WorldWideScience

Sample records for seismic isolation system

  1. Seismic proving test of process computer systems with a seismic floor isolation system

    International Nuclear Information System (INIS)

    Fujimoto, S.; Niwa, H.; Kondo, H.

    1995-01-01

    The authors have carried out seismic proving tests for process computer systems as a Nuclear Power Engineering Corporation (NUPEC) project sponsored by the Ministry of International Trade and Industry (MITI). This paper presents the seismic test results for evaluating functional capabilities of process computer systems with a seismic floor isolation system. The seismic floor isolation system to isolate the horizontal motion was composed of a floor frame (13 m x 13 m), ball bearing units, and spring-damper units. A series of seismic excitation tests was carried out using a large-scale shaking table of NUPEC. From the test results, the functional capabilities during large earthquakes of computer systems with a seismic floor isolation system were verified

  2. Effects of applying three-dimensional seismic isolation system on the seismic design of FBR

    International Nuclear Information System (INIS)

    Hirata, Kazuta; Yabana, Shuichi; Kanazawa, Kenji; Matsuda, Akihiro

    1997-01-01

    In this study conceptional three-dimensional seismic isolation system for fast breeder reactor (FBR) is proposed. Effects of applying three-dimensional seismic isolation system on the seismic design for the FBR equipment are evaluated quantitatively. From the evaluation, it is concluded following effects are expected by applying the three-dimensional seismic isolation system to the FBR and the effects are evaluated quantitatively. (1) Reduction of membrane thickness of the reactor vessel (2) Suppression of uplift of fuels by reducing vertical seismic response of the core (3) Reduction of the supports for the piping system (4) Three-dimensional base isolation system for the whole reactor building is advantageous to the combined isolation system of horizontal base isolation for the reactor building and vertical isolation for the equipment. (author)

  3. A seismic design of nuclear reactor building structures applying seismic isolation system in a seismicity region-a feasibility case study in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, Tetsuo [The University of Tokyo, Tokyo (Japan); Yamamoto, Tomofumi; Sato, Kunihiko [Mitsubishi Heavy Industries, Ltd., Kobe (Japan); Jimbo, Masakazu [Toshiba Corporation, Yokohama (Japan); Imaoka, Tetsuo [Hitachi-GE Nuclear Energy, Ltd., Hitachi (Japan); Umeki, Yoshito [Chubu Electric Power Co. Inc., Nagoya (Japan)

    2014-10-15

    A feasibility study on the seismic design of nuclear reactor buildings with application of a seismic isolation system is introduced. After the Hyogo-ken Nanbu earthquake in Japan of 1995, seismic isolation technologies have been widely employed for commercial buildings. Having become a mature technology, seismic isolation systems can be applied to NPP facilities in areas of high seismicity. Two reactor buildings are discussed, representing the PWR and BWR buildings in Japan, and the application of seismic isolation systems is discussed. The isolation system employing rubber bearings with a lead plug positioned (LRB) is examined. Through a series of seismic response analyses using the so-named standard design earthquake motions covering the design basis earthquake motions obtained for NPP sites in Japan, the responses of the seismic isolated reactor buildings are evaluated. It is revealed that for the building structures examined herein: (1) the responses of both isolated buildings and isolating LRBs fulfill the specified design criteria; (2) the responses obtained for the isolating LRBs first reach the ultimate condition when intensity of motion is 2.0 to 2.5 times as large as that of the design-basis; and (3) the responses of isolated reactor building fall below the range of the prescribed criteria.

  4. Development of an evaluation method for seismic isolation systems of nuclear power facilities. Seismic design analysis methods for crossover piping system

    International Nuclear Information System (INIS)

    Tai, Koichi; Sasajima, Keisuke; Fukushima, Shunsuke; Takamura, Noriyuki; Onishi, Shigenobu

    2014-01-01

    This paper provides seismic design analysis methods suitable for crossover piping system, which connects between seismic isolated building and non-isolated building in the seismic isolated nuclear power plant. Through the numerical study focused on the main steam crossover piping system, seismic response spectrum analysis applying ISM (Independent Support Motion) method with SRSS combination or CCFS (Cross-oscillator, Cross-Floor response Spectrum) method has found to be quite effective for the seismic design of multiply supported crossover piping system. (author)

  5. Development of a 3-dimensional seismic isolation floor for computer systems

    International Nuclear Information System (INIS)

    Kurihara, M.; Shigeta, M.; Nino, T.; Matsuki, T.

    1991-01-01

    In this paper, we investigated the applicability of a seismic isolation floor as a method for protecting computer systems from strong earthquakes, such as computer systems in nuclear power plants. Assuming that the computer system is guaranteed for 250 cm/s 2 of input acceleration in the horizontal and vertical directions as the seismic performance, the basic design specification of the seismic isolation floor is considered as follows. Against S 1 level earthquakes, the maximum acceleration response of the seismic isolation floor in the horizontal and vertical directions is kept less than 250 cm/s 2 to maintain continuous computer operation. Against S 2 level earthquakes, the isolation floor allows large horizontal movement and large displacement of the isolation devices to reduce the acceleration response, although it is not guaranteed to be less than 250 cm/s 2 . By reducing the acceleration response, however, serious damage to the computer systems is reduced, so that they can be restarted after an earthquake. Usually, seismic isolation floor systems permit 2-dimensional (horizontal) isolation. However, in the case of just-under-seated earthquakes, which have large vertical components, the vertical acceleration response of this system is amplified by the lateral vibration of the frame of the isolation floor. Therefore, in this study a 3-dimensional seismic isolation floor, including vertical isolation, was developed. This paper describes 1) the experimental results of the response characteristics of the 3-dimensional seismic isolation floor built as a trial using a 3-dimensional shaking table, and 2) comparison of a 2-dimensional analytical model, for motion in one horizontal direction and the vertical direction, to experimental results. (J.P.N.)

  6. Seismic isolation - efficient procedure for seismic response assessement

    International Nuclear Information System (INIS)

    Zamfir, M. A.; Androne, M.

    2016-01-01

    The aim of this analysis is to reduce the dynamic response of a structure. The seismic isolation solution must take into consideration the specific site ground motion. In this paper will be presented results obtained by applying the seismic isolation method. Based on the obtained results, important conclusions can be outlined: the seismic isolation device has the ability to reduce seismic acceleration of the seismic isolated structure to values that no longer present a danger to people and environment; the seismic isolation solution is limiting devices deformations to safety values for ensuring structural integrity and stability of the entire system; the effective seismic energy dissipation and with no side effects both for the seismic isolated building and for the devices used, and the return to the initial position before earthquake occurence are obtained with acceptable permanent displacement. (authors)

  7. Utilities/industries joint study on seismic isolation systems for LWR: Part I. Experimental and analytical studies on seismic isolation systems

    International Nuclear Information System (INIS)

    Kato, Muneaki; Sato, Shoji; Shimomura, Issei

    1989-01-01

    This paper describes a joint study program on seismic isolation systems for light-water reactors (LWRs) performed by ten electric power companies, three manufacturers, and five construction companies. The fundamental response characteristics of base-isolated structures and base-isolation devices are described. Applications of a base-isolation system to LWR buildings are given. Finally, three-dimensional shaking table experiments are described

  8. Study on three dimensional seismic isolation system

    International Nuclear Information System (INIS)

    Morishita, Masaki; Kitamura, Seiji

    2003-01-01

    Japan Nuclear Cycle Development Institute (JNC) and Japan Atomic Power Company (JAPC) launched joint research programs on structural design and three-dimensional seismic isolation technologies, as part of the supporting R and D activities for the feasibility studies on commercialized fast breeder reactor cycle systems. A research project by JAPC under the auspices of the Ministry of Economy, Trade, and Industry (METI) with technical support by JNC is included in this joint study. This report contains the results of the research on the three-dimensional seismic isolation technologies, and the results of this year's study are summarized in the following five aspects. (1) Study on Earthquake Condition for Developing 3-dimensional Base Isolation System. The case study S2 is one of the maximum ground motions, of which the records were investigated up to this time. But a few observed near the fault exceed the case study S2 in the long period domain, depending on the fault length and conditions. Generally it is appropriate that the response spectra ratio (vertical/horizontal) is 0.6. (2) Performance Requirement for 3-dimensional Base Isolation System and Devices. Although the integrity map of main equipment/piping dominate the design criteria for the 3-dimensional base isolation system, the combined integrity map is the same as those of FY 2000, which are under fv=1Hz and over hv=20%. (3) Developing Targets and Schedule for 3-dimensional Isolation Technology. The target items for 3-dimensional base isolation system were rearranged into a table, and developing items to be examined concerning the device were also adjusted. A development plan until FY 2009 was made from the viewpoint of realization and establishment of a design guideline on 3-dimensional base isolation system. (4) Study on 3-dimensional Entire Building Base Isolation System. Three ideas among six ideas that had been proposed in FY2001, i.e., '3-dimensional base isolation system incorporating hydraulic

  9. A SEISMIC DESIGN OF NUCLEAR REACTOR BUILDING STRUCTURES APPLYING SEISMIC ISOLATION SYSTEM IN A HIGH SEISMICITY REGION –A FEASIBILITY CASE STUDY IN JAPAN-

    Directory of Open Access Journals (Sweden)

    TETSUO KUBO

    2014-10-01

    Full Text Available A feasibility study on the seismic design of nuclear reactor buildings with application of a seismic isolation system is introduced. After the Hyogo-ken Nanbu earthquake in Japan of 1995, seismic isolation technologies have been widely employed for commercial buildings. Having become a mature technology, seismic isolation systems can be applied to NPP facilities in areas of high seismicity. Two reactor buildings are discussed, representing the PWR and BWR buildings in Japan, and the application of seismic isolation systems is discussed. The isolation system employing rubber bearings with a lead plug positioned (LRB is examined. Through a series of seismic response analyses using the so-named standard design earthquake motions covering the design basis earthquake motions obtained for NPP sites in Japan, the responses of the seismic isolated reactor buildings are evaluated. It is revealed that for the building structures examined herein: (1 the responses of both isolated buildings and isolating LRBs fulfill the specified design criteria; (2 the responses obtained for the isolating LRBs first reach the ultimate condition when intensity of motion is 2.0 to 2.5 times as large as that of the design-basis; and (3 the responses of isolated reactor building fall below the range of the prescribed criteria.

  10. Seismic isolation systems designed with distinct multiple frequencies

    International Nuclear Information System (INIS)

    Wu, Ting-shu; Seidensticker, R.W.

    1991-01-01

    Two systems for seismic base isolation are presented. The main feature of these system is that, instead of only one isolation frequency as in conventional isolation systems, they are designed to have two distinct isolation frequencies. When the responses during an earthquake exceed the design value(s), the system will automatically and passively shift to the secondly isolation frequency. Responses of these two systems to different ground motions including a harmonic motion with frequency same as the primary isolation frequency, show that no excessive amplification will occur. Adoption of these new systems certainly will greatly enhance the safety and reliability of an isolated superstructure against future strong earthquakes. 3 refs

  11. Seismic Isolation Studies and Applications for Nuclear Facilities

    International Nuclear Information System (INIS)

    Choun, Young Sun

    2005-01-01

    Seismic isolation, which is being used worldwide for buildings, is a well-known technology to protect structures from destructive earthquakes. In spite of the many potential advantages of a seismic isolation, however, the applications of a seismic isolation to nuclear facilities have been very limited because of a lack of sufficient knowledge about the isolation practices. The most important advantage of seismic isolation applications in nuclear power plants is that the safety and reliability of the plants can be remarkably improved through the standardization of the structures and equipment regardless of the seismic conditions of the sites. The standardization of structures and equipment will reduce the capital cost and design/construction schedule for future plants. Also, a seismic isolation can facilitate decoupling of the design and development for equipment, piping, and components due to the use of the generic in-structure response spectra associated with the standardized plant. Moreover, a seismic isolation will improve the plant safety margin against the design basis earthquake (DBE) as well as a beyond design basis seismic event due to its superior seismic performance. A number of seismic isolation systems have been developed and tested since 1970s, and some of them have been applied to conventional structures in several countries of high seismicity. In the nuclear field, there have been many studies on the applicability of such seismic isolation systems, but the application of a seismic isolation is very limited. Currently, there are some discussions on the application of seismic isolation systems to nuclear facilities between the nuclear industries and the regulatory agencies in the U.S.. In the future, a seismic isolation for nuclear facilities will be one of the important issues in the nuclear industry. This paper summarizes the past studies and applications of a seismic isolation in the nuclear industry

  12. Analysis of Bi-directional Effects on the Response of a Seismic Base Isolation System

    International Nuclear Information System (INIS)

    Park, Hyung-Kui; Kim, Jung-Han; Kim, Min Kyu; Choi, In-Kil

    2014-01-01

    The floor response spectrum depends on the height of the floor of the structure. Also FRS depends on the characteristics of the seismic base isolation system such as the natural frequency, damping ratio. In the previous study, the floor response spectrum of the base isolated structure was calculated for each axis without considering bi-directional effect. However, the shear behavior of the seismic base isolation system of two horizontal directions are correlated each other by the bi-directional effects. If the shear behavior of the seismic isolation system changes, it can influence the floor response spectrum and displacement response of isolators. In this study, the analysis of a bi-directional effect on the floor response spectrum was performed. In this study, the response of the seismic base isolation system based on the bi-directional effects was analyzed. By analyzing the time history result, while there is no alteration in the maximum shear force of seismic base isolation system, it is confirmed that the shear force is generally more decreased in a one-directional that in a two-directional in most parts. Due to the overall decreased shear force, the floor response spectrum is more reduced in a two-directional than in a one-directional

  13. Testing, licensing, and code requirements for seismic isolation systems (for nuclear power plants)

    International Nuclear Information System (INIS)

    Seidensticker, R.W.

    1987-01-01

    The use of seismic isolation as an earthquake hazard mitigation strategy for nuclear reactor power plants is rapidly receiving interest throughout the world. Seismic isolation has already been used on at least two French PWR plants, was to have been used for plants to be built in Iran, and is under serious consideration for advanced LMR plants (in the US, UK, France, and Japan). In addition, there is a growing use of seismic isolation throughout the world for other critical facilities such as hospitals, emergency facilities, buildings with very high-cost equipment (e.g., computers) and as a strategy to reduce loss of life and expensive equipment in earthquakes. Such a design approach is in complete contrast to the conventional seismic design strategy in which the structure and components are provided with sufficient strength and ductility to resist the earthquake forces and to prevent structural collapses or failure. The use of seismic isolation for nuclear plants can, therefore, be expected to be a significant licensing issue. For isolation, the licensing process must shift away in large measure from the superstructure and concentrate on the behavior of the seismic isolation system. This paper is not intended to promote the advantages of seismic isolation system, but to explore in some detail those technical issues which must be satisfactorily addressed to achieve full licensability of the use of seismic isolation as a viable, attractive and economical alternative to current traditional design approaches. Special problems and topics associated with testing and codes and standards development are addressed. A positive program for approach or strategy to secure licensing is presented

  14. Testing, licensing, and code requirements for seismic isolation systems (for nuclear power plants)

    Energy Technology Data Exchange (ETDEWEB)

    Seidensticker, R.W.

    1987-01-01

    The use of seismic isolation as an earthquake hazard mitigation strategy for nuclear reactor power plants is rapidly receiving interest throughout the world. Seismic isolation has already been used on at least two French PWR plants, was to have been used for plants to be built in Iran, and is under serious consideration for advanced LMR plants (in the US, UK, France, and Japan). In addition, there is a growing use of seismic isolation throughout the world for other critical facilities such as hospitals, emergency facilities, buildings with very high-cost equipment (e.g., computers) and as a strategy to reduce loss of life and expensive equipment in earthquakes. Such a design approach is in complete contrast to the conventional seismic design strategy in which the structure and components are provided with sufficient strength and ductility to resist the earthquake forces and to prevent structural collapses or failure. The use of seismic isolation for nuclear plants can, therefore, be expected to be a significant licensing issue. For isolation, the licensing process must shift away in large measure from the superstructure and concentrate on the behavior of the seismic isolation system. This paper is not intended to promote the advantages of seismic isolation system, but to explore in some detail those technical issues which must be satisfactorily addressed to achieve full licensability of the use of seismic isolation as a viable, attractive and economical alternative to current traditional design approaches. Special problems and topics associated with testing and codes and standards development are addressed. A positive program for approach or strategy to secure licensing is presented.

  15. Seismic Risk of the Base Isolation System Protected by the Hard Stop

    International Nuclear Information System (INIS)

    Kim, Jung Han; Choi, In-Kil; Kim, Min Kyu

    2015-01-01

    The concept of base isolation is to permit the deformation of isolator for absorbing seismic input wave from the ground. In a nuclear power plant design, allowable shear deformation of isolators should be enough to absorb the displacement response by extended design basis (EDB) ground motions. However isolators cannot resist over its displacement capacity. So, the clearance of hard stop (CHS) needs to be set between the response of base isolation system excited by the EDB ground motion and the displacement capacity of isolators. The isolation system must survive with high confidence in any seismic accident because it is a non-redundant system. Therefore, the CHS should be determined carefully based on the failure risk of base isolation system considering the uncertainties of earthquake responses and isolator capacities. In this research, the fragility curve of isolation system and its failure risk were estimated. The procedure to calculate the acceleration based fragility curve of the isolation system was developed. The fragility curve and failure risk for example case was estimated and its result was compared with different isolator capacities

  16. Seismic Risk of the Base Isolation System Protected by the Hard Stop

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Han; Choi, In-Kil; Kim, Min Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The concept of base isolation is to permit the deformation of isolator for absorbing seismic input wave from the ground. In a nuclear power plant design, allowable shear deformation of isolators should be enough to absorb the displacement response by extended design basis (EDB) ground motions. However isolators cannot resist over its displacement capacity. So, the clearance of hard stop (CHS) needs to be set between the response of base isolation system excited by the EDB ground motion and the displacement capacity of isolators. The isolation system must survive with high confidence in any seismic accident because it is a non-redundant system. Therefore, the CHS should be determined carefully based on the failure risk of base isolation system considering the uncertainties of earthquake responses and isolator capacities. In this research, the fragility curve of isolation system and its failure risk were estimated. The procedure to calculate the acceleration based fragility curve of the isolation system was developed. The fragility curve and failure risk for example case was estimated and its result was compared with different isolator capacities.

  17. Development of seismic isolation system in vertical direction

    International Nuclear Information System (INIS)

    Ohoka, Makoto; Horikiri, Morito

    1999-04-01

    A structure concept of vertical seismic isolation system which uses a common deck and a set of large dish springs was created in past studies. In this report, a series of dynamic tests on a small scale model of a common deck isolation structure were performed. The model was excited by random and seismic waves in the horizontal direction and 2-D excitation, horizontal and vertical, in order to identify the characteristics of isolation effect. The tests results are summarized as below. 1) This structure has three vibration mode. The second mode is rocking. 2) Rocking frequency depends on the excitation, for this structure has dish spring which contact with cylinders. Rocking damping varies from 2 to 8%, 3) Each mode's response peak frequency to 2-D(horizontal and vertical) excitation is almost the same the some to horizontal excitation. Vertical mode damping to 2-D excitation is about three times to horizontal excitation. 4) Isolation effect depends on a characteristics of frequency of input motion. The minimum response is to the Monju design seismic wave, soil shear wave:Vs=2000 m/sec, natural frequency of horizontal isolation in vertical direction:fv=20 Hz. A relative displacement is controlled. 5) A rocking angular displacement to 2-D excitation is about 2 times to 1-D excitation(vertical). However, it is about 1.2 E-4(rad), sufficiently small for a practical plant. (author)

  18. A Study of Seismic Capacity of Nuclear Equipment with Seismic Isolation System

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Kyu; Choun, Young Sun; Choi, In Kil; Seo, Jeong Moon

    2004-05-15

    In this study, the base isolation systems for equipment are presented and the responses of each isolation system are investigated. As for the base isolation systems, a natural rubber bearing (NRB), a high damping rubber bearing (HDRB) and a friction pendulum system (FPS) are selected. The shaking table tests are carried out for three kinds of structural types. As input motions, artificial time histories enveloping the US NRC RG 1.60 spectrum and the probability-based scenario earthquake spectra developed for the Korean nuclear power plant site as well as a typical near-fault earthquake record are used. Uniaxial, biaxial, and triaxial excitations are conducted with PGAs of 0.05, 0.1, 0.2 and 0.25g. Acceleration responses are measured at the top of the equipment model and the floors using an accelerometer. The reduction of the seismic forces transmitted to the equipment models are determined for different isolation systems and input motions.

  19. A Study of Seismic Capacity of Nuclear Equipment with Seismic Isolation System

    International Nuclear Information System (INIS)

    Kim, Min Kyu; Choun, Young Sun; Choi, In Kil; Seo, Jeong Moon

    2004-05-01

    In this study, the base isolation systems for equipment are presented and the responses of each isolation system are investigated. As for the base isolation systems, a natural rubber bearing (NRB), a high damping rubber bearing (HDRB) and a friction pendulum system (FPS) are selected. The shaking table tests are carried out for three kinds of structural types. As input motions, artificial time histories enveloping the US NRC RG 1.60 spectrum and the probability-based scenario earthquake spectra developed for the Korean nuclear power plant site as well as a typical near-fault earthquake record are used. Uniaxial, biaxial, and triaxial excitations are conducted with PGAs of 0.05, 0.1, 0.2 and 0.25g. Acceleration responses are measured at the top of the equipment model and the floors using an accelerometer. The reduction of the seismic forces transmitted to the equipment models are determined for different isolation systems and input motions

  20. Development of Seismic Isolation Systems Using Periodic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Yiqun [Univ. of Houston, Houston, TX (United States); Mo, Yi-Lung [Univ. of Houston, Houston, TX (United States); Menq, Farn-Yuh [Univ. of Texas, Austin, TX (United States); Stokoe, II, Kenneth H. [Univ. of Texas, Austin, TX (United States); Perkins, Judy [Prairie View A & M University, Prairie View, TX (United States); Tang, Yu [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-12-10

    Advanced fast nuclear power plants and small modular fast reactors are composed of thin-walled structures such as pipes; as a result, they do not have sufficient inherent strength to resist seismic loads. Seismic isolation, therefore, is an effective solution for mitigating earthquake hazards for these types of structures. Base isolation, on which numerous studies have been conducted, is a well-defined structure protection system against earthquakes. In conventional isolators, such as high-damping rubber bearings, lead-rubber bearings, and friction pendulum bearings, large relative displacements occur between upper structures and foundations. Only isolation in a horizontal direction is provided; these features are not desirable for the piping systems. The concept of periodic materials, based on the theory of solid-state physics, can be applied to earthquake engineering. The periodic material is a material that possesses distinct characteristics that prevent waves with certain frequencies from being transmitted through it; therefore, this material can be used in structural foundations to block unwanted seismic waves with certain frequencies. The frequency band of periodic material that can filter out waves is called the band gap, and the structural foundation made of periodic material is referred to as the periodic foundation. The design of a nuclear power plant, therefore, can be unified around the desirable feature of a periodic foundation, while the continuous maintenance of the structure is not needed. In this research project, three different types of periodic foundations were studied: one-dimensional, two-dimensional, and three-dimensional. The basic theories of periodic foundations are introduced first to find the band gaps; then the finite element methods are used, to perform parametric analysis, and obtain attenuation zones; finally, experimental programs are conducted, and the test data are analyzed to verify the theory. This procedure shows that the

  1. A development of three-dimensional seismic isolation for advanced reactor systems in Japan: Pt.2

    International Nuclear Information System (INIS)

    Kenji Takahashi; Kazuhiko Inoue; Asao Kato; Masaki Morishita; Takafumi Fujita

    2005-01-01

    Two types of three-dimensional seismic isolation systems were developed for the fast breeder reactor (FBR). One is the three-dimensional entire building base isolation system It was developed by collecting concepts Japanese companies from which a combination system with air springs and hydraulic rocking suppression devices was selected. The other is the vertically isolated system for main components with horizontally entire building base isolation, which was developed by adopting coned disk spring devices. In the study, seismic condition was assumed based on a strict reference ground motion. Design data of the building and components are referred to FBR being developed as the 'Commercialized Fast Reactor Cycle System'. Analysis based on these assumed conditions showed suitable combinations of natural frequencies and damping ratios for isolation. Devices were developed to satisfy the combinations. In five years research and development, several verification tests were performed including shake table tests with scaled models. Finally it is found that the two types of seismic isolation systems are available for FBR. The result is reflected in the preliminary design guideline for the three-dimensional isolation system. (authors)

  2. Recent results of seismic isolation study in CRIEPI: Tests on seismic isolation elements, vibration tests and observations

    International Nuclear Information System (INIS)

    Ishida, Katsuhiko; Shiojiri, Hiroo; Mazda, Taiji; Ohtori, Yasuki; Aoyagi, Sakae

    1992-01-01

    Seismic isolation is expected to be effective in raising reliability during earthquake, reducing cost, enlarging and promoting the design standardization of electric power facilities. In Japan, it has been applied to several buildings. However it is considered that more research is needed to verify the reliability and effectiveness of seismic isolation for fast breeder reactors. In the preliminary study of isolation concepts for FBRs the horizontal base isolation of buildings was investigated in detail. The laminated rubber bearings were considered to be most suitable isolation system. Tests on large scale models of rubber bearing and vibration test of base isolation system have been conducted as well as the earthquake response observation of isolated buildings were conducted

  3. Recent results of seismic isolation study in CRIEPI: Tests on seismic isolation elements, vibration tests and observations

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, Katsuhiko; Shiojiri, Hiroo; Mazda, Taiji; Ohtori, Yasuki [Abiko Research Laboratory, Central Research Institute of Electric Power Industry (Japan); Aoyagi, Sakae [Central Research Institute of Electric Power Industry (Japan)

    1992-07-01

    Seismic isolation is expected to be effective in raising reliability during earthquake, reducing cost, enlarging and promoting the design standardization of electric power facilities. In Japan, it has been applied to several buildings. However it is considered that more research is needed to verify the reliability and effectiveness of seismic isolation for fast breeder reactors. In the preliminary study of isolation concepts for FBRs the horizontal base isolation of buildings was investigated in detail. The laminated rubber bearings were considered to be most suitable isolation system. Tests on large scale models of rubber bearing and vibration test of base isolation system have been conducted as well as the earthquake response observation of isolated buildings were conducted.

  4. Development and characterization of a magnetorheological elastomer based adaptive seismic isolator

    International Nuclear Information System (INIS)

    Li, Yancheng; Li, Jianchun; Samali, Bijan; Li, Weihua

    2013-01-01

    One of the main shortcomings in current base isolation design/practice is lack of adaptability. As a result, a base isolation system that is effective for one type earthquake may become ineffective or may have adverse effect for other earthquakes. The vulnerability of traditional base isolation systems can be exaggerated by two types of earthquakes, i.e. near-field earthquakes and far-field earthquakes. This paper addresses the challenge facing current base isolation design/practice by proposing a new type of seismic isolator for the base isolation system, namely an adaptive seismic isolator. The novel adaptive seismic isolator utilizes magnetorheological elastomer (MRE) for its field-sensitive material property. Traditional seismic isolator design with a unique laminated structure of steel and MRE layers has been adopted in the novel MRE seismic isolator. To evaluate and characterize the behavior of the MRE seismic isolator, experimental testing was conducted on a shake table facility under harmonic cycling loading. Experimental results show that the proposed adaptive seismic isolator can successfully alter the lateral stiffness and damping force in real time up to 37% and 45% respectively. Based on the successful development of the novel adaptive seismic isolator, a discussion is also extended to the impact and potential applications of such a device in structural control applications in civil engineering. (paper)

  5. Seismic isolation of small modular reactors using metamaterials

    Directory of Open Access Journals (Sweden)

    Witarto Witarto

    2018-04-01

    Full Text Available Adaptation of metamaterials at micro- to nanometer scales to metastructures at much larger scales offers a new alternative for seismic isolation systems. These new isolation systems, known as periodic foundations, function both as a structural foundation to support gravitational weight of the superstructure and also as a seismic isolator to isolate the superstructure from incoming seismic waves. Here we describe the application of periodic foundations for the seismic protection of nuclear power plants, in particular small modular reactors (SMR. For this purpose, a large-scale shake table test on a one-dimensional (1D periodic foundation supporting an SMR building model was conducted. The 1D periodic foundation was designed and fabricated using reinforced concrete and synthetic rubber (polyurethane materials. The 1D periodic foundation structural system was tested under various input waves, which include white noise, stepped sine and seismic waves in the horizontal and vertical directions as well as in the torsional mode. The shake table test results show that the 1D periodic foundation can reduce the acceleration response (transmissibility of the SMR building up to 90%. In addition, the periodic foundation-isolated structure also exhibited smaller displacement than the non-isolated SMR building. This study indicates that the challenge faced in developing metastructures can be overcome and the periodic foundations can be applied to isolating vibration response of engineering structures.

  6. Seismic isolation of small modular reactors using metamaterials

    Science.gov (United States)

    Witarto, Witarto; Wang, S. J.; Yang, C. Y.; Nie, Xin; Mo, Y. L.; Chang, K. C.; Tang, Yu; Kassawara, Robert

    2018-04-01

    Adaptation of metamaterials at micro- to nanometer scales to metastructures at much larger scales offers a new alternative for seismic isolation systems. These new isolation systems, known as periodic foundations, function both as a structural foundation to support gravitational weight of the superstructure and also as a seismic isolator to isolate the superstructure from incoming seismic waves. Here we describe the application of periodic foundations for the seismic protection of nuclear power plants, in particular small modular reactors (SMR). For this purpose, a large-scale shake table test on a one-dimensional (1D) periodic foundation supporting an SMR building model was conducted. The 1D periodic foundation was designed and fabricated using reinforced concrete and synthetic rubber (polyurethane) materials. The 1D periodic foundation structural system was tested under various input waves, which include white noise, stepped sine and seismic waves in the horizontal and vertical directions as well as in the torsional mode. The shake table test results show that the 1D periodic foundation can reduce the acceleration response (transmissibility) of the SMR building up to 90%. In addition, the periodic foundation-isolated structure also exhibited smaller displacement than the non-isolated SMR building. This study indicates that the challenge faced in developing metastructures can be overcome and the periodic foundations can be applied to isolating vibration response of engineering structures.

  7. THK: CLB Crossed Linear Bearing Seismic Isolators

    International Nuclear Information System (INIS)

    Toniolo, Roberto

    2008-01-01

    This text highlights the new seismic isolation technology called CLB (Crossed Linear Bearing), which is made of linear guides with recirculating steel ball technology. It describes specifications and building characteristics, provides examples of seismic isolation and application functionalities and shows experimental data. Since 1994, the constant commitment by Japan to develop diversified anti-seismic systems based on the precise needs of the structures to protect and the areas where they were built has led to the creation of important synergy between the research institutions of leading Japanese companies and THK's Centre for Research and Development. Their goal has been to develop new technology and solutions to allow seismic isolation to be effective in the following cases:

  8. Test on large-scale seismic isolation elements

    International Nuclear Information System (INIS)

    Mazda, T.; Shiojiri, H.; Oka, Y.; Fujita, T.; Seki, M.

    1989-01-01

    Demonstration test of seismic isolation elements is considered as one of the most important items in the application of seismic isolation system to fast breeder reactor (FBR) plant. Facilities for testing seismic isolation elements have been built. This paper reports on tests for fullscale laminated rubber bearing and reduced scale models are conducted. From the result of the tests, the laminated rubber bearings turn out to satisfy the specification. Their basic characteristics are confirmed from the tests with fullscale and reduced scale models. The ultimate capacity of the bearings under the condition of ordinary temperature are evaluated

  9. Comparison of seismic isolation concepts for FBR

    International Nuclear Information System (INIS)

    Shiojiri, H.; Mazda, T.; Kasai, H.; Kanda, J.N.; Kubo, T.; Madokoro, M.; Shimomura, T.; Nojima, O.

    1989-01-01

    This paper seeks to verify the reliability and effectiveness of seismic isolation for FBR. Some results of the preliminary study of the program are described. Seismic isolation concepts and corresponding seismic isolation devices were selected. Three kinds of seismically-isolated FBR plant concepts were developed by applying promising seismic isolation concepts to the non-isolated FBR plant, and by developing plant component layout plans and building structural designs. Each plant was subjected to seismic response analysis and reduction in the amount of material of components and buildings were estimated for each seismic isolation concepts. Research and development items were evaluated

  10. Seismic isolation in New Zealand

    International Nuclear Information System (INIS)

    Skinner, R.I.; Robinson, W.H.; McVerry, G.H.

    1989-01-01

    Bridges, buildings, and industrial equipment can be given increased protection from earthquake damage by limiting the earthquake attack through seismic isolation. A broad summary of the seismic responses of base-isolated structures is of considerable assistance for their preliminary design. Seismic isolation as already used in New Zealand consists of a flexible base or support combined with some form of energy-dissipating device, usually involving the hysteretic working of steel or lead. This paper presents examples of the New Zealand experience, where seismic isolation has been used for 42 bridges, 3 buildings, a tall chimney, and high-voltage capacitor banks. Additional seismic response factors, which may be important for nuclear power plants, are also discussed briefly

  11. Seismic response analysis of a piping system subjected to multiple support excitations in a base isolated NPP building

    International Nuclear Information System (INIS)

    Surh, Han-Bum; Ryu, Tae-Young; Park, Jin-Sung; Ahn, Eun-Woo; Choi, Chul-Sun; Koo, Ja Choon; Choi, Jae-Boong; Kim, Moon Ki

    2015-01-01

    Highlights: • Piping system in the APR 1400 NPP with a base isolation design is studied. • Seismic response of piping system in base isolated building are investigated. • Stress classification method is examined for piping subjected to seismic loading. • Primary stress of piping is reduced due to base isolation design. • Substantial secondary stress is observed in the main steam piping. - Abstract: In this study, the stress response of the piping system in the advanced power reactor 1400 (APR 1400) with a base isolation design subjected to seismic loading is addressed. The piping system located between the auxiliary building with base isolation and the turbine building with a fixed base is considered since it can be subjected to substantial relative support movement during seismic events. First, the support responses with respect to the base characteristic are investigated to perform seismic analysis for multiple support excitations. Finite element analyses are performed to predict the piping stress response through various analysis methods such as the response spectrum, seismic support movement and time history method. To separately evaluate the inertial effect and support movement effect on the piping stress, the stress is decomposed into a primary and secondary stress using the proposed method. Finally, influences of the base isolation design on the piping system in the APR 1400 are addressed. The primary stress based on the inertial loading is effectively reduced in a base isolation design, whereas a considerable amount of secondary stress is generated in the piping system connecting a base isolated building with a fixed base building. It is also confirmed that both the response spectrum analysis and seismic support movement analysis provide more conservative estimations of the piping stress compared to the time history analysis

  12. IAEA specialists' meeting on seismic isolation technology. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-07-01

    The objective of the Meeting on Seismic Isolation Technology was to provide a forum for review and discussion of seismic isolation technology applicable to thermal and fast reactors. The meeting was conducted consistent with the recommendations of the IAEA Working Group Meeting on Fast Breeder Reactor-Block Antiseismic Design and Verification in October 1987, to augment a coordinated research program with specific recommendations and an assessment of technology in the area of seismic isolation. Seismic isolation has become an attractive means for mitigating the consequences of severe earthquakes. Although the general idea of seismic isolation has been considered since the turn of the century, real practical applications have evolved, at an accelerating pace, over the last fifteen years aided by several key developments: (1) recent advances in hardware developments in the form of reliable elastomer bearings, (2) development of reliable analytical methods for the prediction of dynamic responses of structures (3) construction of large bearing test machines and large shake tables to simulate earthquake effects on structures for validation analytical models and demonstration of performance characteristics, and (4) advances in seismological engineering. Although the applications and developments of seismic isolation technology have mainly benefited commercial facilities and structures, including office buildings, research laboratories, hospitals, museums, bridges, ship loaders, etc., several seismically isolated nuclear facilities were implemented: the four 900 MWe pressurized water reactor units of the Cruas plant in France, the two Framatome units in Koeberg, South Africa, a nuclear waste storage facility in France and a nuclear fuel reprocessing plant in England. The scope of this specialists' meeting was to review the state-of-the-art technology related to the performance of seismic isolator elements and systems, performance limits and margins, criteria for the

  13. IAEA specialists' meeting on seismic isolation technology. Proceedings

    International Nuclear Information System (INIS)

    1992-01-01

    The objective of the Meeting on Seismic Isolation Technology was to provide a forum for review and discussion of seismic isolation technology applicable to thermal and fast reactors. The meeting was conducted consistent with the recommendations of the IAEA Working Group Meeting on Fast Breeder Reactor-Block Antiseismic Design and Verification in October 1987, to augment a coordinated research program with specific recommendations and an assessment of technology in the area of seismic isolation. Seismic isolation has become an attractive means for mitigating the consequences of severe earthquakes. Although the general idea of seismic isolation has been considered since the turn of the century, real practical applications have evolved, at an accelerating pace, over the last fifteen years aided by several key developments: (1) recent advances in hardware developments in the form of reliable elastomer bearings, (2) development of reliable analytical methods for the prediction of dynamic responses of structures (3) construction of large bearing test machines and large shake tables to simulate earthquake effects on structures for validation analytical models and demonstration of performance characteristics, and (4) advances in seismological engineering. Although the applications and developments of seismic isolation technology have mainly benefited commercial facilities and structures, including office buildings, research laboratories, hospitals, museums, bridges, ship loaders, etc., several seismically isolated nuclear facilities were implemented: the four 900 MWe pressurized water reactor units of the Cruas plant in France, the two Framatome units in Koeberg, South Africa, a nuclear waste storage facility in France and a nuclear fuel reprocessing plant in England. The scope of this specialists' meeting was to review the state-of-the-art technology related to the performance of seismic isolator elements and systems, performance limits and margins, criteria for the

  14. Development of Probabilistic Performance Evaluation Procedure for Umbilical Lines of Seismically Isolated NPPs

    International Nuclear Information System (INIS)

    Hahm, Daegi; Park, Junhee; Choi, Inkil

    2013-01-01

    In this study, we proposed a procedure to perform the probabilistic performance evaluation of interface piping system for seismically isolated NPPs, and carried out the preliminary performance evaluation of the target example umbilical line. For EDB level earthquakes, the target performance goal cannot be fulfilled, but we also find out that the result can be changed with respect to the variation of the assumed values, i. e., the distribution of response, and the limit state of piping system. Recently, to design the nuclear power plants (NPPs) more efficiently and safely against the strong seismic load, many researchers focus on the seismic isolation system. For the adoption of seismic isolation system to the NPPs, the seismic performance of isolation devices, structures, and components should be guaranteed firstly. Hence, some researches were performed to determine the seismic performance of such items. For the interface piping system between isolated structure and non-isolated structure, the seismic capacity should be carefully estimated since that the required displacement absorption capacity will be increased significantly by the adoption of the seismic isolation system. Nowadays, in NUREG report, the probabilistic performance criteria for isolated NPP structures and components are proposed. Hence, in this study, we developed the probabilistic performance evaluation method and procedure for interface piping system, and applied the method to an example pipe. The detailed procedure and main results are summarized in next section. For the interface piping system, the seismic capacity should be carefully estimated since that the required displacement absorption capacity will be increased significantly by the adoption of the seismic isolation system

  15. Sloshing of coolant in a seismically isolated reactor

    International Nuclear Information System (INIS)

    Wu, T.S.; Guildys, J.; Seidensticker, R.W.

    1988-01-01

    During a seismic event, the liquid coolant inside the reactor vessel has sloshing motion which is a low-frequency phenomenon. In a reactor system incorporated with seismic isolation, the isolation frequency usually is also very low. There is concern on the potential amplification of sloshing motion of the liquid coolant. This study investigates the effects of seismic isolation on the sloshing of liquid coolant inside the reactor vessel of a liquid metal cooled reactor. Based on a synthetic ground motion whose response spectra envelop those specified by the NRC Regulator Guide 1.60, it is found that the maximum sloshing wave height increases from 18 in. to almost 30 in. when the system is seismically isolated. Since higher sloshing wave may introduce severe impact forces and thermal shocks to the reactor closure and other components within the reactor vessel, adequate design considerations should be made either to suppress the wave height or to reduce the effects caused by high waves

  16. Study on design method for seismically isolated FBR plants

    International Nuclear Information System (INIS)

    Hirata, Kazuta; Yabana, Shuichi; Ohtori, Yasuki; Ishida, Katsuhiko; Sawada, Yoshihiro; Shiojiri; Hiroo; Mazda, Taiji

    1998-01-01

    CRIEPI conducted 'Demonstration test on FBR seismic isolation system' from 1987 to 1996 under contract with Ministry of International Trade and Industry, Japan. In the demonstration test, base isolation technologies are prepared and demonstrated to apply to FBR and the design guidelines are proposed. In this report overall contents of the design guidelines entitled Design guidelines for seismically base isolated FBR plants' are included. The design guidelines, as a rule, are limited to apply to FBR plants where entire reactor building is isolated in the horizontal direction using laminated rubber bearings as isolators. The design guidelines and its concepts, however, will be useful for the development of similar guidelines for other isolation systems using different type of isolation methods and other nuclear facilities. The design guidelines consist of three parts and appendices. The first part is 'Policy for Safety Design of Base Isolated FBR Plants' specifying the principles and the requirements in the planning and the design for the safety of base isolated FBR plants. The second part is Policy for Seismic Design of Base Isolated FBR' describing the principles and the requirements in the seismic design and the evaluation of safety for base isolated FBR plants. The third part is 'Design Methods for Seismic Isolated FBR Plants' detailing the methods, procedures and parameters to be used in the design and the evaluation of safety fro base isolated FBR plants. In appendices examples of design procedures for base isolated reactor building and laminated rubber bearings as well as various test data on laminated rubber bearings, etc. are shown. (author)

  17. Seismic isolation structure for pool-type LMFBR - isolation building with vertically isolated floor for NSSS

    International Nuclear Information System (INIS)

    Sakurai, A.; Shiojiri, H.; Aoyagi, S.; Matsuda, T.; Fujimoto, S.; Sasaki, Y.; Hirayama, H.

    1987-01-01

    The NSSS isolation floor vibration characteristics were made clear. Especially, the side support bearing (rubber bearing) is effective for horizontal floor motion restraint and rocking motion control. Seismic isolation effects for responses of the reactor components can be sufficiently expected, using the vertical seismic isolation floor. From the analytical and experimental studies, the following has been concluded: (1) Seismic isolation structure, which is suitable for large pool-type LMFBR, were proposed. (2) Seismic response characteristics of the seismic isolation structure were investigated. It was made clear that the proposed seismic isolation (Combination of the isolated building and the isolated NSSS floor) was effective. (orig./HP)

  18. Seismic isolation of nuclear power plants using sliding isolation bearings

    Science.gov (United States)

    Kumar, Manish

    Nuclear power plants (NPP) are designed for earthquake shaking with very long return periods. Seismic isolation is a viable strategy to protect NPPs from extreme earthquake shaking because it filters a significant fraction of earthquake input energy. This study addresses the seismic isolation of NPPs using sliding bearings, with a focus on the single concave Friction Pendulum(TM) (FP) bearing. Friction at the sliding surface of an FP bearing changes continuously during an earthquake as a function of sliding velocity, axial pressure and temperature at the sliding surface. The temperature at the sliding surface, in turn, is a function of the histories of coefficient of friction, sliding velocity and axial pressure, and the travel path of the slider. A simple model to describe the complex interdependence of the coefficient of friction, axial pressure, sliding velocity and temperature at the sliding surface is proposed, and then verified and validated. Seismic hazard for a seismically isolated nuclear power plant is defined in the United States using a uniform hazard response spectrum (UHRS) at mean annual frequencies of exceedance (MAFE) of 10-4 and 10 -5. A key design parameter is the clearance to the hard stop (CHS), which is influenced substantially by the definition of the seismic hazard. Four alternate representations of seismic hazard are studied, which incorporate different variabilities and uncertainties. Response-history analyses performed on single FP-bearing isolation systems using ground motions consistent with the four representations at the two shaking levels indicate that the CHS is influenced primarily by whether the observed difference between the two horizontal components of ground motions in a given set is accounted for. The UHRS at the MAFE of 10-4 is increased by a design factor (≥ 1) for conventional (fixed base) nuclear structure to achieve a target annual frequency of unacceptable performance. Risk oriented calculations are performed for

  19. UK contribution to CEGB-EPRI-CRIEPI program on seismic isolation

    International Nuclear Information System (INIS)

    Austin, N.M.; Hattori, S.; Rodwell, E.; Womack, G.J.

    1989-01-01

    Over the last decade the concept of seismic isolation applied to nuclear power plants has generated a great deal of interest worldwide and a number of comprehensive reviews on the topic have been published. Understandably, most of the design and research and development (R and D) effort on seismic isolation has come from countries where larger magnitude earthquakes are an ever-present problem; e.g., Japan, USA, etc. In some areas of these countries seismic isolation may in fact present the only feasible design solution for potential sites of Liquid-Metal-Cooled Reactors (LMR's). This paper summarizes the test results obtained from a small scale seismic isolation system consisting of a laminated steel/natural rubber bearing and a viscodamper. Dynamic characteristics of the system; e.g., stiffness and damping, were measured for a variety of loading conditions. The results are suitable for developing a mathematical model of the isolation system and providing data for use in the design of larger scale bearings and viscodampers

  20. A Study on the Development of Prototype Seismic Isolation Device for NPP

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hongpyo; Cho, Myungsug; Kim, Sunyong; Lee, Yonghee; Kang Kyunghun [KHNP-CRI, Daejeon (Korea, Republic of)

    2014-05-15

    Korean nuclear power plants have been and still are based on seismic resistance design including all of the natural disasters. However, in regions of high seismic hazard, seismic isolation technology is needed to guarantee the seismic safety on nuclear power plants. To achieve this purpose, the research and development of seismic isolation system for the construction in high seismicity area is on-going in Korea. In this study, prototype seismic isolation devices as mentioned above are developed and tested to identify the basic shear and compressive characteristics of them. In this study, assessment performance of basic characteristics on the prototype LRB and EQS seismic isolation for nuclear power plant structures is employed to compare with design values. Based on the test results of compression and shear characteristics, it is judged that they meet the measuring efficiency range conditions which are presented in ISO 22762 and AASHOT guide specification. Therefore, prototype seismic isolation devices like LRB and EQS developed in this study can be expected to be used as reference data when designing a seismic isolation system for nuclear power plant structures in the future.

  1. Seismic testing of the base-isolated PWR spent-fuel storage rack

    International Nuclear Information System (INIS)

    Fujita, Katsuhisa; Tanaka, Mamoru; Nakamura, Masaaki; Tsujikura, Yonezo.

    1990-01-01

    The present paper aims to verify the seismic safety of the base-isolated spent-fuel storage rack. A series of seismic tests has been conducted using a three-dimensional shaking table. A sliding-type base-isolation system was employed for the prototype rack considering environmental conditions in an actual plant. A non linear seismic response analysis was also performed, and it is verified that the prototype of a base-isolated spent-fuel storage rack has a sufficient seismic safety margin for design seismic conditions from the viewpoint of seismic response. (author)

  2. Seismic isolation floor and vibration control equipment for nuclear power plant

    International Nuclear Information System (INIS)

    Niwa, H.; Fujimoto, S.; Aida, Y.; Miyano, H.

    1996-01-01

    We have developed a seismic isolation floor to improve protection against earthquakes for process computer systems, and a magnetic dynamic damper to reduce the mechanical vibrations of piping systems and pumps in nuclear power plants. Seismic excitation tests of the seismic isolation floor, on which process computer systems were installed, were performed using large earthquake simulators. The test results proved that the seismic isolation floor significantly reduced seismic forces. To control mechanical vibrations, a magnetic dynamic damper was designed using permanent magnets. This magnetic dynamic damper does not require mechanical springs, dampers and supports in the floors and walls of the building. Vibration tests using a rotating machine model confirmed that the magnetic dynamic damper effectively controlled vibrations in such a rotating machine model. (author)

  3. Experimental studies of the seismic response of structures incorporating base isolation systems

    International Nuclear Information System (INIS)

    Kelly, J.M.; Aiken, I.D.

    1989-01-01

    Whereas the concept of base isolating structures from the damaging effects of earthquake motions is not new, implementation of the technique is a relatively new occurrence. This has mainly been due to the need for several important developments in materials science and experimental and analytical modeling before base isolation could evolve into a practical approach for seismic design. One of these developments has been the ability to test large-scale isolation systems using simulated seismic loads. These tests have not only proven the performance and reliability of the isolation systems and hardware, but have enabled correlation studies to be undertaken which have confirmed the accuracy of analytical methods and the acceptability of current design procedures. The Earthquake Engineering Research Center (EERC) at the University of California at Berkeley has been an active participant in this work, and this paper reviews some of the achievements of the Center in the last few years. Component tests on single isolators are described. Tests on plain and high damping natural rubber bearings, lead-rubber bearings, sliding bearings, and bearings incorporating uplift resistance mechanisms have been performed. High-shear strain tests on large (up to full scale) elastomeric bearings have been conducted to determine the stability characteristics and limit states of the isolators

  4. Seismic analysis of a LNG storage tank isolated by a multiple friction pendulum system

    Science.gov (United States)

    Zhang, Ruifu; Weng, Dagen; Ren, Xiaosong

    2011-06-01

    The seismic response of an isolated vertical, cylindrical, extra-large liquefied natural gas (LNG) tank by a multiple friction pendulum system (MFPS) is analyzed. Most of the extra-large LNG tanks have a fundamental frequency which involves a range of resonance of most earthquake ground motions. It is an effective way to decrease the response of an isolation system used for extra-large LNG storage tanks under a strong earthquake. However, it is difficult to implement in practice with common isolation bearings due to issues such as low temperature, soft site and other severe environment factors. The extra-large LNG tank isolated by a MFPS is presented in this study to address these problems. A MFPS is appropriate for large displacements induced by earthquakes with long predominant periods. A simplified finite element model by Malhotra and Dunkerley is used to determine the usefulness of the isolation system. Data reported and statistically sorted include pile shear, wave height, impulsive acceleration, convective acceleration and outer tank acceleration. The results show that the isolation system has excellent adaptability for different liquid levels and is very effective in controlling the seismic response of extra-large LNG tanks.

  5. Seismic isolation of buildings using composite foundations based on metamaterials

    Science.gov (United States)

    Casablanca, O.; Ventura, G.; Garescı, F.; Azzerboni, B.; Chiaia, B.; Chiappini, M.; Finocchio, G.

    2018-05-01

    Metamaterials can be engineered to interact with waves in entirely new ways, finding application on the nanoscale in various fields such as optics and acoustics. In addition, acoustic metamaterials can be used in large-scale experiments for filtering and manipulating seismic waves (seismic metamaterials). Here, we propose seismic isolation based on a device that combines some properties of seismic metamaterials (e.g., periodic mass-in-mass systems) with that of a standard foundation positioned right below the building for isolation purposes. The concepts on which this solution is based are the local resonance and a dual-stiffness structure that preserves large (small) rigidity for compression (shear) effects. In other words, this paper introduces a different approach to seismic isolation by using certain principles of seismic metamaterials. The experimental demonstrator tested on the laboratory scale exhibits a spectral bandgap that begins at 4.5 Hz. Within the bandgap, it filters more than 50% of the seismic energy via an internal dissipation process. Our results open a path toward the seismic resilience of buildings and a critical infrastructure to shear seismic waves, achieving higher efficiency compared to traditional seismic insulators and passive energy-dissipation systems.

  6. Seismic Isolation Working Meeting Gap Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Justin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sabharwall, Piyush [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    The ultimate goal in nuclear facility and nuclear power plant operations is operating safety during normal operations and maintaining core cooling capabilities during off-normal events including external hazards. Understanding the impact external hazards, such as flooding and earthquakes, have on nuclear facilities and NPPs is critical to deciding how to manage these hazards to expectable levels of risk. From a seismic risk perspective the goal is to manage seismic risk. Seismic risk is determined by convolving the seismic hazard with seismic fragilities (capacity of systems, structures, and components (SSCs)). There are large uncertainties associated with evolving nature of the seismic hazard curves. Additionally there are requirements within DOE and potential requirements within NRC to reconsider updated seismic hazard curves every 10 years. Therefore opportunity exists for engineered solutions to manage this seismic uncertainty. One engineered solution is seismic isolation. Current seismic isolation (SI) designs (used in commercial industry) reduce horizontal earthquake loads and protect critical infrastructure from the potentially destructive effects of large earthquakes. The benefit of SI application in the nuclear industry is being recognized and SI systems have been proposed, in the American Society of Civil Engineers (ASCE) 4 standard, to be released in 2014, for Light Water Reactors (LWR) facilities using commercially available technology. However, there is a lack of industry application to the nuclear industry and uncertainty with implementing the procedures outlined in ASCE-4. Opportunity exists to determine barriers associated with implementation of current ASCE-4 standard language.

  7. Application of Shape Memory Alloys in Seismic Isolation: A Review

    Directory of Open Access Journals (Sweden)

    Shaghayegh Alvandi

    2014-12-01

    Full Text Available In the last two decades, there has been an increasing interest in structural engineering control methods. Shape memory alloys and seismic isolation systems are examples of passive control systems that use of any one alone, effectively improve the seismic performance of the structure. Characteristics such as large strain range without any residual deformation, high damping capacity, excellent re-centering, high resistance to fatigue and corrosion and durability have made shape memory alloy an effective damping device or part of base isolators. A unique characteristic of shape memory alloys is in recovering residual deformations even after strong ground excitations. Seismic isolation is a device to lessen earthquake damage prospects. In the latest research studies, shape memory alloy is utilized in combination with seismic isolation system and their results indicate the effectiveness of the application of them to control the response of the structures. This paper reviews the findings of research studies on base isolation system implemented in the building and/or bridge structures by including the unique behavior of shape memory alloys. This study includes the primary information about the characteristic of the isolation system as well as the shape memory material. The efficiency and feasibility of the two mechanisms are also presented by few cases in point.

  8. A Survey study on design procedure of Seismic Base Isolation ...

    African Journals Online (AJOL)

    Michael Horsfall

    Base Isolation Systems that is flexible approach to decrease the potential damage. In this ... In addition, we analyze the seismic responses of isolated structures. The seismic ..... Equation 3.7, is examined; it is realized that the inequality ...

  9. Seismic isolation of Advanced LIGO: Review of strategy, instrumentation and performance

    International Nuclear Information System (INIS)

    Matichard, F; Mittleman, R; Mason, K; Biscans, S; Barnum, S; Evans, M; Foley, S; Lantz, B; Celerier, C; Clark, D; DeBra, D; Kissel, J; Allwine, E; Abbott, B; Abbott, R; Abbott, S; Coyne, D; McIver, J; Birch, J; DeRosa, R

    2015-01-01

    The new generation of gravitational waves detectors require unprecedented levels of isolation from seismic noise. This article reviews the seismic isolation strategy and instrumentation developed for the Advanced LIGO observatories. It summarizes over a decade of research on active inertial isolation and shows the performance recently achieved at the Advanced LIGO observatories. The paper emphasizes the scientific and technical challenges of this endeavor and how they have been addressed. An overview of the isolation strategy is given. It combines multiple layers of passive and active inertial isolation to provide suitable rejection of seismic noise at all frequencies. A detailed presentation of the three active platforms that have been developed is given. They are the hydraulic pre-isolator, the single-stage internal isolator and the two-stage internal isolator. The architecture, instrumentation, control scheme and isolation results are presented for each of the three systems. Results show that the seismic isolation sub-system meets Advanced LIGO’s stringent requirements and robustly supports the operation of the two detectors. (paper)

  10. Development of an evaluation method for seismic isolation systems of nuclear power facilities. Development of crossover piping design method for seismic isolation systems

    International Nuclear Information System (INIS)

    Otoyo, Teruyoshi; Otani, Akihito; Otani, Akihito; Fukushima, Shunsuke; Jimbo, Masakazu; Yamamoto, Tomofumi; Sakakida, Takaaki; Onishi, Shigenobu

    2014-01-01

    In the conceptual design of seismic isolation systems of nuclear power facilities, there exist two types of installation. The first type is to isolate both the reactor and the turbine buildings, the other is to isolate only the reactor building. In the latter type, the crossover piping, which installed between the isolated and the non-isolated buildings, is excited and deformed by the different motions of those buildings. In this study, shaking tests of 1/10 scaled model of the main steam piping and FEM analyses under multiple support excitation conditions have been performed to investigate the vibration behavior of the crossover piping. It was confirmed that modal time-history analyses could be in good agreement with the shaking test results. Also, Numerous combination methods were investigated by comparing response spectrum analyses and modal time-history analyses. In conclusion, response spectrum analyses using SRSS combinations could correspond to time-history analyses. (author)

  11. A Seismic Isolation Application Using Rubber Bearings; Hangar Project in Turkey

    International Nuclear Information System (INIS)

    Sesigur, Haluk; Cili, Feridun

    2008-01-01

    Seismic isolation is an effective design strategy to mitigate the seismic hazard wherein the structure and its contents are protected from the damaging effects of an earthquake. This paper presents the Hangar Project in Sabiha Goekcen Airport which is located in Istanbul, Turkey. Seismic isolation system where the isolation layer arranged at the top of the columns is selected. The seismic hazard analysis, superstructure design, isolator design and testing were based on the Uniform Building Code (1997) and met all requirements of the Turkish Earthquake Code (2007). The substructure which has the steel vertical trusses on facades and RC H shaped columns in the middle axis of the building was designed with an R factor limited to 2.0 in accordance with Turkish Earthquake Code. In order to verify the effectiveness of the isolation system, nonlinear static and dynamic analyses are performed. The analysis revealed that isolated building has lower base shear (approximately 1/4) against the non-isolated structure

  12. Isolation systems influence in the seismic loading propagation analysis applied to an innovative near term reactor

    International Nuclear Information System (INIS)

    Lo Frano, R.; Forasassi, G.

    2010-01-01

    Integrity of a Nuclear Power Plant (NPP) must be ensured during the plant life in any design condition and, particularly, in the event of a severe earthquake. To investigate the seismic resistance capability of as-built structures systems and components, in the event of a Safe Shutdown Earthquake (SSE), and analyse its related effects on a near term deployment reactor and its internals, a deterministic methodological approach, based on the evaluation of the propagation of seismic waves along the structure, was applied considering, also, the use of innovative anti-seismic techniques. In this paper the attention is focused on the use and influence of seismic isolation technologies (e.g. isolators based on passive energy dissipation) that seem able to ensure the full integrity and operability of NPP structures, to enhance the seismic safety (improving the design of new NPPs and if possible, to retrofit existing facilities) and to attain a standardization plant design. To the purpose of this study a numerical assessment of dynamic response/behaviour of the structures was accomplished by means of the finite element approach and setting up, as accurately as possible, a representative three-dimensional model of mentioned NPP structures. The obtained results in terms of response spectra (carried out from both cases of isolated and not isolated seismic analyses) are herein presented and compared in order to highlight the isolation technique effectiveness.

  13. Seismic performance evaluation of an MR elastomer-based smart base isolation system using real-time hybrid simulation

    International Nuclear Information System (INIS)

    Eem, S H; Jung, H J; Koo, J H

    2013-01-01

    Recently, magneto-rheological (MR) elastomer-based base isolation systems have been actively studied as alternative smart base isolation systems because MR elastomers are capable of adjusting their modulus or stiffness depending on the magnitude of the applied magnetic field. By taking advantage of the MR elastomers’ stiffness-tuning ability, MR elastomer-based smart base isolation systems strive to alleviate limitations of existing smart base isolation systems as well as passive-type base isolators. Until now, research on MR elastomer-based base isolation systems primarily focused on characterization, design, and numerical evaluations of MR elastomer-based isolators, as well as experimental tests with simple structure models. However, their applicability to large civil structures has not been properly studied yet because it is quite challenging to numerically emulate the complex behavior of MR elastomer-based isolators and to conduct experiments with large-size structures. To address these difficulties, this study employs the real-time hybrid simulation technique, which combines physical testing and computational modeling. The primary goal of the current hybrid simulation study is to evaluate seismic performances of an MR elastomer-based smart base isolation system, particularly its adaptability to distinctly different seismic excitations. In the hybrid simulation, a single-story building structure (non-physical, computational model) is coupled with a physical testing setup for a smart base isolation system with associated components (such as laminated MR elastomers and electromagnets) installed on a shaking table. A series of hybrid simulations is carried out under two seismic excitations having different dominant frequencies. The results show that the proposed smart base isolation system outperforms the passive base isolation system in reducing the responses of the structure for the excitations considered in this study. (paper)

  14. Final report of the cooperative study on seismic isolation design. The second stage

    Energy Technology Data Exchange (ETDEWEB)

    Uryu, Mitsuru; Terada, Syuji; Shioya, Tsutomu (and others)

    1999-05-01

    The applicability of the seismic isolation design onto the nuclear fuel facilities, which must clear severe criteria of integrity, has been examined. Following the first stage of the cooperative study, conducted from 1988 to 1991, the second stage included critical vibration testing, seismic observation of seismic isolation building and founded buildings of non-isolation, with the objectives of clarifying the policies on critical design of seismic isolation building. Integrity of the seismic isolation piping system was tested by means of static deformation test, with variable inner water pressure and relative deformation. (Yamamoto, A.)

  15. Test on large-scale seismic isolation elements, 2

    International Nuclear Information System (INIS)

    Mazda, T.; Moteki, M.; Ishida, K.; Shiojiri, H.; Fujita, T.

    1991-01-01

    Seismic isolation test program of Central Research Inst. of Electric Power Industry (CRIEPI) to apply seismic isolation to Fast Breeder Reactor (FBR) plant was started in 1987. In this test program, demonstration test of seismic isolation elements was considered as one of the most important research items. Facilities for testing seismic isolation elements were built in Abiko Research Laboratory of CRIEPI. Various tests of large-scale seismic isolation elements were conducted up to this day. Many important test data to develop design technical guidelines was obtained. (author)

  16. Seismic performance assessment of base-isolated safety-related nuclear structures

    Science.gov (United States)

    Huang, Y.-N.; Whittaker, A.S.; Luco, N.

    2010-01-01

    Seismic or base isolation is a proven technology for reducing the effects of earthquake shaking on buildings, bridges and infrastructure. The benefit of base isolation has been presented in terms of reduced accelerations and drifts on superstructure components but never quantified in terms of either a percentage reduction in seismic loss (or percentage increase in safety) or the probability of an unacceptable performance. Herein, we quantify the benefits of base isolation in terms of increased safety (or smaller loss) by comparing the safety of a sample conventional and base-isolated nuclear power plant (NPP) located in the Eastern U.S. Scenario- and time-based assessments are performed using a new methodology. Three base isolation systems are considered, namely, (1) Friction Pendulum??? bearings, (2) lead-rubber bearings and (3) low-damping rubber bearings together with linear viscous dampers. Unacceptable performance is defined by the failure of key secondary systems because these systems represent much of the investment in a new build power plant and ensure the safe operation of the plant. For the scenario-based assessments, the probability of unacceptable performance is computed for an earthquake with a magnitude of 5.3 at a distance 7.5 km from the plant. For the time-based assessments, the annual frequency of unacceptable performance is computed considering all potential earthquakes that may occur. For both assessments, the implementation of base isolation reduces the probability of unacceptable performance by approximately four orders of magnitude for the same NPP superstructure and secondary systems. The increase in NPP construction cost associated with the installation of seismic isolators can be offset by substantially reducing the required seismic strength of secondary components and systems and potentially eliminating the need to seismically qualify many secondary components and systems. ?? 2010 John Wiley & Sons, Ltd.

  17. Seismic isolation retrofitting of the Salt Lake City and County Building

    International Nuclear Information System (INIS)

    Bailey, J.; Allen, E.

    1989-01-01

    The City and County Building, a massive unreinforced masonry structure completed in 1894, has been seismically retrofitted using base isolation. The isolation system consists of 443 lead-rubber isolators installed underneath the building on top of existing spread footings. The building is isolated from the surrounding ground by a perimeter moat wall, permitting lateral movement to take place during an earthquake. It is believed that this is the first historic structure in the world to be retrofitted against possible seismic damage using base isolation. Lessons learned in this design effort are potentially applicable to seismic base isolation for nuclear power plants

  18. Optimization Criteria In Design Of Seismic Isolated Building

    International Nuclear Information System (INIS)

    Clemente, Paolo; Buffarini, Giacomo

    2008-01-01

    Use of new anti-seismic techniques is certainly suitable for buildings of strategic importance and, in general, in the case of very high risk. For ordinary buildings, instead, the cost of base isolation system should be balanced by an equivalent saving in the structure. The comparison criteria have been first defined, then a large numerical investigation has been carried out to analyze the effectiveness and the economic suitability of seismic isolation in concrete buildings

  19. Studies on the Needs of Seismic Base Isolation Concept and its Standardization

    International Nuclear Information System (INIS)

    Lee, Min-Seok; Kim, Jong-Hae

    2015-01-01

    In the late 1970s, seismic resistance design was introduced as a new design concept through the construction of nuclear power plants. Before this, lateral forces other than wind loads, such as seismic forces, were not taken into consideration in the structural design process. However, in response to the building of increasingly large and heavy structures such as nuclear power plants, a consensus began to form in society regarding the importance of seismic resistance design to avoid a largescale calamity. Since then, Korea has reinforced the relevant regulations, and there has been some progress. At the same time, the seismic base isolation concept was introduced to encourage active research activities related to building safety issues. It has lately been applied for the purpose of reducing construction costs. In 1980s, seismic base isolation design was applied for 'Cruas' plant in France and 'Koeberg' plant in South Africa. Those two are the few cases in which the seismic base isolation design was applied; for the rest, seismic resistance design was applied in most nuclear power plants that are in operation and in construction in the world. Rather than welcoming innovative technology on a trial basis, nuclear power plant design makes use only of proven technologies, which explains the application of seismic resistance design. As seismic base isolation design has become more accepted for use in the building of domestic general bridges, which has, thereby, confirmed its safety, it has been accepted for nuclear power plant design and has even been actively applied. So far, most structures of nuclear facility have been constructed with seismic resistance design and engineering methods. However, seismic force prediction is not perfect in reality; nor is it financially beneficial to apply the system for gradually increasing seismic resistance design loads. Therefore, it is necessary to apply a seismic base isolation system as a way to help secure the

  20. Studies on the Needs of Seismic Base Isolation Concept and its Standardization

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Min-Seok; Kim, Jong-Hae [Korea Electric Association, Seoul (Korea, Republic of)

    2015-05-15

    In the late 1970s, seismic resistance design was introduced as a new design concept through the construction of nuclear power plants. Before this, lateral forces other than wind loads, such as seismic forces, were not taken into consideration in the structural design process. However, in response to the building of increasingly large and heavy structures such as nuclear power plants, a consensus began to form in society regarding the importance of seismic resistance design to avoid a largescale calamity. Since then, Korea has reinforced the relevant regulations, and there has been some progress. At the same time, the seismic base isolation concept was introduced to encourage active research activities related to building safety issues. It has lately been applied for the purpose of reducing construction costs. In 1980s, seismic base isolation design was applied for 'Cruas' plant in France and 'Koeberg' plant in South Africa. Those two are the few cases in which the seismic base isolation design was applied; for the rest, seismic resistance design was applied in most nuclear power plants that are in operation and in construction in the world. Rather than welcoming innovative technology on a trial basis, nuclear power plant design makes use only of proven technologies, which explains the application of seismic resistance design. As seismic base isolation design has become more accepted for use in the building of domestic general bridges, which has, thereby, confirmed its safety, it has been accepted for nuclear power plant design and has even been actively applied. So far, most structures of nuclear facility have been constructed with seismic resistance design and engineering methods. However, seismic force prediction is not perfect in reality; nor is it financially beneficial to apply the system for gradually increasing seismic resistance design loads. Therefore, it is necessary to apply a seismic base isolation system as a way to help secure the

  1. A Survey study on design procedure of Seismic Base Isolation ...

    African Journals Online (AJOL)

    Adding shear walls or braced frames can decrease the potential damage caused by earthquakes.We can isolate the structures from the ground using the Seismic Base Isolation Systems that is flexible approach to decrease the potential damage. In this research we present information on the design procedure of seismic ...

  2. Study of seismic responses of Candu-3 reactor building using isolator bearings

    International Nuclear Information System (INIS)

    Biswas, J.K.

    1992-01-01

    Seismic isolator bearings are known to increase reliability, reduce cost and increase the potential sitings for nuclear power plants located in regions of high seismicity. High seismic activities in Canada occur mainly in the western coast, the Grand Banks and regions of Quebec along the St. Lawrence river. In Canada, nuclear power plants are located in Ontario, Quebec and New Brunswick where the seismicity levels are low to moderate. Consequently, seismic isolator bearings have not been used in the existing nuclear power plants in Canada. The present paper examines the effect of using seismic isolator bearings in the design for the new CANDU3 which would be suitable for regions having high seismicity. The CANDU3 Nuclear Power Plant is rated at 450 MW of net output power and is a smaller version of its predecessor CANDU6 successfully operating in Canada and abroad. The design of CANDU3 is being developed by AECL CANDU. Advanced technologies for design, construction and plant operation have been utilized. During the conceptual development of the CANDU3 design, various design options including the use of isolator bearings were considered. The present paper presents an overview of seismic isolation technology and summarizes the analytical work for predicting the seismic behavior of the CANDU3 reactor building. A lumped-parameter dynamic model for the reactor building is used for the analysis. The characteristics of the bearings are utilized in the analysis work. The time-history modal analysis has been used to compute the seismic responses. Seismic responses of the reactor building with and without isolator bearings are compared. The isolator bearings are found to reduce the accelerations of the reactor building. As a result, a lower level of seismic qualification for components and systems would be required. The use of these bearings however increases rigid body seismic displacements of the structure requiring special considerations in the layout and interfaces for

  3. Sensitivity studies of a seismically isolated system to low frequency amplification

    International Nuclear Information System (INIS)

    Wu, T.S.; Seidensticker, R.W.

    1987-06-01

    Responses of a seismically isolated structure to earthquake motions will depend primarily on the input ground motion and the isolation system frequency. The isolation frequency generally is relatively low when isolating against horizontal ground motions. After installation, the isolation frequency could deviate from its designed value due to aging, manufacturing tolerance etc. In addition, under cettain soil conditions, the input motion could have high energy content at relatively low frequencies. This report covers the first of these two concerns by performing a sensitivity study of the variations in isolation frequency on the responses of a nuclear reactor module incorporated with an isolation system. Results from a number of ground motions have shown that, for most earthquake motions, a higher isolation frequency tends to yield higher maximum acceleration, higher transmitted shear force, and lower relative displacement between the isolated and unisolated parts of the structure. In one of the ground motions considered, a 7% increase in the isolation frequency from its original design value is observed to give over a 22% increase in the transmitted shear force. Other ground motions, especially those exhibiting sharp rise in spectral accelerations in the vicinity of the designed isolated frequency, yield responses following the same general trend

  4. Comparison of seismic response of ordinary and base-isolated structures

    International Nuclear Information System (INIS)

    Kuroda, T.; Kobatake, M.; Seidensticker, R.W.; Chang, Y.W.

    1992-01-01

    Seismic isolation is growing rapidly worldwide as a cost-effective and reliable design strategy for a wide range of critical and important facilities (e.g., hospitals, computer centers, etc.) Shimizu Corporation of Japan has a test facility at Tohoku University in Sendai, Japan. The test facility was constructed in 1986 and has two buildings: one is base isolated and the other is conventionally founded. The buildings are full-size, three-story reinforced concrete structures. The dimensions and construction of the superstructures are identical. For the past several years, Shimizu Corporation has installed a number of different isolation systems in the isolated building at the test facility to study the response of base isolation systems to actual earthquake motions. Argonne National Laboratory (ANL) has been deeply involved in the development of seismic isolation for use in nuclear facilities for the past decade. Using the funding and direction of the US Department of Energy (USDOE), ANL has been developing methodology needed to evaluate the usefulness and effectiveness of seismic isolation for advanced liquid metal-cooled reactors (LMRs). This paper compares the seismic responses of ordinary and base-isolated buildings. Earthquake records of significant importance from April 1989 to September 1991, after the installation of bearings have been analyzed. Numerical simulations of the building responses have been performed and correlated with earthquake observation data. It is hoped that the results of this study will provide guidelines for the future use of isolator bearings for mitigation of earthquake damages

  5. Shaking table test and simulation analysis on failure characteristics of seismic isolation system

    International Nuclear Information System (INIS)

    Fukushima, Yasuaki; Iizuka, Maao; Satoh, Nobuhisa; Yoshikawa, Kazuhide; Katoh, Asao; Tanimoto, Eisuke

    2000-01-01

    Seismic safety and dynamic characteristics of the rubber bearing breaks of three types of base isolation system, natural rubber bearing + steel damper, lead rubber bearing and high damping rubber bearing, for nuclear power plant facilities were conducted by confirmed shaking table tests. The simulation analyses were conducted for the shaking table tests until the rubber broke. These results demonstrate that the dynamic behavior of base isolation system could be simulated closely until the rubber broke using simple analytical model based on static test. (author)

  6. Structural Concept and Analysis of a 17-Story Multifunctional Residential Complex with and without Seismic Isolation System

    International Nuclear Information System (INIS)

    Melkumyan, Mikayel; Gevorgyan, Emma

    2008-01-01

    In recent years seismic isolation technologies in Armenia were extensively applied in construction of multistory buildings. These are 10-17-story residential complexes with parking floors and with floors envisaged for offices, shopping centers, fitness clubs, etc. Also there is a 20-story business centre designed in 2006, which is currently under construction. All mentioned complexes are briefly described in the paper, which is, however, mainly dedicated to the 17-story residential complex designed in 2007. The structural concept, including the new approach on installation of seismic isolation rubber bearings in this building, is described and detailed results of the earthquake response analysis for two cases, i.e. when the building is base isolated and when it has a fixed base, are given. Several time histories were used in the analysis and for both cases the building was analyzed also according to the requirements of the Armenian Seismic Code. Comparison of the obtained results indicates the high effectiveness of the proposed structural concept of isolation system and the need for further improvement of Seismic Code provisions regarding the values of the reduction factors

  7. Design experience on seismically isolated buildings

    International Nuclear Information System (INIS)

    Giuliani, G.C.

    1989-01-01

    This paper describes the practical problems associated with the structural design of a group of seismically isolated buildings now under construction in Ancona, Italy. These structures are the first seismically isolated buildings in Italy. Taking into account previous earthquakes, the structural design of these new buildings was performed according to an acceleration spectrum which was different from its Zone 2 seismic code and which provided protection for stronger ground motions. To minimize the cost of the structure, the buildings used ribbed plate decks, thus reducing the amount of material and the mass of the structures to be isolated. The design requirements, dynamic analysis performed, structural design, and practical engineering employed are reported in this paper. A comparison between the costs of a conventionally designed and a base-isolated structure is also reported. The tests undertaken for certifying the mechanical properties of the isolators for both static and dynamic loads are also described, as is the full-scale dynamic test which is scheduled for next year (1990) for one of the completed buildings. Lessons learned in this design effort are potentially applicable to seismic base isolation for nuclear power plants

  8. Sensitivity Analysis on Elbow Piping Components in Seismically Isolated NPP under Seismic Loading

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Hee Kun; Hahm, Dae Gi; Kim, Min Kyu [KAERI, Daejeon (Korea, Republic of); Jeon, Bub Gyu; Kim, Nam Sik [Pusan National University, Busan (Korea, Republic of)

    2016-05-15

    In this study, the FE model is verified using specimen test results and simulation with parameter variations are conducted. Effective parameters will randomly sampled and used as input values for simulations to be applied to the fragility analysis. pipelines are representative of them because they could undergo larger displacements when they are supported on both isolated and non-isolated structures simultaneously. Especially elbows are critical components of pipes under severed loading conditions such as earthquake action because strain is accumulated on them during the repeated bending of the pipe. Therefore, seismic performance of pipe elbow components should be examined thoroughly based on the fragility analysis. Fragility assessment of interface pipe should take different sources of uncertainty into account. However, selection of important sources and repeated tests with many random input values are very time consuming and expensive, so numerical analysis is commonly used. In the present study, finite element (FE) model of elbow component will be validated using the dynamic test results of elbow components. Using the verified model, sensitivity analysis will be implemented as a preliminary process of seismic fragility of piping system. Several important input parameters are selected and how the uncertainty of them are apportioned to the uncertainty of the elbow response is to be studied. Piping elbows are critical components under cyclic loading conditions as they are subjected large displacement. In a seismically isolated NPP, seismic capacity of piping system should be evaluated with caution. Seismic fragility assessment preliminarily needs parameter sensitivity analysis about the output of interest with different input parameter values.

  9. Seismic Response Analysis of Continuous Multispan Bridges with Partial Isolation

    Directory of Open Access Journals (Sweden)

    E. Tubaldi

    2015-01-01

    Full Text Available Partially isolated bridges are a particular class of bridges in which isolation bearings are placed only between the piers top and the deck whereas seismic stoppers restrain the transverse motion of the deck at the abutments. This paper proposes an analytical formulation for the seismic analysis of these bridges, modelled as beams with intermediate viscoelastic restraints whose properties describe the pier-isolator behaviour. Different techniques are developed for solving the seismic problem. The first technique employs the complex mode superposition method and provides an exact benchmark solution to the problem at hand. The two other simplified techniques are based on an approximation of the displacement field and are useful for preliminary assessment and design purposes. A realistic bridge is considered as case study and its seismic response under a set of ground motion records is analyzed. First, the complex mode superposition method is applied to study the characteristic features of the dynamic and seismic response of the system. A parametric analysis is carried out to evaluate the influence of support stiffness and damping on the seismic performance. Then, a comparison is made between the exact solution and the approximate solutions in order to evaluate the accuracy and suitability of the simplified analysis techniques for evaluating the seismic response of partially isolated bridges.

  10. Experimental study on radiation resistant properties of seismic isolation elements

    International Nuclear Information System (INIS)

    Yoneda, G.; Nojima, O.; Aizawa, S.; Uchiyama, Y.; Ikenaga, M.; Yoshizawa, T.

    1991-01-01

    Recently, studies on the application of a seismic isolation system to a reactor building and or the equipment of a nuclear power plant has been carried out. This study aims at investigating the influence which is exerted upon the mechanical properties of the seismic isolation elements by radiation. The authors conducted irradiation tests, using γ rays, on natural rubber bearings (NRB), lead rubber bearings (LRB), high damping rubber bearings (HRB), and the viscous fluid used in viscous dampers. The maximum radiation intensity was 5 x 10 7 R (Roentgen). The comparison between the mechanical properties of each seismic isolation element before and after the irradiation test are reported in the following. (author)

  11. ENEA activities on seismic isolation of nuclear and non-nuclear structures

    International Nuclear Information System (INIS)

    Martelli, A.; Masoni, P.; Forni, M.; Indirli, M.; Spadoni, B.; Di Pasquale, G.; Lucarelli, V.; Sano, T.; Bonacina, G.; Castoldi, A.

    1989-01-01

    Work on seismic isolation of nuclear and non-nuclear structures was started by ENEA in cooperation with ISMES in 1988. The first activity consisted of a proposal for guidelines for seismically isolated nuclear plants using high-damping, steel-laminated elastomer bearings. This is being performed in the framework of an agreement with General Electric Company. Furthermore, research and development work has been defined and recently initiated to support development of the seismic isolation guidelines as well as that of qualification procedures for seismic isolation systems in general. The present R and D work includes static and dynamic experiments on single bearings, shake table tests with multi-axial simultaneous excitations on reduced-scale mockups of isolated structures supported by multiple bearings, and dynamic tests on large-scale isolated structures with on-site test techniques. It also includes the development and validation of finite-element nonlinear models of the single bearings, as well as those of simplified design tools for the analysis of the isolated structures dynamic behavior. Extension of this work is foreseen in a wider national frame

  12. 3-D pneumatic seismic isolation of nuclear power plants

    International Nuclear Information System (INIS)

    Beliaev, V.S.; Vinogradov, V.V.; Kostarev, V.V.; Kuzmitchev, V.P.; Privalov, S.A.; Siro, V.A.; Krylova, I.N.; Dolgaya, A.A.; Uzdin, A.M.; Vasiliev, A.V.

    2002-01-01

    This paper describes the work carried at the Russian Federation Research Center of Fundamental Engineering (RCFE), in development of innovative pneumatic multicomponent low-frequency seismic isolation bearings for advanced nuclear power plants.This device incorporates both supporting spherical elements, which provide displacements in the horizontal direction, and pneumatic dampers with rubber diaphragms for displacement in the vertical direction. To decrease the relative displacements of the isolated object the system uses viscoelastic dampers. Damping devices had been specially elaborated for the reactor building seismic isolation system as a result of substantial advances in the design and operation of the HD-type hydrodampers, created at the CKTI VIBROSEISM. The procedures developed have been used for comparison of the test and computer data on model isolated steel structure (MISS) and isolated rigid mass (IRM) isolators produced by ENEA and KAERI. Most recent work has concentrated on the development of mathematical models of isolators and isolated nuclear structures. Force-deformation characteristics of the HDRB model had been calculated on the basis of a special method of non-linear elastic theory using the continual transformations method. (author)

  13. Conceptual design by analysis of KALIMER seismic isolation

    International Nuclear Information System (INIS)

    You, Bong; Koo, Kyung Hoi; Lee, Jae Han

    1996-06-01

    The objectives of this report are to preliminarily evaluate the seismic isolation performance of KALIMER (Korea Advance LIquid MEtal Reactor) by seismic analyses, investigate the design feasibility, and find the critical points of KALIMER reactor structures. The work scopes performed in this study are 1) the establishment of seismic design basis, 2) the development of seismic analysis model of KALIMER, 3) the modal analysis, 4) seismic time history analysis, 5) the evaluations of seismic isolation performance and seismic design margins, and 6) the evaluation of seismic capability of KALIMER. The horizontal fundamental frequency of KALIMER reactor structure is 8 Hz, which is far remote from the seismic isolation frequency, 0.7 Hz. The vertical first and second natural frequencies are about 2 Hz and 8 Hz respectively. These vertical natural frequencies are in a dominant ground motion frequency bands, therefore these modes will result in large vertical response amplifications. From the results of seismic time history analyses, the horizontal isolation performance is great but the large vertical amplifications are occurred in reactor structures. The RV Liner has the smallest seismic design margin as 0.18. From the results of seismic design margins evaluation, the critical design change are needed in the support barrel, separation plate, and baffle plate points. The seismic capability of KALIMER is about 0.35g. This value can be increased by the design changes of the separation plate and etc.. 11 tabs., 29 figs., 7 refs. (Author) .new

  14. 3D seismic isolation for advanced N.P.P application. Hydraulic 3-Dimensional base-isolation system

    International Nuclear Information System (INIS)

    Shimada, Takahiro; Kashiwazaki, Akihiro; Fujiwaka, Tatsuya; Moro, Satoshi

    2003-01-01

    In Japan, a number of three-dimensional base isolation systems have been studied for application to new nuclear plant concepts such as the FBR, but these effects have not so far yielded practically applicable results. The impeding factor has been the difficulty of obtaining an adequate capacity on the vertical isolator for supporting the mass of an actual structure and for suppressing rocking motion. In this paper, we propose a new three-dimensional base isolation system that should solve the foregoing problem. The system is constituted of a set of hydraulic load-carrying cylinders connected to accumulator units containing a compressed gas, another set of rocking-suppression cylinders connected in series, and a laminated rubber bearing laid under each load-carrying cylinder. The present paper covers a basic examination for applying the proposed system to a commercialized FBR now under development in Japan, together with static and dynamic loading tests performed on a scale model to verify expected system performance. Response and analysis reflecting the test results has indicated the proposed system to be well applicable to the envisaged commercialized FBR. The study was undertaken as part of an R and D project sponsored by the government for realizing a three-dimensional seismic isolation system applicable to future FRB's. (author)

  15. NSR&D Program Fiscal Year (FY) 2015 Call for Proposals Mitigation of Seismic Risk at Nuclear Facilities using Seismic Isolation

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Justin [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-02-01

    Seismic isolation (SI) has the potential to drastically reduce seismic response of structures, systems, or components (SSCs) and therefore the risk associated with large seismic events (large seismic event could be defined as the design basis earthquake (DBE) and/or the beyond design basis earthquake (BDBE) depending on the site location). This would correspond to a potential increase in nuclear safety by minimizing the structural response and thus minimizing the risk of material release during large seismic events that have uncertainty associated with their magnitude and frequency. The national consensus standard America Society of Civil Engineers (ASCE) Standard 4, Seismic Analysis of Safety Related Nuclear Structures recently incorporated language and commentary for seismically isolating a large light water reactor or similar large nuclear structure. Some potential benefits of SI are: 1) substantially decoupling the SSC from the earthquake hazard thus decreasing risk of material release during large earthquakes, 2) cost savings for the facility and/or equipment, and 3) applicability to both nuclear (current and next generation) and high hazard non-nuclear facilities. Issue: To date no one has evaluated how the benefit of seismic risk reduction reduces cost to construct a nuclear facility. Objective: Use seismic probabilistic risk assessment (SPRA) to evaluate the reduction in seismic risk and estimate potential cost savings of seismic isolation of a generic nuclear facility. This project would leverage ongoing Idaho National Laboratory (INL) activities that are developing advanced (SPRA) methods using Nonlinear Soil-Structure Interaction (NLSSI) analysis. Technical Approach: The proposed study is intended to obtain an estimate on the reduction in seismic risk and construction cost that might be achieved by seismically isolating a nuclear facility. The nuclear facility is a representative pressurized water reactor building nuclear power plant (NPP) structure

  16. Seismic isolation of lead-cooled reactors: The European project SILER

    International Nuclear Information System (INIS)

    Forni, Massimo; Poggianti, Alessandro; Scipinotti, Riccardo; Dusi, Alberto; Manzoni, Elena

    2014-01-01

    SILER (Seismic-Initiated event risk mitigation in LEad-cooled Reactors) is a Collaborative Project, partially funded by the European Commission in the 7th Framework Programme, aimed at studying the risk associated to seismic-initiated events in Generation IV Heavy Liquid Metal reactors, and developing adequate protection measures. The project started in October 2011, and will run for a duration of three years. The attention of SILER is focused on the evaluation of the effects of earthquakes, with particular regards to beyond-design seismic events, and to the identification of mitigation strategies, acting both on structures and components design. Special efforts are devoted to the development of seismic isolation devices and related interface components. Two reference designs, at the state of development available at the beginning of the project and coming from the 6th Programme, have been considered: ELSY (European Lead Fast Reactor) for the Lead Fast Reactors (LFR), and MYRRHA (Multi-purpose hYbrid Research Reactor for High-tech Applications) for the Accelerator-Driven Systems (ADS). This paper describes the main activities and results obtained so far, paying particular attention to the development of seismic isolators, and the interface components which must be installed between the isolated reactor building and the non-isolated parts of the plant, such as the pipe expansion joints and the joint-cover of the seismic gap.

  17. Sensitivity of seismically isolated structures

    International Nuclear Information System (INIS)

    Politopoulos, I.; Hoan, Khac Pham

    2009-01-01

    In this paper we study the sensitivity of seismically isolated structures to a small variability of the earthquake excitation and of some structural properties with respect to the probability of failure and floor spectra. In particular, the influence of the nonlinear behaviour of the isolated superstructure on the vulnerability and on the floor spectra is investigated by means of a series of Monte Carlo simulations of simple two degrees-of-freedom systems. Several types of passive and active isolation systems are examined and three different idealized nonlinear constitutive laws are considered for the superstructure. It is found that, in general, the probability of failure does not depend on the specific cyclic behaviour of the assumed constitutive law and general trends regarding the impact of different isolation devices on vulnerability are established. As for the floor spectra, the influence of moderate nonlinear behaviour of isolated Superstructures, with the exception of the case of a non-dissipative elastic nonlinear law is negligible, contrary to the case of conventional Structures. (authors)

  18. Sensitivity of seismically isolated structures

    Energy Technology Data Exchange (ETDEWEB)

    Politopoulos, I. [CEA Saclay, DEN DANS DM2S, 91 - Gif sur Yvette (France); Hoan, Khac Pham

    2009-07-15

    In this paper we study the sensitivity of seismically isolated structures to a small variability of the earthquake excitation and of some structural properties with respect to the probability of failure and floor spectra. In particular, the influence of the nonlinear behaviour of the isolated superstructure on the vulnerability and on the floor spectra is investigated by means of a series of Monte Carlo simulations of simple two degrees-of-freedom systems. Several types of passive and active isolation systems are examined and three different idealized nonlinear constitutive laws are considered for the superstructure. It is found that, in general, the probability of failure does not depend on the specific cyclic behaviour of the assumed constitutive law and general trends regarding the impact of different isolation devices on vulnerability are established. As for the floor spectra, the influence of moderate nonlinear behaviour of isolated Superstructures, with the exception of the case of a non-dissipative elastic nonlinear law is negligible, contrary to the case of conventional Structures. (authors)

  19. The benefits and problems of base seismic isolation for LMFBR reactor plants

    International Nuclear Information System (INIS)

    Seidensticker, R.W.

    1988-01-01

    The use of seismic isolation as an approach to aseismic design has gained increasing interest as a viable and efficient engineering solution to earthquake ground motion both within and outside of the nuclear field. Seismic isolation design is fundamentally different from conventional design practice. In the conventional approach, seismic loads are resisted by making the structures, equipment, piping, and associated supports strong enough to resist seismic loads and to provide high levels of ductility. The use of seismic isolation approaches the problem by decoupling the structure (and its contents) from the seismic input resulting from ground shaking. Because LMFBR systems operate at virtually atmospheric pressure, vessels, piping, and associated components tend to be quite thin-walled. The problem is that these thin-walled items have little inherent resistance to earthquake effects and are vulnerable to seismic load effects. As a result, earthquake loads have an even greater influence on LMR designs than they already are in LWR plants. The potential benefits of seismic isolation for an LMR plant are considerable, including minimization of high-cost commodities such as stainless steel, large reductions in internal equipment loads, increased margins of safety for beyond-design-basis loads, and enhancement of plant standardization design. There are, of course, a number of issues and concerns in the use of seismic isolation for a nuclear power plant. These issues cover a number of items such as the lack of experience in actual earthquakes, effects of long-period ground motion, effect of vertical loads, traveling waves, and other related concerns. This paper presents an evaluation of the benefits and problems in the use of seismic isolation in LMR plants. 12 refs, 7 figs

  20. Design experience on seismically isolated buildings

    International Nuclear Information System (INIS)

    Giuliani, G.C.

    1991-01-01

    This paper describes the practical problems associated with the structural design of seismically isolated buildings now under construction in Ancona, Italy. These structures are the first seismically isolated buildings in Italy. The Ancona region is in zone 2 of the Italian Seismic Code. It has a design acceleration of 0.07 g which corresponds to a ground surface acceleration of 0.25 g. The last significant earthquake was recorded on June 14, 1972, having a single shock-type wave with a peak acceleration of 0.53 g. Taking into account the aforesaid earthquake, the structural design of these new buildings was performed according to an acceleration spectrum which was different from the zone 2 seismic code and which provided protection for stronger ground motions. To minimize the cost of the structure, the buildings used ribbed plate decks, thus reducing the amount of material and the mass of the structures to be isolated. The design requirements, dynamic analysis performed, structural design, and practical engineering employed are reported in this paper. A comparison between the costs of a conventionally designed and a base-isolated structure is also reported. It shows a net savings of 7% for the base-isolated structure. The tests undertaken for certifying the mechanical properties of the isolators for both static and dynamic loads are also described, as is the full-scale dynamic test which is scheduled for next year (1990) for one of the completed buildings. (orig.)

  1. Parametric Study on Ultimate Failure Criteria of Elbow Piping Components in Seismically Isolated NPP

    Energy Technology Data Exchange (ETDEWEB)

    Hahm, Dae Gi; Ki, Min Kyu [KAERI, Daejeon (Korea, Republic of); Jeon, Bub Gyu; Kim, Nam Sik [Pusan National University, Busan (Korea, Republic of)

    2016-05-15

    It is well known that the interface pipes between isolated and non-isolated structures will become the most critical in the seismically isolated NPPs. Therefore, seismic performance of such interface pipes should be evaluated comprehensively especially in terms of the seismic fragility capacity. To evaluate the seismic capacity of interface pipes in the isolated NPP, firstly, we should define the failure mode and failure criteria of critical pipe components. Hence, in this study, we performed the dynamic tests of elbow components which were installed in a seismically isolated NPP, and evaluated the ultimate failure mode and failure criteria by using the test results. To do this, we manufactured 25 critical elbow component specimens and performed cyclic loading tests under the internal pressure condition. The failure mode and failure criteria of a pipe component will be varied by the design parameters such as the internal pressure, pipe diameter, loading type, and loading amplitude. From the tests, we assessed the effects of the variation parameters onto the failure criteria. For the tests, we generated the seismic input protocol of relative displacement between the ends of elbow component. In this paper, elbow in piping system was defined as a fragile element and numerical model was updated by component test. Failure mode of piping component under seismic load was defined by the dynamic tests of ultimate pipe capacity. For the interface piping system, the seismic capacity should be carefully estimated since that the required displacement absorption capacity will be increased significantly by the adoption of the seismic isolation system. In this study, the dynamic tests were performed for the elbow components which were installed in an actual NPPs, and the ultimate failure mode and failure criteria were also evaluated by using the test results.

  2. Testing of seismic isolation bearings for advanced liquid metal reactor prism

    International Nuclear Information System (INIS)

    Tajirian, F.F.; Kelly, J.M.

    1988-01-01

    Seismic isolation can significantly mitigate earthquake loads on liquid metal reactors (LMR), thus reducing the impact of seismic loads on design. This improves plant safety margins for beyond-design basis seismic events and enhances adaptability of a standardized design to a variety of sites, with potential cost benefits. The PRISM (Power Reactor Inherently Safe Module) LMR incorporates a horizontal isolation system which consists of high damping steel laminated rubber bearings. The results of an experimental program to determine the mechanical properties of the rubber compound and the bearing performance under different loading conditions are presented. The test results demonstrate the excellent performance of the bearings and their suitability for isolating compact LMR plants

  3. Seismic response of base-isolated buildings using a viscoelastic model

    International Nuclear Information System (INIS)

    Uras, R.A.

    1993-01-01

    Due to recent developments in elastomer technology,seismic isolation using elastomer bearings is rapidly gaining acceptance as a design tool to enhance structural seismic margins and to protect people and equipment from earthquake damage. With proper design of isolators, the fundamental frequency of the structure can be reduced to a value that is lower than the dominant frequencies of earthquake ground motions. The other feature of an isolation system is that it can provide a mechanism for energy dissipation. In the USA, the use of seismic base-isolation has become an alternate strategy for advanced Liquid Metal-cooled Reactors (LMRs). ANL has been deeply involved in the development and implementation of seismic isolation for use in both nuclear facilities and civil structures for the past decade. Shimizu Corporation of Japan has a test facility at Tohoku University in Sendai, Japan. The test facility has two buildings: one is base isolated and the other is conventionally founded. The buildings are full-size, three-story reinforced concrete structures. The dimensions and construction of the superstructures are identical. They were built side by side in a seismically active area. In 1988, the ANL/Shimizu Joint Program was established to study the differences in behavior of base-isolated and ordinarily founded structures when subjected to earthquake loading. A more comprehensive description of this joint program is presented in a companion paper (Wang et al. 1993). With the increased use of elastomeric polymers in industrial applications such as isolation bearings, the importance of constitutive modeling of viscoelastic materials is more and more pronounced. A realistic representation of material behavior is essential for computer simulations to replicate the response observed in experiments

  4. Seismic attenuation system for the AEI 10 meter Prototype

    International Nuclear Information System (INIS)

    Wanner, A; Bergmann, G; Fricke, T; Lück, H; Mow-Lowry, C M; Strain, K A; Goßler, S; Danzmann, K; Bertolini, A

    2012-01-01

    Isolation from seismic motion is vital for vibration sensitive experiments. The seismic attenuation system (SAS) is a passive mechanical isolation system for optics suspensions. The low natural frequency of a SAS allows seismic isolation starting below 0.2 Hz. The desired isolation at frequencies above a few hertz is 70–80 dB in both horizontal and vertical degrees of freedom. An introduction to the SAS for the AEI 10 m Prototype, an overview of the mechanical design and a description of the major components are given. (paper)

  5. Seismic isolation design guidelines for KALIMER(Revision A)

    International Nuclear Information System (INIS)

    Yoo, B; Koo, Gyeong Hoi; Lee, J. H.

    2000-04-01

    The main purpose of this report is to develop the seismic isolation design guideline for KALIMER(Korea Advanced LIquid MEtal Reactor). The proposed design rules(revision A) are only applicable to the seismic isolation design with using the high damping laminated rubber bearings. When using other seismic isolation devices and applying to 3-dimensional isolation, the proposed guidelines shall be modified and added with proper research data. The rules described in this report are based on the research results performed up to now but needed to be upgraded and verified with more detail research works for the future

  6. Vulnerability and floor spectra of seismically isolated structures

    International Nuclear Information System (INIS)

    Pham, K.H.

    2010-09-01

    This thesis was motivated by issues that arise regarding the use of the method of seismic isolation in the nuclear industry. Despite the research conducted during the last decades in the field of seismic isolation, many questions about the behavior of isolated structures remain. These questions concern, on the one hand, the vulnerability of these structures, due to an excursion (unexpected) in the post-linear domain, and on the other hand, phenomena that can lead to a significant excitation of none isolated modes. Furthermore, unlike previous work studying the seismic behavior of buildings, an important part of this thesis is devoted to the behavior of equipment through the study of floor spectra. Firstly, the probability of failure, in the case of nonlinear response of the superstructure, was studied with simple models, for different laws of nonlinear behavior and different types of support. Then, the effects of heavy damping were investigated and the mechanism of amplification of the response of non-isolated modes has been explained. To resolve the amplification problem of none isolated modes, the mixed isolated systems, combining passive isolation with semi-active devices, have been considered. The numerical analyses confirm the effectiveness of this approach. Finally, a series of shaking table tests on a simple model with two degrees of freedom was conducted. The model is equipped with a magneto-rheological damper which is controlled as a semi-active device. The comparison of the experimental results with those of numerical simulations shows that the models developed are able to represent satisfactorily the essential physical phenomena. (author)

  7. Fragility analysis of a seismically-isolated emergency diesel generator

    International Nuclear Information System (INIS)

    Choun, Young Sun; Choi, In Kil; Ohtori, Yasuki

    2005-01-01

    The seismic capacity of an Emergency Diesel Generator (EDG) in nuclear power plants influences the seismic safety of the plants significantly. A recent study showed that the increase of the seismic capacity of the EDG could reduce the core damage frequency (CDF) remarkably. It is known that the major failure mode of the EDG is a concrete coning failure due to the pulling out of the anchor bolts. The use of base isolators instead of anchor bolts can increase the seismic capacity of the EDG without any major problems. The fragility curves for a base-isolated EDG should be different from those for a conventional type because the major failure mode of the base-isolated EDG will not be a concrete coning one any more. The governing failure mode of the base-isolated EDG must be the damage of the isolators. This study introduces a fragility evaluation method for an isolated EDG, and evaluates the fragilities for the isolated EDG and compares them with those for the conventional one. Evaluation of the ground motion index is also carried out to determine the governing parameter suitable for representing the seismic responses of the base isolator

  8. Utilities/industries joint study on seismic isolation systems for LWR: Part II. Observed behaviors of base-isolated general buildings under real earthquakes

    International Nuclear Information System (INIS)

    Matsumura, Takao; Sato, Shoji; Kato, Muneaki

    1989-01-01

    This paper describes the observed behavior of base-isolated buildings under real earthquake conditions. These buildings were constructed by five construction companies participating in the Joint Study on Seismic Isolation Systems for lightwater reactors. All the buildings are medium- or low-height buildings of reinforced-concrete structures with combinations of laminated rubber bearing or sliding bearings and various damping devices

  9. Proceedings of the first international seminar on seismic base isolation for nuclear power facilities

    International Nuclear Information System (INIS)

    1989-01-01

    The First International Seminar on Seismic Base Isolation of Nuclear Power Facilities was organized by the authors of this paper. It was held in San Francisco, California, USA, on August 21--22, 1989, in conjunction with the tenth International Conference on Structural Mechanics in Reactor Technology (SMiRT-10). The purpose of the seminar was to provide an international forum for discussion on the application of base isolation to nuclear power plants and of its effectiveness in reducing seismic loads and permitting standard plant designs. It also provided an opportunity for technical interchange between base isolation system designers, structural engineers, and nuclear power plant engineers. Seismic isolation is certainly one of the most significant earthquake engineering developments in recent years. This was clearly demonstrated by the very large attendance at this seminar and the various papers presented. Isolation system act as filters that reduce the seismic forces and increase the ability of isolated structures and their contents to withstand the damaging effects of earthquake motions. Each individual paper has been cataloged separately

  10. Development of analysis methods for seismically isolated nuclear structures

    International Nuclear Information System (INIS)

    Yoo, Bong; Lee, Jae-Han; Koo, Gyeng-Hoi

    2002-01-01

    KAERI's contributions to the project entitled Development of Analysis Methods for Seismically Isolated Nuclear Structures under IAEA CRP of the intercomparison of analysis methods for predicting the behaviour of seismically isolated nuclear structures during 1996-1999 in effort to develop the numerical analysis methods and to compare the analysis results with the benchmark test results of seismic isolation bearings and isolated nuclear structures provided by participating countries are briefly described. Certain progress in the analysis procedures for isolation bearings and isolated nuclear structures has been made throughout the IAEA CRPs and the analysis methods developed can be improved for future nuclear facility applications. (author)

  11. Experiments on seismic isolation in Italy

    International Nuclear Information System (INIS)

    Bonacina, G.; Bettinali, F.; Martelli, A.; Olivieri, M.

    1992-01-01

    Static and dynamic tests have been performed in Italy on high damping steel-laminated elastomer bearings in various scales, rubber specimens and structures isolated by means of such bearings, in the framework of studies in progress to support seismic isolation development. Tests on rubber specimens and bearings have already provided important data (vertical and horizontal stiffness, damping, creep, temperature, aging and scale effects, etc.), necessary for the development and validation of numerical models, comparison with the test results of isolated structure mockups and actual buildings, and improvement of design guidelines. Dynamic experiments of structures concerned both full-scale and scaled isolated structure mock-ups and actual isolated buildings (one of those forming the SIP Administration Center at Ancona, an isolated house at Squillace, Calabria). Both snap-back tests and forced excitation experiments were performed, to rather large displacements. The latter were both sinusoidal and (on a 1/4 scale mock-up) seismic, with one- and multidirectional simultaneous excitations. Test results have already demonstrated the adequacy of seismic isolation and have provided data useful for the comparison with single bearing test results and validation of numerical models for the analysis of isolated structures. This paper reports the main features and results of tests performed or in progress. Further tests planned have been mentioned in the Status Report. Numerical analysis of measured data and guidelines development have been discussed in separate technical papers. (author)

  12. DEMT experimental and analytical studies on seismic isolation

    International Nuclear Information System (INIS)

    Gantenbein, F.; Buland, P.

    1989-01-01

    Work on seismic isolation has been performed in France for many years, and the isolation device developed by SPIE-BATIGNOLLES in collaboration with Electricite de France (EDF) has been incorporated in the design of pressurized-water reactor (PWR) nuclear power plants. This paper reviews the experimental and theoretical studies performed at CEA/DEMT related to the overall behavior of isolated structures. The experimental work consists of the seismic shaking-table tests of a concrete cylinder isolated by neoprene sliding pads, and the vibrational tests on the reaction mass of the TAMARIS seismic facility. The analytical work consists of the development of procedures for dynamic calculation methods: for soil-structure interaction where pads are placed between an upper raft and pedestals, for time-history calculations where sliding plates are used, and for fluid-structure interaction where coupled fluid and structure motions and sloshing modes are important. Finally, this paper comments on the consequences of seismic isolation for the analysis of fast breeder reactor (FBR) vessels. The modes can no longer be considered independent (SRSS Method leads to important errors), and the sloshing increases

  13. CRIEPI test program for seismic isolation of the FBR

    International Nuclear Information System (INIS)

    Shiojiri, Hiroo

    1989-01-01

    This paper describes the Central Research Institute of Electric Power Industry's (CRIEPIs) seismic isolation program. The test and research program on seismic isolation was started in 1987 by CRIEPI under contract with the Ministry of International Trade and Industry (MITI) of Japan. It was intended to establish a technical basis for the application of seismic isolation to fast breeder reactors (FBRs). In this paper, some details of the program and results of the preliminary study are described

  14. Seismic response of base isolated auxiliary building with age related degradation

    International Nuclear Information System (INIS)

    Park, Jun Hee; Choun, Young Sun; Choi, In Kil

    2012-01-01

    The aging of an isolator affects not only the mechanical properties of the isolator but also the dynamic properties of the upper structure, such as the change in stiffness, deformation capacity, load bearing capacity, creep, and damping. Therefore, the seismic response of base isolated structures will change with time. The floor response in the base isolated nuclear power plants (NPPs) can be particularly changed because of the change in stiffness and damping for the isolator. The increased seismic response due to the aging of isolator can cause mechanical problems for many equipment located in the NPPs. Therefore, it is necessary to evaluate the seismic response of base isolated NPPs with age related degradation. In this study, the seismic responses for a base isolated auxiliary building of SHIN KORI 3 and 4 with age related degradation were investigated using a nonlinear time history analysis. Floor response spectrums (FRS) were presented with time for identifying the change in seismic demand under the aging of isolator

  15. Control of mixed seismic isolation systems

    International Nuclear Information System (INIS)

    Teodorescu, Catalin-Stefan

    2013-01-01

    Vibration attenuation control designs are proposed for reduced plant models consisting of n-degree-of-freedom base seismically-isolated structures (i.e., a specific type of earthquake-resistant design), modeled by uncertain nonlinear systems and subjected to one-dimensional horizontal ground acceleration (i.e. the earthquake signal), treated as unknown disturbance but assumed to be bounded. In control systems literature, this is a perturbation attenuation problem. The main result of this PhD is the development of a modified version of Leitmann and co-authors' classical result on the stabilization of uncertain nonlinear systems. The proposed theorem consists of a bounded nonlinear feedback control law that is capable of ensuring uniform boundedness and uniform ultimate boundedness in closed-loop. In particular, it can be applied to solving semi-active control design problems, which are currently dealt with in earthquake engineering. The control objective is to improve the behavior (i.e. response) of mixed base-isolated structures to external disturbance, namely earthquakes. What differentiates our problem from the majority to be found in the literature is that: (i) attention is being paid to the protection of equipment placed inside the structure an not only to the structure itself; (ii) instead of using regular performance indicators expressed in terms of relative base displacement versus floors accelerations, we use solely the pseudo-acceleration floor response spectra, as it was proposed in previous recent works by Politopoulos and Pham. Actually, this work is an attempt to explicitly use floor response spectra as performance criterion. Concerning the application procedure, some of the topics that were detailed are: (i) modeling of earthquake signals; (ii) tuning of control law parameters based on vibration theory; (iii) validation and testing of the closed-loop behavior using numerical simulations: for simplicity reasons, we take n=2. This procedure can be

  16. Seismic isolation development for the US advanced liquid-metal reactor program

    International Nuclear Information System (INIS)

    Gluekler, E.L.; Bigelow, C.C.; DeVita, V.; Kelly, J.M.; Seidensticker, R.W.; Tajirian, F.F.

    1991-01-01

    GE Nuclear Energy, in association with a US Industrial Team and support from the US National Laboratories and Universities, is developing a modular liquid-metal reactor concept for the US DOE. The objective of this development is to provide, by the turn of the century, a reactor with optimized passive safety features that is economically competitive with other domestic energy sources, licensable, and ready for commercial deployment. One of the unique features of the concept is the seismic isolation of the reactor modules which decouples the reactors and their safety systems from potentially damaging ground motions and significantly enhances the structural resistance to high energy, as well as long-duration earthquakes. Seismic isolation is accomplished with high-damping natural-rubber bearings. The reactors are located in individual silos below grade level and are supported by the isolator bearings at approximately their center of gravity. This application of seismic isolation is the first for a US nuclear power plant. A development program has been established to assure the full benefits from the utilization of this new approach and to provide adequate system characterization and qualification for licensing certification. The development program, which is supported by the US DOE, ANL, Energy Technology Engineering Center (ETEC), the University of California at Berkeley (UC-Berkeley), GE, and Bechtel National, Inc. (BNI), is described and selected results are presented. The initial testing indicated excellent performance of high-damping natural-rubber bearings. The development of seismic isolation guidelines is in progress as a joint activity between ENEA of Italy and the GE Team. (orig./HP)

  17. FSI-based Overflow Assessment of the Seismically-Isolated SFP with Fuel Racks

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Gil Y.; Park, Hyun T.; Chang, Soo-Hyuk [Korea Maintenance Co., Seoul (Korea, Republic of); Lee, Sang-Hoon [KEPCO E-C, Yongin (Korea, Republic of)

    2014-10-15

    To date, effectiveness of the seismic isolation systems for reducing seismic force effectively has been well demonstrated. In this context, practical application of the technology in nuclear engineering fields has become an important issue more and more. This is because fluid motion can be rather amplified due to the increased relative displacement between the base and superstructures by a long-period shift. Therefore, overflow assessment and prediction of the seismically-isolated SFP have to be conducted in design phase. For performing sloshing-induced overflow of the seismically-isolated SFP, a fluid-structure interaction(FSI) approach making a two-way coupling process between structural and fluid solvers is herein employed. In this study, fuel racks inside the SFP are included in FSI modeling to investigate effect of fuel-cell assemblies on SFP overflow. Accordingly, three different assembly sets of fuel cells are assumed to be inserted in fuel racks. In addition, floor acceleration time-histories produced from three different amplitudes of peak ground acceleration (PGA) are applied to the SFP base to investigate load effect on liquid overflow. An approach for the liquid overflow assessment of the seismically-isolated nuclear SFP with fuel storage racks based on FSI analysis was addressed. From the results of the identified cases, the following conclusions are drawn: (i) FSI technique can be effectively used to assess the seismically-isolated SFP overflow, (ii) In a conservative way, the isolated SFP without fuel racks can be used to assess its sloshing-induced overflow under earthquake since effect of fuel-cell assemblies on the SFP overflow is not significant, (iii) for given same conditions (e.g., constant design free surface, same fuel-cell assembly) except seismic loading, the higher PGA is, the more liquid overflow increases.

  18. ADVANCED SEISMIC BASE ISOLATION METHODS FOR MODULAR REACTORS

    International Nuclear Information System (INIS)

    Blanford, E.; Keldrauk, E.; Laufer, M.; Mieler, M.; Wei, J.; Stojadinovic, B.; Peterson, P.F.

    2010-01-01

    Advanced technologies for structural design and construction have the potential for major impact not only on nuclear power plant construction time and cost, but also on the design process and on the safety, security and reliability of next generation of nuclear power plants. In future Generation IV (Gen IV) reactors, structural and seismic design should be much more closely integrated with the design of nuclear and industrial safety systems, physical security systems, and international safeguards systems. Overall reliability will be increased, through the use of replaceable and modular equipment, and through design to facilitate on-line monitoring, in-service inspection, maintenance, replacement, and decommissioning. Economics will also receive high design priority, through integrated engineering efforts to optimize building arrangements to minimize building heights and footprints. Finally, the licensing approach will be transformed by becoming increasingly performance based and technology neutral, using best-estimate simulation methods with uncertainty and margin quantification. In this context, two structural engineering technologies, seismic base isolation and modular steel-plate/concrete composite structural walls, are investigated. These technologies have major potential to (1) enable standardized reactor designs to be deployed across a wider range of sites, (2) reduce the impact of uncertainties related to site-specific seismic conditions, and (3) alleviate reactor equipment qualification requirements. For Gen IV reactors the potential for deliberate crashes of large aircraft must also be considered in design. This report concludes that base-isolated structures should be decoupled from the reactor external event exclusion system. As an example, a scoping analysis is performed for a rectangular, decoupled external event shell designed as a grillage. This report also reviews modular construction technology, particularly steel-plate/concrete construction using

  19. ADVANCED SEISMIC BASE ISOLATION METHODS FOR MODULAR REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    E. Blanford; E. Keldrauk; M. Laufer; M. Mieler; J. Wei; B. Stojadinovic; P.F. Peterson

    2010-09-20

    Advanced technologies for structural design and construction have the potential for major impact not only on nuclear power plant construction time and cost, but also on the design process and on the safety, security and reliability of next generation of nuclear power plants. In future Generation IV (Gen IV) reactors, structural and seismic design should be much more closely integrated with the design of nuclear and industrial safety systems, physical security systems, and international safeguards systems. Overall reliability will be increased, through the use of replaceable and modular equipment, and through design to facilitate on-line monitoring, in-service inspection, maintenance, replacement, and decommissioning. Economics will also receive high design priority, through integrated engineering efforts to optimize building arrangements to minimize building heights and footprints. Finally, the licensing approach will be transformed by becoming increasingly performance based and technology neutral, using best-estimate simulation methods with uncertainty and margin quantification. In this context, two structural engineering technologies, seismic base isolation and modular steel-plate/concrete composite structural walls, are investigated. These technologies have major potential to (1) enable standardized reactor designs to be deployed across a wider range of sites, (2) reduce the impact of uncertainties related to site-specific seismic conditions, and (3) alleviate reactor equipment qualification requirements. For Gen IV reactors the potential for deliberate crashes of large aircraft must also be considered in design. This report concludes that base-isolated structures should be decoupled from the reactor external event exclusion system. As an example, a scoping analysis is performed for a rectangular, decoupled external event shell designed as a grillage. This report also reviews modular construction technology, particularly steel-plate/concrete construction using

  20. Stationary levitation and vibration transmission characteristic in a superconducting seismic isolation device with a permanent magnet system and a copper plate

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, S., E-mail: s.sasaki@ecei.tohoku.ac.j [Electrical Engineering Department, Graduate School, Tohoku University, 6-6-05 Aoba Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Shimada, K.; Yagai, T.; Tsuda, M.; Hamajima, T. [Electrical Engineering Department, Graduate School, Tohoku University, 6-6-05 Aoba Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Kawai, N.; Yasui, K. [Okumura Corporation, 5-6-1 Shiba, Minato-ku, Tokyo 180-8381 (Japan)

    2010-11-01

    We have devised a magnetic levitation type superconducting seismic isolation device taking advantage of the specific characteristic of HTS bulk that the HTS bulk returns to its original position by restoring force against a horizontal displacement. The superconducting seismic isolation device is composed of HTS bulks and permanent magnets (PM rails). The PMs are fixed on an iron plate to realize the same polarities in the longitudinal direction and the different polarities in the transverse direction. The superconducting seismic isolation device can theoretically remove any horizontal vibrations completely. Therefore, the vibration transmissibility in the longitudinal direction of the PM rail becomes zero in theory. The zero vibration transmissibility and the stationary levitation, however, cannot be achieved in the real device because a uniform magnetic field distribution in the longitudinal direction of PM rail cannot be realized due to the individual difference of the PMs. Therefore, to achieve stationary levitation in the real device we adopted a PM-PM system that the different polarities are faced each other. The stationary levitation could be achieved by the magnetic interaction between the PMs in the PM-PM system, while the vibration transmitted to the seismic isolation object due to the magnetic interaction. We adopted a copper plate between the PMs to reduce the vibration transmissibility. The PM-PM system with the copper plate is very useful for realizing the stationary levitation and reducing the vibration transmissibility.

  1. Stationary levitation and vibration transmission characteristic in a superconducting seismic isolation device with a permanent magnet system and a copper plate

    International Nuclear Information System (INIS)

    Sasaki, S.; Shimada, K.; Yagai, T.; Tsuda, M.; Hamajima, T.; Kawai, N.; Yasui, K.

    2010-01-01

    We have devised a magnetic levitation type superconducting seismic isolation device taking advantage of the specific characteristic of HTS bulk that the HTS bulk returns to its original position by restoring force against a horizontal displacement. The superconducting seismic isolation device is composed of HTS bulks and permanent magnets (PM rails). The PMs are fixed on an iron plate to realize the same polarities in the longitudinal direction and the different polarities in the transverse direction. The superconducting seismic isolation device can theoretically remove any horizontal vibrations completely. Therefore, the vibration transmissibility in the longitudinal direction of the PM rail becomes zero in theory. The zero vibration transmissibility and the stationary levitation, however, cannot be achieved in the real device because a uniform magnetic field distribution in the longitudinal direction of PM rail cannot be realized due to the individual difference of the PMs. Therefore, to achieve stationary levitation in the real device we adopted a PM-PM system that the different polarities are faced each other. The stationary levitation could be achieved by the magnetic interaction between the PMs in the PM-PM system, while the vibration transmitted to the seismic isolation object due to the magnetic interaction. We adopted a copper plate between the PMs to reduce the vibration transmissibility. The PM-PM system with the copper plate is very useful for realizing the stationary levitation and reducing the vibration transmissibility.

  2. Scope and status of Russian contribution for analysis methods for seismically isolated nuclear structure

    International Nuclear Information System (INIS)

    Beliayev, V.S.; Vinogradov, V.V.; Guskov, V.D.

    1993-01-01

    In the last few years, we can see in Russia the amplification of interest to problems of seismic isolation for potentially dangerous objects as the most effective way to alleviate the possible damage. This material comprises the data which characterize the level of theoretical design and experimental studying of seismic isolation systems of NPP components and structures. (author)

  3. The current status of seismic isolation technology in the United States

    International Nuclear Information System (INIS)

    Kelly, J.M.

    1992-01-01

    Seismic isolation is at the present time in a very active state of development. Many new types of isolation systems are being explored and elastomeric isolators, the system which has been employed on almost all isolation systems completed to date, continue to undergo improvements. At least one dozen large projects, either new or the retrofit of existing buildings, have been completed and design studies are underway for at least another one dozen large projects. A large experimental research project for isolators with nuclear reactor application has been carried out over the past few years at EERC. This program has involved shake table testing and the testing of full-scale and model isolators. A wide variety of isolators have been tested including low-shape factor, moderate-shape factor, and very high-shape factor elastomer bearings. The range of elastomers that have been tested include low-damping, high-damping, and very low-modulus compounds. Full-size and model isolators have been tested to failure in several failure modes and the safety margins for isolation systems have been established. The test results have shown that properly designed and manufactured isolators for nuclear reactor applications can sustain levels of loading beyond any possible seismic input and demonstrate that failure of an isolation system cannot occur before failure of the isolated structure. Thus, the use of isolation can only have beneficial contributions to the protection of nuclear facilities, internal piping, and equipment. The presentation will review the latest developments in the implementation of base isolation and describe the results of the test program for its application to nuclear facilities. (author)

  4. Response of Seismically Isolated Steel Frame Buildings with Sustainable Lead-Rubber Bearing (LRB Isolator Devices Subjected to Near-Fault (NF Ground Motions

    Directory of Open Access Journals (Sweden)

    Jong Wan Hu

    2014-12-01

    Full Text Available Base isolation has been used as one of the most wildly accepted seismic protection systems that should substantially dissociate a superstructure from its substructure resting on a shaking ground, thereby sustainably preserving entire structures against earthquake forces as well as inside non-structural integrities. Base isolation devices can operate very effectively against near-fault (NF ground motions with large velocity pulses and permanent ground displacements. In this study, comparative advantages for using lead-rubber bearing (LRB isolation systems are mainly investigated by performing nonlinear dynamic time-history analyses with NF ground motions. The seismic responses with respects to base shears and inter-story drifts are compared according to the installation of LRB isolation systems in the frame building. The main function of the base LRB isolator is to extend the period of structural vibration by increasing lateral flexibility in the frame structure, and thus ground accelerations transferred into the superstructure can dramatically decrease. Therefore, these base isolation systems are able to achieve notable mitigation in the base shear. In addition, they make a significant contribution to reducing inter-story drifts distributed over the upper floors. Finally, the fact that seismic performance can be improved by installing isolation devices in the frame structure is emphasized herein through the results of nonlinear dynamic analyses.

  5. Seismic Analysis of a Viscoelastic Damping Isolator

    Directory of Open Access Journals (Sweden)

    Bo-Wun Huang

    2015-01-01

    Full Text Available Seismic prevention issues are discussed much more seriously around the world after Fukushima earthquake, Japan, April 2011, especially for those countries which are near the earthquake zone. Approximately 1.8×1012 kilograms of explosive energy will be released from a magnitude 9 earthquake. It destroys most of the unprotected infrastructure within several tens of miles in diameter from the epicenter. People can feel the earthquake even if living hundreds of miles away. This study is a seismic simulation analysis for an innovated and improved design of viscoelastic damping isolator, which can be more effectively applied to earthquake prevention and damage reduction of high-rise buildings, roads, bridges, power generation facilities, and so forth, from earthquake disaster. Solidworks graphic software is used to draw the 3D geometric model of the viscoelastic isolator. The dynamic behavior of the viscoelastic isolator through shock impact of specific earthquake loading, recorded by a seismometer, is obtained via ANSYS finite element package. The amplitude of the isolator is quickly reduced by the viscoelastic material in the device and is shown in a time response diagram. The result of this analysis can be a crucial reference when improving the design of a seismic isolator.

  6. Status report on activities on seismic isolation in Italy

    International Nuclear Information System (INIS)

    Martelli, A.; Bettinali, F.

    1992-01-01

    The development of seismic isolation and its application to structures other than bridges were started in Italy in 1988. Considerable efforts are being devoted to this technique, both because it can already be widely used in civil buildings (where it is particularly attractive for constructions that are critical for emergency and disaster planning), and due to the very promising perspectives for application to the industrial plants. In particular, ENEA is also quite interested in verifying the applicability of seismic isolation to the high risk plants, including the innovative nuclear reactors. The correct development of seismic isolation, for a future wide use in all the domains of interest - including high risk and other industrial plants - requires that a sufficient number of applications to civil buildings is -undertaken, so as to improve the knowledge on the design and behaviour of isolated structures. It also requires seismic monitoring of isolated constructions. This is the reason why all the ongoing studies in Italy - including those of ENEA and ENEL - are based at present on applications to civil buildings. To the aforesaid aims, R and D work is also needed: such a work, together with the experience acquired on actual isolated buildings, is essential to set up adequate design rules. On the other hand, development of design rules must be carried out in parallel, in order to determine the features of the necessary research activities. Until now, our development work has been focussed on the high damping steel-laminated rubber bearings, which have been adopted for most isolated buildings in Italy. It consists of: [a] the set-up of proposals for design rules and guidelines; [b] experiments on bearing materials, individual bearings, isolated structure mock-ups, and actual isolated buildings; [c] development and validation of simplified and detailed numerical models of bearings and structures. Furthermore, support is being provided to the designers of isolated

  7. Seismic response time history analyses for KALIMER building with a horizontal and vertical seismic isolation

    International Nuclear Information System (INIS)

    Lee, J. H.; Yoo, B.; Koo, K. H.

    2001-01-01

    The seismic response time history analyses for the lumped mass models of KALIMER reactor building with a horizontal and vertical seismic isolation are performed for Artificial Time History and Kobe earthquake. The vertical amplification by the horizontal isolation is reduced by a vertical isolation for both earthquakes. The 3% viscous damping and the vertical isolation frequency of 1.5Hz gives a reduced vertical response compared to the fixed base condition at reactor support, and the 9% viscous damping to Kobe earthquake is required to get an equivalent vertical response with a fixed base condition

  8. Seismic response time history analyses for KALIMER building with a horizontal and vertical seismic isolation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. H.; Yoo, B.; Koo, K. H. [KAERI, Taejon (Korea, Republic of)

    2001-05-01

    The seismic response time history analyses for the lumped mass models of KALIMER reactor building with a horizontal and vertical seismic isolation are performed for Artificial Time History and Kobe earthquake. The vertical amplification by the horizontal isolation is reduced by a vertical isolation for both earthquakes. The 3% viscous damping and the vertical isolation frequency of 1.5Hz gives a reduced vertical response compared to the fixed base condition at reactor support, and the 9% viscous damping to Kobe earthquake is required to get an equivalent vertical response with a fixed base condition.

  9. Seismic isolation development for the US advanced liquid-metal reactor program

    International Nuclear Information System (INIS)

    Gluekler, E.L.; Bigelow, C.C.; DeVita, V.; Kelly, J.M.; Seidensticker, R.W.; Tajirian, F.F.

    1989-01-01

    GE Nuclear Energy, in association with a US Industrial Team and support from the US National Laboratories and Universities, is developing a modular liquid-metal reactor concept for the US Department of Energy (DOE). The objective of this development is to provide, by the turn of the century, a reactor concept with optimized passive safety features that is economically competitive with other domestic energy sources, licensable, and ready for commercial deployment. One of the unique features of the concept is the seismic isolation of the reactor modules which decouples the reactor and their safety systems from potentially damaging ground motions and significantly enhances the structural resistance to high energy, as well as long duration earthquakes. Seismic isolation is accomplished with high damping natural rubber bearings. The reactors are located in individual silos below grade level and are supported by the isolator bearings at approximately their center of gravity. This application of seismic isolation is the first for a US nuclear power plant. A development program has been established to assure the full benefits from the utilization of this new approach and to provide adequate system characterization and qualification for licensing certification. The development program is described in this paper and selected results are presented. The initial testing indicated excellent performance of high damping natural rubber bearings

  10. Polynomial friction pendulum isolators (PFPIs) for seismic performance control of benchmark highway bridge

    Science.gov (United States)

    Saha, Arijit; Saha, Purnachandra; Patro, Sanjaya Kumar

    2017-10-01

    The seismic response of a benchmark highway bridge isolated with passive polynomial friction pendulum isolators (PFPIs) is investigated and subjected to six bidirectional ground motion records. The benchmark study is based on a lumped mass finite-element model of the 91/5 highway overcrossing located in Southern California. The PFPI system possesses two important parameters; one is horizontal flexibility and the other is energy absorbing capacity through friction. The evaluation criteria of the benchmark bridge are analyzed considering two parameters, time period of the isolator and coefficient of friction of the isolation surface. The results of the numerical study are compared with those obtained from the traditional friction pendulum system (FPS). Dual design performance of the PFPI system suppressed the displacement and acceleration response of the benchmark highway bridge. The dual design hysteresis loop of the PFPI system is the main advantage over the linear hysteresis loop of the FPS. The numerical result indicates that the seismic performance of the PFPI system is better than that of the traditional FPS isolated system. Further, it is observed that variations of the isolation time period and coefficient of friction of the FPS and PFPI systems have a significant effect on the peak responses of the benchmark highway bridge.

  11. Influence of various parameters on effectiveness of seismic base isolation of nuclear equipment

    International Nuclear Information System (INIS)

    Ebisawa, K.; Kameoka, H.; Takenouchi, I.; Kajiki, S.

    1995-01-01

    Authors developed a methodology and EBISA code for evaluating the applicability and the effectiveness of seismic base isolation of nuclear equipment. In order to investigate the influence of various parameters on the effectiveness of seismic base isolation, a sensitivity analysis was carried out for an emergency transformer with the base isolation devices. It was proved that seismic base isolation of equipment is very effective. This effectiveness can be influenced by the differences of the base isolation devices and the direction of the input seismic wave. (author). 7 refs., 3 figs., 3 tabs

  12. Seismic isolation of nuclear power plants using elastomeric bearings

    Science.gov (United States)

    Kumar, Manish

    Seismic isolation using low damping rubber (LDR) and lead-rubber (LR) bearings is a viable strategy for mitigating the effects of extreme earthquake shaking on safety-related nuclear structures. Although seismic isolation has been deployed in nuclear structures in France and South Africa, it has not seen widespread use because of limited new build nuclear construction in the past 30 years and a lack of guidelines, codes and standards for the analysis, design and construction of isolation systems specific to nuclear structures. The nuclear accident at Fukushima Daiichi in March 2011 has led the nuclear community to consider seismic isolation for new large light water and small modular reactors to withstand the effects of extreme earthquakes. The mechanical properties of LDR and LR bearings are not expected to change substantially in design basis shaking. However, under shaking more intense than design basis, the properties of the lead cores in lead-rubber bearings may degrade due to heating associated with energy dissipation, some bearings in an isolation system may experience net tension, and the compression and tension stiffness may be affected by the horizontal displacement of the isolation system. The effects of intra-earthquake changes in mechanical properties on the response of base-isolated nuclear power plants (NPPs) were investigated using an advanced numerical model of a lead-rubber bearing that has been verified and validated, and implemented in OpenSees and ABAQUS. A series of experiments were conducted at University at Buffalo to characterize the behavior of elastomeric bearings in tension. The test data was used to validate a phenomenological model of an elastomeric bearing in tension. The value of three times the shear modulus of rubber in elastomeric bearing was found to be a reasonable estimate of the cavitation stress of a bearing. The sequence of loading did not change the behavior of an elastomeric bearing under cyclic tension, and there was no

  13. The new 'Angeli di San Giuliano' School: a significant example of seismic isolation

    International Nuclear Information System (INIS)

    Clemente, P.; Buffarini, G.; Dolce, M.; Parducci, A.

    2009-01-01

    The new school in San Giuliano di Puglia has been built with a seismic base isolation system ensuring a safety degree that otherwise could not be obtained with traditional techniques. Due to its complex and irregular shape, the building also gives rise to some considerations about the design in seismic areas. [it

  14. SHAKING TABLE TEST AND EFFECTIVE STRESS ANALYSIS ON SEISMIC PERFORMANCE WITH SEISMIC ISOLATION RUBBER TO THE INTERMEDIATE PART OF PILE FOUNDATION IN LIQUEFACTION

    Science.gov (United States)

    Uno, Kunihiko; Otsuka, Hisanori; Mitou, Masaaki

    The pile foundation is heavily damaged at the boundary division of the ground types, liquefied ground and non-liquefied ground, during an earthquake and there is a possibility of the collapse of the piles. In this study, we conduct a shaking table test and effective stress analysis of the influence of soil liquefaction and the seismic inertial force exerted on the pile foundation. When the intermediate part of the pile, there is at the boundary division, is subjected to section force, this part increases in size as compared to the pile head in certain instances. Further, we develop a seismic resistance method for a pile foundation in liquefaction using seismic isolation rubber and it is shown the middle part seismic isolation system is very effective.

  15. Application of seismic isolation technology to demonstration FBR

    International Nuclear Information System (INIS)

    Kato, Muneaki

    1994-01-01

    The Japanese demonstration FBR is loop type, the intermediate heat exchanger is installed between the reactor and the steam generator, and up to the intermediate heat exchanger is in the containment vessel, which is designed as a reinforced concrete vessel. In FBRs, the optimization in aseismatic design and high temperature structural design is important. The reactor building is buried in rock bed up to its center of gravity to minimize the amplifying earthquake response. If the seismic isolation structure for a reactor is realized, cost reduction can be expected by the rationalization of machinery and equipment and the standardization of buildings and facilities. The research on FBR seismic isolation design has been carried out by Central Research Institute of Electric Power Industry and Japan Atomic Power Co. The concept of FBR seismic isolation design, the basic condition for the design evaluation, the research on safety allowance and the conceptual design analysis are reported. (K.I.)

  16. Non-linear seismic response of base-isolated liquid storage tanks to bi-directional excitation

    International Nuclear Information System (INIS)

    Shrimali, M.K.; Jangid, R.S.

    2002-01-01

    Seismic response of the liquid storage tanks isolated by lead-rubber bearings is investigated for bi-directional earthquake excitation (i.e. two horizontal components). The biaxial force-deformation behaviour of the bearings is considered as bi-linear modelled by coupled non-linear differential equations. The continuous liquid mass of the tank is modelled as lumped masses known as convective mass, impulsive mass and rigid mass. The corresponding stiffness associated with these lumped masses has been worked out depending upon the properties of the tank wall and liquid mass. Since the force-deformation behaviour of the bearings is non-linear, as a result, the seismic response is obtained by the Newmark's step-by-step method. The seismic responses of two types of the isolated tanks (i.e. slender and broad) are investigated under several recorded earthquake ground to study the effects of bi-directional interaction. Further, a parametric study is also carried out to study the effects of important system parameters on the effectiveness of seismic isolation for liquid storage tanks. The various important parameters considered are: (i) the period of isolation, (ii) the damping of isolation bearings and (iii) the yield strength level of the bearings. It has been observed that the seismic response of isolated tank is found to be insensitive to interaction effect of the bearing forces. Further, there exists an optimum value of isolation damping for which the base shear in the tank attains the minimum value. Therefore, increasing the bearing damping beyond a certain value may decrease the bearing and sloshing displacements but it may increase the base shear

  17. Design response spectra-compliant real and synthetic GMS for seismic analysis of seismically isolated nuclear reactor containment building

    Directory of Open Access Journals (Sweden)

    Ahmer Ali

    2017-06-01

    Full Text Available Due to the severe impacts of recent earthquakes, the use of seismic isolation is paramount for the safety of nuclear structures. The diversity observed in seismic events demands ongoing research to analyze the devastating attributes involved, and hence to enhance the sustainability of base-isolated nuclear power plants. This study reports the seismic performance of a seismically-isolated nuclear reactor containment building (NRCB under strong short-period ground motions (SPGMs and long-period ground motions (LPGMs. The United States Nuclear Regulatory Commission-based design response spectrum for the seismic design of nuclear power plants is stipulated as the reference spectrum for ground motion selection. Within the period range(s of interest, the spectral matching of selected records with the target spectrum is ensured using the spectral-compatibility approach. NRC-compliant SPGMs and LPGMs from the mega-thrust Tohoku earthquake are used to obtain the structural response of the base-isolated NRCB. To account for the lack of earthquakes in low-to-moderate seismicity zones and the gap in the artificial synthesis of long-period records, wavelet-decomposition based autoregressive moving average modeling for artificial generation of real ground motions is performed. Based on analysis results from real and simulated SPGMs versus LPGMs, the performance of NRCBs is discussed with suggestions for future research and seismic provisions.

  18. Design response spectra-compliant real and synthetic GMS for seismic analysis of seismically isolated nuclear reactor containment building

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Ahmer [ENVICO Consultants Co. Ltd., Seoul (Korea, Republic of); Abu-Hayah, Nadin; Kim, Doo Kie [Civil and Environmental Engineering, Kunsan National University, Gunsan (Korea, Republic of); Cho, Sung Gook [Innose Tech Co., Ltd., Incheon (Korea, Republic of)

    2017-06-15

    Due to the severe impacts of recent earthquakes, the use of seismic isolation is paramount for the safety of nuclear structures. The diversity observed in seismic events demands ongoing research to analyze the devastating attributes involved, and hence to enhance the sustainability of base-isolated nuclear power plants. This study reports the seismic performance of a seismically-isolated nuclear reactor containment building (NRCB) under strong short-period ground motions (SPGMs) and long-period ground motions (LPGMs). The United States Nuclear Regulatory Commission-based design response spectrum for the seismic design of nuclear power plants is stipulated as the reference spectrum for ground motion selection. Within the period range(s) of interest, the spectral matching of selected records with the target spectrum is ensured using the spectral-compatibility approach. NRC-compliant SPGMs and LPGMs from the mega-thrust Tohoku earthquake are used to obtain the structural response of the base-isolated NRCB. To account for the lack of earthquakes in low-to-moderate seismicity zones and the gap in the artificial synthesis of long-period records, wavelet-decomposition based autoregressive moving average modeling for artificial generation of real ground motions is performed. Based on analysis results from real and simulated SPGMs versus LPGMs, the performance of NRCBs is discussed with suggestions for future research and seismic provisions.

  19. Earthquake Protection of Existing Structures with Limited Seismic Joint: Base Isolation with Supplemental Damping versus Rotational Inertia

    Directory of Open Access Journals (Sweden)

    Dario De Domenico

    2018-01-01

    Full Text Available Existing civil engineering structures having strategic importance, such as hospitals, fire stations, and power plants, often do not comply with seismic standards in force today, as they were designed and built based on past structural guidelines. On the other hand, due to their special importance, structural integrity of such buildings is of vital importance during and after earthquakes, which puts demands on strategies for their seismic protection. In this regard, seismic base isolation has been widely employed; however, the existing limited seismic joint between adjacent buildings may hamper this application because of the large displacements concentrated at the isolation floor. In this paper, we compare two possible remedies: the former is to provide supplemental damping in conventional base isolation systems and the latter consists in a combination of base isolation with supplemental rotational inertia. For the second strategy, a mechanical device, called inerter, is arranged in series with spring and dashpot elements to form the so-called tuned-mass-damper-inerter (TMDI directly connected to an isolation floor. Several advantages of this second system as compared to the first one are outlined, especially with regard to the limitation of floor accelerations and interstory drifts, which may be an issue for nonstructural elements and equipment, in addition to disturbing occupants. Once the optimal design of the TMDI is established, possible implementation of this system into existing structures is discussed.

  20. Some progress on seismic isolation technology in building structure in China

    International Nuclear Information System (INIS)

    Lin Luan

    1992-01-01

    Seismic isolation technology has been considerably developed in China. Appropriate codes and design manuals have ben used. There is a plan of developing Fast reactor technology in China. The conceptual design for a fast experimental reactor was completed. Investigation of seismic isolation technology for fast reactor has started

  1. The study and analysis of point-to-point vibration isolation and its utility to seismic base isolator

    International Nuclear Information System (INIS)

    Mehboob, M.; Qureshi, A.S.

    2001-01-01

    This paper presents systematic approach to regarding the piece wise vibration isolation generally termed as point-to-point vibration isolation system, and its broad spectrum-utilities to an economic seismic base isolation. Transfer of curves for coulomb damped i.e. softening damper flexible mountings are presented and the utility has been proved equally good for both rigidly and elastically coupled damping. It is clearly shown that the very closest solutions are easily obtainable for both slipping and sticking nature of phases of the motion. This eliminates the conventional and conceptual approximations based on the linearization of the damping. This new concept will not endanger-super-structure if mounted on such isolation systems. (author)

  2. Use of a viscoelastic model for the seismic response of base-isolated buildings

    International Nuclear Information System (INIS)

    Uras, R.A.

    1994-01-01

    Due to recent developments in elastomer technology, seismic isolation using elastomer bearings is rapidly becoming an acceptable design tool to enhance structural seismic margins and to protect people and equipment from earthquake damage. With proper design of isolators, high-energy seismic input motions are transformed into low-frequency, low energy harmonic motions and the accelerations acting on the isolated building are significantly reduced. Several alternatives exist for the modeling of the isolators. This study is concerned with the use of a viscoelastic model to predict the seismic response of base-isolated buildings. The in-house finite element computer code has been modified to incorporate a viscoelastic spring element, and several simulations are performed. Then, the computed results have been compared with the corresponding observed data recorded at the test facility

  3. Seismic Response and Performance Evaluation of Self-Centering LRB Isolators Installed on the CBF Building under NF Ground Motions

    Directory of Open Access Journals (Sweden)

    Junwon Seo

    2016-01-01

    Full Text Available This paper mainly treats the seismic behavior of lead-rubber bearing (LRB isolation systems with superealstic shape memory alloy (SMA bending bars functioning as damper and self-centering devices. The conventional LRB isolators that are usually installed at the column bases supply extra flexibility to the centrically braced frame (CBF building with a view to elongate its vibration period, and thus make a contribution to mitigating seismic acceleration transferred from ground to structure. However, these base isolation systems are somehow susceptible to shear failure due to the lack of lateral resistance. In the construction site, they have been used to be integrated with displacement control dampers additionally withstanding lateral seismic forces. For this motivation, LRB isolation systems equipped with superelastic SMA bending bars, which possess not only excellent energy dissipation but also outstanding recentering capability, are proposed in this study. These reinforced and recentering LRB base isolators are modeled as nonlinear component springs, and then assigned into the bases of 2D frame models used for numerical simulation. Their seismic performance and capacity in the base-isolated frame building can be evaluated through nonlinear dynamic analyses conducted with historic ground motion data. After comparative study with analyses results, it is clearly shown that 2D frame models with proposed LRB isolators generally have smaller maximum displacements than those with conventional LRB isolators. Furthermore, the LRB isolation systems with superelastic SMA bending bars effectively reduce residual displacement as compared to those with steel bending bars because they provide more flexibility and recentering force to the entire building structure.

  4. Improved Simplified Methods for Effective Seismic Analysis and Design of Isolated and Damped Bridges in Western and Eastern North America

    Science.gov (United States)

    Koval, Viacheslav

    The seismic design provisions of the CSA-S6 Canadian Highway Bridge Design Code and the AASHTO LRFD Seismic Bridge Design Specifications have been developed primarily based on historical earthquake events that have occurred along the west coast of North America. For the design of seismic isolation systems, these codes include simplified analysis and design methods. The appropriateness and range of application of these methods are investigated through extensive parametric nonlinear time history analyses in this thesis. It was found that there is a need to adjust existing design guidelines to better capture the expected nonlinear response of isolated bridges. For isolated bridges located in eastern North America, new damping coefficients are proposed. The applicability limits of the code-based simplified methods have been redefined to ensure that the modified method will lead to conservative results and that a wider range of seismically isolated bridges can be covered by this method. The possibility of further improving current simplified code methods was also examined. By transforming the quantity of allocated energy into a displacement contribution, an idealized analytical solution is proposed as a new simplified design method. This method realistically reflects the effects of ground-motion and system design parameters, including the effects of a drifted oscillation center. The proposed method is therefore more appropriate than current existing simplified methods and can be applicable to isolation systems exhibiting a wider range of properties. A multi-level-hazard performance matrix has been adopted by different seismic provisions worldwide and will be incorporated into the new edition of the Canadian CSA-S6-14 Bridge Design code. However, the combined effect and optimal use of isolation and supplemental damping devices in bridges have not been fully exploited yet to achieve enhanced performance under different levels of seismic hazard. A novel Dual-Level Seismic

  5. Characterization and performance evaluation of a vertical seismic isolator using link and crank mechanism

    International Nuclear Information System (INIS)

    Tsujiuchi, N; Ito, A; Sekiya, Y; Nan, C; Yasuda, M

    2016-01-01

    In recent years, various seismic isolators have been developed to prevent earthquake damage to valuable art and other rare objects. Many seismic isolators only defend against horizontal motions, which are the usual cause of falling objects. However, the development of a seismic isolator designed for vertical vibration is necessary since such great vertical vibration earthquakes as the 2004 Niigata Prefecture Chuetsu Earthquake have occurred, and their increased height characteristics are undesirable. In this study, we developed a vertical seismic isolator that can be installed at a lower height and can support loads using a horizontal spring without requiring a vertical spring. It has a mechanism that combines links and cranks. The dynamic model was proposed and the frequency characteristics were simulated when the sine waves were the input. Shaking tests were also performed. The experimental value of the natural frequency was 0.57 Hz, and the theoretical values of the frequency characteristics were close to the experimental values. In addition, we verified this vertical seismic isolator's performance through shaking tests and simulation for typical seismic waves in Japan. We verified the seismic isolation's performance from the experimental result because the average reduction rate of the acceleration was 0.21. (paper)

  6. Adapting standards to the site. Example of Seismic Base Isolation

    International Nuclear Information System (INIS)

    Viallet, Emmanuel

    2014-01-01

    Emmanuel Viallet, Civil Design Manager at EDF engineering center SEPTEN, concluded the morning's lectures with a presentation on how to adapt a standard design to site characteristics. He presented the example of the seismic isolation of the Cruas NPP for which the standard 900 MW design was indeed built on 'anti-seismic pads' to withstand local seismic load

  7. Base Isolation for Seismic Retrofitting of a Multiple Building Structure: Evaluation of Equivalent Linearization Method

    Directory of Open Access Journals (Sweden)

    Massimiliano Ferraioli

    2016-01-01

    Full Text Available Although the most commonly used isolation systems exhibit nonlinear inelastic behaviour, the equivalent linear elastic analysis is commonly used in the design and assessment of seismic-isolated structures. The paper investigates if the linear elastic model is suitable for the analysis of a seismically isolated multiple building structure. To this aim, its computed responses were compared with those calculated by nonlinear dynamic analysis. A common base isolation plane connects the isolation bearings supporting the adjacent structures. In this situation, the conventional equivalent linear elastic analysis may have some problems of accuracy because this method is calibrated on single base-isolated structures. Moreover, the torsional characteristics of the combined system are significantly different from those of separate isolated buildings. A number of numerical simulations and parametric studies under earthquake excitations were performed. The accuracy of the dynamic response obtained by the equivalent linear elastic model was calculated by the magnitude of the error with respect to the corresponding response considering the nonlinear behaviour of the isolation system. The maximum displacements at the isolation level, the maximum interstorey drifts, and the peak absolute acceleration were selected as the most important response measures. The influence of mass eccentricity, torsion, and high-modes effects was finally investigated.

  8. Base Isolation for Seismic Retrofitting of a Multiple Building Structure: Design, Construction, and Assessment

    Directory of Open Access Journals (Sweden)

    Massimiliano Ferraioli

    2017-01-01

    Full Text Available The paper deals with the seismic retrofit of a multiple building structure belonging to the Hospital Centre of Avellino (Italy. At first, the paper presents the preliminary investigations, the in situ measurements and laboratory tests, and the seismic assessment of the existing fixed-base structures. Having studied different strategies, base isolation proved to be the more appropriate, also for the possibility offered by the geometry of the building to easily create an isolation interface at the ground level. The paper presents the design project, the construction process, and the details of the isolation intervention. Some specific issues of base isolation for seismic retrofitting of multiple building structures were lightened. Finally, the seismic assessment of the base-isolated building was carried out. The seismic response was evaluated through nonlinear time-history analysis, using the well-known Bouc-Wen model as the constitutive law of the isolation bearings. For reliable dynamic analyses, a suite of natural accelerograms compatible with acceleration spectra of Italian Code was first selected and then applied along both horizontal directions. The results were finally used to address some of the critical issues of the seismic response of the base-isolated multiple building structure: accidental torsional effects and potential poundings during strong earthquakes.

  9. 3-D seismic response of a base-isolated fast reactor

    International Nuclear Information System (INIS)

    Kitamura, S.; Morishita, M.; Iwata, K.

    1992-01-01

    This paper describes a 3-D response analysis methodology development and its application to a base-isolated fast breeder reactor (FBR) plant. At first, studies on application of a base-isolation system to an FBR plant were performed to identify a range of appropriate characteristics of the system. A response analysis method was developed based on mathematical models for the restoring force characteristics of several types of the systems. A series of shaking table tests using a small scale model was carried out to verify the analysis method. A good agreement was seen between the test and analysis results in terms of the horizontal and vertical responses. Parametric studies were then made to assess the effects of various factors which might be influential to the seismic response of the system. Moreover, the method was applied to evaluate three-dimensional response of the base-isolated FBR. (author)

  10. Hybrid Control System for Greater Resilience Using Multiple Isolation and Building Connection

    Directory of Open Access Journals (Sweden)

    Masaki Taniguchi

    2016-10-01

    Full Text Available An innovative hybrid control building system of multiple isolation and connection is proposed and investigated using both time-history and input energy responses for various types of ground motions together with transfer functions. It is concerned that the seismic displacement response at the base-isolation layer of the existing base-isolated buildings may extremely increase under long-period and long-duration ground motions which are getting great attention recently. In order to enhance the seismic performance of those base-isolated buildings, a novel hybrid system of multiple isolation and building-connection is proposed and compared with other structural systems such as an independent multiple isolation system, a hybrid system of base-isolation and building-connection. Furthermore, the robustness of seismic responses of the proposed hybrid system for various types of ground motion is discussed through the comparison of various structural systems including non-hybrid systems. Finally the optimal connection damper location is investigated using a sensitivity-type optimization approach.

  11. Horizontal and vertical seismic isolation of a nuclear power plant

    International Nuclear Information System (INIS)

    Ikonomou, A.S.

    1983-01-01

    This paper presents a study for the horizontal and vertical seismic isolation of a nuclear power plant with a base isolation system, developed by the author, called the Alexisismon. This system -- which comprises different schemes for horizontal or vertical or both horizontal and vertical isolation -- is a linear system based on the principle of separation of functions. That is, horizontal and vertical isolation are realized through different components and act independently from each other. As far as horizontal isolation is concerned, the role of transmitting vertical loads is uncoupled from the role of inducing horizontal restoring forces so that both functions can be performed without instability. It is possible either to provide both horizontal and vertical isolation to the whole nuclear plant or to isolate the whole plant horizontally and to provide vertical isolation to sensitive and costly equipment only. When the fundamental period of the plant or equipment is 2 seconds and when the vertical displacements are of the order of + or - 20 inches, the structure or equipment are protected against earthquakes up to 1.10 and 1.30 g for actual and 0.60 and 1.50 g for artificial accelerograms. In both cases all the isolation elements behave elastically up to these acceleration limits as well as the superstructure and equipment

  12. Isolation of I and C cabinets against shocks, vibrations and seismic movements

    International Nuclear Information System (INIS)

    Ciocan, George; Zamfir, Madalina; Florea, Ioana; Androne, Marian; Serban, Viorel; Prisecaru, Ilie

    2007-01-01

    This paper presents SERB-CITON solution to isolate the I and C cabinets against shocks, vibrations and seismic movements. The seismic qualification is required because the I and C components installed inside the cabinets are generally sensitive to shocks, vibrations and seismic movements and many times, the manufacturer does not guarantee them for a level of shocks, vibrations and seismic movements higher and equal to the level corresponding to the location where they are installed. The document also presents the solution to isolate such I and C cabinets associated to the hydrogen sulfide compressors located in ROMAG-PROD Drobeta Turnu-Severin. (authors)

  13. Recent progress and application on seismic isolation energy dissipation and control for structures in China

    Science.gov (United States)

    Zhou, Fulin; Tan, Ping

    2018-01-01

    China is a country where 100% of the territory is located in a seismic zone. Most of the strong earthquakes are over prediction. Most fatalities are caused by structural collapse. Earthquakes not only cause severe damage to structures, but can also damage non-structural elements on and inside of facilities. This can halt city life, and disrupt hospitals, airports, bridges, power plants, and other infrastructure. Designers need to use new techniques to protect structures and facilities inside. Isolation, energy dissipation and, control systems are more and more widely used in recent years in China. Currently, there are nearly 6,500 structures with isolation and about 3,000 structures with passive energy dissipation or hybrid control in China. The mitigation techniques are applied to structures like residential buildings, large or complex structures, bridges, underwater tunnels, historical or cultural relic sites, and industrial facilities, and are used for retrofitting of existed structures. This paper introduces design rules and some new and innovative devices for seismic isolation, energy dissipation and hybrid control for civil and industrial structures. This paper also discusses the development trends for seismic resistance, seismic isolation, passive and active control techniques for the future in China and in the world.

  14. Seismic qualification of nuclear control board by using base isolation technique

    International Nuclear Information System (INIS)

    Koizumi, T.; Tsujiuchi, N.; Fujita, T.

    1987-01-01

    The purpose is to adopt base isolation technique as a new approach for seismic qualification of nuclear control board. Basic concept of base isolation technique is expressed. Two dimensional linear motion mechanism with pre-tensioned coil springs and some dampers are included in the isolation device. Control board is regarded as a lamped mass system with inertia moment. Fundamental movement of this device and control board is calculated as a non-linear response problems. Fundamental analysis and numerical estimation, experimental investigation has been undertaken using an actual size control board. Sufficient agreement was recognized between experimental results and numerical estimation. (orig./HP)

  15. The Effectiveness of Seismic Isolation System for Nuclear Equipment

    International Nuclear Information System (INIS)

    Kim, Min-Kyu; Choun, Young-Sun; Seo, Jeong-Moon

    2005-04-01

    In this study, the Emergency Diesel Generator and Off-site Transformer were selected for isolation. For the selection of the most suitable base isolation system, the literature review and the numerical analysis were performed. For the decision of the parameter of isolation system, the sensitivity analysis was performed. Finally the conceptual design of each equipment was performed. In case of EDG, the Coil Spring and Viscous Damper system was selected for isolation system and 45% isolation effect was determined. For the OST, the FPS was selected and 69% isolation effect was determined

  16. The Effectiveness of Seismic Isolation System for Nuclear Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min-Kyu; Choun, Young-Sun; Seo, Jeong-Moon

    2005-04-15

    In this study, the Emergency Diesel Generator and Off-site Transformer were selected for isolation. For the selection of the most suitable base isolation system, the literature review and the numerical analysis were performed. For the decision of the parameter of isolation system, the sensitivity analysis was performed. Finally the conceptual design of each equipment was performed. In case of EDG, the Coil Spring and Viscous Damper system was selected for isolation system and 45% isolation effect was determined. For the OST, the FPS was selected and 69% isolation effect was determined.

  17. The numerical computation of seismic fragility of base-isolated Nuclear Power Plants buildings

    International Nuclear Information System (INIS)

    Perotti, Federico; Domaneschi, Marco; De Grandis, Silvia

    2013-01-01

    Highlights: • Seismic fragility of structural components in base isolated NPP is computed. • Dynamic integration, Response Surface, FORM and Monte Carlo Simulation are adopted. • Refined approach for modeling the non-linearities behavior of isolators is proposed. • Beyond-design conditions are addressed. • The preliminary design of the isolated IRIS is the application of the procedure. -- Abstract: The research work here described is devoted to the development of a numerical procedure for the computation of seismic fragilities for equipment and structural components in Nuclear Power Plants; in particular, reference is made, in the present paper, to the case of isolated buildings. The proposed procedure for fragility computation makes use of the Response Surface Methodology to model the influence of the random variables on the dynamic response. To account for stochastic loading, the latter is computed by means of a simulation procedure. Given the Response Surface, the Monte Carlo method is used to compute the failure probability. The procedure is here applied to the preliminary design of the Nuclear Power Plant reactor building within the International Reactor Innovative and Secure international project; the building is equipped with a base isolation system based on the introduction of High Damping Rubber Bearing elements showing a markedly non linear mechanical behavior. The fragility analysis is performed assuming that the isolation devices become the critical elements in terms of seismic risk and that, once base-isolation is introduced, the dynamic behavior of the building can be captured by low-dimensional numerical models

  18. Large scale phononic metamaterials for seismic isolation

    International Nuclear Information System (INIS)

    Aravantinos-Zafiris, N.; Sigalas, M. M.

    2015-01-01

    In this work, we numerically examine structures that could be characterized as large scale phononic metamaterials. These novel structures could have band gaps in the frequency spectrum of seismic waves when their dimensions are chosen appropriately, thus raising the belief that they could be serious candidates for seismic isolation structures. Different and easy to fabricate structures were examined made from construction materials such as concrete and steel. The well-known finite difference time domain method is used in our calculations in order to calculate the band structures of the proposed metamaterials

  19. Seismic Isolation of Liquefied Natural Gas Tanks: a Compartive Assessment

    OpenAIRE

    Marti Rodriguez, Joaquin; Crespo Álvarez, María José; Martinez Cutillas, Francisco J.

    2010-01-01

    In severe seismic environments, tanks for storage of liquefied natural gas may benefit from seismic isolation. As the design accelerations increase, the inner tank undergoes progressively greater demands and may suffer from corner uplift, elephant’s foot buckling, gross sliding, shell thickness requirements beyond what can be reliably welded and, eventually, global uplift. Some of these problems cause extra costs while others make the construction impossible. The seismic environments at which...

  20. Development of a structural model for the nonlinear shear deformation behavior of a seismic isolator

    International Nuclear Information System (INIS)

    Lee, Jae Han; Koo, Gyeong Hoi; Yoo, Bong

    2002-02-01

    The seismic excitation test results of an isolated test structure for artificial time history excitation are summarized for structure models of the isolated structure and isolation bearing. To simulate the response characteristic of isolated structure, shear hysteresis curves of isolators are analyzed. A simple analysis model is developed representing the actual dynamic behaviors of the test model, and the seismic responses using the simple model of the isolated structure and structure models, which are developed such as linear and bilinear models for isolators, are performed and compared with those of the seismic tests. The developed bilinear model is well applicable only to large shear strain area of LLRB

  1. Life-cycle cost assessment of seismically base-isolated structures in nuclear power plants

    International Nuclear Information System (INIS)

    Wang, Hao; Weng, Dagen; Lu, Xilin; Lu, Liang

    2013-01-01

    Highlights: • The life-cycle cost of seismic base-isolated nuclear power plants is modeled. • The change law of life-cycle cost with seismic fortification intensity is studied. • The initial cost of laminated lead rubber bearings can be expressed as the function of volume. • The initial cost of a damper can be expressed as the function of its maximum displacement and tonnage. • The use of base-isolation can greatly reduce the expected damage cost, which leads to the reduction of the life-cycle cost. -- Abstract: Evaluation of seismically base-isolated structural life-cycle cost is the key problem in performance based seismic design. A method is being introduced to address the life-cycle cost of base-isolated reinforced concrete structures in nuclear power plants. Each composition of life-cycle cost is analyzed including the initial construction cost, the isolators cost and the excepted damage cost over life-cycle of the structure. The concept of seismic intensity is being used to estimate the expected damage cost, greatly simplifying the calculation. Moreover, French Cruas nuclear power plant is employed as an example to assess its life-cycle cost, compared to the cost of non-isolated plant at the same time. The results show that the proposed method is efficient and the expected damage cost is enormously reduced because of the application of isolators, which leads to the reduction of the life-cycle cost of nuclear power plants

  2. Recent results of a seismically isolated optical table prototype designed for advanced LIGO

    International Nuclear Information System (INIS)

    Sannibale, V; Abbott, B; Boschi, V; Coyne, D; DeSalvo, R; Aso, Y; Marka, S; Ottaway, D; Stochino, A

    2008-01-01

    The Horizontal Access Module Seismic Attenuation System (HAM-SAS) is a mechanical device expressly designed to isolate a multipurpose optical table and fit in the tight space of the LIGO HAM Ultra-High-Vacuum chamber. Seismic attenuation in the detectors' sensitivity frequency band is achieved with state of the art passive mechanical attenuators. These devices should provide an attenuation factor of about 70dB above 10Hz at the suspension point of the Advanced LIGO triple pendulum suspension. Automatic control techniques are used to position the optical table and damp rigid body modes. Here, we report the main results obtained from the full scale prototype installed at the MIT LIGO Advanced System Test Interferometer (LASTI) facility. Seismic attenuation performance, control strategies, improvements and limitations are also discussed

  3. Seismic isolation of buildings on two dimensional phononic crystal foundation

    Science.gov (United States)

    Han, Lin; Li, Xiao-mei; Zhang, Yan

    2017-11-01

    In order to realize the seismic isolation of buildings, we establish the two dimensional phononic crystal (PC) foundation which has the cell with the size close to the regular concrete test specimens, and is composed of the concrete base, rubber coating and lead cylindrical core. We study the in-plane band gap (BG) characteristics in it, through the analysis of the frequency dispersion relation and frequency response result. To lower the start BG frequency to the seismic frequency range, we also study the influences of material parameters (the elastic modulus of coating and density of cylindrical core) and geometry parameters (the thickness of coating, radius of cylindrical core and lattice constant) on BG ranges. The study could help to design the PC foundation for seismic isolation of building.

  4. D.E.M.T. Experimental and analytical studies on seismic isolation

    International Nuclear Information System (INIS)

    Gantenbein, F.; Buland, P.

    1989-01-01

    The various studies which have been performed in C.E.A./D.E.M.T. will be reviewed in the paper. They are experimental or theoretical and related to the overall behavior of isolated structures. Among the experimental work one can notice: - the seismic tests on a shaking table of a concrete cylinder isolated by sliding neoprene pads, - the vibrational tests on the reaction mass of TAMARIS seismic facility. The analytical work consists of dynamic calculation method development: - for the soil structure interaction in case of pads interposed between an upper raft and pedestals; - for the time history calculation of sliding structures; - for fluid structure interaction (coupling of fluid and structure motion or sloshing modes). Finally comments will be given on the seismic isolation consequencies for the analysis of F.B.R. vessels: the modes can no more be considered independent (SRSS method leads to important errors), the sloshing increases

  5. Development of three dimensional seismic isolation device with laminated rubber bearing and rolling seal type air spring

    International Nuclear Information System (INIS)

    Okada, Yasuo; Suhara, Junji; Tamura, Tadashi; Ohta, Kazuya; Moro, Satoshi

    2003-01-01

    Three dimensional (3D) seismic isolation device has been developed to use for the base isolation system of the heavy building like a nuclear reactor building. The developed device is the 3D seismic isolation device that consists of the laminated rubber baring as a horizontal isolation device and the rolling seal type air spring as the vertical isolation device in series. In this research, the 3D seismic isolation device reduction model whose scale is 1/10 is made and the workability of the device by the horizontal and vertical dynamic load is examined. Two experiment parameters are considered. One is the case that the structure of the part that the horizontal load and the vertical load contact is pin condition and the other is the case of the roller condition. As a result of the examination, the workability of the vertical direction is confirmed when the horizontal load acts. The pressure resistant ability test for the air spring is performed by the monotonic pressurization. As the result, it is confirmed that pressure resistant ability improved by restricting the side deformation of the air spring and that the material of the existing air spring can withstand high pressure use sufficiently. As the result, it is confirmed that the developed 3D seismic isolation device is applicable to the actual plant. This study was performed under the sponsorship of the Ministry of Economy, Trade and Industry of Japan. (author)

  6. Lessons learned from the 2016 Kumamoto earthquake: Building damages and behavior of seismically isolated buildings

    Science.gov (United States)

    Morita, Keiko; Takayama, Mineo

    2017-10-01

    Powerful earthquakes stuck Kumamoto and Oita Prefectures in Kyushu, Japan. It began with the Magnitude 6.5 foreshock at 21:26 JST 14 April, followed by the Magnitude 7.3 mainshock at 1:25 JST 16 April, 2016. The sequence earthquakes also involved more than 1700 perceptible earthquakes as of 13 June. The entire sequence was named the 2016 Kumamoto earthquake by the Japan Meteorological Agency. Thousands of buildings and many roads were damaged, and landslides occurred. The Japanese building standard law is revised in 1981. Structural damages were concentrated on buildings constructed prior to 1981. The area of Mashiki and Southern Aso were most badly affected, especially wooden houses extremely damaged. In Japan, Prof. Hideyuki Tada (title at the time) undertook research on laminated rubber bearings in 1978, and put it into practical use in 1981. The single family house at Yachiyodai, Chiba Prefecture is completed in 1983, it's the first seismically isolated building which is installed laminated rubber bearings in Japan. Afterward, this system is gradually adopted to mainly office buildings, like a research laboratory, a hospital, a computer center and other offices. In the 1994 Northridge earthquake, the 1995 Kobe earthquake and 2011 Tohoku earthquake, seismically isolated buildings improve these good performances, and recently number of the buildings have increased, mainly high risk area of earthquakes. Many people believed that Kumamoto was a low risk area. But there were 24 seismically isolated buildings in Kumamoto Prefecture at the time. The seismically isolated buildings indicated excellent performances during the earthquakes. They protected people, buildings and other important facilities from damages caused by the earthquake. The purpose of this paper is to discuss lessons learned from the 2016 Kumamoto earthquake and behavior of seismically isolated buildings in the earthquake.

  7. Technology transfer package on seismic base isolation - Volume II

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-14

    This Technology Transfer Package provides some detailed information for the U.S. Department of Energy (DOE) and its contractors about seismic base isolation. Intended users of this three-volume package are DOE Design and Safety Engineers as well as DOE Facility Managers who are responsible for reducing the effects of natural phenomena hazards (NPH), specifically earthquakes, on their facilities. The package was developed as part of DOE's efforts to study and implement techniques for protecting lives and property from the effects of natural phenomena and to support the International Decade for Natural Disaster Reduction. Volume II contains the proceedings for the Short Course on Seismic Base Isolation held in Berkeley, California, August 10-14, 1992.

  8. Seismic isolation of nuclear power plants - EDF's philosophy

    International Nuclear Information System (INIS)

    Coladant, C.

    1989-01-01

    The elastomer bearing pads used since 1963 as supports for prestressed concrete pressure vessels (PCPVs) was quickly chosen by Electricite de France (ED) to improve the capability of nuclear power plants (NPPs) to withstand strong earthquakes and to reduce the seismic loads on structures and equipment. The standardized units for 900 and 1,300 MW(e) pressurized water reactor (PWR) plants have moderate seismic design loads of 0.2 and 0.15 g, respectively. These design loads were exceeded by the site dependent spectra of Cruas (France) and Koeberg (South Africa). To keep the plant design unchanged and to take the advantages of standardization, these units were put on laminated bearings with or without sliding plates. For the future French 1,500 MW(e) fast breeder reactors (FBRs), which are more sensitive to seismic loads, the base isolation is considered by EDF at the beginning of the design, even for low ground motions of 0.1 g. The buildings are placed on laminated bearings while the reactor block is supported by springs and dampers. The isolated plant has identical costs as a conventional design such as SPX1 at Creys-Malville

  9. Proposed Activities to Address Regulatory Gaps and Challenges for Licensing Advanced Reactors Using Seismic Isolation

    International Nuclear Information System (INIS)

    Coleman, Justin Leigh; Kammerer, Annie M.; Whittaker, Andrew S.

    2016-01-01

    Over the last decade, particularly since implementation of the certified design regulatory approaches outlined in 10 CFR 52, 'Licenses, Certifications, and Approvals for Nuclear Power Plants,' interest has been increasing in the use of seismic isolation (SI) technology to support seismic safety in nuclear facilities. In 2009, the United States (U.S.) Nuclear Regulatory Commission (NRC) initiated research activities to develop new guidance targeted at isolated facilities because SI is being considered for nuclear power plants in the U.S. One product of that research, which was developed around a risk-informed regulatory approach, is a draft NRC NUREG series (NUREG/CR) report that investigates and discusses considerations for use of SI in otherwise traditionally founded large light water reactors (LWRs). A coordinated effort led to new provisions for SI of LWRs in the American Society of Civil Engineers standard ASCE/SEI 4-16, 'Seismic Analysis of Safety Related Nuclear Structures.' The risk-informed design philosophy that underpinned development of the technical basis for these documents led to a set of proposed performance objectives and acceptance criteria intended to serve as the foundation for future NRC guidance on the use of SI and related technology. Although the guidance provided in the draft SI NUREG/CR report and ASCE/SEI 4 16 provides a sound basis for further development of nuclear power plant designs incorporating SI, these initial documents were focused on surface-founded or near-surface-founded LWRs and were, necessarily, limited in scope. For example, there is limited information in both the draft NUREG/CR report and ASCE/SEI 4-16 related to nonlinear analysis of soil-structure systems for deeply-embedded reactors, the isolation of components, and the use of vertical isolation systems. Also not included in the draft SI NUREG/CR report are special considerations for licensing of isolated facilities using the certified design

  10. Proposed Activities to Address Regulatory Gaps and Challenges for Licensing Advanced Reactors Using Seismic Isolation

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Justin Leigh [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kammerer, Annie M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Whittaker, Andrew S. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-12-01

    Over the last decade, particularly since implementation of the certified design regulatory approaches outlined in 10 CFR 52, “Licenses, Certifications, and Approvals for Nuclear Power Plants,” interest has been increasing in the use of seismic isolation (SI) technology to support seismic safety in nuclear facilities. In 2009, the United States (U.S.) Nuclear Regulatory Commission (NRC) initiated research activities to develop new guidance targeted at isolated facilities because SI is being considered for nuclear power plants in the U.S. One product of that research, which was developed around a risk-informed regulatory approach, is a draft NRC NUREG series (NUREG/CR) report that investigates and discusses considerations for use of SI in otherwise traditionally founded large light water reactors (LWRs). A coordinated effort led to new provisions for SI of LWRs in the American Society of Civil Engineers standard ASCE/SEI 4-16, “Seismic Analysis of Safety Related Nuclear Structures.” The risk-informed design philosophy that underpinned development of the technical basis for these documents led to a set of proposed performance objectives and acceptance criteria intended to serve as the foundation for future NRC guidance on the use of SI and related technology. Although the guidance provided in the draft SI NUREG/CR report and ASCE/SEI 4 16 provides a sound basis for further development of nuclear power plant designs incorporating SI, these initial documents were focused on surface-founded or near-surface-founded LWRs and were, necessarily, limited in scope. For example, there is limited information in both the draft NUREG/CR report and ASCE/SEI 4-16 related to nonlinear analysis of soil-structure systems for deeply-embedded reactors, the isolation of components, and the use of vertical isolation systems. Also not included in the draft SI NUREG/CR report are special considerations for licensing of isolated facilities using the certified design approach in 10 CFR

  11. First-passage Probability Estimation of an Earthquake Response of Seismically Isolated Containment Buildings

    International Nuclear Information System (INIS)

    Hahm, Dae-Gi; Park, Kwan-Soon; Koh, Hyun-Moo

    2008-01-01

    The awareness of a seismic hazard and risk is being increased rapidly according to the frequent occurrences of the huge earthquakes such as the 2008 Sichuan earthquake which caused about 70,000 confirmed casualties and a 20 billion U.S. dollars economic loss. Since an earthquake load contains various uncertainties naturally, the safety of a structural system under an earthquake excitation has been assessed by probabilistic approaches. In many structural applications for a probabilistic safety assessment, it is often regarded that the failure of a system will occur when the response of the structure firstly crosses the limit barrier within a specified interval of time. The determination of such a failure probability is usually called the 'first-passage problem' and has been extensively studied during the last few decades. However, especially for the structures which show a significant nonlinear dynamic behavior, an effective and accurate method for the estimation of such a failure probability is not fully established yet. In this study, we presented a new approach to evaluate the first-passage probability of an earthquake response of seismically isolated structures. The proposed method is applied to the seismic isolation system for the containment buildings of a nuclear power plant. From the numerical example, we verified that the proposed method shows accurate results with more efficient computational efforts compared to the conventional approaches

  12. USE OF BOUNDING ANALYSES TO ESTIMATE THE PREFORMANCE OF A SEISMICALLY ISOLATED STRUCTURE

    Directory of Open Access Journals (Sweden)

    Gökhan ÖZDEMİR

    2017-03-01

    Full Text Available Current design approach for seismic isolated structures is to perform bounding analyses. These analyses provide an envelope for the response of the seismic isolated structure rather than focusing on the actual performance. In this study, the success of bounding analyses to estimate performance of a seismic isolated structure, in which the isolation is provided by means of lead rubber bearings (LRBs, is evaluated in a comparative manner. For this purpose, nonlinear response history analyses were performed under the effect of bidirectional ground motion excitations. In bounding analyses, non-deteriorating hysteretic representations were used to model the hysteretic behavior of LRBs. On the other hand, to estimate the actual performance of both the superstructure and isolator units, deteriorating hysteretic idealizations were employed. The deterioration in strength of LRBs was defined as a function of temperature rise in the lead core. The analyzed structure is an existing seismically isolated hospital building and analytically modeled in accordance with its reported design properties for both isolation units and superstructure. Results obtained from analyses where LRBs are idealized by both deteriorating and non-deteriorating hysteretic representations are used in the comparisons. The response quantities used in the comparisons are maximum isolator displacement, maximum isolator force, maximum absolute floor acceleration, and maximum relative story displacements. In an average sense, bounding analyses is found to provide conservative estimates for the selected response quantities and fulfills its intended purpose. However, it is revealed that there may be individual cases where bounding analyses fails to provide a safe envelope.

  13. Technology transfer package on seismic base isolation - Volume I

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-14

    This Technology Transfer Package provides some detailed information for the U.S. Department of Energy (DOE) and its contractors about seismic base isolation. Intended users of this three-volume package are DOE Design and Safety Engineers as well as DOE Facility Managers who are responsible for reducing the effects of natural phenomena hazards (NPH), specifically earthquakes, on their facilities. The package was developed as part of DOE's efforts to study and implement techniques for protecting lives and property from the effects of natural phenomena and to support the International Decade for Natural Disaster Reduction. Volume I contains the proceedings of the Workshop on Seismic Base Isolation for Department of Energy Facilities held in Marina Del Rey, California, May 13-15, 1992.

  14. Seismic isolation rubber bearings for nuclear facilities

    International Nuclear Information System (INIS)

    Fujita, Takafumi

    1991-01-01

    This paper describes results of biaxial breaking tests by compression and shear and by tension and shear for seismic isolation rubber bearings with bolted-type connections. The bearings used in the tests were low-damping rubber bearings, high-damping rubber bearings, and lead-rubber bearings. Three modes of failure of the bolted-type bearings were observed in the tests. They are the breaking failure by tension and shear; the breaking failure by compression and shear; and the buckling failure by compression and shear. The first and the second modes of failures are almost independent of the types and the sizes of the bearings. The breaking conditions of those failure modes are described in the axial-stress-shear-strain plane. This expression is useful for the evaluation of safety margins of the bearings. The paper outlines the basic design of the nuclear-grade bearings which were used for large-scale rubber bearing tests in a research project for seismic isolation of FBR plants. It also discusses the protection method against aging and the quality control which are important for implementation. (orig./HP)

  15. Seismic isolation rubber bearings for nuclear facilities

    International Nuclear Information System (INIS)

    Fujita, Takafumi

    1989-01-01

    This paper describes results of biaxial breaking tests by compression and shear and by tension and shear for seismic isolation rubber bearings with bolted-type connections. The bearings used in the tests were low-damping rubber bearings, high-damping rubber bearings, and lead-rubber bearings. Three modes of failure of the bolted-type bearings were observed in the tests. They are the breaking failure by tension and shear; the breaking failure by compression and shear; and the buckling failure by compression and shear. The first and the second modes of failures are almost independent of the types and the sizes of the bearings. The breaking conditions of those failure modes are described in the axial stress-shear strain plane. This expression is useful for the evaluation of safety margins of the bearings. The paper outlines the basic design of the nuclear-grade bearings which were used for large-scale rubber bearing tests in a research project for seismic isolation of fast breeder reactor (FBR) plants. The paper also discusses the protection method against aging and the quality control which are important for implementation

  16. Technical specifications for the successful fabrication of laminated seismic isolation bearings

    Energy Technology Data Exchange (ETDEWEB)

    Kulak, R F [Argonne National Laboratory, Argonne, IL (United States)

    1992-07-01

    High damping steel-laminated elastomeric seismic isolation bearings are becoming a preferred device for isolating large buildings and structures. In the United States, the current reference design for the Advanced Liquid Metal Reactor uses laminated bearings for seismic isolation. These bearings are constructed from alternating layers of rubber and steel plates. They are typically designed for shear strains between 50 to 100 percent and expected to sustain two to three times these levels for beyond design basis loading considerations. The technical specifications used to procure these bearings are an important factor in assuring thatthe bearings meet the performance requirements of the design. The key aspects of the current version of the Technical Specifications are discussed in this paper. (author)

  17. Technical specifications for the successful fabrication of laminated seismic isolation bearings

    International Nuclear Information System (INIS)

    Kulak, R.F.

    1992-01-01

    High damping steel-laminated elastomeric seismic isolation bearings are becoming a preferred device for isolating large buildings and structures. In the United States, the current reference design for the Advanced Liquid Metal Reactor uses laminated bearings for seismic isolation. These bearings are constructed from alternating layers of rubber and steel plates. They are typically designed for shear strains between 50 to 100 percent and expected to sustain two to three times these levels for beyond design basis loading considerations. The technical specifications used to procure these bearings are an important factor in assuring that the bearings meet the performance requirements of the design. The key aspects of the current version of the Technical Specifications are discussed in this paper. (author)

  18. On the Need for Reliable Seismic Input Assessment for Optimized Design and Retrofit of Seismically Isolated Civil and Industrial Structures, Equipment, and Cultural Heritage

    Science.gov (United States)

    Martelli, Alessandro

    2011-01-01

    Based on the experience of recent violent earthquakes, the limits of the methods that are currently used for the definition of seismic hazard are becoming more and more evident to several seismic engineers. Considerable improvement is felt necessary not only for the seismic classification of the territory (for which the probabilistic seismic hazard assessment—PSHA—is generally adopted at present), but also for the evaluation of local amplification. With regard to the first item, among others, a better knowledge of fault extension and near-fault effects is judged essential. The aforesaid improvements are particularly important for the design of seismically isolated structures, which relies on displacement. Thus, such a design requires an accurate definition of the maximum value of displacement corresponding to the isolation period, and a reliable evaluation of the earthquake energy content at the low frequencies that are typical of the isolated structures, for the site and ground of interest. These evaluations shall include possible near-fault effects even in the vertical direction; for the construction of high-risk plants and components and retrofit of some cultural heritage, they shall be performed for earthquakes characterized by very long return periods. The design displacement shall not be underestimated, but neither be excessively overestimated, at least when using rubber bearings in the seismic isolation (SI) system. In fact, by decreasing transverse deformation of such SI systems below a certain value, their horizontal stiffness increases. Thus, should a structure (e.g. a civil defence centre, a masterpiece, etc.) protected in the aforesaid way be designed to withstand an unnecessarily too large earthquake, the behaviour of its SI system will be inadequate (i.e. it will be too stiff) during much more frequent events, which may really strike the structure during its life. Furthermore, since SI can be used only when the room available to the structure

  19. Effects of Moat Wall Impact on the Seismic Response of Base Isolated Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kim, Min Kyu; Kim, Jung Han; Mosqueda, Gilberto; Sarebanhab, Alireza

    2015-01-01

    The objectives of this study are to examine the effects of impact on the response of seismically isolated NPPs and identify characteristics of the isolation hardware and hard stop that minimize these effects. Considering variable distances to the hard stop and properties of the moat wall, the amplification in response is reported for acceleration and floor spectral accelerations at different points along the height of a NPP containment structure. Base isolation can be an effective strategy to protect critical facilities such as Nuclear Power Plants (NPPs) from the damaging effects of horizontal earthquake ground shaking. To be effective in reducing accelerations and deformations of the structure above, the seismic isolation bearings can be subjected to large displacements. In the case of an extreme earthquake, bearing displacements need to be limited by a hard stop in order to prevent failure of the bearings. Impact to the hard stop, which is often the moat wall at the basement level, is also of significant concern due to the potential for increased transfer of forces and amplification in response of the structural system, piping and other contents. However, the consequences of impact or factors important to mitigate its effects are not very well understood. The main findings of this study are related to modeling of NPP with moat wall in OpenSees and LSDyna as well as observations resulting from the parametric study of the performance of the NPP under different intensity levels of seismic excitations for different properties of the moat wall and bearings. • Variation in the isolator properties should be considered when examining seismic pounding. For BDBE even, 58.5 % cases result to the impact for lower bound properties while this value was 5.5 % for upper bound properties. Since the impact results are dependent to the assumed bearing properties, a better range of properties can be obtained from experimental testing of the bearing under large shear strains.

  20. A broad review of the status of seismic isolation study in Japan

    International Nuclear Information System (INIS)

    Aoyagi, Sakae; Shibata, Heki

    1992-01-01

    In Japan, studies on seismic isolation technologies have been extensively, performed by a several organizations for the last decade, in order to apply them to fast reactors and thermal reactors. These programs have been managed by CRIEPl, JAPC, NUPEC, PNC the electric utilities and so on. Japanese major reactor manufacturers and construction companies have been participating in each program. Consequently, the base isolation technologies in Japan have been well-developed and are changing their stage from the basic studies to the integration for actual nuclear application. In this paper, the background, the current status and future perspective on the seismic isolation studies conducted by a several Japanese organizations are concisely described. (author)

  1. Seismic intrusion detector system

    Science.gov (United States)

    Hawk, Hervey L.; Hawley, James G.; Portlock, John M.; Scheibner, James E.

    1976-01-01

    A system for monitoring man-associated seismic movements within a control area including a geophone for generating an electrical signal in response to seismic movement, a bandpass amplifier and threshold detector for eliminating unwanted signals, pulse counting system for counting and storing the number of seismic movements within the area, and a monitoring system operable on command having a variable frequency oscillator generating an audio frequency signal proportional to the number of said seismic movements.

  2. Mechanical property test of natural rubber bearing for the evaluation of uncertainty value of seismic isolation devices

    International Nuclear Information System (INIS)

    Kim, Min Kyu; Kim, Jung Han; Choi, In Kil

    2012-01-01

    Seismic safety of NPP is one of the most important issues in a nuclear field after great east Japan earthquake in 2011. For the improvement of seismic safety of nuclear power plant, seismic isolation is the easiest solution for increasing the seismic safety. Otherwise, the application of seismic isolation devices for nuclear power plants doesn't make the seismic risk of NPP increases always. The rubber bearing have many uncertainties of material properties and large displacement should absorb according to the application of isolation devices. In this study, for the evaluation of uncertainty of the material properties of rubber bearing, material tests for rubber and mechanical properties test for natural rubber bearing were performed. For the evaluation of effect of hardness of rubber, 4 kinds of rubber hardness for material property tests and 2 kinds of rubber hardness for mechanical property test were considered. As a result, the variation of material properties is higher than that of mechanical properties of natural rubber bearings

  3. Effect of the foundation stiffness on the response of a seismically isolated tank under SSE conditions

    NARCIS (Netherlands)

    Esposito, G.; Courage, W.

    2003-01-01

    This paper presents the results of a feasibility study of a seismic isolated 120.000 m3 LNG tank. A simple model was used to evaluate the seismic response of the isolated tank under Safe Shutdown Earthquake conditions. The frequency dependent dynamic stiffness of the foundation was

  4. Retrofitting Heritage Buildings by Strengthening or Using Seismic Isolation

    International Nuclear Information System (INIS)

    Danieli, Moshe; Bloch, Jacob; Ribakov, Yuri

    2008-01-01

    Many heritage buildings in the Mediterranean area include stone domes as a structural and architectural element. Present stage of these buildings often requires strengthening or retrofitting in order to increase their seismic resistance. Strengthening is possible by casting above existing dome a thin reinforced concrete shell with a support ring. It yields reduction of stresses and strains in the dome. This paper deals with examples of actual restoration and strengthening of three structures in Georgia, two of them damaged by an earthquake in 1991, (a temple in Nikortzminda and a synagogue in Oni, built in 11 th and 19 r century, respectively) and a mosque in Akhaltzikhe, built in 18th century. Retrofitting of these structures was aimed at preservation of initial geometry and appearance by creating composite (stone--reinforced concrete, or stone--shotcrete) structures, which were partially or fully hidden. Further improving of seismic response may be achieved by using hybrid seismic isolation decreasing the seismic forces and adding damping. A brief description of the design procedure for such cases is presented

  5. Seismic analysis for the ALMR

    International Nuclear Information System (INIS)

    Tajirian, F.F.

    1992-01-01

    The Advanced Liquid Metal Reactor (ALMR) design uses seismic isolation as a cost effective approach for simplifying seismic design of the reactor module, and for enhancing margins to handle beyond design basis earthquakes (BDBE). A comprehensive seismic analysis plan has been developed to confirm the adequacy of the design and to support regulatory licensing activities. In this plan state-of-the-art computer programs are used to evaluate the system response of the ALMR. Several factors that affect seismic response will be investigated. These include variability in the input earthquake mechanism, soil-structure interaction effects, and nonlinear response of the isolators. This paper reviews the type of analyses that are planned, and discuses the approach that will be used for validating the specific features of computer programs that are required in the analysis of isolated structures. To date, different linear and nonlinear seismic analyses have been completed. The results of recently completed linear analyses have been summarized elsewhere. The findings of three-dimensional seismic nonlinear analyses are presented in this paper. These analyses were performed to evaluate the effect of changes of isolator horizontal stiffness with horizontal displacement on overall response, to develop an approach for representing BDBE events with return periods exceeding 10,000 years, and to assess margins in the design for BDBEs. From the results of these analyses and bearing test data, it can be concluded that a properly designed and constructed seismic isolation system can accommodate displacements several times the design safe shutdown earthquake (SSE) for the ALMR. (author)

  6. Seismic Design of ITER Component Cooling Water System-1 Piping

    Science.gov (United States)

    Singh, Aditya P.; Jadhav, Mahesh; Sharma, Lalit K.; Gupta, Dinesh K.; Patel, Nirav; Ranjan, Rakesh; Gohil, Guman; Patel, Hiren; Dangi, Jinendra; Kumar, Mohit; Kumar, A. G. A.

    2017-04-01

    The successful performance of ITER machine very much depends upon the effective removal of heat from the in-vessel components and other auxiliary systems during Tokamak operation. This objective will be accomplished by the design of an effective Cooling Water System (CWS). The optimized piping layout design is an important element in CWS design and is one of the major design challenges owing to the factors of large thermal expansion and seismic accelerations; considering safety, accessibility and maintainability aspects. An important sub-system of ITER CWS, Component Cooling Water System-1 (CCWS-1) has very large diameter of pipes up to DN1600 with many intersections to fulfill the process flow requirements of clients for heat removal. Pipe intersection is the weakest link in the layout due to high stress intensification factor. CCWS-1 piping up to secondary confinement isolation valves as well as in-between these isolation valves need to survive a Seismic Level-2 (SL-2) earthquake during the Tokamak operation period to ensure structural stability of the system in the Safe Shutdown Earthquake (SSE) event. This paper presents the design, qualification and optimization of layout of ITER CCWS-1 loop to withstand SSE event combined with sustained and thermal loads as per the load combinations defined by ITER and allowable limits as per ASME B31.3, This paper also highlights the Modal and Response Spectrum Analyses done to find out the natural frequency and system behavior during the seismic event.

  7. Seismic Response Analysis and Design of Structure with Base Isolation

    International Nuclear Information System (INIS)

    Rosko, Peter

    2010-01-01

    The paper reports the study on seismic response and energy distribution of a multi-story civil structure. The nonlinear analysis used the 2003 Bam earthquake acceleration record as the excitation input to the structural model. The displacement response was analyzed in time domain and in frequency domain. The displacement and its derivatives result energy components. The energy distribution in each story provides useful information for the structural upgrade with help of added devices. The objective is the structural displacement response minimization. The application of the structural seismic response research is presented in base-isolation example.

  8. Vibration characteristics of the seismically isolated building supported by the elastomers and the elasto-plastic dampers

    International Nuclear Information System (INIS)

    Mazda, Taiji; Shiojiri, Hiroo; Aoyagi, Sakae; Sawada, Yoshihiro; Kawai, Nobuyasu; Harada, Osamu; Ohtsuka, Susume; Abe, Isamu.

    1989-01-01

    Recently, the seismic isolation has become one of the popular methods in the design of important structures or equipment against the earthquakes. However, the demonstration data on reliability of seismically isolated structures are not enough, therefore it is expected to accumulate such data. Based on the above recognition, the vibration tests of a base isolated building were carried out in Tsukuba Science City. After that, many earthquake records have been obtained at the building, and they made clear the dynamic characteristics of the structure. In order to make clear the dynamic behavior of the building, furthermore, seismic response analyses were executed by using Lumped Mass model, and the results of the analyses roughly agreed with the observed results. (author)

  9. Seismic data acquisition systems

    International Nuclear Information System (INIS)

    Kolvankar, V.G.; Nadre, V.N.; Rao, D.S.

    1989-01-01

    Details of seismic data acquisition systems developed at the Bhabha Atomic Research Centre, Bombay are reported. The seismic signals acquired belong to different signal bandwidths in the band from 0.02 Hz to 250 Hz. All these acquisition systems are built around a unique technique of recording multichannel data on to a single track of an audio tape and in digital form. Techniques of how these signals in different bands of frequencies were acquired and recorded are described. Method of detecting seismic signals and its performance is also discussed. Seismic signals acquired in different set-ups are illustrated. Time indexing systems for different set-ups and multichannel waveform display systems which form essential part of the data acquisition systems are also discussed. (author). 13 refs., 6 figs., 1 tab

  10. Performance Based Failure Criteria of the Base Isolation System for Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kim, Jung Han; Kim, Min Kyu; Choi, In Kil

    2013-01-01

    The realistic approach to evaluate the failure state of the base isolation system is necessary. From this point of view, several concerns are reviewed and discussed in this study. This is the preliminary study for the performance based risk assessment of a base isolated nuclear power plant. The items to evaluate the capacity and response of an individual base isolator and a base isolation system were briefly outlined. However, the methodology to evaluate the realistic fragility of a base isolation system still needs to be specified. For the quantification of the seismic risk for a nuclear power plant structure, the failure probabilities of the structural component for the various seismic intensity levels need to be calculated. The failure probability is evaluated as the probability when the seismic response of a structure exceeds the failure criteria. Accordingly, the failure mode of the structural system caused by an earthquake vibration should be defined first. The type of a base isolator appropriate for a nuclear power plant structure is regarded as an elastometric rubber bearing with a lead core. The failure limit of the lead-rubber bearing (LRB) is not easy to be predicted because of its high nonlinearity and a complex loading condition by an earthquake excitation. Furthermore, the failure mode of the LRB system installed below the nuclear island cannot be simply determined because the basemat can be sufficiently supported if the number of damaged isolator is not much

  11. Real-time Seismic Alert System of NIED

    Science.gov (United States)

    Horiuchi, S.; Fujinawa, Y.; Negishi, H.; Matsumoto, T.; Fujiwara, H.; Kunugi, T.; Hayashi, Y.

    2001-12-01

    An extensive seismic network has been constructed nationwide composed of hi-sensitivity seismographic network, broadband seismographic network and strong motion seismographic network. All these data from some 3,000 sites belonging to NIED, JMA and universities are to be accumulated and distributed through NIED to any scientists and engineering through INTERNET under the coordination of the National Seismic Research Committee of MEXT. As a practical application of those data we are now developing a real-time seismic alert information system for the purpose of providing short-term warning of imminent strong grounds motions from major earthquakes from several seconds to a few days. The contents of information are seismic focal parameters (several seconds), seismic fault plane solutions (some 10 seconds), after-shock activities (several minutes-a few days ). The fundamental fault parameters are used to build specific information at sites for particular users for use of triggering automated and /or half-automated responses. The most important application is an immediate estimate of expected shaking distribution and damages in a district using synthetic database and site effects for local governments to initial proper measures of hazard mitigation. Another application is estimation of arrival time and shaking strength at any individual site for human lives to be safeguarded. The system could also start an automatic electrical isolation and protection of computer systems, protection of hazardous chronic systems, transportation systems and so on. The information are corrected successively as seismic ground motion are received at a larger number of sites in time with the result that more accurate and more sophisticated earthquake information is transmitted to any user. Besides the rapid determination of seismic parameters, one of essential items in this alert system is the data transmission means. The data transmission is chosen to assure negligibly small delay of data

  12. Integrated system for seismic evaluations

    International Nuclear Information System (INIS)

    Xu, J.; Philippacopoulos, A.J.; Miller, C.A.; Costantino, C.J.; Graves, H.

    1989-01-01

    This paper describes the various features of the seismic module of the CARES system (computer analysis for rapid evaluation of structures). This system was developed to perform rapid evaluations of structural behavior and capability of nuclear power plant facilities. The CARES is structural in a modular format. Each module performs a specific type of analysis i.e., static or dynamic, linear or nonlinear, etc. This paper describes the features of the seismic module in particular. The development of the seismic modules of the CARES system is based on an approach which incorporates major aspects of seismic analysis currently employed by the industry into an integrated system that allows for carrying out interactively computations of structural response to seismic motions. The code operates on a PC computer system and has multi-graphics capabilities

  13. Seismic isolation of plants at risk of a severe accident

    International Nuclear Information System (INIS)

    Forni, Massimo

    2015-01-01

    More and more devastating earthquakes struck every year our planet. Many of these, though occurring in areas considered at high risk of earthquakes, far exceed the levels required by law. The industrial plants subjected to risk of severe accident, in particular petrochemical and nuclear power plants, are particularly exposed to this risk because of the number and the complexity of the structures and critical components of which they are composed. For this type of structures, anti-seismic techniques able to provide complete protection, even in case of unforeseen events, are needed. Seismic isolation is certainly the most promising technology of modern antiseismic as it allows not only to significantly reduce the dynamic load acting on the structures in case of seismic attack, but to provide safety margins against violent earthquakes, exceeding the assumed maximum design limit. [it

  14. Identification of factors that influence the stiffness of high-damping elastomer seismic isolation bearings

    International Nuclear Information System (INIS)

    Kulak, R.F.; Hughes, T.H.

    1994-01-01

    During the past decade, high-damping elastomer, steel-laminated seismic isolation bearings have gained acceptance as a device for isolating large buildings and structures from earthquake damage. In the United States, architectural engineering firms custom design isolators for each project and ten have the isolators manufactured by one of less than a hand-full of manufactures. The stiffness of the bearing is the single most important design parameter that the molded bearing must meet because it determines the fundamental frequency of the isolation system. This paper reports on recent research that examined several factors that cause real and potential variations to the stiffness of the bearing. The resulting changes to the fundamental frequency of the isolated structure are quantified for each factor. The following were examined: (1) dimensional tolerances, (2) frequency effects, (3) temperature effects, (4) cyclical effects, and (5) aging effects. It was found that geometric variations barely affect the stiffness whereas temperature variations greatly affect the stiffness

  15. Anatomy of the TAMA SAS seismic attenuation system

    International Nuclear Information System (INIS)

    Marka, Szabolcs; Takamori, Akiteru; Ando, Masaki; Bertolini, Alessandro; Cella, Giancarlo; DeSalvo, Riccardo; Fukushima, Mitsuhiro; Iida, Yukiyoshi; Jacquier, Florian; Kawamura, Seiji; Nishi, Yuhiko; Numata, Kenji; Sannibale, Virginio; Somiya, Kentaro; Takahashi, Ryutaro; Tariq, Hareem; Tsubono, Kimio; Ugas, Jose; Viboud, Nicolas; Wang Chenyang; Yamamoto, Hiroaki; Yoda, Tatsuo

    2002-01-01

    The TAMA SAS seismic attenuation system was developed to provide the extremely high level of seismic isolation required by the next generation of interferometric gravitational wave detectors to achieve the desired sensitivity at low frequencies. Our aim was to provide good performance at frequencies above ∼10 Hz, while utilizing only passive subsystems in the sensitive frequency band of the TAMA interferometric gravitational wave detectors. The only active feedback is relegated below 6 Hz and it is used to damp the rigid body resonances of the attenuation chain. Simulations, based on subsystem performance characterizations, indicate that the system can achieve rms mirror residual motion measured in a few tens of nanometres. We will give a brief overview of the subsystems and point out some of the characterization results, supporting our claims of achieved performance. SAS is a passive, UHV compatible and low cost system. It is likely that extremely sensitive experiments in other fields will also profit from our study

  16. Experimental Study on the Force-Bearing Performance of Masonry Structures with a Marble-Graphite Slide Seismic Isolator at the Foundation

    Directory of Open Access Journals (Sweden)

    Suizi Jia

    2016-11-01

    Full Text Available As part of the search for a seismic isolator for low-rise buildings, this paper proposes a marble-graphite slide seismic isolation system composed of marble-graphite slides, an upper foundation beam, the lower counterpart of the upper beam, and the corresponding stop blocks, with the stop blocks consisting of restrictive screws, positioning plates, nut connectors and stop holes linking the two foundation beams. To provide the desired isolation performance, plain mortar bars can be included at the beam interface to better control the initiating loads for foundation slippage. Tests of low-reversed cyclic loading were performed on four different masonry specimens: a recycled brick wall, a clay brick wall, an integrated recycled brick wall with flay ash blocks sandwiched between, and its clay brick counterpart. The four specimens were provided with marble-graphite slide isolators placed at the foundations. The isolator thickness was 20 mm, and the graphite and the marble served as a lubricant and a bearing, respectively. This paper then analyses all of the specimens in terms of the damage that occurred, the initiating load for slippage, the hysteretic performance, the bearing capacity and the performance of the stop blocks. The results indicate that mortar bars embedded in the marble-graphite slide isolator offer effective control of the initiating load, and the isolation system delivers good hysteretic performance. The stop blocks are capable of withstanding a large-magnitude earthquake and are a good choice for constraining the slippage displacement. Damage or failure of the specimens occurs only when the low-reversed cyclic loading continues after slippage takes place. The design is shown to be an outstanding and flexible seismic scheme for use in low-rise buildings.

  17. Intercomparison of analysis methods for seismically isolated nuclear structures. Part 1: Advanced test data and numerical methods. Working material

    International Nuclear Information System (INIS)

    1993-01-01

    The purpose of the meeting was to review proposed contributions from CRP participating organizations to discuss in detail the experimental data on seismic isolators, to review the numerical methods for the analysis of the seismic isolators, and to perform a first comparison of the calculation results. The aim of the CRP was to validate the reliable numerical methods used for both detailed evaluation of dynamic behaviour of isolation devices and isolated nuclear structures of different nuclear power plant types. The full maturity of seismic isolation for nuclear applications was stressed, as well as the excellent behaviour of isolated structures during the recent earthquakes in Japan and the USA. Participants from Italy, USA, Japan, Russian federation, Republic of Korea, United Kingdom, India and European Commission have presented overview papers on the present programs and their status of contribution to the CRP

  18. Intercomparison of analysis methods for seismically isolated nuclear structures. Part 1: Advanced test data and numerical methods. Working material

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-07-01

    The purpose of the meeting was to review proposed contributions from CRP participating organizations to discuss in detail the experimental data on seismic isolators, to review the numerical methods for the analysis of the seismic isolators, and to perform a first comparison of the calculation results. The aim of the CRP was to validate the reliable numerical methods used for both detailed evaluation of dynamic behaviour of isolation devices and isolated nuclear structures of different nuclear power plant types. The full maturity of seismic isolation for nuclear applications was stressed, as well as the excellent behaviour of isolated structures during the recent earthquakes in Japan and the USA. Participants from Italy, USA, Japan, Russian federation, Republic of Korea, United Kingdom, India and European Commission have presented overview papers on the present programs and their status of contribution to the CRP.

  19. Seismic design practices for power systems

    International Nuclear Information System (INIS)

    Schiff, A.J.

    1991-01-01

    In this paper, the evolution of seismic design practices in electric power systems is reviewed. In California the evolution had led to many installation practices that are directed at improving the seismic ruggedness of power system facilities, particularly high voltage substation equipment. The primary means for substantiating the seismic ruggedness of important, hard to analyze substation equipment is through vibration testing. Current activities include system evaluations, development of emergency response plans and their exercise, and review elements that impact the entire system, such as energy control centers and communication systems. From a national perspective there is a need to standardize seismic specifications, identify a seismic specialist within each utility and enhance communications among these specialists. There is a general need to incorporate good seismic design practices on a national basis emphasizing new construction

  20. Integrated system for seismic evaluations

    International Nuclear Information System (INIS)

    Xu, J.; Philippacopoulos, A.J.; Miller, C.A.; Costantino, C.J.; Graves, H.

    1989-01-01

    This paper describes the various features of the Seismic Module of the CARES system (Computer Analysis for Rapid Evaluation of Structures). This system was developed by Brookhaven National Laboratory (BNL) for the US Nuclear Regulatory Commission to perform rapid evaluations of structural behavior and capability of nuclear power plant facilities. The CARES is structured in a modular format. Each module performs a specific type of analysis i.e., static or dynamic, linear or nonlinear, etc. This paper describes the features of the Seismic Module in particular. The development of the Seismic Module of the CARES system is based on an approach which incorporates all major aspects of seismic analysis currently employed by the industry into an integrated system that allows for carrying out interactively computations of structural response to seismic motions. The code operates on a PC computer system and has multi-graphics capabilities. It has been designed with user friendly features and it allows for interactive manipulation of various analysis phases during the seismic design process. The capabilities of the seismic module include (a) generation of artificial time histories compatible with given design ground response spectra, (b) development of Power Spectral Density (PSD) functions associated with the seismic input, (c) deconvolution analysis using vertically propagating shear waves through a given soil profile, and (d) development of in-structure response spectra or corresponding PSD's. It should be pointed out that these types of analyses can also be performed individually by using available computer codes such as FLUSH, SAP, etc. The uniqueness of the CARES, however, lies on its ability to perform all required phases of the seismic analysis in an integrated manner. 5 refs., 6 figs

  1. PROBABILISTIC SEISMIC ASSESSMENT OF BASE-ISOLATED NPPS SUBJECTED TO STRONG GROUND MOTIONS OF TOHOKU EARTHQUAKE

    Directory of Open Access Journals (Sweden)

    AHMER ALI

    2014-10-01

    Full Text Available The probabilistic seismic performance of a standard Korean nuclear power plant (NPP with an idealized isolation is investigated in the present work. A probabilistic seismic hazard analysis (PSHA of the Wolsong site on the Korean peninsula is performed by considering peak ground acceleration (PGA as an earthquake intensity measure. A procedure is reported on the categorization and selection of two sets of ground motions of the Tohoku earthquake, i.e. long-period and common as Set A and Set B respectively, for the nonlinear time history response analysis of the base-isolated NPP. Limit state values as multiples of the displacement responses of the NPP base isolation are considered for the fragility estimation. The seismic risk of the NPP is further assessed by incorporation of the rate of frequency exceedance and conditional failure probability curves. Furthermore, this framework attempts to show the unacceptable performance of the isolated NPP in terms of the probabilistic distribution and annual probability of limit states. The comparative results for long and common ground motions are discussed to contribute to the future safety of nuclear facilities against drastic events like Tohoku.

  2. Probabilistic seismic assessment of base-isolated NPPs subjected to strong ground motions of Tohoku earthquake

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Ahmer; Hayah, Nadin Abu; Kim, Doo Kie [Dept. of Civil and Environmental Engineering, Kunsan National University, Kunsan (Korea, Republic of); Cho, Sung Gook [R and D Center, JACE KOREA Company, Gyeonggido (Korea, Republic of)

    2014-10-15

    The probabilistic seismic performance of a standard Korean nuclear power plant (NPP) with an idealized isolation is investigated in the present work. A probabilistic seismic hazard analysis (PSHA) of the Wolsong site on the Korean peninsula is performed by considering peak ground acceleration (PGA) as an earthquake intensity measure. A procedure is reported on the categorization and selection of two sets of ground motions of the Tohoku earthquake, i.e. long-period and common as Set A and Set B respectively, for the nonlinear time history response analysis of the base-isolated NPP. Limit state values as multiples of the displacement responses of the NPP base isolation are considered for the fragility estimation. The seismic risk of the NPP is further assessed by incorporation of the rate of frequency exceedance and conditional failure probability curves. Furthermore, this framework attempts to show the unacceptable performance of the isolated NPP in terms of the probabilistic distribution and annual probability of limit states. The comparative results for long and common ground motions are discussed to contribute to the future safety of nuclear facilities against drastic events like Tohoku.

  3. Development and seismic evaluation of the seismic monitoring analysis system for HANARO

    International Nuclear Information System (INIS)

    Ryu, J. S.; Youn, D. B.; Kim, H. G.; Woo, J. S.

    2003-01-01

    Since the start of operation, the seismic monitoring system has been utilized for monitoring an earthquake at the HANARO site. The existing seismic monitoring system consists of field sensors and monitoring panel. The analog-type monitoring system with magnetic tape recorder is out-of-date model. In addition, the disadvantage of the existing system is that it does not include signal-analyzing equipment. Therefore, we have improved the analog seismic monitoring system except the field sensors into a new digital Seismic Monitoring Analysis System(SMAS) that can monitor and analyze earthquake signals. To achieve this objective for HANARO, the digital type hardware of the SMAS has been developed. The seismic monitoring and analysis programs that can provide rapid and precise information for an earthquake were developed. After the installation of the SMAS, we carried out the Site Acceptance Test (SAT) to confirm the functional capability of the newly developed system. The results of the SAT satisfy the requirements of the fabrication technical specifications. In addition, the seismic characteristics and structural integrity of the SMAS were evaluated. The results show that the cabinet of SMAS can withstand the effects of seismic loads and remain functional. This new SMAS is operating in the HANARO instrument room to acquire and analyze the signal of an earthquake

  4. F.E. analysis of seismic isolators: comparison with experimental results

    International Nuclear Information System (INIS)

    Fuller, K.N.G.; Gough, J.; Ahmadi, H.R.

    1998-01-01

    Analysis of seismic isolators is performed by the ABAQUS code. The force deformation behaviour of a circular layer of rubber bonded to rigid surface was investigated. This model is chosen because of its simplicity and the relatively short processing time required. A 3-dimensional model was used for finite element calculations. Comparison of calculated values with experimental results is shown

  5. Verification of analysis methods for predicting the behaviour of seismically isolated nuclear structures. Final report of a co-ordinated research project 1996-1999

    International Nuclear Information System (INIS)

    2002-06-01

    This report is a summary of the work performed under a co-ordinated research project (CRP) entitled Verification of Analysis Methods for Predicting the Behaviour of Seismically isolated Nuclear Structures. The project was organized by the IAEA on the recommendation of the IAEA's Technical Working Group on Fast Reactors (TWGFR) and carried out from 1996 to 1999. One of the primary requirements for nuclear power plants and facilities is to ensure safety and the absence of damage under strong external dynamic loading from, for example, earthquakes. The designs of liquid metal cooled fast reactors (LMFRs) include systems which operate at low pressure and include components which are thin-walled and flexible. These systems and components could be considerably affected by earthquakes in seismic zones. Therefore, the IAEA through its advanced reactor technology development programme supports the activities of Member States to apply seismic isolation technology to LMFRs. The application of this technology to LMFRs and other nuclear plants and related facilities would offer the advantage that standard designs may be safely used in areas with a seismic risk. The technology may also provide a means of seismically upgrading nuclear facilities. Design analyses applied to such critical structures need to be firmly established, and the CRP provided a valuable tool in assessing their reliability. Ten organizations from India, Italy, Japan, the Republic of Korea, the Russian Federation, the United Kingdom, the United States of America and the European Commission co-operated in this CRP. This report documents the CRP activities, provides the main results and recommendations and includes the work carried out by the research groups at the participating institutes within the CRP on verification of their analysis methods for predicting the behaviour of seismically isolated nuclear structures

  6. Effectiveness of Tuned Mass Dampers in Seismic Response Control of Isolated Bridges Including Soil-Structure Interaction

    Directory of Open Access Journals (Sweden)

    Said Elias

    Full Text Available Abstract The effect of soil-structure interaction (SSI on the dynamic responses of seismically isolated three-span continuous reinforced concrete (RC bridge is investigated. Also, tuned mass damper(s (TMD/s is/are installed to control undesirable bearing displacement, even under the SSI effect. The TMDs are placed at the mid-span of the bridge and each tuned with a modal frequency, while controlling up to first few modes as desirable. The soil surrounding the foundation of pier is modeled by frequency independent coefficients. Dynamic analysis is carried out in time domain using direct integration method. In order to specify the effects of the SSI, the responses of the non-isolated, isolated, and controlled isolated bridge are compared. It is observed that the soil surrounding the pier has significant effects on the bearing displacement of the isolated RC bridges. In addition, it is observed that the seismic responses of isolated RC bridge reduced significantly with installation of the TMDs.

  7. Financial aspects of a seismic base isolation system for a steel high-rack structure

    Directory of Open Access Journals (Sweden)

    Kilar, V.

    2013-12-01

    Full Text Available The paper deals with the effects and costs of implementing a base isolation system for the mitigation of the seismic risk of an existing steel rack structure. Different realistic distributions of the payload mass and occupancy levels, which form different plan asymmetric variants, have been analysed. The results obtained by the pushover analysis (N2 method are presented as top floor envelopes and as plastic hinge damage patterns. In the presented cost study, the cost of the implementation of the proposed base isolation system is compared with the estimated costs of structural repairs to the damaged structural members of the superstructure, as well as with estimated expenses of the downtime period. The results have shown that base isolation is, in general, not economically feasible for lower ground motion intensities, whereas it could be of great benefit in the case of moderate and high intensities, especially if the downtime period is taken into account.El presente artículo trata sobre los efectos y costes de implementación de un sistema de aislamiento en cimentación para la mitigación del riesgo sísmico de la estructura de un bastidor de acero en altura prexistente. Se han analizado diferentes distribuciones realistas de la masa contribuyente y de los niveles de ocupación, conformando diferentes variantes asimétricas en planta. Se presentan los resultados obtenidos mediante el método N2 (análisis estático incremental no lineal como envolventes de las plantas superiores y como patrones de deterioro en estado plástico. En el estudio de costos presentado, el coste de implementación del sistema de aislamiento propuesto se compara con los costes estimados de reparación de los elementos superestructurales y los costes derivados del período de desocupación. Los resultados muestran que, en general, el aislamiento en la base no resulta viable económicamente para movimientos de baja intensidad, pero puede ser muy beneficioso en el caso de

  8. Design considerations associated with the response of seismic isolators and real scale energy absorbers

    International Nuclear Information System (INIS)

    Benzoni, Gianmario

    2015-01-01

    Few observations obtained from extensive experimental programs for the characterization of anti-seismic devices are proposed hereafter. Specifically, few current code requirements, originally intended for the acquisition of fundamental characteristics of performance, proved difficult to be implemented and of questionable significance for the design phase of a seismic isolation application. In particular, for commonly used devices as elastomeric and friction-based isolators, the experimentally validated variation of performance parameters is often not addressed in existing codes and typically neglected in structural models, based on extreme simplification of the device behaviour. The goal of this paper is to suggest an update to specific codes but particularly to solicit the designer’s awareness against oversimplification in the modelling phase of the device performance [it

  9. Characterizing the Benefits of Seismic Isolation for Nuclear Structures: A Framework for Risk-Based Decision Making

    Energy Technology Data Exchange (ETDEWEB)

    Bolisetti, Chandrakanth [Idaho National Lab. (INL), Idaho Falls, ID (United States); Yu, Chingching [Idaho National Lab. (INL), Idaho Falls, ID (United States); Coleman, Justin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Whittaker, Andrew [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kosbab, Ben [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-11-01

    This report provides a framework for assessing the benefits of seismic isolation and exercises the framework on a Generic Department of Energy Nuclear Facility (GDNF). These benefits are (1) reduction in the risk of unacceptable seismic performance and a dramatic reduction in the probability of unacceptable performance at beyond-design basis shaking, and (2) a reduction in capital cost at sites with moderate to high seismic hazard. The framework includes probabilistic risk assessment and estimates of overnight capital cost for the GDNF.

  10. Induced Seismicity Monitoring System

    Science.gov (United States)

    Taylor, S. R.; Jarpe, S.; Harben, P.

    2014-12-01

    There are many seismological aspects associated with monitoring of permanent storage of carbon dioxide (CO2) in geologic formations. Many of these include monitoring underground gas migration through detailed tomographic studies of rock properties, integrity of the cap rock and micro seismicity with time. These types of studies require expensive deployments of surface and borehole sensors in the vicinity of the CO2 injection wells. Another problem that may exist in CO2 sequestration fields is the potential for damaging induced seismicity associated with fluid injection into the geologic reservoir. Seismic hazard monitoring in CO2 sequestration fields requires a seismic network over a spatially larger region possibly having stations in remote settings. Expensive observatory-grade seismic systems are not necessary for seismic hazard deployments or small-scale tomographic studies. Hazard monitoring requires accurate location of induced seismicity to magnitude levels only slightly less than that which can be felt at the surface (e.g. magnitude 1), and the frequencies of interest for tomographic analysis are ~1 Hz and greater. We have developed a seismo/acoustic smart sensor system that can achieve the goals necessary for induced seismicity monitoring in CO2 sequestration fields. The unit is inexpensive, lightweight, easy to deploy, can operate remotely under harsh conditions and features 9 channels of recording (currently 3C 4.5 Hz geophone, MEMS accelerometer and microphone). An on-board processor allows for satellite transmission of parameter data to a processing center. Continuous or event-detected data is kept on two removable flash SD cards of up to 64+ Gbytes each. If available, data can be transmitted via cell phone modem or picked up via site visits. Low-power consumption allows for autonomous operation using only a 10 watt solar panel and a gel-cell battery. The system has been successfully tested for long-term (> 6 months) remote operations over a wide range

  11. Seismic reflection data report: Waste Isolation Pilot Plant (WIPP) site, Southeastern New Mexico

    International Nuclear Information System (INIS)

    Hern, J.L.; Powers, D.W.; Barrows, L.J.

    1978-12-01

    Volume II contains uninterpreted processed lines and shotpoint maps from three seismic reflection surveys conducted from 1976 through 1978 by Sandia Laboratories to support investigations for the Waste Isolation Pilot Plant. Data interpretations will be the subject of subsequent reports

  12. Verification and improvement of analytical modeling of seismic isolation bearings and isolated structures

    International Nuclear Information System (INIS)

    Forni, M.; La Grotteria, M.; Martelli, A.; Bertola, S.; Bettinali, F.; Dusi, A.; Bergamo, G.; Bonacina, G.

    2002-01-01

    Due to the complexity of dynamic behaviour of seismic isolation (SI) devices, high cost of their tests and non-negligible number of devices having excellent potential for nuclear applications, several countries judged of great interest to extend validation of their numerical models of such devices to the analysis of experimental data obtained by others. Thus, a four-years Coordinated Research Program (CRP) on Intercomparison of Analysis Methods for Isolated Nuclear Structures, proposed by ENEA (1995), was endorsed by the IAEA in 1995. There, Italy was jointly represented by ENEA, ENEL and ISMES, and supplied test results concerning both High Damping Rubber Bearings (HDRBs) and the MISS (Model of Isolated Steel Structure) mock-up, which had been isolated using such bearings. Test data provided by Italy to the other countries were also re-analysed to improve mathematical models. Aim of this final report is to summarise, after a brief description of the devices and structures considered, the most important results and conclusions of the numerical analyses carried out by Italy. For more detailed information, especially as far as the execution of the tests and the implementation of the numerical models are concerned, please refer to the technical reports presented by Italy to the Research Coordination Meetings (RCMs). (author)

  13. Development of guidelines for seismic isolation in Italy

    International Nuclear Information System (INIS)

    Olivieri, M.; Martelli, A.; Bettinali, F.; Bonacina, G.

    1992-01-01

    The first activities on seismic isolation that were performed in Italy concerned the preparation of a proposal for design guidelines for nuclear power plants using the high damping steel-laminated elastomer bearings (HDLRBs). They were jointly initiated by ENEA-RIN and GE Nuclear Energy in 1988, with the co-operation of ISMES and the support of experts of ENEA-DISP and Bechtel National Inc. The features of the guidelines proposal were outlined at the First Post-SMiRT Conference Seminar on Seismic Base Isolation of Nuclear Power Facilities (San Francisco, 1989). The full text of the document was published in the Journal 'Energia Nucleare' in 1990, in a tentative form, to allow for a broad review. A summary of the main items - together with some first results of R and D studies performed in support to guidelines development - was also reported in a paper which was recently published by the Journal 'Nuclear Technology' (February 1992). A first revision of the document is being prepared and will be soon published: it accounts for both comments received - for instance, by the American Society of Civil Engineers (ASCE), ENEA-DISP and the Malaysian Rubber Producers' Association (MRPRA) - and the first results of R and D studies in progress in Italy and the USA. These activities have recently been extended - as part of a cooperation with the Italian Standard Authority (UNI) - to other antiseismic devices, for application to civil buildings and non-nuclear plants. A co-operation of ENEA, ENEL and ISMES has also been started with the National Seismic Service to help it in the assessment of national regulations. Furthermore, extension of the aforesaid guidelines document to nuclear reactors using bearings different from the HDLRB has been planned, under the sponsorship of the Commission of the European communities: this work will be performed by ENEA, with the cooperation of ALGA, ISMES, ANSALDO and the Nuclear Engineering Laboratory (LIN) of the Bologna University, and the

  14. Recent progress on the R and D program of the seismic attenuation system (SAS) proposed for the advanced gravitational wave detector, LIGO II

    International Nuclear Information System (INIS)

    Bertolini, A.; Cella, G.; Chenyang, W.; Salvo, R. de; Kovalik, J.; Marka, S.; Sannibale, V.; Takamori, A.; Tariq, H.; Viboud, N.

    2001-01-01

    High-performance Seismic Isolation Systems in gravitational wave interferometers are needed not only to increase the sensitivity of the detectors but also to guarantee long periods of stable operation. SAS is essentially a system which produces the required in-band seismic isolation by use of passive mechanical filters and actively reduces the out of band seismic noise using inertial damping. The passive isolation is achieved for all the 6 degrees of freedom, with an Inverted Pendulum and a chain of single wire pendula whose masses are the Geometrical Anti-Spring Filters (GASF). The active control is applied to reduce mainly the noise below 4 Hz and to damp the resonances of the chain acting from the inverted pendulum table. Here we present a brief overview of SAS and recent results achieved from the full scale SAS prototype

  15. Low cost friction seismic base-isolation of residential new masonry buildings in developing countries: A small masonry house case study

    Science.gov (United States)

    Habieb, A. B.; Milani, G.; Tavio, T.; Milani, F.

    2017-07-01

    A Finite element model was established to examine performance of a low-cost friction base-isolation system in reducing seismic vulnerability of rural buildings. This study adopts an experimental investigation of the isolation system which was conducted in India. Four friction isolation interfaces, namely, marble-marble, marble-high-density polyethylene, marble-rubber sheet, and marble-geosynthetic were involved. Those interfaces differ in static and dynamic friction coefficient obtained through previous research. The FE model was performed based on a macroscopic approach and the masonry wall is assumed as an isotropic element. In order to observe structural response of the masonry house, elastic and plastic parameters of the brick wall were studied. Concrete damage plasticity (CDP) model was adopted to determine non-linear behavior of the brick wall. The results of FE model shows that involving these friction isolation systems could much decrease response acceleration at roof level. It was found that systems with marble-marble and marble-geosynthetic interfaces reduce the roof acceleration up to 50% comparing to the system without isolation. Another interesting result is there was no damage appearing in systems with friction isolation during the test. Meanwhile a severe failure was clearly visible for a system without isolation.

  16. State of the Art of the Development and Application of Anti-Seismic Systems in Europe and Other Countries

    Science.gov (United States)

    Martelli, Alessandro; Forni, Massimo

    2008-07-01

    There are already approximately 5,000 structures in the world, located in over 30 countries, that have been protected by seismic isolation (SI), energy dissipation (ED) and other modern seismic vibration passive control (SVPC) systems. The number of such applications is increasing everywhere more and more. It has been confirmed that, in each country, the extension of the use of the SVPC systems is conclusively influenced by earthquake experience, the availability of specific design rules and the features of those adopted. With regard to application, Japan has consolidated its worldwide leadership, with over 3,000 seismically isolated buildings, many others protected by ED systems and several isolated bridges & viaducts. Second is now the P. R. China, with 610 isolated buildings and 45 with dampers, in addition to numerous isolated bridges & viaducts. The Russian Federation is third for the number of isolated buildings, which are approximately 600. In the USA, due to the very penalizing design code in force for SI of buildings, there are at present only a few new applications of this kind (an overall number of approximately 200 was reported), although the US isolated buildings are mostly quite important, half being retrofits; on the contrary, the use of SI for bridges & viaducts and that of ED for buildings are more popular in the USA. At present (April 2008), Italy (which remains the worldwide leader as regards the application of the SVPC systems to cultural heritage and keeps a key role also as to the number and importance of bridges & viaducts protected by such systems) is at the fifth place, at least for the number of isolated buildings already open to activity: they are 51, besides others protected by other SVPC systems. There, thanks to the new national seismic code (enforced in May 2003), there has been a significant recent increase of building application and design of the SVPC systems. With regard to the use of such systems in other countries, Italy is now

  17. State of the Art of the Development and Application of Anti-Seismic Systems in Europe and Other Countries

    International Nuclear Information System (INIS)

    Martelli, Alessandro; Forni, Massimo

    2008-01-01

    There are already approximately 5,000 structures in the world, located in over 30 countries, that have been protected by seismic isolation (SI), energy dissipation (ED) and other modern seismic vibration passive control (SVPC) systems. The number of such applications is increasing everywhere more and more. It has been confirmed that, in each country, the extension of the use of the SVPC systems is conclusively influenced by earthquake experience, the availability of specific design rules and the features of those adopted. With regard to application, Japan has consolidated its worldwide leadership, with over 3,000 seismically isolated buildings, many others protected by ED systems and several isolated bridges and viaducts. Second is now the P. R. China, with 610 isolated buildings and 45 with dampers, in addition to numerous isolated bridges and viaducts. The Russian Federation is third for the number of isolated buildings, which are approximately 600. In the USA, due to the very penalizing design code in force for SI of buildings, there are at present only a few new applications of this kind (an overall number of approximately 200 was reported), although the US isolated buildings are mostly quite important, half being retrofits; on the contrary, the use of SI for bridges and viaducts and that of ED for buildings are more popular in the USA. At present (April 2008), Italy (which remains the worldwide leader as regards the application of the SVPC systems to cultural heritage and keeps a key role also as to the number and importance of bridges and viaducts protected by such systems) is at the fifth place, at least for the number of isolated buildings already open to activity: they are 51, besides others protected by other SVPC systems. There, thanks to the new national seismic code (enforced in May 2003), there has been a significant recent increase of building application and design of the SVPC systems. With regard to the use of such systems in other countries, Italy

  18. Research on 3-D base isolation system applied to new power reactor 3-D seismic isolation device with rolling seal type air spring: Pt.2

    International Nuclear Information System (INIS)

    Junji Suhara; Ryoichiro Matsumoto; Shinsuke Oguri; Yasuo Okada; Kazuhiko Inoue; Kenji Takahashi

    2005-01-01

    A three dimensional seismic base isolation device was developed for heavy structures and buildings such as nuclear power reactor buildings. The device realizes 3-D isolation by combining a LRB (laminated rubber bearing) for horizontal isolation with an air spring for vertical isolation in series. In this study, scale models of the 3-D base isolation device were made and were tested to examine the dynamic properties and ultimate strengths of the device. The performance of the device under earthquake excitation was examined through shaking table tests of 1/7 scale models. As the results, it was confirmed that the device worked smoothly under the horizontal and vertical excitations, and that the theoretical formulae of the orifice damping could explain the test results. The high-pressure air springs of trial production were forced to burst to find out which factor influenced ultimate strength. It was confirmed from results of the burst test that the strength of the air spring depended upon the diameter of rolling part of the bellows and the number of layers of the reinforcing fibers. Judging from the results of the shaking table test and the burst test, the developed 3-D base isolation device was applicable to a nuclear power plant building. (authors)

  19. Views on seismic design standardization of structures, systems and components of nuclear facilities

    International Nuclear Information System (INIS)

    Reddy, G.R.

    2011-01-01

    Structures, Systems and Components (SSCs) of nuclear facilities have to be designed for normal operating loads such as dead weight, pressure, temperature etc., and accidental loads such as earthquakes, floods, extreme, wind air craft impact, explosions etc. Manmade accidents such as aircraft impact, explosions etc., sometimes may be considered as design basis event and sometimes taken care by providing administrative controls. This will not be possible in the case of natural events such as earthquakes, flooding, extreme winds etc. Among natural events earthquakes are considered as most devastating and need to be considered as design basis event which has certain annual frequency specified in design codes. For example nuclear power plants are designed for a seismic event has 10000 year return period. It is generally felt that design of SSCs for earthquake loads is very time consuming and expensive. Conventional seismic design approaches demands for large number of supports for systems and components. This results in large space occupation and in turn creates difficulties for maintenance and in service inspection of systems and components. In addition, complete exercise of design need to be repeated for plants being located at different sites due to different seismic demands. However, advanced seismic response control methods will help to standardize the seismic design meeting the safety and economy. These methods adopt passive, semi active and active devices, and base isolators to control the seismic response. In nuclear industry, it is advisable to go for passive devices to control the seismic responses. Ideally speaking, these methods will make the designs made for normal loads can also satisfy the seismic demand without calling for change in material, geometry, layout etc. in the SSCs. This paper explain the basic ideas of seismic response control methods, demonstrate the effectiveness of control methods through case studies and eventually give the procedure to

  20. Proposal and experimental validation of analytical models for seismic and vibration isolation devices in nuclear and non-nuclear facilities

    International Nuclear Information System (INIS)

    Serino, G.; Bonacina, G.; Bettinali, F.

    1993-01-01

    Two analytical-experimental models of HDLRBs having different levels of approximations are presented. Comparison with available experimental data shows that a non-linear hysteretic model, defined by three rubber parameters only, allows a very good complete simulation of the dynamic behavior of the isolation devices. A simpler equivalent linear viscous model reproduces less exactly the experimental behavior, but permits a good prediction of peak response values in the earthquake analysis of an isolated structure, if bearing stiffness and damping parameters are properly selected. The models have been used in preliminary design and subsequent check of the isolation system of two different types of Gas-Insulated Electric Substations (GIS), in view of possible future installation of isolated GISes in areas of high seismic risk. (author)

  1. Application of seismic isolation for seismic strengthening of buildings damaged by the earthquake of L’Aquila

    International Nuclear Information System (INIS)

    Corsetti, Daniele

    2015-01-01

    The earthquake of 6 April 2009 destroyed the social and economic network fabric of the town of 'L'Aquila'. Since then, many buildings have been restored and some designers have taken the opportunity of rebuilding the town applying innovative technologies. In this context, despite the inevitable bureaucratic hurdles and economic constraints, added to the death of Mr. Mancinelli in 2012 (GLIS Member), several projects were carried out on existing buildings with the idea of applying base seismic isolation. A decade after the first application of this solution on an existing building in Fabriano by Mr. Mancinelli, the experience has proved to be a success, both in terms of achieved results and ease of management. For L’Aquila earthquake the idea was to replicate the positive experience of the “Marche earthquake”, though the problems and obstacles to face often were substantially different. The experience outlined below is a summary of the issues faced and resolved in two projects, taking into account that any solution can be further improved and refined depending on the ability and sensitivity of the designer. We have come to the conclusion that the projects of a base seismic isolation of existing buildings are 'tailor-made' projects, and that the solutions have to be analysed a case by case, even if the main concepts are simple and applicable to a wide range of buildings [it

  2. Qualification of high damping seismic isolation bearings for the ALMR

    International Nuclear Information System (INIS)

    Tajirian, F.F.; Gluekler, E.L.; Chen, W.P.; Kelly, J.M.

    1992-01-01

    The Advanced Liquid Metal Reactor (ALMR) seismic isolation system consists of high damping steel-laminated elastomeric bearings. This type of bearing is used worldwide to isolate buildings and large critical components. A comprehensive testing program has been developed to qualify the use of this system for the ALMR. The program includes material characterization tests, various scale bearing tests, full-size bearing tests, shake table tests, and long-term aging tests. The main tasks and objectives of this program are described in the paper. Additionally, a detailed assessment of completed ALMR bearing test results will be provided. This assessment will be mainly based on half-scale bearing tests performed at the Earthquake Engineering Research Center (EERC) of the University of California at Berkeley and at the Energy Technology Engineering Center (ETEC). These tests were funded by the U.S. Department of Energy (DOE). Both static and dynamic tests were performed. Bearings with two types of end connections were tested: dowelled and bolted. The parameters examined will include the vertical, horizontal stiffness and damping of the bearings under different loading conditions up to failure. This will determine the available margins in the bearings above the design vertical load and horizontal displacement. Additionally, the self-centering capability of the bearings after an earthquake will be addressed. On the basis of these findings, recommendations can be made if necessary, to improve current manufacturing procedures, quality control, and procurement specifications. (author)

  3. Seismic Response Prediction of Buildings with Base Isolation Using Advanced Soft Computing Approaches

    Directory of Open Access Journals (Sweden)

    Mosbeh R. Kaloop

    2017-01-01

    Full Text Available Modeling response of structures under seismic loads is an important factor in Civil Engineering as it crucially affects the design and management of structures, especially for the high-risk areas. In this study, novel applications of advanced soft computing techniques are utilized for predicting the behavior of centrically braced frame (CBF buildings with lead-rubber bearing (LRB isolation system under ground motion effects. These techniques include least square support vector machine (LSSVM, wavelet neural networks (WNN, and adaptive neurofuzzy inference system (ANFIS along with wavelet denoising. The simulation of a 2D frame model and eight ground motions are considered in this study to evaluate the prediction models. The comparison results indicate that the least square support vector machine is superior to other techniques in estimating the behavior of smart structures.

  4. Active Low-frequency Vertical Vibration Isolation System for Precision Measurements

    Institute of Scientific and Technical Information of China (English)

    WU Kang; LI Gang; HU Hua; WANG Lijun

    2017-01-01

    Low-frequency vertical vibration isolation systems play important roles in precision measurements to reduce seismic and environmental vibration noise.Several types of active vibration isolation systems have been developed.However,few researches focus on how to optimize the test mass install position in order to improve the vibration transmissibility.An active low-frequency vertical vibration isolation system based on an earlier instrument,the Super Spring,is designed and implemented.The system,which is simple and compact,consists of two stages:a parallelogram-shaped linkage to ensure vertical motion,and a simple spring-mass system.The theoretical analysis of the vibration isolation system is presented,including terms erroneously ignored before.By carefully choosing the mechanical parameters according to the above analysis and using feedback control,the resonance frequency of the system is reduced from 2.3 to 0.03 Hz,a reduction by a factor of more than 75.The vibration isolation system is installed as an inertial reference in an absolute gravimeter,where it improved the scatter of the absolute gravity values by a factor of 5.The experimental results verifies the improved performance of the isolation system,making it particularly suitable for precision experiments.The improved vertical vibration isolation system can be used as a prototype for designing high-performance active vertical isolation systems.An improved theoretical model of this active vibration isolation system with beam-pivot configuration is proposed,providing fundamental guidelines for vibration isolator design and assembling.

  5. Performance of Single Friction Pendulum bearing for isolated buildings subjected to seismic actions in Vietnam

    Science.gov (United States)

    Nguyen, N. V.; Nguyen, C. H.; Hoang, H. P.; Huong, K. T.

    2018-04-01

    Using structural control technology in earthquake resistant design of buildings in Vietnam is very limited. In this paper, a performance evaluation of using Single Friction Pendulum (SFP) bearing for seismically isolated buildings with earthquake conditions in Vietnam is presented. A two-dimensional (2-D) model of the 5-storey building subjected to earthquakes is analyzed in time domain. Accordingly, the model is analyzed for 2 cases: with and without SFP bearing. The ground acceleration data is selected and scaled to suit the design acceleration in Hanoi followed by the Standard TCVN 9386:2012. It is shown that the seismically isolated buildings gets the performance objectives while achieving an 91% reduction in the base shear, a significant decrease in the inter-story drift and absolute acceleration of each story.

  6. Seismic margins and calibration of piping systems

    International Nuclear Information System (INIS)

    Shieh, L.C.; Tsai, N.C.; Yang, M.S.; Wong, W.L.

    1985-01-01

    The Seismic Safety Margins Research Program (SSMRP) is a US Nuclear Regulatory Commission-funded, multiyear program conducted by Lawrence Livermore National Laboratory (LLNL). Its objective is to develop a complete, fully coupled analysis procedure for estimating the risk of earthquake-induced radioactive release from a commercial nuclear power plant and to determine major contributors to the state-of-the-art seismic and systems analysis process and explicitly includes the uncertainties in such a process. The results will be used to improve seismic licensing requirements for nuclear power plants. In Phase I of SSMRP, the overall seismic risk assessment methodology was developed and assembled. The application of this methodology to the seismic PRA (Probabilistic Risk Assessment) at the Zion Nuclear Power Plant has been documented. This report documents the method deriving response factors. The response factors, which relate design calculated responses to best estimate values, were used in the seismic response determination of piping systems for a simplified seismic probablistic risk assessment. 13 references, 31 figures, 25 tables

  7. Seismic response and rehabilitation of critical substation equipment

    Energy Technology Data Exchange (ETDEWEB)

    Saadeghvaziri, M.A.; Allaverdi, N.H. [New Jersey Inst. of Technology, Newark, NJ (United States); Ashrafi, A. [Columbia Univ., New York, NY (United States); Ersoy, S. [Greenman-Pedersen Inc., Babylon, NY (United States)

    2004-07-01

    Substations are one of the most important components of an electrical power system. They provide protection to transmission and distribution lines and transfer power between different voltage levels. Transformers and bushings within the substation are vulnerable to earthquake ground motion. It is extremely important that electric power systems remain functional following seismic damage. This study assessed the seismic response of critical substation equipment and described advanced technologies for rehabilitation measures such as the Friction Pendulum System (FPS). It presents the results of an extensive finite element analysis on response of transformers and bushings. The objective was to determine the seismic behaviour of transformers and bushings during an earthquake and to determine the probability of different failure modes. The response of an FPS isolated transformer to different earthquakes was also examined along with FPS radii, ground motion intensity and vertical excitations. A finite element model was developed for FPS. The study showed that seismic isolation is a viable mitigation strategy, but a modest increase in slack must be provided. 15 refs., 1 tab., 12 figs.

  8. Experimental studies of the seismic response of structures incorporating base-isolation systems

    International Nuclear Information System (INIS)

    Kelly, J.M.; Aiken, I.D.

    1991-01-01

    This paper reviews some of the achievements of the Earthquake Engineering Research Center (EERC) at the University of California at Berkeley in the last few years. Component tests on single isolators are described. Tests on plain and high-damping natural-rubber bearings, lead-rubber bearings, sliding bearings, and bearings incorporating uplift resistance mechanisms have been performed. High-shear strain tests on large (up to full scale) elastomeric bearings have been conducted to determine the stability characteristics and limit states of the isolators. Performance evaluation studies using the earthquake simulator to test large-scale model isolated structures have been carried out for a variety of isolation systems and structures. Uplift studies of slender base-isolated buildings and investigation of the behavior of base-isolated skew bridge decks have been studied. This paper aims to highlight those areas where progress has been made. (orig./HP)

  9. Multichannel long period seismic data acquisition system

    International Nuclear Information System (INIS)

    Kolvankar, V.G.; Rao, D.S.

    1990-01-01

    This paper discusses the specifications and performance of an eight channel long period seismic digital data acquisition system, which is developed and installed at Seismic Array Station, Gauribidanur, Karnataka State. The paper describes how these data in an unedited form are recorded on a single track of magnetic tape inter-mittantly, which has resulted in recording of 50 days data on a single tapespool. A time indexing technique which enables quick access to any desired portion of a recorded tape is also discussed. Typical examples of long period seismic event signals recorded by this system are also illustrated. Various advantages, the system provides over the analog multichannel instrumentation tape recording system, operating at Seismic Array Station for th e last two decades, are also discussed. (author). 7 figs

  10. Fragility estimation for seismically isolated nuclear structures by high confidence low probability of failure values and bi-linear regression

    International Nuclear Information System (INIS)

    Carausu, A.

    1996-01-01

    A method for the fragility estimation of seismically isolated nuclear power plant structure is proposed. The relationship between the ground motion intensity parameter (e.g. peak ground velocity or peak ground acceleration) and the response of isolated structures is expressed in terms of a bi-linear regression line, whose coefficients are estimated by the least-square method in terms of available data on seismic input and structural response. The notion of high confidence low probability of failure (HCLPF) value is also used for deriving compound fragility curves for coupled subsystems. (orig.)

  11. Seismic Applications of Energy Dampers

    OpenAIRE

    Shambhu Sinha

    2004-01-01

    Damping devices based on the operating principle of high velocity fluid flow through orifices have found numerous applications in the shock and vibration isolation of aerospace and defence systems. The study aims to investigate the feasibility of using energy dissipating fluid viscous dampers in structures to protect against seismic loads and to prove analytically and  experimentally that fluid viscous dampers can improve the seismic capacity of a structure by reducing damage and displacement...

  12. Seismic alarm system for Ignalina nuclear power plant

    International Nuclear Information System (INIS)

    Wieland, M.; Griesser, L.; Austin, G.E.; Tiurin, S.; Kuendig, C.

    2001-01-01

    A seismic alarm system will be installed at the Ignalina Nuclear Power Plant (INPP) in Lithuania. There are two reactors, both RMBK 1500 MW units. Each reactor is a water cooled, graphite moderated, channel type reactor. INPP has the most advanced version of the RMBK reactor design series. The first and second units of INPP went into service at the end of 1983 and in August 1987 respectively. Their design lifetime is approx. 30 years. The various buildings and plant have been designed for two earthquake levels, that is the design earthquake and the maximum possible earthquake with peak ground accelerations ranging from 1.2% to 10% of the acceleration due to gravity. Certain parts of the buildings and some of the equipment of the first and second units do not comply with Western seismic standards. As seismic strengthening of the existing buildings and equipment is not feasible economically, a reactor protection system based on an earthquake early warning system was recommended. This system essentially consists of six seismic stations encircling INPP at a radial distance of approx. 30 km and a seventh station at INPP. Each station includes three seismic substations each 500 m apart. The ground motion at each station is measured continuously by three accelerometers and one seismometer. Data is transmitted via telemetry to the control centre at INPP. Early warning alarms are generated if a seismic threshold is exceeded. This paper discusses the characteristics of INPP, the seismic alarm system presently under construction and the experience with other early warning and seismic alarm systems. (author)

  13. Seismic Capacity Estimation of Steel Piping Elbow under Low-cycle Fatigue Loading

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Bub Gyu; Kim, Sung Wan; Choi, Hyoung Suk; Kim, Nam Sik [Pusan National University, Busan (Korea, Republic of); Hahm, Dae Gi [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In some cases, this large relative displacement can increase seismic risk of the isolated facility. Especially, a inelastic behavior of crossover piping system to connect base isolated building and fixed base building can caused by a large relative displacement. Therefore, seismic capacity estimation for isolated piping system is needed to increase safety of nuclear power plant under seismic condition. Dynamic behavior analysis of piping system under seismic condition using shake table tests was performed by Touboul et al in 1995. In accordance with their study, plastic behavior could be occurred at pipe elbow under seismic condition. Experimental researches for dynamic behavior of typical piping system in nuclear power plant have been performed for several years by JNES(Japan Nuclear Energy Safety Organization) and NUPEC(Nuclear Power Engineering Corporation). A low cycle ratcheting fatigue test was performed with scaled model of elbow which is a weakest component in piping system by Mizuno et al. In-plane cyclic loading tests under internal pressure condition were performed to evaluate the seismic capacity of the steel piping elbow. Leakage phenomenon occurred on and near the crown in piping elbow. Those cracks grew up in axial direction. The fatigue curve was estimated from test results. In the fatigue curve, loading amplitude exponentially decreased as the number of cycles increased. A FEM model of piping elbow was modified with test results. The relationships between displacement and force from tests and numerical analysis was well matched.

  14. Technology transfer package on seismic base isolation - Volume III

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-14

    This Technology Transfer Package provides some detailed information for the U.S. Department of Energy (DOE) and its contractors about seismic base isolation. Intended users of this three-volume package are DOE Design and Safety Engineers as well as DOE Facility Managers who are responsible for reducing the effects of natural phenomena hazards (NPH), specifically earthquakes, on their facilities. The package was developed as part of DOE's efforts to study and implement techniques for protecting lives and property from the effects of natural phenomena and to support the International Decade for Natural Disaster Reduction. Volume III contains supporting materials not included in Volumes I and II.

  15. An economical educational seismic system

    Science.gov (United States)

    Lehman, J. D.

    1980-01-01

    There is a considerable interest in seismology from the nonprofessional or amateur standpoint. The operation of a seismic system can be satisfying and educational, especially when you have built and operated the system yourself. A long-period indoor-type sensor and recording system that works extremely well has been developed in the James Madison University Physics Deparment. The system can be built quite economically, and any educational institution that cannot commit themselves to a professional installation need not be without first-hand seismic information. The system design approach has been selected by college students working a project or senior thesis, several elementary and secondary science teachers, as well as the more ambitious tinkerer or hobbyist at home 

  16. Technical specifications for the successful fabrication of laminated seismic isolation bearings

    International Nuclear Information System (INIS)

    Kulak, R.F.

    1992-01-01

    High damping laminated elastomeric bearings are becoming one of the preferred devices for isolating large buildings and structures. IN the United States, the current reference design for the Advanced Liquid Metal Reactor uses laminated bearings for seismic isolation. These bearing are constructed from alternating layers of rubber and steel plates. They are typically designed for shear strains between 50 to 100 percent and expected to sustain two to three times these levels for beyond design basis loading considerations. The technical specifications used to procure these bearings are an important factor in assuring that the bearings that are installed under nuclear structures meet the performance requirements of the design. The key aspects of the current version of the Technical Specifications are discussed in this paper

  17. Seismic investigations for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Barrows, L.J.

    1984-01-01

    Evaporite rocks in the Delaware Basin in southeastern New Mexico are being investigated as a possible site for nuclear waste disposal. Seismic studies have been conducted to establish seismic design criteria and to investigate relations between seismicity and geologic structures. In the initial phase of this study, historical and available seismic data were interpreted with respect to geology. Local instrumentation became available in 1974 when New Mexico Tech installed and began operating a seismic station in the area. Data and interpretation for 1974 through 1979 have been published. In 1980 seismic monitoring of the Northern Delaware Basin was extended to include a six station network of self-contained radio-telemetered seismometers. 9 references, 13 figures

  18. Intercomparison of analysis methods for seismically isolated nuclear structures. Papers and working materials presented at the 3. research coordination meeting

    International Nuclear Information System (INIS)

    1998-01-01

    The Coordinated research program on Intercomparison of analysis methods for seismically isolated nuclear structures involved participants from Italy, Japan, Republic of Korea, Russia, United Kingdom, USA, EC. The purpose of the meeting was to review the progress on the finite element prediction of the force-deformation behaviour of seismic isolators and to discuss the first set of analytical results for the prediction of the response of base-oscillated structures to earthquake inputs. The intercomparison of predictions of bearing behaviour has identified important unexpected issues requiring deeper investigation

  19. Specific issues and proposals in aseismic design technologies (seismic isolation technologies)

    International Nuclear Information System (INIS)

    Fujita, Satoshi

    2000-01-01

    It is examined among engineers to control vibration of buildings and constructions formed by earthquake, and at present various vibration control techniques are in actual use. A vibration isolating structure passing through earthquake, and vibration controlling due to wind are its typical ones, which have been recently and rapidly supplied to actual use through a chance that laminated rubber was researched and developed for a vibration isolation supporting materials capable of supplying to actual use about 15 years ago. However, the active addition mass type vibration controller is not adequate to large earthquake countermeasure from points of addition mass size, drive variation, and limit of control power. For a vibration controller suitable for this aim an energy absorber (damper) of a type set between layers of constructions at present is the most predominant, of which various types are earnestly under research and development. Here were explained on earthquake and its energy, seismic resistant design, vibration isolation structure, and so forth. (G.K.)

  20. Demonstration of NonLinear Seismic Soil Structure Interaction and Applicability to New System Fragility Seismic Curves

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Justin [Idaho National Lab. (INL), Idaho Falls, ID (United States). Nuclear Science and Technology

    2014-09-01

    Risk calculations should focus on providing best estimate results, and associated insights, for evaluation and decision-making. Specifically, seismic probabilistic risk assessments (SPRAs) are intended to provide best estimates of the various combinations of structural and equipment failures that can lead to a seismic induced core damage event. However, in general this approach has been conservative, and potentially masks other important events (for instance, it was not the seismic motions that caused the Fukushima core melt events, but the tsunami ingress into the facility). SPRAs are performed by convolving the seismic hazard (the frequency of certain magnitude events) with the seismic fragility (the conditional probability of failure of a structure, system, or component given the occurrence of earthquake ground motion). In this calculation, there are three main pieces to seismic risk quantification, 1) seismic hazard and nuclear power plants (NPPs) response to the hazard, fragility or capacity of structures, systems and components (SSC), and systems analysis. Figure 1 provides a high level overview of the risk quantification process. The focus of this research is on understanding and removing conservatism (when possible) in the quantification of seismic risk at NPPs.

  1. Seismicity at Old Faithful Geyser: an isolated source of geothermal noise and possible analogue of volcanic seismicity

    Science.gov (United States)

    Kieffer, Susan Werner

    1984-09-01

    Old Faithful Geyser in Yellowstone National Park, U.S.A., is a relatively isolated source of seismic noise and exhibits seismic behavior similar to that observed at many volcanoes, including "bubblequakes" that resemble B-type "earthquakes", harmonic tremor before and during eruptions, and periods of seismic quiet prior to eruptions. Although Old Faithful differs from volcanoes in that the conduit is continuously open, that rock-fracturing is not a process responsible for seismicity, and that the erupting fluid is inviscid H 2O rather than viscous magma, there are also remarkable similarities in the problems of heat and mass recharge to the system, in the eruption dynamics, and in the seismicity. Water rises irregularly into the immediate reservoir of Old Faithful as recharge occurs, a fact that suggests that there are two enlarged storage regions: one between 18 and 22 m (the base of the immediate reservoir) and one between about 10 and 12 m depth. Transport of heat from hot water or steam entering at the base of the recharging water column into cooler overlying water occurs by migration of steam bubbles upward and their collapse in the cooler water, and by episodes of convective overturn. An eruption occurs when the temperature of the near-surface water exceeds the boiling point if the entire water column is sufficiently close to the boiling curve that the propagation of pressure-release waves (rarefactions) down the column can bring the liquid water onto the boiling curve. The process of conversion of the liquid water in the conduit at the onset of an eruption into a two-phase liquid-vapor mixture takes on the order of 30 s. The seismicity is directly related to the sequence of filling and heating during the recharge cycle, and to the fluid mechanics of the eruption. Short (0.2-0.3 s), monochromatic, high-frequency events (20-60 Hz) resembling unsustained harmonic tremor and, in some instances, B-type volcanic earthquakes, occur when exploding or imploding

  2. Improvement of seismic observation systems in JOYO

    International Nuclear Information System (INIS)

    Sumino, Kozo; Suto, Masayoshi; Tanaka, Akihiro

    2013-01-01

    In the experimental fast reactor 'Joyo' in order to perform the seismic observation in and around the building block and ground, SMAC type seismographs had continuously been used for about 38 years. However, this equipment aged, and the 2011 off the Pacific Coast of Tohoku Earthquake on Mach 11, 2011 increased the importance of seismic data of the reactor facilities from the viewpoint of earthquake-proof safety. For these reasons, Joyo updated the system to the seismic observation system reflecting the latest technology/information, while keeping consistency with the observation data of the former seismographs (SMAC type seismograph). This updating improved various problems on the former observation seismographs. In addition, the installation of now observation points in the locations that are important in seismic safety evaluation expanded the data, and further improved the reliability of the seismic observation and evaluation on 'Joyo'. (A.O.)

  3. Seismic response analysis of floating nuclear power plant

    International Nuclear Information System (INIS)

    Hagiwara, Yutaka; Nakamura, Hideharu; Shiojiri, Hiroo

    1988-01-01

    Since Floating Nuclear Power Plants (FNPs) are considered to be isolated from horizontal seismic motion, it is anticipated to reduce seismic load for plant components and buildings on the barge. On the other hand, barge oscillation and sloshing in the closed basin might be excited by earthquakes, because natural periods of those motions correspond to relatively-long period component (between 2 and 20 seconds) of seismic motion. Therefore, it is necessary to evaluate seismic isolation effects and barge oscillation, for the rational design of FNPs. However, there do not exist any reasonable analytical tools which can evaluate seismic response of floating structures in closed basin. The purpose of the present report is to develop a seismic analysis method for FNPs. The proposed method is based on the finite element method, and the formulation includes fluid-structure interaction, water surface wave, buoyancy effect, and non-linear characteristics of mooring system. Response analysis can be executed in both time-domain and frequency-domain. Shaking table tests were conducted to validate the proposed method of analysis. The test results showed significant isolation effect of floating structure, and apparent interaction between the barge and the basin. And 2-D and 3-D frequency domain analyses and the 2-D linear and non-linear time-domain analyses were done and those analyses could simulate the test results well. (author)

  4. Design approach of seismic interface for cryoline with Tokamak building for ITER

    International Nuclear Information System (INIS)

    Badgujar, S.; Sarkar, B.; Vaghela, H.; Shah, N.; Naik, H.B.

    2012-01-01

    ITER Tokamak building is designed with seismic isolation pads to protect the Tokamak components from seismic events. Two main cryolines, designated as cryolines between buildings (Mg and CP), runs from interconnection box in cryoplant building to the Tokamak building. The lines outside Tokamak building are supported by seismically non-isolated supports. The cryoline design at the interface between seismically isolated and non-isolated support systems needs to be studied to fulfill the functional requirements. One of the options for interface, universal expansion joint has been modeled in CATIA with actual thickness of each ply and inter-ply distance, analyzed in ANSYS using contact definition, as a part of the preliminary study. The bellows have been checked by design calculation as per EJMA standard for the specified movements. The paper will present approach for conceptual design of interface, problem definition and boundary conditions, methodology for analysis and preliminary results of stress pattern for expansion joints. (author)

  5. Numerical activities on seismic isolation in Italy

    International Nuclear Information System (INIS)

    Bettinali, F.; Martelli, A.; Bonacina, G.; Olivieri, M.

    1992-01-01

    The numerical activities which are in progress in Italy in the framework of the seismic isolation studies mainly concern the definition of models for bearings and isolated structures, and their use for test design and the analysis of experimental results. Simple bearing models have been set up, and the development of finite-element (f.e.) three-dimensional (3D) and 2D axisymmetric models is in progress. simple models have been based on the results of single bearing tests: models formed by a spring in parallel to a viscous damper, where both horizontal stiffness and viscous damping vary with displacements, have been developed by ENEA. Models based on hysteretic damping have also been developed by DISP and ISMES. Detailed bearing models include separate elements for the rubber and steel plates. A 3D model has been implemented by ENEA in the ABAQUS code. Linear elastic calculations have been performed with this model. The implementation of an elastic-plastic model for steel is also being completed, together with that of a hyper elastic model of the rubber, based on tests on specimens. Detailed models will be validated based on measured data. They will be used for bearing design and analysis of the effects of defects: some bearings with artificial defects have been fabricated to this purpose. As to the isolated structures, finite-difference programs were set up for the analysis of such structures in the case that they can be represented by sets of one-degree-of-freedom oscillators. The program ISOLA includes the aforementioned simple bearing model of ENEA, where both stiffness and damping depend on displacement and the effects of viscous creep are accounted for. A similar program has been based on the bearing model developed at ISMES. These models have been successfully used to analyse the experimental results concerning both isolated structure mock-ups and actual isolated buildings, based on the single bearing test data for both horizontal stiffness and damping (see a

  6. Development of Vertical Cable Seismic System

    Science.gov (United States)

    Asakawa, E.; Murakami, F.; Sekino, Y.; Okamoto, T.; Ishikawa, K.; Tsukahara, H.; Shimura, T.

    2011-12-01

    In 2009, Ministry of Education, Culture, Sports, Science and Technology(MEXT) started the survey system development for Hydrothermal deposit. We proposed the Vertical Cable Seismic (VCS), the reflection seismic survey with vertical cable above seabottom. VCS has the following advantages for hydrothermal deposit survey. (1) VCS is an efficient high-resolution 3D seismic survey in limited area. (2) It achieves high-resolution image because the sensors are closely located to the target. (3) It avoids the coupling problems between sensor and seabottom that cause serious damage of seismic data quality. (4) Because of autonomous recording system on sea floor, various types of marine source are applicable with VCS such as sea-surface source (GI gun etc.) , deep-towed or ocean bottom source. Our first experiment of 2D/3D VCS surveys has been carried out in Lake Biwa, JAPAN, in November 2009. The 2D VCS data processing follows the walk-away VSP, including wave field separation and depth migration. Seismic Interferometry technique is also applied. The results give much clearer image than the conventional surface seismic. Prestack depth migration is applied to 3D data to obtain good quality 3D depth volume. Seismic Interferometry technique is applied to obtain the high resolution image in the very shallow zone. Based on the feasibility study, we have developed the autonomous recording VCS system and carried out the trial experiment in actual ocean at the water depth of about 400m to establish the procedures of deployment/recovery and to examine the VC position or fluctuation at seabottom. The result shows that the VC position is estimated with sufficient accuracy and very little fluctuation is observed. Institute of Industrial Science, the University of Tokyo took the research cruise NT11-02 on JAMSTEC R/V Natsushima in February, 2011. In the cruise NT11-02, JGI carried out the second VCS survey using the autonomous VCS recording system with the deep towed source provided by

  7. Investigation of base isolation for fast breeder reactor building

    International Nuclear Information System (INIS)

    Morishita, M.; Kobatake, M.; Ohta, K.; Okada, Y.

    1989-01-01

    Achievement of great rationalization for seismic-resistant design of equipment system is necessary and indispensable from the viewpoints of economical and structural validity for a fast breeder reactor to be made practical. The method of reducing seismic loads on the building and equipment by application of base isolation may be an effective method, but in application to nuclear facilities, it will become necessary to examine the feasibility to actual design considering the severe seismic design requirements in Japan. With these considerations as the background, the authors carried out analytical studies from various viewpoints such as restoring force characteristics of base isolation device, influence of input earthquake motion, soil-structure interaction in base- isolated structure, etc. in case of providing base isolation system for a fast breeder reactor building. Based on these analytical studies, vibration tests on a base-isolated structure using a triaxial shaking table and simulation analyses of the tests were performed attempting to verify the effectiveness of the base isolation system and appropriateness of the analysis method. Results are presented

  8. Status of Italian test data on seismic isolators and comparison with computer predictions

    International Nuclear Information System (INIS)

    Forni, M.; Martelli, A.; Dusi, A.; Bettinali, F.

    1993-01-01

    In this paper the reliability of finite element model (FEM) for simulating the behaviour of high damping rubber bearings (HDRBs) is presented. R and D work on seismic isolation development and application, with particular regard to the numerical modelling, is in progress in Italy and encouraging results have already been obtained. Recently, 'optimized' and 'further optimized' isolators were designed, manufactured and tested in the framework of a co-operation among Italian and European partners (ENEL et al., 1993). For all the devices, numerical investigations have been carried out up to very large strains and the response of the FEMs has been verified against experimental evidence. (author)

  9. San Onofre/Zion auxiliary feedwater system seismic fault tree modeling

    International Nuclear Information System (INIS)

    Najafi, B.; Eide, S.

    1982-02-01

    As part of the study for the seismic evaluation of the San Onofre Unit 1 Auxiliary Feedwater System (AFWS), a fault tree model was developed capable of handling the effect of structural failure of the plant (in the event of an earthquake) on the availability of the AFWS. A compatible fault tree model was developed for the Zion Unit 1 AFWS in order to compare the results of the two systems. It was concluded that if a single failure of the San Onofre Unit 1 AFWS is to be prevented, some weight existing, locally operated locked open manual valves have to be used for isolation of a rupture in specific parts of the AFWS pipings

  10. Seismic response characteristics of full-size buildings with base isolation system

    International Nuclear Information System (INIS)

    Wang, C.Y.; Gvildys, J.

    1991-01-01

    This paper investigates the response characteristics of full-size reinforced concrete buildings via numerical simulations and actual observations. The test facility consists of two identical three-story buildings constructed side by side at Tohoku University in Sendai, Japan. Since the installation of high-damping isolation bearings in April 1989, data from over twenty earthquakes have been recorded. In this paper, three representative earthquake records, No. 2, No. 6, and No. 17 are used to study the detailed response characteristics. Numerical simulations are carried out with the system response program, SISEC. In general, good agreement has been found between numerical solutions and actual observations. The system is stiff enough to prevent the building displacement under minor earthquakes and wind loads, but is relatively soft for reducing the acceleration response during earthquakes with moderate and strong ground motion. Lessons learned in this effort are applicable to base isolation design of nuclear power plants. 7 refs., 16 figs., 3 tabs

  11. Seismic assessment of air-cooled type emergency electric power supply system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    JNES initiated seismic assessment programs to develop seismic review criterions for the air-cooled system (diesel generator, gas turbine generator), which will be newly installed for enhancing the diversity of emergency electric power supply system. Five principal subjects are involved in the programs: two subjects for fiscal 2011 and three ones for fiscal 2012 and 2013. The summary of outcomes is as follows: 1) Past capacity test data and related technical issues (2011). Seismic capacity data obtained from past seismic shaking tests were investigated. 2) Test programs based on the investigation of system specification (2011). Design specifications for the air-cooled system were investigated. 3) Large Air Fin Cooler (AFC) one unit model seismic capacity test and quantitative seismic capacity evaluation. AFC one unit model seismic capacity tests were conducted and quantitative seismic capacities were evaluated. (author)

  12. Seismic assessment of air-cooled type emergency electric power supply system

    International Nuclear Information System (INIS)

    2013-01-01

    JNES initiated seismic assessment programs to develop seismic review criterions for the air-cooled system (diesel generator, gas turbine generator), which will be newly installed for enhancing the diversity of emergency electric power supply system. Five principal subjects are involved in the programs: two subjects for fiscal 2011 and three ones for fiscal 2012 and 2013. The summary of outcomes is as follows: 1) Past capacity test data and related technical issues (2011). Seismic capacity data obtained from past seismic shaking tests were investigated. 2) Test programs based on the investigation of system specification (2011). Design specifications for the air-cooled system were investigated. 3) Large Air Fin Cooler (AFC) one unit model seismic capacity test and quantitative seismic capacity evaluation. AFC one unit model seismic capacity tests were conducted and quantitative seismic capacities were evaluated. (author)

  13. Study for the prediction of the long-term durability of seismic isolators

    International Nuclear Information System (INIS)

    Fujita, T.; Ishida, K.; Mazda, T.; Nishikawa, I.; Muramatsu, Y.; Hamanaka, T.; Yoshizawa, T.; Sueyasu, T.

    1994-01-01

    The application of seismic rubber isolators is considered as one of the steps in assuring the reliability and safe operation of the Fast Breeder Reactor Plant. In order to propose a precise test method for estimating the durability of seismic isolators, we examined the depth-dependent profiles of tensile properties in thick natural rubber blocks after thermal aging at 60-100 degrees C. The results of this study established the following conclusions: After thermal aging, the rubber blocks exhibited heterogeneous degradation behavior. These rubber blocks could be divided into two areas, the oxidative degraded area near the surface showing large changes in the properties, and the thermal degraded area in the interior showing small property changes. It was established that the depth of oxidation showed temperature dependence, with greater depth of oxidation at lower temperatures. There was also found to be a linear relationship between the logarithm of the depth of oxidation and the reciprocal of the absolute temperature. As a result, the depths of oxidation at normal temperature may be estimated to depths of 6-10 cm. Having calculated the activation energy at depths of 2 mm each from the surface in the oxidative degraded area, it was found that the activation energy held a fixed value independent of depth. 7 refs., 6 figs., 2 tabs

  14. Feasibility of seismic alert systems in India

    International Nuclear Information System (INIS)

    Chauhan, P.K.S.; Pandey, Y.

    2012-01-01

    Natural disasters like flood, earthquakes and cyclones are very frequent in India since historical times. As far as the casualties are concerned, globally earthquakes are second in the list after the flood. The loss of property due to these earthquakes is huge and enormous. In the light of the present knowledge base, earthquake prediction is far from being a reality. An early earthquake warning has potential to save the precious human lives. In the present day scenario seismic instrumentation and telecommunication permits the implementation of seismic alert system (SAS) based on the real-time measurement of ground motions near the source. SAS is capable of providing a warning of several seconds before the arrival of destructive seismic waves caused by a large earthquake. SAS is successfully operational in many countries of the world. In a country, like India where earthquakes are taking heavy toll on the human lives and property, seismic alert system may prove to be very important step in natural hazard mitigation strategy. In this paper, an attempt has been made to compute the available alarm time before the destructive earthquake waves reaches to the cities like Delhi, Lucknow, Patna and Kolkata taking Himalaya as the source and feasibility of seismic alert system in Indian scenario. (author)

  15. Seismic response of uplifting concrete gravity dams

    International Nuclear Information System (INIS)

    Leger, P.; Sauve, G.; Bhattacharjee, S.

    1992-01-01

    The foundation interaction effects on the seismic response of dam-foundation systems have generally been studied using the linear elastic finite element models. In reality, the foundation can not develop effective tensile stresses to a significant degree along the interface. A two-dimensional finite element model, in which nonlinear gap elements are used at the dam-foundation interface to determine the uplift response of concrete gravity dams subjected to seismic loads, is presented. Time domain analyses were performed for a wide range of modelling assumptions such as dam height, interface uplift pressure, interface mesh density, and earthquake input motions, that were systematically varied to find their influence on the seismic response. The nonlinear interface behavior generally reduces the seismic response of dam-foundation systems acting as a seismic isolation mechanism, and may increase the safety against sliding by reducing the base shear transmitted to the foundation. 4 refs., 5 figs., 6 tabs

  16. Mechanical Systems based on Dry Friction Force used for Building Isolation against Seismic Actions

    Directory of Open Access Journals (Sweden)

    Fanel Dorel Şcheaua

    2017-11-01

    Full Text Available Today there are multiple solutions intended to avoid the earthquake damaging effects on building structures. There are methods based on the use of special mechanical systems attached directly to the structure's resistance frames, by means of which an improved building behavior is achieved during the earthquake. The systems used work on the principle of structure base isolation based on the dry friction force (Coulomb friction. Some constructive types of these isolation systems patterns are described in this paper

  17. Seismic monitoring: a unified system for research and verifications

    International Nuclear Information System (INIS)

    Thigpen, L.

    1979-01-01

    A system for characterizing either a seismic source or geologic media from observational data was developed. This resulted from an examination of the forward and inverse problems of seismology. The system integrates many seismic monitoring research efforts into a single computational capability. Its main advantage is that it unifies computational and research efforts in seismic monitoring. 173 references, 9 figures, 3 tables

  18. Seismic proving test of BWR primary loop recirculation system

    International Nuclear Information System (INIS)

    Sato, H.; Shigeta, M.; Karasawa, Y.

    1987-01-01

    The seismic proving test of BWR Primary Loop Recirculation system is the second test to use the large-scale, high-performance vibration table of Tadotsu Engineering Laboratory. The purpose of this test is to prove the seismic reliability of the primary loop recirculation system (PLR), one of the most important safety components in the BWR nuclear plants, and also to confirm the adequacy of seismic analysis method used in the current seismic design. To achieve the purpose, the test was conducted under conditions and scale as near as possible to actual systems. The strength proving test was carried out with the test model mounted on the vibration table in consideration of basic design earthquake ground motions and other conditions to confirm the soundness of structure and the strength against earthquakes. Detailed analysis and analytic evaluation of the data obtained from the test was conducted to confirm the adequacy of the seismic analysis method and earthquake response analysis method used in the current seismic design. Then, on the basis of the results obtained, the seismic safety and reliability of BWR primary loop recirculation of the actual plants was fully evaluated

  19. Seismic Base Isolators For A Silo Supporting Structure

    Directory of Open Access Journals (Sweden)

    Bîtcă Daniel

    2015-05-01

    Full Text Available A 3000 tones capacity silo, located in a seismic area with ground acceleration ag = 0,20g and TC =1,0s, was designed in a classical solution The supporting structure has an octagonal shape in planview, and columns with “Maltese cross sections”. The main lateral resisting system is made up of centric bracings with cross-section class I.

  20. Summary of experimental tests of elastomeric seismic isolation bearings for use in nuclear reactor plants

    International Nuclear Information System (INIS)

    Seidensticker, R.W.; Chang, Y.W.; Kulak, R.F.

    1992-01-01

    This paper describes an experimental test program for isolator bearings which was developed to help establish the viability of using laminated elastomer bearings for base isolation of nuclear reactor plants. The goal of the test program is to determine the performance characteristics of laminated seismic isolation bearings under a wide range of loadings. Tests were performed on scale-size laminated seismic isolators both within the design shear strain range to determine the response of the bearing under expected earthquake loading conditions, and beyond the design range to determine failure modes and to establish safety margins. Three types of bearings, each produced from a different manufacturer, have been tested: (1) high shape factor-high damping-high shear modulus bearings; (2) medium shape factor-high damping-high shear modulus bearings; and (3) medium shape factor-high damping-low shear modulus bearings. All of these tests described in this report were performed at the Earthquake Engineering Research Center at the University of California, Berkeley, with technical assistance from ANL. The tests performed on the three types of bearings have confirmed the high performance characteristics of the high damping-high and low shear modulus elastomeric bearings. The bearings have shown that they are capable of having extremely large shear strains before failure occurs. The most common failure mechanism was the debonding of the top steel plate from the isolators. This failure mechanism can be virtually eliminated by improved manufacturing quality control. The most important result of the failure test of the isolators is the fact that bearings can sustain large horizontal displacement, several times larger than the design value, with failure. Their performance in moderate and strong earthquakes will be far superior to conventional structures

  1. Seismic qualification of PWR plant auxiliary feedwater systems

    International Nuclear Information System (INIS)

    Lu, S.C.; Tsai, N.C.

    1983-08-01

    The NRC Standard Review Plan specifies that the auxiliary feedwater (AFW) system of a pressurized water reactor (PWR) is a safeguard system that functions in the event of a Safe Shutdown Earthquake (SSE) to remove the decay heat via the steam generator. Only recently licensed PWR plants have an AFW system designed to the current Standard Review Plan specifications. The NRC devised the Multiplant Action Plan C-14 in order to make a survey of the seismic capability of the AFW systems of operating PWR plants. The purpose of this survey is to enable the NRC to make decisions regarding the need of requiring the licensees to upgrade the AFW systems to an SSE level of seismic capability. To implement the first phase of the C-14 plan, the NRC issued a Generic Letter (GL) 81-14 to all operating PWR licensees requesting information on the seismic capability of their AFW systems. This report summarizes Lawrence Livermore National Laboratory's efforts to assist the NRC in evaluating the status of seismic qualification of the AFW systems in 40 PWR plants, by reviewing the licensees' responses to GL 81-14

  2. Seismic qualification of a commercial grade emergency diesel generator system in high seismic zones

    International Nuclear Information System (INIS)

    Khan, Mohsin R.; Chen, Wayne W.H.; Chu, Winnie S.

    2004-01-01

    The paper presents the seismic qualification of a commercially procured emergency diesel generator (EDG) system for use in a nuclear power plant. Response spectrum analyses of finite element models, validated using in situ vibration test data, were performed to qualify the skid and floor mounted mechanical components whose functional capacity and structural integrity can be analyzed. Time history analyses of these models were also performed to obtain the amplified response spectra for seismic testing of small valves, electrical and electro-mechanical components whose functional capacity can not be analyzed to establish the seismic qualification. The operational loads were obtained by in-plant vibration monitoring. Full scale shake table testing was performed for auxiliary electrical cabinets. It is concluded that with some minor structural modifications, a commercial grade EDG system can be qualified for safety-related applications in nuclear power plants located in high seismic zones. (author)

  3. Systems considerations in seismic margin evaluations

    International Nuclear Information System (INIS)

    Buttermer, D.R.

    1987-01-01

    Increasing knowledge in the geoscience field has led to the understanding that, although highly unlikely, it is possible for a nuclear power plant to be subjected to earthquake ground motion greater than that for which the plant was designed. While it is recognized that there are conservatisms inherent in current design practices, interest has developed in evaluating the seismic risk of operating plants. Several plant-specific seismic probabilistic risk assessments (SPRA) have been completed to address questions related to the seismic risk of a plant. The results from such SPRAs are quite informative, but such studies may entail a considerable amount of expensive analysis of large portions of the plant. As an alternative to an SPRA, it may be more practical to select an earthquake level above the design basis for which plant survivability is to be demonstrated. The principal question to be addressed in a seismic margin evaluation is: At what ground motion levels does one have a high confidence that the probability of seismically induced core damage is sufficiently low? In a seismic margin evaluation, an earthquake level is selected (based on site-specific geoscience considerations) for which a stable, long-term safe shutdown condition is to be demonstrated. This prespecified earthquake level is commonly referred to as the seismic margin earthquake (SME). The Electric Power Research Institute is currently supporting a research project to develop procedures for use by the utilities to allow them to perform nuclear plant seismic margin evaluations. This paper describes the systems-related aspects of these procedures

  4. Equipment response spectra for base-isolated shear beam structures

    International Nuclear Information System (INIS)

    Ahmadi, G.; Su, L.

    1992-01-01

    Equipment response spectra in base-isolated structure under seismic ground excitations are studied. The equipment is treated as a single-degree-of-freedom system attached to a nonuniform elastic beam structural model. Several leading base isolation systems, including the laminated rubber bearing, the resilient-friction base isolator with and without a sliding upper plate, and the EDF system are considered. Deflection and acceleration response spectra for the equipment and the shear beam structure subject to a sinusoidal and the accelerogram of the N00W component of El Centro 1940 earthquake are evaluated. Primary-secondary interaction effects are included in the analysis. Several numerical parametric studies are carried out and the effectiveness of different base isolation systems in protecting the nonstructural components is studied. It is shown that use of properly designed base isolation systems provides considerable protection for secondary systems, as well as, the structure against severe seismic loadings. (orig.)

  5. Seismic isolation of two dimensional periodic foundations

    International Nuclear Information System (INIS)

    Yan, Y.; Mo, Y. L.; Laskar, A.; Cheng, Z.; Shi, Z.; Menq, F.; Tang, Y.

    2014-01-01

    Phononic crystal is now used to control acoustic waves. When the crystal goes to a larger scale, it is called periodic structure. The band gaps of the periodic structure can be reduced to range from 0.5 Hz to 50 Hz. Therefore, the periodic structure has potential applications in seismic wave reflection. In civil engineering, the periodic structure can be served as the foundation of upper structure. This type of foundation consisting of periodic structure is called periodic foundation. When the frequency of seismic waves falls into the band gaps of the periodic foundation, the seismic wave can be blocked. Field experiments of a scaled two dimensional (2D) periodic foundation with an upper structure were conducted to verify the band gap effects. Test results showed the 2D periodic foundation can effectively reduce the response of the upper structure for excitations with frequencies within the frequency band gaps. When the experimental and the finite element analysis results are compared, they agree well with each other, indicating that 2D periodic foundation is a feasible way of reducing seismic vibrations.

  6. Floor Response Spectra of a Base Isolated Auxiliary Building in Different Temperature Environments

    International Nuclear Information System (INIS)

    Park, Junhee; Choun, Youngsun; Choi, Inkil

    2013-01-01

    It is necessary to investigate the aging effect of degradation factors and to evaluate the seismic response of base isolated NPPs with age-related degradation. In this study, the seismic responses for NPPs using high damping rubber bearing with age-related degradation in different temperature were investigated by performing a nonlinear time history analysis. The floor response spectrums (FRS) were presented with time in different temperature environments. The degradation of HRB is found to be particularly sensitive to the ambient temperature. The increase of HRB stiffness leads to the increase of FRS it was observed that the seismic demand for equipment located in the AUX was changed. Therefore it is required that the seismic evaluation for the isolation system (e. g. isolators, equipment located in isolated structure) is performed considering the temperature environments. From the seismic fragility analysis, the seismic capacity of cabinet was affected by the degradation of HRB. Therefore the isolators in the isolated buildings should be carefully designed and manufactured considering the degradation during the life time

  7. Seismic analysis of a nonlinear airlock system

    International Nuclear Information System (INIS)

    Huang, S.N.

    1983-01-01

    The containment equipment airlock door of the Fast Flux Test Facility utilizes screw-type actuators as a push-pull mechanism for closing and opening operations. Special design features were used to protect these actuators from pressure differential loading. These made the door behave as a nonlinear system during a seismic event. Seismic analyses, utilizing the time history method, were conducted to determine the seismic loads on these scew-type actuators. Several sizes of actuators were examined. Procedures for determining the final optimum design are discussed in detail

  8. Seismic Level 2 PSA

    International Nuclear Information System (INIS)

    Dirksen, Gerben; Pellissetti, Manuel; Duncan-Whiteman, Paul

    2014-01-01

    For most external events, the calculation of the core damage frequency (CDF) in Level 1 PSA is sufficient to be able to show that the contribution of the event to the plant risk is negligible. However, it is not sufficient to compare the CDF due to the external event to the total plant CDF; instead the Level 1 PSA result for the event should be compared to the large early release frequency (LERF), or alternatively arguments should be given why the CDF from the external event will not contribute mostly to LERF. For seismic events in particular, it can often not be easily excluded that sequences leading to core damage would not also result in LERF. Since the confinement function is one of the most essential functions for Level 2 PSA, special care must be taken of the containment penetrations. For example systems with containment penetrations that are normally closed during operation or are designed to withstand more than the maximum containment pressure are normally screened out in the Level 2 PSA for the containment isolation function, however the possibility of LOCA in such systems due to an earthquake may nevertheless lead to containment bypass. Additionally, the functionality of passive features may be compromised in case of a beyond design earthquake. In the present paper, we present crucial ingredients of a methodology for a Level 2 seismic PSA. This methodology consists of the following steps: Extension of the seismic equipment list (SEL) to include Level 2 PSA relevant systems (e.g. containment isolation system, features for core melt stabilization, hydrogen mitigation systems), Determination of the systems within the existing SEL with increased demands in case of severe accidents, Determination of essential components for which a dedicated fragility analysis needs to be performed. (author)

  9. GSETT-3: testing the experimental international seismic monitoring system

    International Nuclear Information System (INIS)

    Ringdal, Frode

    1995-01-01

    Global seismic monitoring system has been developed by the Conference on Disarmaments (CDs) ad hoc group of scientific experts to consider international cooperative measures to detect and identify seismic events (the GSE), based in Geneva. In the course of its work, the GSE has conducted two large-scale global technical tests, Global Seismic Events Technical Test-1 (GSETT-1) in 1984 and GSETT-2 in 1991. The GSE has now embarked upon its third and most ambitious technical test, GSETT-3, which will encompass the development, testing and evaluation of a working prototype of the eventual Comprehensive Test Ban Treaty (CTBT) seismic monitoring system

  10. Optical seismic sensor systems and methods

    Science.gov (United States)

    Beal, A. Craig; Cummings, Malcolm E.; Zavriyev, Anton; Christensen, Caleb A.; Lee, Keun

    2015-12-08

    Disclosed is an optical seismic sensor system for measuring seismic events in a geological formation, including a surface unit for generating and processing an optical signal, and a sensor device optically connected to the surface unit for receiving the optical signal over an optical conduit. The sensor device includes at least one sensor head for sensing a seismic disturbance from at least one direction during a deployment of the sensor device within a borehole of the geological formation. The sensor head includes a frame and a reference mass attached to the frame via at least one flexure, such that movement of the reference mass relative to the frame is constrained to a single predetermined path.

  11. Extreme earthquake response of nuclear power plants isolated using sliding bearings

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Manish, E-mail: mkumar@iitgn.ac.in [Department of Civil Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar 382355 (India); Whittaker, Andrew S.; Constantinou, Michael C. [Department of Civil, Structural and Environmental Engineering, University at Buffalo, Buffalo, NY 14260 (United States)

    2017-05-15

    Highlights: • Response-history analysis of a nuclear power plant (NPP) isolated using sliding bearings. • Two models of the NPP, five friction models and four seismic hazard levels considered. • Isolation system displacement can be obtained using a macro NPP model subjected to only horizontal ground motions. • Temperature dependence of friction should be considered in isolation-system displacement calculations. • The effect of friction model on floor spectral ordinates is rather small, especially near the basemat. - Abstract: Horizontal seismic isolation is a viable approach to mitigate risk to structures, systems and components (SSCs) in nuclear power plants (NPPs) under extreme ground shaking. This paper presents a study on an NPP seismically isolated using single concave Friction Pendulum™ (FP) bearings subjected to ground motions representing seismic hazard at two US sites: Diablo Canyon and Vogtle. Two models of the NPP, five models to describe friction at the sliding surface of the FP bearings, and four levels of ground shaking are considered for response-history analysis, which provide insight into the influence of 1) the required level of detail of an NPP model, 2) the vertical component of ground motion on response of isolated NPPs, and 3) the pressure-, temperature- and/or velocity-dependencies of the coefficient of friction, on the response of an isolated NPP. The isolation-system displacement of an NPP can be estimated using a macro model subjected to only the two orthogonal horizontal components of ground motion. The variation of the coefficient of friction with temperature at the sliding surface during earthquake shaking should be accounted for in the calculation of isolation-system displacements, particularly when the shaking intensity is high; pressure and velocity dependencies are not important. In-structure floor spectra should be computed using a detailed three-dimensional model of an isolated NPP subjected to all three components of

  12. Origins of a national seismic system in the United States

    Science.gov (United States)

    Filson, John R.; Arabasz, Walter J.

    2016-01-01

    This historical review traces the origins of the current national seismic system in the United States, a cooperative effort that unifies national, regional, and local‐scale seismic monitoring within the structure of the Advanced National Seismic System (ANSS). The review covers (1) the history and technological evolution of U.S. seismic networks leading up to the 1990s, (2) factors that made the 1960s and 1970s a watershed period for national attention to seismology, earthquake hazards, and seismic monitoring, (3) genesis of the vision of a national seismic system during 1980–1983, (4) obstacles and breakthroughs during 1984–1989, (5) consensus building and convergence during 1990–1992, and finally (6) the two‐step realization of a national system during 1993–2000. Particular importance is placed on developments during the period between 1980 and 1993 that culminated in the adoption of a charter for the Council of the National Seismic System (CNSS)—the foundation for the later ANSS. Central to this story is how many individuals worked together toward a common goal of a more rational and sustainable approach to national earthquake monitoring in the United States. The review ends with the emergence of ANSS during 1999 and 2000 and its statutory authorization by Congress in November 2000.

  13. IDEF method for designing seismic information system in CTBT verification

    International Nuclear Information System (INIS)

    Zheng Xuefeng; Shen Junyi; Jin Ping; Zhang Huimin; Zheng Jiangling; Sun Peng

    2004-01-01

    Seismic information system is of great importance for improving the capability of CTBT verification. A large amount of money has been appropriated for the research in this field in the U.S. and some other countries in recent years. However, designing and developing a seismic information system involves various technologies about complex system design. This paper discusses the IDEF0 method to construct function models and the IDEF1x method to make information models systemically, as well as how they are used in designing seismic information system in CTBT verification. (authors)

  14. Advanced Seismic While Drilling System

    Energy Technology Data Exchange (ETDEWEB)

    Robert Radtke; John Fontenot; David Glowka; Robert Stokes; Jeffery Sutherland; Ron Evans; Jim Musser

    2008-06-30

    . An APS Turbine Alternator powered the SeismicPULSER{trademark} to produce two Hz frequency peak signals repeated every 20 seconds. Since the ION Geophysical, Inc. (ION) seismic survey surface recording system was designed to detect a minimum downhole signal of three Hz, successful performance was confirmed with a 5.3 Hz recording with the pumps running. The two Hz signal generated by the sparker was modulated with the 3.3 Hz signal produced by the mud pumps to create an intense 5.3 Hz peak frequency signal. The low frequency sparker source is ultimately capable of generating selectable peak frequencies of 1 to 40 Hz with high-frequency spectra content to 10 kHz. The lower frequencies and, perhaps, low-frequency sweeps, are needed to achieve sufficient range and resolution for realtime imaging in deep (15,000 ft+), high-temperature (150 C) wells for (a) geosteering, (b) accurate seismic hole depth, (c) accurate pore pressure determinations ahead of the bit, (d) near wellbore diagnostics with a downhole receiver and wired drill pipe, and (e) reservoir model verification. Furthermore, the pressure of the sparker bubble will disintegrate rock resulting in an increased overall rates of penetration. Other applications for the SeismicPULSER{trademark} technology are to deploy a low-frequency source for greater range on a wireline for Reverse Vertical Seismic Profiling (RVSP) and Cross-Well Tomography. Commercialization of the technology is being undertaken by first contacting stakeholders to define the value proposition for rig site services utilizing SeismicPULSER{trademark} technologies. Stakeholders include national oil companies, independent oil companies, independents, service companies, and commercial investors. Service companies will introduce a new Drill Bit SWD service for deep HTHP wells. Collaboration will be encouraged between stakeholders in the form of joint industry projects to develop prototype tools and initial field trials. No barriers have been identified

  15. Extreme loads seismic testing of conduit systems

    International Nuclear Information System (INIS)

    Howard, G.E.; Ibanez, P.; Harrison, S.; Shi, Z.T.

    1991-01-01

    Rigid steel conduit (thin-wall tubes with threaded connections) containing electrical cabling are a common feature in nuclear power plants. Conduit systems are in many cases classified in U.S.A. practice as Seismic Category I structures. this paper summarizes results and others aspects of a dynamic test program conducted to investigate conduit systems seismic performance under three-axis excitation for designs representative at a nuclear power plant sited near Ft. Worth, Texas (a moderate seismic zone), with a Safe Shutdown Earthquake (SSE) of 0.12 g. Test specimens where subjected to postulated seismic events, including excitation well in excess of Safe Shutdown Earthquake events typical for U.S.A. nuclear power stations. A total of 18 conduit systems of 9-meter nominal lengths were shake table mounted and subjected to a variety of tests. None of the specimens suffered loss of load capacity when subjected to a site-enveloping Safe Shutdown Earthquake (SSE). Clamp/attachment hardware failures only began to occur when earthquake input motion was scaled upward to minimum values of 2.3-4.6 times site enveloping SSE response spectra. Tensile and/or shear failure of clamp attachment bolts or studs was the failure mode in all case in which failure was induced. (author)

  16. Seismic evaluation of piping systems using screening criteria

    International Nuclear Information System (INIS)

    Campbell, R.D.; Landers, D.F.; Minichiello, J.C.; Slagis, G.C.; Antaki, G.A.

    1994-01-01

    This document may be used by a qualified review team to identify potential sources of seismically induced failure in a piping system. Failure refers to the inability of a piping system to perform its expected function following an earthquake, as defined in Table 1. The screens may be used alone or with the Seismic Qualification Utility Group -- Generic Implementation Procedure (SQUG-GIP), depending on the piping system's required function, listed in Table 1. Features of a piping system which do not the screening criteria are called outliers. Outliers must either be resolved through further evaluations, or be considered a potential source of seismically induced failure. Outlier evaluations, which do not necessarily require the qualification of a complete piping system by stress analysis, may be based on one or more of the following: simple calculations of pipe spans, search of the test or experience data, vendor data, industry practice, etc

  17. Seismic fragility test of a 6-inch diameter pipe system

    International Nuclear Information System (INIS)

    Chen, W.P.; Onesto, A.T.; DeVita, V.

    1987-02-01

    This report contains the test results and assessments of seismic fragility tests performed on a 6-inch diameter piping system. The test was funded by the US Nuclear Regulatory Commission (NRC) and conducted by ETEC. The objective of the test was to investigate the ability of a representative nuclear piping system to withstand high level dynamic seismic and other loadings. Levels of loadings achieved during seismic testing were 20 to 30 times larger than normal elastic design evaluations to ASME Level D limits would permit. Based on failure data obtained during seismic and other dynamic testing, it was concluded that nuclear piping systems are inherently able to withstand much larger dynamic seismic loadings than permitted by current design practice criteria or predicted by the probabilistic risk assessment (PRA) methods and several proposed nonlinear methods of failure analysis

  18. Seismic design standardization of nuclear facilities

    International Nuclear Information System (INIS)

    Reddy, G.R.; Vaze, K.K.

    2011-01-01

    Full text: Structures, Systems and Components (SSCs) of Nuclear Facilities have to be designed for normal operating loads such as dead weight, pressure, temperature etc., and accidental loads such as earthquakes, floods, extreme, wind air craft impact, explosions etc. Man made accidents such as aircraft impact, explosions etc., some times may be considered as design basis event and some times taken care by providing administrative controls. This will not be possible in the case of natural events such as earthquakes, flooding, extreme winds etc. Among natural events earthquakes are considered as most devastating and need to be considered as design basis event. It is generally felt design of SSCs for earthquake loads is very time consuming and expensive. Conventional seismic design approaches demands for large number of supports for systems and components. This results in large space occupation and in turn creates difficulties for maintenance and in service inspection of systems and components. In addition, complete exercise of design need to be repeated for plants being located at different sites due to different seismic demands. However, advanced seismic response control methods will help to standardize the seismic design meeting the safety and economy. These methods adopt passive, semi active and active devices, and base isolators to control the seismic response. In nuclear industry, it is advisable to go for passive devices to control the seismic responses. Ideally speaking, these methods will make the designs made for normal loads can also satisfy the seismic demand without calling for change in material, geometry, layout etc. in the SSCs. This paper explain the basic ideas of seismic response control methods, demonstrate the effectiveness of control methods through case studies and eventually give the procedure to be adopted for seismic design standardization of nuclear facilities

  19. Status of initial phase of site-specific seismic monitoring: Basalt Waste Isolation Project

    International Nuclear Information System (INIS)

    Rohay, A.C.

    1981-01-01

    This report presents the status of the initial phase of site-specific seismic monitoring work conducted under the Basalt Waste Isolation Project. This work is currently organized under two main elements: (1) a portable array; and (2) a baseline data collection array. Progress toward the development of each array is discussed along with an interpretation of preliminary data obtained from the test of a borehole seismometer at potential repository depths. The text is supplemented by nine figures and one table. 9 figs., 1 tab

  20. Seismic design of piping systems

    International Nuclear Information System (INIS)

    Anglaret, G.; Beguin, J.L.

    1986-01-01

    This paper deals with the method used in France for the PWR nuclear plants to derive locations and types of supports of auxiliary and secondary piping systems taking earthquake in account. The successive steps of design are described, then the seismic computation method and its particular conditions of applications for piping are presented. The different types of support (and especially seismic ones) are described and also their conditions of installation. The method used to compare functional tests results and computation results in order to control models is mentioned. Some experiments realised on site or in laboratory, in order to validate models and methods, are presented [fr

  1. Automatic seismic support design of piping system by an object oriented expert system

    International Nuclear Information System (INIS)

    Nakatogawa, T.; Takayama, Y.; Hayashi, Y.; Fukuda, T.; Yamamoto, Y.; Haruna, T.

    1990-01-01

    The seismic support design of piping systems of nuclear power plants requires many experienced engineers and plenty of man-hours, because the seismic design conditions are very severe, the bulk volume of the piping systems is hyge and the design procedures are very complicated. Therefore we have developed a piping seismic design expert system, which utilizes the piping design data base of a 3 dimensional CAD system and automatically determines the piping support locations and support styles. The data base of this system contains the maximum allowable seismic support span lengths for straight piping and the span length reduction factors for bends, branches, concentrated masses in the piping, and so forth. The system automatically produces the support design according to the design knowledge extracted and collected from expert design engineers, and using design information such as piping specifications which give diameters and thickness and piping geometric configurations. The automatic seismic support design provided by this expert system achieves in the reduction of design man-hours, improvement of design quality, verification of design result, optimization of support locations and prevention of input duplication. In the development of this system, we had to derive the design logic from expert design engineers and this could not be simply expressed descriptively. Also we had to make programs for different kinds of design knowledge. For these reasons we adopted the object oriented programming paradigm (Smalltalk-80) which is suitable for combining programs and carrying out the design work

  2. Seismic Fragility of the LANL Fire Water Distribution System

    Energy Technology Data Exchange (ETDEWEB)

    Greg Mertz

    2007-03-30

    The purpose of this report is to present the results of a site-wide system fragility assessment. This assessment focuses solely on the performance of the water distribution systems that supply Chemical and Metallurgy Research (CMR), Weapons Engineering and Tritium Facility (WETF), Radioactive Liquid Waste Treatment Facility (RLWTF), Waste Characterization, Reduction, Repackaging Facility (WCRRF), and Transuranic Waste Inspectable Storage Project (TWISP). The analysis methodology is based on the American Lifelines Alliance seismic fragility formulations for water systems. System fragilities are convolved with the 1995 LANL seismic hazards to develop failure frequencies. Acceptance is determined by comparing the failure frequencies to the DOE-1020 Performance Goals. This study concludes that: (1) If a significant number of existing isolation valves in the water distribution system are closed to dedicate the entire water system to fighting fires in specific nuclear facilities; (2) Then, the water distribution systems for WETF, RLWTF, WCRRF, and TWISP meet the PC-2 performance goal and the water distribution system for CMR is capable of surviving a 0.06g earthquake. A parametric study of the WETF water distribution system demonstrates that: (1) If a significant number of valves in the water distribution system are NOT closed to dedicate the entire water system to fighting fires in WETF; (2) Then, the water distribution system for WETF has an annual probability of failure on the order of 4 x 10{sup -3} that does not meet the PC-2 performance goal. Similar conclusions are expected for CMR, RLWTF, WCRRF, and TWISP. It is important to note that some of the assumptions made in deriving the results should be verified by personnel in the safety-basis office and may need to be incorporated in technical surveillance requirements in the existing authorization basis documentation if credit for availability of fire protection water is taken at the PC-2 level earthquake levels

  3. Seismic Fragility of the LANL Fire Water Distribution System

    International Nuclear Information System (INIS)

    Greg Mertz Jason Cardon Mike Salmon

    2007-01-01

    The purpose of this report is to present the results of a site-wide system fragility assessment. This assessment focuses solely on the performance of the water distribution systems that supply Chemical and Metallurgy Research (CMR), Weapons Engineering and Tritium Facility (WETF), Radioactive Liquid Waste Treatment Facility (RLWTF), Waste Characterization, Reduction, Repackaging Facility (WCRRF), and Transuranic Waste Inspectable Storage Project (TWISP). The analysis methodology is based on the American Lifelines Alliance seismic fragility formulations for water systems. System fragilities are convolved with the 1995 LANL seismic hazards to develop failure frequencies. Acceptance is determined by comparing the failure frequencies to the DOE-1020 Performance Goals. This study concludes that: (1) If a significant number of existing isolation valves in the water distribution system are closed to dedicate the entire water system to fighting fires in specific nuclear facilities; (2) Then, the water distribution systems for WETF, RLWTF, WCRRF, and TWISP meet the PC-2 performance goal and the water distribution system for CMR is capable of surviving a 0.06g earthquake. A parametric study of the WETF water distribution system demonstrates that: (1) If a significant number of valves in the water distribution system are NOT closed to dedicate the entire water system to fighting fires in WETF; (2) Then, the water distribution system for WETF has an annual probability of failure on the order of 4 x 10 -3 that does not meet the PC-2 performance goal. Similar conclusions are expected for CMR, RLWTF, WCRRF, and TWISP. It is important to note that some of the assumptions made in deriving the results should be verified by personnel in the safety-basis office and may need to be incorporated in technical surveillance requirements in the existing authorization basis documentation if credit for availability of fire protection water is taken at the PC-2 level earthquake levels

  4. Evaluation of seismic margins for an in-plant piping system

    International Nuclear Information System (INIS)

    Kot, C.A.; Srinivasan, M.G.; Hsieh, B.J.

    1991-01-01

    Earthquake experience as well as experiments indicate that, in general, piping systems are quite rugged in resisting seismic loadings. Therefore there is a basis to hold that the seismic margin against pipe failure is very high for systems designed according to current practice. However, there is very little data, either from tests or from earthquake experience, on the actual margin or excess capacity (against failure from seismic loading) of in-plant piping systems. Design of nuclear power plant piping systems in the US is governed by the criteria given in the ASME Boiler and Pressure Vessel (B ampersand PV) Code, which assure that pipe stresses are within specified allowable limits. Generally linear elastic analytical methods are used to determine the stresses in the pipe and forces in pipe supports. The objective of this study is to verify that piping designed according to current practice does indeed have a large margin against failure and to quantify the excess capacity for piping and dynamic pipe supports on the basis of data obtained in a series of high-level seismic experiments (designated SHAM) on an in-plant piping system at the HDR (Heissdampfreaktor) Test Facility in Germany. Note that in the present context, seismic margin refers to the deterministic excess capacities of piping or supports compared to their design capacities. The excess seismic capacities or margins of a prototypical in-plant piping system and its components are evaluated by comparing measured inputs and responses from high-level simulated seismic experiments with design loads and allowables. Large excess capacities are clearly demonstrated against pipe and overall system failure with the lower bound being about four. For snubbers the lower bound margin is estimated at two and for rigid strut supports at five. 4 refs., 2 figs., 2 tabs

  5. Shaking table test and dynamic response analysis of 3-D component base isolation system using multi-layer rubber bearings and coil springs

    Energy Technology Data Exchange (ETDEWEB)

    Tsutsumi, Hideaki; Yamada, Hiroyuki; Ebisawa, Katsumi; Shibata, Katsuyuki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Fujimoto, Shigeru [Toshiba Corp., Tokyo (Japan)

    2001-06-01

    Introduction of the base isolation technique into the seismic design of nuclear power plant components as well as buildings has been expected as one of the effective countermeasure to reduce the seismic force applied to components. A research program on the base isolation of nuclear components has been carried out at the Japan Atomic Energy Research Institute (JAERI) since 1991. A methodology and a computer code (EBISA: Equipment Base Isolation System Analysis) for evaluating the failure frequency of the nuclear component with the base isolation were developed. In addition, a test program, which is concerned with the above development, aiming at improvement of failure frequency analysis models in the code has been conducted since 1996 to investigate the dynamic behavior and to verify the effectiveness of component base isolation systems. Two base isolation test systems with different characteristics were fabricated and static and dynamic characteristics were measured by static loading and free vibration tests. One which consists of ball bearings and air springs was installed on the test bed to observe the dynamic response under natural earthquake motion. The effect of base isolation system has been observed under several earthquakes. Three-dimensional response and effect of base isolation of another system using multi-layer-rubber-bearings and coil springs has been investigated under various large earthquake motions by shaking table test. This report describes the results of the shaking table tests and dynamic response analysis. (author)

  6. Mechanical tests for validation of seismic isolation elastomer constitutive models

    International Nuclear Information System (INIS)

    Kulak, R.F.; Hughes, T.H.

    1992-01-01

    High damping laminated elastomeric bearings are becoming the preferred device for seismic isolation of large buildings and structures, such as nuclear power plants. The key component of these bearings is a filled natural rubber elastomer. This material exhibits nonlinear behavior within the normal design range. The material damping cannot be classified as either viscous or hysteritic, but it seems to fall somewhere in between. This paper describes a series of tests that can be used to characterize the mechanical response of these elastomers. The tests are designed to determine the behavior of the elastomer in the time scale of the earthquake, which is typically from 30 to 60 seconds. The test results provide data for use in determining the material parameters associated with nonlinear constitutive models. 4 refs

  7. Improved Seismic Acquisition System and Data Processing for the Italian National Seismic Network

    Science.gov (United States)

    Badiali, L.; Marcocci, C.; Mele, F.; Piscini, A.

    2001-12-01

    A new system for acquiring and processing digital signals has been developed in the last few years at the Istituto Nazionale di Geofisica e Vulcanologia (INGV). The system makes extensive use of the internet communication protocol standards such as TCP and UDP which are used as the transport highway inside the Italian network, and possibly in a near future outside, to share or redirect data among processes. The Italian National Seismic Network has been working for about 18 years equipped with vertical short period seismometers and transmitting through analog lines, to the computer center in Rome. We are now concentrating our efforts on speeding the migration towards a fully digital network based on about 150 stations equipped with either broad band or 5 seconds sensors connected to the data center partly through wired digital communication and partly through satellite digital communication. The overall process is layered through intranet and/or internet. Every layer gathers data in a simple format and provides data in a processed format, ready to be distributed towards the next layer. The lowest level acquires seismic data (raw waveforms) coming from the remote stations. It handshakes, checks and sends data in LAN or WAN according to a distribution list where other machines with their programs are waiting for. At the next level there are the picking procedures, or "pickers", on a per instrument basis, looking for phases. A picker spreads phases, again through the LAN or WAN and according to a distribution list, to one or more waiting locating machines tuned to generate a seismic event. The event locating procedure itself, the higher level in this stack, can exchange information with other similar procedures. Such a layered and distributed structure with nearby targets allows other seismic networks to join the processing and data collection of the same ongoing event, creating a virtual network larger than the original one. At present we plan to cooperate with other

  8. Simulation-based seismic loss estimation of seaport transportation system

    International Nuclear Information System (INIS)

    Ung Jin Na; Shinozuka, Masanobu

    2009-01-01

    Seaport transportation system is one of the major lifeline systems in modern society and its reliable operation is crucial for the well-being of the public. However, past experiences showed that earthquake damage to port components can severely disrupt terminal operation, and thus negatively impact on the regional economy. The main purpose of this study is to provide a methodology for estimating the effects of the earthquake on the performance of the operation system of a container terminal in seaports. To evaluate the economic loss of damaged system, an analytical framework is developed by integrating simulation models for terminal operation and fragility curves of port components in the context of seismic risk analysis. For this purpose, computerized simulation model is developed and verified with actual terminal operation records. Based on the analytical procedure to assess the seismic performance of the terminal, system fragility curves are also developed. This simulation-based loss estimation methodology can be used not only for estimating the seismically induced revenue loss but also serve as a decision-making tool to select specific seismic retrofit technique on the basis of benefit-cost analysis

  9. Connection with seismic networks and construction of real time earthquake monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Heon Cheol; Lee, H. I.; Shin, I. C.; Lim, I. S.; Park, J. H.; Lee, B. K.; Whee, K. H.; Cho, C. S. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2000-12-15

    It is natural to use the nuclear power plant seismic network which have been operated by KEPRI(Korea Electric Power Research Institute) and local seismic network by KIGAM(Korea Institute of Geology, Mining and Material). The real time earthquake monitoring system is composed with monitoring module and data base module. Data base module plays role of seismic data storage and classification and the other, monitoring module represents the status of acceleration in the nuclear power plant area. This research placed the target on the first, networking the KIN's seismic monitoring system with KIGAM and KEPRI seismic network and the second, construction the KIN's Independent earthquake monitoring system.

  10. Connection with seismic networks and construction of real time earthquake monitoring system

    International Nuclear Information System (INIS)

    Chi, Heon Cheol; Lee, H. I.; Shin, I. C.; Lim, I. S.; Park, J. H.; Lee, B. K.; Whee, K. H.; Cho, C. S.

    2000-12-01

    It is natural to use the nuclear power plant seismic network which have been operated by KEPRI(Korea Electric Power Research Institute) and local seismic network by KIGAM(Korea Institute of Geology, Mining and Material). The real time earthquake monitoring system is composed with monitoring module and data base module. Data base module plays role of seismic data storage and classification and the other, monitoring module represents the status of acceleration in the nuclear power plant area. This research placed the target on the first, networking the KIN's seismic monitoring system with KIGAM and KEPRI seismic network and the second, construction the KIN's Independent earthquake monitoring system

  11. Proposal of new seismic assessment and retrofit technology for existing buildings; Hyogoken nanbu jishin higai wo kyokun to shita kison kozobutsu no taishin shindan system

    Energy Technology Data Exchange (ETDEWEB)

    Yoshioka, K.; Takahashi, Y.; Seki, M.; Tanida, M.; Akiyama, T.; Hashimoto, Y. [Obayashi Corp., Tokyo (Japan)

    1995-08-10

    A devastating earthquake measuring 7.2 on the JMA (Japan Meteorological Agency) magnitude hit the southern Hyogo Prefecture on January 17, 1995. This earthquake, the worst in Japan since the Great Kanto Earthquake in 1923, brought great disaster and destruction to the Hanshin area and Awajishima Island. Most of the damage to concrete and steel structures occurred in buildings designed according to former building codes. Fewer collapses occurred in buildings designed under current building code that have more severe seismic requirements. Existing buildings should be assessed by their seismic potentiality, and retrofitted to escape damage in severe earthquakes such as the Great Hanshin Earthquake. New technology for assessing and retrofitting existing buildings was developed to improve resisting performance in response to severe earthquakes. Earthquake Load or motion exceeding current requirements can be supplied to assess and retrofit existing buildings if a client wants their buildings to exhibit much stronger seismic resistance. The retrofit technologies, such as a base isolation system for whole building, vibration control bracing system with steel damper, and base isolation floor system for computer equipments, can be applied to existing buildings. 11 refs., 9 figs., 8 tabs.

  12. Seismic analysis of mechanical systems at Pickering NGS

    International Nuclear Information System (INIS)

    Ghobarah, A.

    1995-11-01

    The objective of this study is to assess the seismic withstand capacity of selected safety-related mechanical systems associated with the Pressure Relief Duct (PRD) at the Pickering A Nuclear Generating Station. These systems are attached to the PRD and include the Emergency Coolant Injection System piping, the Vacuum Ducts, the Emergency Water Storage System, the PRD expansion joint seals and the PRD to Reactor Building joint seals. The input support motion to the mechanical systems is taken to be the seismic response of the PRD determined in an earlier study using various levels of predetermined ground response spectrum envelope. (author). 12 refs., 13 tabs., 48 figs

  13. Passive base isolation with superelastic nitinol SMA helical springs

    International Nuclear Information System (INIS)

    Huang, Bin; Zhang, Haiyang; Wang, Han; Song, Gangbing

    2014-01-01

    Seismic isolation of structures such as multi-story buildings, nuclear reactors, bridges, and liquid storage tanks should be designed to preserve structural integrity. By implementing seismic isolation technology, the deformation of superstructures can be dramatically reduced, consequently helping to protect their safety as well. In this paper, an innovative type of passive base isolation system, which is mainly composed of superelastic nitinol SMA helical springs, is developed. In order to verify the effectiveness of the proposed system, a two-story experimental steel frame model is constructed, and two superelastic SMA helical springs are thermo-mechanically built in the laboratory. To describe the nonlinear mechanical properties of the superelastic SMA helical springs under reciprocating load, a phenomenological model is presented in terms of a series of tensile tests. Afterwards, a numerical model of the two-story frame with the suggested isolation system is set up to simulate the response of the isolated frame subjected to an earthquake. Both the experimental and the numerical simulation results indicate that the proposed base isolation system can remarkably suppress structural vibrations and has improved isolation effects when compared with a steel spring isolation system. Due to the capabilities of energy dissipation as well as fully re-centering, it is very applicable to utilize the suggested isolation system in base isolated structures to resist earthquakes. (paper)

  14. Seismic Fracture Characterization Methodologies for Enhanced Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Queen, John H. [Hi-Geophysical, Inc., Ponca, OK (United States)

    2016-05-09

    Executive Summary The overall objective of this work was the development of surface and borehole seismic methodologies using both compressional and shear waves for characterizing faults and fractures in Enhanced Geothermal Systems. We used both surface seismic and vertical seismic profile (VSP) methods. We adapted these methods to the unique conditions encountered in Enhanced Geothermal Systems (EGS) creation. These conditions include geological environments with volcanic cover, highly altered rocks, severe structure, extreme near surface velocity contrasts and lack of distinct velocity contrasts at depth. One of the objectives was the development of methods for identifying more appropriate seismic acquisition parameters for overcoming problems associated with these geological factors. Because temperatures up to 300º C are often encountered in these systems, another objective was the testing of VSP borehole tools capable of operating at depths in excess of 1,000 m and at temperatures in excess of 200º C. A final objective was the development of new processing and interpretation techniques based on scattering and time-frequency analysis, as well as the application of modern seismic migration imaging algorithms to seismic data acquired over geothermal areas. The use of surface seismic reflection data at Brady's Hot Springs was found useful in building a geological model, but only when combined with other extensive geological and geophysical data. The use of fine source and geophone spacing was critical in producing useful images. The surface seismic reflection data gave no information about the internal structure (extent, thickness and filling) of faults and fractures, and modeling suggests that they are unlikely to do so. Time-frequency analysis was applied to these data, but was not found to be significantly useful in their interpretation. Modeling does indicate that VSP and other seismic methods with sensors located at depth in wells will be the most

  15. Study on comparison of special moment frame steel structure (SMF) and base isolation special moment frame steel structure (BI-SMF) in Indonesia

    Science.gov (United States)

    Setiawan, Jody; Nakazawa, Shoji

    2017-10-01

    This paper discusses about comparison of seismic response behaviors, seismic performance and seismic loss function of a conventional special moment frame steel structure (SMF) and a special moment frame steel structure with base isolation (BI-SMF). The validation of the proposed simplified estimation method of the maximum deformation of the base isolation system by using the equivalent linearization method and the validation of the design shear force of the superstructure are investigated from results of the nonlinear dynamic response analysis. In recent years, the constructions of steel office buildings with seismic isolation system are proceeding even in Indonesia where the risk of earthquakes is high. Although the design code for the seismic isolation structure has been proposed, there is no actual construction example for special moment frame steel structure with base isolation. Therefore, in this research, the SMF and BI-SMF buildings are designed by Indonesian Building Code which are assumed to be built at Padang City in Indonesia. The material of base isolation system is high damping rubber bearing. Dynamic eigenvalue analysis and nonlinear dynamic response analysis are carried out to show the dynamic characteristics and seismic performance. In addition, the seismic loss function is obtained from damage state probability and repair cost. For the response analysis, simulated ground accelerations, which have the phases of recorded seismic waves (El Centro NS, El Centro EW, Kobe NS and Kobe EW), adapted to the response spectrum prescribed by the Indonesian design code, that has, are used.

  16. Korea-Japan Joint Research on Development of Seismic Capacity Evaluation and Enhancement Technology Considering Near-Fault Effect (Final Report)

    Energy Technology Data Exchange (ETDEWEB)

    Choun, Young Sun; Choi, In Kil; Kim, Min Kyu [KAERI, Daejeon (Korea, Republic of); Ohtori, Yasuki; Shiba, Yoshiaki; Nakajima, Masato [Central Research Institute of Electric Power Industry, Tokyo (Japan)

    2006-12-15

    We compiled the results of the source analysis obtained under the collaboration research. Recent construction scheme for source modeling adopted in Japan is described, and strong-motion prediction is performed assuming the scenario earthquakes occurring in the Ulsan fault system, Korea. Finally Qs values beneath the Korean inland crust are estimated using strong-motion records in Korea from the 2005 Off West Fukuoka earthquake (M7.0). Probabilistic seismic hazard for four NPP sites in Korea are evaluated, in which the site specific attenuation equations with Index SA developed for NPP sites are adopted. Furthermore, the uniform hazard spectra for the four NPP sites in Korea are obtained by conducting the PSHA by using the attenuation equations with the index of response spectra and seismic source model cases with maximum weights. The supporting tools for seismic response analysis, the evaluation tool for evaluating annual probability of failure, and system analysis program were developed for the collaboration. The tools were verified with theoretical results, the results written in the reference document of EQESRA, and so forth. The system analysis program was applied for the investigation of the effect of improving the seismic capacity of equipment. We evaluated the annual probability of failure of isolated and non-isolated EDG at Younggwang NPP site as the results of the collaboration. The input ground motion for generating the seismic fragility curve was determined based on the seismic hazard analysis. It was found that the annual probability of failure of isolated EDG is lower than that of non-isolated EDG.

  17. Mitigation of seismic action on engineering structure by innovative SERB - CITON Solution

    International Nuclear Information System (INIS)

    Serban, V.; Panait, A.; Androne, M.; Ciocan, G. A.

    2009-01-01

    The paper presents the advantage of the SERB-CITON innovative solution for increasing the seismic resistance of engineering structures as compared with other solutions for seismic protection of buildings. SERB devices (telescopic and isolation) used in an innovative solution to control, limit and damp the seismic building movement, have a capsulated structure and are capable to overtake large compression and tension loads with controlled deflection and large damping. The great difference in the building behavior during an earthquake results from the fact that a building (along with its foundation ground) make-up an oscillating system which represents a built-up of kinetic and potential energy of repeated seismic movement oscillations. The oscillating system may or not overtake and built-up the seismic energy from each soil oscillation, as a function of the location of the important Eigen vibration periods of the building within the spectral component of the seismic action. The main problem that needs to be solved by the seismic design of buildings consists in the transfer of a minimum amount of seismic energy from the ground to the building and in doing so for the transferred energy should not build-up in the building-ground oscillating system. The paper presents the classical, modern and innovative solution for mitigation of seismic actions. (authors)

  18. Alternate seismic support for pipeline systems in nuclear power plants

    International Nuclear Information System (INIS)

    Muthumani, K.; Gopalakrishnan, N.; Sathish Kumar, K.; Sreekala, R.; Rama Rao, G.V.; Reddy, G.R.; Parulekar, Y.M.

    2008-01-01

    Failure free design of supporting systems for pipe lines carrying highly toxic or radioactive liquids at very high temperature is an important issue in the safety aspect for a nuclear power plant installation which is a key topic for researchers all around the world. Generally, these pipeline systems are designed to be held rigid by conventional snubber supports for protection from earthquakes. The piping design must balance seismic deformations and other deformations due to thermal effect. A rigid pipeline system using conventional snubber supports always leads to an increase in thermal stresses; hence a rational seismic design for pipeline supporting systems becomes essential. Contrary to this rigid design, it is possible to design a flexible pipeline system and to decrease the seismic response by increasing the damping through the use of passive energy absorbing elements, which dissipate vibration energy. This paper presents the experimental and analytical studies carried out on modeling yielding type elasto-plastic passive energy-absorbing elements to be used in a passive energy-dissipating device for the control of large seismic deformations of pipelines subjected to earthquake loading. (author)

  19. The development of base-isolated APWR plants

    International Nuclear Information System (INIS)

    Tanaka, T.; Nitta, T.

    2001-01-01

    The full text follows: The seismic design of nuclear power stations plays a critical role in the assurance of plant safety in Japan, and standardization of design is difficult to achieve because every site is subject to different seismic conditions. However, the introduction of seismic -isolation devices is one way to rationally achieve safety assurance and promote design standardization. Base-isolated APWR (advanced pressurized water reactor) plants were developed by applying seismic -isolation devices to APWR plants. The introduction of seismic -isolation devices, which are installed between the ground and buildings, largely decreases the effect of seismic force on buildings. Therefore, the limitation of building shape and eccentricity, which are undertaken in order to prevent the floating of buildings, could be eliminated. This permits the flexibility of building layouts, which result in a reduction of building volume. At the same time, the thickness of the buildings walls that are specific to nuclear power stations, can also be decreased except radiation shield. As for the base-isolated APWR equipment design, the rational design of support structures for equipment and pipings is possible, because the floor response acceleration is greatly reduced. For the cost reduction, it has been confirmed that the base-isolated APWR plants are more economical than traditional APWR plants even after the additionally required expenses for seismic-isolation devices are taken into account. This is primarily because of the rational design of the buildings and equipment which is possible as described above. Another advantage is that building standardization can be promoted because the seismic-isolation devices are able to control the seismic force transmitted to the buildings. This is accomplished by arranging the characteristics of the isolation devices according to the seismic conditions of each site. The introduction of these devices to nuclear power stations is nearly ready

  20. Sensitivity of Base-Isolated Systems to Ground Motion Characteristics: A Stochastic Approach

    International Nuclear Information System (INIS)

    Kaya, Yavuz; Safak, Erdal

    2008-01-01

    Base isolators dissipate energy through their nonlinear behavior when subjected to earthquake-induced loads. A widely used base isolation system for structures involves installing lead-rubber bearings (LRB) at the foundation level. The force-deformation behavior of LRB isolators can be modeled by a bilinear hysteretic model. This paper investigates the effects of ground motion characteristics on the response of bilinear hysteretic oscillators by using a stochastic approach. Ground shaking is characterized by its power spectral density function (PSDF), which includes corner frequency, seismic moment, moment magnitude, and site effects as its parameters. The PSDF of the oscillator response is calculated by using the equivalent-linearization techniques of random vibration theory for hysteretic nonlinear systems. Knowing the PSDF of the response, we can calculate the mean square and the expected maximum response spectra for a range of natural periods and ductility values. The results show that moment magnitude is a critical factor determining the response. Site effects do not seem to have a significant influence

  1. Evaluation of seismic characteristics and structural integrity for the cabinet of HANARO seismic monitoring analysis system

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Jeong Soo; Yoon, Doo Byung

    2003-06-01

    The HANARO SMAS(Seismic Monitoring Analysis System) is classified as Non-Nuclear Safety(NNS), seismic category I, and quality class T. It is required that this system can perform required functions, which are to preserve its structural integrity during and after an OBE or SSE. In this work, the structural integrity and seismic characteristics of the cabinet of the newly developed SMAS have been estimated. The most parts of the cabinet are identically designed with those of Yonggwhang and Gori Nuclear Power Plants(NPPs), unit 1 that successfully completed the required seismic qualification tests. The structure of the cabinet of the SMAS is manufactured by the manufacturer of the cabinet of Yonggwhang and Gori NPPs. To evaluate the seismic characteristics of the SMAS, the RRS(Required Response Spectra) of the newly developed cabinet are compared with those of Yonggwhang and Gori NPPs, unit 1. In addition, natural frequencies of the cabinet of HANARO, Yonggwhang, and Gori NPPs were measured for the comparison of the seismic characteristics of the installed cabinets. In case of HANARO, the bottom of the cabinet is welded to the base plate. The base plate is fixed to the concrete foundation by using anchor bolts. For the evaluation of the structural integrity of the welding parts and the anchor bolts, the maximum stresses and forces of the welding parts and the anchor bolts due to seismic loading are estimated. The analysis results show that maximum stresses and forces are less than the allowable limits. This new SMAS is operating at HANARO instrument room to acquire and analyze the signal of earthquake.

  2. A guidebook for the operation and maintenance of HANARO seismic monitoring analysis system

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Jeong Soo; Yoon, Doo Byung; Kim, Hyung Kyoo

    2003-09-01

    Systems and structures related to HANARO safety are classified as seismic category I. Since 1995, the seismic monitoring system has been utilized for monitoring an earthquake at the HANARO site. The existing seismic monitoring system consists of field sensors and monitoring panel. The analog-type monitoring system with magnetic tape recorder is out-of-date model. In addition, the disadvantage of the existing system is that it does not include signal-analyzing equipment. Therefore, we have improved the analog seismic monitoring system into a new digital Seismic Monitoring Analysis System(SMAS) that can offer precise and detail information of the earthquake signals. This newly developed SMAS is operating at the HANARO instrument room to acquire and analyze the signal of an earthquake. This document is a guidebook for the operation and maintenance of the SMAS. The first chapter gives an outline of the SMAS. The second chapter describes functional capability and specification of the hardware. Chapters 3 and 4 describe starting procedure of the SMAS and how to operate the seismic monitoring program, respectively. Chapter 5 illustrates the seismic analysis algorithm used in the SMAS. The way of operating the seismic analysis program is described in chapter 6. Chapter 7 illustrates the calibration procedure for data acquisition module. Chapter 8 describes the symptoms of common malfunctions and its countermeasure suited to the occasions.

  3. Seismic qualification of SPX1 shutdown systems - tests and calculations

    International Nuclear Information System (INIS)

    Brochard, D.; Buland, P.

    1988-01-01

    The SUPERPHENIX 1 shutdown system is composed of two main systems: the Complementary Shutdown System SAC (Systeme d'Arret Complementaire) and the Primary Shutdown System (SCP) (Systeme de Commande Principal). In case of a seismic event, the insertability of the different shutdown systems has to be demonstrated. Tests have been performed on the SAC and have shown that this system was not sensitive to the seismic excitation (the drop time increases of 10% at SSE level). For the SCP, as an analytical demonstration was felt difficult to achieve, it was decided to perform a full scale testing program. These tests have been performed for the two types of SCP which are present in Superphenix: SCP 1 (Creusot Loire design), SCP 2 (Novatome design). As there was no existing facility in France to test this kind of slender structure (21 metres high) a new facility named VESUBIE was designed and installed in an existing pit located at the Saclay nuclear research center. The objectives of the tests were the following: to demonstrate insertability of control rod; to demonstrate absence of seismic induced damage to the SCP; to measure increase of scram time; to measure seismic induced stresses; to obtain data for code correlation. After completion of the tests, measurements have been correlated with results obtained from a non-linear finite element model. Time history correlations were achieved for SCP 1. Afterwards a calculation was performed in hot condition to find if there was some effect of temperature on SCP seismic response. 2 refs, 8 figs

  4. The development of the operational program for seismic monitoring system of Uljin Unit 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.R.; Heo, T.Y.; Cho, B.H. [Korea Electric Power Research Institute, Taejeon (Korea, Republic of); Kang, T.G.; Kim, H.M.; Kim, Y.S.; Oh, S.M.; Kang, Y.S. [Korea Electric Power Data Network Co., Seoul (Korea, Republic of)

    1997-12-31

    Due to aging of the imported seismic monitoring system of Uljin of t 1 and 2 units it is difficult for this system to provide enough functions needed for the security of seismic safety and the evaluation of the earthquake data from the seismic instrumentation. For this reason, it is necessary to replace the seismic monitoring system of Uljin 1 and 2 units with a new system which has the localized and upgraded hardware and corresponding software. In the part of standardization of existing seismic monitoring system, furthermore, it is necessary to develop the seismic wave analysis system which incorporate newly developed software and can real-timely analyze the seismic wave. This report is the finial product of research project ``The development of the operational program for seismic monitoring system of Uljin Unit 1 and 2`` which have been performed from June 1996 to June 1997 by KEPRI and KDN. Main accomplishments - Review of regulatory criteria for seismic monitoring system -Analysis and upgrade of hardware system -Analysis and upgrade of software system - Development of seismic wave analysis system. (author). 17 refs., 49 figs., 6 tabs.

  5. Control of pre-isolators for gravitational wave detection

    International Nuclear Information System (INIS)

    Lee, C Y; Zhao, C; Chin, E J; Jacob, J; Li, D; Blair, D G

    2004-01-01

    An ultra-low frequency pre-isolator (PI) has been built by ACIGA for micro-seismic noise isolation and reduction of suspension chain resonant mode amplitudes. A multidimensional control system, based on digital signal processing, has been developed for position control and normal mode damping of the PI. In this paper, we demonstrate the successful control of the suspension system

  6. The roles of the seismic safety and monitoring systems in the PEC fast reactor

    International Nuclear Information System (INIS)

    Masoni, P.; Di Tullio, E.M.; Massa, B.; Martelli, A.; Sano, T.

    1988-01-01

    Two different seismic systems are foreseen in the case of PEC: the seismic safety system, that provides the automatic scram, and the seismic monitoring system. During earthquake, three triaxial seismic switches are triggered if a threshold value of the ground acceleration is exceeded. In this case, the signals from the seismic switches are processed by the safety system (with a 2/3 logic) and the shutdown system is triggered. Peak acceleration is the parameter used by the safety system to quantify the seismic event. This way, however, no information is obtained with regard to earthquake frequency content. Thus, reactor safety is guaranteed by adopting a threshold considerably lower than the Z.P.A. of the Design Basis Earthquake. Furthermore, in the case of significant earthquakes, the seismic motion is measured by about 20 triaxial accelerometers, located both in the free field and on the plant's structures. Data are digitazed and recordered by the seismic monitoring system. This system also elaborates the recordered time-histories providing floor response spectra and compares such spectra to the design values. The above-mentioned elaborations and comparisons are performed in short time for two triaxial measuring positions, thus allowing the Operator to immediately get a more complete information on the seismic event. The complete set of data recorded by the seismic monitoring system also allows the actual dynamic response of the plant to be determined and compared to the design values. On the basis of this comparison the necessary safety analysis can be carried out to verify whether the design limits of the plant were respected: in the positive case the reactor can be restarted. (author)

  7. Seismic analysis of nuclear piping system

    International Nuclear Information System (INIS)

    Shrivastava, S.K.; Pillai, K.R.V.; Nandakumar, S.

    1975-01-01

    To illustrate seismic analysis of nuclear power plant piping, a simple piping system running between two floors of the reactor building is assumed. Reactor building floor response is derived from time-history method. El Centre earthquake (1940) accelerogram is used for time-history analysis. The piping system is analysed as multimass lumped system. Behaviour of the pipe during the said earthquake is discussed. (author)

  8. Potentially of using vertical and three dimensional isolation systems in nuclear structures

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Zhiuang [Research Institute of Structural Engineering and Disaster Reduction, Tongji University, Shanghai (China); Wong, Jenna [Lawrence Berkeley National Laboratories, Berkeley (United States); Mahin, Stephen [University of California, Berkeley (United States)

    2016-10-15

    Although the horizontal component of an earthquake response can be significantly reduced through the use of conventional seismic isolators, the vertical component of excitation is still transmitted directly into the structure. Records from instrumented structures, and some recent tests and analyses have actually seen increases in vertical responses in base isolated structures under the combined effects of horizontal and vertical ground motions. This issue becomes a great concern to facilities such as a Nuclear Power Plants (NPP), with specialized equipment and machinery that is not only expensive, but critical to safe operation. As such, there is considerable interest worldwide in vertical and three-dimensional (3D) isolation systems. This paper examines several vertical and 3D isolation systems that have been proposed and their potential application to modern nuclear facilities. In particular, a series of case study analyses of a modern NPP model are performed to examine the benefits and challenges associated with 3D isolation compared with horizontal isolation. It was found that compared with the general horizontal isolators, isolators that have vertical frequencies of no more than 3 Hz can effectively reduce the vertical in-structure responses for the studied NPP model. Among the studied cases, the case that has a vertical isolation frequency of 3 Hz is the one that can keep the horizontal period of the isolators as the first period while having the most flexible vertical isolator properties. When the vertical frequency of isolators reduces to 1 Hz, the rocking effect is obvious and rocking restraining devices are necessary.

  9. Potentially of using vertical and three dimensional isolation systems in nuclear structures

    International Nuclear Information System (INIS)

    Zhou, Zhiuang; Wong, Jenna; Mahin, Stephen

    2016-01-01

    Although the horizontal component of an earthquake response can be significantly reduced through the use of conventional seismic isolators, the vertical component of excitation is still transmitted directly into the structure. Records from instrumented structures, and some recent tests and analyses have actually seen increases in vertical responses in base isolated structures under the combined effects of horizontal and vertical ground motions. This issue becomes a great concern to facilities such as a Nuclear Power Plants (NPP), with specialized equipment and machinery that is not only expensive, but critical to safe operation. As such, there is considerable interest worldwide in vertical and three-dimensional (3D) isolation systems. This paper examines several vertical and 3D isolation systems that have been proposed and their potential application to modern nuclear facilities. In particular, a series of case study analyses of a modern NPP model are performed to examine the benefits and challenges associated with 3D isolation compared with horizontal isolation. It was found that compared with the general horizontal isolators, isolators that have vertical frequencies of no more than 3 Hz can effectively reduce the vertical in-structure responses for the studied NPP model. Among the studied cases, the case that has a vertical isolation frequency of 3 Hz is the one that can keep the horizontal period of the isolators as the first period while having the most flexible vertical isolator properties. When the vertical frequency of isolators reduces to 1 Hz, the rocking effect is obvious and rocking restraining devices are necessary

  10. Potentiality of Using Vertical and Three-Dimensional Isolation Systems in Nuclear Structures

    Directory of Open Access Journals (Sweden)

    Zhiguang Zhou

    2016-10-01

    Full Text Available Although the horizontal component of an earthquake response can be significantly reduced through the use of conventional seismic isolators, the vertical component of excitation is still transmitted directly into the structure. Records from instrumented structures, and some recent tests and analyses have actually seen increases in vertical responses in base isolated structures under the combined effects of horizontal and vertical ground motions. This issue becomes a great concern to facilities such as a Nuclear Power Plants (NPP, with specialized equipment and machinery that is not only expensive, but critical to safe operation. As such, there is considerable interest worldwide in vertical and three-dimensional (3D isolation systems. This paper examines several vertical and 3D isolation systems that have been proposed and their potential application to modern nuclear facilities. In particular, a series of case study analyses of a modern NPP model are performed to examine the benefits and challenges associated with 3D isolation compared with horizontal isolation. It was found that compared with the general horizontal isolators, isolators that have vertical frequencies of no more than 3 Hz can effectively reduce the vertical in-structure responses for the studied NPP model. Among the studied cases, the case that has a vertical isolation frequency of 3 Hz is the one that can keep the horizontal period of the isolators as the first period while having the most flexible vertical isolator properties. When the vertical frequency of isolators reduces to 1 Hz, the rocking effect is obvious and rocking restraining devices are necessary.

  11. Development of Friction Pendulum System to Reduce the Seismic Force

    International Nuclear Information System (INIS)

    Jang, J. B.; Kim, J. K.; Hwang, K. M.; Kwon, H. O.; Lee, C. W

    2007-01-01

    Most of the damages in electrical facilities are occurred at transformer due to the great earthquake. The damage types of transformer are the failure of upper bushing of transformer, overturning of transformer due to geometry with high height, and the failure of anchorage of transformer. The objective of this study is to develop the seismic isolator to prevent the damage of transformer due to earthquake considering the importance of transformer

  12. Vibration analysis and innovative technologies in the seismic preservation of cultural heritage

    International Nuclear Information System (INIS)

    Clemente, P.; Conti, C.; De Stefano, A.

    2015-01-01

    In order to preserve historical buildings and monuments against the effects of earthquakes a detailed analysis is needed to evaluate the characteristics of the seismic input and the dynamic behaviour of structures under seismic actions and to choose the most suitable seismic rehabilitation technique. In this paper the experimental analysis carried out on the Colosseum and the Lateran Obelisk are first shown. Then the application of seismic isolation in historical buildings is discussed and a new structure for the seismic isolation of existing building is presented.

  13. Integrated seismic design of structure and control systems

    CERN Document Server

    Castaldo, Paolo

    2014-01-01

    The structural optimization procedure presented in this book makes it possible to achieve seismic protection through integrated structural/control system design. In particular, it is explained how slender structural systems with a high seismic performance can be achieved through inclusion of viscous and viscoelastic dampers as an integral part of the system. Readers are provided with essential introductory information on passive structural control and passive energy dissipation systems. Dynamic analyses of both single and multiple degree of freedom systems are performed in order to verify the achievement of pre-assigned performance targets, and it is explained how the optimal integrated design methodology, also relevant to retrofitting of existing buildings, should be applied. The book illustrates how structural control research is opening up new possibilities in structural forms and configurations without compromising structural performance.

  14. Contribution of the JRC Ispra to the intercomparison of analysis methods for seismically isolated nuclear structures

    International Nuclear Information System (INIS)

    Magonette, G.; Renda, V.

    2002-01-01

    Aim of the work done at JRC has been essentially to investigate the potentiality of the Pseudo-Dynamic (PsD) method to test structures incorporating anti-seismic protection devices based on materials with a strain-rate dependent behaviour. This is of relevant importance due to the interest to perform tests on large-scale mock-ups to assess the behaviour of realistic structure of civil engineering interest. Two specific typologies of protection have been analysed and tested at the European Laboratory for Structural Assessment (ELSA) of JRC Ispra. The first dealing with base isolation and the second with energy dissipation devices. In both cases the protection devices were based on high damping rubber material which is characterised by a moderate dependence from the strain rate of the application of the displacements. To validate a standard procedure to test base isolated structures by the PsD method, a collaboration was set up with the Italian Working Group on Seismic Isolation which includes the national research centre ENEA, the national electricity board ENEL, the industrial research centre ISMES and a manufacturer of isolators ALGA. In the framework of this collaboration it was decided to test at the ELSA laboratory a scaled 5-storey frame structure (provided by ENEL), isolated by means of high damping rubber bearings (HDRBs), which had been tested on the shaking table of ISMES. This experimental activity aimed to compare the results which can be obtained by means of the PsD testing technique with those which can be obtained by means of a truly-dynamic test on a shaking table. To validate a standard procedure to test structures incorporating energy dissipation devices, an international collaboration has been set up with Industries, Research Centres and Universities in the framework of a project partially funded by the European Commission through the General Directorate for Science and Technology. The obtained results show once more that the PsD method, when

  15. Seismic simulation and functional performance evaluation of a safety related, seismic category I control room emergency air cleaning system

    International Nuclear Information System (INIS)

    Manley, D.K.; Porco, R.D.; Choi, S.H.

    1985-01-01

    Under a nuclear contract MSA was required to design, manufacture, seismically test and functionally test a complete Safety Related, Seismic Category I, Control Room Emergency Air Cleaning System before shipment to the Yankee Atomic Electric Company, Yankee Nuclear Station in Rowe, Massachusetts. The installation of this system was required to satisfy the NRC requirements of NUREG-0737, Section III, D.3.4, ''Control Room Habitability''. The filter system tested was approximately 3 ft. wide by 8 ft. high by 18 ft. long and weighed an estimated 8300 pounds. It had a design flow rate of 3000 SCFM and contained four stages of filtration - prefilters, upstream and downstream HEPA filters and Type II sideload charcoal adsorber cells. The filter train design followed the guidelines set forth by ANSI/ASME N509-1980. Seismic Category I Qualification Testing consisted of resonance search testing and triaxial random multifrequency testing. In addition to ANSI/ASME N510-1980 testing, triaxial response accelerometers were placed at specific locations on designated prefilters, HEPA filters, charcoal adsorbers and test canisters along with accelerometers at the corresponding filter seal face locations. The purpose of this test was to demonstrate the integrity of the filters, filter seals, and monitor seismic response levels which is directly related to the system's ability to function during a seismic occurrence. The Control Room Emergency Air Cleaning System demonstrated the ability to withstand the maximum postulated earthquake for the plant site by remaining structurally sound and functional

  16. Comparative performance of passive devices for piping system under seismic excitation

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Praveen, E-mail: pra_veen74@rediffmail.com [Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 (India); Jangid, R.S. [Department of Civil Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 (India); Reddy, G.R. [Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 (India)

    2016-03-15

    Highlights: • Correlated the analytical results obtained from the proposed analytical procedures with experimental results in the case of XPD. • Substantial reduction of the seismic response of piping system with passive devices is observed. • Significant increase in the modal damping of the piping system is noted. • There exist an optimum parameters of the passive devices. • Good amount of energy dissipation is observed by using passive devices. - Abstract: Among several passive control devices, X-plate damper, viscous damper, visco-elastic damper, tuned mass damper and multiple tuned mass dampers are popular and used to mitigate the seismic response in the 3-D piping system. In the present paper detailed studies are made to see the effectiveness of the dampers when used in 3-D piping system subjected to artificial earthquake with increasing amplitudes. The analytical results obtained using Wen's model are compared with the corresponding experimental results available which indicated a good match with the proposed analytical procedure for the X-plate dampers. It is observed that there is significant reduction in the seismic response of interest like relative displacement, acceleration and the support reaction of the piping system with passive devices. In general, the passive devices under particular optimum parameters such as stiffness and damping are very effective and practically implementable for the seismic response mitigation, vibration control and seismic requalification of piping system.

  17. A report on seismic re-evaluation of Cirus systems

    International Nuclear Information System (INIS)

    Varma, Veto; Reddy, G.R.; Vaze, K.K.; Kushwaha, H.S.

    2003-06-01

    Cirus was initiated way back in 1955 and its design was made with the methods prevailing at that time. The design codes and safety standards have changed since then, particularly with respect to seismic design criteria. As the structure is an important safety related structure it is mandatory to meet the present statutory requirement. This report contains the seismic qualification for some of the Cirus systems. The report has four parts. Part I gives the analytical studies performed in the containment building, Part II describes of experimental studies carried out to validate the analytical studies for containment builaing, Part III explains the seismic retrofitting of Battery bank, and Part IV summarizes the seismic qualification of inlet and exhaust damper of Cirus. (author)

  18. An assessment of seismic monitoring in the United States; requirement for an Advanced National Seismic System

    Science.gov (United States)

    ,

    1999-01-01

    This report assesses the status, needs, and associated costs of seismic monitoring in the United States. It sets down the requirement for an effective, national seismic monitoring strategy and an advanced system linking national, regional, and urban monitoring networks. Modernized seismic monitoring can provide alerts of imminent strong earthquake shaking; rapid assessment of distribution and severity of earthquake shaking (for use in emergency response); warnings of a possible tsunami from an offshore earthquake; warnings of volcanic eruptions; information for correctly characterizing earthquake hazards and for improving building codes; and data on response of buildings and structures during earthquakes, for safe, cost-effective design, engineering, and construction practices in earthquake-prone regions.

  19. Seismic attenuation system for a nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Liszkai, Tamas; Cadell, Seth

    2018-01-30

    A system for attenuating seismic forces includes a reactor pressure vessel containing nuclear fuel and a containment vessel that houses the reactor pressure vessel. Both the reactor pressure vessel and the containment vessel include a bottom head. Additionally, the system includes a base support to contact a support surface on which the containment vessel is positioned in a substantially vertical orientation. An attenuation device is located between the bottom head of the reactor pressure vessel and the bottom head of the containment vessel. Seismic forces that travel from the base support to the reactor pressure vessel via the containment vessel are attenuated by the attenuation device in a direction that is substantially lateral to the vertical orientation of the containment vessel.

  20. Letter report seismic shutdown system failure mode and effect analysis

    International Nuclear Information System (INIS)

    KECK, R.D.

    1999-01-01

    The Supply Ventilation System Seismic Shutdown ensures that the 234-52 building supply fans, the dry air process fans and vertical development calciner are shutdown following a seismic event. This evaluates the failure modes and determines the effects of the failure modes

  1. Compact vibration isolation and suspension for Australian International Gravitational Observatory: Local control system

    Science.gov (United States)

    Dumas, Jean-Charles; Barriga, Pablo; Zhao, Chunnong; Ju, Li; Blair, David G.

    2009-11-01

    High performance vibration isolators are required for ground based gravitational wave detectors. To attain very high performance at low frequencies we have developed multistage isolators for the proposed Australian International Gravitational Observatory detector in Australia. New concepts in vibration isolation including self-damping, Euler springs, LaCoste springs, Roberts linkages, and double preisolation require novel sensors and actuators. Double preisolation enables internal feedback to be used to suppress low frequency seismic noise. Multidegree of freedom control systems are required to attain high performance. Here we describe the control components and control systems used to control all degrees of freedom. Feedback forces are injected at the preisolation stages and at the penultimate suspension stage. There is no direct actuation on test masses. A digital local control system hosted on a digital signal processor maintains alignment and position, corrects drifts, and damps the low frequency linear and torsional modes without exciting the very high Q-factor test mass suspension. The control system maintains an optical cavity locked to a laser with a high duty cycle even in the absence of an autoalignment system. An accompanying paper presents the mechanics of the system, and the optical cavity used to determine isolation performance. A feedback method is presented, which is expected to improve the residual motion at 1 Hz by more than one order of magnitude.

  2. Compact vibration isolation and suspension for Australian International Gravitational Observatory: local control system.

    Science.gov (United States)

    Dumas, Jean-Charles; Barriga, Pablo; Zhao, Chunnong; Ju, Li; Blair, David G

    2009-11-01

    High performance vibration isolators are required for ground based gravitational wave detectors. To attain very high performance at low frequencies we have developed multistage isolators for the proposed Australian International Gravitational Observatory detector in Australia. New concepts in vibration isolation including self-damping, Euler springs, LaCoste springs, Roberts linkages, and double preisolation require novel sensors and actuators. Double preisolation enables internal feedback to be used to suppress low frequency seismic noise. Multidegree of freedom control systems are required to attain high performance. Here we describe the control components and control systems used to control all degrees of freedom. Feedback forces are injected at the preisolation stages and at the penultimate suspension stage. There is no direct actuation on test masses. A digital local control system hosted on a digital signal processor maintains alignment and position, corrects drifts, and damps the low frequency linear and torsional modes without exciting the very high Q-factor test mass suspension. The control system maintains an optical cavity locked to a laser with a high duty cycle even in the absence of an autoalignment system. An accompanying paper presents the mechanics of the system, and the optical cavity used to determine isolation performance. A feedback method is presented, which is expected to improve the residual motion at 1 Hz by more than one order of magnitude.

  3. Mobile seismic exploration

    Energy Technology Data Exchange (ETDEWEB)

    Dräbenstedt, A., E-mail: a.draebenstedt@polytec.de, E-mail: rembe@iei.tu-clausthal.de, E-mail: ulrich.polom@liag-hannover.de; Seyfried, V. [Research & Development, Polytec GmbH, Waldbronn (Germany); Cao, X.; Rembe, C., E-mail: a.draebenstedt@polytec.de, E-mail: rembe@iei.tu-clausthal.de, E-mail: ulrich.polom@liag-hannover.de [Institute of Electrical Information Technology, TU Clausthal, Clausthal-Zellerfeld (Germany); Polom, U., E-mail: a.draebenstedt@polytec.de, E-mail: rembe@iei.tu-clausthal.de, E-mail: ulrich.polom@liag-hannover.de [Leibniz Institute of Applied Geophysics, Hannover (Germany); Pätzold, F.; Hecker, P. [Institute of Flight Guidance, TU Braunschweig, Braunschweig (Germany); Zeller, T. [Clausthaler Umwelttechnik Institut CUTEC, Clausthal-Zellerfeld (Germany)

    2016-06-28

    Laser-Doppler-Vibrometry (LDV) is an established technique to measure vibrations in technical systems with picometer vibration-amplitude resolution. Especially good sensitivity and resolution can be achieved at an infrared wavelength of 1550 nm. High-resolution vibration measurements are possible over more than 100 m distance. This advancement of the LDV technique enables new applications. The detection of seismic waves is an application which has not been investigated so far because seismic waves outside laboratory scales are usually analyzed at low frequencies between approximately 1 Hz and 250 Hz and require velocity resolutions in the range below 1 nm/s/√Hz. Thermal displacements and air turbulence have critical influences to LDV measurements at this low-frequency range leading to noise levels of several 100 nm/√Hz. Commonly seismic waves are measured with highly sensitive inertial sensors (geophones or Micro Electro-Mechanical Sensors (MEMS)). Approaching a laser geophone based on LDV technique is the topic of this paper. We have assembled an actively vibration-isolated optical table in a minivan which provides a hole in its underbody. The laser-beam of an infrared LDV assembled on the optical table impinges the ground below the car through the hole. A reference geophone has detected remaining vibrations on the table. We present the results from the first successful experimental demonstration of contactless detection of seismic waves from a movable vehicle with a LDV as laser geophone.

  4. Wireless acquisition of multi-channel seismic data using the Seismobile system

    Science.gov (United States)

    Isakow, Zbigniew

    2017-11-01

    This paper describes the wireless acquisition of multi-channel seismic data using a specialized mobile system, Seismobile, designed for subsoil diagnostics for transportation routes. The paper presents examples of multi-channel seismic records obtained during system tests in a configuration with 96 channels (4 landstreamers of 24-channel) and various seismic sources. Seismic waves were generated at the same point using different sources: a 5-kg hammer, a Gisco's source with a 90-kg pile-driver, and two other the pile-drivers of 45 and 70 kg. Particular attention is paid to the synchronization of source timing, the measurement of geometry by autonomous GPS systems, and the repeatability of triggering measurements constrained by an accelerometer identifying the seismic waveform. The tests were designed to the registration, reliability, and range of the wireless transmission of survey signals. The effectiveness of the automatic numbering of measuring modules was tested as the system components were arranged and fixed to the streamers. After measurements were completed, the accuracy and speed of data downloading from the internal memory (SDHC 32GB WiFi) was determined. Additionally, the functionality of automatic battery recharging, the maximum survey duration, and the reliability of battery discharge signalling were assessed.

  5. An Experimental Seismic Data and Parameter Exchange System for Interim NEAMTWS

    Science.gov (United States)

    Hanka, W.; Hoffmann, T.; Weber, B.; Heinloo, A.; Hoffmann, M.; Müller-Wrana, T.; Saul, J.

    2009-04-01

    In 2008 GFZ Potsdam has started to operate its global earthquake monitoring system as an experimental seismic background data centre for the interim NEAMTWS (NE Atlantic and Mediterranean Tsunami Warning System). The SeisComP3 (SC3) software, developed within the GITEWS (German Indian Ocean Tsunami Early Warning System) project was extended to test the export and import of individual processing results within a cluster of SC3 systems. The initiated NEAMTWS SC3 cluster consists presently of the 24/7 seismic services at IMP, IGN, LDG/EMSC and KOERI, whereas INGV and NOA are still pending. The GFZ virtual real-time seismic network (GEOFON Extended Virtual Network - GEVN) was substantially extended by many stations from Western European countries optimizing the station distribution for NEAMTWS purposes. To amend the public seismic network (VEBSN - Virtual European Broadband Seismic Network) some attached centres provided additional private stations for NEAMTWS usage. In parallel to the data collection by Internet the GFZ VSAT hub for the secured data collection of the EuroMED GEOFON and NEAMTWS backbone network stations became operational and the first data links were established. In 2008 the experimental system could already prove its performance since a number of relevant earthquakes have happened in NEAMTWS area. The results are very promising in terms of speed as the automatic alerts (reliable solutions based on a minimum of 25 stations and disseminated by emails and SMS) were issued between 2 1/2 and 4 minutes for Greece and 5 minutes for Iceland. They are also promising in terms of accuracy since epicenter coordinates, depth and magnitude estimates were sufficiently accurate from the very beginning, usually don't differ substantially from the final solutions and provide a good starting point for the operations of the interim NEAMTWS. However, although an automatic seismic system is a good first step, 24/7 manned RTWCs are mandatory for regular manual verification

  6. Seismic effects on technological equipment and systems of nuclear power plants

    International Nuclear Information System (INIS)

    Masopust, R.; Pecinka, L.; Podrouzek, J.

    1983-01-01

    A survey is given of problems related to the construction of nuclear power plants with regard to seismic resistance. Sei--smic resistance of technological equipment is evaluated by experimental trials, calculation or the combination of both. Existing and future standards are given for the given field. The Czechoslovak situation is discussed as related to the construction of the Mochovce nuclear power plant. Procedures for testing seismic resistance, types of tests and methods of simulating seismic excitation are described. Antiseismic measures together with structural elements for limiting the seismic effects on technological equipment and nuclear power plant systems are summed up on the basis of foreign experience. (E.F.)

  7. Investigation of optimal seismic design methodology for piping systems supported by elasto-plastic dampers. Part. 2. Applicability for seismic waves with various frequency characteristics

    International Nuclear Information System (INIS)

    Ito, Tomohiro; Michiue, Masashi; Fujita, Katsuhisa

    2010-01-01

    In this study, the applicability of a previously developed optimal seismic design methodology, which can consider the structural integrity of not only piping systems but also elasto-plastic supporting devices, is studied for seismic waves with various frequency characteristics. This methodology employs a genetic algorithm and can search the optimal conditions such as the supporting location and the capacity and stiffness of the supporting devices. Here, a lead extrusion damper is treated as a typical elasto-plastic damper. Numerical simulations are performed using a simple piping system model. As a result, it is shown that the proposed optimal seismic design methodology is applicable to the seismic design of piping systems subjected to seismic waves with various frequency characteristics. The mechanism of optimization is also clarified. (author)

  8. Seismic analysis response factors and design margins of piping systems

    International Nuclear Information System (INIS)

    Shieh, L.C.; Tsai, N.C.; Yang, M.S.; Wong, W.L.

    1985-01-01

    The objective of the simplified methods project of the Seismic Safety Margins Research Program is to develop a simplified seismic risk methodology for general use. The goal is to reduce seismic PRA costs to roughly 60 man-months over a 6 to 8 month period, without compromising the quality of the product. To achieve the goal, it is necessary to simplify the calculational procedure of the seismic response. The response factor approach serves this purpose. The response factor relates the median level response to the design data. Through a literature survey, we identified the various seismic analysis methods adopted in the U.S. nuclear industry for the piping system. A series of seismic response calculations was performed. The response factors and their variabilities for each method of analysis were computed. A sensitivity study of the effect of piping damping, in-structure response spectra envelop method, and analysis method was conducted. In addition, design margins, which relate the best-estimate response to the design data, are also presented

  9. Seismic considerations in sealing a potential high-level radioactive waste repository

    International Nuclear Information System (INIS)

    Fernandez, J.A.; Richardson, A.M.; Lin, Ming

    1992-01-01

    The potential repository system is intended to isolate high-level radioactive waste at Yucca Mountain. One subsystem that may contribute to achieving this objective is the sealing subsystem. This subsystem is comprised of sealing components in the shafts, ramps, underground network of drifts, and the exploratory boreholes. Sealing components can be rigid, as in the case of a shaft seal, or can be more compressible, as in the case of drift fill comprised of mined rockfill. This paper presents the preliminary seismic response of discrete sealing components in welded and nonwelded tuff. Special consideration is given to evaluating the stress in the seal, and the behavior of the interface between the seal and the rock. The seismic responses are computed using both static and dynamic analyses. Also presented is an evaluation of the maximum seismic response encountered by a drift seal with respect to the angle of incidence of the seismic wave. Mitigation strategies and seismic design considerations are proposed which can potentially enhance the overall response of the sealing component and subsequently, the performance of the overall repository system

  10. Seismic properties of fluid bearing formations in magmatic geothermal systems: can we directly detect geothermal activity with seismic methods?

    Science.gov (United States)

    Grab, Melchior; Scott, Samuel; Quintal, Beatriz; Caspari, Eva; Maurer, Hansruedi; Greenhalgh, Stewart

    2016-04-01

    Seismic methods are amongst the most common techniques to explore the earth's subsurface. Seismic properties such as velocities, impedance contrasts and attenuation enable the characterization of the rocks in a geothermal system. The most important goal of geothermal exploration, however, is to describe the enthalpy state of the pore fluids, which act as the main transport medium for the geothermal heat, and to detect permeable structures such as fracture networks, which control the movement of these pore fluids in the subsurface. Since the quantities measured with seismic methods are only indirectly related with the fluid state and the rock permeability, the interpretation of seismic datasets is difficult and usually delivers ambiguous results. To help overcome this problem, we use a numerical modeling tool that quantifies the seismic properties of fractured rock formations that are typically found in magmatic geothermal systems. We incorporate the physics of the pore fluids, ranging from the liquid to the boiling and ultimately vapor state. Furthermore, we consider the hydromechanics of permeable structures at different scales from small cooling joints to large caldera faults as are known to be present in volcanic systems. Our modeling techniques simulate oscillatory compressibility and shear tests and yield the P- and S-wave velocities and attenuation factors of fluid saturated fractured rock volumes. To apply this modeling technique to realistic scenarios, numerous input parameters need to be indentified. The properties of the rock matrix and individual fractures were derived from extensive literature research including a large number of laboratory-based studies. The geometries of fracture networks were provided by structural geologists from their published studies of outcrops. Finally, the physical properties of the pore fluid, ranging from those at ambient pressures and temperatures up to the supercritical conditions, were taken from the fluid physics

  11. Designing in seismic areas in the third millennium: modern technologies

    International Nuclear Information System (INIS)

    Martelli, Alessandro

    2015-01-01

    The World Conference on Seismic Isolation, Energy Dissipation and Active Vibrations Control of Structures, which took place in Sendai (Japan) on September 24-26, 2013. Other papers presented at this conference deal with the use of the traditional approach. More updated information on the application of the AS systems became available at the ASSISi 14. World Conference, held in San Diego (California, USA) on September 7-11, 2015. Most SI systems rely on the use of rubber bearings (RBs), such as the High Damping natural Rubber Bearings (HDRBs), Neoprene Bearings (NBs), Lead Rubber Bearings (LRBs), or (especially in Japan) Low Damping Rubber Bearings (LDRBs) in parallel with dampers; in buildings, some plane surfaces steel-Teflon (PTFE) Sliding Devices (SDs) are frequently added to the RBs to support their light parts without unnecessarily stiffening the SI system (which would make it less effective) and (if they are significantly asymmetric in the horizontal plane) to minimize the torsion effects (the effects of the vertical asymmetries are drastically reduced by the quasi 'rigid body motion' of the seismically isolated superstructure). Another type of isolators, which has been used in Italy after the 2009 Abruzzo earthquake, is the so-called Curved Surface Slider (CSS), which derived from the US Friction Pendulum (FPS) and the subsequent German Seismic Isolation Pendulum (SIP). Finally, rolling isolators (in particular Ball Bearings, BBs, and Sphere Bearings) are also applied: they are very effective and find numerous applications (more than 200 in 2013) to protect buildings in Japan, but not in Italy, because there they have been judged to be too expensive (however, they have already been used, even in Italy, to protect precious masterpieces and other contents of museums, as well as costly equipment, including that of operating-rooms in hospitals). It shall be stressed that, to the knowledge of the author, all structures protected by RBs that were located

  12. Shaking Table Tests of Curved Bridge considering Bearing Friction Sliding Isolation

    Directory of Open Access Journals (Sweden)

    Lei Yan

    2016-01-01

    Full Text Available Specific to severe damage to curved bridges in earthquakes caused by the excessive force of the fixed bearings and piers, a new seismic design method on curved bridges considering bearing friction sliding isolation is proposed in this paper. Seismic model bridge and isolation model bridge with similarity ratio of 1/20 were made and the shaking table comparison test was conducted. The experimental results show that the isolation model curved bridge suffered less seismic damage than the seismic model curved bridge. The fundamental frequencies of the seismic model bridge and isolation model bridge decreased and the damping ratio increased with the increase of seismic intensity. Compared with seismic curved bridge, the maximum reduction rates of peak acceleration along the radial and tangential directions on the top of pier of the isolation model curved bridge were 47.3% and 55.5%, respectively, and the maximum reduction rate of the peak strain on the bottom of pier of the isolation model curved bridge was 43.4%. For the isolation model curved bridge, the maximum reduction rate of peak acceleration on the top of pier was 24.6% compared with that on the bottom of pier. The study results can provide experimental basis for the seismic design of curved bridges.

  13. Induced seismicity associated with enhanced geothermal system

    Energy Technology Data Exchange (ETDEWEB)

    Majer, Ernest; Majer, Ernest L.; Baria, Roy; Stark, Mitch; Oates, Stephen; Bommer, Julian; Smith, Bill; Asanuma, Hiroshi

    2006-09-26

    Enhanced Geothermal Systems (EGS) offer the potential to significantly add to the world energy inventory. As with any development of new technology, some aspects of the technology has been accepted by the general public, but some have not yet been accepted and await further clarification before such acceptance is possible. One of the issues associated with EGS is the role of microseismicity during the creation of the underground reservoir and the subsequent extraction of the energy. The primary objectives of this white paper are to present an up-to-date review of the state of knowledge about induced seismicity during the creation and operation of enhanced geothermal systems, and to point out the gaps in knowledge that if addressed will allow an improved understanding of the mechanisms generating the events as well as serve as a basis to develop successful protocols for monitoring and addressing community issues associated with such induced seismicity. The information was collected though literature searches as well as convening three workshops to gather information from a wide audience. Although microseismicity has been associated with the development of production and injection operations in a variety of geothermal regions, there have been no or few adverse physical effects on the operations or on surrounding communities. Still, there is public concern over the possible amount and magnitude of the seismicity associated with current and future EGS operations. It is pointed out that microseismicity has been successfully dealt with in a variety of non-geothermal as well as geothermal environments. Several case histories are also presented to illustrate a variety of technical and public acceptance issues. It is concluded that EGS Induced seismicity need not pose any threat to the development of geothermal resources if community issues are properly handled. In fact, induced seismicity provides benefits because it can be used as a monitoring tool to understand the

  14. Seismic margin reviews of nuclear power plants: Identification of important functions and systems

    International Nuclear Information System (INIS)

    Prassinos, P.G.; Moore, D.L.; Amico, P.J.

    1987-01-01

    The results from the review of the seven utility-sponsored seismic PRAs plus the Zion SSMRP have been used to develop some insights regarding the importance of various systems and functions to seismic margins. By taking this information and combining it with the fragility insights we can develop some functional/systemic screening guideline for margin studies. This screening approach will greatly reduce the scope of the analysis. It is possible only to come to conclusions regarding the importance of plant systems and safety functions for PWRs, for which six plants were studied. For PWRs, it is possible to categorize plant safety functions as belonging to one of two groups, one of which is important to the assessment of seismic margins and one of which is not. The important functional group involves only two functions that must be considered for estimating seismic margin. These two functions are shutting down the nuclear reaction and providing cooling to the reactor core in the time period immediately following the seismic event (that is, the injection phase or pre-residual heat removal time period). It is possible to reasonably estimate the seismic margin of the plant by performing a study only involving the analysis of the plant systems and structure which are required in order to perform the two functions. Such analysis must include an assessment of a complete set of seismic initiating events. (orig./HP)

  15. A modeling study of dynamic characteristic analysis of isolated structure for seismic exciting tests

    International Nuclear Information System (INIS)

    Lee, Jae Han; Koo, G. H.; Yoo, Bong

    1998-04-01

    The fundamental frequency of the isolated superstructure for seismic exciting tests was calculated by 16 Hz with a initial modal analysis model. but the actual modal test resulted in 5 Hz. This large difference was resulted from some uncertainties in analysis modeling of several connection parts between column and upper beam, cross bars of each face of the isolated superstructure. When the stiffness of cross-bars are larger than certain level in all the analyses, the joint stiffness between main slab and columns does not effect to the fundamental frequency. So the fundamental frequency of the isolated superstructure was governed by the cross-bar's stiffness. In actual tests the first and second frequencies show a little difference regardless of the cross section characteristics (inertia moments) of four columns because the joint stiffness between column and main slab is less than 10 8 1b f in/radian. The mounting device of each column to main slab, and the bolting device of each column to upper beam are fabricated with lower stiffness compared to design value. The bolting of cross-bars and the fitness of bolt-hole to bolt were loosed during the modal tests. In the future the tight connecting and the precise assembling of isolated superstructure are required to reduce the difference of the fundamental frequencies obtained from the modal analysis and actual test. (author). 4 refs

  16. Supports for shock, vibration and seismic isolation for tube networks

    International Nuclear Information System (INIS)

    Prisecaru, Ilie; Serban, Viorel; Sandrea Madalina

    2005-01-01

    The paper presents a solution for diminishing the shocks, vibrations and seismic movements in pipe networks, with a simultaneous reduction in the general stress conditions in piping and supports. Total removal or reduction of vibrations is a hard problem which was not yet tackled either theoretically, in the sense of an analytical procedure for the analysis of occurrence and development of shocks and vibrations in complex systems, or practically, since the current supports and dampers cannot provide enough damping within all the frequency ranges met in the technical domain. Stiffness of classical supports do not allow always satisfactory source isolation to prevent propagation from environment of shocks and vibrations, Considering the actual condition met in the nuclear power plants, power plants and thermal power plants, etc. this paper represents a major practical aid because it provides new solutions for diminishing shocks, vibrations and seismic movements. Aiming at diminishing the effects of vibrations in pipe networks, this paper presents the results obtained in the design, construction and testing of new types of supports that include sandwich type components made up of elastic blade packages with controlled distortion provided by the central and peripheral stiff parts called SERB. With the new type of supports, the control of the distortion at static and dynamic loads and the thermal displacements is achieved by the relative movement among the sandwich structure subassemblies and by the sandwich structure distortion controlled by the central and peripheral distorting parts that generate a non - linear geometric response which has an easily controllable stiffness and damping, due to their non - linear geometric behavior. The supports of the new type are adjustable to the load and distortion level without overstressing the component material, due to a non - linear geometric behavior while the contact pressure among the blades is limited to pre-set values. Due

  17. Integrating Social impacts on Health and Health-Care Systems in Systemic Seismic Vulnerability Analysis

    Science.gov (United States)

    Kunz-Plapp, T.; Khazai, B.; Daniell, J. E.

    2012-04-01

    This paper presents a new method for modeling health impacts caused by earthquake damage which allows for integrating key social impacts on individual health and health-care systems and for implementing these impacts in quantitative systemic seismic vulnerability analysis. In current earthquake casualty estimation models, demand on health-care systems is estimated by quantifying the number of fatalities and severity of injuries based on empirical data correlating building damage with casualties. The expected number of injured people (sorted by priorities of emergency treatment) is combined together with post-earthquake reduction of functionality of health-care facilities such as hospitals to estimate the impact on healthcare systems. The aim here is to extend these models by developing a combined engineering and social science approach. Although social vulnerability is recognized as a key component for the consequences of disasters, social vulnerability as such, is seldom linked to common formal and quantitative seismic loss estimates of injured people which provide direct impact on emergency health care services. Yet, there is a consensus that factors which affect vulnerability and post-earthquake health of at-risk populations include demographic characteristics such as age, education, occupation and employment and that these factors can aggravate health impacts further. Similarly, there are different social influences on the performance of health care systems after an earthquake both on an individual as well as on an institutional level. To link social impacts of health and health-care services to a systemic seismic vulnerability analysis, a conceptual model of social impacts of earthquakes on health and the health care systems has been developed. We identified and tested appropriate social indicators for individual health impacts and for health care impacts based on literature research, using available European statistical data. The results will be used to

  18. Development of seismic damage assessment system for nuclear power plant structures in Korea

    International Nuclear Information System (INIS)

    Hyun, Chang-Hun; Lee, Sung-Kyu; Choi, Kang-Ryoung; Koh, Hyun-Moo; Cho, HoHyun

    2003-01-01

    A seismic damage assessment system that analyses in real-time the actual seismic resistance capacity and the damage level of power plant structures has been developed. The system consists of three parts: a 3-D inelastic seismic analysis, a damage assessment using a damage index based on the previous 3-D analysis, and a 3-D graphic representation. PSC containment structures are modelled by finite shell elements using layered method and analysis is performed by means of time history inelastic seismic analysis method, which takes into account material nonlinearities. HHT-α, one kind of direct integration method, is adopted for the seismic analysis. Two damage indices at finite element and structural levels are applied for the seismic damage assessment. 3-D graphical representation of dynamic responses and damage index expedites procedure for evaluating the damage level. The developed system is now being installed at the Earthquake Monitoring Center of KINS (Korea Institute of Nuclear Safety) to support site inspections after an earthquake occurrence, and decisions about effective emergency measures, repair and operations of the plant. (author)

  19. Design of the Caltrans Seismic Response Modification Device (SRMD) test facility

    International Nuclear Information System (INIS)

    Benzoni, G.; Seible, F.

    1998-01-01

    In the Seismic retrofit design of California's Toll Bridges, seismic isolation is used in several bridges to limit the seismic force input into the superstructure and to avoid costly superstructure retrofit measures which would require partial lane closures and traffic interruptions. Isolation bearings and dampers of the size required for these large span bridges have not been built or tested to date. This paper describes the design and construction of a full scale testing facility which will allow the real-time 6-DOF dynamic characterization of the seismic response modification devices designed for California's Toll Bridges. (author)

  20. seismic-py: Reading seismic data with Python

    Directory of Open Access Journals (Sweden)

    2008-08-01

    Full Text Available The field of seismic exploration of the Earth has changed
    dramatically over the last half a century. The Society of Exploration
    Geophysicists (SEG has worked to create standards to store the vast
    amounts of seismic data in a way that will be portable across computer
    architectures. However, it has been impossible to predict the needs of the
    immense range of seismic data acquisition systems. As a result, vendors have
    had to bend the rules to accommodate the needs of new instruments and
    experiment types. For low level access to seismic data, there is need for a
    standard open source library to allow access to a wide range of vendor data
    files that can handle all of the variations. A new seismic software package,
    seismic-py, provides an infrastructure for creating and managing drivers for
    each particular format. Drivers can be derived from one of the known formats
    and altered to handle any slight variations. Alternatively drivers can be
    developed from scratch for formats that are very different from any previously
    defined format. Python has been the key to making driver development easy
    and efficient to implement. The goal of seismic-py is to be the base system
    that will power a wide range of experimentation with seismic data and at the
    same time provide clear documentation for the historical record of seismic
    data formats.

  1. Quantitative identification and analysis of sub-seismic extensional structure system: technique schemes and processes

    International Nuclear Information System (INIS)

    Chenghua, Ou; Chen, Wei; Ma, Zhonggao

    2015-01-01

    Quantitative characterization of complex sub-seismic extensional structure system that essentially controls petroleum exploitation is difficult to implement in seismic profile interpretation. This research, based on a case study in block M of Myanmar, established a set of quantitative treatment schemes and technique processes for the identification of sub-seismic low-displacement (SSLD) extensional faults or fractures upon structural deformation restoration and geometric inversion. Firstly, the master-subsidiary inheritance relations and configuration of the seismic-scale extensional fault systems are determined by analyzing the structural pattern. Besides, three-dimensional (3D) pattern and characteristics of the seismic-scale extensional structure have been illustrated by a 3D structure model built upon seismic sections. Moreover, according to the dilatancy obtained from structural restoration on the basis of inclined shear method, as well as the fracture-flow index, potential SSLD extensional faults or fractures have been quantitatively identified. Application of the technique processes to the sub-seismic low-displacement extensional structures in block M in Myanmar is instructive to quantitatively interpret those SSLD extensional structure systems in practice. (paper)

  2. Shallow seismicity in volcanic system: what role does the edifice play?

    Science.gov (United States)

    Bean, Chris; Lokmer, Ivan

    2017-04-01

    Seismicity in the upper two kilometres in volcanic systems is complex and very diverse in nature. The origins lie in the multi-physics nature of source processes and in the often extreme heterogeneity in near surface structure, which introduces strong seismic wave propagation path effects that often 'hide' the source itself. Other complicating factors are that we are often in the seismic near-field so waveforms can be intrinsically more complex than in far-field earthquake seismology. The traditional focus for an explanation of the diverse nature of shallow seismic signals is to call on the direct action of fluids in the system. Fits to model data are then used to elucidate properties of the plumbing system. Here we show that solutions based on these conceptual models are not unique and that models based on a diverse range of quasi-brittle failure of low stiffness near surface structures are equally valid from a data fit perspective. These earthquake-like sources also explain aspects of edifice deformation that are as yet poorly quantified.

  3. User's manual of SECOM2: a computer code for seismic system reliability analysis

    International Nuclear Information System (INIS)

    Uchiyama, Tomoaki; Oikawa, Tetsukuni; Kondo, Masaaki; Tamura, Kazuo

    2002-03-01

    This report is the user's manual of seismic system reliability analysis code SECOM2 (Seismic Core Melt Frequency Evaluation Code Ver.2) developed at the Japan Atomic Energy Research Institute for systems reliability analysis, which is one of the tasks of seismic probabilistic safety assessment (PSA) of nuclear power plants (NPPs). The SECOM2 code has many functions such as: Calculation of component failure probabilities based on the response factor method, Extraction of minimal cut sets (MCSs), Calculation of conditional system failure probabilities for given seismic motion levels at the site of an NPP, Calculation of accident sequence frequencies and the core damage frequency (CDF) with use of the seismic hazard curve, Importance analysis using various indicators, Uncertainty analysis, Calculation of the CDF taking into account the effect of the correlations of responses and capacities of components, and Efficient sensitivity analysis by changing parameters on responses and capacities of components. These analyses require the fault tree (FT) representing the occurrence condition of the system failures and core damage, information about response and capacity of components and seismic hazard curve for the NPP site as inputs. This report presents the models and methods applied in the SECOM2 code and how to use those functions. (author)

  4. Mechanical design of a single-axis monolithic accelerometer for advanced seismic attenuation systems

    Energy Technology Data Exchange (ETDEWEB)

    Bertolini, Alessandro [Dipartimento di Fisica dell' Universita di Pisa and INFM, Largo Pontecorvo 2, I-56127 Pisa (Italy) and LIGO Project, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States)]. E-mail: alessandro.bertolini@desy.de; DeSalvo, Riccardo [LIGO Project, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Fidecaro, Francesco [Dipartimento di Fisica dell' Universita di Pisa and INFM, Largo Pontecorvo 2, I-56127 Pisa (Italy); Francesconi, Mario [Dipartimento di Fisica dell' Universita di Pisa and INFM, Largo Pontecorvo 2, I-56127 Pisa (Italy); Marka, Szabolcs [Department of Physics, Columbia University, 538 W. 120th St., New York, NY 10027 (United States); Sannibale, Virginio [LIGO Project, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Simonetti, Duccio [Dipartimento di Fisica dell' Universita di Pisa and INFM, Largo Pontecorvo 2, I-56127 Pisa (Italy); Takamori, Akiteru [LIGO Project, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Earthquake Research Institute, University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo 113-0032 (Japan); Tariq, Hareem [LIGO Project, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States)

    2006-01-15

    The design and mechanics for a new very-low noise low frequency horizontal accelerometer is presented. The sensor has been designed to be integrated in an advanced seismic isolation system for interferometric gravitational wave detectors. The motion of a small monolithic folded-pendulum (FP) is monitored by a high resolution capacitance displacement sensor; a feedback force actuator keeps the mass at the equilibrium position. The feedback signal is proportional to the ground acceleration in the frequency range 0-150Hz. The very high mechanical quality factor, Q{approx}3000 at a resonant frequency of 0.5Hz, reduces the Brownian motion of the proof mass of the accelerometer below the resolution of the displacement sensor. This scheme enables the accelerometer to detect the inertial displacement of a platform with a root-mean-square noise less than 1nm, integrated over the frequency band from 0.01 to 150Hz. The FP geometry, combined with the monolithic design, allows the accelerometer to be extremely directional. A vertical-horizontal coupling ranging better than 10{sup -3} has been achieved. A detailed account of the design and construction of the accelerometer is reported here. The instrument is fully ultra-high vacuum compatible and has been tested and approved for integration in seismic attenuation system of japanese TAMA 300 gravitational wave detector. The monolithic design also makes the accelerometer suitable for cryogenic operation.

  5. Open Source Seismic Software in NOAA's Next Generation Tsunami Warning System

    Science.gov (United States)

    Hellman, S. B.; Baker, B. I.; Hagerty, M. T.; Leifer, J. M.; Lisowski, S.; Thies, D. A.; Donnelly, B. K.; Griffith, F. P.

    2014-12-01

    The Tsunami Information technology Modernization (TIM) is a project spearheaded by National Oceanic and Atmospheric Administration to update the United States' Tsunami Warning System software currently employed at the Pacific Tsunami Warning Center (Eva Beach, Hawaii) and the National Tsunami Warning Center (Palmer, Alaska). This entirely open source software project will integrate various seismic processing utilities with the National Weather Service Weather Forecast Office's core software, AWIPS2. For the real-time and near real-time seismic processing aspect of this project, NOAA has elected to integrate the open source portions of GFZ's SeisComP 3 (SC3) processing system into AWIPS2. To provide for better tsunami threat assessments we are developing open source tools for magnitude estimations (e.g., moment magnitude, energy magnitude, surface wave magnitude), detection of slow earthquakes with the Theta discriminant, moment tensor inversions (e.g. W-phase and teleseismic body waves), finite fault inversions, and array processing. With our reliance on common data formats such as QuakeML and seismic community standard messaging systems, all new facilities introduced into AWIPS2 and SC3 will be available as stand-alone tools or could be easily integrated into other real time seismic monitoring systems such as Earthworm, Antelope, etc. Additionally, we have developed a template based design paradigm so that the developer or scientist can efficiently create upgrades, replacements, and/or new metrics to the seismic data processing with only a cursory knowledge of the underlying SC3.

  6. Seismic analysis of liquid metal reactor piping systems

    International Nuclear Information System (INIS)

    Wang, C.Y.

    1987-01-01

    This paper describes the finite-element numerical algorithm and its applications to LMR piping under seismic excitations. A time-history analysis technique using the implicit temporal integration scheme is addressed. A 3-D pipe element is formulated which has eight degrees of freedom per node (three displacements, three rotations, one membrane displacement, and one bending rotation) to account for the hoop, flexural, rotational, and torsional modes of the piping system. Both geometric and material nonlinearities are considered. This algorithm is unconditionally stable and is particularly suited for the seismic analysis. (orig./GL)

  7. Seismic considerations in sealing a potential high-level radioactive waste repository

    International Nuclear Information System (INIS)

    Fernandez, J.A.; Richardson, A.M.; Lin, Ming

    1993-01-01

    The potential repository system is intended to isolate high-level radioactive waste at Yucca Mountain according the performance objective--10 CFR 60.112. One subsystem that may contribute to achieving this objective is the sealing subsystem. This subsystem is comprised of sealing components in the shafts, ramps, underground network of drifts, and the exploratory boreholes. Sealing components can be rigid, as in the case of a shaft seal, or can be more compressible, as in the case of drift fill comprised of mined rockfill. This paper presents the preliminary seismic response of discrete sealing components in welded and nonwelded tuff. Special consideration is given to evaluating the stress in the seal, and the behavior of the interface between the seal and the rock. The seismic responses are computed using both static and dynamic analyses. Also presented is an evaluation of the maximum seismic response encountered by a drift seal with respect to the angle of incidence of the seismic wave. Mitigation strategies and seismic design considerations are proposed which can potentially enhance the overall response of the sealing component and subsequently, the performance of the overall repository system

  8. A high-speed transmission method for large-scale marine seismic prospecting systems

    International Nuclear Information System (INIS)

    KeZhu, Song; Ping, Cao; JunFeng, Yang; FuMing, Ruan

    2012-01-01

    A marine seismic prospecting system is a kind of data acquisition and transmission system with large-scale coverage and synchronous multi-node acquisition. In this kind of system, data transmission is a fundamental and difficult technique. In this paper, a high-speed data-transmission method is proposed, its implications and limitations are discussed, and conclusions are drawn. The method we propose has obvious advantages over traditional techniques with respect to long-distance operation, high speed, and real-time transmission. A marine seismic system with four streamers, each 6000 m long and capable of supporting up to 1920 channels, was designed and built based on this method. The effective transmission baud rate of this system was found to reach up to 240 Mbps, while the minimum sampling interval time was as short as 0.25 ms. This system was found to achieve a good synchronization: 83 ns. Laboratory and in situ experiments showed that this marine-prospecting system could work correctly and robustly, which verifies the feasibility and validity of the method proposed in this paper. In addition to the marine seismic applications, this method can also be used in land seismic applications and certain other transmission applications such as environmental or engineering monitoring systems. (paper)

  9. A high-speed transmission method for large-scale marine seismic prospecting systems

    Science.gov (United States)

    KeZhu, Song; Ping, Cao; JunFeng, Yang; FuMing, Ruan

    2012-12-01

    A marine seismic prospecting system is a kind of data acquisition and transmission system with large-scale coverage and synchronous multi-node acquisition. In this kind of system, data transmission is a fundamental and difficult technique. In this paper, a high-speed data-transmission method is proposed, its implications and limitations are discussed, and conclusions are drawn. The method we propose has obvious advantages over traditional techniques with respect to long-distance operation, high speed, and real-time transmission. A marine seismic system with four streamers, each 6000 m long and capable of supporting up to 1920 channels, was designed and built based on this method. The effective transmission baud rate of this system was found to reach up to 240 Mbps, while the minimum sampling interval time was as short as 0.25 ms. This system was found to achieve a good synchronization: 83 ns. Laboratory and in situ experiments showed that this marine-prospecting system could work correctly and robustly, which verifies the feasibility and validity of the method proposed in this paper. In addition to the marine seismic applications, this method can also be used in land seismic applications and certain other transmission applications such as environmental or engineering monitoring systems.

  10. Seismic analysis of liquid metal reactor piping systems

    International Nuclear Information System (INIS)

    Wang, C.Y.

    1987-01-01

    To safely assess the adequacy of the LMR piping, a three-dimensional piping code, SHAPS, has been developed at Argonne National Laboratory. This code was initially intended for calculating hydrodynamic-wave propagation in a complex piping network. It has salient features for treating fluid transients of fluid-structure interactions for piping with in-line components. The code also provides excellent structural capabilities of computing stresses arising from internal pressurization and 3-D flexural motion of the piping system. As part of the development effort, the SHAPS code has been further augmented recently by introducing the capabilities of calculating piping response subjected to seismic excitations. This paper describes the finite-element numerical algorithm and its applications to LMR piping under seismic excitations. A time-history analysis technique using the implicit temporal integration scheme is addressed. A 3-D pipe element is formulated which has eight degrees of freedom per node (three displacements, three rotations, one membrane displacement, and one bending rotation) to account for the hoop, flexural, rotational, and torsional modes of the piping system. Both geometric and material nonlinearities are considered. This algorithm is unconditionally stable and is particularly suited for the seismic analysis

  11. State of the Art of Development and Application of Antiseismic Systems in Japan

    International Nuclear Information System (INIS)

    Kamada, Takayoshi; Fujita, Takafumi

    2008-01-01

    In Japan, after the Hanshin-Awaji earthquake, applications of anti-seismic systems have been much progressed. New design codes for base-isolated buildings were enacted in 2000. The objects of seismic isolation technologies expanded. The seismic isolation began to be used for structures such as high-rise building, artificial grounds for multiple buildings and cultural heritages, in addition to normal office buildings and residential ones. The seismic isolation also began to be used for industrial buildings such as semiconductor manufacturing factories which contain very sensitive equipment.This paper describes the current status of development and application of antiseismic systems to buildings, cultural heritage and industrial facilities in Japan

  12. Development of real time monitor system displaying seismic waveform data observed at seafloor seismic network, DONET, for disaster management information

    Science.gov (United States)

    Horikawa, H.; Takaesu, M.; Sueki, K.; Takahashi, N.; Sonoda, A.; Miura, S.; Tsuboi, S.

    2014-12-01

    Mega-thrust earthquakes are anticipated to occur in the Nankai Trough in southwest Japan. In the source areas, we have deployed seafloor seismic network, DONET (Dense Ocean-floor Network System for Earthquake and Tsunamis), in 2010 in order to monitor seismicity, crustal deformations, and tsunamis. DONET system consists of totally 20 stations, which is composed of six kinds of sensors, including strong-motion seismometers and quartz pressure gauges. Those stations are densely distributed with an average spatial interval of 15-20 km and cover near the trench axis to coastal areas. Observed data are transferred to a land station through a fiber-optical cable and then to JAMSTEC (Japan Agency for Marine-Earth Science and Technology) data management center through a private network in real time. After 2011 off the Pacific coast of Tohoku Earthquake, each local government close to Nankai Trough try to plan disaster prevention scheme. JAMSTEC will disseminate DONET data combined with research accomplishment so that they will be widely recognized as important earthquake information. In order to open DONET data observed for research to local government, we have developed a web application system, REIS (Real-time Earthquake Information System). REIS is providing seismic waveform data to some local governments close to Nankai Trough as a pilot study. As soon as operation of DONET is ready, REIS will start full-scale operation. REIS can display seismic waveform data of DONET in real-time, users can select strong motion and pressure data, and configure the options of trace view arrangement, time scale, and amplitude. In addition to real-time monitoring, REIS can display past seismic waveform data and show earthquake epicenters on the map. In this presentation, we briefly introduce DONET system and then show our web application system. We also discuss our future plans for further developments of REIS.

  13. Burar seismic station: evaluation of seismic performance

    International Nuclear Information System (INIS)

    Ghica, Daniela; Popa, Mihaela

    2005-01-01

    A new seismic monitoring system, the Bucovina Seismic Array (BURAR), has been established since July 2002, in the Northern part of Romania, in a joint effort of the Air Force Technical Applications Center, USA, and the National Institute for Earth Physics (NIEP), Romania. The small-aperture array consists of 10 seismic sensors (9 vertical short-period and one three-component broad band) located in boreholes and distributed in a 5 x 5 km 2 area. At present, the seismic data are continuously recorded by the BURAR and transmitted in real-time to the Romanian National Data Center in Bucharest and National Data Center of the USA, in Florida. Based on the BURAR seismic information gathered at the National Data Center, NIEP (ROM N DC), in the August 2002 - December 2004 time interval, analysis and statistical assessments were performed. Following the preliminary processing of the data, several observations on the global performance of the BURAR system were emphasized. Data investigation showed an excellent efficiency of the BURAR system particularly in detecting teleseismic and regional events. Also, a statistical analysis for the BURAR detection capability of the local Vrancea events was performed in terms of depth and magnitude for the year 2004. The high signal detection capability of the BURAR resulted, generally, in improving the location solutions for the Vrancea seismic events. The location solution accuracy is enhanced when adding BURAR recordings, especially in the case of low magnitude events (recorded by few stations). The location accuracy is increased, both in terms of constraining hypocenter depth and epicentral coordinates. Our analysis certifies the importance of the BURAR system in NIEP efforts to elaborate seismic bulletins. Furthermore, the specific procedures for array data processing (beam forming, f-k analysis) increase significantly the signal-to-noise ratio by summing up the coherent signals from the array components, and ensure a better accuracy

  14. Sequence stratigraphy, seismic stratigraphy, and seismic structures of the lower intermediate confining unit and most of the Floridan aquifer system, Broward County, Florida

    Science.gov (United States)

    Cunningham, Kevin J.; Kluesner, Jared W.; Westcott, Richard L.; Robinson, Edward; Walker, Cameron; Khan, Shakira A.

    2017-12-08

    Deep well injection and disposal of treated wastewater into the highly transmissive saline Boulder Zone in the lower part of the Floridan aquifer system began in 1971. The zone of injection is a highly transmissive hydrogeologic unit, the Boulder Zone, in the lower part of the Floridan aquifer system. Since the 1990s, however, treated wastewater injection into the Boulder Zone in southeastern Florida has been detected at three treated wastewater injection utilities in the brackish upper part of the Floridan aquifer system designated for potential use as drinking water. At a time when usage of the Boulder Zone for treated wastewater disposal is increasing and the utilization of the upper part of the Floridan aquifer system for drinking water is intensifying, there is an urgency to understand the nature of cross-formational fluid flow and identify possible fluid pathways from the lower to upper zones of the Floridan aquifer system. To better understand the hydrogeologic controls on groundwater movement through the Floridan aquifer system in southeastern Florida, the U.S. Geological Survey and the Broward County Environmental Planning and Community Resilience Division conducted a 3.5-year cooperative study from July 2012 to December 2015. The study characterizes the sequence stratigraphy, seismic stratigraphy, and seismic structures of the lower part of the intermediate confining unit aquifer and most of the Floridan aquifer system.Data obtained to meet the study objective include 80 miles of high-resolution, two-dimensional (2D), seismic-reflection profiles acquired from canals in eastern Broward County. These profiles have been used to characterize the sequence stratigraphy, seismic stratigraphy, and seismic structures in a 425-square-mile study area. Horizon mapping of the seismic-reflection profiles and additional data collection from well logs and cores or cuttings from 44 wells were focused on construction of three-dimensional (3D) visualizations of eight

  15. Design Guidelines of a Spring-Damper System for Emergency Diesel Generator Sets

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Kyu; Choun, Young Sun; Seo, Jeong Moon

    2007-05-15

    This guidelines described about the procedure of isolation system design for Emergency Diesel Generator (EDG) of Nuclear Power Plant (NPP). First of all, a vibration concept including the ground vibration was described and vibration control system and seismic isolation system were considered. The behavior characteristics and design consideration of coil spring-viscose damper system were summarized. The material properties of foundation of EDG system and the ground were considered. A design load and seismic load for isolation system design were described and an analysis method was explained. Finally, a design example for an EDG in Yonggwang Nuclear Unit 5 and 6 was attached of Appendix. First of all, this design guideline can apply to design of a vibration and seismic isolation system for EDG system and the design example present a design procedure practically. Moreover, this design guideline can be used for isolation design of other rotational machines and other isolation system except spring-damper system.

  16. Seismic and structural characterization of the fluid bypass system using 3D and partial stack seismic from passive margin: inside the plumbing system.

    Science.gov (United States)

    Iacopini, David; Maestrelli, Daniele; Jihad, Ali; Bond, Clare; Bonini, Marco

    2017-04-01

    In recent years enormous attention has been paid to the understanding of the process and mechanism controlling the gas seepage and more generally the fluid expulsion affecting the earth system from onshore to offshore environment. This is because of their demonstrated impact to our environment, climate change and during subsea drilling operation. Several example from active and paleo system has been so far characterized and proposed using subsurface exploration, geophysical and geochemical monitoring technology approaches with the aims to explore what trigger and drive the overpressure necessary maintain the fluid/gas/material expulsion and what are the structure that act as a gateway for gaseous fluid and unconsolidated rock. In this contribution we explore a series of fluid escape structure (ranging from seepage pipes to large blowout pipes structure of km length) using 3D and partial stack seismic data from two distinctive passive margin from the north sea (Loyal field, West Shetland) and the Equatorial Brazil (Ceara' Basin). We will focuses on the characterization of the plumbing system internal architecture and, for selected example, exploring the AVO response (using partial stack) of the internal fluid/unconsolidated rock. The detailed seismic mapping and seismic attributes analysis of the conduit system helped us to recover some detail from the signal response of the chimney internal structures. We observed: (1) small to medium seeps and pipes following structural or sedimentary discontinuities (2) large pipes (probably incipient mud volcanoes) and blowup structures propagating upward irrespective of pre-existing fault by hydraulic fracturing and assisted by the buoyancy of a fluidised and mobilised mud-hydrocarbon mixture. The reflector termination observed inside the main conduits, the distribution of stacked bright reflectors and the AVO analysis suggests an evolution of mechanisms (involving mixture of gas, fluid and probably mud) during pipe birth and

  17. Realistic Features in Analysing the Effect of the Seismic Motion upon Localized Structures Considering Base Isolation Influence on Their Dynamic Behaviour

    Science.gov (United States)

    Apostol, Bogdan Felix; Florin Balan, Stefan; Ionescu, Constantin

    2017-12-01

    The effects of the earthquakes on buildings and the concept of seismic base isolation are investigated by using the model of the vibrating bar embedded at one end. The normal modes and the eigenfrequencies of the bar are highlighted and the amplification of the response due to the excitation of the normal modes (eigenmodes) is computed. The effect is much enhanced at resonance, for oscillating shocks which contain eigenfrequencies of the bar. Also, the response of two linearly joined bars with one end embedded is calculated. It is shown that for very different elastic properties the eigenfrequencies are due mainly to the “softer” bar. The effect of the base isolation in seismic structural engineering is assessed by formulating the model of coupled harmonic oscillators, as a simplified model for the structure building-foundation viewed as two coupled vibrating bars. The coupling decreases the lower eigenfrequencies of the structure and increases the higher ones. Similar amplification factors are derived for coupled oscillators at resonance with an oscillating shock.

  18. Lateral-torsional response of base-isolated buildings with curved surface sliding system subjected to near-fault earthquakes

    Science.gov (United States)

    Mazza, Fabio

    2017-08-01

    The curved surface sliding (CSS) system is one of the most in-demand techniques for the seismic isolation of buildings; yet there are still important aspects of its behaviour that need further attention. The CSS system presents variation of friction coefficient, depending on the sliding velocity of the CSS bearings, while friction force and lateral stiffness during the sliding phase are proportional to the axial load. Lateral-torsional response needs to be better understood for base-isolated structures located in near-fault areas, where fling-step and forward-directivity effects can produce long-period (horizontal) velocity pulses. To analyse these aspects, a six-storey reinforced concrete (r.c.) office framed building, with an L-shaped plan and setbacks in elevation, is designed assuming three values of the radius of curvature for the CSS system. Seven in-plan distributions of dynamic-fast friction coefficient for the CSS bearings, ranging from a constant value for all isolators to a different value for each, are considered in the case of low- and medium-type friction properties. The seismic analysis of the test structures is carried out considering an elastic-linear behaviour of the superstructure, while a nonlinear force-displacement law of the CSS bearings is considered in the horizontal direction, depending on sliding velocity and axial load. Given the lack of knowledge of the horizontal direction at which near-fault ground motions occur, the maximum torsional effects and residual displacements are evaluated with reference to different incidence angles, while the orientation of the strongest observed pulses is considered to obtain average values.

  19. A new system for seismic yield estimation of underground explosions

    International Nuclear Information System (INIS)

    Murphy, J.R.

    1991-01-01

    Research conducted over the past decade has led to the development of a number of innovative procedures for estimating the yields of underground nuclear explosions based on systematic analyses of digital seismic data recorded from these tests. In addition, a wide variety of new data regarding the geophysical environments at Soviet test locations have now become available as a result of the Joint Verification Experiment (JVE) and associated data exchanges. The system described in this paper represents an attempt to integrate all these new capabilities and data into a comprehensive operational prototype which can be used to obtain optimum seismic estimates of explosion yield together with quantitative measures of the uncertainty in those estimates. The implementation of this system has involved a wide variety of technical tasks, including the development of a comprehensive seismic database and related database access software, formulation of a graphical test site information interface for accessing available information on explosion source conditions, design of an interactive seismic analyst station for use in processing the observed data to extract the required magnitude measures and the incorporation of formal statistical analysis modules for use in yield estimation and assessment

  20. The passive seismic aftershock Monitoring system: testing program and preliminary results

    International Nuclear Information System (INIS)

    Mokhtari, M.

    2005-01-01

    The paper is dedicated to testing program (phase of the passive seismic aftershock monitoring system with RefTek equipment (Refraction Technology, Inc., USA) for On-Site Inspection purposes that was carried out near Vienna International Centre in 2000. Equipment and applied software are described. Testing results were analyzed; in particular, least needs in maintenance personnel during operation. Development perspectives of passive seismic aftershock monitoring system for On-Site Inspection have been discussed. (author)

  1. An innovative seismic bracing system based on a superelastic shape memory alloy ring

    International Nuclear Information System (INIS)

    Gao, Nan; Jeon, Jong-Su; DesRoches, Reginald; Hodgson, Darel E

    2016-01-01

    Shape memory alloys (SMAs) have great potential in seismic applications because of their remarkable superelasticity. Seismic bracing systems based on SMAs can mitigate the damage caused by earthquakes. The current study investigates a bracing system based on an SMA ring which is capable of both re-centering and energy dissipation. This lateral force resisting system is a cross-braced system consisting of an SMA ring and four tension-only cable assemblies, which can be applied to both new construction and seismic retrofit. The performance of this bracing system is examined through a quasi-static cyclic loading test and finite element (FE) analysis. This paper describes the experimental design in detail, discusses the experimental results, compares the performance with other bracing systems based on SMAs, and presents an Abaqus FE model calibrated on the basis of experimental results to simulate the superelastic behavior of the SMA ring. The experimental results indicate that the seismic performance of this system is promising in terms of damping and re-centering. The FE model can be used in the simulation of building structures using the proposed bracing system. (paper)

  2. Development of seismic hazard analysis in Japan

    International Nuclear Information System (INIS)

    Itoh, T.; Ishii, K.; Ishikawa, Y.; Okumura, T.

    1987-01-01

    In recent years, seismic risk assessment of the nuclear power plant have been conducted increasingly in various countries, particularly in the United States to evaluate probabilistically the safety of existing plants under earthquake loading. The first step of the seismic risk assessment is the seismic hazard analysis, in which the relationship between the maximum earthquake ground motions at the plant site and their annual probability of exceedance, i.e. the seismic hazard curve, is estimated. In this paper, seismic hazard curves are evaluated and examined based on historical earthquake records model, in which seismic sources are modeled with area-sources, for several different sites in Japan. A new evaluation method is also proposed to compute the response spectra of the earthquake ground motions in connection with estimating the probabilistic structural response. Finally the numerical result of probabilistic risk assessment for a base-isolated three story RC structure, in which the frequency of seismic induced structural failure is evaluated combining the seismic hazard analysis, is described briefly

  3. Seismic re-evaluation of piping systems of heavy water plant, Kota

    International Nuclear Information System (INIS)

    Mishra, Rajesh; Soni, R.S.; Kushwaha, H.S.; Venkat Raj, V.

    2002-05-01

    Heavy Water Plant, Kota is the first indigenous heavy water plant built in India. The plant started operation in the year 1985 and it is approaching the completion of its originally stipulated design life. In view of the excellent record of plant operation for the past so many years, it has been planned to carry out various exercises for the life extension of the plant. In the first stage, evaluation of operation stresses was carried out for the process critical piping layouts and equipment, which are connected with 25 process critical nozzle locations, identified based on past history of the plant performance. Fatigue life evaluation has been carried out to fmd out the Cumulative Usage Factor, which helps in arriving at a decision regarding the life extension of the plant. The results of these exercises have been already reported separately vide BARC/200I /E/O04. In the second stage, seismic reevaluation of the plant has been carried out to assess its ability to maintain its integ:rity in case of a seismic event. The aim of this exercise is to assess the effects of the maximum probable earthquake at the plant site on the various systems and components of the plant. This exercise is further aimed at ensuring the adequacy of seismic supports to maintain the integrity of the system in case of a seismic event and to suggest some retrofitting measures, if required. Seismic re-evaluation of the piping of Heavy Water Plant, Kota has been performed taking into account the interaction effects from the connected equipment. Each layout has been qualified using the latest provisions of ASME Code Section III, Subsection ND wherein the earthquake loading has been considered as a reversing dynamic load. The maximum combined stresses for all the layouts due to pressure, weight and seismic loadings have been found to be well within the code allowable limit. Therefore, it has been concluded that during a maximum probable seismic event, the possibility of pipe rupture can be safely

  4. A Methodology for Assessing the Seismic Vulnerability of Highway Systems

    International Nuclear Information System (INIS)

    Cirianni, Francis; Leonardi, Giovanni; Scopelliti, Francesco

    2008-01-01

    Modern society is totally dependent on a complex and articulated infrastructure network of vital importance for the existence of the urban settlements scattered on the territory. On these infrastructure systems, usually indicated with the term lifelines, are entrusted numerous services and indispensable functions of the normal urban and human activity.The systems of the lifelines represent an essential element in all the urbanised areas which are subject to seismic risk. It is important that, in these zones, they are planned according to opportune criteria based on two fundamental assumptions: a) determination of the best territorial localization, avoiding, within limits, the places of higher dangerousness; b) application of constructive technologies finalized to the reduction of the vulnerability.Therefore it is indispensable that in any modern process of seismic risk assessment the study of the networks is taken in the rightful consideration, to be integrated with the traditional analyses of the buildings.The present paper moves in this direction, dedicating particular attention to one kind of lifeline: the highway system, proposing a methodology of analysis finalized to the assessment of the seismic vulnerability of the system

  5. Alternative methods for the seismic analysis of piping systems

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    This document is a review of 12 methods and criteria for the seismic analysis of piping systems. Each of the twelve chapters in this document cover the important technical aspects of a given method. The technical aspects presented are those the Subcommittee on Dynamic Stress Criteria believe important to the application of the method, and should not be considered as a positive or negative endorsement for any of the methods. There are many variables in an analysis of a piping system that can influence the selection of the analysis method and criteria to be applied. These variable include system configuration, technical issues, precedent, licensing considerations, and regulatory acceptance. They must all be considered in selecting the appropriate seismic analysis method and criteria. This is relevant for nuclear power plants

  6. Development of 3-axis precise positioning seismic physical modeling system in the simulation of marine seismic exploration

    Science.gov (United States)

    Kim, D.; Shin, S.; Ha, J.; Lee, D.; Lim, Y.; Chung, W.

    2017-12-01

    Seismic physical modeling is a laboratory-scale experiment that deals with the actual and physical phenomena that may occur in the field. In seismic physical modeling, field conditions are downscaled and used. For this reason, even a small error may lead to a big error in an actual field. Accordingly, the positions of the source and the receiver must be precisely controlled in scale modeling. In this study, we have developed a seismic physical modeling system capable of precisely controlling the 3-axis position. For automatic and precise position control of an ultrasonic transducer(source and receiver) in the directions of the three axes(x, y, and z), a motor was mounted on each of the three axes. The motor can automatically and precisely control the positions with positional precision of 2''; for the x and y axes and 0.05 mm for the z axis. As it can automatically and precisely control the positions in the directions of the three axes, it has an advantage in that simulations can be carried out using the latest exploration techniques, such as OBS and Broadband Seismic. For the signal generation section, a waveform generator that can produce a maximum of two sources was used, and for the data acquisition section, which receives and stores reflected signals, an A/D converter that can receive a maximum of four signals was used. As multiple sources and receivers could be used at the same time, the system was set up in such a way that diverse exploration methods, such as single channel, multichannel, and 3-D exploration, could be realized. A computer control program based on LabVIEW was created, so that it could control the position of the transducer, determine the data acquisition parameters, and check the exploration data and progress in real time. A marine environment was simulated using a water tank 1 m wide, 1 m long, and 0.9 m high. To evaluate the performance and applicability of the seismic physical modeling system developed in this study, single channel and

  7. Sensitivity analyses of seismic behavior of spent fuel dry cask storage systems

    International Nuclear Information System (INIS)

    Luk, V.K.; Spencer, B.W.; Shaukat, S.K.; Lam, I.P.; Dameron, R.A.

    2003-01-01

    Sandia National Laboratories is conducting a research project to develop a comprehensive methodology for evaluating the seismic behavior of spent fuel dry cask storage systems (DCSS) for the Office of Nuclear Regulatory Research of the U.S. Nuclear Regulatory Commission (NRC). A typical Independent Spent Fuel Storage Installation (ISFSI) consists of arrays of free-standing storage casks resting on concrete pads. In the safety review process of these cask systems, their seismically induced horizontal displacements and angular rotations must be quantified to determine whether casks will overturn or neighboring casks will collide during a seismic event. The ABAQUS/Explicit code is used to analyze three-dimensional coupled finite element models consisting of three submodels, which are a cylindrical cask or a rectangular module, a flexible concrete pad, and an underlying soil foundation. The coupled model includes two sets of contact surfaces between the submodels with prescribed coefficients of friction. The seismic event is described by one vertical and two horizontal components of statistically independent seismic acceleration time histories. A deconvolution procedure is used to adjust the amplitudes and frequency contents of these three-component reference surface motions before applying them simultaneously at the soil foundation base. The research project focused on examining the dynamic and nonlinear seismic behavior of the coupled model of free-standing DCSS including soil-structure interaction effects. This paper presents a subset of analysis results for a series of parametric analyses. Input variables in the parametric analyses include: designs of the cask/module, time histories of the seismic accelerations, coefficients of friction at the cask/pad interface, and material properties of the soil foundation. In subsequent research, the analysis results will be compiled and presented in nomograms to highlight the sensitivity of seismic response of DCSS to

  8. The role of natural rubber in seismic isolation - a perspective

    International Nuclear Information System (INIS)

    Coveney, V.A.

    1991-01-01

    The ''base-isolation'' technique for protecting buildings against earthquakes is based on the fundamental physics of systems in oscillation. It relies on lowering the natural frequency of the building/support system below that of the major frequencies present in the earthquake. Although simple in concept, many years of development have been required to convert it into a practical, reliable system. Seen fifteen years ago as an eccentric dream, base isolation is today recognized as the only feasible method of protecting some buildings and their contents, and as an attractive option for a widening range of other types. In most practical systems, natural rubber has an essential role. (orig.) [de

  9. Progress of R and D on seismic emergency information system

    International Nuclear Information System (INIS)

    2000-09-01

    After the Great Hansin-Awaji Earthquake Disaster occurred in 1995, the Science and Technology Agency commenced 'Frontier Research Program on Earthquake' in FY1996. As a part of this research program, four-year program on 'Research on Real-time Earthquake Information Transmission' has been carried out at JAERI since FY1997. Through the experience of the above earthquake disaster, the importance of accurate and prompt seismic information transmission immediately after the occurrence of the earthquake has been recognized from the viewpoint of disaster mitigation. Under this circumstance, the main activity in Real-time Earthquake Information Transmission Research at JAERI has been placed on the development of a seismic emergency information system. In order to respond to the above R and D, Seismic Emergency Information System Research Team was organized in JAERI in FY1998. In the meantime a part of this R and D program is performed under the coordinated research between JAERI and NIED(National Research Institute for Science and Disaster Prevention). This report describes the recent progress of R and D until FY1999. In the R and D, estimation techniques of hypocenter, fault and earthquake motion parameters, in which the latest results in the field of earthquake engineering were involved, were developed. Until the end of FY1999, the main part of the system, in which the above estimation techniques are introduced, is completed. By this system the seismic information is being transmitted using E-mail and homepage through the inter-net. In addition the databases on the estimated earthquake motion parameter distribution under scenario earthquakes and the surface soil amplification function around JAERI-Tokai site are prepared to examine the applicability of the system. (author)

  10. A Seismic Transmission System for Continuous Monitoring of the Lithosphere : A Proposition

    NARCIS (Netherlands)

    Unger, R.

    2002-01-01

    The main objective of this thesis is to enhance earthquake prediction feasibility. We present the concept and the design layout of a novel seismic transmission system capable of continuously monitoring the Lithosphere for changes in Earth physics parameters governing seismic wave propagation.

  11. Active seismic response control systems for nuclear power plant equipment facilities

    International Nuclear Information System (INIS)

    Kobori, Takuji; Kanayama, Hiroo; Kamagata, Shuichi

    1989-01-01

    To sustain severe earthquake ground motion, a new type of anti-seismic structure is proposed, called a Dynamic Intelligent Building (DIB) system, which is positioned as an active seismic response controlled the structure. The structural concept starts from a new recognition of earthquake ground motion, and the structural natural frequency is actively adjusted to avoid resonant vibration, and similarly the external counter-force cancels the resonant force which comes from the dynamic structural motion energy. These concepts are verified using an analytical simulator program. The advanced application of the DIB system, is the Active Supporting system and the Active Stabilizer system for nuclear power plant equipment facilities. (orig.)

  12. Seismic Fragility Assessment of an Isolated Multipylon Cable-Stayed Bridge Using Shaking Table Tests

    Directory of Open Access Journals (Sweden)

    Yutao Pang

    2017-01-01

    Full Text Available In recent decades, cable-stayed bridges have been widely built around the world due to the appealing aesthetics and efficient and fast mode of construction. Numerous studies have concluded that the cable-stayed bridges are sensitive to earthquakes because they possess low damping characteristics and high flexibility. Moreover, cable-stayed bridges need to warrant operability especially in the moderate-to-severe earthquakes. The provisions implemented in the seismic codes allow obtaining adequate seismic performance for the cable-stayed bridge components; nevertheless, they do not provide definite yet reliable rules to protect the bridge. To date, very few experimental tests have been carried out on the seismic fragility analysis of cable-stayed bridges which is the basis of performance-based analyses. The present paper is aimed at proposing a method to derive the seismic fragility curves of multipylon cable-stayed bridge through shake table tests. Toward this aim, a 1/20 scale three-dimensional model of a 22.5 m cable-stayed bridge in China is constructed and tested dynamically by using the shaking table facility of Tongji University. The cable-stayed bridge contains three pylons and one side pier. The outcomes of the comprehensive shaking table tests carried out on cable-stayed bridge have been utilized to derive fragility curves based on a systemic approach.

  13. Light Water Reactor Sustainability Program Advanced Seismic Soil Structure Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Bolisetti, Chandrakanth [Idaho National Lab. (INL), Idaho Falls, ID (United States); Coleman, Justin Leigh [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-06-01

    Risk calculations should focus on providing best estimate results, and associated insights, for evaluation and decision-making. Specifically, seismic probabilistic risk assessments (SPRAs) are intended to provide best estimates of the various combinations of structural and equipment failures that can lead to a seismic induced core damage event. However, in some instances the current SPRA approach has large uncertainties, and potentially masks other important events (for instance, it was not the seismic motions that caused the Fukushima core melt events, but the tsunami ingress into the facility). SPRA’s are performed by convolving the seismic hazard (this is the estimate of all likely damaging earthquakes at the site of interest) with the seismic fragility (the conditional probability of failure of a structure, system, or component given the occurrence of earthquake ground motion). In this calculation, there are three main pieces to seismic risk quantification, 1) seismic hazard and nuclear power plants (NPPs) response to the hazard, 2) fragility or capacity of structures, systems and components (SSC), and 3) systems analysis. Two areas where NLSSI effects may be important in SPRA calculations are, 1) when calculating in-structure response at the area of interest, and 2) calculation of seismic fragilities (current fragility calculations assume a lognormal distribution for probability of failure of components). Some important effects when using NLSSI in the SPRA calculation process include, 1) gapping and sliding, 2) inclined seismic waves coupled with gapping and sliding of foundations atop soil, 3) inclined seismic waves coupled with gapping and sliding of deeply embedded structures, 4) soil dilatancy, 5) soil liquefaction, 6) surface waves, 7) buoyancy, 8) concrete cracking and 9) seismic isolation The focus of the research task presented here-in is on implementation of NLSSI into the SPRA calculation process when calculating in-structure response at the area

  14. Design and implementation of a unified certification management system based on seismic business

    Science.gov (United States)

    Tang, Hongliang

    2018-04-01

    Many business software for seismic systems are based on web pages, users can simply open a browser and enter their IP address. However, how to achieve unified management and security management of many IP addresses, this paper introduces the design concept based on seismic business and builds a unified authentication management system using ASP technology.

  15. Applicability of base-isolation R ampersand D in non-reactor facilities to a nuclear reactor plant

    International Nuclear Information System (INIS)

    Seidensticker, R.W.; Chang, Y.W.

    1990-01-01

    Seismic isolation is gaining increased attention worldwide for use in a wide spectrum of critical facilities, ranging from hospitals and computing centers to nuclear power plants. While the fundamental principles and technology are applicable to all of these facilities, the degree of assurance that the actual behavior of the isolation systems is as specified varies with the nature of the facility involved. Obviously, the level of effort to provide such assurance for a nuclear power plant will be much greater than that required for, say, a critical computer facility. The question, therefore, is to what extent can research and development (R ampersand D) for non-nuclear use be used to provide technological data needed for seismic isolation of a nuclear power plant. This question, of course is not unique to seismic isolation. Virtually every structural component, system, or piece of equipment used in nuclear power plants is also used in non- nuclear facilities. Experience shows that considerable effort is needed to adapt conventional technology into a nuclear power plant. Usually, more thorough analysis is required, material and fabrication quality-control requirements are more stringent as are controls on field installation. In addition, increased emphasis on maintainability and inservice inspection throughout the life of the plant is generally required to gain acceptance in nuclear power plant application. This paper reviews the R ampersand D programs ongoing for seismic isolation in non-nuclear facilities and related experience and makes a preliminary assessment of the extent to which such R ampersand D and experience can be used for nuclear power plant application. Ways are suggested to improve the usefulness of such non-nuclear R ampersand D in providing the high level of confidence required for the use of seismic isolation in a nuclear reactor plant. 2 refs

  16. Overcoming barriers to high performance seismic design using lessons learned from the green building industry

    Science.gov (United States)

    Glezil, Dorothy

    NEHRP's Provisions today currently governing conventional seismic resistant design. These provisions, though they ensure the life-safety of building occupants, extensive damage and economic losses may still occur in the structures. This minimum performance can be enhanced using the Performance-Based Earthquake Engineering methodology and passive control systems like base isolation and energy dissipation systems. Even though these technologies and the PBEE methodology are effective reducing economic losses and fatalities during earthquakes, getting them implemented into seismic resistant design has been challenging. One of the many barriers to their implementation has been their upfront costs. The green building community has faced some of the same challenges that the high performance seismic design community currently faces. The goal of this thesis is to draw on the success of the green building industry to provide recommendations that may be used overcome the barriers that high performance seismic design (HPSD) is currently facing.

  17. Experimental Investigation of a Base Isolation System Incorporating MR Dampers with the High-Order Single Step Control Algorithm

    Directory of Open Access Journals (Sweden)

    Weiqing Fu

    2017-03-01

    Full Text Available The conventional isolation structure with rubber bearings exhibits large deformation characteristics when subjected to infrequent earthquakes, which may lead to failure of the isolation layer. Although passive dampers can be used to reduce the layer displacement, the layer deformation and superstructure acceleration responses will increase in cases of fortification earthquakes or frequently occurring earthquakes. In addition to secondary damages and loss of life, such excessive displacement results in damages to the facilities in the structure. In order to overcome these shortcomings, this paper presents a structural vibration control system where the base isolation system is composed of rubber bearings with magnetorheological (MR damper and are regulated using the innovative control strategy. The high-order single-step algorithm with continuity and switch control strategies are applied to the control system. Shaking table test results under various earthquake conditions indicate that the proposed isolation method, compared with passive isolation technique, can effectively suppress earthquake responses for acceleration of superstructure and deformation within the isolation layer. As a result, this structural control method exhibits excellent performance, such as fast computation, generic real-time control, acceleration reduction and high seismic energy dissipation etc. The relative merits of the continuity and switch control strategies are also compared and discussed.

  18. Response of piping system with semi-active variable stiffness damper under tri-directional seismic excitation

    International Nuclear Information System (INIS)

    Praveen Kumar; Jangid, R.S.; Reddy, G.R.

    2013-01-01

    Highlights: ► Piping system with semi-active variable stiffness damper is investigated under different seismic excitations. ► Switching control law and modified switching control law are adopted. ► There exist an optimum parameters of the SAVSD. ► Substantial reduction of the seismic response of piping system with SAVSD is observed. ► Good amount of energy dissipation is observed. -- Abstract: Seismic loads on piping system due to earthquakes can cause excessive vibrations, which can lead to serious instability resulting in damage or complete failure. In this paper, semi-active variable stiffness dampers (SAVSDs) have been studied to mitigate seismic response and vibration control of piping system used in the process industries, fossil and fissile fuel power plant. The SAVSD changes its stiffness depending upon the piping response and accordingly adds the control forces in the piping system. A study is conducted on the performance of SAVSD due to variation in device stiffness ratios in the switching control law and modified switching control law, which plays an important role in the present control algorithm of the damper. The effectiveness of the SAVSD in terms of reduction in the responses, namely, displacements, accelerations and base shear of the piping system is investigated by comparing uncontrolled responses under four different artificial earthquake motions with increasing amplitudes. The analytical results demonstrate that the SAVSDs under particular optimum parameters are very effective and practically implementable for the seismic response mitigation, vibration control and seismic requalification of piping systems

  19. Response of piping system with semi-active variable stiffness damper under tri-directional seismic excitation

    Energy Technology Data Exchange (ETDEWEB)

    Praveen Kumar, E-mail: praveen@barc.gov.in [Department of Civil Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India); Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Jangid, R.S. [Department of Civil Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India); Reddy, G.R. [Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

    2013-05-15

    Highlights: ► Piping system with semi-active variable stiffness damper is investigated under different seismic excitations. ► Switching control law and modified switching control law are adopted. ► There exist an optimum parameters of the SAVSD. ► Substantial reduction of the seismic response of piping system with SAVSD is observed. ► Good amount of energy dissipation is observed. -- Abstract: Seismic loads on piping system due to earthquakes can cause excessive vibrations, which can lead to serious instability resulting in damage or complete failure. In this paper, semi-active variable stiffness dampers (SAVSDs) have been studied to mitigate seismic response and vibration control of piping system used in the process industries, fossil and fissile fuel power plant. The SAVSD changes its stiffness depending upon the piping response and accordingly adds the control forces in the piping system. A study is conducted on the performance of SAVSD due to variation in device stiffness ratios in the switching control law and modified switching control law, which plays an important role in the present control algorithm of the damper. The effectiveness of the SAVSD in terms of reduction in the responses, namely, displacements, accelerations and base shear of the piping system is investigated by comparing uncontrolled responses under four different artificial earthquake motions with increasing amplitudes. The analytical results demonstrate that the SAVSDs under particular optimum parameters are very effective and practically implementable for the seismic response mitigation, vibration control and seismic requalification of piping systems.

  20. Seismic Response of Power Transmission Tower-Line System Subjected to Spatially Varying Ground Motions

    Directory of Open Access Journals (Sweden)

    Li Tian

    2010-01-01

    Full Text Available The behavior of power transmission tower-line system subjected to spatially varying base excitations is studied in this paper. The transmission towers are modeled by beam elements while the transmission lines are modeled by cable elements that account for the nonlinear geometry of the cables. The real multistation data from SMART-1 are used to analyze the system response subjected to spatially varying ground motions. The seismic input waves for vertical and horizontal ground motions are also generated based on the Code for Design of Seismic of Electrical Installations. Both the incoherency of seismic waves and wave travel effects are accounted for. The nonlinear time history analytical method is used in the analysis. The effects of boundary conditions, ground motion spatial variations, the incident angle of the seismic wave, coherency loss, and wave travel on the system are investigated. The results show that the uniform ground motion at all supports of system does not provide the most critical case for the response calculations.

  1. A Fiber-Optic Borehole Seismic Vector Sensor System for Geothermal Site Characterization and Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Paulsson, Bjorn N.P. [Paulsson, Inc., Van Nuys, CA (United States); Thornburg, Jon A. [Paulsson, Inc., Van Nuys, CA (United States); He, Ruiqing [Paulsson, Inc., Van Nuys, CA (United States)

    2015-04-21

    Seismic techniques are the dominant geophysical techniques for the characterization of subsurface structures and stratigraphy. The seismic techniques also dominate the monitoring and mapping of reservoir injection and production processes. Borehole seismology, of all the seismic techniques, despite its current shortcomings, has been shown to provide the highest resolution characterization and most precise monitoring results because it generates higher signal to noise ratio and higher frequency data than surface seismic techniques. The operational environments for borehole seismic instruments are however much more demanding than for surface seismic instruments making both the instruments and the installation much more expensive. The current state-of-the-art borehole seismic instruments have not been robust enough for long term monitoring compounding the problems with expensive instruments and installations. Furthermore, they have also not been able to record the large bandwidth data available in boreholes or having the sensitivity allowing them to record small high frequency micro seismic events with high vector fidelity. To reliably achieve high resolution characterization and long term monitoring of Enhanced Geothermal Systems (EGS) sites a new generation of borehole seismic instruments must therefore be developed and deployed. To address the critical site characterization and monitoring needs for EGS programs, US Department of Energy (DOE) funded Paulsson, Inc. in 2010 to develop a fiber optic based ultra-large bandwidth clamped borehole seismic vector array capable of deploying up to one thousand 3C sensor pods suitable for deployment into ultra-high temperature and high pressure boreholes. Tests of the fiber optic seismic vector sensors developed on the DOE funding have shown that the new borehole seismic sensor technology is capable of generating outstanding high vector fidelity data with extremely large bandwidth: 0.01 – 6,000 Hz. Field tests have shown

  2. Using Seismic Interferometry to Investigate Seismic Swarms

    Science.gov (United States)

    Matzel, E.; Morency, C.; Templeton, D. C.

    2017-12-01

    Seismicity provides a direct means of measuring the physical characteristics of active tectonic features such as fault zones. Hundreds of small earthquakes often occur along a fault during a seismic swarm. This seismicity helps define the tectonically active region. When processed using novel geophysical techniques, we can isolate the energy sensitive to the fault, itself. Here we focus on two methods of seismic interferometry, ambient noise correlation (ANC) and the virtual seismometer method (VSM). ANC is based on the observation that the Earth's background noise includes coherent energy, which can be recovered by observing over long time periods and allowing the incoherent energy to cancel out. The cross correlation of ambient noise between a pair of stations results in a waveform that is identical to the seismogram that would result if an impulsive source located at one of the stations was recorded at the other, the Green function (GF). The calculation of the GF is often stable after a few weeks of continuous data correlation, any perturbations to the GF after that point are directly related to changes in the subsurface and can be used for 4D monitoring.VSM is a style of seismic interferometry that provides fast, precise, high frequency estimates of the Green's function (GF) between earthquakes. VSM illuminates the subsurface precisely where the pressures are changing and has the potential to image the evolution of seismicity over time, including changes in the style of faulting. With hundreds of earthquakes, we can calculate thousands of waveforms. At the same time, VSM collapses the computational domain, often by 2-3 orders of magnitude. This allows us to do high frequency 3D modeling in the fault region. Using data from a swarm of earthquakes near the Salton Sea, we demonstrate the power of these techniques, illustrating our ability to scale from the far field, where sources are well separated, to the near field where their locations fall within each other

  3. Seismic Monitoring of Bedload Transport in a Steep Mountain Catchment

    Science.gov (United States)

    Roth, D. L.; Finnegan, N. J.; Brodsky, E. E.; Turowski, J. M.; Wyss, C. R.; Badoux, A.

    2014-12-01

    Predicting river channel evolution relies on an understanding of when and at what rate coarse sediment moves in a channel. Unfortunately, our predictive abilities are limited by the logistical challenges and potential dangers inherent in current techniques for monitoring sediment transport during flood events, especially in steep, highly active landscapes. However, the use of seismic signals near rivers shows promise as a safe, low-cost method for studying sediment transport in these settings. Seismic signals near rivers are partially generated by both water turbulence and bedload sediment particles impacting the river bed during transport. Here, we attempt to isolate the seismic signatures of discharge and bedload transport in a steep mountain channel by examining high-frequency broadband seismic data from the well-studied Erlenbach stream (local slope of ~10%) in the Swiss Prealps. The extensive monitoring infrastructure and long history of sediment transport data at this field site allow us to independently constrain discharge, precipitation, and bedload transport during flood events over a two month field campaign. We perform a general linear least squares inversion of the seismic data, exploiting times with isolated rain or discharge events, to identify the spectral signals of water turbulence, rain, and bedload sediment transport. We find that the signal generated by rain exhibits a roughly broadband spectrum, while discharge and sediment transport exhibit power primarily in lower frequency bands. Our preliminary results indicate that with only precipitation and discharge data, it is possible to isolate the seismic signal of bedload transport in steep fluvial environments. Seismic studies may therefore have the potential to revolutionize our ability to monitor and understand these environments.

  4. Analysis of a piping system under seismic load using incremental hinge technique

    International Nuclear Information System (INIS)

    Ravi Kiran, A.; Agrawal, M.K.; Reddy, G.R.; Singh, R.K.; Vaze, K.K.; Ghosh, A.K.; Kushwaha, H.S.; Ramesh Babu, R.

    2008-01-01

    ASME Boiler and Pressure Vessel Code treats piping system as a series of components but not as an overall structural system. Limit analyses and collapse tests at component level are used to establish stress allowables on seismic stresses. The code does not consider the load redistributions and structural redundancy existing in piping systems that prevent system collapse even when one or more individual components loaded beyond their collapse levels. This necessitates a simple analytical method for evaluation of inelastic seismic response at system level. The present paper presents a simplified analytical procedure for predicting inelastic response of a typical piping system subjected to seismic load. The analytical method known as incremental hinge technique is based on plastic system behavior in which the yielded components are replaced with hinge models when a critical hinge moment is reached. It also takes into account the inelastic response spectrum reduction factors and displacement ductility. The analytical method is used to obtain the inelastic response, location of hinge formation and level of base excitation needed for hinge formation. The predicted hinge locations and hinge ordering is compared with the results of a shake table test conducted on the piping system. (author)

  5. Evaluation of seismic acceleration responses of base-isolated and nonisolated structures varying with mechanical characteristics of foundations

    Energy Technology Data Exchange (ETDEWEB)

    You, Bong; Lee, Jae Han; Ku, Kyung Hoi [Korea Atomic Energy Research Institute, Daeduk (Korea, Republic of)

    1996-05-01

    The evaluation of acceleration responses of isolated and nonisolated structures according to mechanical features of soils is important. The kinds of soils taken in analyses are soft, medium and hard rocks, and a fixed base condition is also taken for the comparison. The horizontal isolation frequency used is 0.5 Hz. The time history analyses of reference power plant using 1940 El Centro horizontal (NS) and vertical earthquakes are performed to investigate the seismic responses varying with soil characteristics for isolated and nonisolated structures. The horizontal acceleration responses of the horizontal isolated-structures show almost similar values irrespective of the various kinds of soils and are largely decreased in the frequency ranges above 2 hz. The vertical natural frequency, 21Hz of high damping rubber bearing does not affect the vertical acceleration responses in case of soft rock, but largely affects in hard rock condition. For nonisolated structures, the acceleration responses are decreased in both horizontal and vertical directions by taking into account the soils in the analysis model. The extent of reduction of acceleration responses is larger in vertical direction than in horizontal one, as the stiffness of rock becomes softer. 8 tabs., 21 figs., 8 refs. (Author) .new.

  6. Evaluation of seismic acceleration responses of base-isolated and nonisolated structures varying with mechanical characteristics of foundations

    International Nuclear Information System (INIS)

    You, Bong; Lee, Jae Han; Ku, Kyung Hoi

    1996-05-01

    The evaluation of acceleration responses of isolated and nonisolated structures according to mechanical features of soils is important. The kinds of soils taken in analyses are soft, medium and hard rocks, and a fixed base condition is also taken for the comparison. The horizontal isolation frequency used is 0.5 Hz. The time history analyses of reference power plant using 1940 El Centro horizontal (NS) and vertical earthquakes are performed to investigate the seismic responses varying with soil characteristics for isolated and nonisolated structures. The horizontal acceleration responses of the horizontal isolated-structures show almost similar values irrespective of the various kinds of soils and are largely decreased in the frequency ranges above 2 hz. The vertical natural frequency, 21Hz of high damping rubber bearing does not affect the vertical acceleration responses in case of soft rock, but largely affects in hard rock condition. For nonisolated structures, the acceleration responses are decreased in both horizontal and vertical directions by taking into account the soils in the analysis model. The extent of reduction of acceleration responses is larger in vertical direction than in horizontal one, as the stiffness of rock becomes softer. 8 tabs., 21 figs., 8 refs. (Author) .new

  7. Seismic Noise Analysis and Reduction through Utilization of Collocated Seismic and Atmospheric Sensors at the GRO Chile Seismic Network

    Science.gov (United States)

    Farrell, M. E.; Russo, R. M.

    2013-12-01

    The installation of Earthscope Transportable Array-style geophysical observatories in Chile expands open data seismic recording capabilities in the southern hemisphere by nearly 30%, and has nearly tripled the number of seismic stations providing freely-available data in southern South America. Through the use of collocated seismic and atmospheric sensors at these stations we are able to analyze how local atmospheric conditions generate seismic noise, which can degrade data in seismic frequency bands at stations in the ';roaring forties' (S latitudes). Seismic vaults that are climate-controlled and insulated from the local environment are now employed throughout the world in an attempt to isolate seismometers from as many noise sources as possible. However, this is an expensive solution that is neither practical nor possible for all seismic deployments; and also, the increasing number and scope of temporary seismic deployments has resulted in the collection and archiving of terabytes of seismic data that is affected to some degree by natural seismic noise sources such as wind and atmospheric pressure changes. Changing air pressure can result in a depression and subsequent rebound of Earth's surface - which generates low frequency noise in seismic frequency bands - and even moderate winds can apply enough force to ground-coupled structures or to the surface above the seismometers themselves, resulting in significant noise. The 10 stations of the permanent Geophysical Reporting Observatories (GRO Chile), jointly installed during 2011-12 by IRIS and the Chilean Servicio Sismológico, include instrumentation in addition to the standard three seismic components. These stations, spaced approximately 300 km apart along the length of the country, continuously record a variety of atmospheric data including infrasound, air pressure, wind speed, and wind direction. The collocated seismic and atmospheric sensors at each station allow us to analyze both datasets together, to

  8. Seismic behavior and design of wall-EDD-frame systems

    Directory of Open Access Journals (Sweden)

    Oren eLavan

    2015-06-01

    Full Text Available Walls and frames have different deflection lines and, depending on the seismic mass they support, may often poses different natural periods. In many cases, wall-frame structures present an advantageous behavior. In these structures the walls and the frames are rigidly connected. Nevertheless, if the walls and the frames were not rigidly connected, an opportunity for an efficient passive control strategy would arise: Connecting the two systems by energy dissipation devices (EDDs to result in wall-EDD-frame systems. This, depending on the parameters of the system, is expected to lead to an efficient energy dissipation mechanism.This paper studies the seismic behavior of wall-EDD-frame systems in the context of retrofitting existing frame structures. The controlling non-dimensional parameters of such systems are first identified. This is followed by a rigorous and extensive parametric study that reveals the pros and cons of the new system versus wall-frame systems. The effect of the controlling parameters on the behavior of the new system are analyzed and discussed. Finally, tools are given for initial design of such retrofitting schemes. These enable both choosing the most appropriate retrofitting alternative and selecting initial values for its parameters.

  9. Development of Vertical Cable Seismic System (2)

    Science.gov (United States)

    Asakawa, E.; Murakami, F.; Tsukahara, H.; Ishikawa, K.

    2012-12-01

    The vertical cable seismic is one of the reflection seismic methods. It uses hydrophone arrays vertically moored from the seafloor to record acoustic waves generated by surface, deep-towed or ocean bottom sources. Analyzing the reflections from the sub-seabed, we could look into the subsurface structure. This type of survey is generally called VCS (Vertical Cable Seismic). Because VCS is an efficient high-resolution 3D seismic survey method for a spatially-bounded area, we proposed the method for the hydrothermal deposit survey tool development program that the Ministry of Education, Culture, Sports, Science and Technology (MEXT) started in 2009. We are now developing a VCS system, including not only data acquisition hardware but data processing and analysis technique. Our first experiment of VCS surveys has been carried out in Lake Biwa, JAPAN in November 2009 for a feasibility study. Prestack depth migration is applied to the 3D VCS data to obtain a high quality 3D depth volume. Based on the results from the feasibility study, we have developed two autonomous recording VCS systems. After we carried out a trial experiment in the actual ocean at a water depth of about 400m and we carried out the second VCS survey at Iheya Knoll with a deep-towed source. In this survey, we could establish the procedures for the deployment/recovery of the system and could examine the locations and the fluctuations of the vertical cables at a water depth of around 1000m. The acquired VCS data clearly shows the reflections from the sub-seafloor. Through the experiment, we could confirm that our VCS system works well even in the severe circumstances around the locations of seafloor hydrothermal deposits. We have carried out two field surveys in 2011. One is a 3D survey with a boomer for a high-resolution surface source and the other one for an actual field survey in the Izena Cauldron an active hydrothermal area in the Okinawa Trough. Through these surveys, we have confirmed that the

  10. Three dimensional periodic foundations for base seismic isolation

    International Nuclear Information System (INIS)

    Yan, Y; Mo, Y L; Cheng, Z; Shi, Z; Menq, F; Tang, Y

    2015-01-01

    Based on the concept of phononic crystals, periodic foundations made of periodic materials are investigated in this paper. The periodic foundations can provide low frequency band gaps, which cover the main frequency ranges of seismic waves. Therefore, the periodic foundations are able to protect the upper structures during earthquake events. In this paper, the basic theory of three dimensional periodic foundations is studied and the finite element method was used to conduct the sensitivity study. A simplified three-dimensional periodic foundation with a superstructure was tested in the field and the feasibility of three dimensional periodic foundations was proved. The test results showed that the response of the upper structure with the three dimensional periodic foundation was reduced under excitation waves with the main frequency falling in the attenuation zones. The finite element analysis results are consistent with the experimental data, indicating that three dimensional periodic foundations are a feasible way of reducing seismic vibrations. (paper)

  11. Single Point Vulnerability Analysis of Automatic Seismic Trip System

    International Nuclear Information System (INIS)

    Oh, Seo Bin; Chung, Soon Il; Lee, Yong Suk; Choi, Byung Pil

    2016-01-01

    Single Point Vulnerability (SPV) analysis is a process used to identify individual equipment whose failure alone will result in a reactor trip, turbine generator failure, or power reduction of more than 50%. Automatic Seismic Trip System (ASTS) is a newly installed system to ensure the safety of plant when earthquake occurs. Since this system directly shuts down the reactor, the failure or malfunction of its system component can cause a reactor trip more frequently than other systems. Therefore, an SPV analysis of ASTS is necessary to maintain its essential performance. To analyze SPV for ASTS, failure mode and effect analysis (FMEA) and fault tree analysis (FTA) was performed. In this study, FMEA and FTA methods were performed to select SPV equipment of ASTS. D/O, D/I, A/I card, seismic sensor, and trip relay had an effect on the reactor trip but their single failure will not cause reactor trip. In conclusion, ASTS is excluded as SPV. These results can be utilized as the basis data for ways to enhance facility reliability such as design modification and improvement of preventive maintenance procedure

  12. Single Point Vulnerability Analysis of Automatic Seismic Trip System

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Seo Bin; Chung, Soon Il; Lee, Yong Suk [FNC Technology Co., Yongin (Korea, Republic of); Choi, Byung Pil [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    Single Point Vulnerability (SPV) analysis is a process used to identify individual equipment whose failure alone will result in a reactor trip, turbine generator failure, or power reduction of more than 50%. Automatic Seismic Trip System (ASTS) is a newly installed system to ensure the safety of plant when earthquake occurs. Since this system directly shuts down the reactor, the failure or malfunction of its system component can cause a reactor trip more frequently than other systems. Therefore, an SPV analysis of ASTS is necessary to maintain its essential performance. To analyze SPV for ASTS, failure mode and effect analysis (FMEA) and fault tree analysis (FTA) was performed. In this study, FMEA and FTA methods were performed to select SPV equipment of ASTS. D/O, D/I, A/I card, seismic sensor, and trip relay had an effect on the reactor trip but their single failure will not cause reactor trip. In conclusion, ASTS is excluded as SPV. These results can be utilized as the basis data for ways to enhance facility reliability such as design modification and improvement of preventive maintenance procedure.

  13. Characterization of the seismically imaged Tuscarora fold system and implications for layer parallel shortening in the Pennsylvania salient

    Science.gov (United States)

    Mount, Van S.; Wilkins, Scott; Comiskey, Cody S.

    2017-12-01

    The Tuscarora fold system (TFS) is located in the Pennsylvania salient in the foreland of the Valley and Ridge province. The TFS is imaged in high quality 3D seismic data and comprises a system of small-scale folds within relatively flat-lying Lower Silurian Tuscarora Formation strata. We characterize the TFS structures and infer layer parallel shortening (LPS) directions and magnitudes associated with deformation during the Alleghany Orogeny. Previously reported LPS data in our study area are from shallow Devonian and Carboniferous strata (based on outcrop and core analyses) above the shallowest of three major detachments recognized in the region. Seismic data allows us to characterize LPS at depth in strata beneath the shallow detachment. Our LPS data (orientations and inferred magnitudes) are consistent with the shallow data leading us to surmise that LPS during Alleghanian deformation fanned around the salient and was distributed throughout the stratigraphic section - and not isolated to strata above the shallow detachment. We propose that a NW-SE oriented Alleghanian maximum principal stress was perturbed by deep structure associated with the non-linear margin of Laurentia resulting in fanning of shortening directions within the salient.

  14. Seismic analysis of the reactor coolant system of PWR nuclear power plants

    International Nuclear Information System (INIS)

    Borsoi, L.; Sollogoub, P.

    1986-01-01

    For safety considerations, seismic analyses are performed of the Reactor Coolant System (R.C.S.) of PWR Plants. After a brief description of the R.C.S. and R.C.S. operation, the paper presents the two types of analysis used to determine the effect of earthquake on the R.C.S.: modal spectral analysis and nonlinear time history analysis. The paper finally shows how seismic loadings are combined with other types of loadings and illustrates how the consideration of seismic loads affects R.C.S. design [fr

  15. Influence of seismic isolation systems and soil-structure interaction on the response of structures

    Directory of Open Access Journals (Sweden)

    Samah Hasrouri

    2018-01-01

    Full Text Available The reduction of cyclic loading triggering major damage in urban areas is a major challenge in earthquake engineering. The processes of structural control especially control structures for passive isolation systems and earthquake sinks of energy, which consists in superimposing on the structure a device which modifies the rigidity or the damping of the structural system without the demand for an external energy source and without introducing energy for its operation, these devices with taking account the effect of soilstructure interaction are currently regarded as effective solutions to these problem by reducing the level of acceleration imposed on the structure and consequently forces shear and the relative displacements in the superstructure. This reduction of shear forces and displacements will limit the structural damage.

  16. Seismic behavior of steel storage pallet racking systems

    CERN Document Server

    Castiglioni, Carlo Andrea

    2016-01-01

    This book presents the main outcomes of the first European research project on the seismic behavior of adjustable steel storage pallet racking systems. In particular, it describes a comprehensive and unique set of full-scale tests designed to assess such behavior. The tests performed include cyclic tests of full-scale rack components, namely beam-to-upright connections and column base connections; static and dynamic tests to assess the friction factor between pallets and rack beams; full-scale pushover and pseudodynamic tests of storage racks in down-aisle and cross-aisle directions; and full-scale dynamic tests on two-bay, three-level rack models. The implications of the findings of this extensive testing regime on the seismic behavior of racking systems are discussed in detail, highlighting e.g. the confirmation that under severe dynamic conditions “sliding” is the main factor influencing rack response. This work was conceived during the development of the SEISRACKS project. Its outcomes will contribute...

  17. Self-Centering Seismic Lateral Force Resisting Systems: High Performance Structures for the City of Tomorrow

    Directory of Open Access Journals (Sweden)

    Nathan Brent Chancellor

    2014-09-01

    Full Text Available Structures designed in accordance with even the most modern buildings codes are expected to sustain damage during a severe earthquake; however; these structures are expected to protect the lives of the occupants. Damage to the structure can require expensive repairs; significant business downtime; and in some cases building demolition. If damage occurs to many structures within a city or region; the regional and national economy may be severely disrupted. To address these shortcomings with current seismic lateral force resisting systems and to work towards more resilient; sustainable cities; a new class of seismic lateral force resisting systems that sustains little or no damage under severe earthquakes has been developed. These new seismic lateral force resisting systems reduce or prevent structural damage to nonreplaceable structural elements by softening the structural response elastically through gap opening mechanisms. To dissipate seismic energy; friction elements or replaceable yielding energy dissipation elements are also included. Post-tensioning is often used as a part of these systems to return the structure to a plumb; upright position (self-center after the earthquake has passed. This paper summarizes the state-of-the art for self-centering seismic lateral force resisting systems and outlines current research challenges for these systems.

  18. Evolution of seismic monitoring systems of nuclear power plants. Improvements and practical applications

    International Nuclear Information System (INIS)

    Sanchez Cabanero, J. G.; Jimenez Juan, A.

    2010-01-01

    The II. NN. Spanish have a seismic monitoring system (SVS) covering two objectives relevant to nuclear security: determining earthquake leave operation, and specific data that serve to limit or reduce the uncertainties associated with the seismic source, the site and design. Since its construction, the major SVS II. NN. have been equipped with the best time of seismic instrumentation to record earthquakes strong, but with limited resolution for recording in the free field and appropriately moderate earthquakes.

  19. Seismic evaluation of safety systems at the Savannah River reactors

    International Nuclear Information System (INIS)

    Hardy, G.S.; Johnson, J.J.; Eder, S.J.; Monahon, T.M.; Ketcham, D.R.

    1989-01-01

    A thorough review of all safety related systems in commercial nuclear power plants was prompted by the accident at the Three Mile Island Nuclear Power Plant. As a consequence of this review, the Nuclear Regulatory Commission (NRC) focused its attention on the environmental and seismic qualification of the industry's electrical and mechanical equipment. In 1980, the NRC issued Unresolved Safety Issue (USI) A-46 to verify the seismic adequacy of the equipment required to safely shut down a plant and maintain a stable condition for 72 hours. After extensive research by the NRC, it became apparent that traditional analysis and testing methods would not be a feasible mechanism to address this USI A-46 issue. The costs associated with utilizing the standard analytical and testing qualification approaches were exorbitant and could not be justified. In addition, the only equipment available to be shake table testing which is similar to the item being qualified is typically the nuclear plant component itself. After 8 years of studies and data collection, the NRC issued its ''Generic Safety Evaluation Report'' approving an alternate seismic qualification approach based on the use of seismic experience data. This experience-based seismic assessment approach will be the basis for evaluating each of the 70 pre-1972 commercial nuclear power units in the United States and for an undetermined number of nuclear plants located in foreign countries. This same cost-effective developed for the commercial nuclear power industry is currently being applied to the Savannah River Production Reactors to address similar seismic adequacy issues. This paper documents the results of the Savannah River Plant seismic evaluating program. This effort marks the first complete (non-trial) application of this state-of-the-art USI A-46 resolution methodology

  20. Seismic evaluation of safety systems at the Savannah River reactors

    International Nuclear Information System (INIS)

    Hardy, G.S.; Johnson, J.J.; Eder, S.J.; Monahon, T.; Ketcham, D.

    1989-01-01

    A thorough review of all safety related systems in commercial nuclear power plants was prompted by the accident at the Three Mile Island Nuclear Power Plant. As a consequence of this review, the Nuclear Regulatory Commission (NRC) focused its attention on the environmental and seismic qualification of the industry's electrical and mechanical equipment. In 1980, the NRC issued Unresolved Safety Issue (USI) A-46 to verify the seismic adequacy of the equipment required to safely shut down a plant and maintain a stable condition for 72 hours. After extensive research by the NRC, it became apparent that traditional analysis and testing methods would not be a feasible mechanism to address this USI A-46 issue. The costs associated with utilizing the standard analytical and testing qualification approaches were exorbitant and could not be justified. In addition, the only equipment available to be shake table tested which is similar to the item being qualified is typically the nuclear plant component itself. After 8 years of studies and data collection, the NRC issued its Generic Safety Evaluation Report approving an alternate seismic qualification approach based on the use of seismic experience data. This experience-based seismic assessment approach will be the basis for evaluating each of the 70 pre-1972 commercial nuclear power units in the US and for an undetermined number of nuclear plants located in foreign countries. This same cost-effective approach developed for the commercial nuclear power industry is currently being applied to the Savannah River Production Reactors to address similar seismic adequacy issues. This paper documents the results of the Savannah River Plant seismic evaluation program. This effort marks the first complete (non-trial) application of this state-of-the-art USI A-46 resolution methodology

  1. System seismic analysis of an innovative primary system for a large pool type LMFBR plant

    International Nuclear Information System (INIS)

    Pan, Y.C.; Wu, T.S.; Cha, B.K.; Burelbach, J.; Seidensticker, R.

    1984-01-01

    The system seismic analysis of an innovative primary system for a large pool type liquid metal fast breeder reactor (LMFBR) plant is presented. In this primary system, the reactor core is supported in a way which differs significantly from that used in previous designs. The analytical model developed for this study is a three-dimensional finite element model including one-half of the primary system cut along the plane of symmetry. The model includes the deck and deck mounted components,the reactor vessel, the core support structure, the core barrel, the radial neutron shield, the redan, and the conical support skirt. The sodium contained in the primary system is treated as a lumped mass appropriately distributed among various components. The significant seismic behavior as well as the advantages of this primary system design are discussed in detail

  2. Concepts and Models Regarding the Behavior of Antiseismic Devices for the Base Isolation System

    Directory of Open Access Journals (Sweden)

    Polidor BRATU

    2013-07-01

    Full Text Available The paper presents the main antiseismic devices, as component elements of the base isolation systems, in such a manner that the functional and constructive parameters are correlated with the inertial and stiffness characteristics of the dynamic isolated building. Also, each device will be characterized through a rheological model, which conditions the eigenvalues and eigenvectors spectrum, as well as the dynamic response to an exterior excitation of a seismic nature. In this context, antiseismic devices defined and characterized by the European Standard EN 15129 will be presented. Based on the requirements formulated in the norm, the devices can be identified and their laws of evolution established and checked as follows: antiseismic devices with permanent rigid connection; antiseismic devices with rigid connections with respect to the instantaneous displacement and antiseismic devices dependent on the velocity and on the velocity variation in time.

  3. Seismic qualification of equipment

    International Nuclear Information System (INIS)

    Heidebrecht, A.C.; Tso, W.K.

    1983-03-01

    This report describes the results of an investigation into the seismic qualification of equipment located in CANDU nuclear power plants. It is particularly concerned with the evaluation of current seismic qualification requirements, the development of a suitable methodology for the seismic qualification of safety systems, and the evaluation of seismic qualification analysis and testing procedures

  4. A new seismic station in Romania the Bucovina seismic array

    International Nuclear Information System (INIS)

    Grigore, Adrian; Grecu, Bogdan; Ionescu, Constantin; Ghica, Daniela; Popa, Mihaela; Rizescu, Mihaela

    2002-01-01

    Recently, a new seismic monitoring station, the Bucovina Seismic Array, has been established in the northern part of Romania, in a joint effort of the Air Force Technical Applications Center, USA, and the National Institute for Earth Physics, Romania. The array consists of 10 seismic sensors (9 short-period and one broad band) located in boreholes and distributed in a 5 x 5 km area. On July 24, 2002 the official Opening Ceremony of Bucovina Seismic Array took place in the area near the city of Campulung Moldovenesc in the presence of Romanian Prime Minister, Adrian Nastase. Starting with this date, the new seismic monitoring system became fully operational by continuous recording and transmitting data in real-time to the National Data Center of Romania, in Bucharest and to the National Data Center of USA, in Florida. Bucovina Seismic Array, added to the present Seismic Network, will provide much better seismic monitoring coverage of Romania's territory, on-scale recording for weak-to-strong events, and will contribute to advanced seismological studies on seismic hazard and risk, local effects and microzonation, seismic source physics, Earth structure. (authors)

  5. Design and implement of system for browsing remote seismic waveform based on B/S schema

    International Nuclear Information System (INIS)

    Zheng Xuefeng; Shen Junyi; Wang Zhihai; Sun Peng; Jin Ping; Yan Feng

    2006-01-01

    Browsing remote seismic waveform based on B/S schema is of significance in modern seismic research and data service, and the technology should be improved urgently. This paper describes the basic plan, architecture and implement of system for browsing remote seismic waveform based on B/S schema. The problem to access, browse and edit the waveform data on serve from client only using browser has been solved. On this basis, the system has been established and been in use. (authors)

  6. An Experimental Seismic Data and Parameter Exchange System for Tsunami Warning Systems

    Science.gov (United States)

    Hoffmann, T. L.; Hanka, W.; Saul, J.; Weber, B.; Becker, J.; Heinloo, A.; Hoffmann, M.

    2009-12-01

    For several years GFZ Potsdam is operating a global earthquake monitoring system. Since the beginning of 2008, this system is also used as an experimental seismic background data center for two different regional Tsunami Warning Systems (TWS), the IOTWS (Indian Ocean) and the interim NEAMTWS (NE Atlantic and Mediterranean). The SeisComP3 (SC3) software, developed within the GITEWS (German Indian Ocean Tsunami Early Warning System) project, capable to acquire, archive and process real-time data feeds, was extended for export and import of individual processing results within the two clusters of connected SC3 systems. Therefore not only real-time waveform data are routed to the attached warning centers through GFZ but also processing results. While the current experimental NEAMTWS cluster consists of SC3 systems in six designated national warning centers in Europe, the IOTWS cluster presently includes seven centers, with another three likely to join in 2009/10. For NEAMTWS purposes, the GFZ virtual real-time seismic network (GEOFON Extended Virtual Network -GEVN) in Europe was substantially extended by adding many stations from Western European countries optimizing the station distribution. In parallel to the data collection over the Internet, a GFZ VSAT hub for secured data collection of the EuroMED GEOFON and NEAMTWS backbone network stations became operational and first data links were established through this backbone. For the Southeast Asia region, a VSAT hub has been established in Jakarta already in 2006, with some other partner networks connecting to this backbone via the Internet. Since its establishment, the experimental system has had the opportunity to prove its performance in a number of relevant earthquakes. Reliable solutions derived from a minimum of 25 stations were very promising in terms of speed. For important events, automatic alerts were released and disseminated by emails and SMS. Manually verified solutions are added as soon as they become

  7. A Shear-Wave Seismic System to Look Ahead of a Tunnel Boring Machine

    NARCIS (Netherlands)

    Bharadwaj, Pawan; Drijkoningen, G.G.; Mulder, W.A.; Tscharner, Thomas; Jenneskens, Rob

    2016-01-01

    The Earth’s properties, composition and structure ahead of a tunnel boring machine (TBM) should be mapped for hazard assessment during excavation. We study the use of seismic-exploration techniques for this purpose. We focus on a seismic system for soft soils, where shear waves are better and easier

  8. R and D on seismic emergency information system

    International Nuclear Information System (INIS)

    2001-06-01

    After the Great Hansin-Awaji Earthquake Disaster occurred in 1995, the Science and Technology Agency commenced 'Frontier Research Program on Earthquake' in FY1996. As a part of this research program, four-year program on 'Research on Real-time Earthquake Information Transmission' has been carried out at JAERI since FY1997. Through the experience of the above earthquake disaster, the importance of accurate and prompt seismic information transmission immediately after the occurrence of the earthquake has been recognized from the viewpoint of disaster mitigation. Under this circumstance, the main activity in Real-time Earthquake Information Transmission Research at JAERI has been placed on the development of a seismic emergency information system. In order to respond to the above R and D, Seismic Emergency Information System Research Team was organized in JAERI in FY1998. In the meantime, a part of this R and D program is performed under the coordinated research between JAERI and NIED (National Research Institute for Earth Science and Disaster Prevention). This report summarizes the results of four years program from FY1997 to FY2000 on the above R and D. The R and D has been conducted involving the latest progress in earthquake engineering with regard to estimation techniques on the hypocenter, fault and earthquake motion parameters and in Information Technologies. The R and D was divided into two parts, i.e., development of the basic system and application system. In the basic system, earthquake information with 500 m square mesh in a local area can be estimated and transmitted in a few minutes. In the application system, the concept of the disaster management system which consists of user site and disaster information center and is capable of mutual information transmission has been established. A prototype of the application system, which include the basic system in the disaster information center, has been developed. Test operation of the basic system in being

  9. Comments on the seismic safety of nuclear power plants in Eastern Europe

    Energy Technology Data Exchange (ETDEWEB)

    Tarics, A G [29 Winward Road, Belvedere, CA 94920 (United States); Kelly, J M [Earthquake Engineering Research Center, University of California, Berkeley, CA (United States); Csorba, E M [Technical University Vienna, Vienna (Austria)

    2001-03-01

    After the break-up of the Soviet Union, ten countries in Eastern Europe inherited Soviet-designed nuclear power plants which were constructed without adequate provisions to resist earthquake-generated lateral forces. An earthquake at their locations could seriously damage these plants and could result in Chernobyl-like consequences on the environment. There is an ongoing program to reinforce these plants using conventional piecemeal methods. A newly developed seismic protection strategy called 'base isolation' or 'seismic isolation', widely used in the United States to retrofit existing buildings, is recommended as an economical, technically superior, and more effective solution - where applicable - to make these nuclear power plants capable of resisting seismic forces. (author)

  10. Comments on the seismic safety of nuclear power plants in Eastern Europe

    International Nuclear Information System (INIS)

    Tarics, A.G.; Kelly, J.M.; Csorba, E.M.

    2001-01-01

    After the break-up of the Soviet Union, ten countries in Eastern Europe inherited Soviet-designed nuclear power plants which were constructed without adequate provisions to resist earthquake-generated lateral forces. An earthquake at their locations could seriously damage these plants and could result in Chernobyl-like consequences on the environment. There is an ongoing program to reinforce these plants using conventional piecemeal methods. A newly developed seismic protection strategy called 'base isolation' or 'seismic isolation', widely used in the United States to retrofit existing buildings, is recommended as an economical, technically superior, and more effective solution - where applicable - to make these nuclear power plants capable of resisting seismic forces. (author)

  11. Identifying Conventionally Sub-Seismic Faults in Polygonal Fault Systems

    Science.gov (United States)

    Fry, C.; Dix, J.

    2017-12-01

    Polygonal Fault Systems (PFS) are prevalent in hydrocarbon basins globally and represent potential fluid pathways. However the characterization of these pathways is subject to the limitations of conventional 3D seismic imaging; only capable of resolving features on a decametre scale horizontally and metres scale vertically. While outcrop and core examples can identify smaller features, they are limited by the extent of the exposures. The disparity between these scales can allow for smaller faults to be lost in a resolution gap which could mean potential pathways are left unseen. Here the focus is upon PFS from within the London Clay, a common bedrock that is tunnelled into and bears construction foundations for much of London. It is a continuation of the Ieper Clay where PFS were first identified and is found to approach the seafloor within the Outer Thames Estuary. This allows for the direct analysis of PFS surface expressions, via the use of high resolution 1m bathymetric imaging in combination with high resolution seismic imaging. Through use of these datasets surface expressions of over 1500 faults within the London Clay have been identified, with the smallest fault measuring 12m and the largest at 612m in length. The displacements over these faults established from both bathymetric and seismic imaging ranges from 30cm to a couple of metres, scales that would typically be sub-seismic for conventional basin seismic imaging. The orientations and dimensions of the faults within this network have been directly compared to 3D seismic data of the Ieper Clay from the offshore Dutch sector where it exists approximately 1km below the seafloor. These have typical PFS attributes with lengths of hundreds of metres to kilometres and throws of tens of metres, a magnitude larger than those identified in the Outer Thames Estuary. The similar orientations and polygonal patterns within both locations indicates that the smaller faults exist within typical PFS structure but are

  12. A filter circuit board for the Earthworm Seismic Data Acquisition System

    Science.gov (United States)

    Jensen, Edward Gray

    2000-01-01

    The Earthworm system is a seismic network data acquisition and processing system used by the Northern California Seismic Network as well as many other seismic networks. The input to the system is comprised of many realtime electronic waveforms fed to a multi-channel digitizer on a PC platform. The digitizer consists of one or more National Instruments Corp. AMUX–64T multiplexer boards attached to an A/D converter board located in the computer. Originally, passive filters were installed on the multiplexers to eliminate electronic noise picked up in cabling. It was later discovered that a small amount of crosstalk occurred between successive channels in the digitizing sequence. Though small, this crosstalk will cause what appear to be small earthquake arrivals at the wrong time on some channels. This can result in erroneous calculation of earthquake arrival times, particularly by automated algorithms. To deal with this problem, an Earthworm filter board was developed to provide the needed filtering while eliminating crosstalk. This report describes the tests performed to find a suitable solution, and the design of the circuit board. Also included are all the details needed to build and install this board in an Earthworm system or any other system using the AMUX–64T board. Available below is the report in PDF format as well as an archive file containing the circuit board manufacturing information.

  13. Optimal cost design of base-isolated pool structures for the storage of nuclear spent fuel

    International Nuclear Information System (INIS)

    Ko, H. M.; Park, K. S.; Song, J. H.

    1999-01-01

    A method of cost-effectiveness evaluation for seismic isolated pool structures is presented. Input ground motion is modeled as spectral density function compatible with response spectrum for combination of acceleration coefficient and site coefficient. Interaction effects between flexible walls and contained fluid are considered in the form of added mass matrix. Wall thickness and isolator stiffness are adopted as design variables for optimization. Transfer function vector of the structure-isolator system is derived from the equation of motion. Spectral analysis method based on random vibration theories is used for the calculation of failure probability. The exemplifying designs and analyses show that cost-effectiveness of isolated pool structure is relatively high in low-moderate seismic region and stiff soil condition. Sensitiveness of optimal design variables to assumed damage scales is relatively low in such region

  14. Development and Examination of Real-time Automatic Scram System Using Deep Vertical Array Seismic Observation System

    International Nuclear Information System (INIS)

    Sugaya, Katsunori

    2014-01-01

    In Japan, observed seismic motions in reactor buildings are currently used for seismic scram, but installing a seismometer at a great depth at the site may possibly shorten scram initiation time. JNES proposed a scram system with a seismometer set at a depth of 3,000 m on the premises of the Niigata Institute of Technology based on preliminary results for a scenario earthquake and is now planning quantitative evaluation. (authors)

  15. Seismic Response of a Platform-Frame System with Steel Columns

    Directory of Open Access Journals (Sweden)

    Davide Trutalli

    2017-04-01

    Full Text Available Timber platform-frame shear walls are characterized by high ductility and diffuse energy dissipation but limited in-plane shear resistance. A novel lightweight constructive system composed of steel columns braced with oriented strand board (OSB panels was conceived and tested. Preliminary laboratory tests were performed to study the OSB-to-column connections with self-drilling screws. Then, the seismic response of a shear wall was determined performing a quasi-static cyclic-loading test of a full-scale specimen. Results presented in this work in terms of force-displacement capacity show that this system confers to shear walls high in-plane strength and stiffness with good ductility and dissipative capacity. Therefore, the incorporation of steel columns within OSB bracing panels results in a strong and stiff platform-frame system with high potential for low- and medium-rise buildings in seismic-prone areas.

  16. Development of Vertical Cable Seismic System for Hydrothermal Deposit Survey (2) - Feasibility Study

    Science.gov (United States)

    Asakawa, E.; Murakami, F.; Sekino, Y.; Okamoto, T.; Mikada, H.; Takekawa, J.; Shimura, T.

    2010-12-01

    In 2009, Ministry of Education, Culture, Sports, Science and Technology(MEXT) started the survey system development for Hydrothermal deposit. We proposed the Vertical Cable Seismic (VCS), the reflection seismic survey with vertical cable above seabottom. VCS has the following advantages for hydrothermal deposit survey. . (1) VCS is an effective high-resolution 3D seismic survey within limited area. (2) It achieves high-resolution image because the sensors are closely located to the target. (3) It avoids the coupling problems between sensor and seabottom that cause serious damage of seismic data quality. (4) Various types of marine source are applicable with VCS such as sea-surface source (air gun, water gun etc.) , deep-towed or ocean bottom sources. (5) Autonomous recording system. Our first experiment of 2D/3D VCS surveys has been carried out in Lake Biwa, JAPAN. in November 2009. The 2D VCS data processing follows the walk-away VSP, including wave field separation and depth migration. The result gives clearer image than the conventional surface seismic. Prestack depth migration is applied to 3D data to obtain good quality 3D depth volume. Uncertainty of the source/receiver poisons in water causes the serious problem of the imaging. We used several transducer/transponder to estimate these positions. The VCS seismic records themselves can also provide sensor position using the first break of each trace and we calibrate the positions. We are currently developing the autonomous recording VCS system and planning the trial experiment in actual ocean to establish the way of deployment/recovery and the examine the position through the current flow in November, 2010. The second VCS survey will planned over the actual hydrothermal deposit with deep-towed source in February, 2011.

  17. Applicability of base-isolation R and D in non-reactor facilities to a nuclear reactor plant

    International Nuclear Information System (INIS)

    Seidensticker, R.W.

    1989-01-01

    Seismic isolation is gaining increased attention worldwide for use in a wide spectrum of critical facilities, ranging from hospitals and computing centers to nuclear power plants. While the fundamental principles and technology are applicable to all of these facilities, the degree of assurance that the actual behavior of the isolation systems is as specified varies with the nature of the facility involved. Obviously, the level of effort to provide such assurance for a nuclear power plant will be much greater than that required for, say, a critical computer facility. This paper reviews the research and development (R and D) programs ongoing for seismic isolation in non-nuclear facilities and related experience and makes a preliminary assessment of the extent to which such R and D and experience can be used for nuclear power plant application. Ways are suggested to improve the usefulness of such non-nuclear R and D in providing the high level of confidence required for the use of seismic isolation in a nuclear reactor plant

  18. Development of a Real-Time GPS/Seismic Displacement Meter: Seismic Component and Communications

    Science.gov (United States)

    Vernon, F.; Bock, Y.

    2002-12-01

    In two abstracts, we report on an ongoing effort to develop an Integrated Real-Time GPS/Seismic System for Orange and Western Riverside Counties, California, spanning three major strike-slip faults in southern California (San Andreas, San Jacinto, and Elsinore) and significant populations and civilian infrastructure. The system relying on existing GPS and seismic networks will collect and analyze GPS and seismic data for the purpose of estimating and disseminating real-time positions and total ground displacements (dynamic, as well as static) covering all phases of the seismic cycle, from fractions of seconds to years. Besides its intrinsic scientific use as a real-time displacement meter (transducer), the GPS/Seismic System will be a powerful tool for local and state decision makers for risk mitigation, disaster management, and structural monitoring (dams, bridges, and buildings). Furthermore, the GPS/Seismic System will become an integral part of California's spatial referencing and positioning infrastructure, which is complicated by tectonic motion, seismic displacements, and land subsidence. This development is taking place under the umbrella of the California Spatial Reference Center, in partnership with local (The Counties, Riverside County Flood and Water Conservation District, Southern California Metropolitan Water District), state (Caltrans), and Federal agencies (NGS, NASA, USGS), the geophysics community (SCEC2/SCIGN), and the private sector (RBF Consulting). The project is leveraging considerable funding, resources, and research and development from SCIGN, CSRC and two NSF-funded IT projects at UCSD and SDSU: RoadNet (Real-Time Observatories, Applications and Data Management Network) and the High Performance Wireless Research and Education Network (HPWREN). These two projects are funded to develop both the wireless networks and the integrated, seamless, and transparent information management system that will deliver seismic, geodetic, oceanographic

  19. J-SHIS - an integrated system for knowing seismic hazard information in Japan

    Science.gov (United States)

    Azuma, H.; Fujiwara, H.; Kawai, S.; Hao, K. X.; Morikawa, N.

    2015-12-01

    An integrated system of Japan seismic hazard information station (J-SHIS) was established in 2005 for issuing and exchanging information of the National Seismic Hazard Maps for Japan that are based on seismic hazard assessment (SHA). A simplified app, also named J-SHIS, for smartphones is popularly used in Japan based on the integrated system of http://www.j-shis.bosai.go.jp/map/?lang=en. "Smartphone tells hazard" is realized on a cellphone, a tablet and/or a PC. At a given spot, the comprehensive information of SHA map can be easily obtained as below: 1) A SHA probability at given intensity (JMA=5-, 5+, 6-, 6+) within 30 years. 2) A site amplification factor varies within 0.5 ~ 3.0 and expectation is 1 based on surface geology map information. 3) A depth of seismic basement down to ~3,000m based on deeper borehole and geological structure. 4) Scenario earthquake maps: By choosing an active fault, one got the average case for different parameters of the modeling. Then choose a case, you got the shaking map of intensity with color scale. "Seismic Hazard Karte tells more hazard" is another app based on website of http://www.j-shis.bosai.go.jp/labs/karte/. (1) For every mesh of 250m x 250m, professional service SHA information is provided over national-world. (2) With five ranks for eight items, comprehensive SHA information could be delivered. (3) Site amplification factor with an average index is given. (4) Deeper geologic structure modeling is provided with borehole profiling. (5) A SHA probability is assessed within 30 and/or 50 years for the given site. (6) Seismic Hazard curves are given for earthquake sources from inland active fault, subduction zone, undetermined and their summarization. (7) The JMA seismic intensities are assessed in long-term averaged periods of 500-years to ~100,000 years. The app of J-SHIS can be downloaded freely from http://www.j-shis.bosai.go.jp/app-jshis.

  20. First experience concerning the seismic behavior of an electric power system in eastern North America

    International Nuclear Information System (INIS)

    Pierre, J.R.

    1991-01-01

    The November 25, 1988, Saguenay earthquake of magnitude M b L g = 6.5 occurred in the province of Quebec, Canada. It represents the first strong event in eastern North America for which the seismic behavior of a power system is documented. The paper describes the seismic performance of the main components of the power system with emphasis on damages to the substation's equipment and on the triggering of control and protection devices by the seismic waves. Performance of the network is analyzed taking in account the seismological and strong ground motion features. Attention is drawn to general observations related to soil conditions and topographical relief. These data, when extrapolated to the eastern North American context, indicate that caution must be exercised concerning the seismic resistance of lifelines in eastern Canada and United States

  1. Study on seismic design margin based upon inelastic shaking test of the piping and support system

    International Nuclear Information System (INIS)

    Ishiguro, Takami; Eto, Kazutoshi; Ikeda, Kazutoyo; Yoshii, Toshiaki; Kondo, Masami; Tai, Koichi

    2009-01-01

    In Japan, according to the revised Regulatory Guide for Aseismic Design of Nuclear Power Reactor Facilities, September 2006, criteria of design basis earthquakes of Nuclear Power Reactor Facilities become more severe. Then, evaluating seismic design margin took on a great importance and it has been profoundly discussed. Since seismic safety is one of the major key issues of nuclear power plant safety, it has been demonstrated that nuclear piping system possesses large safety margins by various durability test reports for piping in ultimate conditions. Though the knowledge of safety margin has been accumulated from these reports, there still remain some technical uncertainties about the phenomenon when both piping and support structures show inelastic behavior in extremely high seismic excitation level. In order to obtain the influences of inelastic behavior of the support structures to the whole piping system response when both piping and support structures show inelastic behavior, we examined seismic proving tests and we conducted simulation analyses for the piping system which focused on the inelastic behavior of the support to the whole piping system response. This paper introduces major results of the seismic shaking tests of the piping and support system and the simulation analyses of these tests. (author)

  2. Documentation of the workshop on R and D and application of seismic emergency information system

    International Nuclear Information System (INIS)

    2000-07-01

    This report describes the summary of the workshop on R and D and application of Seismic Emergency Information System (SEIS) organized by Japan Atomic Energy Research Institute (JAERI) and National Research Institute for Earth Science and Disaster Prevention (NIED) held on December 20, 1999. Documents presented in the workshop are attached. The workshop consists of the following five technical sessions. - Session I: Objectives of Workshop, - Session II: Progress of R and D of SEIS, - Session III: Current status of application of Seismic Information Systems, - Session IV: Free-discussion for issues and future prospects of Information Systems, - Session V: Briefing, Subsequently to the introduction of objectives of the workshop, the four topics on the progress of R and D of the seismic information system were presented by JAERI and NIED. The discussions are summarized in three viewpoints, i.e.; utilization of the potential of JAERI activities to the R and D, clarification on the objectives and philosophy of the system, effective utilization of the result of R and D. In addition, the current status on the application of seismic information systems was presented by staffs of local government and etc. Issues and future prospects of the information systems were discussed. The workshop was summarized in the final session. (author)

  3. Study on structural seismic margin and probabilistic seismic risk. Development of a structural capacity-seismic risk diagram

    International Nuclear Information System (INIS)

    Nakajima, Masato; Ohtori, Yasuki; Hirata, Kazuta

    2010-01-01

    Seismic margin is extremely important index and information when we evaluate and account seismic safety of critical structures, systems and components quantitatively. Therefore, it is required that electric power companies evaluate the seismic margin of each plant in back-check of nuclear power plants in Japan. The seismic margin of structures is usually defined as a structural capacity margin corresponding to design earthquake ground motion. However, there is little agreement as to the definition of the seismic margin and we have no knowledge about a relationship between the seismic margin and seismic risk (annual failure probability) which is obtained in PSA (Probabilistic Safety Assessment). The purpose of this report is to discuss a definition of structural seismic margin and to develop a diagram which can identify a relation between seismic margin and seismic risk. The main results of this paper are described as follows: (1) We develop seismic margin which is defined based on the fact that intensity of earthquake ground motion is more appropriate than the conventional definition (i.e., the response-based seismic margin) for the following reasons: -seismic margin based on earthquake ground motion is invariant where different typed structures are considered, -stakeholders can understand the seismic margin based on the earthquake ground motion better than the response-based one. (2) The developed seismic margin-risk diagram facilitates us to judge easily whether we need to perform detailed probabilistic risk analysis or only deterministic analysis, given that the reference risk level although information on the uncertainty parameter beta is not obtained. (3) We have performed numerical simulations based on the developed method for four sites in Japan. The structural capacity-risk diagram differs depending on each location because the diagram is greatly influenced by seismic hazard information for a target site. Furthermore, the required structural capacity

  4. Seismic isolation for existing masonry houses in Groningen/ NL combined with thermal upgrading

    NARCIS (Netherlands)

    Blok, Rijk; Teuffel, Patrick

    2015-01-01

    Induced earthquakes, caused by the winning of natural Gas in the North of the Netherlands (Groningen province), are causing significant damage to the existing, often relatively weak, masonry buildings. This seismic hazard and seismic rehabilitation problem in the Groningen area involves much more

  5. Seismic analysis of the APR1400 nuclear reactor system using a verified beam element model

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong-beom [Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722 (Korea, Republic of); Park, No-Cheol, E-mail: pnch@yonsei.ac.kr [Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722 (Korea, Republic of); Lee, Sang-Jeong; Park, Young-Pil [Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722 (Korea, Republic of); Choi, Youngin [Korea Institute of Nuclear Safety, 62 Gwahak-ro, Yuseong-gu, Daejeon 34142 (Korea, Republic of)

    2017-03-15

    Highlights: • A simplified beam element model is constructed based on the real dynamic characteristics of the APR1400. • Time history analysis is performed to calculate the seismic responses of the structures. • Large deformations can be observed at the in-phase mode of reactor vessel and core support barrel. - Abstract: Structural integrity is the first priority in the design of nuclear reactor internal structures. In particular, nuclear reactor internals should be designed to endure external forces, such as those due to earthquakes. Many researchers have performed finite element analyses to meet these design requirements. Generally, a seismic analysis model should reflect the dynamic characteristics of the target system. However, seismic analysis based on the finite element method requires long computation times as well as huge storage space. In this research, a beam element model was developed and confirmed based on the real dynamic characteristics of an advanced pressurized water nuclear reactor 1400 (APR1400) system. That verification process enhances the accuracy of the finite element analysis using the beam elements, remarkably. Also, the beam element model reduces seismic analysis costs. Therefore, the beam element model was used to perform the seismic analysis. Then, the safety of the APR1400 was assessed based on a seismic analysis of the time history responses of its structures. Thus, efficient, accurate seismic analysis was demonstrated using the proposed beam element model.

  6. Seismic analysis of the APR1400 nuclear reactor system using a verified beam element model

    International Nuclear Information System (INIS)

    Park, Jong-beom; Park, No-Cheol; Lee, Sang-Jeong; Park, Young-Pil; Choi, Youngin

    2017-01-01

    Highlights: • A simplified beam element model is constructed based on the real dynamic characteristics of the APR1400. • Time history analysis is performed to calculate the seismic responses of the structures. • Large deformations can be observed at the in-phase mode of reactor vessel and core support barrel. - Abstract: Structural integrity is the first priority in the design of nuclear reactor internal structures. In particular, nuclear reactor internals should be designed to endure external forces, such as those due to earthquakes. Many researchers have performed finite element analyses to meet these design requirements. Generally, a seismic analysis model should reflect the dynamic characteristics of the target system. However, seismic analysis based on the finite element method requires long computation times as well as huge storage space. In this research, a beam element model was developed and confirmed based on the real dynamic characteristics of an advanced pressurized water nuclear reactor 1400 (APR1400) system. That verification process enhances the accuracy of the finite element analysis using the beam elements, remarkably. Also, the beam element model reduces seismic analysis costs. Therefore, the beam element model was used to perform the seismic analysis. Then, the safety of the APR1400 was assessed based on a seismic analysis of the time history responses of its structures. Thus, efficient, accurate seismic analysis was demonstrated using the proposed beam element model.

  7. CONSIDERATIONS ON FLUID DYNAMICS INSIDE A HYDRAULIC SEISMIC ENERGY ABSORBER

    Directory of Open Access Journals (Sweden)

    ȘCHEAUA Fănel

    2013-06-01

    Full Text Available This study presents a method for obtaining a simplified model of a seismic energy dissipation device whose operating principle is based on viscous fluid as a solution for structural isolation against seismic actions. The device operation is based on the resistance force developed by the working fluid when the piston tends to move due to occurrence of a seismic motion. A 3D model achieved is introduced in CFD analysis for emphasize dynamic fluid flow inside the device dissipation cylinder.

  8. A seismic network to investigate the sedimentary hosted hydrothermal Lusi system

    Science.gov (United States)

    Javad Fallahi, Mohammad; Mazzini, Adriano; Lupi, Matteo; Obermann, Anne; Karyono, Karyono

    2016-04-01

    The 29th of May 2006 marked the beginning of the sedimentary hosted hydrothermal Lusi system. During the last 10 years we witnessed numerous alterations of the Lusi system behavior that coincide with the frequent seismic and volcanic activity occurring in the region. In order to monitor the effect that the seismicity and the activity of the volcanic arc have on Lusi, we deployed a ad hoc seismic network. This temporary network consist of 10 broadband and 21 short period stations and is currently operating around the Arjuno-Welirang volcanic complex, along the Watukosek fault system and around Lusi, in the East Java basin since January 2015. We exploit this dataset to investigate surface wave and shear wave velocity structure of the upper-crust beneath the Arjuno-Welirang-Lusi complex in the framework of the Lusi Lab project (ERC grant n° 308126). Rayleigh and Love waves travelling between each station-pair are extracted by cross-correlating long time series of ambient noise data recorded at the stations. Group and phase velocity dispersion curves are obtained by time-frequency analysis of cross-correlation functions, and are tomographically inverted to provide 2D velocity maps corresponding to different sampling depths. 3D shear wave velocity structure is then acquired by inverting the group velocity maps.

  9. New perspectives on the damage estimation for buried pipeline systems due to seismic wave propagation

    Energy Technology Data Exchange (ETDEWEB)

    Pineda Porras, Omar Andrey [Los Alamos National Laboratory

    2009-01-01

    Over the past three decades, seismic fragility fonnulations for buried pipeline systems have been developed following two tendencies: the use of earthquake damage scenarios from several pipeline systems to create general pipeline fragility functions; and, the use of damage scenarios from one pipeline system to create specific-system fragility functions. In this paper, the advantages and disadvantages of both tendencies are analyzed and discussed; in addition, a summary of what can be considered the new challenges for developing better pipeline seismic fragility formulations is discussed. The most important conclusion of this paper states that more efforts are needed to improve the estimation of transient ground strain -the main cause of pipeline damage due to seismic wave propagation; with relevant advances in that research field, new and better fragility formulations could be developed.

  10. FSI analysis of piping systems under seismic excitation

    International Nuclear Information System (INIS)

    Uras, R.A.; Ma, D.C.; Chang, Yao W.; Liu, Wing Kam

    1991-01-01

    A formulation which accounts for fluid-structure interaction of piping system under seismic excitation is presented. The governing equations of the fluid and the structure to model the pipe are stated. Using the finite element method the discretized equations are obtained. A transformation procedure for proper assembly of matrices is introduced. A solution algorithm is described. 9 refs., 2 figs

  11. Seismic Dynamic Damage Characteristics of Vertical and Batter Pile-supported Wharf Structure Systems

    Directory of Open Access Journals (Sweden)

    Li Jiren

    2015-10-01

    Full Text Available Considering a typical steel pipe pile-supported wharf as the research object, finite element analytical models of batter and vertical pile structures were established under the same construction site, service, and geological conditions to investigate the seismic dynamic damage characteristics of vertical and batter pile-supported wharf structures. By the numerical simulation and the nonlinear time history response analysis of structure system and the moment–axial force relation curve, we analyzed the dynamic damage characteristics of the two different structures of batter and vertical piles under different seismic ground motions to provide reasonable basis and reference for designing and selecting a pile-supported wharf structure. Results showed that the axial force of batter piles was dominant in the batter pile structure and that batter piles could effectively bear and share seismic load. Under the seismic ground motion with peak ground acceleration (PGA of 350 Gal and in consideration of the factors of the design requirement of horizontal displacement, the seismic performance of the batter pile structure was better than that of the vertical pile structure. Under the seismic ground motion with a PGA of 1000 Gal, plastic failure occurred in two different structures. The contrastive analysis of the development of plastic damage and the absorption and dissipation for seismic energy indicated that the seismic performance of the vertical pile structure was better than that of the batter pile structure.

  12. Active Fault Isolation in MIMO Systems

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2014-01-01

    isolation is based directly on the input/output s ignals applied for the fault detection. It is guaranteed that the fault group includes the fault that had occurred in the system. The second step is individual fault isolation in the fault group . Both types of isolation are obtained by applying dedicated......Active fault isolation of parametric faults in closed-loop MIMO system s are considered in this paper. The fault isolation consists of two steps. T he first step is group- wise fault isolation. Here, a group of faults is isolated from other pos sible faults in the system. The group-wise fault...

  13. Use of the Delphi approach in seismic qualification of existing electrical and mechanical equipment and distribution systems

    International Nuclear Information System (INIS)

    Stevenson, J.D.

    1983-01-01

    In this paper a method of seismic reevaluation is described which permits every seismic Category I component and distribution system to be evaluated and an explicit estimate of seismic capability, in terms of an acceleration level which defines limits of structural adequacy and leak-tight integrity, be defined for each item. The procedure employees the Delphi method where a team of seismic design experts independently inspect each component and distribution system in its as installed condition in the field and estimate the acceleration level that component or system could withstand and still meet applicable seismic design code or other criteria requirements. The accuracy and any potential bias in the estimates can be evaluated by a small control sample where selected components which were also surveyed by the Delphi team are independently evaluated in detail using current analytical techniques. This entire procedure can be accomplished for an estimated 5000 to 10,000 manhours per plant

  14. Earthquakes: Isolation, energy dissipation and control of vibrations of structures for nuclear and industrial facilities and buildings. Overview of lectures and papers of a seminar organized jointly with the Italian Working Group on Seismic Isolation (GLIS) and held in Capri, Italy, 23-25 August 1993

    International Nuclear Information System (INIS)

    1995-09-01

    This report summarizes the contributions to the seminar together with the main technical issues and conclusions. Particular attention is paid to contributions which provided new or updated information with respect to that given at the IAEA Specialists Meeting on Seismic Isolation Technology, held at San Jose (California, USA), 18-20 March 1992. Attention is also paid to the development and implementation of more recent but very promising innovative techniques for the reduction of seismic and other dynamic loads. 64 refs, 1 tab

  15. Earthquakes: Isolation, energy dissipation and control of vibrations of structures for nuclear and industrial facilities and buildings. Overview of lectures and papers of a seminar organized jointly with the Italian Working Group on Seismic Isolation (GLIS) and held in Capri, Italy, 23-25 August 1993

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This report summarizes the contributions to the seminar together with the main technical issues and conclusions. Particular attention is paid to contributions which provided new or updated information with respect to that given at the IAEA Specialists Meeting on Seismic Isolation Technology, held at San Jose (California, USA), 18-20 March 1992. Attention is also paid to the development and implementation of more recent but very promising innovative techniques for the reduction of seismic and other dynamic loads. 64 refs, 1 tab.

  16. Evaluation of Seismic Behavior of Steel Braced Frames with Controlled Rocking System and Energy Dissipating Fuses

    Directory of Open Access Journals (Sweden)

    Hassan Amirzehni

    2016-12-01

    Full Text Available The self-centering rocking steel braced frames are new type of seismic lateral-force resisting systems that are developed with aim to limiting structural damages, minimizing residual drifts on systems and creating easy and inexpensive reconstruction capability, after sever earthquakes. In Steel braced frames with controlled rocking system, column bases on seismic resisting frame are not attached to the foundation and the frame allowed to rock freely. The task of restoring the rotated frame to its initial location is on post-tensioned cables, which attaches top of the frame to foundation. The design of post tensioned stands and braced frame members is such that during earthquakes they remain in elastic region. Seismic energy, dissipates by plastic deformations in replaceable elements on each rock of frame. In current research work, the seismic behavior of this type of lateral resisting systems is evaluated. The research conducted on a one bay steel braced frame with controlled rocking system that is analyzed using nonlinear dynamic time history analysis (NLTHA procedure. The frame is subjected to JMA-Kobe and Northridge ground motions records that are scaled to unit, 1.2 and 1.5 times of maximum considered earthquake (MCE ground motion level intensity. Extracted results show that seismic behavior of this type of lateral force resisting systems are so desirable even under MCE ground motion levels. The only anxiety is about occurring fatigue in post-tensioned strands that endangers overall stability of system.

  17. Mirror suspension system for the TAMA SAS

    CERN Document Server

    Takamori, A; Bertolini, A; Cella, G; DeSalvo, R; Fukushima, M; Iida, Y; Jacquier, F; Kawamura, S; Marka, S; Nishi, Y; Numata, K; Sannibale, V; Somiya, K; Takahashi, R; Tariq, H; Tsubono, K; Ugas, J; Viboud, N; Yamamoto, H; Yoda, T; Wang Chen Yang

    2002-01-01

    Several R and D programmes are ongoing to develop the next generation of interferometric gravitational wave detectors providing the superior sensitivity desired for refined astronomical observations. In order to obtain a wide observation band at low frequencies, the optics need to be isolated from the seismic noise. The TAMA SAS (seismic attenuation system) has been developed within an international collaboration between TAMA, LIGO, and some European institutes, with the main objective of achieving sufficient low-frequency seismic attenuation (-180 dB at 10 HZ). The system suppresses seismic noise well below the other noise levels starting at very low frequencies above 10 Hz. It also includes an active inertial damping system to decrease the residual motion of the optics enough to allow a stable operation of the interferometer. The TAMA SAS also comprises a sophisticated mirror suspension subsystem (SUS). The SUS provides support for the optics and vibration isolation complementing the SAS performance. The SU...

  18. Recent results of seismic isolation study in CRIEPI: Numerical activities

    International Nuclear Information System (INIS)

    Shiojiri, Hiroo; Ishida, Katsuhiko; Yabana, Shurichi; Hirata, Kazuta

    1992-01-01

    Development of detailed numerical models of a bearing and the related isolation system Is necessary for establishing the rational design of the bearing and the system. The developed numerical models should be validated regarding the physical parameters and the basic assumption by comparing the experimental results with the numerical ones. The numerical work being conducted in CRIEPI consists of the following items: (1) Simple modeling of the behavior of the bearings capable of approximating the tests on bearings, and the validation of the model for the bearing by comparing the numerical results adopting the models with the shaking table tests results; (2) Detailed three-dimensional modeling of single bearings with finite-element codes, and the experimental validation of the model; (3)Simple and detailed three-dimensional modeling of isolation buildings and experimental validation

  19. Seismic design criteria for the system 80+ advanced light water reactor

    International Nuclear Information System (INIS)

    Manrique, M.A.; Dermitzakis, S.N.; Gerdes, L.D.; Kennedy, R.P.; Idriss, I.M.; Cassidy, J.R.

    1991-01-01

    This paper presents the development of seismic design criteria in support of design certification by the Nuclear Regulatory Commission (NRC) of the ABB-Combustion Engineering's System 80+ Standard Design. The design certification effort is sponsored by the US Department of Energy (DOE). The development of the design criteria included: (a) development of the seismic control motion, (b) development of generic soil profiles for anticipated sites, (c) generation of in-structure response spectra and design loads for structures and equipment through soil-structure interaction (SSI) analyses, and (d) acceptance criteria for future construction sites

  20. Seismic Retrofit of a Multispan Prestressed Concrete Girder Bridge with Friction Pendulum Devices

    Directory of Open Access Journals (Sweden)

    Alberto Maria Avossa

    2018-01-01

    Full Text Available The paper deals with the proposal and application of a procedure for the seismic retrofit of an existing multispan prestressed concrete girder bridge defined explicitly for the use of friction pendulum devices as an isolation system placed between piers top and deck. First, the outcomes of the seismic risk assessment of the existing bridge, performed using an incremental noniterative Nonlinear Static Procedure, based on the Capacity Spectrum Method as well as the Inelastic Demand Response Spectra, are described and discussed. Then, a specific multilevel design process, based on a proper application of the hierarchy of strength considerations and the Direct Displacement-Based Design approach, is adopted to dimension the FPD devices. Furthermore, to assess the impact of the FPD nonlinear behaviour on the bridge seismic response, a device model that reproduces the variation of the normal force and friction coefficient, the bidirectional coupling, and the large deformation effects during nonlinear dynamic analyses was used. Finally, the paper examines the effects of the FPD modelling parameters on the behaviour of the retrofitted bridge and assesses its seismic response with the results pointing out the efficiency of the adopted seismic retrofit solution.

  1. The implementation of base isolation in the United States

    International Nuclear Information System (INIS)

    Kelly, J.M.

    1993-01-01

    The concept of base isolation as an innovative means of providing earthquake resistance to structural systems was met initially with a great deal of skepticism by the engineering community. Today, however, it is on the cutting edge of seismic-resistance engineering, as evidenced by the rapidly increasing number of buildings, both new construction and retrofit, using this earthquake-resistant technique. It is now generally accepted that a base-isolated building will perform better than a conventional fixed-base building in moderate or strong earthquakes. In the structures in which it has been used so far, the major benefit has been to reduce the effects of seismic forces on contents and internal equipment, more than justifying the increased cost of isolated construction. This review will mainly cover the development and application of base isolation to buildings in the US. The acceptance of this approach has been slow, but as a result of the 1989 Loma Prieta earthquake there is an increasing interest in its use for repair of buildings damaged in that earthquake and for the retrofit of historic buildings that are considered vulnerable to earthquake loading. Base isolation may play a major role in the future in projects as diverse as advanced nuclear reactors and public housing in developing countries

  2. Risk assessment and early warning systems for industrial facilities in seismic zones

    International Nuclear Information System (INIS)

    Salzano, Ernesto; Garcia Agreda, Anita; Di Carluccio, Antonio; Fabbrocino, Giovanni

    2009-01-01

    Industrial equipments and systems can suffer structural damage when hit by earthquakes, so that accidental scenarios as fire, explosion and dispersion of toxic substances can take place. As a result, overall damage to people, environment and properties increases. The present paper deals with seismic risk analysis of industrial facilities where atmospheric storage tanks (anchored or unanchored to ground), horizontal pressurised tanks, reactors and pumps are installed. Simplified procedures and methodologies based on historical database and literature data on natural-technological (Na-Tech) accidents for seismic risk assessment are discussed. Equipment-specific fragility curves have been thus derived depending on a single earthquake measure, peak ground acceleration (PGA). Fragility parameters have been then transformed to linear probit coefficients in order to obtain reliable threshold values for earthquake intensity measure, both for structural damage and loss of containment. These threshold values are of great interest when development of active and passive mitigation actions and systems, safety management, and the implementation of early warning system are concerned. The approach is general and can be implemented in any available code or procedure for risk assessment. Some results of seismic analysis of atmospheric storage tanks are also presented for validation.

  3. Seismic sequences in the Sombrero Seismic Zone

    Science.gov (United States)

    Pulliam, J.; Huerfano, V. A.; ten Brink, U.; von Hillebrandt, C.

    2007-05-01

    The northeastern Caribbean, in the vicinity of Puerto Rico and the Virgin Islands, has a long and well-documented history of devastating earthquakes and tsunamis, including major events in 1670, 1787, 1867, 1916, 1918, and 1943. Recently, seismicity has been concentrated to the north and west of the British Virgin Islands, in the region referred to as the Sombrero Seismic Zone by the Puerto Rico Seismic Network (PRSN). In the combined seismicity catalog maintained by the PRSN, several hundred small to moderate magnitude events can be found in this region prior to 2006. However, beginning in 2006 and continuing to the present, the rate of seismicity in the Sombrero suddenly increased, and a new locus of activity developed to the east of the previous location. Accurate estimates of seismic hazard, and the tsunamigenic potential of seismic events, depend on an accurate and comprehensive understanding of how strain is being accommodated in this corner region. Are faults locked and accumulating strain for release in a major event? Or is strain being released via slip over a diffuse system of faults? A careful analysis of seismicity patterns in the Sombrero region has the potential to both identify faults and modes of failure, provided the aggregation scheme is tuned to properly identify related events. To this end, we experimented with a scheme to identify seismic sequences based on physical and temporal proximity, under the assumptions that (a) events occur on related fault systems as stress is refocused by immediately previous events and (b) such 'stress waves' die out with time, so that two events that occur on the same system within a relatively short time window can be said to have a similar 'trigger' in ways that two nearby events that occurred years apart cannot. Patterns that emerge from the identification, temporal sequence, and refined locations of such sequences of events carry information about stress accommodation that is obscured by large clouds of

  4. Comparison of elastic and inelastic seismic response of high temperature piping systems

    International Nuclear Information System (INIS)

    Thomas, F.M.; McCabe, S.L.; Liu, Y.

    1994-01-01

    A study of high temperature power piping systems is presented. The response of the piping systems is determined when subjected to seismic disturbances. Two piping systems are presented, a main steam line, and a cold reheat line. Each of the piping systems are modeled using the ANSYS computer program and two analyses are performed on each piping system. First, each piping system is subjected to a seismic disturbance and the pipe material is assumed to remain linear and elastic. Next the analysis is repeated for each piping system when the pipe material is modeled as having elastic-plastic behavior. The results of the linear elastic analysis and elastic-plastic analysis are compared for each of the two pipe models. The pipe stresses, strains, and displacements, are compared. These comparisons are made so that the effect of the material yielding can be determined and to access what error is made when a linear analysis is performed on a system that yields

  5. Research on database realization technology of seismic information system in CTBT verification

    International Nuclear Information System (INIS)

    Zheng Xuefeng; Shen Junyi; Zhang Huimin; Jing Ping; Sun Peng; Zheng Jiangling

    2005-01-01

    Developing CTBT verification technology has become the most important method that makes sure CTBT to be fulfilled conscientiously. The seismic analysis based on seismic information system (SIS) is playing an important rule in this field. Based on GIS, the SIS will be very sufficient and powerful in spatial analysis, topologic analysis and visualization. However, the critical issue to implement the whole system function depends on the performance of SIS DB. Based on the ArcSDE Geodatabase data model, not only have the spatial data and attribute data seamless integrated management been realized with RDBMS ORACLE really, but also the most functions of ORACLE have been reserved. (authors)

  6. Expert system GIP-WWER for verification of seismic adequacy of WWER equipment

    International Nuclear Information System (INIS)

    Masopust, R.

    1999-01-01

    The aim of this report is to describe the modified Generic Implementation Procedure (GIP) titled GIP-WWER which can be used to verify seismic adequacy of the safe shutdown mechanical and electrical equipment and distribution systems of operating or constructed WWER NPPs, namely WWER-440/213 type. The WWER-GIP procedure was prepared using available information contained in GIP and the experience taken from various seismic inspections and evaluations of WWER type NPPs performed in the last five years

  7. Maturity of nearby faults influences seismic hazard from hydraulic fracturing

    Science.gov (United States)

    Kozłowska, Maria; Brudzinski, Michael R.; Friberg, Paul; Skoumal, Robert J.; Baxter, Nicholas D.; Currie, Brian S.

    2018-02-01

    Understanding the causes of human-induced earthquakes is paramount to reducing societal risk. We investigated five cases of seismicity associated with hydraulic fracturing (HF) in Ohio since 2013 that, because of their isolation from other injection activities, provide an ideal setting for studying the relations between high-pressure injection and earthquakes. Our analysis revealed two distinct groups: (i) deeper earthquakes in the Precambrian basement, with larger magnitudes (M > 2), b-values 1.5, and few post–shut-in earthquakes. Based on geologic history, laboratory experiments, and fault modeling, we interpret the deep seismicity as slip on more mature faults in older crystalline rocks and the shallow seismicity as slip on immature faults in younger sedimentary rocks. This suggests that HF inducing deeper seismicity may pose higher seismic hazards. Wells inducing deeper seismicity produced more water than wells with shallow seismicity, indicating more extensive hydrologic connections outside the target formation, consistent with pore pressure diffusion influencing seismicity. However, for both groups, the 2 to 3 h between onset of HF and seismicity is too short for typical fluid pressure diffusion rates across distances of ˜1 km and argues for poroelastic stress transfer also having a primary influence on seismicity.

  8. Maturity of nearby faults influences seismic hazard from hydraulic fracturing.

    Science.gov (United States)

    Kozłowska, Maria; Brudzinski, Michael R; Friberg, Paul; Skoumal, Robert J; Baxter, Nicholas D; Currie, Brian S

    2018-02-20

    Understanding the causes of human-induced earthquakes is paramount to reducing societal risk. We investigated five cases of seismicity associated with hydraulic fracturing (HF) in Ohio since 2013 that, because of their isolation from other injection activities, provide an ideal setting for studying the relations between high-pressure injection and earthquakes. Our analysis revealed two distinct groups: ( i ) deeper earthquakes in the Precambrian basement, with larger magnitudes (M > 2), b-values 1.5, and few post-shut-in earthquakes. Based on geologic history, laboratory experiments, and fault modeling, we interpret the deep seismicity as slip on more mature faults in older crystalline rocks and the shallow seismicity as slip on immature faults in younger sedimentary rocks. This suggests that HF inducing deeper seismicity may pose higher seismic hazards. Wells inducing deeper seismicity produced more water than wells with shallow seismicity, indicating more extensive hydrologic connections outside the target formation, consistent with pore pressure diffusion influencing seismicity. However, for both groups, the 2 to 3 h between onset of HF and seismicity is too short for typical fluid pressure diffusion rates across distances of ∼1 km and argues for poroelastic stress transfer also having a primary influence on seismicity.

  9. Intermediate disconnection of structures to improve the dynamic and the seismic response

    International Nuclear Information System (INIS)

    Fabrizio, Cristiano; De Leo, Andrea M.; Di Egidio, Angelo

    2016-01-01

    In the last years some studies have started to investigate the opportunity to improve the seismic behavior of conventional structures by disconnecting one or more upper stories. An archetype model, constituted by a simple two-degree of freedom system, has been taken as representative of structures where a base isolation or a tuned mass damper scheme is used. The system has a constant total mass, while stiffness and mass ratios are taken as variable parameters. An extensive parametric analysis has been performed to characterize the system. Two different types of behavior maps, one referring to the base isolation and the other to the tuned mass damper, have been obtained. In these maps the regions where a base isolation or a tuned mass damper system works properly are well recognizable and it is also possible to point out some other regions of the parameters space where both systems work well. Some numerical simulations, performed on shear-type systems, have been performed to confirm the results provided by the archetype model.

  10. Seismic design of equipment and piping systems for nuclear power plants in Japan

    International Nuclear Information System (INIS)

    Minematsu, Akiyoshi

    1997-01-01

    The philosophy of seismic design for nuclear power plant facilities in Japan is based on 'Examination Guide for Seismic Design of Nuclear Power Reactor Facilities: Nuclear Power Safety Committee, July 20, 1981' (referred to as 'Examination Guide' hereinafter) and the present design criteria have been established based on the survey of governmental improvement and standardization program. The detailed design implementation procedure is further described in 'Technical Guidelines for Aseismic Design of Nuclear Power Plants, JEAG4601-1987: Japan Electric Association'. This report describes the principles and design procedure of the seismic design of equipment/piping systems for nuclear power plant in Japan. (J.P.N.)

  11. Seismic design of equipment and piping systems for nuclear power plants in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Minematsu, Akiyoshi [Tokyo Electric Power Co., Inc. (Japan)

    1997-03-01

    The philosophy of seismic design for nuclear power plant facilities in Japan is based on `Examination Guide for Seismic Design of Nuclear Power Reactor Facilities: Nuclear Power Safety Committee, July 20, 1981` (referred to as `Examination Guide` hereinafter) and the present design criteria have been established based on the survey of governmental improvement and standardization program. The detailed design implementation procedure is further described in `Technical Guidelines for Aseismic Design of Nuclear Power Plants, JEAG4601-1987: Japan Electric Association`. This report describes the principles and design procedure of the seismic design of equipment/piping systems for nuclear power plant in Japan. (J.P.N.)

  12. Seismic Safety Margins Research Program. Phase 1. Project V. Structural sub-system response: subsystem response review

    International Nuclear Information System (INIS)

    Fogelquist, J.; Kaul, M.K.; Koppe, R.; Tagart, S.W. Jr.; Thailer, H.; Uffer, R.

    1980-03-01

    This project is directed toward a portion of the Seismic Safety Margins Research Program which includes one link in the seismic methodology chain. The link addressed here is the structural subsystem dynamic response which consists of those components and systems whose behavior is often determined decoupled from the major structural response. Typically the mathematical model utilized for the major structural response will include only the mass effects of the subsystem and the main model is used to produce the support motion inputs for subsystem seismic qualification. The main questions addressed in this report have to do with the seismic response uncertainty of safety-related components or equipment whose seismic qualification is performed by (a) analysis, (b) tests, or (c) combinations of analysis and tests, and where the seismic input is assumed to have no uncertainty

  13. Seismicity within the Irpinia Fault System As Monitored By Isnet (Irpinia Seismic Network) and Its Possible Relation with Fluid Storage

    Science.gov (United States)

    Festa, G.; Zollo, A.; Amoroso, O.; Ascione, A.; Colombelli, S.; Elia, L.; Emolo, A.; Martino, C.; Mazzoli, S.; Orefice, A.; Russo, G.

    2014-12-01

    ISNet (http://isnet.fisica.unina.it) is deployed in Southern Apennines along the active fault system responsible for the 1980, M 6.9 Irpinia earthquake. ISNet consists of 32 seismic stations equipped with both strong motion and velocimetric instruments (either broadband or short-period), with the aim of capture a broad set of seismic signals, from ambient noise to strong motion. Real time and near real time procedures run at ISNet with the goal of monitoring the seismicity, check possible space-time anomalies, detect seismic sequences and launch an earthquake early warning in the case of potential significant ground shaking in the area. To understand the role of fluids on the seismicity of the area, we investigated velocity and attenuation models. The former is built from accurate cross-correlation picking and S wave detection based onto polarization analysis. Joint inversion of both P and S arrival times is then based on a linearized multi-scale tomographic approach. Attenuation is instead obtained from inversion of displacement spectra, deconvolving for the source effect. High VP/VS and QS/QP >1 were found within a ~15 km wide rock volume where intense microseismicity is located. This indicates that concentration of seismicity is possibly controlled by high pore fluid pressure. This earthquake reservoir may come from a positive feedback between the seismic pumping that controls the fluid transmission through the fractured damage zone and the low permeability of cross fault barrier, increasing the fluid pore pressure within the fault bounded block. In this picture, sequences mostly occur at the base of this fluid rich layer. They show an anomalous pattern in the earthquake occurrence per magnitude classes; main events evolve with a complex source kinematics, as obtained from backprojection of apparent source time functions, indicating possible directivity effects. In this area sequences might be the key for understanding the transition between the deep

  14. Seismic Safety Margins Research Program (Phase I). Project VII. Systems analysis specification of computational approach

    International Nuclear Information System (INIS)

    Wall, I.B.; Kaul, M.K.; Post, R.I.; Tagart, S.W. Jr.; Vinson, T.J.

    1979-02-01

    An initial specification is presented of a computation approach for a probabilistic risk assessment model for use in the Seismic Safety Margin Research Program. This model encompasses the whole seismic calculational chain from seismic input through soil-structure interaction, transfer functions to the probability of component failure, integration of these failures into a system model and thereby estimate the probability of a release of radioactive material to the environment. It is intended that the primary use of this model will be in sensitivity studies to assess the potential conservatism of different modeling elements in the chain and to provide guidance on priorities for research in seismic design of nuclear power plants

  15. Seismic Consequence Abstraction

    International Nuclear Information System (INIS)

    Gross, M.

    2004-01-01

    The primary purpose of this model report is to develop abstractions for the response of engineered barrier system (EBS) components to seismic hazards at a geologic repository at Yucca Mountain, Nevada, and to define the methodology for using these abstractions in a seismic scenario class for the Total System Performance Assessment - License Application (TSPA-LA). A secondary purpose of this model report is to provide information for criticality studies related to seismic hazards. The seismic hazards addressed herein are vibratory ground motion, fault displacement, and rockfall due to ground motion. The EBS components are the drip shield, the waste package, and the fuel cladding. The requirements for development of the abstractions and the associated algorithms for the seismic scenario class are defined in ''Technical Work Plan For: Regulatory Integration Modeling of Drift Degradation, Waste Package and Drip Shield Vibratory Motion and Seismic Consequences'' (BSC 2004 [DIRS 171520]). The development of these abstractions will provide a more complete representation of flow into and transport from the EBS under disruptive events. The results from this development will also address portions of integrated subissue ENG2, Mechanical Disruption of Engineered Barriers, including the acceptance criteria for this subissue defined in Section 2.2.1.3.2.3 of the ''Yucca Mountain Review Plan, Final Report'' (NRC 2003 [DIRS 163274])

  16. Seismic Consequence Abstraction

    Energy Technology Data Exchange (ETDEWEB)

    M. Gross

    2004-10-25

    The primary purpose of this model report is to develop abstractions for the response of engineered barrier system (EBS) components to seismic hazards at a geologic repository at Yucca Mountain, Nevada, and to define the methodology for using these abstractions in a seismic scenario class for the Total System Performance Assessment - License Application (TSPA-LA). A secondary purpose of this model report is to provide information for criticality studies related to seismic hazards. The seismic hazards addressed herein are vibratory ground motion, fault displacement, and rockfall due to ground motion. The EBS components are the drip shield, the waste package, and the fuel cladding. The requirements for development of the abstractions and the associated algorithms for the seismic scenario class are defined in ''Technical Work Plan For: Regulatory Integration Modeling of Drift Degradation, Waste Package and Drip Shield Vibratory Motion and Seismic Consequences'' (BSC 2004 [DIRS 171520]). The development of these abstractions will provide a more complete representation of flow into and transport from the EBS under disruptive events. The results from this development will also address portions of integrated subissue ENG2, Mechanical Disruption of Engineered Barriers, including the acceptance criteria for this subissue defined in Section 2.2.1.3.2.3 of the ''Yucca Mountain Review Plan, Final Report'' (NRC 2003 [DIRS 163274]).

  17. A seismic performance and cost comparison of top and bottom supported liquid metal reactor vessels

    International Nuclear Information System (INIS)

    Carlson, T.M.; Kiciman, O.K.; Petrozelli, J.F.

    1989-01-01

    It is the premise of this paper that the revision of a pool LMR from a TSRV configuration to a specific bottom supported reactor vessel (BSRV) configuration can resolve the above TSRV disadvantages related to load path length and diversity, thereby improving seismic performance and simultaneously reducing RV block costs by reducing weights. This paper demonstrates this premise by comparing a reference TSRV block with a specific BSRV block design. Recent capital cost estimates ($/kWe) for U.S. liquid metal reactor (LMR) plant designs reveal that the balance of plant costs could be reduced below that of the balance of plant costs for a comparable light water reactor plant. However, in regions of high seismicity, non-seismically isolated LMR nuclear steam supply system weights are costs per kWe are two to three times the weights and costs of light water reactor nuclear steam supply systems. While all portions of the LMR nuclear steam supply system require examination for potential cost reductions, the focus of this paper is the reactor vessel (RV) block for a large pool plant

  18. Earthquake response analysis of a base isolated building

    International Nuclear Information System (INIS)

    Mazda, T.; Shiojiri, H.; Sawada, Y.; Harada, O.; Kawai, N.; Ontsuka, S.

    1989-01-01

    Recently, the seismic isolation has become one of the popular methods in the design of important structures or equipments against the earthquakes. However, it is desired to accumulate the demonstration data on reliability of seismically isolated structures and to establish the analysis methods of those structures. Based on the above recognition, the vibration tests of a base isolated building were carried out in Tsukuba Science City. After that, many earthquake records have been obtained at the building. In order to examine the validity of numerical models, earthquake response analyses have been executed by using both lumped mass model, and finite element model

  19. New seismic monitoring observation system and data accessibility at Syowa Station

    Directory of Open Access Journals (Sweden)

    Masaki Kanao

    1999-03-01

    Full Text Available The seismic observation system at Syowa Station, East Antarctica was fully replaced in the wintering season of the 38th Japanese Antarctic Research Expedition (JARE-38 in 1996-1998. The old seismographic vault constructed in 1970 was closed at the end of JARE-38 because of cumulative damage to the inner side of the vault by continuous flowing in of water from walls in summer and its freezing in winter. All the seismometers were moved to a new seismographic hut (69°00′24.0″S, 39°35′06.0″E and 20m above mean sea level in April 1997. Seismic signals of the short-period (HES and broadband (STS-1 seismometers in the new hut are transmitted to the Earth Science Laboratory (ESL via analog cable 600m in length. The new acquisition system was installed in the ESL with 6-channel 24-bit A/D converters for both sensor signals. All digitized data are automatically transmitted from the A/D converter to a workstation via TCP/IP protocol. After parallel observations with the old acquisition system by personal computers and the new system during the wintering season of JARE-38,the main system was changed to the new one, which has some advantages for both the reduction of daily maintenance efforts and the data transport/communication processes via Internet by use of LAN at the station. In this report, details of the new seismographic hut and the recording system are described. Additionally, the seismic data accessibility for public use, including Internet service, is described.

  20. Sequential Ground Motion Effects on the Behavior of a Base-Isolated RCC Building

    Directory of Open Access Journals (Sweden)

    Zhi Zheng

    2017-01-01

    Full Text Available The sequential ground motion effects on the dynamic responses of reinforced concrete containment (RCC buildings with typical isolators are studied in this paper. Although the base isolation technique is developed to guarantee the security and integrity of RCC buildings under single earthquakes, seismic behavior of base-isolated RCC buildings under sequential ground motions is deficient. Hence, an ensemble of as-recorded sequential ground motions is employed to study the effect of including aftershocks on the seismic evaluation of base-isolated RCC buildings. The results indicate that base isolation can significantly attenuate the earthquake shaking of the RCC building under not only single earthquakes but also seismic sequences. It is also found that the adverse aftershock effect on the RCC can be reduced due to the base isolation applied to the RCC. More importantly, the study indicates that disregarding aftershocks can induce significant underestimation of the isolator displacement for base-isolated RCC buildings.

  1. Development of real-time on-line vibration testing system for seismic experiments

    International Nuclear Information System (INIS)

    Horiuchi, T.; Nakagawa, M.; Kametani, M.

    1993-01-01

    An on-line vibration testing method is being developed for seismic experiments. This method combines computer simulation and an actuator for vibration testing of structures. A real-time, on-line testing system was developed to improve the method. In the system, the timing of the vibration testing and the computer simulation are the same. This allows time-dependent reaction forces, such as damping force, to be immediately considered in the computer simulation. The real-time system has many requirements, such as complicated matrix calculations within a small time step, and communication with outer devices like sensors and actuators through A/D and D/A converters. These functions arc accomplished by using a newly-developed, real-time controller that employs a parallel processing technique. A small structural model is used to demonstrate the system. The reliability and applicability of the system for seismic experiments can be demonstrated by comparing the results of the system and a shaking table, which are in almost agreement. (author)

  2. Automatic design optimization tool for passive structural control systems

    Science.gov (United States)

    Mojolic, Cristian; Hulea, Radu; Parv, Bianca Roxana

    2017-07-01

    The present paper proposes an automatic dynamic process in order to find the parameters of the seismic isolation systems applied to large span structures. Three seismic isolation solutions are proposed for the model of the new Slatina Sport Hall. The first case uses friction pendulum system (FP), the second one uses High Damping Rubber Bearing (HDRB) and Lead Rubber Bearings, while (LRB) are used for the last case of isolation. The placement of the isolation level is at the top end of the roof supporting columns. The aim is to calculate the parameters of each isolation system so that the whole's structure first vibration periods is the one desired by the user. The model is computed with the use of SAP2000 software. In order to find the best solution for the optimization problem, an optimization process based on Genetic Algorithms (GA) has been developed in Matlab. With the use of the API (Application Programming Interface) libraries a two way link is created between the two programs in order to exchange results and link parameters. The main goal is to find the best seismic isolation method for each desired modal period so that the bending moment on the supporting columns should be minimum.

  3. Tracking changes in volcanic systems with seismic Interferometry

    Science.gov (United States)

    Haney, Matt; Alicia J. Hotovec-Ellis,; Bennington, Ninfa L.; Silvio De Angelis,; Clifford Thurber,

    2014-01-01

    The detection and evaluation of time-dependent changes at volcanoes form the foundation upon which successful volcano monitoring is built. Temporal changes at volcanoes occur over all time scales and may be obvious (e.g., earthquake swarms) or subtle (e.g., a slow, steady increase in the level of tremor). Some of the most challenging types of time-dependent change to detect are subtle variations in material properties beneath active volcanoes. Although difficult to measure, such changes carry important information about stresses and fluids present within hydrothermal and magmatic systems. These changes are imprinted on seismic waves that propagate through volcanoes. In recent years, there has been a quantum leap in the ability to detect subtle structural changes systematically at volcanoes with seismic waves. The new methodology is based on the idea that useful seismic signals can be generated “at will” from seismic noise. This means signals can be measured any time, in contrast to the often irregular and unpredictable times of earthquakes. With seismic noise in the frequency band 0.1–1 Hz arising from the interaction of the ocean with the solid Earth known as microseisms, researchers have demonstrated that cross-correlations of passive seismic recordings between pairs of seismometers yield coherent signals (Campillo and Paul 2003; Shapiro and Campillo 2004). Based on this principle, coherent signals have been reconstructed from noise recordings in such diverse fields as helioseismology (Rickett and Claerbout 2000), ultrasound (Weaver and Lobkis 2001), ocean acoustic waves (Roux and Kuperman 2004), regional (Shapiro et al. 2005; Sabra et al. 2005; Bensen et al. 2007) and exploration (Draganov et al. 2007) seismology, atmospheric infrasound (Haney 2009), and studies of the cryosphere (Marsan et al. 2012). Initial applications of ambient seismic noise were to regional surface wave tomography (Shapiro et al. 2005). Brenguier et al. (2007) were the first to

  4. Overview of seismic margin insights gained from seismic PRA results

    International Nuclear Information System (INIS)

    Kennedy, R.P.; Sues, R.H.; Campbell, R.D.

    1986-01-01

    This paper presents the findings of a study conducted under NRC and EPRI sponsorship in which published seismic PRAs were reviewed in order to gain insight to the seismic margins inherent in existing nuclear plants. The approach taken was to examine the fragilities of those components which have been found to be dominant contributors to seismic risk at plants in low-to-moderate seismic regions (SSE levels between 0.12g and 0.25g). It is concluded that there is significant margin inherent in the capacity of most critical components above the plant design basis. For ground motions less than about 0.3g, the predominant sources of seismic risk are loss of offsite power coupled with random failure of the emergency diesels, non-recoverable circuit breaker trip due to relay chatter, unanchored equipment, unreinforced non-load bearing block walls, vertical water storage tanks, systems interactions and possibly soil liquefaction. Recommendations as to which components should be reviewed in seismic margin studies for margin earthquakes less than 0.3g, between 0.3g and 0.5g, and greater than 0.5g, developed by the NRC expert panel on the quantification of seismic margins (based on the review of past PRA data, earthquake experience data, and their own personal experience) are presented

  5. Seismic and dynamic qualification methods

    International Nuclear Information System (INIS)

    Lin, C.W.

    1985-01-01

    This book presents the papers given at a conference on seismic effects on nuclear power plants. Topics considered at the conference included seismic qualification of equipment, multifrequency test methodologies, damping in piping systems, the amplification factor, thermal insulation, welded joints, and response factors for seismic risk analysis of piping

  6. Intelligent seismic risk mitigation system on structure building

    Science.gov (United States)

    Suryanita, R.; Maizir, H.; Yuniorto, E.; Jingga, H.

    2018-01-01

    Indonesia located on the Pacific Ring of Fire, is one of the highest-risk seismic zone in the world. The strong ground motion might cause catastrophic collapse of the building which leads to casualties and property damages. Therefore, it is imperative to properly design the structural response of building against seismic hazard. Seismic-resistant building design process requires structural analysis to be performed to obtain the necessary building responses. However, the structural analysis could be very difficult and time consuming. This study aims to predict the structural response includes displacement, velocity, and acceleration of multi-storey building with the fixed floor plan using Artificial Neural Network (ANN) method based on the 2010 Indonesian seismic hazard map. By varying the building height, soil condition, and seismic location in 47 cities in Indonesia, 6345 data sets were obtained and fed into the ANN model for the learning process. The trained ANN can predict the displacement, velocity, and acceleration responses with up to 96% of predicted rate. The trained ANN architecture and weight factors were later used to build a simple tool in Visual Basic program which possesses the features for prediction of structural response as mentioned previously.

  7. Study on seismic reliability for foundation grounds and surrounding slopes of nuclear power plants. Proposal of evaluation methodology and integration of seismic reliability evaluation system

    International Nuclear Information System (INIS)

    Ohtori, Yasuki; Kanatani, Mamoru

    2006-01-01

    This paper proposes an evaluation methodology of annual probability of failure for soil structures subjected to earthquakes and integrates the analysis system for seismic reliability of soil structures. The method is based on margin analysis, that evaluates the ground motion level at which structure is damaged. First, ground motion index that is strongly correlated with damage or response of the specific structure, is selected. The ultimate strength in terms of selected ground motion index is then evaluated. Next, variation of soil properties is taken into account for the evaluation of seismic stability of structures. The variation of the safety factor (SF) is evaluated and then the variation is converted into the variation of the specific ground motion index. Finally, the fragility curve is developed and then the annual probability of failure is evaluated combined with seismic hazard curve. The system facilitates the assessment of seismic reliability. A generator of random numbers, dynamic analysis program and stability analysis program are incorporated into one package. Once we define a structural model, distribution of the soil properties, input ground motions and so forth, list of safety factors for each sliding line is obtained. Monte Carlo Simulation (MCS), Latin Hypercube Sampling (LHS), point estimation method (PEM) and first order second moment (FOSM) implemented in this system are also introduced. As numerical examples, a ground foundation and a surrounding slope are assessed using the proposed method and the integrated system. (author)

  8. Seismic qualification of the rotary relay for use in the solid state protection system

    International Nuclear Information System (INIS)

    Vogeding, E.L.; Jarecki, S.J.

    1976-01-01

    The seismic qualification of a rotary relay that can be used as a replacement for the type of relay located in the output section of the Solid State Protection System is described. The qualification test results indicate that the tested relays did not exhibit any contact bounce or abnormal operation; they performed satisfactorily before, during, and after the simulated seismic vibration tests

  9. Simplified seismic analysis applied to structures systems and components with limited radioactive inventories

    International Nuclear Information System (INIS)

    Stevenson, J.D.

    1989-01-01

    This paper presents a review of the current status of simplified methods of seismic design and analysis applicable to nuclear facility structures, systems and components important to public health and safety. In particular, the International Atomic Energy Agency, IAEA TEC DOC 348 procedure for structures and the Bounding Spectra Concept for equipment as being developed by Seismic Qualification Utility Group and the Electric Power Research Institute will be discussed in some detail

  10. Evaluation of induced seismicity forecast models in the Induced Seismicity Test Bench

    Science.gov (United States)

    Király, Eszter; Gischig, Valentin; Zechar, Jeremy; Doetsch, Joseph; Karvounis, Dimitrios; Wiemer, Stefan

    2016-04-01

    Induced earthquakes often accompany fluid injection, and the seismic hazard they pose threatens various underground engineering projects. Models to monitor and control induced seismic hazard with traffic light systems should be probabilistic, forward-looking, and updated as new data arrive. Here, we propose an Induced Seismicity Test Bench to test and rank such models. We apply the test bench to data from the Basel 2006 and Soultz-sous-Forêts 2004 geothermal stimulation projects, and we assess forecasts from two models that incorporate a different mix of physical understanding and stochastic representation of the induced sequences: Shapiro in Space (SiS) and Hydraulics and Seismics (HySei). SiS is based on three pillars: the seismicity rate is computed with help of the seismogenic index and a simple exponential decay of the seismicity; the magnitude distribution follows the Gutenberg-Richter relation; and seismicity is distributed in space based on smoothing seismicity during the learning period with 3D Gaussian kernels. The HySei model describes seismicity triggered by pressure diffusion with irreversible permeability enhancement. Our results show that neither model is fully superior to the other. HySei forecasts the seismicity rate well, but is only mediocre at forecasting the spatial distribution. On the other hand, SiS forecasts the spatial distribution well but not the seismicity rate. The shut-in phase is a difficult moment for both models in both reservoirs: the models tend to underpredict the seismicity rate around, and shortly after, shut-in. Ensemble models that combine HySei's rate forecast with SiS's spatial forecast outperform each individual model.

  11. Seismic response analysis of structural system subjected to multiple support excitation

    International Nuclear Information System (INIS)

    Wu, R.W.; Hussain, F.A.; Liu, L.K.

    1978-01-01

    In the seismic analysis of a multiply supported structural system subjected to nonuniform excitations at each support point, the single response spectrum, the time history, and the multiple response spectrum are the three commonly employed methods. In the present paper the three methods are developed, evaluated, and the limitations and advantages of each method assessed. A numerical example has been carried out for a typical piping system. Considerably smaller responses have been predicted by the time history method than that by the single response spectrum method. This is mainly due to the fact that the phase and amplitude relations between the support excitations are faithfully retained in the time history method. The multiple response spectrum prediction has been observed to compare favourably with the time history method prediction. Based on the present evaluation, the multiple response spectrum method is the most efficient method for seismic response analysis of structural systems subjected to multiple support excitation. (Auth.)

  12. Seismic Vulnerability Evaluation of a Three-Span Continuous Beam Railway Bridge

    Directory of Open Access Journals (Sweden)

    Chongwen Jiang

    2017-01-01

    Full Text Available In order to evaluate the seismic vulnerability of a railway bridge, a nonlinear finite element model of typical three-span continuous beam bridge on the Sichuan-Tibet railway in China was built. It further aimed at performing a probabilistic seismic demand analysis based on the seismic performance of the above-mentioned bridge. Firstly, the uncertainties of bridge parameters were analyzed while a set of finite element model samples were formulated with Latin hypercube sampling method. Secondly, under Wenchuan earthquake ground motions, an incremental dynamic method (IDA analysis was performed, and the seismic peak responses of bridge components were recorded. Thirdly, the probabilistic seismic demand model for the bridge principal components under the prerequisite of two different kinds of bearing, with and without seismic isolation, was generated. Finally, comparison was drawn to further ascertain the effect of two different kinds of bearings on the fragility components. Based on the reliability theory, results were presented concerning the seismic fragility curves.

  13. A seismic monitoring system for response and failure of structures with intentionally reduced seismic strength

    International Nuclear Information System (INIS)

    Takanashi, Koichi; Ohi, Kenichi

    1988-01-01

    A group of steel and reinforced concrete scaled structures with intentionally reduced seismic strength to 1/3 to 1/2 were constructed in 1983 for long term observation in order to collect precise data of earthquake response and grasp failure mechanisms during earthquakes. A monitoring system was installed in the structures as well as in the surrounding soil. Some reliable data have been successfully recorded since then, which can be available for verification of analytical models. (author)

  14. High resolution seismic refraction method with multichannel digital data acquisition system; Digital ta channel sokutei system wo mochiita koseido kussetsuho jishin tansa

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, K [Oyo Corp., Tokyo (Japan)

    1997-05-27

    This paper introduces a multichannel digital data acquisition system and examples of measurements with the system in seismic exploration using the high resolution seismic refraction method. The high resolution seismic refraction system performs analyses nearly automatically by using a computer after initial travel time has been read. Therefore, the system requires high-accuracy travel time data, for which a multichannel digital measuring instrument developed recently for seismic exploration using the refraction method has been used for the measurement. The specification specifies the number of channels at 144 as a maximum, a sampling time of 62.5 {mu}sec to 4 m sec, the maximum number of sampling of 80,000 samples, and gain accuracy of {plus_minus} 1%. The system was used for surveying a tunnel having a maximum soil cover of about 800 m. The traverse line length is about 6 km, the distance between vibration receiving points is 50 m, and the number of vibration receiving points is 194. Executing measurements of single point system using GPS can derive accurate velocity in the vicinity of the basic face of the tunnel construction. Results were obtained from the investigation, which can serve more for actual construction work. 10 refs., 6 figs., 1 tab.

  15. Optimization of the seismic pit of the Tokamak building of ITER

    International Nuclear Information System (INIS)

    Beltran, F.; Combescure, D.; Hanna, G.; Ezeberry, J.

    2010-01-01

    The Tokamak Complex of ITER is the structure housing the Tokamak machine, the Tritium building and the Diagnostic building. This structure, with a plan of about 120 x 80 m, will be built with a base isolation system formed with over 500 steel reinforced neoprene pads. The pads will be mounted on top of short columns or plinths, supported by a bottom basemat resting directly on rock. Foundation level is about 20 m below grade level. Consequently, a ground supporting system, such as retaining walls, is required to protect the structure. The walls, together with the basemat, form the seismic pit of the Tokamak Complex. After the initial design of the seismic pit walls and basemat was closed, a new report on the water table levels to be expected for different return periods was issued. The report introduced a substantial reduction of ground water levels with respect to the previous design basis. Following this reduction, a new design for the seismic pit walls and basemat was developed. The goal was to introduce the new optimized design as an alternative in the Call for Tenders related to the construction of the seismic pit. The design of the seismic pit is governed by the seismic action, even though the whole pit is embedded in a limestone rock of medium to good quality. For optimizing the design, a review of geotechnical parameters has been carried out first, using the huge body of information generated after more than 20 years of site investigation. Afterwards, seismic thrusts on the walls have been computed using different procedures, from conventional rock wedged equilibrium analyses to more sophisticated techniques based on the interaction of discrete blocks configuring the rock massif. In addition, internal forces and moments have been determined at the basemat from the ground deformation parameters, using finite element models. Finally, steel reinforcement has been obtained for the several sections of the retaining walls and the basemat, complying with the

  16. EMPLACEMENT DRIFT ISOLATION DOOR CONTROL SYSTEM

    International Nuclear Information System (INIS)

    N.T. Raczka

    1998-01-01

    The purpose of this analysis is to review and refine key design concepts related to the control system presently under consideration for remotely operating the emplacement drift isolation doors at the potential subsurface nuclear waste repository at Yucca Mountain. This analysis will discuss the key design concepts of the control system that may be utilized for remotely monitoring, opening, and closing the emplacement drift isolation doors. The scope and primary objectives of this analysis are to: (1) Discuss the purpose and function of the isolation doors (Presented in Section 7.1). (2) Review the construction of the isolation door and other physical characteristics of the doors that the control system will interface with (Presented in Section 7.2). (3) Discuss monitoring and controlling the operation of the isolation doors with a digital control system (either a Programmable Logic Controller (PLC) system or a Distributed Control System (DCS)) (Presented in Section 7.3). (4) Discuss how all isolation doors can be monitored and controlled from a subsurface central control center (Presented in Section 7.4). This analysis will focus on the development of input/output (I/O) counts including the types of I/O, redundancy and fault tolerance considerations, and processor requirements for the isolation door control system. Attention will be placed on operability, maintainability, and reliability issues for the system operating in the subsurface environment with exposure to high temperatures and radiation

  17. Seismic risk control of nuclear power plants using seismic protection systems in stable continental regions: The UK case

    Energy Technology Data Exchange (ETDEWEB)

    Medel-Vera, Carlos, E-mail: cbmedel@uc.cl; Ji, Tianjian, E-mail: tianjian.ji@manchester.ac.uk

    2016-10-15

    Highlights: • Strategies to reduce seismic risk for nuclear power stations in the UK are analysed. • Efficiency of devices to reduce risk: viscous-based higher than hysteretic-based. • Scenario-based incremental dynamic analysis is introduced for use in nuclear stations. • Surfaces of seismic unacceptable performance for nuclear stations are proposed. - Abstract: This article analyses three different strategies on the use of seismic protection systems (SPS) for nuclear power plants (NPPs) in the UK. Such strategies are based on the experience reported elsewhere of seismically protected nuclear reactor buildings in other stable continental regions. Analyses are conducted using an example of application based on a 1000 MW Pressurised Water Reactor building located in a representative UK nuclear site. The efficiency of the SPS is probabilistically assessed to achieve possible risk reduction for both rock and soil sites in comparison with conventionally constructed NPPs. Further analyses are conducted to study how the reduction of risk changes when all controlling scenarios of the site are included. This is done by introducing a scenario-based incremental dynamic analysis aimed at the generation of surfaces for unacceptable performance of NPPs as a function of earthquake magnitude (M{sub w}) and distance-to-site (R{sub epi}). General guidelines are proposed to potentially use SPS in future NPPs in the UK. Such recommendations can be used by the British nuclear industry in the future development of 12 new reactors to be built in the next two decades to generate 16 GWe of new nuclear capacity.

  18. Pickering seismic safety margin

    International Nuclear Information System (INIS)

    Ghobarah, A.; Heidebrecht, A.C.; Tso, W.K.

    1992-06-01

    A study was conducted to recommend a methodology for the seismic safety margin review of existing Canadian CANDU nuclear generating stations such as Pickering A. The purpose of the seismic safety margin review is to determine whether the nuclear plant has sufficient seismic safety margin over its design basis to assure plant safety. In this review process, it is possible to identify the weak links which might limit the seismic performance of critical structures, systems and components. The proposed methodology is a modification the EPRI (Electric Power Research Institute) approach. The methodology includes: the characterization of the site margin earthquake, the definition of the performance criteria for the elements of a success path, and the determination of the seismic withstand capacity. It is proposed that the margin earthquake be established on the basis of using historical records and the regional seismo-tectonic and site specific evaluations. The ability of the components and systems to withstand the margin earthquake is determined by database comparisons, inspection, analysis or testing. An implementation plan for the application of the methodology to the Pickering A NGS is prepared

  19. 摩擦摆隔震双层球面网壳结构的多维地震响应%Seismic analysis of double-layer spherical lattice shell structures with FPS bearings under multi-component ground motions

    Institute of Scientific and Technical Information of China (English)

    庄鹏; 薛素铎

    2011-01-01

    将摩擦摆(FPS)引入到网壳结构的隔震控制中.文中首先阐明了FPS的工作机理和本构关系,建立了FPS隔震网壳结构的振动方程.通过双层球面网壳结构的数值算例考察了隔震和无控结构在单向和三向地震作用下的振动响应以及FPS的控制效果.研究结果表明,FPS具有良好的隔震和耗能效果,可有效地应用于球面网壳结构的振动控制.%The application of friction pendulum system (FPS) to seismic isolation of lattice shell structures is presented. Theoretical model of the FPS is first introduced. Motion equations of the lattice shell with FPS bearings are established. Then, seismic isolation studies are performed for double-layer spherical lattice shell structures subjected to both single and three-component seismic excitations. Meantime, seismic isolation performance of the FPS is investigated under different earthquake inputs. The results show that the isolation bearins provide the excellent properties of seismic isolation and energy dissipation. Therefore, the FPS can be effectively utilized to control the seismic response of the spherical lattice shell structures.

  20. Scram and nonlinear reactor system seismic analysis for the Fast Flux Test Facility

    International Nuclear Information System (INIS)

    Morrone, A.

    1975-01-01

    A description is given of the analysis and results for the Fast Flux Test Facility (FFTF) reactor system which was analyzed for both scram times and seismic responses such as bending moments and impact forces. The reactor system was represented with a one-dimensional nonlinear mathematical model with two degrees of freedom per node. The results give time history plots of various seismic responses and plots of scram times as a function of control rod travel distance for the most critical scram initiation times. The total scram time considering the effects of the earthquake was still acceptable but about 4 times longer than that calculated without the earthquake. (U.S.)

  1. Suspension-thermal noise in spring–antispring systems for future gravitational-wave detectors

    Science.gov (United States)

    Harms, Jan; Mow-Lowry, Conor M.

    2018-01-01

    Spring–antispring systems have been investigated in the context of low-frequency seismic isolation in high-precision optical experiments. These systems provide the possibility to tune the fundamental resonance frequency to, in principle, arbitrarily low values, and at the same time maintain a compact design. It was argued though that thermal noise in spring–antispring systems would not be as small as one may naively expect from lowering the fundamental resonance frequency. In this paper, we present calculations of suspension-thermal noise for spring–antispring systems potentially relevant in future gravitational-wave detectors, i.e. the beam-balance tiltmeter, and the Roberts linkage. We find a concise expression of the suspension-thermal noise spectrum, which assumes a form very similar to the well-known expression for a simple pendulum. For systems such as the Roberts linkage foreseen as passive seismic isolation, we find that while they can provide strong seismic isolation due to a very low fundamental resonance frequency, their thermal noise is determined by the dimension of the system and is insensitive to fine-tunings of the geometry that can strongly influence the resonance frequency. By analogy, i.e. formal similarity of the equations of motion, this is true for all horizontal mechanical isolation systems with spring–antispring dynamics. This imposes strict requirements on mechanical spring–antispring systems for seismic isolation in potential future low-frequency gravitational-wave detectors as we discuss for the four main concepts, atom-interferometric, superconducting, torsion-bars, and conventional laser interferometer, and generally suggests that thermal noise needs to be evaluated carefully for high-precision experiments implementing spring–antispring dynamics.

  2. Task force activity to take the effect of elastic-plastic behaviour into account on the seismic safety evaluation of nuclear piping systems

    International Nuclear Information System (INIS)

    Nakamura, Izumi; Shiratori, Masaki; Morishita, Masaki; Otani, Akihito; Shibutani, Tadahito

    2015-01-01

    According to investigations of several nuclear power plants (NPPs) hit by actual seismic events and a number of experimental researches on the failure behavior of piping systems under seismic loads, it is recognized that piping systems used in NPPs include a large seismic safety margin until boundary failure. Since the stress assessment based on the elastic analysis does not reflect actual seismic capability of piping systems including plastic region, it is necessary to develop a rational procedures to estimate the elastic-plastic behavior of piping systems under a large seismic load. With the aim of establishing a procedure that takes into account the elastic-plastic behavior effect in the seismic safety estimation of nuclear piping systems, a task force activity has been planned. Through the activity, the authors intend to establish guidelines to estimate the elastic-plastic behavior of piping systems rationally and conservatively, and to provide new rational seismic safety criteria taking the effect of elastic-plastic behavior into account. As the first step of making out the analysis guideline, benchmark analyses are conducted for a pipe element test and a piping system test. In this paper, the outline of the research activity and the preliminary results of benchmark analyses are described. (author)

  3. Design of a seismic energy dissipator for an interruptor type 3AS2-45; Diseno de un disipador de energia sismica para un interruptor tipo 3AS2-45

    Energy Technology Data Exchange (ETDEWEB)

    Castro Felix, Jaime

    2004-02-15

    With the aid of the theory behind seismically isolated structures and the bi-linear behavior of an isolated system of Multiple Degrees of Freedom (MDOF), the information obtained on the spectral analysis is complemented with the purpose of simulating one itself for the design of a dissipator of seismic energy. The seismicity in the world is briefly explained, (in Mexico in special for the Geothermal Field of Cerro Prieto), the types of earthquakes, etc., to give way to a documentation of the state-of-the-art in advanced seismic resistant systems and to a procedure to establish the level of seismic qualification of electrical equipment from the level of seismic performance for the Mexican Republic. [Spanish] Con la ayuda de la teoria detras de estructuras aisladas sismicamente y el comportamiento bilineal de un sistema de aislamiento de Multiples Grados de Libertad (MDOF), se complementa la informacion recabada sobre el analisis espectral con el fin de simular uno propio para el diseno de un disipador de energia sismica. Se explica brevemente la sismicidad en el mundo, en Mexico, en especial el Campo Geotermico de Cerro Prieto, los tipos de sismos, etc., para dar paso a una documentacion del estado del arte en sistemas sismorresistentes avanzados y a un procedimiento para establecer el nivel de calificacion sismica de equipos electricos a partir del Nivel de desempeno sismico para la Republica Mexicana.

  4. Resource Conservation and Recovery Act Part B permit application [for the Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    1993-01-01

    This volume contains Appendix D2, engineering design basis reports. Contents include: Design considerations for the waste hoist of the Waste Isolation Pilot Plant (WIPP); A site-specific study of wind and tornado probabilities at the WIPP Site in southeast New Mexico; Seismic evaluation report of underground facilities; and calculations for analysis of wind loads and tornado loads for WHB, seismic calculations, calculations for VOC-10 monitoring system, and for shaft at station A

  5. On problems to be solved for utilizing shock isolation systems to NPP

    International Nuclear Information System (INIS)

    Shibata, H.; Shigeta, T.; Komine, H.

    1989-01-01

    This paper discusses the development of difficulties with light water fast breeder reactors (LFBR). The authors focus their discussion on thin wall reactor vessels, thin wall sodium loops, and large sodium pools with free surfaces. Conclusions considered are to lower the center of gravity and the use of shock isolation system. Since the success of Super-phenix, the interest to develop a large fast reactor, so called LFBR, has become more realistic one in Japan. However, the anti-earthquake design of a pool-type large fast reactor is more difficult than that of light water reactors for high seismicity areas like Japan. The reason of difficulties come from the difference of the structural requirement for LFBR. Three major points are as follows: thin wall reactor vessel, thin wall sodium loops, large sodium pool with free surface

  6. Seismic stratigraphic architecture of the Disko Bay trough-mouth fan system, West Greenland

    Science.gov (United States)

    Hofmann, Julia C.; Knutz, Paul C.

    2015-04-01

    Spatial and temporal changes of the Greenland Ice Sheet on the continental shelf bordering Baffin Bay remain poorly constrained. Then as now, fast-flowing ice streams and outlet glaciers have played a key role for the mass balance and stability of polar ice sheets. Despite their significance for Greenland Ice Sheet dynamics and evolution, our understanding of their long-term behaviour is limited. The central West Greenland margin is characterized by a broad continental shelf where a series of troughs extend from fjords to the shelf margin, acting as focal points for trough-mouth fan (TMF) accummulations. The sea-ward bulging morphology and abrupt shelf-break of these major depositional systems is generated by prograding depocentres that formed during glacial maxima when ice streams reached the shelf edge, delivering large amounts of subglacial sediment onto the continental slope (Ó Cofaigh et al., 2013). The aim of this study is to unravel the seismic stratigraphic architecture and depositional processes of the Disko Bay TMF, aerially the largest single sedimentary system in West Greenland, using 2D and 3D seismic reflection data, seabed bathymetry and stratigraphic information from exploration well Hellefisk-1. The south-west Disko Bay is intersected by a deep, narrow trough, Egedesminde Dyb, which extends towards the southwest and links to the shallower and broader cross-shelf Disko Trough (maximum water depths of > 1000 m and a trough length of c. 370 km). Another trough-like depression (trough length of c. 120 km) in the northern part of the TMF, indicating a previous position of the ice stream, can be distinguished on the seabed topographic map and the seismic images. The Disko Bay TMF itself extends from the shelf edge down to the abyssal plain (abyssal floor depths of 2000 m) of the southern Baffin Bay. Based on seismic stratigraphic configurations relating to reflection terminations, erosive patterns and seismic facies (Mitchum et al., 1977), the TMF

  7. Review of nuclear piping seismic design requirements

    International Nuclear Information System (INIS)

    Slagis, G.C.; Moore, S.E.

    1994-01-01

    Modern-day nuclear plant piping systems are designed with a large number of seismic supports and snubbers that may be detrimental to plant reliability. Experimental tests have demonstrated the inherent ruggedness of ductile steel piping for seismic loading. Present methods to predict seismic loads on piping are based on linear-elastic analysis methods with low damping. These methods overpredict the seismic response of ductile steel pipe. Section III of the ASME Boiler and Pressure Vessel Code stresses limits for piping systems that are based on considerations of static loads and hence are overly conservative. Appropriate stress limits for seismic loads on piping should be incorporated into the code to allow more flexible piping designs. The existing requirements and methods for seismic design of piping systems, including inherent conservations, are explained to provide a technical foundation for modifications to those requirements. 30 refs., 5 figs., 3 tabs

  8. SEISVIZ3D: Stereoscopic system for the representation of seismic data - Interpretation and Immersion

    Science.gov (United States)

    von Hartmann, Hartwig; Rilling, Stefan; Bogen, Manfred; Thomas, Rüdiger

    2015-04-01

    The seismic method is a valuable tool for getting 3D-images from the subsurface. Seismic data acquisition today is not only a topic for oil and gas exploration but is used also for geothermal exploration, inspections of nuclear waste sites and for scientific investigations. The system presented in this contribution may also have an impact on the visualization of 3D-data of other geophysical methods. 3D-seismic data can be displayed in different ways to give a spatial impression of the subsurface.They are a combination of individual vertical cuts, possibly linked to a cubical portion of the data volume, and the stereoscopic view of the seismic data. By these methods, the spatial perception for the structures and thus of the processes in the subsurface should be increased. Stereoscopic techniques are e. g. implemented in the CAVE and the WALL, both of which require a lot of space and high technical effort. The aim of the interpretation system shown here is stereoscopic visualization of seismic data at the workplace, i.e. at the personal workstation and monitor. The system was developed with following criteria in mind: • Fast rendering of large amounts of data so that a continuous view of the data when changing the viewing angle and the data section is possible, • defining areas in stereoscopic view to translate the spatial impression directly into an interpretation, • the development of an appropriate user interface, including head-tracking, for handling the increased degrees of freedom, • the possibility of collaboration, i.e. teamwork and idea exchange with the simultaneous viewing of a scene at remote locations. The possibilities offered by the use of a stereoscopic system do not replace a conventional interpretation workflow. Rather they have to be implemented into it as an additional step. The amplitude distribution of the seismic data is a challenge for the stereoscopic display because the opacity level and the scaling and selection of the data have to

  9. A seismic data compression system using subband coding

    Science.gov (United States)

    Kiely, A. B.; Pollara, F.

    1995-01-01

    This article presents a study of seismic data compression techniques and a compression algorithm based on subband coding. The algorithm includes three stages: a decorrelation stage, a quantization stage that introduces a controlled amount of distortion to allow for high compression ratios, and a lossless entropy coding stage based on a simple but efficient arithmetic coding method. Subband coding methods are particularly suited to the decorrelation of nonstationary processes such as seismic events. Adaptivity to the nonstationary behavior of the waveform is achieved by dividing the data into separate blocks that are encoded separately with an adaptive arithmetic encoder. This is done with high efficiency due to the low overhead introduced by the arithmetic encoder in specifying its parameters. The technique could be used as a progressive transmission system, where successive refinements of the data can be requested by the user. This allows seismologists to first examine a coarse version of waveforms with minimal usage of the channel and then decide where refinements are required. Rate-distortion performance results are presented and comparisons are made with two block transform methods.

  10. Hysteresis behavior of seismic isolators in earthquakes near a fault ...

    African Journals Online (AJOL)

    Seismic performance and appropriate design of structures located near the faults has always been a major concern of design engineers. Because during an earthquake; the effects of plasticity will make differences in characteristics of near field records. These pulsed movements at the beginning of records will increase the ...

  11. Seismic ratchet-fatigue failure of piping systems

    International Nuclear Information System (INIS)

    Severud, L.K.; Anderson, M.J.; Lindquist, M.R.; Weiner, E.O.

    1986-01-01

    Failures of piping systems during earthquakes have been rare. Those that have failed were either made of brittle material such as cast iron, were rigid systems between major components where component relative seismic motions tore the pipe out of the component, or were high pressure systems where a ratchet-fatigue fracture followed a local bulging of the pipe diameter. Tests to failure of an unpressurized 3-in. and a pressurized 6-in. diameter carbon steel nuclear pipe systems subjected to high level shaking have been accomplished. Failure analyses of these tests are presented and correlated to the test results. It was found that failure of the unpressurized system could be correlated well with standard ASME type fatigue analysis predictions. Moreover, the pressurized system failure occurred in significantly less load cycles than predicted by standard fatigue analysis. However, a ratchet-fatigue and ductility exhaustion analysis of the pressurized system did correlate very well. These findings indicate modifications to design analysis methods and the present ASME Code piping design rules may be appropriate to cover the ratchet-fatigue failure mode

  12. United States Geological Survey (USGS) FM cassette seismic-refraction recording system

    International Nuclear Information System (INIS)

    Murphy, J.M.

    1988-01-01

    In this two chapter report, instrumentation used to collect seismic data is described. This data acquisition system has two parts: (1) portable anolog seismic recorders and related ''hand-held-testers'' (HHT) and (2) portable digitizing units. During the anolog recording process, ground motion is sensed by a 2-Hz vertical-component seismometer. The voltage output from the seismometer is split without amplification and sent to three parallel amplifier circuit boards. Each circuit board amplifiers the seismic signal in three stages and then frequency modulates the signal. Amplification at the last two stages can be set by the user. An internal precision clock signal is also frequency modulated. The three data carrier frequencies, the clock carrier frequency, and a tape-speed compensation carrier frequency are summed and recorded on a recorded on a cassette tape. During the digitizing process, the cassette tapes are played back and the signals are demultiplexed and demodulated. An anolog-to-digital converter converts the signals to digital data which are stored on 8-inch floppy disks. 7 refs., 19 figs., 6 tabs

  13. Seismic Target Classification Using a Wavelet Packet Manifold in Unattended Ground Sensors Systems

    Directory of Open Access Journals (Sweden)

    Enliang Song

    2013-07-01

    Full Text Available One of the most challenging problems in target classification is the extraction of a robust feature, which can effectively represent a specific type of targets. The use of seismic signals in unattended ground sensor (UGS systems makes this problem more complicated, because the seismic target signal is non-stationary, geology-dependent and with high-dimensional feature space. This paper proposes a new feature extraction algorithm, called wavelet packet manifold (WPM, by addressing the neighborhood preserving embedding (NPE algorithm of manifold learning on the wavelet packet node energy (WPNE of seismic signals. By combining non-stationary information and low-dimensional manifold information, WPM provides a more robust representation for seismic target classification. By using a K nearest neighbors classifier on the WPM signature, the algorithm of wavelet packet manifold classification (WPMC is proposed. Experimental results show that the proposed WPMC can not only reduce feature dimensionality, but also improve the classification accuracy up to 95.03%. Moreover, compared with state-of-the-art methods, WPMC is more suitable for UGS in terms of recognition ratio and computational complexity.

  14. Can Vrancea earthquakes be accurately predicted from unusual bio-system behavior and seismic-electromagnetic records?

    International Nuclear Information System (INIS)

    Enescu, D.; Chitaru, C.; Enescu, B.D.

    1999-01-01

    The relevance of bio-seismic research for the short-term prediction of strong Vrancea earthquakes is underscored. An unusual animal behavior before and during Vrancea earthquakes is described and illustrated in the individual case of the major earthquake of March 4, 1977. Several hypotheses to account for the uncommon behavior of bio-systems in relation to earthquakes in general and strong Vrancea earthquakes in particular are discussed in the second section. It is reminded that promising preliminary results concerning the identification of seismic-electromagnetic precursor signals have been obtained in the Vrancea seismogenic area using special, highly sensitive equipment. The need to correlate bio-seismic and seismic-electromagnetic researches is evident. Further investigations are suggested and urgent steps are proposed in order to achieve a successful short-term prediction of strong Vrancea earthquakes. (authors)

  15. Parameters of the Seismic system in Armenia

    Energy Technology Data Exchange (ETDEWEB)

    Karapetyan, N.K.

    1976-01-01

    An examination is made of the seismic system parameters in Armenia and the adjoining regions of Azerbaidzhan, Georgia, Iran, and Turkey. Data are given on correlations between the energy class, magnitude and intensity scale of earthquakes, and values for the level of activity and angular coefficients as a function of the region under examination, the time of observation, and method of determination; and diagrams are presented which illustrate the pattern of earthquake recurrence for the period 1679 to 1968, and observation times essential for determining earthquake recurrence with a given accuracy of 10% for the Armenian Highlands. 3 references, 2 figures, 2 tables.

  16. Seismic analysis of hydraulic control rod driving system

    International Nuclear Information System (INIS)

    Zheng, Yanhua; Bo, Hanliang; Dong, Duo

    2002-01-01

    A simplified mathematical model was developed for the Hydraulic Control Rod Driving System (HCRDS) of a 200 MW nuclear heating reactor, which incorporated the design of its chamfer-hole step cylinder, to analyze its seismic response characteristics. The control rod motion was analyzed for different sine-wave vibration loadings on platform vibrator. The vibration frequency domain and the minimum acceleration amplitude of the control rod needed to cause the control rod to step to its next setting were compared with the design acceleration amplitude spectrum. The system design was found to be safety within the calculated limits. The safety margin increased with increasing frequency. (author)

  17. Towards the Understanding of Induced Seismicity in Enhanced Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Gritto, Roland [Array Information Technology, Greenbelt, MD (United States); Dreger, Douglas [Univ. of California, Berkeley, CA (United States); Heidbach, Oliver [Helmholtz Centre Potsdam (Germany, German Research Center for Geosciences; Hutchings, Lawrence [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-08-29

    This DOE funded project was a collaborative effort between Array Information Technology (AIT), the University of California at Berkeley (UCB), the Helmholtz Centre Potsdam - German Research Center for Geosciences (GFZ) and the Lawrence Berkeley National Laboratory (LBNL). It was also part of the European research project “GEISER”, an international collaboration with 11 European partners from six countries including universities, research centers and industry, with the goal to address and mitigate the problems associated with induced seismicity in Enhanced Geothermal Systems (EGS). The goal of the current project was to develop a combination of techniques, which evaluate the relationship between enhanced geothermal operations and the induced stress changes and associated earthquakes throughout the reservoir and the surrounding country rock. The project addressed the following questions: how enhanced geothermal activity changes the local and regional stress field; whether these activities can induce medium sized seismicity M > 3; (if so) how these events are correlated to geothermal activity in space and time; what is the largest possible event and strongest ground motion, and hence the potential hazard associated with these activities. The development of appropriate technology to thoroughly investigate and address these questions required a number of datasets to provide the different physical measurements distributed in space and time. Because such a dataset did not yet exist for an EGS system in the United State, we used current and past data from The Geysers geothermal field in northern California, which has been in operation since the 1960s. The research addressed the need to understand the causal mechanisms of induced seismicity, and demonstrated the advantage of imaging the physical properties and temporal changes of the reservoir. The work helped to model the relationship between injection and production and medium sized magnitude events that have

  18. Development of Vertical Cable Seismic System (3)

    Science.gov (United States)

    Asakawa, E.; Murakami, F.; Tsukahara, H.; Mizohata, S.; Ishikawa, K.

    2013-12-01

    The VCS (Vertical Cable Seismic) is one of the reflection seismic methods. It uses hydrophone arrays vertically moored from the seafloor to record acoustic waves generated by surface, deep-towed or ocean bottom sources. Analyzing the reflections from the sub-seabed, we could look into the subsurface structure. Because VCS is an efficient high-resolution 3D seismic survey method for a spatially-bounded area, we proposed the method for the hydrothermal deposit survey tool development program that the Ministry of Education, Culture, Sports, Science and Technology (MEXT) started in 2009. We are now developing a VCS system, including not only data acquisition hardware but data processing and analysis technique. We carried out several VCS surveys combining with surface towed source, deep towed source and ocean bottom source. The water depths of the survey are from 100m up to 2100m. The target of the survey includes not only hydrothermal deposit but oil and gas exploration. Through these experiments, our VCS data acquisition system has been completed. But the data processing techniques are still on the way. One of the most critical issues is the positioning in the water. The uncertainty in the positions of the source and of the hydrophones in water degraded the quality of subsurface image. GPS navigation system are available on sea surface, but in case of deep-towed source or ocean bottom source, the accuracy of shot position with SSBL/USBL is not sufficient for the very high-resolution imaging. We have developed another approach to determine the positions in water using the travel time data from the source to VCS hydrophones. In the data acquisition stage, we estimate the position of VCS location with slant ranging method from the sea surface. The deep-towed source or ocean bottom source is estimated by SSBL/USBL. The water velocity profile is measured by XCTD. After the data acquisition, we pick the first break times of the VCS recorded data. The estimated positions of

  19. Seismic testing and analysis of a prototypic nonlinear piping system

    International Nuclear Information System (INIS)

    Barta, D.A.; Anderson, M.J.; Severud, L.K.

    1982-11-01

    A series of seismic tests and analyses of a nonlinear Fast Flux Test Facility (FFTF) prototypic piping system are described, and measured responses are compared with analytical predictions. The test loop was representative of a typical LMFBR insulated small bore piping system and it was supported from a rigid test frame by prototypic dead weight supports, mechanical snubbers and pipe clamps. Various piping support configurations were tested and analyzed to evaluate the effects of free play and other nonlinear stiffness characteristics on the piping system response

  20. Seismicity and tectonics of Bangladesh

    International Nuclear Information System (INIS)

    Hossain, K.M.

    1989-05-01

    Northern and eastern Bangladesh and surrounding areas belong to a seismically active zone and are associated with the subduction of the Indian plate. The seismicity and tectonics have been studied in detail and the observations have been correlated to understand the earthquake phenomenon in the region. The morphotectonic behaviour of northern Bangladesh shows that it is deeply related to the movement of the Dauki fault system and relative upliftment of the Shillong plateau. Contemporary seismicity in the Dauki fault system is relatively quiet comparing to that in the Naga-Disang-Haflong thrust belt giving rise to the probability of sudden release of energy being accumulated in the vicinity of the Dauki fault system. This observation corresponds with the predicted average return period of a large earthquake (1897 type) and the possibility of M > 8 earthquake in the vicinity of the Dauki fault within this century should not be ruled out. The seismicity in the folded belt in the east follows the general trend of Arakan-Yoma anticlinorium and represents shallow and low-angled thrust movements in conformity with the field observation. Seismotectonic behaviour in the deep basin part of Bangladesh demonstrates that an intraplate movement in the basement rock has been taking place along the deep-seated faults causing relative upliftment and subsidence in the basin. Bangladesh has been divided into three seismic zones on the basis of morphotectonic and seismic behaviour. Zone-I has been identified as the zone of high seismic risk. (author). 43 refs, 5 figs, 3 tabs

  1. Cities at risk: status of Italian planning system in reducing seismic and hydrogeological risks

    Directory of Open Access Journals (Sweden)

    Grazia Di Giovanni

    2016-03-01

    Full Text Available Italy and its urban systems are under high seismic and hydrogeological risks. The awareness about the role of human activities in the genesis of disasters is achieved in the scientific debate, as well as the role of urban and regional planning in reducing risks. The paper reviews the state of Italian major cities referred to hydrogeological and seismic risk by: 1 extrapolating data and maps about seismic hazard and landslide risk concerning cities with more than 50.000 inhabitants and metropolitan contexts, and 2 outlining how risk reduction is framed in Italian planning system (at national and regional levels. The analyses of available data and the review of the normative framework highlight the existing gaps in addressing risk reduction: nevertheless a wide knowledge about natural risks afflicting Italian territory and an articulated regulatory framework, the available data about risks are not exhaustive, and risk reduction policies and multidisciplinary pro-active approaches are only partially fostered and applied.

  2. Seismic safety of Paks nuclear power plant

    International Nuclear Information System (INIS)

    Katona, T.

    1993-01-01

    An extensive program is underway at Paks NPP for evaluation of the seismic safety and for development of the necessary safety increasing measures. This program includes the following five measures: investigation of methods, regulations and techniques utilized for reassessment of seismic safety of operating NPPs and promoting safety; investigation of earthquake hazards; development of concepts for creating the seismic safety location of earthquake warning system; determination of dynamic features of systems and facilities determined by the concept, and preliminary evaluation of the seismic safety

  3. Upgrading the seismic performance of the interior water pipe supporting system of a cooling tower

    International Nuclear Information System (INIS)

    Manos, G.C.; Soulis, V.J.

    2005-01-01

    This paper presents results from a numerical study that was performed in order to simulate the seismic behavior of the interior support system of the piping and cooling features of a cooling tower in one of the old power stations located in an area at the North-Western part of Greece. This cooling tower has a diameter of 60 m and a height of 100 m. The interior piping support system consists mainly of a series of nine-meter high pre-cast vertical columns made by pre-stressed concrete; these columns, together with reinforced concrete pre-cast horizontal beams that are joined monolithically with the columns at their top, form the old interior supporting system. This system represented a very flexible structure, a fact that was verified from a preliminary numerical analysis of its seismic behavior. The maximum response to the design earthquake levels resulted in large horizontal displacements at the top of the columns as well as overstress to some of the columns. The most important part of the current numerical investigation was to examine various strengthening schemes of the old interior support system and to select one that will demonstrate acceptable seismic behavior. (authors)

  4. 21 CFR 870.2600 - Signal isolation system.

    Science.gov (United States)

    2010-04-01

    ... system. (a) Identification. A signal isolation system is a device that electrically isolates the patient... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Signal isolation system. 870.2600 Section 870.2600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED...

  5. Comprehensive Final Report for the Marine Seismic System Program

    Science.gov (United States)

    1985-08-01

    serve as a principal reference for transitioning marine seismic system techniques and results from the research and development arena to the...vM . .’ .■ .» .%■■.•. - Viaj ^."-;/-.■■ *• -’•’■■’■ ■ ■ - ■ • ■ -. . -. • ^;-■:■:-:•:> •■•."--.--.v. ’-• V ’.■ *.- ".i • ■ - ■ ■ v V

  6. Use of experience data for DOE seismic evaluations

    International Nuclear Information System (INIS)

    Barlow, M.W.; Budnitz, R.; Eder, S.J.; Eli, M.W.

    1993-01-01

    As dictated by DOE Order 5480.28, seismic evaluations of essential systems and components at DOE facilities will be conducted over the next several years. For many of these systems and components, few, if any, seismic requirements applied to the original design, procurement, installation, and maintenance process. Thus the verification of the seismic adequacy of existing systems and components presents a difficult challenge. DOE has undertaken development of the criteria and procedures for these seismic evaluations that will maximize safety benefits in a timely and cost effective manner. As demonstrated in previous applications at DOE facilities and by the experience from the commercial nuclear power industry, use of experience data for these evaluations is the only viable option for most existing systems and components. This paper describes seismic experience data, the needs at DOE facilities, the precedent of application at nuclear power plants and DOE facilities, and the program being put in place for the seismic verification task ahead for DOE

  7. Statistical analysis of laser-interferometric detector Dylkin-1 data and data on seismic activity

    International Nuclear Information System (INIS)

    Kirillov, R S; Bochkarev, V V; Dulkyn, Academy of Sciences of the Republic of Tatarstan (Russian Federation))" data-affiliation=" (Scientific Center of Gravitational-Wave Research Dulkyn, Academy of Sciences of the Republic of Tatarstan (Russian Federation))" >Skochilov, A F

    2014-01-01

    This work presents statistical analysis of data collected from laser interferometric detector ''Dylkin-1'' and nearby seismic stations. The final goal of Dylkin project consists in creating detector of theoretically predicted gravitational waves produced by binary relativistic astrophysical objects. Currently, works are underway to improve sensitivity of detector by 2-3 orders. The goals of this research were to test isolation of detector from noise caused by seismic waves and to find out whether it is sensitive to variations in the gradient of gravitational potential (acceleration of free fall) caused by free Earth oscillations. Noise isolation has been tested by comparing energy of signals during significant seismic events. Sensitivity to variations in acceleration of free fall has been tested by means of cross-spectral analysis

  8. Seismic fragility curves of bridge piers accounting for ground motions in Korea

    Science.gov (United States)

    Nguyen, Duy-Duan; Lee, Tae-Hyung

    2018-04-01

    Korea is located in a slight-to-moderate seismic zone. Nevertheless, several studies pointed that the peak earthquake magnitude in the region can be reached to approximately 6.5. Accordingly, a seismic vulnerability evaluation of the existing structures accounting for ground motions in Korea is momentous. The purpose of this paper is to develop seismic fragility curves for bridge piers of a steel box girder bridge equipped with and without base isolators based on a set of ground motions recorded in Korea. A finite element simulation platform, OpenSees, is utilized to perform nonlinear time history analyses of the bridges. A series of damage states is defined based on a damage index which is expressed in terms of the column displacement ductility ratio. The fragility curves based on Korean motions were thereafter compared with the fragility curves generated using worldwide earthquakes to assess the effect of the two ground motion groups on the seismic fragility curves of the bridge piers. The results reveal that both non- and base-isolated bridge piers are less vulnerable during the Korean ground motions than that under worldwide earthquakes.

  9. Statistical Analysis and ETAS Modeling of Seismicity Induced by Production of Geothermal Energy from Hydrothermal Systems

    Science.gov (United States)

    Dinske, C.; Langenbruch, C.; Shapiro, S. A.

    2017-12-01

    We investigate seismicity related to hydrothermal systems in Germany and Italy, focussing on temporal changes of seismicity rates. Our analysis was motivated by numerical simulations The modeling of stress changes caused by the injection and production of fluid revealed that seismicity rates decrease on a long-term perspective which is not observed in the considered case studies. We analyze the waiting time distributions of the seismic events in both time domain (inter event times) and fluid volume domain (inter event volume). We find clear indications that the observed seismicity comprises two components: (1) seismicity that is directly triggered by production and re-injection of fluid, i.e. induced events, and (2) seismicity that is triggered by earthquake interactions, i.e. aftershock triggering. In order to better constrain our numerical simulations using the observed induced seismicity we apply catalog declustering to seperate the two components. We use the magnitude-dependent space-time windowing approach introduced by Gardner and Knopoff (1974) and test several published algorithms to calculate the space-time windows. After declustering, we conclude that the different hydrothermal reservoirs show a comparable seismic response to the circulation of fluid and additional triggering by earthquake interactions. The declustered catalogs contain approximately 50 per cent of the number of events in the original catalogs. We then perform ETAS (Epidemic Type Aftershock; Ogata, 1986, 1988) modeling for two reasons. First, we want to know whether the different reservoirs are also comparable regarding earthquake interaction patterns. Second, if we identify systematic patterns, ETAS modeling can contribute to forecast seismicity during production of geothermal energy. We find that stationary ETAS models cannot accurately capture real seismicity rate changes. One reason for this finding is given by the rate of observed induced events which is not constant over time. Hence

  10. Mirror suspension system for the TAMA SAS

    International Nuclear Information System (INIS)

    Takamori, Akiteru; Ando, Masaki; Bertolini, Alessandro; Cella, Giancarlo; DeSalvo, Riccardo; Fukushima, Mitsuhiro; Iida, Yukiyoshi; Jacquier, Florian; Kawamura, Seiji; Marka, Szabolcs; Nishi, Yuhiko; Numata, Kenji; Sannibale, Virginio; Somiya, Kentaro; Takahashi, Ryutaro; Tariq, Hareem; Tsubono, Kimio; Ugas, Jose; Viboud, Nicolas; Yamamoto, Hiroaki; Yoda, Tatsuo; Wang Chenyang

    2002-01-01

    Several R and D programmes are ongoing to develop the next generation of interferometric gravitational wave detectors providing the superior sensitivity desired for refined astronomical observations. In order to obtain a wide observation band at low frequencies, the optics need to be isolated from the seismic noise. The TAMA SAS (seismic attenuation system) has been developed within an international collaboration between TAMA, LIGO, and some European institutes, with the main objective of achieving sufficient low-frequency seismic attenuation (-180 dB at 10 HZ). The system suppresses seismic noise well below the other noise levels starting at very low frequencies above 10 Hz. It also includes an active inertial damping system to decrease the residual motion of the optics enough to allow a stable operation of the interferometer. The TAMA SAS also comprises a sophisticated mirror suspension subsystem (SUS). The SUS provides support for the optics and vibration isolation complementing the SAS performance. The SUS is equipped with a totally passive magnetic damper to suppress internal resonances without degrading the thermal noise performance. In this paper we discuss the SUS details and present prototype results

  11. Seismic PSA of nuclear power plants a case study

    International Nuclear Information System (INIS)

    Hari Prasad, M.; Dubey, P.N.; Reddy, G.R.; Saraf, R.K.; Ghosh, A.K.

    2006-07-01

    Seismic Probabilistic Safety Assessment (Seismic PSA) analysis is an external event PSA analysis. The objective of seismic PSA for the plants is to examine the existence of plant vulnerabilities against postulated earthquakes by numerically assessing the plant safety and to take appropriate measures to enhance the plant safety. Seismic PSA analysis integrates the seismic hazard analysis, seismic response analysis, seismic fragility analysis and system reliability/ accident sequence analysis. In general, the plant consists of normally operating and emergency standby systems and components. The failure during an earthquake (induced directly by excessive inertial stresses or indirectly following the failure of some other item) of an operating component will lead to a change in the state of the plant. In that case, various scenarios can follow depending on the initiating event and the status of other sub-systems. The analysis represents these possible chronological sequences by an event tree. The event trees and the associated fault trees model the sub-systems down to the level of individual components. The procedure has been applied for a typical Indian nuclear power plant. From the internal event PSA level I analysis significant contribution to the Core Damage Frequency (CDF) was found due to the Fire Water System. Hence, this system was selected to establish the procedure of seismic PSA. In this report the different elements that go into seismic PSA analysis have been discussed. Hazard curves have been developed for the site. Fragility curve for the seismically induced failure of Class IV power has been developed. The fragility curve for fire-water piping system has been generated. Event tree for Class IV power supply has been developed and the dominating accident sequences were identified. CDF has been estimated from these dominating accident sequences by convoluting hazard curves of initiating event and fragility curves of the safety systems. (author)

  12. New serial time codes for seismic short period and long period data acquisition systems

    International Nuclear Information System (INIS)

    Kolvankar, V.G.; Rao, D.S.

    1988-01-01

    This paper discusses a new time code for time indexing multichannel short period (1 to 25 hz) seismic event data recorded on a single track of magnetic tape in digital format and discusses its usefulness in contrast to Vela time code used in continuous analog multichannel data recording system on multitrack instrumentation tape deck. This paper also discusses another time code, used for time indexing of seismic long period (DC to 2.5 seconds) multichannel data recorded on a single track of magnetic tape in digital format. The time code decoding and display system developed to provide quick access to any desired portion of the tape in both data recording and repro duce system is also discussed. (author). 7 figs

  13. Resistivity and Seismic Surface Wave Tomography Results for the Nevşehir Kale Region: Cappadocia, Turkey

    Science.gov (United States)

    Coşkun, Nart; Çakır, Özcan; Erduran, Murat; Arif Kutlu, Yusuf

    2014-05-01

    The Nevşehir Kale region located in the middle of Cappadocia with approximately cone shape is investigated for existence of an underground city using the geophysical methods of electrical resistivity and seismic surface wave tomography together. Underground cities are generally known to exist in Cappadocia. The current study has obtained important clues that there may be another one under the Nevşehir Kale region. Two-dimensional resistivity and seismic profiles approximately 4-km long surrounding the Nevşehir Kale are measured to determine the distribution of electrical resistivities and seismic velocities under the profiles. Several high resistivity anomalies with a depth range 8-20 m are discovered to associate with a systematic void structure beneath the region. Because of the high resolution resistivity measurement system currently employed we were able to isolate the void structure from the embedding structure. Low seismic velocity zones associated with the high resistivity depths are also discovered. Using three-dimensional visualization techniques we show the extension of the void structure under the measured profiles.

  14. Evaluation of seismic damage to bridges and highway systems in Shelby County, Tennessee

    Science.gov (United States)

    Jernigan, John Bailey

    Past earthquakes have demonstrated that bridges are one of the most vulnerable components of highway transportation systems. In addition to bridges, roadways may also be subject to damage, particularly in an area prone to earthquake-induced liquefaction. As a consequence, the highway transportation systems after an earthquake might be impaired and the post-earthquake emergency response might be compromised. Furthermore, the impact on the regional economy might be very significant from the damage to highway systems. Since highway transportation systems are critical lifelines for people living in an urban area, it is important to evaluate the vulnerability of bridges and highway systems in earthquake-prone regions. Memphis and Shelby County, Tennessee are located close to the southwestern segment of the New Madrid seismic zone (NMSZ). This zone produced three of the largest earthquakes in North America in 1811--1812. Presently, the NMSZ is still active and is considered by engineers, seismologists, and public officials as the most hazardous seismic zone in the central and eastern United States. Bridges in the Memphis area were generally not designed for seismic resistance until 1990. Therefore, the majority of existing bridges might suffer damage from earthquakes occurring in the NMSZ. The overall objective of this study is to evaluate the expected damage to bridges and roadways on the major routes in Memphis and Shelby County resulting from New Madrid earthquakes with the aid of geographic information system (GIS) technology. The road network selected for this study includes all the Interstate highway system, all the primary and secondary routes maintained by the state, and most of the major arterial routes. There are 452 bridges on the selected roadway systems and data pertinent to these bridges and roadway systems were collected and implemented as a GIS database. The bridges in the Memphis area were classified into several types and damage states were determined

  15. Seismic risk assessment of a BWR

    International Nuclear Information System (INIS)

    Wells, J.E.; Bernreuter, D.L.; Chen, J.C.; Lappa, D.A.; Chuang, T.Y.; Murray, R.C.; Johnson, J.J.

    1987-01-01

    The simplified seismic risk methodology developed in the USNRC Seismic Safety Margins Research Program (SSMRP) was demonstrated by its application to the Zion nuclear power plant (PWR). The simplified seismic risk methodology was developed to reduce the costs associated with a seismic risk analysis while providing adequate results. A detailed model of Zion, including systems analysis models (initiating events, event trees, and fault trees), SSI and structure models, and piping models, was developed and used in assessing the seismic risk of the Zion nuclear power plant (FSAR). The simplified seismic risk methodology was applied to the LaSalle County Station nuclear power plant, a BWR; to further demonstrate its applicability, and if possible, to provide a basis for comparing the seismic risk from PWRs and BWRs. (orig./HP)

  16. Seismic safety margin assessment program (Annual safety research report, JFY 2010)

    International Nuclear Information System (INIS)

    Suzuki, Kenichi; Iijima, Toru; Inagaki, Masakatsu; Taoka, Hideto; Hidaka, Shinjiro

    2011-01-01

    Seismic capacity test data, analysis method and evaluation code provided by Seismic Safety Margin Assessment Program have been utilized for the support of seismic back-check evaluation of existing plants. The summary of the program in 2010 is as follows. 1. Component seismic capacity test and quantitative seismic capacity evaluation. Many seismic capacity tests of various snubbers were conducted and quantitative seismic capacities were evaluated. One of the emergency diesel generator partial-model seismic capacity tests was conducted and quantitative seismic capacity was evaluated. Some of the analytical evaluations of piping-system seismic capacities were conducted. 2. Analysis method for minute evaluation of component seismic response. The difference of seismic response of large components such as primary containment vessel and reactor pressure vessel when they were coupled with 3-dimensional FEM building model or 1-dimensional lumped mass building model, was quantitatively evaluated. 3. Evaluation code for quantitative evaluation of seismic safety margin of systems, structures and components. As the example, quantitative evaluation of seismic safety margin of systems, structures and components were conducted for the reference plant. (author)

  17. Static and dynamic stability of pneumatic vibration isolators and systems of isolators

    Science.gov (United States)

    Ryaboy, Vyacheslav M.

    2014-01-01

    Pneumatic vibration isolation is the most widespread effective method for creating vibration-free environments that are vital for precise experiments and manufacturing operations in optoelectronics, life sciences, microelectronics, nanotechnology and other areas. The modeling and design principles of a dual-chamber pneumatic vibration isolator, basically established a few decades ago, continue to attract attention of researchers. On the other hand, behavior of systems of such isolators was never explained in the literature in sufficient detail. This paper covers a range of questions essential for understanding the mechanics of pneumatic isolation systems from both design and application perspectives. The theory and a model of a single standalone isolator are presented in concise form necessary for subsequent analysis. Then the dynamics of a system of isolators supporting a payload is considered with main attention directed to two aspects of their behavior: first, the static stability of payloads with high positions of the center of gravity; second, dynamic stability of the feedback system formed by mechanical leveling valves. The direct method of calculating the maximum stable position of the center of gravity is presented and illustrated by three-dimensional stability domains; analytic formulas are given that delineate these domains. A numerical method for feedback stability analysis of self-leveling valve systems is given, and the results are compared with the analytical estimates for a single isolator. The relation between the static and dynamic phenomena is discussed.

  18. Capabilities of seismic and georadar 2D/3D imaging of shallow subsurface of transport route using the Seismobile system

    Science.gov (United States)

    Pilecki, Zenon; Isakow, Zbigniew; Czarny, Rafał; Pilecka, Elżbieta; Harba, Paulina; Barnaś, Maciej

    2017-08-01

    In this work, the capabilities of the Seismobile system for shallow subsurface imaging of transport routes, such as roads, railways, and airport runways, in different geological conditions were presented. The Seismobile system combines the advantages of seismic profiling using landstreamer and georadar (GPR) profiling. It consists of up to four seismic measuring lines and carriage with a suspended GPR antenna. Shallow subsurface recognition may be achieved to a maximum width of 10.5 m for a distance of 3.5 m between the measurement lines. GPR measurement is performed in the axis of the construction. Seismobile allows the measurement time, labour and costs to be reduced due to easy technique of its installation, remote data transmission from geophones to accompanying measuring modules, automated location of the system based on GPS and a highly automated method of seismic wave excitation. In this paper, the results of field tests carried out in different geological conditions were presented. The methodologies of acquisition, processing and interpretation of seismic and GPR measurements were broadly described. Seismograms and its spectrum registered by Seismobile system were compared to the ones registered by Geode seismograph of Geometrix. Seismic data processing and interpretation software allows for the obtaining of 2D/3D models of P- and S-wave velocities. Combined seismic and GPR results achieved sufficient imaging of shallow subsurface to a depth of over a dozen metres. The obtained geophysical information correlated with geological information from the boreholes with good quality. The results of performed tests proved the efficiency of the Seismobile system in seismic and GPR imaging of a shallow subsurface of transport routes under compound conditions.

  19. Shaking table test of a base isolated model in main control room of nuclear power plant using LRB (lead rubber bearing)

    International Nuclear Information System (INIS)

    Ham, K. W.; Lee, K. J.; Suh, Y. P.

    2005-01-01

    LRB(Lead Rubber Bearing) is a widely used isolation system which is installed between equipment and foundation to reduce seismic vibration from ground. LRB is consist of bearings which are resistant to lateral motion and torsion and has a high vertical stiffness. For that reason, several studies are conducted to apply LRB to the nuclear power plant. In this study, we designed two types of main control floor systems (type I, type II) and a number of shaking table tests with and without isolation system were conducted to evaluate floor isolation effectiveness of LRB

  20. Seismic evaluation of existing nuclear facilities. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    Programmes for re-evaluation and upgrading of safety of existing nuclear facilities are presently under way in a number of countries around the world. An important component of these programmes is the re-evaluation of the seismic safety through definition of new seismic parameters at the site and evaluation of seismic capacity of structures, equipment and distribution systems following updated information and criteria. The Seminar is intended to provide a forum for the exchange of information and discussion of the state-of-the-art on seismic safety of nuclear facilities in operation or under construction. Both analytical and experimental techniques for the evaluation of seismic capacity of structures, equipment and distribution systems are discussed. Full scale and field tests of structures and components using shaking tables, mechanical exciters, explosive and shock tests, and ambient vibrations are included in the seminar programme with emphasis on recent case histories. Presentations at the Seminar also include analytical techniques for the determination of dynamic properties of soil-structure systems from experiments as well as calibration of numerical models. Methods and criteria for seismic margin assessment based on experience data obtained from the behaviour of structures and components in real earthquakes are discussed. Guidelines for defining technical requirements for capacity re-evaluation (i.e. acceptable behaviour limits and design and implementation of structure and components upgrades are also presented and discussed. The following topics were covered during 7 sessions: earthquake experience and seismic re-evaluation; country experience in seismic re-evaluation programme; generic WWER studies; analytical methods for seismic capacity re-evaluation; experimental methods for seismic capacity re-evaluation; case studies.