deployed on standard production or drill tubing. In combination with 3C surface seismic or 3C borehole seismic sources, the 400

  17. First annual report on the Biological Monitoring and Abatement Program at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Loar, J.M.; Amano, H.; Jimenez, B.D.; Kitchings, J.T.; Meyers-Schoene, L.; Mohrbacher, D.A.; Olsen, C.R.

    1992-08-01

    As a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC); selected tributaries of WOC, including Fifth Creek, First Creek, Melton Branch, and Northwest Tributary; and the Clinch River. BMAP consists of seven major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs on-site and the aquatic environs off-site. These tasks are (1) toxicity monitoring; (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota; (3) biological indicator studies; (4) instream ecological monitoring; (5) assessment of contaminants in the terrestrial environment; (6) radioecology of WOC and White Oak Lake (WOL); and (7) contaminant transport, distribution, and fate in the WOC embayment-Clinch River-Watts Bar Reservoir system. This document, the first of a series of annual reports presenting the results of BMAP, describes studies that were conducted from March through December 1986

  18. First annual report on the Biological Monitoring and Abatement Program at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Loar, J. M. [ed.; Adams, S. M.; Blaylock, B. G.; Boston, H. L.; Frank, M. L.; Garten, C. T.; Houston, M. A.; Kimmel, B. L.; Ryon, M. G.; Smith, J. G.; Southworth, G. R.; Stewart, A. J.; Walton, B. T.; Berry, J. B.; Talmage, S. S. [Oak Ridge National Lab., TN (United States); Amano, H. [JAERI, Tokai Res., Establishment, Ibari-Ken (Japan); Jimenez, B. D. [School of Pharmacy, Univ. of Puerto Rico (San Juan); Kitchings, J. T. [ERCE, Denver, CO (United States); Meyers-Schoene, L. [Advanced Sciences, Inc., Fernald, OH (United States); Mohrbacher, D. A. [Univ. of Tennessee, Knoxville, TN (United States); Olsen, C. R. [USDOE Office of Energy Research, Washington, DC (United States). Office of Health and Environmental Research

    1992-08-01

    As a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC); selected tributaries of WOC, including Fifth Creek, First Creek, Melton Branch, and Northwest Tributary; and the Clinch River. BMAP consists of seven major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs on-site and the aquatic environs off-site. These tasks are (1) toxicity monitoring; (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota; (3) biological indicator studies; (4) instream ecological monitoring; (5) assessment of contaminants in the terrestrial environment; (6) radioecology of WOC and White Oak Lake (WOL); and (7) contaminant transport, distribution, and fate in the WOC embayment-Clinch River-Watts Bar Reservoir system. This document, the first of a series of annual reports presenting the results of BMAP, describes studies that were conducted from March through December 1986.

  19. Seismic isolation of nuclear power plants using sliding isolation bearings

    Science.gov (United States)

    Kumar, Manish

    Nuclear power plants (NPP) are designed for earthquake shaking with very long return periods. Seismic isolation is a viable strategy to protect NPPs from extreme earthquake shaking because it filters a significant fraction of earthquake input energy. This study addresses the seismic isolation of NPPs using sliding bearings, with a focus on the single concave Friction Pendulum(TM) (FP) bearing. Friction at the sliding surface of an FP bearing changes continuously during an earthquake as a function of sliding velocity, axial pressure and temperature at the sliding surface. The temperature at the sliding surface, in turn, is a function of the histories of coefficient of friction, sliding velocity and axial pressure, and the travel path of the slider. A simple model to describe the complex interdependence of the coefficient of friction, axial pressure, sliding velocity and temperature at the sliding surface is proposed, and then verified and validated. Seismic hazard for a seismically isolated nuclear power plant is defined in the United States using a uniform hazard response spectrum (UHRS) at mean annual frequencies of exceedance (MAFE) of 10-4 and 10 -5. A key design parameter is the clearance to the hard stop (CHS), which is influenced substantially by the definition of the seismic hazard. Four alternate representations of seismic hazard are studied, which incorporate different variabilities and uncertainties. Response-history analyses performed on single FP-bearing isolation systems using ground motions consistent with the four representations at the two shaking levels indicate that the CHS is influenced primarily by whether the observed difference between the two horizontal components of ground motions in a given set is accounted for. The UHRS at the MAFE of 10-4 is increased by a design factor (≥ 1) for conventional (fixed base) nuclear structure to achieve a target annual frequency of unacceptable performance. Risk oriented calculations are performed for

  20. Fourth annual report 1991

    International Nuclear Information System (INIS)

    1991-01-01

    The Independent Radiation Monitoring Scheme for Clwyd began its monitoring programme in Clwyd in 1988. This is the fourth report on the results of the radiation monitoring carried out within Clwyd. The historical reasons for the conception of the Radiation Monitoring Scheme are given in the First Annual Report together with the protocol of operation and detailed sampling and monitoring information. The fourth Annual Report identifies any changes in techniques that have occurred in the last twelve months together with the latest monitoring and analytical data. Samples of air, beach materials, coastal sand and silt, seaweed, meat, fish and milk were taken from various locations within the county. No significant charges in radiation levels were found when compared with data from previous years. The values have remained within the range currently being expected throughout the United Kingdom. (author)

  1. Automatic Classification of volcano-seismic events based on Deep Neural Networks.

    Science.gov (United States)

    Titos Luzón, M.; Bueno Rodriguez, A.; Garcia Martinez, L.; Benitez, C.; Ibáñez, J. M.

    2017-12-01

    Seismic monitoring of active volcanoes is a popular remote sensing technique to detect seismic activity, often associated to energy exchanges between the volcano and the environment. As a result, seismographs register a wide range of volcano-seismic signals that reflect the nature and underlying physics of volcanic processes. Machine learning and signal processing techniques provide an appropriate framework to analyze such data. In this research, we propose a new classification framework for seismic events based on deep neural networks. Deep neural networks are composed by multiple processing layers, and can discover intrinsic patterns from the data itself. Internal parameters can be initialized using a greedy unsupervised pre-training stage, leading to an efficient training of fully connected architectures. We aim to determine the robustness of these architectures as classifiers of seven different types of seismic events recorded at "Volcán de Fuego" (Colima, Mexico). Two deep neural networks with different pre-training strategies are studied: stacked denoising autoencoder and deep belief networks. Results are compared to existing machine learning algorithms (SVM, Random Forest, Multilayer Perceptron). We used 5 LPC coefficients over three non-overlapping segments as training features in order to characterize temporal evolution, avoid redundancy and encode the signal, regardless of its duration. Experimental results show that deep architectures can classify seismic events with higher accuracy than classical algorithms, attaining up to 92% recognition accuracy. Pre-training initialization helps these models to detect events that occur simultaneously in time (such explosions and rockfalls), increase robustness against noisy inputs, and provide better generalization. These results demonstrate deep neural networks are robust classifiers, and can be deployed in real-environments to monitor the seismicity of restless volcanoes.

  2. Multi-Use seismic stations offer strong deterrent to clandestine nuclear weapons testing

    Science.gov (United States)

    Hennet, C. B.; Van der Vink, G. E.; Richards, P. G.; Adushkin, V. V.; Kopnichev, Y. F.; Geary, R.

    As the United States and other nations push for the signing of a Comprehensive Test Ban Treaty, representatives are meeting in Geneva this year to develop an International Seismic Monitoring System to verify compliance with the treaty's restrictions. In addition to the official monitoring system, regional networks developed for earthquake studies and basic research can provide a strong deterrent against clandestine testing. The recent release of information by the U.S. Department of Energy (DoE) on previously unannounced nuclear tests provides an opportunity to assess the ability of multi-use seismic networks to help monitor nuclear testing across the globe.Here we look at the extent to which the formerly unannounced tests were recorded and identified on the basis of publicly available seismographic data recorded by five seismic networks. The data were recorded by networks in southern Nevada and northern California at stations less than 1500 km from the Nevada Test Site (NTS), and two networks in the former Soviet Union at stations farther than 1500 km from the NTS.

  3. Estimating annualized earthquake losses for the conterminous United States

    Science.gov (United States)

    Jaiswal, Kishor S.; Bausch, Douglas; Chen, Rui; Bouabid, Jawhar; Seligson, Hope

    2015-01-01

    We make use of the most recent National Seismic Hazard Maps (the years 2008 and 2014 cycles), updated census data on population, and economic exposure estimates of general building stock to quantify annualized earthquake loss (AEL) for the conterminous United States. The AEL analyses were performed using the Federal Emergency Management Agency's (FEMA) Hazus software, which facilitated a systematic comparison of the influence of the 2014 National Seismic Hazard Maps in terms of annualized loss estimates in different parts of the country. The losses from an individual earthquake could easily exceed many tens of billions of dollars, and the long-term averaged value of losses from all earthquakes within the conterminous U.S. has been estimated to be a few billion dollars per year. This study estimated nationwide losses to be approximately $4.5 billion per year (in 2012$), roughly 80% of which can be attributed to the States of California, Oregon and Washington. We document the change in estimated AELs arising solely from the change in the assumed hazard map. The change from the 2008 map to the 2014 map results in a 10 to 20% reduction in AELs for the highly seismic States of the Western United States, whereas the reduction is even more significant for Central and Eastern United States.

  4. Composite Earthquake Catalog of the Yellow Sea for Seismic Hazard Studies

    Science.gov (United States)

    Kang, S. Y.; Kim, K. H.; LI, Z.; Hao, T.

    2017-12-01

    The Yellow Sea (a.k.a West Sea in Korea) is an epicontinental and semi-closed sea located between Korea and China. Recent earthquakes in the Yellow Sea including, but not limited to, the Seogyuckryulbi-do (1 April 2014, magnitude 5.1), Heuksan-do (21 April 2013, magnitude 4.9), Baekryung-do (18 May 2013, magnitude 4.9) earthquakes, and the earthquake swarm in the Boryung offshore region in 2013, remind us of the seismic hazards affecting east Asia. This series of earthquakes in the Yellow Sea raised numerous questions. Unfortunately, both governments have trouble in monitoring seismicity in the Yellow Sea because earthquakes occur beyond their seismic networks. For example, the epicenters of the magnitude 5.1 earthquake in the Seogyuckryulbi-do region in 2014 reported by the Korea Meteorological Administration and China Earthquake Administration differed by approximately 20 km. This illustrates the difficulty with seismic monitoring and locating earthquakes in the region, despite the huge effort made by both governments. Joint effort is required not only to overcome the limits posed by political boundaries and geographical location but also to study seismicity and the underground structures responsible. Although the well-established and developing seismic networks in Korea and China have provided unprecedented amount and quality of seismic data, high quality catalog is limited to the recent 10s of years, which is far from major earthquake cycle. It is also noticed the earthquake catalog from either country is biased to its own and cannot provide complete picture of seismicity in the Yellow Sea. In order to understand seismic hazard and tectonics in the Yellow Sea, a composite earthquake catalog has been developed. We gathered earthquake information during last 5,000 years from various sources. There are good reasons to believe that some listings account for same earthquake, but in different source parameters. We established criteria in order to provide consistent

  5. Induced seismicity hazard and risk by enhanced geothermal systems: an expert elicitation approach

    Science.gov (United States)

    Trutnevyte, Evelina; Azevedo, Inês L.

    2018-03-01

    Induced seismicity is a concern for multiple geoenergy applications, including low-carbon enhanced geothermal systems (EGS). We present the results of an international expert elicitation (n = 14) on EGS induced seismicity hazard and risk. Using a hypothetical scenario of an EGS plant and its geological context, we show that expert best-guess estimates of annualized exceedance probabilities of an M ≥ 3 event range from 0.2%-95% during reservoir stimulation and 0.2%-100% during operation. Best-guess annualized exceedance probabilities of M ≥ 5 event span from 0.002%-2% during stimulation and 0.003%-3% during operation. Assuming that tectonic M7 events could occur, some experts do not exclude induced (triggered) events of up to M7 too. If an induced M = 3 event happens at 5 km depth beneath a town with 10 000 inhabitants, most experts estimate a 50% probability that the loss is contained within 500 000 USD without any injuries or fatalities. In the case of an induced M = 5 event, there is 50% chance that the loss is below 50 million USD with the most-likely outcome of 50 injuries and one fatality or none. As we observe a vast diversity in quantitative expert judgements and underlying mental models, we conclude with implications for induced seismicity risk governance. That is, we suggest documenting individual expert judgements in induced seismicity elicitations before proceeding to consensual judgements, to convene larger expert panels in order not to cherry-pick the experts, and to aim for multi-organization multi-model assessments of EGS induced seismicity hazard and risk.

  6. Estimation of reservoir fluid volumes through 4-D seismic analysis on Gullfaks

    Energy Technology Data Exchange (ETDEWEB)

    Veire, H.S.; Reymond, S.B.; Signer, C.; Tenneboe, P.O.; Soenneland, L.; Schlumberger, Geco-Prakla

    1998-12-31

    4-D seismic has the potential to monitor hydrocarbon movement in reservoirs during production, and could thereby supplement the predictions of reservoir parameters offered by the reservoir simulator. However 4-D seismic is often more band limited than the vertical resolution required in the reservoir model. As a consequence the seismic data holds a composite response from reservoir parameter changes during production so that the inversion becomes non-unique. A procedure where data from the reservoir model are integrated with seismic data will be presented. The potential of such a procedure is demonstrated through a case study from a recent 4-D survey over the Gullfaks field. 2 figs.

  7. Modernization of the USGS Hawaiian Volcano Observatory Seismic Processing Infrastructure

    Science.gov (United States)

    Antolik, L.; Shiro, B.; Friberg, P. A.

    2016-12-01

    The USGS Hawaiian Volcano Observatory (HVO) operates a Tier 1 Advanced National Seismic System (ANSS) seismic network to monitor, characterize, and report on volcanic and earthquake activity in the State of Hawaii. Upgrades at the observatory since 2009 have improved the digital telemetry network, computing resources, and seismic data processing with the adoption of the ANSS Quake Management System (AQMS) system. HVO aims to build on these efforts by further modernizing its seismic processing infrastructure and strengthen its ability to meet ANSS performance standards. Most notably, this will also allow HVO to support redundant systems, both onsite and offsite, in order to provide better continuity of operation during intermittent power and network outages. We are in the process of implementing a number of upgrades and improvements on HVO's seismic processing infrastructure, including: 1) Virtualization of AQMS physical servers; 2) Migration of server operating systems from Solaris to Linux; 3) Consolidation of AQMS real-time and post-processing services to a single server; 4) Upgrading database from Oracle 10 to Oracle 12; and 5) Upgrading to the latest Earthworm and AQMS software. These improvements will make server administration more efficient, minimize hardware resources required by AQMS, simplify the Oracle replication setup, and provide better integration with HVO's existing state of health monitoring tools and backup system. Ultimately, it will provide HVO with the latest and most secure software available while making the software easier to deploy and support.

  8. Passive seismic monitoring at the ketzin CCS site -Magnitude estimation

    NARCIS (Netherlands)

    Paap, B.F.; Steeghs, T.P.H.

    2014-01-01

    In order to allow quantification of the strength of local micro-seismic events recorded at the CCS pilot site in Ketzin in terms of local magnitude, earthquake data recorded by standardized seismometers were used. Earthquakes were selected that occurred in Poland and Czech Republic and that were

  9. Third Quarter Hanford Seismic Report for Fiscal Year 2008

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2008-09-01

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The Hanford Seismic Assessment Team locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. For the Hanford Seismic Network, fourteen local earthquakes were recorded during the third quarter of fiscal year 2008. The largest event recorded by the network during the third quarter (May 18, 2008 - magnitude 3.7 Mc) was located approximately 17 km east of Prosser at a depth of 20.5 km. With regard to the depth distribution, five earthquakes occurred at shallow depths (less than 4 km, most likely in the Columbia River basalts), six earthquakes at intermediate depths (between 4 and 9 km, most likely in the pre-basalt sediments), and three earthquakes were located at depths greater than 9 km, within the crystalline basement. Geographically, eight earthquakes occurred in swarm areas and six earthquakes were classified as random events. The largest event recorded by the network during the third quarter occurred on May 18 (magnitude 3.7 Mc) and was located approximately 17 km east of Prosser at a depth of 20.5 km. This earthquake was the highest magnitude event recorded in the 46-47 N. latitude / 119-120 W. longitude sector since 1975

  10. Seismic isolation - efficient procedure for seismic response assessement

    International Nuclear Information System (INIS)

    Zamfir, M. A.; Androne, M.

    2016-01-01

    The aim of this analysis is to reduce the dynamic response of a structure. The seismic isolation solution must take into consideration the specific site ground motion. In this paper will be presented results obtained by applying the seismic isolation method. Based on the obtained results, important conclusions can be outlined: the seismic isolation device has the ability to reduce seismic acceleration of the seismic isolated structure to values that no longer present a danger to people and environment; the seismic isolation solution is limiting devices deformations to safety values for ensuring structural integrity and stability of the entire system; the effective seismic energy dissipation and with no side effects both for the seismic isolated building and for the devices used, and the return to the initial position before earthquake occurence are obtained with acceptable permanent displacement. (authors)

  11. Accelerometer Sensor Specifications to Predict Hydrocarbon Using Passive Seismic Technique

    Directory of Open Access Journals (Sweden)

    M. H. Md Khir

    2016-01-01

    Full Text Available The ambient seismic ground noise has been investigated in several surveys worldwide in the last 10 years to verify the correlation between observed seismic energy anomalies at the surface and the presence of hydrocarbon reserves beneath. This is due to the premise that anomalies provide information about the geology and potential presence of hydrocarbon. However a technology gap manifested in nonoptimal detection of seismic signals of interest is observed. This is due to the fact that available sensors are not designed on the basis of passive seismic signal attributes and mainly in terms of amplitude and bandwidth. This is because of that fact that passive seismic acquisition requires greater instrumentation sensitivity, noise immunity, and bandwidth, with active seismic acquisition, where vibratory or impulsive sources were utilized to receive reflections through geophones. Therefore, in the case of passive seismic acquisition, it is necessary to select the best monitoring equipment for its success or failure. Hence, concerning sensors performance, this paper highlights the technological gap and motivates developing dedicated sensors for optimal solution at lower frequencies. Thus, the improved passive seismic recording helps in oil and gas industry to perform better fracture mapping and identify more appropriate stratigraphy at low frequencies.

  12. Evolution and strengthening of the Calabrian Regional Seismic Network during the Pollino sequence

    Science.gov (United States)

    D'Alessandro, Antonino; Gervasi, Anna; Guerra, Ignazio

    2013-04-01

    In the last three years the Calabria-Lucania border area is affected by an intense seismic activity generated by the activation of geological structures which be seat of clusters of microearthquakes, with energy release sufficient to be felt and to generate alarm and bother. Besides to the historical memory of the inhabitants of Mormanno (the town most affected of macroseismic effects) there are some historical documents that indicate the occurrence of a similar seismic crisis in 1888. A more recent seismic sequence, the first monitored by seismic instruments, occurred in 1973-1974. In the last case, the activity started in early 2010 and is still ongoing. The two shocks of ML = 4.3 and 5.0 and the the very long time duration differs this crisis from the previous ones. Given this background, in 1981 was installed at Mormanno a seismic station (MMN) belonging to Regional Seismic Network of the University of Calabria (RSRC), now also a station of the Italian National Seismic Network of the Istituto Nazionale di Geofisica Vulcanolgia (INSN-INGV). This seismic station made it possible to follow the evolution of seismicity in this area and in particular the progressive increase in seismic activity started in 2010. Since 2010, some 3D stand-alone, was installed by the University of Calabria. Further stations of INGV were installed in November 2011 after a sharp increase of the energy release and subsequently by the INGV and the GeoForschungsZentrum (Potsdam) after the main shock of the whole sequence. Seismic networks are powerful tools for understanding active tectonic processes in a monitored seismically active region. However, the optimal monitoring of a seismic region requires the assessment of the seismic network capabilities to identify seismogenic areas that are not adequately covered and to quantify measures that will allow the network improvement. In this paper we examine in detail the evolution and the strengthening of the RSRC in the last years analyzing the

  13. Seismic reliability assessment of RC structures including soil–structure interaction using wavelet weighted least squares support vector machine

    International Nuclear Information System (INIS)

    Khatibinia, Mohsen; Javad Fadaee, Mohammad; Salajegheh, Javad; Salajegheh, Eysa

    2013-01-01

    An efficient metamodeling framework in conjunction with the Monte-Carlo Simulation (MCS) is introduced to reduce the computational cost in seismic reliability assessment of existing RC structures. In order to achieve this purpose, the metamodel is designed by combining weighted least squares support vector machine (WLS-SVM) and a wavelet kernel function, called wavelet weighted least squares support vector machine (WWLS-SVM). In this study, the seismic reliability assessment of existing RC structures with consideration of soil–structure interaction (SSI) effects is investigated in accordance with Performance-Based Design (PBD). This study aims to incorporate the acceptable performance levels of PBD into reliability theory for comparing the obtained annual probability of non-performance with the target values for each performance level. The MCS method as the most reliable method is utilized to estimate the annual probability of failure associated with a given performance level in this study. In WWLS-SVM-based MCS, the structural seismic responses are accurately predicted by WWLS-SVM for reducing the computational cost. To show the efficiency and robustness of the proposed metamodel, two RC structures are studied. Numerical results demonstrate the efficiency and computational advantages of the proposed metamodel for the seismic reliability assessment of structures. Furthermore, the consideration of the SSI effects in the seismic reliability assessment of existing RC structures is compared to the fixed base model. It shows which SSI has the significant influence on the seismic reliability assessment of structures.

  14. Yield Frequency Spectra and seismic design of code-compatible RC structures: an illustrative example

    DEFF Research Database (Denmark)

    Katsanos, Evangelos; Vamvatsikos, Dimitrios

    2017-01-01

    with given yield displacement and capacity curve shape. For the 8-story case study building, deformation checking is the governing limit state. A conventional code-based design was performed using seismic intensities tied to the desired MAF for safety checking. Then, the YFS-based approach was employed......The seismic design of an 8-story reinforced concrete space frame building is undertaken using a Yield Frequency Spectra (YFS) performance-based approach. YFS offer a visual representation of the entire range of a system’s performance in terms of the mean annual frequency (MAF) of exceeding...... to redesign the resulting structure working backwards from the desired MAF of response (rather than intensity) to estimate an appropriate value of seismic intensity for use within a typical engineering design process. For this high-seismicity and high-importance midrise building, a stiffer system with higher...

  15. Automated classification of seismic sources in a large database: a comparison of Random Forests and Deep Neural Networks.

    Science.gov (United States)

    Hibert, Clement; Stumpf, André; Provost, Floriane; Malet, Jean-Philippe

    2017-04-01

    In the past decades, the increasing quality of seismic sensors and capability to transfer remotely large quantity of data led to a fast densification of local, regional and global seismic networks for near real-time monitoring of crustal and surface processes. This technological advance permits the use of seismology to document geological and natural/anthropogenic processes (volcanoes, ice-calving, landslides, snow and rock avalanches, geothermal fields), but also led to an ever-growing quantity of seismic data. This wealth of seismic data makes the construction of complete seismicity catalogs, which include earthquakes but also other sources of seismic waves, more challenging and very time-consuming as this critical pre-processing stage is classically done by human operators and because hundreds of thousands of seismic signals have to be processed. To overcome this issue, the development of automatic methods for the processing of continuous seismic data appears to be a necessity. The classification algorithm should satisfy the need of a method that is robust, precise and versatile enough to be deployed to monitor the seismicity in very different contexts. In this study, we evaluate the ability of machine learning algorithms for the analysis of seismic sources at the Piton de la Fournaise volcano being Random Forest and Deep Neural Network classifiers. We gather a catalog of more than 20,000 events, belonging to 8 classes of seismic sources. We define 60 attributes, based on the waveform, the frequency content and the polarization of the seismic waves, to parameterize the seismic signals recorded. We show that both algorithms provide similar positive classification rates, with values exceeding 90% of the events. When trained with a sufficient number of events, the rate of positive identification can reach 99%. These very high rates of positive identification open the perspective of an operational implementation of these algorithms for near-real time monitoring of

  16. Cetaceans occurrence visual monitoring during seismic survey in the North of Campos Basin; Monitoramento visual de ocorrencia de cetaceos durante o levantamento de dados sismicos no norte da Bacia de Campos

    Energy Technology Data Exchange (ETDEWEB)

    Flor, Karina C.A.; Amaro, Thays P.C.; Carloni, Giuliano G. [Ecologus Engenharia Consultiva, Rio de Janeiro, RJ (Brazil); Uller, George A. [CGGVeritas, Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The objective of this research is to present the results of the marine biota visual monitoring developed during the seismic survey in the north area of Campos Basin. The monitoring lasted five months, between 14 February and 14 July 2007, reaching, on average, eleven hours and fifty one minutes of sign effort per day. It was conducted by fourteen marine biota catch sign, three for each period of boarding, that took over during all period of the activity. Sixty two cetaceans were registered, eight belonging to suborder Odontoceti and four belonging to suborder Mysticeti. Tursiops truncatus was the predominant species in number of registers, followed by Megaptera novaeangliae. It's important to report that during all seismic activity period there wasn't any cetacean register presenting any behavior disturbance. (author)

  17. Cluster Computing For Real Time Seismic Array Analysis.

    Science.gov (United States)

    Martini, M.; Giudicepietro, F.

    A seismic array is an instrument composed by a dense distribution of seismic sen- sors that allow to measure the directional properties of the wavefield (slowness or wavenumber vector) radiated by a seismic source. Over the last years arrays have been widely used in different fields of seismological researches. In particular they are applied in the investigation of seismic sources on volcanoes where they can be suc- cessfully used for studying the volcanic microtremor and long period events which are critical for getting information on the volcanic systems evolution. For this reason arrays could be usefully employed for the volcanoes monitoring, however the huge amount of data produced by this type of instruments and the processing techniques which are quite time consuming limited their potentiality for this application. In order to favor a direct application of arrays techniques to continuous volcano monitoring we designed and built a small PC cluster able to near real time computing the kinematics properties of the wavefield (slowness or wavenumber vector) produced by local seis- mic source. The cluster is composed of 8 Intel Pentium-III bi-processors PC working at 550 MHz, and has 4 Gigabytes of RAM memory. It runs under Linux operating system. The developed analysis software package is based on the Multiple SIgnal Classification (MUSIC) algorithm and is written in Fortran. The message-passing part is based upon the LAM programming environment package, an open-source imple- mentation of the Message Passing Interface (MPI). The developed software system includes modules devote to receiving date by internet and graphical applications for the continuous displaying of the processing results. The system has been tested with a data set collected during a seismic experiment conducted on Etna in 1999 when two dense seismic arrays have been deployed on the northeast and the southeast flanks of this volcano. A real time continuous acquisition system has been simulated by

  18. Seismic surface-wave tomography of waste sites. 1998 annual progress report

    International Nuclear Information System (INIS)

    Long, T.L.

    1998-01-01

    'The objective of the Seismic Surface Wave Tomography of Waste Sites is to develop a robust technique for field acquisition and analysis of surface wave data for the interpretation of shallow structures, such as those associated with the burial of wastes. The analysis technique is to be developed and tested on an existing set of seismic data covering the K-901 burial site at the East Tennessee Technology Park. Also, a portable prototype for a field acquisition system will be designed and developed to obtain additional data for analysis and testing of the technique. The portable analysis system will display an image representing the shear-wave velocity structure. The image would be developed in the field from successive data samples. As of May 1998, the author established compatibility with computer programs at Georgia Tech and computed a preliminary singular value decomposition solution for the K-901 data. The analysis included modeling of surface wave dispersion and analysis of velocity structure. The analysis demonstrated that the authors needed additional field data to verify the conclusions and provide independent confirmation of velocity structure. The K-901 site data were obtained with 8 Hz geophones. The frequencies below 8 Hz are strongly attenuated in such recording instruments and are difficult to analyze. In particular, group velocities can have multiple answers for a given frequency. Consequently, without a record of the low-frequency energy, the authors found it difficult to identify the portion of the dispersion curve responsible for the seismogram. In particular, it was difficult to determine if the reverse dispersion observed in the frequencies above 8 Hz was caused by a low velocity layer or caused by observing only the frequencies above the group velocity minimum. In either model, synthetic seismograms can be made to match the observed data for the higher frequencies. The contract for the proposed work was completed in December. The field work was

  19. Shaking table test study on seismic performance of dehydrogenation fan for nuclear power plants

    International Nuclear Information System (INIS)

    Liu Kaiyan; Shi Weixing; Cao Jialiang; Wang Yang

    2011-01-01

    Seismic performance of the dehydrogenation fan for nuclear power plants was evaluated based on the shaking table test of earthquake simulation. Dynamic characteristics including the orthogonal tri-axial fundamental frequencies and equivalent damping ratios were measured by the white noise scanning method. Artificial seismic waves were generated corresponding to the floor acceleration response spectra for nuclear power plants. Furthermore, five OBE and one SSE shaking table tests for dehydrogenation fan were performed by using the artificial seismic waves as the seismic inputs along the orthogonal axis simultaneity. Operating function of dehydrogenation fan was monitored and observed during all seismic tests, and performance indexes of dehydrogenation fan were compared before and after seismic tests. The results show that the structural integrity and operating function of the dehydrogenation fan are perfect during all seismic tests; and the performance indexes of the dehydrogenation fan can remain consistent before and after seismic tests; the seismic performance of the dehydrogenation fan can satisfy relevant technical requirements. (authors)

  20. High-resolution seismic monitoring of rockslide activity in the Illgraben, Switzerland

    Science.gov (United States)

    Burtin, Arnaud; Hovius, Niels; Dietze, Michael; McArdell, Brian

    2014-05-01

    Rockfalls and rockslides are important geomorphic processes in landscape dynamics. They contribute to the evolution of slopes and supply rock materials to channels, enabling fluvial incision. Hillslope processes are also a natural hazard that we need to quantify and, if possible, predict. For these reasons, it is necessary to determine the triggering conditions and mechanisms involved in rockfalls. Rainfall is a well-known contributor since water, through soil moisture or pore pressure, may lead to the inception and propagation of cracks and can induce slope failure. Water can also affect slope stability through effects of climatic conditions such as the fluctuations of temperature around the freezing point. During the winter of 2012, we have recorded with a seismic array of 8 instruments substantial rockslide activity that affected a gully in the Illgraben catchment in the Swiss Alps. Three stations were positioned directly around the gully with a nearest distance of 400 m. The period of intense activity did not start during a rainstorm as it is common in summer but during a period of oscillation of temperatures around the freezing point. The activity did not occur in a single event but lasted about a week with a decay in time of the event frequency. Many individual events had two distinct seismic signals, with first, a short duration phase of about 10 s at frequencies below 5 Hz that we interpret as a slope failure signature, followed by a second long duration signal of > 60 s at frequencies above 10 Hz that we attribute to the propagation of rock debris down the slope. Thanks to the array of seismic sensors, we can study the fine details of this rockslide sequence by locating the different events, determining their distribution in time, and systematic quantification of seismic metrics (energy, duration, intensity...). These observations are compared to independent meteorological constrains and laser scan data to obtain an estimate of the volume mobilized by the

  1. Monitoring unrest in a large silicic caldera, the long Valley-inyo craters volcanic complex in east-central California

    Science.gov (United States)

    Hill, D. P.

    1984-06-01

    Recent patterns of geologic unrest in long Valley caldera in east-central California emphasize that this large, silicic volcanic system and the adjacent, geologically youthful Inyo-Mono Craters volcanic chain are still active and capable of producing locally hazardous volcanic eruptions. A series of four magnitude -6 earthquakes in May 1980 called attention to this current episode of unrest, and subsequent activity has included numerous earthquake swarms in the south moat of the caldera accompanied by inflation of the resurgent dome by more than 50 cm over the last five years. The seismicity associated with this unrest is currently monitored by a network of 31 telemetered seismic stations with an automatic processing system that yelds hypocentral locations and earthquake magnitudes in near-real time. Deformation of the ground is monitored by a) a series of overlapping trilateration networks that provide coverage ranging from annual measurements of regional deformation to daily measurements of deformation local to the active, southern section of the caldera, b) a regional network of level lines surveyed annually, c) a regional network of precise gravity stations occupied annually, d) local, L-shaped level figures surveyed every few months, and e) a network of fourteen borehole tiltmeter clusters (two instruments in each cluster) and a borehole dilatometer, the telemetered signals from which provide continuous data on deformation rates. Additional telemetered data provide continuous information on fluctuations in the local magnetic field, hydrogen gas emission rates at three sites, and water level and temperatures in three wells. Continuous data on disharge rates and temperatures from hot springs and fumaroles are collected by several on-site recorders within the caldera, and samples for liquid and gas chemistry are collected several times per year from selected hot springs and fumaroles.

  2. Seismic testing

    International Nuclear Information System (INIS)

    Sollogoub, Pierre

    2001-01-01

    This lecture deals with: qualification methods for seismic testing; objectives of seismic testing; seismic testing standards including examples; main content of standard; testing means; and some important elements of seismic testing

  3. Seismic assessment of a site using the time series method

    International Nuclear Information System (INIS)

    Krutzik, N.J.; Rotaru, I.; Bobei, M.; Mingiuc, C.; Serban, V.; Androne, M.

    2001-01-01

    1. To increase the safety of a NPP located on a seismic site, the seismic acceleration level to which the NPP should be qualified must be as representative as possible for that site, with a conservative degree of safety but not too exaggerated. 2. The consideration of the seismic events affecting the site as independent events and the use of statistic methods to define some safety levels with very low annual occurrence probabilities (10 -4 ) may lead to some exaggerations of the seismic safety level. 3. The use of some very high values for the seismic accelerations imposed by the seismic safety levels required by the hazard analysis may lead to very expensive technical solutions that can make the plant operation more difficult and increase the maintenance costs. 4. The consideration of seismic events as a time series with dependence among the events produced may lead to a more representative assessment of a NPP site seismic activity and consequently to a prognosis on the seismic level values to which the NPP would be ensured throughout its life-span. That prognosis should consider the actual seismic activity (including small earthquakes in real time) of the focuses that affect the plant site. The method is useful for two purposes: a) research, i.e. homogenizing the history data basis by the generation of earthquakes during periods lacking information and correlation of the information with the existing information. The aim is to perform the hazard analysis using a homogeneous data set in order to determine the seismic design data for a site; b) operation, i.e. the performance of a prognosis on the seismic activity on a certain site and consideration of preventive measures to minimize the possible effects of an earthquake. 5. The paper proposes the application of Autoregressive Time Series to issue a prognosis on the seismic activity of a focus and presents the analysis on Vrancea focus that affects Cernavoda NPP site by this method. 6. The paper also presents the

  4. Requirements on PWR reactor design with respect to seismic effects

    International Nuclear Information System (INIS)

    Novak, J.; Pecinka, L.

    1981-01-01

    From the seismic point of view the individual parts of a nuclear power plant must be built such as to allow the shutdown of the reactor up to the safe shutdown earthquake level, the removal of after-heat and the prevention of uncontrolled release of radioactivity into the environment. To the level of operating basic earthquake the plant must be designed such as to allow the operation of the reactor for a period of 100 hours from the seismic event without exceeding the permissible annual dose to personnel and population. The possibility of a loss-of-coolant accident owing to a seismic event is reduced mainly by the integrated performance of the primary circuit, the high-strength structure, the insulation of the main components from the shift of the foundations and the use of floating structures. The pressure vessel of the WWER-1000 reactor is therefore pAaced in a shaft on a support ring and is locked by another support ring. (Z.M.)

  5. seismic-py: Reading seismic data with Python

    Directory of Open Access Journals (Sweden)

    2008-08-01

    Full Text Available The field of seismic exploration of the Earth has changed
    dramatically over the last half a century. The Society of Exploration
    Geophysicists (SEG has worked to create standards to store the vast
    amounts of seismic data in a way that will be portable across computer
    architectures. However, it has been impossible to predict the needs of the
    immense range of seismic data acquisition systems. As a result, vendors have
    had to bend the rules to accommodate the needs of new instruments and
    experiment types. For low level access to seismic data, there is need for a
    standard open source library to allow access to a wide range of vendor data
    files that can handle all of the variations. A new seismic software package,
    seismic-py, provides an infrastructure for creating and managing drivers for
    each particular format. Drivers can be derived from one of the known formats
    and altered to handle any slight variations. Alternatively drivers can be
    developed from scratch for formats that are very different from any previously
    defined format. Python has been the key to making driver development easy
    and efficient to implement. The goal of seismic-py is to be the base system
    that will power a wide range of experimentation with seismic data and at the
    same time provide clear documentation for the historical record of seismic
    data formats.

  6. First Quarter Hanford Seismic Report for Fiscal Year 2011

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Clayton, Ray E.; Devary, Joseph L.

    2011-03-31

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. The Hanford Seismic Network recorded 16 local earthquakes during the first quarter of FY 2011. Six earthquakes were located at shallow depths (less than 4 km), seven earthquakes at intermediate depths (between 4 and 9 km), most likely in the pre-basalt sediments, and three earthquakes were located at depths greater than 9 km, within the basement. Geographically, thirteen earthquakes were located in known swarm areas and three earthquakes were classified as random events. The highest magnitude event (1.8 Mc) was recorded on October 19, 2010 at depth 17.5 km with epicenter located near the Yakima River between the Rattlesnake Mountain and Horse Heaven Hills swarm areas.

  7. Seismic hazard assessment of the Three Gorges Project

    Directory of Open Access Journals (Sweden)

    Yao Yunsheng

    2013-05-01

    Full Text Available Seismic monitoring data for the past 50 years in the Three Gorges Reservoir area show that the reservoir head area is a typical weak seismic region with low seismicity before impoundment and that the epicenters were concentrated in the east and west sides of the Zigui Basin, most of which were natural tectonic earthquakes. After impoundment, the seismic activity shifted to the segment between Badong and Zigui along the Yangtze River, mainly within 5 km of the reservoir bank. The seismogenesis was categorized into four types; Karst collapse earthquakes, earthquakes caused by Karst gas explosion, mining tunnel collapse earthquakes, and rock (terrane slip earthquakes, all of which are related to the lithology, structure, and tectonics of near-surface geological bodies of the area. Compared with the seismicity before impoundment, the seismic frequency increase was remarkable, with most of the magnitudes below Ms2. 0. Therefore, the intensity of the earthquakes remained at a low level. On November 22, 2008, a magnitude 4. 1 earthquake, the largest earthquake recorded since impoundment, occurred in Quyuan Town, Zigui County. The intensity and PGA of reservoir-induced earthquakes are higher than those of tectonic earthquakes with equal magnitude, but the peak intensity of reservoir-induced earthquakes is not likely to go beyond that of the estimated range from earlier studies.

  8. Annual report of the Environmental Restoration Monitoring and Assessment Program at Oak Ridge National Laboratory for FY 1992

    International Nuclear Information System (INIS)

    Clapp, R.B.

    1992-09-01

    This report summarizes the salient features of the annual efforts of the investigations and monitoring, conducted to support the Environmental Restoration (ER) Program at Oak Ridge National Laboratory (ORNL). The results presented can be used to develop a conceptual understanding of the key contaminants and the sources, fluxes, and processes affecting their distribution and movement. This information forms a basis for prioritizing sites and for selecting, implementing, and evaluating remedial actions. Groundwater, soils, sediments, and surface water monitoring results are described

  9. Assimilation of ambient seismic noise in hydrological models allows estimation of hydraulic conductivity in unsaturated media

    Science.gov (United States)

    Fores, B.; Champollion, C.; Mainsant, G.; Fort, A.; Albaric, J.

    2016-12-01

    Karstic hydrosystems represent one of the main water resources in the Mediterranean area but are challenging for geophysical methods. The GEK (Geodesy in Karstic Environment) observatory has been setup in 2011 to study the unsaturated zone of a karstic system in the south of France. The unsaturated zone (the epikarst) is thick and up to 100m on the site. Since 2011, gravity, rainfall and evapotranspiration are monitored. Together, they allow precise estimation of the global water storage changes but lack depth resolution. Surface waves velocity variations, obtained from ambient seismic noise monitoring are used here to overcome this lack. Indeed, velocities depend on saturation and the depths where changes occur can be defined as surface waves are dispersive. From October 2014 to November 2015, two seismometers have been recording noise. Velocity changes at a narrow frequency band (6-8 Hz) have shown a clear annual cycle. Minimum velocity is several months late on precipitations, which is coherent with a slow infiltration and a maximum sensitivity at -40m for these frequencies and this site. Models have been made with the Hydrus-1D software which allows modeling 1D-flow in variably saturated media. With a stochastic sampling, we have researched the underground parameters that reproduce the most the different observations (gravity, evapotranspiration and rainfall, and velocity changes). We show that velocity changes clearly constrain the hydraulic conductivity of the medium. Ambient seismic noise is therefore a promising method to study unsaturated zone which are too deep or too heterogeneous for classic methods.

  10. Induced seismicity associated with enhanced geothermal system

    Energy Technology Data Exchange (ETDEWEB)

    Majer, Ernest; Majer, Ernest L.; Baria, Roy; Stark, Mitch; Oates, Stephen; Bommer, Julian; Smith, Bill; Asanuma, Hiroshi

    2006-09-26

    Enhanced Geothermal Systems (EGS) offer the potential to significantly add to the world energy inventory. As with any development of new technology, some aspects of the technology has been accepted by the general public, but some have not yet been accepted and await further clarification before such acceptance is possible. One of the issues associated with EGS is the role of microseismicity during the creation of the underground reservoir and the subsequent extraction of the energy. The primary objectives of this white paper are to present an up-to-date review of the state of knowledge about induced seismicity during the creation and operation of enhanced geothermal systems, and to point out the gaps in knowledge that if addressed will allow an improved understanding of the mechanisms generating the events as well as serve as a basis to develop successful protocols for monitoring and addressing community issues associated with such induced seismicity. The information was collected though literature searches as well as convening three workshops to gather information from a wide audience. Although microseismicity has been associated with the development of production and injection operations in a variety of geothermal regions, there have been no or few adverse physical effects on the operations or on surrounding communities. Still, there is public concern over the possible amount and magnitude of the seismicity associated with current and future EGS operations. It is pointed out that microseismicity has been successfully dealt with in a variety of non-geothermal as well as geothermal environments. Several case histories are also presented to illustrate a variety of technical and public acceptance issues. It is concluded that EGS Induced seismicity need not pose any threat to the development of geothermal resources if community issues are properly handled. In fact, induced seismicity provides benefits because it can be used as a monitoring tool to understand the

  11. Seismological investigation of earthquakes in the New Madrid Seismic Zone

    International Nuclear Information System (INIS)

    Herrmann, R.B.; Nguyen, B.

    1993-08-01

    Earthquake activity in the New Madrid Seismic Zone had been monitored by regional seismic networks since 1975. During this time period, over 3,700 earthquakes have been located within the region bounded by latitudes 35 degrees--39 degrees N and longitudes 87 degrees--92 degrees W. Most of these earthquakes occur within a 1.5 degrees x 2 degrees zone centered on the Missouri Bootheel. Source parameters of larger earthquakes in the zone and in eastern North America are determined using surface-wave spectral amplitudes and broadband waveforms for the purpose of determining the focal mechanism, source depth and seismic moment. Waveform modeling of broadband data is shown to be a powerful tool in defining these source parameters when used complementary with regional seismic network data, and in addition, in verifying the correctness of previously published focal mechanism solutions

  12. Mud volcano monitoring and seismic events along the North Anatolian Fault (Sea of Marmara)

    Science.gov (United States)

    Javad Fallahi, Mohammad; Lupi, Matteo; Mazzini, Adriano; Polonia, Alina; D'Alessandro, Antonino; D'Anna, Giuseppe; Gasperini, Luca

    2017-04-01

    The Sea of Marmara, a pull-apart basin formed along the northern strand of the North Anatolian Fault (NAF) system, is considered a seismic gap, that will be filled in the next decades by a large magnitude (M>7) earthquake, close to the Istanbul Metropolitan area (12 million inhabitants). For this reason, several marine geological and geophysical studies have been carried out in this region, starting from the destructive 1999 Mw 7.4 Izmit earthquake, to gather information relative to seismogenic potential of major fault strands. Together with these studies, in the frame of EC projects (i.e., MarmESONET and Marsite, among others), an intensive program of long-term monitoring of seismogenic faults was carried out using seafloor observatories deployed during several expeditions led by Italian, French and Turkish groups. These expeditions included MARM2013, on board of the R/V Urania, of the Italian CNR, when four ocean bottom seismometers (OBS) were deployed in the central part of the Sea of Marmara, at depths between 550 and 1000 m. One of the main aims of the experiment was to assess the long-term seismic activity along an active segment of the NAF, which connects the central and the western basins (depocenters), where the principal deformation zone appears relatively narrow and almost purely strike-slip. The present study shows the results of processing and analysis of continuous data records from these OBS stations during 50 days. We were able to detect seismic signal produced by an active mud volcano located close to the NAF trace, from about 3 to 6 km of distance from the OBS stations. Additionally, we captured the May 24, 2014, Mw 6.9 strike-slip earthquake occurred in the northern Aegean Sea between Greece and Turkey, which caused serious damage on the Turkish island of Imbros and the cities of Edirne and Çanakkale, as well as on the Greek island of Lemnos. The earthquake nucleated on the westward continuation of the NAF system in the NE Aegean Sea, and was

  13. Automatic Seismic-Event Classification with Convolutional Neural Networks.

    Science.gov (United States)

    Bueno Rodriguez, A.; Titos Luzón, M.; Garcia Martinez, L.; Benitez, C.; Ibáñez, J. M.

    2017-12-01

    Active volcanoes exhibit a wide range of seismic signals, providing vast amounts of unlabelled volcano-seismic data that can be analyzed through the lens of artificial intelligence. However, obtaining high-quality labelled data is time-consuming and expensive. Deep neural networks can process data in their raw form, compute high-level features and provide a better representation of the input data distribution. These systems can be deployed to classify seismic data at scale, enhance current early-warning systems and build extensive seismic catalogs. In this research, we aim to classify spectrograms from seven different seismic events registered at "Volcán de Fuego" (Colima, Mexico), during four eruptive periods. Our approach is based on convolutional neural networks (CNNs), a sub-type of deep neural networks that can exploit grid structure from the data. Volcano-seismic signals can be mapped into a grid-like structure using the spectrogram: a representation of the temporal evolution in terms of time and frequency. Spectrograms were computed from the data using Hamming windows with 4 seconds length, 2.5 seconds overlapping and 128 points FFT resolution. Results are compared to deep neural networks, random forest and SVMs. Experiments show that CNNs can exploit temporal and frequency information, attaining a classification accuracy of 93%, similar to deep networks 91% but outperforming SVM and random forest. These results empirically show that CNNs are powerful models to classify a wide range of volcano-seismic signals, and achieve good generalization. Furthermore, volcano-seismic spectrograms contains useful discriminative information for the CNN, as higher layers of the network combine high-level features computed for each frequency band, helping to detect simultaneous events in time. Being at the intersection of deep learning and geophysics, this research enables future studies of how CNNs can be used in volcano monitoring to accurately determine the detection and

  14. Broadband seismic deployments in East Antarctica: IPY contribution to monitoring the Earth’s interiors

    Directory of Open Access Journals (Sweden)

    Masaki Kanao

    2014-06-01

    Full Text Available “Deployment of broadband seismic stations on the Antarctica continent” is an ambitious project to improve the spatial resolution of seismic data across the Antarctic Plate and surrounding regions. Several international collaborative programs for the purpose of geomonitoring were conducted in Antarctica during the International Polar Year (IPY 2007-2008. The Antarctica’s GAmburtsev Province (AGAP; IPY #147, the GAmburtsev Mountain SEISmic experiment (GAMSEIS, a part of AGAP, and the Polar Earth Observing Network (POLENET; IPY #185 were major contributions in establishing a geophysical network in Antarctica. The AGAP/GAMSEIS project was an internationally coordinated deployment of more than 30 broadband seismographs over the crest of the Gambursev Mountains (Dome-A, Dome-C and Dome-F area. The investigations provide detailed information on crustal thickness and mantle structure; provide key constraints on the origin of the Gamburtsev Mountains; and more broadly on the structure and evolution of the East Antarctic craton and subglacial environment. From GAMSEIS and POLENET data obtained, local and regional seismic signals associated with ice movements, oceanic loading, and local meteorological variations were recorded together with a significant number of teleseismic events. In this chapter, in addition to the Earth’s interiors, we will demonstrate some of the remarkable seismic signals detected during IPY that illustrate the capabilities of broadband seismometers to study the sub-glacial environment, particularly at the margins of Antarctica. Additionally, the AGAP and POLENET stations have an important role in the Federation of Digital Seismographic Network (FDSN in southern high latitude.

  15. Tree-ring 14C links seismic swarm to CO2 spike at Yellowstone, USA

    Science.gov (United States)

    Evans, William C.; Bergfeld, D.; McGeehin, J.P.; King, J.C.; Heasler, H.

    2010-01-01

    Mechanisms to explain swarms of shallow seismicity and inflation-deflation cycles at Yellowstone caldera (western United States) commonly invoke episodic escape of magma-derived brines or gases from the ductile zone, but no correlative changes in the surface efflux of magmatic constituents have ever been documented. Our analysis of individual growth rings in a tree core from the Mud Volcano thermal area within the caldera links a sharp ~25% drop in 14C to a local seismic swarm in 1978. The implied fivefold increase in CO2 emissions clearly associates swarm seismicity with upflow of magma-derived fluid and shows that pulses of magmatic CO2 can rapidly traverse the 5-kmthick brittle zone, even through Yellowstone's enormous hydrothermal reservoir. The 1978 event predates annual deformation surveys, but recognized connections between subsequent seismic swarms and changes in deformation suggest that CO2 might drive both processes. ?? 2010 Geological Society of America.

  16. Evaluation of the seismic integrity of a plutonium-handling facility

    International Nuclear Information System (INIS)

    Coats, D.W.

    1981-01-01

    Many studies have been made by and for the Lawrence Livermore National Laboratory (LLNL) to ensure the seismic safety of its Plutonium Facility (Building 332). These studies have included seismological and geologic field investigations to define the actual seismic hazard existing at the Laboratory site as well as structural studies of the Facility itself. Because the basic seismic design criteria has undergone changes over the years, numerous structural studies and upgrades have been completed. The seismic criteria in use at the LLNL site is reviewed on a continuing basis as new information on the seismicity and geology of the Livermore Valley is obtained. At present, the Laboratory's Earth Sciences Division is conducting a multi-million dollar program to identify and characterize the geologic hazards at the Livermore site, with the primary emphasis on earthquake hazards in the Livermore Valley. This effort is undergoing an independent review by Woodward-Clyde Associates. Additionally, because of increased concerns over the seismic safety of Building 332, the Laboratory has initiated an independent structural review. This review effort will be monitored by the California Seismic Safety Commission to ensure its independence. Both of these studiies are in their early stages and results are not yet available

  17. Radiation protection and ambient radioactivity monitoring in the area of the Asse mine. Annual report 1997

    International Nuclear Information System (INIS)

    Meyer, H.; Stippler, R.

    1998-01-01

    The number of annual sampling and measurements performed in compliance with the operator's monitoring duties have been the same as last year: 364. All measured radioactivity values were at the level of natural environmental radioactivity. Some samples and measurements reflected the fallout from former atmospheric nuclear weapons tests and the accident at the Chernobyl reactor. Personnel dosimetry was performed according to legal requirements of the Radiation Protection Ordinance, as were measurements for the monitoring of ambient doses, dose rates and radioactivity levels in the air of the mine structures. All measured values were below the maximum permissible personal doses and occupational dose limits. Ambient air measurements in the salt mine as in the preceding years detected low amounts of the nuclides H 3, C 14, Pb 210, and the short-lived daughter products of Rn 222 and Rn 220. The calculated radioactivity concentrations in the vicinity of the mine, derived from averaged annual effluents, to some part were below the average natural concentrations of the nuclides. The effluent-induced radiation dose at the most affected location was far below the limits set by the Radiation Protection Ordinance. (orig./CB) [de

  18. Annual Report: 2011-2012 Storm Season Sampling, Non-Dry Dock Stormwater Monitoring for Puget Sound Naval Shipyard, Bremerton, WA

    Energy Technology Data Exchange (ETDEWEB)

    Brandenberger, Jill M.; Metallo, David; Rupert, Brian; Johnston, Robert K.; Gebhart, Christine

    2013-07-03

    Annual PSNS non-dry dock storm water monitoring results for 2011-2012 storm season. Included are a brief description of the sampling procedures, storm event information, laboratory methods and data collection, a results and discussion section, and the conclusions and recommendations.

  19. Precursory changes in seismic velocity for the spectrum of earthquake failure modes

    Science.gov (United States)

    Scuderi, M.M.; Marone, C.; Tinti, E.; Di Stefano, G.; Collettini, C.

    2016-01-01

    Temporal changes in seismic velocity during the earthquake cycle have the potential to illuminate physical processes associated with fault weakening and connections between the range of fault slip behaviors including slow earthquakes, tremor and low frequency earthquakes1. Laboratory and theoretical studies predict changes in seismic velocity prior to earthquake failure2, however tectonic faults fail in a spectrum of modes and little is known about precursors for those modes3. Here we show that precursory changes of wave speed occur in laboratory faults for the complete spectrum of failure modes observed for tectonic faults. We systematically altered the stiffness of the loading system to reproduce the transition from slow to fast stick-slip and monitored ultrasonic wave speed during frictional sliding. We find systematic variations of elastic properties during the seismic cycle for both slow and fast earthquakes indicating similar physical mechanisms during rupture nucleation. Our data show that accelerated fault creep causes reduction of seismic velocity and elastic moduli during the preparatory phase preceding failure, which suggests that real time monitoring of active faults may be a means to detect earthquake precursors. PMID:27597879

  20. Excavatability Assessment of Weathered Sedimentary Rock Mass Using Seismic Velocity Method

    International Nuclear Information System (INIS)

    Bin Mohamad, Edy Tonnizam; Noor, Muhazian Md; Isa, Mohamed Fauzi Bin Md.; Mazlan, Ain Naadia; Saad, Rosli

    2010-01-01

    Seismic refraction method is one of the most popular methods in assessing surface excavation. The main objective of the seismic data acquisition is to delineate the subsurface into velocity profiles as different velocity can be correlated to identify different materials. The physical principal used for the determination of excavatability is that seismic waves travel faster through denser material as compared to less consolidated material. In general, a lower velocity indicates material that is soft and a higher velocity indicates more difficult to be excavated. However, a few researchers have noted that seismic velocity method alone does not correlate well with the excavatability of the material. In this study, a seismic velocity method was used in Nusajaya, Johor to assess the accuracy of this seismic velocity method with excavatability of the weathered sedimentary rock mass. A direct ripping run by monitoring the actual production of ripping has been employed at later stage and compared to the ripper manufacturer's recommendation. This paper presents the findings of the seismic velocity tests in weathered sedimentary area. The reliability of using this method with the actual rippability trials is also presented.

  1. Excavatability Assessment of Weathered Sedimentary Rock Mass Using Seismic Velocity Method

    Science.gov (United States)

    Bin Mohamad, Edy Tonnizam; Saad, Rosli; Noor, Muhazian Md; Isa, Mohamed Fauzi Bin Md.; Mazlan, Ain Naadia

    2010-12-01

    Seismic refraction method is one of the most popular methods in assessing surface excavation. The main objective of the seismic data acquisition is to delineate the subsurface into velocity profiles as different velocity can be correlated to identify different materials. The physical principal used for the determination of excavatability is that seismic waves travel faster through denser material as compared to less consolidated material. In general, a lower velocity indicates material that is soft and a higher velocity indicates more difficult to be excavated. However, a few researchers have noted that seismic velocity method alone does not correlate well with the excavatability of the material. In this study, a seismic velocity method was used in Nusajaya, Johor to assess the accuracy of this seismic velocity method with excavatability of the weathered sedimentary rock mass. A direct ripping run by monitoring the actual production of ripping has been employed at later stage and compared to the ripper manufacturer's recommendation. This paper presents the findings of the seismic velocity tests in weathered sedimentary area. The reliability of using this method with the actual rippability trials is also presented.

  2. Phase 1 report: the 4D seismic market from 2000 to 2003

    International Nuclear Information System (INIS)

    Sagary, C.

    2004-01-01

    This report synthesizes the phase 1 results of the joint industrial project, called ''4D Seismic: Technologies, Economics and Issues''. This project was conducted by IFP between November 2003 and April 2004, in collaboration with Compagnie Generale de Geophysique (CGG) and sponsored by Gaz de France and 4. Wave Imaging. Phase 1 offers an objective view of the 4D seismic market over the period 2000-2003. The market has been assessed from IFP extensive databases, gathering 115 4D projects conducted worldwide and from interviews of seven oil companies, both representing 90% of the activity in time-lapse seismic. This study provides sales estimation and sales/projects breakdown by: in-house/subcontracted activity, geography, onshore/offshore, reservoir rocks and recovery methods, technology/methodology, oil companies and service companies. The market of 4D seismic has been split into 4 segments: acquisition, processing, reservoir studies - feasibility, interpretation and seismic history matching -, borehole seismic (acquisition and processing). In addition, the market of passive seismic monitoring, another technique of seismic reservoir monitoring has also been estimated. The main sources, used to build the IFP databases, were: Worldwide Global E and P Service Reports from IHS Energy, World Geophysical News, an extensive bibliographic study through more than 200 articles, abstracts and summaries, a collaboration with CGG. For all market estimations, numbers computed from IFP databases and from interviews of oil companies were extrapolated from 90% to 100%, to quantify the total 4D activity. The estimations obtained were not rounded in order to preserve trends with a consistent computation from one year to another and from one market segment to another, despite uncertainties of about 10%. Quality controls were performed to validate the final estimations: volumes of 4D seismic data, computed from IFP databases, were checked by comparing processed data with acquired data

  3. Raise Boring of the ventilation shaft in Olkiluoto, 17. - 23.5.2006. Preliminary analysis of seismic signal

    Energy Technology Data Exchange (ETDEWEB)

    Saari, J.; Lakio, A. [AaF-Enprima Oy, Vantaa (Finland)

    2007-01-15

    In Olkiluoto, Posiva Oy has operated a local seismic network since February 2002. The purpose of the microearthquake measurements at Olkiluoto is to improve understanding of the structure, behaviour and long term stability of the bedrock. The studies include both tectonic and excavation-induced microearthquakes. An additional task of monitoring is related to safeguarding of the ONKALO. The possibility to excavate an illegal access to the ONKALO, have been concerned when the safeguards are discussed. Therefore all recorded explosions in the Olkiluoto area and in the ONKALO are located. If a concentration of explosions is observed, the origin of that is found out. Also a concept of hidden illegal explosions, detonated at the same time as the real excavation blasts, has been examined. According to the experience gained in Olkiluoto, it can be concluded that, as long the seismic network is in operation and the results are analysed by a skilled person, it is practically impossible to do illegal excavation by blasts. In this report a possibility of seismic monitoring of illegal excavation done by tunnel boring machine has been investigated. Characteristics of the seismic signal generated by the raise boring machine are analysed. According to this study, it can be concluded that the generated seismic signal can be detected and the source of the signal can be located. However, this task calls for different kind of monitoring system than that, which is currently used for monitoring microearthquakes and explosions. (orig.)

  4. Raise Boring of the ventilation shaft in Olkiluoto, 17. - 23.5.2006. Preliminary analysis of seismic signal

    International Nuclear Information System (INIS)

    Saari, J.; Lakio, A.

    2007-01-01

    In Olkiluoto, Posiva Oy has operated a local seismic network since February 2002. The purpose of the microearthquake measurements at Olkiluoto is to improve understanding of the structure, behaviour and long term stability of the bedrock. The studies include both tectonic and excavation-induced microearthquakes. An additional task of monitoring is related to safeguarding of the ONKALO. The possibility to excavate an illegal access to the ONKALO, have been concerned when the safeguards are discussed. Therefore all recorded explosions in the Olkiluoto area and in the ONKALO are located. If a concentration of explosions is observed, the origin of that is found out. Also a concept of hidden illegal explosions, detonated at the same time as the real excavation blasts, has been examined. According to the experience gained in Olkiluoto, it can be concluded that, as long the seismic network is in operation and the results are analysed by a skilled person, it is practically impossible to do illegal excavation by blasts. In this report a possibility of seismic monitoring of illegal excavation done by tunnel boring machine has been investigated. Characteristics of the seismic signal generated by the raise boring machine are analysed. According to this study, it can be concluded that the generated seismic signal can be detected and the source of the signal can be located. However, this task calls for different kind of monitoring system than that, which is currently used for monitoring microearthquakes and explosions. (orig.)

  5. Internet-Based Solutions for a Secure and Efficient Seismic Network

    Science.gov (United States)

    Bhadha, R.; Black, M.; Bruton, C.; Hauksson, E.; Stubailo, I.; Watkins, M.; Alvarez, M.; Thomas, V.

    2017-12-01

    The Southern California Seismic Network (SCSN), operated by Caltech and USGS, leverages modern Internet-based computing technologies to provide timely earthquake early warning for damage reduction, event notification, ShakeMap, and other data products. Here we present recent and ongoing innovations in telemetry, security, cloud computing, virtualization, and data analysis that have allowed us to develop a network that runs securely and efficiently.Earthquake early warning systems must process seismic data within seconds of being recorded, and SCSN maintains a robust and resilient network of more than 350 digital strong motion and broadband seismic stations to achieve this goal. We have continued to improve the path diversity and fault tolerance within our network, and have also developed new tools for latency monitoring and archiving.Cyberattacks are in the news almost daily, and with most of our seismic data streams running over the Internet, it is only a matter of time before SCSN is targeted. To ensure system integrity and availability across our network, we have implemented strong security, including encryption and Virtual Private Networks (VPNs).SCSN operates its own data center at Caltech, but we have also installed real-time servers on Amazon Web Services (AWS), to provide an additional level of redundancy, and eventually to allow full off-site operations continuity for our network. Our AWS systems receive data from Caltech-based import servers and directly from field locations, and are able to process the seismic data, calculate earthquake locations and magnitudes, and distribute earthquake alerts, directly from the cloud.We have also begun a virtualization project at our Caltech data center, allowing us to serve data from Virtual Machines (VMs), making efficient use of high-performance hardware and increasing flexibility and scalability of our data processing systems.Finally, we have developed new monitoring of station average noise levels at most stations

  6. Estimation of reliability of seismic and electromagnetic monitoring in seismic active areas by diffraction tomography

    Directory of Open Access Journals (Sweden)

    V. N. Troyan

    2001-01-01

    Full Text Available This paper presents the algorithms and results of the numerical simulation of the solution of a 2-D inverse problem on the restoration of seismic parameters and electrical conductivity of local inhomogeneities by the diffraction tomography method based upon the first order Born approximation. The direct problems for the Lame and Maxwell equations are solved by the finite difference method. Restoration of inhomogeneities which are not very weak is implemented with the use of a small number of receivers (source-receiver pairs.

  7. The Danish air quality monitoring programme. Annual summary for 2011

    Energy Technology Data Exchange (ETDEWEB)

    Ellemann, T.; Klenoe Noejgaard, J.; Nordstroem, C.; Brandt, J.; Christensen, Jesper; Ketzel, M.; Solvang Jensen, S.

    2012-10-15

    The air quality in Danish cities has been monitored continuously since 1982 within the Danish Air Quality Monitoring network. The aim is to follow the concentration levels of toxic pollutants in the urban atmosphere and to provide the necessary knowledge to assess the trends, to perform source apportionment, and to understand the governing processes that determine the level of air pollution in Denmark. In 2011 the air quality was measured in four Danish cities and at two background sites. In addition model calculations were carried out to supplement the measurements. At one street station (H.C. Andersens Boulevard) in Copenhagen NO{sub 2} was found in concentrations above EU limit values while NO{sub 2} levels in Odense, Aarhus and Aalborg were below the limit value. Model calculations indicate exceedances of NO{sub 2} limit values at several streets in Copenhagen. Annual averages of PM{sub 10} and PM{sub 2.5} were below limit values at all stations. However, concentrations levels in Copenhagen exceeded the daily limit value for PM{sub 10}. Winter salting of roads was one of the main reasons for this exceedance. The concentrations for most pollutants have been strongly decreasing during the last decades, however, only a slight decrease has been observed for NO{sub 2} and O{sub 3}. (Author)

  8. Permafrost Active Layer Seismic Interferometry Experiment (PALSIE).

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Knox, Hunter Anne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); James, Stephanie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lee, Rebekah [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cole, Chris [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    We present findings from a novel field experiment conducted at Poker Flat Research Range in Fairbanks, Alaska that was designed to monitor changes in active layer thickness in real time. Results are derived primarily from seismic data streaming from seven Nanometric Trillium Posthole seismometers directly buried in the upper section of the permafrost. The data were evaluated using two analysis methods: Horizontal to Vertical Spectral Ratio (HVSR) and ambient noise seismic interferometry. Results from the HVSR conclusively illustrated the method's effectiveness at determining the active layer's thickness with a single station. Investigations with the multi-station method (ambient noise seismic interferometry) are continuing at the University of Florida and have not yet conclusively determined active layer thickness changes. Further work continues with the Bureau of Land Management (BLM) to determine if the ground based measurements can constrain satellite imagery, which provide measurements on a much larger spatial scale.

  9. Brief communication: Post-seismic landslides, the tough lesson of a catastrophe

    Directory of Open Access Journals (Sweden)

    X. Fan

    2018-01-01

    Full Text Available The rock avalanche that destroyed the village of Xinmo in Sichuan, China, on 24 June 2017, brought the issue of landslide risk and disaster chain management in highly seismic regions back into the spotlight. The long-term post-seismic behaviour of mountain slopes is complex and hardly predictable. Nevertheless, the integrated use of field monitoring, remote sensing and real-time predictive modelling can help to set up effective early warning systems, provide timely alarms, optimize rescue operations, and perform secondary hazard assessments. We believe that a comprehensive discussion on post-seismic slope stability and on its implications for policy makers can no longer be postponed.

  10. Brief communication: Post-seismic landslides, the tough lesson of a catastrophe

    Science.gov (United States)

    Fan, Xuanmei; Xu, Qiang; Scaringi, Gianvito

    2018-01-01

    The rock avalanche that destroyed the village of Xinmo in Sichuan, China, on 24 June 2017, brought the issue of landslide risk and disaster chain management in highly seismic regions back into the spotlight. The long-term post-seismic behaviour of mountain slopes is complex and hardly predictable. Nevertheless, the integrated use of field monitoring, remote sensing and real-time predictive modelling can help to set up effective early warning systems, provide timely alarms, optimize rescue operations, and perform secondary hazard assessments. We believe that a comprehensive discussion on post-seismic slope stability and on its implications for policy makers can no longer be postponed.

  11. Southern Appalachian Regional Seismic Network

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, S.C.C.; Johnston, A.C.; Chiu, J.M. [Memphis State Univ., TN (United States). Center for Earthquake Research and Information

    1994-08-01

    The seismic activity in the southern Appalachian area was monitored by the Southern Appalachian Regional Seismic Network (SARSN) since late 1979 by the Center for Earthquake Research and Information (CERI) at Memphis State University. This network provides good spatial coverage for earthquake locations especially in east Tennessee. The level of activity concentrates more heavily in the Valley and Ridge province of eastern Tennessee, as opposed to the Blue Ridge or Inner Piedmont. The large majority of these events lie between New York - Alabama lineament and the Clingman/Ocoee lineament, magnetic anomalies produced by deep-seated basement structures. Therefore SARSN, even with its wide station spacing, has been able to define the essential first-order seismological characteristics of the Southern Appalachian seismic zone. The focal depths of the southeastern U.S. earthquakes concentrate between 8 and 16 km, occurring principally beneath the Appalachian overthrust. In cross-sectional views, the average seismicity is shallower to the east beneath the Blue Ridge and Piedmont provinces and deeper to the west beneath the Valley and Ridge and the North American craton. Results of recent focal mechanism studies by using the CERI digital earthquake catalog between October, 1986 and December, 1991, indicate that the basement of the Valley and Ridge province is under a horizontal, NE-SW compressive stress. Right-lateral strike-slip faulting on nearly north-south fault planes is preferred because it agrees with the trend of the regional magnetic anomaly pattern.

  12. Southern Appalachian Regional Seismic Network

    International Nuclear Information System (INIS)

    Chiu, S.C.C.; Johnston, A.C.; Chiu, J.M.

    1994-08-01

    The seismic activity in the southern Appalachian area was monitored by the Southern Appalachian Regional Seismic Network (SARSN) since late 1979 by the Center for Earthquake Research and Information (CERI) at Memphis State University. This network provides good spatial coverage for earthquake locations especially in east Tennessee. The level of activity concentrates more heavily in the Valley and Ridge province of eastern Tennessee, as opposed to the Blue Ridge or Inner Piedmont. The large majority of these events lie between New York - Alabama lineament and the Clingman/Ocoee lineament, magnetic anomalies produced by deep-seated basement structures. Therefore SARSN, even with its wide station spacing, has been able to define the essential first-order seismological characteristics of the Southern Appalachian seismic zone. The focal depths of the southeastern U.S. earthquakes concentrate between 8 and 16 km, occurring principally beneath the Appalachian overthrust. In cross-sectional views, the average seismicity is shallower to the east beneath the Blue Ridge and Piedmont provinces and deeper to the west beneath the Valley and Ridge and the North American craton. Results of recent focal mechanism studies by using the CERI digital earthquake catalog between October, 1986 and December, 1991, indicate that the basement of the Valley and Ridge province is under a horizontal, NE-SW compressive stress. Right-lateral strike-slip faulting on nearly north-south fault planes is preferred because it agrees with the trend of the regional magnetic anomaly pattern

  13. Identification of Natural Oscillation Modes for Purposes of Seismic Assessment and Monitoring of HPP Dams

    Energy Technology Data Exchange (ETDEWEB)

    Kuz’menko, A. P., E-mail: apkuzm@gmail.com; Saburov, S. V., E-mail: saburov58@yandex.ru [Russian Academy of Sciences, Computer Equipment Design Technology Institute, Siberian Branch (Russian Federation)

    2016-07-15

    The paper puts forward a method for processing data from detailed seismic assessments of HPP dams (dynamic tests). A detailed assessment (hundreds of observation points in dam galleries) is performed with consideration of operating dam equipment and the microseismic noise. It is shown that dynamic oscillation characteristics (natural oscillation frequencies and modes in the main dam axes, the velocities of propagation of elastic waves with given polarization, and so on.) can be determined with sufficient accuracy by using complex transfer functions and pulse characteristics. Monitoring data is processed using data from a detailed assessment, taking account of identified natural oscillation modes and determined ranges of natural frequencies. The spectra of characteristic frequencies thus obtained are used to choose substitution models and estimate the elastic characteristics of the “dam – rock bed” construction system, viz., the modulus of elasticity (the Young modulus), the Poisson ratio, the dam section stiffness with respect to shear, tension and compression and the elastic characteristics of the rock foundation.

  14. Joint inversion of geophysical data for site characterization and restoration monitoring. FY97 annual progress report for EMSP

    International Nuclear Information System (INIS)

    Berge, P.A.; Berryman, J.G.; Bonner, B.P.; Roberts, J.J.; Wildenschild

    1997-01-01

    'The purpose of this project is to develop a computer code for joint in-version of seismic and electrical data, to improve underground imaging for site characterization and remediation monitoring. The computer code developed in this project will invert geophysical data to obtain direct estimates of porosity and saturation underground, rather than inverting for seismic velocity and electrical resistivity or other geophysical properties. This is intended to be a significant improvement in the state-of-the-art of under-ground imaging, since interpretation of data collected at a contaminated site would become much less subjective. The schedule of this project is as follows: In the first year, investigators perform laboratory measurements of elastic and electrical properties of sand-clay mixtures containing various fluids. Investigators also develop methods of relating measurable geophysical properties to porosity and saturation by using rock physics theories, geostatistical, and empirical techniques together with available laboratory measurements. In the second year, investigators finish any necessary laboratory measurements and apply the methods developed in the first year to invert available borehole log data to predict measured properties of cores and sediments from a borehole. Investigators refine the inversion code in the third year and carry out a field experiment to collect seismic and electrical data. Investigators then use the inversion code to invert the field data to produce estimates of porosity and saturation in the field area where the data were collected. This report describes progress made in the first year of this three-year project.'

  15. 4D seismic data acquisition method during coal mining

    International Nuclear Information System (INIS)

    Du, Wen-Feng; Peng, Su-Ping

    2014-01-01

    In order to observe overburden media changes caused by mining processing, we take the fully-mechanized working face of the BLT coal mine in Shendong mine district as an example to develop a 4D seismic data acquisition methodology during coal mining. The 4D seismic data acquisition is implemented to collect 3D seismic data four times in different periods, such as before mining, during the mining process and after mining to observe the changes of the overburden layer during coal mining. The seismic data in the research area demonstrates that seismic waves are stronger in energy, higher in frequency and have better continuous reflectors before coal mining. However, all this is reversed after coal mining because the overburden layer has been mined, the seismic energy and frequency decrease, and reflections have more discontinuities. Comparing the records collected in the survey with those from newly mined areas and other records acquired in the same survey with the same geometry and with a long time for settling after mining, it clearly shows that the seismic reflections have stronger amplitudes and are more continuous because the media have recovered by overburden layer compaction after a long time of settling after mining. By 4D seismic acquisition, the original background investigation of the coal layers can be derived from the first records, then the layer structure changes can be monitored through the records of mining action and compaction action after mining. This method has laid the foundation for further research into the variation principles of the overburden layer under modern coal-mining conditions. (paper)

  16. First Quarter Hanford Seismic Report for Fiscal Year 2009

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2009-03-15

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. This includes three recently acquired Transportable Array stations located at Cold Creek, Didier Farms, and Phinney Hill. For the Hanford Seismic Network, ten local earthquakes were recorded during the first quarter of fiscal year 2009. All earthquakes were considered as “minor” with magnitudes (Mc) less than 1.0. Two earthquakes were located at shallow depths (less than 4 km), most likely in the Columbia River basalts; five earthquakes at intermediate depths (between 4 and 9 km), most likely in the sub-basalt sediments); and three earthquakes were located at depths greater than 9 km, within the basement. Geographically, four earthquakes occurred in known swarm areas and six earthquakes were classified as random events.

  17. Seismic characteristics of tensile fracture growth induced by hydraulic fracturing

    Science.gov (United States)

    Eaton, D. W. S.; Van der Baan, M.; Boroumand, N.

    2014-12-01

    Hydraulic fracturing is a process of injecting high-pressure slurry into a rockmass to enhance its permeability. Variants of this process are used for unconventional oil and gas development, engineered geothermal systems and block-cave mining; similar processes occur within volcanic systems. Opening of hydraulic fractures is well documented by mineback trials and tiltmeter monitoring and is a physical requirement to accommodate the volume of injected fluid. Numerous microseismic monitoring investigations acquired in the audio-frequency band are interpreted to show a prevalence of shear-dominated failure mechanisms surrounding the tensile fracture. Moreover, the radiated seismic energy in the audio-frequency band appears to be a miniscule fraction (<< 1%) of the net injected energy, i.e., the integral of the product of fluid pressure and injection rate. We use a simple penny-shaped crack model as a predictive framework to describe seismic characteristics of tensile opening during hydraulic fracturing. This model provides a useful scaling relation that links seismic moment to effective fluid pressure within the crack. Based on downhole recordings corrected for attenuation, a significant fraction of observed microseismic events are characterized by S/P amplitude ratio < 5. Despite the relatively small aperture of the monitoring arrays, which precludes both full moment-tensor analysis and definitive identification of nodal planes or axes, this ratio provides a strong indication that observed microseismic source mechanisms have a component of tensile failure. In addition, we find some instances of periodic spectral notches that can be explained by an opening/closing failure mechanism, in which fracture propagation outpaces fluid velocity within the crack. Finally, aseismic growth of tensile fractures may be indicative of a scenario in which injected energy is consumed to create new fracture surfaces. Taken together, our observations and modeling provide evidence that

  18. Seismic monitoring of an Underground Repository in Salt - Results of the measurements at the Gorleben Exploratory mine

    International Nuclear Information System (INIS)

    Altmann, Jurgen

    2013-01-01

    We have measured seismic and acoustic signals from various mining activities in the Gorleben exploratory mine in Germany, underground at -840 m and at the surface, tasked by the German Support Programme to the IAEA, in order to provide basic knowledge on the detectability of undeclared activities. During 7 weeks total nearly all sources of sound and vibration available in the mine were covered, with sensors at several positions and sources at several sites, sometimes with background signals from on-going exploration elsewhere. The peak-to-peak values of vibration velocity, referred to 100 m distance, range from tenths of micro metres/second for a hand-held chain saw via few μm/s to tens of μm/s for other tools such as picking, for vehicles, drilling and sledge-hammer blows. A grader with compactor plates produces hundreds, and a blast shot around one hundred thousand μm/s. The last two sources could be detected at the surface, too, at about 1.1 km slant distance; blasts were even seen at 5-6 km distance. The signal strengths vary by a factor 2 to 5 for similar conditions. Fitted by a power law, the decrease with distance is with an exponent mostly between -2 and -1. Spectra of seismic signals from periodic sources (such as percussion drilling or vehicle engines) show harmonic series. Rock removal, e.g. by drilling, produces broad-band excitation up to several kilohertz. Acoustic-seismic coupling is relevant. Monitoring could be done with an underground geophone “fence” around the repository, e.g. 500 m from the salt-dome margin and possibly in the salt 1 km off the repository. With that excavation by drilling and blasting could be detected by a simple amplitude criterion. Under which conditions excavation by tunnel boring machine or road header machine and other weaker activities could be detected needs to be studied.

  19. Seismic Ecology

    Science.gov (United States)

    Seleznev, V. S.; Soloviev, V. M.; Emanov, A. F.

    The paper is devoted to researches of influence of seismic actions for industrial and civil buildings and people. The seismic actions bring influence directly on the people (vibration actions, force shocks at earthquakes) or indirectly through various build- ings and the constructions and can be strong (be felt by people) and weak (be fixed by sensing devices). The great number of work is devoted to influence of violent seismic actions (first of all of earthquakes) on people and various constructions. This work is devoted to study weak, but long seismic actions on various buildings and people. There is a need to take into account seismic oscillations, acting on the territory, at construction of various buildings on urbanized territories. Essential influence, except for violent earthquakes, man-caused seismic actions: the explosions, seismic noise, emitted by plant facilities and moving transport, radiation from high-rise buildings and constructions under action of a wind, etc. can exert. Materials on increase of man- caused seismicity in a number of regions in Russia, which earlier were not seismic, are presented in the paper. Along with maps of seismic microzoning maps to be built indicating a variation of amplitude spectra of seismic noise within day, months, years. The presence of an information about amplitudes and frequencies of oscillations from possible earthquakes and man-caused oscillations in concrete regions allows carry- ing out soundly designing and construction of industrial and civil housing projects. The construction of buildings even in not seismically dangerous regions, which have one from resonance frequencies coincident on magnitude to frequency of oscillations, emitted in this place by man-caused objects, can end in failure of these buildings and heaviest consequences for the people. The practical examples of detail of engineering- seismological investigation of large industrial and civil housing projects of Siberia territory (hydro power

  20. Time-Lapse Monitoring of Subsurface Fluid Flow using Parsimonious Seismic Interferometry

    KAUST Repository

    Hanafy, Sherif; Li, Jing; Schuster, Gerard T.

    2017-01-01

    of parsimonious seismic interferometry with the time-lapse mentoring idea with field examples, where we were able to record 30 different data sets within a 2-hour period. The recorded data are then processed to generate 30 snapshots that shows the spread of water

  1. Long-term changes of the glacial seismicity: case study from Spitsbergen

    Science.gov (United States)

    Gajek, Wojciech; Trojanowski, Jacek; Malinowski, Michał

    2016-04-01

    Changes in global temperature balance have proved to have a major impact on the cryosphere, and therefore withdrawing glaciers are the symbol of the warming climate. Our study focuses on year-to-year changes in glacier-generated seismicity. We have processed 7-year long continuous seismological data recorded by the HSP broadband station located in the proximity of Hansbreen glacier (Hornsund, southern Spitsbergen), obtaining seismic activity distribution between 2008 and 2014. We developed a new fuzzy logic algorithm to distinguish between glacier- and non-glacier-origin events. The algorithm takes into account the frequency of seismic signal and the energy flow in certain time interval. Our research has revealed that the number of detected glacier-origin events over last two years has doubled. Annual events distribution correlates well with temperature and precipitation curves, illustrating characteristic yearlong behaviour of glacier seismic activity. To further support our observations, we have analysed 5-year long distribution of glacier-origin tremors detected in the vicinity of the Kronebreen glacier using KBS broadband station located in Ny-Ålesund (western Spitsbergen). We observe a steady increase in the number of detected events. detected each year, however not as significant as for Hornsund dataset.

  2. Unocal Parachute Creek Shale Oil Program Environmental Monitoring Program. Annual report, October 1, 1990-December 31, 1991

    International Nuclear Information System (INIS)

    1992-01-01

    The Energy Security Act of 1980 established a program to provide financial assistance to private industry in the construction and operation of commercial-scale synthetic fuels plants. The Parachute Creek Shale Oil Program is one of four projects awarded financial assistance. The Program agreed to comply with existing environmental monitoring regulations and to develop an Environmental Monitoring Plan (EMP) incorporating supplemental monitoring in the areas of water, air, solid waste, and worker health and safety during the period 1985-1992. These activities are described in a series of quarterly and annual reports. The report contains summaries of compliance and supplemental environmental and industrial hygiene and health surveillance monitoring conducted during the period; compliance permits, permit changes, and Notices of Violations discussions; statistical significance of Employee General Health information, medical histories, physical exams, pulmonary functions, clinical tests and demographics; independent audit reports; and a description of retorted shale disposal activities

  3. Biodiversity Monitoring Using NGS Approaches on Unusual Substrates (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, Tom

    2013-03-01

    Tom Gilbert of the Natural History Museum of Denmark on "Biodiversity monitoring using NGS approaches on unusual substrates" at the 8th Annual Genomics of Energy & Environment Meeting in Walnut Creek, Calif.

  4. A sensitivity analysis on seismic tomography data with respect to CO2 saturation of a CO2 geological sequestration field

    Science.gov (United States)

    Park, Chanho; Nguyen, Phung K. T.; Nam, Myung Jin; Kim, Jongwook

    2013-04-01

    Monitoring CO2 migration and storage in geological formations is important not only for the stability of geological sequestration of CO2 but also for efficient management of CO2 injection. Especially, geophysical methods can make in situ observation of CO2 to assess the potential leakage of CO2 and to improve reservoir description as well to monitor development of geologic discontinuity (i.e., fault, crack, joint, etc.). Geophysical monitoring can be based on wireline logging or surface surveys for well-scale monitoring (high resolution and nallow area of investigation) or basin-scale monitoring (low resolution and wide area of investigation). In the meantime, crosswell tomography can make reservoir-scale monitoring to bridge the resolution gap between well logs and surface measurements. This study focuses on reservoir-scale monitoring based on crosswell seismic tomography aiming describe details of reservoir structure and monitoring migration of reservoir fluid (water and CO2). For the monitoring, we first make a sensitivity analysis on crosswell seismic tomography data with respect to CO2 saturation. For the sensitivity analysis, Rock Physics Models (RPMs) are constructed by calculating the values of density and P and S-wave velocities of a virtual CO2 injection reservoir. Since the seismic velocity of the reservoir accordingly changes as CO2 saturation changes when the CO2 saturation is less than about 20%, while when the CO2 saturation is larger than 20%, the seismic velocity is insensitive to the change, sensitivity analysis is mainly made when CO2 saturation is less than 20%. For precise simulation of seismic tomography responses for constructed RPMs, we developed a time-domain 2D elastic modeling based on finite difference method with a staggered grid employing a boundary condition of a convolutional perfectly matched layer. We further make comparison between sensitivities of seismic tomography and surface measurements for RPMs to analysis resolution

  5. Web Based Seismological Monitoring (wbsm)

    Science.gov (United States)

    Giudicepietro, F.; Meglio, V.; Romano, S. P.; de Cesare, W.; Ventre, G.; Martini, M.

    Over the last few decades the seismological monitoring systems have dramatically improved tanks to the technological advancements and to the scientific progresses of the seismological studies. The most modern processing systems use the network tech- nologies to realize high quality performances in data transmission and remote controls. Their architecture is designed to favor the real-time signals analysis. This is, usually, realized by adopting a modular structure that allow to easy integrate any new cal- culation algorithm, without affecting the other system functionalities. A further step in the seismic processing systems evolution is the large use of the web based appli- cations. The web technologies can be an useful support for the monitoring activities allowing to automatically publishing the results of signals processing and favoring the remote access to data, software systems and instrumentation. An application of the web technologies to the seismological monitoring has been developed at the "Os- servatorio Vesuviano" monitoring center (INGV) in collaboration with the "Diparti- mento di Informatica e Sistemistica" of the Naples University. A system named Web Based Seismological Monitoring (WBSM) has been developed. Its main objective is to automatically publish the seismic events processing results and to allow displaying, analyzing and downloading seismic data via Internet. WBSM uses the XML tech- nology for hypocentral and picking parameters representation and creates a seismic events data base containing parametric data and wave-forms. In order to give tools for the evaluation of the quality and reliability of the published locations, WBSM also supplies all the quality parameters calculated by the locating program and allow to interactively display the wave-forms and the related parameters. WBSM is a modular system in which the interface function to the data sources is performed by two spe- cific modules so that to make it working in conjunction with a

  6. Application of Soviet PNE Data to the Improvement of Seismic Monitoring Capability

    National Research Council Canada - National Science Library

    Murphy, John

    2004-01-01

    .... and the Russian Institute for Dynamics of the Geospheres to use regional seismic data recorded from Soviet PNE test and nearby earthquakes and mining events to assess the applicability of various...

  7. Seismic Calibration of Group 1 IMS Stations in Eastern Asia for Improved IDC Event Location

    National Research Council Canada - National Science Library

    Murphy, J. R; Rodi, W. L; Johnson, M; Sultanov, J. D; Bennett, T. J; Toksoz, M. N; Ovtchinnikov, V; Barker, B. W; Rosca, A. M; Shchukin, Y

    2006-01-01

    .... In order to establish a robust nuclear test monitoring capability, it is necessary to calibrate the IMS seismic stations used in monitoring, to account for systematic deviations from the nominal travel time curves...

  8. Local seismic activity monitored at King Sejong Station, Antarctica

    OpenAIRE

    Lee,Duk Kee; Kim,Yea Dong; Nam,Sang Heon; Jin,Young Keun

    1998-01-01

    Source location estimation from single station earthquake data collected at King Sejong Station (62°13'3l"N, 58°47'07"W) from 1995 to 1996 provides seismic activity around King Sejong Station. Analysis of local events, less than 1.5°in angular epicentral distance, finds epicenters located near the Shackleton Fracture Zone, the South Shetland Platform, Deception Island, and North Bransfield Basin. Estimated magnitudes range from 2.2 to 4.5 on the Richter scale, averaging 4.0 in North Bransfiel...

  9. Groundwater Depletion and the Sharp Increase of Seismicity in the Southern States, How GRACE Data Could Help?

    Science.gov (United States)

    Hong, Z.; Hasan, E.; Hong, Y.; Xia, B.; Zhong, H.

    2016-12-01

    This study is a contribution to how NASA's Gravity Recovery and Climate Experiment (GRACE) data may be used to track anthropogenic related change in the groundwater in the Southern Great Plains (SGP) as well recently increased seismicity in the southern states. The SGP contains one of the most important groundwater aquifers in the United States, the Ogallala groundwater aquifer, which has been exploited since 1900. Meanwhile, the recent activities of oil and gas extraction from the unconventional shall reservoir systems has led to significantly increased groundwater withdrawal and injection of wastewater. Consequently, numerous induced fracture related earthquakes have been recorded in Oklahoma and Texas between 2002 and 2016 The current paper investigates the utility of GRACE data along with the Land Water Content (LWC) information from the Global Land Data Assimilation System (GLDAS) to monitor and track the groundwater changes in three southern states of SGP (Oklahoma, Texas and New Mexico). Additionally, the paper investigates links between active seismicity and the injection of the wastewater due to the oil and gas production. Using GRACE data yields unprecedented information about the inter-annual changes in the Total Water Storage (TWS) from 2002 to 2016 over SGP. The LWC data set sums the soil moisture records with the the total canopy water storage to reveal the total land surface water content. The arithmetic difference between the TWS and LWC is the Groundwater Anomaly (GWA) for any particular region. In the current study, the GWA analysis reveals the following: (1) statistically significant drop of the GWA of about - 27 mm from 2002 to 2007 due to natural and anthropogenic causes; (2) the increased precipitation records from 2008 to 2011 over SGP leads to significant recovery in TWS and an increase in the groundwater content of about 40 mm; (3) the period from 2012 to 2015 experienced increased GWA of about - 6 mm for the period. Using the available

  10. Seismic switch for strong motion measurement

    Science.gov (United States)

    Harben, P.E.; Rodgers, P.W.; Ewert, D.W.

    1995-05-30

    A seismic switching device is described that has an input signal from an existing microseismic station seismometer and a signal from a strong motion measuring instrument. The seismic switch monitors the signal level of the strong motion instrument and passes the seismometer signal to the station data telemetry and recording systems. When the strong motion instrument signal level exceeds a user set threshold level, the seismometer signal is switched out and the strong motion signal is passed to the telemetry system. The amount of time the strong motion signal is passed before switching back to the seismometer signal is user controlled between 1 and 15 seconds. If the threshold level is exceeded during a switch time period, the length of time is extended from that instant by one user set time period. 11 figs.

  11. Integration of ambient seismic noise monitoring, displacement and meteorological measurements to infer the temperature-controlled long-term evolution of a complex prone-to-fall cliff

    Science.gov (United States)

    Colombero, C.; Baillet, L.; Comina, C.; Jongmans, D.; Larose, E.; Valentin, J.; Vinciguerra, S.

    2018-06-01

    Monitoring the temporal evolution of resonance frequencies and velocity changes detected from ambient seismic noise recordings can help in recognizing reversible and irreversible modifications within unstable rock volumes. With this aim, the long-term ambient seismic noise data set acquired at the potentially unstable cliff of Madonna delSasso (NW Italian Alps) was analysed in this study, using both spectral analysis and cross-correlation techniques. Noise results were integrated and compared with direct displacement measurements and meteorological data, to understand the long-term evolution of the cliff. No irreversible modifications in the stability of the site were detected over the monitored period. Conversely, daily and seasonal air temperature fluctuations were found to control resonance frequency values, amplitudes and directivities and to induce reversible velocity changes within the fractured rock mass. The immediate modification in the noise parameters due to temperature fluctuations was interpreted as the result of rock mass thermal expansion and contraction, inducing variations in the contact stiffness along the fractures isolating two unstable compartments. Differences with previous case studies were highlighted in the long-term evolution of noise spectral amplitudes and directivities, due to the complex 3-D fracture setting of the site and to the combined effects of the two unstable compartments.

  12. Umatilla Hatchery monitoring and evaluation : annual report, 1999; ANNUAL

    International Nuclear Information System (INIS)

    2001-01-01

    The Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program authorized construction of Umatilla Fish Hatchery (UFH) in 1986. Measure 703 of the program amended the original authorization for the hatchery and specified evaluation of the Michigan (MI) raceways using oxygen supplementation to reach production goals of 290,000 lb of chinook salmon (Oncorhynchus tshawytscha) and steelhead (O. mykiss). The hatchery was completed in fall 1991. Partial justification for the hatchery was to evaluate new production and supplementation techniques. MI raceways at UFH increase smolt production with a limited water supply. Test results for MI raceways will have systematic application in the Columbia River basin. The UFH is the foundation for rehabilitating chinook salmon and enhancing steelhead in the Umatilla River (CTUIR and ODFW 1990) and is expected to contribute significantly to the Northwest Power Planning Council's goal of doubling salmon production in the Columbia Basin. Hatchery production goals and a comprehensive monitoring and evaluation plan were presented in the Umatilla Hatchery Master Plan (CTUIR and ODFW 1990). The Comprehensive Plan for Monitoring and Evaluation of Umatilla Hatchery (Carmichael 1990) was approved by the Northwest Power Planning Council as a critical adaptive management guide for fisheries rehabilitation in the Umatilla River. Monitoring and evaluation will be used to increase knowledge about uncertainties inherent in the fisheries rehabilitation and will complement the developing systematic monitoring and evaluation program. The monitoring and evaluation goals are: (1) Provide information and recommendations for the culture and release of hatchery fish, harvest regulations, and natural escapement to accomplish long-term natural and hatchery production goals in the Umatilla River basin that are consistent with provisions of the Council's Columbia River Basin Fish and Wildlife Program. (2) Assess the success of achieving

  13. Annual Report of the Integrated Status and Effectiveness Monitoring Program: Fiscal Year 2008

    Energy Technology Data Exchange (ETDEWEB)

    Terraqua, Inc. (Wauconda, WA)

    2009-07-20

    This document was created as an annual report detailing the accomplishments of the Integrated Status and Effectiveness Monitoring Program (ISEMP) in the Upper Columbia Basin in fiscal year 2008. The report consists of sub-chapters that reflect the various components of the program. Chapter 1 presents a report on programmatic coordination and accomplishments, and Chapters 2 through 4 provide a review of how ISEMP has progressed during the 2008 fiscal year in each of the pilot project subbasins: the John Day (Chapter 2), Wenatchee/Entiat (Chapter 3) and Salmon River (Chapter 4). Chapter 5 presents a report on the data management accomplishments in 2008.

  14. New seismic monitoring observation system and data accessibility at Syowa Station

    Directory of Open Access Journals (Sweden)

    Masaki Kanao

    1999-03-01

    Full Text Available The seismic observation system at Syowa Station, East Antarctica was fully replaced in the wintering season of the 38th Japanese Antarctic Research Expedition (JARE-38 in 1996-1998. The old seismographic vault constructed in 1970 was closed at the end of JARE-38 because of cumulative damage to the inner side of the vault by continuous flowing in of water from walls in summer and its freezing in winter. All the seismometers were moved to a new seismographic hut (69°00′24.0″S, 39°35′06.0″E and 20m above mean sea level in April 1997. Seismic signals of the short-period (HES and broadband (STS-1 seismometers in the new hut are transmitted to the Earth Science Laboratory (ESL via analog cable 600m in length. The new acquisition system was installed in the ESL with 6-channel 24-bit A/D converters for both sensor signals. All digitized data are automatically transmitted from the A/D converter to a workstation via TCP/IP protocol. After parallel observations with the old acquisition system by personal computers and the new system during the wintering season of JARE-38,the main system was changed to the new one, which has some advantages for both the reduction of daily maintenance efforts and the data transport/communication processes via Internet by use of LAN at the station. In this report, details of the new seismographic hut and the recording system are described. Additionally, the seismic data accessibility for public use, including Internet service, is described.

  15. High Temporal Resolution Mapping of Seismic Noise Sources Using Heterogeneous Supercomputers

    Science.gov (United States)

    Paitz, P.; Gokhberg, A.; Ermert, L. A.; Fichtner, A.

    2017-12-01

    The time- and space-dependent distribution of seismic noise sources is becoming a key ingredient of modern real-time monitoring of various geo-systems like earthquake fault zones, volcanoes, geothermal and hydrocarbon reservoirs. We present results of an ongoing research project conducted in collaboration with the Swiss National Supercomputing Centre (CSCS). The project aims at building a service providing seismic noise source maps for Central Europe with high temporal resolution. We use source imaging methods based on the cross-correlation of seismic noise records from all seismic stations available in the region of interest. The service is hosted on the CSCS computing infrastructure; all computationally intensive processing is performed on the massively parallel heterogeneous supercomputer "Piz Daint". The solution architecture is based on the Application-as-a-Service concept to provide the interested researchers worldwide with regular access to the noise source maps. The solution architecture includes the following sub-systems: (1) data acquisition responsible for collecting, on a periodic basis, raw seismic records from the European seismic networks, (2) high-performance noise source mapping application responsible for the generation of source maps using cross-correlation of seismic records, (3) back-end infrastructure for the coordination of various tasks and computations, (4) front-end Web interface providing the service to the end-users and (5) data repository. The noise source mapping itself rests on the measurement of logarithmic amplitude ratios in suitably pre-processed noise correlations, and the use of simplified sensitivity kernels. During the implementation we addressed various challenges, in particular, selection of data sources and transfer protocols, automation and monitoring of daily data downloads, ensuring the required data processing performance, design of a general service-oriented architecture for coordination of various sub-systems, and

  16. Seismic simulation and functional performance evaluation of a safety related, seismic category I control room emergency air cleaning system

    International Nuclear Information System (INIS)

    Manley, D.K.; Porco, R.D.; Choi, S.H.

    1985-01-01

    Under a nuclear contract MSA was required to design, manufacture, seismically test and functionally test a complete Safety Related, Seismic Category I, Control Room Emergency Air Cleaning System before shipment to the Yankee Atomic Electric Company, Yankee Nuclear Station in Rowe, Massachusetts. The installation of this system was required to satisfy the NRC requirements of NUREG-0737, Section III, D.3.4, ''Control Room Habitability''. The filter system tested was approximately 3 ft. wide by 8 ft. high by 18 ft. long and weighed an estimated 8300 pounds. It had a design flow rate of 3000 SCFM and contained four stages of filtration - prefilters, upstream and downstream HEPA filters and Type II sideload charcoal adsorber cells. The filter train design followed the guidelines set forth by ANSI/ASME N509-1980. Seismic Category I Qualification Testing consisted of resonance search testing and triaxial random multifrequency testing. In addition to ANSI/ASME N510-1980 testing, triaxial response accelerometers were placed at specific locations on designated prefilters, HEPA filters, charcoal adsorbers and test canisters along with accelerometers at the corresponding filter seal face locations. The purpose of this test was to demonstrate the integrity of the filters, filter seals, and monitor seismic response levels which is directly related to the system's ability to function during a seismic occurrence. The Control Room Emergency Air Cleaning System demonstrated the ability to withstand the maximum postulated earthquake for the plant site by remaining structurally sound and functional

  17. Design and commissioning of the Seismicity Network of Darkhovein Nuclear Power Plant (IR360)

    International Nuclear Information System (INIS)

    Aram, M. R.

    2012-01-01

    The study of micro seismicity and monitoring the micro seismic for the purpose of surveying the existing faults treatments and recognition of blind faults and other active tectonic structures in various phases of constructing the important structures, specially nuclear power plants, is unavoidable. According to IAEA safety guides and US-NRC regulatory guides, suitable instrumentation must be provided so that the seismic response of nuclear power plant features importantly from the safety point of view. According to R.G. 1.165 seismic monitoring by a network of seismic stations in the site area should be established as soon as possible after the site selection. Also, it is necessary to shutdown the nuclear power plant if vibratory ground motion exceeds the operating basis earthquake. The current research demonstrates the field works and studies for locating the local seismograph network in Darkhovein nuclear power plant. After the official studies and the primary visit of the old seismograph stations it was found that the mentioned network doesn't cover completely the geological structures around the power plant. Therefore, new locations have been introduced through the field investigation and computational methods of optimization. In positioning the new stations, places with the least amount of noise and the best coverage for seismic sources were selected. The modeling with considering an imaginative station at the selected places shows that the thresholds of the complete records of earthquakes around Darkhovein site is under the magnitude 1 (about 0.8).

  18. The Seismic Analyzer: Interpreting and Illustrating 2D Seismic Data

    OpenAIRE

    Patel, Daniel; Giertsen, Christopher; Thurmond, John; Gjelberg, John; Gröller, Eduard

    2008-01-01

    We present a toolbox for quickly interpreting and illustrating 2D slices of seismic volumetric reflection data. Searching for oil and gas involves creating a structural overview of seismic reflection data to identify hydrocarbon reservoirs. We improve the search of seismic structures by precalculating the horizon structures of the seismic data prior to interpretation. We improve the annotation of seismic structures by applying novel illustrative rendering algorithms tailored to seism...

  19. Rate of Change in Lake Level and its Impact on Reservoir-triggered Seismicity

    Science.gov (United States)

    Simpson, D. W.

    2017-12-01

    With recent interest in increased seismicity related to fluid injection, it is useful to review cases of reservoir-triggered earthquakes to explore common characteristics and seek ways to mitigate the influence of anthropogenic impacts. Three reservoirs - Koyna, India; Nurek, Tajikistan; and Aswan, Egypt - are well-documented cases of triggered earthquakes with recorded time series of seismicity and water levels that extend for more than 30 years. The geological setting, regional tectonics and modes of reservoir utilization, along with the characteristics of the reservoir-seismicity interaction, are distinctly different in each of these three cases. Similarities and differences between these three cases point to regional and local geological and hydrological structures and the rate of changes in reservoir water level as important factors controlling the presence and timing of triggered seismicity. In a manner similar to the way in which the rate of fluid injection influences injection-related seismicity, the rate of change in reservoir water level is a significant factor in determining whether or not reservoir-triggered seismicity occurs. The high rate of annual water level rise may be important in sustaining the exceptionally long sequence of earthquakes at Koyna. In addition to the rate of filling being a determining factor in whether or not earthquakes are triggered, changes in the rate of filling may influence the time of occurrence of individual earthquakes.

  20. Toward predicting clay landslide with ambient seismic noise

    Science.gov (United States)

    Larose, E. F.; Mainsant, G.; Carriere, S.; Chambon, G.; Michoud, C.; Jongmans, D.; Jaboyedoff, M.

    2013-12-01

    Clay-rich pose critical problems in risk management worldwide. The most widely proposed mechanism leading to such flow-like movements is the increase in water pore pressure in the sliding mass, generating partial or complete liquefaction. This solid-to-liquid transition results in a dramatic reduction of mechanical rigidity, which could be detected by monitoring shear wave velocity variations, The ambient seismic noise correlation technique has been applied to measure the variation in the seismic surface wave velocity in the Pont Bourquin landslide (Swiss Alps). This small but active composite earthslide-earthflow was equipped with continuously recording seismic sensors during spring and summer 2010, and then again from fall 2011 on. An earthslide of a few thousand cubic meters was triggered in mid-August 2010, after a rainy period. This article shows that the seismic velocity of the sliding material, measured from daily noise correlograms, decreased continuously and rapidly for several days prior to the catastrophic event. From a spectral analysis of the velocity decrease, it was possible to determine the location of the change at the base of the sliding layer. These results are confirmed by analogous small-scale experiments in the laboratory. These results demonstrate that ambient seismic noise can be used to detect rigidity variations before failure and could potentially be used to predict landslides.