WorldWideScience

Sample records for seismic hazard assessment

  1. Seismic hazard assessment: Issues and alternatives

    Science.gov (United States)

    Wang, Z.

    2011-01-01

    Seismic hazard and risk are two very important concepts in engineering design and other policy considerations. Although seismic hazard and risk have often been used inter-changeably, they are fundamentally different. Furthermore, seismic risk is more important in engineering design and other policy considerations. Seismic hazard assessment is an effort by earth scientists to quantify seismic hazard and its associated uncertainty in time and space and to provide seismic hazard estimates for seismic risk assessment and other applications. Although seismic hazard assessment is more a scientific issue, it deserves special attention because of its significant implication to society. Two approaches, probabilistic seismic hazard analysis (PSHA) and deterministic seismic hazard analysis (DSHA), are commonly used for seismic hazard assessment. Although PSHA has been pro-claimed as the best approach for seismic hazard assessment, it is scientifically flawed (i.e., the physics and mathematics that PSHA is based on are not valid). Use of PSHA could lead to either unsafe or overly conservative engineering design or public policy, each of which has dire consequences to society. On the other hand, DSHA is a viable approach for seismic hazard assessment even though it has been labeled as unreliable. The biggest drawback of DSHA is that the temporal characteristics (i.e., earthquake frequency of occurrence and the associated uncertainty) are often neglected. An alternative, seismic hazard analysis (SHA), utilizes earthquake science and statistics directly and provides a seismic hazard estimate that can be readily used for seismic risk assessment and other applications. ?? 2010 Springer Basel AG.

  2. Probabilistic seismic hazard assessment. Gentilly 2

    International Nuclear Information System (INIS)

    1996-03-01

    Results of this probabilistic seismic hazard assessment were determined using a suite of conservative assumptions. The intent of this study was to perform a limited hazard assessment that incorporated a range of technically defensible input parameters. To best achieve this goal, input selected for the hazard assessment tended to be conservative with respect to selection of attenuation modes, and seismicity parameters. Seismic hazard estimates at Gentilly 2 were most affected by selection of the attenuation model. Alternative definitions of seismic source zones had a relatively small impact on seismic hazard. A St. Lawrence Rift model including a maximum magnitude of 7.2 m b in the zone containing the site had little effect on the hazard estimate relative to other seismic source zonation models. Mean annual probabilities of exceeding the design peak ground acceleration, and the design response spectrum for the Gentilly 2 site were computed to lie in the range of 0.001 to 0.0001. This hazard result falls well within the range determined to be acceptable for nuclear reactor sites located throughout the eastern United States. (author) 34 refs., 6 tabs., 28 figs

  3. Probabilistic seismic hazard assessment of NW and central ...

    Indian Academy of Sciences (India)

    The Himalayan region has undergone significant development and to ensure safe and secure progress in such a seismically vulnerable region there is a need for hazard assessment. For seismic hazard assessment, it is important to assess the quality, consistency, and homogeneity of the seismicity data collected from ...

  4. Toward uniform probabilistic seismic hazard assessments for Southeast Asia

    Science.gov (United States)

    Chan, C. H.; Wang, Y.; Shi, X.; Ornthammarath, T.; Warnitchai, P.; Kosuwan, S.; Thant, M.; Nguyen, P. H.; Nguyen, L. M.; Solidum, R., Jr.; Irsyam, M.; Hidayati, S.; Sieh, K.

    2017-12-01

    Although most Southeast Asian countries have seismic hazard maps, various methodologies and quality result in appreciable mismatches at national boundaries. We aim to conduct a uniform assessment across the region by through standardized earthquake and fault databases, ground-shaking scenarios, and regional hazard maps. Our earthquake database contains earthquake parameters obtained from global and national seismic networks, harmonized by removal of duplicate events and the use of moment magnitude. Our active-fault database includes fault parameters from previous studies and from the databases implemented for national seismic hazard maps. Another crucial input for seismic hazard assessment is proper evaluation of ground-shaking attenuation. Since few ground-motion prediction equations (GMPEs) have used local observations from this region, we evaluated attenuation by comparison of instrumental observations and felt intensities for recent earthquakes with predicted ground shaking from published GMPEs. We then utilize the best-fitting GMPEs and site conditions into our seismic hazard assessments. Based on the database and proper GMPEs, we have constructed regional probabilistic seismic hazard maps. The assessment shows highest seismic hazard levels near those faults with high slip rates, including the Sagaing Fault in central Myanmar, the Sumatran Fault in Sumatra, the Palu-Koro, Matano and Lawanopo Faults in Sulawesi, and the Philippine Fault across several islands of the Philippines. In addition, our assessment demonstrates the important fact that regions with low earthquake probability may well have a higher aggregate probability of future earthquakes, since they encompass much larger areas than the areas of high probability. The significant irony then is that in areas of low to moderate probability, where building codes are usually to provide less seismic resilience, seismic risk is likely to be greater. Infrastructural damage in East Malaysia during the 2015

  5. Probabilistic Seismic Hazard Assessment for Northeast India Region

    Science.gov (United States)

    Das, Ranjit; Sharma, M. L.; Wason, H. R.

    2016-08-01

    Northeast India bounded by latitudes 20°-30°N and longitudes 87°-98°E is one of the most seismically active areas in the world. This region has experienced several moderate-to-large-sized earthquakes, including the 12 June, 1897 Shillong earthquake ( M w 8.1) and the 15 August, 1950 Assam earthquake ( M w 8.7) which caused loss of human lives and significant damages to buildings highlighting the importance of seismic hazard assessment for the region. Probabilistic seismic hazard assessment of the region has been carried out using a unified moment magnitude catalog prepared by an improved General Orthogonal Regression methodology (Geophys J Int, 190:1091-1096, 2012; Probabilistic seismic hazard assessment of Northeast India region, Ph.D. Thesis, Department of Earthquake Engineering, IIT Roorkee, Roorkee, 2013) with events compiled from various databases (ISC, NEIC,GCMT, IMD) and other available catalogs. The study area has been subdivided into nine seismogenic source zones to account for local variation in tectonics and seismicity characteristics. The seismicity parameters are estimated for each of these source zones, which are input variables into seismic hazard estimation of a region. The seismic hazard analysis of the study region has been performed by dividing the area into grids of size 0.1° × 0.1°. Peak ground acceleration (PGA) and spectral acceleration ( S a) values (for periods of 0.2 and 1 s) have been evaluated at bedrock level corresponding to probability of exceedance (PE) of 50, 20, 10, 2 and 0.5 % in 50 years. These exceedance values correspond to return periods of 100, 225, 475, 2475, and 10,000 years, respectively. The seismic hazard maps have been prepared at the bedrock level, and it is observed that the seismic hazard estimates show a significant local variation in contrast to the uniform hazard value suggested by the Indian standard seismic code [Indian standard, criteria for earthquake-resistant design of structures, fifth edition, Part

  6. Seismic hazard assessment of Iran

    Directory of Open Access Journals (Sweden)

    M. Ghafory-Ashtiany

    1999-06-01

    Full Text Available The development of the new seismic hazard map of Iran is based on probabilistic seismic hazard computation using the historical earthquakes data, geology, tectonics, fault activity and seismic source models in Iran. These maps have been prepared to indicate the earthquake hazard of Iran in the form of iso-acceleration contour lines, and seismic hazard zoning, by using current probabilistic procedures. They display the probabilistic estimates of Peak Ground Acceleration (PGA for the return periods of 75 and 475 years. The maps have been divided into intervals of 0.25 degrees in both latitudinal and longitudinal directions to calculate the peak ground acceleration values at each grid point and draw the seismic hazard curves. The results presented in this study will provide the basis for the preparation of seismic risk maps, the estimation of earthquake insurance premiums, and the preliminary site evaluation of critical facilities.

  7. Multi scenario seismic hazard assessment for Egypt

    Science.gov (United States)

    Mostafa, Shaimaa Ismail; Abd el-aal, Abd el-aziz Khairy; El-Eraki, Mohamed Ahmed

    2018-05-01

    Egypt is located in the northeastern corner of Africa within a sensitive seismotectonic location. Earthquakes are concentrated along the active tectonic boundaries of African, Eurasian, and Arabian plates. The study area is characterized by northward increasing sediment thickness leading to more damage to structures in the north due to multiple reflections of seismic waves. Unfortunately, man-made constructions in Egypt were not designed to resist earthquake ground motions. So, it is important to evaluate the seismic hazard to reduce social and economic losses and preserve lives. The probabilistic seismic hazard assessment is used to evaluate the hazard using alternative seismotectonic models within a logic tree framework. Alternate seismotectonic models, magnitude-frequency relations, and various indigenous attenuation relationships were amended within a logic tree formulation to compute and develop the regional exposure on a set of hazard maps. Hazard contour maps are constructed for peak ground acceleration as well as 0.1-, 0.2-, 0.5-, 1-, and 2-s spectral periods for 100 and 475 years return periods for ground motion on rock. The results illustrate that Egypt is characterized by very low to high seismic activity grading from the west to the eastern part of the country. The uniform hazard spectra are estimated at some important cities distributed allover Egypt. The deaggregation of seismic hazard is estimated at some cities to identify the scenario events that contribute to a selected seismic hazard level. The results of this study can be used in seismic microzonation, risk mitigation, and earthquake engineering purposes.

  8. Probabilistic Seismic Hazard Assessment for Iraq

    Energy Technology Data Exchange (ETDEWEB)

    Onur, Tuna [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gok, Rengin [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Abdulnaby, Wathiq [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Shakir, Ammar M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mahdi, Hanan [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Numan, Nazar M.S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Al-Shukri, Haydar [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chlaib, Hussein K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ameen, Taher H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Abd, Najah A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-05-06

    Probabilistic Seismic Hazard Assessments (PSHA) form the basis for most contemporary seismic provisions in building codes around the world. The current building code of Iraq was published in 1997. An update to this edition is in the process of being released. However, there are no national PSHA studies in Iraq for the new building code to refer to for seismic loading in terms of spectral accelerations. As an interim solution, the new draft building code was considering to refer to PSHA results produced in the late 1990s as part of the Global Seismic Hazard Assessment Program (GSHAP; Giardini et al., 1999). However these results are: a) more than 15 years outdated, b) PGA-based only, necessitating rough conversion factors to calculate spectral accelerations at 0.3s and 1.0s for seismic design, and c) at a probability level of 10% chance of exceedance in 50 years, not the 2% that the building code requires. Hence there is a pressing need for a new, updated PSHA for Iraq.

  9. Are seismic hazard assessment errors and earthquake surprises unavoidable?

    Science.gov (United States)

    Kossobokov, Vladimir

    2013-04-01

    Why earthquake occurrences bring us so many surprises? The answer seems evident if we review the relationships that are commonly used to assess seismic hazard. The time-span of physically reliable Seismic History is yet a small portion of a rupture recurrence cycle at an earthquake-prone site, which makes premature any kind of reliable probabilistic statements about narrowly localized seismic hazard. Moreover, seismic evidences accumulated to-date demonstrate clearly that most of the empirical relations commonly accepted in the early history of instrumental seismology can be proved erroneous when testing statistical significance is applied. Seismic events, including mega-earthquakes, cluster displaying behaviors that are far from independent or periodic. Their distribution in space is possibly fractal, definitely, far from uniform even in a single segment of a fault zone. Such a situation contradicts generally accepted assumptions used for analytically tractable or computer simulations and complicates design of reliable methodologies for realistic earthquake hazard assessment, as well as search and definition of precursory behaviors to be used for forecast/prediction purposes. As a result, the conclusions drawn from such simulations and analyses can MISLEAD TO SCIENTIFICALLY GROUNDLESS APPLICATION, which is unwise and extremely dangerous in assessing expected societal risks and losses. For example, a systematic comparison of the GSHAP peak ground acceleration estimates with those related to actual strong earthquakes, unfortunately, discloses gross inadequacy of this "probabilistic" product, which appears UNACCEPTABLE FOR ANY KIND OF RESPONSIBLE SEISMIC RISK EVALUATION AND KNOWLEDGEABLE DISASTER PREVENTION. The self-evident shortcomings and failures of GSHAP appeals to all earthquake scientists and engineers for an urgent revision of the global seismic hazard maps from the first principles including background methodologies involved, such that there becomes: (a) a

  10. Probabilistic seismic hazard assessment for Point Lepreau Generating Station

    Energy Technology Data Exchange (ETDEWEB)

    Mullin, D. [New Brunswick Power Corp., Point Lepreau Generating Station, Lepreau, New Brunswick (Canada); Lavine, A. [AMEC Foster Wheeler Environment and Infrastructure Americas, Oakland, California (United States); Egan, J. [SAGE Engineers, Oakland, California (United States)

    2015-09-15

    A Probabilistic Seismic Hazard Assessment (PSHA) has been performed for the Point Lepreau Generating Station (PLGS). The objective is to provide characterization of the earthquake ground shaking that will be used to evaluate seismic safety. The assessment is based on the current state of knowledge of the informed scientific and engineering community regarding earthquake hazards in the site region, and includes two primary components-a seismic source model and a ground motion model. This paper provides the methodology and results of the PLGS PSHA. The implications of the updated hazard information for site safety are discussed in a separate paper. (author)

  11. Probabilistic seismic hazard assessment for Point Lepreau Generating Station

    Energy Technology Data Exchange (ETDEWEB)

    Mullin, D., E-mail: dmullin@nbpower.com [New Brunswick Power Corporation, Point Lepreau Generating Station, Point Lepreau, NB (Canada); Lavine, A., E-mail: alexis.lavine@amecfw.com [AMEC Foster Wheeler Environment & Infrastructure Americas, Oakland, CA (United States); Egan, J., E-mail: jegan@sageengineers.com [SAGE Engineers, Oakland, CA (United States)

    2015-07-01

    A Probabilistic Seismic Hazard Assessment (PSHA) has been performed for the Point Lepreau Generating Station (PLGS). The objective is to provide characterization of the earthquake ground shaking that will be used to evaluate seismic safety. The assessment is based on the current state of knowledge of the informed scientific and engineering community regarding earthquake hazards in the site region, and includes two primary components--a seismic source model and a ground motion model. This paper provides the methodology and results of the PLGS PSHA. The implications of the updated hazard information for site safety are discussed in a separate paper. (author)

  12. Seismic hazard assessment of the Hanford region, Eastern Washington State

    International Nuclear Information System (INIS)

    Youngs, R.R.; Coppersmith, K.J.; Power, M.S.; Swan, F.H. III

    1985-01-01

    A probabilistic seismic hazard assessment was made for a site within the Hanford region of eastern Washington state, which is characterized as an intraplate region having a relatively low rate of seismic activity. Probabilistic procedures, such as logic trees, were utilized to account for the uncertainties in identifying and characterizing the potential seismic sources in the region. Logic trees provide a convenient, flexible means of assessing the values and relative likelihoods of input parameters to the hazard model that may be dependent upon each other. Uncertainties accounted for in this way include the tectonic model, segmentation, capability, fault geometry, maximum earthquake magnitude, and earthquake recurrence rate. The computed hazard results are expressed as a distribution from which confidence levels are assessed. Analysis of the results show the contributions to the total hazard from various seismic sources and due to various earthquake magnitudes. In addition, the contributions of uncertainties in the various source parameters to the uncertainty in the computed hazard are assessed. For this study, the major contribution to uncertainty in the computed hazard are due to uncertainties in the applicable tectonic model and the earthquake recurrence rate. This analysis serves to illustrate some of the probabilistic tools that are available for conducting seismic hazard assessments and for analyzing the results of these studies. 5 references, 7 figures

  13. Probabilistic seismic hazard assessment of southern part of Ghana

    Science.gov (United States)

    Ahulu, Sylvanus T.; Danuor, Sylvester Kojo; Asiedu, Daniel K.

    2018-05-01

    This paper presents a seismic hazard map for the southern part of Ghana prepared using the probabilistic approach, and seismic hazard assessment results for six cities. The seismic hazard map was prepared for 10% probability of exceedance for peak ground acceleration in 50 years. The input parameters used for the computations of hazard were obtained using data from a catalogue that was compiled and homogenised to moment magnitude (Mw). The catalogue covered a period of over a century (1615-2009). The hazard assessment is based on the Poisson model for earthquake occurrence, and hence, dependent events were identified and removed from the catalogue. The following attenuation relations were adopted and used in this study—Allen (for south and eastern Australia), Silva et al. (for Central and eastern North America), Campbell and Bozorgnia (for worldwide active-shallow-crust regions) and Chiou and Youngs (for worldwide active-shallow-crust regions). Logic-tree formalism was used to account for possible uncertainties associated with the attenuation relationships. OpenQuake software package was used for the hazard calculation. The highest level of seismic hazard is found in the Accra and Tema seismic zones, with estimated peak ground acceleration close to 0.2 g. The level of the seismic hazard in the southern part of Ghana diminishes with distance away from the Accra/Tema region to a value of 0.05 g at a distance of about 140 km.

  14. Probabilistic seismic hazard assessment of southern part of Ghana

    Science.gov (United States)

    Ahulu, Sylvanus T.; Danuor, Sylvester Kojo; Asiedu, Daniel K.

    2017-12-01

    This paper presents a seismic hazard map for the southern part of Ghana prepared using the probabilistic approach, and seismic hazard assessment results for six cities. The seismic hazard map was prepared for 10% probability of exceedance for peak ground acceleration in 50 years. The input parameters used for the computations of hazard were obtained using data from a catalogue that was compiled and homogenised to moment magnitude (Mw). The catalogue covered a period of over a century (1615-2009). The hazard assessment is based on the Poisson model for earthquake occurrence, and hence, dependent events were identified and removed from the catalogue. The following attenuation relations were adopted and used in this study—Allen (for south and eastern Australia), Silva et al. (for Central and eastern North America), Campbell and Bozorgnia (for worldwide active-shallow-crust regions) and Chiou and Youngs (for worldwide active-shallow-crust regions). Logic-tree formalism was used to account for possible uncertainties associated with the attenuation relationships. OpenQuake software package was used for the hazard calculation. The highest level of seismic hazard is found in the Accra and Tema seismic zones, with estimated peak ground acceleration close to 0.2 g. The level of the seismic hazard in the southern part of Ghana diminishes with distance away from the Accra/Tema region to a value of 0.05 g at a distance of about 140 km.

  15. AECB workshop on seismic hazard assessment in southern Ontario

    International Nuclear Information System (INIS)

    Stepp, J.C.; Price, R.A.; Coppersmith, K.J.; Klimkiewicz, G.C.; McGuire, R.K.

    1995-10-01

    The purpose of the workshop was to review available geological and seismological data which could affect earthquake occurrence in southern Ontario and to develop a consensus on approaches that should be adopted for characterization of seismic hazard. The workshop was structured in technical sessions to focus presentations and discussions on four technical issues relevant to seismic hazard in southern Ontario, as follows: (1) The importance of geological and geophysical observations for the determination of seismic sources, (2) Methods and approaches which may be adopted for determining seismic sources based on integrated interpretations of geological and seismological information, (3) Methods and data which should be used for characterizing the seismicity parameters of seismic sources, and (4) Methods for assessment of vibratory ground motion hazard. The format of each session involved invited presentations of relevant data followed by open presentations by participants, a general discussion focusing on the relevance of the presented information for seismic hazard assessment in southern Ontario, then development of conclusions and recommendations. In the final session, the conclusions and recommendations were summarized and an open discussion was held to develop consensus. This report presents perspective summaries of the workshop technical sessions together with conclusions and recommendations prepared by the session chairs and the general chairman. 2 refs

  16. Seismic rupture modelling, strong motion prediction and seismic hazard assessment: fundamental and applied approaches

    International Nuclear Information System (INIS)

    Berge-Thierry, C.

    2007-05-01

    The defence to obtain the 'Habilitation a Diriger des Recherches' is a synthesis of the research work performed since the end of my Ph D. thesis in 1997. This synthesis covers the two years as post doctoral researcher at the Bureau d'Evaluation des Risques Sismiques at the Institut de Protection (BERSSIN), and the seven consecutive years as seismologist and head of the BERSSIN team. This work and the research project are presented in the framework of the seismic risk topic, and particularly with respect to the seismic hazard assessment. Seismic risk combines seismic hazard and vulnerability. Vulnerability combines the strength of building structures and the human and economical consequences in case of structural failure. Seismic hazard is usually defined in terms of plausible seismic motion (soil acceleration or velocity) in a site for a given time period. Either for the regulatory context or the structural specificity (conventional structure or high risk construction), seismic hazard assessment needs: to identify and locate the seismic sources (zones or faults), to characterize their activity, to evaluate the seismic motion to which the structure has to resist (including the site effects). I specialized in the field of numerical strong-motion prediction using high frequency seismic sources modelling and forming part of the IRSN allowed me to rapidly working on the different tasks of seismic hazard assessment. Thanks to the expertise practice and the participation to the regulation evolution (nuclear power plants, conventional and chemical structures), I have been able to work on empirical strong-motion prediction, including site effects. Specific questions related to the interface between seismologists and structural engineers are also presented, especially the quantification of uncertainties. This is part of the research work initiated to improve the selection of the input ground motion in designing or verifying the stability of structures. (author)

  17. Mine aftershocks and implications for seismic hazard assessment

    CSIR Research Space (South Africa)

    Kgarume, T

    2010-11-01

    Full Text Available A methodology of assessing the seismic hazard associated with aftershocks is developed by performing statistical and deterministic analysis of seismic data from two South African deep-level gold mines. A method employing stacking of aftershocks...

  18. Input for seismic hazard assessment using Vrancea seismic source region

    International Nuclear Information System (INIS)

    Ivan, Iren-Adelina; Enescu, B.D.; Pantea, A.

    1998-01-01

    We use an extended and combined data base including historical and modern, qualitative and quantitative data, i.e., more than 25 events during the period 1790 - 1990 with epicentral/maximum intensities ranging from X to V degree (MSK scale), the variation interval of isoseismal curves ranging from IX th to III rd degree. The data set was analysed using both the sum phasor techniques of Ridelek and Sacks (1984) for different magnitudes and depth intervals and the Stepp's method. For the assessment of seismic hazard we need a pattern of seismic source regions including an estimation for the maximum expected magnitude and the return period for the studied regions. Another necessary step in seismic hazard assessment is to develop attenuation relationships specific to a seismogenic zone, particularly to sub-crustal earthquakes of Vrancea region. The conceptual frame involves the use of appropriate decay models and consideration of the randomness in the attenuation, taking into account the azimuthal variation of the isoseist shapes. (authors)

  19. Seismic Hazard Assessment at Esfaraen‒Bojnurd Railway, North‒East of Iran

    Science.gov (United States)

    Haerifard, S.; Jarahi, H.; Pourkermani, M.; Almasian, M.

    2018-01-01

    The objective of this study is to evaluate the seismic hazard at the Esfarayen-Bojnurd railway using the probabilistic seismic hazard assessment (PSHA) method. This method was carried out based on a recent data set to take into account the historic seismicity and updated instrumental seismicity. A homogenous earthquake catalogue was compiled and a proposed seismic sources model was presented. Attenuation equations that recently recommended by experts and developed based upon earthquake data obtained from tectonic environments similar to those in and around the studied area were weighted and used for assessment of seismic hazard in the frame of logic tree approach. Considering a grid of 1.2 × 1.2 km covering the study area, ground acceleration for every node was calculated. Hazard maps at bedrock conditions were produced for peak ground acceleration, in addition to return periods of 74, 475 and 2475 years.

  20. Harmonizing seismic hazard assessments for nuclear power plants

    International Nuclear Information System (INIS)

    Mallard, D.J.

    1993-01-01

    Even a cursory comparison between maps of global seismicity and NPP earthquake design levels reveals many inconsistencies. While, in part, this situation reflects the evolution in understanding of seismic hazards, mismatches can also be due to ongoing differences in the way the hazards are assessed and in local regulatory requirements. So far, formal international consensus has only been able to encompass broad principles, such as those recently recommended by the International Atomic Energy Agency, and even these can raise many technical issues, particularly relating to zones of diffuse seismicity. In the future, greater harmonisation in hazard assessments and, to some extent, in earthquake design levels could emerge through the more widespread use of probabilistic methods. International collaborative ventures and joint projects will be important for resolving anomalies in the existing databases and their interpretations, and for acquiring new data, but to achieve their ideal objectives, they will need to proceed in clearly defined stages. (author)

  1. Use of the t-distribution to construct seismic hazard curves for seismic probabilistic safety assessments

    Energy Technology Data Exchange (ETDEWEB)

    Yee, Eric [KEPCO International Nuclear Graduate School, Dept. of Nuclear Power Plant Engineering, Ulsan (Korea, Republic of)

    2017-03-15

    Seismic probabilistic safety assessments are used to help understand the impact potential seismic events can have on the operation of a nuclear power plant. An important component to seismic probabilistic safety assessment is the seismic hazard curve which shows the frequency of seismic events. However, these hazard curves are estimated assuming a normal distribution of the seismic events. This may not be a strong assumption given the number of recorded events at each source-to-site distance. The use of a normal distribution makes the calculations significantly easier but may underestimate or overestimate the more rare events, which is of concern to nuclear power plants. This paper shows a preliminary exploration into the effect of using a distribution that perhaps more represents the distribution of events, such as the t-distribution to describe data. The integration of a probability distribution with potentially larger tails basically pushes the hazard curves outward, suggesting a different range of frequencies for use in seismic probabilistic safety assessments. Therefore the use of a more realistic distribution results in an increase in the frequency calculations suggesting rare events are less rare than thought in terms of seismic probabilistic safety assessment. However, the opposite was observed with the ground motion prediction equation considered.

  2. Use of the t-distribution to construct seismic hazard curves for seismic probabilistic safety assessments

    International Nuclear Information System (INIS)

    Yee, Eric

    2017-01-01

    Seismic probabilistic safety assessments are used to help understand the impact potential seismic events can have on the operation of a nuclear power plant. An important component to seismic probabilistic safety assessment is the seismic hazard curve which shows the frequency of seismic events. However, these hazard curves are estimated assuming a normal distribution of the seismic events. This may not be a strong assumption given the number of recorded events at each source-to-site distance. The use of a normal distribution makes the calculations significantly easier but may underestimate or overestimate the more rare events, which is of concern to nuclear power plants. This paper shows a preliminary exploration into the effect of using a distribution that perhaps more represents the distribution of events, such as the t-distribution to describe data. The integration of a probability distribution with potentially larger tails basically pushes the hazard curves outward, suggesting a different range of frequencies for use in seismic probabilistic safety assessments. Therefore the use of a more realistic distribution results in an increase in the frequency calculations suggesting rare events are less rare than thought in terms of seismic probabilistic safety assessment. However, the opposite was observed with the ground motion prediction equation considered

  3. SHC, Seismic Hazard Assessment for Eastern US

    International Nuclear Information System (INIS)

    Savy, J.; Davis, B.

    2001-01-01

    1 - Description of program or function: SHC was developed as part of the Eastern United States (EUS) Seismic Hazard Characterization (SHC) Project to design an SHC methodology for the region east of the Rocky Mountains in a form suitable for probabilistic risk assessment and to apply that methodology to 69 site locations, some of them with local soil conditions. The method developed uses expert opinions to obtain the input to the analysis. SHC contains four modules which calculate the seismic hazard at a site located in a region of diffuse seismicity, where the seismicity is modeled by area sources. SHC integrates the opinions of 11 seismicity and five ground-motion experts. The PRDS model generates the discrete probability density function of the distances to the site for the various seismic source zones. These probability distributions are used by the COMAP module to generate the set of all alternative maps and the discrete probability density of the seismic zonation maps for each expert. The third module, ALEAS, uses these maps and their weights to calculate the best estimate and constant percentile hazard distribution resulting from the choice of a given seismicity expert for all ground-motion experts. This module can be used alone to perform a seismic hazard analysis as well as in conjunction with the other modules. The fourth module, COMB, combines the best- estimate and constant-percentile hazard over all seismicity experts, using the set of weights calculated by ALEAS, to produce the final probability distribution of the hazard for the site under consideration so that the hazard analysis can be performed for any location in the EUS. Local geological-site characteristics are incorporated in a generic fashion, and the data are developed in a generic manner. 2 - Method of solution: SHC uses a seismic-source approach utilizing statistical and geological evidence to define geographical regions with homogeneous Poisson activity throughout the zone, described by a

  4. Seismic hazard assessment in the Ibero-Maghreb region

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, M.J.; Garcia fernandez, M. [Consejo Superior de Investigaciones Cientifcas, Barcelona (Spain). Inst. of Earth Sciences; GSAHP Ibero-Maghreb Working Group

    1999-12-01

    The paper illustrates the contribution of the Ibero-Maghreb region to the global GSHAP (Global Seismic Hazard Assessment Program) map: for the first time, a map of regional hazard source zones is presented and agreement on a common procedure for hazard computation in the region has been achieved.

  5. Final Report: Seismic Hazard Assessment at the PGDP

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhinmeng [KY Geological Survey, Univ of KY

    2007-06-01

    Selecting a level of seismic hazard at the Paducah Gaseous Diffusion Plant for policy considerations and engineering design is not an easy task because it not only depends on seismic hazard, but also on seismic risk and other related environmental, social, and economic issues. Seismic hazard is the main focus. There is no question that there are seismic hazards at the Paducah Gaseous Diffusion Plant because of its proximity to several known seismic zones, particularly the New Madrid Seismic Zone. The issues in estimating seismic hazard are (1) the methods being used and (2) difficulty in characterizing the uncertainties of seismic sources, earthquake occurrence frequencies, and ground-motion attenuation relationships. This report summarizes how input data were derived, which methodologies were used, and what the hazard estimates at the Paducah Gaseous Diffusion Plant are.

  6. The Spatial Assessment of the Current Seismic Hazard State for Hard Rock Underground Mines

    Science.gov (United States)

    Wesseloo, Johan

    2018-06-01

    Mining-induced seismic hazard assessment is an important component in the management of safety and financial risk in mines. As the seismic hazard is a response to the mining activity, it is non-stationary and variable both in space and time. This paper presents an approach for implementing a probabilistic seismic hazard assessment to assess the current hazard state of a mine. Each of the components of the probabilistic seismic hazard assessment is considered within the context of hard rock underground mines. The focus of this paper is the assessment of the in-mine hazard distribution and does not consider the hazard to nearby public or structures. A rating system and methodologies to present hazard maps, for the purpose of communicating to different stakeholders in the mine, i.e. mine managers, technical personnel and the work force, are developed. The approach allows one to update the assessment with relative ease and within short time periods as new data become available, enabling the monitoring of the spatial and temporal change in the seismic hazard.

  7. AECB workshop on seismic hazard assessment in Southern Ontario. Recorded proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    A workshop on seismic hazard assessment in southern Ontario was conducted on June 19-21, 1995. The purpose of the workshop was to review available geological and seismological data which could affect earthquake occurrence in southern Ontario and to develop a consensus on approaches that should be adopted for characterization of seismic hazard. The workshop was structured in technical sessions to focus presentations and discussions on four technical issues relevant to seismic hazard in southern Ontario, as follows: The importance of geological and geophysical observations for the determination of seismic sources; Methods and approaches which may be adopted for determining seismic sources based on integrated interpretations of geological and seismological information. Methods and data which should be used for characterizing the seismicity parameters of seismic sources. Methods for assessment of vibratory ground motion hazard. This document presents transcripts from recordings made of the presentations and discussion from the workshop. It will be noted, in some sections of the document, that the record is incomplete. This is due in part to recording equipment malfunction and in part due to the poor quality of recording obtained for certain periods.

  8. AECB workshop on seismic hazard assessment in Southern Ontario. Recorded proceedings

    International Nuclear Information System (INIS)

    1995-01-01

    A workshop on seismic hazard assessment in southern Ontario was conducted on June 19-21, 1995. The purpose of the workshop was to review available geological and seismological data which could affect earthquake occurrence in southern Ontario and to develop a consensus on approaches that should be adopted for characterization of seismic hazard. The workshop was structured in technical sessions to focus presentations and discussions on four technical issues relevant to seismic hazard in southern Ontario, as follows: The importance of geological and geophysical observations for the determination of seismic sources; Methods and approaches which may be adopted for determining seismic sources based on integrated interpretations of geological and seismological information. Methods and data which should be used for characterizing the seismicity parameters of seismic sources. Methods for assessment of vibratory ground motion hazard. This document presents transcripts from recordings made of the presentations and discussion from the workshop. It will be noted, in some sections of the document, that the record is incomplete. This is due in part to recording equipment malfunction and in part due to the poor quality of recording obtained for certain periods

  9. The Global Seismic Hazard Assessment Program (GSHAP - 1992/1999

    Directory of Open Access Journals (Sweden)

    D. Giardini

    1999-06-01

    Full Text Available The United Nations, recognizing natural disasters as a major threat to human life and development, designed the 1990-1999 period as the International Decade for Natural Disaster Reduction (UN/IDNDR; UN Res. 42/169/ 1987. Among the IDNDR Demonstration Projects is the Global Seismic Hazard Assessment Program (GSHAP, launched in 1992 by the International Lithosphere Program (ILP and implemented in the 1992-1999 period. In order to mitigate the risk associated to the recurrence of earthquakes, the GSHAP promoted a regionally coordinated, homogeneous approach to seismic hazard evaluation. To achieve a global dimension, the GSHAP established initially a mosaic of regions and multinational test areas, then expanded to cover whole continents and finally the globe. The GSHAP Global Map of Seismic Hazard integrates the results obtained in the regional areas and depicts Peak-Ground-Acceleration (PGA with 10% chance of exceedance in 50 years, corresponding to a return period of 475 years. All regional results and the Global Map of Seismic Hazard are published in 1999 and available on the GSHAP homepage on http://seismo.ethz.ch/GSHAP/.

  10. The Contribution of Palaeoseismology to Seismic Hazard Assessment in Site Evaluation for Nuclear Installations

    International Nuclear Information System (INIS)

    2015-06-01

    IAEA Safety Standards Series No. SSG-9, Seismic Hazards in Site Evaluation for Nuclear Installations, published in 2010, covers all aspects of site evaluation relating to seismic hazards and recommends the use of prehistoric, historical and instrumental earthquake data in seismic hazard assessments. Prehistoric data on earthquakes cover a much longer period than do historical and instrumental data. However, gathering such data is generally difficult in most regions of the world, owing to an absence of human records. Prehistoric data on earthquakes can be obtained through the use of palaeoseismic techniques. This publication describes the current status and practices of palaeoseismology, in order to support Member States in meeting the recommendations of SSG-9 and in establishing the necessary earthquake related database for seismic hazard assessment and reassessment. At a donors’ meeting of the International Seismic Safety Centre Extrabudgetary Project in January 2011, it was suggested to develop detailed guidelines on seismic hazards. Soon after the meeting, the disastrous Great East Japan Earthquake and Tsunami of 11 March 2011 and the consequent accident at the Fukushima Daiichi nuclear power plant occurred. The importance of palaeoseismology for seismic hazard assessment in site evaluation was highlighted by the lessons learned from the Fukushima Daiichi nuclear power plant accident. However, no methodology for performing investigations using palaeoseismic techniques has so far been available in an IAEA publication. The detailed guidelines and practical tools provided here will be of value to nuclear power plant operating organizations, regulatory bodies, vendors, technical support organizations and researchers in the area of seismic hazard assessment in site evaluation for nuclear installations, and the information will be of importance in support of hazard assessments in the future

  11. Seismic Hazard Assessment for a Characteristic Earthquake Scenario: Probabilistic-Deterministic Method

    Science.gov (United States)

    mouloud, Hamidatou

    2016-04-01

    The objective of this paper is to analyze the seismic activity and the statistical treatment of seismicity catalog the Constantine region between 1357 and 2014 with 7007 seismic event. Our research is a contribution to improving the seismic risk management by evaluating the seismic hazard in the North-East Algeria. In the present study, Earthquake hazard maps for the Constantine region are calculated. Probabilistic seismic hazard analysis (PSHA) is classically performed through the Cornell approach by using a uniform earthquake distribution over the source area and a given magnitude range. This study aims at extending the PSHA approach to the case of a characteristic earthquake scenario associated with an active fault. The approach integrates PSHA with a high-frequency deterministic technique for the prediction of peak and spectral ground motion parameters in a characteristic earthquake. The method is based on the site-dependent evaluation of the probability of exceedance for the chosen strong-motion parameter. We proposed five sismotectonique zones. Four steps are necessary: (i) identification of potential sources of future earthquakes, (ii) assessment of their geological, geophysical and geometric, (iii) identification of the attenuation pattern of seismic motion, (iv) calculation of the hazard at a site and finally (v) hazard mapping for a region. In this study, the procedure of the earthquake hazard evaluation recently developed by Kijko and Sellevoll (1992) is used to estimate seismic hazard parameters in the northern part of Algeria.

  12. Seismic hazard assessment; Valutazione della pericolosita` sismica

    Energy Technology Data Exchange (ETDEWEB)

    Paciello, A. [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dip. Ambiente

    1998-12-31

    This paper presents a brief summary of the most commonly used methodologies for seismic hazard assessment. The interest is focused on the probabilistic approach, which can take into account the uncertainties of input data and provides results better comparable with those obtained from hazard analyses of other natural phenomena. Calculation methods, input data and treatment of variability are examined. Some examples of probabilistic seismic hazard maps are moreover presented. [Italiano] Questo lavoro presenta un breve sommario delle piu` comuni metodologie utilizzate per la valutazione della pericolosita` sismica di un sito. Una particolare attenzione e` rivolta all`approccio probabilistico, che permette di tener conto delle incertezze legate ai dati iniziali e fornisce risultati piu` facilmente confrontabili con quelli ottenuti da analisi di pericolosita` di altri fenomeni naturali. Vengono presi in esame i metodi di calcolo, i dati di base e il trattamento delle incertezze. Vengono inoltre presentati alcuni esempi di carte di pericolosita` sismica di tipo probabilistico.

  13. Development of seismic hazard analysis in Japan

    International Nuclear Information System (INIS)

    Itoh, T.; Ishii, K.; Ishikawa, Y.; Okumura, T.

    1987-01-01

    In recent years, seismic risk assessment of the nuclear power plant have been conducted increasingly in various countries, particularly in the United States to evaluate probabilistically the safety of existing plants under earthquake loading. The first step of the seismic risk assessment is the seismic hazard analysis, in which the relationship between the maximum earthquake ground motions at the plant site and their annual probability of exceedance, i.e. the seismic hazard curve, is estimated. In this paper, seismic hazard curves are evaluated and examined based on historical earthquake records model, in which seismic sources are modeled with area-sources, for several different sites in Japan. A new evaluation method is also proposed to compute the response spectra of the earthquake ground motions in connection with estimating the probabilistic structural response. Finally the numerical result of probabilistic risk assessment for a base-isolated three story RC structure, in which the frequency of seismic induced structural failure is evaluated combining the seismic hazard analysis, is described briefly

  14. Setting the Stage for Harmonized Risk Assessment by Seismic Hazard Harmonization in Europe (SHARE)

    Science.gov (United States)

    Woessner, Jochen; Giardini, Domenico; SHARE Consortium

    2010-05-01

    Probabilistic seismic hazard assessment (PSHA) is arguably one of the most useful products that seismology can offer to society. PSHA characterizes the best available knowledge on the seismic hazard of a study area, ideally taking into account all sources of uncertainty. Results form the baseline for informed decision making, such as building codes or insurance rates and provide essential input to each risk assessment application. Several large scale national and international projects have recently been launched aimed at improving and harmonizing PSHA standards around the globe. SHARE (www.share-eu.org) is the European Commission funded project in the Framework Programme 7 (FP-7) that will create an updated, living seismic hazard model for the Euro-Mediterranean region. SHARE is a regional component of the Global Earthquake Model (GEM, www.globalquakemodel.org), a public/private partnership initiated and approved by the Global Science Forum of the OECD-GSF. GEM aims to be the uniform, independent and open access standard to calculate and communicate earthquake hazard and risk worldwide. SHARE itself will deliver measurable progress in all steps leading to a harmonized assessment of seismic hazard - in the definition of engineering requirements, in the collection of input data, in procedures for hazard assessment, and in engineering applications. SHARE scientists will create a unified framework and computational infrastructure for seismic hazard assessment and produce an integrated European probabilistic seismic hazard assessment (PSHA) model and specific scenario based modeling tools. The results will deliver long-lasting structural impact in areas of societal and economic relevance, they will serve as reference for the Eurocode 8 (EC8) application, and will provide homogeneous input for the correct seismic safety assessment for critical industry, such as the energy infrastructures and the re-insurance sector. SHARE will cover the whole European territory, the

  15. Scenario for a Short-Term Probabilistic Seismic Hazard Assessment (PSHA in Chiayi, Taiwan

    Directory of Open Access Journals (Sweden)

    Chung-Han Chan

    2013-01-01

    Full Text Available Using seismic activity and the Meishan earthquake sequence that occurred from 1904 to 1906, a scenario for short-term probabilistic seismic hazards in the Chiayi region of Taiwan is assessed. The long-term earthquake occurrence rate in Taiwan was evaluated using a smoothing kernel. The highest seismicity rate was calculated around the Chiayi region. To consider earthquake interactions, the rate-and-state friction model was introduced to estimate the seismicity rate evolution due to the Coulomb stress change. As imparted by the 1904 Touliu earthquake, stress changes near the 1906 Meishan and Yangshuigang epicenters was higher than the magnitude of tidal triggering. With regard to the impact of the Meishan earthquake, the region close to the Yangshuigang earthquake epicenter had a +0.75 bar stress increase. The results indicated significant interaction between the three damage events. Considering the path and site effect using ground motion prediction equations, a probabilistic seismic hazard in the form of a hazard evolution and a hazard map was assessed. A significant elevation in hazards following the three earthquakes in the sequence was determined. The results illustrate a possible scenario for seismic hazards in the Chiayi region which may take place repeatly in the future. Such scenario provides essential information on earthquake preparation, devastation estimations, emergency sheltering, utility restoration, and structure reconstruction.

  16. Seismic hazard assessment for the Caucasus test area

    Czech Academy of Sciences Publication Activity Database

    Balassanian, S.; Ashirov, T.; Chelidze, T.; Gassanov, A.; Kondorskaya, N.; Molchan, G.; Pustovitenko, B.; Trifonov, V.; Ulomov, V.; Giardini, D.; Erdik, M.; Ghafory-Ashtiany, M.; Grunthal, G.; Mayer-Rosa, D.; Schenk, Vladimír; Stucchi, M.

    1999-01-01

    Roč. 42, č. 6 (1999), s. 1139-1151 ISSN 0365-2556 R&D Projects: GA AV ČR Global Seismic Hazard Assessment Program (GSHAP) - project of the UN International Decade of Natural Disaster Reduction and International Litosphere Program. Subject RIV: DC - Siesmology, Volcanology, Earth Structure

  17. Seismic fragility analysis of a nuclear building based on probabilistic seismic hazard assessment and soil-structure interaction analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, R.; Ni, S.; Chen, R.; Han, X.M. [CANDU Energy Inc, Mississauga, Ontario (Canada); Mullin, D. [New Brunswick Power, Point Lepreau, New Brunswick (Canada)

    2016-09-15

    Seismic fragility analyses are conducted as part of seismic probabilistic safety assessment (SPSA) for nuclear facilities. Probabilistic seismic hazard assessment (PSHA) has been undertaken for a nuclear power plant in eastern Canada. Uniform Hazard Spectra (UHS), obtained from the PSHA, is characterized by high frequency content which differs from the original plant design basis earthquake spectral shape. Seismic fragility calculations for the service building of a CANDU 6 nuclear power plant suggests that the high frequency effects of the UHS can be mitigated through site response analysis with site specific geological conditions and state-of-the-art soil-structure interaction analysis. In this paper, it is shown that by performing a detailed seismic analysis using the latest technology, the conservatism embedded in the original seismic design can be quantified and the seismic capacity of the building in terms of High Confidence of Low Probability of Failure (HCLPF) can be improved. (author)

  18. Seismic hazard assessment of the Province of Murcia (SE Spain): analysis of source contribution to hazard

    Science.gov (United States)

    García-Mayordomo, J.; Gaspar-Escribano, J. M.; Benito, B.

    2007-10-01

    A probabilistic seismic hazard assessment of the Province of Murcia in terms of peak ground acceleration (PGA) and spectral accelerations [SA( T)] is presented in this paper. In contrast to most of the previous studies in the region, which were performed for PGA making use of intensity-to-PGA relationships, hazard is here calculated in terms of magnitude and using European spectral ground-motion models. Moreover, we have considered the most important faults in the region as specific seismic sources, and also comprehensively reviewed the earthquake catalogue. Hazard calculations are performed following the Probabilistic Seismic Hazard Assessment (PSHA) methodology using a logic tree, which accounts for three different seismic source zonings and three different ground-motion models. Hazard maps in terms of PGA and SA(0.1, 0.2, 0.5, 1.0 and 2.0 s) and coefficient of variation (COV) for the 475-year return period are shown. Subsequent analysis is focused on three sites of the province, namely, the cities of Murcia, Lorca and Cartagena, which are important industrial and tourism centres. Results at these sites have been analysed to evaluate the influence of the different input options. The most important factor affecting the results is the choice of the attenuation relationship, whereas the influence of the selected seismic source zonings appears strongly site dependant. Finally, we have performed an analysis of source contribution to hazard at each of these cities to provide preliminary guidance in devising specific risk scenarios. We have found that local source zones control the hazard for PGA and SA( T ≤ 1.0 s), although contribution from specific fault sources and long-distance north Algerian sources becomes significant from SA(0.5 s) onwards.

  19. Seismic Hazard and Risk Assessments for Beijing-Tianjin-Tangshan, China, Area

    Science.gov (United States)

    Xie, Furen; Wang, Zhenming; Liu, Jingwei

    2011-03-01

    Seismic hazard and risk in the Beijing-Tianjin-Tangshan, China, area were estimated from 500-year intensity observations. First, we digitized the intensity observations (maps) using ArcGIS with a cell size of 0.1 × 0.1°. Second, we performed a statistical analysis on the digitized intensity data, determined an average b value (0.39), and derived the intensity-frequency relationship (hazard curve) for each cell. Finally, based on a Poisson model for earthquake occurrence, we calculated seismic risk in terms of a probability of I ≥ 7, 8, or 9 in 50 years. We also calculated the corresponding 10 percent probability of exceedance of these intensities in 50 years. The advantages of assessing seismic hazard and risk from intensity records are that (1) fewer assumptions (i.e., earthquake source and ground motion attenuation) are made, and (2) site-effect is included. Our study shows that the area has high seismic hazard and risk. Our study also suggests that current design peak ground acceleration or intensity for the area may not be adequate.

  20. Recent achievements of the neo-deterministic seismic hazard assessment in the CEI region

    International Nuclear Information System (INIS)

    Panza, G.F.; Vaccari, F.; Kouteva, M.

    2008-03-01

    A review of the recent achievements of the innovative neo-deterministic approach for seismic hazard assessment through realistic earthquake scenarios has been performed. The procedure provides strong ground motion parameters for the purpose of earthquake engineering, based on the deterministic seismic wave propagation modelling at different scales - regional, national and metropolitan. The main advantage of this neo-deterministic procedure is the simultaneous treatment of the contribution of the earthquake source and seismic wave propagation media to the strong motion at the target site/region, as required by basic physical principles. The neo-deterministic seismic microzonation procedure has been successfully applied to numerous metropolitan areas all over the world in the framework of several international projects. In this study some examples focused on CEI region concerning both regional seismic hazard assessment and seismic microzonation of the selected metropolitan areas are shown. (author)

  1. Seismic hazard assessment based on the Unified Scaling Law for Earthquakes: the Greater Caucasus

    Science.gov (United States)

    Nekrasova, A.; Kossobokov, V. G.

    2015-12-01

    Losses from natural disasters continue to increase mainly due to poor understanding by majority of scientific community, decision makers and public, the three components of Risk, i.e., Hazard, Exposure, and Vulnerability. Contemporary Science is responsible for not coping with challenging changes of Exposures and their Vulnerability inflicted by growing population, its concentration, etc., which result in a steady increase of Losses from Natural Hazards. Scientists owe to Society for lack of knowledge, education, and communication. In fact, Contemporary Science can do a better job in disclosing Natural Hazards, assessing Risks, and delivering such knowledge in advance catastrophic events. We continue applying the general concept of seismic risk analysis in a number of seismic regions worldwide by constructing regional seismic hazard maps based on the Unified Scaling Law for Earthquakes (USLE), i.e. log N(M,L) = A - B•(M-6) + C•log L, where N(M,L) is the expected annual number of earthquakes of a certain magnitude M within an seismically prone area of linear dimension L. The parameters A, B, and C of USLE are used to estimate, first, the expected maximum magnitude in a time interval at a seismically prone cell of a uniform grid that cover the region of interest, and then the corresponding expected ground shaking parameters including macro-seismic intensity. After a rigorous testing against the available seismic evidences in the past (e.g., the historically reported macro-seismic intensity), such a seismic hazard map is used to generate maps of specific earthquake risks (e.g., those based on the density of exposed population). The methodology of seismic hazard and risks assessment based on USLE is illustrated by application to the seismic region of Greater Caucasus.

  2. Seismic Hazard and risk assessment for Romania -Bulgaria cross-border region

    Science.gov (United States)

    Simeonova, Stela; Solakov, Dimcho; Alexandrova, Irena; Vaseva, Elena; Trifonova, Petya; Raykova, Plamena

    2016-04-01

    Among the many kinds of natural and man-made disasters, earthquakes dominate with regard to their social and economical impact on the urban environment. Global seismic hazard and vulnerability to earthquakes are steadily increasing as urbanization and development occupy more areas that are prone to effects of strong earthquakes. The assessment of the seismic hazard and risk is particularly important, because it provides valuable information for seismic safety and disaster mitigation, and it supports decision making for the benefit of society. Romania and Bulgaria, situated in the Balkan Region as a part of the Alpine-Himalayan seismic belt, are characterized by high seismicity, and are exposed to a high seismic risk. Over the centuries, both countries have experienced strong earthquakes. The cross-border region encompassing the northern Bulgaria and southern Romania is a territory prone to effects of strong earthquakes. The area is significantly affected by earthquakes occurred in both countries, on the one hand the events generated by the Vrancea intermediate-depth seismic source in Romania, and on the other hand by the crustal seismicity originated in the seismic sources: Shabla (SHB), Dulovo, Gorna Orjahovitza (GO) in Bulgaria. The Vrancea seismogenic zone of Romania is a very peculiar seismic source, often described as unique in the world, and it represents a major concern for most of the northern part of Bulgaria as well. In the present study the seismic hazard for Romania-Bulgaria cross-border region on the basis of integrated basic geo-datasets is assessed. The hazard results are obtained by applying two alternative approaches - probabilistic and deterministic. The MSK64 intensity (MSK64 scale is practically equal to the new EMS98) is used as output parameter for the hazard maps. We prefer to use here the macroseismic intensity instead of PGA, because it is directly related to the degree of damages and, moreover, the epicentral intensity is the original

  3. Lower bound earthquake magnitude for probabilistic seismic hazard evaluation

    International Nuclear Information System (INIS)

    McCann, M.W. Jr.; Reed, J.W.

    1990-01-01

    This paper presents the results of a study that develops an engineering and seismological basis for selecting a lower-bound magnitude (LBM) for use in seismic hazard assessment. As part of a seismic hazard analysis the range of earthquake magnitudes that are included in the assessment of the probability of exceedance of ground motion must be defined. The upper-bound magnitude is established by earth science experts based on their interpretation of the maximum size of earthquakes that can be generated by a seismic source. The lower-bound or smallest earthquake that is considered in the analysis must also be specified. The LBM limits the earthquakes that are considered in assessing the probability that specified ground motion levels are exceeded. In the past there has not been a direct consideration of the appropriate LBM value that should be used in a seismic hazard assessment. This study specifically looks at the selection of a LBM for use in seismic hazard analyses that are input to the evaluation/design of nuclear power plants (NPPs). Topics addressed in the evaluation of a LBM are earthquake experience data at heavy industrial facilities, engineering characteristics of ground motions associated with small-magnitude earthquakes, probabilistic seismic risk assessments (seismic PRAs), and seismic margin evaluations. The results of this study and the recommendations concerning a LBM for use in seismic hazard assessments are discussed. (orig.)

  4. Neo-Deterministic and Probabilistic Seismic Hazard Assessments: a Comparative Analysis

    Science.gov (United States)

    Peresan, Antonella; Magrin, Andrea; Nekrasova, Anastasia; Kossobokov, Vladimir; Panza, Giuliano F.

    2016-04-01

    Objective testing is the key issue towards any reliable seismic hazard assessment (SHA). Different earthquake hazard maps must demonstrate their capability in anticipating ground shaking from future strong earthquakes before an appropriate use for different purposes - such as engineering design, insurance, and emergency management. Quantitative assessment of maps performances is an essential step also in scientific process of their revision and possible improvement. Cross-checking of probabilistic models with available observations and independent physics based models is recognized as major validation procedure. The existing maps from the classical probabilistic seismic hazard analysis (PSHA), as well as those from the neo-deterministic analysis (NDSHA), which have been already developed for several regions worldwide (including Italy, India and North Africa), are considered to exemplify the possibilities of the cross-comparative analysis in spotting out limits and advantages of different methods. Where the data permit, a comparative analysis versus the documented seismic activity observed in reality is carried out, showing how available observations about past earthquakes can contribute to assess performances of the different methods. Neo-deterministic refers to a scenario-based approach, which allows for consideration of a wide range of possible earthquake sources as the starting point for scenarios constructed via full waveforms modeling. The method does not make use of empirical attenuation models (i.e. Ground Motion Prediction Equations, GMPE) and naturally supplies realistic time series of ground shaking (i.e. complete synthetic seismograms), readily applicable to complete engineering analysis and other mitigation actions. The standard NDSHA maps provide reliable envelope estimates of maximum seismic ground motion from a wide set of possible scenario earthquakes, including the largest deterministically or historically defined credible earthquake. In addition

  5. A transparent and data-driven global tectonic regionalization model for seismic hazard assessment

    Science.gov (United States)

    Chen, Yen-Shin; Weatherill, Graeme; Pagani, Marco; Cotton, Fabrice

    2018-05-01

    A key concept that is common to many assumptions inherent within seismic hazard assessment is that of tectonic similarity. This recognizes that certain regions of the globe may display similar geophysical characteristics, such as in the attenuation of seismic waves, the magnitude scaling properties of seismogenic sources or the seismic coupling of the lithosphere. Previous attempts at tectonic regionalization, particularly within a seismic hazard assessment context, have often been based on expert judgements; in most of these cases, the process for delineating tectonic regions is neither reproducible nor consistent from location to location. In this work, the regionalization process is implemented in a scheme that is reproducible, comprehensible from a geophysical rationale, and revisable when new relevant data are published. A spatial classification-scheme is developed based on fuzzy logic, enabling the quantification of concepts that are approximate rather than precise. Using the proposed methodology, we obtain a transparent and data-driven global tectonic regionalization model for seismic hazard applications as well as the subjective probabilities (e.g. degree of being active/degree of being cratonic) that indicate the degree to which a site belongs in a tectonic category.

  6. Transparent Global Seismic Hazard and Risk Assessment

    Science.gov (United States)

    Smolka, Anselm; Schneider, John; Pinho, Rui; Crowley, Helen

    2013-04-01

    Vulnerability to earthquakes is increasing, yet advanced reliable risk assessment tools and data are inaccessible to most, despite being a critical basis for managing risk. Also, there are few, if any, global standards that allow us to compare risk between various locations. The Global Earthquake Model (GEM) is a unique collaborative effort that aims to provide organizations and individuals with tools and resources for transparent assessment of earthquake risk anywhere in the world. By pooling data, knowledge and people, GEM acts as an international forum for collaboration and exchange, and leverages the knowledge of leading experts for the benefit of society. Sharing of data and risk information, best practices, and approaches across the globe is key to assessing risk more effectively. Through global projects, open-source IT development and collaborations with more than 10 regions, leading experts are collaboratively developing unique global datasets, best practice, open tools and models for seismic hazard and risk assessment. Guided by the needs and experiences of governments, companies and citizens at large, they work in continuous interaction with the wider community. A continuously expanding public-private partnership constitutes the GEM Foundation, which drives the collaborative GEM effort. An integrated and holistic approach to risk is key to GEM's risk assessment platform, OpenQuake, that integrates all above-mentioned contributions and will become available towards the end of 2014. Stakeholders worldwide will be able to calculate, visualise and investigate earthquake risk, capture new data and to share their findings for joint learning. Homogenized information on hazard can be combined with data on exposure (buildings, population) and data on their vulnerability, for loss assessment around the globe. Furthermore, for a true integrated view of seismic risk, users can add social vulnerability and resilience indices to maps and estimate the costs and benefits

  7. Seismic Hazard Assessment in Site Evaluation for Nuclear Installations: Ground Motion Prediction Equations and Site Response

    International Nuclear Information System (INIS)

    2016-07-01

    The objective of this publication is to provide the state-of-the-art practice and detailed technical elements related to ground motion evaluation by ground motion prediction equations (GMPEs) and site response in the context of seismic hazard assessments as recommended in IAEA Safety Standards Series No. SSG-9, Seismic Hazards in Site Evaluation for Nuclear Installations. The publication includes the basics of GMPEs, ground motion simulation, selection and adjustment of GMPEs, site characterization, and modelling of site response in order to improve seismic hazard assessment. The text aims at delineating the most important aspects of these topics (including current practices, criticalities and open problems) within a coherent framework. In particular, attention has been devoted to filling conceptual gaps. It is written as a reference text for trained users who are responsible for planning preparatory seismic hazard analyses for siting of all nuclear installations and/or providing constraints for anti-seismic design and retrofitting of existing structures

  8. Probabilistic Seismic Hazard Assessment Method for Nonlinear Soil Sites based on the Hazard Spectrum of Bedrock Sites

    International Nuclear Information System (INIS)

    Hahm, Dae Gi; Seo, Jeong Moon; Choi, In Kil

    2011-01-01

    For the probabilistic safety assessment of the nuclear power plants (NPP) under seismic events, the rational probabilistic seismic hazard estimation should be performed. Generally, the probabilistic seismic hazard of NPP site is represented by the uniform hazard spectrum (UHS) for the specific annual frequency. In most case, since that the attenuation equations were defined for the bedrock sites, the standard attenuation laws cannot be applied to the general soft soil sites. Hence, for the probabilistic estimation of the seismic hazard of soft soil sites, a methodology of probabilistic seismic hazard analysis (PSHA) coupled with nonlinear dynamic analyses of the soil column are required. Two methods are commonly used for the site response analysis considering the nonlinearity of sites. The one is the deterministic method and another is the probabilistic method. In the analysis of site response, there exist many uncertainty factors such as the variation of the magnitude and frequency contents of input ground motion, and material properties of soil deposits. Hence, nowadays, it is recommended that the adoption of the probabilistic method for the PSHA of soft soil deposits considering such uncertainty factors. In this study, we estimated the amplification factor of the surface of the soft soil deposits with considering the uncertainties of the input ground motions and the soil material properties. Then, we proposed the probabilistic methodology to evaluate the UHS of the soft soil site by multiplying the amplification factor to that of the bedrock site. The proposed method was applied to four typical target sites of KNGR and APR1400 NPP site categories

  9. Probabilistic tsunami hazard assessment considering time-lag of seismic event on Nankai trough

    International Nuclear Information System (INIS)

    Sugino, Hideharu; Sakagami, Masaharu; Ebisawa, Katsumi; Korenaga, Mariko

    2011-01-01

    In the area in front of Nankai trough, tsunami wave height may increase if tsunamis attacking from some wave sources overlap because of time-lag of seismic event on Nankai trough. To evaluation tsunami risk of the important facilities located in front of Nankai trough, we proposed the probabilistic tsunami hazard assessment considering uncertainty on time-lag of seismic event on Nankai trough and we evaluated the influence that the time-lag gave to tsunami hazard at the some representative points. (author)

  10. Application-driven ground motion prediction equation for seismic hazard assessments in non-cratonic moderate-seismicity areas

    Science.gov (United States)

    Bindi, D.; Cotton, F.; Kotha, S. R.; Bosse, C.; Stromeyer, D.; Grünthal, G.

    2017-09-01

    We present a ground motion prediction equation (GMPE) for probabilistic seismic hazard assessments (PSHA) in low-to-moderate seismicity areas, such as Germany. Starting from the NGA-West2 flat-file (Ancheta et al. in Earthquake Spectra 30:989-1005, 2014), we develop a model tailored to the hazard application in terms of data selection and implemented functional form. In light of such hazard application, the GMPE is derived for hypocentral distance (along with the Joyner-Boore one), selecting recordings at sites with vs30 ≥ 360 m/s, distances within 300 km, and magnitudes in the range 3 to 8 (being 7.4 the maximum magnitude for the PSHA in the target area). Moreover, the complexity of the considered functional form is reflecting the availability of information in the target area. The median predictions are compared with those from the NGA-West2 models and with one recent European model, using the Sammon's map constructed for different scenarios. Despite the simplification in the functional form, the assessed epistemic uncertainty in the GMPE median is of the order of those affecting the NGA-West2 models for the magnitude range of interest of the hazard application. On the other hand, the simplification of the functional form led to an increment of the apparent aleatory variability. In conclusion, the GMPE developed in this study is tailored to the needs for applications in low-to-moderate seismic areas and for short return periods (e.g., 475 years); its application in studies where the hazard is involving magnitudes above 7.4 and for long return periods is not advised.

  11. Seismic hazard and risk assessment for large Romanian dams situated in the Moldavian Platform

    Science.gov (United States)

    Moldovan, Iren-Adelina; Popescu, Emilia; Otilia Placinta, Anica; Petruta Constantin, Angela; Toma Danila, Dragos; Borleanu, Felix; Emilian Toader, Victorin; Moldoveanu, Traian

    2016-04-01

    Besides periodical technical inspections, the monitoring and the surveillance of dams' related structures and infrastructures, there are some more seismic specific requirements towards dams' safety. The most important one is the seismic risk assessment that can be accomplished by rating the dams into seismic risk classes using the theory of Bureau and Ballentine (2002), and Bureau (2003), taking into account the maximum expected peak ground motions at the dams site - values obtained using probabilistic hazard assessment approaches (Moldovan et al., 2008), the structures vulnerability and the downstream risk characteristics (human, economical, historic and cultural heritage, etc) in the areas that might be flooded in the case of a dam failure. Probabilistic seismic hazard (PSH), vulnerability and risk studies for dams situated in the Moldavian Platform, starting from Izvorul Muntelui Dam, down on Bistrita and following on Siret River and theirs affluent will be realized. The most vulnerable dams will be studied in detail and flooding maps will be drawn to find the most exposed downstream localities both for risk assessment studies and warnings. GIS maps that clearly indicate areas that are potentially flooded are enough for these studies, thus giving information on the number of inhabitants and goods that may be destroyed. Geospatial servers included topography is sufficient to achieve them, all other further studies are not necessary for downstream risk assessment. The results will consist of local and regional seismic information, dams specific characteristics and locations, seismic hazard maps and risk classes, for all dams sites (for more than 30 dams), inundation maps (for the most vulnerable dams from the region) and possible affected localities. The studies realized in this paper have as final goal to provide the local emergency services with warnings of a potential dam failure and ensuing flood as a result of an large earthquake occurrence, allowing further

  12. Application of Gumbel I and Monte Carlo methods to assess seismic hazard in and around Pakistan

    Science.gov (United States)

    Rehman, Khaista; Burton, Paul W.; Weatherill, Graeme A.

    2018-05-01

    A proper assessment of seismic hazard is of considerable importance in order to achieve suitable building construction criteria. This paper presents probabilistic seismic hazard assessment in and around Pakistan (23° N-39° N; 59° E-80° E) in terms of peak ground acceleration (PGA). Ground motion is calculated in terms of PGA for a return period of 475 years using a seismogenic-free zone method of Gumbel's first asymptotic distribution of extreme values and Monte Carlo simulation. Appropriate attenuation relations of universal and local types have been used in this study. The results show that for many parts of Pakistan, the expected seismic hazard is relatively comparable with the level specified in the existing PGA maps.

  13. Innovative assesment of the seismic hazard from Vrancea sources

    International Nuclear Information System (INIS)

    Panza, Giuliano Francesco

    2002-01-01

    In the framework of a very fruitful, stimulating and still ongoing collaboration between the National Institute for Earth Physics - Bucharest, the Department of Earth Sciences - University of Trieste and The Abdus Salam International Center for Theoretical Physics - SAND Group, several innovative steps forwards have been made in the assessment of the seismic hazard generated by Vrancea seismicity. The limits of currently applied probabilistic approaches are partly overcome by the introduction of hazard scenarios based on the deterministic, realistic modeling of ground motion. The ongoing co-operation represents a fundamental contribution to the reliable assessment of seismic hazard, and has been recently enriched by the participation of Bulgarian scientists, who are facing, in the urban settlements close to the Romanian border, a seismic hazard similar to the one in Bucharest. (author)

  14. Probabilistic seismic hazard assessment for the effect of vertical ground motions on seismic response of highway bridges

    Science.gov (United States)

    Yilmaz, Zeynep

    Typically, the vertical component of the ground motion is not considered explicitly in seismic design of bridges, but in some cases the vertical component can have a significant effect on the structural response. The key question of when the vertical component should be incorporated in design is answered by the probabilistic seismic hazard assessment study incorporating the probabilistic seismic demand models and ground motion models. Nonlinear simulation models with varying configurations of an existing bridge in California were considered in the analytical study. The simulation models were subjected to the set of selected ground motions in two stages: at first, only horizontal components of the motion were applied; while in the second stage the structures were subjected to both horizontal and vertical components applied simultaneously and the ground motions that produced the largest adverse effects on the bridge system were identified. Moment demand in the mid-span and at the support of the longitudinal girder and the axial force demand in the column are found to be significantly affected by the vertical excitations. These response parameters can be modeled using simple ground motion parameters such as horizontal spectral acceleration and vertical spectral acceleration within 5% to 30% error margin depending on the type of the parameter and the period of the structure. For a complete hazard assessment, both of these ground motion parameters explaining the structural behavior should also be modeled. For the horizontal spectral acceleration, Abrahamson and Silva (2008) model was used within many available standard model. A new NGA vertical ground motion model consistent with the horizontal model was constructed. These models are combined in a vector probabilistic seismic hazard analyses. Series of hazard curves developed and presented for different locations in Bay Area for soil site conditions to provide a roadmap for the prediction of these features for future

  15. AECB workshop on seismic hazard assessment in Southern Ontario. Program, list of participants and abstracts

    International Nuclear Information System (INIS)

    1995-01-01

    The purpose of the workshop was to review available geological and seismological data which could affect earthquake occurrence in southern Ontario and to develop a consensus on approaches that should be adopted for characterization of seismic hazard. The workshop was structured in technical sessions to focus presentations and discussions on four technical issues relevant to seismic hazard in southern Ontario, as follows: (1) The importance of geological and geophysical observations for the determination of seismic sources, (2) Methods and approaches which may be adopted for determining seismic sources based on integrated interpretations of geological and seismological information, (3) Methods and data which should be used for characterizing the seismicity parameters of seismic sources, and (4) Methods for assessment of vibratory ground motion hazard. This document presents a copy of the workshop program, the list of participants and extended abstracts received from speakers. It was distributed to the participants prior to the workshop. The abstracts were intended to provide advance information and to afford some basis for meaningful discussion and exchange of information

  16. AECB workshop on seismic hazard assessment in Southern Ontario. Program, list of participants and abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The purpose of the workshop was to review available geological and seismological data which could affect earthquake occurrence in southern Ontario and to develop a consensus on approaches that should be adopted for characterization of seismic hazard. The workshop was structured in technical sessions to focus presentations and discussions on four technical issues relevant to seismic hazard in southern Ontario, as follows: (1) The importance of geological and geophysical observations for the determination of seismic sources, (2) Methods and approaches which may be adopted for determining seismic sources based on integrated interpretations of geological and seismological information, (3) Methods and data which should be used for characterizing the seismicity parameters of seismic sources, and (4) Methods for assessment of vibratory ground motion hazard. This document presents a copy of the workshop program, the list of participants and extended abstracts received from speakers. It was distributed to the participants prior to the workshop. The abstracts were intended to provide advance information and to afford some basis for meaningful discussion and exchange of information.

  17. Evaluation of seismic hazard at the northwestern part of Egypt

    Science.gov (United States)

    Ezzelarab, M.; Shokry, M. M. F.; Mohamed, A. M. E.; Helal, A. M. A.; Mohamed, Abuoelela A.; El-Hadidy, M. S.

    2016-01-01

    The objective of this study is to evaluate the seismic hazard at the northwestern Egypt using the probabilistic seismic hazard assessment approach. The Probabilistic approach was carried out based on a recent data set to take into account the historic seismicity and updated instrumental seismicity. A homogenous earthquake catalogue was compiled and a proposed seismic sources model was presented. The doubly-truncated exponential model was adopted for calculations of the recurrence parameters. Ground-motion prediction equations that recently recommended by experts and developed based upon earthquake data obtained from tectonic environments similar to those in and around the studied area were weighted and used for assessment of seismic hazard in the frame of logic tree approach. Considering a grid of 0.2° × 0.2° covering the study area, seismic hazard curves for every node were calculated. Hazard maps at bedrock conditions were produced for peak ground acceleration, in addition to six spectral periods (0.1, 0.2, 0.3, 1.0, 2.0 and 3.0 s) for return periods of 72, 475 and 2475 years. The unified hazard spectra of two selected rock sites at Alexandria and Mersa Matruh Cities were provided. Finally, the hazard curves were de-aggregated to determine the sources that contribute most of hazard level of 10% probability of exceedance in 50 years for the mentioned selected sites.

  18. Probabilistic seismic hazard assessments of Sabah, east Malaysia: accounting for local earthquake activity near Ranau

    Science.gov (United States)

    Khalil, Amin E.; Abir, Ismail A.; Ginsos, Hanteh; Abdel Hafiez, Hesham E.; Khan, Sohail

    2018-02-01

    Sabah state in eastern Malaysia, unlike most of the other Malaysian states, is characterized by common seismological activity; generally an earthquake of moderate magnitude is experienced at an interval of roughly every 20 years, originating mainly from two major sources, either a local source (e.g. Ranau and Lahad Dato) or a regional source (e.g. Kalimantan and South Philippines subductions). The seismicity map of Sabah shows the presence of two zones of distinctive seismicity, these zones are near Ranau (near Kota Kinabalu) and Lahad Datu in the southeast of Sabah. The seismicity record of Ranau begins in 1991, according to the international seismicity bulletins (e.g. United States Geological Survey and the International Seismological Center), and this short record is not sufficient for seismic source characterization. Fortunately, active Quaternary fault systems are delineated in the area. Henceforth, the seismicity of the area is thus determined as line sources referring to these faults. Two main fault systems are believed to be the source of such activities; namely, the Mensaban fault zone and the Crocker fault zone in addition to some other faults in their vicinity. Seismic hazard assessments became a very important and needed study for the extensive developing projects in Sabah especially with the presence of earthquake activities. Probabilistic seismic hazard assessments are adopted for the present work since it can provide the probability of various ground motion levels during expected from future large earthquakes. The output results are presented in terms of spectral acceleration curves and uniform hazard curves for periods of 500, 1000 and 2500 years. Since this is the first time that a complete hazard study has been done for the area, the output will be a base and standard for any future strategic plans in the area.

  19. Use of raster-based data layers to model spatial variation of seismotectonic data in probabilistic seismic hazard assessment

    Science.gov (United States)

    Zolfaghari, Mohammad R.

    2009-07-01

    Recent achievements in computer and information technology have provided the necessary tools to extend the application of probabilistic seismic hazard mapping from its traditional engineering use to many other applications. Examples for such applications are risk mitigation, disaster management, post disaster recovery planning and catastrophe loss estimation and risk management. Due to the lack of proper knowledge with regard to factors controlling seismic hazards, there are always uncertainties associated with all steps involved in developing and using seismic hazard models. While some of these uncertainties can be controlled by more accurate and reliable input data, the majority of the data and assumptions used in seismic hazard studies remain with high uncertainties that contribute to the uncertainty of the final results. In this paper a new methodology for the assessment of seismic hazard is described. The proposed approach provides practical facility for better capture of spatial variations of seismological and tectonic characteristics, which allows better treatment of their uncertainties. In the proposed approach, GIS raster-based data models are used in order to model geographical features in a cell-based system. The cell-based source model proposed in this paper provides a framework for implementing many geographically referenced seismotectonic factors into seismic hazard modelling. Examples for such components are seismic source boundaries, rupture geometry, seismic activity rate, focal depth and the choice of attenuation functions. The proposed methodology provides improvements in several aspects of the standard analytical tools currently being used for assessment and mapping of regional seismic hazard. The proposed methodology makes the best use of the recent advancements in computer technology in both software and hardware. The proposed approach is well structured to be implemented using conventional GIS tools.

  20. Input parameters for the statistical seismic hazard assessment in central part of Romania territory using crustal earthquakes

    International Nuclear Information System (INIS)

    Moldovan, A.I.; Bazacliu, O.; Popescu, E.

    2004-01-01

    The seismic hazard assessment in dense-populated geographical regions and subsequently the design of the strategic objectives (dams, nuclear power plants, etc.) are based on the knowledge of the seismicity parameters of the seismic sources which can generate ground motion amplitudes above the minimum level considered risky at the specific site and the way the seismic waves propagate between the focus and the site. The purpose of this paper is to provide a set of information required for a probabilistic assessment of the seismic hazard in the central Romanian territory relative to the following seismic sources: Fagaras zone (FC), Campulung zone (CP), and Transilvania zone (TD) all of them in the crust domain. Extremely vulnerable objectives are present in the central part of Romania, including cities of Pitesti and Sibiu and the 'Vidraru' dam. The analysis that we propose implies: (1) geometrical definition of the seismic sources, (2) estimation of the maximum possible magnitude, (3) estimation of the frequency - magnitude relationship and (4) estimation of the attenuation laws. As an example, the obtained input parameters are used to evaluate the seismic hazard distribution due to the crustal earthquakes applying the McGuire's procedure (1976). These preliminary results are in good agreement with the previous research based on deterministic approach (Radulian et al., 2000). (authors)

  1. Updated earthquake catalogue for seismic hazard analysis in Pakistan

    Science.gov (United States)

    Khan, Sarfraz; Waseem, Muhammad; Khan, Muhammad Asif; Ahmed, Waqas

    2018-03-01

    A reliable and homogenized earthquake catalogue is essential for seismic hazard assessment in any area. This article describes the compilation and processing of an updated earthquake catalogue for Pakistan. The earthquake catalogue compiled in this study for the region (quadrangle bounded by the geographical limits 40-83° N and 20-40° E) includes 36,563 earthquake events, which are reported as 4.0-8.3 moment magnitude (M W) and span from 25 AD to 2016. Relationships are developed between the moment magnitude and body, and surface wave magnitude scales to unify the catalogue in terms of magnitude M W. The catalogue includes earthquakes from Pakistan and neighbouring countries to minimize the effects of geopolitical boundaries in seismic hazard assessment studies. Earthquakes reported by local and international agencies as well as individual catalogues are included. The proposed catalogue is further used to obtain magnitude of completeness after removal of dependent events by using four different algorithms. Finally, seismicity parameters of the seismic sources are reported, and recommendations are made for seismic hazard assessment studies in Pakistan.

  2. Seismic hazard studies in Egypt

    Directory of Open Access Journals (Sweden)

    Abuo El-Ela A. Mohamed

    2012-12-01

    Full Text Available The study of earthquake activity and seismic hazard assessment of Egypt is very important due to the great and rapid spreading of large investments in national projects, especially the nuclear power plant that will be held in the northern part of Egypt. Although Egypt is characterized by low seismicity, it has experienced occurring of damaging earthquake effect through its history. The seismotectonic sitting of Egypt suggests that large earthquakes are possible particularly along the Gulf of Aqaba–Dead Sea transform, the Subduction zone along the Hellenic and Cyprean Arcs, and the Northern Red Sea triple junction point. In addition some inland significant sources at Aswan, Dahshour, and Cairo-Suez District should be considered. The seismic hazard for Egypt is calculated utilizing a probabilistic approach (for a grid of 0.5° × 0.5° within a logic-tree framework. Alternative seismogenic models and ground motion scaling relationships are selected to account for the epistemic uncertainty. Seismic hazard values on rock were calculated to create contour maps for four ground motion spectral periods and for different return periods. In addition, the uniform hazard spectra for rock sites for different 25 periods, and the probabilistic hazard curves for Cairo, and Alexandria cities are graphed. The peak ground acceleration (PGA values were found close to the Gulf of Aqaba and it was about 220 gal for 475 year return period. While the lowest (PGA values were detected in the western part of the western desert and it is less than 25 gal.

  3. Seismic risk assessment and application in the central United States

    Science.gov (United States)

    Wang, Z.

    2011-01-01

    Seismic risk is a somewhat subjective, but important, concept in earthquake engineering and other related decision-making. Another important concept that is closely related to seismic risk is seismic hazard. Although seismic hazard and seismic risk have often been used interchangeably, they are fundamentally different: seismic hazard describes the natural phenomenon or physical property of an earthquake, whereas seismic risk describes the probability of loss or damage that could be caused by a seismic hazard. The distinction between seismic hazard and seismic risk is of practical significance because measures for seismic hazard mitigation may differ from those for seismic risk reduction. Seismic risk assessment is a complicated process and starts with seismic hazard assessment. Although probabilistic seismic hazard analysis (PSHA) is the most widely used method for seismic hazard assessment, recent studies have found that PSHA is not scientifically valid. Use of PSHA will lead to (1) artifact estimates of seismic risk, (2) misleading use of the annual probability of exccedance (i.e., the probability of exceedance in one year) as a frequency (per year), and (3) numerical creation of extremely high ground motion. An alternative approach, which is similar to those used for flood and wind hazard assessments, has been proposed. ?? 2011 ASCE.

  4. Seismic hazard assessment for Central, North and Northwest Europe: GSHAP Region 3

    Czech Academy of Sciences Publication Activity Database

    Grunthal, G.; Bosse, Ch.; Camelbeeck, T.; de Crook, T.; Gariel, J. C.; Gregersen, S.; Guterch, B.; Halldorsson, P.; Labák, P.; Lindholm, C.; Lenhardt, W.; Mantyniemi, P.; Mayer-Rosa, D.; Musson, R. M. W.; Schenk, Vladimír; Schenková, Zdeňka; Slejko, D.; Verbeiren, R.; Wahlstrom, R.; Zabukovec, B.; Ziros, T.

    1999-01-01

    Roč. 42, č. 6 (1999), s. 999-1011 ISSN 0365-2556 R&D Projects: GA AV ČR Global Seismic Hazard Assessment Program (GSHAP) - project of the UN International Decade of Natural Disaster Reduction and International Litosphere Program. Subject RIV: DC - Siesmology, Volcanology, Earth Structure

  5. Seismic rupture study using near-source data: application to seismic hazard assessment

    International Nuclear Information System (INIS)

    Hernandez, Bruno

    2000-01-01

    This work presents seismic source studies using near-field data. In accordance with the quality and the quantity of available data we developed and applied various methods to characterize the seismic source. Macro-seismic data are used to verify if simple and robust methods used on recent instrumental earthquakes may provide a good tool to calibrate historical events in France. These data are often used to characterize earthquakes to be taken into account for seismic hazard assessment in moderate seismicity regions. Geodetic data (SAR, GPS) are used to estimate the slip distribution on the fault during the 1992, Landers, California earthquake. These data are also used to precise the location and the geometry of the main events of the 1997, Colfiorito, central Italy, earthquake sequence. Finally, the strong motions contain the most complete information about rupture process. These data are used to discriminate between two possible fault planes of the 1999, north India, Chamoli earthquake. The strong motions recorded close to the 1999, Mexico, Oaxaca earthquake are used to constrain the rupture history. Strong motions a.re also used in combination with geodetic data to access the rupture history of the Landers earthquake and the main events of the Colfiorito seismic sequence. For the Landers earthquake, the data quality and complementarity offered the possibility to describe the rupture development with accuracy. The large heterogeneities in both slip amplitude and rupture velocity variations suggest that the rupture propagates by breaking successive asperities rather than by propagating like a pulse at constant velocity. The rupture front slows as it encounters barriers and accelerates within main asperities. (author)

  6. Challenges Ahead for Nuclear Facility Site-Specific Seismic Hazard Assessment in France: The Alternative Energies and the Atomic Energy Commission (CEA) Vision

    Science.gov (United States)

    Berge-Thierry, C.; Hollender, F.; Guyonnet-Benaize, C.; Baumont, D.; Ameri, G.; Bollinger, L.

    2017-09-01

    Seismic analysis in the context of nuclear safety in France is currently guided by a pure deterministic approach based on Basic Safety Rule ( Règle Fondamentale de Sûreté) RFS 2001-01 for seismic hazard assessment, and on the ASN/2/01 Guide that provides design rules for nuclear civil engineering structures. After the 2011 Tohohu earthquake, nuclear operators worldwide were asked to estimate the ability of their facilities to sustain extreme seismic loads. The French licensees then defined the `hard core seismic levels', which are higher than those considered for design or re-assessment of the safety of a facility. These were initially established on a deterministic basis, and they have been finally justified through state-of-the-art probabilistic seismic hazard assessments. The appreciation and propagation of uncertainties when assessing seismic hazard in France have changed considerably over the past 15 years. This evolution provided the motivation for the present article, the objectives of which are threefold: (1) to provide a description of the current practices in France to assess seismic hazard in terms of nuclear safety; (2) to discuss and highlight the sources of uncertainties and their treatment; and (3) to use a specific case study to illustrate how extended source modeling can help to constrain the key assumptions or parameters that impact upon seismic hazard assessment. This article discusses in particular seismic source characterization, strong ground motion prediction, and maximal magnitude constraints, according to the practice of the French Atomic Energy Commission. Due to increases in strong motion databases in terms of the number and quality of the records in their metadata and the uncertainty characterization, several recently published empirical ground motion prediction models are eligible for seismic hazard assessment in France. We show that propagation of epistemic and aleatory uncertainties is feasible in a deterministic approach, as in a

  7. OpenQuake, a platform for collaborative seismic hazard and risk assessment

    Science.gov (United States)

    Henshaw, Paul; Burton, Christopher; Butler, Lars; Crowley, Helen; Danciu, Laurentiu; Nastasi, Matteo; Monelli, Damiano; Pagani, Marco; Panzeri, Luigi; Simionato, Michele; Silva, Vitor; Vallarelli, Giuseppe; Weatherill, Graeme; Wyss, Ben

    2013-04-01

    Sharing of data and risk information, best practices, and approaches across the globe is key to assessing risk more effectively. Through global projects, open-source IT development and collaborations with more than 10 regions, leading experts are collaboratively developing unique global datasets, best practice, tools and models for global seismic hazard and risk assessment, within the context of the Global Earthquake Model (GEM). Guided by the needs and experiences of governments, companies and international organisations, all contributions are being integrated into OpenQuake: a web-based platform that - together with other resources - will become accessible in 2014. With OpenQuake, stakeholders worldwide will be able to calculate, visualize and investigate earthquake hazard and risk, capture new data and share findings for joint learning. The platform is envisaged as a collaborative hub for earthquake risk assessment, used at global and local scales, around which an active network of users has formed. OpenQuake will comprise both online and offline tools, many of which can also be used independently. One of the first steps in OpenQuake development was the creation of open-source software for advanced seismic hazard and risk calculations at any scale, the OpenQuake Engine. Although in continuous development, a command-line version of the software is already being test-driven and used by hundreds worldwide; from non-profits in Central Asia, seismologists in sub-Saharan Africa and companies in South Asia to the European seismic hazard harmonization programme (SHARE). In addition, several technical trainings were organized with scientists from different regions of the world (sub-Saharan Africa, Central Asia, Asia-Pacific) to introduce the engine and other OpenQuake tools to the community, something that will continue to happen over the coming years. Other tools that are being developed of direct interest to the hazard community are: • OpenQuake Modeller; fundamental

  8. Staff technical position on investigations to identify fault displacement hazards and seismic hazards at a geologic repository

    International Nuclear Information System (INIS)

    McConnell, K.I.; Blackford, M.E.; Ibrahim, A.K.

    1992-07-01

    The purpose of this Staff Technical Position (STP) is to provide guidance to the US Department of Energy (DOE) on acceptable geologic repository investigations that can be used to identify fault displacement hazards and seismic hazards. ne staff considers that the approach this STP takes to investigations of fault displacement and seismic phenomena is appropriate for the collection of sufficient data for input to analyses of fault displacement hazards and seismic hazards, both for the preclosure and postclosure performance periods. However, detailed analyses of fault displacement and seismic data, such as those required for comprehensive assessments of repository performance, may identify the need for additional investigations. Section 2.0 of this STP describes the 10 CFR Part 60 requirements that form the basis for investigations to describe fault displacement hazards and seismic hazards at a geologic repository. Technical position statements and corresponding discussions are presented in Sections 3.0 and 4.0, respectively. Technical position topics in this STP are categorized thusly: (1) investigation considerations, (2) investigations for fault-displacement hazards, and (3) investigations for seismic hazards

  9. Seismic hazard assessment for Guam and the Northern Mariana Islands

    Science.gov (United States)

    Mueller, Charles S.; Haller, Kathleen M.; Luco, Nicholas; Petersen, Mark D.; Frankel, Arthur D.

    2012-01-01

    We present the results of a new probabilistic seismic hazard assessment for Guam and the Northern Mariana Islands. The Mariana island arc has formed in response to northwestward subduction of the Pacific plate beneath the Philippine Sea plate, and this process controls seismic activity in the region. Historical seismicity, the Mariana megathrust, and two crustal faults on Guam were modeled as seismic sources, and ground motions were estimated by using published relations for a firm-rock site condition. Maps of peak ground acceleration, 0.2-second spectral acceleration for 5 percent critical damping, and 1.0-second spectral acceleration for 5 percent critical damping were computed for exceedance probabilities of 2 percent and 10 percent in 50 years. For 2 percent probability of exceedance in 50 years, probabilistic peak ground acceleration is 0.94 gravitational acceleration at Guam and 0.57 gravitational acceleration at Saipan, 0.2-second spectral acceleration is 2.86 gravitational acceleration at Guam and 1.75 gravitational acceleration at Saipan, and 1.0-second spectral acceleration is 0.61 gravitational acceleration at Guam and 0.37 gravitational acceleration at Saipan. For 10 percent probability of exceedance in 50 years, probabilistic peak ground acceleration is 0.49 gravitational acceleration at Guam and 0.29 gravitational acceleration at Saipan, 0.2-second spectral acceleration is 1.43 gravitational acceleration at Guam and 0.83 gravitational acceleration at Saipan, and 1.0-second spectral acceleration is 0.30 gravitational acceleration at Guam and 0.18 gravitational acceleration at Saipan. The dominant hazard source at the islands is upper Benioff-zone seismicity (depth 40–160 kilometers). The large probabilistic ground motions reflect the strong concentrations of this activity below the arc, especially near Guam.

  10. Seismic hazard estimation based on the distributed seismicity in northern China

    Science.gov (United States)

    Yang, Yong; Shi, Bao-Ping; Sun, Liang

    2008-03-01

    In this paper, we have proposed an alternative seismic hazard modeling by using distributed seismicites. The distributed seismicity model does not need delineation of seismic source zones, and simplify the methodology of probabilistic seismic hazard analysis. Based on the devastating earthquake catalogue, we established three seismicity model, derived the distribution of a-value in northern China by using Gaussian smoothing function, and calculated peak ground acceleration distributions for this area with 2%, 5% and 10% probability of exceedance in a 50-year period by using three attenuation models, respectively. In general, the peak ground motion distribution patterns are consistent with current seismic hazard map of China, but in some specific seismic zones which include Shanxi Province and Shijiazhuang areas, our results indicated a little bit higher peak ground motions and zonation characters which are in agreement with seismicity distribution patterns in these areas. The hazard curves have been developed for Beijing, Tianjin, Taiyuan, Tangshan, and Ji’nan, the metropolitan cities in the northern China. The results showed that Tangshan, Taiyuan, Beijing has a higher seismic hazard than that of other cities mentioned above.

  11. Seismic hazard in the Intermountain West

    Science.gov (United States)

    Haller, Kathleen; Moschetti, Morgan P.; Mueller, Charles; Rezaeian, Sanaz; Petersen, Mark D.; Zeng, Yuehua

    2015-01-01

    The 2014 national seismic-hazard model for the conterminous United States incorporates new scientific results and important model adjustments. The current model includes updates to the historical catalog, which is spatially smoothed using both fixed-length and adaptive-length smoothing kernels. Fault-source characterization improved by adding faults, revising rates of activity, and incorporating new results from combined inversions of geologic and geodetic data. The update also includes a new suite of published ground motion models. Changes in probabilistic ground motion are generally less than 10% in most of the Intermountain West compared to the prior assessment, and ground-motion hazard in four Intermountain West cities illustrates the range and magnitude of change in the region. Seismic hazard at reference sites in Boise and Reno increased as much as 10%, whereas hazard in Salt Lake City decreased 5–6%. The largest change was in Las Vegas, where hazard increased 32–35%.

  12. Seismic hazard assessment in the Catania and Siracusa urban areas (Italy) through different approaches

    Science.gov (United States)

    Panzera, Francesco; Lombardo, Giuseppe; Rigano, Rosaria

    2010-05-01

    The seismic hazard assessment (SHA) can be performed using either Deterministic or Probabilistic approaches. In present study a probabilistic analysis was carried out for the Catania and Siracusa towns using two different procedures: the 'site' (Albarello and Mucciarelli, 2002) and the 'seismotectonic' (Cornell 1968; Esteva, 1967) methodologies. The SASHA code (D'Amico and Albarello, 2007) was used to calculate seismic hazard through the 'site' approach, whereas the CRISIS2007 code (Ordaz et al., 2007) was adopted in the Esteva-Cornell procedure. According to current international conventions for PSHA (SSHAC, 1997), a logic tree approach was followed to consider and reduce the epistemic uncertainties, for both seismotectonic and site methods. The code SASHA handles the intensity data taking into account the macroseismic information of past earthquakes. CRISIS2007 code needs, as input elements, a seismic catalogue tested for completeness, a seismogenetic zonation and ground motion predicting equations. Data concerning the characterization of regional seismic sources and ground motion attenuation properties were taken from the literature. Special care was devoted to define source zone models, taking into account the most recent studies on regional seismotectonic features and, in particular, the possibility of considering the Malta escarpment as a potential source. The combined use of the above mentioned approaches allowed us to obtain useful elements to define the site seismic hazard in Catania and Siracusa. The results point out that the choice of the probabilistic model plays a fundamental role. It is indeed observed that when the site intensity data are used, the town of Catania shows hazard values higher than the ones found for Siracusa, for each considered return period. On the contrary, when the Esteva-Cornell method is used, Siracusa urban area shows higher hazard than Catania, for return periods greater than one hundred years. The higher hazard observed

  13. Preliminary seismic hazard assessment, shallow seismic refraction and resistivity sounding studies for future urban planning at the Gebel Umm Baraqa area, Egypt

    International Nuclear Information System (INIS)

    Khalil, Mohamed H; Hanafy, Sherif M; Gamal, Mohamed A

    2008-01-01

    Gebel Umm Baraqa Fan, west Gulf of Aqaba, Sinai, is one of the most important tourism areas in Egypt. However, it is located on the active Dead Sea-Gulf of Aqaba Levant transform fault system. Geophysical studies, including fresh water aquifer delineation, shallow seismic refraction, soil characterization and preliminary seismic hazard assessment, were conducted to help in future city planning. A total of 11 vertical electrical soundings (1000–3000 m maximum AB/2) and three bore-holes were drilled in the site for the analysis of ground water, total dissolved solids (TDS) and fresh water aquifer properties. The interpretation of the one-dimensional (1D) inversion of the resistivity data delineated the fresh water aquifer and determined its hydro-geologic parameters. Eleven shallow seismic refraction profiles (125 m in length) have been collected and interpreted using the generalized reciprocal method, and the resulting depth–velocity models were verified using an advanced finite difference (FD) technique. Shallow seismic refraction effectively delineates two subsurface layers (VP ∼ 450 m s −1 and VP ∼ 1000 m s −1 ). A preliminary seismic hazard assessment in Umm Baraqa has produced an estimate of the probabilistic peak ground acceleration hazard in the study area. A recent and historical earthquake catalog for the time period 2200 BC to 2006 has been compiled for the area. New accurate seismic source zoning is considered because such details affect the degree of hazard in the city. The estimated amount of PGA reveals values ranging from 250 to 260 cm s −2 in the bedrock of the Umm Baraqa area during a 100 year interval (a suitable time window for buildings). Recommendations as to suitable types of buildings, considering the amount of shaking and the aquifer properties given in this study, are expected to be helpful for the Umm Baraqa area

  14. SRS BEDROCK PROBABILISTIC SEISMIC HAZARD ANALYSIS (PSHA) DESIGN BASIS JUSTIFICATION (U)

    Energy Technology Data Exchange (ETDEWEB)

    (NOEMAIL), R

    2005-12-14

    This represents an assessment of the available Savannah River Site (SRS) hard-rock probabilistic seismic hazard assessments (PSHAs), including PSHAs recently completed, for incorporation in the SRS seismic hazard update. The prior assessment of the SRS seismic design basis (WSRC, 1997) incorporated the results from two PSHAs that were published in 1988 and 1993. Because of the vintage of these studies, an assessment is necessary to establish the value of these PSHAs considering more recently collected data affecting seismic hazards and the availability of more recent PSHAs. This task is consistent with the Department of Energy (DOE) order, DOE O 420.1B and DOE guidance document DOE G 420.1-2. Following DOE guidance, the National Map Hazard was reviewed and incorporated in this assessment. In addition to the National Map hazard, alternative ground motion attenuation models (GMAMs) are used with the National Map source model to produce alternate hazard assessments for the SRS. These hazard assessments are the basis for the updated hard-rock hazard recommendation made in this report. The development and comparison of hazard based on the National Map models and PSHAs completed using alternate GMAMs provides increased confidence in this hazard recommendation. The alternate GMAMs are the EPRI (2004), USGS (2002) and a regional specific model (Silva et al., 2004). Weights of 0.6, 0.3 and 0.1 are recommended for EPRI (2004), USGS (2002) and Silva et al. (2004) respectively. This weighting gives cluster weights of .39, .29, .15, .17 for the 1-corner, 2-corner, hybrid, and Greens-function models, respectively. This assessment is judged to be conservative as compared to WSRC (1997) and incorporates the range of prevailing expert opinion pertinent to the development of seismic hazard at the SRS. The corresponding SRS hard-rock uniform hazard spectra are greater than the design spectra developed in WSRC (1997) that were based on the LLNL (1993) and EPRI (1988) PSHAs. The

  15. Seismic hazard in the DRC and Western Rift Valley of Africa

    CSIR Research Space (South Africa)

    Mavonga, T

    2009-09-01

    Full Text Available A probabilistic approach was used to assess the seismic hazard in Democratic Republic of Congo and surrounding areas. Seismic hazard maps were prepared using a 90-year catalogue compiled for homogeneous Ms magnitudes; the attenuation relations...

  16. Seismic hazard analysis of the NPP Kozloduy site

    International Nuclear Information System (INIS)

    Petrovski, D.; Stamatovska, S.; Arsovski, M.; Hadzievski, D.; Sokerova, D.; Solakov, D.; Vaptzarov, I.; Satchanski, S.

    1993-01-01

    The principal objective of this study is to define the seismic hazard for the NPP Kozloduy site. Seismic hazard is by rule defined by the probability distribution function of the peak value of the chosen ground motion parameter in a defined time interval. The overall study methodology consists of reviewing the existing geological, seismological and tectonic information to formulate this information into a mathematical model of seismic activity of the region and using this assess earthquake ground motion in terms of probability. Detailed regional and local seismological investigations have been performed. Regional investigations encompass the area within a radius of 320 km from the NPP Kozloduy site. The results of these investigations include all seismological parameters that are necessary for determination of the mathematical model of the seismicity of the region needed for the seismic hazard analysis. Regional geological and neotectonic investigations were also performed for the wider area including almost the whole territory of Bulgaria, a large part of Serbia, part of Macedonia and almost the whole south part of Romania

  17. User's manual of a computer code for seismic hazard evaluation for assessing the threat to a facility by fault model. SHEAT-FM

    International Nuclear Information System (INIS)

    Sugino, Hideharu; Onizawa, Kunio; Suzuki, Masahide

    2005-09-01

    To establish the reliability evaluation method for aged structural component, we developed a probabilistic seismic hazard evaluation code SHEAT-FM (Seismic Hazard Evaluation for Assessing the Threat to a facility site - Fault Model) using a seismic motion prediction method based on fault model. In order to improve the seismic hazard evaluation, this code takes the latest knowledge in the field of earthquake engineering into account. For example, the code involves a group delay time of observed records and an update process model of active fault. This report describes the user's guide of SHEAT-FM, including the outline of the seismic hazard evaluation, specification of input data, sample problem for a model site, system information and execution method. (author)

  18. Current issues and related activities in seismic hazard analysis in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jeong-Moon [Korea Atomic Energy Research Inst., Taejon (Korea, Republic of); Lee, Jong-Rim; Chang, Chun-Joong

    1997-03-01

    This paper discusses some technical issues identified from the seismic hazard analyses for probabilistic safety assessment on the operating Korean nuclear power plants and the related activities to resolve the issues. Since there are no strong instrumental earthquake records in Korea, the seismic hazard analysis is mainly dependent on the historical earthquake records. Results of the past seismic hazard analyses show that there are many uncertainties in attenuation function and intensity level and that there is a need to improve statistical method. The identification of the activity of the Yangsan Fault, which is close to nuclear power plant sites, has been an important issue. But the issue has not been resolved yet in spite of much research works done. Recently, some capable faults were found in the offshore area of Gulupdo Island in the Yellow Sea. It is anticipated that the results of research on both the Yangsan Fault and reduction of uncertainty in seismic hazard analysis will have an significant influence on seismic design and safety assessment of nuclear power plants in the future. (author)

  19. Current issues and related activities in seismic hazard analysis in Korea

    International Nuclear Information System (INIS)

    Seo, Jeong-Moon; Lee, Jong-Rim; Chang, Chun-Joong.

    1997-01-01

    This paper discusses some technical issues identified from the seismic hazard analyses for probabilistic safety assessment on the operating Korean nuclear power plants and the related activities to resolve the issues. Since there are no strong instrumental earthquake records in Korea, the seismic hazard analysis is mainly dependent on the historical earthquake records. Results of the past seismic hazard analyses show that there are many uncertainties in attenuation function and intensity level and that there is a need to improve statistical method. The identification of the activity of the Yangsan Fault, which is close to nuclear power plant sites, has been an important issue. But the issue has not been resolved yet in spite of much research works done. Recently, some capable faults were found in the offshore area of Gulupdo Island in the Yellow Sea. It is anticipated that the results of research on both the Yangsan Fault and reduction of uncertainty in seismic hazard analysis will have an significant influence on seismic design and safety assessment of nuclear power plants in the future. (author)

  20. Seismic hazard analysis for the NTS spent reactor fuel test site

    International Nuclear Information System (INIS)

    Campbell, K.W.

    1980-01-01

    An experiment is being directed at the Nevada Test Site to test the feasibility for storage of spent fuel from nuclear reactors in geologic media. As part of this project, an analysis of the earthquake hazard was prepared. This report presents the results of this seismic hazard assessment. Two distinct components of the seismic hazard were addressed: vibratory ground motion and surface displacement

  1. Eastern US seismic hazard characterization update

    International Nuclear Information System (INIS)

    Savy, J.B.; Boissonnade, A.C.; Mensing, R.W.; Short, C.M.

    1993-06-01

    In January 1989, LLNL published the results of a multi-year project, funded by NRC, on estimating seismic hazard at nuclear plant sites east of the Rockies. The goal of this study was twofold: to develop a good central estimate (median) of the seismic hazard and to characterize the uncertainty in the estimates of this hazard. In 1989, LLNL was asked by DOE to develop site specific estimates of the seismic hazard at the Savannah River Site (SRS) in South Carolina as part of the New Production Reactor (NPR) project. For the purpose of the NPR, a complete review of the methodology and of the data acquisition process was performed. Work done under the NPR project has shown that first order improvement in the estimates of the uncertainty (i.e., lower mean hazard values) could be easily achieved by updating the modeling of the seismicity and ground motion attenuation uncertainty. To this effect, NRC sponsored LLNL to perform a reelicitation to update the seismicity and ground motion experts' inputs and to revise methods to combine seismicity and ground motion inputs in the seismic hazard analysis for nuclear power plant sites east of the Rocky Mountains. The objective of the recent study was to include the first order improvements that reflect the latest knowledge in seismicity and ground motion modeling and produce an update of all the hazard results produced in the 1989 study. In particular, it had been demonstrated that eliciting seismicity information in terms of rates of earthquakes rather than a- and b-values, and changing the elicitation format to a one-on-one interview, improved our ability to express the uncertainty of earthquake rates of occurrence at large magnitudes. Thus, NRC sponsored this update study to refine the model of uncertainty, and to re-elicitate of the experts' interpretations of the zonation and seismicity, as well as to reelicitate the ground motion models, based on current state of knowledge

  2. Time-Independent Annual Seismic Rates, Based on Faults and Smoothed Seismicity, Computed for Seismic Hazard Assessment in Italy

    Science.gov (United States)

    Murru, M.; Falcone, G.; Taroni, M.; Console, R.

    2017-12-01

    In 2015 the Italian Department of Civil Protection, started a project for upgrading the official Italian seismic hazard map (MPS04) inviting the Italian scientific community to participate in a joint effort for its realization. We participated providing spatially variable time-independent (Poisson) long-term annual occurrence rates of seismic events on the entire Italian territory, considering cells of 0.1°x0.1° from M4.5 up to M8.1 for magnitude bin of 0.1 units. Our final model was composed by two different models, merged in one ensemble model, each one with the same weight: the first one was realized by a smoothed seismicity approach, the second one using the seismogenic faults. The spatial smoothed seismicity was obtained using the smoothing method introduced by Frankel (1995) applied to the historical and instrumental seismicity. In this approach we adopted a tapered Gutenberg-Richter relation with a b-value fixed to 1 and a corner magnitude estimated with the bigger events in the catalogs. For each seismogenic fault provided by the Database of the Individual Seismogenic Sources (DISS), we computed the annual rate (for each cells of 0.1°x0.1°) for magnitude bin of 0.1 units, assuming that the seismic moments of the earthquakes generated by each fault are distributed according to the same tapered Gutenberg-Richter relation of the smoothed seismicity model. The annual rate for the final model was determined in the following way: if the cell falls within one of the seismic sources, we merge the respective value of rate determined by the seismic moments of the earthquakes generated by each fault and the value of the smoothed seismicity model with the same weight; if instead the cells fall outside of any seismic source we considered the rate obtained from the spatial smoothed seismicity. Here we present the final results of our study to be used for the new Italian seismic hazard map.

  3. Probabilistic Seismic Hazard Analysis for Yemen

    Directory of Open Access Journals (Sweden)

    Rakesh Mohindra

    2012-01-01

    Full Text Available A stochastic-event probabilistic seismic hazard model, which can be used further for estimates of seismic loss and seismic risk analysis, has been developed for the territory of Yemen. An updated composite earthquake catalogue has been compiled using the databases from two basic sources and several research publications. The spatial distribution of earthquakes from the catalogue was used to define and characterize the regional earthquake source zones for Yemen. To capture all possible scenarios in the seismic hazard model, a stochastic event set has been created consisting of 15,986 events generated from 1,583 fault segments in the delineated seismic source zones. Distribution of horizontal peak ground acceleration (PGA was calculated for all stochastic events considering epistemic uncertainty in ground-motion modeling using three suitable ground motion-prediction relationships, which were applied with equal weight. The probabilistic seismic hazard maps were created showing PGA and MSK seismic intensity at 10% and 50% probability of exceedance in 50 years, considering local soil site conditions. The resulting PGA for 10% probability of exceedance in 50 years (return period 475 years ranges from 0.2 g to 0.3 g in western Yemen and generally is less than 0.05 g across central and eastern Yemen. The largest contributors to Yemen’s seismic hazard are the events from the West Arabian Shield seismic zone.

  4. The revaluation of the macroseismic effects of March 4, 1977 earthquake in the frame of the new seismic hazard assessment methodologies

    International Nuclear Information System (INIS)

    Pantea, A.; Constantin, Angela; Anghel, M.

    2002-01-01

    To increase the earthquakes resistance of structure the design norms and construction require the best knowledge of seismic hazard parameters and using the new methodologies of seismic hazard assessment. One of these parameters is seismic intensity of the earthquakes occurred on the whole territory analyzed during as long as possible time interval for which data are available, especially for the strongest of them. For Romanian territory the strongest and the best known from the point of view of the macroseismic effects is the March 4, 1977 earthquake. Seismology by itself, without geophysics (solid earth physics), geology, geography, and geodesy, cannot fully, comprehensively, validly assess seismic hazards. Among those who have understood seismic hazard assessment as the result of cooperation between geosciences as a whole and seismology, one may quote Bune, 1978; Pantea et al., 2002, etc. Assessing seismic hazards is a complex undertaking, for it draws on a vast amount of knowledge in numerous sectors of geosciences, particularly solid earth physics as a branch of geophysics that also includes seismology, tectonic physics, gravimetry, geomagnetism, geochronology, etc.. It involves processing the results of complex geophysical, seismologic, tectonic, and geologic studies. To get a picture of, and understand, the laws that govern seismogenesis, one has to know what the relations are among the measured physical quantities indicating the properties of the rocks (whether gravimetric, magnetometric, electrometric, seismometric, or others), the dynamics of tectonic structures, as well as the nature and geological characteristics. Geophysics can be relied upon to determine the deep internal structure of the earth that geological methods are unable to reveal. Geophysics, and implicitly seismology, can help resolve the problem by: 1. Identifying the areas of the seismic sources and their characteristics, including focal depth, M max [Bune, 1978], and the recurrence chart

  5. Seismic hazard for the Savannah River Site: A comparative evaluation of the EPRI and LLNL assessments

    International Nuclear Information System (INIS)

    Wingo, H.E.

    1992-01-01

    This report was conducted to: (1) develop an understanding of causes for the vast differences between the two comprehensive studies, and (2) using a methodology consistent with the reconciled methods employed in the two studies, develop a single seismic hazard for the Savannah River Site suitable for use in seismic probabilistic risk assessments with emphasis on the K Reactor. Results are presented for a rock site which is a typical because detailed evaluations of soil characteristics at the K Reactor are still in progress that account for the effects of a soil stablizing grouting program. However when the soils analysis is completed, the effects of soils can be included with this analysis with the addition of a single factor that will decrease slightly the seismic hazard for a rock site

  6. Probabilistic assessment of the seismic hazard for eastern United States nuclear power plants

    International Nuclear Information System (INIS)

    Savy, J.; Bernreuter, D.; Mensing, R.

    1989-01-01

    The purpose of the seismic hazard characterization of the Eastern US project, for the Nuclear Regulatory Commission, was to develop a methodology and data bases to estimate the seismic hazard at all the plant sites east of the Rocky Mountains. A summary of important conclusions reached in this multi year study is presented in this paper. The magnitude and role of the uncertainty in the hazard estimates is emphasized in regard of the intended final use of the results

  7. Seismic hazard map of the western hemisphere

    Science.gov (United States)

    Shedlock, K.M.; Tanner, J.G.

    1999-01-01

    Vulnerability to natural disasters increases with urbanization and development of associated support systems (reservoirs, power plants, etc.). Catastrophic earthquakes account for 60% of worldwide casualties associated with natural disasters. Economic damage from earthquakes is increasing, even in technologically advanced countries with some level of seismic zonation, as shown by the 1989 Loma Prieta, CA ($6 billion), 1994 Northridge, CA ($ 25 billion), and 1995 Kobe, Japan (> $ 100 billion) earthquakes. The growth of megacities in seismically active regions around the world often includes the construction of seismically unsafe buildings and infrastructures, due to an insufficient knowledge of existing seismic hazard. Minimization of the loss of life, property damage, and social and economic disruption due to earthquakes depends on reliable estimates of seismic hazard. National, state, and local governments, decision makers, engineers, planners, emergency response organizations, builders, universities, and the general public require seismic hazard estimates for land use planning, improved building design and construction (including adoption of building construction codes), emergency response preparedness plans, economic forecasts, housing and employment decisions, and many more types of risk mitigation. The seismic hazard map of the Americas is the concatenation of various national and regional maps, involving a suite of approaches. The combined maps and documentation provide a useful global seismic hazard framework and serve as a resource for any national or regional agency for further detailed studies applicable to their needs. This seismic hazard map depicts Peak Ground Acceleration (PGA) with a 10% chance of exceedance in 50 years for the western hemisphere. PGA, a short-period ground motion parameter that is proportional to force, is the most commonly mapped ground motion parameter because current building codes that include seismic provisions specify the

  8. Seismic hazard map of the western hemisphere

    Directory of Open Access Journals (Sweden)

    J. G. Tanner

    1999-06-01

    Full Text Available Vulnerability to natural disasters increases with urbanization and development of associated support systems (reservoirs, power plants, etc.. Catastrophic earthquakes account for 60% of worldwide casualties associated with natural disasters. Economic damage from earthquakes is increasing, even in technologically advanced countries with some level of seismic zonation, as shown by the 1989 Loma Prieta, CA ($ 6 billion, 1994 Northridge, CA ($ 25 billion, and 1995 Kobe, Japan (> $ 100 billion earthquakes. The growth of megacities in seismically active regions around the world often includes the construction of seismically unsafe buildings and infrastructures, due to an insufficient knowledge of existing seismic hazard. Minimization of the loss of life, property damage, and social and economic disruption due to earthquakes depends on reliable estimates of seismic hazard. National, state, and local governments, decision makers, engineers, planners, emergency response organizations, builders, universities, and the general public require seismic hazard estimates for land use planning, improved building design and construction (including adoption of building construction codes, emergency response preparedness plans, economic forecasts, housing and employment decisions, and many more types of risk mitigation. The seismic hazard map of the Americas is the concatenation of various national and regional maps, involving a suite of approaches. The combined maps and documentation provide a useful global seismic hazard framework and serve as a resource for any national or regional agency for further detailed studies applicable to their needs. This seismic hazard map depicts Peak Ground Acceleration (PGA with a 10% chance of exceedance in 50 years for the western hemisphere. PGA, a short-period ground motion parameter that is proportional to force, is the most commonly mapped ground motion parameter because current building codes that include seismic provisions

  9. Seismic hazard, risk, and design for South America

    Science.gov (United States)

    Petersen, Mark D.; Harmsen, Stephen; Jaiswal, Kishor; Rukstales, Kenneth S.; Luco, Nicolas; Haller, Kathleen; Mueller, Charles; Shumway, Allison

    2018-01-01

    We calculate seismic hazard, risk, and design criteria across South America using the latest data, models, and methods to support public officials, scientists, and engineers in earthquake risk mitigation efforts. Updated continental scale seismic hazard models are based on a new seismicity catalog, seismicity rate models, evaluation of earthquake sizes, fault geometry and rate parameters, and ground‐motion models. Resulting probabilistic seismic hazard maps show peak ground acceleration, modified Mercalli intensity, and spectral accelerations at 0.2 and 1 s periods for 2%, 10%, and 50% probabilities of exceedance in 50 yrs. Ground shaking soil amplification at each site is calculated by considering uniform soil that is applied in modern building codes or by applying site‐specific factors based on VS30">VS30 shear‐wave velocities determined through a simple topographic proxy technique. We use these hazard models in conjunction with the Prompt Assessment of Global Earthquakes for Response (PAGER) model to calculate economic and casualty risk. Risk is computed by incorporating the new hazard values amplified by soil, PAGER fragility/vulnerability equations, and LandScan 2012 estimates of population exposure. We also calculate building design values using the guidelines established in the building code provisions. Resulting hazard and associated risk is high along the northern and western coasts of South America, reaching damaging levels of ground shaking in Chile, western Argentina, western Bolivia, Peru, Ecuador, Colombia, Venezuela, and in localized areas distributed across the rest of the continent where historical earthquakes have occurred. Constructing buildings and other structures to account for strong shaking in these regions of high hazard and risk should mitigate losses and reduce casualties from effects of future earthquake strong ground shaking. National models should be developed by scientists and engineers in each country using the best

  10. The earthquake of January 13, 1915 and the seismic hazard of the area

    International Nuclear Information System (INIS)

    Scarascia Mugnozza, Gabriele; Hailemikael, Salomon; Martini, Guido

    2015-01-01

    The January 13, 1915, magnitude 7.0 Marsica Earthquake devastated the Fucino basin and surroundings, causing about 30,000 casualties and entirely destroying several towns, among which the major municipality of the area, the town of Avezzano. In this paper, we briefly review the main characteristics of the earthquake and its effects on the environment. Furthermore, based on the Italian building code and ongoing seismic microzonation investigations, we describe the seismic hazard of the area struck by the earthquake in terms of both probabilistic seismic hazard assessment and contribution of site effects on the seismic hazard estimate. All the studies confirm the very high level of seismic hazard of the Fucino territory [it

  11. Seismic Hazard Assessment and Uncertainties Treatment: Discussion on the current French regulation, practices and open issues

    International Nuclear Information System (INIS)

    Berge-Thierry, Catherine

    2014-01-01

    Taking into account the seismic risk in the context of nuclear safety in France is guided by the Fundamental Safety Rule (RFS2001-01) for the assessment of seismic hazard, and by the Guide ASN/2/01 for the design rules of civil engineering structures. These two references have been updated respectively in 2001 and 2006 and validated by the Nuclear Safety Authority. The French approach is anchored on a deterministic approach. We propose to recall the principles of the methodology recommended by the RFS 2001-01, and to illustrate the advantages and limitations highlighted in recent years. Indeed, this regulatory framework is used both in the design stage and for safety reassessment of all nuclear facilities, power reactors and experimental laboratories and factories. We focus on: (i) key parameters of the approach, and their level of knowledge, (ii) key steps and principles that lead to a non-homogeneous approach between various geographic sites, depending on the seismic activity and / or knowledge, (iii) on physical phenomena (such as the geometric extension of the seismic source, the complexity of earthquake rupture on the fault plane) that are not taken into account, or for which (2D and 3D site effects, and non-linear soil behavior under strong motions), the RFS 2001-01 approach does not provide any guidance, (iv) consideration of epistemic and random uncertainties. We discuss also the probabilistic approaches widely implemented both in France as recently to establish the seismic zoning (reference for the regulation of conventional building and classified installations for the environment), used worldwide and strongly supported by the international Atomic Energy Agency references (safety guides and guidelines). The Tohoku earthquake that occurred in Japan on March 11, 2011, triggering the tsunami that itself caused the nuclear accident at Fukushima Daiichi site has resulted in the realization in France of the Complementary Safety Studies as a request of the

  12. Reliability of lifeline networks under seismic hazard

    International Nuclear Information System (INIS)

    Selcuk, A. Sevtap; Yuecemen, M. Semih

    1999-01-01

    Lifelines, such as pipelines, transportation, communication and power transmission systems, are networks which extend spatially over large geographical regions. The quantification of the reliability (survival probability) of a lifeline under seismic threat requires attention, as the proper functioning of these systems during or after a destructive earthquake is vital. In this study, a lifeline is idealized as an equivalent network with the capacity of its elements being random and spatially correlated and a comprehensive probabilistic model for the assessment of the reliability of lifelines under earthquake loads is developed. The seismic hazard that the network is exposed to is described by a probability distribution derived by using the past earthquake occurrence data. The seismic hazard analysis is based on the 'classical' seismic hazard analysis model with some modifications. An efficient algorithm developed by Yoo and Deo (Yoo YB, Deo N. A comparison of algorithms for terminal pair reliability. IEEE Transactions on Reliability 1988; 37: 210-215) is utilized for the evaluation of the network reliability. This algorithm eliminates the CPU time and memory capacity problems for large networks. A comprehensive computer program, called LIFEPACK is coded in Fortran language in order to carry out the numerical computations. Two detailed case studies are presented to show the implementation of the proposed model

  13. SHEAT: a computer code for probabilistic seismic hazard analysis, user's manual

    International Nuclear Information System (INIS)

    Ebisawa, Katsumi; Kondo, Masaaki; Abe, Kiyoharu; Tanaka, Toshiaki; Takani, Michio.

    1994-08-01

    The SHEAT code developed at Japan Atomic Energy Research Institute is for probabilistic seismic hazard analysis which is one of the tasks needed for seismic Probabilistic Safety Assessment (PSA) of a nuclear power plant. Seismic hazard is defined as an annual exceedance frequency of occurrence of earthquake ground motions at various levels of intensity at a given site. With the SHEAT code, seismic hazard is calculated by the following two steps: (1) Modeling of earthquake generation around a site. Future earthquake generation (locations, magnitudes and frequencies of postulated earthquakes) is modelled based on the historical earthquake records, active fault data and expert judgement. (2) Calculation of probabilistic seismic hazard at the site. An earthquake ground motion is calculated for each postulated earthquake using an attenuation model taking into account its standard deviation. Then the seismic hazard at the site is calculated by summing the frequencies of ground motions by all the earthquakes. This document is the user's manual of the SHEAT code. It includes: (1) Outlines of the code, which include overall concept, logical process, code structure, data file used and special characteristics of the code, (2) Functions of subprograms and analytical models in them, (3) Guidance of input and output data, and (4) Sample run results. The code has widely been used at JAERI to analyze seismic hazard at various nuclear power plant sites in japan. (author)

  14. Seismic hazard assessment in intra-plate areas and backfitting

    International Nuclear Information System (INIS)

    Asmis, G.J.K.; Eng, P.

    2001-01-01

    Typically, fuel cycle facilities have been constructed over a 40 year time period incorporating various ages of seismic design provisions ranging from no specific seismic requirements to the life safety provisions normally incorporated in national building codes through to the latest seismic nuclear codes that provide not only for structural robustness but also include operational requirements for continued operation of essential safety functions. The task is to ensure uniform seismic risk in all facilities. Since the majority of the fuel cycle infrastructure has been built the emphasis is on re-evaluation and backfitting. The wide range of facilities included in the fuel cycle and the vastly varying hazard to safety, health and the environment suggest a performance based approach. This paper presents such an approach, placed in an intra-plate setting of a Stable Continental Region (SCR) typical to that found in Eastern Canada. (author)

  15. Hazard assessment for Romania–Bulgaria crossborder region

    International Nuclear Information System (INIS)

    Solakov, Dimcho; Simeonova, Stela; Alexandrova, Irena; Trifonova, Petya; Ardeleanu, Luminita; Cioflan, Carmen

    2014-01-01

    Among the many kinds of natural and man-made disasters, earthquakes dominate with regard to their social and economical impact on the urban environment. Global seismic hazard and vulnerability to earthquakes are steadily increasing as urbanisation and development occupy more areas that are prone to effects of strong earthquakes. The assessment of the seismic hazard is particularly important, because it provides valuable information for seismic safety and disaster mitigation, and it supports decision making for the benefit of society. The main objective of this study is to assess the seismic hazard for Romania-Bulgaria cross-border region on the basis of integrated basic geo-datasets

  16. Seismic rupture modelling, strong motion prediction and seismic hazard assessment: fundamental and applied approaches; Modelisation de la rupture sismique, prediction du mouvement fort, et evaluation de l'alea sismique: approches fondamentale et appliquee

    Energy Technology Data Exchange (ETDEWEB)

    Berge-Thierry, C

    2007-05-15

    The defence to obtain the 'Habilitation a Diriger des Recherches' is a synthesis of the research work performed since the end of my Ph D. thesis in 1997. This synthesis covers the two years as post doctoral researcher at the Bureau d'Evaluation des Risques Sismiques at the Institut de Protection (BERSSIN), and the seven consecutive years as seismologist and head of the BERSSIN team. This work and the research project are presented in the framework of the seismic risk topic, and particularly with respect to the seismic hazard assessment. Seismic risk combines seismic hazard and vulnerability. Vulnerability combines the strength of building structures and the human and economical consequences in case of structural failure. Seismic hazard is usually defined in terms of plausible seismic motion (soil acceleration or velocity) in a site for a given time period. Either for the regulatory context or the structural specificity (conventional structure or high risk construction), seismic hazard assessment needs: to identify and locate the seismic sources (zones or faults), to characterize their activity, to evaluate the seismic motion to which the structure has to resist (including the site effects). I specialized in the field of numerical strong-motion prediction using high frequency seismic sources modelling and forming part of the IRSN allowed me to rapidly working on the different tasks of seismic hazard assessment. Thanks to the expertise practice and the participation to the regulation evolution (nuclear power plants, conventional and chemical structures), I have been able to work on empirical strong-motion prediction, including site effects. Specific questions related to the interface between seismologists and structural engineers are also presented, especially the quantification of uncertainties. This is part of the research work initiated to improve the selection of the input ground motion in designing or verifying the stability of structures. (author)

  17. Probabilistic seismic hazard assessment for the two layer fault system of Antalya (SW Turkey) area

    Science.gov (United States)

    Dipova, Nihat; Cangir, Bülent

    2017-09-01

    Southwest Turkey, along Mediterranean coast, is prone to large earthquakes resulting from subduction of the African plate under the Eurasian plate and shallow crustal faults. Maximum observed magnitude of subduction earthquakes is Mw = 6.5 whereas that of crustal earthquakes is Mw = 6.6. Crustal earthquakes are sourced from faults which are related with Isparta Angle and Cyprus Arc tectonic structures. The primary goal of this study is to assess seismic hazard for Antalya area (SW Turkey) using a probabilistic approach. A new earthquake catalog for Antalya area, with unified moment magnitude scale, was prepared in the scope of the study. Seismicity of the area has been evaluated by the Gutenberg-Richter recurrence relationship. For hazard computation, CRISIS2007 software was used following the standard Cornell-McGuire methodology. Attenuation model developed by Youngs et al. Seismol Res Lett 68(1):58-73, (1997) was used for deep subduction earthquakes and Chiou and Youngs Earthq Spectra 24(1):173-215, (2008) model was used for shallow crustal earthquakes. A seismic hazard map was developed for peak ground acceleration and for rock ground with a hazard level of a 10% probability of exceedance in 50 years. Results of the study show that peak ground acceleration values on bedrock change between 0.215 and 0.23 g in the center of Antalya.

  18. Deterministic seismic hazard macrozonation of India

    Indian Academy of Sciences (India)

    The sesismotectonic map of the study area was prepared by considering the faults, lineaments and the shear zones which are associated with earthquakes of magnitude 4 and above. A new program was developed in MATLAB for smoothing of the point sources. For assessing the seismic hazard, the study area was divided ...

  19. J-SHIS - an integrated system for knowing seismic hazard information in Japan

    Science.gov (United States)

    Azuma, H.; Fujiwara, H.; Kawai, S.; Hao, K. X.; Morikawa, N.

    2015-12-01

    An integrated system of Japan seismic hazard information station (J-SHIS) was established in 2005 for issuing and exchanging information of the National Seismic Hazard Maps for Japan that are based on seismic hazard assessment (SHA). A simplified app, also named J-SHIS, for smartphones is popularly used in Japan based on the integrated system of http://www.j-shis.bosai.go.jp/map/?lang=en. "Smartphone tells hazard" is realized on a cellphone, a tablet and/or a PC. At a given spot, the comprehensive information of SHA map can be easily obtained as below: 1) A SHA probability at given intensity (JMA=5-, 5+, 6-, 6+) within 30 years. 2) A site amplification factor varies within 0.5 ~ 3.0 and expectation is 1 based on surface geology map information. 3) A depth of seismic basement down to ~3,000m based on deeper borehole and geological structure. 4) Scenario earthquake maps: By choosing an active fault, one got the average case for different parameters of the modeling. Then choose a case, you got the shaking map of intensity with color scale. "Seismic Hazard Karte tells more hazard" is another app based on website of http://www.j-shis.bosai.go.jp/labs/karte/. (1) For every mesh of 250m x 250m, professional service SHA information is provided over national-world. (2) With five ranks for eight items, comprehensive SHA information could be delivered. (3) Site amplification factor with an average index is given. (4) Deeper geologic structure modeling is provided with borehole profiling. (5) A SHA probability is assessed within 30 and/or 50 years for the given site. (6) Seismic Hazard curves are given for earthquake sources from inland active fault, subduction zone, undetermined and their summarization. (7) The JMA seismic intensities are assessed in long-term averaged periods of 500-years to ~100,000 years. The app of J-SHIS can be downloaded freely from http://www.j-shis.bosai.go.jp/app-jshis.

  20. Multi-Hazard Advanced Seismic Probabilistic Risk Assessment Tools and Applications

    International Nuclear Information System (INIS)

    Coleman, Justin L.; Bolisetti, Chandu; Veeraraghavan, Swetha; Parisi, Carlo; Prescott, Steven R.; Gupta, Abhinav

    2016-01-01

    Design of nuclear power plant (NPP) facilities to resist natural hazards has been a part of the regulatory process from the beginning of the NPP industry in the United States (US), but has evolved substantially over time. The original set of approaches and methods was entirely deterministic in nature and focused on a traditional engineering margins-based approach. However, over time probabilistic and risk-informed approaches were also developed and implemented in US Nuclear Regulatory Commission (NRC) guidance and regulation. A defense-in-depth framework has also been incorporated into US regulatory guidance over time. As a result, today, the US regulatory framework incorporates deterministic and probabilistic approaches for a range of different applications and for a range of natural hazard considerations. This framework will continue to evolve as a result of improved knowledge and newly identified regulatory needs and objectives, most notably in response to the NRC activities developed in response to the 2011 Fukushima accident in Japan. Although the US regulatory framework has continued to evolve over time, the tools, methods and data available to the US nuclear industry to meet the changing requirements have not kept pace. Notably, there is significant room for improvement in the tools and methods available for external event probabilistic risk assessment (PRA), which is the principal assessment approach used in risk-informed regulations and risk-informed decision-making applied to natural hazard assessment and design. This is particularly true if PRA is applied to natural hazards other than seismic loading. Development of a new set of tools and methods that incorporate current knowledge, modern best practice, and state-of-the-art computational resources would lead to more reliable assessment of facility risk and risk insights (e.g., the SSCs and accident sequences that are most risk-significant), with less uncertainty and reduced conservatisms.

  1. Multi-Hazard Advanced Seismic Probabilistic Risk Assessment Tools and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Justin L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bolisetti, Chandu [Idaho National Lab. (INL), Idaho Falls, ID (United States); Veeraraghavan, Swetha [Idaho National Lab. (INL), Idaho Falls, ID (United States); Parisi, Carlo [Idaho National Lab. (INL), Idaho Falls, ID (United States); Prescott, Steven R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gupta, Abhinav [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    Design of nuclear power plant (NPP) facilities to resist natural hazards has been a part of the regulatory process from the beginning of the NPP industry in the United States (US), but has evolved substantially over time. The original set of approaches and methods was entirely deterministic in nature and focused on a traditional engineering margins-based approach. However, over time probabilistic and risk-informed approaches were also developed and implemented in US Nuclear Regulatory Commission (NRC) guidance and regulation. A defense-in-depth framework has also been incorporated into US regulatory guidance over time. As a result, today, the US regulatory framework incorporates deterministic and probabilistic approaches for a range of different applications and for a range of natural hazard considerations. This framework will continue to evolve as a result of improved knowledge and newly identified regulatory needs and objectives, most notably in response to the NRC activities developed in response to the 2011 Fukushima accident in Japan. Although the US regulatory framework has continued to evolve over time, the tools, methods and data available to the US nuclear industry to meet the changing requirements have not kept pace. Notably, there is significant room for improvement in the tools and methods available for external event probabilistic risk assessment (PRA), which is the principal assessment approach used in risk-informed regulations and risk-informed decision-making applied to natural hazard assessment and design. This is particularly true if PRA is applied to natural hazards other than seismic loading. Development of a new set of tools and methods that incorporate current knowledge, modern best practice, and state-of-the-art computational resources would lead to more reliable assessment of facility risk and risk insights (e.g., the SSCs and accident sequences that are most risk-significant), with less uncertainty and reduced conservatisms.

  2. A procedure for the determination of scenario earthquakes for seismic design based on probabilistic seismic hazard analysis

    International Nuclear Information System (INIS)

    Hirose, Jiro; Muramatsu, Ken

    2002-03-01

    This report presents a study on the procedures for the determination of scenario earthquakes for seismic design of nuclear power plants (NPPs) based on probabilistic seismic hazard analysis (PSHA). In the recent years, the use of PSHA, which is a part of seismic probabilistic safety assessment (PSA), to determine the design basis earthquake motions for NPPs has been proposed. The identified earthquakes are called probability-based scenario earthquakes (PBSEs). The concept of PBSEs originates both from the study of US NRC and from Ishikawa and Kameda. The assessment of PBSEs is composed of seismic hazard analysis and identification of dominant earthquakes. The objectives of this study are to formulate the concept of PBSEs and to examine the procedures for determining the PBSEs for a domestic NPP site. This report consists of three parts, namely, procedures to compile analytical conditions for PBSEs, an assessment to identify PBSEs for a model site using the Ishikawa's concept and the examination of uncertainties involved in analytical conditions. The results obtained from the examination of PBSEs using Ishikawa's concept are as follows. (a) Since PBSEs are expressed by hazard-consistent magnitude and distance in terms of a prescribed reference probability, it is easy to obtain a concrete image of earthquakes that determine the ground response spectrum to be considered in the design of NPPs. (b) Source contribution factors provide the information on the importance of the earthquake source regions and/or active faults, and allows the selection of a couple of PBSEs based on their importance to the site. (c) Since analytical conditions involve uncertainty, sensitivity analyses on uncertainties that would affect seismic hazard curves and identification of PBSEs were performed on various aspects and provided useful insights for assessment of PBSEs. A result from this sensitivity analysis was that, although the difference in selection of attenuation equations led to a

  3. Seismic Hazards in Site Evaluation for Nuclear Installations. Specific Safety Guide

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-08-15

    This Safety Guide was prepared under the IAEA programme for safety standards for nuclear installations. It supplements the Safety Requirements publication on Site Evaluation for Nuclear Installations. The present publication provides guidance and recommends procedures for the evaluation of seismic hazards for nuclear power plants and other nuclear installations. It supersedes Evaluation of Seismic Hazards for Nuclear Power Plants, IAEA Safety Standards Series No. NS-G-3.3 (2002). In this publication, the following was taken into account: the need for seismic hazard curves and ground motion spectra for the probabilistic safety assessment of external events for new and existing nuclear installations; feedback of information from IAEA reviews of seismic safety studies for nuclear installations performed over the previous decade; collective knowledge gained from recent significant earthquakes; and new approaches in methods of analysis, particularly in the areas of probabilistic seismic hazard analysis and strong motion simulation. In the evaluation of a site for a nuclear installation, engineering solutions will generally be available to mitigate, by means of certain design features, the potential vibratory effects of earthquakes. However, such solutions cannot always be demonstrated to be adequate for mitigating the effects of phenomena of significant permanent ground displacement such as surface faulting, subsidence, ground collapse or fault creep. The objective of this Safety Guide is to provide recommendations and guidance on evaluating seismic hazards at a nuclear installation site and, in particular, on how to determine: (a) the vibratory ground motion hazards, in order to establish the design basis ground motions and other relevant parameters for both new and existing nuclear installations; and (b) the potential for fault displacement and the rate of fault displacement that could affect the feasibility of the site or the safe operation of the installation at

  4. Seismic rupture modelling, strong motion prediction and seismic hazard assessment: fundamental and applied approaches; Modelisation de la rupture sismique, prediction du mouvement fort, et evaluation de l'alea sismique: approches fondamentale et appliquee

    Energy Technology Data Exchange (ETDEWEB)

    Berge-Thierry, C

    2007-05-15

    The defence to obtain the 'Habilitation a Diriger des Recherches' is a synthesis of the research work performed since the end of my Ph D. thesis in 1997. This synthesis covers the two years as post doctoral researcher at the Bureau d'Evaluation des Risques Sismiques at the Institut de Protection (BERSSIN), and the seven consecutive years as seismologist and head of the BERSSIN team. This work and the research project are presented in the framework of the seismic risk topic, and particularly with respect to the seismic hazard assessment. Seismic risk combines seismic hazard and vulnerability. Vulnerability combines the strength of building structures and the human and economical consequences in case of structural failure. Seismic hazard is usually defined in terms of plausible seismic motion (soil acceleration or velocity) in a site for a given time period. Either for the regulatory context or the structural specificity (conventional structure or high risk construction), seismic hazard assessment needs: to identify and locate the seismic sources (zones or faults), to characterize their activity, to evaluate the seismic motion to which the structure has to resist (including the site effects). I specialized in the field of numerical strong-motion prediction using high frequency seismic sources modelling and forming part of the IRSN allowed me to rapidly working on the different tasks of seismic hazard assessment. Thanks to the expertise practice and the participation to the regulation evolution (nuclear power plants, conventional and chemical structures), I have been able to work on empirical strong-motion prediction, including site effects. Specific questions related to the interface between seismologists and structural engineers are also presented, especially the quantification of uncertainties. This is part of the research work initiated to improve the selection of the input ground motion in designing or verifying the stability of structures. (author)

  5. Comparison between seismic and domestic risk in moderate seismic hazard prone region: the Grenoble City (France test site

    Directory of Open Access Journals (Sweden)

    F. Dunand

    2012-02-01

    Full Text Available France has a moderate level of seismic activity, characterized by diffuse seismicity, sometimes experiencing earthquakes of a magnitude of more than 5 in the most active zones. In this seismicity context, Grenoble is a city of major economic and social importance. However, earthquakes being rare, public authorities and the decision makers are only vaguely committed to reducing seismic risk: return periods are long and local policy makers do not have much information available. Over the past 25 yr, a large number of studies have been conducted to improve our knowledge of seismic hazard in this region. One of the decision-making concerns of Grenoble's public authorities, as managers of a large number of public buildings, is to know not only the seismic-prone regions, the variability of seismic hazard due to site effects and the city's overall vulnerability, but also the level of seismic risk and exposure for the entire city, also compared to other natural or/and domestic hazards. Our seismic risk analysis uses a probabilistic approach for regional and local hazards and the vulnerability assessment of buildings. Its applicability to Grenoble offers the advantage of being based on knowledge acquired by previous projects conducted over the years. This paper aims to compare the level of seismic risk with that of other risks and to introduce the notion of risk acceptability in order to offer guidance in the management of seismic risk. This notion of acceptability, which is now part of seismic risk consideration for existing buildings in Switzerland, is relevant in moderately seismic-prone countries like France.

  6. Seismic ground motion and hazard assessment of the Greater Accra Metropolitan Area, southeastern Ghana

    International Nuclear Information System (INIS)

    Amponsah, P.E.; Banoeng-Yakubo, B.K.; Asiedu, D.; Vaccari, F.; Panza, G.F.

    2008-08-01

    The seismic ground motion of the Greater Accra Metropolitan area has been computed and the hazard zones assessed using a deterministic hybrid approach based on the modal summation and finite difference methods. The seismic ground motion along four profiles located in the Greater Accra Metropolitan Area has been modelled using the 1939 earthquake of magnitude 6.5(M L ) as the scenario earthquake. Synthetic seismic waveforms from which parameters for engineering design such as peak ground acceleration, velocity and spectral amplifications have been produced along the geological cross sections. From the seismograms computed, the seismic hazard of the metropolis, expressed in terms of peak ground acceleration and peak ground velocity have been estimated. The peak ground acceleration estimated in the study ranges from 0.14 - 0.57 g and the peak ground velocity from 9.2 - 37.1cms -1 . The presence of low velocity sediments gave rise to high peak values and amplifications. The maximum peak ground accelerations estimated are located in areas with low velocity formations such as colluvium, continental and marine deposits. Areas in the metropolis underlain by unconsolidated sediments have been classified as the maximum damage potential zone and those underlain by highly consolidated geological materials are classified as low damage potential zone. The results of the numerical simulation have been extended to all areas in the metropolis with similar geological formation. (author)

  7. Geoethical and socio-political aspects of seismic and tsunami hazard assessment, quantification and mapping

    Science.gov (United States)

    Tinti, Stefano; Armigliato, Alberto

    2016-04-01

    Seismic hazard and, more recently, tsunami hazard assessments have been undertaken in several countries of the world and globally for the whole Earth planet with the aim of providing a scientifically sound basis to the engineers, technicians, urban and industrial planners, politicians, civil protection operators and in general to the authorities for devising rational risk mitigation strategies and corresponding adequate policies. The main point of this presentation is that the chief-value of all seismic and tsunami hazard studies (including theory, concept, quantification and mapping) resides in the social and political values of the provided products, which is a standpoint entailing a number of relevant geoethical implications. The most relevant implication regards geoscientists who are the subjects mainly involved in carrying out hazard evaluations. Viewed from the classical perspective, the main ethical obligations of geoscientists are restricted to performing hazard estimations in the best possible way from a scientific point of view, which means selecting the "best" available data, adopting sound theoretical models, making use of rigorous methods… What is outlined here, is that this is an insufficient minimalistic position, since it overlooks the basic socio-political and therefore practical value of the hazard-analysis final products. In other words, if one views hazard assessment as a production process leading from data and theories (raw data and production means) to hazard maps (products), the criterion to judge whether it is good or bad needs also to include the usability factor. Seismic and tsunami hazard reports and maps are products that should be usable, which means that they should meet user needs and requirements, and therefore they should be evaluated according to how much they are clearly understandable to, and appropriate for, making-decision users. In the traditional view of a science serving the society, one could represent the interaction

  8. The 2012 Ferrara seismic sequence: Regional crustal structure, earthquake sources, and seismic hazard

    Science.gov (United States)

    Malagnini, Luca; Herrmann, Robert B.; Munafò, Irene; Buttinelli, Mauro; Anselmi, Mario; Akinci, Aybige; Boschi, E.

    2012-10-01

    Inadequate seismic design codes can be dangerous, particularly when they underestimate the true hazard. In this study we use data from a sequence of moderate-sized earthquakes in northeast Italy to validate and test a regional wave propagation model which, in turn, is used to understand some weaknesses of the current design spectra. Our velocity model, while regionalized and somewhat ad hoc, is consistent with geophysical observations and the local geology. In the 0.02-0.1 Hz band, this model is validated by using it to calculate moment tensor solutions of 20 earthquakes (5.6 ≥ MW ≥ 3.2) in the 2012 Ferrara, Italy, seismic sequence. The seismic spectra observed for the relatively small main shock significantly exceeded the design spectra to be used in the area for critical structures. Observations and synthetics reveal that the ground motions are dominated by long-duration surface waves, which, apparently, the design codes do not adequately anticipate. In light of our results, the present seismic hazard assessment in the entire Pianura Padana, including the city of Milan, needs to be re-evaluated.

  9. Earthquake Hazard in the New Madrid Seismic Zone Remains a Concern

    Science.gov (United States)

    Frankel, A.D.; Applegate, D.; Tuttle, M.P.; Williams, R.A.

    2009-01-01

    There is broad agreement in the scientific community that a continuing concern exists for a major destructive earthquake in the New Madrid seismic zone. Many structures in Memphis, Tenn., St. Louis, Mo., and other communities in the central Mississippi River Valley region are vulnerable and at risk from severe ground shaking. This assessment is based on decades of research on New Madrid earthquakes and related phenomena by dozens of Federal, university, State, and consulting earth scientists. Considerable interest has developed recently from media reports that the New Madrid seismic zone may be shutting down. These reports stem from published research using global positioning system (GPS) instruments with results of geodetic measurements of strain in the Earth's crust. Because of a lack of measurable strain at the surface in some areas of the seismic zone over the past 14 years, arguments have been advanced that there is no buildup of stress at depth within the New Madrid seismic zone and that the zone may no longer pose a significant hazard. As part of the consensus-building process used to develop the national seismic hazard maps, the U.S. Geological Survey (USGS) convened a workshop of experts in 2006 to evaluate the latest findings in earthquake hazards in the Eastern United States. These experts considered the GPS data from New Madrid available at that time that also showed little to no ground movement at the surface. The experts did not find the GPS data to be a convincing reason to lower the assessment of earthquake hazard in the New Madrid region, especially in light of the many other types of data that are used to construct the hazard assessment, several of which are described here.

  10. Revised seismic hazard map for the Kyrgyz Republic

    Science.gov (United States)

    Fleming, Kevin; Ullah, Shahid; Parolai, Stefano; Walker, Richard; Pittore, Massimiliano; Free, Matthew; Fourniadis, Yannis; Villiani, Manuela; Sousa, Luis; Ormukov, Cholponbek; Moldobekov, Bolot; Takeuchi, Ko

    2017-04-01

    As part of a seismic risk study sponsored by the World Bank, a revised seismic hazard map for the Kyrgyz Republic has been produced, using the OpenQuake-engine developed by the Global Earthquake Model Foundation (GEM). In this project, an earthquake catalogue spanning a period from 250 BCE to 2014 was compiled and processed through spatial and temporal declustering tools. The territory of the Kyrgyz Republic was divided into 31 area sources defined based on local seismicity, including a total area covering 200 km from the border. The results are presented in terms of Peak Ground Acceleration (PGA). In addition, macroseismic intensity estimates, making use of recent intensity prediction equations, were also provided, given that this measure is still widely used in Central Asia. In order to accommodate the associated epistemic uncertainty, three ground motion prediction equations were used in a logic tree structure. A set of representative earthquake scenarios were further identified based on historical data and the nature of the considered faults. The resulting hazard map, as expected, follows the country's seismicity, with the highest levels of hazard in the northeast, south and southwest of the country, with an elevated part around the centre. When considering PGA, the hazard is slightly greater for major urban centres than in previous works (e.g., Abdrakhmatov et al., 2003), although the macroseismic intensity estimates are less than previous studies, e.g., Ulomov (1999). For the scenario assessments, the examples that most affect the urban centres assessed are the Issyk Ata fault (in particular for Bishkek), the Chilik and Kemin faults (in particular Balykchy and Karakol), the Ferghana Valley fault system (in particular Osh, Jalah-Abad and Uzgen), the Oinik Djar fault (Naryn) and the central and western Talas-Ferghanafaukt (Talas). Finally, while site effects (in particular, those dependent on the upper-most geological structure) have an obvious effect on the

  11. Probabilistic seismic hazards: Guidelines and constraints in evaluating results

    International Nuclear Information System (INIS)

    Sadigh, R.K.; Power, M.S.

    1989-01-01

    In conducting probabilistic seismic hazard analyses, consideration of the dispersion as well as the upper bounds on ground motion is of great significance. In particular, the truncation of ground motion levels at some upper limit would have a major influence on the computed hazard at the low-to-very-low probability levels. Additionally, other deterministic guidelines and constraints should be considered in evaluating the probabilistic seismic hazard results. In contrast to probabilistic seismic hazard evaluations, mean plus one standard deviation ground motions are typically used for deterministic estimates of ground motions from maximum events that may affect a structure. To be consistent with standard deterministic maximum estimates of ground motions values should be the highest level considered for the site. These maximum values should be associated with the largest possible event occurring at the site. Furthermore, the relationships between the ground motion level and probability of exceedance should reflect a transition from purely probabilistic assessments of ground motion at high probability levels where there are multiple chances for events to a deterministic upper bound ground motion at very low probability levels where there is very limited opportunity for maximum events to occur. In Interplate Regions, where the seismic sources may be characterized by a high-to-very-high rate of activity, the deterministic bounds will be approached or exceeded by the computer probabilistic hazard values at annual probability of exceedance levels typically as high as 10 -2 to 10 -3 . Thus, at these or lower values probability levels, probabilistically computed hazard values could be readily interpreted in the light of the deterministic constraints

  12. Implications from palaeoseismological investigations at the Markgrafneusiedl Fault (Vienna Basin, Austria) for seismic hazard assessment

    Science.gov (United States)

    Hintersberger, Esther; Decker, Kurt; Lomax, Johanna; Lüthgens, Christopher

    2018-02-01

    Intraplate regions characterized by low rates of seismicity are challenging for seismic hazard assessment, mainly for two reasons. Firstly, evaluation of historic earthquake catalogues may not reveal all active faults that contribute to regional seismic hazard. Secondly, slip rate determination is limited by sparse geomorphic preservation of slowly moving faults. In the Vienna Basin (Austria), moderate historical seismicity (Imax, obs / Mmax, obs = 8/5.2) concentrates along the left-lateral strike-slip Vienna Basin Transfer Fault (VBTF). In contrast, several normal faults branching out from the VBTF show neither historical nor instrumental earthquake records, although geomorphological data indicate Quaternary displacement along those faults. Here, located about 15 km outside of Vienna, the Austrian capital, we present a palaeoseismological dataset of three trenches that cross one of these splay faults, the Markgrafneusiedl Fault (MF), in order to evaluate its seismic potential. Comparing the observations of the different trenches, we found evidence for five to six surface-breaking earthquakes during the last 120 kyr, with the youngest event occurring at around 14 ka. The derived surface displacements lead to magnitude estimates ranging between 6.2 ± 0.5 and 6.8 ± 0.4. Data can be interpreted by two possible slip models, with slip model 1 showing more regular recurrence intervals of about 20-25 kyr between the earthquakes with M ≥ 6.5 and slip model 2 indicating that such earthquakes cluster in two time intervals in the last 120 kyr. Direct correlation between trenches favours slip model 2 as the more plausible option. Trench observations also show that structural and sedimentological records of strong earthquakes with small surface offset have only low preservation potential. Therefore, the earthquake frequency for magnitudes between 6 and 6.5 cannot be constrained by the trenching records. Vertical slip rates of 0.02-0.05 mm a-1 derived from the

  13. The New Italian Seismic Hazard Model

    Science.gov (United States)

    Marzocchi, W.; Meletti, C.; Albarello, D.; D'Amico, V.; Luzi, L.; Martinelli, F.; Pace, B.; Pignone, M.; Rovida, A.; Visini, F.

    2017-12-01

    In 2015 the Seismic Hazard Center (Centro Pericolosità Sismica - CPS) of the National Institute of Geophysics and Volcanology was commissioned of coordinating the national scientific community with the aim to elaborate a new reference seismic hazard model, mainly finalized to the update of seismic code. The CPS designed a roadmap for releasing within three years a significantly renewed PSHA model, with regard both to the updated input elements and to the strategies to be followed. The main requirements of the model were discussed in meetings with the experts on earthquake engineering that then will participate to the revision of the building code. The activities were organized in 6 tasks: program coordination, input data, seismicity models, ground motion predictive equations (GMPEs), computation and rendering, testing. The input data task has been selecting the most updated information about seismicity (historical and instrumental), seismogenic faults, and deformation (both from seismicity and geodetic data). The seismicity models have been elaborating in terms of classic source areas, fault sources and gridded seismicity based on different approaches. The GMPEs task has selected the most recent models accounting for their tectonic suitability and forecasting performance. The testing phase has been planned to design statistical procedures to test with the available data the whole seismic hazard models, and single components such as the seismicity models and the GMPEs. In this talk we show some preliminary results, summarize the overall strategy for building the new Italian PSHA model, and discuss in detail important novelties that we put forward. Specifically, we adopt a new formal probabilistic framework to interpret the outcomes of the model and to test it meaningfully; this requires a proper definition and characterization of both aleatory variability and epistemic uncertainty that we accomplish through an ensemble modeling strategy. We use a weighting scheme

  14. Corroborating a new probabilistic seismic hazard assessment for greater Tokyo from historical intensity observations

    Science.gov (United States)

    Bozkurt, S.; Stein, R.; Toda, S.

    2006-12-01

    The long recorded history of earthquakes in Japan affords an opportunity to forecast seismic shaking exclusively from past observations of shaking. For this we analyzed 10,000 intensity observations recorded during AD 1600-2000 in a 350 x 350 km area centered on Tokyo in a Geographic Information System. A frequency-intensity curve is found for each 5 x 5 km cell, and from this the probability of exceeding any intensity level can be estimated. The principal benefits of this approach is that it builds the fewest possible assumptions into a probabilistic seismic forecast, it includes site and source effects without imposing this behavior, and we do not need to know the size or location of any earthquake or the location and slip rate of any fault. The cost is that we must abandon any attempt to make a time-dependent forecast, which could be quite different. We believe the method is suitable to many applications of probabilistic seismic hazard assessment, and to other regions. The two key assumptions are that the slope of the observed frequency-intensity relation at every site is the same, and that the 400-year record is long enough to encompass the full range of seismic behavior. Tests we conduct suggest that both assumptions are sound. The resulting 30-year probability of IJMA>=6 shaking (roughly equivalent to PGA>=0.9 g or MMI=IX-X) is 30-40% in Tokyo, Kawasaki, and Yokohama, and 10-15% in Chiba and Tsukuba, the range reflecting spatial variability and curve-fitting alternatives. The strongest shaking is forecast along the margins of Tokyo Bay, within the river sediments extending northwest from Tokyo, and at coastal sites near the plate boundary faults. We also produce long- term exceedance maps of peak ground acceleration for building code regulations, and short-term hazard maps associated with hypothetical catastrophe bonds. Our results for greater Tokyo resemble our independent Poisson probability developed from conventional seismic hazard analysis, as well as

  15. Seismic Hazard Maps for the Maltese Archipelago: Preliminary Results

    Science.gov (United States)

    D'Amico, S.; Panzera, F.; Galea, P. M.

    2013-12-01

    The Maltese islands form an archipelago of three major islands lying in the Sicily channel at about 140 km south of Sicily and 300 km north of Libya. So far very few investigations have been carried out on seismicity around the Maltese islands and no maps of seismic hazard for the archipelago are available. Assessing the seismic hazard for the region is currently of prime interest for the near-future development of industrial and touristic facilities as well as for urban expansion. A culture of seismic risk awareness has never really been developed in the country, and the public perception is that the islands are relatively safe, and that any earthquake phenomena are mild and infrequent. However, the Archipelago has been struck by several moderate/large events. Although recent constructions of a certain structural and strategic importance have been built according to high engineering standards, the same probably cannot be said for all residential buildings, many higher than 3 storeys, which have mushroomed rapidly in recent years. Such buildings are mostly of unreinforced masonry, with heavy concrete floor slabs, which are known to be highly vulnerable to even moderate ground shaking. We can surely state that in this context planning and design should be based on available national hazard maps. Unfortunately, these kinds of maps are not available for the Maltese islands. In this paper we attempt to compute a first and preliminary probabilistic seismic hazard assessment of the Maltese islands in terms of Peak Ground Acceleration (PGA) and Spectral Acceleration (SA) at different periods. Seismic hazard has been computed using the Esteva-Cornell (1968) approach which is the most widely utilized probabilistic method. It is a zone-dependent approach: seismotectonic and geological data are used coupled with earthquake catalogues to identify seismogenic zones within which earthquakes occur at certain rates. Therefore the earthquake catalogues can be reduced to the

  16. Seismic Hazard characterization study using an earthquake source with Probabilistic Seismic Hazard Analysis (PSHA) method in the Northern of Sumatra

    International Nuclear Information System (INIS)

    Yahya, A.; Palupi, M. I. R.; Suharsono

    2016-01-01

    Sumatra region is one of the earthquake-prone areas in Indonesia because it is lie on an active tectonic zone. In 2004 there is earthquake with a moment magnitude of 9.2 located on the coast with the distance 160 km in the west of Nanggroe Aceh Darussalam and triggering a tsunami. These events take a lot of casualties and material losses, especially in the Province of Nanggroe Aceh Darussalam and North Sumatra. To minimize the impact of the earthquake disaster, a fundamental assessment of the earthquake hazard in the region is needed. Stages of research include the study of literature, collection and processing of seismic data, seismic source characterization and analysis of earthquake hazard by probabilistic methods (PSHA) used earthquake catalog from 1907 through 2014. The earthquake hazard represented by the value of Peak Ground Acceleration (PGA) and Spectral Acceleration (SA) in the period of 0.2 and 1 second on bedrock that is presented in the form of a map with a return period of 2475 years and the earthquake hazard curves for the city of Medan and Banda Aceh. (paper)

  17. Seismic hazard studies for the high flux beam reactor at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Costantino, C.J.; Heymsfield, E.; Park, Y.J.; Hofmayer, C.H.

    1991-01-01

    This paper presents the results of a calculation to determine the site specific seismic hazard appropriate for the deep soil site at Brookhaven National Laboratory (BNL) which is to be used in the risk assessment studies being conducted for the High Flux Beam Reactor (HFBR). The calculations use as input the seismic hazard defined for the bedrock outcrop by a study conducted at Lawrence Livermore National Laboratory (LLNL). Variability in site soil properties were included in the calculations to obtain the seismic hazard at the ground surface and compare these results with those using the generic amplification factors from the LLNL study

  18. Seismic hazard analysis of Sinop province, Turkey using ...

    Indian Academy of Sciences (India)

    1997-01-11

    Jan 11, 1997 ... 2008 in the Sinop province of Turkey this study presents a seismic hazard analysis based on ... Considering the development and improvement ... It is one of the most populated cities in the coun- ... done as reliably as the seismic hazard of region per- .... Seismic safety work of underground networks was.

  19. Probabilistic seismic hazard analysis - lessons learned: A regulator's perspective

    International Nuclear Information System (INIS)

    Reiter, L.

    1990-01-01

    Probabilistic seismic hazard analysis is a powerful, rational and attractive tool for decision-making. It is capable of absorbing and integrating a wide range of information and judgement and their associated uncertainties into a flexible framework that permits the application of societal goals and priorities. Unfortunately, its highly integrative nature can obscure those elements which drive the results, its highly quantitative nature can lead to false impressions of accuracy, and its open embrace of uncertainty can make decision-making difficult. Addressing these problems can only help to increase its use and make it more palatable to those who need to assess seismic hazard and utilize the results. (orig.)

  20. Geologic aspects of seismic hazards assessment at the Idaho National Engineering Laboratory, southeastern Idaho

    International Nuclear Information System (INIS)

    Smith, R.P.; Hackett, W.R.; Rodgers, D.W.

    1989-01-01

    The Idaho National Engineering Laboratory (INEL), located on the northwestern side of the Eastern Snake River Plain (ESRP), lies in an area influenced by two distinct geologic provinces. The ESRP province is a northeast-trending zone of late Tertiary and Quaternary volcanism which transects the northwest-trending, block-fault mountain ranges of the Basin and Range province. An understanding of the interaction of these two provinces is important for realistic geologic hazards assessment. Of particular importance for seismic hazards analysis is the relationship of volcanic rift zones on the ESRP to basin-and-range faults north of the plain. The Arco Rift Zone, a 20-km-long belt of deformation and volcanism on the plain just west of the INEL, is colinear with the basin-and-range Lost River fault. Recent field studies have demonstrated that Arco Rift Zone deformation is typical of that induced by dike injection in other volcanic rift zones. The deformation is characterized by a predominance of dilational fissuring with less extensive development of faults and grabens. Cumulative vertical displacements over the past 0.6 Ma are an order of magnitude lower than those associated with the Arco Segment of the Lost River fault to the northwest. The evidence suggests that the northeast-directed extension that produces the block fault mountains of the Basin and Range is expressed by dike injection and volcanic rift zone development in the ESRP. Seismicity associated with dike injection during rift zone development is typically of low magnitude and would represent only minor hazard compared to that associated with the block faulting. Since the ESRP responds to extension in a manner distinct from basin-and-range faulting, it is not appropriate to consider the volcanic rift zones as extensions of basin-and-range faults for seismic hazard analysis

  1. Probabilistic Seismic Hazard Assessment for Himalayan-Tibetan Region from Historical and Instrumental Earthquake Catalogs

    Science.gov (United States)

    Rahman, M. Moklesur; Bai, Ling; Khan, Nangyal Ghani; Li, Guohui

    2018-02-01

    The Himalayan-Tibetan region has a long history of devastating earthquakes with wide-spread casualties and socio-economic damages. Here, we conduct the probabilistic seismic hazard analysis by incorporating the incomplete historical earthquake records along with the instrumental earthquake catalogs for the Himalayan-Tibetan region. Historical earthquake records back to more than 1000 years ago and an updated, homogenized and declustered instrumental earthquake catalog since 1906 are utilized. The essential seismicity parameters, namely, the mean seismicity rate γ, the Gutenberg-Richter b value, and the maximum expected magnitude M max are estimated using the maximum likelihood algorithm assuming the incompleteness of the catalog. To compute the hazard value, three seismogenic source models (smoothed gridded, linear, and areal sources) and two sets of ground motion prediction equations are combined by means of a logic tree on accounting the epistemic uncertainties. The peak ground acceleration (PGA) and spectral acceleration (SA) at 0.2 and 1.0 s are predicted for 2 and 10% probabilities of exceedance over 50 years assuming bedrock condition. The resulting PGA and SA maps show a significant spatio-temporal variation in the hazard values. In general, hazard value is found to be much higher than the previous studies for regions, where great earthquakes have actually occurred. The use of the historical and instrumental earthquake catalogs in combination of multiple seismogenic source models provides better seismic hazard constraints for the Himalayan-Tibetan region.

  2. Seismic hazard and seismic risk assessment based on the unified scaling law for earthquakes: Himalayas and adjacent regions

    Science.gov (United States)

    Nekrasova, A. K.; Kossobokov, V. G.; Parvez, I. A.

    2015-03-01

    For the Himalayas and neighboring regions, the maps of seismic hazard and seismic risk are constructed with the use of the estimates for the parameters of the unified scaling law for earthquakes (USLE), in which the Gutenberg-Richter law for magnitude distribution of seismic events within a given area is applied in the modified version with allowance for linear dimensions of the area, namely, log N( M, L) = A + B (5 - M) + C log L, where N( M, L) is the expected annual number of the earthquakes with magnitude M in the area with linear dimension L. The spatial variations in the parameters A, B, and C for the Himalayas and adjacent regions are studied on two time intervals from 1965 to 2011 and from 1980 to 2011. The difference in A, B, and C between these two time intervals indicates that seismic activity experiences significant variations on a scale of a few decades. With a global consideration of the seismic belts of the Earth overall, the estimates of coefficient A, which determines the logarithm of the annual average frequency of the earthquakes with a magnitude of 5.0 and higher in the zone with a linear dimension of 1 degree of the Earth's meridian, differ by a factor of 30 and more and mainly fall in the interval from -1.1 to 0.5. The values of coefficient B, which describes the balance between the number of earthquakes with different magnitudes, gravitate to 0.9 and range from less than 0.6 to 1.1 and higher. The values of coefficient C, which estimates the fractal dimension of the local distribution of epicenters, vary from 0.5 to 1.4 and higher. In the Himalayas and neighboring regions, the USLE coefficients mainly fall in the intervals of -1.1 to 0.3 for A, 0.8 to 1.3 for B, and 1.0 to 1.4 for C. The calculations of the local value of the expected peak ground acceleration (PGA) from the maximal expected magnitude provided the necessary basis for mapping the seismic hazards in the studied region. When doing this, we used the local estimates of the

  3. The application of the geography census data in seismic hazard assessment

    Science.gov (United States)

    Yuan, Shen; Ying, Zhang

    2017-04-01

    Limited by basic data timeliness to earthquake emergency database in Sichuan province, after the earthquake disaster assessment results and the actual damage there is a certain gap. In 2015, Sichuan completed the province census for the first time which including topography, traffic, vegetation coverage, water area, desert and bare ground, traffic network, the census residents and facilities, geographical unit, geological hazard as well as the Lushan earthquake-stricken area's town planning construction and ecological environment restoration. On this basis, combining with the existing achievements of basic geographic information data and high resolution image data, supplemented by remote sensing image interpretation and geological survey, Carried out distribution and change situation of statistical analysis and information extraction for earthquake disaster hazard-affected body elements such as surface coverage, roads, structures infrastructure in Lushan county before 2013 after 2015. At the same time, achieved the transformation and updating from geographical conditions census data to earthquake emergency basic data through research their data type, structure and relationship. Finally, based on multi-source disaster information including hazard-affected body changed data and Lushan 7.0 magnitude earthquake CORS network coseismal displacement field, etc. obtaining intensity control points through information fusion. Then completed the seismic influence field correction and assessed earthquake disaster again through Sichuan earthquake relief headquarters technology platform. Compared the new assessment result,original assessment result and actual earthquake disaster loss which shows that the revised evaluation result is more close to the actual earthquake disaster loss. In the future can realize geographical conditions census data to earthquake emergency basic data's normalized updates, ensure the timeliness to earthquake emergency database meanwhile improve the

  4. Fault specific GIS based seismic hazard maps for the Attica region, Greece

    Science.gov (United States)

    Deligiannakis, G.; Papanikolaou, I. D.; Roberts, G.

    2018-04-01

    Traditional seismic hazard assessment methods are based on the historical seismic records for the calculation of an annual probability of exceedance for a particular ground motion level. A new fault-specific seismic hazard assessment method is presented, in order to address problems related to the incompleteness and the inhomogeneity of the historical records and to obtain higher spatial resolution of hazard. This method is applied to the region of Attica, which is the most densely populated area in Greece, as nearly half of the country's population lives in Athens and its surrounding suburbs, in the Greater Athens area. The methodology is based on a database of 24 active faults that could cause damage to Attica in case of seismic rupture. This database provides information about the faults slip rates, lengths and expected magnitudes. The final output of the method is four fault-specific seismic hazard maps, showing the recurrence of expected intensities for each locality. These maps offer a high spatial resolution, as they consider the surface geology. Despite the fact that almost half of the Attica region lies on the lowest seismic risk zone according to the official seismic hazard zonation of Greece, different localities have repeatedly experienced strong ground motions during the last 15 kyrs. Moreover, the maximum recurrence for each intensity occurs in different localities across Attica. Highest recurrence for intensity VII (151-156 times over 15 kyrs, or up to a 96 year return period) is observed in the central part of the Athens basin. The maximum intensity VIII recurrence (115 times over 15 kyrs, or up to a 130 year return period) is observed in the western part of Attica, while the maximum intensity IX (73-77/15 kyrs, or a 195 year return period) and X (25-29/15 kyrs, or a 517 year return period) recurrences are observed near the South Alkyonides fault system, which dominates the strong ground motions hazard in the western part of the Attica mainland.

  5. Probabilistic safety assessment for seismic events

    International Nuclear Information System (INIS)

    1993-10-01

    This Technical Document on Probabilistic Safety Assessment for Seismic Events is mainly associated with the Safety Practice on Treatment of External Hazards in PSA and discusses in detail one specific external hazard, i.e. earthquakes

  6. Seismic source zone characterization for the seismic hazard assessment project PEGASOS by the Expert Group 2 (EG1b)

    International Nuclear Information System (INIS)

    Burkhard, M.; Gruenthal, G.

    2009-01-01

    A comprehensive study of the seismic hazard related to the four NNP sites in NW Switzerland was performed within the project PEGASOS. To account for the epistemic uncertainties involved in the process of the characterization of seismic source zones in the frame of probabilistic seismic hazard assessments, four different expert teams have developed and defended their models in the frame of an intensive elicitation process. Here, the results of one out of four expert groups are presented. The model of this team is based first of all on considerations regarding the large scale tectonics in the context of the Alpine collision, and neotectonic constraints for defining seismic source zones. This leads to a large scale subdivision based on the structural 'architectural' considerations with little input from the present seismicity. Each of the eight large zones was characterized by the style of present-day faulting, fault orientation, and hypo central depth distribution. A further subdivision of the larger zones is performed based on information provided by the seismicity patterns. 58 small source zones have been defined in this way, each of them characterized by the available tectonic constrains, as well as the pros and cons of different existing geologic views connected to them. Of special concern in this respect were the discussion regarding thin skinned vs. thick skinned tectonics, the tectonic origin of the 1356 Basel earthquake, the role of the Permo-Carboniferous graben structures, and finally the seismogenic orientation of faults with respect to the recent crustal stress field. The uncertainties connected to the delimitations of the small source zones have been handled in form of their regrouping, formalized by the logic tree technique. The maximum magnitudes were estimated as discretized probability distribution functions. After de-clustering the used ECOS earthquake catalogue and an analysis of data completeness as a function of time the parameters of the

  7. Re-evaluation and updating of the seismic hazard of Lebanon

    Science.gov (United States)

    Huijer, Carla; Harajli, Mohamed; Sadek, Salah

    2016-01-01

    This paper presents the results of a study undertaken to evaluate the implications of the newly mapped offshore Mount Lebanon Thrust (MLT) fault system on the seismic hazard of Lebanon and the current seismic zoning and design parameters used by the local engineering community. This re-evaluation is critical, given that the MLT is located at close proximity to the major cities and economic centers of the country. The updated seismic hazard was assessed using probabilistic methods of analysis. The potential sources of seismic activities that affect Lebanon were integrated along with any/all newly established characteristics within an updated database which includes the newly mapped fault system. The earthquake recurrence relationships of these sources were developed from instrumental seismology data, historical records, and earlier studies undertaken to evaluate the seismic hazard of neighboring countries. Maps of peak ground acceleration contours, based on 10 % probability of exceedance in 50 years (as per Uniform Building Code (UBC) 1997), as well as 0.2 and 1 s peak spectral acceleration contours, based on 2 % probability of exceedance in 50 years (as per International Building Code (IBC) 2012), were also developed. Finally, spectral charts for the main coastal cities of Beirut, Tripoli, Jounieh, Byblos, Saida, and Tyre are provided for use by designers.

  8. Implications from palaeoseismological investigations at the Markgrafneusiedl Fault (Vienna Basin, Austria for seismic hazard assessment

    Directory of Open Access Journals (Sweden)

    E. Hintersberger

    2018-02-01

    Full Text Available Intraplate regions characterized by low rates of seismicity are challenging for seismic hazard assessment, mainly for two reasons. Firstly, evaluation of historic earthquake catalogues may not reveal all active faults that contribute to regional seismic hazard. Secondly, slip rate determination is limited by sparse geomorphic preservation of slowly moving faults. In the Vienna Basin (Austria, moderate historical seismicity (Imax, obs ∕ Mmax, obs = 8∕5.2 concentrates along the left-lateral strike-slip Vienna Basin Transfer Fault (VBTF. In contrast, several normal faults branching out from the VBTF show neither historical nor instrumental earthquake records, although geomorphological data indicate Quaternary displacement along those faults. Here, located about 15 km outside of Vienna, the Austrian capital, we present a palaeoseismological dataset of three trenches that cross one of these splay faults, the Markgrafneusiedl Fault (MF, in order to evaluate its seismic potential. Comparing the observations of the different trenches, we found evidence for five to six surface-breaking earthquakes during the last 120 kyr, with the youngest event occurring at around 14 ka. The derived surface displacements lead to magnitude estimates ranging between 6.2 ± 0.5 and 6.8 ± 0.4. Data can be interpreted by two possible slip models, with slip model 1 showing more regular recurrence intervals of about 20–25 kyr between the earthquakes with M ≥ 6.5 and slip model 2 indicating that such earthquakes cluster in two time intervals in the last 120 kyr. Direct correlation between trenches favours slip model 2 as the more plausible option. Trench observations also show that structural and sedimentological records of strong earthquakes with small surface offset have only low preservation potential. Therefore, the earthquake frequency for magnitudes between 6 and 6.5 cannot be constrained by the trenching records. Vertical

  9. GUI program to compute probabilistic seismic hazard analysis

    International Nuclear Information System (INIS)

    Shin, Jin Soo; Chi, H. C.; Cho, J. C.; Park, J. H.; Kim, K. G.; Im, I. S.

    2006-12-01

    The development of program to compute probabilistic seismic hazard is completed based on Graphic User Interface(GUI). The main program consists of three part - the data input processes, probabilistic seismic hazard analysis and result output processes. The probabilistic seismic hazard analysis needs various input data which represent attenuation formulae, seismic zoning map, and earthquake event catalog. The input procedure of previous programs based on text interface take a much time to prepare the data. The data cannot be checked directly on screen to prevent input erroneously in existing methods. The new program simplifies the input process and enable to check the data graphically in order to minimize the artificial error within limits of the possibility

  10. Seismic hazards: New trends in analysis using geologic data

    International Nuclear Information System (INIS)

    Schwartz, D.P.; Coppersmith, K.J.

    1986-01-01

    In the late 1960s and early 1970s, largely in response to expansion of nuclear power plant siting and issuance of a code of federal regullations by the Nuclear Regulatory Commission referred to as Appendix A-10CFR100, the need to characterize the earthquake potential of individual faults for seismic design took on greater importance. Appendix A established deterministic procedures for assessing the seismic hazard at nuclear power plant sites. Bonilla and Buchanan, using data from historical suface-faulting earthquakes, developed a set of statistical correlations relating earthquake magnitude to surface rupture length and to surface displacement. These relationships have been refined and updated along with the relationship between fault area and magnitude and seismic moment and moment magnitude have served as the basis for selecting maximum earthquakes in a wide variety of design situations. In the paper presented, the authors discuss new trends in seismic hazard analysis using geologic data, with special emphasis on fault-zone segmentation and recurrence models and the way in which they provide a basis for evaluating long-term earthquake potential

  11. Integrate urban‐scale seismic hazard analyses with the U.S. National Seismic Hazard Model

    Science.gov (United States)

    Moschetti, Morgan P.; Luco, Nicolas; Frankel, Arthur; Petersen, Mark D.; Aagaard, Brad T.; Baltay, Annemarie S.; Blanpied, Michael; Boyd, Oliver; Briggs, Richard; Gold, Ryan D.; Graves, Robert; Hartzell, Stephen; Rezaeian, Sanaz; Stephenson, William J.; Wald, David J.; Williams, Robert A.; Withers, Kyle

    2018-01-01

    For more than 20 yrs, damage patterns and instrumental recordings have highlighted the influence of the local 3D geologic structure on earthquake ground motions (e.g., M">M 6.7 Northridge, California, Gao et al., 1996; M">M 6.9 Kobe, Japan, Kawase, 1996; M">M 6.8 Nisqually, Washington, Frankel, Carver, and Williams, 2002). Although this and other local‐scale features are critical to improving seismic hazard forecasts, historically they have not been explicitly incorporated into the U.S. National Seismic Hazard Model (NSHM, national model and maps), primarily because the necessary basin maps and methodologies were not available at the national scale. Instead,...

  12. A New Methodology for Decreasing Uncertainties in the Seismic Hazard Assessment Results by Using Sensitivity Analysis. An Application to Sites in Eastern Spain

    Science.gov (United States)

    Giner, J. J.; Molina, S.; Jáuregui, P.; Delgado, J.

    - In this study a sensitivity analysis has been carried out by means of the seismic hazard results obtained using the non-zoning methodology (Epstein and Lomnitz, 1966) and the extreme value distribution functions proposed by Gumbel (1958), via a logic tree procedure. The aim of the sensitivity analysis is to identify the input parameters that have the largest impact on assessed hazard and its uncertainty. The research findings from the study of these parameters can serve as a useful guide to facilitate further research studies on seismic hazard evaluations because it allows us to identify parameters that have little or no effect on the seismic hazard results as well as parameters that have great effects on them. In this way, using the obtained results, we have proposed objective criteria in assigning probabilities to the different logic tree branches in a more objective way. It should be noted that, although the sensitivity of the logic tree branches depends on the site, it does not always do so in the same way. Finally, re-evaluation of seismic hazard using the proposed methodology applied to eastern Spain leads to a reduction of uncertainty from 52% to 27% of the expected acceleration with 10% probability of exceedence, at the site with the highest value of seismic hazard (Site 1: Torrevieja).

  13. Dynamic evaluation of seismic hazard and risks based on the Unified Scaling Law for Earthquakes

    Science.gov (United States)

    Kossobokov, V. G.; Nekrasova, A.

    2016-12-01

    We continue applying the general concept of seismic risk analysis in a number of seismic regions worldwide by constructing seismic hazard maps based on the Unified Scaling Law for Earthquakes (USLE), i.e. log N(M,L) = A + B•(6 - M) + C•log L, where N(M,L) is the expected annual number of earthquakes of a certain magnitude M within an seismically prone area of linear dimension L, A characterizes the average annual rate of strong (M = 6) earthquakes, B determines the balance between magnitude ranges, and C estimates the fractal dimension of seismic locus in projection to the Earth surface. The parameters A, B, and C of USLE are used to assess, first, the expected maximum magnitude in a time interval at a seismically prone cell of a uniform grid that cover the region of interest, and then the corresponding expected ground shaking parameters. After a rigorous testing against the available seismic evidences in the past (e.g., the historically reported macro-seismic intensity or paleo data), such a seismic hazard map is used to generate maps of specific earthquake risks for population, cities, and infrastructures. The hazard maps for a given territory change dramatically, when the methodology is applied to a certain size moving time window, e.g. about a decade long for an intermediate-term regional assessment or exponentially increasing intervals for a daily local strong aftershock forecasting. The of dynamical seismic hazard and risks assessment is illustrated by applications to the territory of Greater Caucasus and Crimea and the two-year series of aftershocks of the 11 October 2008 Kurchaloy, Chechnya earthquake which case-history appears to be encouraging for further systematic testing as potential short-term forecasting tool.

  14. Seismic waves in 3-D: from mantle asymmetries to reliable seismic hazard assessment

    Science.gov (United States)

    Panza, Giuliano F.; Romanelli, Fabio

    2014-10-01

    A global cross-section of the Earth parallel to the tectonic equator (TE) path, the great circle representing the equator of net lithosphere rotation, shows a difference in shear wave velocities between the western and eastern flanks of the three major oceanic rift basins. The low-velocity layer in the upper asthenosphere, at a depth range of 120 to 200 km, is assumed to represent the decoupling between the lithosphere and the underlying mantle. Along the TE-perturbed (TE-pert) path, a ubiquitous LVZ, about 1,000-km-wide and 100-km-thick, occurs in the asthenosphere. The existence of the TE-pert is a necessary prerequisite for the existence of a continuous global flow within the Earth. Ground-shaking scenarios were constructed using a scenario-based method for seismic hazard analysis (NDSHA), using realistic and duly validated synthetic time series, and generating a data bank of several thousands of seismograms that account for source, propagation, and site effects. Accordingly, with basic self-organized criticality concepts, NDSHA permits the integration of available information provided by the most updated seismological, geological, geophysical, and geotechnical databases for the site of interest, as well as advanced physical modeling techniques, to provide a reliable and robust background for the development of a design basis for cultural heritage and civil infrastructures. Estimates of seismic hazard obtained using the NDSHA and standard probabilistic approaches are compared for the Italian territory, and a case-study is discussed. In order to enable a reliable estimation of the ground motion response to an earthquake, three-dimensional velocity models have to be considered, resulting in a new, very efficient, analytical procedure for computing the broadband seismic wave-field in a 3-D anelastic Earth model.

  15. Assessing the seismic risk potential of South America

    Science.gov (United States)

    Jaiswal, Kishor; Petersen, Mark D.; Harmsen, Stephen; Smoczyk, Gregory M.

    2016-01-01

    We present here a simplified approach to quantifying regional seismic risk. The seismic risk for a given region can be inferred in terms of average annual loss (AAL) that represents long-term value of earthquake losses in any one year caused from a long-term seismic hazard. The AAL are commonly measured in the form of earthquake shaking-induced deaths, direct economic impacts or indirect losses caused due to loss of functionality. In the context of South American subcontinent, the analysis makes use of readily available public data on seismicity, population exposure, and the hazard and vulnerability models for the region. The seismic hazard model was derived using available seismic catalogs, fault databases, and the hazard methodologies that are analogous to the U.S. Geological Survey’s national seismic hazard mapping process. The Prompt Assessment of Global Earthquakes for Response (PAGER) system’s direct empirical vulnerability functions in terms of fatality and economic impact were used for performing exposure and risk analyses. The broad findings presented and the risk maps produced herein are preliminary, yet they do offer important insights into the underlying zones of high and low seismic risks in the South American subcontinent. A more detailed analysis of risk may be warranted by engaging local experts, especially in some of the high risk zones identified through the present investigation.

  16. GUI program to compute probabilistic seismic hazard analysis

    International Nuclear Information System (INIS)

    Shin, Jin Soo; Chi, H. C.; Cho, J. C.; Park, J. H.; Kim, K. G.; Im, I. S.

    2005-12-01

    The first stage of development of program to compute probabilistic seismic hazard is completed based on Graphic User Interface (GUI). The main program consists of three part - the data input processes, probabilistic seismic hazard analysis and result output processes. The first part has developed and others are developing now in this term. The probabilistic seismic hazard analysis needs various input data which represent attenuation formulae, seismic zoning map, and earthquake event catalog. The input procedure of previous programs based on text interface take a much time to prepare the data. The data cannot be checked directly on screen to prevent input erroneously in existing methods. The new program simplifies the input process and enable to check the data graphically in order to minimize the artificial error within the limits of the possibility

  17. Probabilistic tsunami hazard assessment at Seaside, Oregon, for near-and far-field seismic sources

    Science.gov (United States)

    Gonzalez, F.I.; Geist, E.L.; Jaffe, B.; Kanoglu, U.; Mofjeld, H.; Synolakis, C.E.; Titov, V.V.; Areas, D.; Bellomo, D.; Carlton, D.; Horning, T.; Johnson, J.; Newman, J.; Parsons, T.; Peters, R.; Peterson, C.; Priest, G.; Venturato, A.; Weber, J.; Wong, F.; Yalciner, A.

    2009-01-01

    The first probabilistic tsunami flooding maps have been developed. The methodology, called probabilistic tsunami hazard assessment (PTHA), integrates tsunami inundation modeling with methods of probabilistic seismic hazard assessment (PSHA). Application of the methodology to Seaside, Oregon, has yielded estimates of the spatial distribution of 100- and 500-year maximum tsunami amplitudes, i.e., amplitudes with 1% and 0.2% annual probability of exceedance. The 100-year tsunami is generated most frequently by far-field sources in the Alaska-Aleutian Subduction Zone and is characterized by maximum amplitudes that do not exceed 4 m, with an inland extent of less than 500 m. In contrast, the 500-year tsunami is dominated by local sources in the Cascadia Subduction Zone and is characterized by maximum amplitudes in excess of 10 m and an inland extent of more than 1 km. The primary sources of uncertainty in these results include those associated with interevent time estimates, modeling of background sea level, and accounting for temporal changes in bathymetry and topography. Nonetheless, PTHA represents an important contribution to tsunami hazard assessment techniques; viewed in the broader context of risk analysis, PTHA provides a method for quantifying estimates of the likelihood and severity of the tsunami hazard, which can then be combined with vulnerability and exposure to yield estimates of tsunami risk. Copyright 2009 by the American Geophysical Union.

  18. Seismic and tsunami hazard in Puerto Rico and the Virgin Islands

    Science.gov (United States)

    Dillon, William P.; Frankel, Arthur D.; Mueller, Charles S.; Rodriguez, Rafael W.; ten Brink, Uri S.

    1999-01-01

    Executive SummaryPuerto Rico and the Virgin Islands are located at an active plate boundary between the North American plate and the northeast corner of the Caribbean plate. The region was subject in historical times to large magnitude earthquakes and devastating tsunamis. A major downward tilt of the sea floor north of Puerto Rico and the Virgin Islands, large submarine rockslides, and an unusually large negative gravity anomaly are also indicative of a tectonically active region. Scientists have so far failed to explain the deformation of this region in a coherent and predictable picture, such as in California, and this has hampered their ability to assess seismic and tsunami hazards in the region. The NE corner of the Caribbean is unique among the seismically-active regions of the United States in that it is mostly covered by water. This fact presents an additional challenge for seismic and tsunami hazard assessment and mitigation.The workshop, convened in San Juan on March 23-24, 1999, was "historic" in that it brought together for the first time a broad spectrum of scientists, engineers, and public and private sector officials who deal with such diverse questions as tectonic models, probabilistic assessment of seismic hazard, prediction of tsunami runup, strong ground motion, building codes, stability of man-made structures, and the public’s preparedness for natural disasters. It was an opportunity for all the participants to find out how their own activity fit into the broad picture of science and how it aids society in hazard assessment and mitigation. In addition, the workshop was offered as a continuing education course at the Colegio de Ingenieros y Agrimensores de Puerto Rico, which assured a rapid dissemination of the results to the local community. A news conference which took place during the workshop alerted the public to the efforts of the USGS, other Federal agencies, the Commonwealth of Puerto Rico, universities and the private sector.During the

  19. Crustal structure and Seismic Hazard studies in Nigeria from ambient noise and earthquakes

    Science.gov (United States)

    Kadiri, U. A.

    2016-12-01

    The crust, upper Mantle and seismic hazard studies have been carried out in Nigeria using noise and earthquake data. The data were acquired from stations in Nigeria and international Agencies. Firstly, known depths of sediments in the Lower Benue Trough (LBT) were collected from wells; Resonance frequency (Fo) and average shear-wave velocities (Vs) were then computed using Matlab. Secondly, average velocities were estimated from noise cross-correlation along seismic stations. Thirdly, the moho depths beneath Ife, Kaduna and Nsukka stations were estimated, as well as Vp/Vs ratio using 2009 earthquake with epicenter in Nigeria. Finally, Statistical and Probabilistic Seismic Hazard Assessment (PSHA) were used to compute seismic hazard parameters in Nigeria and its surroundings. The results showed that, soils on the LBT with average shear wave velocity of about 5684m/s would experience more amplification in case of an earthquake, compared to the basement complex in Nigeria. The Vs beneath the seismic stations in Nigeria were also estimated as 288m/s, 1019m/s, 940.6m/s and 255.02m/s in Ife, Nsukka, Awka, and Abakaliki respectively. The average velocity along the station paths was 4.5km/secs, and the Vp, Vs for depths 100-500km profile in parts of South West Nigeria increased from about 5.83-6.42Km/sec and 3.48-6.31km/s respectively with Vp/Vs ratio decreasing from 1.68 to 1.02. Statistical analysis revealed a trend of increasing earthquake occurrence along the Mid-Atlantic Ridge and tending to West African region. The analysis of PSHA shows the likelihood of earthquakes with different magnitudes occurring in Nigeria and other parts West Africa in future. This work is aimed at addressing critical issues regarding sites effect characterization, improved earthquake location and robust seismic hazards assessment for planning in the choice of sites for critical facilities in Nigeria. Keywords: Sediment thickness, Resonance Frequency, Average Velocity, Seismic Hazard, Nigeria

  20. Integrating population dynamics into mapping human exposure to seismic hazard

    Directory of Open Access Journals (Sweden)

    S. Freire

    2012-11-01

    Full Text Available Disaster risk is not fully characterized without taking into account vulnerability and population exposure. Assessment of earthquake risk in urban areas would benefit from considering the variation of population distribution at more detailed spatial and temporal scales, and from a more explicit integration of this improved demographic data with existing seismic hazard maps. In the present work, "intelligent" dasymetric mapping is used to model population dynamics at high spatial resolution in order to benefit the analysis of spatio-temporal exposure to earthquake hazard in a metropolitan area. These night- and daytime-specific population densities are then classified and combined with seismic intensity levels to derive new spatially-explicit four-class-composite maps of human exposure. The presented approach enables a more thorough assessment of population exposure to earthquake hazard. Results show that there are significantly more people potentially at risk in the daytime period, demonstrating the shifting nature of population exposure in the daily cycle and the need to move beyond conventional residence-based demographic data sources to improve risk analyses. The proposed fine-scale maps of human exposure to seismic intensity are mainly aimed at benefiting visualization and communication of earthquake risk, but can be valuable in all phases of the disaster management process where knowledge of population densities is relevant for decision-making.

  1. Development of probabilistic seismic hazard analysis for international sites, challenges and guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Ares, Antonio, E-mail: antonio.fernandez@rizzoassoc.com [Paul C. Rizzo Associates, Inc., 500 Penn Center Boulevard, Penn Center East, Suite 100, Pittsburgh, PA 15235 (United States); Fatehi, Ali, E-mail: ali.fatehi@rizzoassoc.com [Paul C. Rizzo Associates, Inc., 500 Penn Center Boulevard, Penn Center East, Suite 100, Pittsburgh, PA 15235 (United States)

    2013-06-15

    Research highlights: ► Site-specific seismic hazard study and suggestions for overcoming those challenges that are inherent to the significant amounts of epistemic uncertainty for sites at remote locations. ► Main aspects of probabilistic seismic hazard analysis (PSHA). ► Regional and site geology in the context of a probabilistic seismic hazard analysis (PSHA), including state-of-the-art ground motion estimation methods, and geophysical conditions. ► Senior seismic hazard analysis (SSHAC) as a mean to incorporate the opinions and contributions of the informed scientific community. -- Abstract: This article provides guidance to conduct a site-specific seismic hazard study, giving suggestions for overcoming those challenges that are inherent to the significant amounts of epistemic uncertainty for sites at remote locations. The text follows the general process of a seismic hazard study, describing both the deterministic and probabilistic approaches. Key and controversial items are identified in the areas of recorded seismicity, seismic sources, magnitude, ground motion models, and local site effects. A case history corresponding to a seismic hazard study in the Middle East for a Greenfield site in a remote location is incorporated along the development of the recommendations. Other examples of analysis case histories throughout the World are presented as well.

  2. Composite Earthquake Catalog of the Yellow Sea for Seismic Hazard Studies

    Science.gov (United States)

    Kang, S. Y.; Kim, K. H.; LI, Z.; Hao, T.

    2017-12-01

    information in the Yellow Sea composite earthquake catalog (YComCat). Since earthquake catalog plays critical role in the seismic hazard assessment, YComCat provides improved input to reduce uncertainties in the seismic hazard estimations.

  3. Microzonation of Seismic Hazard Potential in Taipei, Taiwan

    Science.gov (United States)

    Liu, K. S.; Lin, Y. P.

    2017-12-01

    The island of Taiwan lies at the boundary between the Philippine Sea plate and the Eurasia plate. Accordingly, the majority of seismic energy release near Taiwan originates from the two subduction zones. It is therefore not surprising that Taiwan has repeatedly been struck by large earthquakes such as 1986 Hualien earthquake, 1999 Chi Chi and 2002 Hualien earthquake. Microzonation of seismic hazard potential becomes necessary in Taipei City for the Central Geological Survey announced the Sanchiao active fault as Category II. In this study, a catalog of more than 2000 shallow earthquakes occurred from 1900 to 2015 with Mw magnitudes ranging from 5.0 to 8.2, and 11 disastrous earthquakes occurred from 1683-1899, as well as Sanchiao active fault in the vicinity are used to estimate the seismic hazard potential in Taipei City for seismic microzonation. Furthermore, the probabilities of seismic intensity exceeding CWB intensity 5, 6, 7 and MMI VI, VII, VIII in 10, 30, and 50-year periods in the above areas are also analyzed for the seismic microzonation. Finally, by comparing with the seismic zoning map of Taiwan in current building code that was revised after 921 earthquakes, Results of this study will show which areas with higher earthquake hazard potential in Taipei City. They provide a valuable database for the seismic design of critical facilities. It will help mitigate Taipei City earthquake disaster loss in the future, as well as provide critical information for emergency response plans.

  4. Seismic hazard maps for earthquake-resistant construction designs

    International Nuclear Information System (INIS)

    Ohkawa, Izuru

    2004-01-01

    Based on the idea that seismic phenomena in Japan varying in different localities are to be reflected in designing specific nuclear facilities in specific site, the present research program started to make seismic hazard maps representing geographical distribution of seismic load factors. First, recent research data on historical earthquakes and materials on active faults in Japan have been documented. Differences in character due to different localities are expressed by dynamic load in consideration of specific building properties. Next, hazard evaluation corresponding to seismic-resistance factor is given as response index (spectrum) of an adequately selected building, for example a nuclear power station, with the help of investigation results of statistical analysis. (S. Ohno)

  5. Some preliminary results of a worldwide seismicity estimation: a case study of seismic hazard evaluation in South America

    Directory of Open Access Journals (Sweden)

    C. V. Christova

    2000-06-01

    Full Text Available Global data have been widely used for seismicity and seismic hazard assessment by seismologists. In the present study we evaluate worldwide seismicity in terms of maps of maximum observed magnitude (Mmax, seismic moment (M 0 and seismic moment rate (M 0S. The data set used consists of a complete and homogeneous global catalogue of shallow (h £ 60 km earthquakes of magnitude MS ³ 5.5 for the time period 1894-1992. In order to construct maps of seismicity and seismic hazard the parameters a and b derived from the magnitude-frequency relationship were estimated by both: a the least squares, and b the maximum likelihood, methods. The values of a and b were determined considering circles centered at each grid point 1° (of a mesh 1° ´1° and of varying radius, which starts from 30 km and moves with a step of 10 km. Only a and b values which fulfill some predefined conditions were considered in the further procedure for evaluating the seismic hazard maps. The obtained worldwide M max distribution in general delineates the contours of the plate boundaries. The highest values of M max observed are along the circum-Pacific belt and in the Himalayan area. The subduction plate boundaries are characterized by the largest amount of M 0 , while areas of continental collision are next. The highest values of seismic moment rate (per 1 year and per equal area of 10 000 km 2 are found in the Southern Himalayas. The western coasts of U.S.A., Northwestern Canada and Alaska, the Indian Ocean and the eastern rift of Africa are characterized by high values of M 0 , while most of the Pacific subduction zones have lower values of seismic moment rate. Finally we analyzed the seismic hazard in South America comparing the predicted by the NUVEL1 model convergence slip rate between Nazca and South America plates with the average slip rate due to earthquakes. This consideration allows for distinguishing between zones of high and low coupling along the studied convergence

  6. Approaches that use seismic hazard results to address topics of nuclear power plant seismic safety, with application to the Charleston earthquake issue

    International Nuclear Information System (INIS)

    Sewell, R.T.; McGuire, R.K.; Toro, G.R.; Stepp, J.C.; Cornell, C.A.

    1990-01-01

    Plant seismic safety indicators include seismic hazard at the SSE (safe shut-down earthquake) acceleration, seismic margin, reliability against core damage, and reliability against offsite consequences. This work examines the key role of hazard analysis in evaluating these indicators and in making rational decisions regarding plant safety. The paper outlines approaches that use seismic hazard results as a basis for plant seismic safety evaluation and applies one of these approaches to the Charleston earthquake issue. This approach compares seismic hazard results that account for the Charleston tectonic interpretation, using the EPRI-Seismicity Owners Group (SOG) methodology, with hazard results that are consistent with historical tectonic interpretations accepted in regulation. Based on hazard results for a set of 21 eastern U.S. nuclear power plant sites, the comparison shows that no systematic 'plant-to-plant' increase in hazard accompanies the Charleston hypothesis; differences in mean hazards for the two interpretations are generally insignificant relative to current uncertainties in seismic hazard. (orig.)

  7. A national seismographic network for assessing seismic hazards

    International Nuclear Information System (INIS)

    Masse, R.P.; Murphy, A.J.

    1989-01-01

    To access the seismic hazard of a region and to establish the design and construction criteria for critical facilities such as nuclear power plants, detailed information is required on the frequency of occurrence, geographical distribution, magnitude, and energy spectra of earthquakes. Also important is information on the frequency-dependent attenuation of seismic waves. This information can all be obtained from data recorded by networks of seismograph stations. A new seismograph network for the US which takes advantage of advances in technology is currently under development. This network is the US National Seismograph Network (USNSN). The USNSN is a cooperative effort between the National Earthquake Information Center (NEIC) of the US Geological survey and the Nuclear Regulatory Commission. The USNSN will be installed and operated by the NEIC. The network will consist of approximately 150 seismograph stations distributed across the lower 48 states and across Alaska, Hawaii, Puerto Rico, and the Virgin Islands. The design goal for the network is the on-scale recording by at least five well-distributed stations of any event of magnitude 2.5 or larger in the continental US, Hawaii, and Puerto Rico, and of any event of magnitude 3.5 or larger in Alaska. The rapid access to all USNSN data will be provided by the NEIC. This will be accomplished both via a dial-up capability to the event waveform data base and by satellite transmission in a broadcast mode. All earthquake data will also be distributed on compact disk with read only memory (CD-ROM) to all institutions having an interest in the seismic data

  8. Seismic reliability assessment methodology for CANDU concrete containment structures-phase 11

    International Nuclear Information System (INIS)

    Hong, H.P.

    1996-07-01

    This study was undertaken to verify a set of load factors for reliability-based seismic evaluation of CANDU containment structures in Eastern Canada. Here, the new, site-specific, results of probabilistic seismic hazard assessment (response spectral velocity) were applied. It was found that the previously recommended load factors are relatively insensitive to the new seismic hazard information, and are adequate for a reliability-based seismic evaluation process. (author). 4 refs., 5 tabs., 9 figs

  9. Preliminary seismic design cost-benefit assessment of the tuff repository waste-handling facilities

    International Nuclear Information System (INIS)

    Subramanian, C.V.; Abrahamson, N.; Hadjian, A.H.

    1989-02-01

    This report presents a preliminary assessment of the costs and benefits associated with changes in the seismic design basis of waste-handling facilities. The objectives of the study are to understand the capability of the current seismic design of the waste-handling facilities to mitigate seismic hazards, evaluate how different design levels and design measures might be used toward mitigating seismic hazards, assess the costs and benefits of alternative seismic design levels, and develop recommendations for possible modifications to the seismic design basis. This preliminary assessment is based primarily on expert judgment solicited in an interdisciplinary workshop environment. The estimated costs for individual attributes and the assumptions underlying these cost estimates (seismic hazard levels, fragilities, radioactive-release scenarios, etc.) are subject to large uncertainties, which are generally identified but not treated explicitly in this preliminary analysis. The major conclusions of the report do not appear to be very sensitive to these uncertainties. 41 refs., 51 figs., 35 tabs

  10. Seismic hazard in the Nation's breadbasket

    Science.gov (United States)

    Boyd, Oliver; Haller, Kathleen; Luco, Nicolas; Moschetti, Morgan P.; Mueller, Charles; Petersen, Mark D.; Rezaeian, Sanaz; Rubinstein, Justin L.

    2015-01-01

    The USGS National Seismic Hazard Maps were updated in 2014 and included several important changes for the central United States (CUS). Background seismicity sources were improved using a new moment-magnitude-based catalog; a new adaptive, nearest-neighbor smoothing kernel was implemented; and maximum magnitudes for background sources were updated. Areal source zones developed by the Central and Eastern United States Seismic Source Characterization for Nuclear Facilities project were simplified and adopted. The weighting scheme for ground motion models was updated, giving more weight to models with a faster attenuation with distance compared to the previous maps. Overall, hazard changes (2% probability of exceedance in 50 years, across a range of ground-motion frequencies) were smaller than 10% in most of the CUS relative to the 2008 USGS maps despite new ground motion models and their assigned logic tree weights that reduced the probabilistic ground motions by 5–20%.

  11. Proceedings of the twenty-fourth water reactor safety information meeting. Volume 3: PRA and HRA; Probabilistic seismic hazard assessment and seismic siting criteria

    Energy Technology Data Exchange (ETDEWEB)

    Monteleone, S. [comp.] [Brookhaven National Lab., Upton, NY (United States)

    1997-02-01

    This three-volume report contains papers presented at the Twenty-Fourth Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, October 21--23, 1996. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from Czech Republic, Finland, France, Japan, Norway, Russia and United Kingdom. This volume is divided into the following sections: PRA and HRA and probabilistic seismic hazard assessment and seismic siting criteria. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  12. Proceedings of the twenty-fourth water reactor safety information meeting. Volume 3: PRA and HRA; Probabilistic seismic hazard assessment and seismic siting criteria

    International Nuclear Information System (INIS)

    Monteleone, S.

    1997-02-01

    This three-volume report contains papers presented at the Twenty-Fourth Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, October 21--23, 1996. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from Czech Republic, Finland, France, Japan, Norway, Russia and United Kingdom. This volume is divided into the following sections: PRA and HRA and probabilistic seismic hazard assessment and seismic siting criteria. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  13. Documentation for the Southeast Asia seismic hazard maps

    Science.gov (United States)

    Petersen, Mark; Harmsen, Stephen; Mueller, Charles; Haller, Kathleen; Dewey, James; Luco, Nicolas; Crone, Anthony; Lidke, David; Rukstales, Kenneth

    2007-01-01

    The U.S. Geological Survey (USGS) Southeast Asia Seismic Hazard Project originated in response to the 26 December 2004 Sumatra earthquake (M9.2) and the resulting tsunami that caused significant casualties and economic losses in Indonesia, Thailand, Malaysia, India, Sri Lanka, and the Maldives. During the course of this project, several great earthquakes ruptured subduction zones along the southern coast of Indonesia (fig. 1) causing additional structural damage and casualties in nearby communities. Future structural damage and societal losses from large earthquakes can be mitigated by providing an advance warning of tsunamis and introducing seismic hazard provisions in building codes that allow buildings and structures to withstand strong ground shaking associated with anticipated earthquakes. The Southeast Asia Seismic Hazard Project was funded through a United States Agency for International Development (USAID)—Indian Ocean Tsunami Warning System to develop seismic hazard maps that would assist engineers in designing buildings that will resist earthquake strong ground shaking. An important objective of this project was to discuss regional hazard issues with building code officials, scientists, and engineers in Thailand, Malaysia, and Indonesia. The code communities have been receptive to these discussions and are considering updating the Thailand and Indonesia building codes to incorporate new information (for example, see notes from Professor Panitan Lukkunaprasit, Chulalongkorn University in Appendix A).

  14. A Bimodal Hybrid Model for Time-Dependent Probabilistic Seismic Hazard Analysis

    Science.gov (United States)

    Yaghmaei-Sabegh, Saman; Shoaeifar, Nasser; Shoaeifar, Parva

    2018-03-01

    The evaluation of evidence provided by geological studies and historical catalogs indicates that in some seismic regions and faults, multiple large earthquakes occur in cluster. Then, the occurrences of large earthquakes confront with quiescence and only the small-to-moderate earthquakes take place. Clustering of large earthquakes is the most distinguishable departure from the assumption of constant hazard of random occurrence of earthquakes in conventional seismic hazard analysis. In the present study, a time-dependent recurrence model is proposed to consider a series of large earthquakes that occurs in clusters. The model is flexible enough to better reflect the quasi-periodic behavior of large earthquakes with long-term clustering, which can be used in time-dependent probabilistic seismic hazard analysis with engineering purposes. In this model, the time-dependent hazard results are estimated by a hazard function which comprises three parts. A decreasing hazard of last large earthquake cluster and an increasing hazard of the next large earthquake cluster, along with a constant hazard of random occurrence of small-to-moderate earthquakes. In the final part of the paper, the time-dependent seismic hazard of the New Madrid Seismic Zone at different time intervals has been calculated for illustrative purpose.

  15. Assessment of pre-crisis and syn-crisis seismic hazard at Campi Flegrei and Mt. Vesuvius volcanoes, Campania, southern Italy

    Science.gov (United States)

    Convertito, Vincenzo; Zollo, Aldo

    2011-08-01

    In this study, we address the issue of short-term to medium-term probabilistic seismic hazard analysis for two volcanic areas, Campi Flegrei caldera and Mt. Vesuvius in the Campania region of southern Italy. Two different phases of the volcanic activity are considered. The first, which we term the pre-crisis phase, concerns the present quiescent state of the volcanoes that is characterized by low-to-moderate seismicity. The second phase, syn-crisis, concerns the unrest phase that can potentially lead to eruption. For the Campi Flegrei case study, we analyzed the pattern of seismicity during the 1982-1984 ground uplift episode (bradyseism). For Mt. Vesuvius, two different time-evolutionary models for seismicity were adopted, corresponding to different ways in which the volcano might erupt. We performed a site-specific analysis, linked with the hazard map, to investigate the effects of input parameters, in terms of source geometry, mean activity rate, periods of data collection, and return periods, for the syn-crisis phase. The analysis in the present study of the pre-crisis phase allowed a comparison of the results of probabilistic seismic hazard analysis for the two study areas with those provided in the Italian national hazard map. For the Mt. Vesuvius area in particular, the results show that the hazard can be greater than that reported in the national hazard map when information at a local scale is used. For the syn-crisis phase, the main result is that the data recorded during the early months of the unrest phase are substantially representative of the seismic hazard during the whole duration of the crisis.

  16. A New Seismic Hazard Model for Mainland China

    Science.gov (United States)

    Rong, Y.; Xu, X.; Chen, G.; Cheng, J.; Magistrale, H.; Shen, Z. K.

    2017-12-01

    We are developing a new seismic hazard model for Mainland China by integrating historical earthquake catalogs, geological faults, geodetic GPS data, and geology maps. To build the model, we construct an Mw-based homogeneous historical earthquake catalog spanning from 780 B.C. to present, create fault models from active fault data, and derive a strain rate model based on the most complete GPS measurements and a new strain derivation algorithm. We divide China and the surrounding regions into about 20 large seismic source zones. For each zone, a tapered Gutenberg-Richter (TGR) magnitude-frequency distribution is used to model the seismic activity rates. The a- and b-values of the TGR distribution are calculated using observed earthquake data, while the corner magnitude is constrained independently using the seismic moment rate inferred from the geodetically-based strain rate model. Small and medium sized earthquakes are distributed within the source zones following the location and magnitude patterns of historical earthquakes. Some of the larger earthquakes are distributed onto active faults, based on their geological characteristics such as slip rate, fault length, down-dip width, and various paleoseismic data. The remaining larger earthquakes are then placed into the background. A new set of magnitude-rupture scaling relationships is developed based on earthquake data from China and vicinity. We evaluate and select appropriate ground motion prediction equations by comparing them with observed ground motion data and performing residual analysis. To implement the modeling workflow, we develop a tool that builds upon the functionalities of GEM's Hazard Modeler's Toolkit. The GEM OpenQuake software is used to calculate seismic hazard at various ground motion periods and various return periods. To account for site amplification, we construct a site condition map based on geology. The resulting new seismic hazard maps can be used for seismic risk analysis and management.

  17. Seismicity and seismic hazard in Sabah, East Malaysia from earthquake and geodetic data

    Science.gov (United States)

    Gilligan, A.; Rawlinson, N.; Tongkul, F.; Stephenson, R.

    2017-12-01

    While the levels of seismicity are low in most of Malaysia, the state of Sabah in northern Borneo has moderate levels of seismicity. Notable earthquakes in the region include the 1976 M6.2 Lahad Datu earthquake and the 2015 M6 Ranau earthquake. The recent Ranau earthquake resulted in the deaths of 18 people on Mt Kinabalu, an estimated 100 million RM ( US$23 million) damage to buildings, roads, and infrastructure from shaking, and flooding, reduced water quality, and damage to farms from landslides. Over the last 40 years the population of Sabah has increased to over four times what it was in 1976, yet seismic hazard in Sabah remains poorly understood. Using seismic and geodetic data we hope to better quantify the hazards posed by earthquakes in Sabah, and thus help to minimize risk. In order to do this we need to know about the locations of earthquakes, types of earthquakes that occur, and faults that are generating them. We use data from 15 MetMalaysia seismic stations currently operating in Sabah to develop a region-specific velocity model from receiver functions and a pre-existing surface wave model. We use this new velocity model to (re)locate earthquakes that occurred in Sabah from 2005-2016, including a large number of aftershocks from the 2015 Ranau earthquake. We use a probabilistic nonlinear earthquake location program to locate the earthquakes and then refine their relative locations using a double difference method. The recorded waveforms are further used to obtain moment tensor solutions for these earthquakes. Earthquake locations and moment tensor solutions are then compared with the locations of faults throughout Sabah. Faults are identified from high-resolution IFSAR images and subsequent fieldwork, with a particular focus on the Lahad Datau and Ranau areas. Used together, these seismic and geodetic data can help us to develop a new seismic hazard model for Sabah, as well as aiding in the delivery of outreach activities regarding seismic hazard

  18. Probabilistic seismic hazard assessment of the Eastern and Central groups of the Azores - Portugal

    Science.gov (United States)

    Fontiela, João; Bezzeghoud, Mourad; Rosset, Philippe; Borges, José; Rodrigues, Francisco; Caldeira, Bento

    2017-04-01

    Azores islands of the Eastern and Central groups are located at the triple junction of the American, Eurasian and Nubian plates inducing a large number of low magnitude earthquakes. Since its settlement in the 15th century, 33 earthquakes with intensity ≥ VII have caused severe damage and high death toll. The most severe ones occurred in 1522 at São Miguel Island with a maximum MM intensity of X; in 1614 at Terceira Island (X) in 1757 at São Jorge Island (XI); 1852 at São Miguel Island (VIII); 1926 at Faial Island (Mb 5.3-5.9); in 1980 at Terceira Island (Mw7.1) and in 1998 at Faial Island (Mw6.2). The analysis of the Probabilistic Seismic Hazard Assessment (PSHA) were carried out using the classical Cornell-McGuire approach using seismogenic zones recently defined by Fontiela et al. (2014). We create a new earthquake catalogue merging local and global datasets with a large time span (1522 - 2016) to calculate recurrence times and maximum magnitudes. In order to reduce the epistemic uncertainties, we test several ground motion prediction equations in agreement with the geological heterogeneities typical of young volcanic islands. Probabilistic seismic hazard maps are proposed for 475 and 975 years returns periods as well as hazard curves and uniform hazard spectra for the main cities. REFERENCES: Fontiela, J. et al., 2014. Azores seismogenic zones. Comunicações Geológicas, 101(1), pp.351-354. ACKNOWLEDGMENTS: João Fontiela is supported by grant M3.1.2/F/060/2011 of Regional Science Fund of the Regional Government Azores and this study is co-funded by the European Union through the European fund of Regional Development, framed in COMPETE 2020 (Operational Competitiveness Programme and Internationalization) through the ICT project (UID/GEO/04683/2013) with the reference POCI-01-0145-FEDER-007690.

  19. Seismic assessment and upgrading of Paks nuclear power plant

    International Nuclear Information System (INIS)

    Tamas, K.

    2001-01-01

    A comprehensive programme for seismic assessment and upgrading is currently in progress at Hungary's Paks NPP. The re-evaluation of the site seismic hazard had been already completed. The technology of safe shut down and heat removal is established and the systems and structures relevant for seismic safety are identified. A seismic instrumentation is installed. The pre-earthquake preparedness and post-earthquake actions are elaborated. The methods for seismic capacity assessment are selected. The seismic capacity evaluation and the design of upgrading measures are currently in progress. The easy to perform upgrading covering the most urgent measures had been already performed. (author)

  20. Seismic hazard analysis. A methodology for the Eastern United States

    Energy Technology Data Exchange (ETDEWEB)

    Bernreuter, D L

    1980-08-01

    This report presents a probabilistic approach for estimating the seismic hazard in the Central and Eastern United States. The probabilistic model (Uniform Hazard Methodology) systematically incorporates the subjective opinion of several experts in the evaluation of seismic hazard. Subjective input, assumptions and associated hazard are kept separate for each expert so as to allow review and preserve diversity of opinion. The report is organized into five sections: Introduction, Methodology Comparison, Subjective Input, Uniform Hazard Methodology (UHM), and Uniform Hazard Spectrum. Section 2 Methodology Comparison, briefly describes the present approach and compares it with other available procedures. The remainder of the report focuses on the UHM. Specifically, Section 3 describes the elicitation of subjective input; Section 4 gives details of various mathematical models (earthquake source geometry, magnitude distribution, attenuation relationship) and how these models re combined to calculate seismic hazard. The lost section, Uniform Hazard Spectrum, highlights the main features of typical results. Specific results and sensitivity analyses are not presented in this report. (author)

  1. Seismic hazard in the eastern United States

    Science.gov (United States)

    Mueller, Charles; Boyd, Oliver; Petersen, Mark D.; Moschetti, Morgan P.; Rezaeian, Sanaz; Shumway, Allison

    2015-01-01

    The U.S. Geological Survey seismic hazard maps for the central and eastern United States were updated in 2014. We analyze results and changes for the eastern part of the region. Ratio maps are presented, along with tables of ground motions and deaggregations for selected cities. The Charleston fault model was revised, and a new fault source for Charlevoix was added. Background seismicity sources utilized an updated catalog, revised completeness and recurrence models, and a new adaptive smoothing procedure. Maximum-magnitude models and ground motion models were also updated. Broad, regional hazard reductions of 5%–20% are mostly attributed to new ground motion models with stronger near-source attenuation. The revised Charleston fault geometry redistributes local hazard, and the new Charlevoix source increases hazard in northern New England. Strong increases in mid- to high-frequency hazard at some locations—for example, southern New Hampshire, central Virginia, and eastern Tennessee—are attributed to updated catalogs and/or smoothing.

  2. Intensity Based Seismic Hazard Map of Republic of Macedonia

    Science.gov (United States)

    Dojcinovski, Dragi; Dimiskovska, Biserka; Stojmanovska, Marta

    2016-04-01

    The territory of the Republic of Macedonia and the border terrains are among the most seismically active parts of the Balkan Peninsula belonging to the Mediterranean-Trans-Asian seismic belt. The seismological data on the R. Macedonia from the past 16 centuries point to occurrence of very strong catastrophic earthquakes. The hypocenters of the occurred earthquakes are located above the Mohorovicic discontinuity, most frequently, at a depth of 10-20 km. Accurate short -term prognosis of earthquake occurrence, i.e., simultaneous prognosis of time, place and intensity of their occurrence is still not possible. The present methods of seismic zoning have advanced to such an extent that it is with a great probability that they enable efficient protection against earthquake effects. The seismic hazard maps of the Republic of Macedonia are the result of analysis and synthesis of data from seismological, seismotectonic and other corresponding investigations necessary for definition of the expected level of seismic hazard for certain time periods. These should be amended, from time to time, with new data and scientific knowledge. The elaboration of this map does not completely solve all issues related to earthquakes, but it provides basic empirical data necessary for updating the existing regulations for construction of engineering structures in seismically active areas regulated by legal regulations and technical norms whose constituent part is the seismic hazard map. The map has been elaborated based on complex seismological and geophysical investigations of the considered area and synthesis of the results from these investigations. There were two phases of elaboration of the map. In the first phase, the map of focal zones characterized by maximum magnitudes of possible earthquakes has been elaborated. In the second phase, the intensities of expected earthquakes have been computed according to the MCS scale. The map is prognostic, i.e., it provides assessment of the

  3. Seismic hazard map of North and Central America and the Caribbean

    Directory of Open Access Journals (Sweden)

    K. M. Shedlock

    1999-06-01

    Full Text Available Minimization of the loss of life, property damage, and social and economic disruption due to earthquakes depends on reliable estimates of seismic hazard. National, state, and local governments, decision makers, engineers, planners, emergency response organizations, builders, universities, and the general public require seismic hazard estimates for land use planning, improved building design and construction (including adoption of building construction codes, emergency response preparedness plans, economic forecasts, housing and employment decisions, and many more types of risk mitigation. The seismic hazard map of North and Central America and the Caribbean is the concatenation of various national and regional maps, involving a suite of approaches. The combined maps and documentation provide a useful regional seismic hazard framework and serve as a resource for any national or regional agency for further detailed studies applicable to their needs. This seismic hazard map depicts Peak Ground Acceleration (PGA with a 10% chance of exceedance in 50 years. PGA, a short-period ground motion parameter that is proportional to force, is the most commonly mapped ground motion parameter because current building codes that include seismic provisions specify the horizontal force a building should be able to withstand during an earthquake. This seismic hazard map of North and Central America and the Caribbean depicts the likely level of short-period ground motion from earthquakes in a fifty-year window. Short-period ground motions effect short-period structures (e.g., one-to-two story buildings. The highest seismic hazard values in the region generally occur in areas that have been, or are likely to be, the sites of the largest plate boundary earthquakes.

  4. Documentation for Initial Seismic Hazard Maps for Haiti

    Science.gov (United States)

    Frankel, Arthur; Harmsen, Stephen; Mueller, Charles; Calais, Eric; Haase, Jennifer

    2010-01-01

    In response to the urgent need for earthquake-hazard information after the tragic disaster caused by the moment magnitude (M) 7.0 January 12, 2010, earthquake, we have constructed initial probabilistic seismic hazard maps for Haiti. These maps are based on the current information we have on fault slip rates and historical and instrumental seismicity. These initial maps will be revised and improved as more data become available. In the short term, more extensive logic trees will be developed to better capture the uncertainty in key parameters. In the longer term, we will incorporate new information on fault parameters and previous large earthquakes obtained from geologic fieldwork. These seismic hazard maps are important for the management of the current crisis and the development of building codes and standards for the rebuilding effort. The boundary between the Caribbean and North American Plates in the Hispaniola region is a complex zone of deformation. The highly oblique ~20 mm/yr convergence between the two plates (DeMets and others, 2000) is partitioned between subduction zones off of the northern and southeastern coasts of Hispaniola and strike-slip faults that transect the northern and southern portions of the island. There are also thrust faults within the island that reflect the compressional component of motion caused by the geometry of the plate boundary. We follow the general methodology developed for the 1996 U.S. national seismic hazard maps and also as implemented in the 2002 and 2008 updates. This procedure consists of adding the seismic hazard calculated from crustal faults, subduction zones, and spatially smoothed seismicity for shallow earthquakes and Wadati-Benioff-zone earthquakes. Each one of these source classes will be described below. The lack of information on faults in Haiti requires many assumptions to be made. These assumptions will need to be revisited and reevaluated as more fieldwork and research are accomplished. We made two sets of

  5. Seismic risk assessment of Navarre (Northern Spain)

    Science.gov (United States)

    Gaspar-Escribano, J. M.; Rivas-Medina, A.; García Rodríguez, M. J.; Benito, B.; Tsige, M.; Martínez-Díaz, J. J.; Murphy, P.

    2009-04-01

    The RISNA project, financed by the Emergency Agency of Navarre (Northern Spain), aims at assessing the seismic risk of the entire region. The final goal of the project is the definition of emergency plans for future earthquakes. With this purpose, four main topics are covered: seismic hazard characterization, geotechnical classification, vulnerability assessment and damage estimation to structures and exposed population. A geographic information system is used to integrate, analyze and represent all information colleted in the different phases of the study. Expected ground motions on rock conditions with a 90% probability of non-exceedance in an exposure time of 50 years are determined following a Probabilistic Seismic Hazard Assessment (PSHA) methodology that includes a logic tree with different ground motion and source zoning models. As the region under study is located in the boundary between Spain and France, an effort is required to collect and homogenise seismological data from different national and regional agencies. A new homogenised seismic catalogue, merging data from Spanish, French, Catalonian and international agencies and establishing correlations between different magnitude scales, is developed. In addition, a new seismic zoning model focused on the study area is proposed. Results show that the highest ground motions on rock conditions are expected in the northeastern part of the region, decreasing southwards. Seismic hazard can be expressed as low-to-moderate. A geotechnical classification of the entire region is developed based on surface geology, available borehole data and morphotectonic constraints. Frequency-dependent amplification factors, consistent with code values, are proposed. The northern and southern parts of the region are characterized by stiff and soft soils respectively, being the softest soils located along river valleys. Seismic hazard maps including soil effects are obtained by applying these factors to the seismic hazard maps

  6. Evaluation of seismic hazards for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2002-01-01

    The main objective of this Safety Guide is to provide recommendations on how to determine the ground motion hazards for a plant at a particular site and the potential for surface faulting, which could affect the feasibility of construction and safe operation of a plant at that site. The guidelines and procedures presented in this Safety Guide can appropriately be used in evaluations of site suitability and seismic hazards for nuclear power plants in any seismotectonic environment. The probabilistic seismic hazard analysis recommended in this Safety Guide also addresses the needs for seismic hazard analysis of external event PSAs conducted for nuclear power plants. Many of the methods and processes described may also be applicable to nuclear facilities other than power plants. Other phenomena of permanent ground displacement (liquefaction, slope instability, subsidence and collapse) as well as the topic of seismically induced flooding are treated in Safety Guides relating to foundation safety and coastal flooding. Recommendations of a general nature are given in Section 2. Section 3 discusses the acquisition of a database containing the information needed to evaluate and address all hazards associated with earthquakes. Section 4 covers the use of this database for construction of a seismotectonic model. Sections 5 and 6 review ground motion hazards and evaluations of the potential for surface faulting, respectively. Section 7 addresses quality assurance in the evaluation of seismic hazards for nuclear power plants

  7. Seismic hazard evaluation for major cities in Madagascar

    International Nuclear Information System (INIS)

    Razafindrakoto, Hoby N.T.; Rambolamanana, Gerard; Panza, Giuliano F.

    2009-09-01

    The seismic hazard in some areas in Madagascar has been assessed at regional scale in terms of peak ground motion values (displacement, velocity, acceleration) and their periods, following the Neodeterministic approach, based on the computation of realistic synthetic seismograms. The main data input integrates all available tectonic, seismicity and structural model information. The largest peak values are 1.6cm/s for the velocity, 0.03g for the acceleration and more than 0.5cm for the displacement. These values are consistent within a range of macroseismic intensity from VI to VII MCS, and indicate that relatively simple prevention measures and retrofitting actions may guarantee a high safety level and a well sustainable development. (author)

  8. A reliable simultaneous representation of seismic hazard and of ground shaking recurrence

    Science.gov (United States)

    Peresan, A.; Panza, G. F.; Magrin, A.; Vaccari, F.

    2015-12-01

    Different earthquake hazard maps may be appropriate for different purposes - such as emergency management, insurance and engineering design. Accounting for the lower occurrence rate of larger sporadic earthquakes may allow to formulate cost-effective policies in some specific applications, provided that statistically sound recurrence estimates are used, which is not typically the case of PSHA (Probabilistic Seismic Hazard Assessment). We illustrate the procedure to associate the expected ground motions from Neo-deterministic Seismic Hazard Assessment (NDSHA) to an estimate of their recurrence. Neo-deterministic refers to a scenario-based approach, which allows for the construction of a broad range of earthquake scenarios via full waveforms modeling. From the synthetic seismograms the estimates of peak ground acceleration, velocity and displacement, or any other parameter relevant to seismic engineering, can be extracted. NDSHA, in its standard form, defines the hazard computed from a wide set of scenario earthquakes (including the largest deterministically or historically defined credible earthquake, MCE) and it does not supply the frequency of occurrence of the expected ground shaking. A recent enhanced variant of NDSHA that reliably accounts for recurrence has been developed and it is applied to the Italian territory. The characterization of the frequency-magnitude relation can be performed by any statistically sound method supported by data (e.g. multi-scale seismicity model), so that a recurrence estimate is associated to each of the pertinent sources. In this way a standard NDSHA map of ground shaking is obtained simultaneously with the map of the corresponding recurrences. The introduction of recurrence estimates in NDSHA naturally allows for the generation of ground shaking maps at specified return periods. This permits a straightforward comparison between NDSHA and PSHA maps.

  9. Probabilistic seismic hazard at the archaeological site of Gol Gumbaz in Vijayapura, south India

    Science.gov (United States)

    Patil, Shivakumar G.; Menon, Arun; Dodagoudar, G. R.

    2018-03-01

    Probabilistic seismic hazard analysis (PSHA) is carried out for the archaeological site of Vijayapura in south India in order to obtain hazard consistent seismic input ground-motions for seismic risk assessment and design of seismic protection measures for monuments, where warranted. For this purpose the standard Cornell-McGuire approach, based on seismogenic zones with uniformly distributed seismicity is employed. The main features of this study are the usage of an updated and unified seismic catalogue based on moment magnitude, new seismogenic source models and recent ground motion prediction equations (GMPEs) in logic tree framework. Seismic hazard at the site is evaluated for level and rock site condition with 10% and 2% probabilities of exceedance in 50 years, and the corresponding peak ground accelerations (PGAs) are 0.074 and 0.142 g, respectively. In addition, the uniform hazard spectra (UHS) of the site are compared to the Indian code-defined spectrum. Comparisons are also made with results from National Disaster Management Authority (NDMA 2010), in terms of PGA and pseudo spectral accelerations (PSAs) at T = 0.2, 0.5, 1.0 and 1.25 s for 475- and 2475-yr return periods. Results of the present study are in good agreement with the PGA calculated from isoseismal map of the Killari earthquake, {M}w = 6.4 (1993). Disaggregation of PSHA results for the PGA and spectral acceleration ({S}a) at 0.5 s, displays the controlling scenario earthquake for the study region as low to moderate magnitude with the source being at a short distance from the study site. Deterministic seismic hazard (DSHA) is also carried out by taking into account three scenario earthquakes. The UHS corresponding to 475-yr return period (RP) is used to define the target spectrum and accordingly, the spectrum-compatible natural accelerograms are selected from the suite of recorded accelerograms.

  10. The 2014 United States National Seismic Hazard Model

    Science.gov (United States)

    Petersen, Mark D.; Moschetti, Morgan P.; Powers, Peter; Mueller, Charles; Haller, Kathleen; Frankel, Arthur; Zeng, Yuehua; Rezaeian, Sanaz; Harmsen, Stephen; Boyd, Oliver; Field, Edward; Chen, Rui; Rukstales, Kenneth S.; Luco, Nicolas; Wheeler, Russell; Williams, Robert; Olsen, Anna H.

    2015-01-01

    New seismic hazard maps have been developed for the conterminous United States using the latest data, models, and methods available for assessing earthquake hazard. The hazard models incorporate new information on earthquake rupture behavior observed in recent earthquakes; fault studies that use both geologic and geodetic strain rate data; earthquake catalogs through 2012 that include new assessments of locations and magnitudes; earthquake adaptive smoothing models that more fully account for the spatial clustering of earthquakes; and 22 ground motion models, some of which consider more than double the shaking data applied previously. Alternative input models account for larger earthquakes, more complicated ruptures, and more varied ground shaking estimates than assumed in earlier models. The ground motions, for levels applied in building codes, differ from the previous version by less than ±10% over 60% of the country, but can differ by ±50% in localized areas. The models are incorporated in insurance rates, risk assessments, and as input into the U.S. building code provisions for earthquake ground shaking.

  11. The Dependency of Probabilistic Tsunami Hazard Assessment on Magnitude Limits of Seismic Sources in the South China Sea and Adjoining Basins

    Science.gov (United States)

    Li, Hongwei; Yuan, Ye; Xu, Zhiguo; Wang, Zongchen; Wang, Juncheng; Wang, Peitao; Gao, Yi; Hou, Jingming; Shan, Di

    2017-06-01

    The South China Sea (SCS) and its adjacent small basins including Sulu Sea and Celebes Sea are commonly identified as tsunami-prone region by its historical records on seismicity and tsunamis. However, quantification of tsunami hazard in the SCS region remained an intractable issue due to highly complex tectonic setting and multiple seismic sources within and surrounding this area. Probabilistic Tsunami Hazard Assessment (PTHA) is performed in the present study to evaluate tsunami hazard in the SCS region based on a brief review on seismological and tsunami records. 5 regional and local potential tsunami sources are tentatively identified, and earthquake catalogs are generated using Monte Carlo simulation following the Tapered Gutenberg-Richter relationship for each zone. Considering a lack of consensus on magnitude upper bound on each seismic source, as well as its critical role in PTHA, the major concern of the present study is to define the upper and lower limits of tsunami hazard in the SCS region comprehensively by adopting different corner magnitudes that could be derived by multiple principles and approaches, including TGR regression of historical catalog, fault-length scaling, tectonic and seismic moment balance, and repetition of historical largest event. The results show that tsunami hazard in the SCS and adjoining basins is subject to large variations when adopting different corner magnitudes, with the upper bounds 2-6 times of the lower. The probabilistic tsunami hazard maps for specified return periods reveal much higher threat from Cotabato Trench and Sulawesi Trench in the Celebes Sea, whereas tsunami hazard received by the coasts of the SCS and Sulu Sea is relatively moderate, yet non-negligible. By combining empirical method with numerical study of historical tsunami events, the present PTHA results are tentatively validated. The correspondence lends confidence to our study. Considering the proximity of major sources to population-laden cities

  12. Fault Specific Seismic Hazard Maps as Input to Loss Reserves Calculation for Attica Buildings

    Science.gov (United States)

    Deligiannakis, Georgios; Papanikolaou, Ioannis; Zimbidis, Alexandros; Roberts, Gerald

    2014-05-01

    Greece is prone to various natural disasters, such as wildfires, floods, landslides and earthquakes, due to the special environmental and geological conditions dominating in tectonic plate boundaries. Seismic is the predominant risk, in terms of damages and casualties in the Greek territory. The historical record of earthquakes in Greece has been published from various researchers, providing useful data in seismic hazard assessment of Greece. However, the completeness of the historical record in Greece, despite being one of the longest worldwide, reaches only 500 years for M ≥ 7.3 and less than 200 years for M ≥ 6.5. Considering that active faults in the area have recurrence intervals of a few hundred to several thousands of years, it is clear that many active faults have not been activated during the completeness period covered by the historical records. New Seismic Hazard Assessment methodologies tend to follow fault specific approaches where seismic sources are geologically constrained active faults, in order to address problems related to the historical records incompleteness, obtain higher spatial resolution and calculate realistic source locality distances, since seismic sources are very accurately located. Fault specific approaches provide quantitative assessments as they measure fault slip rates from geological data, providing a more reliable estimate of seismic hazard. We used a fault specific seismic hazard assessment approach for the region of Attica. The method of seismic hazard mapping from geological fault throw-rate data combined three major factors: Empirical data which combine fault rupture lengths, earthquake magnitudes and coseismic slip relationships. The radiuses of VI, VII, VIII and IX isoseismals on the Modified Mercalli (MM) intensity scale. Attenuation - amplification functions for seismic shaking on bedrock compared to basin filling sediments. We explicitly modeled 22 active faults that could affect the region of Attica, including

  13. Seismic hazard maps for Haiti

    Science.gov (United States)

    Frankel, Arthur; Harmsen, Stephen; Mueller, Charles; Calais, Eric; Haase, Jennifer

    2011-01-01

    We have produced probabilistic seismic hazard maps of Haiti for peak ground acceleration and response spectral accelerations that include the hazard from the major crustal faults, subduction zones, and background earthquakes. The hazard from the Enriquillo-Plantain Garden, Septentrional, and Matheux-Neiba fault zones was estimated using fault slip rates determined from GPS measurements. The hazard from the subduction zones along the northern and southeastern coasts of Hispaniola was calculated from slip rates derived from GPS data and the overall plate motion. Hazard maps were made for a firm-rock site condition and for a grid of shallow shear-wave velocities estimated from topographic slope. The maps show substantial hazard throughout Haiti, with the highest hazard in Haiti along the Enriquillo-Plantain Garden and Septentrional fault zones. The Matheux-Neiba Fault exhibits high hazard in the maps for 2% probability of exceedance in 50 years, although its slip rate is poorly constrained.

  14. Lessons Learned- The Use of Formal Expert Elicitation in Probablistic Seismic Hazard

    Energy Technology Data Exchange (ETDEWEB)

    K.J. Coppersmith; R.C. Perman; R.R. Youngs

    2006-05-10

    Probabilistic seismic hazard analyses provide the opportunity, indeed the requirement, to quantify the uncertainties in important inputs to the analysis. The locations of future earthquakes, their recurrence rates and maximum size, and the ground motions that will result at a site of interest are all quantities that require careful consideration because they are uncertain. The earliest PSHA models [Cornell, 1968] provided solely for the randomness or aleatory variability in these quantities. The most sophisticated seismic hazard models today, which include quantified uncertainties, are merely more realistic representations of this basic aleatory model. All attempts to quantify uncertainties require expert judgment. Further, all uncertainty models should endeavor to consider the range of views of the larger technical community at the time the hazard analysis is conducted. In some cases, especially for large projects under regulatory review, formal structured methods for eliciting expert judgments have been employed. Experience has shown that certain key elements are required for these assessments to be successful, including: (1) experts should be trained in probability theory, uncertainty quantification, and ways to avoid common cognitive biases; (2) comprehensive and user-friendly databases should be provided to the experts; (3) experts should be required to evaluate all potentially credible hypotheses; (4) workshops and other interactions among the experts and proponents of published viewpoints should be encouraged; (5) elicitations are best conducted in individual interview sessions; (6) feedback should be provided to the experts to give them insight into the significance of alternative assessments to the hazard results; and (7) complete documentation should include the technical basis for all assessments. Case histories are given from seismic hazard analyses in Europe, western North America, and the stable continental region of the United States.

  15. Probabilistic Seismic Hazards Update for LLNL

    Energy Technology Data Exchange (ETDEWEB)

    Menchawi, O. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fernandez, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-03-30

    Fugro Consultants, Inc. (FCL) completed the Probabilistic Seismic Hazard Analysis (PSHA) performed for Building 332 at the Lawrence Livermore National Laboratory (LLNL), near Livermore, CA. The study performed for the LLNL site includes a comprehensive review of recent information relevant to the LLNL regional tectonic setting and regional seismic sources in the vicinity of the site and development of seismic wave transmission characteristics. The Seismic Source Characterization (SSC), documented in Project Report No. 2259-PR-02 (FCL, 2015b), and Ground Motion Characterization (GMC), documented in Project Report No. 2259-PR-06 (FCL, 2015a) were developed in accordance with ANS/ANSI 2.29- 2008 Level 2 PSHA guidelines. The ANS/ANSI 2.29-2008 Level 2 PSHA framework is documented in Project Report No. 2259-PR-05 (FCL, 2016a). The Hazard Input Document (HID) for input into the PSHA developed from the SSC and GMC is presented in Project Report No. 2259-PR-04 (FCL, 2016b). The site characterization used as input for development of the idealized site profiles including epistemic uncertainty and aleatory variability is presented in Project Report No. 2259-PR-03 (FCL, 2015c). The PSHA results are documented in Project Report No. 2259-PR-07 (FCL, 2016c).

  16. The Wenchuan, China M8.0 Earthquake: A Lesson and Implication for Seismic Hazard Mitigation

    Science.gov (United States)

    Wang, Z.

    2008-12-01

    The Wenchuan, China M8.0 earthquake caused great damage and huge casualty. 69,197 people were killed, 374,176 people were injured, and 18,341 people are still missing. The estimated direct economic loss is about 126 billion U.S. dollar. The Wenchuan earthquake again demonstrated that earthquake does not kill people, but the built environments and induced hazards, landslides in particular, do. Therefore, it is critical to strengthen the built environments, such buildings and bridges, and to mitigate the induced hazards in order to avoid such disaster. As a part of the so-called North-South Seismic Zone in China, the Wenchuan earthquake occurred along the Longmen Shan thrust belt which forms a boundary between the Qinghai-Tibet Plateau and the Sichuan basin, and there is a long history (~4,000 years) of seismicity in the area. The historical records show that the area experienced high intensity (i.e., greater than IX) in the past several thousand years. In other words, the area is well-known to have high seismic hazard because of its tectonic setting and seismicity. However, only intensity VII (0.1 to 0.15g PGA) has been considered for seismic design for the built environments in the area. This was one of the main reasons that so many building collapses, particularly the school buildings, during the Wenchuan earthquake. It is clear that the seismic design (i.e., the design ground motion or intensity) is not adequate in the Wenchuan earthquake stricken area. A lesson can be learned from the Wenchuan earthquake on the seismic hazard and risk assessment. A lesson can also be learned from this earthquake on seismic hazard mitigation and/or seismic risk reduction.

  17. Extreme seismicity and disaster risks: Hazard versus vulnerability (Invited)

    Science.gov (United States)

    Ismail-Zadeh, A.

    2013-12-01

    Although the extreme nature of earthquakes has been known for millennia due to the resultant devastation from many of them, the vulnerability of our civilization to extreme seismic events is still growing. It is partly because of the increase in the number of high-risk objects and clustering of populations and infrastructure in the areas prone to seismic hazards. Today an earthquake may affect several hundreds thousand lives and cause significant damage up to hundred billion dollars; it can trigger an ecological catastrophe if occurs in close vicinity to a nuclear power plant. Two types of extreme natural events can be distinguished: (i) large magnitude low probability events, and (ii) the events leading to disasters. Although the first-type events may affect earthquake-prone countries directly or indirectly (as tsunamis, landslides etc.), the second-type events occur mainly in economically less-developed countries where the vulnerability is high and the resilience is low. Although earthquake hazards cannot be reduced, vulnerability to extreme events can be diminished by monitoring human systems and by relevant laws preventing an increase in vulnerability. Significant new knowledge should be gained on extreme seismicity through observations, monitoring, analysis, modeling, comprehensive hazard assessment, prediction, and interpretations to assist in disaster risk analysis. The advanced disaster risk communication skill should be developed to link scientists, emergency management authorities, and the public. Natural, social, economic, and political reasons leading to disasters due to earthquakes will be discussed.

  18. Methodology for the Seismic risk assessment in segments of fault

    International Nuclear Information System (INIS)

    1997-02-01

    The present study establishes the most adequate methods of Seismic Hazard Assessment for the Iberian Peninsula, in particular for low seismicity areas, through a review of methods used in other countries and its application to a certain area in Spain. In this area the geological context and recent activity of a specific tectonic structure is studied in detail, in order to asses its slip rate, and therefore, its capability of generating earthquakes. In the first stage of this project a review of Seismic Hazard Assessment methods used outside Spain was carried out, as well as, a study of several spanish cases. This stage also comprises a review of the spanish seismic record and a study of the general peninsular neotectonic context, this latter to select a particular fault for the next stage. (Author) 117 refs

  19. Seismogenic zonation and seismic hazard estimates in a Southern Italy area (Northern Apulia characterised by moderate seismicity rates

    Directory of Open Access Journals (Sweden)

    V. Del Gaudio

    2009-02-01

    Full Text Available The northernmost part of Apulia, in Southern Italy, is an emerged portion of the Adriatic plate, which in past centuries was hit by at least three disastrous earthquakes and at present is occasionally affected by seismic events of moderate energy. In the latest seismic hazard assessment carried out in Italy at national scale, the adopted seismogenic zonation (named ZS9 has defined for this area a single zone including parts of different structural units (chain, foredeep, foreland. However significant seismic behaviour differences were revealed among them by our recent studies and, therefore, we re-evaluated local seismic hazard by adopting a zonation, named ZNA, modifying the ZS9 to separate areas of Northern Apulia belonging to different structural domains. To overcome the problem of the limited datasets of historical events available for small zones having a relatively low rate of earthquake recurrence, an approach was adopted that integrates historical and instrumental event data. The latter were declustered with a procedure specifically devised to process datasets of low to moderate magnitude shocks. Seismicity rates were then calculated following alternative procedural choices, according to a "logic tree" approach, to explore the influence of epistemic uncertainties on the final results and to evaluate, among these, the importance of the uncertainty in seismogenic zonation. The comparison between the results obtained using zonations ZNA and ZS9 confirms the well known "spreading effect" that the use of larger seismogenic zones has on hazard estimates. This effect can locally determine underestimates or overestimates by amounts that make necessary a careful reconsideration of seismic classification and building code application.

  20. Wind turbines and seismic hazard: a state-of-the-art review

    DEFF Research Database (Denmark)

    Katsanos, Evangelos; Thöns, Sebastian; Georgakis, Christos T.

    2016-01-01

    , India, Southern Europe and East Asia) highlight the necessity for thorough consideration of the seismic implications on these energy harnessing systems. Along these lines, this state-of-the-art paper presents a comparative survey of the published research relevant to the seismic analysis, design......Wind energy is a rapidly growing field of renewable energy, and as such, intensive scientific and societal interest has been already attracted. Research on wind turbine structures has been mostly focused on the structural analysis, design and/or assessment of wind turbines mainly against normal...... and assessment of wind turbines. Based on numerical simulation, either deterministic or probabilistic approaches are reviewed, because they have been adopted to investigate the sensitivity of wind turbines’ structural capacity and reliability in earthquake-induced loading. The relevance of seismic hazard...

  1. New strong motion network in Georgia: basis for specifying seismic hazard

    Science.gov (United States)

    Kvavadze, N.; Tsereteli, N. S.

    2017-12-01

    Risk created by hazardous natural events is closely related to sustainable development of the society. Global observations have confirmed tendency of growing losses resulting from natural disasters, one of the most dangerous and destructive if which are earthquakes. Georgia is located in seismically active region. So, it is imperative to evaluate probabilistic seismic hazard and seismic risk with proper accuracy. National network of Georgia includes 35 station all of which are seismometers. There are significant gaps in strong motion recordings, which essential for seismic hazard assessment. To gather more accelerometer recordings, we have built a strong motion network distributed on the territory of Georgia. The network includes 6 stations for now, with Basalt 4x datalogger and strong motion sensor Episensor ES-T. For each site, Vs30 and soil resonance frequencies have been measured. Since all but one station (Tabakhmelam near Tbilisi), are located far from power and internet lines special system was created for instrument operation. Solar power is used to supply the system with electricity and GSM/LTE modems for internet access. VPN tunnel was set up using Raspberry pi, for two-way communication with stations. Tabakhmela station is located on grounds of Ionosphere Observatory, TSU and is used as a hub for the network. This location also includes a broadband seismometer and VLF electromagnetic waves observation antenna, for possible earthquake precursor studies. On server, located in Tabakhmela, the continues data is collected from all the stations, for later use. The recordings later will be used in different seismological and engineering problems, namely selecting and creating GMPE model for Caucasus, for probabilistic seismic hazard and seismic risk evaluation. These stations are a start and in the future expansion of strong motion network is planned. Along with this, electromagnetic wave observations will continue and additional antennas will be implemented

  2. Probabilistic seismic vulnerability and risk assessment of stone masonry structures

    Science.gov (United States)

    Abo El Ezz, Ahmad

    Earthquakes represent major natural hazards that regularly impact the built environment in seismic prone areas worldwide and cause considerable social and economic losses. The high losses incurred following the past destructive earthquakes promoted the need for assessment of the seismic vulnerability and risk of the existing buildings. Many historic buildings in the old urban centers in Eastern Canada such as Old Quebec City are built of stone masonry and represent un-measurable architectural and cultural heritage. These buildings were built to resist gravity loads only and generally offer poor resistance to lateral seismic loads. Seismic vulnerability assessment of stone masonry buildings is therefore the first necessary step in developing seismic retrofitting and pre-disaster mitigation plans. The objective of this study is to develop a set of probability-based analytical tools for efficient seismic vulnerability and uncertainty analysis of stone masonry buildings. A simplified probabilistic analytical methodology for vulnerability modelling of stone masonry building with systematic treatment of uncertainties throughout the modelling process is developed in the first part of this study. Building capacity curves are developed using a simplified mechanical model. A displacement based procedure is used to develop damage state fragility functions in terms of spectral displacement response based on drift thresholds of stone masonry walls. A simplified probabilistic seismic demand analysis is proposed to capture the combined uncertainty in capacity and demand on fragility functions. In the second part, a robust analytical procedure for the development of seismic hazard compatible fragility and vulnerability functions is proposed. The results are given by sets of seismic hazard compatible vulnerability functions in terms of structure-independent intensity measure (e.g. spectral acceleration) that can be used for seismic risk analysis. The procedure is very efficient for

  3. Original earthquake design basis in light of recent seismic hazard studies

    International Nuclear Information System (INIS)

    Petrovski, D.

    1993-01-01

    For the purpose of conceiving the framework within which efforts have been made in the eastern countries to construct earthquake resistant nuclear power plants, a review of the development and application of the seismic zoning map of USSR is given. The normative values of seismic intensity and acceleration are discussed from the aspect of recent probabilistic seismic hazard studies. To that effect, presented briefly in this paper is the methodology of probabilistic seismic hazard analysis. (author)

  4. Seismic Risk Assessment for the Kyrgyz Republic

    Science.gov (United States)

    Pittore, Massimiliano; Sousa, Luis; Grant, Damian; Fleming, Kevin; Parolai, Stefano; Fourniadis, Yannis; Free, Matthew; Moldobekov, Bolot; Takeuchi, Ko

    2017-04-01

    The Kyrgyz Republic is one of the most socially and economically dynamic countries in Central Asia, and one of the most endangered by earthquake hazard in the region. In order to support the government of the Kyrgyz Republic in the development of a country-level Disaster Risk Reduction strategy, a comprehensive seismic risk study has been developed with the support of the World Bank. As part of this project, state-of-the-art hazard, exposure and vulnerability models have been developed and combined into the assessment of direct physical and economic risk on residential, educational and transportation infrastructure. The seismic hazard has been modelled with three different approaches, in order to provide a comprehensive overview of the possible consequences. A probabilistic seismic hazard assessment (PSHA) approach has been used to quantitatively evaluate the distribution of expected ground shaking intensity, as constrained by the compiled earthquake catalogue and associated seismic source model. A set of specific seismic scenarios based on events generated from known fault systems have been also considered, in order to provide insight on the expected consequences in case of strong events in proximity of densely inhabited areas. Furthermore, long-span catalogues of events have been generated stochastically and employed in the probabilistic analysis of expected losses over the territory of the Kyrgyz Republic. Damage and risk estimates have been computed by using an exposure model recently developed for the country, combined with the assignment of suitable fragility/vulnerability models. The risk estimation has been carried out with spatial aggregation at the district (rayon) level. The obtained results confirm the high level of seismic risk throughout the country, also pinpointing the location of several risk hotspots, particularly in the southern districts, in correspondence with the Ferghana valley. The outcome of this project will further support the local

  5. Seismic hazard analysis. Application of methodology, results, and sensitivity studies

    International Nuclear Information System (INIS)

    Bernreuter, D.L.

    1981-10-01

    As part of the Site Specific Spectra Project, this report seeks to identify the sources of and minimize uncertainty in estimates of seismic hazards in the Eastern United States. Findings are being used by the Nuclear Regulatory Commission to develop a synthesis among various methods that can be used in evaluating seismic hazard at the various plants in the Eastern United States. In this volume, one of a five-volume series, we discuss the application of the probabilistic approach using expert opinion. The seismic hazard is developed at nine sites in the Central and Northeastern United States, and both individual experts' and synthesis results are obtained. We also discuss and evaluate the ground motion models used to develop the seismic hazard at the various sites, analyzing extensive sensitivity studies to determine the important parameters and the significance of uncertainty in them. Comparisons are made between probabilistic and real spectra for a number of Eastern earthquakes. The uncertainty in the real spectra is examined as a function of the key earthquake source parameters. In our opinion, the single most important conclusion of this study is that the use of expert opinion to supplement the sparse data available on Eastern United States earthquakes is a viable approach for determining estimated seismic hazard in this region of the country. (author)

  6. Analysis of Seismic Hazard. Slovak National Report to IUGG, 1995-1998

    Czech Academy of Sciences Publication Activity Database

    Schenk, Vladimír; Schenková, Zdeňka; Kottnauer, Pavel; Guterch, B.; Labák, P.

    1999-01-01

    Roč. 29, Spec. issue (1999), s. 99-102 ISSN 1335-2806 R&D Projects: GA AV ČR Global Seismic Hazard Assessment Program (GSHAP) - project of the UN International Decade of Natural Disaster Reduction and International Litosphere Program. Subject RIV: DC - Siesmology, Volcanology, Earth Structure

  7. Assessment of seismic hazards along the northern Gulf of Aqaba

    Science.gov (United States)

    Abueladas, Abdel-Rahman Aqel

    Aqaba and Elat are very important port and recreation cities for the Hashemite Kingdom of Jordan and Israel, respectively. The two cities are the most susceptible to damage from a destructive future earthquake because they are located over the tectonically active Dead Sea transform fault (DST) that is the source of most of the major historical earthquakes in the region. The largest twentieth century earthquake on the DST, the magnitude Mw 7.2 Nuweiba earthquake of November 22, 1995, caused damage to structures in both cities. The integration of geological, geophysical, and earthquake engineering studies will help to assess the seismic hazards by determining the location and slip potential of active faults and by mapping areas of high liquefaction susceptibility. Ground Penetrating Radar (GPR) as a high resolution shallow geophysical tool was used to map the shallow active faults in Aqaba, Taba Sabkha area, and Elat. The GPR data revealed the onshore continuation of the Evrona, West Aqaba, Aqaba fault zones, and several transverse faults. The integration of offshore and onshore data confirm the extension of these faults along both sides of the Gulf of Aqaba. A 3D model of GPR data at one site in Aqaba indicates that the NW-trending transverse faults right laterally offset older than NE-trending faults. The most hazardous fault is the Evrona fault which extends north to the Tabs Sabkha. A geographic information system (GIS) database of the seismic hazard was created in order to facilitate the analyzing, manipulation, and updating of the input parameters. Liquefaction potential maps were created for the region based on analysis of borehole data. The liquefaction map shows high and moderate liquefaction susceptibility zones along the northern coast of the Gulf of Aqaba. In Aqaba several hotels are located within a high and moderate liquefaction zones. The Yacht Club, Aqaba, Ayla archaeological site, and a part of commercial area are also situated in a risk area. A part

  8. Updating the USGS seismic hazard maps for Alaska

    Science.gov (United States)

    Mueller, Charles; Briggs, Richard; Wesson, Robert L.; Petersen, Mark D.

    2015-01-01

    The U.S. Geological Survey makes probabilistic seismic hazard maps and engineering design maps for building codes, emergency planning, risk management, and many other applications. The methodology considers all known earthquake sources with their associated magnitude and rate distributions. Specific faults can be modeled if slip-rate or recurrence information is available. Otherwise, areal sources are developed from earthquake catalogs or GPS data. Sources are combined with ground-motion estimates to compute the hazard. The current maps for Alaska were developed in 2007, and included modeled sources for the Alaska-Aleutian megathrust, a few crustal faults, and areal seismicity sources. The megathrust was modeled as a segmented dipping plane with segmentation largely derived from the slip patches of past earthquakes. Some megathrust deformation is aseismic, so recurrence was estimated from seismic history rather than plate rates. Crustal faults included the Fairweather-Queen Charlotte system, the Denali–Totschunda system, the Castle Mountain fault, two faults on Kodiak Island, and the Transition fault, with recurrence estimated from geologic data. Areal seismicity sources were developed for Benioff-zone earthquakes and for crustal earthquakes not associated with modeled faults. We review the current state of knowledge in Alaska from a seismic-hazard perspective, in anticipation of future updates of the maps. Updated source models will consider revised seismicity catalogs, new information on crustal faults, new GPS data, and new thinking on megathrust recurrence, segmentation, and geometry. Revised ground-motion models will provide up-to-date shaking estimates for crustal earthquakes and subduction earthquakes in Alaska.

  9. The analysis of historical seismograms: an important tool for seismic hazard assessment. Case histories from French and Italian earthquakes

    International Nuclear Information System (INIS)

    Pino, N.A.

    2011-01-01

    Seismic hazard assessment relies on the knowledge of the source characteristics of past earthquakes. Unfortunately, seismic waveform analysis, representing the most powerful tool for the investigation of earthquake source parameters, is only possible for events occurred in the last 100-120 years, i.e., since seismographs with known response function were developed. Nevertheless, during this time significant earthquakes have been recorded by such instruments and today, also thanks to technological progress, these data can be recovered and analysed by means of modern techniques. In this paper, aiming at giving a general sketch of possible analyses and attainable results in historical seismogram studies, I briefly describe the major difficulties in processing the original waveforms and present a review of the results that I obtained from previous seismogram analysis of selected significant historical earthquakes occurred during the first decades of the 20. century, including (A) the December 28, 1908, Messina straits (southern Italy), (B) the June 11, 1909, Lambesc (southern France) - both of which are the strongest ever recorded instrumentally in their respective countries - and (C) the July 13, 1930, Irpinia (southern Italy) events. For these earthquakes, the major achievements are represented by the assessment of the seismic moment (A, B, C), the geometry and kinematics of faulting (B, C), the fault length and an approximate slip distribution (A, C). The source characteristics of the studied events have also been interpreted in the frame of the tectonic environment active in the respective region of interest. In spite of the difficulties inherent to the investigation of old seismic data, these results demonstrate the invaluable and irreplaceable role of historical seismogram analysis in defining the local seismo-genic potential and, ultimately, for assessing the seismic hazard. The retrieved information is crucial in areas where important civil engineering works

  10. Seismic source characterization for the 2014 update of the U.S. National Seismic Hazard Model

    Science.gov (United States)

    Moschetti, Morgan P.; Powers, Peter; Petersen, Mark D.; Boyd, Oliver; Chen, Rui; Field, Edward H.; Frankel, Arthur; Haller, Kathleen; Harmsen, Stephen; Mueller, Charles S.; Wheeler, Russell; Zeng, Yuehua

    2015-01-01

    We present the updated seismic source characterization (SSC) for the 2014 update of the National Seismic Hazard Model (NSHM) for the conterminous United States. Construction of the seismic source models employs the methodology that was developed for the 1996 NSHM but includes new and updated data, data types, source models, and source parameters that reflect the current state of knowledge of earthquake occurrence and state of practice for seismic hazard analyses. We review the SSC parameterization and describe the methods used to estimate earthquake rates, magnitudes, locations, and geometries for all seismic source models, with an emphasis on new source model components. We highlight the effects that two new model components—incorporation of slip rates from combined geodetic-geologic inversions and the incorporation of adaptively smoothed seismicity models—have on probabilistic ground motions, because these sources span multiple regions of the conterminous United States and provide important additional epistemic uncertainty for the 2014 NSHM.

  11. Uses of probabilistic estimates of seismic hazard and nuclear power plants in the US

    International Nuclear Information System (INIS)

    Reiter, L.

    1983-01-01

    The use of probabilistic estimates is playing an increased role in the review of seismic hazard at nuclear power plants. The NRC Geosciences Branch emphasis has been on using these estimates in a relative rather than absolute manner and to gain insight on other approaches. Examples of this use include estimates to determine design levels, to determine equivalent hazard at different sites, to help define more realistic seismotectonic provinces, and to assess implied levels of acceptable risk using deterministic methods. Increased use of probabilistic estimates is expected. Probabilistic estimates of seismic hazard have a potential for misuse, however, and their successful integration into decision making requires they not be divorced from physical insight and scientific intuition

  12. St. Louis area earthquake hazards mapping project; seismic and liquefaction hazard maps

    Science.gov (United States)

    Cramer, Chris H.; Bauer, Robert A.; Chung, Jae-won; Rogers, David; Pierce, Larry; Voigt, Vicki; Mitchell, Brad; Gaunt, David; Williams, Robert; Hoffman, David; Hempen, Gregory L.; Steckel, Phyllis; Boyd, Oliver; Watkins, Connor M.; Tucker, Kathleen; McCallister, Natasha

    2016-01-01

    We present probabilistic and deterministic seismic and liquefaction hazard maps for the densely populated St. Louis metropolitan area that account for the expected effects of surficial geology on earthquake ground shaking. Hazard calculations were based on a map grid of 0.005°, or about every 500 m, and are thus higher in resolution than any earlier studies. To estimate ground motions at the surface of the model (e.g., site amplification), we used a new detailed near‐surface shear‐wave velocity model in a 1D equivalent‐linear response analysis. When compared with the 2014 U.S. Geological Survey (USGS) National Seismic Hazard Model, which uses a uniform firm‐rock‐site condition, the new probabilistic seismic‐hazard estimates document much more variability. Hazard levels for upland sites (consisting of bedrock and weathered bedrock overlain by loess‐covered till and drift deposits), show up to twice the ground‐motion values for peak ground acceleration (PGA), and similar ground‐motion values for 1.0 s spectral acceleration (SA). Probabilistic ground‐motion levels for lowland alluvial floodplain sites (generally the 20–40‐m‐thick modern Mississippi and Missouri River floodplain deposits overlying bedrock) exhibit up to twice the ground‐motion levels for PGA, and up to three times the ground‐motion levels for 1.0 s SA. Liquefaction probability curves were developed from available standard penetration test data assuming typical lowland and upland water table levels. A simplified liquefaction hazard map was created from the 5%‐in‐50‐year probabilistic ground‐shaking model. The liquefaction hazard ranges from low (60% of area expected to liquefy) in the lowlands. Because many transportation routes, power and gas transmission lines, and population centers exist in or on the highly susceptible lowland alluvium, these areas in the St. Louis region are at significant potential risk from seismically induced liquefaction and associated

  13. Further assessment of seismic hazard/risk in the Bushveld Complex platinum mines and the implication for regional and local support design.

    CSIR Research Space (South Africa)

    Brink, AVZ

    2002-03-01

    Full Text Available Final Project Report Further assessment of seismic hazard/risk in the Bushveld Complex platinum mines and the implication for regional and local support design. A.v.Z Brink, M.K.C. Roberts, S.M Spottiswoode Research Agency: CSIR: Division of Mining... on the VCR. An industry workshop on local support requirements in areas of higher seismic risk resulted in the specification of support requirements. A maximum design parameter for yielding support in terms of the ground motion velocity is 1 m...

  14. A seismic hazard overview of the Mitidja Basin (Northern Algeria)

    Science.gov (United States)

    Fontiela, J. F.; Borges, J.; Ouyed, M.; Bezzeghoud, M.; Idres, M.; Caldeira, B.; Boughacha, M. S.; Carvalho, J.; Samai, S.; Aissa, S.; Benfadda, A.; Chimouni, R.; Yalaoui, R.; Dias, R.

    2017-12-01

    The Mitidja Basin (MB) is located in N Algeria and it is filled by quaternary sediments with a length of 100 km on the EW direction and around 20 km width. The S and N limites comprise the Boumerdes-Larbaa-Blida, and the Thenia-Sahel active fault system, respectively. Both fault systems are of the reverse type with opposed dips and accommodate a general slip rate of ˜4 mm/year. In the basin occurred earthquakes that caused severe damage and losses such as the ones of Algiers (1365, Io=X; 1716, Io=X) and the Bourmedes earthquake (Mw 6.9; May 2003) that affected the area of Zemmouri and caused 2.271 deaths. The event was caused by the reactivation of the MB boundary faults. The earthquake generated a max uplift of 0.8m along the coast and a horizontal max. slip of 0.24m.Recent studies show that the Boumerdes earthquake overloaded the adjacent faults system with a stress increase between 0.4 and 1.5 bar. The stress change recommends a detailed study of mentioned faults system due to the increase of the seismic hazard. The high seismogenic potential of the fault system bordering the MB, increases the vulnerability of densely populated areas of Algiers and the amplification effect caused by the basin are the motivation of this project that will focus on the evaluation of the seismic hazard of the region. To achieve seismic hazard assessment on the MB, through realistic predictions of strong ground motion, caused by moderate and large earthquakes, it is important 1) develop a detailed 3D velocity/structure model of the MB that includes geological constraints, seismic reflection data acquired on wells, refraction velocities and seismic noise data, and determination of the attenuation laws based on instrumental records; 2) evaluate the seismic potential and parameters of the main active faults of the MB; 3) develop numerical methods (deterministic and stochastic) to simulate strong ground motions produced by extended seismic sources. To acquire seismic noise were used

  15. Investigating effects of near fault rupture directivity on seismic hazard assessment of the site of Tehran Research Reactor (TRR)

    Energy Technology Data Exchange (ETDEWEB)

    Sepanloo, Kamran; Saberi, Reza [Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of); Alinejad, Majid [Atomic Energy Organization of Iran, Tehran (Iran, Islamic Republic of); Bazarchi, Ehsan [Tabriz Univ. (Iran, Islamic Republic of)

    2017-10-15

    It is estimated that the occurrence of a major-earthquake in Tehran, Iran, which is not far-fetched, would face the country with a huge amount of collapsed structures, economical losses and fatalities. The issue becomes more important while the site of interest is attributed to the nuclear facilities and any under-estimation in predicting the design ground motion may cause a real disaster. In this study, using calculations coded in MATLAB, PSHA was conducted for the site of TRR. It was concluded that most of the hazard for considered site in a 10000-year period comes from distances lower than 20 km and considering rupture directivity effects of the North Tehran fault, as the nearest seismicity source to considered site, using narrowband method affected the response spectrum significantly. Therefore, it is necessary to incorporate the near fault rupture directivity effects into the higher levels of seismic hazard assessment attributed to important sites.

  16. Investigating effects of near fault rupture directivity on seismic hazard assessment of the site of Tehran Research Reactor (TRR)

    International Nuclear Information System (INIS)

    Sepanloo, Kamran; Saberi, Reza; Alinejad, Majid; Bazarchi, Ehsan

    2017-01-01

    It is estimated that the occurrence of a major-earthquake in Tehran, Iran, which is not far-fetched, would face the country with a huge amount of collapsed structures, economical losses and fatalities. The issue becomes more important while the site of interest is attributed to the nuclear facilities and any under-estimation in predicting the design ground motion may cause a real disaster. In this study, using calculations coded in MATLAB, PSHA was conducted for the site of TRR. It was concluded that most of the hazard for considered site in a 10000-year period comes from distances lower than 20 km and considering rupture directivity effects of the North Tehran fault, as the nearest seismicity source to considered site, using narrowband method affected the response spectrum significantly. Therefore, it is necessary to incorporate the near fault rupture directivity effects into the higher levels of seismic hazard assessment attributed to important sites.

  17. Mapping basin-wide subaquatic slope failure susceptibility as a tool to assess regional seismic and tsunami hazards

    Science.gov (United States)

    Strasser, Michael; Hilbe, Michael; Anselmetti, Flavio S.

    2010-05-01

    With increasing awareness of oceanic geohazards, submarine landslides are gaining wide attention because of their catastrophic impacts on both offshore infrastructures (e.g. pipelines, cables and platforms) and coastal areas (e.g. landslide-induced tsunamis). They also are of great interest because they can be directly related to primary trigger mechanisms including earthquakes, rapid sedimentation, gas release, glacial and tidal loading, wave action, or clathrate dissociation, many of which represent potential geohazards themselves. In active tectonic environments, for instance, subaquatic landslide deposits can be used to make inferences regarding the hazard derived from seismic activity. Enormous scientific and economic efforts are thus being undertaken to better determine and quantify causes and effects of natural hazards related to subaquatic landslides. In order to achieve this fundamental goal, the detailed study of past events, the assessment of their recurrence intervals and the quantitative reconstruction of magnitudes and intensities of both causal and subsequent processes and impacts are key requirements. Here we present data and results from a study using fjord-type Lake Lucerne in central Switzerland as a "model ocean" to test a new concept for the assessment of regional seismic and tsunami hazard by basin-wide mapping of critical slope stability conditions for subaquatic landslide initiation. Previously acquired high-resolution bathymetry and reflection seismic data as well as sedimentological and in situ geotechnical data, provide a comprehensive data base to investigate subaquatic landslides and related geohazards. Available data are implemented into a basin-wide slope model. In a Geographic Information System (GIS)-framework, a pseudo-static limit equilibrium infinite slope stability equation is solved for each model point representing reconstructed slope conditions at different times in the past, during which earthquake-triggered landslides

  18. Seismic and wind vulnerability assessment for the GAR-13 global risk assessment

    OpenAIRE

    Yamín Lacouture, Luis Eduardo; Hurtado Chaparro, Alvaro Ivan; Barbat Barbat, Horia Alejandro; Cardona Arboleda, Omar Dario

    2014-01-01

    A general methodology to evaluate vulnerability functions suitable for a probabilistic global risk assessment is proposed. The methodology is partially based in the methodological approach of the Multi-hazard Loss Estimation Methodology (Hazus) developed by the Federal Emergency Management Agency (FEMA). The vulnerability assessment process considers the resolution, information and limitations established for both the hazard and exposure models adopted. Seismic and wind vulnerability function...

  19. Princeton Plasma Physics Laboratory (PPPL) seismic hazard analysis

    International Nuclear Information System (INIS)

    Savy, J.

    1989-01-01

    New design and evaluation guidelines for department of energy facilities subjected to natural phenomena hazard, are being finalized. Although still in draft form at this time, the document describing those guidelines should be considered to be an update of previously available guidelines. The recommendations in the guidelines document mentioned above, and simply referred to as the ''guidelines'' thereafter, are based on the best information at the time of its development. In particular, the seismic hazard model for the Princeton site was based on a study performed in 1981 for Lawrence Livermore National Laboratory (LLNL), which relied heavily on the results of the NRC's Systematic Evaluation Program and was based on a methodology and data sets developed in 1977 and 1978. Considerable advances have been made in the last ten years in the domain of seismic hazard modeling. Thus, it is recommended to update the estimate of the seismic hazard at the DOE sites whenever possible. The major differences between previous estimates and the ones proposed in this study for the PPPL are in the modeling of the strong ground motion at the site, and the treatment of the total uncertainty in the estimates to include knowledge uncertainty, random uncertainty, and expert opinion diversity as well. 28 refs

  20. Princeton Plasma Physics Laboratory (PPPL) seismic hazard analysis

    Energy Technology Data Exchange (ETDEWEB)

    Savy, J.

    1989-10-01

    New design and evaluation guidelines for department of energy facilities subjected to natural phenomena hazard, are being finalized. Although still in draft form at this time, the document describing those guidelines should be considered to be an update of previously available guidelines. The recommendations in the guidelines document mentioned above, and simply referred to as the guidelines'' thereafter, are based on the best information at the time of its development. In particular, the seismic hazard model for the Princeton site was based on a study performed in 1981 for Lawrence Livermore National Laboratory (LLNL), which relied heavily on the results of the NRC's Systematic Evaluation Program and was based on a methodology and data sets developed in 1977 and 1978. Considerable advances have been made in the last ten years in the domain of seismic hazard modeling. Thus, it is recommended to update the estimate of the seismic hazard at the DOE sites whenever possible. The major differences between previous estimates and the ones proposed in this study for the PPPL are in the modeling of the strong ground motion at the site, and the treatment of the total uncertainty in the estimates to include knowledge uncertainty, random uncertainty, and expert opinion diversity as well. 28 refs.

  1. Optimal Retrofit Scheme for Highway Network under Seismic Hazards

    Directory of Open Access Journals (Sweden)

    Yongxi Huang

    2014-06-01

    Full Text Available Many older highway bridges in the United States (US are inadequate for seismic loads and could be severely damaged or collapsed in a relatively small earthquake. According to the most recent American Society of Civil Engineers’ infrastructure report card, one-third of the bridges in the US are rated as structurally deficient and many of these structurally deficient bridges are located in seismic zones. To improve this situation, at-risk bridges must be identified and evaluated and effective retrofitting programs should be in place to reduce their seismic vulnerabilities. In this study, a new retrofit strategy decision scheme for highway bridges under seismic hazards is developed and seamlessly integrate the scenario-based seismic analysis of bridges and the traffic network into the proposed optimization modeling framework. A full spectrum of bridge retrofit strategies is considered based on explicit structural assessment for each seismic damage state. As an empirical case study, the proposed retrofit strategy decision scheme is utilized to evaluate the bridge network in one of the active seismic zones in the US, Charleston, South Carolina. The developed modeling framework, on average, will help increase network throughput traffic capacity by 45% with a cost increase of only $15million for the Mw 5.5 event and increase the capacity fourfold with a cost of only $32m for the Mw 7.0 event.

  2. Preclosure seismic hazards and their impact on site suitability of Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Gibson, J.D.

    1992-01-01

    This paper presents an overview of the preclosure seismic hazards and the influence of these hazards on determining the suitability of Yucca Mountain as a national high-level nuclear-waste repository. Geologic data, engineering analyses, and regulatory guidelines must be examined collectively to assess this suitability. An environmental assessment for Yucca Mountain, written in 1986, compiled and evaluated the existing tectonic data and presented arguments to satisfy, in part, the regulatory requirements that must be met if the Yucca Mountain site is to become a national waste repository. Analyses have been performed in the past five years that better quantify the local seismic hazards and the possibility that these hazards could lead to release of radionuclides to the environment. The results from these analyses increase the confidence in the ability of Yucca Mountain and the facilities that may be built there to function satisfactorily in their role as a waste repository. Uncertainties remain, however, primarily in the input parameters and boundary conditions for the models that were used to complete the analyses. These models must be validated and uncertainties reduced before Yucca Mountain can qualify as a viable high-level nuclear waste repository

  3. Uncertainty Analysis and Expert Judgment in Seismic Hazard Analysis

    Science.gov (United States)

    Klügel, Jens-Uwe

    2011-01-01

    The large uncertainty associated with the prediction of future earthquakes is usually regarded as the main reason for increased hazard estimates which have resulted from some recent large scale probabilistic seismic hazard analysis studies (e.g. the PEGASOS study in Switzerland and the Yucca Mountain study in the USA). It is frequently overlooked that such increased hazard estimates are characteristic for a single specific method of probabilistic seismic hazard analysis (PSHA): the traditional (Cornell-McGuire) PSHA method which has found its highest level of sophistication in the SSHAC probability method. Based on a review of the SSHAC probability model and its application in the PEGASOS project, it is shown that the surprising results of recent PSHA studies can be explained to a large extent by the uncertainty model used in traditional PSHA, which deviates from the state of the art in mathematics and risk analysis. This uncertainty model, the Ang-Tang uncertainty model, mixes concepts of decision theory with probabilistic hazard assessment methods leading to an overestimation of uncertainty in comparison to empirical evidence. Although expert knowledge can be a valuable source of scientific information, its incorporation into the SSHAC probability method does not resolve the issue of inflating uncertainties in PSHA results. Other, more data driven, PSHA approaches in use in some European countries are less vulnerable to this effect. The most valuable alternative to traditional PSHA is the direct probabilistic scenario-based approach, which is closely linked with emerging neo-deterministic methods based on waveform modelling.

  4. Performance of USGS one-year earthquake hazard map for natural and induced seismicity in the central and eastern United States

    Science.gov (United States)

    Brooks, E. M.; Stein, S.; Spencer, B. D.; Salditch, L.; Petersen, M. D.; McNamara, D. E.

    2017-12-01

    Seismicity in the central United States has dramatically increased since 2008 due to the injection of wastewater produced by oil and gas extraction. In response, the USGS created a one-year probabilistic hazard model and map for 2016 to describe the increased hazard posed to the central and eastern United States. Using the intensity of shaking reported to the "Did You Feel It?" system during 2016, we assess the performance of this model. Assessing the performance of earthquake hazard maps for natural and induced seismicity is conceptually similar but has practical differences. Maps that have return periods of hundreds or thousands of years— as commonly used for natural seismicity— can be assessed using historical intensity data that also span hundreds or thousands of years. Several different features stand out when assessing the USGS 2016 seismic hazard model for the central and eastern United States from induced and natural earthquakes. First, the model can be assessed as a forecast in one year, because event rates are sufficiently high to permit evaluation with one year of data. Second, because these models are projections from the previous year thus implicitly assuming that fluid injection rates remain the same, misfit may reflect changes in human activity. Our results suggest that the model was very successful by the metric implicit in probabilistic hazard seismic assessment: namely, that the fraction of sites at which the maximum shaking exceeded the mapped value is comparable to that expected. The model also did well by a misfit metric that compares the spatial patterns of predicted and maximum observed shaking. This was true for both the central and eastern United States as a whole, and for the region within it with the highest amount of seismicity, Oklahoma and its surrounding area. The model performed least well in northern Texas, over-stating hazard, presumably because lower oil and gas prices and regulatory action reduced the water injection volume

  5. Time-predictable model application in probabilistic seismic hazard analysis of faults in Taiwan

    Directory of Open Access Journals (Sweden)

    Yu-Wen Chang

    2017-01-01

    Full Text Available Given the probability distribution function relating to the recurrence interval and the occurrence time of the previous occurrence of a fault, a time-dependent model of a particular fault for seismic hazard assessment was developed that takes into account the active fault rupture cyclic characteristics during a particular lifetime up to the present time. The Gutenberg and Richter (1944 exponential frequency-magnitude relation uses to describe the earthquake recurrence rate for a regional source. It is a reference for developing a composite procedure modelled the occurrence rate for the large earthquake of a fault when the activity information is shortage. The time-dependent model was used to describe the fault characteristic behavior. The seismic hazards contribution from all sources, including both time-dependent and time-independent models, were then added together to obtain the annual total lifetime hazard curves. The effects of time-dependent and time-independent models of fault [e.g., Brownian passage time (BPT and Poisson, respectively] in hazard calculations are also discussed. The proposed fault model result shows that the seismic demands of near fault areas are lower than the current hazard estimation where the time-dependent model was used on those faults, particularly, the elapsed time since the last event of the faults (such as the Chelungpu fault are short.

  6. 2014 Update of the United States National Seismic Hazard Maps

    Science.gov (United States)

    Petersen, M.D.; Mueller, C.S.; Haller, K.M.; Moschetti, M.; Harmsen, S.C.; Field, E.H.; Rukstales, K.S.; Zeng, Y.; Perkins, D.M.; Powers, P.; Rezaeian, S.; Luco, N.; Olsen, A.; Williams, R.

    2012-01-01

    The U.S. National Seismic Hazard Maps are revised every six years, corresponding with the update cycle of the International Building Code. These maps cover the conterminous U.S. and will be updated in 2014 using the best-available science that is obtained from colleagues at regional and topical workshops, which are convened in 2012-2013. Maps for Alaska and Hawaii will be updated shortly following this update. Alternative seismic hazard models discussed at the workshops will be implemented in a logic tree framework and will be used to develop the seismic hazard maps and associated products. In this paper we describe the plan to update the hazard maps, the issues raised in workshops up to March 2012, and topics that will be discussed at future workshops. An advisory panel will guide the development of the hazard maps and ensure that the maps are acceptable to a broad segment of the science and engineering communities. These updated maps will then be considered by end-users for inclusion in building codes, risk models, and public policy documents.

  7. Validation of seismic probabilistic risk assessments of nuclear power plants

    International Nuclear Information System (INIS)

    Ellingwood, B.

    1994-01-01

    A seismic probabilistic risk assessment (PRA) of a nuclear plant requires identification and information regarding the seismic hazard at the plant site, dominant accident sequences leading to core damage, and structure and equipment fragilities. Uncertainties are associated with each of these ingredients of a PRA. Sources of uncertainty due to seismic hazard and assumptions underlying the component fragility modeling may be significant contributors to uncertainty in estimates of core damage probability. Design and construction errors also may be important in some instances. When these uncertainties are propagated through the PRA, the frequency distribution of core damage probability may span three orders of magnitude or more. This large variability brings into question the credibility of PRA methods and the usefulness of insights to be gained from a PRA. The sensitivity of accident sequence probabilities and high-confidence, low probability of failure (HCLPF) plant fragilities to seismic hazard and fragility modeling assumptions was examined for three nuclear power plants. Mean accident sequence probabilities were found to be relatively insensitive (by a factor of two or less) to: uncertainty in the coefficient of variation (logarithmic standard deviation) describing inherent randomness in component fragility; truncation of lower tail of fragility; uncertainty in random (non-seismic) equipment failures (e.g., diesel generators); correlation between component capacities; and functional form of fragility family. On the other hand, the accident sequence probabilities, expressed in the form of a frequency distribution, are affected significantly by the seismic hazard modeling, including slopes of seismic hazard curves and likelihoods assigned to those curves

  8. Worldwide Assessment of the Status of Seismic Zonation, Fourth International Forum on Seismic Zonation, Proceedings

    Science.gov (United States)

    Hays, W.W.

    1994-01-01

    We are pleased to provide you with information developed for the Fourth International Forum on Seismic Zonation which will be convened in two locations year in conjunction two major international meetings. The objectives are: 1) to assess the status of seismic zonation in every country of the world, 2) to evaluate the reasons for advances and new initiatives, and 3) to foster continued cooperation. Seismic zonation is the process that leads to risk reduction and sustainability of new development. It is based on the division of a geographic region into smaller areas or zones on the basis of an integrated assessment of the hazard, built, and policy environments of the region. Seismic zonation depends on hazard mapping performed on national/regional, subregional, and urban (i.e., microzonation) scales depending on the particular application. We gratefully acknowledge the written communications of many professionals who responded to our request for information. Also, we acknowledge the use of information contained in five valuable reports (see directories in the Appendices for information on where to obtain copies of the reports): 1. United Nations, 1990, Cooperative Project for Seismic Risk Reduction in the Mediterranean Region (SEISMED), proceedings, Office of the United Nations Disaster Relief Coordinator, Geneva, Switzerland, 3 vols. (Franco Maranzana -

  9. An innovative assessment of the seismic hazard from Vrancea intermediate-depth earthquakes: Case studies in Romania and Bulgaria

    International Nuclear Information System (INIS)

    Panza, G.F.; Cioflan, C.; Marmureanu, G.; Kouteva, M.; Paskaleva, I.; Romanelli, F.

    2002-02-01

    An advanced procedure for ground motion, capable of synthesizing the seismic ground motion from basic understanding of fault mechanism and seismic wave propagation, is applied to the case studies of Bucharest (Romania) and Russe, NE Bulgaria, exposed to the seismic hazard from Vrancea events. Synthetic seismic signals along representative geological cross sections in Bucharest and Russe and been computed and the energetic input spectra have been derived both from the synthetic signals and the few existing records. The theoretical signals are successfully compared with the available observations. The site response has been calculated for three recent, strong and intermediate-depth, Vrancea earthquakes: August 30, 1986 and May 30 and 31, 1990. The used approach differs significantly from today's engineering practice that relays upon rock-site hazard maps and applies the site correction at a later stage. The obtained results show that it is very useful to estimate the site effect via waveform modelling, considering simultaneously the geotechnical properties of the site, the position and geometry of the seismic source and the mechanical properties of the propagation medium. (author)

  10. Seismic assessment of Technical Area V (TA-V).

    Energy Technology Data Exchange (ETDEWEB)

    Medrano, Carlos S.

    2014-03-01

    The Technical Area V (TA-V) Seismic Assessment Report was commissioned as part of Sandia National Laboratories (SNL) Self Assessment Requirement per DOE O 414.1, Quality Assurance, for seismic impact on existing facilities at Technical Area-V (TA-V). SNL TA-V facilities are located on an existing Uniform Building Code (UBC) Seismic Zone IIB Site within the physical boundary of the Kirtland Air Force Base (KAFB). The document delineates a summary of the existing facilities with their safety-significant structure, system and components, identifies DOE Guidance, conceptual framework, past assessments and the present Geological and Seismic conditions. Building upon the past information and the evolution of the new seismic design criteria, the document discusses the potential impact of the new standards and provides recommendations based upon the current International Building Code (IBC) per DOE O 420.1B, Facility Safety and DOE G 420.1-2, Guide for the Mitigation of Natural Phenomena Hazards for DOE Nuclear Facilities and Non-Nuclear Facilities.

  11. The contribution of the Global Change Observatory Central Asia to seismic hazard and risk assessment in the Central Asian region

    Science.gov (United States)

    Parolai, S.; Bindi, D.; Haberland, C. A.; Pittore, M.; Pilz, M.; Rosenau, M.; Schurr, B.; Wieland, M.; Yuan, X.

    2012-12-01

    Central Asia has one of the world's highest levels of earthquake hazard, owing to its exceptionally high deformation rates. Moreover, vulnerability to natural disasters in general is increasing, due to rising populations and a growing dependence on complex lifelines and technology. Therefore, there is an urgent need to undertake seismic hazard and risk assessment in this region, while at the same time improving upon existing methodologies, including the consideration of temporal variability in the seismic hazard, and in structural and social vulnerability. Over the last few years, the German Research Center for Geosciences (GFZ), in collaboration with local partners, has initiated a number of scientific activities within the framework of the Global Change Observatory Central Asia (GCO-CA). The work is divided into projects with specific concerns: - The installation and maintenance of the Central-Asian Real-time Earthquake MOnitoring Network (CAREMON) and the setup of a permanent wireless mesh network for structural health monitoring in Bishkek. - The TIPAGE and TIPTIMON projects focus on the geodynamics of the Tien-Shan, Pamir and Hindu Kush region, the deepest and most active intra-continental subduction zone in the world. The work covers time scales from millions of years to short-term snapshots based on geophysical measurements of seismotectonic activity and of the physical properties of the crust and upper mantle, as well as their coupling with other surface processes (e.g., landslides). - Existing risk analysis methods assume time-independent earthquake hazard and risk, although temporal changes are likely to occur due to, for example, co- and post-seismic changes in the regional stress field. We therefore aim to develop systematic time-dependent hazard and risk analysis methods in order to undertake the temporal quantification of earthquake activity (PROGRESS). - To improve seismic hazard assessment for better loss estimation, detailed site effects studies

  12. New Evaluation of Seismic Hazard in Cental America and la Hispaniola

    Science.gov (United States)

    Benito, B.; Camacho, E. I.; Rojas, W.; Climent, A.; Alvarado-Induni, G.; Marroquin, G.; Molina, E.; Talavera, E.; Belizaire, D.; Pierristal, G.; Torres, Y.; Huerfano, V.; Polanco, E.; García, R.; Zevallos, F.

    2013-05-01

    The results from seismic hazard studies carried out in two seismic scenarios, Central America Region (CA) and La Hispaniola Island, are presented here. Both cases follow the Probabilistic Seismic Hazard Assessment (PSHA) methodology and they are developed in terms of PGA, and SA (T), for T of 0.1, 0.2, 0.5, 1 and 2s. In both anaysis, hybrid zonation models are considered, integrated by seismogenic zones and faults where data of slip rate and recurrence time are available. First, we present a new evaluation of seismic hazard in CA, starting with the results of a previous study by Benito et al (2011). Some improvements are now included, such as: updated catalogue till 2011, corrections in the zonning model in particular for subduction regime taken into account the variation of the dip in Costa Rica and Panama, and modelization of some faults as independent units for the hazard estimation. The results allow us to carry out a sensitivity analysis comparing the ones obtained with and without faults. In a second part we present the results of the PSHA in La Hispaniola, carried out as part of the cooperative project SISMO-HAITI supported by UPM and developed in cooperation with ONEV. It started a few months after the 2010 event, as an answer to a required help from the Haitian government to UPM. The study was aimed at obtaining results suitable for seismic design purposes and started with the elaboration of a seismic catalogue for the Hispaniola, requiring an exhaustive revision of data reported by around 30 seismic agencies, apart from these from Puerto Rico and Dominican Republic Seismic Networks. Seismotectonic models for the region were reviewed and a new regional zonation was proposed, taking into account different geophysical data. Attenuation models for subduction and crustal zones were also reviewed and the more suitable were calibrated with data recorded inside the Caribbean plate. As a result of the PSHA, different maps were generated for the quoted parameters

  13. Generalized Fragility Relationships with Local Site Conditions for Probabilistic Performance-based Seismic Risk Assessment of Bridge Inventories

    Directory of Open Access Journals (Sweden)

    Sivathayalan S.

    2012-01-01

    Full Text Available The current practice of detailed seismic risk assessment cannot be easily applied to all the bridges in a large transportation networks due to limited resources. This paper presents a new approach for seismic risk assessment of large bridge inventories in a city or national bridge network based on the framework of probabilistic performance based seismic risk assessment. To account for the influences of local site effects, a procedure to generate site-specific hazard curves that includes seismic hazard microzonation information has been developed for seismic risk assessment of bridge inventories. Simulated ground motions compatible with the site specific seismic hazard are used as input excitations in nonlinear time history analysis of representative bridges for calibration. A normalizing procedure to obtain generalized fragility relationships in terms of structural characteristic parameters of bridge span and size and longitudinal and transverse reinforcement ratios is presented. The seismic risk of bridges in a large inventory can then be easily evaluated using the normalized fragility relationships without the requirement of carrying out detailed nonlinear time history analysis.

  14. Scenario-based earthquake hazard and risk assessment for Baku (Azerbaijan

    Directory of Open Access Journals (Sweden)

    G. Babayev

    2010-12-01

    Full Text Available A rapid growth of population, intensive civil and industrial building, land and water instabilities (e.g. landslides, significant underground water level fluctuations, and the lack of public awareness regarding seismic hazard contribute to the increase of vulnerability of Baku (the capital city of the Republic of Azerbaijan to earthquakes. In this study, we assess an earthquake risk in the city determined as a convolution of seismic hazard (in terms of the surface peak ground acceleration, PGA, vulnerability (due to building construction fragility, population features, the gross domestic product per capita, and landslide's occurrence, and exposure of infrastructure and critical facilities. The earthquake risk assessment provides useful information to identify the factors influencing the risk. A deterministic seismic hazard for Baku is analysed for four earthquake scenarios: near, far, local, and extreme events. The seismic hazard models demonstrate the level of ground shaking in the city: PGA high values are predicted in the southern coastal and north-eastern parts of the city and in some parts of the downtown. The PGA attains its maximal values for the local and extreme earthquake scenarios. We show that the quality of buildings and the probability of their damage, the distribution of urban population, exposure, and the pattern of peak ground acceleration contribute to the seismic risk, meanwhile the vulnerability factors play a more prominent role for all earthquake scenarios. Our results can allow elaborating strategic countermeasure plans for the earthquake risk mitigation in the Baku city.

  15. Effects of Strike-Slip Fault Segmentation on Earthquake Energy and Seismic Hazard

    Science.gov (United States)

    Madden, E. H.; Cooke, M. L.; Savage, H. M.; McBeck, J.

    2014-12-01

    Many major strike-slip faults are segmented along strike, including those along plate boundaries in California and Turkey. Failure of distinct fault segments at depth may be the source of multiple pulses of seismic radiation observed for single earthquakes. However, how and when segmentation affects fault behavior and energy release is the basis of many outstanding questions related to the physics of faulting and seismic hazard. These include the probability for a single earthquake to rupture multiple fault segments and the effects of segmentation on earthquake magnitude, radiated seismic energy, and ground motions. Using numerical models, we quantify components of the earthquake energy budget, including the tectonic work acting externally on the system, the energy of internal rock strain, the energy required to overcome fault strength and initiate slip, the energy required to overcome frictional resistance during slip, and the radiated seismic energy. We compare the energy budgets of systems of two en echelon fault segments with various spacing that include both releasing and restraining steps. First, we allow the fault segments to fail simultaneously and capture the effects of segmentation geometry on the earthquake energy budget and on the efficiency with which applied displacement is accommodated. Assuming that higher efficiency correlates with higher probability for a single, larger earthquake, this approach has utility for assessing the seismic hazard of segmented faults. Second, we nucleate slip along a weak portion of one fault segment and let the quasi-static rupture propagate across the system. Allowing fractures to form near faults in these models shows that damage develops within releasing steps and promotes slip along the second fault, while damage develops outside of restraining steps and can prohibit slip along the second fault. Work is consumed in both the propagation of and frictional slip along these new fractures, impacting the energy available

  16. Preliminary evaluation of the seismic hazard at Cernavoda NPP site

    International Nuclear Information System (INIS)

    Mingiuc, C.; Serban, V.; Androne, M.

    2001-01-01

    The probabilistic seismic hazard analysis (PSHA) is a methodology by which one evaluates the probability of exceeding different parameters of the ground motions (the maximum ground acceleration - PGA and the ground response spectrum - SA) as effect of the seismic action, on a given site at a future time moment. Due to the large uncertainties in the geological, geophysical, seismological input data, as well as, in the models utilised, various interpretation schemes are applied in the PSHA analyses. This interpretation schemes lead to opinion discrepancies among specialists which finally lead to disagreements in estimating the values of the seismic design for a given site. In order to re-evaluate the methodology and to improve the PSHA result stability, U.S. Nuclear Regulatory Commission (NRC), U.S. Department of Energy (DOE) and Electric Power Research Institute (EPRI) sponsored a project for defining methodological guides of performing PSHA analyses. The project was implemented by a panel of 7 experts, the Senior Seismic Hazard Analysis Committee - SSHAC. This paper presents a preliminary evaluation of the seismic hazard for the Cernavoda NPP site by application of the methodology mentioned, by taking into account the possible sources which could affect the site (the Vrancea focus, Galati - Tulcea fault, Sabla - Dulovo fault and local earthquakes)

  17. France's seismic zoning

    International Nuclear Information System (INIS)

    Mohammadioun, B.

    1997-01-01

    In order to assess the seismic hazard in France in relation to nuclear plant siting, the CEA, EDF and the BRGM (Mine and Geology Bureau) have carried out a collaboration which resulted in a seismic-tectonic map of France and a data base on seismic history (SIRENE). These studies were completed with a seismic-tectonic zoning, taking into account a very long period of time, that enabled a probabilistic evaluation of the seismic hazard in France, and that may be related to adjacent country hazard maps

  18. Reassessment of seismic hazards at the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Wong, I.G.; Hemphill-Haley, M.A.; Kelson, K.I.; Gardner, J.N.; House, L.S.

    1991-01-01

    A comprehensive seismic hazards evaluation program has been initiated at the Los Alamos National Laboratory (LANL) to update the current seismic design criteria. In part, this program has been motivated by recent studies which suggest that faults of the nearby Pajarito fault system may be capable of generating a large magnitude earthquake (M > 7). The specific objectives of this program are to: (1) characterize the tectonic setting of the LANL area; (2) characterize the nature, amount, and timing of late Quaternary fault displacements; (3) reevaluate the recorded seismicity in the LANL region to allow for the evaluation of seismogenic faults and the tectonic state of stress; (4) characterize the subsurface geologic conditions beneath the LANL required for the estimation of strong ground motions and site response; (5) estimate potential strong ground shaking both deterministically and probabilistically; and (6) develop the appropriate seismic design criteria. The approach and initial results of this seismic hazards program are described in this paper

  19. Seismic hazards and land-use planning

    Science.gov (United States)

    Nichols, Donald R.; Buchanan-Banks, Jane M.

    1974-01-01

    Basic earth-science data are necessary for a realistic assessment of seismic hazards and as a basis for limiting corrective land-use controls only to those areas of greatest hazard. For example, the location, character, and amount of likely displacement and activity of surface faulting can be predicted if detailed geologic maps and seismic data are available and are augmented by field studies at critical localities. Because few structures can withstand displacement of their foundations, they should be located off active fault traces, the distance varying with the character of faulting, the certainty with which fault traces are known, and the importance of the structure. Recreational activities and other nonoccupancy land uses should be considered for fault zone areas where land is under pressure for development; elsewhere, such areas should remain as open space. Two methods of predicting ground shaking effects have applications to land-use decisions: (1) Relative earthquake effects can be related to firmness of the ground and can be used in a gross way to allocate population density in the absence of more sophisticated analyses; and (2) intensity maps, based on, (a) damage from former earthquakes, or (b) a qualitative analyses of geologic units added to a design earthquake, can be helpful both for general and specific plans. Theoretical models are used with caution to predict ground motion for critical structures to be located at specific sites with unique foundation conditions. Fully adequate methods of assessing possible shaking remain to be developed. Where land-use decisions do not reflect likely ground shaking effects, stringent building codes are needed, particularly for important structures. Ground failure (landsliding, ground cracking and lurching, differential settlement, sand boils, and subsidence) commonly results from liquefaction, loss of soil strength, or compaction. Areas suspected of being most likely to fail should not be developed unless detailed

  20. Region-specific deterministic and probabilistic seismic hazard ...

    Indian Academy of Sciences (India)

    3National Research Institute of Astronomy and Geophysics (NRIAG), Cairo 11421, Egypt. ∗ ... were assigned to different Mmax values and the selected GMPE to calculate the final hazard ... zone is considered as a prominent seismic gap and.

  1. Historical and Paleo Events as an input for Seismic And Associated Natural Hazard Assessment of Javakheti highland (South Georgia)

    Science.gov (United States)

    Elashvili, M.; Javakhishvili, Z.; Godoladze, T.; Karakhanyan, A.; Sukhishvili, L.; Nikolaeva, E.; Sokhadze, G.; Avanesyan, M.

    2012-12-01

    of historical earthquakes of 1899 and 1089, as well as Archaeo-Seismological site along the Javakheti seismic fault will be presented. History on Natural Disasters in the region can be complemented by Bertakana Paleo-Landslide, to be discussed separately as one of the mega events in the Area. The mentioned events are considered as an important input for Seismic Hazard Assessment of Javakheti Region.

  2. Seismicity and Seismic Hazard along the Western part of the Eurasia-Nubia plate boundary

    Science.gov (United States)

    Bezzeghoud, Mourad; Fontiela, João; Ferrão, Celia; Borges, José Fernando; Caldeira, Bento; Dib, Assia; Ousadou, Farida

    2016-04-01

    ,000) make it one of the deadliest earthquakes in history. Measured in lives lost, the 1926, 1980 and 1998 Azores earthquakes (Portugal), the 1954 and 1980 El Asnam earthquakes (North Algeria), the 1994 and 2004 Alhoceima earthquakes (North Morocco), and the 2003 Boumerdes earthquakes (North Algeria) were the worst earthquakes in the past 120 years in the study area. Hence, this region has experienced many large and damaging earthquakes. The city of Cairo (Egypt) was struck in October 1992 by an Mw 5.8 magnitude earthquake, which caused large damage. In 1935, the Syrte region in Libya experienced an M6.9 earthquake with severe damage. Generally, North Africa has experienced moderate earthquakes. However, the region remains vulnerable due to the shallow seismicity, the poor mechanical properties of its soil and local site conditions, and the consequent strength of the ground shaking. Knowing the behaviour of a seismogenic area, particularly the fault zone, will lead us to better assess the hazard and risk in and around large urban areas. In order to mitigate the destructive impact of the earthquakes, the regional seismic hazard in North Africa is assessed using different approaches (ex. deterministic and probabilistic) using historical and instrumental seismicity, earthquake sources, seismotectonic zonation, structural models and attenuation laws. As a result, reliable seismic hazard maps are produced in terms of maximum displacement and in terms of maximum intensity map. This research is funded by the Fundação para a Ciência e a Tecnologia (FCT, Portugal) under the project ICT-UID/GEO/04683/2013. This study also was conducted within the scope of the MEDYNA FP7-PEOPLE-2013-IRSES project, WP-1: Present-day Kinematics and seismic hazards, funded by the Seventh Framework European Programme.

  3. Research on the spatial analysis method of seismic hazard for island

    International Nuclear Information System (INIS)

    Jia, Jing; Jiang, Jitong; Zheng, Qiuhong; Gao, Huiying

    2017-01-01

    Seismic hazard analysis(SHA) is a key component of earthquake disaster prevention field for island engineering, whose result could provide parameters for seismic design microscopically and also is the requisite work for the island conservation planning’s earthquake and comprehensive disaster prevention planning macroscopically, in the exploitation and construction process of both inhabited and uninhabited islands. The existing seismic hazard analysis methods are compared in their application, and their application and limitation for island is analysed. Then a specialized spatial analysis method of seismic hazard for island (SAMSHI) is given to support the further related work of earthquake disaster prevention planning, based on spatial analysis tools in GIS and fuzzy comprehensive evaluation model. The basic spatial database of SAMSHI includes faults data, historical earthquake record data, geological data and Bouguer gravity anomalies data, which are the data sources for the 11 indices of the fuzzy comprehensive evaluation model, and these indices are calculated by the spatial analysis model constructed in ArcGIS’s Model Builder platform. (paper)

  4. Research on the spatial analysis method of seismic hazard for island

    Science.gov (United States)

    Jia, Jing; Jiang, Jitong; Zheng, Qiuhong; Gao, Huiying

    2017-05-01

    Seismic hazard analysis(SHA) is a key component of earthquake disaster prevention field for island engineering, whose result could provide parameters for seismic design microscopically and also is the requisite work for the island conservation planning’s earthquake and comprehensive disaster prevention planning macroscopically, in the exploitation and construction process of both inhabited and uninhabited islands. The existing seismic hazard analysis methods are compared in their application, and their application and limitation for island is analysed. Then a specialized spatial analysis method of seismic hazard for island (SAMSHI) is given to support the further related work of earthquake disaster prevention planning, based on spatial analysis tools in GIS and fuzzy comprehensive evaluation model. The basic spatial database of SAMSHI includes faults data, historical earthquake record data, geological data and Bouguer gravity anomalies data, which are the data sources for the 11 indices of the fuzzy comprehensive evaluation model, and these indices are calculated by the spatial analysis model constructed in ArcGIS’s Model Builder platform.

  5. Hazard Assessment in a Big Data World

    Science.gov (United States)

    Kossobokov, Vladimir; Nekrasova, Anastasia

    2017-04-01

    Open data in a Big Data World provides unprecedented opportunities for enhancing scientific studies and better understanding of the Earth System. At the same time, it opens wide avenues for deceptive associations in inter- and transdisciplinary data misleading to erroneous predictions, which are unacceptable for implementation. Even the advanced tools of data analysis may lead to wrong assessments when inappropriately used to describe the phenomenon under consideration. A (self-) deceptive conclusion could be avoided by verification of candidate models in experiments on empirical data and in no other way. Seismology is not an exception. Moreover, seismic evidences accumulated to-date demonstrate clearly that most of the empirical relations commonly accepted in early history of instrumental seismology can be proved erroneous when subjected to objective hypothesis testing. In many cases of seismic hazard assessment (SHA), either probabilistic or deterministic, term-less or short-term, the claims of a high potential of a model forecasts are based on a flawed application of statistics and, therefore, are hardly suitable for communication to decision makers, which situation creates numerous deception points and resulted controversies. So far, most, if not all, the standard probabilistic methods to assess seismic hazard and associated risks are based on subjective, commonly unrealistic, and even erroneous assumptions about seismic recurrence and none of the proposed short-term precursory signals showed sufficient evidence to be used as a reliable precursor of catastrophic earthquakes. Accurate testing against real observations must be done in advance claiming seismically hazardous areas and/or times. The set of errors of the first and second kind in such a comparison permits evaluating the SHA method effectiveness and determining the optimal choice of parameters in regard to a user-defined cost-benefit function. The information obtained in testing experiments may supply

  6. SSHAC Level 1 Probabilistic Seismic Hazard Analysis for the Idaho National Laboratory

    International Nuclear Information System (INIS)

    Payne, Suzette; Coppersmith, Ryan; Coppersmith, Kevin; Rodriguez-Marek, Adrian; Falero, Valentina Montaldo; Youngs, Robert

    2016-01-01

    A Probabilistic Seismic Hazard Analysis (PSHA) was completed for the Materials and Fuels Complex (MFC), Naval Reactors Facility (NRF), and the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) (Figure 1-1). The PSHA followed the approaches and procedures appropriate for a Study Level 1 provided in the guidance advanced by the Senior Seismic Hazard Analysis Committee (SSHAC) in U.S. Nuclear Regulatory Commission (NRC) NUREG/CR-6372 and NUREG-2117 (NRC, 1997; 2012a). The SSHAC Level 1 PSHAs for MFC and ATR were conducted as part of the Seismic Risk Assessment (SRA) project (INL Project number 31287) to develop and apply a new-risk informed methodology, respectively. The SSHAC Level 1 PSHA was conducted for NRF to provide guidance on the potential use of a design margin above rock hazard levels. The SRA project is developing a new risk-informed methodology that will provide a systematic approach for evaluating the need for an update of an existing PSHA. The new methodology proposes criteria to be employed at specific analysis, decision, or comparison points in its evaluation process. The first four of seven criteria address changes in inputs and results of the PSHA and are given in U.S. Department of Energy (DOE) Standard, DOE-STD-1020-2012 (DOE, 2012a) and American National Standards Institute/American Nuclear Society (ANSI/ANS) 2.29 (ANS, 2008a). The last three criteria address evaluation of quantitative hazard and risk-focused information of an existing nuclear facility. The seven criteria and decision points are applied to Seismic Design Category (SDC) 3, 4, and 5, which are defined in American Society of Civil Engineers/Structural Engineers Institute (ASCE/SEI) 43-05 (ASCE, 2005). The application of the criteria and decision points could lead to an update or could determine that such update is not necessary.

  7. SSHAC Level 1 Probabilistic Seismic Hazard Analysis for the Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Payne, Suzette [Idaho National Lab. (INL), Idaho Falls, ID (United States); Coppersmith, Ryan [Idaho National Lab. (INL), Idaho Falls, ID (United States); Coppersmith, Kevin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rodriguez-Marek, Adrian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Falero, Valentina Montaldo [Idaho National Lab. (INL), Idaho Falls, ID (United States); Youngs, Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    A Probabilistic Seismic Hazard Analysis (PSHA) was completed for the Materials and Fuels Complex (MFC), Naval Reactors Facility (NRF), and the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) (Figure 1-1). The PSHA followed the approaches and procedures appropriate for a Study Level 1 provided in the guidance advanced by the Senior Seismic Hazard Analysis Committee (SSHAC) in U.S. Nuclear Regulatory Commission (NRC) NUREG/CR-6372 and NUREG-2117 (NRC, 1997; 2012a). The SSHAC Level 1 PSHAs for MFC and ATR were conducted as part of the Seismic Risk Assessment (SRA) project (INL Project number 31287) to develop and apply a new-risk informed methodology, respectively. The SSHAC Level 1 PSHA was conducted for NRF to provide guidance on the potential use of a design margin above rock hazard levels. The SRA project is developing a new risk-informed methodology that will provide a systematic approach for evaluating the need for an update of an existing PSHA. The new methodology proposes criteria to be employed at specific analysis, decision, or comparison points in its evaluation process. The first four of seven criteria address changes in inputs and results of the PSHA and are given in U.S. Department of Energy (DOE) Standard, DOE-STD-1020-2012 (DOE, 2012a) and American National Standards Institute/American Nuclear Society (ANSI/ANS) 2.29 (ANS, 2008a). The last three criteria address evaluation of quantitative hazard and risk-focused information of an existing nuclear facility. The seven criteria and decision points are applied to Seismic Design Category (SDC) 3, 4, and 5, which are defined in American Society of Civil Engineers/Structural Engineers Institute (ASCE/SEI) 43-05 (ASCE, 2005). The application of the criteria and decision points could lead to an update or could determine that such update is not necessary.

  8. An assessment of seismic monitoring in the United States; requirement for an Advanced National Seismic System

    Science.gov (United States)

    ,

    1999-01-01

    This report assesses the status, needs, and associated costs of seismic monitoring in the United States. It sets down the requirement for an effective, national seismic monitoring strategy and an advanced system linking national, regional, and urban monitoring networks. Modernized seismic monitoring can provide alerts of imminent strong earthquake shaking; rapid assessment of distribution and severity of earthquake shaking (for use in emergency response); warnings of a possible tsunami from an offshore earthquake; warnings of volcanic eruptions; information for correctly characterizing earthquake hazards and for improving building codes; and data on response of buildings and structures during earthquakes, for safe, cost-effective design, engineering, and construction practices in earthquake-prone regions.

  9. Modeling of seismic hazards for dynamic reliability analysis

    International Nuclear Information System (INIS)

    Mizutani, M.; Fukushima, S.; Akao, Y.; Katukura, H.

    1993-01-01

    This paper investigates the appropriate indices of seismic hazard curves (SHCs) for seismic reliability analysis. In the most seismic reliability analyses of structures, the seismic hazards are defined in the form of the SHCs of peak ground accelerations (PGAs). Usually PGAs play a significant role in characterizing ground motions. However, PGA is not always a suitable index of seismic motions. When random vibration theory developed in the frequency domain is employed to obtain statistics of responses, it is more convenient for the implementation of dynamic reliability analysis (DRA) to utilize an index which can be determined in the frequency domain. In this paper, we summarize relationships among the indices which characterize ground motions. The relationships between the indices and the magnitude M are arranged as well. In this consideration, duration time plays an important role in relating two distinct class, i.e. energy class and power class. Fourier and energy spectra are involved in the energy class, and power and response spectra and PGAs are involved in the power class. These relationships are also investigated by using ground motion records. Through these investigations, we have shown the efficiency of employing the total energy as an index of SHCs, which can be determined in the time and frequency domains and has less variance than the other indices. In addition, we have proposed the procedure of DRA based on total energy. (author)

  10. New Directions in Seismic Hazard Assessment Through Focused Earth Observation in the MARmara SuperSITE - Project Achievements

    Science.gov (United States)

    Meral OZel, Nurcan; Necmioǧlu, Öcal; Ergintav, Semih; Ozel, Oǧuz; Favali, Paolo; Bigarre, Pascal; Çakır, Ziyadin; Ozeren, Sinan; Geli, Louis; Douglas, John; Aochi, Hideo; Bossu, Remy; Zülfikar, Can; Şeşetyan, Karin; Erdik, Mustafa

    2016-04-01

    The MARsite Project, which started in November 2012,funded by the EC/ FP7-ENV.2012 6.4-2 (Grant 308417) identifies the Marmara region as a 'Supersite' within European initiatives to aggregate on-shore, off-shore and space-based observations, comprehensive geophysical monitoring, improved hazard and risk assessments encompassed in an integrated set of activities. MARsite aimed to harmonize geological, geophysical, geodetic and geochemical observations to provide a better view of the post-seismic deformation of the 1999 Izmit earthquake (in addition to the post-seismic signature of previous earthquakes), loading of submarine and inland active fault segments and transient pre-earthquake signals, related to stress loading with different tectonic properties in and around Marmara Sea. This presentation provides an overview of the achievements of MARSite which aimed to coordinate research groups ranging from seismology to gas geochemistry in a comprehensive monitoring activity developed in the Marmara Region based on collection of multidisciplinary data to be shared, interpreted and merged in consistent theoretical and practical models suitable for the implementation of good practices to move the necessary information to the end users in charge of seismic risk management of the region. In addition, processes involved in earthquake generation and the physics of short-term seismic transients, 4D deformations to understand earthquake cycle processes, fluid activity monitoring and seismicity under the sea floor using existing autonomous instrumentation, early warning and development of real-time shake and loss information, real- and quasi-real-time earthquake and tsunami hazard monitoring and earthquake-induced landslide hazard topics are also covered within MARSite. In particular, achievements and progress in the design and building of a multi-parameter borehole system consisting of very wide dynamic range and stable borehole (VBB) broad band seismic sensor, with

  11. SSHAC Level 1 Probabilistic Seismic Hazard Analysis for the Idaho National Laboratory

    International Nuclear Information System (INIS)

    Payne, Suzette Jackson; Coppersmith, Ryan; Coppersmith, Kevin; Rodriguez-Marek, Adrian; Falero, Valentina Montaldo; Youngs, Robert

    2016-01-01

    A Probabilistic Seismic Hazard Analysis (PSHA) was completed for the Materials and Fuels Complex (MFC), Advanced Test Reactor (ATR), and Naval Reactors Facility (NRF) at the Idaho National Laboratory (INL). The PSHA followed the approaches and procedures for Senior Seismic Hazard Analysis Committee (SSHAC) Level 1 study and included a Participatory Peer Review Panel (PPRP) to provide the confident technical basis and mean-centered estimates of the ground motions. A new risk-informed methodology for evaluating the need for an update of an existing PSHA was developed as part of the Seismic Risk Assessment (SRA) project. To develop and implement the new methodology, the SRA project elected to perform two SSHAC Level 1 PSHAs. The first was for the Fuel Manufacturing Facility (FMF), which is classified as a Seismic Design Category (SDC) 3 nuclear facility. The second was for the ATR Complex, which has facilities classified as SDC-4. The new methodology requires defensible estimates of ground motion levels (mean and full distribution of uncertainty) for its criteria and evaluation process. The INL SSHAC Level 1 PSHA demonstrates the use of the PPRP, evaluation and integration through utilization of a small team with multiple roles and responsibilities (four team members and one specialty contractor), and the feasibility of a short duration schedule (10 months). Additionally, a SSHAC Level 1 PSHA was conducted for NRF to provide guidance on the potential use of a design margin above rock hazard levels for the Spent Fuel Handling Recapitalization Project (SFHP) process facility.

  12. SSHAC Level 1 Probabilistic Seismic Hazard Analysis for the Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Payne, Suzette Jackson [Idaho National Lab. (INL), Idaho Falls, ID (United States); Coppersmith, Ryan [Idaho National Lab. (INL), Idaho Falls, ID (United States); Coppersmith, Kevin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rodriguez-Marek, Adrian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Falero, Valentina Montaldo [Idaho National Lab. (INL), Idaho Falls, ID (United States); Youngs, Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    A Probabilistic Seismic Hazard Analysis (PSHA) was completed for the Materials and Fuels Complex (MFC), Advanced Test Reactor (ATR), and Naval Reactors Facility (NRF) at the Idaho National Laboratory (INL). The PSHA followed the approaches and procedures for Senior Seismic Hazard Analysis Committee (SSHAC) Level 1 study and included a Participatory Peer Review Panel (PPRP) to provide the confident technical basis and mean-centered estimates of the ground motions. A new risk-informed methodology for evaluating the need for an update of an existing PSHA was developed as part of the Seismic Risk Assessment (SRA) project. To develop and implement the new methodology, the SRA project elected to perform two SSHAC Level 1 PSHAs. The first was for the Fuel Manufacturing Facility (FMF), which is classified as a Seismic Design Category (SDC) 3 nuclear facility. The second was for the ATR Complex, which has facilities classified as SDC-4. The new methodology requires defensible estimates of ground motion levels (mean and full distribution of uncertainty) for its criteria and evaluation process. The INL SSHAC Level 1 PSHA demonstrates the use of the PPRP, evaluation and integration through utilization of a small team with multiple roles and responsibilities (four team members and one specialty contractor), and the feasibility of a short duration schedule (10 months). Additionally, a SSHAC Level 1 PSHA was conducted for NRF to provide guidance on the potential use of a design margin above rock hazard levels for the Spent Fuel Handling Recapitalization Project (SFHP) process facility.

  13. The 2014 update to the National Seismic Hazard Model in California

    Science.gov (United States)

    Powers, Peter; Field, Edward H.

    2015-01-01

    The 2014 update to the U. S. Geological Survey National Seismic Hazard Model in California introduces a new earthquake rate model and new ground motion models (GMMs) that give rise to numerous changes to seismic hazard throughout the state. The updated earthquake rate model is the third version of the Uniform California Earthquake Rupture Forecast (UCERF3), wherein the rates of all ruptures are determined via a self-consistent inverse methodology. This approach accommodates multifault ruptures and reduces the overprediction of moderate earthquake rates exhibited by the previous model (UCERF2). UCERF3 introduces new faults, changes to slip or moment rates on existing faults, and adaptively smoothed gridded seismicity source models, all of which contribute to significant changes in hazard. New GMMs increase ground motion near large strike-slip faults and reduce hazard over dip-slip faults. The addition of very large strike-slip ruptures and decreased reverse fault rupture rates in UCERF3 further enhances these effects.

  14. Development of a seismic source model for probabilistic seismic hazard assessment of nuclear power plant sites in Switzerland: the view from PEGASOS Expert Group 4 (EG1d)

    International Nuclear Information System (INIS)

    Wiemer, S.; Garcia-Fernandez, M.; Burg, J.-P.

    2009-01-01

    We present a seismogenic source model for site-specific probabilistic seismic hazard assessment at the sites of Swiss nuclear power plants. Our model is one of four developed in the framework of the PEGASOS project; it contains a logic tree with nine levels of decision-making. The two primary sources of input used in the areal zonation developed by us are the historical and instrumental seismicity record and large-scale geological/rheological units. From this, we develop a zonation of six macro zones, refined in a series of seven decision steps up to a maximum of 13 zones. Within zones, activity rates are either assumed homogeneous or smoothed using a Gaussian kernel with width of 5 or 15 km. To estimate recurrence rate, we assume a double truncated Gutenberg-Richter law, and consider five models of recurrence parameters with different degrees of freedom. Models are weighted in the logic tree using a weighted Akaike score. The maximum magnitude is estimated following the EPRI approach. We perform extensive sensitivity analyses in rate and hazard space in order to assess the role of de-clustering, the completeness model, quarry contamination, border properties, stationarity, regional b-value and magnitude-dependent hypocentral depth. (author)

  15. Development of a seismic source model for probabilistic seismic hazard assessment of nuclear power plant sites in Switzerland: the view from PEGASOS Expert Group 4 (EG1d)

    Energy Technology Data Exchange (ETDEWEB)

    Wiemer, S. [Institute of Geophysics, ETH Zuerich, Zuerich (Switzerland); Garcia-Fernandez, M. [Spanish Council for Scientific Research, Museum of Natural History, Dept. of Volcanology and Geophysics, Madrid (Spain); Burg, J.-P. [Institute of Geology, ETH Zuerich, Zuerich (Switzerland)

    2009-05-15

    We present a seismogenic source model for site-specific probabilistic seismic hazard assessment at the sites of Swiss nuclear power plants. Our model is one of four developed in the framework of the PEGASOS project; it contains a logic tree with nine levels of decision-making. The two primary sources of input used in the areal zonation developed by us are the historical and instrumental seismicity record and large-scale geological/rheological units. From this, we develop a zonation of six macro zones, refined in a series of seven decision steps up to a maximum of 13 zones. Within zones, activity rates are either assumed homogeneous or smoothed using a Gaussian kernel with width of 5 or 15 km. To estimate recurrence rate, we assume a double truncated Gutenberg-Richter law, and consider five models of recurrence parameters with different degrees of freedom. Models are weighted in the logic tree using a weighted Akaike score. The maximum magnitude is estimated following the EPRI approach. We perform extensive sensitivity analyses in rate and hazard space in order to assess the role of de-clustering, the completeness model, quarry contamination, border properties, stationarity, regional b-value and magnitude-dependent hypocentral depth. (author)

  16. Sensitivity of seismic hazard to various parameters and correlations for peak ground acceleration

    International Nuclear Information System (INIS)

    Ghosh, A.K.; Kushwaha, H.S.

    1998-10-01

    The design basis ground motion of a site is generally specified in terms of the peak ground acceleration (PGA), ground motion response spectrum and time history. The probability of exceedence of the design level PGA is one of the factors to quantify the seismic risk at the given site. The present paper extends the work of Cornell to consider an aerial source model and a more general form of the correlation for PGA to evaluate the seismic hazard. It is further recognised that the predicted seismic hazard can vary with various parameters involved. Numerical results have been presented to show this variability. These results will help to determine the seismic hazard at a given site and the associated uncertainties. (author)

  17. Review of induced seismic hazard for Hot Dry Rock Project, Rosemanowes, Cornwall

    International Nuclear Information System (INIS)

    Skipp, B.O.; Woo, G.; Eldred, P.J.L.

    1991-01-01

    Geothermal energy installations perturb the earth's crust and so may provoke earthquakes. The 21st Dry Rock (HDR) Geothermal Project at Rosemanowes Quarry in Cornwall has given rise to low level unfelt acoustic emission and possibly small, felt earthquakes. This review of induced seismic hazard study examines the effects that the HDR Project could have on seismic events. Events which are modified by the project, in magnitude and time of occurrence, as well as those which might not have occurred at all were studied. From an examination of the literature and relevant seismicity models, a broad estimate of induced seismic hazard was established. (U.K)

  18. SHEAT for PC. A computer code for probabilistic seismic hazard analysis for personal computer, user's manual

    International Nuclear Information System (INIS)

    Yamada, Hiroyuki; Tsutsumi, Hideaki; Ebisawa, Katsumi; Suzuki, Masahide

    2002-03-01

    The SHEAT code developed at Japan Atomic Energy Research Institute is for probabilistic seismic hazard analysis which is one of the tasks needed for seismic Probabilistic Safety Assessment (PSA) of a nuclear power plant. At first, SHEAT was developed as the large sized computer version. In addition, a personal computer version was provided to improve operation efficiency and generality of this code in 2001. It is possible to perform the earthquake hazard analysis, display and the print functions with the Graphical User Interface. With the SHEAT for PC code, seismic hazard which is defined as an annual exceedance frequency of occurrence of earthquake ground motions at various levels of intensity at a given site is calculated by the following two steps as is done with the large sized computer. One is the modeling of earthquake generation around a site. Future earthquake generation (locations, magnitudes and frequencies of postulated earthquake) is modeled based on the historical earthquake records, active fault data and expert judgment. Another is the calculation of probabilistic seismic hazard at the site. An earthquake ground motion is calculated for each postulated earthquake using an attenuation model taking into account its standard deviation. Then the seismic hazard at the site is calculated by summing the frequencies of ground motions by all the earthquakes. This document is the user's manual of the SHEAT for PC code. It includes: (1) Outline of the code, which include overall concept, logical process, code structure, data file used and special characteristics of code, (2) Functions of subprogram and analytical models in them, (3) Guidance of input and output data, (4) Sample run result, and (5) Operational manual. (author)

  19. Seismic Ground Motion Hazards with 10 Percent Probability

    Data.gov (United States)

    Department of Homeland Security — This map layer shows seismic hazard in the United States. The data represent a model showing the probability that ground motion will reach a certain level. This map...

  20. Seismic Ground Motion Hazards with 2 Percent Probability

    Data.gov (United States)

    Department of Homeland Security — This map layer shows seismic hazard in the United States. The data represent a model showing the probability that ground motion will reach a certain level. This map...

  1. Application of a time probabilistic approach to seismic landslide hazard estimates in Iran

    Science.gov (United States)

    Rajabi, A. M.; Del Gaudio, V.; Capolongo, D.; Khamehchiyan, M.; Mahdavifar, M. R.

    2009-04-01

    Iran is a country located in a tectonic active belt and is prone to earthquake and related phenomena. In the recent years, several earthquakes caused many fatalities and damages to facilities, e.g. the Manjil (1990), Avaj (2002), Bam (2003) and Firuzabad-e-Kojur (2004) earthquakes. These earthquakes generated many landslides. For instance, catastrophic landslides triggered by the Manjil Earthquake (Ms = 7.7) in 1990 buried the village of Fatalak, killed more than 130 peoples and cut many important road and other lifelines, resulting in major economic disruption. In general, earthquakes in Iran have been concentrated in two major zones with different seismicity characteristics: one is the region of Alborz and Central Iran and the other is the Zagros Orogenic Belt. Understanding where seismically induced landslides are most likely to occur is crucial in reducing property damage and loss of life in future earthquakes. For this purpose a time probabilistic approach for earthquake-induced landslide hazard at regional scale, proposed by Del Gaudio et al. (2003), has been applied to the whole Iranian territory to provide the basis of hazard estimates. This method consists in evaluating the recurrence of seismically induced slope failure conditions inferred from the Newmark's model. First, by adopting Arias Intensity to quantify seismic shaking and using different Arias attenuation relations for Alborz - Central Iran and Zagros regions, well-established methods of seismic hazard assessment, based on the Cornell (1968) method, were employed to obtain the occurrence probabilities for different levels of seismic shaking in a time interval of interest (50 year). Then, following Jibson (1998), empirical formulae specifically developed for Alborz - Central Iran and Zagros, were used to represent, according to the Newmark's model, the relation linking Newmark's displacement Dn to Arias intensity Ia and to slope critical acceleration ac. These formulae were employed to evaluate

  2. Induced seismicity and carbon storage: Risk assessment and mitigation strategies

    Energy Technology Data Exchange (ETDEWEB)

    White, Joshua A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Foxall, William [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bachmann, Corinne [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chiaramonte, Laura [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Daley, Thomas M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-01-28

    Geologic carbon storage (GCS) is widely recognized as an important strategy to reduce atmospheric carbon dioxide (CO2) emissions. Like all technologies, however, sequestration projects create a number of potential environmental and safety hazards that must be addressed. These include earthquakes—from microseismicity to large, damaging events—that can be triggered by altering pore-pressure conditions in the subsurface. To date, measured seismicity due to CO2 injection has been limited to a few modest events, but the hazard exists and must be considered. There are important similarities between CO2 injection and fluid injection from other applications that have induced significant events—e.g. geothermal systems, waste-fluid injection, hydrocarbon extraction, and others. There are also important distinctions among these technologies that should be considered in a discussion of seismic hazard. This report focuses on strategies for assessing and mitigating risk during each phase of a CO2 storage project. Four key risks related to fault reactivation and induced seismicity were considered. Induced slip on faults could potentially lead to: (1) infrastructure damage, (2) a public nuisance, (3) brine-contaminated drinking water, and (4) CO2-contaminated drinking water. These scenarios lead to different types of damage—to property, to drinking water quality, or to the public welfare. Given these four risks, this report focuses on strategies for assessing (and altering) their likelihoods of occurrence and the damage that may result. This report begins with an overview of the basic physical mechanisms behind induced seismicity. This science basis—and its gaps—is crucial because it forms the foundation for risk assessment and mitigation. Available techniques for characterizing and monitoring seismic behavior are also described. Again, this technical basis—and its limitations—must be factored into the risk

  3. Evaluation of Seismic Hazards at California Department of Transportation (CALTRANS)Structures

    Science.gov (United States)

    Merriam, M. K.

    2005-12-01

    The California Department of Transportation (CALTRANS) has responsibility for design, construction, and maintenance of approximately 12,000 state bridges. CALTRANS also provides oversight for similar activities for 12,200 bridges owned by local agencies throughout the state. California is subjected to a M6 or greater seismic event every few years. Recent earthquakes include the 1971 Mw6.6 San Fernando earthquake which struck north of Los Angeles and prompted engineers to begin retrofitting existing bridges and re-examine the way bridges are detailed to improve their response to earthquakes, the 1989 Mw6.9 Loma Prieta earthquake which destroyed the Cypress Freeway and damaged the San Francisco-Oakland Bay Bridge, and the 1994 Mw6.7 Northridge earthquake in the Los Angeles area which heavily damaged four major freeways. Since CALTRANS' seismic performance goal is to ensure life-safety needs are met for the traveling public during an earthquake, estimating earthquake magnitude, peak bedrock acceleration, and determining if special seismic considerationsare needed at specific bridge sites are critical. CALTRANS is currently developing a fourth generation seismic hazard map to be used for estimating these parameters. A deterministic approach has been used to develop this map. Late-Quaternary-age faults are defined as the expected seismic sources. Caltrans requires site-specific studies to determine potential for liquefaction, seismically induced landslides, and surface fault rupture. If potential for one of these seismic hazards exists, the hazard is mitigated by avoidance, removal, or accommodated through design. The action taken, while complying with the Department's "no collapse" requirement, depends upon many factors, including cost.

  4. Differences in Approach between Nuclear and Conventional Seismic Standards with regard to Hazard Definition - CSNI Integrity And Ageing Working Group

    International Nuclear Information System (INIS)

    Djaoudi, Ali; Labbe, Pierre; Murphy, Andrew; Kitada, Yoshio

    2008-01-01

    The Committee on the safety of Nuclear Installations (CSNI) of the OECD-NEA co-ordinates the NEA activities related to maintaining and advancing the scientific and technological knowledge base of the safety of nuclear installations. The Integrity and Ageing of Components and Structures Working Group of the CSNI is responsible for work related to the development and use of methods, data and information to assess the behaviour of materials and structures. It has three sub-groups, dealing with the integrity of metal components and structures, ageing of concrete structures, and the seismic behaviour of structures. The CSNI, at its meeting in June 2003, agreed to initiate an activity aimed to identify any difference between nuclear and non-nuclear conventional standards and their potential significance with regard to seismic hazards and design methods. There was a perception, mainly in some of the European countries that nuclear seismic hazard and design standards may be lagging behind developments in similar standards for conventional facilities. Adequate answer to such perception, need the examination of the following aspects and their significance on the seismic assessment of structures and components: - The safety philosophy behind the seismic nuclear and conventional standards. - The differences in approach regarding the seismic hazard definition. - The difference in approach regarding the design and the methods of analysis. These topics are examined in this report. Appendices A to H of this report contain a brief description of the conventional and the nuclear approaches in the NEA member countries: Belgium, Canada, Czech Republic, Germany, Japan, South Korea, Spain,and USA. The following general conclusions can be drawn: - The approach adopted by the nuclear seismic standards is more conservative and more reliable (in particular for meeting the continued operation criteria) than the recommended by the currently applicable force based conventional seismic codes

  5. Digging Our Own Holes: Institutional Perspectives on Seismic Hazards

    Science.gov (United States)

    Stein, S.; Tomasello, J.

    2005-12-01

    It has been observed that there are no true students of the earth; instead, we each dig our own holes and sit in them. A similar situation arises in attempts to assess the hazards of earthquakes and other natural disasters and to develop strategies to mitigate them. Ideally, we would like to look at the interests of society as a whole and develop strategies that best balance hazard mitigation with alternative uses of resources. Doing so, however, is difficult for several reasons. First, estimating seismic hazards requires assumptions about the size, recurrence, and shaking from future earthquakes, none of which are well known. Second, we have to chose a definition of seismic hazard, which is even more arbitrary and at least as significant about future earthquakes. Third, mitigating the risks involves economic and policy issues as well as the scientific one of estimating the hazard itself and the engineering one of designing safe structures. As a result, different public and private organizations with different institutional perspectives naturally adopt different approaches. Most organizations have a single focus. For example, those focusing on economic development tend to discount hazards, whereas emergency management groups tend to accentuate them. Organizations with quasi-regulatory duties (BSSC, FEMA, USGS) focus on reducing losses in future earthquakes without considering the cost of mitigation measures or how this use of resources should be balanced with alternative uses of resources that could mitigate other losses. Some organizations, however, must confront these tradeoffs directly because they allocate resources internally. Hence hospitals implicitly trade off more earthquake resistant construction with treating uninsured patients, highway departments balance stronger bridges with other safety improvements, and schools balance safer buildings with after school programs. These choices are complicated by the fact that such infrastructure typically has longer

  6. Seismic hazard assessment of the Three Gorges Project

    Directory of Open Access Journals (Sweden)

    Yao Yunsheng

    2013-05-01

    Full Text Available Seismic monitoring data for the past 50 years in the Three Gorges Reservoir area show that the reservoir head area is a typical weak seismic region with low seismicity before impoundment and that the epicenters were concentrated in the east and west sides of the Zigui Basin, most of which were natural tectonic earthquakes. After impoundment, the seismic activity shifted to the segment between Badong and Zigui along the Yangtze River, mainly within 5 km of the reservoir bank. The seismogenesis was categorized into four types; Karst collapse earthquakes, earthquakes caused by Karst gas explosion, mining tunnel collapse earthquakes, and rock (terrane slip earthquakes, all of which are related to the lithology, structure, and tectonics of near-surface geological bodies of the area. Compared with the seismicity before impoundment, the seismic frequency increase was remarkable, with most of the magnitudes below Ms2. 0. Therefore, the intensity of the earthquakes remained at a low level. On November 22, 2008, a magnitude 4. 1 earthquake, the largest earthquake recorded since impoundment, occurred in Quyuan Town, Zigui County. The intensity and PGA of reservoir-induced earthquakes are higher than those of tectonic earthquakes with equal magnitude, but the peak intensity of reservoir-induced earthquakes is not likely to go beyond that of the estimated range from earlier studies.

  7. Seismic Risk Assessment and Loss Estimation for Tbilisi City

    Science.gov (United States)

    Tsereteli, Nino; Alania, Victor; Varazanashvili, Otar; Gugeshashvili, Tengiz; Arabidze, Vakhtang; Arevadze, Nika; Tsereteli, Emili; Gaphrindashvili, Giorgi; Gventcadze, Alexander; Goguadze, Nino; Vephkhvadze, Sophio

    2013-04-01

    The proper assessment of seismic risk is of crucial importance for society protection and city sustainable economic development, as it is the essential part to seismic hazard reduction. Estimation of seismic risk and losses is complicated tasks. There is always knowledge deficiency on real seismic hazard, local site effects, inventory on elements at risk, infrastructure vulnerability, especially for developing countries. Lately great efforts was done in the frame of EMME (earthquake Model for Middle East Region) project, where in the work packages WP1, WP2 , WP3 and WP4 where improved gaps related to seismic hazard assessment and vulnerability analysis. Finely in the frame of work package wp5 "City Scenario" additional work to this direction and detail investigation of local site conditions, active fault (3D) beneath Tbilisi were done. For estimation economic losses the algorithm was prepared taking into account obtained inventory. The long term usage of building is very complex. It relates to the reliability and durability of buildings. The long term usage and durability of a building is determined by the concept of depreciation. Depreciation of an entire building is calculated by summing the products of individual construction unit' depreciation rates and the corresponding value of these units within the building. This method of calculation is based on an assumption that depreciation is proportional to the building's (constructions) useful life. We used this methodology to create a matrix, which provides a way to evaluate the depreciation rates of buildings with different type and construction period and to determine their corresponding value. Finally loss was estimated resulting from shaking 10%, 5% and 2% exceedance probability in 50 years. Loss resulting from scenario earthquake (earthquake with possible maximum magnitude) also where estimated.

  8. Analysis of uncertainties in a probabilistic seismic hazard estimation, example for France

    International Nuclear Information System (INIS)

    Beauval, C.

    2003-12-01

    This thesis proposes a new methodology that allows to pinpoint the key parameters that control probabilistic seismic hazard assessment (PSHA) and at the same time to quantify the impact of these parameters uncertainties on hazard estimates. Cornell-McGuire's method is used here. First, uncertainties on magnitude and location determinations are modeled and quantified: resulting variability on hazard estimates ranges between 5% and 25% (=COV), depending on the site and the return period. An impact study is then performed, in order to determine the hierarchy between the impacts on hazard of the choices of four other parameters: intensity-magnitude correlation, minimum and maximum magnitudes, the truncation of the attenuation relationship. The results at 34 Hz (PGA) indicate that the maximum magnitude is the less influent parameter (from 100 to 10000 years); whereas the intensity-magnitude correlation and the truncation of ground motion predictions (>2σ) are the controlling parameters at all return periods (up to 30% decrease each at 10000 years). An increase in the minimum magnitude contributing to the hazard, from 3.5 to 4.5, can also produce non-negligible impacts at small return periods (up to 20% decrease of hazard results at 475 years). Finally, the overall variability on hazard estimates due to the combined choices of the four parameters can reach up to 30% (COV, at 34 Hz). For lower frequencies (<5 Hz), the overall variability increases and maximum magnitude becomes a controlling parameter. Therefore, variability of estimates due to catalog uncertainties and to the choices of these four parameters must be taken into account in all probabilistic seismic hazard studies in France. To reduce variability in hazard estimates, future research should concentrate on the elaboration of an appropriate intensity- magnitude correlation, as well as on a more realistic way of taking into account ground motion dispersion. (author)

  9. French practice in the area of seismic hazard assessment on nuclear facility sites and related research

    International Nuclear Information System (INIS)

    Mohammadioun, B.

    1986-06-01

    The methodology put into practice in the analysis of seismic hazard on the site of a nuclear facility relies upon a deterministic approach and endeavors to account for the particularities of every site considered insofar as available data and techniques allow. The calculation of a seismic reference motion for use in the facilities' design calls upon two basic sets of data. Regional seismicity over the past millennium, from historical sources, revised while preparing the seismotectonic map of France, is fundamental to this analysis. It is completed by instrumental data from the last quarter century. A collection of strong-motion accelerograph data from seismic areas worldwide reflects a variety of source characteristics and site conditions. A critical overview of current practice in France and elsewhere highlights shortcomings and areas of particular need both in experimental data and in methodology, and namely the scarcity of near-field data, the predominance of California records, and inaccurate approaches to integrating soil effects into ground-motion calculations. 16 refs

  10. Review of Natural Phenomena Hazard (NPH) Assessments for the DOE Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Snow, Robert L.; Ross, Steven B.

    2011-09-15

    The purpose of this review is to assess the need for updating Natural Phenomena Hazard (NPH) assessments for the DOE's Hanford Site, as required by DOE Order 420.1B Chapter IV, Natural Phenomena Hazards Mitigation, based on significant changes in state-of-the-art NPH assessment methodology or site-specific information. This review is an update and expansion to the September 2010 review of PNNL-19751, Review of Natural Phenomena Hazard (NPH) Assessments for the Hanford 200 Areas (Non-Seismic).

  11. Salton Trough Post-seismic Afterslip, Viscoelastic Response, and Contribution to Regional Hazard

    Science.gov (United States)

    Parker, J. W.; Donnellan, A.; Lyzenga, G. A.

    2012-12-01

    The El Mayor-Cucapah M7.2 April 4 2010 earthquake in Baja California may have affected accumulated hazard to Southern California cities due to loading of regional faults including the Elsinore, San Jacinto and southern San Andreas, faults which already have over a century of tectonic loading. We examine changes observed via multiple seismic and geodetic techniques, including micro seismicity and proposed seismicity-based indicators of hazard, high-quality fault models, the Plate Boundary Observatory GNSS array (with 174 stations showing post-seismic transients with greater than 1 mm amplitude), and interferometric radar maps from UAVSAR (aircraft) flights, showing a network of aseismic fault slip events at distances up to 60 km from the end of the surface rupture. Finite element modeling is used to compute the expected coseismic motions at GPS stations with general agreement, including coseismic uplift at sites ~200 km north of the rupture. Postseismic response is also compared, with GNSS and also with the CIG software "RELAX." An initial examination of hazard is made comparing micro seismicity-based metrics, fault models, and changes to coulomb stress on nearby faults using the finite element model. Comparison of seismicity with interferograms and historic earthquakes show aseismic slip occurs on fault segments that have had earthquakes in the last 70 years, while other segments show no slip at the surface but do show high triggered seismicity. UAVSAR-based estimates of fault slip can be incorporated into the finite element model to correct Coloumb stress change.

  12. Transposing an active fault database into a fault-based seismic hazard assessment for nuclear facilities - Part 2: Impact of fault parameter uncertainties on a site-specific PSHA exercise in the Upper Rhine Graben, eastern France

    Science.gov (United States)

    Chartier, Thomas; Scotti, Oona; Clément, Christophe; Jomard, Hervé; Baize, Stéphane

    2017-09-01

    We perform a fault-based probabilistic seismic hazard assessment (PSHA) exercise in the Upper Rhine Graben to quantify the relative influence of fault parameters on the hazard at the Fessenheim nuclear power plant site. Specifically, we show that the potentially active faults described in the companion paper (Jomard et al., 2017, hereafter Part 1) are the dominant factor in hazard estimates at the low annual probability of exceedance relevant for the safety assessment of nuclear installations. Geological information documenting the activity of the faults in this region, however, remains sparse, controversial and affected by a high degree of uncertainty. A logic tree approach is thus implemented to explore the epistemic uncertainty and quantify its impact on the seismic hazard estimates. Disaggregation of the peak ground acceleration (PGA) hazard at a 10 000-year return period shows that the Rhine River fault is the main seismic source controlling the hazard level at the site. Sensitivity tests show that the uncertainty on the slip rate of the Rhine River fault is the dominant factor controlling the variability of the seismic hazard level, greater than the epistemic uncertainty due to ground motion prediction equations (GMPEs). Uncertainty on slip rate estimates from 0.04 to 0.1 mm yr-1 results in a 40 to 50 % increase in hazard levels at the 10 000-year target return period. Reducing epistemic uncertainty in future fault-based PSHA studies at this site will thus require (1) performing in-depth field studies to better characterize the seismic potential of the Rhine River fault; (2) complementing GMPEs with more physics-based modelling approaches to better account for the near-field effects of ground motion and (3) improving the modelling of the background seismicity. Indeed, in this exercise, we assume that background earthquakes can only host M 6. 0 earthquakes have been recently identified at depth within the Upper Rhine Graben (see Part 1) but are not accounted

  13. Do French macroseismic intensity observations agree with expectations from the European Seismic Hazard Model 2013?

    Science.gov (United States)

    Rey, Julien; Beauval, Céline; Douglas, John

    2018-02-01

    Probabilistic seismic hazard assessments are the basis of modern seismic design codes. To test fully a seismic hazard curve at the return periods of interest for engineering would require many thousands of years' worth of ground-motion recordings. Because strong-motion networks are often only a few decades old (e.g. in mainland France the first accelerometric network dates from the mid-1990s), data from such sensors can be used to test hazard estimates only at very short return periods. In this article, several hundreds of years of macroseismic intensity observations for mainland France are interpolated using a robust kriging-with-a-trend technique to establish the earthquake history of every French mainland municipality. At 24 selected cities representative of the French seismic context, the number of exceedances of intensities IV, V and VI is determined over time windows considered complete. After converting these intensities to peak ground accelerations using the global conversion equation of Caprio et al. (Ground motion to intensity conversion equations (GMICEs): a global relationship and evaluation of regional dependency, Bulletin of the Seismological Society of America 105:1476-1490, 2015), these exceedances are compared with those predicted by the European Seismic Hazard Model 2013 (ESHM13). In half of the cities, the number of observed exceedances for low intensities (IV and V) is within the range of predictions of ESHM13. In the other half of the cities, the number of observed exceedances is higher than the predictions of ESHM13. For intensity VI, the match is closer, but the comparison is less meaningful due to a scarcity of data. According to this study, the ESHM13 underestimates hazard in roughly half of France, even when taking into account the uncertainty in the conversion from intensity to acceleration. However, these results are valid only for the acceleration range tested in this study (0.01 to 0.09 g).

  14. Do French macroseismic intensity observations agree with expectations from the European Seismic Hazard Model 2013?

    Science.gov (United States)

    Rey, Julien; Beauval, Céline; Douglas, John

    2018-05-01

    Probabilistic seismic hazard assessments are the basis of modern seismic design codes. To test fully a seismic hazard curve at the return periods of interest for engineering would require many thousands of years' worth of ground-motion recordings. Because strong-motion networks are often only a few decades old (e.g. in mainland France the first accelerometric network dates from the mid-1990s), data from such sensors can be used to test hazard estimates only at very short return periods. In this article, several hundreds of years of macroseismic intensity observations for mainland France are interpolated using a robust kriging-with-a-trend technique to establish the earthquake history of every French mainland municipality. At 24 selected cities representative of the French seismic context, the number of exceedances of intensities IV, V and VI is determined over time windows considered complete. After converting these intensities to peak ground accelerations using the global conversion equation of Caprio et al. (Ground motion to intensity conversion equations (GMICEs): a global relationship and evaluation of regional dependency, Bulletin of the Seismological Society of America 105:1476-1490, 2015), these exceedances are compared with those predicted by the European Seismic Hazard Model 2013 (ESHM13). In half of the cities, the number of observed exceedances for low intensities (IV and V) is within the range of predictions of ESHM13. In the other half of the cities, the number of observed exceedances is higher than the predictions of ESHM13. For intensity VI, the match is closer, but the comparison is less meaningful due to a scarcity of data. According to this study, the ESHM13 underestimates hazard in roughly half of France, even when taking into account the uncertainty in the conversion from intensity to acceleration. However, these results are valid only for the acceleration range tested in this study (0.01 to 0.09 g).

  15. FiSH: put fault data in a seismic hazard basket

    Science.gov (United States)

    Pace, Bruno; Visini, Francesco; Peruzza, Laura

    2016-04-01

    The practice of using fault sources in seismic hazard studies is growing in popularity, including in regions with moderate seismic activity, such as the European countries. In these areas, fault identification may be affected by similarly large uncertainties in the historical and instrumental seismic histories of more active areas that have not been inhabited for long periods of time. Certain studies have effectively applied a time-dependent perspective to combine historical and instrumental seismic data with geological and paleoseismological information, partially compensating for a lack of information. We present a package of Matlab® tools (called FiSH), in publication on Seismological Research Letters, designed to help seismic hazard modellers analyse fault data. These tools enable the derivation of expected earthquake rates given common fault data, and allow you to test the consistency between the magnitude frequency distributions assigned to a fault and some available observations. The basic assumption of FiSH is that the geometric and kinematic features of a fault are the expression of its seismogenic potential. Three tools have been designed to integrate the variable levels of information available: (a) the first tool allows users to convert fault geometry and slip rates into a global budget of the seismic moment released in a given time frame, taking uncertainties into account; (b) the second tool computes the recurrence parameters and associated uncertainties from historical and/or paleoseismological data; 
(c) the third tool outputs time-independent or time-dependent earthquake rates for different magnitude frequency distribution models. We present moreover a test case to illustrate the capabilities of FiSH, on the Paganica normal fault in Central Italy that ruptured during the L'Aquila 2009 earthquake sequence (mainshock Mw 6.3). FiSH is available at http://fish-code.com, and the source codes are open. We encourage users to handle the scripts

  16. Preparing a seismic hazard model for Switzerland: the view from PEGASOS Expert Group 3 (EG1c)

    Energy Technology Data Exchange (ETDEWEB)

    Musson, R. M. W. [British Geological Survey, West Mains Road, Edinburgh, EH9 3LA (United Kingdom); Sellami, S. [Swiss Seismological Service, ETH-Hoenggerberg, Zuerich (Switzerland); Bruestle, W. [Regierungspraesidium Freiburg, Abt. 9: Landesamt fuer Geologie, Rohstoffe und Bergbau, Ref. 98: Landeserdbebendienst, Freiburg im Breisgau (Germany)

    2009-05-15

    The seismic hazard model used in the PEGASOS project for assessing earth-quake hazard at four NPP sites was a composite of four sub-models, each produced by a team of three experts. In this paper, one of these models is described in detail by the authors. A criticism sometimes levelled at probabilistic seismic hazard studies is that the process by which seismic source zones are arrived at is obscure, subjective and inconsistent. Here, we attempt to recount the stages by which the model evolved, and the decisions made along the way. In particular, a macro-to-micro approach was used, in which three main stages can be described. The first was the characterisation of the overall kinematic model, the 'big picture' of regional seismo-genesis. Secondly, this was refined to a more detailed seismotectonic model. Lastly, this was used as the basis of individual sources, for which parameters can be assessed. Some basic questions had also to be answered about aspects of the approach to modelling to be used: for instance, is spatial smoothing an appropriate tool to apply? Should individual fault sources be modelled in an intra-plate environment? Also, the extent to which alternative modelling decisions should be expressed in a logic tree structure has to be considered. (author)

  17. Probabilistic Seismic Hazard Characterization and Design Parameters for the Sites of the Nuclear Power Plants of Ukraine

    International Nuclear Information System (INIS)

    Savy, J.B.; Foxall, W.

    2000-01-01

    The U.S. Department of Energy (US DOE), under the auspices of the International Nuclear Safety Program (INSP) is supporting in-depth safety assessments (ISA) of nuclear power plants in Eastern Europe and the former Soviet Union for the purpose of evaluating the safety and upgrades necessary to the stock of nuclear power plants in Ukraine. For this purpose the Hazards Mitigation Center at Lawrence Livermore National Laboratory (LLNL) has been asked to assess the seismic hazard and design parameters at the sites of the nuclear power plants in Ukraine. The probabilistic seismic hazard (PSH) estimates were updated using the latest available data and knowledge from LLNL, the U.S. Geological Survey, and other relevant recent studies from several consulting companies. Special attention was given to account for the local seismicity, the deep focused earthquakes of the Vrancea zone, in Romania, the region around Crimea and for the system of potentially active faults associated with the Pripyat Dniepro Donnetts rift. Aleatory (random) uncertainty was estimated from the available data and the epistemic (knowledge) uncertainty was estimated by considering the existing models in the literature and the interpretations of a small group of experts elicited during a workshop conducted in Kiev, Ukraine, on February 2-4, 1999

  18. Preparing a seismic hazard model for Switzerland: the view from PEGASOS Expert Group 3 (EG1c)

    International Nuclear Information System (INIS)

    Musson, R. M. W.; Sellami, S.; Bruestle, W.

    2009-01-01

    The seismic hazard model used in the PEGASOS project for assessing earth-quake hazard at four NPP sites was a composite of four sub-models, each produced by a team of three experts. In this paper, one of these models is described in detail by the authors. A criticism sometimes levelled at probabilistic seismic hazard studies is that the process by which seismic source zones are arrived at is obscure, subjective and inconsistent. Here, we attempt to recount the stages by which the model evolved, and the decisions made along the way. In particular, a macro-to-micro approach was used, in which three main stages can be described. The first was the characterisation of the overall kinematic model, the 'big picture' of regional seismo-genesis. Secondly, this was refined to a more detailed seismotectonic model. Lastly, this was used as the basis of individual sources, for which parameters can be assessed. Some basic questions had also to be answered about aspects of the approach to modelling to be used: for instance, is spatial smoothing an appropriate tool to apply? Should individual fault sources be modelled in an intra-plate environment? Also, the extent to which alternative modelling decisions should be expressed in a logic tree structure has to be considered. (author)

  19. Seismic margin assessment of spanish nuclear power plants: a perspective from industry and regulators

    International Nuclear Information System (INIS)

    Garcia-Monge, Juan; Beltran, Francisco; Sanchez-Cabanero, Jose G.

    2001-01-01

    The worldwide experience with probabilistic safety analysis (PSA) of nuclear power plants shows that the risk derived from earthquakes can be a significant contributor to core damage frequency in some instances. As a consequence, no severe accident safety assessment can be considered complete without giving, due consideration to seismic risk. This fact has been recognized by some regulators. in particular, by the U.S. Nuclear Regulatory Commission (NRC), who has included seismic risk assessment in its severe accident policy. The NRC severe accident policy was adopted by the Spanish nuclear regulator. the Consejo de Seguridad Nuclear (CSN). As a result. all plants in Spain were asked to perform a seismic risk analysis according to Supplements No. 4 and 5 of Generic Letter 88-20 and NUREG-1407, which included the containment failure analysis. At present in Spain there arc nine operating reactors at seven sites: six Westinghouse-PWR, two GE-BWR and one Siemens/KW U-PWR. The vintages are very different: the oldest plant started commercial operation in 1968 and the most recent, in 1988. In this framework, the Spanish Owners Group (SOG) proposed to CSN in 1994 to carry out the seismic risk analysis of the plants using seismic margin methodologies. This kind of methods requires, as a starting point, the definition of a seismic margin earthquake (SNIE), also called review level earthquake (RLL). For this purpose, tile SOG sponsored a general Probabilistic Seismic Hazard Analysis (PSHA) for the seven Spanish sites. The results of this PSHA were used by the SOG to define tile RLE and the scope of the study for each plant (binning of plants). The proposal was submitted to the CSN for evaluation. The CSN evaluation was based on the NRC practical experience and was helped by the technical advise of US Lawrence Livermore National Laboratory. The review showed that the uncertainties on seismic hazard had not been fully captured and that it would have been justified to consider a

  20. Probabilistic Seismic Hazards Update for LLNL: PSHA Results Report

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Alfredo [Fugro Consultants, Inc., Houston, TX (United States); Altekruse, Jason [Fugro Consultants, Inc., Houston, TX (United States); Menchawi, Osman El [Fugro Consultants, Inc., Houston, TX (United States)

    2016-03-11

    This report presents the Probabilistic Seismic Hazard Analysis (PSHA) performed for Building 332 at the Lawrence Livermore National Laboratory (LLNL), near Livermore, CA by Fugro Consultants, Inc. (FCL). This report is specific to Building 332 only and not to other portions of the Laboratory. The study performed for the LLNL site includes a comprehensive review of recent information relevant to the LLNL regional tectonic setting and regional seismic sources in the vicinity of the site and development of seismic wave transmission characteristics. The Seismic Source Characterization (SSC), documented in Project Report No. 2259-PR-02 (FCL, 2015a), and Ground Motion Characterization (GMC), documented in Project Report No. 2259-PR-06 (FCL, 2015c) were developed in accordance with ANS/ANSI 2.29-2008 Level 2 PSHA guidelines. The ANS/ANSI 2.29-2008 Level 2 PSHA framework is documented in Project Report No. 2259-PR-05 (FCL, 2016a). The Hazard Input Document (HID) for input into the PSHA developed from the SSC is presented in Project Report No. 2259-PR-04 (FCL, 2016b). The site characterization used as input for development of the idealized site profiles including epistemic uncertainty and aleatory variability is presented in Project Report No. 2259-PR-03 (FCL, 2015b).

  1. The ESI scale, an ethical approach to the evaluation of seismic hazards

    Science.gov (United States)

    Porfido, Sabina; Nappi, Rosa; De Lucia, Maddalena; Gaudiosi, Germana; Alessio, Giuliana; Guerrieri, Luca

    2015-04-01

    The dissemination of correct information about seismic hazard is an ethical duty of scientific community worldwide. A proper assessment of a earthquake severity and impact should not ignore the evaluation of its intensity, taking into account both the effects on humans, man-made structures, as well as on the natural evironment. We illustrate the new macroseismic scale that measures the intensity taking into account the effects of earthquakes on the environment: the ESI 2007 (Environmental Seismic Intensity) scale (Michetti et al., 2007), ratified by the INQUA (International Union for Quaternary Research) during the XVII Congress in Cairns (Australia). The ESI scale integrates and completes the traditional macroseismic scales, of which it represents the evolution, allowing to assess the intensity parameter also where buildings are absent or damage-based diagnostic elements saturate. Each degree reflects the corresponding strength of an earthquake and the role of ground effects, evaluating the Intensity on the basis of the characteristics and size of primary (e.g. surface faulting and tectonic uplift/subsidence) and secondary effects (e.g. ground cracks, slope movements, liquefaction phenomena, hydrological changes, anomalous waves, tsunamis, trees shaking, dust clouds and jumping stones). This approach can be considered "ethical" because helps to define the real scenario of an earthquake, regardless of the country's socio-economic conditions and level of development. Here lies the value and the relevance of macroseismic scales even today, one hundred years after the death of Giuseppe Mercalli, who conceived the homonymous scale for the evaluation of earthquake intensity. For an appropriate mitigation strategy in seismic areas, it is fundamental to consider the role played by seismically induced effects on ground, such as active faults (size in length and displacement) and secondary effects (the total area affecting). With these perspectives two different cases

  2. Seismic Adequacy Review of PC012 SCEs that are Potential Seismic Hazards with PC3 SCEs - CVD Facility

    International Nuclear Information System (INIS)

    OCOMA, E.C.

    1999-01-01

    This document provides seismic adequacy review of PCO12 Systems, Components L Equipment anchorage that are potential seismic interaction hazards with PC3 SCEs during a Design Basis Earthquake. The PCO12 items are identified in the Safety Equipment List as 3/1 SCEs

  3. Earthquake hazard assessment and small earthquakes

    International Nuclear Information System (INIS)

    Reiter, L.

    1987-01-01

    The significance of small earthquakes and their treatment in nuclear power plant seismic hazard assessment is an issue which has received increased attention over the past few years. In probabilistic studies, sensitivity studies showed that the choice of the lower bound magnitude used in hazard calculations can have a larger than expected effect on the calculated hazard. Of particular interest is the fact that some of the difference in seismic hazard calculations between the Lawrence Livermore National Laboratory (LLNL) and Electric Power Research Institute (EPRI) studies can be attributed to this choice. The LLNL study assumed a lower bound magnitude of 3.75 while the EPRI study assumed a lower bound magnitude of 5.0. The magnitudes used were assumed to be body wave magnitudes or their equivalents. In deterministic studies recent ground motion recordings of small to moderate earthquakes at or near nuclear power plants have shown that the high frequencies of design response spectra may be exceeded. These exceedances became important issues in the licensing of the Summer and Perry nuclear power plants. At various times in the past particular concerns have been raised with respect to the hazard and damage potential of small to moderate earthquakes occurring at very shallow depths. In this paper a closer look is taken at these issues. Emphasis is given to the impact of lower bound magnitude on probabilistic hazard calculations and the historical record of damage from small to moderate earthquakes. Limited recommendations are made as to how these issues should be viewed

  4. The Optimizer Topology Characteristics in Seismic Hazards

    Science.gov (United States)

    Sengor, T.

    2015-12-01

    The characteristic data of the natural phenomena are questioned in a topological space approach to illuminate whether there is an algorithm behind them bringing the situation of physics of phenomena to optimized states even if they are hazards. The optimized code designing the hazard on a topological structure mashes the metric of the phenomena. The deviations in the metric of different phenomena push and/or pull the fold of the other suitable phenomena. For example if the metric of a specific phenomenon A fits to the metric of another specific phenomenon B after variation processes generated with the deviation of the metric of previous phenomenon A. Defining manifold processes covering the metric characteristics of each of every phenomenon is possible for all the physical events; i.e., natural hazards. There are suitable folds in those manifold groups so that each subfold fits to the metric characteristics of one of the natural hazard category at least. Some variation algorithms on those metric structures prepare a gauge effect bringing the long time stability of Earth for largely scaled periods. The realization of that stability depends on some specific conditions. These specific conditions are called optimized codes. The analytical basics of processes in topological structures are developed in [1]. The codes are generated according to the structures in [2]. Some optimized codes are derived related to the seismicity of NAF beginning from the quakes of the year 1999. References1. Taner SENGOR, "Topological theory and analytical configuration for a universal community model," Procedia- Social and Behavioral Sciences, Vol. 81, pp. 188-194, 28 June 2013, 2. Taner SENGOR, "Seismic-Climatic-Hazardous Events Estimation Processes via the Coupling Structures in Conserving Energy Topologies of the Earth," The 2014 AGU Fall Meeting, Abstract no.: 31374, ABD.

  5. Mapping sediment thickness of Islamabad city using empirical relationships: Implications for seismic hazard assessment

    Science.gov (United States)

    Khan, Sarfraz; Khan, M. Asif

    2016-04-01

    Soft sediments make an important component of the subsurface lithology, especially in areas underlain by river/stream basins. Occupying a position directly above the bedrock up to the land surface, these soft sediments can range in thickness from few centimeters to hundreds of meters. They carry a special nuisance in seismic hazards, as they serve as a source of seismic amplification that may enhance the seismic shaking of many folds. Determination of the thickness of the soft sediments is therefore crucial in seismic hazard analysis. A number of studies in recent years have demonstrated that frequency and amplitude spectrum obtained from the noise measurements during the recording of natural seismicity can be used to obtain thickness of soft sediments covering the bedrock. Nakamura (1989) presented a technique to determine such spectrum using ratio of horizontal to vertical components of the Rayleigh waves. The present study is based on an extensive set of microtremor measurements carried out in the Islamabad city, Pakistan. Fundamental frequencies were obtained from weak motion sensors and Tromino Engy Plus instruments to show that the correlation is clearly valid for a wide range of sediment thickness. A simple formula was derived for the investigated area to determine directly the thickness of sediments from the main peaks in the H/ V spectrum for seismometer and Tromino data separately. A comparison is made between sediment thicknesses derived from empirical relations developed in this study with those given in literature to demonstrate a positive correlation. The correlation of instrumental resonant frequencies with calculated resonant frequencies (theoretical) suggests that the relation derived from the noise measurements mostly depends on the velocity depth function of the shear wave. The fundamental frequency of the main peak of spectral ratio of H/ V using the both instruments correlates well with the thickness of sediments at the site obtained from the

  6. When probabilistic seismic hazard climbs volcanoes: the Mt. Etna case, Italy - Part 1: Model components for sources parameterization

    Science.gov (United States)

    Azzaro, Raffaele; Barberi, Graziella; D'Amico, Salvatore; Pace, Bruno; Peruzza, Laura; Tuvè, Tiziana

    2017-11-01

    The volcanic region of Mt. Etna (Sicily, Italy) represents a perfect lab for testing innovative approaches to seismic hazard assessment. This is largely due to the long record of historical and recent observations of seismic and tectonic phenomena, the high quality of various geophysical monitoring and particularly the rapid geodynamics clearly demonstrate some seismotectonic processes. We present here the model components and the procedures adopted for defining seismic sources to be used in a new generation of probabilistic seismic hazard assessment (PSHA), the first results and maps of which are presented in a companion paper, Peruzza et al. (2017). The sources include, with increasing complexity, seismic zones, individual faults and gridded point sources that are obtained by integrating geological field data with long and short earthquake datasets (the historical macroseismic catalogue, which covers about 3 centuries, and a high-quality instrumental location database for the last decades). The analysis of the frequency-magnitude distribution identifies two main fault systems within the volcanic complex featuring different seismic rates that are controlled essentially by volcano-tectonic processes. We discuss the variability of the mean occurrence times of major earthquakes along the main Etnean faults by using an historical approach and a purely geologic method. We derive a magnitude-size scaling relationship specifically for this volcanic area, which has been implemented into a recently developed software tool - FiSH (Pace et al., 2016) - that we use to calculate the characteristic magnitudes and the related mean recurrence times expected for each fault. Results suggest that for the Mt. Etna area, the traditional assumptions of uniform and Poissonian seismicity can be relaxed; a time-dependent fault-based modeling, joined with a 3-D imaging of volcano-tectonic sources depicted by the recent instrumental seismicity, can therefore be implemented in PSHA maps

  7. Landslides Hazard Assessment Using Different Approaches

    Directory of Open Access Journals (Sweden)

    Coman Cristina

    2017-06-01

    Full Text Available Romania represents one of Europe’s countries with high landslides occurrence frequency. Landslide hazard maps are designed by considering the interaction of several factors which, by their joint action may affect the equilibrium state of the natural slopes. The aim of this paper is landslides hazard assessment using the methodology provided by the Romanian national legislation and a very largely used statistical method. The final results of these two analyses are quantitative or semi-quantitative landslides hazard maps, created in geographic information system environment. The data base used for this purpose includes: geological and hydrogeological data, digital terrain model, hydrological data, land use, seismic action, anthropic action and an inventory of active landslides. The GIS landslides hazard models were built for the geographical area of the Iasi city, located in the north-east side of Romania.

  8. A new probabilistic seismic hazard assessment for greater Tokyo

    Science.gov (United States)

    Stein, R.S.; Toda, S.; Parsons, T.; Grunewald, E.; Blong, R.; Sparks, S.; Shah, H.; Kennedy, J.

    2006-01-01

    Tokyo and its outlying cities are home to one-quarter of Japan's 127 million people. Highly destructive earthquakes struck the capital in 1703, 1855 and 1923, the last of which took 105 000 lives. Fuelled by greater Tokyo's rich seismological record, but challenged by its magnificent complexity, our joint Japanese-US group carried out a new study of the capital's earthquake hazards. We used the prehistoric record of great earthquakes preserved by uplifted marine terraces and tsunami deposits (17 M???8 shocks in the past 7000 years), a newly digitized dataset of historical shaking (10 000 observations in the past 400 years), the dense modern seismic network (300 000 earthquakes in the past 30 years), and Japan's GeoNet array (150 GPS vectors in the past 10 years) to reinterpret the tectonic structure, identify active faults and their slip rates and estimate their earthquake frequency. We propose that a dislodged fragment of the Pacific plate is jammed between the Pacific, Philippine Sea and Eurasian plates beneath the Kanto plain on which Tokyo sits. We suggest that the Kanto fragment controls much of Tokyo's seismic behaviour for large earthquakes, including the damaging 1855 M???7.3 Ansei-Edo shock. On the basis of the frequency of earthquakes beneath greater Tokyo, events with magnitude and location similar to the M??? 7.3 Ansei-Edo event have a ca 20% likelihood in an average 30 year period. In contrast, our renewal (time-dependent) probability for the great M??? 7.9 plate boundary shocks such as struck in 1923 and 1703 is 0.5% for the next 30 years, with a time-averaged 30 year probability of ca 10%. The resulting net likelihood for severe shaking (ca 0.9g peak ground acceleration (PGA)) in Tokyo, Kawasaki and Yokohama for the next 30 years is ca 30%. The long historical record in Kanto also affords a rare opportunity to calculate the probability of shaking in an alternative manner exclusively from intensity observations. This approach permits robust estimates

  9. Earthquake Hazard Assessment: an Independent Review

    Science.gov (United States)

    Kossobokov, Vladimir

    2016-04-01

    Seismic hazard assessment (SHA), from term-less (probabilistic PSHA or deterministic DSHA) to time-dependent (t-DASH) including short-term earthquake forecast/prediction (StEF), is not an easy task that implies a delicate application of statistics to data of limited size and different accuracy. Regretfully, in many cases of SHA, t-DASH, and StEF, the claims of a high potential and efficiency of the methodology are based on a flawed application of statistics and hardly suitable for communication to decision makers. The necessity and possibility of applying the modified tools of Earthquake Prediction Strategies, in particular, the Error Diagram, introduced by G.M. Molchan in early 1990ies for evaluation of SHA, and the Seismic Roulette null-hypothesis as a measure of the alerted space, is evident, and such a testing must be done in advance claiming hazardous areas and/or times. The set of errors, i.e. the rates of failure and of the alerted space-time volume, compared to those obtained in the same number of random guess trials permits evaluating the SHA method effectiveness and determining the optimal choice of the parameters in regard to specified cost-benefit functions. These and other information obtained in such a testing may supply us with a realistic estimate of confidence in SHA results and related recommendations on the level of risks for decision making in regard to engineering design, insurance, and emergency management. These basics of SHA evaluation are exemplified with a few cases of misleading "seismic hazard maps", "precursors", and "forecast/prediction methods".

  10. An alternative approach to probabilistic seismic hazard analysis in the Aegean region using Monte Carlo simulation

    Science.gov (United States)

    Weatherill, Graeme; Burton, Paul W.

    2010-09-01

    The Aegean is the most seismically active and tectonically complex region in Europe. Damaging earthquakes have occurred here throughout recorded history, often resulting in considerable loss of life. The Monte Carlo method of probabilistic seismic hazard analysis (PSHA) is used to determine the level of ground motion likely to be exceeded in a given time period. Multiple random simulations of seismicity are generated to calculate, directly, the ground motion for a given site. Within the seismic hazard analysis we explore the impact of different seismic source models, incorporating both uniform zones and distributed seismicity. A new, simplified, seismic source model, derived from seismotectonic interpretation, is presented for the Aegean region. This is combined into the epistemic uncertainty analysis alongside existing source models for the region, and models derived by a K-means cluster analysis approach. Seismic source models derived using the K-means approach offer a degree of objectivity and reproducibility into the otherwise subjective approach of delineating seismic sources using expert judgment. Similar review and analysis is undertaken for the selection of peak ground acceleration (PGA) attenuation models, incorporating into the epistemic analysis Greek-specific models, European models and a Next Generation Attenuation model. Hazard maps for PGA on a "rock" site with a 10% probability of being exceeded in 50 years are produced and different source and attenuation models are compared. These indicate that Greek-specific attenuation models, with their smaller aleatory variability terms, produce lower PGA hazard, whilst recent European models and Next Generation Attenuation (NGA) model produce similar results. The Monte Carlo method is extended further to assimilate epistemic uncertainty into the hazard calculation, thus integrating across several appropriate source and PGA attenuation models. Site condition and fault-type are also integrated into the hazard

  11. Approach to seismic hazard analysis for dam safety in the Sierra Nevada and Modoc Plateau of California

    International Nuclear Information System (INIS)

    Savage, W.U.; McLaren, M.K.; Edwards, W.D.; Page, W.D.

    1991-01-01

    Pacific Gas and Electric Company's hydroelectric generating system involves about 150 dams located in the Sierra Nevada and Modoc Plateau region of central and northern California. The utility's strategy for earthquake hazard assessment is described. The approach includes the following strategies: integrating regional tectonics, seismic geology, historical seismicity, microseismicity, and crustal structure to form a comprehensive regional understanding of the neotectonic setting; performing local studies to acquire data as needed to reduce uncertainties in geologic and seismic parameters of fault characteristics near specific dam sites; applying and extending recently developed geologic, seismologic, and earthquake engineering technologies to the current regional and site-specific information to evaluate fault characteristics, to estimate maximum earthquakes, and to characterize ground motion; and encouraging multiple independent reviews of earthquake hazard studies by conducting peer reviews, making field sites available to regulating agencies, and publishing results, methods and data in open literature. 46 refs., 8 tabs

  12. Seismic assessment of selected buildings and equipment contents of a DOE facility in UBC zone 2A

    International Nuclear Information System (INIS)

    Tong, W.H.; Deneff, C.; Griffin, M.J.

    1991-01-01

    A preliminary seismic risk assessment for selected buildings and representative equipment contents in Allied-Signal Kansas City Division was performed to identify potential seismic hazard and weakness. The site is located in the Uniform Building Code Zone 2A. The selected building structures were constructed between 1940s to 1980s. The performance goal was to qualitatively assess the potential for loss of toxic or hazardous materials and injury to plant personnel due to an earthquake event

  13. Maturity of nearby faults influences seismic hazard from hydraulic fracturing

    Science.gov (United States)

    Kozłowska, Maria; Brudzinski, Michael R.; Friberg, Paul; Skoumal, Robert J.; Baxter, Nicholas D.; Currie, Brian S.

    2018-02-01

    Understanding the causes of human-induced earthquakes is paramount to reducing societal risk. We investigated five cases of seismicity associated with hydraulic fracturing (HF) in Ohio since 2013 that, because of their isolation from other injection activities, provide an ideal setting for studying the relations between high-pressure injection and earthquakes. Our analysis revealed two distinct groups: (i) deeper earthquakes in the Precambrian basement, with larger magnitudes (M > 2), b-values 1.5, and few post–shut-in earthquakes. Based on geologic history, laboratory experiments, and fault modeling, we interpret the deep seismicity as slip on more mature faults in older crystalline rocks and the shallow seismicity as slip on immature faults in younger sedimentary rocks. This suggests that HF inducing deeper seismicity may pose higher seismic hazards. Wells inducing deeper seismicity produced more water than wells with shallow seismicity, indicating more extensive hydrologic connections outside the target formation, consistent with pore pressure diffusion influencing seismicity. However, for both groups, the 2 to 3 h between onset of HF and seismicity is too short for typical fluid pressure diffusion rates across distances of ˜1 km and argues for poroelastic stress transfer also having a primary influence on seismicity.

  14. Maturity of nearby faults influences seismic hazard from hydraulic fracturing.

    Science.gov (United States)

    Kozłowska, Maria; Brudzinski, Michael R; Friberg, Paul; Skoumal, Robert J; Baxter, Nicholas D; Currie, Brian S

    2018-02-20

    Understanding the causes of human-induced earthquakes is paramount to reducing societal risk. We investigated five cases of seismicity associated with hydraulic fracturing (HF) in Ohio since 2013 that, because of their isolation from other injection activities, provide an ideal setting for studying the relations between high-pressure injection and earthquakes. Our analysis revealed two distinct groups: ( i ) deeper earthquakes in the Precambrian basement, with larger magnitudes (M > 2), b-values 1.5, and few post-shut-in earthquakes. Based on geologic history, laboratory experiments, and fault modeling, we interpret the deep seismicity as slip on more mature faults in older crystalline rocks and the shallow seismicity as slip on immature faults in younger sedimentary rocks. This suggests that HF inducing deeper seismicity may pose higher seismic hazards. Wells inducing deeper seismicity produced more water than wells with shallow seismicity, indicating more extensive hydrologic connections outside the target formation, consistent with pore pressure diffusion influencing seismicity. However, for both groups, the 2 to 3 h between onset of HF and seismicity is too short for typical fluid pressure diffusion rates across distances of ∼1 km and argues for poroelastic stress transfer also having a primary influence on seismicity.

  15. Seismic risk assessment of architectural heritages in Gyeongju considering local site effects

    Science.gov (United States)

    Park, H.-J.; Kim, D.-S.; Kim, D.-M.

    2013-02-01

    A seismic risk assessment is conducted for cultural heritage sites in Gyeongju, the capital of Korea's ancient Silla Kingdom. Gyeongju, home to UNESCO World Heritage sites, contains remarkable artifacts of Korean Buddhist art. An extensive geotechnical survey including a series of in situ tests is presented, providing pertinent soil profiles for site response analyses on thirty cultural heritage sites. After the shear wave velocity profiles and dynamic material properties were obtained, site response analyses were carried out at each historical site and the amplification characteristics, site period, and response spectrum of the site were determined for the earthquake levels of 2400 yr and 1000 yr return periods based on the Korean seismic hazard map. Response spectrum and corresponding site coefficients obtained from site response analyses considering geologic conditions differ significantly from the current Korean seismic code. This study confirms the importance of site-specific ground response analyses considering local geological conditions. Results are given in the form of the spatial distribution of bedrock depth, site period, and site amplification coefficients, which are particularly valuable in the context of a seismic vulnerability study. This study presents the potential amplification of hazard maps and provides primary data on the seismic risk assessment of each cultural heritage.

  16. Including foreshocks and aftershocks in time-independent probabilistic seismic hazard analyses

    Science.gov (United States)

    Boyd, Oliver S.

    2012-01-01

    Time‐independent probabilistic seismic‐hazard analysis treats each source as being temporally and spatially independent; hence foreshocks and aftershocks, which are both spatially and temporally dependent on the mainshock, are removed from earthquake catalogs. Yet, intuitively, these earthquakes should be considered part of the seismic hazard, capable of producing damaging ground motions. In this study, I consider the mainshock and its dependents as a time‐independent cluster, each cluster being temporally and spatially independent from any other. The cluster has a recurrence time of the mainshock; and, by considering the earthquakes in the cluster as a union of events, dependent events have an opportunity to contribute to seismic ground motions and hazard. Based on the methods of the U.S. Geological Survey for a high‐hazard site, the inclusion of dependent events causes ground motions that are exceeded at probability levels of engineering interest to increase by about 10% but could be as high as 20% if variations in aftershock productivity can be accounted for reliably.

  17. A random field model for the estimation of seismic hazard. Final report for the period 1 January 1990 - 31 December 1990

    International Nuclear Information System (INIS)

    Yucemen, S.

    1991-02-01

    The general theory of stationary random functions is utilized to assess the seismic hazard associated with a linearly extending seismic source. The past earthquake occurrence data associated with a portion of the North Anatolian fault are used to demonstrate the implementation of the proposed model. 18 refs, figs and tabs

  18. A random field model for the estimation of seismic hazard. Final report for the period 1 January 1990 - 31 December 1990

    Energy Technology Data Exchange (ETDEWEB)

    Yucemen, S [Middle East Technical Univ., Ankara (Turkey). Dept. of Statistics

    1991-02-01

    The general theory of stationary random functions is utilized to assess the seismic hazard associated with a linearly extending seismic source. The past earthquake occurrence data associated with a portion of the North Anatolian fault are used to demonstrate the implementation of the proposed model. 18 refs, figs and tabs.

  19. A methodology for assessment seismic risk in PSAs

    International Nuclear Information System (INIS)

    Jae, Moo Sung

    2001-01-01

    This paper suggested a new framework for assessing seismic risk in PSAs. The framework used the concepts of requirement and achievement in the reliability physics. The quantified correlation which is a function of the requirement variable (hazard curve) and the achievement variable (fragility curve) results in a quantity, the unconditional frequency of exceeding a damage lelvel. This framework can be applied to any other external safety assessment, such as Fire and Flood Risk in PSAs

  20. A deterministic seismic hazard map of India and adjacent areas

    International Nuclear Information System (INIS)

    Parvez, Imtiyaz A.; Vaccari, Franco; Panza, Giuliano

    2001-09-01

    A seismic hazard map of the territory of India and adjacent areas has been prepared using a deterministic approach based on the computation of synthetic seismograms complete of all main phases. The input data set consists of structural models, seismogenic zones, focal mechanisms and earthquake catalogue. The synthetic seismograms have been generated by the modal summation technique. The seismic hazard, expressed in terms of maximum displacement (DMAX), maximum velocity (VMAX), and design ground acceleration (DGA), has been extracted from the synthetic signals and mapped on a regular grid of 0.2 deg. x 0.2 deg. over the studied territory. The estimated values of the peak ground acceleration are compared with the observed data available for the Himalayan region and found in good agreement. Many parts of the Himalayan region have the DGA values exceeding 0.6 g. The epicentral areas of the great Assam earthquakes of 1897 and 1950 represent the maximum hazard with DGA values reaching 1.2-1.3 g. (author)

  1. Induced seismicity hazard and risk by enhanced geothermal systems: an expert elicitation approach

    Science.gov (United States)

    Trutnevyte, Evelina; Azevedo, Inês L.

    2018-03-01

    Induced seismicity is a concern for multiple geoenergy applications, including low-carbon enhanced geothermal systems (EGS). We present the results of an international expert elicitation (n = 14) on EGS induced seismicity hazard and risk. Using a hypothetical scenario of an EGS plant and its geological context, we show that expert best-guess estimates of annualized exceedance probabilities of an M ≥ 3 event range from 0.2%-95% during reservoir stimulation and 0.2%-100% during operation. Best-guess annualized exceedance probabilities of M ≥ 5 event span from 0.002%-2% during stimulation and 0.003%-3% during operation. Assuming that tectonic M7 events could occur, some experts do not exclude induced (triggered) events of up to M7 too. If an induced M = 3 event happens at 5 km depth beneath a town with 10 000 inhabitants, most experts estimate a 50% probability that the loss is contained within 500 000 USD without any injuries or fatalities. In the case of an induced M = 5 event, there is 50% chance that the loss is below 50 million USD with the most-likely outcome of 50 injuries and one fatality or none. As we observe a vast diversity in quantitative expert judgements and underlying mental models, we conclude with implications for induced seismicity risk governance. That is, we suggest documenting individual expert judgements in induced seismicity elicitations before proceeding to consensual judgements, to convene larger expert panels in order not to cherry-pick the experts, and to aim for multi-organization multi-model assessments of EGS induced seismicity hazard and risk.

  2. A probabilistic tsunami hazard assessment for Indonesia

    Science.gov (United States)

    Horspool, N.; Pranantyo, I.; Griffin, J.; Latief, H.; Natawidjaja, D. H.; Kongko, W.; Cipta, A.; Bustaman, B.; Anugrah, S. D.; Thio, H. K.

    2014-11-01

    Probabilistic hazard assessments are a fundamental tool for assessing the threats posed by hazards to communities and are important for underpinning evidence-based decision-making regarding risk mitigation activities. Indonesia has been the focus of intense tsunami risk mitigation efforts following the 2004 Indian Ocean tsunami, but this has been largely concentrated on the Sunda Arc with little attention to other tsunami prone areas of the country such as eastern Indonesia. We present the first nationally consistent probabilistic tsunami hazard assessment (PTHA) for Indonesia. This assessment produces time-independent forecasts of tsunami hazards at the coast using data from tsunami generated by local, regional and distant earthquake sources. The methodology is based on the established monte carlo approach to probabilistic seismic hazard assessment (PSHA) and has been adapted to tsunami. We account for sources of epistemic and aleatory uncertainty in the analysis through the use of logic trees and sampling probability density functions. For short return periods (100 years) the highest tsunami hazard is the west coast of Sumatra, south coast of Java and the north coast of Papua. For longer return periods (500-2500 years), the tsunami hazard is highest along the Sunda Arc, reflecting the larger maximum magnitudes. The annual probability of experiencing a tsunami with a height of > 0.5 m at the coast is greater than 10% for Sumatra, Java, the Sunda islands (Bali, Lombok, Flores, Sumba) and north Papua. The annual probability of experiencing a tsunami with a height of > 3.0 m, which would cause significant inundation and fatalities, is 1-10% in Sumatra, Java, Bali, Lombok and north Papua, and 0.1-1% for north Sulawesi, Seram and Flores. The results of this national-scale hazard assessment provide evidence for disaster managers to prioritise regions for risk mitigation activities and/or more detailed hazard or risk assessment.

  3. A~probabilistic tsunami hazard assessment for Indonesia

    Science.gov (United States)

    Horspool, N.; Pranantyo, I.; Griffin, J.; Latief, H.; Natawidjaja, D. H.; Kongko, W.; Cipta, A.; Bustaman, B.; Anugrah, S. D.; Thio, H. K.

    2014-05-01

    Probabilistic hazard assessments are a fundamental tool for assessing the threats posed by hazards to communities and are important for underpinning evidence based decision making on risk mitigation activities. Indonesia has been the focus of intense tsunami risk mitigation efforts following the 2004 Indian Ocean Tsunami, but this has been largely concentrated on the Sunda Arc, with little attention to other tsunami prone areas of the country such as eastern Indonesia. We present the first nationally consistent Probabilistic Tsunami Hazard Assessment (PTHA) for Indonesia. This assessment produces time independent forecasts of tsunami hazard at the coast from tsunami generated by local, regional and distant earthquake sources. The methodology is based on the established monte-carlo approach to probabilistic seismic hazard assessment (PSHA) and has been adapted to tsunami. We account for sources of epistemic and aleatory uncertainty in the analysis through the use of logic trees and through sampling probability density functions. For short return periods (100 years) the highest tsunami hazard is the west coast of Sumatra, south coast of Java and the north coast of Papua. For longer return periods (500-2500 years), the tsunami hazard is highest along the Sunda Arc, reflecting larger maximum magnitudes along the Sunda Arc. The annual probability of experiencing a tsunami with a height at the coast of > 0.5 m is greater than 10% for Sumatra, Java, the Sunda Islands (Bali, Lombok, Flores, Sumba) and north Papua. The annual probability of experiencing a tsunami with a height of >3.0 m, which would cause significant inundation and fatalities, is 1-10% in Sumatra, Java, Bali, Lombok and north Papua, and 0.1-1% for north Sulawesi, Seram and Flores. The results of this national scale hazard assessment provide evidence for disaster managers to prioritise regions for risk mitigation activities and/or more detailed hazard or risk assessment.

  4. Deterministic Earthquake Hazard Assessment by Public Agencies in California

    Science.gov (United States)

    Mualchin, L.

    2005-12-01

    Even in its short recorded history, California has experienced a number of damaging earthquakes that have resulted in new codes and other legislation for public safety. In particular, the 1971 San Fernando earthquake produced some of the most lasting results such as the Hospital Safety Act, the Strong Motion Instrumentation Program, the Alquist-Priolo Special Studies Zone Act, and the California Department of Transportation (Caltrans') fault-based deterministic seismic hazard (DSH) map. The latter product provides values for earthquake ground motions based on Maximum Credible Earthquakes (MCEs), defined as the largest earthquakes that can reasonably be expected on faults in the current tectonic regime. For surface fault rupture displacement hazards, detailed study of the same faults apply. Originally, hospital, dam, and other critical facilities used seismic design criteria based on deterministic seismic hazard analyses (DSHA). However, probabilistic methods grew and took hold by introducing earthquake design criteria based on time factors and quantifying "uncertainties", by procedures such as logic trees. These probabilistic seismic hazard analyses (PSHA) ignored the DSH approach. Some agencies were influenced to adopt only the PSHA method. However, deficiencies in the PSHA method are becoming recognized, and the use of the method is now becoming a focus of strong debate. Caltrans is in the process of producing the fourth edition of its DSH map. The reason for preferring the DSH method is that Caltrans believes it is more realistic than the probabilistic method for assessing earthquake hazards that may affect critical facilities, and is the best available method for insuring public safety. Its time-invariant values help to produce robust design criteria that are soundly based on physical evidence. And it is the method for which there is the least opportunity for unwelcome surprises.

  5. Analysis of the seismic hazard to an underground waste repository

    International Nuclear Information System (INIS)

    Wight, L.H.

    1979-01-01

    Conclusions are: The consequence associated with intense vibratory shaking of a well-designed repository is essentially negligible. The specification of an appropriate seismic vibratory design criteria could best be accomplished with a Bayesian seismic hazard assessment, using geologic slip rates as input. The consequence associated with fault displacement is very site specific and dependent on the host geologic media and its permeability changes in response to fault displacement. The probability of faulting through a repository in its million year design life is rather high, principally because of a high probability of primary or secondary faulting on undetected faults. The faulting probability can be minimized by deploying sophisticated site certification programs. High resolution microseismic surveillance seems to be most appropriate. The author's judgement is that the repository simulation program can neglect consequences associated with shaking of the repository, but that the probability of significant fault displacement through the repository during its design life should be conservatively taken as one

  6. Proposed Risk-Informed Seismic Hazard Periodic Reevaluation Methodology for Complying with DOE Order 420.1C

    Energy Technology Data Exchange (ETDEWEB)

    Kammerer, Annie [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-03-01

    Department of Energy (DOE) nuclear facilities must comply with DOE Order 420.1C Facility Safety, which requires that all such facilities review their natural phenomena hazards (NPH) assessments no less frequently than every ten years. The Order points the reader to Standard DOE-STD-1020-2012. In addition to providing a discussion of the applicable evaluation criteria, the Standard references other documents, including ANSI/ANS-2.29-2008 and NUREG-2117. These documents provide supporting criteria and approaches for evaluating the need to update an existing probabilistic seismic hazard analysis (PSHA). All of the documents are consistent at a high level regarding the general conceptual criteria that should be considered. However, none of the documents provides step-by-step detailed guidance on the required or recommended approach for evaluating the significance of new information and determining whether or not an existing PSHA should be updated. Further, all of the conceptual approaches and criteria given in these documents deal with changes that may have occurred in the knowledge base that might impact the inputs to the PSHA, the calculated hazard itself, or the technical basis for the hazard inputs. Given that the DOE Order is aimed at achieving and assuring the safety of nuclear facilities—which is a function not only of the level of the seismic hazard but also the capacity of the facility to withstand vibratory ground motions—the inclusion of risk information in the evaluation process would appear to be both prudent and in line with the objectives of the Order. The purpose of this white paper is to describe a risk-informed methodology for evaluating the need for an update of an existing PSHA consistent with the DOE Order. While the development of the proposed methodology was undertaken as a result of assessments for specific SDC-3 facilities at Idaho National Laboratory (INL), and it is expected that the application at INL will provide a demonstration of the

  7. Proposed Risk-Informed Seismic Hazard Periodic Reevaluation Methodology for Complying with DOE Order 420.1C

    Energy Technology Data Exchange (ETDEWEB)

    Kammerer, Annie [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-10-01

    Department of Energy (DOE) nuclear facilities must comply with DOE Order 420.1C Facility Safety, which requires that all such facilities review their natural phenomena hazards (NPH) assessments no less frequently than every ten years. The Order points the reader to Standard DOE-STD-1020-2012. In addition to providing a discussion of the applicable evaluation criteria, the Standard references other documents, including ANSI/ANS-2.29-2008 and NUREG-2117. These documents provide supporting criteria and approaches for evaluating the need to update an existing probabilistic seismic hazard analysis (PSHA). All of the documents are consistent at a high level regarding the general conceptual criteria that should be considered. However, none of the documents provides step-by-step detailed guidance on the required or recommended approach for evaluating the significance of new information and determining whether or not an existing PSHA should be updated. Further, all of the conceptual approaches and criteria given in these documents deal with changes that may have occurred in the knowledge base that might impact the inputs to the PSHA, the calculated hazard itself, or the technical basis for the hazard inputs. Given that the DOE Order is aimed at achieving and assuring the safety of nuclear facilities—which is a function not only of the level of the seismic hazard but also the capacity of the facility to withstand vibratory ground motions—the inclusion of risk information in the evaluation process would appear to be both prudent and in line with the objectives of the Order. The purpose of this white paper is to describe a risk-informed methodology for evaluating the need for an update of an existing PSHA consistent with the DOE Order. While the development of the proposed methodology was undertaken as a result of assessments for specific SDC-3 facilities at Idaho National Laboratory (INL), and it is expected that the application at INL will provide a demonstration of the

  8. Reassessment of probabilistic seismic hazard in the Marmara region

    Science.gov (United States)

    Kalkan, Erol; Gulkan, Polat; Yilmaz, Nazan; Çelebi, Mehmet

    2009-01-01

    In 1999, the eastern coastline of the Marmara region (Turkey) witnessed increased seismic activity on the North Anatolian fault (NAF) system with two damaging earthquakes (M 7.4 Kocaeli and M 7.2 D??zce) that occurred almost three months apart. These events have reduced stress on the western segment of the NAF where it continues under the Marmara Sea. The undersea fault segments have been recently explored using bathymetric and reflection surveys. These recent findings helped scientists to understand the seismotectonic environment of the Marmara basin, which has remained a perplexing tectonic domain. On the basis of collected new data, seismic hazard of the Marmara region is reassessed using a probabilistic approach. Two different earthquake source models: (1) the smoothed-gridded seismicity model and (2) fault model and alternate magnitude-frequency relations, Gutenberg-Richter and characteristic, were used with local and imported ground-motion-prediction equations. Regional exposure is computed and quantified on a set of hazard maps that provide peak horizontal ground acceleration (PGA) and spectral acceleration at 0.2 and 1.0 sec on uniform firm-rock site condition (760 m=sec average shear wave velocity in the upper 30 m). These acceleration levels were computed for ground motions having 2% and 10% probabilities of exceedance in 50 yr, corresponding to return periods of about 2475 and 475 yr, respectively. The maximum PGA computed (at rock site) is 1.5g along the fault segments of the NAF zone extending into the Marmara Sea. The new maps generally show 10% to 15% increase for PGA, 0.2 and 1.0 sec spectral acceleration values across much of Marmara compared to previous regional hazard maps. Hazard curves and smooth design spectra for three site conditions: rock, soil, and soft-soil are provided for the Istanbul metropolitan area as possible tools in future risk estimates.

  9. Volcanic Hazard Assessments for Nuclear Installations: Methods and Examples in Site Evaluation

    International Nuclear Information System (INIS)

    2016-07-01

    To provide guidance on the protection of nuclear installations against the effects of volcanoes, the IAEA published in 2012 IAEA Safety Standards Series No. SSG-21, Volcanic Hazards in Site Evaluation for Nuclear Installations. SSG-21 addresses hazards relating to volcanic phenomena, and provides recommendations and general guidance for evaluation of these hazards. Unlike seismic hazard assessments, models for volcanic hazard assessment have not undergone decades of review, evaluation and testing for suitability in evaluating hazards at proposed nuclear installations. Currently in volcanology, scientific developments and detailed methodologies to model volcanic phenomena are evolving rapidly.This publication provides information on detailed methodologies and examples in the application of volcanic hazard assessment to site evaluation for nuclear installations, thereby addressing the recommendations in SSG-21. Although SSG-21 develops a logical framework for conducting a volcanic hazard assessment, this publication demonstrates the practicability of evaluating the recommendations in SSG-21 through a systematic volcanic hazard assessment and examples from Member States. The results of this hazard assessment can be used to derive the appropriate design bases and operational considerations for specific nuclear installations

  10. Seismic Margin Assessment for Research Reactor using Fragility based Fault Tree Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kwag, Shinyoung; Oh, Jinho; Lee, Jong-Min; Ryu, Jeong-Soo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The research reactor has been often subjected to external hazards during the design lifetime. Especially, a seismic event can be one of significant threats to the failure of structure system of the research reactor. This failure is possibly extended to the direct core damage of the reactor. For this purpose, the fault tree for structural system failure leading to the core damage under an earthquake accident is developed. The failure probabilities of basic events are evaluated as fragility curves of log-normal distributions. Finally, the plant-level seismic margin is investigated by the fault tree analysis combining with fragility data and the critical path is identified. The plant-level probabilistic seismic margin assessment using the fragility based fault tree analysis was performed for quantifying the safety of research reactor to a seismic hazard. For this, the fault tree for structural system failure leading to the core damage of the reactor under a seismic accident was developed. The failure probabilities of basic events were evaluated as fragility curves of log-normal distributions.

  11. Probabilistic and Scenario Seismic and Liquefaction Hazard Analysis of the Mississippi Embayment Incorporating Nonlinear Site Effects

    Science.gov (United States)

    Cramer, C. H.; Dhar, M. S.

    2017-12-01

    The influence of deep sediment deposits of the Mississippi Embayment (ME) on the propagation of seismic waves is poorly understood and remains a major source of uncertainty for site response analysis. Many researchers have studied the effects of these deposits on seismic hazard of the area using available information at the time. In this study, we have used updated and newly available resources for seismic and liquefaction hazard analyses of the ME. We have developed an improved 3D geological model. Additionally, we used surface geological maps from Cupples and Van Arsdale (2013) to prepare liquefaction hazard maps. Both equivalent linear and nonlinear site response codes were used to develop site amplification distributions for use in generating hazard maps. The site amplification distributions are created using the Monte Carlo approach of Cramer et al. (2004, 2006) on a 0.1-degree grid. The 2014 National Seismic Hazard model and attenuation relations (Petersen et al., 2014) are used to prepare seismic hazard maps. Then liquefaction hazard maps are generated using liquefaction probability curves from Holzer (2011) and Cramer et al. (2015). Equivalent linear response (w/ increased precision, restricted nonlinear behavior with depth) shows similar hazard for the ME compared to nonlinear analysis (w/o pore pressure) results. At short periods nonlinear deamplification dominates the hazard, but at long periods resonance amplification dominates. The liquefaction hazard tends to be high in Holocene and late Pleistocene lowland sediments, even with lowered ground water levels, and low in Pleistocene loess of the uplands. Considering pore pressure effects in nonlinear site response analysis at a test site on the lowlands shows amplification of ground motion at short periods. PGA estimates from ME liquefaction and MMI observations are in the 0.25 to 0.4 g range. Our estimated M7.5 PGA hazard within 10 km of the fault can exceed this. Ground motion observations from

  12. Seismic assessment of a site using the time series method

    International Nuclear Information System (INIS)

    Krutzik, N.J.; Rotaru, I.; Bobei, M.; Mingiuc, C.; Serban, V.; Androne, M.

    2001-01-01

    1. To increase the safety of a NPP located on a seismic site, the seismic acceleration level to which the NPP should be qualified must be as representative as possible for that site, with a conservative degree of safety but not too exaggerated. 2. The consideration of the seismic events affecting the site as independent events and the use of statistic methods to define some safety levels with very low annual occurrence probabilities (10 -4 ) may lead to some exaggerations of the seismic safety level. 3. The use of some very high values for the seismic accelerations imposed by the seismic safety levels required by the hazard analysis may lead to very expensive technical solutions that can make the plant operation more difficult and increase the maintenance costs. 4. The consideration of seismic events as a time series with dependence among the events produced may lead to a more representative assessment of a NPP site seismic activity and consequently to a prognosis on the seismic level values to which the NPP would be ensured throughout its life-span. That prognosis should consider the actual seismic activity (including small earthquakes in real time) of the focuses that affect the plant site. The method is useful for two purposes: a) research, i.e. homogenizing the history data basis by the generation of earthquakes during periods lacking information and correlation of the information with the existing information. The aim is to perform the hazard analysis using a homogeneous data set in order to determine the seismic design data for a site; b) operation, i.e. the performance of a prognosis on the seismic activity on a certain site and consideration of preventive measures to minimize the possible effects of an earthquake. 5. The paper proposes the application of Autoregressive Time Series to issue a prognosis on the seismic activity of a focus and presents the analysis on Vrancea focus that affects Cernavoda NPP site by this method. 6. The paper also presents the

  13. Long Aftershock Sequences within Continents and Implications for Earthquake Hazard Assessment

    Science.gov (United States)

    Stein, S. A.; Liu, M.

    2014-12-01

    Recent seismicity in the Tangshan region in North China has prompted concern about a repetition of the 1976 M7.8 earthquake that destroyed the city, killing more than 242,000 people. However, the decay of seismicity there implies that the recent earthquakes are probably aftershocks of the 1976 event. This 37-year sequence is an example of the phenomenon that aftershock sequences within continents are often significantly longer than the typical 10 years at plate boundaries. The long sequence of aftershocks in continents is consistent with a simple friction-based model predicting that the length of aftershock sequences varies inversely with the rate at which faults are loaded. Hence the slowly-deforming continents tend to have aftershock sequences significantly longer than at rapidly-loaded plate boundaries. This effect has two consequences for hazard assessment. First, within the heavily populated continents that are typically within plate interiors, assessments of earthquake hazards rely significantly on the assumption that the locations of small earthquakes shown by the short historical record reflect continuing deformation that will cause future large earthquakes. This assumption would lead to overestimation of the hazard in presently active areas and underestimation elsewhere, if some of these small events are aftershocks. Second, successful attempts to remove aftershocks from catalogs used for hazard assessment would underestimate the hazard, because much of the hazard is due to the aftershocks, and the declustering algorithms implicitly assume short aftershock sequences and thus do not remove long-duration ones.

  14. Assessment of Seismic Vulnerability of Reinforced Concrete Frame buildings

    Directory of Open Access Journals (Sweden)

    Fatiha Cherifi

    2018-01-01

    Full Text Available The seismic activity remains strong in the north of Algeria since no less than 30 earthquakes per month are recorded. The large number of structures built before the introduction of the seismic standards represents a high seismic risk. Analysis of damage suffered during the last earthquakes highlighted the vulnerability of the existing structures. In this study the seismic behavior of the existing buildings in Tizi-Ouzou city, located in the north of Algeria, is investigated. To make this assessment, a database was created following a building inventory based on a set of technical folders and field visits. The listed buildings have been classified into different typologies. Only reinforced concrete frame buildings are considered in this paper. The approach adopted to estimate structures damage is based on four main steps: 1 construction of capacity curves using static nonlinear method “push-over”, 2 estimate of seismic hazard, 3 determination of performance points, and finally 4 deduction of damage levels.

  15. Recent developments in the external hazard risk assessment in Ukraine

    International Nuclear Information System (INIS)

    2000-01-01

    Ukrainian legislation prescribes safety analysis reports for all operating and future NPPs. Apart from main report they must include: safety analysis supplement; design basis accident analysis; beyond design basis accident analysis; probabilistic safety assessment (PSA); technical; substantiation of safety. Regulatory requirements to PSA contents cover the criteria for core damage frequency and large radioactive release frequency. Initiating events taken into account are internal events; internal hazards and external hazards. External hazards to be considered are seismic events, external fires, external floods, extreme ambient temperatures, aircraft crashes, etc. Current status of PSA development is related to operating WWER-440 and WWER-1000 NPPs and NPPs under construction. This presentation describes in detail the external hazard risk assessment for South Ukraine including methodology applied and expected future activities

  16. The MITMOTION Project - A seismic hazard overview of the Mitidja Basin (Northern Algeria)

    Science.gov (United States)

    Borges, José; Ouyed, Merzouk; Bezzeghoud, Mourad; Idres, Mouloud; Caldeira, Bento; Boughacha, Mohamed; Carvalho, João; Samai, Saddek; Fontiela, João; Aissa, Saoussen; Benfadda, Amar; Chimouni, Redouane; Yalaoui, Rafik; Dias, Rui

    2017-04-01

    The Mitidja Basin (MB) is located in northern Algeria and is filled by quaternary sediments with a length of about 100 km on the EW direction and approximately 20 km width. This basin is limited to the south by the Boumerdes - Larbaa - Blida active fault system and to the north by the Thenia - Sahel fault system. Both fault systems are of the reverse type with opposed dips and accommodate a general slip rate of 4 mm/year. This basin is associated with important seismic events that affected northern Algeria since the historical period until the present. The available earthquake catalogues reported numerous destructive earthquakes that struke different regions, such as Algiers (1365, Io= X; 1716, Io = X). Recently, on May 2003 the Bourmedes earthquake (Mw = 6.9) affected the area of Zemmouri and caused 2.271 deaths. The event was caused by the reactivation of the MB boundary faults. The epicenter was located offshore and generated a maximum uplift of 0.8 m along the coast with a horizontal maximum slip of 0.24 m. Recent studies show that the Boumerdes earthquake overloaded the system of adjacent faults with a stress increase between 0.4 and 1.5 bar. This induced an increase of the seismic hazard potential of the region and recommends a more detailed study of this fault system. The high seismogenic potential of the fault system bordering the MB, the exposure to danger of the most densely populated region of Algiers and the amplification effect caused by the basin are the motivation for this project proposal that will focus on the evaluation of the seismic hazard of the region. The general purpose of the project is to improve the seismic hazard assessment on the MB producing realistic predictions of strong ground motion caused by moderate and large earthquakes. To achieve this objective, it is important to make an effort in 3 directions: 1) the development of a detailed 3D velocity/structure model of the MB that includes geological constraints, seismic reflection data

  17. Seismic fragility analyses

    International Nuclear Information System (INIS)

    Kostov, Marin

    2000-01-01

    In the last two decades there is increasing number of probabilistic seismic risk assessments performed. The basic ideas of the procedure for performing a Probabilistic Safety Analysis (PSA) of critical structures (NUREG/CR-2300, 1983) could be used also for normal industrial and residential buildings, dams or other structures. The general formulation of the risk assessment procedure applied in this investigation is presented in Franzini, et al., 1984. The probability of failure of a structure for an expected lifetime (for example 50 years) can be obtained from the annual frequency of failure, β E determined by the relation: β E ∫[d[β(x)]/dx]P(flx)dx. β(x) is the annual frequency of exceedance of load level x (for example, the variable x may be peak ground acceleration), P(fI x) is the conditional probability of structure failure at a given seismic load level x. The problem leads to the assessment of the seismic hazard β(x) and the fragility P(fl x). The seismic hazard curves are obtained by the probabilistic seismic hazard analysis. The fragility curves are obtained after the response of the structure is defined as probabilistic and its capacity and the associated uncertainties are assessed. Finally the fragility curves are combined with the seismic loading to estimate the frequency of failure for each critical scenario. The frequency of failure due to seismic event is presented by the scenario with the highest frequency. The tools usually applied for probabilistic safety analyses of critical structures could relatively easily be adopted to ordinary structures. The key problems are the seismic hazard definitions and the fragility analyses. The fragility could be derived either based on scaling procedures or on the base of generation. Both approaches have been presented in the paper. After the seismic risk (in terms of failure probability) is assessed there are several approaches for risk reduction. Generally the methods could be classified in two groups. The

  18. Research on high level radioactive waste repository seismic design criteria

    International Nuclear Information System (INIS)

    Jing Xu

    2012-01-01

    Review seismic hazard analysis principle and method in site suitable assessment process of Yucca Mountain Project, and seismic design criteria and seismic design basis in primary design process. Demonstrated spatial character of seismic hazard by calculated regional seismic hazard map. Contrasted different level seismic design basis to show their differences and relation. Discussed seismic design criteria for preclosure phrase of high level waste repository and preference goal under beyond design basis ground motion. (author)

  19. Reducing Seismic Hazard and Building Capacity Through International Cooperation

    Science.gov (United States)

    Vergino, E. S.; Arakelyan, A.; Babayan, H.; Durgaryan, R.; Elashvili, M.; Godoladze, T.; Javakhishvili, Z.; Kalogeras, I.; Karakhanyan, A.; Martin, R. J.; Yetirmishli, G.

    2012-12-01

    During the last 50 years, the Caucasus, Central Asia and the Caspian Sea regions have experienced several devastating earthquakes. While each country in the region has worked with its neighbors on small, ad-hoc projects to improve preparedness, deeply ingrained political and ethnic rivalries, and severely stressed economies have severely hindered sustained regional cooperation. Future damaging earthquakes are inevitable and without proper planning the negative impact on public safety, security, economics and stability in these regions will be devastating. We have, through twelve years of international scientific cooperation, focused on the development of an expanded skill base and infrastructure, through the installation of new, modern, digital seismic monitoring networks, building of historic databases, sharing seismic, geologic and geophysical data, conducting joint scientific investigations utilizing the new digital data and applying modern techniques, as well as the development of regional hazard models that the scientists of the region share with their governments and use to advise them on the best ways to mitigate the impact of a damaging earthquake. We have established specialized regional scientific task-force teams who can carry out seismological, geological and engineering studies in the epicentral zone, including the collection of new scientific data, for better understanding of seismic and geodynamic processes as well to provide emergency support in crisis and post-crisis situations in the Southern Caucasus countries. "Secrecy" in crisis and post-crisis situations in the former Soviet Union countries, as well as political instabilities, led to an absence of seismic risk reduction and prevention measures as well as little to no training of scientific-technical personnel who could take action in emergency situations. There were few opportunities for the development of a next generation of scientific experts, thus we have placed emphasis on the inclusion

  20. Site-specific probabilistic seismic hazard analyses for the Idaho National Engineering Laboratory. Volume 1: Final report

    International Nuclear Information System (INIS)

    1996-05-01

    This report describes and summarizes a probabilistic evaluation of ground motions for the Idaho National Engineering Laboratory (INEL). The purpose of this evaluation is to provide a basis for updating the seismic design criteria for the INEL. In this study, site-specific seismic hazard curves were developed for seven facility sites as prescribed by DOE Standards 1022-93 and 1023-96. These sites include the: Advanced Test Reactor (ATR); Argonne National Laboratory West (ANL); Idaho Chemical Processing Plant (ICPP or CPP); Power Burst Facility (PBF); Radioactive Waste Management Complex (RWMC); Naval Reactor Facility (NRF); and Test Area North (TAN). The results, probabilistic peak ground accelerations and uniform hazard spectra, contained in this report are not to be used for purposes of seismic design at INEL. A subsequent study will be performed to translate the results of this probabilistic seismic hazard analysis to site-specific seismic design values for the INEL as per the requirements of DOE Standard 1020-94. These site-specific seismic design values will be incorporated into the INEL Architectural and Engineering Standards

  1. Site-specific Seismic Hazard Assessment to Establish Elastic Design Properties for Oman Museum-Across Ages, Manah, Sultante of Oman

    Science.gov (United States)

    El Hussain, I. W.

    2017-12-01

    The current study provides a site specific deterministic seismic hazard assessment (DSHA) at the selected site for establishing the Oman Museum-Across Ages at Manah area, as a part of a comprehensive geotechnical and seismological plan to design the facilities accordingly. The DSHA first defines the seismic sources that might influence the site and assesses the maximum possible earthquake magnitude for each of them. By assuming each of these maximum earthquakes to occur at a location placing them at the closest distances to the site, the ground motion is predicted utilizing empirical ground motion prediction equations. The local site effects are performed by determining the fundamental frequency of the soft soil using HVSR technique and by estimating amplification spectra using the soil characteristics (mainly shear-wave velocity). Shear-wave velocity has been evaluated using the MASW technique. The maximum amplification value of 2.1 at spectral period 0.06 sec is observed at the ground surface, while the largest amplification value at the top of the conglomerate layer (at 5m depth) is 1.6 for a spectral period of 0.04 Sec. The maximum median 5% damped peak ground acceleration is found to be 0.263g at a spectral period of 0.1 sec. Keywords: DSHA; Site Effects; HVSR; MASW; PGA; Spectral Period

  2. Applications of seismic damage hazard analysis for the qualification of existing nuclear and offshore facilities

    International Nuclear Information System (INIS)

    Bazzurro, P.; Manfredini, G.M.; Diaz Molina, I.

    1995-01-01

    The Seismic Damage Hazard Analysis (SDHA) is a methodology which couples conventional Seismic Hazard Analysis (SHA) and non-linear response analysis to seismic loadings. This is a powerful tool in the retrofit process: SDHA permits the direct computation of the probability of occurrence of damage and, eventually, collapse of existing and upgraded structural systems. The SDHA methodology is a significant step towards a better understanding and quantification of structural seismic risk. SDHA incorporates and explicitly accounts for seismic load variability, seismic damage potential variability and structural resistance uncertainty. In addition, SDHA makes available a sound strategy to perform non-linear dynamic analyses. A limited number of non-linear dynamic analyses is sufficient to obtain estimates of damage and its probability of occurrence. The basic concepts of the SDHA methodology are briefly reviewed. Illustrative examples are presented, regarding a power house structure, a tubular structure and seabed slope stability problem. (author)

  3. Comparison of seismic margin assessment and probabilistic risk assessment in seismic IPE

    International Nuclear Information System (INIS)

    Reed, J.W.; Kassawara, R.P.

    1993-01-01

    A comparison of technical requirements and managerial issues between seismic margin assessment (SMA) and seismic probabilistic risk assessment (SPRA) in a seismic Individual Plant Examination (IPE) is presented and related to requirements for an Unresolved Safety Issue (USI) A-46 review which is required for older nuclear power plants. Advantages and disadvantages are discussed for each approach. Technical requirements reviewed for a seismic IPE include: scope of plants covered, seismic input, scope of review, selection of equipment, required experience and training of engineers, walkdown procedure, evaluation of components, relay review, containment review, quality assurance, products, documentation requirements, and closure procedure. Managerial issues discussed include regulatory acceptability, compatibility with seismic IPE, compliance with seismic IPE requirements, ease of use by utilities, and relative cost

  4. A new view for the geodynamics of Ecuador: Implication in seismogenic source definition and seismic hazard assessment

    Science.gov (United States)

    Yepes, Hugo; Audin, Laurence; Alvarado, Alexandra; Beauval, Céline; Aguilar, Jorge; Font, Yvonne; Cotton, Fabrice

    2016-05-01

    A new view of Ecuador's complex geodynamics has been developed in the course of modeling seismic source zones for probabilistic seismic hazard analysis. This study focuses on two aspects of the plates' interaction at a continental scale: (a) age-related differences in rheology between Farallon and Nazca plates—marked by the Grijalva rifted margin and its inland projection—as they subduct underneath central Ecuador, and (b) the rapidly changing convergence obliquity resulting from the convex shape of the South American northwestern continental margin. Both conditions satisfactorily explain several characteristics of the observed seismicity and of the interseismic coupling. Intermediate-depth seismicity reveals a severe flexure in the Farallon slab as it dips and contorts at depth, originating the El Puyo seismic cluster. The two slabs position and geometry below continental Ecuador also correlate with surface expressions observable in the local and regional geology and tectonics. The interseismic coupling is weak and shallow south of the Grijalva rifted margin and increases northward, with a heterogeneous pattern locally associated to the Carnegie ridge subduction. High convergence obliquity is responsible for the North Andean Block northeastward movement along localized fault systems. The Cosanga and Pallatanga fault segments of the North Andean Block-South American boundary concentrate most of the seismic moment release in continental Ecuador. Other inner block faults located along the western border of the inter-Andean Depression also show a high rate of moderate-size earthquake production. Finally, a total of 19 seismic source zones were modeled in accordance with the proposed geodynamic and neotectonic scheme.

  5. Probabilistic seismic hazard at the archaeological site of Gol ...

    Indian Academy of Sciences (India)

    Shivakumar G Patil

    2018-03-02

    Mar 2, 2018 ... Probabilistic seismic hazard analysis (PSHA) is carried out for the ... controlling scenario earthquake for the study region as low to .... west of the city of Hyderabad in south India (see ..... declustering algorithm developed by Gardner and. Knopoff .... sparse digital strong-motion networks. ..... The trivial case of.

  6. Seismicity and seismic monitoring in the Asse salt mine

    International Nuclear Information System (INIS)

    Flach, D.; Gommlich, G.; Hente, B.

    1987-01-01

    Seismicity analyses are made in order to assess the safety of candidate sites for ultimate disposal of hazardous wastes. The report in hand reviews the seismicity history of the Asse salt mine and presents recent results of a measuring campaign made in the area. The monitoring network installed at the site supplies data and information on the regional seismicity, on seismic amplitudes under ground and above ground, and on microseismic activities. (DG) [de

  7. Seismic hazard in Hawaii: High rate of large earthquakes and probabilistics ground-motion maps

    Science.gov (United States)

    Klein, F.W.; Frankel, A.D.; Mueller, C.S.; Wesson, R.L.; Okubo, P.G.

    2001-01-01

    The seismic hazard and earthquake occurrence rates in Hawaii are locally as high as that near the most hazardous faults elsewhere in the United States. We have generated maps of peak ground acceleration (PGA) and spectral acceleration (SA) (at 0.2, 0.3 and 1.0 sec, 5% critical damping) at 2% and 10% exceedance probabilities in 50 years. The highest hazard is on the south side of Hawaii Island, as indicated by the MI 7.0, MS 7.2, and MI 7.9 earthquakes, which occurred there since 1868. Probabilistic values of horizontal PGA (2% in 50 years) on Hawaii's south coast exceed 1.75g. Because some large earthquake aftershock zones and the geometry of flank blocks slipping on subhorizontal decollement faults are known, we use a combination of spatially uniform sources in active flank blocks and smoothed seismicity in other areas to model seismicity. Rates of earthquakes are derived from magnitude distributions of the modem (1959-1997) catalog of the Hawaiian Volcano Observatory's seismic network supplemented by the historic (1868-1959) catalog. Modern magnitudes are ML measured on a Wood-Anderson seismograph or MS. Historic magnitudes may add ML measured on a Milne-Shaw or Bosch-Omori seismograph or MI derived from calibrated areas of MM intensities. Active flank areas, which by far account for the highest hazard, are characterized by distributions with b slopes of about 1.0 below M 5.0 and about 0.6 above M 5.0. The kinked distribution means that large earthquake rates would be grossly under-estimated by extrapolating small earthquake rates, and that longer catalogs are essential for estimating or verifying the rates of large earthquakes. Flank earthquakes thus follow a semicharacteristic model, which is a combination of background seismicity and an excess number of large earthquakes. Flank earthquakes are geometrically confined to rupture zones on the volcano flanks by barriers such as rift zones and the seaward edge of the volcano, which may be expressed by a magnitude

  8. Utilization of real-time seismic hazard information to make facilities more resilient

    International Nuclear Information System (INIS)

    Fujinawa, Yukio

    2014-01-01

    Though the JMA early warning system (EEW) has been in operation for a long time, there are some shortcomings. Most people receive only EEWg (general public) alerts, but these do not reach those in places near the epicenter in time because issuing even the first alert requires three to five seconds. This presentation explained a hybrid seismic hazard evaluation system that uses regional EEW as well as on-site vertical and horizontal seismic observation data. A hybrid alert system using on-site instrumentation that detects initial small tremors and EEW can provide alerts much earlier than use of EEW alone. This system has been in practical use in a semiconductor factory since 2005. In addition, seismic hazard forecasts using deep borehole data and the possibility of just before prediction of earthquake occurrence by detecting electric field pulses in the subsurface were also mentioned in this presentation. (authors)

  9. Seismic hazard analysis of nuclear installations in France. Current practice and research

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadioun, B [CEA Centre d` Etudes de Fontenay-aux-Roses, 92 (France). Inst. de Protection et de Surete Nucleaire

    1997-03-01

    The methodology put into practice in France for the evaluation of seismic hazard on the sites of nuclear facilities is founded on data assembled country-wide over the past 15 years, in geology, geophysics and seismology. It is appropriate to the regional seismotectonic context (interplate), characterized notably by diffuse seismicity. Extensive use is made of information drawn from historical seismicity. The regulatory practice described in the RFS I.2.c is reexamined periodically and is subject to up-dating so as to take advantage of new earthquake data and of the results gained from research work. Acquisition of the basic data, such as the identification of active faults and the quantification of site effect, which will be needed to achieve improved preparedness versus severe earthquake hazard in the 21st century, will necessarily be the fruit of close international cooperation and collaboration, which should accordingly be actively promoted. (J.P.N.)

  10. Seismic hazard analysis of nuclear installations in France. Current practice and research

    International Nuclear Information System (INIS)

    Mohammadioun, B.

    1997-01-01

    The methodology put into practice in France for the evaluation of seismic hazard on the sites of nuclear facilities is founded on data assembled country-wide over the past 15 years, in geology, geophysics and seismology. It is appropriate to the regional seismotectonic context (interplate), characterized notably by diffuse seismicity. Extensive use is made of information drawn from historical seismicity. The regulatory practice described in the RFS I.2.c is reexamined periodically and is subject to up-dating so as to take advantage of new earthquake data and of the results gained from research work. Acquisition of the basic data, such as the identification of active faults and the quantification of site effect, which will be needed to achieve improved preparedness versus severe earthquake hazard in the 21st century, will necessarily be the fruit of close international cooperation and collaboration, which should accordingly be actively promoted. (J.P.N.)

  11. Enriquillo–Plantain Garden fault zone in Jamaica: paleoseismology and seismic hazard

    Science.gov (United States)

    Koehler, R.D.; Mann, P.; Prentice, Carol S.; Brown, L.; Benford, B.; Grandison-Wiggins, M.

    2013-01-01

    The countries of Jamaica, Haiti, and the Dominican Republic all straddle the Enriquillo–Plantain Garden fault zone ( EPGFZ), a major left-lateral, strike-slip fault system bounding the Caribbean and North American plates. Past large earthquakes that destroyed the capital cities of Kingston, Jamaica (1692, 1907), and Port-au-Prince, Haiti (1751, 1770), as well as the 2010 Haiti earthquake that killed more than 50,000 people, have heightened awareness of seismic hazards in the northern Caribbean. We present here new geomorphic and paleoseismic information bearing on the location and relative activity of the EPGFZ, which marks the plate boundary in Jamaica. Documentation of a river bank exposure and several trenches indicate that this fault is active and has the potential to cause major destructive earthquakes in Jamaica. The results suggest that the fault has not ruptured the surface in at least 500 yr and possibly as long as 28 ka. The long period of quiescence and subdued geomorphic expression of the EPGFZ indicates that it may only accommodate part of the ∼7–9 mm=yr plate deformation rate measured geodetically and that slip may be partitioned on other undocumented faults. Large uncertainties related to the neotectonic framework of Jamaica remain and more detailed fault characterization studies are necessary to accurately assess seismic hazards.

  12. Modelling Active Faults in Probabilistic Seismic Hazard Analysis (PSHA) with OpenQuake: Definition, Design and Experience

    Science.gov (United States)

    Weatherill, Graeme; Garcia, Julio; Poggi, Valerio; Chen, Yen-Shin; Pagani, Marco

    2016-04-01

    The Global Earthquake Model (GEM) has, since its inception in 2009, made many contributions to the practice of seismic hazard modeling in different regions of the globe. The OpenQuake-engine (hereafter referred to simply as OpenQuake), GEM's open-source software for calculation of earthquake hazard and risk, has found application in many countries, spanning a diversity of tectonic environments. GEM itself has produced a database of national and regional seismic hazard models, harmonizing into OpenQuake's own definition the varied seismogenic sources found therein. The characterization of active faults in probabilistic seismic hazard analysis (PSHA) is at the centre of this process, motivating many of the developments in OpenQuake and presenting hazard modellers with the challenge of reconciling seismological, geological and geodetic information for the different regions of the world. Faced with these challenges, and from the experience gained in the process of harmonizing existing models of seismic hazard, four critical issues are addressed. The challenge GEM has faced in the development of software is how to define a representation of an active fault (both in terms of geometry and earthquake behaviour) that is sufficiently flexible to adapt to different tectonic conditions and levels of data completeness. By exploring the different fault typologies supported by OpenQuake we illustrate how seismic hazard calculations can, and do, take into account complexities such as geometrical irregularity of faults in the prediction of ground motion, highlighting some of the potential pitfalls and inconsistencies that can arise. This exploration leads to the second main challenge in active fault modeling, what elements of the fault source model impact most upon the hazard at a site, and when does this matter? Through a series of sensitivity studies we show how different configurations of fault geometry, and the corresponding characterisation of near-fault phenomena (including

  13. Probabilistic Approaches for Multi-Hazard Risk Assessment of Structures and Systems

    Science.gov (United States)

    Kwag, Shinyoung

    Performance assessment of structures, systems, and components for multi-hazard scenarios has received significant attention in recent years. However, the concept of multi-hazard analysis is quite broad in nature and the focus of existing literature varies across a wide range of problems. In some cases, such studies focus on hazards that either occur simultaneously or are closely correlated with each other. For example, seismically induced flooding or seismically induced fires. In other cases, multi-hazard studies relate to hazards that are not dependent or correlated but have strong likelihood of occurrence at different times during the lifetime of a structure. The current approaches for risk assessment need enhancement to account for multi-hazard risks. It must be able to account for uncertainty propagation in a systems-level analysis, consider correlation among events or failure modes, and allow integration of newly available information from continually evolving simulation models, experimental observations, and field measurements. This dissertation presents a detailed study that proposes enhancements by incorporating Bayesian networks and Bayesian updating within a performance-based probabilistic framework. The performance-based framework allows propagation of risk as well as uncertainties in the risk estimates within a systems analysis. Unlike conventional risk assessment techniques such as a fault-tree analysis, a Bayesian network can account for statistical dependencies and correlations among events/hazards. The proposed approach is extended to develop a risk-informed framework for quantitative validation and verification of high fidelity system-level simulation tools. Validation of such simulations can be quite formidable within the context of a multi-hazard risk assessment in nuclear power plants. The efficiency of this approach lies in identification of critical events, components, and systems that contribute to the overall risk. Validation of any event or

  14. Long-period amplification in deep alluvial basins and consequences for site-specific probabilistic seismic-hazard: the case of Castelleone in the Po Plain (Northern Italy)

    Science.gov (United States)

    Barani, S.; Mascandola, C.; Massa, M.; Spallarossa, D.

    2017-12-01

    The recent Emilia seismic sequence (Northern Italy) occurred at the end of the first half of 2012 with main shock of Mw6.1 highlighted the importance of studying site effects in the Po Plain, the larger and deeper sedimentary basin in Italy. As has long been known, long-period amplification related to deep sedimentary basins can significantly affect the characteristics of the ground-motion induced by strong earthquakes. It follows that the effects of deep sedimentary deposits on ground shaking require special attention during the definition of the design seismic action. The work presented here analyzes the impact of deep-soil discontinuities on ground-motion amplification, with particular focus on long-period probabilistic seismic-hazard assessment. The study focuses on the site of Castelleone, where a seismic station of the Italian National Seismic Network has been recording since 2009. Our study includes both experimental and numerical site response analyses. Specifically, extensive active and passive geophysical measurements were carried out in order to define a detailed shear-wave velocity (VS) model to be used in the numerical analyses. These latter are needed to assess the site-specific ground-motion hazard. Besides classical seismic refraction profiles and multichannel analysis of surface waves, we analyzed ambient vibration measurements in both single and array configurations. The VS profile was determined via joint inversion of the experimental phase-velocity dispersion curve with the ellipticity curve derived from horizontal-to-vertical spectral ratios. The profile shows two main discontinuities at depths of around 160 and 1350 m, respectively. The probabilistic site-specific hazard was assessed in terms of both spectral acceleration and displacement. A partially non-ergodic approach was adopted. We have found that the spectral acceleration hazard is barely sensitive to long-period (up to 10 s) amplification related to the deeper discontinuity whereas the

  15. Statistical physics, seismogenesis, and seismic hazard

    Science.gov (United States)

    Main, Ian

    1996-11-01

    generic statistical properties similar to the "universal" behavior seen in a wide variety of critical phenomena, with significant implications for practical problems in probabilistic seismic hazard evaluation. In particular, the notion of self-organized criticality (or near-criticality) gives a scientific rationale for the a priori assumption of "stationarity" used as a first step in the prediction of the future level of hazard. The Gutenberg-Richter law (a power law in energy or seismic moment) is found to apply only within a finite scale range, both in model and natural seismicity. Accordingly, the frequency-magnitude distribution can be generalized to a gamma distribution in energy or seismic moment (a power law, with an exponential tail). This allows extrapolations of the frequency-magnitude distribution and the maximum credible magnitude to be constrained by observed seismic or tectonic moment release rates. The answers to other questions raised are less clear, for example, the effect of the a priori assumption of a Poisson process in a system with strong local interactions, and the impact of zoning a potentially multifractal distribution of epicentres with smooth polygons. The results of some models show premonitory patterns of seismicity which could in principle be used as mainshock precursors. However, there remains no consensus, on both theoretical and practical grounds, on the possibility or otherwise of reliable intermediate-term earthquake prediction.

  16. Program and plans of the U.S. Geological Survey for producing information needed in National Seismic hazards and risk assessment, fiscal years 1980-84

    Science.gov (United States)

    Hays, Walter W.

    1979-01-01

    In accordance with the provisions of the Earthquake Hazards Reduction Act of 1977 (Public Law 95-124), the U.S. Geological Survey has developed comprehensive plans for producing information needed to assess seismic hazards and risk on a national scale in fiscal years 1980-84. These plans are based on a review of the needs of Federal Government agencies, State and local government agencies, engineers and scientists engaged in consulting and research, professional organizations and societies, model code groups, and others. The Earthquake Hazards Reduction Act provided an unprecedented opportunity for participation in a national program by representatives of State and local governments, business and industry, the design professions, and the research community. The USGS and the NSF (National Science Foundation) have major roles in the national program. The ultimate goal of the program is to reduce losses from earthquakes. Implementation of USGS research in the Earthquake Hazards Reduction Program requires the close coordination of responsibility between Federal, State and local governments. The projected research plan in national seismic hazards and risk for fiscal years 1980-84 will be accomplished by USGS and non-USGS scientists and engineers. The latter group will participate through grants and contracts. The research plan calls for (1) national maps based on existing methods, (2) improved definition of earthquake source zones nationwide, (3) development of improved methodology, (4) regional maps based on the improved methodology, and (5) post-earthquake investigations. Maps and reports designed to meet the needs, priorities, concerns, and recommendations of various user groups will be the products of this research and provide the technical basis for improved implementation.

  17. Assessment of liquefaction-induced hazards using Bayesian networks based on standard penetration test data

    Science.gov (United States)

    Tang, Xiao-Wei; Bai, Xu; Hu, Ji-Lei; Qiu, Jiang-Nan

    2018-05-01

    Liquefaction-induced hazards such as sand boils, ground cracks, settlement, and lateral spreading are responsible for considerable damage to engineering structures during major earthquakes. Presently, there is no effective empirical approach that can assess different liquefaction-induced hazards in one model. This is because of the uncertainties and complexity of the factors related to seismic liquefaction and liquefaction-induced hazards. In this study, Bayesian networks (BNs) are used to integrate multiple factors related to seismic liquefaction, sand boils, ground cracks, settlement, and lateral spreading into a model based on standard penetration test data. The constructed BN model can assess four different liquefaction-induced hazards together. In a case study, the BN method outperforms an artificial neural network and Ishihara and Yoshimine's simplified method in terms of accuracy, Brier score, recall, precision, and area under the curve (AUC) of the receiver operating characteristic (ROC). This demonstrates that the BN method is a good alternative tool for the risk assessment of liquefaction-induced hazards. Furthermore, the performance of the BN model in estimating liquefaction-induced hazards in Japan's 2011 Tōhoku earthquake confirms its correctness and reliability compared with the liquefaction potential index approach. The proposed BN model can also predict whether the soil becomes liquefied after an earthquake and can deduce the chain reaction process of liquefaction-induced hazards and perform backward reasoning. The assessment results from the proposed model provide informative guidelines for decision-makers to detect the damage state of a field following liquefaction.

  18. Site-specific seismic probabilistic tsunami hazard analysis: performances and potential applications

    Science.gov (United States)

    Tonini, Roberto; Volpe, Manuela; Lorito, Stefano; Selva, Jacopo; Orefice, Simone; Graziani, Laura; Brizuela, Beatriz; Smedile, Alessandra; Romano, Fabrizio; De Martini, Paolo Marco; Maramai, Alessandra; Piatanesi, Alessio; Pantosti, Daniela

    2017-04-01

    Seismic Probabilistic Tsunami Hazard Analysis (SPTHA) provides probabilities to exceed different thresholds of tsunami hazard intensity, at a specific site or region and in a given time span, for tsunamis caused by seismic sources. Results obtained by SPTHA (i.e., probabilistic hazard curves and inundation maps) represent a very important input to risk analyses and land use planning. However, the large variability of source parameters implies the definition of a huge number of potential tsunami scenarios, whose omission could lead to a biased analysis. Moreover, tsunami propagation from source to target requires the use of very expensive numerical simulations. At regional scale, the computational cost can be reduced using assumptions on the tsunami modeling (i.e., neglecting non-linear effects, using coarse topo-bathymetric meshes, empirically extrapolating maximum wave heights on the coast). On the other hand, moving to local scale, a much higher resolution is required and such assumptions drop out, since detailed inundation maps require significantly greater computational resources. In this work we apply a multi-step method to perform a site-specific SPTHA which can be summarized in the following steps: i) to perform a regional hazard assessment to account for both the aleatory and epistemic uncertainties of the seismic source, by combining the use of an event tree and an ensemble modeling technique; ii) to apply a filtering procedure which use a cluster analysis to define a significantly reduced number of representative scenarios contributing to the hazard of a specific target site; iii) to perform high resolution numerical simulations only for these representative scenarios and for a subset of near field sources placed in very shallow waters and/or whose coseismic displacements induce ground uplift or subsidence at the target. The method is applied to three target areas in the Mediterranean located around the cities of Milazzo (Italy), Thessaloniki (Greece) and

  19. Probabilistic risk assessment framework for structural systems under multiple hazards using Bayesian statistics

    Energy Technology Data Exchange (ETDEWEB)

    Kwag, Shinyoung [North Carolina State University, Raleigh, NC 27695 (United States); Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Gupta, Abhinav, E-mail: agupta1@ncsu.edu [North Carolina State University, Raleigh, NC 27695 (United States)

    2017-04-15

    Highlights: • This study presents the development of Bayesian framework for probabilistic risk assessment (PRA) of structural systems under multiple hazards. • The concepts of Bayesian network and Bayesian inference are combined by mapping the traditionally used fault trees into a Bayesian network. • The proposed mapping allows for consideration of dependencies as well as correlations between events. • Incorporation of Bayesian inference permits a novel way for exploration of a scenario that is likely to result in a system level “vulnerability.” - Abstract: Conventional probabilistic risk assessment (PRA) methodologies (USNRC, 1983; IAEA, 1992; EPRI, 1994; Ellingwood, 2001) conduct risk assessment for different external hazards by considering each hazard separately and independent of each other. The risk metric for a specific hazard is evaluated by a convolution of the fragility and the hazard curves. The fragility curve for basic event is obtained by using empirical, experimental, and/or numerical simulation data for a particular hazard. Treating each hazard as an independently can be inappropriate in some cases as certain hazards are statistically correlated or dependent. Examples of such correlated events include but are not limited to flooding induced fire, seismically induced internal or external flooding, or even seismically induced fire. In the current practice, system level risk and consequence sequences are typically calculated using logic trees to express the causative relationship between events. In this paper, we present the results from a study on multi-hazard risk assessment that is conducted using a Bayesian network (BN) with Bayesian inference. The framework can consider statistical dependencies among risks from multiple hazards, allows updating by considering the newly available data/information at any level, and provide a novel way to explore alternative failure scenarios that may exist due to vulnerabilities.

  20. Probabilistic risk assessment framework for structural systems under multiple hazards using Bayesian statistics

    International Nuclear Information System (INIS)

    Kwag, Shinyoung; Gupta, Abhinav

    2017-01-01

    Highlights: • This study presents the development of Bayesian framework for probabilistic risk assessment (PRA) of structural systems under multiple hazards. • The concepts of Bayesian network and Bayesian inference are combined by mapping the traditionally used fault trees into a Bayesian network. • The proposed mapping allows for consideration of dependencies as well as correlations between events. • Incorporation of Bayesian inference permits a novel way for exploration of a scenario that is likely to result in a system level “vulnerability.” - Abstract: Conventional probabilistic risk assessment (PRA) methodologies (USNRC, 1983; IAEA, 1992; EPRI, 1994; Ellingwood, 2001) conduct risk assessment for different external hazards by considering each hazard separately and independent of each other. The risk metric for a specific hazard is evaluated by a convolution of the fragility and the hazard curves. The fragility curve for basic event is obtained by using empirical, experimental, and/or numerical simulation data for a particular hazard. Treating each hazard as an independently can be inappropriate in some cases as certain hazards are statistically correlated or dependent. Examples of such correlated events include but are not limited to flooding induced fire, seismically induced internal or external flooding, or even seismically induced fire. In the current practice, system level risk and consequence sequences are typically calculated using logic trees to express the causative relationship between events. In this paper, we present the results from a study on multi-hazard risk assessment that is conducted using a Bayesian network (BN) with Bayesian inference. The framework can consider statistical dependencies among risks from multiple hazards, allows updating by considering the newly available data/information at any level, and provide a novel way to explore alternative failure scenarios that may exist due to vulnerabilities.

  1. Checking of seismic and tsunami hazard for coastal NPP of Chinese continent after Fukushima nuclear accident

    Institute of Scientific and Technical Information of China (English)

    Chang Xiangdong; Zhou Bengang; Zhao Lianda

    2013-01-01

    A checking on seismic and tsunami hazard for coastal nuclear power plant (NPP) of Chinese continent has been made after Japanese Fukushima nuclear accident caused by earthquake tsunami.The results of the checking are introduced briefly in this paper,including the evaluations of seismic and tsunami hazard in NPP siting period,checking results on seismic and tsunami hazard.Because Chinese coastal area belongs to the continental shelf and far from the boundary of plate collision,the tsunami hazard is not significant for coastal area of Chinese continent.However,the effect from tsunami still can' t be excluded absolutely since calculated result of Manila trench tsunami source although the tsunami wave is lower than water level from storm surge.The research about earthquake tsunami will continue in future.The tsunami warning system and emergency program of NPP will be established based on principle of defense in depth in China.

  2. A Case Study of Geologic Hazards Affecting School Buildings: Evaluating Seismic Structural Vulnerability and Landslide Hazards at Schools in Aizawl, India

    Science.gov (United States)

    Perley, M. M.; Guo, J.

    2016-12-01

    India's National School Safety Program (NSSP) aims to assess all government schools in earthquake prone regions of the country. To supplement the Mizoram State Government's recent survey of 141 government schools, we screened an additional 16 private and 4 government schools for structural vulnerabilities due to earthquakes, as well as landslide hazards, in Mizoram's capital of Aizawl. We developed a geomorphologically derived landslide susceptibility matrix, which was cross-checked with Aizawl Municipal Corporation's landslide hazard map (provided by Lettis Consultants International), to determine the geologic hazards at each school. Our research indicates that only 7% of the 22 assessed school buildings are located within low landslide hazard zones; 64% of the school buildings, with approximately 9,500 students, are located within very high or high landslide hazard zones. Rapid Visual Screening (RVS) was used to determine the structural earthquake vulnerability of each school building. RVS is an initial vulnerability assessment procedure used to inventory and rank buildings that may be hazardous during an earthquake. Our study indicates that all of the 22 assessed school buildings have a damageability rating of Grade 3 or higher on the 5-grade EMS scale, suggesting a significant vulnerability and potential for damage in buildings, ranging from widespread cracking of columns and beam column joints to collapse. Additionally, 86% of the schools we visited had reinforced concrete buildings constructed before Aizawl's building regulations were passed in 2007, which can be assumed to lack appropriate seismic reinforcement. Using our findings, we will give recommendations to the Government of Mizoram to prevent unnecessary loss of life by minimizing each school's landslide risk and ensuring schools are earthquake-resistant.

  3. Seismic assessment of a site using the time series method

    International Nuclear Information System (INIS)

    Krutzik, N.J.; Rotaru, I.; Bobei, M.; Mingiuc, C.; Serban, V.; Androne, M.

    1997-01-01

    To increase the safety of a NPP located on a seismic site, the seismic acceleration level to which the NPP should be qualified must be as representative as possible for that site, with a conservative degree of safety but not too exaggerated. The consideration of the seismic events affecting the site as independent events and the use of statistic methods to define some safety levels with very low annual occurrence probability (10 -4 ) may lead to some exaggerations of the seismic safety level. The use of some very high value for the seismic acceleration imposed by the seismic safety levels required by the hazard analysis may lead to very costly technical solutions that can make the plant operation more difficult and increase maintenance costs. The considerations of seismic events as a time series with dependence among the events produced, may lead to a more representative assessment of a NPP site seismic activity and consequently to a prognosis on the seismic level values to which the NPP would be ensured throughout its life-span. That prognosis should consider the actual seismic activity (including small earthquakes in real time) of the focuses that affect the plant site. The paper proposes the applications of Autoregressive Time Series to issue a prognosis on the seismic activity of a focus and presents the analysis on Vrancea focus that affects NPP Cernavoda site, by this method. The paper also presents the manner to analyse the focus activity as per the new approach and it assesses the maximum seismic acceleration that may affect NPP Cernavoda throughout its life-span (∼ 30 years). Development and applications of new mathematical analysis method, both for long - and short - time intervals, may lead to important contributions in the process of foretelling the seismic events in the future. (authors)

  4. Assessment of wind turbine seismic risk : existing literature and simple study of tower moment demand.

    Energy Technology Data Exchange (ETDEWEB)

    Prowell, Ian (University of California, San Diego, CA); Veers, Paul S.

    2009-03-01

    Various sources of risk exist for all civil structures, one of which is seismic risk. As structures change in scale, the magnitude of seismic risk changes relative to risk from other sources. This paper presents an introduction to seismic hazard as applied to wind turbine structures. The existing design methods and research regarding seismic risk for wind turbines is then summarized. Finally a preliminary assessment is made based on current guidelines to understand how tower moment demand scales as rated power increases. Potential areas of uncertainty in the application of the current guidelines are summarized.

  5. Assessment of seismic hazard for NPP sites in France analysis of several aftershocks of November 8, 1983, Liege earthquake

    International Nuclear Information System (INIS)

    Mohammadioun, B.; Mohammadioun, G.; Bresson, A.

    1984-03-01

    Current French practice for assessing seismic hazard on the sites of nuclear facilities is outlined. The procedure calls for as rich and varied an assortment of actual earthquake recordings as can be procured, including earthquakes in France itself and in nearby countries, recorded by the CEA/IPSN's own staff. Following the November 8, 1983, Liege earthquake, suitably equipped, temporary recording stations were set up in the epicentral area in order to record its aftershocks. Ground motion time histories and response spectra were computed for several of these, and a quality factor Q was derived from these data for the most superficial sedimentary layers of the area. The values obtained show reasonable agreement with ones found for similar materials in other regions

  6. SEISRISK II; a computer program for seismic hazard estimation

    Science.gov (United States)

    Bender, Bernice; Perkins, D.M.

    1982-01-01

    The computer program SEISRISK II calculates probabilistic ground motion values for use in seismic hazard mapping. SEISRISK II employs a model that allows earthquakes to occur as points within source zones and as finite-length ruptures along faults. It assumes that earthquake occurrences have a Poisson distribution, that occurrence rates remain constant during the time period considered, that ground motion resulting from an earthquake is a known function of magnitude and distance, that seismically homogeneous source zones are defined, that fault locations are known, that fault rupture lengths depend on magnitude, and that earthquake rates as a function of magnitude are specified for each source. SEISRISK II calculates for each site on a grid of sites the level of ground motion that has a specified probability of being exceeded during a given time period. The program was designed to process a large (essentially unlimited) number of sites and sources efficiently and has been used to produce regional and national maps of seismic hazard.}t is a substantial revision of an earlier program SEISRISK I, which has never been documented. SEISRISK II runs considerably [aster and gives more accurate results than the earlier program and in addition includes rupture length and acceleration variability which were not contained in the original version. We describe the model and how it is implemented in the computer program and provide a flowchart and listing of the code.

  7. Seismic design criteria and their application to major hazard plant within the United Kingdom

    International Nuclear Information System (INIS)

    Alderson, M.A.H.G.

    1982-12-01

    The nature of seismic motions and the implications are briefly described and the development of seismic design criteria for nuclear power plants in various countries is described including possible future developments. The seismicity of the United Kingdom is briefly reviewed leading to the present position on seismic design criteria for nuclear power plants within the United Kingdom. Damage from past destructive earthquakes is reviewed and the existing codes of practice and standards are described. Finally the effect of earthquakes on major hazard plant is discussed in general terms including the seismic analysis of a typical plant item. (author)

  8. Probabilistic Seismic Hazard Analysis of Victoria, British Columbia, Canada: Considering an Active Leech River Fault

    Science.gov (United States)

    Kukovica, J.; Molnar, S.; Ghofrani, H.

    2017-12-01

    The Leech River fault is situated on Vancouver Island near the city of Victoria, British Columbia, Canada. The 60km transpressional reverse fault zone runs east to west along the southern tip of Vancouver Island, dividing the lithologic units of Jurassic-Cretaceous Leech River Complex schists to the north and Eocene Metchosin Formation basalts to the south. This fault system poses a considerable hazard due to its proximity to Victoria and 3 major hydroelectric dams. The Canadian seismic hazard model for the 2015 National Building Code of Canada (NBCC) considered the fault system to be inactive. However, recent paleoseismic evidence suggests there to be at least 2 surface-rupturing events to have exceeded a moment magnitude (M) of 6.5 within the last 15,000 years (Morell et al. 2017). We perform a Probabilistic Seismic Hazard Analysis (PSHA) for the city of Victoria with consideration of the Leech River fault as an active source. A PSHA for Victoria which replicates the 2015 NBCC estimates is accomplished to calibrate our PSHA procedure. The same seismic source zones, magnitude recurrence parameters, and Ground Motion Prediction Equations (GMPEs) are used. We replicate the uniform hazard spectrum for a probability of exceedance of 2% in 50 years for a 500 km radial area around Victoria. An active Leech River fault zone is then added; known length and dip. We are determining magnitude recurrence parameters based on a Gutenberg-Richter relationship for the Leech River fault from various catalogues of the recorded seismicity (M 2-3) within the fault's vicinity and the proposed paleoseismic events. We seek to understand whether inclusion of an active Leech River fault source will significantly increase the probabilistic seismic hazard for Victoria. Morell et al. 2017. Quaternary rupture of a crustal fault beneath Victoria, British Columbia, Canada. GSA Today, 27, doi: 10.1130/GSATG291A.1

  9. Historical seismicity in France. Its role in the assessment of seismic risk on French nuclear sites

    International Nuclear Information System (INIS)

    Levret, A.

    1987-11-01

    Since 1975 in order to be in conformity with the requirements of the French nuclear program, a review of historical seismicity was undertaken in France. The assessment of seismic hazard for the safety of nuclear plants is in fact based upon a seismotectonic approach which needs to take into account the seismic activity over as long a period of time as possible. The method adopted for reviewing historical earthquakes entails a systematic consultation of the original sources and a critical analysis there of in the light of the historical, geographical and political contexts of the time. The same standards apply where the acquisition of new elements of information is involved. Each item of information is assigned a degree of reliability, then compiled in a computer file, up-dated annually; this file currently contains more than 4.500 events covering a period of time of about a millenary

  10. Geotechnical Seismic Hazard Evaluation At Sellano (Umbria, Italy) Using The GIS Technique

    International Nuclear Information System (INIS)

    Capilleri, P.; Maugeri, M.

    2008-01-01

    A tool that has been widely-used in civil engineering in recent years is the geographic information system (GIS). Geographic Information systems (GIS) are powerful tools for organizing, analyzing, and presenting spatial data. The GIS can be used by geotechnical engineers to aid preliminary assessment through to the final geotechnical design. The aim of this work is to provide some indications for the use of the GIS technique in the field of seismic geotechnical engineering, particularly as regards the problems of seismic hazard zonation maps. The study area is the village of Sellano located in the Umbrian Apennines in central Italy, about 45 km east of Perugia and 120 km north-east of Rome The increasing importance attributed to microzonation derives from the spatial variability of ground motion due to particular local conditions. The use of GIS tools can lead to an early identification of potential barriers to project completion during the design process that may help avoid later costly redesign

  11. Methods for developing seismic and extreme wind-hazard models for evaluating critical structures and equipment at US Department of Energy facilities and commercial plutonium facilities in the United States

    International Nuclear Information System (INIS)

    Coats, D.W.; Murray, R.C.; Bernreuter, D.L.

    1981-01-01

    Lawrence Livermore National Laboratory (LLNL) is developing seismic and wind hazard models for the US Department of Energy (DOE). The work is part of a three-phase effort to establish building design criteria developed with a uniform methodology for seismic and wind hazards at the various DOE sites throughout the United States. In Phase 1, LLNL gathered information on the sites and their critical facilities, including nuclear reactors, fuel-reprocessing plants, high-level waste storage and treatment facilities, and special nuclear material facilities. Phase 2 - development of seismic and wind hazard models - is discussed in this paper, which summarizes the methodologies used by seismic and extreme-wind experts and gives sample hazard curves for the first sites to be modeled. These hazard models express the annual probability that the site will experience an earthquake (or windspeed) greater than some specified magnitude. In the final phase, the DOE will use the hazards models and LLNL-recommended uniform design criteria to evaluate critical facilities. The methodology presented in this paper also was used for a related LLNL study - involving the seismic assessment of six commercial plutonium fabrication plants licensed by the US Nuclear Regulatory Commission (NRC). Details and results of this reassessment are documented in reference

  12. When probabilistic seismic hazard climbs volcanoes: the Mt. Etna case, Italy – Part 1: Model components for sources parameterization

    Directory of Open Access Journals (Sweden)

    R. Azzaro

    2017-11-01

    Full Text Available The volcanic region of Mt. Etna (Sicily, Italy represents a perfect lab for testing innovative approaches to seismic hazard assessment. This is largely due to the long record of historical and recent observations of seismic and tectonic phenomena, the high quality of various geophysical monitoring and particularly the rapid geodynamics clearly demonstrate some seismotectonic processes. We present here the model components and the procedures adopted for defining seismic sources to be used in a new generation of probabilistic seismic hazard assessment (PSHA, the first results and maps of which are presented in a companion paper, Peruzza et al. (2017. The sources include, with increasing complexity, seismic zones, individual faults and gridded point sources that are obtained by integrating geological field data with long and short earthquake datasets (the historical macroseismic catalogue, which covers about 3 centuries, and a high-quality instrumental location database for the last decades. The analysis of the frequency–magnitude distribution identifies two main fault systems within the volcanic complex featuring different seismic rates that are controlled essentially by volcano-tectonic processes. We discuss the variability of the mean occurrence times of major earthquakes along the main Etnean faults by using an historical approach and a purely geologic method. We derive a magnitude–size scaling relationship specifically for this volcanic area, which has been implemented into a recently developed software tool – FiSH (Pace et al., 2016 – that we use to calculate the characteristic magnitudes and the related mean recurrence times expected for each fault. Results suggest that for the Mt. Etna area, the traditional assumptions of uniform and Poissonian seismicity can be relaxed; a time-dependent fault-based modeling, joined with a 3-D imaging of volcano-tectonic sources depicted by the recent instrumental seismicity, can therefore be

  13. Probabilistic versus deterministic hazard assessment in liquefaction susceptible zones

    Science.gov (United States)

    Daminelli, Rosastella; Gerosa, Daniele; Marcellini, Alberto; Tento, Alberto

    2015-04-01

    Probabilistic seismic hazard assessment (PSHA), usually adopted in the framework of seismic codes redaction, is based on Poissonian description of the temporal occurrence, negative exponential distribution of magnitude and attenuation relationship with log-normal distribution of PGA or response spectrum. The main positive aspect of this approach stems into the fact that is presently a standard for the majority of countries, but there are weak points in particular regarding the physical description of the earthquake phenomenon. Factors like site effects, source characteristics like duration of the strong motion and directivity that could significantly influence the expected motion at the site are not taken into account by PSHA. Deterministic models can better evaluate the ground motion at a site from a physical point of view, but its prediction reliability depends on the degree of knowledge of the source, wave propagation and soil parameters. We compare these two approaches in selected sites affected by the May 2012 Emilia-Romagna and Lombardia earthquake, that caused widespread liquefaction phenomena unusually for magnitude less than 6. We focus on sites liquefiable because of their soil mechanical parameters and water table level. Our analysis shows that the choice between deterministic and probabilistic hazard analysis is strongly dependent on site conditions. The looser the soil and the higher the liquefaction potential, the more suitable is the deterministic approach. Source characteristics, in particular the duration of strong ground motion, have long since recognized as relevant to induce liquefaction; unfortunately a quantitative prediction of these parameters appears very unlikely, dramatically reducing the possibility of their adoption in hazard assessment. Last but not least, the economic factors are relevant in the choice of the approach. The case history of 2012 Emilia-Romagna and Lombardia earthquake, with an officially estimated cost of 6 billions

  14. Review of seismic probabilistic risk assessment and the use of sensitivity analysis

    International Nuclear Information System (INIS)

    Shiu, K.K.; Reed, J.W.; McCann, M.W. Jr.

    1985-01-01

    This paper presents results of sensitivity reviews performed to address a range of questions which arise in the context of seismic probabilistic risk assessment (PRA). In a seismic PRA, sensitivity evaluations can be divided into three areas: hazard, fragility, and system modeling. As a part of the review of standard boiling water reactor seismic PRA which was performed by General Electric (GE), a reassessment of the plant damage states frequency and a detailed sensitivity analysis were conducted at Brookhaven National Laboratory. The rationale for such an undertaking is that in this case: (1) the standard plant may be sited anywhere in the eastern US (i.e., in regions with safety shutdown earthquake (SSE) values equal to or less than 0.3g peak ground acceleration), (2) it may have equipment whose fragility values could vary over a wide range; and (3) there are variations in system designs outside the original defined scope. Seismic event trees and fault trees were developed to model the different system and plant accident sequences. Hazard curves which represent various sites on the east coast were obtained; alternate structure and equipment fragility data were postulated. Various combinations of hazard and fragility data were analyzed. In addition, system modeling was perturbed to examine the impact upon the final results. Orders of magnitude variation were observed in the plant damage state frequency among the different cases. 7 references, 3 figures, 2 tables

  15. CyberShake: A Physics-Based Seismic Hazard Model for Southern California

    Science.gov (United States)

    Graves, R.; Jordan, T.H.; Callaghan, S.; Deelman, E.; Field, E.; Juve, G.; Kesselman, C.; Maechling, P.; Mehta, G.; Milner, K.; Okaya, D.; Small, P.; Vahi, K.

    2011-01-01

    CyberShake, as part of the Southern California Earthquake Center's (SCEC) Community Modeling Environment, is developing a methodology that explicitly incorporates deterministic source and wave propagation effects within seismic hazard calculations through the use of physics-based 3D ground motion simulations. To calculate a waveform-based seismic hazard estimate for a site of interest, we begin with Uniform California Earthquake Rupture Forecast, Version 2.0 (UCERF2.0) and identify all ruptures within 200 km of the site of interest. We convert the UCERF2.0 rupture definition into multiple rupture variations with differing hypocenter locations and slip distributions, resulting in about 415,000 rupture variations per site. Strain Green Tensors are calculated for the site of interest using the SCEC Community Velocity Model, Version 4 (CVM4), and then, using reciprocity, we calculate synthetic seismograms for each rupture variation. Peak intensity measures are then extracted from these synthetics and combined with the original rupture probabilities to produce probabilistic seismic hazard curves for the site. Being explicitly site-based, CyberShake directly samples the ground motion variability at that site over many earthquake cycles (i. e., rupture scenarios) and alleviates the need for the ergodic assumption that is implicitly included in traditional empirically based calculations. Thus far, we have simulated ruptures at over 200 sites in the Los Angeles region for ground shaking periods of 2 s and longer, providing the basis for the first generation CyberShake hazard maps. Our results indicate that the combination of rupture directivity and basin response effects can lead to an increase in the hazard level for some sites, relative to that given by a conventional Ground Motion Prediction Equation (GMPE). Additionally, and perhaps more importantly, we find that the physics-based hazard results are much more sensitive to the assumed magnitude-area relations and

  16. CRISIS2012: An Updated Tool to Compute Seismic Hazard

    Science.gov (United States)

    Ordaz, M.; Martinelli, F.; Meletti, C.; D'Amico, V.

    2013-05-01

    CRISIS is a computer tool for probabilistic seismic hazard analysis (PSHA), whose development started in the late 1980's at the Instituto de Ingeniería, UNAM, Mexico. It started circulating outside the Mexican borders at the beginning of the 1990's, when it was first distributed as part of SEISAN tools. Throughout the years, CRISIS has been used for seismic hazard studies in several countries in Latin America (Mexico, Guatemala, Belize, El Salvador, Honduras, Nicaragua, Costa Rica, Panama, Colombia, Venezuela, Ecuador, Peru, Argentina and Chile), and in many other countries of the World. CRISIS has always circulated free of charge for non-commercial applications. It is worth noting that CRISIS has been mainly written by people that are, at the same time, PSHA practitioners. Therefore, the development loop has been relatively short, and most of the modifications and improvements have been made to satisfy the needs of the developers themselves. CRISIS has evolved from a rather simple FORTRAN code to a relatively complex program with a friendly graphical interface, able to handle a variety of modeling possibilities for source geometries, seismicity descriptions and ground motion prediction models (GMPM). We will describe some of the improvements made for the newest version of the code: CRISIS 2012.These improvements, some of which were made in the frame of the Italian research project INGV-DPC S2 (http://nuovoprogettoesse2.stru.polimi.it/), funded by the Dipartimento della Protezione Civile (DPC; National Civil Protection Department), include: A wider variety of source geometries A wider variety of seismicity models, including the ability to handle non-Poissonian occurrence models and Poissonian smoothed-seismicity descriptions. Enhanced capabilities for using different kinds of GMPM: attenuation tables, built-in models and generalized attenuation models. In the case of built-in models, there is, by default, a set ready to use in CRISIS, but additional custom GMPMs

  17. Seismic hazard analysis. Review panel, ground motion panel, and feedback results

    International Nuclear Information System (INIS)

    Bernreuter, D.L.

    1981-10-01

    The Site Specific Spectra Project (SSSP) was a multi-year study funded by the U.S. Nuclear Regulatory Commission to provide estimates of the seismic hazards at a number of nuclear power plant sites in the Eastern U.S. A key element of our approach was the Peer Review Panel, which we formed in order to ensure that our use of expert opinion was reasonable. We discuss the Peer Review Panel results and provide the complete text of each member's report. In order to improve the ground motion model, an Eastern U.S. Ground Motion Model Panel was formed. In Section 4 we tabulate the responses from the panel members to our feedback questionnaire and discuss the implications of changes introduced by them. We conclude that the net difference in seismic hazard values from those presented in Volume 4 is small and does not warrant a reanalysis. (author)

  18. Study on Frequency content in seismic hazard analysis in West Azarbayjan and East Azarbayjan provinces (Iran)

    Science.gov (United States)

    Behzadafshar, K.; Abbaszadeh Shahri, A.; Isfandiari, K.

    2012-12-01

    ABSTRACT: Iran plate is prone to earthquake, occurrence of destructive earthquakes approximately every 5 years certify it. Due to existence of happened great earthquakes and large number of potential seismic sources (active faults) which some of them are responsible for great earthquakes the North-West of Iran which is located in junction of Alborz and Zagros seismotectonic provinces (Mirzaii et al, 1998) is an interesting area for seismologists. Considering to population and existence of large cities like Tabriz, Ardabil and Orumiyeh which play crucial role in industry and economy of Iran, authors decided to focus on study of seismic hazard assessment in these two provinces to achieve ground acceleration in different frequency content and indicate critical frequencies in the studied area. It is important to note that however lots of studies have been done in North -West of Iran, but building code modifications also need frequency content analysis to asses seismic hazard more precisely which has been done in the present study. Furthermore, in previous studies have been applied free download softwares which were provided before 2000 but the most important advantage of this study is applying professional industrial software which has been written in 2009 and provided by authors. This applied software can cover previous software weak points very well such as gridding potential sources, attention to the seismogenic zone and applying attenuation relationships directly. Obtained hazard maps illustrate that maximum accelerations will be experienced in North West to South East direction which increased by frequency reduction from 100 Hz to 10 Hz then decreased by frequency reduce (to 0.25 Hz). Maximum acceleration will be occurred in the basement in 10 HZ frequency content. Keywords: hazard map, Frequency content, seismogenic zone, Iran

  19. Scale of seismic and rock burst hazard in the Silesian companies in Poland

    Energy Technology Data Exchange (ETDEWEB)

    Renata Patynska; Jozef Kabiesz [Central Mining Institute, Katowice (Poland)

    2009-09-15

    Presently the seismic and rock burst hazard appears still to be important in most of hard coal mines in Poland. Recently, there was a significant increase of seismic activity of the Silesian rock massive, when compared with the previous years. In the period 1999-2008 the hard coal mines experienced 34 rock bursts. The causes of rockburst occurrence are presented based on the analysis of the rockbursts occurring in the Polish hard coal mines. The scale of the rockburst hazard has been characterized with respect to the mining and geological conditions of the existing exploitation. Of the factors influencing the state of rockburst hazard, the most essential one is considered the depth interval ranging from 600 m to 900 m. The basic factors that promote the rockburst occurrence are as follows: seismogenic strata, edges and remnants, goaf, faults, pillars and excessive paneling. 5 refs., 3 figs., 2 tabs.

  20. Development of Seismic Demand for Chang-Bin Offshore Wind Farm in Taiwan Strait

    Directory of Open Access Journals (Sweden)

    Yu-Kai Wang

    2016-12-01

    Full Text Available Taiwan is located on the Pacific seismic belt, and the soil conditions of Taiwan’s offshore wind farms are softer than those in Europe. To ensure safety and stability of the offshore wind turbine supporting structures, it is important to assess the offshore wind farms seismic forces reasonably. In this paper, the relevant seismic and geological data are obtained for Chang-Bin offshore wind farm in Taiwan Strait, the probabilistic seismic hazard analysis (PSHA is carried out, and the first uniform hazard response spectrum for Chang-Bin offshore wind farm is achieved. Compared with existing design response spectrum in the local regulation, this site-specific seismic hazard analysis has influence on the seismic force considered in the design of supporting structures and therefore affects the cost of the supporting structures. The results show that a site-specific seismic hazard analysis is required for high seismic area. The paper highlights the importance of seismic hazard analysis to assess the offshore wind farms seismic forces. The follow-up recommendations and research directions are given for Taiwan’s offshore wind turbine supporting structures under seismic force considerations.

  1. Tsunamigenic scenarios for southern Peru and northern Chile seismic gap: Deterministic and probabilistic hybrid approach for hazard assessment

    Science.gov (United States)

    González-Carrasco, J. F.; Gonzalez, G.; Aránguiz, R.; Yanez, G. A.; Melgar, D.; Salazar, P.; Shrivastava, M. N.; Das, R.; Catalan, P. A.; Cienfuegos, R.

    2017-12-01

    Plausible worst-case tsunamigenic scenarios definition plays a relevant role in tsunami hazard assessment focused in emergency preparedness and evacuation planning for coastal communities. During the last decade, the occurrence of major and moderate tsunamigenic earthquakes along worldwide subduction zones has given clues about critical parameters involved in near-field tsunami inundation processes, i.e. slip spatial distribution, shelf resonance of edge waves and local geomorphology effects. To analyze the effects of these seismic and hydrodynamic variables over the epistemic uncertainty of coastal inundation, we implement a combined methodology using deterministic and probabilistic approaches to construct 420 tsunamigenic scenarios in a mature seismic gap of southern Peru and northern Chile, extended from 17ºS to 24ºS. The deterministic scenarios are calculated using a regional distribution of trench-parallel gravity anomaly (TPGA) and trench-parallel topography anomaly (TPTA), three-dimensional Slab 1.0 worldwide subduction zones geometry model and published interseismic coupling (ISC) distributions. As result, we find four higher slip deficit zones interpreted as major seismic asperities of the gap, used in a hierarchical tree scheme to generate ten tsunamigenic scenarios with seismic magnitudes fluctuates between Mw 8.4 to Mw 8.9. Additionally, we construct ten homogeneous slip scenarios as inundation baseline. For the probabilistic approach, we implement a Karhunen - Loève expansion to generate 400 stochastic tsunamigenic scenarios over the maximum extension of the gap, with the same magnitude range of the deterministic sources. All the scenarios are simulated through a non-hydrostatic tsunami model Neowave 2D, using a classical nesting scheme, for five coastal major cities in northern Chile (Arica, Iquique, Tocopilla, Mejillones and Antofagasta) obtaining high resolution data of inundation depth, runup, coastal currents and sea level elevation. The

  2. Geomorphology and seismic risk

    Science.gov (United States)

    Panizza, Mario

    1991-07-01

    The author analyses the contributions provided by geomorphology in studies suited to the assessment of seismic risk: this is defined as function of the seismic hazard, of the seismic susceptibility, and of the vulnerability. The geomorphological studies applicable to seismic risk assessment can be divided into two sectors: (a) morpho-neotectonic investigations conducted to identify active tectonic structures; (b) geomorphological and morphometric analyses aimed at identifying the particular situations that amplify or reduce seismic susceptibility. The morpho-neotectonic studies lead to the identification, selection and classification of the lineaments that can be linked with active tectonic structures. The most important geomorphological situations that can condition seismic susceptibility are: slope angle, debris, morphology, degradational slopes, paleo-landslides and underground cavities.

  3. Ground motion input in seismic evaluation studies: impacts on risk assessment of uniform hazard spectra

    International Nuclear Information System (INIS)

    Wu, S.C.; Sewell, R.T.

    1996-07-01

    Conservatism and variability in seismic risk estimates are studied: effects of uniform hazard spectrum (UHS) are examined for deriving probabilistic estimates of risk and in-structure demand levels, as compared to the more-exact use of realistic time history inputs (of given probability) that depend explicitly on magnitude and distance. This approach differs from the conventional in its exhaustive treatment of the ground-motion threat and in its more detailed assessment of component responses to that threat. The approximate UH-ISS (in-structure spectrum) obtained based on UHS appear to be very close to the more-exact results directed computed from scenario earthquakes. This conclusion does not depend on site configurations and structural characteristics. Also, UH-ISS has composite shapes and may not correspond to the characteristics possessed a single earthquake. The shape is largely affected by the structural property in most cases and can be derived approximately from the corresponding UHS. Motions with smooth spectra, however, will not have the same damage potential as those of more realistic motions with jagged spectral shapes. As a result, UHS-based analysis may underestimate the real demands in nonlinear structural analyses

  4. Have recent earthquakes exposed flaws in or misunderstandings of probabilistic seismic hazard analysis?

    Science.gov (United States)

    Hanks, Thomas C.; Beroza, Gregory C.; Toda, Shinji

    2012-01-01

    In a recent Opinion piece in these pages, Stein et al. (2011) offer a remarkable indictment of the methods, models, and results of probabilistic seismic hazard analysis (PSHA). The principal object of their concern is the PSHA map for Japan released by the Japan Headquarters for Earthquake Research Promotion (HERP), which is reproduced by Stein et al. (2011) as their Figure 1 and also here as our Figure 1. It shows the probability of exceedance (also referred to as the “hazard”) of the Japan Meteorological Agency (JMA) intensity 6–lower (JMA 6–) in Japan for the 30-year period beginning in January 2010. JMA 6– is an earthquake-damage intensity measure that is associated with fairly strong ground motion that can be damaging to well-built structures and is potentially destructive to poor construction (HERP, 2005, appendix 5). Reiterating Geller (2011, p. 408), Stein et al. (2011, p. 623) have this to say about Figure 1: The regions assessed as most dangerous are the zones of three hypothetical “scenario earthquakes” (Tokai, Tonankai, and Nankai; see map). However, since 1979, earthquakes that caused 10 or more fatalities in Japan actually occurred in places assigned a relatively low probability. This discrepancy—the latest in a string of negative results for the characteristic model and its cousin the seismic-gap model—strongly suggest that the hazard map and the methods used to produce it are flawed and should be discarded. Given the central role that PSHA now plays in seismic risk analysis, performance-based engineering, and design-basis ground motions, discarding PSHA would have important consequences. We are not persuaded by the arguments of Geller (2011) and Stein et al. (2011) for doing so because important misunderstandings about PSHA seem to have conditioned them. In the quotation above, for example, they have confused important differences between earthquake-occurrence observations and ground-motion hazard calculations.

  5. Pattern recognition techniques and neo-deterministic seismic hazard: Time dependent scenarios for North-Eastern Italy

    International Nuclear Information System (INIS)

    Peresan, A.; Vaccari, F.; Panza, G.F.; Zuccolo, E.; Gorshkov, A.

    2009-05-01

    An integrated neo-deterministic approach to seismic hazard assessment has been developed that combines different pattern recognition techniques, designed for the space-time identification of strong earthquakes, with algorithms for the realistic modeling of seismic ground motion. The integrated approach allows for a time dependent definition of the seismic input, through the routine updating of earthquake predictions. The scenarios of expected ground motion, associated with the alarmed areas, are defined by means of full waveform modeling. A set of neo-deterministic scenarios of ground motion is defined at regional and local scale, thus providing a prioritization tool for timely prevention and mitigation actions. Constraints about the space and time of occurrence of the impending strong earthquakes are provided by three formally defined and globally tested algorithms, which have been developed according to a pattern recognition scheme. Two algorithms, namely CN and M8, are routinely used for intermediate-term middle-range earthquake predictions, while a third algorithm allows for the identification of the areas prone to large events. These independent procedures have been combined to better constrain the alarmed area. The pattern recognition of earthquake-prone areas does not belong to the family of earthquake prediction algorithms since it does not provide any information about the time of occurrence of the expected earthquakes. Nevertheless, it can be considered as the term-less zero-approximation, which restrains the alerted areas (e.g. defined by CN or M8) to the more precise location of large events. Italy is the only region of moderate seismic activity where the two different prediction algorithms CN and M8S (i.e. a spatially stabilized variant of M8) are applied simultaneously and a real-time test of predictions, for earthquakes with magnitude larger than 5.4, is ongoing since 2003. The application of the CN to the Adriatic region (s.l.), which is relevant

  6. Seismic Hazard Management in Mexico City

    Science.gov (United States)

    Wintergerst, L.

    2007-05-01

    Mexico City is one of the largest cities in the world. More than 8.5 million residents and 4.5 million floating population are in the city itself, but with the surrounding suburbs the number of people that could be affected by natural and man-made hazards rises to approximately 20 million. The main risk to the city as a whole is a large magnitude earthquake. Since there is reason to prepare for a credible seismic scenario of Mw = 8.2, which would exceed the damages caused during the 1985 earthquake (Mw = 8.1), we founded the Metropolitan Geologic Service (MGS) in 1998. The MGS has developed geologic and seismic hazard maps for the city (http:www.proteccioncivil.df.gob.mx). The maps include three separate risk maps for low height (3 stories), medium height (10 stories) and tall buildings (10 stories). The maps were prepared by using the maximum horizontal accelerations documented during the 1985 earthquake, and wave propagation modeling for buildings of different resonant periods (T = 0.0, 1.0 and 2.0 sec). In all cases, the risk zones were adjusted to include documented damage during the 1957, 1979 and 1985 earthquakes. All three maps show a high risk zone in the north-central portion of the city, elongated in a N-S direction, which corresponds with a narrow graben where the thickness of alluvial sediments is particularly large, and where wave amplification is accentuated. Preparation of these maps, and others used for planning, has been facilitated by the ongoing elaboration of a Dynamic Geographical Information System, which is based on geo-scientific information, includes all types of risks, and incorporates vulnerability models. From the risk management standpoint, we have elaborated the Permanent Contingency Plan for Mexico City, which in its Earthquakes chapter includes plans for coordination and for organizing attention to the population in the event of a seismic disaster. This Permanent Plan follows the philosophy of Descartes' Method, has 11 processes (6

  7. Third DOE natural phenomena hazards mitigation conference

    International Nuclear Information System (INIS)

    1991-01-01

    This conference on Natural Phenomena Hazards Mitigation has been organized into 15 presentation, panel, and poster sessions. The sessions included an overview of activities at DOE Headquarters; natural phenomena hazards tasks underway for DOE; two sessions on codes, standards, orders, criteria, and guidelines; two sessions on seismic hazards; equipment qualification; wind; PRA and margin assessments; modifications, retrofit, and restart; underground structures with a panel discussion; seismic analysis; seismic evaluation and design; and a poster session. Individual projects are processed separately for the data bases

  8. Source and path parameters determination based on data from the digital accelerometer and CALIXTO networks to assess the seismic hazard

    International Nuclear Information System (INIS)

    Radulian, M.; Anghel, M.; Ardeleanu, L.; Bazacliu, O.; Grecu, B.; Popa, M.; Popescu, E.; Rizescu, M.

    2002-01-01

    For any strategy of seismic risk mitigation, it is essential to have a realistic description of the seismic input that means of the source and structure parameters. The present project is focused on the problem of determining accurate source and structure parameters and to analyze the way these parameters influence the seismic hazard distribution. The main objectives of the project are: determination of seismic source parameters, scaling properties, database of recent earthquakes, seismic source effects on the seismic hazard distribution, seismic attenuation, site effects, realistic scenarios for Vrancea earthquakes. To this purpose, we valorize the data provided by the instruments installed recently on the Romanian territory, in the framework of multiple international cooperation programs. Thus, a new digital accelerometer network was installed between 1996 and 1999 in cooperation with the Institute of Geophysics of the University of Karlsruhe (Germany), and an ample tomography experiment deployed for a 6-month time window (May - November 1999).The results obtained up to now refer to the determination of seismic source parameters and scaling. The source parameters are constrained using the spectral ratio technique and the seismic moment tensor inversion. The spectral ratio method is efficient when pairs of co-located earthquakes recorded at common stations are available. In this case the spectral ratio depends essentially on source only, and corrections for path, local response and instrument are not required. Another advantage of the method is the possibility to determine simultaneously source parameters for both selected events of a pair, if the instrument has a broadband frequency response and the signal/noise ratio is sufficiently high in the frequency domain of interest. The spectral ratio method is applied for 37 events, occurred between 1996 and 2000, with magnitudes between 3.0 and 5.3 in the intermediate-depth range. Seismic moment, source dimension and

  9. Considerations in comparing the U.S. Geological Survey one‐year induced‐seismicity hazard models with “Did You Feel It?” and instrumental data

    Science.gov (United States)

    White, Isabel; Liu, Taojun; Luco, Nicolas; Liel, Abbie

    2017-01-01

    The recent steep increase in seismicity rates in Oklahoma, southern Kansas, and other parts of the central United States led the U.S. Geological Survey (USGS) to develop, for the first time, a probabilistic seismic hazard forecast for one year (2016) that incorporates induced seismicity. In this study, we explore a process to ground‐truth the hazard model by comparing it with two databases of observations: modified Mercalli intensity (MMI) data from the “Did You Feel It?” (DYFI) system and peak ground acceleration (PGA) values from instrumental data. Because the 2016 hazard model was heavily based on earthquake catalogs from 2014 to 2015, this initial comparison utilized observations from these years. Annualized exceedance rates were calculated with the DYFI and instrumental data for direct comparison with the model. These comparisons required assessment of the options for converting hazard model results and instrumental data from PGA to MMI for comparison with the DYFI data. In addition, to account for known differences that affect the comparisons, the instrumental PGA and DYFI data were declustered, and the hazard model was adjusted for local site conditions. With these adjustments, examples at sites with the most data show reasonable agreement in the exceedance rates. However, the comparisons were complicated by the spatial and temporal completeness of the instrumental and DYFI observations. Furthermore, most of the DYFI responses are in the MMI II–IV range, whereas the hazard model is oriented toward forecasts at higher ground‐motion intensities, usually above about MMI IV. Nevertheless, the study demonstrates some of the issues that arise in making these comparisons, thereby informing future efforts to ground‐truth and improve hazard modeling for induced‐seismicity applications.

  10. Assessment of tsunami hazard to the U.S. Atlantic margin

    Science.gov (United States)

    ten Brink, Uri S.; Chaytor, Jason; Geist, Eric L.; Brothers, Daniel S.; Andrews, Brian D.

    2014-01-01

    Tsunami hazard is a very low-probability, but potentially high-risk natural hazard, posing unique challenges to scientists and policy makers trying to mitigate its impacts. These challenges are illustrated in this assessment of tsunami hazard to the U.S. Atlantic margin. Seismic activity along the U.S. Atlantic margin in general is low, and confirmed paleo-tsunami deposits have not yet been found, suggesting a very low rate of hazard. However, the devastating 1929 Grand Banks tsunami along the Atlantic margin of Canada shows that these events continue to occur. Densely populated areas, extensive industrial and port facilities, and the presence of ten nuclear power plants along the coast, make this region highly vulnerable to flooding by tsunamis and therefore even low-probability events need to be evaluated.

  11. Disaggregated seismic hazard and the elastic input energy spectrum: An approach to design earthquake selection

    Science.gov (United States)

    Chapman, Martin Colby

    1998-12-01

    The design earthquake selection problem is fundamentally probabilistic. Disaggregation of a probabilistic model of the seismic hazard offers a rational and objective approach that can identify the most likely earthquake scenario(s) contributing to hazard. An ensemble of time series can be selected on the basis of the modal earthquakes derived from the disaggregation. This gives a useful time-domain realization of the seismic hazard, to the extent that a single motion parameter captures the important time-domain characteristics. A possible limitation to this approach arises because most currently available motion prediction models for peak ground motion or oscillator response are essentially independent of duration, and modal events derived using the peak motions for the analysis may not represent the optimal characterization of the hazard. The elastic input energy spectrum is an alternative to the elastic response spectrum for these types of analyses. The input energy combines the elements of amplitude and duration into a single parameter description of the ground motion that can be readily incorporated into standard probabilistic seismic hazard analysis methodology. This use of the elastic input energy spectrum is examined. Regression analysis is performed using strong motion data from Western North America and consistent data processing procedures for both the absolute input energy equivalent velocity, (Vsbea), and the elastic pseudo-relative velocity response (PSV) in the frequency range 0.5 to 10 Hz. The results show that the two parameters can be successfully fit with identical functional forms. The dependence of Vsbea and PSV upon (NEHRP) site classification is virtually identical. The variance of Vsbea is uniformly less than that of PSV, indicating that Vsbea can be predicted with slightly less uncertainty as a function of magnitude, distance and site classification. The effects of site class are important at frequencies less than a few Hertz. The regression

  12. Implementation of NGA-West2 ground motion models in the 2014 U.S. National Seismic Hazard Maps

    Science.gov (United States)

    Rezaeian, Sanaz; Petersen, Mark D.; Moschetti, Morgan P.; Powers, Peter; Harmsen, Stephen C.; Frankel, Arthur D.

    2014-01-01

    The U.S. National Seismic Hazard Maps (NSHMs) have been an important component of seismic design regulations in the United States for the past several decades. These maps present earthquake ground shaking intensities at specified probabilities of being exceeded over a 50-year time period. The previous version of the NSHMs was developed in 2008; during 2012 and 2013, scientists at the U.S. Geological Survey have been updating the maps based on their assessment of the “best available science,” resulting in the 2014 NSHMs. The update includes modifications to the seismic source models and the ground motion models (GMMs) for sites across the conterminous United States. This paper focuses on updates in the Western United States (WUS) due to the use of new GMMs for shallow crustal earthquakes in active tectonic regions developed by the Next Generation Attenuation (NGA-West2) project. Individual GMMs, their weighted combination, and their impact on the hazard maps relative to 2008 are discussed. In general, the combined effects of lower medians and increased standard deviations in the new GMMs have caused only small changes, within 5–20%, in the probabilistic ground motions for most sites across the WUS compared to the 2008 NSHMs.

  13. Ground motion models used in the 2014 U.S. National Seismic Hazard Maps

    Science.gov (United States)

    Rezaeian, Sanaz; Petersen, Mark D.; Moschetti, Morgan P.

    2015-01-01

    The National Seismic Hazard Maps (NSHMs) are an important component of seismic design regulations in the United States. This paper compares hazard using the new suite of ground motion models (GMMs) relative to hazard using the suite of GMMs applied in the previous version of the maps. The new source characterization models are used for both cases. A previous paper (Rezaeian et al. 2014) discussed the five NGA-West2 GMMs used for shallow crustal earthquakes in the Western United States (WUS), which are also summarized here. Our focus in this paper is on GMMs for earthquakes in stable continental regions in the Central and Eastern United States (CEUS), as well as subduction interface and deep intraslab earthquakes. We consider building code hazard levels for peak ground acceleration (PGA), 0.2-s, and 1.0-s spectral accelerations (SAs) on uniform firm-rock site conditions. The GMM modifications in the updated version of the maps created changes in hazard within 5% to 20% in WUS; decreases within 5% to 20% in CEUS; changes within 5% to 15% for subduction interface earthquakes; and changes involving decreases of up to 50% and increases of up to 30% for deep intraslab earthquakes for most U.S. sites. These modifications were combined with changes resulting from modifications in the source characterization models to obtain the new hazard maps.

  14. Re-assessment of seismic loads in conjunction with periodic safety review

    International Nuclear Information System (INIS)

    Jonczyk, Josef

    2002-01-01

    The objective of this paper is the fundamental consideration of a safeguard-aim-oriented approach for use in the re-assessment of seismic events with regard to the periodic safety review (PSR) of nuclear power plants (NPP). The re-assessment aspects of site-specific design earthquakes (DEQ), specially the procedure for seismic hazard analysis, will not, however, be considered in detail here. The proposed assessment concept clearly presents a general approach for safety assessments. The approach is based on a successive screening review of components that are considered sufficiently earthquake-resistant. In this respect, the principle of maximum practical application of the design documentation has been considered in the re-assessment process. On the other hand, the safeguard-aim-oriented evaluation will also be applied with regard to whether the requirements of the safety regulations are fulfilled with respect to the safety goals. The review in conjunction with PSR does not, however, attempt to perform this under all technical aspects. Moreover, it is possible to make extensive use of experimental knowledge and engineering judgement with regard to the structural capacity behaviour in case of a seismic event. Compared with design procedures, however, this proposed approach differs from the one applied in licensing procedures, in which such assessment freedom will not usually be exhausted. (author)

  15. Comparison of evaluation guidelines for life-safety seismic hazards

    International Nuclear Information System (INIS)

    Wyllie, L.A.; Love, R.J.

    1989-01-01

    The guidelines presented in Design Evaluation guidelines for Department of Energy Facilities Subjected to natural Phenomena Hazards (UCRL 15910 Draft; May 1989) include evaluation criteria for existing Department of Energy buildings subjected to earthquakes. These criteria were developed at the Lawrence Livermore National Laboratory for use in both the seismic design of new structures and the evaluation of existing structures. ATC-14: Evaluating The Seismic Resistance of Existing Buildings developed by the Applied Technology Council, consists of guidelines and criteria for identifying the buildings or building components that present unacceptable risk to human lives. This paper compares and contrasts the two evaluation guidelines for existing buildings using a prototype building as an example. The prototype building is a seven story, concrete shear wall building assuming a General Use Occupancy

  16. Demonstration of NonLinear Seismic Soil Structure Interaction and Applicability to New System Fragility Seismic Curves

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Justin [Idaho National Lab. (INL), Idaho Falls, ID (United States). Nuclear Science and Technology

    2014-09-01

    Risk calculations should focus on providing best estimate results, and associated insights, for evaluation and decision-making. Specifically, seismic probabilistic risk assessments (SPRAs) are intended to provide best estimates of the various combinations of structural and equipment failures that can lead to a seismic induced core damage event. However, in general this approach has been conservative, and potentially masks other important events (for instance, it was not the seismic motions that caused the Fukushima core melt events, but the tsunami ingress into the facility). SPRAs are performed by convolving the seismic hazard (the frequency of certain magnitude events) with the seismic fragility (the conditional probability of failure of a structure, system, or component given the occurrence of earthquake ground motion). In this calculation, there are three main pieces to seismic risk quantification, 1) seismic hazard and nuclear power plants (NPPs) response to the hazard, fragility or capacity of structures, systems and components (SSC), and systems analysis. Figure 1 provides a high level overview of the risk quantification process. The focus of this research is on understanding and removing conservatism (when possible) in the quantification of seismic risk at NPPs.

  17. Urban Vulnerability Assessment to Seismic Hazard through Spatial Multi-Criteria Analysis. Case Study: the Bucharest Municipality/Romania

    Science.gov (United States)

    Armas, Iuliana; Dumitrascu, Silvia; Bostenaru, Maria

    2010-05-01

    In the context of an explosive increase in value of the damage caused by natural disasters, an alarming challenge in the third millennium is the rapid growth of urban population in vulnerable areas. Cities are, by definition, very fragile socio-ecological systems with a high level of vulnerability when it comes to environmental changes and that are responsible for important transformations of the space, determining dysfunctions shown in the state of the natural variables (Parker and Mitchell, 1995, The OFDA/CRED International Disaster Database). A contributing factor is the demographic dynamic that affects urban areas. The aim of this study is to estimate the overall vulnerability of the urban area of Bucharest in the context of the seismic hazard, by using environmental, socio-economic, and physical measurable variables in the framework of a spatial multi-criteria analysis. For this approach the capital city of Romania was chosen based on its high vulnerability due to the explosive urban development and the advanced state of degradation of the buildings (most of the building stock being built between 1940 and 1977). Combining these attributes with the seismic hazard induced by the Vrancea source, Bucharest was ranked as the 10th capital city worldwide in the terms of seismic risk. Over 40 years of experience in the natural risk field shows that the only directly accessible way to reduce the natural risk is by reducing the vulnerability of the space (Adger et al., 2001, Turner et al., 2003; UN/ISDR, 2004, Dayton-Johnson, 2004, Kasperson et al., 2005; Birkmann, 2006 etc.). In effect, reducing the vulnerability of urban spaces would imply lower costs produced by natural disasters. By applying the SMCA method, the result reveals a circular pattern, signaling as hot spots the Bucharest historic centre (located on a river terrace and with aged building stock) and peripheral areas (isolated from the emergency centers and defined by precarious social and economic

  18. Local seismic hazard assessment in explosive volcanic settings by 3D numerical analyses

    Science.gov (United States)

    Razzano, Roberto; Pagliaroli, Alessandro; Moscatelli, Massimiliano; Gaudiosi, Iolanda; Avalle, Alessandra; Giallini, Silvia; Marcini, Marco; Polpetta, Federica; Simionato, Maurizio; Sirianni, Pietro; Sottili, Gianluca; Vignaroli, Gianluca; Bellanova, Jessica; Calamita, Giuseppe; Perrone, Angela; Piscitelli, Sabatino

    2017-04-01

    This work deals with the assessment of local seismic response in the explosive volcanic settings by reconstructing the subsoil model of the Stracciacappa maar (Sabatini Volcanic District, central Italy), whose pyroclastic succession records eruptive phases ended about 0.09 Ma ago. Heterogeneous characteristics of the Stracciacappa maar (stratification, structural setting, lithotypes, and thickness variation of depositional units) make it an ideal case history for understanding mechanisms and processes leading to modifications of amplitude-frequency-duration of seismic waves generated at earthquake sources and propagating through volcanic settings. New geological map and cross sections, constrained with recently acquired geotechnical and geophysical data, illustrate the complex geometric relationships among different depositional units forming the maar. A composite interfingering between internal lacustrine sediments and epiclastic debris, sourced from the rim, fills the crater floor; a 45 meters thick continuous coring borehole was drilled in the maar with sampling of undisturbed samples. Electrical Resistivity Tomography surveys and 2D passive seismic arrays were also carried out for constraining the geological model and the velocity profile of the S-waves, respectively. Single station noise measurements were collected in order to define natural amplification frequencies. Finally, the nonlinear cyclic soil behaviour was investigated through simple shear tests on the undisturbed samples. The collected dataset was used to define the subsoil model for 3D finite difference site response numerical analyses by using FLAC 3D software (ITASCA). Moreover, 1D and 2D numerical analyses were carried out for comparison purposes. Two different scenarios were selected as input motions: a moderate magnitude (volcanic event) and a high magnitude (tectonic event). Both earthquake scenarios revealed significant ground motion amplification (up to 15 in terms of spectral acceleration

  19. A preliminary regional assessment of earthquake-induced landslide susceptibility for Vrancea Seismic Region

    Science.gov (United States)

    Micu, Mihai; Balteanu, Dan; Ionescu, Constantin; Havenith, Hans; Radulian, Mircea; van Westen, Cees; Damen, Michiel; Jurchescu, Marta

    2015-04-01

    In seismically-active regions, earthquakes may trigger landslides enhancing the short-to-long term slope denudation and sediment delivery and conditioning the general landscape evolution. Co-seismic slope failures present in general a low frequency - high magnitude pattern which should be addressed accordingly by landslide hazard assessment, with respect to the generally more frequent precipitation-triggered landslides. The Vrancea Seismic Region, corresponding to the curvature sector of the Eastern Romanian Carpathians, represents the most active sub-crustal (focal depth > 50 km) earthquake province of Europe. It represents the main seismic energy source throughout Romania with significant transboundary effects recorded as far as Ukraine and Bulgaria. During the last 300 years, the region featured 14 earthquakes with M>7, among which seven events with magnitude above 7.5 and three between 7.7 and 7.9. Apart from the direct damages, the Vrancea earthquakes are also responsible for causing numerous other geohazards, such as ground fracturing, groundwater level disturbances and possible deep-seated landslide occurrences (rock slumps, rock-block slides, rock falls, rock avalanches). The older deep-seated landslides (assumed to have been) triggered by earthquakes usually affect the entire slope profile. They often formed landslide dams strongly influencing the river morphology and representing potential threats (through flash-floods) in case of lake outburst. Despite the large potential of this research issue, the correlation between the region's seismotectonic context and landslide predisposing factors has not yet been entirely understood. Presently, there is a lack of information provided by the geohazards databases of Vrancea that does not allow us to outline the seismic influence on the triggering of slope failures in this region. We only know that the morphology of numerous large, deep-seated and dormant landslides (which can possibly be reactivated in future

  20. Interseismic Coupling on the Quito Fault System in Ecuador Using New GPS and InSAR Data and Its Implication on Seismic Hazard Assessment.

    Science.gov (United States)

    Mariniere, J.; Champenois, J.; Nocquet, J. M.; Beauval, C. M.; Audin, L.; Baize, S.; Alvarado, A. P.; Yepes, H. A.; Jomard, H.

    2017-12-01

    Quito, the capital of Ecuador hosting two million inhabitants lies on an active reverse fault system within the Andes. Regular moderate size earthquakes (M 5) occur on these faults, widely felt within the city and its surrounding. Despite a relatively small magnitude of Mw 5.1, the 2014 August 12 earthquake triggered landslides that killed 4 people, cut off one of the main highways for several weeks and caused the temporary shutdown of the airport. Quantifying the seismic potential of the Quito fault system is therefore crucial for a better preparation and mitigation to seismic risk. Previous work using a limited GPS data set found that the Quito fault accommodates 4 mm/yr of EW shortening (Alvarado et al., 2014) at shallow locking depths (3-7 km). We combine GPS and new InSAR data to extend the previous analysis and better quantify the spatial distribution of locking of the Quito fault. GPS dataset includes new continuous sites operating since 2013. 18 ERS SAR scenes, spanning the 1993-2000 time period and covering an area of 85 km by 30 km, were processed using a Permanent Scatter strategy. We perform a joint inversion of both data set (GPS and InSAR) to infer a new and better-constrained kinematic model of the fault to determine both the slip rate and the locking distribution at depth. We find a highly variable level of locking which changes along strike. At some segments, sharp displacement gradients observed both for GPS and InSAR suggest that the fault is creeping up to the surface, while shallow locking is found for other segments. Previous Probabilistic Seismic Hazard Assessment studies have shown that the Quito fault fully controls the hazard in Quito city (Beauval et al. 2014). The results will be used to improve the forecast of earthquakes on the Quito fault system for PSHA studies.

  1. Seismic Consequence Abstraction

    International Nuclear Information System (INIS)

    Gross, M.

    2004-01-01

    The primary purpose of this model report is to develop abstractions for the response of engineered barrier system (EBS) components to seismic hazards at a geologic repository at Yucca Mountain, Nevada, and to define the methodology for using these abstractions in a seismic scenario class for the Total System Performance Assessment - License Application (TSPA-LA). A secondary purpose of this model report is to provide information for criticality studies related to seismic hazards. The seismic hazards addressed herein are vibratory ground motion, fault displacement, and rockfall due to ground motion. The EBS components are the drip shield, the waste package, and the fuel cladding. The requirements for development of the abstractions and the associated algorithms for the seismic scenario class are defined in ''Technical Work Plan For: Regulatory Integration Modeling of Drift Degradation, Waste Package and Drip Shield Vibratory Motion and Seismic Consequences'' (BSC 2004 [DIRS 171520]). The development of these abstractions will provide a more complete representation of flow into and transport from the EBS under disruptive events. The results from this development will also address portions of integrated subissue ENG2, Mechanical Disruption of Engineered Barriers, including the acceptance criteria for this subissue defined in Section 2.2.1.3.2.3 of the ''Yucca Mountain Review Plan, Final Report'' (NRC 2003 [DIRS 163274])

  2. Seismic Consequence Abstraction

    Energy Technology Data Exchange (ETDEWEB)

    M. Gross

    2004-10-25

    The primary purpose of this model report is to develop abstractions for the response of engineered barrier system (EBS) components to seismic hazards at a geologic repository at Yucca Mountain, Nevada, and to define the methodology for using these abstractions in a seismic scenario class for the Total System Performance Assessment - License Application (TSPA-LA). A secondary purpose of this model report is to provide information for criticality studies related to seismic hazards. The seismic hazards addressed herein are vibratory ground motion, fault displacement, and rockfall due to ground motion. The EBS components are the drip shield, the waste package, and the fuel cladding. The requirements for development of the abstractions and the associated algorithms for the seismic scenario class are defined in ''Technical Work Plan For: Regulatory Integration Modeling of Drift Degradation, Waste Package and Drip Shield Vibratory Motion and Seismic Consequences'' (BSC 2004 [DIRS 171520]). The development of these abstractions will provide a more complete representation of flow into and transport from the EBS under disruptive events. The results from this development will also address portions of integrated subissue ENG2, Mechanical Disruption of Engineered Barriers, including the acceptance criteria for this subissue defined in Section 2.2.1.3.2.3 of the ''Yucca Mountain Review Plan, Final Report'' (NRC 2003 [DIRS 163274]).

  3. High-resolution 3D seismic reflection imaging across active faults and its impact on seismic hazard estimation in the Tokyo metropolitan area

    Science.gov (United States)

    Ishiyama, Tatsuya; Sato, Hiroshi; Abe, Susumu; Kawasaki, Shinji; Kato, Naoko

    2016-10-01

    We collected and interpreted high-resolution 3D seismic reflection data across a hypothesized fault scarp, along the largest active fault that could generate hazardous earthquakes in the Tokyo metropolitan area. The processed and interpreted 3D seismic cube, linked with nearby borehole stratigraphy, suggests that a monocline that deforms lower Pleistocene units is unconformably overlain by middle Pleistocene conglomerates. Judging from structural patterns and vertical separation on the lower-middle Pleistocene units and the ground surface, the hypothesized scarp was interpreted as a terrace riser rather than as a manifestation of late Pleistocene structural growth resulting from repeated fault activity. Devastating earthquake scenarios had been predicted along the fault in question based on its proximity to the metropolitan area, however our new results lead to a significant decrease in estimated fault length and consequently in the estimated magnitude of future earthquakes associated with reactivation. This suggests a greatly reduced seismic hazard in the Tokyo metropolitan area from earthquakes generated by active intraplate crustal faults.

  4. How to eliminate non-damaging earthquakes from the results of a probabilistic seismic hazard analysis (PSHA)-A comprehensive procedure with site-specific application

    International Nuclear Information System (INIS)

    Kluegel, Jens-Uwe

    2009-01-01

    The results of probabilistic seismic hazard analyses are frequently presented in terms of uniform hazard spectra or hazard curves with spectral accelerations as the output parameter. The calculation process is based on the evaluation of the probability of exceedance of specified acceleration levels without consideration of the damaging effects of the causative earthquakes. The same applies to the empirical attenuation equations for spectral accelerations used in PSHA models. This makes interpreting and using the results in engineering or risk applications difficult. Uniform hazard spectra and the associated hazard curves may contain a significant amount of contributions of weak, low-energy earthquakes not able to damage the seismically designed structures of nuclear power plants. For the development of realistic engineering designs and for realistic seismic probabilistic risk assessments (seismic PRA) it is necessary to remove the contribution of non-damaging earthquakes from the results of a PSHA. A detailed procedure for the elimination of non-damaging earthquakes based on the CAV (Cumulative Absolute Velocity)-filtering approach was developed and applied to the results of the large-scale PEGASOS probabilistic seismic hazard study for the site of the Goesgen nuclear power plant. The procedure considers the full scope of epistemic uncertainty and aleatory variability present in the PEGASOS study. It involves the development of a set of empirical correlations for CAV and the subsequent development of a composite distribution for the probability of exceedance of the damaging threshold of 0.16 gs. Additionally, a method was developed to measure the difference in the damaging effects of earthquakes of different strengths by the ratio of a power function of ARIAS-intensity or, in the ideal case, by the ratio of the square roots of the associated strong motion durations. The procedure was applied for the update of the Goesgen seismic PRA and for the confirmation of a

  5. Methodology and results of the seismic probabilistic safety assessment of Krsko nuclear power plant

    International Nuclear Information System (INIS)

    Vermaut, M.K.; Monette, P.; Campbell, R.D.

    1995-01-01

    A seismic IPEEE (Individual Plant Examination for External Events) was performed for the Krsko plant. The methodology adopted is the seismic PSA (Probabilistic Safety Assessment). The Krsko NPP is located on a medium to high seismicity site. The PSA study described here includes all the steps in the PSA sequence, i.e. reassessment of the site hazard, calculation of plant structures response including soil-structure interaction, seismic plant walkdowns, probabilistic seismic fragility analysis of plant structures and components, and quantification of seismic core damage frequency (CDF). Also relay chatter analysis and soil stability studies were performed. The seismic PSA described here is limited to the analysis of CDF (level I PSA). The subsequent determination and quantification of plant damage states, containment behaviour and radioactive releases to the outside (level 2 PSA) have been performed for the Krsko NPP but are not further described in this paper. The results of the seismic PSA study indicate that, with some upgrades suggested by the PSA team, the seismic induced CDF is comparable to that of most US and Western Europe NPPs. (author)

  6. The seismic project of the National Tsunami Hazard Mitigation Program

    Science.gov (United States)

    Oppenheimer, D.H.; Bittenbinder, A.N.; Bogaert, B.M.; Buland, R.P.; Dietz, L.D.; Hansen, R.A.; Malone, S.D.; McCreery, C.S.; Sokolowski, T.J.; Whitmore, P.M.; Weaver, C.S.

    2005-01-01

    In 1997, the Federal Emergency Management Agency (FEMA), National Oceanic and Atmospheric Administration (NOAA), U.S. Geological Survey (USGS), and the five western States of Alaska, California, Hawaii, Oregon, and Washington joined in a partnership called the National Tsunami Hazard Mitigation Program (NTHMP) to enhance the quality and quantity of seismic data provided to the NOAA tsunami warning centers in Alaska and Hawaii. The NTHMP funded a seismic project that now provides the warning centers with real-time seismic data over dedicated communication links and the Internet from regional seismic networks monitoring earthquakes in the five western states, the U.S. National Seismic Network in Colorado, and from domestic and global seismic stations operated by other agencies. The goal of the project is to reduce the time needed to issue a tsunami warning by providing the warning centers with high-dynamic range, broadband waveforms in near real time. An additional goal is to reduce the likelihood of issuing false tsunami warnings by rapidly providing to the warning centers parametric information on earthquakes that could indicate their tsunamigenic potential, such as hypocenters, magnitudes, moment tensors, and shake distribution maps. New or upgraded field instrumentation was installed over a 5-year period at 53 seismic stations in the five western states. Data from these instruments has been integrated into the seismic network utilizing Earthworm software. This network has significantly reduced the time needed to respond to teleseismic and regional earthquakes. Notably, the West Coast/Alaska Tsunami Warning Center responded to the 28 February 2001 Mw 6.8 Nisqually earthquake beneath Olympia, Washington within 2 minutes compared to an average response time of over 10 minutes for the previous 18 years. ?? Springer 2005.

  7. Multi Hazard Assessment: The Azores Archipelagos (PT) case

    Science.gov (United States)

    Aifantopoulou, Dorothea; Boni, Giorgio; Cenci, Luca; Kaskara, Maria; Kontoes, Haris; Papoutsis, Ioannis; Paralikidis, Sideris; Psichogyiou, Christina; Solomos, Stavros; Squicciarino, Giuseppe; Tsouni, Alexia; Xerekakis, Themos

    2016-04-01

    The COPERNICUS EMS Risk & Recovery Mapping (RRM) activity offers services to support efficient design and implementation of mitigation measures and recovery planning based on EO data exploitation. The Azores Archipelagos case was realized in the context of the FWC 259811 Copernicus EMS RRM, and provides potential impact information for a number of natural disasters. The analysis identified population and assets at risk (infrastructures and environment). The risk assessment was based on hazard and vulnerability of structural elements, road network characteristics, etc. Integration of different hazards and risks was accounted in establishing the necessary first response/ first aid infrastructure. EO data (Pleiades and WV-2), were used to establish a detailed background information, common for the assessment of the whole of the risks. A qualitative Flood hazard level was established, through a "Flood Susceptibility Index" that accounts for upstream drainage area and local slope along the drainage network (Manfreda et al. 2014). Indicators, representing different vulnerability typologies, were accounted for. The risk was established through intersecting hazard and vulnerability (risk- specific lookup table). Probabilistic seismic hazards maps (PGA) were obtained by applying the Cornell (1968) methodology as implemented in CRISIS2007 (Ordaz et al. 2007). The approach relied on the identification of potential sources, the assessment of earthquake recurrence and magnitude distribution, the selection of ground motion model, and the mathematical model to calculate seismic hazard. Lava eruption areas and a volcanic activity related coefficient were established through available historical data. Lava flow paths and their convergence were estimated through applying a cellular, automata based, Lava Flow Hazard numerical model (Gestur Leó Gislason, 2013). The Landslide Hazard Index of NGI (Norwegian Geotechnical Institute) for heavy rainfall (100 year extreme monthly rainfall

  8. Active crustal deformation of the El Salvador Fault Zone (ESFZ) using GPS data: Implications in seismic hazard assessment

    Science.gov (United States)

    Staller, Alejandra; Benito, Belen; Jesús Martínez-Díaz, José; Hernández, Douglas; Hernández-Rey, Román; Alonso-Henar, Jorge

    2014-05-01

    El Salvador, Central America, is part of the Chortis block in the northwestern boundary of the Caribbean plate. This block is interacting with a diffuse triple junction point with the Cocos and North American plates. Among the structures that cut the Miocene to Pleistocene volcanic deposits stands out the El Salvador Fault Zone (ESFZ): It is oriented in N90º-100ºE direction, and it is composed of several structural segments that deform Quaternary deposits with right-lateral and oblique slip motions. The ESFZ is seismically active and capable of producing earthquakes such as the February 13, 2001 with Mw 6.6 (Martínez-Díaz et al., 2004), that seriously affected the population, leaving many casualties. This structure plays an important role in the tectonics of the Chortis block, since its motion is directly related to the drift of the Caribbean plate to the east and not with the partitioning of the deformation of the Cocos subduction (here not coupled) (Álvarez-Gómez et al., 2008). Together with the volcanic arc of El Salvador, this zone constitutes a weakness area that allows the motion of forearc block toward the NW. The geometry and the degree of activity of the ESFZ are not studied enough. However their knowledge is essential to understand the seismic hazard associated to this important seismogenic structure. For this reason, since 2007 a GPS dense network was established along the ESFZ (ZFESNet) in order to obtain GPS velocity measurements which are later used to explain the nature of strain accumulation on major faults along the ESFZ. The current work aims at understanding active crustal deformation of the ESFZ through kinematic model. The results provide significant information to be included in a new estimation of seismic hazard taking into account the major structures in ESFZ.

  9. PERSEPSI PENGEMBANGAN PETA RAWAN GEMPA KOTA SEMARANG MELALUI PENELITIAN HAZARD GEMPA DETERMINISTIK

    Directory of Open Access Journals (Sweden)

    Windu Partono

    2015-07-01

    Full Text Available Pengembangan peta resiko gempa berdasarkan analisa hazard gempa deterministik (DSHA merupakan salah satu tahapan yang sangat penting untuk mitigasi kegempaan Kota Semarang. Penelitian peta resiko gempa mencakup perhitungan hazard gempa, analisa kondisi tanah lokal (SSA dan analisa tingkat resiko kegempaan. Analisa hazard gempa diimplementasikan dengan pendekatan deterministic akibat gempa untuk sumber gempa sesar aktif disekitar Kota Semarang. Parameter geoteknik diperoleh dari hasil pengamatan atau pengujian geoteknik. Hasil dari penelitian ini mencakup pengembangan peta spektra percepatan gerakan tanah di permukaan dan faktor amplifikasi percepatan tanah yang sangat diperlukan pada pengembangan peta rawan gempa Kota Semarang.[Perception Development of Seismic Risk Map Semarang City Through Deterministic Hazard Analysis Research] Development of seismic risk map based on Deterministic Hazard Analysis (DSHA is an important step for seismic disaster mitigation for Semarang City. The study includes estimation of seismic hazard (DSHA, site specific response analysis (SSA and risk assessment. Seismic hazard is performed based on deterministic approach considering shallow crustal fault sources influencing Semarang City. Geotechnical parameters are interpreted from previous geotechnical measurements. The result of the hazard analysis includes the distribution of site response spectral acceleration and amplification ratios are performed corresponding to seismic risk assessment for Semarang City. 

  10. Design of an UML conceptual model and implementation of a GIS with metadata information for a seismic hazard assessment cooperative project.

    Science.gov (United States)

    Torres, Y.; Escalante, M. P.

    2009-04-01

    This work illustrates the advantages of using a Geographic Information System in a cooperative project with researchers of different countries, such as the RESIS II project (financed by the Norwegian Government and managed by CEPREDENAC) for seismic hazard assessment of Central America. As input data present different formats, cover distinct geographical areas and are subjected to different interpretations, data inconsistencies may appear and their management get complicated. To achieve data homogenization and to integrate them in a GIS, it is required previously to develop a conceptual model. This is accomplished in two phases: requirements analysis and conceptualization. The Unified Modeling Language (UML) is used to compose the conceptual model of the GIS. UML complies with ISO 19100 norms and allows the designer defining model architecture and interoperability. The GIS provides a frame for the combination of large geographic-based data volumes, with an uniform geographic reference and avoiding duplications. All this information contains its own metadata following ISO 19115 normative. In this work, the integration in the same environment of active faults and subduction slabs geometries, combined with the epicentres location, has facilitated the definition of seismogenetic regions. This is a great support for national specialists of different countries to make easier their teamwork. The GIS capacity for making queries (by location and by attributes) and geostatistical analyses is used to interpolate discrete data resulting from seismic hazard calculations and to create continuous maps as well as to check and validate partial results of the study. GIS-based products, such as complete, homogenised databases and thematic cartography of the region, are distributed to all researchers, facilitating cross-national communication, the project execution and results dissemination.

  11. Seismic safety programme at NPP Paks. Propositions for coordinated international activity in seismic safety of the WWER-440 V-213

    International Nuclear Information System (INIS)

    Katona, T.

    1995-01-01

    This paper presents the Paks NPP seismic safety program, highlighting the specifics of the WWER-440/213 type in operation, and the results of work obtained so far. It covers the following scope: establishment of the seismic safety program (original seismic design, current requirements, principles and structure of the seismic safety program); implementation of the seismic safety program (assessing the seismic hazard of the site, development of the new concept of seismic safety for the NPP, assessing the seismic resistance of the building and the technology); realization of the seismic safety of higher level (technical solutions, drawings, realization); ideas and propositions for coordinated international activity

  12. History of Modern Earthquake Hazard Mapping and Assessment in California Using a Deterministic or Scenario Approach

    Science.gov (United States)

    Mualchin, Lalliana

    2011-03-01

    Modern earthquake ground motion hazard mapping in California began following the 1971 San Fernando earthquake in the Los Angeles metropolitan area of southern California. Earthquake hazard assessment followed a traditional approach, later called Deterministic Seismic Hazard Analysis (DSHA) in order to distinguish it from the newer Probabilistic Seismic Hazard Analysis (PSHA). In DSHA, seismic hazard in the event of the Maximum Credible Earthquake (MCE) magnitude from each of the known seismogenic faults within and near the state are assessed. The likely occurrence of the MCE has been assumed qualitatively by using late Quaternary and younger faults that are presumed to be seismogenic, but not when or within what time intervals MCE may occur. MCE is the largest or upper-bound potential earthquake in moment magnitude, and it supersedes and automatically considers all other possible earthquakes on that fault. That moment magnitude is used for estimating ground motions by applying it to empirical attenuation relationships, and for calculating ground motions as in neo-DSHA (Z uccolo et al., 2008). The first deterministic California earthquake hazard map was published in 1974 by the California Division of Mines and Geology (CDMG) which has been called the California Geological Survey (CGS) since 2002, using the best available fault information and ground motion attenuation relationships at that time. The California Department of Transportation (Caltrans) later assumed responsibility for printing the refined and updated peak acceleration contour maps which were heavily utilized by geologists, seismologists, and engineers for many years. Some engineers involved in the siting process of large important projects, for example, dams and nuclear power plants, continued to challenge the map(s). The second edition map was completed in 1985 incorporating more faults, improving MCE's estimation method, and using new ground motion attenuation relationships from the latest published

  13. Seismic evaluation of commercial plutonium fabrication plants in the United States

    International Nuclear Information System (INIS)

    Bernreuter, D.L.; Coats, D.W.; Murray, R.C.; Tokarz, F.J.

    1979-01-01

    This report is an overview of Lawrence Livermore National Laboratory's seismic assessment of six commercial plutonium fabrication plants licensed by the US Nuclear Regulatory Commission (NRC) before September 2, 1971. The seismic assessment generally has three parts: (1) documentation of the structural condition of each facility and its critical equipment; (2) characterization of the seismic hazard (i.e., determination of peak ground acceleration vs return period for each site); and (3) evaluation of seismic capacity to determine ground motion levels at which critical structures and equipment fail. The failure evaluation used structural capacities of median-centered strength characteristics of the as-built configurations from (1) and seismic hazard input from (2). Results of the assessment were partial input for an overall natural risks study by the NRC

  14. Evaluation of seismic hazard of the Gökova bay in terms of seismotectonics

    Energy Technology Data Exchange (ETDEWEB)

    Erkoç, Ebru Aktepe, E-mail: ebru.aktepe@deu.edu.tr [The Graduate School of Natural and Applied Sciences, Dokuz Eylül University, İzmir-Turkey (Turkey); Uluğ, Atilla, E-mail: atilla.ulug@deu.edu.tr [Institute of Marine Science and Technology, Dokuz Eylül University, İzmir-Turkey (Turkey)

    2016-04-18

    While discovering the seismicity of our country, knowing the array of earthquake occurrence which reflects the characteristic tectonic features of each region makes vital contributions to the earthquakes that have occurred and to the pursuit of the processes which might occur in the future. When considering the region’s seismic activity, the presence of active faults that create earthquake within the bay is obvious. Many active fault parts in the Gulf of Gökova region continues their seismic activity with the opening effect that is generally prevailing in Western Anatolia. The region has generally been continuing its seismic activity under the control of normal faults. Considering the marine studies that are made and marine continuity of the faults which are on land in addition to the seismological and tectonic studies, the determination of seismic hazard in the Gulf of Gökova and its surroundings is also important in terms of introducing the earthquake scenarios with minimized errors.

  15. Evaluation of seismic hazard of the Gökova bay in terms of seismotectonics

    International Nuclear Information System (INIS)

    Erkoç, Ebru Aktepe; Uluğ, Atilla

    2016-01-01

    While discovering the seismicity of our country, knowing the array of earthquake occurrence which reflects the characteristic tectonic features of each region makes vital contributions to the earthquakes that have occurred and to the pursuit of the processes which might occur in the future. When considering the region’s seismic activity, the presence of active faults that create earthquake within the bay is obvious. Many active fault parts in the Gulf of Gökova region continues their seismic activity with the opening effect that is generally prevailing in Western Anatolia. The region has generally been continuing its seismic activity under the control of normal faults. Considering the marine studies that are made and marine continuity of the faults which are on land in addition to the seismological and tectonic studies, the determination of seismic hazard in the Gulf of Gökova and its surroundings is also important in terms of introducing the earthquake scenarios with minimized errors.

  16. Probabilistic Seismic Hazard at the Archaeological Site of Gol ...

    Indian Academy of Sciences (India)

    9

    seismic risk assessment and design of seismic protection measures for monuments, ... carried out by taking into account three scenario earthquakes. ... NGA-W2, NGA-East, pan-European models) is anticipated to minimise the ... Heritage structures are precious as they form inextricable components of history, culture and.

  17. Active fault and other geological studies for seismic assessment: present state and problems

    International Nuclear Information System (INIS)

    Kakimi, Toshihiro

    1997-01-01

    Evaluation system of earthquakes from an active fault is, in Japan, based on the characteristic earthquake model of a wide sense that postulates essentially the same (nearly the maximum) magnitude and recurrence interval during the recent geological times. Earthquake magnitude M is estimated by empirical relations among M, surface rupture length L, and surface fault displacement D per event of the earthquake faults on land in Japan. Recurrence interval R of faulting/earthquake is calculated from D and the long-term slip rate S of a fault as R=D/S. Grouping or segmentation of complicatedly distributed faults is an important, but difficult problem in order to distinguish a seismogenic fault unit corresponding to an individual characteristic earthquake. If the time t of the latest event is obtained, the 'cautiousness' of a fault can be judged from R-t or t/R. According to this idea, several faults whose t/R exceed 0.5 have been designated as the 'precaution faults' having higher probability of earthquake occurrence than the others. A part of above evaluation has been introduced at first into the seismic-safety examination system of NPPs in 1978. According to the progress of research on active faults, the weight of interest in respect to the seismic hazard assessment shifted gradually from the historic data to the fault data. Most of recent seismic hazard maps have been prepared in consideration with active faults on land in Japan. Since the occurrence of the 1995 Hyogoken-Nanbu earthquake, social attention has been concentrated upon the seismic hazard due to active faults, because this event was generated from a well-known active fault zone that had been warned as a 'precaution fault'. In this paper, a few recent topics on other geological and geotechnical researches aiming at improving the seismic safety of NPPs in Japan were also introduced. (J.P.N.)

  18. Active fault and other geological studies for seismic assessment: present state and problems

    Energy Technology Data Exchange (ETDEWEB)

    Kakimi, Toshihiro [Nuclear Power Engineering Corp., Tokyo (Japan)

    1997-03-01

    Evaluation system of earthquakes from an active fault is, in Japan, based on the characteristic earthquake model of a wide sense that postulates essentially the same (nearly the maximum) magnitude and recurrence interval during the recent geological times. Earthquake magnitude M is estimated by empirical relations among M, surface rupture length L, and surface fault displacement D per event of the earthquake faults on land in Japan. Recurrence interval R of faulting/earthquake is calculated from D and the long-term slip rate S of a fault as R=D/S. Grouping or segmentation of complicatedly distributed faults is an important, but difficult problem in order to distinguish a seismogenic fault unit corresponding to an individual characteristic earthquake. If the time t of the latest event is obtained, the `cautiousness` of a fault can be judged from R-t or t/R. According to this idea, several faults whose t/R exceed 0.5 have been designated as the `precaution faults` having higher probability of earthquake occurrence than the others. A part of above evaluation has been introduced at first into the seismic-safety examination system of NPPs in 1978. According to the progress of research on active faults, the weight of interest in respect to the seismic hazard assessment shifted gradually from the historic data to the fault data. Most of recent seismic hazard maps have been prepared in consideration with active faults on land in Japan. Since the occurrence of the 1995 Hyogoken-Nanbu earthquake, social attention has been concentrated upon the seismic hazard due to active faults, because this event was generated from a well-known active fault zone that had been warned as a `precaution fault`. In this paper, a few recent topics on other geological and geotechnical researches aiming at improving the seismic safety of NPPs in Japan were also introduced. (J.P.N.)

  19. When probabilistic seismic hazard climbs volcanoes: the Mt. Etna case, Italy - Part 2: Computational implementation and first results

    Science.gov (United States)

    Peruzza, Laura; Azzaro, Raffaele; Gee, Robin; D'Amico, Salvatore; Langer, Horst; Lombardo, Giuseppe; Pace, Bruno; Pagani, Marco; Panzera, Francesco; Ordaz, Mario; Suarez, Miguel Leonardo; Tusa, Giuseppina

    2017-11-01

    This paper describes the model implementation and presents results of a probabilistic seismic hazard assessment (PSHA) for the Mt. Etna volcanic region in Sicily, Italy, considering local volcano-tectonic earthquakes. Working in a volcanic region presents new challenges not typically faced in standard PSHA, which are broadly due to the nature of the local volcano-tectonic earthquakes, the cone shape of the volcano and the attenuation properties of seismic waves in the volcanic region. These have been accounted for through the development of a seismic source model that integrates data from different disciplines (historical and instrumental earthquake datasets, tectonic data, etc.; presented in Part 1, by Azzaro et al., 2017) and through the development and software implementation of original tools for the computation, such as a new ground-motion prediction equation and magnitude-scaling relationship specifically derived for this volcanic area, and the capability to account for the surficial topography in the hazard calculation, which influences source-to-site distances. Hazard calculations have been carried out after updating the most recent releases of two widely used PSHA software packages (CRISIS, as in Ordaz et al., 2013; the OpenQuake engine, as in Pagani et al., 2014). Results are computed for short- to mid-term exposure times (10 % probability of exceedance in 5 and 30 years, Poisson and time dependent) and spectral amplitudes of engineering interest. A preliminary exploration of the impact of site-specific response is also presented for the densely inhabited Etna's eastern flank, and the change in expected ground motion is finally commented on. These results do not account for M > 6 regional seismogenic sources which control the hazard at long return periods. However, by focusing on the impact of M risk reduction.

  20. Hazard Monitoring of Growing Lava Flow Fields Using Seismic Tremor

    Science.gov (United States)

    Eibl, E. P. S.; Bean, C. J.; Jónsdottir, I.; Hoskuldsson, A.; Thordarson, T.; Coppola, D.; Witt, T.; Walter, T. R.

    2017-12-01

    An effusive eruption in 2014/15 created a 85 km2 large lava flow field in a remote location in the Icelandic highlands. The lava flows did not threaten any settlements or paved roads but they were nevertheless interdisciplinarily monitored in detail. Images from satellites and aircraft, ground based video monitoring, GPS and seismic recordings allowed the monitoring and reconstruction of a detailed time series of the growing lava flow field. While the use of satellite images and probabilistic modelling of lava flows are quite common tools to monitor the current and forecast the future growth direction, here we show that seismic recordings can be of use too. We installed a cluster of seismometers at 15 km from the vents and recorded the ground vibrations associated with the eruption. This seismic tremor was not only generated below the vents, but also at the edges of the growing lava flow field and indicated the parts of the lava flow field that were most actively growing. Whilst the time resolution is in the range of days for satellites, seismic stations easily sample continuously at 100 Hz and could therefore provide a much better resolution and estimate of the lava flow hazard in real-time.

  1. An in-situ stimulation experiment in crystalline rock - assessment of induced seismicity levels during stimulation and related hazard for nearby infrastructure

    Science.gov (United States)

    Gischig, Valentin; Broccardo, Marco; Amann, Florian; Jalali, Mohammadreza; Esposito, Simona; Krietsch, Hannes; Doetsch, Joseph; Madonna, Claudio; Wiemer, Stefan; Loew, Simon; Giardini, Domenico

    2016-04-01

    A decameter in-situ stimulation experiment is currently being performed at the Grimsel Test Site in Switzerland by the Swiss Competence Center for Energy Research - Supply of Electricity (SCCER-SoE). The underground research laboratory lies in crystalline rock at a depth of 480 m, and exhibits well-documented geology that is presenting some analogies with the crystalline basement targeted for the exploitation of deep geothermal energy resources in Switzerland. The goal is to perform a series of stimulation experiments spanning from hydraulic fracturing to controlled fault-slip experiments in an experimental volume approximately 30 m in diameter. The experiments will contribute to a better understanding of hydro-mechanical phenomena and induced seismicity associated with high-pressure fluid injections. Comprehensive monitoring during stimulation will include observation of injection rate and pressure, pressure propagation in the reservoir, permeability enhancement, 3D dislocation along the faults, rock mass deformation near the fault zone, as well as micro-seismicity. The experimental volume is surrounded by other in-situ experiments (at 50 to 500 m distance) and by infrastructure of the local hydropower company (at ~100 m to several kilometres distance). Although it is generally agreed among stakeholders related to the experiments that levels of induced seismicity may be low given the small total injection volumes of less than 1 m3, detailed analysis of the potential impact of the stimulation on other experiments and surrounding infrastructure is essential to ensure operational safety. In this contribution, we present a procedure how induced seismic hazard can be estimated for an experimental situation that is untypical for injection-induced seismicity in terms of injection volumes, injection depths and proximity to affected objects. Both, deterministic and probabilistic methods are employed to estimate that maximum possible and the maximum expected induced

  2. Physical Exposure to Seismic Hazards of Health Facilities in Mexico City, Mexico

    Science.gov (United States)

    Rodriguez, S. M.; Novelo Casanova, D.

    2010-12-01

    Although health facilities are essential infrastructure during disasters and emergencies, they are also usually highly vulnerable installations in the case of the occurrence of large and major earthquakes. Hospitals are one of the most complex critical facilities in modern cities and they are used as first response in emergency situations. The operability of a hospital must be maintained after the occurrence of a local strong earthquake in order to satisfy the need for medical care of the affected population. If a health facility is seriously damaged, it cannot fulfill its function when most is needed. In this case, hospitals become a casualty of the disaster. To identify the level of physical exposure of hospitals to seismic hazards in Mexico City, we analyzed their geographic location with respect to the seismic response of the different type of soils of the city from past earthquakes, mainly from the events that occurred on September 1985 (Ms= 8.0) and April 1989 (Ms= 6.9). Seismic wave amplification in this city is the result of the interaction of the incoming seismic waves with the soft and water saturated clay soils, on which a large part of Mexico City is built. The clay soils are remnants of the lake that existed in the Valley of Mexico and which has been drained gradually to accommodate the growing urban sprawl. Hospital facilities were converted from a simple database of names and locations into a map layer of resources. This resource layer was combined with other map layers showing areas of seismic microzonation in Mexico City. This overlay was then used to identify those hospitals that may be threatened by the occurrence of a large or major seismic event. We analyzed the public and private hospitals considered as main health facilities. Our results indicate that more than 50% of the hospitals are highly exposed to seismic hazards. Besides, in most of these health facilities we identified the lack of preventive measures and preparedness to reduce their

  3. A Probabilistic Tsunami Hazard Assessment Methodology and Its Application to Crescent City, CA

    Science.gov (United States)

    Gonzalez, F. I.; Leveque, R. J.; Waagan, K.; Adams, L.; Lin, G.

    2012-12-01

    A PTHA methodology, based in large part on Probabilistic Seismic Hazard Assessment methods (e.g., Cornell, 1968; SSHAC, 1997; Geist and Parsons, 2005), was previously applied to Seaside, OR (Gonzalez, et al., 2009). This initial version of the method has been updated to include: a revised method to estimate tidal uncertainty; an improved method for generating stochastic realizations to estimate slip distribution uncertainty (Mai and Beroza, 2002; Blair, et al., 2011); additional near-field sources in the Cascadia Subduction Zone, based on the work of Goldfinger, et al. (2012); far-field sources in Japan, based on information updated since the 3 March 2011 Tohoku tsunami (Japan Earthquake Research Committee, 2011). The GeoClaw tsunami model (Berger, et. al, 2011) is used to simulate generation, propagation and inundation. We will discuss this revised PTHA methodology and the results of its application to Crescent City, CA. Berger, M.J., D. L. George, R. J. LeVeque, and K. T. Mandli, The GeoClaw software for depth-averaged flows with adaptive refinement, Adv. Water Res. 34 (2011), pp. 1195-1206. Blair, J.L., McCrory, P.A., Oppenheimer, D.H., and Waldhauser, F. (2011): A Geo-referenced 3D model of the Juan de Fuca Slab and associated seismicity: U.S. Geological Survey Data Series 633, v.1.0, available at http://pubs.usgs.gov/ds/633/. Cornell, C. A. (1968): Engineering seismic risk analysis, Bull. Seismol. Soc. Am., 58, 1583-1606. Geist, E. L., and T. Parsons (2005): Probabilistic Analysis of Tsunami Hazards, Nat. Hazards, 37 (3), 277-314. Goldfinger, C., Nelson, C.H., Morey, A.E., Johnson, J.E., Patton, J.R., Karabanov, E., Gutiérrez-Pastor, J., Eriksson, A.T., Gràcia, E., Dunhill, G., Enkin, R.J., Dallimore, A., and Vallier, T. (2012): Turbidite event history—Methods and implications for Holocene paleoseismicity of the Cascadia subduction zone: U.S. Geological Survey Professional Paper 1661-F, 170 p. (Available at http://pubs.usgs.gov/pp/pp1661f/). González, F

  4. Lawrence Livermore National Laboratory Probabilistic Seismic Hazard Codes Validation

    International Nuclear Information System (INIS)

    Savy, J B

    2003-01-01

    Probabilistic Seismic Hazard Analysis (PSHA) is a methodology that estimates the likelihood that various levels of earthquake-caused ground motion will be exceeded at a given location in a given future time-period. LLNL has been developing the methodology and codes in support of the Nuclear Regulatory Commission (NRC) needs for reviews of site licensing of nuclear power plants, since 1978. A number of existing computer codes have been validated and still can lead to ranges of hazard estimates in some cases. Until now, the seismic hazard community had not agreed on any specific method for evaluation of these codes. The Earthquake Engineering Research Institute (EERI) and the Pacific Engineering Earthquake Research (PEER) center organized an exercise in testing of existing codes with the aim of developing a series of standard tests that future developers could use to evaluate and calibrate their own codes. Seven code developers participated in the exercise, on a voluntary basis. Lawrence Livermore National laboratory participated with some support from the NRC. The final product of the study will include a series of criteria for judging of the validity of the results provided by a computer code. This EERI/PEER project was first planned to be completed by June of 2003. As the group neared completion of the tests, the managing team decided that new tests were necessary. As a result, the present report documents only the work performed to this point. It demonstrates that the computer codes developed by LLNL perform all calculations correctly and as intended. Differences exist between the results of the codes tested, that are attributed to a series of assumptions, on the parameters and models, that the developers had to make. The managing team is planning a new series of tests to help in reaching a consensus on these assumptions

  5. Probing The Structure North China To Better Understand Its Evolution, Natural Resources, And Seismic Hazards (Invited)

    Science.gov (United States)

    Keller, G. R.; Gao, R.; Qu, G.; Li, Q.; Liu, M.

    2010-12-01

    also recorded across the southern portion of this array. This profile crossed a region where the 3 main faults that pose the major hazard to the city are expressed at the surface. Some shots along this profile were also recorded by the 3-D array, and an earthquake occurred along the edge of the array during one of recording windows. Together, these data are producing an improved understanding of the structure of this area and will aid hazard assessments. These efforts are also being used a basis to conduct comparative studies to better understand seismic hazards in the central U.S. and the tectonic evolution of both regions.

  6. Proceedings of third Indo-German workshop and theme meeting on seismic safety of structures, risk assessment and disaster mitigation

    International Nuclear Information System (INIS)

    Reddy, G.R.; Parulekar, Y.M.

    2007-01-01

    This Indo-German workshop focuses and emphasises the current research and development activities in both the countries. Themes of this meeting are Earthquake Hazard and Vulnerability Assessment, Risk Assessment Techniques, Seismic Risk to Mega Cities, Testing and Evaluation of Structures and Components, Base Isolation and other Control Techniques, Seismic Strengthening of Structures, Design Practices and Specifications, Remote Sensing and GIS Applications, Structural Materials and Composites, Containment and Other Special Structures. Papers relevant to INIS are indexed separately

  7. Seismic hazard in Romania associated to Vrancea subcrustal source Deterministic evaluation

    CERN Document Server

    Radulian, M; Moldoveanu, C L; Panza, G F; Vaccari, F

    2002-01-01

    Our study presents an application of the deterministic approach to the particular case of Vrancea intermediate-depth earthquakes to show how efficient the numerical synthesis is in predicting realistic ground motion, and how some striking peculiarities of the observed intensity maps are properly reproduced. The deterministic approach proposed by Costa et al. (1993) is particularly useful to compute seismic hazard in Romania, where the most destructive effects are caused by the intermediate-depth earthquakes generated in the Vrancea region. Vrancea is unique among the seismic sources of the World because of its striking peculiarities: the extreme concentration of seismicity with a remarkable invariance of the foci distribution, the unusually high rate of strong shocks (an average frequency of 3 events with magnitude greater than 7 per century) inside an exceptionally narrow focal volume, the predominance of a reverse faulting mechanism with the T-axis almost vertical and the P-axis almost horizontal and the mo...

  8. The 2018 and 2020 Updates of the U.S. National Seismic Hazard Models

    Science.gov (United States)

    Petersen, M. D.

    2017-12-01

    During 2018 the USGS will update the 2014 National Seismic Hazard Models by incorporating new seismicity models, ground motion models, site factors, fault inputs, and by improving weights to ground motion models using empirical and other data. We will update the earthquake catalog for the U.S. and introduce new rate models. Additional fault data will be used to improve rate estimates on active faults. New ground motion models (GMMs) and site factors for Vs30 have been released by the Pacific Earthquake Engineering Research Center (PEER) and we will consider these in assessing ground motions in craton and extended margin regions of the central and eastern U.S. The USGS will also include basin-depth terms for selected urban areas of the western United States to improve long-period shaking assessments using published depth estimates to 1.0 and 2.5 km/s shear wave velocities. We will produce hazard maps for input into the building codes that span a broad range of periods (0.1 to 5 s) and site classes (shear wave velocity from 2000 m/s to 200 m/s in the upper 30 m of the crust, Vs30). In the 2020 update we plan on including: a new national crustal model that defines basin depths required in the latest GMMs, new 3-D ground motion simulations for several urban areas, new magnitude-area equations, and new fault geodetic and geologic strain rate models. The USGS will also consider including new 3-D ground motion simulations for inclusion in these long-period maps. These new models are being evaluated and will be discussed at one or more regional and topical workshops held at the beginning of 2018.

  9. Preliminary proposed seismic design and evaluation criteria for new and existing underground hazardous materials storage tanks

    International Nuclear Information System (INIS)

    Kennedy, R.P.

    1991-01-01

    The document provides a recommended set of deterministic seismic design and evaluation criteria for either new or existing underground hazardous materials storage tanks placed in either the high hazard or moderate hazard usage catagories of UCRL-15910. The criteria given herein are consistent with and follow the same philosophy as those given in UCRL-15910 for the US Department of Energy facilities. This document is intended to supplement and amplify upon Reference 1 for underground hazardous materials storage tanks

  10. Multi-hazard assessment using GIS in the urban areas: Case study - Banja Luka municipality, B&H

    Directory of Open Access Journals (Sweden)

    Tošić Radislav

    2013-01-01

    Full Text Available The research presents a techniques for natural hazard assessment using GIS and cartographic approaches with multi-hazard mapping in urban communities, because natural hazards are a multi-dimensional phenomena which have a spatial component. Therefore the use of Remote Sensing and GIS has an important function and become essential in urban multi-hazard assessment. The first aim of this research was to determine the geographical distributions of the major types of natural hazards in the study area. Seismic hazards, landslides, rockfalls, floods, torrential floods, and excessive erosion are the most significant natural hazards within the territory of Banja Luka Municipality. Areas vulnerable to some of these natural hazards were singled out using analytical maps. Based on these analyses, an integral map of the natural hazards of the study area was created using multi-hazard assessment and the total vulnerability was determined by overlapping the results. The detailed analysis, through the focused research within the most vulnerable areas in the study area will highlight the administrative units (urban centres and communes that are vulnerable to various types of natural hazard. The results presented in this article are the first multi-hazard assessment and the first version of the integral map of natural hazards in the Republic of Srpska.

  11. Assessment of the impact of degraded shear wall stiffnesses on seismic plant risk and seismic design loads

    International Nuclear Information System (INIS)

    Klamerus, E.W.; Bohn, M.P.; Johnson, J.J.; Asfura, A.P.; Doyle, D.J.

    1994-02-01

    Test results sponsored by the USNRC have shown that reinforced shear wall (Seismic Category I) structures exhibit stiffnesses and natural frequencies which are smaller than those calculated in the design process. The USNRC has sponsored Sandia National Labs to perform an evaluation of the effects of the reduced frequencies on several existing seismic PRAs in order to determine the seismic risk implications inherent in these test results. This report presents the results for the re-evaluation of the seismic risk for three nuclear power plants: the Peach Bottom Atomic Power Station, the Zion Nuclear Power Plant, and Arkansas Nuclear One -- Unit 1 (ANO-1). Increases in core damage frequencies for seismic initiated events at Peach Bottom were 25 to 30 percent (depending on whether LLNL or EPRI hazard curves were used). At the ANO-1 site, the corresponding increases in plant risk were 10 percent (for each set of hazard curves). Finally, at Zion, there was essentially no change in the computed core damage frequency when the reduction in shear wall stiffness was included. In addition, an evaluation of deterministic ''design-like'' structural dynamic calculations with and without the shear stiffness reductions was made. Deterministic loads calculated for these two cases typically increased on the order of 10 to 20 percent for the affected structures

  12. Adding seismic broadband analysis to characterize Andean backarc seismicity in Argentina

    Science.gov (United States)

    Alvarado, P.; Giuliano, A.; Beck, S.; Zandt, G.

    2007-05-01

    Characterization of the highly seismically active Andean backarc is crucial for assessment of earthquake hazards in western Argentina. Moderate-to-large crustal earthquakes have caused several deaths, damage and drastic economic consequences in Argentinean history. We have studied the Andean backarc crust between 30°S and 36°S using seismic broadband data available from a previous ("the CHARGE") IRIS-PASSCAL experiment. We collected more than 12 terabytes of continuous seismic data from 22 broadband instruments deployed across Chile and Argentina during 1.5 years. Using free software we modeled full regional broadband waveforms and obtained seismic moment tensor inversions of crustal earthquakes testing for the best focal depth for each event. We also mapped differences in the Andean backarc crustal structure and found a clear correlation with different types of crustal seismicity (i.e. focal depths, focal mechanisms, magnitudes and frequencies of occurrence) and previously mapped terrane boundaries. We now plan to use the same methodology to study other regions in Argentina using near-real time broadband data available from the national seismic (INPRES) network and global seismic networks operating in the region. We will re-design the national seismic network to optimize short-period and broadband seismic station coverage for different network purposes. This work is an international effort that involves researchers and students from universities and national government agencies with the goal of providing more information about earthquake hazards in western Argentina.

  13. Global Seismic Hazard Assessment Program (GSHAP in continental Asia

    Directory of Open Access Journals (Sweden)

    S. C. Bhatia

    1999-06-01

    Full Text Available The regional hazard mapping for the whole Eastern Asia was coordinated by the SSB Regional Centre in Beijing, originating from the expansion of the test area initially established in the border region of China-India-Nepal-Myanmar- Bangla Dash, in coordination with the other Regional Centres (JIPE, Moscow, and AGSO, Canberra and with the direct assistance of the USGS. All Eastern Asian countries have participated directly in this regional effort, with the addition of Japan, for which an existing national hazard map was incorporated. The regional hazard depicts the expected peak ground acceleration with 10% exceedance probability in 50 years.

  14. Seismic risk assessment for road in Indonesia

    Science.gov (United States)

    Toyfur, Mona Foralisa; Pribadi, Krishna S.

    2016-05-01

    Road networks in Indonesia consist of 446,000 km of national, provincial and local roads as well as toll highways. Indonesia is one of countries that exposed to various natural hazards, such as earthquakes, floods, landslides, etc. Within the Indonesian archipelago, several global tectonic plates interact, such as the Indo-Australian, Pacific, Eurasian, resulting in a complex geological setting, characterized by the existence of seismically active faults and subduction zones and a chain of more than one hundred active volcanoes. Roads in Indonesia are vital infrastructure needed for people and goods movement, thus supporting community life and economic activities, including promoting regional economic development. Road damages and losses due to earthquakes have not been studied widely, whereas road disruption caused enormous economic damage. The aim of this research is to develop a method to analyse risk caused by seismic hazard to roads. The seismic risk level of road segment is defined using an earthquake risk index, adopting the method of Earthquake Disaster Risk Index model developed by Davidson (1997). Using this method, road segments' risk level can be defined and compared, and road risk map can be developed as a tool for prioritizing risk mitigation programs for road networks in Indonesia.

  15. Development of methodology and computer programs for the ground response spectrum and the probabilistic seismic hazard analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Joon Kyoung [Semyung Univ., Research Institute of Industrial Science and Technol , Jecheon (Korea, Republic of)

    1996-12-15

    Objective of this study is to investigate and develop the methodologies and corresponding computer codes, compatible to the domestic seismological and geological environments, for estimating ground response spectrum and probabilistic seismic hazard. Using the PSHA computer program, the Cumulative Probability Functions(CPDF) and Probability Functions (PDF) of the annual exceedence have been investigated for the analysis of the uncertainty space of the annual probability at ten interested seismic hazard levels (0.1 g to 0.99 g). The cumulative provability functions and provability functions of the annual exceedence have been also compared to those results from the different input parameter spaces.

  16. Evaluation of induced seismicity forecast models in the Induced Seismicity Test Bench

    Science.gov (United States)

    Király, Eszter; Gischig, Valentin; Zechar, Jeremy; Doetsch, Joseph; Karvounis, Dimitrios; Wiemer, Stefan

    2016-04-01

    Induced earthquakes often accompany fluid injection, and the seismic hazard they pose threatens various underground engineering projects. Models to monitor and control induced seismic hazard with traffic light systems should be probabilistic, forward-looking, and updated as new data arrive. Here, we propose an Induced Seismicity Test Bench to test and rank such models. We apply the test bench to data from the Basel 2006 and Soultz-sous-Forêts 2004 geothermal stimulation projects, and we assess forecasts from two models that incorporate a different mix of physical understanding and stochastic representation of the induced sequences: Shapiro in Space (SiS) and Hydraulics and Seismics (HySei). SiS is based on three pillars: the seismicity rate is computed with help of the seismogenic index and a simple exponential decay of the seismicity; the magnitude distribution follows the Gutenberg-Richter relation; and seismicity is distributed in space based on smoothing seismicity during the learning period with 3D Gaussian kernels. The HySei model describes seismicity triggered by pressure diffusion with irreversible permeability enhancement. Our results show that neither model is fully superior to the other. HySei forecasts the seismicity rate well, but is only mediocre at forecasting the spatial distribution. On the other hand, SiS forecasts the spatial distribution well but not the seismicity rate. The shut-in phase is a difficult moment for both models in both reservoirs: the models tend to underpredict the seismicity rate around, and shortly after, shut-in. Ensemble models that combine HySei's rate forecast with SiS's spatial forecast outperform each individual model.

  17. The Prospect of using Three-Dimensional Earth Models To Improve Nuclear Explosion Monitoring and Ground Motion Hazard Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Antoun, T; Harris, D; Lay, T; Myers, S C; Pasyanos, M E; Richards, P; Rodgers, A J; Walter, W R; Zucca, J J

    2008-02-11

    The last ten years have brought rapid growth in the development and use of three-dimensional (3D) seismic models of earth structure at crustal, regional and global scales. In order to explore the potential for 3D seismic models to contribute to important societal applications, Lawrence Livermore National Laboratory (LLNL) hosted a 'Workshop on Multi-Resolution 3D Earth Models to Predict Key Observables in Seismic Monitoring and Related Fields' on June 6 and 7, 2007 in Berkeley, California. The workshop brought together academic, government and industry leaders in the research programs developing 3D seismic models and methods for the nuclear explosion monitoring and seismic ground motion hazard communities. The workshop was designed to assess the current state of work in 3D seismology and to discuss a path forward for determining if and how 3D earth models and techniques can be used to achieve measurable increases in our capabilities for monitoring underground nuclear explosions and characterizing seismic ground motion hazards. This paper highlights some of the presentations, issues, and discussions at the workshop and proposes a path by which to begin quantifying the potential contribution of progressively refined 3D seismic models in critical applied arenas.

  18. Earthquake hazard assessment in the Zagros Orogenic Belt of Iran using a fuzzy rule-based model

    Science.gov (United States)

    Farahi Ghasre Aboonasr, Sedigheh; Zamani, Ahmad; Razavipour, Fatemeh; Boostani, Reza

    2017-08-01

    Producing accurate seismic hazard map and predicting hazardous areas is necessary for risk mitigation strategies. In this paper, a fuzzy logic inference system is utilized to estimate the earthquake potential and seismic zoning of Zagros Orogenic Belt. In addition to the interpretability, fuzzy predictors can capture both nonlinearity and chaotic behavior of data, where the number of data is limited. In this paper, earthquake pattern in the Zagros has been assessed for the intervals of 10 and 50 years using fuzzy rule-based model. The Molchan statistical procedure has been used to show that our forecasting model is reliable. The earthquake hazard maps for this area reveal some remarkable features that cannot be observed on the conventional maps. Regarding our achievements, some areas in the southern (Bandar Abbas), southwestern (Bandar Kangan) and western (Kermanshah) parts of Iran display high earthquake severity even though they are geographically far apart.

  19. Explosion-produced ground motion: technical summary with respect to seismic hazards

    Energy Technology Data Exchange (ETDEWEB)

    Rodean, Howard C [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-15

    This paper summarizes the present technical knowledge, experimental and theoretical, of how underground nuclear explosions produce seismic motion that may be a hazard at distances measured in tens of kilometers. The effects of explosion yield and rock properties (at the explosion, along the signal propagation path, and at the site where a hazard may exist) on the ground motion are described in detail, and some consideration is given to the relation between ground motion and damage criteria. The energy released in a nuclear explosion is sufficient to vaporize the explosive and to generate an intense shock wave that is propagated outward into the surrounding rock. Part of the energy transported by the shock wave is dissipated in the shocked material. The shock wave strength decreases with distance from the center of the explosion as a consequence of this energy loss and because of geometric (approximately spherical) divergence. The dissipated energy fraction ranges from over 95% (for competent rocks like granite) to over 99% (for crushable, porous rocks like alluvium) of the explosion yield. Therefore, the energy fraction that is radiated in the form of seismic waves ranges from a few percent down to a few tenths of a percent. This is consistent with the observation that explosions in granite produce more severe ground motion than corresponding explosions in alluvium. The effects of explosion yield and rock properties on the frequency spectrum of the seismic source function are demonstrated by both experimental measurements and theoretical analysis. The characteristics of an ideal elastic medium are such that its frequency response is that of a low-pass filter, with its cutoff frequency being a function of the elastic properties of the material and the radius at which the explosion-produced stress wave becomes elastic. There is further frequency- and distance-dependent attenuation (especially of the higher frequencies) of the seismic waves, because rocks are not

  20. Explosion-produced ground motion: technical summary with respect to seismic hazards

    International Nuclear Information System (INIS)

    Rodean, Howard C.

    1970-01-01

    This paper summarizes the present technical knowledge, experimental and theoretical, of how underground nuclear explosions produce seismic motion that may be a hazard at distances measured in tens of kilometers. The effects of explosion yield and rock properties (at the explosion, along the signal propagation path, and at the site where a hazard may exist) on the ground motion are described in detail, and some consideration is given to the relation between ground motion and damage criteria. The energy released in a nuclear explosion is sufficient to vaporize the explosive and to generate an intense shock wave that is propagated outward into the surrounding rock. Part of the energy transported by the shock wave is dissipated in the shocked material. The shock wave strength decreases with distance from the center of the explosion as a consequence of this energy loss and because of geometric (approximately spherical) divergence. The dissipated energy fraction ranges from over 95% (for competent rocks like granite) to over 99% (for crushable, porous rocks like alluvium) of the explosion yield. Therefore, the energy fraction that is radiated in the form of seismic waves ranges from a few percent down to a few tenths of a percent. This is consistent with the observation that explosions in granite produce more severe ground motion than corresponding explosions in alluvium. The effects of explosion yield and rock properties on the frequency spectrum of the seismic source function are demonstrated by both experimental measurements and theoretical analysis. The characteristics of an ideal elastic medium are such that its frequency response is that of a low-pass filter, with its cutoff frequency being a function of the elastic properties of the material and the radius at which the explosion-produced stress wave becomes elastic. There is further frequency- and distance-dependent attenuation (especially of the higher frequencies) of the seismic waves, because rocks are not

  1. Seismic hazard of American Samoa and neighboring South Pacific Islands--methods, data, parameters, and results

    Science.gov (United States)

    Petersen, Mark D.; Harmsen, Stephen C.; Rukstales, Kenneth S.; Mueller, Charles S.; McNamara, Daniel E.; Luco, Nicolas; Walling, Melanie

    2012-01-01

    American Samoa and the neighboring islands of the South Pacific lie near active tectonic-plate boundaries that host many large earthquakes which can result in strong earthquake shaking and tsunamis. To mitigate earthquake risks from future ground shaking, the Federal Emergency Management Agency requested that the U.S. Geological Survey prepare seismic hazard maps that can be applied in building-design criteria. This Open-File Report describes the data, methods, and parameters used to calculate the seismic shaking hazard as well as the output hazard maps, curves, and deaggregation (disaggregation) information needed for building design. Spectral acceleration hazard for 1 Hertz having a 2-percent probability of exceedance on a firm rock site condition (Vs30=760 meters per second) is 0.12 acceleration of gravity (1 second, 1 Hertz) and 0.32 acceleration of gravity (0.2 seconds, 5 Hertz) on American Samoa, 0.72 acceleration of gravity (1 Hertz) and 2.54 acceleration of gravity (5 Hertz) on Tonga, 0.15 acceleration of gravity (1 Hertz) and 0.55 acceleration of gravity (5 Hertz) on Fiji, and 0.89 acceleration of gravity (1 Hertz) and 2.77 acceleration of gravity (5 Hertz) on the Vanuatu Islands.

  2. Widespread seismicity excitation following the 2011 M=9.0 Tohoku, Japan, earthquake and its implications for seismic hazard

    Science.gov (United States)

    Toda, S.; Stein, R. S.; Lin, J.

    2011-12-01

    The 11 March 2011 Tohoku-chiho Taiheiyo-oki earthquake (Tohoku earthquake) was followed by massive offshore aftershocks including 6 M≧7 and 94 M≧6 shocks during the 4.5 months (until July 26). It is also unprecedented that a broad increase in seismicity was observed over inland Japan at distances of up to 425 km from the locus of high seismic slip on the megathrust. Such an increase was not seen for the 2004 M=9.1 Sumatra or 2010 M=8.8 Chile earthquakes, but they lacked the seismic networks necessary to detect such small events. Here we explore the possibility that the rate changes are the product of static Coulomb stress transfer to small faults. We use the nodal planes of M≧3.5 earthquakes as proxies for such small active faults, and find that of fifteen regions averaging ˜80 by 80 km in size, 11 show a positive association between calculated stress changes and the observed seismicity rate change, 3 show a negative correlation, and for one the changes are too small to assess. This work demonstrates that seismicity can turn on in the nominal stress shadow of a mainshock as long as small geometrically diverse active faults exist there, which is likely quite common in areas having complex geologic background like Tohoku. In Central Japan, however, there are several regions where the usual tectonic stress has been enhanced by the Tohoku earthquake, and the moderate and large faults have been brought closer to failure, producing M˜5 to 6 shocks, including Nagano, near Mt. Fuji, Tokyo metropolitan area and its offshore. We confirmed that at least 5 of the seven large, exotic, or remote aftershocks were brought ≧0.3 bars closer to failure. Validated by such correlations, we evaluate the effects of the Tohoku event on the other subduction zones nearby and major active faults inland. The majorities of thrust faults inland Tohoku are brought farther from failure by the M9 event. However, we found that the large sections of the Japan trench megathrust, the outer

  3. Seismic Risk Perception compared with seismic Risk Factors

    Science.gov (United States)

    Crescimbene, Massimo; La Longa, Federica; Pessina, Vera; Pino, Nicola Alessandro; Peruzza, Laura

    2016-04-01

    The communication of natural hazards and their consequences is one of the more relevant ethical issues faced by scientists. In the last years, social studies have provided evidence that risk communication is strongly influenced by the risk perception of people. In order to develop effective information and risk communication strategies, the perception of risks and the influencing factors should be known. A theory that offers an integrative approach to understanding and explaining risk perception is still missing. To explain risk perception, it is necessary to consider several perspectives: social, psychological and cultural perspectives and their interactions. This paper presents the results of the CATI survey on seismic risk perception in Italy, conducted by INGV researchers on funding by the DPC. We built a questionnaire to assess seismic risk perception, with a particular attention to compare hazard, vulnerability and exposure perception with the real data of the same factors. The Seismic Risk Perception Questionnaire (SRP-Q) is designed by semantic differential method, using opposite terms on a Likert scale to seven points. The questionnaire allows to obtain the scores of five risk indicators: Hazard, Exposure, Vulnerability, People and Community, Earthquake Phenomenon. The questionnaire was administered by telephone interview (C.A.T.I.) on a statistical sample at national level of over 4,000 people, in the period January -February 2015. Results show that risk perception seems be underestimated for all indicators considered. In particular scores of seismic Vulnerability factor are extremely low compared with house information data of the respondents. Other data collected by the questionnaire regard Earthquake information level, Sources of information, Earthquake occurrence with respect to other natural hazards, participation at risk reduction activities and level of involvement. Research on risk perception aims to aid risk analysis and policy-making by

  4. Seismic hazard analysis with PSHA method in four cities in Java

    International Nuclear Information System (INIS)

    Elistyawati, Y.; Palupi, I. R.; Suharsono

    2016-01-01

    In this study the tectonic earthquakes was observed through the peak ground acceleration through the PSHA method by dividing the area of the earthquake source. This study applied the earthquake data from 1965 - 2015 that has been analyzed the completeness of the data, location research was the entire Java with stressed in four large cities prone to earthquakes. The results were found to be a hazard map with a return period of 500 years, 2500 years return period, and the hazard curve were four major cities (Jakarta, Bandung, Yogyakarta, and the city of Banyuwangi). Results Java PGA hazard map 500 years had a peak ground acceleration within 0 g ≥ 0.5 g, while the return period of 2500 years had a value of 0 to ≥ 0.8 g. While, the PGA hazard curves on the city's most influential source of the earthquake was from sources such as fault Cimandiri backgroud, for the city of Bandung earthquake sources that influence the seismic source fault dent background form. In other side, the city of Yogyakarta earthquake hazard curve of the most influential was the source of the earthquake background of the Opak fault, and the most influential hazard curve of Banyuwangi earthquake was the source of Java and Sumba megatruts earthquake. (paper)

  5. Using CyberShake Workflows to Manage Big Seismic Hazard Data on Large-Scale Open-Science HPC Resources

    Science.gov (United States)

    Callaghan, S.; Maechling, P. J.; Juve, G.; Vahi, K.; Deelman, E.; Jordan, T. H.

    2015-12-01

    The CyberShake computational platform, developed by the Southern California Earthquake Center (SCEC), is an integrated collection of scientific software and middleware that performs 3D physics-based probabilistic seismic hazard analysis (PSHA) for Southern California. CyberShake integrates large-scale and high-throughput research codes to produce probabilistic seismic hazard curves for individual locations of interest and hazard maps for an entire region. A recent CyberShake calculation produced about 500,000 two-component seismograms for each of 336 locations, resulting in over 300 million synthetic seismograms in a Los Angeles-area probabilistic seismic hazard model. CyberShake calculations require a series of scientific software programs. Early computational stages produce data used as inputs by later stages, so we describe CyberShake calculations using a workflow definition language. Scientific workflow tools automate and manage the input and output data and enable remote job execution on large-scale HPC systems. To satisfy the requests of broad impact users of CyberShake data, such as seismologists, utility companies, and building code engineers, we successfully completed CyberShake Study 15.4 in April and May 2015, calculating a 1 Hz urban seismic hazard map for Los Angeles. We distributed the calculation between the NSF Track 1 system NCSA Blue Waters, the DOE Leadership-class system OLCF Titan, and USC's Center for High Performance Computing. This study ran for over 5 weeks, burning about 1.1 million node-hours and producing over half a petabyte of data. The CyberShake Study 15.4 results doubled the maximum simulated seismic frequency from 0.5 Hz to 1.0 Hz as compared to previous studies, representing a factor of 16 increase in computational complexity. We will describe how our workflow tools supported splitting the calculation across multiple systems. We will explain how we modified CyberShake software components, including GPU implementations and

  6. Transportation of Hazardous Materials Emergency Preparedness Hazards Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, A.

    2000-02-28

    This report documents the Emergency Preparedness Hazards Assessment (EPHA) for the Transportation of Hazardous Materials (THM) at the Department of Energy (DOE) Savannah River Site (SRS). This hazards assessment is intended to identify and analyze those transportation hazards significant enough to warrant consideration in the SRS Emergency Management Program.

  7. Transportation of Hazardous Materials Emergency Preparedness Hazards Assessment

    International Nuclear Information System (INIS)

    Blanchard, A.

    2000-01-01

    This report documents the Emergency Preparedness Hazards Assessment (EPHA) for the Transportation of Hazardous Materials (THM) at the Department of Energy (DOE) Savannah River Site (SRS). This hazards assessment is intended to identify and analyze those transportation hazards significant enough to warrant consideration in the SRS Emergency Management Program

  8. Transportation of hazardous materials emergency preparedness hazards assessment

    International Nuclear Information System (INIS)

    Blanchard, A.

    2000-01-01

    This report documents the Emergency Preparedness Hazards Assessment (EPHA) for the Transportation of Hazardous Materials (THM) at the Department of Energy (DOE) Savannah River Site (SRS). This hazards assessment is intended to identify and analyze those transportation hazards significant enough to warrant consideration in the SRS Emergency Management Program

  9. Seismic link at plate boundary

    Indian Academy of Sciences (India)

    process constrain the seismic hazard assessment. Some frequent issues .... to obtain information on the causality between .... 2004), and low frequency deep triggering. (Miyazawa .... can trigger shallow thrust fault earthquakes; Science 306.

  10. Evaluation of potential surface rupture and review of current seismic hazards program at the Los Alamos National Laboratory. Final report

    International Nuclear Information System (INIS)

    1991-01-01

    This report summarizes the authors review and evaluation of the existing seismic hazards program at Los Alamos National Laboratory (LANL). The report recommends that the original program be augmented with a probabilistic analysis of seismic hazards involving assignment of weighted probabilities of occurrence to all potential sources. This approach yields a more realistic evaluation of the likelihood of large earthquake occurrence particularly in regions where seismic sources may have recurrent intervals of several thousand years or more. The report reviews the locations and geomorphic expressions of identified fault lines along with the known displacements of these faults and last know occurrence of seismic activity. Faults are mapped and categorized into by their potential for actual movement. Based on geologic site characterization, recommendations are made for increased seismic monitoring; age-dating studies of faults and geomorphic features; increased use of remote sensing and aerial photography for surface mapping of faults; the development of a landslide susceptibility map; and to develop seismic design standards for all existing and proposed facilities at LANL

  11. Seismic hazard characterization of 69 nuclear plant sites east of the Rocky Mountains: Results and discussion for the Batch 4 sites

    International Nuclear Information System (INIS)

    Bernreuter, D.L.; Savy, J.B.; Mensing, R.W.; Chen, J.C.

    1989-01-01

    The EUS Seismic Hazard Characterization Project (SHC) is the outgrowth of an earlier study performed as part of the US Nuclear Regulatory Commission's (NRC) Systematic Evaluation Program (SEP). The objectives of the SHC were: (1) to develop a seismic hazard characterization methodology for the region east of the Rocky Mountains (EUS), and (2) the application of the methodology to 69 site locations, some of them with several local soil conditions. The method developed uses expert opinions to obtain the input to the analyses. An important aspect of the elicitation of the expert opinion process was the holding of two feedback meetings with all the experts in order to finalize the methodology and the input data bases. The hazard estimates are reported in terms of peak ground acceleration (PGA) and 5% damping velocity response spectra (PSV). A total of eight volumes make up this report which contains a thorough description of the methodology, the expert opinion's elicitation process, the input data base as well as a discussion, comparison and summary volume (Volume 6). Consistent with previous analyses, this study finds that there are large uncertainties associated with the estimates of seismic hazard in the EUS, and it identifies the ground motion modeling as the prime contributor to those uncertainties. This document, Volume 5, provides the seismic hazard estimates for the 17 sites in ''Batch 4''

  12. Seismic safety margins research program. Phase I final report - Overview

    International Nuclear Information System (INIS)

    Smith, P.D.; Dong, R.G.; Bernreuter, D.L.; Bohn, M.P.; Chuang, T.Y.; Cummings, G.E.; Johnson, J.J.; Mensing, R.W.; Wells, J.E.

    1981-04-01

    The Seismic Safety Margins Research Program (SSMRP) is a multiyear, multiphase program whose overall objective is to develop improved methods for seismic safety assessments of nuclear power plants, using a probabilistic computational procedure. The program is being carried out at the Lawrence Livermore National Laboratory and is sponsored by the U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research. Phase I of the SSMRP was successfully completed in January 1981: A probabilistic computational procedure for the seismic risk assessment of nuclear power plants has been developed and demonstrated. The methodology is implemented by three computer programs: HAZARD, which assesses the seismic hazard at a given site, SMACS, which computes in-structure and subsystem seismic responses, and SEISIM, which calculates system failure probabilities and radioactive release probabilities, given (1) the response results of SMACS, (2) a set of event trees, (3) a family of fault trees, (4) a set of structural and component fragility descriptions, and (5) a curve describing the local seismic hazard. The practicality of this methodology was demonstrated by computing preliminary release probabilities for Unit 1 of the Zion Nuclear Power Plant north of Chicago, Illinois. Studies have begun aimed at quantifying the sources of uncertainty in these computations. Numerous side studies were undertaken to examine modeling alternatives, sources of error, and available analysis techniques. Extensive sets of data were amassed and evaluated as part of projects to establish seismic input parameters and to produce the fragility curves. (author)

  13. State of the Art in Input Ground Motions for Seismic Fragility and Risk Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Han; Choi, In Kil; Kim, Min Kyu [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The purpose of a Seismic Probabilistic Safety Analysis (SPSA) is to determine the probability distribution of core damage due to the potential effects of earthquakes. The SPSA is performed based on four steps, a seismic hazard analysis, a component fragility evaluation, a plant system and accident sequence analysis, and a consequence analysis. There are very different spectrum shapes in every ground motions. The structural response and the seismic load applied to equipment are greatly influenced by a spectral shape of the input ground motion. Therefore the input ground motion need to be determined under the same assumption in risk calculation. Several technic for the determination of input ground motions has developed and reviewed in this study. In this research, the methodologies of the determination of input ground motion for the seismic risk assessment are reviewed and discussed. It has developed to reduce the uncertainty in fragility curves and to remove the conservatism in risk values.

  14. External hazards at Kozloduy and Belene NPP sites

    International Nuclear Information System (INIS)

    Kostov, Marin; Varbanov, Georgy; Andonov, Anton

    2011-01-01

    Conclusions 1. KNPP and BNPP have adequate seismic design base that corresponds to the current standards 2. There is available seismic margin and cliff-edge effects are not probable 3. The external flooding hazard is properly assessed and there is available design margin 4. Anthropogenic hazards are properly assessed and there is available margin. The BNPP is designed also for the largest available aircraft impact (malevolent) 5. The tornado hazard in Bulgaria is negligible. The extreme combination of EQ, flooding, extreme wind, extreme cold and hot weather have to be studied 7. The risk of failure of all surrounding infrastructure due to earthquake, flooding or anthropogenic actions have to be studied 8. The preparedness for extreme hazards have to be improved and trained 9. The extreme hazard mitigation measures have to be constant and continuous effort

  15. Probabilistic seismic hazard assessment of the historical peninsula of Istanbul

    Directory of Open Access Journals (Sweden)

    G. Ç. Ince

    2012-11-01

    Full Text Available In order to design buildings that are resistant to earthquakes, first it is necessary to determine the parameters of ground motion. In this study, the earthquake seismic hazard analysis of the Old City Districts of Istanbul (Fatih and Eminonu was probabilistically defined. For the analysis, the study zone was divided into 307 cells of 250 × 250 m using geographical information systems, and these cells were used in the mapping of all the data obtained. Then, for a building lifetime of 50 yr, the acceleration parameters of earthquake ground motions, peak ground acceleration, peak ground velocity, and spectral acceleration values of 0.2 s and 1 s were obtained at the bedrock level according to 10% and 40% exceedances. Additionally, in order to produce the artificial acceleration-time records of the ground movement in accordance with the NEHRP acceleration spectrum, the TARSCHTS computer simulation program was utilized. The results of the analysis showed that for the 10% probability of exceedance, the peak bedrock acceleration values ranged from 0.30 g to 0.40 g, and for the 40% exceedance probability the acceleration values ranged from 0.22 g to 0.17 g. The Ss 10% exceedance probability, calculated according to the spectral acceleration parameter, ranged from 0.67 g to 0.85 g and the spectral acceleration parameter S1 varied between 0.22 g–0.28 g. The Ss 40% exceedance probability, calculated according to the spectral acceleration parameter, ranged from 0.46 g to 0.38 g and the spectral acceleration parameter S1 varied from 0.12 g to 0.14 g.

  16. Probabilistic earthquake hazard analysis for Cairo, Egypt

    Science.gov (United States)

    Badawy, Ahmed; Korrat, Ibrahim; El-Hadidy, Mahmoud; Gaber, Hanan

    2016-04-01

    Cairo is the capital of Egypt and the largest city in the Arab world and Africa, and the sixteenth largest metropolitan area in the world. It was founded in the tenth century (969 ad) and is 1046 years old. It has long been a center of the region's political and cultural life. Therefore, the earthquake risk assessment for Cairo has a great importance. The present work aims to analysis the earthquake hazard of Cairo as a key input's element for the risk assessment. The regional seismotectonics setting shows that Cairo could be affected by both far- and near-field seismic sources. The seismic hazard of Cairo has been estimated using the probabilistic seismic hazard approach. The logic tree frame work was used during the calculations. Epistemic uncertainties were considered into account by using alternative seismotectonics models and alternative ground motion prediction equations. Seismic hazard values have been estimated within a grid of 0.1° × 0.1 ° spacing for all of Cairo's districts at different spectral periods and four return periods (224, 615, 1230, and 4745 years). Moreover, the uniform hazard spectra have been calculated at the same return periods. The pattern of the contour maps show that the highest values of the peak ground acceleration is concentrated in the eastern zone's districts (e.g., El Nozha) and the lowest values at the northern and western zone's districts (e.g., El Sharabiya and El Khalifa).

  17. Simplified static method for determining seismic loads on equipment in moderate and high hazard facilities

    International Nuclear Information System (INIS)

    Scott, M.A.; Holmes, P.A.

    1991-01-01

    A simplified static analysis methodology is presented for qualifying equipment in moderate and high-hazard facility-use category structures, where the facility use is defined in Design and Evaluation Guidelines for Department of Energy Facilities Subjected to Natural Phenomena Hazards, UCRL-15910. Currently there are no equivalent simplified static methods for determining seismic loads on equipment in these facility use categories without completing dynamic analysis of the facility to obtain local floor accelerations or spectra. The requirements of UCRL-15910 specify the use of open-quotes dynamicclose quotes analysis methods, consistent with Seismic Design Guidelines for Essential Buildings, Chapter 6, open-quotes Nonstructural Elements,close quotes TM5-809-10-1, be used for determining seismic loads on mechanical equipment and components. Chapter 6 assumes that the dynamic analysis of the facility has generated either floor response spectra or model floor accelerations. These in turn are utilized with the dynamic modification factor and the actual demand and capacity ratios to determine equipment loading. This complex methodology may be necessary to determine more exacting loads for hard to qualify equipment but does not provide a simple conservative loading methodology for equipment with ample structural capacity

  18. PSHAe (Probabilistic Seismic Hazard enhanced): the case of Istanbul.

    Science.gov (United States)

    Stupazzini, Marco; Allmann, Alexander; Infantino, Maria; Kaeser, Martin; Mazzieri, Ilario; Paolucci, Roberto; Smerzini, Chiara

    2016-04-01

    The Probabilistic Seismic Hazard Analysis (PSHA) only relying on GMPEs tends to be insufficiently constrained at short distances and data only partially account for the rupture process, seismic wave propagation and three-dimensional (3D) complex configurations. Given a large and representative set of numerical results from 3D scenarios, analysing the resulting database from a statistical point of view and implementing the results as a generalized attenuation function (GAF) into the classical PSHA might be an appealing way to deal with this problem (Villani et al., 2014). Nonetheless, the limited amount of computational resources or time available tend to pose substantial constrains in a broad application of the previous method and, furthermore, the method is only partially suitable for taking into account the spatial correlation of ground motion as modelled by each forward physics-based simulation (PBS). Given that, we envision a streamlined and alternative implementation of the previous approach, aiming at selecting a limited number of scenarios wisely chosen and associating them a probability of occurrence. The experience gathered in the past year regarding 3D modelling of seismic wave propagation in complex alluvial basin (Pilz et al., 2011, Guidotti et al., 2011, Smerzini and Villani, 2012) allowed us to enhance the choice of simulated scenarios in order to explore the variability of ground motion, preserving the full spatial correlation necessary for risk modelling, on one hand and on the other the simulated losses for a given location and a given building stock. 3D numerical modelling of scenarios occurring the North Anatolian Fault in the proximity of Istanbul are carried out through the spectral element code SPEED (http://speed.mox.polimi.it). The results are introduced in a PSHA, exploiting the capabilities of the proposed methodology against a traditional approach based on GMPE. References Guidotti R, M Stupazzini, C Smerzini, R Paolucci, P Ramieri

  19. Wicked Problems in Natural Hazard Assessment and Mitigation

    Science.gov (United States)

    Stein, S.; Steckler, M. S.; Rundle, J. B.; Dixon, T. H.

    2017-12-01

    Social scientists have defined "wicked" problems that are "messy, ill-defined, more complex than we fully grasp, and open to multiple interpretations based on one's point of view... No solution to a wicked problem is permanent or wholly satisfying, which leaves every solution open to easy polemical attack." These contrast with "tame" problems in which necessary information is available and solutions - even if difficult and expensive - are straightforward to identify and execute. Updating the U.S.'s aging infrastructure is a tame problem, because what is wrong and how to fix it are clear. In contrast, addressing climate change is a wicked problem because its effects are uncertain and the best strategies to address them are unclear. An analogous approach can be taken to natural hazard problems. In tame problems, we have a good model of the process, good information about past events, and data implying that the model should predict future events. In such cases, we can make a reasonable assessment of the hazard that can be used to develop mitigation strategies. Earthquake hazard mitigation for San Francisco is a relatively tame problem. We understand how the earthquakes result from known plate motions, have information about past earthquakes, and have geodetic data implying that future similar earthquakes will occur. As a result, it is straightforward to develop and implement mitigation strategies. However, in many cases, hazard assessment and mitigation is a wicked problem. How should we prepare for a great earthquake on plate boundaries where tectonics favor such events but we have no evidence that they have occurred and hence how large they may be or how often to expect them? How should we assess the hazard within plates, for example in the New Madrid seismic zone, where large earthquakes have occurred but we do not understand their causes and geodetic data show no strain accumulating? How can we assess the hazard and make sensible policy when the recurrence of

  20. A probabilistic seismic risk assessment procedure for nuclear power plants: (I) Methodology

    Science.gov (United States)

    Huang, Y.-N.; Whittaker, A.S.; Luco, N.

    2011-01-01

    A new procedure for probabilistic seismic risk assessment of nuclear power plants (NPPs) is proposed. This procedure modifies the current procedures using tools developed recently for performance-based earthquake engineering of buildings. The proposed procedure uses (a) response-based fragility curves to represent the capacity of structural and nonstructural components of NPPs, (b) nonlinear response-history analysis to characterize the demands on those components, and (c) Monte Carlo simulations to determine the damage state of the components. The use of response-rather than ground-motion-based fragility curves enables the curves to be independent of seismic hazard and closely related to component capacity. The use of Monte Carlo procedure enables the correlation in the responses of components to be directly included in the risk assessment. An example of the methodology is presented in a companion paper to demonstrate its use and provide the technical basis for aspects of the methodology. ?? 2011 Published by Elsevier B.V.

  1. SEISMIC HAZARD ASSESSMENT OF SCHOOL BUILDINGS IN PENINSULAR MALAYSIA

    OpenAIRE

    Tan, K.T.; Razak, H. Abdul

    2015-01-01

    Peninsular Malaysia is located on the southern edge of the Eurasian Plate. However, it is close to a seismically active plate boundary, the inter-plate boundary between the Indo-Australian and Eurasian Plates. Occasionally, tremors can be felt throughout the region even when active faults are located several hundred kilometers away. Lessons learnt from past events, active earthquakes located far from the existing building can cause potential damage. Thus, fragility curves become an essential ...

  2. Issues in testing the new national seismic hazard model for Italy

    Science.gov (United States)

    Stein, S.; Peresan, A.; Kossobokov, V. G.; Brooks, E. M.; Spencer, B. D.

    2016-12-01

    It is important to bear in mind that we know little about how earthquake hazard maps actually describe the shaking that will actually occur in the future, and have no agreed way of assessing how well a map performed in the past, and, thus, whether one map performs better than another. Moreover, we should not forget that different maps can be useful for different end users, who may have different cost-and-benefit strategies. Thus, regardless of the specific tests we chose to use, the adopted testing approach should have several key features: We should assess map performance using all the available instrumental, paleo seismology, and historical intensity data. Instrumental data alone span a period much too short to capture the largest earthquakes - and thus strongest shaking - expected from most faults. We should investigate what causes systematic misfit, if any, between the longest record we have - historical intensity data available for the Italian territory from 217 B.C. to 2002 A.D. - and a given hazard map. We should compare how seismic hazard maps developed over time. How do the most recent maps for Italy compare to earlier ones? It is important to understand local divergences that show how the models are developing to the most recent one. The temporal succession of maps is important: we have to learn from previous errors. We should use the many different tests that have been proposed. All are worth trying, because different metrics of performance show different aspects of how a hazard map performs and can be used. We should compare other maps to the ones we are testing. Maps can be made using a wide variety of assumptions, which will lead to different predicted shaking. It is possible that maps derived by other approaches may perform better. Although Italian current codes are based on probabilistic maps, it is important from both a scientific and societal perspective to look at all options including deterministic scenario based ones. Comparing what works

  3. Subduction zone locking, strain partitioning, intraplate deformation and their implications to Seismic Hazards in South America

    Science.gov (United States)

    Galgana, G. A.; Mahdyiar, M.; Shen-Tu, B.; Pontbriand, C. W.; Klein, E.; Wang, F.; Shabestari, K.; Yang, W.

    2014-12-01

    We analyze active crustal deformation in South America (SA) using published GPS observations and historic seismicity along the Nazca Trench and the active Ecuador-Colombia-Venezuela Plate boundary Zone. GPS-constrained kinematisc models that incorporate block and continuum techniques are used to assess patterns of regional tectonic deformation and its implications to seismic potential. We determine interplate coupling distributions, fault slip-rates, and intraplate crustal strain rates in combination with historic earthquakes within 40 seismic zones crust to provide moment rate constraints. Along the Nazca subduction zone, we resolve a series of highly coupled patches, interpreted as high-friction producing "asperities" beneath the coasts of Ecuador, Peru and Chile. These include areas responsible for the 2010 Mw 8.8 Maule Earthquake and the 2014 Mw 8.2 Iquique Earthquake. Predicted tectonic block motions and fault slip rates reveal that the northern part of South America deforms rapidly, with crustal fault slip rates as much as ~20 mm/a. Fault slip and locking patterns reveal that the Oca Ancón-Pilar-Boconó fault system plays a key role in absorbing most of the complex eastward and southward convergence patterns in northeastern Colombia and Venezuela, while the near-parallel system of faults in eastern Colombia and Ecuador absorb part of the transpressional motion due to the ~55 mm/a Nazca-SA plate convergence. These kinematic models, in combination with historic seismicity rates, provide moment deficit rates that reveal regions with high seismic potential, such as coastal Ecuador, Bucaramanga, Arica and Antofagasta. We eventually use the combined information from moment rates and fault coupling patterns to further constrain stochastic seismic hazard models of the region by implementing realistic trench rupture scenarios (see Mahdyiar et al., this volume).

  4. ASSESSMENT OF EARTHQUAKE HAZARDS ON WASTE LANDFILLS

    DEFF Research Database (Denmark)

    Zania, Varvara; Tsompanakis, Yiannis; Psarropoulos, Prodromos

    Earthquake hazards may arise as a result of: (a) transient ground deformation, which is induced due to seismic wave propagation, and (b) permanent ground deformation, which is caused by abrupt fault dislocation. Since the adequate performance of waste landfills after an earthquake is of outmost...... importance, the current study examines the impact of both types of earthquake hazards by performing efficient finite-element analyses. These took also into account the potential slip displacement development along the geosynthetic interfaces of the composite base liner. At first, the development of permanent...

  5. Active crustal deformation of the El Salvador Fault Zone by integrating geodetic, seismological and geological data: application in seismic hazard assessment

    Science.gov (United States)

    Staller, A.; Benito, B.; Martínez-Díaz, J.; Hernández, D.; Hernández-Rey, R.

    2013-05-01

    El Salvador, Central America, is part of the Chortis block in the northwestern boundary of the Caribbean plate. This block is interacting with a diffuse triple junction point with the Cocos and North American plates. Among the structures that cut the Miocene to Pleistocene volcanic deposits stands out the El Salvador Fault Zone (ESFZ): It is oriented in N90-100E direction, and it is composed of several structural segments that deform Quaternary deposits with right-lateral and oblique slip motions. The ESFZ is seismically active and capable of producing earthquakes such as the February 13, 2001 with Mw 6.6 (Martínez-Díaz et al., 2004), that seriously affected the population, leaving many casualties. This structure plays an important role in the tectonics of the Chortis block, since its motion is directly related to the drift of the Caribbean plate to the east and not with the partitioning of the deformation of the Cocos subduction (here not coupled) (Álvarez-Gómez et al., 2008). Together with the volcanic arc of El Salvador, this zone constitutes a weakness area that allows the motion of forearc block toward the NW. The geometry and the degree of activity of the ESFZ are not studied enough. However their knowledge is essential to understand the seismic hazard associated to this important seismogenic structure. For this reason, since 2007 a GPS dense network was established along the ESFZ (ZFESNet) in order to obtain GPS velocity measurements which are later used to explain the nature of strain accumulation on major faults along the ESFZ. The current work aims at understanding active crustal deformation of the ESFZ through kinematic model. The results provide significant information to be included in a new estimation of seismic hazard taking into account the major structures in ESFZ.

  6. Seismic risk assessment of a BWR

    International Nuclear Information System (INIS)

    Wells, J.E.; Bernreuter, D.L.; Chen, J.C.; Lappa, D.A.; Chuang, T.Y.; Murray, R.C.; Johnson, J.J.

    1987-01-01

    The simplified seismic risk methodology developed in the USNRC Seismic Safety Margins Research Program (SSMRP) was demonstrated by its application to the Zion nuclear power plant (PWR). The simplified seismic risk methodology was developed to reduce the costs associated with a seismic risk analysis while providing adequate results. A detailed model of Zion, including systems analysis models (initiating events, event trees, and fault trees), SSI and structure models, and piping models, was developed and used in assessing the seismic risk of the Zion nuclear power plant (FSAR). The simplified seismic risk methodology was applied to the LaSalle County Station nuclear power plant, a BWR; to further demonstrate its applicability, and if possible, to provide a basis for comparing the seismic risk from PWRs and BWRs. (orig./HP)

  7. When probabilistic seismic hazard climbs volcanoes: the Mt. Etna case, Italy – Part 2: Computational implementation and first results

    Directory of Open Access Journals (Sweden)

    L. Peruzza

    2017-11-01

    Full Text Available This paper describes the model implementation and presents results of a probabilistic seismic hazard assessment (PSHA for the Mt. Etna volcanic region in Sicily, Italy, considering local volcano-tectonic earthquakes. Working in a volcanic region presents new challenges not typically faced in standard PSHA, which are broadly due to the nature of the local volcano-tectonic earthquakes, the cone shape of the volcano and the attenuation properties of seismic waves in the volcanic region. These have been accounted for through the development of a seismic source model that integrates data from different disciplines (historical and instrumental earthquake datasets, tectonic data, etc.; presented in Part 1, by Azzaro et al., 2017 and through the development and software implementation of original tools for the computation, such as a new ground-motion prediction equation and magnitude–scaling relationship specifically derived for this volcanic area, and the capability to account for the surficial topography in the hazard calculation, which influences source-to-site distances. Hazard calculations have been carried out after updating the most recent releases of two widely used PSHA software packages (CRISIS, as in Ordaz et al., 2013; the OpenQuake engine, as in Pagani et al., 2014. Results are computed for short- to mid-term exposure times (10 % probability of exceedance in 5 and 30 years, Poisson and time dependent and spectral amplitudes of engineering interest. A preliminary exploration of the impact of site-specific response is also presented for the densely inhabited Etna's eastern flank, and the change in expected ground motion is finally commented on. These results do not account for M  >  6 regional seismogenic sources which control the hazard at long return periods. However, by focusing on the impact of M  <  6 local volcano-tectonic earthquakes, which dominate the hazard at the short- to mid-term exposure times considered

  8. Application of the neo-deterministic seismic microzonation procedure in Bulgaria and validation of the seismic input against Eurocode 8

    International Nuclear Information System (INIS)

    Paskaleva, I.; Kouteva, M.; Vaccari, F.; Panza, G.F.

    2008-03-01

    The earthquake record and the Code for design and construction in seismic regions in Bulgaria have shown that the territory of the Republic of Bulgaria is exposed to a high seismic risk due to local shallow and regional strong intermediate-depth seismic sources. The available strong motion database is quite limited, and therefore not representative at all of the real hazard. The application of the neo-deterministic seismic hazard assessment procedure for two main Bulgarian cities has been capable to supply a significant database of synthetic strong motions for the target sites, applicable for earthquake engineering purposes. The main advantage of the applied deterministic procedure is the possibility to take simultaneously and correctly into consideration the contribution to the earthquake ground motion at the target sites of the seismic source and of the seismic wave propagation in the crossed media. We discuss in this study the result of some recent applications of the neo-deterministic seismic microzonation procedure to the cities of Sofia and Russe. The validation of the theoretically modeled seismic input against Eurocode 8 and the few available records at these sites is discussed. (author)

  9. Dominant seismic sources for the cities in South Sumatra

    Science.gov (United States)

    Sunardi, Bambang; Sakya, Andi Eka; Masturyono, Murjaya, Jaya; Rohadi, Supriyanto; Sulastri, Putra, Ade Surya

    2017-07-01

    Subduction zone along west of Sumatra and Sumatran fault zone are active seismic sources. Seismotectonically, South Sumatra could be affected by earthquakes triggered by these seismic sources. This paper discussed contribution of each seismic source to earthquake hazards for cities of Palembang, Prabumulih, Banyuasin, OganIlir, Ogan Komering Ilir, South Oku, Musi Rawas and Empat Lawang. These hazards are presented in form of seismic hazard curves. The study was conducted by using Probabilistic Seismic Hazard Analysis (PSHA) of 2% probability of exceedance in 50 years. Seismic sources used in analysis included megathrust zone M2 of Sumatra and South Sumatra, background seismic sources and shallow crustal seismic sources consist of Ketaun, Musi, Manna and Kumering faults. The results of the study showed that for cities relatively far from the seismic sources, subduction / megathrust seismic source with a depth ≤ 50 km greatly contributed to the seismic hazard and the other areas showed deep background seismic sources with a depth of more than 100 km dominate to seismic hazard respectively.

  10. Earthquake Prediction Research In Iceland, Applications For Hazard Assessments and Warnings

    Science.gov (United States)

    Stefansson, R.

    Earthquake prediction research in Iceland, applications for hazard assessments and warnings. The first multinational earthquake prediction research project in Iceland was the Eu- ropean Council encouraged SIL project of the Nordic countries, 1988-1995. The path selected for this research was to study the physics of crustal processes leading to earth- quakes. It was considered that small earthquakes, down to magnitude zero, were the most significant for this purpose, because of the detailed information which they pro- vide both in time and space. The test area for the project was the earthquake prone region of the South Iceland seismic zone (SISZ). The PRENLAB and PRENLAB-2 projects, 1996-2000 supported by the European Union were a direct continuation of the SIL project, but with a more multidisciplinary approach. PRENLAB stands for "Earthquake prediction research in a natural labo- ratory". The basic objective was to advance our understanding in general on where, when and how dangerous NH10earthquake motion might strike. Methods were devel- oped to study crustal processes and conditions, by microearthquake information, by continuous GPS, InSAR, theoretical modelling, fault mapping and paleoseismology. New algorithms were developed for short term warnings. A very useful short term warning was issued twice in the year 2000, one for a sudden start of an eruption in Volcano Hekla February 26, and the other 25 hours before a second (in a sequence of two) magnitude 6.6 (Ms) earthquake in the South Iceland seismic zone in June 21, with the correct location and approximate size. A formal short term warning, although not going to the public, was also issued before a magnitude 5 earthquake in November 1998. In the presentation it will be shortly described what these warnings were based on. A general hazard assessmnets was presented in scientific journals 10-15 years ago assessing within a few kilometers the location of the faults of the two 2000 earthquakes and suggesting

  11. Improved seismic risk estimation for Bucharest, based on multiple hazard scenarios, analytical methods and new techniques

    Science.gov (United States)

    Toma-Danila, Dragos; Florinela Manea, Elena; Ortanza Cioflan, Carmen

    2014-05-01

    a very local-dependent hazard. Also, for major earthquakes, nonlinear effects need to be considered. This problem is treated accordingly, by using recent microzonation studies, together with real data recorded at 4 events with Mw≥6. Different ground motion prediction equations are also analyzed, and improvement of them is investigated. For the buildings and population damage assessment, two open-source software are used and compared: SELENA and ELER. The damage probability for buildings is obtained through capacity-spectrum based methods. The spectral content is used for spectral acceleration at 0.2, 0.3 and 1 seconds. As the level of analysis (6 sectors for all the city) has not the best resolution with respect to the Bucharest hazard scenarios defined, we propose a procedure on how to divide the data into smaller units, taking into consideration the construction code (4 periods) and material. This approach relies on free data available from real estate agencies web-sites. The study provides an insight view on the seismic risk analysis for Bucharest and an improvement of the real-time emergency system. Most important, the system is also evaluated through real data and relevant scenarios. State-of-the art GIS maps are also presented, both for seismic hazard and risk.

  12. From Seismic Scenarios to Earthquake Risk Assessment: A Case Study for Iquique, Chile.

    Science.gov (United States)

    Aguirre, P.; Fortuno, C.; Martin, J. C. D. L. L.; Vasquez, J.

    2015-12-01

    Iquique is a strategic city and economic center in northern Chile, and is located in a large seismic gap where a megathrust earthquake and tsunami is expected. Although it was hit by a Mw 8.2 earthquake on April 1st 2014, which caused moderate damage, geophysical evidence still suggests that there is potential for a larger event, so a thorough risk assessment is key to understand the physical, social, and economic effects of such potential event, and devise appropriate mitigation plans. Hence, Iquique has been selected as a prime study case for the implementation of a risk assessment platform in Chile. Our study integrates research on three main elements of risk calculations: hazard evaluation, exposure model, and physical vulnerabilities. To characterize the hazard field, a set of synthetic seismic scenarios have been developed based on plate interlocking and the residual slip potential that results from subtracting the slip occurred during the April 1st 2014 rupture fault mechanism, obtained using InSAR+GPS inversion. Additional scenarios were developed based of the fault rupture model of the Maule 2010 Mw 8.8 earthquake and on the local plate locking models in northern Chile. These rupture models define a collection of possible realizations of earthquake geometries parameterized in terms of critical variables like slip magnitude, rise time, mean propagation velocity, directivity, and other, which are propagated to obtain a hazard map for Iquique (e.g. PGA, PGV, PDG). Furthermore, a large body of public and local data was used to construct a detailed exposure model for Iquique, including aggregated building count, demographics, essential facilities, and lifelines. This model together with the PGA maps for the April 1st 2014 earthquake are used to calibrate HAZUS outputs against observed damage, and adjust the fragility curves of physical systems according to more detailed analyses of typical Chilean building types and their structural properties, plus historical

  13. Progressive Seismic Failure, Seismic Gap, and Great Seismic Risk across the Densely Populated North China Basin

    Science.gov (United States)

    Yin, A.; Yu, X.; Shen, Z.

    2014-12-01

    Although the seismically active North China basin has the most complete written records of pre-instrumentation earthquakes in the world, this information has not been fully utilized for assessing potential earthquake hazards of this densely populated region that hosts ~200 million people. In this study, we use the historical records to document the earthquake migration pattern and the existence of a 180-km seismic gap along the 600-km long right-slip Tangshan-Hejian-Cixian (THC) fault zone that cuts across the North China basin. The newly recognized seismic gap, which is centered at Tianjin with a population of 11 million people and ~120 km from Beijing (22 million people) and Tangshan (7 million people), has not been ruptured in the past 1000 years by M≥6 earthquakes. The seismic migration pattern in the past millennium suggests that the epicenters of major earthquakes have shifted towards this seismic gap along the THC fault, which implies that the 180- km gap could be the site of the next great earthquake with M≈7.6 if it is ruptured by a single event. Alternatively, the seismic gap may be explained by aseismic creeping or seismic strain transfer between active faults.

  14. Seismic PSA of nuclear power plants a case study

    International Nuclear Information System (INIS)

    Hari Prasad, M.; Dubey, P.N.; Reddy, G.R.; Saraf, R.K.; Ghosh, A.K.

    2006-07-01

    Seismic Probabilistic Safety Assessment (Seismic PSA) analysis is an external event PSA analysis. The objective of seismic PSA for the plants is to examine the existence of plant vulnerabilities against postulated earthquakes by numerically assessing the plant safety and to take appropriate measures to enhance the plant safety. Seismic PSA analysis integrates the seismic hazard analysis, seismic response analysis, seismic fragility analysis and system reliability/ accident sequence analysis. In general, the plant consists of normally operating and emergency standby systems and components. The failure during an earthquake (induced directly by excessive inertial stresses or indirectly following the failure of some other item) of an operating component will lead to a change in the state of the plant. In that case, various scenarios can follow depending on the initiating event and the status of other sub-systems. The analysis represents these possible chronological sequences by an event tree. The event trees and the associated fault trees model the sub-systems down to the level of individual components. The procedure has been applied for a typical Indian nuclear power plant. From the internal event PSA level I analysis significant contribution to the Core Damage Frequency (CDF) was found due to the Fire Water System. Hence, this system was selected to establish the procedure of seismic PSA. In this report the different elements that go into seismic PSA analysis have been discussed. Hazard curves have been developed for the site. Fragility curve for the seismically induced failure of Class IV power has been developed. The fragility curve for fire-water piping system has been generated. Event tree for Class IV power supply has been developed and the dominating accident sequences were identified. CDF has been estimated from these dominating accident sequences by convoluting hazard curves of initiating event and fragility curves of the safety systems. (author)

  15. Probabilistic Tsunami Hazard Assessment: the Seaside, Oregon Pilot Study

    Science.gov (United States)

    Gonzalez, F. I.; Geist, E. L.; Synolakis, C.; Titov, V. V.

    2004-12-01

    A pilot study of Seaside, Oregon is underway, to develop methodologies for probabilistic tsunami hazard assessments that can be incorporated into Flood Insurance Rate Maps (FIRMs) developed by FEMA's National Flood Insurance Program (NFIP). Current NFIP guidelines for tsunami hazard assessment rely on the science, technology and methodologies developed in the 1970s; although generally regarded as groundbreaking and state-of-the-art for its time, this approach is now superseded by modern methods that reflect substantial advances in tsunami research achieved in the last two decades. In particular, post-1990 technical advances include: improvements in tsunami source specification; improved tsunami inundation models; better computational grids by virtue of improved bathymetric and topographic databases; a larger database of long-term paleoseismic and paleotsunami records and short-term, historical earthquake and tsunami records that can be exploited to develop improved probabilistic methodologies; better understanding of earthquake recurrence and probability models. The NOAA-led U.S. National Tsunami Hazard Mitigation Program (NTHMP), in partnership with FEMA, USGS, NSF and Emergency Management and Geotechnical agencies of the five Pacific States, incorporates these advances into site-specific tsunami hazard assessments for coastal communities in Alaska, California, Hawaii, Oregon and Washington. NTHMP hazard assessment efforts currently focus on developing deterministic, "credible worst-case" scenarios that provide valuable guidance for hazard mitigation and emergency management. The NFIP focus, on the other hand, is on actuarial needs that require probabilistic hazard assessments such as those that characterize 100- and 500-year flooding events. There are clearly overlaps in NFIP and NTHMP objectives. NTHMP worst-case scenario assessments that include an estimated probability of occurrence could benefit the NFIP; NFIP probabilistic assessments of 100- and 500-yr

  16. Teamwork tools and activities within the hazard component of the Global Earthquake Model

    Science.gov (United States)

    Pagani, M.; Weatherill, G.; Monelli, D.; Danciu, L.

    2013-05-01

    The Global Earthquake Model (GEM) is a public-private partnership aimed at supporting and fostering a global community of scientists and engineers working in the fields of seismic hazard and risk assessment. In the hazard sector, in particular, GEM recognizes the importance of local ownership and leadership in the creation of seismic hazard models. For this reason, over the last few years, GEM has been promoting different activities in the context of seismic hazard analysis ranging, for example, from regional projects targeted at the creation of updated seismic hazard studies to the development of a new open-source seismic hazard and risk calculation software called OpenQuake-engine (http://globalquakemodel.org). In this communication we'll provide a tour of the various activities completed, such as the new ISC-GEM Global Instrumental Catalogue, and of currently on-going initiatives like the creation of a suite of tools for the creation of PSHA input models. Discussion, comments and criticism by the colleagues in the audience will be highly appreciated.

  17. Site specific probabilistic seismic hazard analysis at Dubai Creek on the west coast of UAE

    Science.gov (United States)

    Shama, Ayman A.

    2011-03-01

    A probabilistic seismic hazard analysis (PSHA) was conducted to establish the hazard spectra for a site located at Dubai Creek on the west coast of the United Arab Emirates (UAE). The PSHA considered all the seismogenic sources that affect the site, including plate boundaries such as the Makran subduction zone, the Zagros fold-thrust region and the transition fault system between them; and local crustal faults in UAE. PSHA indicated that local faults dominate the hazard. The peak ground acceleration (PGA) for the 475-year return period spectrum is 0.17 g and 0.33 g for the 2,475-year return period spectrum. The hazard spectra are then employed to establish rock ground motions using the spectral matching technique.

  18. Development of fragility descriptions of equipment for seismic risk assessment of nuclear power plants

    International Nuclear Information System (INIS)

    Hardy, G.S.; Campbell, R.D.

    1983-01-01

    Probabilistic risk assessment (PRA) of a nuclear power plant for postulated hazard requires the development of fragility relationships for the plants' safety related equipment. The objective of this paper is to present some general results and conclusions concerning the development of these seismic fragility levels. Participation in fragility-related research and experience gained from the completion of several PRA studies of a variety of nuclear power plants have provided much insight as to the most vulnerable equipment and the most efficient use of resources for development of fragilities. Plants studied had seismic design bases ranging from very simple equivalent static analysis for some of the earlier plants to state-of-the-art complex multimode dyanamic analyses for plants currently under construction. Increased sophistication and rigor in seismic qualification of equipment has resulted for the most part in increased seismic resistance. The majority of equipment has been found, however, to possess more than adequate resistance to seismic loading regardless of the degree of sophistication utilized in design as long as seismic loading was included in the design process. This paper presents conclusions of the authors as to which items of equipment typically require an individual ''plant-specific'' fragility analysis and which can be treated in a generic fashion. In addition, general conclusions on the relative seismic capacity levels and most frequent failure modes are summarized for generic equipment groups

  19. Growth of a sinkhole in a seismic zone of the Northern Apennines (Italy)

    OpenAIRE

    Rosa, Alessandro; Pagli, Carolina; Molli, Giancarlo; Casu, Francesco; Luca, Claudio; Pieroni, Amerino

    2018-01-01

    Sinkhole collapse is a major hazard causing substantial social and economic losses. However, the surface deformations and sinkhole evolution are rarely recorded, as these sites are known mainly after a collapse, making the assessment of sinkholes-related hazard challenging. Furthermore, 40 % of the sinkholes of Italy are in seismically hazardous zones; it remains unclear whether seismicity may trigger sinkhole collapse. Here we use a multidisciplinary dataset of InSAR, surface mapping ...

  20. Simplified Assessment of R3 Nominal Assurance Degree to Seismic Action of the Existing Masonry Dwellings

    Directory of Open Access Journals (Sweden)

    Teodor Broşteanu

    2008-01-01

    Full Text Available This paper refers to the assessment of the performance level of a building for a given seismic hazard level. Building performance level describes the expected seismic performance given by the computation of R3 Nominal Assurance Degree to Seismic Action of the Existing Masonry Dwellings and Monumental Buildings according to the Romanian Norm P100:1992 [1], modified on 1996 with the chapters 11 and 12, until the Part 3 of P100-1:2006 [2], will be performed for the Assessment and Strengthening Structural Design of the Seismic Vulnerable, Existing Buildings, in the frame of SR EN 1998-1:2004 EC8 [3]. The framing of damages into the potential risk degrees has a social and economic impact. Assessment and retrofitting of the existing buildings have represented a huge engineering challenge as a distinct problem versus a new building design. The performance level of a vulnerable existing building shows us the expected seismic performance level due to the classified damages, the pattern of cracks, the interruption of function, the economic losses and the needed interventions, all in function of the importance class of building on next life span of use. On recommends the computation of R (R3 Nominal Assurance Degree to Seismic Action of the Vulnerable Dwellings for the assessing and strengthening design, in comparison to both norms because of the bearing conventional seismic load computed by [1], will result less than the value which will be computed by the Part 3 of P100-1:2006, i.e. the norm P100:1992 is more severe. In the case of the breakable fracture probability of the existing structural masonry members, one recommends a bigger value of ? – reduction factor unless the given values by [1] for a new structure with a high ductility, especially for the deflections calibration on the same limit state.

  1. Fractal properties and simulation of micro-seismicity for seismic hazard analysis: a comparison of North Anatolian and San Andreas Fault Zones

    Directory of Open Access Journals (Sweden)

    Naside Ozer

    2012-02-01

    Full Text Available We analyzed statistical properties of earthquakes in western Anatolia as well as the North Anatolian Fault Zone (NAFZ in terms of spatio-temporal variations of fractal dimensions, p- and b-values. During statistically homogeneous periods characterized by closer fractal dimension values, we propose that occurrence of relatively larger shocks (M >= 5.0 is unlikely. Decreases in seismic activity in such intervals result in spatial b-value distributions that are primarily stable. Fractal dimensions decrease with time in proportion to increasing seismicity. Conversely, no spatiotemporal patterns were observed for p-value changes. In order to evaluate failure probabilities and simulate earthquake occurrence in the western NAFZ, we applied a modified version of the renormalization group method. Assuming an increase in small earthquakes is indicative of larger shocks, we apply the mentioned model to micro-seismic (M<= 3.0 activity, and test our results using San Andreas Fault Zone (SAFZ data. We propose that fractal dimension is a direct indicator of material heterogeneity and strength. Results from a model suggest simulated and observed earthquake occurrences are coherent, and may be used for seismic hazard estimation on creeping strike-slip fault zones.

  2. Tectonic styles of future earthquakes in Italy as input data for seismic hazard

    Science.gov (United States)

    Pondrelli, S.; Meletti, C.; Rovida, A.; Visini, F.; D'Amico, V.; Pace, B.

    2017-12-01

    In a recent elaboration of a new seismogenic zonation and hazard model for Italy, we tried to understand how many indications we have on the tectonic style of future earthquake/rupture. Using all available or recomputed seismic moment tensors for relevant seismic events (Mw starting from 4.5) of the last 100 yrs, first arrival focal mechanisms for less recent earthquakes and also geological data on past activated faults, we collected a database gathering a thousands of data all over the Italian peninsula and regions around it. After several summations of seismic moment tensors, over regular grids of different dimensions and different thicknesses of the seismogenic layer, we applied the same procedure to each of the 50 area sources that were designed in the seismogenic zonation. The results for several seismic zones are very stable, e.g. along the southern Apennines we expect future earthquakes to be mostly extensional, although in the outer part of the chain strike-slip events are possible. In the Northern part of the Apennines we also expect different, opposite tectonic styles for different hypocentral depths. In several zones, characterized by a low seismic moment release, defined for the study region using 1000 yrs of catalog, the next possible tectonic style of future earthquakes is less clear. It is worth to note that for some zones the possible greatest earthquake could be not represented in the available observations. We also add to our analysis the computation of the seismic release rate, computed using a distributed completeness, identified for single great events of the historical seismic catalog for Italy. All these information layers, overlapped and compared, may be used to characterize each new seismogenic zone.

  3. Offsite transportation hazards assessment

    International Nuclear Information System (INIS)

    Burnside, M.E.

    1997-01-01

    This report documents the emergency preparedness Hazards Assessment for the offsite transportation of hazardous material from the Hanford Site. The assessment is required by the US Department of Energy (DOE) Order 151.1. Offsite transportation accidents are categorized using the DOE system to assist communication within the DOE and assure that appropriate assistance is provided to the people in charge at the scene. The assistance will initially include information about the load and the potential hazards. Local authorities will use the information to protect the public following a transportation accident. This Hazards Assessment will focus on the material being transported from the Hanford Site. Shipments coming to Hanford are the responsibility of the shipper and the carrier and, therefore, are not included in this Hazards Assessment, unless the DOE elects to be the shipper of record

  4. Hazards assessment for the Hazardous Waste Storage Facility

    International Nuclear Information System (INIS)

    Knudsen, J.K.; Calley, M.B.

    1994-04-01

    This report documents the hazards assessment for the Hazardous Waste Storage Facility (HWSF) located at the Idaho National Engineering Laboratory. The hazards assessment was performed to ensure that this facility complies with DOE and company requirements pertaining to emergency planning and preparedness for operational emergencies. The hazards assessment identifies and analyzes hazards that are significant enough to warrant consideration in a facility's operational emergency management program. The area surrounding HWSF, the buildings and structures at HWSF, and the processes used at HWSF are described in this report. All nonradiological hazardous materials at the HWSF were identified (radiological hazardous materials are not stored at HWSF) and screened against threshold quantities according to DOE Order 5500.3A guidance. Two of the identified hazardous materials exceeded their specified threshold quantity. This report discusses the potential release scenarios and consequences associated with an accidental release for each of the two identified hazardous materials, lead and mercury. Emergency considerations, such as emergency planning zones, emergency classes, protective actions, and emergency action levels, are also discussed based on the analysis of potential consequences. Evaluation of the potential consequences indicated that the highest emergency class for operational emergencies at the HWSF would be a Site Area Emergency

  5. Aftershock Duration of the 1976 Ms 7.8 Tangshan Earthquake: Implication for the Seismic Hazard Model with a Sensitivity Analysis

    Science.gov (United States)

    Zhong, Q.; Shi, B.

    2011-12-01

    The disaster of the Ms 7.8 earthquake occurred in Tangshan, China, on July 28th 1976 caused at least 240,000 deaths. The mainshock was followed by two largest aftershocks, the Ms 7.1 occurred after 15 hr later of the mainshock, and the Ms 6.9 occurred on 15 November. The aftershock sequence is lasting to date, making the regional seismic activity rate around the Tangshan main fault much higher than that of before the main event. If these aftershocks are involved in the local main event catalog for the PSHA calculation purpose, the resultant seismic hazard calculation will be overestimated in this region and underestimated in other place. However, it is always difficult to accurately determine the time duration of aftershock sequences and identifies the aftershocks from main event catalog for seismologist. In this study, by using theoretical inference and empirical relation given by Dieterich, we intended to derive the plausible time length of aftershock sequences of the Ms 7.8 Tangshan earthquake. The aftershock duration from log-log regression approach gives us about 120 years according to the empirical Omori's relation. Based on Dietrich approach, it has been claimed that the aftershock duration is a function of remote shear stressing rate, normal stress acting on the fault plane, and fault frictional constitutive parameters. In general, shear stressing rate could be estimated in three ways: 1. Shear stressing rate could be written as a function of static stress drop and a mean earthquake recurrence time. In this case, the time length of aftershock sequences is about 70-100 years. However, since the recurrence time inherits a great deal of uncertainty. 2. Ziv and Rubin derived a general function between shear stressing rate, fault slip speed and fault width with a consideration that aftershock duration does not scale with mainshock magnitude. Therefore, from Ziv's consideration, the aftershock duration is about 80 years. 3. Shear stressing rate is also can be

  6. Seismic microzonation of Bangalore, India

    Indian Academy of Sciences (India)

    Evaluation of seismic hazards and microzonation of cities enable us to characterize the potential seismic areas which have similar exposures to haz- ards of earthquakes, and these results can be used for designing new structures or retrofitting the existing ones. Study of seismic hazard and preparation of microzonation ...

  7. Upgrade of 400,000 gallon water storage tank at Argonne National Laboratory-West to UCRL-15910 high hazard seismic requirements

    International Nuclear Information System (INIS)

    Griffin, M.J.; Harris, B.G.

    1993-01-01

    As part of the Integral Fast Reactor (IFR) Project at Argonne National Laboratory West (ANL-W), it was necessary to strengthen an existing 400,000 gallon flat-bottom water storage tank to meet UCRL-15910 (currently formulated as DOE Standard DOE-STD-1020-92, Draft) high hazard natural phenomena requirements. The tank was constructed in 1988 and preliminary calculations indicated that the existing base anchorage was insufficient to prevent buckling and potential failure during a high hazard seismic event. General design criteria, including ground motion input, load combinations, etc., were based upon the requirements of UCRL-15910 for high hazard facilities. The analysis and capacity assessment criteria were based on the Generic Implementation Procedure developed by the Seismic Qualification Utilities Group (SQUG). Upgrade modifications, consisting of increasing the size of the Generic Implementation Procedure developed by the Seismic Qualification Utilities Group (SQUG). Upgrade modifications, consisting of increasing the size of the foundation and installing additional anchor bolts and chairs, were necessary to increase the capacity of the tank anchorage/support system. The construction of the upgrades took place in 1992 while the tank remained in service to allow continued operation of the EBR-II reactor. The major phases of construction included the installation and testing of 144 1/14in. x 15in., and 366 1in. x 16in. epoxied concrete anchors, placement of 220 cubic yards of concrete heavily reinforced, and installation of 24 1-1/2in. x 60in. tank anchor bolts and chairs. A follow-up inspection of the tank interior by a diver was conducted to determine if the interior tank coating had been damaged by the chair welding. The project was completed on schedule and within budget

  8. Next-generation probabilistic seismicity forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Hiemer, S.

    2014-07-01

    The development of probabilistic seismicity forecasts is one of the most important tasks of seismologists at present time. Such forecasts form the basis of probabilistic seismic hazard assessment, a widely used approach to generate ground motion exceedance maps. These hazard maps guide the development of building codes, and in the absence of the ability to deterministically predict earthquakes, good building and infrastructure planning is key to prevent catastrophes. Probabilistic seismicity forecasts are models that specify the occurrence rate of earthquakes as a function of space, time and magnitude. The models presented in this thesis are time-invariant mainshock occurrence models. Accordingly, the reliable estimation of the spatial and size distribution of seismicity are of crucial importance when constructing such probabilistic forecasts. Thereby we focus on data-driven approaches to infer these distributions, circumventing the need for arbitrarily chosen external parameters and subjective expert decisions. Kernel estimation has been shown to appropriately transform discrete earthquake locations into spatially continuous probability distributions. However, we show that neglecting the information from fault networks constitutes a considerable shortcoming and thus limits the skill of these current seismicity models. We present a novel earthquake rate forecast that applies the kernel-smoothing method to both past earthquake locations and slip rates on mapped crustal faults applied to Californian and European data. Our model is independent from biases caused by commonly used non-objective seismic zonations, which impose artificial borders of activity that are not expected in nature. Studying the spatial variability of the seismicity size distribution is of great importance. The b-value of the well-established empirical Gutenberg-Richter model forecasts the rates of hazard-relevant large earthquakes based on the observed rates of abundant small events. We propose a

  9. Next-generation probabilistic seismicity forecasting

    International Nuclear Information System (INIS)

    Hiemer, S.

    2014-01-01

    The development of probabilistic seismicity forecasts is one of the most important tasks of seismologists at present time. Such forecasts form the basis of probabilistic seismic hazard assessment, a widely used approach to generate ground motion exceedance maps. These hazard maps guide the development of building codes, and in the absence of the ability to deterministically predict earthquakes, good building and infrastructure planning is key to prevent catastrophes. Probabilistic seismicity forecasts are models that specify the occurrence rate of earthquakes as a function of space, time and magnitude. The models presented in this thesis are time-invariant mainshock occurrence models. Accordingly, the reliable estimation of the spatial and size distribution of seismicity are of crucial importance when constructing such probabilistic forecasts. Thereby we focus on data-driven approaches to infer these distributions, circumventing the need for arbitrarily chosen external parameters and subjective expert decisions. Kernel estimation has been shown to appropriately transform discrete earthquake locations into spatially continuous probability distributions. However, we show that neglecting the information from fault networks constitutes a considerable shortcoming and thus limits the skill of these current seismicity models. We present a novel earthquake rate forecast that applies the kernel-smoothing method to both past earthquake locations and slip rates on mapped crustal faults applied to Californian and European data. Our model is independent from biases caused by commonly used non-objective seismic zonations, which impose artificial borders of activity that are not expected in nature. Studying the spatial variability of the seismicity size distribution is of great importance. The b-value of the well-established empirical Gutenberg-Richter model forecasts the rates of hazard-relevant large earthquakes based on the observed rates of abundant small events. We propose a

  10. Fragility analysis of flood protection structures in earthquake and flood prone areas around Cologne, Germany for multi-hazard risk assessment

    Science.gov (United States)

    Tyagunov, Sergey; Vorogushyn, Sergiy; Munoz Jimenez, Cristina; Parolai, Stefano; Fleming, Kevin; Merz, Bruno; Zschau, Jochen

    2013-04-01

    The work presents a methodology for fragility analyses of fluvial earthen dikes in earthquake and flood prone areas. Fragility estimates are being integrated into the multi-hazard (earthquake-flood) risk analysis being undertaken within the framework of the EU FP7 project MATRIX (New Multi-Hazard and Multi-Risk Assessment Methods for Europe) for the city of Cologne, Germany. Scenarios of probable cascading events due to the earthquake-triggered failure of flood protection dikes and the subsequent inundation of surroundings are analyzed for the area between the gauges Andernach and Düsseldorf along the Rhine River. Along this river stretch, urban areas are partly protected by earthen dikes, which may be prone to failure during exceptional floods and/or earthquakes. The seismic fragility of the dikes is considered in terms of liquefaction potential (factor of safety), estimated by the use of the simplified procedure of Seed and Idriss. It is assumed that initiation of liquefaction at any point throughout the earthen dikes' body corresponds to the failure of the dike and, therefore, this should be taken into account for the flood risk calculations. The estimated damage potential of such structures is presented as a two-dimensional surface (as a function of seismic hazard and water level). Uncertainties in geometrical and geotechnical dike parameters are considered within the framework of Monte Carlo simulations. Taking into consideration the spatial configuration of the existing flood protection system within the area under consideration, seismic hazard curves (in terms of PGA) are calculated for sites along the river segment of interest at intervals of 1 km. The obtained estimates are used to calculate the flood risk when considering the temporal coincidence of seismic and flood events. Changes in flood risk for the considered hazard cascade scenarios are quantified and compared to the single-hazard scenarios.

  11. A procedure for assessing seismic hazard generated by Vrancea earthquakes and its application. III. A method for developing isoseismal and isoacceleration maps. Applications

    International Nuclear Information System (INIS)

    Enescu, D.; Enescu, B.D.

    2007-01-01

    A method for developing isoseismal and isoacceleration maps assumedly valid for future strong earthquakes (M GR > 6.7) is described as constituting the third stage of a procedure for assessing the seismic hazard generated by Vrancea earthquakes. The method relies on the results of the former two stages given by Enescu et al., and on further developments that are presented in this paper. Moreover, it is based on instrument recording data. Major earthquakes taking place in Vrancea (November 10, 1940 - M GR 7.4, March 4, 1977 - M GR = 7.2 and the strongest possible) were examined as a way to test the method. The method is also applied for an earthquake of magnitude M GR = 6.7. Given the successful results of the tests, the method can by used for predicting isoseismal and isoacceleration maps for future Vrancea earthquakes of various magnitudes M GR ≥ 6.7. (authors)

  12. Develop and implement preconditioning techniques to control face ejection rockbursts for safer mining in seismically hazardous areas

    CSIR Research Space (South Africa)

    Toper, AZ

    1998-01-01

    Full Text Available This research report discusses the development of preconditioning techniques to control face bursts, for safer mining in seismically hazardous areas. Preconditioning involves regularly setting off carefully tailored blasts in the fractured rock...

  13. Scenario based seismic hazard assessment and its application to the seismic verification of relevant buildings

    Science.gov (United States)

    Romanelli, Fabio; Vaccari, Franco; Altin, Giorgio; Panza, Giuliano

    2016-04-01

    The procedure we developed, and applied to a few relevant cases, leads to the seismic verification of a building by: a) use of a scenario based neodeterministic approach (NDSHA) for the calculation of the seismic input, and b) control of the numerical modeling of an existing building, using free vibration measurements of the real structure. The key point of this approach is the strict collaboration, from the seismic input definition to the monitoring of the response of the building in the calculation phase, of the seismologist and the civil engineer. The vibrometry study allows the engineer to adjust the computational model in the direction suggested by the experimental result of a physical measurement. Once the model has been calibrated by vibrometric analysis, one can select in the design spectrum the proper range of periods of interest for the structure. Then, the realistic values of spectral acceleration, which include the appropriate amplification obtained through the modeling of a "scenario" input to be applied to the final model, can be selected. Generally, but not necessarily, the "scenario" spectra lead to higher accelerations than those deduced by taking the spectra from the national codes (i.e. NTC 2008, for Italy). The task of the verifier engineer is to act so that the solution of the verification is conservative and realistic. We show some examples of the application of the procedure to some relevant (e.g. schools) buildings of the Trieste Province. The adoption of the scenario input has given in most of the cases an increase of critical elements that have to be taken into account in the design of reinforcements. However, the higher cost associated with the increase of elements to reinforce is reasonable, especially considering the important reduction of the risk level.

  14. Seismic Isolation Working Meeting Gap Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Justin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sabharwall, Piyush [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    The ultimate goal in nuclear facility and nuclear power plant operations is operating safety during normal operations and maintaining core cooling capabilities during off-normal events including external hazards. Understanding the impact external hazards, such as flooding and earthquakes, have on nuclear facilities and NPPs is critical to deciding how to manage these hazards to expectable levels of risk. From a seismic risk perspective the goal is to manage seismic risk. Seismic risk is determined by convolving the seismic hazard with seismic fragilities (capacity of systems, structures, and components (SSCs)). There are large uncertainties associated with evolving nature of the seismic hazard curves. Additionally there are requirements within DOE and potential requirements within NRC to reconsider updated seismic hazard curves every 10 years. Therefore opportunity exists for engineered solutions to manage this seismic uncertainty. One engineered solution is seismic isolation. Current seismic isolation (SI) designs (used in commercial industry) reduce horizontal earthquake loads and protect critical infrastructure from the potentially destructive effects of large earthquakes. The benefit of SI application in the nuclear industry is being recognized and SI systems have been proposed, in the American Society of Civil Engineers (ASCE) 4 standard, to be released in 2014, for Light Water Reactors (LWR) facilities using commercially available technology. However, there is a lack of industry application to the nuclear industry and uncertainty with implementing the procedures outlined in ASCE-4. Opportunity exists to determine barriers associated with implementation of current ASCE-4 standard language.

  15. Real-time Microseismic Processing for Induced Seismicity Hazard Detection

    Energy Technology Data Exchange (ETDEWEB)

    Matzel, Eric M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-31

    Induced seismicity is inherently associated with underground fluid injections. If fluids are injected in proximity to a pre-existing fault or fracture system, the resulting elevated pressures can trigger dynamic earthquake slip, which could both damage surface structures and create new migration pathways. The goal of this research is to develop a fundamentally better approach to geological site characterization and early hazard detection. We combine innovative techniques for analyzing microseismic data with a physics-based inversion model to forecast microseismic cloud evolution. The key challenge is that faults at risk of slipping are often too small to detect during the site characterization phase. Our objective is to devise fast-running methodologies that will allow field operators to respond quickly to changing subsurface conditions.

  16. Probabilistic Seismic Risk Assessment in Manizales, Colombia:Quantifying Losses for Insurance Purposes

    Institute of Scientific and Technical Information of China (English)

    Mario A.Salgado-Gálvez; Gabriel A.Bernal; Daniela Zuloaga; Mabel C.Marulanda; Omar-Darío Cardona; Sebastián Henao

    2017-01-01

    A fully probabilistic seismic risk assessment was developed in Manizales,Colombia,considering assets of different types.The first type includes elements that are part of the water and sewage network,and the second type includes public and private buildings.This assessment required the development of a probabilistic seismic hazard analysis that accounts for the dynamic soil response,assembling high resolution exposure databases,and the development of damage models for different types of elements.The economic appraisal of the exposed assets was developed together with specialists of the water utilities company of Manizales and the city administration.The risk assessment was performed using several Comprehensive Approach to Probabilistic Risk Assessment modules as well as the R-System,obtaining results in terms of traditional metrics such as loss exceedance curve,average annual loss,and probable maximum loss.For the case of pipelines,repair rates were also estimated.The results for the water and sewage network were used in activities related to the expansion and maintenance strategies,as well as for the exploration of financial retention and transfer alternatives using insurance schemes based on technical,probabilistic,and prospective damage and loss estimations.In the case of the buildings,the results were used in the update of the technical premium values of the existing collective insurance scheme.

  17. The influence of regional geological settings on the seismic hazard level in copper mines in the Legnica-Głogów Copper Belt Area (Poland

    Directory of Open Access Journals (Sweden)

    Burtan Zbigniew

    2017-01-01

    Full Text Available The current level of rockburst hazard in copper mines of the (LGOM Legnica- Głogów Copper Belt Area is mostly the consequence of mining-induced seismicity, whilst the majority of rockbursting events registered to date were caused by high-energy tremors. The analysis of seismic readings in recent years reveals that the highest seismic activity among the copper mines in the LGOM is registered in the mine Rudna. This study investigates the seismic activity in the rock strata in the Rudna mine fields over the years 2006-2015. Of particular interest are the key seismicity parameters: the number of registered seismic events, the total energy emissions, the energy index. It appears that varied seismic activity in the area may be the function of several variables: effective mining thickness, the thickness of burst-prone strata and tectonic intensity. The results support and corroborate the view that principal factors influencing the actual seismic hazard level are regional geological conditions in the copper mines within the Legnica-Głogów Copper Belt Area.

  18. The influence of regional geological settings on the seismic hazard level in copper mines in the Legnica-Głogów Copper Belt Area (Poland)

    Science.gov (United States)

    Burtan, Zbigniew

    2017-11-01

    The current level of rockburst hazard in copper mines of the (LGOM) Legnica- Głogów Copper Belt Area is mostly the consequence of mining-induced seismicity, whilst the majority of rockbursting events registered to date were caused by high-energy tremors. The analysis of seismic readings in recent years reveals that the highest seismic activity among the copper mines in the LGOM is registered in the mine Rudna. This study investigates the seismic activity in the rock strata in the Rudna mine fields over the years 2006-2015. Of particular interest are the key seismicity parameters: the number of registered seismic events, the total energy emissions, the energy index. It appears that varied seismic activity in the area may be the function of several variables: effective mining thickness, the thickness of burst-prone strata and tectonic intensity. The results support and corroborate the view that principal factors influencing the actual seismic hazard level are regional geological conditions in the copper mines within the Legnica-Głogów Copper Belt Area.

  19. Seismic evaluation of existing nuclear power plants

    International Nuclear Information System (INIS)

    2003-01-01

    The IAEA nuclear safety standards publications address the site evaluation and the design of new nuclear power plants (NPPs), including seismic hazard assessment and safe seismic design, at the level of the Safety Requirements as well as at the level of dedicated Safety Guides. It rapidly became apparent that the existing nuclear safety standards documents were not adequate for handling specific issues in the seismic evaluation of existing NPPs, and that a dedicated document was necessary. This is the purpose of this Safety Report, which is written in the spirit of the nuclear safety standards and can be regarded as guidance for the interpretation of their intent. Worldwide experience shows that an assessment of the seismic capacity of an existing operating facility can be prompted for the following: (a) Evidence of a greater seismic hazard at the site than expected before, owing to new or additional data and/or to new methods; (b) Regulatory requirements, such as periodic safety reviews, to ensure that the plant has adequate margins for seismic loads; (c) Lack of anti-seismic design or poor anti-seismic design; (d) New technical finding such as vulnerability of some structures (masonry walls) or equipment (relays), other feedback and new experience from real earthquakes. Post-construction evaluation programmes evaluate the current capability of the plant to withstand the seismic concern and identify any necessary upgrades or changes in operating procedures. Seismic qualification is distinguished from seismic evaluation primarily in that seismic qualification is intended to be performed at the design stage of a plant, whereas seismic evaluation is intended to be applied after a plant has been constructed. Although some guidelines do exist for the evaluation of existing NPPs, these are not established at the level of a regulatory guide or its equivalent. Nevertheless, a number of existing NPPs throughout the world have been and are being subjected to review of their

  20. An operational-oriented approach to the assessment of low probability seismic ground motions for critical infrastructures

    Science.gov (United States)

    Garcia-Fernandez, Mariano; Assatourians, Karen; Jimenez, Maria-Jose

    2018-01-01

    Extreme natural hazard events have the potential to cause significant disruption to critical infrastructure (CI) networks. Among them, earthquakes represent a major threat as sudden-onset events with limited, if any, capability of forecast, and high damage potential. In recent years, the increased exposure of interdependent systems has heightened concern, motivating the need for a framework for the management of these increased hazards. The seismic performance level and resilience of existing non-nuclear CIs can be analyzed by identifying the ground motion input values leading to failure of selected key elements. Main interest focuses on the ground motions exceeding the original design values, which should correspond to low probability occurrence. A seismic hazard methodology has been specifically developed to consider low-probability ground motions affecting elongated CI networks. The approach is based on Monte Carlo simulation, which allows for building long-duration synthetic earthquake catalogs to derive low-probability amplitudes. This approach does not affect the mean hazard values and allows obtaining a representation of maximum amplitudes that follow a general extreme-value distribution. This facilitates the analysis of the occurrence of extremes, i.e., very low probability of exceedance from unlikely combinations, for the development of, e.g., stress tests, among other applications. Following this methodology, extreme ground-motion scenarios have been developed for selected combinations of modeling inputs including seismic activity models (source model and magnitude-recurrence relationship), ground motion prediction equations (GMPE), hazard levels, and fractiles of extreme ground motion. The different results provide an overview of the effects of different hazard modeling inputs on the generated extreme motion hazard scenarios. This approach to seismic hazard is at the core of the risk analysis procedure developed and applied to European CI transport

  1. Probabilistic seismic hazard estimates incorporating site effects - An example from Indiana, U.S.A

    Science.gov (United States)

    Hasse, J.S.; Park, C.H.; Nowack, R.L.; Hill, J.R.

    2010-01-01

    The U.S. Geological Survey (USGS) has published probabilistic earthquake hazard maps for the United States based on current knowledge of past earthquake activity and geological constraints on earthquake potential. These maps for the central and eastern United States assume standard site conditions with Swave velocities of 760 m/s in the top 30 m. For urban and infrastructure planning and long-term budgeting, the public is interested in similar probabilistic seismic hazard maps that take into account near-surface geological materials. We have implemented a probabilistic method for incorporating site effects into the USGS seismic hazard analysis that takes into account the first-order effects of the surface geologic conditions. The thicknesses of sediments, which play a large role in amplification, were derived from a P-wave refraction database with over 13, 000 profiles, and a preliminary geology-based velocity model was constructed from available information on S-wave velocities. An interesting feature of the preliminary hazard maps incorporating site effects is the approximate factor of two increases in the 1-Hz spectral acceleration with 2 percent probability of exceedance in 50 years for parts of the greater Indianapolis metropolitan region and surrounding parts of central Indiana. This effect is primarily due to the relatively thick sequence of sediments infilling ancient bedrock topography that has been deposited since the Pleistocene Epoch. As expected, the Late Pleistocene and Holocene depositional systems of the Wabash and Ohio Rivers produce additional amplification in the southwestern part of Indiana. Ground motions decrease, as would be expected, toward the bedrock units in south-central Indiana, where motions are significantly lower than the values on the USGS maps.

  2. Delineation of seismic source zones based on seismicity parameters ...

    Indian Academy of Sciences (India)

    In the present study, an attempt has been made to delineate seismic source zones in the study area (south India) based on the seismicity parameters. Seismicity parameters and the maximum probable earthquake for these source zones were evaluated and were used in the hazard evaluation. The probabilistic evaluation of ...

  3. Influence of the crustal and subcrustal Vrancea seismic sources on Cernavoda nuclear power plant site

    International Nuclear Information System (INIS)

    Marmureanu, Gheorghe; Popescu, Emilia; Mircea Radulian

    2002-01-01

    The basis of the seismic hazard assessment in different geographical regions with dense-populated areas and strategic objectives (dams, nuclear power plants, etc.) is the study of seismicity of the seismogenic sources which affect these sites. The purpose of this paper is to provide a complete set of information relative to the Vrancea seismic source (in the crust and the intermediate depth domains) that is fundamental for the seismic hazard evaluation at Cernavoda nuclear power plant site. The analysis that we propose has to deal with the following items: (1) geometrical definition of the seismic sources; (2) setting the earthquake catalog associated to each seismic source; (3) estimation of the maximum possible magnitude; (4) estimation of the frequency - magnitude relationship; (5) computation of the distribution function for focal distance; (6) correlation between focal depth and magnitude; (7) attenuation law. We discuss also the implications of the model parameters on the seismic hazard level. (authors)

  4. Building an Ensemble Seismic Hazard Model for the Magnitude Distribution by Using Alternative Bayesian Implementations

    Science.gov (United States)

    Taroni, M.; Selva, J.

    2017-12-01

    In this work we show how we built an ensemble seismic hazard model for the magnitude distribution for the TSUMAPS-NEAM EU project (http://www.tsumaps-neam.eu/). The considered source area includes the whole NEAM region (North East Atlantic, Mediterranean and connected seas). We build our models by using the catalogs (EMEC and ISC), their completeness and the regionalization provided by the project. We developed four alternative implementations of a Bayesian model, considering tapered or truncated Gutenberg-Richter distributions, and fixed or variable b-value. The frequency size distribution is based on the Weichert formulation. This allows for simultaneously assessing all the frequency-size distribution parameters (a-value, b-value, and corner magnitude), using multiple completeness periods for the different magnitudes. With respect to previous studies, we introduce the tapered Pareto distribution (in addition to the classical truncated Pareto), and we build a novel approach to quantify the prior distribution. For each alternative implementation, we set the prior distributions using the global seismic data grouped according to the different types of tectonic setting, and assigned them to the related regions. The estimation is based on the complete (not declustered) local catalog in each region. Using the complete catalog also allows us to consider foreshocks and aftershocks in the seismic rate computation: the Poissonicity of the tsunami events (and similarly the exceedances of the PGA) will be insured by the Le Cam's theorem. This Bayesian approach provides robust estimations also in the zones where few events are available, but also leaves us the possibility to explore the uncertainty associated with the estimation of the magnitude distribution parameters (e.g. with the classical Metropolis-Hastings Monte Carlo method). Finally we merge all the models with their uncertainty to create the ensemble model that represents our knowledge of the seismicity in the

  5. Review of earthquake hazard assessments of plant sites at Paducah, Kentucky and Portsmouth, Ohio

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Members of the US Geological Survey staff in Golden, Colorado, have reviewed the submissions of Lawrence Livermore National Laboratory (LLNL) staff and of Risk Engineering, Inc. (REI) (Golden, Colorado) for seismic hazard estimates for Department of Energy facilities at Portsmouth, Ohio, and Paducah, Kentucky. We reviewed the historical seismicity and seismotectonics near the two sites, and general features of the LLNL and EPRI/SOG methodologies used by LLNL and Risk Engineering respectively, and also the separate Risk Engineering methodology used at Paducah. We discussed generic issues that affect the modeling of both sites, and performed alternative calculations to determine sensitivities of seismic hazard results to various assumptions and models in an attempt to assign reasonable bounding values of the hazard. In our studies we find that peak acceleration values of 0.08 g for Portsmouth and 0.32 g for Paducah represent central values of the, ground motions obtained at 1000-year return periods. Peak accelerations obtained in the LLNL and Risk Engineering studies have medians near these values (results obtained using the EPRI/SOG methodology appear low at both sites), and we believe that these medians are appropriate values for use in the evaluation of systems, structures, and components for seismic structural integrity and for the seismic design of new and improved systems, structures, and components at Portsmouth and Paducah.

  6. Review of earthquake hazard assessments of plant sites at Paducah, Kentucky, and Portsmouth, Ohio

    International Nuclear Information System (INIS)

    1992-03-01

    Members of the US Geological Survey staff in Golden, Colorado, have reviewed the submissions of Lawrence Livermore National Laboratory (LLNL) staff and of Risk Engineering, Inc. (REI) (Golden, Colorado) for seismic hazard estimates for Department of Energy facilities at Portsmouth, Ohio, and Paducah, Kentucky. We reviewed the historical seismicity and seismotectonics near the two sites, and general features of the LLNL and EPRI/SOG methodologies used by LLNL and Risk Engineering respectively, and also the separate Risk Engineering methodology used at Paducah. We discussed generic issues that affect the modeling of both sites, and performed alternative calculations to determine sensitivities of seismic hazard results to various assumptions and models in an attempt to assign reasonable bounding values of the hazard. In our studies we find that peak acceleration values of 0.08 g for Portsmouth and 0.32 g for Paducah represent central values of the ground motions obtained at 1000-year return periods. Peak accelerations obtained in the LLNL and Risk Engineering studies have medians near these values (results obtained using the EPRI/SOG methodology appear low at both sites), and we believe that these medians are appropriate values for use in the evaluation of systems, structures, and components for seismic structural integrity and for the seismic design of new and improved systems, structures, and components at Portsmouth and Paducah

  7. Review of earthquake hazard assessments of plant sites at Paducah, Kentucky and Portsmouth, Ohio

    International Nuclear Information System (INIS)

    1997-01-01

    Members of the US Geological Survey staff in Golden, Colorado, have reviewed the submissions of Lawrence Livermore National Laboratory (LLNL) staff and of Risk Engineering, Inc. (REI) (Golden, Colorado) for seismic hazard estimates for Department of Energy facilities at Portsmouth, Ohio, and Paducah, Kentucky. We reviewed the historical seismicity and seismotectonics near the two sites, and general features of the LLNL and EPRI/SOG methodologies used by LLNL and Risk Engineering respectively, and also the separate Risk Engineering methodology used at Paducah. We discussed generic issues that affect the modeling of both sites, and performed alternative calculations to determine sensitivities of seismic hazard results to various assumptions and models in an attempt to assign reasonable bounding values of the hazard. In our studies we find that peak acceleration values of 0.08 g for Portsmouth and 0.32 g for Paducah represent central values of the, ground motions obtained at 1000-year return periods. Peak accelerations obtained in the LLNL and Risk Engineering studies have medians near these values (results obtained using the EPRI/SOG methodology appear low at both sites), and we believe that these medians are appropriate values for use in the evaluation of systems, structures, and components for seismic structural integrity and for the seismic design of new and improved systems, structures, and components at Portsmouth and Paducah

  8. Thermal regime of the lithosphere and prediction of seismic hazard in the Caspian region

    International Nuclear Information System (INIS)

    Levin, L.E.; Solodilov, L.N.; Kondorskaya, N.V.; Gasanov, A.G; Panahi, B.M.

    2002-01-01

    Full text : Prediction of seicmicity is one of elements of ecology hazard warning. In this collective research, it is elaborated in three directions : quantitative estimate of regional faults by level of seismic activity; ascertainment of space position of earthquake risk zones, determination of high seismic potential sites for the period of the next 3-5 years. During elaboration of prediction, it takes into account that peculiar feature all over the is determined by relationship of about 90 percent of earthquake hypocenters and released energy of seismic waves with elactic-brittle ayer of the lithosphere. Concetration of earthquakes epicenters is established predominantly in zones of complex structure of elastic-brittle layer where gradient of it thickness is 20-30 km. Directions of hypocenters migration in the plastic-viscous layer reveal a space position of seismic dangerous zones. All this provides a necessity for generalization of data on location of earthquakes epicenters; determination of their magnitudes, space position of regional faults and heat flow with calculation of thermal regime being made for clarification of the lithosphere and elastic-brittle thickness variations separately. General analysis includes a calculation of released seismic wave energy and determination of peculiar features of its distribution in the entire region and also studies of hypocenters migration in the plastic-viscous layer of the litosphere in time.

  9. Comments on Potential Geologic and Seismic Hazards Affecting Proposed Liquefied Natural Gas Site in Santa Monica Bay, California

    Science.gov (United States)

    Ross, Stephanie L.; Lee, Homa J.; Parsons, Tom E.; Beyer, Larry A.; Boore, David M.; Conrad, James E.; Edwards, Brian D.; Fisher, Michael A.; Frankel, Arthur D.; Geist, Eric L.; Hudnut, Kenneth W.; Hough, Susan E.; Kayen, Robert E.; Lorenson, T.D.; Luco, Nicolas; McCrory, Patricia A.; McGann, Mary; Nathenson, Manuel; Nolan, Michael; Petersen, Mark D.; Ponti, Daniel J.; Powell, Charles L.; Ryan, Holly F.; Tinsley, John C.; Wills, Chris J.; Wong, Florence L.; Xu, Jingping

    2008-01-01

    West, Inc., had already prepared a document discussing geologic hazards in the area, titled 'Exhibit B Topic Report 6 - Geological Resources' (Fugro West, Inc., 2007); hereafter, this will be called the 'Geological Resources document'. The USGS agreed to evaluate the information in the Geological Resources document regarding (1) proximity of active faults to the proposed project, (2) potential magnitude of seismic events from nearby faults, (3) thoroughness of the assessment of earthquake hazards in general, (4) potential hazards from ground rupture and strong shaking, (5) potential hazards from tsunamis, and (6) other geologic hazards including landslides and debris flows. Because two new earthquake probability reports were scheduled to be released in mid-April, 2008, by the USGS and the California Geological Survey (CGS), the USGS suggested a 6-month review period to enable a thorough incorporation of this new information. Twenty-seven scientists from the USGS and the CGS reviewed various sections of the Geological Resources document. This report outlines our major conclusions. The appendix is a longer list of comments by these reviewers, grouped by section of the Geological Resources document. Before discussing our reviews, we first provide a brief overview of geologic hazards in the proposed site area. This report is a snapshot in time and any future work in the area will need to take into account ongoing research efforts. For example, USGS scientists collected seismic reflection data in the spring of 2008 to study the structure and seismic potential of several faults in the area. Their interpretations (Conrad and others, 2008a and 2008b) are too preliminary to be included in this report, but their final results, along with other researchers' studies in the project area, should be considered in any future work on the Deepwater Port project.

  10. Keeping pace with the science: Seismic hazard analysis in the central and eastern United States

    International Nuclear Information System (INIS)

    Coppersmith, K.J.; Youngs, R.R.

    1989-01-01

    Our evolving tectonic understanding of the causes and locations of earthquakes in the central and eastern US (CEUS) has been a challenge to probabilistic seismic hazard analyses (PSHA) methodologies. The authors summarize some of the more significant advances being made in characterizing the location, maximum earthquake size, recurrence, and ground motions associated with CEUS earthquakes

  11. Afghanistan Multi-Risk Assessment to Natural Hazards

    Science.gov (United States)

    Diermanse, Ferdinand; Daniell, James; Pollino, Maurizio; Glover, James; Bouwer, Laurens; de Bel, Mark; Schaefer, Andreas; Puglisi, Claudio; Winsemius, Hessel; Burzel, Andreas; Ammann, Walter; Aliparast, Mojtaba; Jongman, Brenden; Ranghieri, Federica; Fallesen, Ditte

    2017-04-01

    The geographical location of Afghanistan and years of environmental degradation in the country make Afghanistan highly prone to intense and recurring natural hazards such as flooding, earthquakes, snow avalanches, landslides, and droughts. These occur in addition to man-made disasters resulting in the frequent loss of live, livelihoods, and property. Since 1980, disasters caused by natural hazards have affected 9 million people and caused over 20,000 fatalities in Afghanistan. The creation, understanding and accessibility of hazard, exposure, vulnerability and risk information is key for effective management of disaster risk. This is especially true in Afghanistan, where reconstruction after recent natural disasters and military conflicts is on-going and will continue over the coming years. So far, there has been limited disaster risk information produced in Afghanistan, and information that does exist typically lacks standard methodology and does not have uniform geo-spatial coverage. There are currently no available risk assessment studies that cover all major natural hazards in Afghanistan, which can be used to assess the costs and benefits of different resilient reconstruction and disaster risk reduction strategies. As a result, the Government of Afghanistan has limited information regarding current and future disaster risk and the effectiveness of policy options on which to base their reconstruction and risk reduction decisions. To better understand natural hazard and disaster risk, the World Bank and Global Facility for Disaster Reduction and Recovery (GFDRR) are supporting the development of new fluvial flood, flash flood, drought, landslide, avalanche and seismic risk information in Afghanistan, as well as a first-order analysis of the costs and benefits of resilient reconstruction and risk reduction strategies undertaken by the authors. The hazard component is the combination of probability and magnitude of natural hazards. Hazard analyses were carried out

  12. A regulatory view of the seismic assessment of existing nuclear structures in the United Kingdom

    International Nuclear Information System (INIS)

    Inkester, J.E.

    2001-01-01

    The paper describes the background to the seismic assessment of existing nuclear structures in the United Kingdom. Nuclear installations in this country were not designed specifically to resist earthquakes until the nineteen-seventies, although older plants were robustly constructed. The seismic capability of these older installations is now being evaluated as part of the periodic safety reviews which nuclear licensees are required to carry out. The regulatory requirements which set the framework for these studies are explained. The licensees' processes of hazard appraisal and examination of the response of the structure are briefly summarized. Regulatory views on some of the criteria used to judge the adequacy of safety are discussed. Finally the paper provides some comments on future initiatives and possible areas of development. (author)

  13. Estimated airborne release of plutonium from Westinghouse Cheswick site as a result of postulated damage from severe wind and seismic hazard

    International Nuclear Information System (INIS)

    Mishima, J.; Schwendiman, L.C.; Ayer, J.E.

    1979-06-01

    The potential airborne releases of plutonium (source terms) from postulated damage sustained by the Westinghouse Plutonium Fuel Development Laboratories at the Cheswick site in Pennsylvania as a result of various levels of wind and seismic hazard are estimated. The source terms are based on damage scenarios originated by other specialists and range up to 260 mph for wind hazard and in excess of 0.39 g ground acceleration for seismic hazard. The approaches and factors used to estimate the source terms (inventories of dispersible materials at risk, damage levels and ratios, fractional airborne releases of dispersible materials under stress, atmosphere exchange rates, and source term ranges) are discussed. Source term estimates range from less than 10 -7 g plutonium to greater than 130 g plutonium over a four-day period

  14. Identification of Potential Hazard using Hazard Identification and Risk Assessment

    Science.gov (United States)

    Sari, R. M.; Syahputri, K.; Rizkya, I.; Siregar, I.

    2017-03-01

    This research was conducted in the paper production’s company. These Paper products will be used as a cigarette paper. Along in the production’s process, Company provides the machines and equipment that operated by workers. During the operations, all workers may potentially injured. It known as a potential hazard. Hazard identification and risk assessment is one part of a safety and health program in the stage of risk management. This is very important as part of efforts to prevent occupational injuries and diseases resulting from work. This research is experiencing a problem that is not the identification of potential hazards and risks that would be faced by workers during the running production process. The purpose of this study was to identify the potential hazards by using hazard identification and risk assessment methods. Risk assessment is done using severity criteria and the probability of an accident. According to the research there are 23 potential hazard that occurs with varying severity and probability. Then made the determination Risk Assessment Code (RAC) for each potential hazard, and gained 3 extreme risks, 10 high risks, 6 medium risks and 3 low risks. We have successfully identified potential hazard using RAC.

  15. Seismogenic structures of the central Apennines and its implication for seismic hazard

    Science.gov (United States)

    Zheng, Y.; Riaz, M. S.; Shan, B.

    2017-12-01

    The central Apennines belt is formed during the Miocene-to-Pliocene epoch under the environment where the Adriatic Plate collides with and plunges beneath the Eurasian Plate, eventually formed a fold and thrust belt. This active fold and thrust belt has experienced relatively frequent moderate-magnitude earthquakesover, as well as strong destructive earthquakes such as the 1997 Umbira-Marche sequence, the 2009 Mw 6.3 L'Aquila earthquake sequence, and three strong earthquakes occurred in 2016. Such high seismicity makes it one of the most active tectonic zones in the world. Moreover, most of these earthquakes are normal fault events with shallow depths, and most earthquakes occurred in the central Apennines are of lower seismic energy to moment ratio. What seismogenic structure causes such kind of seismic features? and how about the potential seismic hazard in the study region? In order to make in-depth understanding about the seismogenic structures in this reion, we collected seismic data from the INGV, Italy, to model the crustal structure, and to relocate the earthquakes. To improve the spatial resolution of the tomographic images, we collected travel times from 27627 earthquakes with M>1.7 recorded at 387 seismic stations. Double Difference Tomography (hereafter as DDT) is applied to build velocity structures and earthquake locations. Checkerboard test confirms that the spatial resolution between the depths range from 5 20km is better than 10km. The travel time residual is significantly decreased from 1208 ms to 70 ms after the inversion. Horizontal Vp images show that mostly earthquakes occurred in high anomalies zones, especially between 5 10km, whereas at the deeper depths, some of the earthquakes occurred in the low Vp anomalies. For Vs images, shallow earthquakes mainly occurred in low anomalies zone, at depths range of 10 15km, earthquakes are mainly concentrated in normal velocity or relatively lower anomalies zones. Moreover, mostly earthquakes occurred

  16. Update of the tectonic model for the Pannonian basin: a contribution to the seismic hazard reassessment of the Paks NPP (Hungary)

    Science.gov (United States)

    Horváth, Ferenc; Tóth, Tamás; Wórum, Géza; Koroknai, Balázs; Kádi, Zoltán; Kovács, Gábor; Balázs, Attila; Visnovitz, Ferenc

    2015-04-01

    large scale transfer faults due to differential movements. The beginning of Late Miocene saw an event of basin inversion resulting in uplift and remarkable erosion of the synrift strata. Pliocene through Quaternary has been a period of gradual change in the regional stress field and formation of a series of basin-scale sinistral strike-slip faults usually by reactivation of half-graben bounding normal faults. A most important subject of the HGIP for seismic hazard assessment of the Paks NPP is to determine the timing and amount of displacement of this fault system, as well as its potential capability in the vicinity of the site. References: IAEA (2010): Seismic hazard in site evaluation for nuclear installations. International Atomic Energy Agency Safety Standards, SSG-9, Vienna, p. 60. Horváth, F. et al (2015): Evolution of the Pannonian basin and its geothermal resources. Geothermics, 53, 328-352.

  17. Assessment of tsunami hazard for coastal areas of Shandong Province, China

    Science.gov (United States)

    Feng, Xingru; Yin, Baoshu

    2017-04-01

    Shandong province is located on the east coast of China and has a coastline of about 3100 km. There are only a few tsunami events recorded in the history of Shandong Province, but the tsunami hazard assessment is still necessary as the rapid economic development and increasing population of this area. The objective of this study was to evaluate the potential danger posed by tsunamis for Shandong Province. The numerical simulation method was adopted to assess the tsunami hazard for coastal areas of Shandong Province. The Cornell multi-grid coupled tsunami numerical model (COMCOT) was used and its efficacy was verified by comparison with three historical tsunami events. The simulated maximum tsunami wave height agreed well with the observational data. Based on previous studies and statistical analyses, multiple earthquake scenarios in eight seismic zones were designed, the magnitudes of which were set as the potential maximum values. Then, the tsunamis they induced were simulated using the COMCOT model to investigate their impact on the coastal areas of Shandong Province. The numerical results showed that the maximum tsunami wave height, which was caused by the earthquake scenario located in the sea area of the Mariana Islands, could reach up to 1.39 m off the eastern coast of Weihai city. The tsunamis from the seismic zones of the Bohai Sea, Okinawa Trough, and Manila Trench could also reach heights of >1 m in some areas, meaning that earthquakes in these zones should not be ignored. The inundation hazard was distributed primarily in some northern coastal areas near Yantai and southeastern coastal areas of Shandong Peninsula. When considering both the magnitude and arrival time of tsunamis, it is suggested that greater attention be paid to earthquakes that occur in the Bohai Sea. In conclusion, the tsunami hazard facing the coastal area of Shandong Province is not very serious; however, disasters could occur if such events coincided with spring tides or other

  18. Level-1 seismic probabilistic risk assessment for a PWR plant

    International Nuclear Information System (INIS)

    Kondo, Keisuke; Nishio, Masahide; Fujimoto, Haruo; Ichitsuka, Akihiro

    2014-01-01

    In Japan, revised Seismic Design Guidelines for the domestic light water reactors was published on September 19, 2006. These new guidelines have introduced the purpose to confirm that residual risk resulting from earthquake that exceeds the design limit seismic ground motion (Ss) is sufficiently small, based on the probabilistic risk assessment (PRA) method, in addition to conventional deterministic design base methodology. In response to this situation, JNES had been working to improve seismic PRA (SPRA) models for individual domestic light water reactors. In case of PWR in Japan, total of 24 plants were grouped into 11 categories to develop individual SPRA model. The new regulatory rules against the Fukushima dai-ichi nuclear power plants' severe accidents occurred on March 11, 2011, are going to be enforced in July 2013 and utilities are necessary to implement additional safety measures to avoid and mitigate severe accident occurrence due to external events such as earthquake and tsunami, by referring to the results of severe accident study including SPRA. In this paper a SPRA model development for a domestic 3-loop PWR plant as part of the above-mentioned 11 categories is described. We paid special attention to how to categorize initiating events that are specific to seismic phenomena and how to confirm the effect of the simultaneous failure probability calculation model for the multiple components on the result of core damage frequency evaluation. Simultaneous failure probability for multiple components has been evaluated by power multiplier method. Then tentative level-1 seismic probabilistic risk assessment (SPRA) has been performed by the developed SPSA model with seismic hazard and fragility data. The base case was evaluated under the condition with calculated fragility data and conventional power multiplier. The difference in CDF between the case of conventional power multiplier and that of power multiplier=1 (complete dependence) was estimated to be

  19. Transposing an active fault database into a seismic hazard fault model for nuclear facilities. Pt. 1. Building a database of potentially active faults (BDFA) for metropolitan France

    Energy Technology Data Exchange (ETDEWEB)

    Jomard, Herve; Cushing, Edward Marc; Baize, Stephane; Chartier, Thomas [IRSN - Institute of Radiological Protection and Nuclear Safety, Fontenay-aux-Roses (France); Palumbo, Luigi; David, Claire [Neodyme, Joue les Tours (France)

    2017-07-01

    The French Institute for Radiation Protection and Nuclear Safety (IRSN), with the support of the Ministry of Environment, compiled a database (BDFA) to define and characterize known potentially active faults of metropolitan France. The general structure of BDFA is presented in this paper. BDFA reports to date 136 faults and represents a first step toward the implementation of seismic source models that would be used for both deterministic and probabilistic seismic hazard calculations. A robustness index was introduced, highlighting that less than 15% of the database is controlled by reasonably complete data sets. An example of transposing BDFA into a fault source model for PSHA (probabilistic seismic hazard analysis) calculation is presented for the Upper Rhine Graben (eastern France) and exploited in the companion paper (Chartier et al., 2017, hereafter Part 2) in order to illustrate ongoing challenges for probabilistic fault-based seismic hazard calculations.

  20. Delineation of seismic source zones based on seismicity parameters ...

    Indian Academy of Sciences (India)

    these source zones were evaluated and were used in the hazard evaluation. ... seismic sources, linear and areal, were considered in the present study to model the seismic sources in the ..... taken as an authentic reference manual for iden-.

  1. Seismic Probabilistic Risk Assessment (SPRA), approach and results

    International Nuclear Information System (INIS)

    Campbell, R.D.

    1995-01-01

    During the past 15 years there have been over 30 Seismic Probabilistic Risk Assessments (SPRAs) and Seismic Probabilistic Safety Assessments (SPSAs) conducted of Western Nuclear Power Plants, principally of US design. In this paper PRA and PSA are used interchangeably as the overall process is essentially the same. Some similar assessments have been done for reactors in Taiwan, Korea, Japan, Switzerland and Slovenia. These plants were also principally US supplied or built under US license. Since the restructuring of the governments in former Soviet Bloc countries, there has been grave concern regarding the safety of the reactors in these countries. To date there has been considerable activity in conducting partial seismic upgrades but the overall quantification of risk has not been pursued to the depth that it has in Western countries. This paper summarizes the methodology for Seismic PRA/PSA and compares results of two partially completed and two completed PRAs of soviet designed reactors to results from earlier PRAs on US Reactors. A WWER 440 and a WWER 1000 located in low seismic activity regions have completed PRAs and results show the seismic risk to be very low for both designs. For more active regions, partially completed PRAs of a WWER 440 and WWER 1000 located at the same site show the WWER 440 to have much greater seismic risk than the WWER 1000 plant. The seismic risk from the 1000 MW plant compares with the high end of seismic risk for earlier seismic PRAs in the US. Just as for most US plants, the seismic risk appears to be less than the risk from internal events if risk is measured is terms of mean core damage frequency. However, due to the lack of containment for the earlier WWER 440s, the risk to the public may be significantly greater due to the more probable scenario of an early release. The studies reported have not taken the accident sequences beyond the stage of core damage hence the public heath risk ratios are speculative. (author)

  2. Preclosure seismic design methodology for a geologic repository at Yucca Mountain. Revision 1

    International Nuclear Information System (INIS)

    1996-08-01

    This topical report is the second in a series of three reports being developed by the US Department of Energy (DOE) to document the preclosure seismic design of structures, systems, and components (SSCs) that are important to the radiological safety of the potential repository at Yucca Mountain, Nevada. The first topical report, Methodology to Assess Fault Displacement and Vibratory Ground Motion Hazards at Yucca Mountain, YMP/TR-002-NP, was submitted to the US Nuclear Regulatory Commission (NRC) staff for review and comment in 1994 and has been accepted by the staff. The DOE plans to implement this methodology in fiscal year 1997 to develop probabilistic descriptions of the vibratory ground motion hazard and the fault displacement hazard at the Yucca Mountain site. The second topical report (this report) describes the DOE methodology and acceptance criteria for the preclosure seismic design of SSCs important to safety. A third report, scheduled for fiscal year 1998, will document the results of the probabilistic seismic hazard assessment (conducted using the methodology in the first topical report) and the development of the preclosure seismic design inputs. This third report will be submitted to NRC staff for review and comment as a third topical report or as a design study report

  3. Source Characterization and Seismic Hazard Considerations for Hydraulic Fracture Induced Seismicity

    Science.gov (United States)

    Bosman, K.; Viegas, G. F.; Baig, A. M.; Urbancic, T.

    2015-12-01

    Large microseismic events (M>0) have been shown to be generated during hydraulic fracture treatments relatively frequently. These events are a concern both from public safety and engineering viewpoints. Recent microseismic monitoring projects in the Horn River Basin have utilized both downhole and surface sensors to record events associated with hydraulic fracturing. The resulting hybrid monitoring system has produced a large dataset with two distinct groups of events: large events recorded by the surface network (0structures; small events are concentrated at reservoir depth. Differences in behavior have been observed between these two datasets, leading to conclusions of different underlying processes responsible for the recorded activity. Both datasets show very low seismic efficiency, implying slip weakening and possibly the presence of fluids in the source region. Reservoir events have shear-tensile source mechanisms ranging between tensile opening and tensile closing, and fracture orientations dominated by the rock fabric which are not always optimally oriented to the regional stress field. The observed source characteristics are expected for events driven by increased pore pressure and reduced friction due to lubrication. On average, deep events show higher stress drop, apparent stress, and rupture velocity than reservoir events. This reflects higher confining stresses with depth, and possibly the release of stored energy in the existing zone of weakness. Deep events are dominated by shear failures, but source characteristics are smaller than for naturally occurring tectonic earthquakes of similar magnitude. Most importantly from a seismic hazard perspective, large earthquakes associated with hydrofracing have lower stress drops than tectonic earthquakes, and thus produce smaller peak ground acceleration and less damage on surface. The largest event recorded in this dataset has a moment magnitude of +2.9 and was felt by field crews in the area. The response

  4. NRC Seismic Design Margins Program Plan

    International Nuclear Information System (INIS)

    Cummings, G.E.; Johnson, J.J.; Budnitz, R.J.

    1985-08-01

    Recent studies estimate that seismically induced core melt comes mainly from earthquakes in the peak ground acceleration range from 2 to 4 times the safe shutdown earthquake (SSE) acceleration used in plant design. However, from the licensing perspective of the US Nuclear Regulatory Commission, there is a continuing need for consideration of the inherent quantitative seismic margins because of, among other things, the changing perceptions of the seismic hazard. This paper discusses a Seismic Design Margins Program Plan, developed under the auspices of the US NRC, that provides the technical basis for assessing the significance of design margins in terms of overall plant safety. The Plan will also identify potential weaknesses that might have to be addressed, and will recommend technical methods for assessing margins at existing plants. For the purposes of this program, a general definition of seismic design margin is expressed in terms of how much larger that the design basis earthquake an earthquake must be to compromise plant safety. In this context, margin needs to be determined at the plant, system/function, structure, and component levels. 14 refs., 1 fig

  5. Preliminary deformation model for National Seismic Hazard map of Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Meilano, Irwan; Gunawan, Endra; Sarsito, Dina; Prijatna, Kosasih; Abidin, Hasanuddin Z. [Geodesy Research Division, Faculty of Earth Science and Technology, Institute of Technology Bandung (Indonesia); Susilo,; Efendi, Joni [Agency for Geospatial Information (BIG) (Indonesia)

    2015-04-24

    Preliminary deformation model for the Indonesia’s National Seismic Hazard (NSH) map is constructed as the block rotation and strain accumulation function at the elastic half-space. Deformation due to rigid body motion is estimated by rotating six tectonic blocks in Indonesia. The interseismic deformation due to subduction is estimated by assuming coupling on subduction interface while deformation at active fault is calculated by assuming each of the fault‘s segment slips beneath a locking depth or in combination with creeping in a shallower part. This research shows that rigid body motion dominates the deformation pattern with magnitude more than 15 mm/year, except in the narrow area near subduction zones and active faults where significant deformation reach to 25 mm/year.

  6. Seismic Risk Assessment of Italian Seaports Using GIS

    International Nuclear Information System (INIS)

    Bartolomei, Anna; Corigliano, Mirko; Lai, Carlo G.

    2008-01-01

    Seaports are crucial elements in the export and import of goods and/or on the flow of travellers in the tourism industry of many industrialised nations included Italy. Experience gained from recent earthquakes (e.g. 1989 Loma Prieta in USA, 1995 Hyogoken-Nanbu and 2003 Tokachi-Oki in Japan) have dramatically demonstrated the seismic vulnerability of seaport structures and the severe damage that can be caused by ground shaking. In Italy, the Department of Civil Protection has funded a research project to develop a methodology for the seismic design of new marginal wharves and assessment of existing structures at seaports located in areas of medium or high seismicity. This paper shows part of the results of this research project, currently underway, with particular reference to the seismic risk assessment through an interactive, geographically referenced database (GIS). Standard risk assessment have been carried out for the Gioia Tauro port in Calabria (Italy) using the empirical curves implemented by the National Institute of Building Sciences (NIBS, 2004)

  7. Seismic damage assessment of reinforced concrete containment structures

    International Nuclear Information System (INIS)

    Cho, HoHyun; Koh, Hyun-Moo; Hyun, Chang-Hun; Kim, Moon-Soo; Shin, Hyun Mock

    2003-01-01

    This paper presents a procedure for assessing seismic damage of concrete containment structures using the nonlinear time-history numerical analysis. For this purpose, two kinds of damage index are introduced at finite element and structural levels. Nonlinear finite element analysis for the containment structure applies PSC shell elements using a layered approach leading to damage indices at finite element and structural levels, which are then used to assess the seismic damage of the containment structure. As an example of such seismic damage assessment, seismic damages of the containment structure of Wolsong I nuclear power plant in Korea are evaluated against 30 artificial earthquakes generated with a wide range of PGA according to US NRC regulatory guide 1.60. Structural responses and corresponding damage index according to the level of PGA and nonlinearity are investigated. It is also shown that the containment structure behaves elastically for earthquakes corresponding to or lower than DBE. (author)

  8. Seismic Risk Assessment of Italian Seaports Using GIS

    Science.gov (United States)

    Bartolomei, Anna; Corigliano, Mirko; Lai, Carlo G.

    2008-07-01

    Seaports are crucial elements in the export and import of goods and/or on the flow of travellers in the tourism industry of many industrialised nations included Italy. Experience gained from recent earthquakes (e.g. 1989 Loma Prieta in USA, 1995 Hyogoken-Nanbu and 2003 Tokachi-Oki in Japan) have dramatically demonstrated the seismic vulnerability of seaport structures and the severe damage that can be caused by ground shaking. In Italy, the Department of Civil Protection has funded a research project to develop a methodology for the seismic design of new marginal wharves and assessment of existing structures at seaports located in areas of medium or high seismicity. This paper shows part of the results of this research project, currently underway, with particular reference to the seismic risk assessment through an interactive, geographically referenced database (GIS). Standard risk assessment have been carried out for the Gioia Tauro port in Calabria (Italy) using the empirical curves implemented by the National Institute of Building Sciences (NIBS, 2004).

  9. Spatial Analysis of the Level of Exposure to Seismic Hazards of Health Facilities in Mexico City, Mexico

    Science.gov (United States)

    Moran, S.; Novelo-Casanova, D. A.

    2011-12-01

    Although health facilities are essential infrastructure during disasters and emergencies, they are also usually highly vulnerable installations in the case of the occurrence of large and major earthquakes. Hospitals are one of the most complex critical facilities in modern cities and they are used as first response in emergency situations. The operability of a hospital must be maintained after the occurrence of a local strong earthquake in order to satisfy the need for medical care of the affected population. If a health facility is seriously damaged, it cannot fulfill its function when most is needed. In this case, hospitals become a casualty of the disaster. To identify the level of physical exposure of hospitals to seismic hazards in Mexico City, we analyzed their geographic location with respect to the seismic response of the different type of soils of the city from past earthquakes, mainly from the events that occurred on September 1985 (Ms= 8.0) and April 1989 (Ms= 6.9). Seismic wave amplification in this city is the result of the interaction of the incoming seismic waves with the soft and water saturated clay soils, on which a large part of Mexico City is built. The clay soils are remnants of the lake that existed in the Valley of Mexico and which has been drained gradually to accommodate the growing urban sprawl. Hospital facilities were converted from a simple database of names and locations into a map layer of resources. This resource layer was combined with other map layers showing areas of seismic microzonation in Mexico City. This overlay was then used to identify those hospitals that may be threatened by the occurrence of a large or major seismic event. We analyzed the public and private hospitals considered as main health facilities. Our results indicate that more than 50% of the hospitals are highly exposed to seismic hazards. Besides, in most of these health facilities we identified the lack of preventive measures and preparedness to reduce their

  10. Seismic hazard communication in Istanbul

    Science.gov (United States)

    Ickert, Johanna

    2015-04-01

    Conflicting societal conceptions of earthquake safety provide challenges but also opportunities for the communication of seismic hazards. This paradox is exemplified in the controversial social reactions to the ongoing 'urban renewal projects' in Istanbul. Seismologists estimate that there is a high probability that a major earthquake will strike Istanbul in the next decade or so. Detailed earthquake risk analysis, and direct experience of the losses suffered during the major earthquakes that struck Turkey in 1999 and 2011, have engendered a broad societal recognition of the need for extensive earthquake preparedness and response planning. However, there has been dissent concerning the democratic legitimation of some of Istanbul's mitigation measures, most notably the implementation of the 'Law for the Regeneration of Areas Under Disaster Risk' (Law 6306, known as the 'disaster law') in May 2012. The strong interconnections between geological 'matters of fact' and societal 'matters of concern' raise fundamental questions for geocommunication on how to deal with this societal complexity, particularly in terms of maintaining trust in the geoscientist. There is a growing recognition among geoscientists that achieving disaster resilience in Istanbul is not solely the domain of 'earthquake experts' but rather requires a shared societal responsibility. However, the question arises as to how geocommunication can be designed to respond to this increased demand for interdisciplinarity and civil participation. This research will confront this question, exploring ways to combine qualitative and quantitative analyses, values and preferred norms with facts and observations, and be organised around an interactive web-based documentary platform that integrates multiple knowledge bases and seeks to help connect different communication cultures.

  11. Second DOE natural phenomena hazards mitigation conference

    International Nuclear Information System (INIS)

    1989-01-01

    This conference has been organized into ten presentation sessions which include an overview of the DOE Natural Phenomena Guidelines, Seismic Analysis, Seismic Design, Modifying Existing Facilities, DOE Orders, Codes, and Standards (2 sessions), Seismic Hazard (2 sessions), and Probabilistic Risk Assessment (2 sessions). Two poster sessions were also included in the program to provide a different forum for communication of ideas. Over the past fourteen years, Lawrence Livermore National Laboratory, Nuclear Systems Safety Program, has been working with the US Department of Energy, Office of Safety Appraisals and their predecessors in the area of natural phenomena hazards. During this time we have developed seismic, extreme wind/tornado, and flood hazard models for DOE sites in the United States. Guidelines for designing and evaluating DOE facilities for natural phenomena have been developed and are in interim use throughout the DOE community. A series of state-of-the practice manuals have also been developed to aid the designers. All of this material is listed in the Natural Phenomena Hazards Bibliography included in these proceedings. This conference provides a mechanism to disseminate current information on natural phenomena hazards and their mitigation. It provides an opportunity to bring together members of the DOE community to discuss current projects, to share information, and to hear practicing members of the structural engineering community discuss their experiences from past natural phenomena, future trends, and any changes to building codes. Each paper or poster presented is included in these proceedings. We have also included material related to the luncheon and dinner talks

  12. Operating experience and aging-seismic assessment of electric motors

    International Nuclear Information System (INIS)

    Subudhi, M.; Burns, E.L.; Taylor, J.H.

    1985-06-01

    Objectives of this program are to identify concerns related to the aging and service wear of equipment operating in nuclear power plants, to assess their possible impact on plant safety, to identify effective inspection surveillance and monitoring methods and to recommend suitable maintenance practices for mitigating aging related concerns and diminish the rate of degradation due to aging and service wear. Motor design and materials of construction are reviewed to identify age-sensitive components. Operational and accidental stressors are determined, and their effect on promoting aging degradation is assessed. Failure modes, mechanisms, and causes have been reviewed from operating experiences and existing data banks. The study has also included consideration for the seismic correlation of age-degraded motor components. The aforementioned reviews and assessments were assimilated to characterize the dielectric, rotational, and mechanical hazards on motor performance and operational readiness. The functional indicators which can be monitored to assess motor component deterioration due to aging or other accidental stressors are identified. Conforming with the NPAR strategy as outlined in the program plan, the study also includes a preliminary discussion of current standards and guides, maintenance programs, and research activities pertaining to nuclear power plant safety-related electric motors

  13. Development of direct multi-hazard susceptibility assessment method for post-earthquake reconstruction planning in Nepal

    Science.gov (United States)

    Mavrouli, Olga; Rana, Sohel; van Westen, Cees; Zhang, Jianqiang

    2017-04-01

    After the devastating 2015 Gorkha earthquake in Nepal, reconstruction activities have been delayed considerably, due to many reasons, of a political, organizational and technical nature. Due to the widespread occurrence of co-seismic landslides, and the expectation that these may be aggravated or re-activated in future years during the intense monsoon periods, there is a need to evaluate for thousands of sites whether these are suited for reconstruction. In this evaluation multi-hazards, such as rockfall, landslides, debris flow, and flashfloods should be taken into account. The application of indirect knowledge-based, data-driven or physically-based approaches is not suitable due to several reasons. Physically-based models generally require a large number of parameters, for which data is not available. Data-driven, statistical methods, depend on historical information, which is less useful after the occurrence of a major event, such as an earthquake. Besides, they would lead to unacceptable levels of generalization, as the analysis is done based on rather general causal factor maps. The same holds for indirect knowledge-driven methods. However, location-specific hazards analysis is required using a simple method that can be used by many people at the local level. In this research, a direct scientific method was developed where local level technical people can easily and quickly assess the post-earthquake multi hazards following a decision tree approach, using an app on a smartphone or tablet. The methods assumes that a central organization, such as the Department of Soil Conservation and Watershed Management, generates spatial information beforehand that is used in the direct assessment at a certain location. Pre-earthquake, co-seismic and post-seismic landslide inventories are generated through the interpretation of Google Earth multi-temporal images, using anaglyph methods. Spatial data, such as Digital Elevation Models, land cover maps, and geological maps are

  14. Seismic hazard reappraisal from combined structural geology, geomorphology and cosmic ray exposure dating analyses: the Eastern Precordillera thrust system (NW Argentina)

    Science.gov (United States)

    Siame, L. L.; Bellier, O.; Sébrier, M.; Bourlès, D. L.; Leturmy, P.; Perez, M.; Araujo, M.

    2002-07-01

    Because earthquakes on large active thrust or reverse faults are not always accompanied with surface rupture, paleoseismological estimation of their associated seismic hazard is a difficult task. To improve the seismic hazard assessments in the Andean foreland of western Argentina (San Juan Province), this paper proposes a novel approach that combines structural geology, geomorphology and exposure age dating. The Eastern Precordillera of San Juan is probably one of the most active zones of thrust tectonics in the world. We concentrated on one major regional active reverse structure, the 145 km long Villicúm-Pedernal thrust, where this methodology allows one to: (1) constrain the Quaternary stress regime by inversion of geologically determined slip vectors on minor or major fault planes; (2) analyse the geometry and the geomorphic characteristics of the Villicúm-Pedernal thrust; and (3) estimate uplift and shortening rates through determination of in situ-produced 10Be cosmic ray exposure (CRE) ages of abandoned and uplifted alluvial terraces. From a structural point of view, the Villicúm-Pedernal thrust can be subdivided into three thrust portions constituting major structural segments separated by oblique N40°E-trending fault branches. Along the three segments, inversion of fault slip data shows that the development of the Eastern Precordillera between 31°S and 32°S latitude is dominated by a pure compressive reverse faulting stress regime characterized by a N110°+/- 10°E-trending compressional stress axis (σ1). A geomorphic study realized along the 18 km long Las Tapias fault segment combined with CRE ages shows that the minimum shortening rate calculated over the previous ~20 kyr is at least of the order of 1 mm yr-1. An earthquake moment tensor sum has also been used to calculate a regional shortening rate caused by seismic deformation. This analysis of the focal solutions available for the last 23 yr shows that the seismic contribution may be three

  15. Quantitative estimation of time-variable earthquake hazard by using fuzzy set theory

    Science.gov (United States)

    Deyi, Feng; Ichikawa, M.

    1989-11-01

    In this paper, the various methods of fuzzy set theory, called fuzzy mathematics, have been applied to the quantitative estimation of the time-variable earthquake hazard. The results obtained consist of the following. (1) Quantitative estimation of the earthquake hazard on the basis of seismicity data. By using some methods of fuzzy mathematics, seismicity patterns before large earthquakes can be studied more clearly and more quantitatively, highly active periods in a given region and quiet periods of seismic activity before large earthquakes can be recognized, similarities in temporal variation of seismic activity and seismic gaps can be examined and, on the other hand, the time-variable earthquake hazard can be assessed directly on the basis of a series of statistical indices of seismicity. Two methods of fuzzy clustering analysis, the method of fuzzy similarity, and the direct method of fuzzy pattern recognition, have been studied is particular. One method of fuzzy clustering analysis is based on fuzzy netting, and another is based on the fuzzy equivalent relation. (2) Quantitative estimation of the earthquake hazard on the basis of observational data for different precursors. The direct method of fuzzy pattern recognition has been applied to research on earthquake precursors of different kinds. On the basis of the temporal and spatial characteristics of recognized precursors, earthquake hazards in different terms can be estimated. This paper mainly deals with medium-short-term precursors observed in Japan and China.

  16. Earthquake Hazard Analysis Methods: A Review

    Science.gov (United States)

    Sari, A. M.; Fakhrurrozi, A.

    2018-02-01

    One of natural disasters that have significantly impacted on risks and damage is an earthquake. World countries such as China, Japan, and Indonesia are countries located on the active movement of continental plates with more frequent earthquake occurrence compared to other countries. Several methods of earthquake hazard analysis have been done, for example by analyzing seismic zone and earthquake hazard micro-zonation, by using Neo-Deterministic Seismic Hazard Analysis (N-DSHA) method, and by using Remote Sensing. In its application, it is necessary to review the effectiveness of each technique in advance. Considering the efficiency of time and the accuracy of data, remote sensing is used as a reference to the assess earthquake hazard accurately and quickly as it only takes a limited time required in the right decision-making shortly after the disaster. Exposed areas and possibly vulnerable areas due to earthquake hazards can be easily analyzed using remote sensing. Technological developments in remote sensing such as GeoEye-1 provide added value and excellence in the use of remote sensing as one of the methods in the assessment of earthquake risk and damage. Furthermore, the use of this technique is expected to be considered in designing policies for disaster management in particular and can reduce the risk of natural disasters such as earthquakes in Indonesia.

  17. Impact of ground motion characterization on conservatism and variability in seismic risk estimates

    International Nuclear Information System (INIS)

    Sewell, R.T.; Toro, G.R.; McGuire, R.K.

    1996-07-01

    This study evaluates the impact, on estimates of seismic risk and its uncertainty, of alternative methods in treatment and characterization of earthquake ground motions. The objective of this study is to delineate specific procedures and characterizations that may lead to less biased and more precise seismic risk results. This report focuses on sources of conservatism and variability in risk that may be introduced through the analytical processes and ground-motion descriptions which are commonly implemented at the interface of seismic hazard and fragility assessments. In particular, implication of the common practice of using a single, composite spectral shape to characterize motions of different magnitudes is investigated. Also, the impact of parameterization of ground motion on fragility and hazard assessments is shown. Examination of these results demonstrates the following. (1) There exists significant conservatism in the review spectra (usually, spectra characteristic of western U.S. earthquakes) that have been used in conducting past seismic risk assessments and seismic margin assessments for eastern U.S. nuclear power plants. (2) There is a strong dependence of seismic fragility on earthquake magnitude when PGA is used as the ground-motion characterization. When, however, magnitude-dependent spectra are anchored to a common measure of elastic spectral acceleration averaged over the appropriate frequency range, seismic fragility shows no important nor consistent dependence on either magnitude or strong-motion duration. Use of inelastic spectral acceleration (at the proper frequency) as the ground spectrum anchor demonstrates a very similar result. This study concludes that a single, composite-magnitude spectrum can generally be used to characterize ground motion for fragility assessment without introducing significant bias or uncertainty in seismic risk estimates

  18. Impact of ground motion characterization on conservatism and variability in seismic risk estimates

    Energy Technology Data Exchange (ETDEWEB)

    Sewell, R.T.; Toro, G.R.; McGuire, R.K.

    1996-07-01

    This study evaluates the impact, on estimates of seismic risk and its uncertainty, of alternative methods in treatment and characterization of earthquake ground motions. The objective of this study is to delineate specific procedures and characterizations that may lead to less biased and more precise seismic risk results. This report focuses on sources of conservatism and variability in risk that may be introduced through the analytical processes and ground-motion descriptions which are commonly implemented at the interface of seismic hazard and fragility assessments. In particular, implication of the common practice of using a single, composite spectral shape to characterize motions of different magnitudes is investigated. Also, the impact of parameterization of ground motion on fragility and hazard assessments is shown. Examination of these results demonstrates the following. (1) There exists significant conservatism in the review spectra (usually, spectra characteristic of western U.S. earthquakes) that have been used in conducting past seismic risk assessments and seismic margin assessments for eastern U.S. nuclear power plants. (2) There is a strong dependence of seismic fragility on earthquake magnitude when PGA is used as the ground-motion characterization. When, however, magnitude-dependent spectra are anchored to a common measure of elastic spectral acceleration averaged over the appropriate frequency range, seismic fragility shows no important nor consistent dependence on either magnitude or strong-motion duration. Use of inelastic spectral acceleration (at the proper frequency) as the ground spectrum anchor demonstrates a very similar result. This study concludes that a single, composite-magnitude spectrum can generally be used to characterize ground motion for fragility assessment without introducing significant bias or uncertainty in seismic risk estimates.

  19. Non-invasive shallow seismic source comparison for hazardous waste site investigations

    International Nuclear Information System (INIS)

    Doll, W.E.

    1994-01-01

    Many commonly used shallow seismic sources are unacceptable for hazardous waste site investigations because they risk exhumation of contaminants in the soil, they add contaminants (e.g. lead) which are not allowed by regulations, or they add new migration paths for contaminants. Furthermore, recently developed high frequency vibrators for shallow investigations could be more effective at some sites than non-invasive impulsive sources because of their ability to tailor the source spectrum and reduce interference. The authors show preliminary results of a comparison test of eight non-invasive impulsive and swept sources in preparation for seismic reflection profiling on the Oak Ridge Reservation, Tennessee. Well log data are used to determine geologic contacts and to generate synthetic seismograms for the site. Common midpoint (CMP) seismic data for each source were collected at 95 geophone groups from 125 shot points along a 400m test line. Hydrophone data were obtained at 1.5m spacing between 61m and 133m depth in a hole near the center of the CMP line. As of March, 1994, brute stacks have been completed for three of the eight sources. Depth penetration is demonstrated in brute stacks and shot gathers, which show a 200ms reflector for all of the sources tested along portions of the line. Source effectiveness will also be evaluated by comparing images of several shallower reflectors (40--150ms) which are apparent in many of the records. Imaging of these reflectors appears to depend upon the ability of the source to generate sufficient high frequency energy (>100 Hz)

  20. Academia Sinica, TW E-science to Assistant Seismic Observations for Earthquake Research, Monitor and Hazard Reduction Surrounding the South China Sea

    Science.gov (United States)

    Huang, Bor-Shouh; Liu, Chun-Chi; Yen, Eric; Liang, Wen-Tzong; Lin, Simon C.; Huang, Win-Gee; Lee, Shiann-Jong; Chen, Hsin-Yen

    Experience from the 1994 giant Sumatra earthquake, seismic and tsunami hazard have been considered as important issues in the South China Sea and its surrounding region, and attracted many seismologist's interesting. Currently, more than 25 broadband seismic instruments are currently operated by Institute of Earth Sciences, Academia Sinica in northern Vietnam to study the geodynamic evolution of the Red river fracture zone and rearranged to distribute to southern Vietnam recently to study the geodynamic evolution and its deep structures of the South China Sea. Similar stations are planned to deploy in Philippines in near future. In planning, some high quality stations may be as permanent stations and added continuous GPS observations, and instruments to be maintained and operated by several cooperation institutes, for instance, Institute of Geophysics, Vietnamese Acadamy of Sciences and Technology in Vietnam and Philippine Institute of Volcanology and Seismology in Philippines. Finally, those stations will be planed to upgrade as real time transmission stations for earthquake monitoring and tsunami warning. However, high speed data transfer within different agencies is always a critical issue for successful network operation. By taking advantage of both EGEE and EUAsiaGrid e-Infrastructure, Academia Sinica Grid Computing Centre coordinates researchers from various Asian countries to construct a platform to high performance data transfer for huge parallel computation. Efforts from this data service and a newly build earthquake data centre for data management may greatly improve seismic network performance. Implementation of Grid infrastructure and e-science issues in this region may assistant development of earthquake research, monitor and natural hazard reduction. In the near future, we will search for new cooperation continually from the surrounding countries of the South China Sea to install new seismic stations to construct a complete seismic network of the