WorldWideScience

Sample records for seismic event location

  1. A single geophone to locate seismic events on Mars

    Science.gov (United States)

    Roques, Aurélien; Berenguer, Jean-Luc; Bozdag, Ebru

    2016-04-01

    Knowing the structure of Mars is a key point in understanding the formation of Earth-like planets as plate tectonics and erosion have erased the original suface of the Earth formation. Installing a seismometer on Mars surface makes it possible to identify its structure. An important step in the identification of the structure of a planet is the epicenter's location of a seismic source, typically a meteoric impact or an earthquake. On Earth, the classical way of locating epicenters is triangulation, which requires at least 3 stations. The Mars InSight Project plans to set a single station with 3 components. We propose a software to locate seismic sources on Mars thanks to the 3-components simulated data of an earthquake given by Geoazur (Nice Sophia-Antipolis University, CNRS) researchers. Instrumental response of a sensor is crucial for data interpretation. We study the oscillations of geophone in several situations so as to awaken students to the meaning of damping in second order modeling. In physics, car shock absorbers are often used to illustrate the principle of damping but rarely in practical experiments. We propose the use of a simple seismometer (a string with a mass and a damper) that allows changing several parameters (inductive damping, temperature and pressure) so as to see the effects of these parameters on the impulse response and, in particular, on the damping coefficient. In a second step, we illustrate the effect of damping on a seismogram with the difficulty of identifying and interpreting the different phase arrival times with low damping.

  2. Error Analysis in the Joint Event Location/Seismic Calibration Inverse Problem

    National Research Council Canada - National Science Library

    Rodi, William L

    2006-01-01

    This project is developing new mathematical and computational techniques for analyzing the uncertainty in seismic event locations, as induced by observational errors and errors in travel-time models...

  3. Epicenter Location of Regional Seismic Events Using Love Wave and Rayleigh Wave Ambient Seismic Noise Green's Functions

    Science.gov (United States)

    Levshin, A. L.; Barmin, M. P.; Moschetti, M. P.; Mendoza, C.; Ritzwoller, M. H.

    2011-12-01

    We describe a novel method to locate regional seismic events based on exploiting Empirical Green's Functions (EGF) that are produced from ambient seismic noise. Elastic EGFs between pairs of seismic stations are determined by cross-correlating long time-series of ambient noise recorded at the two stations. The EGFs principally contain Rayleigh waves on the vertical-vertical cross-correlations and Love waves on the transverse-transverse cross-correlations. Earlier work (Barmin et al., "Epicentral location based on Rayleigh wave empirical Green's functions from ambient seismic noise", Geophys. J. Int., 2011) showed that group time delays observed on Rayleigh wave EGFs can be exploited to locate to within about 1 km moderate sized earthquakes using USArray Transportable Array (TA) stations. The principal advantage of the method is that the ambient noise EGFs are affected by lateral variations in structure similarly to the earthquake signals, so the location is largely unbiased by 3-D structure. However, locations based on Rayleigh waves alone may be biased by more than 1 km if the earthquake depth is unknown but lies between 2 km and 7 km. This presentation is motivated by the fact that group time delays for Love waves are much less affected by earthquake depth than Rayleigh waves; thus exploitation of Love wave EGFs may reduce location bias caused by uncertainty in event depth. The advantage of Love waves to locate seismic events, however, is mitigated by the fact that Love wave EGFs have a smaller SNR than Rayleigh waves. Here, we test the use of Love and Rayleigh wave EGFs between 5- and 15-sec period to locate seismic events based on the USArray TA in the western US. We focus on locating aftershocks of the 2008 M 6.0 Wells earthquake, mining blasts in Wyoming and Montana, and small earthquakes near Norman, OK and Dallas, TX, some of which may be triggered by hydrofracking or injection wells.

  4. Final Scientific Report, Integrated Seismic Event Detection and Location by Advanced Array Processing

    Energy Technology Data Exchange (ETDEWEB)

    Kvaerna, T.; Gibbons. S.J.; Ringdal, F; Harris, D.B.

    2007-01-30

    In the field of nuclear explosion monitoring, it has become a priority to detect, locate, and identify seismic events down to increasingly small magnitudes. The consideration of smaller seismic events has implications for a reliable monitoring regime. Firstly, the number of events to be considered increases greatly; an exponential increase in naturally occurring seismicity is compounded by large numbers of seismic signals generated by human activity. Secondly, the signals from smaller events become more difficult to detect above the background noise and estimates of parameters required for locating the events may be subject to greater errors. Thirdly, events are likely to be observed by a far smaller number of seismic stations, and the reliability of event detection and location using a very limited set of observations needs to be quantified. For many key seismic stations, detection lists may be dominated by signals from routine industrial explosions which should be ascribed, automatically and with a high level of confidence, to known sources. This means that expensive analyst time is not spent locating routine events from repeating seismic sources and that events from unknown sources, which could be of concern in an explosion monitoring context, are more easily identified and can be examined with due care. We have obtained extensive lists of confirmed seismic events from mining and other artificial sources which have provided an excellent opportunity to assess the quality of existing fully-automatic event bulletins and to guide the development of new techniques for online seismic processing. Comparing the times and locations of confirmed events from sources in Fennoscandia and NW Russia with the corresponding time and location estimates reported in existing automatic bulletins has revealed substantial mislocation errors which preclude a confident association of detected signals with known industrial sources. The causes of the errors are well understood and are

  5. Final Scientific Report, Integrated Seismic Event Detection and Location by Advanced Array Processing

    International Nuclear Information System (INIS)

    Kvaerna, T.; Gibbons. S.J.; Ringdal, F; Harris, D.B.

    2007-01-01

    In the field of nuclear explosion monitoring, it has become a priority to detect, locate, and identify seismic events down to increasingly small magnitudes. The consideration of smaller seismic events has implications for a reliable monitoring regime. Firstly, the number of events to be considered increases greatly; an exponential increase in naturally occurring seismicity is compounded by large numbers of seismic signals generated by human activity. Secondly, the signals from smaller events become more difficult to detect above the background noise and estimates of parameters required for locating the events may be subject to greater errors. Thirdly, events are likely to be observed by a far smaller number of seismic stations, and the reliability of event detection and location using a very limited set of observations needs to be quantified. For many key seismic stations, detection lists may be dominated by signals from routine industrial explosions which should be ascribed, automatically and with a high level of confidence, to known sources. This means that expensive analyst time is not spent locating routine events from repeating seismic sources and that events from unknown sources, which could be of concern in an explosion monitoring context, are more easily identified and can be examined with due care. We have obtained extensive lists of confirmed seismic events from mining and other artificial sources which have provided an excellent opportunity to assess the quality of existing fully-automatic event bulletins and to guide the development of new techniques for online seismic processing. Comparing the times and locations of confirmed events from sources in Fennoscandia and NW Russia with the corresponding time and location estimates reported in existing automatic bulletins has revealed substantial mislocation errors which preclude a confident association of detected signals with known industrial sources. The causes of the errors are well understood and are

  6. Moment tensor and location of seismic events in the 2017 DPRK test

    Science.gov (United States)

    Wei, S.; Shi, Q.; Chen, Q. F.; Wang, T.

    2017-12-01

    The main seismic event in the 2017 DPRK test was followed by a secondary event about eight minutes later. We conducted waveform analysis on the regional broadband waveform data to better constrain the moment tensor and location of these two events, to further understand their relations. In the first place, we applied the generalized Cut-And-Paste (gCAP) method to the regional data to invert the full moment tensor solutions of the two events. Our long period (0.02-0.08 Hz for Pnl, 0.02-0.055 Hz for surface waves) inversions show that the main event was composed of large positive ISO component ( 90% of the total moment) and has a moment magnitude of 5.4. In contrast, the second event shows large negative ISO component ( 50% of the total moment) with a moment magnitude of 4.5. Although there are trade-offs between the CLVD and the ISO component for the second event, chiefly caused by the coda waves from the first event, the result is more robust if we force a small CVLD component in the inversion. We also relocated the epicenter of the second event using P-wave first arrival picks, relative to the location of the first event, which has been accurately determined from the high-resolution geodetic data. The calibration from the first event allows us to precisely locate the second event, which shows an almost identical location to the first event. After a polarity correction, their high-frequency ( 0.25 - 0.9 Hz) regional surface waves also display high similarity, supporting the similar location but opposite ISO polarity of the two events. Our results suggest that the second event was likely to be caused by the collapsing after the main event, in agreement with the surface displacement derived from geodetic observation and modeling results.

  7. Location of long-period events below Kilauea Volcano using seismic amplitudes and accurate relative relocation

    Science.gov (United States)

    Battaglia, J.; Got, J.-L.; Okubo, P.

    2003-01-01

    We present methods for improving the location of long-period (LP) events, deep and shallow, recorded below Kilauea Volcano by the permanent seismic network. LP events might be of particular interest to understanding eruptive processes as their source mechanism is assumed to directly involve fluid transport. However, it is usually difficult or impossible to locate their source using traditional arrival time methods because of emergent wave arrivals. At Kilauea, similar LP waveform signatures suggest the existence of LP multiplets. The waveform similarity suggests spatially close sources, while catalog solutions using arrival time estimates are widely scattered beneath Kilauea's summit caldera. In order to improve estimates of absolute LP location, we use the distribution of seismic amplitudes corrected for station site effects. The decay of the amplitude as a function of hypocentral distance is used for inferring LP location. In a second stage, we use the similarity of the events to calculate their relative positions. The analysis of the entire LP seismicity recorded between January 1997 and December 1999 suggests that a very large part of the LP event population, both deep and shallow, is generated by a small number of compact sources. Deep events are systematically composed of a weak high-frequency onset followed by a low-frequency wave train. Aligning the low-frequency wave trains does not lead to aligning the onsets indicating the two parts of the signal are dissociated. This observation favors an interpretation in terms of triggering and resonance of a magmatic conduit. Instead of defining fault planes, the precise relocation of similar LP events, based on the alignment of the high-energy low-frequency wave trains, defines limited size volumes. Copyright 2003 by the American Geophysical Union.

  8. Locating seismicity on the Arctic plate boundary using multiple-event techniques and empirical signal processing

    Science.gov (United States)

    Gibbons, S. J.; Harris, D. B.; Dahl-Jensen, T.; Kværna, T.; Larsen, T. B.; Paulsen, B.; Voss, P. H.

    2017-12-01

    The oceanic boundary separating the Eurasian and North American plates between 70° and 84° north hosts large earthquakes which are well recorded teleseismically, and many more seismic events at far lower magnitudes that are well recorded only at regional distances. Existing seismic bulletins have considerable spread and bias resulting from limited station coverage and deficiencies in the velocity models applied. This is particularly acute for the lower magnitude events which may only be constrained by a small number of Pn and Sn arrivals. Over the past two decades there has been a significant improvement in the seismic network in the Arctic: a difficult region to instrument due to the harsh climate, a sparsity of accessible sites (particularly at significant distances from the sea), and the expense and difficult logistics of deploying and maintaining stations. New deployments and upgrades to stations on Greenland, Svalbard, Jan Mayen, Hopen, and Bjørnøya have resulted in a sparse but stable regional seismic network which results in events down to magnitudes below 3 generating high-quality Pn and Sn signals on multiple stations. A catalogue of several hundred events in the region since 1998 has been generated using many new phase readings on stations on both sides of the spreading ridge in addition to teleseismic P phases. A Bayesian multiple event relocation has resulted in a significant reduction in the spread of hypocentre estimates for both large and small events. Whereas single event location algorithms minimize vectors of time residuals on an event-by-event basis, the Bayesloc program finds a joint probability distribution of origins, hypocentres, and corrections to traveltime predictions for large numbers of events. The solutions obtained favour those event hypotheses resulting in time residuals which are most consistent over a given source region. The relocations have been performed with different 1-D velocity models applicable to the Arctic region and

  9. Location of the Green Canyon (Offshore Southern Louisiana) Seismic Event of February 10, 2006

    Science.gov (United States)

    Dewey, James W.; Dellinger, Joseph A.

    2008-01-01

    We calculated an epicenter for the Offshore Southern Louisiana seismic event of February 10, 2006 (the 'Green Canyon event') that was adopted as the preferred epicenter for the event by the USGS/NEIC. The event is held at a focal depth of 5 km; the focal depth could not be reliably calculated but was most likely between 1 km and 15 km beneath sea level. The epicenter was calculated with a radially symmetric global Earth model similar to that routinely used at the USGS/NEIC for all earthquakes worldwide. The location was calculated using P-waves recorded by seismographic stations from which the USGS/NEIC routinely obtains seismological data, plus data from two seismic exploration arrays, the Atlantis ocean-bottom node array, operated by BP in partnership with BHP Billiton Limited, and the CGG Green Canyon phase VIII multi-client towed-streamer survey. The preferred epicenter is approximately 26 km north of an epicenter earlier published by the USGS/NEIC, which was obtained without benefit of the seismic exploration arrays. We estimate that the preferred epicenter is accurate to within 15 km. We selected the preferred epicenter from a suite of trial calculations that attempted to fit arrival times of seismic energy associated with the Green Canyon event and that explored the effect of errors in the velocity model used to calculate the preferred epicenter. The various trials were helpful in confirming the approximate correctness of the preferred epicenter and in assessing the accuracy of the preferred epicenter, but none of the trial calculations, including that of the preferred epicenter, was able to reconcile arrival-time observations and assumed velocity model as well as is typical for the vast majority of earthquakes in and near the continental United States. We believe that remaining misfits between the preferred solution and the observations reflect errors in interpreted arrival times of emergent seismic phases that are due partly to a temporally extended source

  10. Global and Regional 3D Tomography for Improved Seismic Event Location and Uncertainty in Explosion Monitoring

    Science.gov (United States)

    Downey, N.; Begnaud, M. L.; Hipp, J. R.; Ballard, S.; Young, C. S.; Encarnacao, A. V.

    2017-12-01

    The SALSA3D global 3D velocity model of the Earth was developed to improve the accuracy and precision of seismic travel time predictions for a wide suite of regional and teleseismic phases. Recently, the global SALSA3D model was updated to include additional body wave phases including mantle phases, core phases, reflections off the core-mantle boundary and underside reflections off the surface of the Earth. We show that this update improves travel time predictions and leads directly to significant improvements in the accuracy and precision of seismic event locations as compared to locations computed using standard 1D velocity models like ak135, or 2½D models like RSTT. A key feature of our inversions is that path-specific model uncertainty of travel time predictions are calculated using the full 3D model covariance matrix computed during tomography, which results in more realistic uncertainty ellipses that directly reflect tomographic data coverage. Application of this method can also be done at a regional scale: we present a velocity model with uncertainty obtained using data obtained from the University of Utah Seismograph Stations. These results show a reduction in travel-time residuals for re-located events compared with those obtained using previously published models.

  11. Reducing Systematic Errors for Seismic Event Locations Using a Model Incorporating Anisotropic Regional Structures

    National Research Council Canada - National Science Library

    Smith, Gideon P; Wiens, Douglas A

    2006-01-01

    ...) to predict travel times of P-wave propagation at distances of 2 - 14 degrees. At such distances, the phase Pn is in the seismic phase that is most frequently reported and that thus controls the location accuracy...

  12. Seismic and Infrasound Location

    Energy Technology Data Exchange (ETDEWEB)

    Arrowsmith, Stephen J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Begnaud, Michael L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-03-19

    This presentation includes slides on Signal Propagation Through the Earth/Atmosphere Varies at Different Scales; 3D Seismic Models: RSTT; Ray Coverage (Pn); Source-Specific Station Corrections (SSSCs); RSTT Conclusions; SALSA3D (SAndia LoS Alamos) Global 3D Earth Model for Travel Time; Comparison of IDC SSSCs to RSTT Predictions; SALSA3D; Validation and Model Comparison; DSS Lines in the Siberian Platform; DSS Line CRA-4 Comparison; Travel Time Δak135; Travel Time Prediction Uncertainty; SALSA3D Conclusions; Infrasound Data Processing: An example event; Infrasound Data Processing: An example event; Infrasound Location; How does BISL work?; BISL: Application to the 2013 DPRK Test; and BISL: Ongoing Research.

  13. Improvements in seismic event locations in a deep western U.S. coal mine using tomographic velocity models and an evolutionary search algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Adam Lurka; Peter Swanson [Central Mining Institute, Katowice (Poland)

    2009-09-15

    Methods of improving seismic event locations were investigated as part of a research study aimed at reducing ground control safety hazards. Seismic event waveforms collected with a 23-station three-dimensional sensor array during longwall coal mining provide the data set used in the analyses. A spatially variable seismic velocity model is constructed using seismic event sources in a passive tomographic method. The resulting three-dimensional velocity model is used to relocate seismic event positions. An evolutionary optimization algorithm is implemented and used in both the velocity model development and in seeking improved event location solutions. Results obtained using the different velocity models are compared. The combination of the tomographic velocity model development and evolutionary search algorithm provides improvement to the event locations. 13 refs., 5 figs., 4 tabs.

  14. A data-based model to locate mass movements triggered by seismic events in Sichuan, China.

    Science.gov (United States)

    de Souza, Fabio Teodoro

    2014-01-01

    Earthquakes affect the entire world and have catastrophic consequences. On May 12, 2008, an earthquake of magnitude 7.9 on the Richter scale occurred in the Wenchuan area of Sichuan province in China. This event, together with subsequent aftershocks, caused many avalanches, landslides, debris flows, collapses, and quake lakes and induced numerous unstable slopes. This work proposes a methodology that uses a data mining approach and geographic information systems to predict these mass movements based on their association with the main and aftershock epicenters, geologic faults, riverbeds, and topography. A dataset comprising 3,883 mass movements is analyzed, and some models to predict the location of these mass movements are developed. These predictive models could be used by the Chinese authorities as an important tool for identifying risk areas and rescuing survivors during similar events in the future.

  15. Seismic Calibration of Group 1 IMS Stations in Eastern Asia for Improved IDC Event Location

    National Research Council Canada - National Science Library

    Murphy, J. R; Rodi, W. L; Johnson, M; Sultanov, J. D; Bennett, T. J; Toksoz, M. N; Ovtchinnikov, V; Barker, B. W; Rosca, A. M; Shchukin, Y

    2006-01-01

    .... In order to establish a robust nuclear test monitoring capability, it is necessary to calibrate the IMS seismic stations used in monitoring, to account for systematic deviations from the nominal travel time curves...

  16. Improvement of IDC/CTBTO Event Locations in Latin America and the Caribbean Using a Regional Seismic Travel Time Model

    Science.gov (United States)

    Given, J. W.; Guendel, F.

    2013-05-01

    The International Data Centre is a vital element of the Comprehensive Test Ban Treaty (CTBT) verification mechanism. The fundamental mission of the International Data Centre (IDC) is to collect, process, and analyze monitoring data and to present results as event bulletins to Member States. For the IDC and in particular for waveform technologies, a key measure of the quality of its products is the accuracy by which every detected event is located. Accurate event location is crucial for purposes of an On Site Inspection (OSI), which would confirm the conduct of a nuclear test. Thus it is important for the IDC monitoring and data analysis to adopt new processing algorithms that improve the accuracy of event location. Among them the development of new algorithms to compute regional seismic travel times through 3-dimensional models have greatly increased IDC's location precision, the reduction of computational time, allowing forward and inverse modeling of large data sets. One of these algorithms has been the Regional Seismic Travel Time model (RSTT) of Myers et al., (2011). The RSTT model is nominally a global model; however, it currently covers only North America and Eurasia in sufficient detail. It is the intention CTBTO's Provisional Technical Secretariat and the IDC to extend the RSTT model to other regions of the earth, e.g. Latin America-Caribbean, Africa and Asia. This is particularly important for the IDC location procedure, as there are regions of the earth for which crustal models are not well constrained. For this purpose IDC has launched a RSTT initiative. In May 2012, a technical meeting was held in Vienna under the auspices of the CTBTO. The purpose of this meeting was to invite National Data Centre experts as well as network operators from Africa, Europe, the Middle East, Asia, Australia, Latin and North America to discuss the context under which a project to extend the RSTT model would be implemented. A total of 41 participants from 32 Member States

  17. Testing the Quick Seismic Event Locator and Magnitude Calculator (SSL_Calc) by Marsite Project Data Base

    Science.gov (United States)

    Tunc, Suleyman; Tunc, Berna; Caka, Deniz; Baris, Serif

    2016-04-01

    Locating and calculating size of the seismic events is quickly one of the most important and challenging issue in especially real time seismology. In this study, we developed a Matlab application to locate seismic events and calculate their magnitudes (Local Magnitude and empirical Moment Magnitude) using single station called SSL_Calc. This newly developed sSoftware has been tested on the all stations of the Marsite project "New Directions in Seismic Hazard Assessment through Focused Earth Observation in the Marmara Supersite-MARsite". SSL_Calc algorithm is suitable both for velocity and acceleration sensors. Data has to be in GCF (Güralp Compressed Format). Online or offline data can be selected in SCREAM software (belongs to Guralp Systems Limited) and transferred to SSL_Calc. To locate event P and S wave picks have to be marked by using SSL_Calc window manually. During magnitude calculation, instrument correction has been removed and converted to real displacement in millimeter. Then the displacement data is converted to Wood Anderson Seismometer output by using; Z=[0;0]; P=[-6.28+4.71j; -6.28-4.71j]; A0=[2080] parameters. For Local Magnitude calculation,; maximum displacement amplitude (A) and distance (dist) are used in formula (1) for distances up to 200km and formula (2) for more than 200km. ML=log10(A)-(-1.118-0.0647*dist+0.00071*dist2-3.39E-6*dist3+5.71e-9*dist4) (1) ML=log10(A)+(2.1173+0.0082*dist-0.0000059628*dist2) (2) Following Local Magnitude calculation, the programcode calculates two empiric Moment Magnitudes using formulas (3) Akkar et al. (2010) and (4) Ulusay et al. (2004). Mw=0.953* ML+0.422 (3) Mw=0.7768* ML+1.5921 (4) SSL_Calc is a software that is easy to implement and user friendly and offers practical solution to individual users to location of event and ML, Mw calculation.

  18. Coseismic and aseismic deformations associated with mining-induced seismic events located in deep level mines in South Africa

    CSIR Research Space (South Africa)

    Milev, A

    2013-10-01

    Full Text Available Two underground sites in a deep level gold mine in South Africa were instrumented by the Council for Scientific and Industrial Research (CSIR) with tilt meters and seismic monitors. One of the sites was also instrumented by Japanese-German...

  19. The ISC Seismic Event Bibliography

    Science.gov (United States)

    Di Giacomo, Domenico; Storchak, Dmitry

    2015-04-01

    The International Seismological Centre (ISC) is a not-for-profit organization operating in the UK for the last 50 years and producing the ISC Bulletin - the definitive worldwide summary of seismic events, both natural and anthropogenic - starting from the beginning of 20th century. Often researchers need to gather information related to specific seismic events for various reasons. To facilitate such task, in 2012 we set up a new database linking earthquakes and other seismic events in the ISC Bulletin to bibliographic records of scientific articles (mostly peer-reviewed journals) that describe those events. Such association allows users of the ISC Event Bibliography (www.isc.ac.uk/event_bibliography/index.php) to run searches for publications via a map-based web interface and, optionally, selecting scientific publications related to either specific events or events in the area of interest. Some of the greatest earthquakes were described in several hundreds of articles published over a period of few years. The journals included in our database are not limited to seismology but bring together a variety of fields in geosciences (e.g., engineering seismology, geodesy and remote sensing, tectonophysics, monitoring research, tsunami, geology, geochemistry, hydrogeology, atmospheric sciences, etc.) making this service useful in multidisciplinary studies. Usually papers dealing with large data set are not included (e.g., papers describing a seismic catalogue). Currently the ISC Event Bibliography includes over 17,000 individual publications from about 500 titles related to over 14,000 events that occurred in last 100+ years. The bibliographic records in the Event Bibliography start in the 1950s, and it is updated as new publications become available.

  20. Accuracy of the master-event and double-difference locations: synthetic tests and application to seismicity in West Bohemia, Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Bouchaala, Fateh; Vavryčuk, Václav; Fischer, Tomáš

    2013-01-01

    Roč. 17, č. 3 (2013), s. 841-859 ISSN 1383-4649 R&D Projects: GA AV ČR IAA300120905; GA ČR(CZ) GAP210/12/1491; GA MŠk LM2010008 EU Projects: European Commission(XE) 230669 - AIM Institutional support: RVO:67985530 Keywords : earthquakes * earthquake swarm * faults * locations * seismicity Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.386, year: 2013

  1. Adaptive prediction applied to seismic event detection

    International Nuclear Information System (INIS)

    Clark, G.A.; Rodgers, P.W.

    1981-01-01

    Adaptive prediction was applied to the problem of detecting small seismic events in microseismic background noise. The Widrow-Hoff LMS adaptive filter used in a prediction configuration is compared with two standard seismic filters as an onset indicator. Examples demonstrate the technique's usefulness with both synthetic and actual seismic data

  2. Adaptive prediction applied to seismic event detection

    Energy Technology Data Exchange (ETDEWEB)

    Clark, G.A.; Rodgers, P.W.

    1981-09-01

    Adaptive prediction was applied to the problem of detecting small seismic events in microseismic background noise. The Widrow-Hoff LMS adaptive filter used in a prediction configuration is compared with two standard seismic filters as an onset indicator. Examples demonstrate the technique's usefulness with both synthetic and actual seismic data.

  3. Probabilistic safety assessment for seismic events

    International Nuclear Information System (INIS)

    1993-10-01

    This Technical Document on Probabilistic Safety Assessment for Seismic Events is mainly associated with the Safety Practice on Treatment of External Hazards in PSA and discusses in detail one specific external hazard, i.e. earthquakes

  4. Microseismic event location by master-event waveform stacking

    Science.gov (United States)

    Grigoli, F.; Cesca, S.; Dahm, T.

    2016-12-01

    Waveform stacking location methods are nowadays extensively used to monitor induced seismicity monitoring assoiciated with several underground industrial activities such as Mining, Oil&Gas production and Geothermal energy exploitation. In the last decade a significant effort has been spent to develop or improve methodologies able to perform automated seismological analysis for weak events at a local scale. This effort was accompanied by the improvement of monitoring systems, resulting in an increasing number of large microseismicity catalogs. The analysis of microseismicity is challenging, because of the large number of recorded events often characterized by a low signal-to-noise ratio. A significant limitation of the traditional location approaches is that automated picking is often done on each seismogram individually, making little or no use of the coherency information between stations. In order to improve the performance of the traditional location methods, in the last year, alternative approaches have been proposed. These methods exploits the coherence of the waveforms recorded at different stations and do not require any automated picking procedure. The main advantage of this methods relies on their robustness even when the recorded waveforms are very noisy. On the other hand, like any other location method, the location performance strongly depends on the accuracy of the available velocity model. When dealing with inaccurate velocity models, in fact, location results can be affected by large errors. Here we will introduce a new automated waveform stacking location method which is less dependent on the knowledge of the velocity model and presents several benefits, which improve the location accuracy: 1) it accounts for phase delays due to local site effects, e.g. surface topography or variable sediment thickness 2) theoretical velocity model are only used to estimate travel times within the source volume, and not along the whole source-sensor path. We

  5. Detection and location of multiple events by MARS. Final report

    International Nuclear Information System (INIS)

    Wang, J.; Masso, J.F.; Archambeau, C.B.; Savino, J.M.

    1980-09-01

    Seismic data from two explosions was processed using the Systems Science and Software MARS (Multiple Arrival Recognition System) seismic event detector in an effort to determine their relative spatial and temporal separation on the basis of seismic data alone. The explosions were less than 1.0 kilometer apart and were separated by less than 0.5 sec in origin times. The seismic data consisted of nine local accelerograms (r < 1.0 km) and four regional (240 through 400 km) seismograms. The MARS processing clearly indicates the presence of multiple explosions, but the restricted frequency range of the data inhibits accurate time picks and hence limits the precision of the event location

  6. Automated seismic waveform location using Multichannel Coherency Migration (MCM)-I. Theory

    Science.gov (United States)

    Shi, Peidong; Angus, Doug; Rost, Sebastian; Nowacki, Andy; Yuan, Sanyi

    2018-03-01

    With the proliferation of dense seismic networks sampling the full seismic wavefield, recorded seismic data volumes are getting bigger and automated analysis tools to locate seismic events are essential. Here, we propose a novel Multichannel Coherency Migration (MCM) method to locate earthquakes in continuous seismic data and reveal the location and origin time of seismic events directly from recorded waveforms. By continuously calculating the coherency between waveforms from different receiver pairs, MCM greatly expands the available information which can be used for event location. MCM does not require phase picking or phase identification, which allows fully automated waveform analysis. By migrating the coherency between waveforms, MCM leads to improved source energy focusing. We have tested and compared MCM to other migration-based methods in noise-free and noisy synthetic data. The tests and analysis show that MCM is noise resistant and can achieve more accurate results compared with other migration-based methods. MCM is able to suppress strong interference from other seismic sources occurring at a similar time and location. It can be used with arbitrary 3D velocity models and is able to obtain reasonable location results with smooth but inaccurate velocity models. MCM exhibits excellent location performance and can be easily parallelized giving it large potential to be developed as a real-time location method for very large datasets.

  7. Automatic Seismic-Event Classification with Convolutional Neural Networks.

    Science.gov (United States)

    Bueno Rodriguez, A.; Titos Luzón, M.; Garcia Martinez, L.; Benitez, C.; Ibáñez, J. M.

    2017-12-01

    location of seismic events.

  8. Body and Surface Wave Modeling of Observed Seismic Events

    Science.gov (United States)

    1981-04-30

    mechanisms for foreshock , mainshock, and aftershock sequences using Seismic Research Observatory (SRO) data, EOS, 57(12), p. 954, 1976. Bache, T.C., W.L...the event as well as that of the immediate foreshock were 95 located (Allen and Nordquist, 1972) and where the largest surface displacements were...1972). Foreshock , main shock and larger aftershocks of the Borrego Mountain earthquake, U. S. Geological Survey Professional Paper 787, 16-23. Bache

  9. Short-Period Surface Wave Based Seismic Event Relocation

    Science.gov (United States)

    White-Gaynor, A.; Cleveland, M.; Nyblade, A.; Kintner, J. A.; Homman, K.; Ammon, C. J.

    2017-12-01

    Accurate and precise seismic event locations are essential for a broad range of geophysical investigations. Superior location accuracy generally requires calibration with ground truth information, but superb relative location precision is often achievable independently. In explosion seismology, low-yield explosion monitoring relies on near-source observations, which results in a limited number of observations that challenges our ability to estimate any locations. Incorporating more distant observations means relying on data with lower signal-to-noise ratios. For small, shallow events, the short-period (roughly 1/2 to 8 s period) fundamental-mode and higher-mode Rayleigh waves (including Rg) are often the most stable and visible portion of the waveform at local distances. Cleveland and Ammon [2013] have shown that teleseismic surface waves are valuable observations for constructing precise, relative event relocations. We extend the teleseismic surface wave relocation method, and apply them to near-source distances using Rg observations from the Bighorn Arche Seismic Experiment (BASE) and the Earth Scope USArray Transportable Array (TA) seismic stations. Specifically, we present relocation results using short-period fundamental- and higher-mode Rayleigh waves (Rg) in a double-difference relative event relocation for 45 delay-fired mine blasts and 21 borehole chemical explosions. Our preliminary efforts are to explore the sensitivity of the short-period surface waves to local geologic structure, source depth, explosion magnitude (yield), and explosion characteristics (single-shot vs. distributed source, etc.). Our results show that Rg and the first few higher-mode Rayleigh wave observations can be used to constrain the relative locations of shallow low-yield events.

  10. Seismicity and seismotectonics of the Western Lake Ontario Region -relocation of the seismic events phase III

    International Nuclear Information System (INIS)

    Mohajer, A.A.

    1995-12-01

    Earthquake hazard analysis in Canada relies mainly on recorded earthquake data. The ability to record earthquakes of a given magnitude has varied considerably over time as has the accuracy of location determinations. Recomputation of earthquake locations has been suggested as a possible means of improving the existing data base for better definition of seismic sources. In this study, the locations of more than 50 small to moderate magnitude earthquakes (M≤5), in the western Lake Ontario region, were examined. Available seismograph records in the Record Centre of the National Archives of Canada were examined for events that occurred prior to 1978. The events recorded after this date showed increasing accuracy in their location determinations due to initiation and improvements of the Eastern Canada Telemetry Network (ECTN). Data compiled from the study are based on the relocated and/or selected events with the minimum travel time residuals at the Canadian and American stations. Except for a few scattered events in the south-central part of the Lake Ontario region, microearthquakes (M<3.5) cluster along or at the intersection of prominent aeromagnetic and gravity anomalies, within the Toronto-Hamilton Seismic Zone. This is indicative of certain seismotectonic relationships in this region. The depth distribution or the better located events show that a range of 5 to 20 km is dominant and, therefore, they are not near-surface stress relief phenomena. However, details of the structural manifestation of inferred seismogenic features need further ground truthing, backed by long term seismic monitoring. (author) 66 refs., 3 tabs., 6 figs

  11. Spatial pattern recognition of seismic events in South West Colombia

    Science.gov (United States)

    Benítez, Hernán D.; Flórez, Juan F.; Duque, Diana P.; Benavides, Alberto; Lucía Baquero, Olga; Quintero, Jiber

    2013-09-01

    Recognition of seismogenic zones in geographical regions supports seismic hazard studies. This recognition is usually based on visual, qualitative and subjective analysis of data. Spatial pattern recognition provides a well founded means to obtain relevant information from large amounts of data. The purpose of this work is to identify and classify spatial patterns in instrumental data of the South West Colombian seismic database. In this research, clustering tendency analysis validates whether seismic database possesses a clustering structure. A non-supervised fuzzy clustering algorithm creates groups of seismic events. Given the sensitivity of fuzzy clustering algorithms to centroid initial positions, we proposed a methodology to initialize centroids that generates stable partitions with respect to centroid initialization. As a result of this work, a public software tool provides the user with the routines developed for clustering methodology. The analysis of the seismogenic zones obtained reveals meaningful spatial patterns in South-West Colombia. The clustering analysis provides a quantitative location and dispersion of seismogenic zones that facilitates seismological interpretations of seismic activities in South West Colombia.

  12. Earthquake and nuclear explosion location using the global seismic network

    International Nuclear Information System (INIS)

    Lopez, L.M.

    1983-01-01

    The relocation of nuclear explosions, aftershock sequence and regional seismicity is addressed by using joint hypocenter determination, Lomnitz' distance domain location, and origin time and earthquake depth determination with local observations. Distance domain and joint hypocenter location are used for a stepwise relocation of nuclear explosions in the USSR. The resulting origin times are 2.5 seconds earlier than those obtained by ISC. Local travel times from the relocated explosions are compared to Jeffreys-Bullen tables. P times are found to be faster at 9-30 0 distances, the largest deviation being around 10 seconds at 13-18 0 . At these distances S travel times also are faster by approximately 20 seconds. The 1977 Sumba earthquake sequence is relocated by iterative joint hypocenter determination of events with most station reports. Simultaneously determined station corrections are utilized for the relocation of smaller aftershocks. The relocated hypocenters indicate that the aftershocks were initially concentrated along the deep trench. Origin times and depths are recalculated for intermediate depth and deep earthquakes using local observations in and around the Japanese Islands. It is found that origin time and depth differ systematically from ISC values for intermediate depth events. Origin times obtained for events below the crust down to 100 km depth are earlier, whereas no general bias seem to exist for origin times of events in the 100-400 km depth range. The recalculated depths for earthquakes shallower than 100 km are shallower than ISC depths. The depth estimates for earthquakes deeper than 100 km were increased by the recalculations

  13. Earthquake and nuclear explosion location using the global seismic network

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, L.M.

    1983-01-01

    The relocation of nuclear explosions, aftershock sequence and regional seismicity is addressed by using joint hypocenter determination, Lomnitz' distance domain location, and origin time and earthquake depth determination with local observations. Distance domain and joint hypocenter location are used for a stepwise relocation of nuclear explosions in the USSR. The resulting origin times are 2.5 seconds earlier than those obtained by ISC. Local travel times from the relocated explosions are compared to Jeffreys-Bullen tables. P times are found to be faster at 9-30/sup 0/ distances, the largest deviation being around 10 seconds at 13-18/sup 0/. At these distances S travel times also are faster by approximately 20 seconds. The 1977 Sumba earthquake sequence is relocated by iterative joint hypocenter determination of events with most station reports. Simultaneously determined station corrections are utilized for the relocation of smaller aftershocks. The relocated hypocenters indicate that the aftershocks were initially concentrated along the deep trench. Origin times and depths are recalculated for intermediate depth and deep earthquakes using local observations in and around the Japanese Islands. It is found that origin time and depth differ systematically from ISC values for intermediate depth events. Origin times obtained for events below the crust down to 100 km depth are earlier, whereas no general bias seem to exist for origin times of events in the 100-400 km depth range. The recalculated depths for earthquakes shallower than 100 km are shallower than ISC depths. The depth estimates for earthquakes deeper than 100 km were increased by the recalculations.

  14. Study of local seismic events in Lithuania and adjacent areas using data from the PASSEQ experiment

    Czech Academy of Sciences Publication Activity Database

    Janutyte, I.; Kozlovskaya, E.; Motuza, G.; Plomerová, Jaroslava; Babuška, Vladislav; Gaždová, Renata; Jedlička, Petr; Kolínský, Petr; Málek, Jiří; Novotný, Oldřich; Růžek, Bohuslav

    2013-01-01

    Roč. 170, č. 5 (2013), s. 797-814 ISSN 0033-4553 Institutional support: RVO:67985530 ; RVO:67985891 Keywords : location of local seismic events * East European Craton * PASSEQ passive seismic experiment Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.854, year: 2013

  15. It's All about Location, Location, Location: Children's Memory for the "Where'' of Personally Experienced Events

    Science.gov (United States)

    Bauer, Patricia J.; Doydum, Ayzit O.; Pathman, Thanujeni; Larkina, Marina; Guler, O. Evren; Burch, Melissa

    2012-01-01

    Episodic memory is defined as the ability to recall specific past events located in a particular time and place. Over the preschool and into the school years, there are clear developmental changes in memory for when events took place. In contrast, little is known about developmental changes in memory for where events were experienced. In the…

  16. High-resolution and super stacking of time-reversal mirrors in locating seismic sources

    KAUST Repository

    Cao, Weiping

    2011-07-08

    Time reversal mirrors can be used to backpropagate and refocus incident wavefields to their actual source location, with the subsequent benefits of imaging with high-resolution and super-stacking properties. These benefits of time reversal mirrors have been previously verified with computer simulations and laboratory experiments but not with exploration-scale seismic data. We now demonstrate the high-resolution and the super-stacking properties in locating seismic sources with field seismic data that include multiple scattering. Tests on both synthetic data and field data show that a time reversal mirror has the potential to exceed the Rayleigh resolution limit by factors of 4 or more. Results also show that a time reversal mirror has a significant resilience to strong Gaussian noise and that accurate imaging of source locations from passive seismic data can be accomplished with traces having signal-to-noise ratios as low as 0.001. Synthetic tests also demonstrate that time reversal mirrors can sometimes enhance the signal by a factor proportional to the square root of the product of the number of traces, denoted as N and the number of events in the traces. This enhancement property is denoted as super-stacking and greatly exceeds the classical signal-to-noise enhancement factor of. High-resolution and super-stacking are properties also enjoyed by seismic interferometry and reverse-time migration with the exact velocity model. © 2011 European Association of Geoscientists & Engineers.

  17. Fast 3D elastic micro-seismic source location using new GPU features

    Science.gov (United States)

    Xue, Qingfeng; Wang, Yibo; Chang, Xu

    2016-12-01

    In this paper, we describe new GPU features and their applications in passive seismic - micro-seismic location. Locating micro-seismic events is quite important in seismic exploration, especially when searching for unconventional oil and gas resources. Different from the traditional ray-based methods, the wave equation method, such as the method we use in our paper, has a remarkable advantage in adapting to low signal-to-noise ratio conditions and does not need a person to select the data. However, because it has a conspicuous deficiency due to its computation cost, these methods are not widely used in industrial fields. To make the method useful, we implement imaging-like wave equation micro-seismic location in a 3D elastic media and use GPU to accelerate our algorithm. We also introduce some new GPU features into the implementation to solve the data transfer and GPU utilization problems. Numerical and field data experiments show that our method can achieve a more than 30% performance improvement in GPU implementation just by using these new features.

  18. Innovations in seismic tomography, their applications and induced seismic events in carbon sequestration

    Science.gov (United States)

    Li, Peng

    This dissertation presents two innovations in seismic tomography and a new discovery of induced seismic events associated with CO2 injection at an Enhanced Oil Recovery (EOR) site. The following are brief introductions of these three works. The first innovated work is adaptive ambient seismic noise tomography (AANT). Traditional ambient noise tomography methods using regular grid nodes are often ill posed because the inversion grids do not always represent the distribution of ray paths. Large grid spacing is usually used to reduce the number of inversion parameters, which may not be able to solve for small-scale velocity structure. We present a new adaptive tomography method with irregular grids that provides a few advantages over the traditional methods. First, irregular grids with different sizes and shapes can fit the ray distribution better and the traditionally ill-posed problem can become more stable owing to the different parameterizations. Second, the data in the area with dense ray sampling will be sufficiently utilized so that the model resolution can be greatly improved. Both synthetic and real data are used to test the newly developed tomography algorithm. In synthetic data tests, we compare the resolution and stability of the traditional and adaptive methods. The results show that adaptive tomography is more stable and performs better in improving the resolution in the area with dense ray sampling. For real data, we extract the ambient noise signals of the seismic data near the Garlock Fault region, obtained from the Southern California Earthquake Data Center. The resulting group velocity of Rayleigh waves is well correlated with the geological structures. High velocity anomalies are shown in the cold southern Sierra Nevada, the Tehachapi Mountains and the Western San Gabriel Mountains. The second innovated work is local earthquake tomography with full topography (LETFT). In this work, we develop a new three-dimensional local earthquake tomography

  19. An automated multi-scale network-based scheme for detection and location of seismic sources

    Science.gov (United States)

    Poiata, N.; Aden-Antoniow, F.; Satriano, C.; Bernard, P.; Vilotte, J. P.; Obara, K.

    2017-12-01

    We present a recently developed method - BackTrackBB (Poiata et al. 2016) - allowing to image energy radiation from different seismic sources (e.g., earthquakes, LFEs, tremors) in different tectonic environments using continuous seismic records. The method exploits multi-scale frequency-selective coherence in the wave field, recorded by regional seismic networks or local arrays. The detection and location scheme is based on space-time reconstruction of the seismic sources through an imaging function built from the sum of station-pair time-delay likelihood functions, projected onto theoretical 3D time-delay grids. This imaging function is interpreted as the location likelihood of the seismic source. A signal pre-processing step constructs a multi-band statistical representation of the non stationary signal, i.e. time series, by means of higher-order statistics or energy envelope characteristic functions. Such signal-processing is designed to detect in time signal transients - of different scales and a priori unknown predominant frequency - potentially associated with a variety of sources (e.g., earthquakes, LFE, tremors), and to improve the performance and the robustness of the detection-and-location location step. The initial detection-location, based on a single phase analysis with the P- or S-phase only, can then be improved recursively in a station selection scheme. This scheme - exploiting the 3-component records - makes use of P- and S-phase characteristic functions, extracted after a polarization analysis of the event waveforms, and combines the single phase imaging functions with the S-P differential imaging functions. The performance of the method is demonstrated here in different tectonic environments: (1) analysis of the one year long precursory phase of 2014 Iquique earthquake in Chile; (2) detection and location of tectonic tremor sources and low-frequency earthquakes during the multiple episodes of tectonic tremor activity in southwestern Japan.

  20. A preliminary census of engineering activities located in Sicily (Southern Italy) which may "potentially" induce seismicity

    Science.gov (United States)

    Aloisi, Marco; Briffa, Emanuela; Cannata, Andrea; Cannavò, Flavio; Gambino, Salvatore; Maiolino, Vincenza; Maugeri, Roberto; Palano, Mimmo; Privitera, Eugenio; Scaltrito, Antonio; Spampinato, Salvatore; Ursino, Andrea; Velardita, Rosanna

    2015-04-01

    The seismic events caused by human engineering activities are commonly termed as "triggered" and "induced". This class of earthquakes, though characterized by low-to-moderate magnitude, have significant social and economical implications since they occur close to the engineering activity responsible for triggering/inducing them and can be felt by the inhabitants living nearby, and may even produce damage. One of the first well-documented examples of induced seismicity was observed in 1932 in Algeria, when a shallow magnitude 3.0 earthquake occurred close to the Oued Fodda Dam. By the continuous global improvement of seismic monitoring networks, numerous other examples of human-induced earthquakes have been identified. Induced earthquakes occur at shallow depths and are related to a number of human activities, such as fluid injection under high pressure (e.g. waste-water disposal in deep wells, hydrofracturing activities in enhanced geothermal systems and oil recovery, shale-gas fracking, natural and CO2 gas storage), hydrocarbon exploitation, groundwater extraction, deep underground mining, large water impoundments and underground nuclear tests. In Italy, induced/triggered seismicity is suspected to have contributed to the disaster of the Vajont dam in 1963. Despite this suspected case and the presence in the Italian territory of a large amount of engineering activities "capable" of inducing seismicity, no extensive researches on this topic have been conducted to date. Hence, in order to improve knowledge and correctly assess the potential hazard at a specific location in the future, here we started a preliminary study on the entire range of engineering activities currently located in Sicily (Southern Italy) which may "potentially" induce seismicity. To this end, we performed: • a preliminary census of all engineering activities located in the study area by collecting all the useful information coming from available on-line catalogues; • a detailed compilation

  1. Moment magnitude determination of local seismic events recorded at selected Polish seismic stations

    Science.gov (United States)

    Wiejacz, Paweł; Wiszniowski, Jan

    2006-03-01

    The paper presents the method of local magnitude determination used at Polish seismic stations to report events originating in one of the four regions of induced seismicity in Poland or its immediate vicinity. The method is based on recalculation of the seismic moment into magnitude, whereas the seismic moment is obtained from spectral analysis. The method has been introduced at Polish seismic stations in the late 1990s but as of yet had not been described in full because magnitude discrepancies have been found between the results of the individual stations. The authors have performed statistics of these differences, provide their explanation and calculate station corrections for each station and each event source region. The limitations of the method are also discussed. The method is found to be a good and reliable method of local magnitude determination provided the limitations are observed and station correction applied.

  2. Link Between the Seismic Events and the Different Seismic Precursor Phenomena

    Directory of Open Access Journals (Sweden)

    Mirela GHEORGHITA

    2009-12-01

    Full Text Available This article presents an analysis of the earthquake prediction methods, highlighting mainly the VLF and LF electromagnetic waves seismic precursors’ monitoring method and the correlation among these in order to obtain a more precise result. It is well known the fact that there are lots of links between the seismic events occurrence and different phenomena that predict their occurrence, such as theelectromagnetic field, Earth movement, gaseous content of radon and hydrogen within the soil, or within the underground waters. This paper aims to demonstrate the close link between the seismic events and the electromagnetic wave propagation anomalies, which are recorded before the advent of an earthquake.

  3. Challenges in Locating Microseismic Events Using Distributed Acoustic Sensors

    Science.gov (United States)

    Williams, A.; Kendall, J. M.; Clarke, A.; Verdon, J.

    2017-12-01

    Microseismic monitoring is an important method of assessing the behaviour of subsurface fluid processes, and is commonly acquired using geophone arrays in boreholes or on the surface. A new alternative technology has been recently developed - fibre-optic Distributed Acoustic Sensing (DAS) - using strain along a fibre-optic cable as a measure of seismic signals. DAS can offer high density arrays and full-well coverage from the surface to bottom, with less overall disruption to operations, so there are many exciting possible applications in monitoring both petroleum and other subsurface industries. However, there are challenges in locating microseismic events recorded using current DAS systems, which only record seismic data in one-component and consequently omit the azimuthal information provided by a three-component geophone. To test the impact of these limitations we used finite difference modelling to generate one-component synthetic DAS datasets and investigated the impact of picking solely P-wave or both P- and S-wave arrivals and the impact of different array geometries. These are then compared to equivalent 3-component synthetic geophone datasets. In simple velocity models, P-wave arrivals along linear arrays cannot be used to constrain locations using DAS, without further a priori information. We then tested the impact of straight cables vs. L-shaped arrays and found improved locations when the cable is deviated, especially when both P- and S-wave picks are included. There is a trade-off between the added coverage of DAS cables versus sparser 3C geophone arrays where particle motion helps constrains locations, which cannot be assessed without forward modelling.

  4. Seismic network based detection, classification and location of volcanic tremors

    Science.gov (United States)

    Nikolai, S.; Soubestre, J.; Seydoux, L.; de Rosny, J.; Droznin, D.; Droznina, S.; Senyukov, S.; Gordeev, E.

    2017-12-01

    Volcanic tremors constitute an important attribute of volcanic unrest in many volcanoes, and their detection and characterization is a challenging issue of volcano monitoring. The main goal of the present work is to develop a network-based method to automatically classify volcanic tremors, to locate their sources and to estimate the associated wave speed. The method is applied to four and a half years of seismic data continuously recorded by 19 permanent seismic stations in the vicinity of the Klyuchevskoy volcanic group (KVG) in Kamchatka (Russia), where five volcanoes were erupting during the considered time period. The method is based on the analysis of eigenvalues and eigenvectors of the daily array covariance matrix. As a first step, following Seydoux et al. (2016), most coherent signals corresponding to dominating tremor sources are detected based on the width of the covariance matrix eigenvalues distribution. With this approach, the volcanic tremors of the two volcanoes known as most active during the considered period, Klyuchevskoy and Tolbachik, are efficiently detected. As a next step, we consider the array covariance matrix's first eigenvectors computed every day. The main hypothesis of our analysis is that these eigenvectors represent the principal component of the daily seismic wavefield and, for days with tremor activity, characterize the dominant tremor sources. Those first eigenvectors can therefore be used as network-based fingerprints of tremor sources. A clustering process is developed to analyze this collection of first eigenvectors, using correlation coefficient as a measure of their similarity. Then, we locate tremor sources based on cross-correlations amplitudes. We characterize seven tremor sources associated with different periods of activity of four volcanoes: Tolbachik, Klyuchevskoy, Shiveluch, and Kizimen. The developed method does not require a priori knowledge, is fully automatic and the database of network-based tremor fingerprints

  5. Testing seismic amplitude source location for fast debris-flow detection at Illgraben, Switzerland

    Science.gov (United States)

    Walter, Fabian; Burtin, Arnaud; McArdell, Brian W.; Hovius, Niels; Weder, Bianca; Turowski, Jens M.

    2017-06-01

    Heavy precipitation can mobilize tens to hundreds of thousands of cubic meters of sediment in steep Alpine torrents in a short time. The resulting debris flows (mixtures of water, sediment and boulders) move downstream with velocities of several meters per second and have a high destruction potential. Warning protocols for affected communities rely on raising awareness about the debris-flow threat, precipitation monitoring and rapid detection methods. The latter, in particular, is a challenge because debris-flow-prone torrents have their catchments in steep and inaccessible terrain, where instrumentation is difficult to install and maintain. Here we test amplitude source location (ASL) as a processing scheme for seismic network data for early warning purposes. We use debris-flow and noise seismograms from the Illgraben catchment, Switzerland, a torrent system which produces several debris-flow events per year. Automatic in situ detection is currently based on geophones mounted on concrete check dams and radar stage sensors suspended above the channel. The ASL approach has the advantage that it uses seismometers, which can be installed at more accessible locations where a stable connection to mobile phone networks is available for data communication. Our ASL processing uses time-averaged ground vibration amplitudes to estimate the location of the debris-flow front. Applied to continuous data streams, inversion of the seismic amplitude decay throughout the network is robust and efficient, requires no manual identification of seismic phase arrivals and eliminates the need for a local seismic velocity model. We apply the ASL technique to a small debris-flow event on 19 July 2011, which was captured with a temporary seismic monitoring network. The processing rapidly detects the debris-flow event half an hour before arrival at the outlet of the torrent and several minutes before detection by the in situ alarm system. An analysis of continuous seismic records furthermore

  6. Testing seismic amplitude source location for fast debris-flow detection at Illgraben, Switzerland

    Directory of Open Access Journals (Sweden)

    F. Walter

    2017-06-01

    Full Text Available Heavy precipitation can mobilize tens to hundreds of thousands of cubic meters of sediment in steep Alpine torrents in a short time. The resulting debris flows (mixtures of water, sediment and boulders move downstream with velocities of several meters per second and have a high destruction potential. Warning protocols for affected communities rely on raising awareness about the debris-flow threat, precipitation monitoring and rapid detection methods. The latter, in particular, is a challenge because debris-flow-prone torrents have their catchments in steep and inaccessible terrain, where instrumentation is difficult to install and maintain. Here we test amplitude source location (ASL as a processing scheme for seismic network data for early warning purposes. We use debris-flow and noise seismograms from the Illgraben catchment, Switzerland, a torrent system which produces several debris-flow events per year. Automatic in situ detection is currently based on geophones mounted on concrete check dams and radar stage sensors suspended above the channel. The ASL approach has the advantage that it uses seismometers, which can be installed at more accessible locations where a stable connection to mobile phone networks is available for data communication. Our ASL processing uses time-averaged ground vibration amplitudes to estimate the location of the debris-flow front. Applied to continuous data streams, inversion of the seismic amplitude decay throughout the network is robust and efficient, requires no manual identification of seismic phase arrivals and eliminates the need for a local seismic velocity model. We apply the ASL technique to a small debris-flow event on 19 July 2011, which was captured with a temporary seismic monitoring network. The processing rapidly detects the debris-flow event half an hour before arrival at the outlet of the torrent and several minutes before detection by the in situ alarm system. An analysis of continuous seismic

  7. Evaluation of Fourier integral. Spectral analysis of seismic events

    International Nuclear Information System (INIS)

    Chitaru, Cristian; Enescu, Dumitru

    2003-01-01

    Spectral analysis of seismic events represents a method for great earthquake prediction. The seismic signal is not a sinusoidal signal; for this, it is necessary to find a method for best approximation of real signal with a sinusoidal signal. The 'Quanterra' broadband station allows the data access in numerical and/or graphical forms. With the numerical form we can easily make a computer program (MSOFFICE-EXCEL) for spectral analysis. (authors)

  8. The 2012 Emilia seismic sequence (Northern Italy): Imaging the thrust fault system by accurate aftershock location

    Science.gov (United States)

    Govoni, Aladino; Marchetti, Alessandro; De Gori, Pasquale; Di Bona, Massimo; Lucente, Francesco Pio; Improta, Luigi; Chiarabba, Claudio; Nardi, Anna; Margheriti, Lucia; Agostinetti, Nicola Piana; Di Giovambattista, Rita; Latorre, Diana; Anselmi, Mario; Ciaccio, Maria Grazia; Moretti, Milena; Castellano, Corrado; Piccinini, Davide

    2014-05-01

    Starting from late May 2012, the Emilia region (Northern Italy) was severely shaken by an intense seismic sequence, originated from a ML 5.9 earthquake on May 20th, at a hypocentral depth of 6.3 km, with thrust-type focal mechanism. In the following days, the seismic rate remained high, counting 50 ML ≥ 2.0 earthquakes a day, on average. Seismicity spreads along a 30 km east-west elongated area, in the Po river alluvial plain, in the nearby of the cities Ferrara and Modena. Nine days after the first shock, another destructive thrust-type earthquake (ML 5.8) hit the area to the west, causing further damage and fatalities. Aftershocks following this second destructive event extended along the same east-westerly trend for further 20 km to the west, thus illuminating an area of about 50 km in length, on the whole. After the first shock struck, on May 20th, a dense network of temporary seismic stations, in addition to the permanent ones, was deployed in the meizoseismal area, leading to a sensible improvement of the earthquake monitoring capability there. A combined dataset, including three-component seismic waveforms recorded by both permanent and temporary stations, has been analyzed in order to obtain an appropriate 1-D velocity model for earthquake location in the study area. Here we describe the main seismological characteristics of this seismic sequence and, relying on refined earthquakes location, we make inferences on the geometry of the thrust system responsible for the two strongest shocks.

  9. Probabilistic tsunami hazard assessment considering time-lag of seismic event on Nankai trough

    International Nuclear Information System (INIS)

    Sugino, Hideharu; Sakagami, Masaharu; Ebisawa, Katsumi; Korenaga, Mariko

    2011-01-01

    In the area in front of Nankai trough, tsunami wave height may increase if tsunamis attacking from some wave sources overlap because of time-lag of seismic event on Nankai trough. To evaluation tsunami risk of the important facilities located in front of Nankai trough, we proposed the probabilistic tsunami hazard assessment considering uncertainty on time-lag of seismic event on Nankai trough and we evaluated the influence that the time-lag gave to tsunami hazard at the some representative points. (author)

  10. Reflection seismic methods applied to locating fracture zones in crystalline rock

    International Nuclear Information System (INIS)

    Juhlin, C.

    1998-01-01

    where surface mapped fracture zones exist. The South dipping reflector correlates with the top of a heavily fractured interval observed in a borehole at about 400 m. 3D effects are clearly apparent in the data and only where the profiles cross can the true orientation of the reflecting events be determined. To properly orient and locate all events observed on the lines requires acquisition of 3D data

  11. National Earthquake Information Center Seismic Event Detections on Multiple Scales

    Science.gov (United States)

    Patton, J.; Yeck, W. L.; Benz, H.; Earle, P. S.; Soto-Cordero, L.; Johnson, C. E.

    2017-12-01

    The U.S. Geological Survey National Earthquake Information Center (NEIC) monitors seismicity on local, regional, and global scales using automatic picks from more than 2,000 near-real time seismic stations. This presents unique challenges in automated event detection due to the high variability in data quality, network geometries and density, and distance-dependent variability in observed seismic signals. To lower the overall detection threshold while minimizing false detection rates, NEIC has begun to test the incorporation of new detection and picking algorithms, including multiband (Lomax et al., 2012) and kurtosis (Baillard et al., 2014) pickers, and a new bayesian associator (Glass 3.0). The Glass 3.0 associator allows for simultaneous processing of variably scaled detection grids, each with a unique set of nucleation criteria (e.g., nucleation threshold, minimum associated picks, nucleation phases) to meet specific monitoring goals. We test the efficacy of these new tools on event detection in networks of various scales and geometries, compare our results with previous catalogs, and discuss lessons learned. For example, we find that on local and regional scales, rapid nucleation of small events may require event nucleation with both P and higher-amplitude secondary phases (e.g., S or Lg). We provide examples of the implementation of a scale-independent associator for an induced seismicity sequence (local-scale), a large aftershock sequence (regional-scale), and for monitoring global seismicity. Baillard, C., Crawford, W. C., Ballu, V., Hibert, C., & Mangeney, A. (2014). An automatic kurtosis-based P-and S-phase picker designed for local seismic networks. Bulletin of the Seismological Society of America, 104(1), 394-409. Lomax, A., Satriano, C., & Vassallo, M. (2012). Automatic picker developments and optimization: FilterPicker - a robust, broadband picker for real-time seismic monitoring and earthquake early-warning, Seism. Res. Lett. , 83, 531-540, doi: 10

  12. Detection of ULF geomagnetic signals associated with seismic events in Central Mexico using Discrete Wavelet Transform

    Directory of Open Access Journals (Sweden)

    O. Chavez

    2010-12-01

    Full Text Available The geomagnetic observatory of Juriquilla Mexico, located at longitude –100.45° and latitude 20.70°, and 1946 m a.s.l., has been operational since June 2004 compiling geomagnetic field measurements with a three component fluxgate magnetometer. In this paper, the results of the analysis of these measurements in relation to important seismic activity in the period of 2007 to 2009 are presented. For this purpose, we used superposed epochs of Discrete Wavelet Transform of filtered signals for the three components of the geomagnetic field during relative seismic calm, and it was compared with seismic events of magnitudes greater than Ms > 5.5, which have occurred in Mexico. The analysed epochs consisted of 18 h of observations for a dataset corresponding to 18 different earthquakes (EQs. The time series were processed for a period of 9 h prior to and 9 h after each seismic event. This data processing was compared with the same number of observations during a seismic calm. The proposed methodology proved to be an efficient tool to detect signals associated with seismic activity, especially when the seismic events occur in a distance (D from the observatory to the EQ, such that the ratio D/ρ < 1.8 where ρ is the earthquake radius preparation zone. The methodology presented herein shows important anomalies in the Ultra Low Frequency Range (ULF; 0.005–1 Hz, primarily for 0.25 to 0.5 Hz. Furthermore, the time variance (σ2 increases prior to, during and after the seismic event in relation to the coefficient D1 obtained, principally in the Bx (N-S and By (E-W geomagnetic components. Therefore, this paper proposes and develops a new methodology to extract the abnormal signals of the geomagnetic anomalies related to different stages of the EQs.

  13. Correlation Between Electromagnetic Signals and Seismic Events on Central Colombia Region to Establish Seismic Precursors Existence

    Science.gov (United States)

    Caneva, A.; Vargas Jiménez, C. A.; Solano Fino, J. M.

    2017-12-01

    It was already shown by several authors around the world some kinds of correlation between electric and magnetic signals and seismic events looking for precursors to the last ones emitted from the seismic source. This investigation tends to establish a correlation between electro-magnetic (EM) signals on the ground surface and seismic events on the Colombian lithospheric system. The events correlation was made with data from the Seismological Network of the Sabana de Bogotá (RSSB for its acronym in Spanish), a temporal seismological network on Chichimene (Acacías, Meta, Colombia) and the National Seismological Network of Colombia (RSNC, for its acronym in Spanish). The project involved the design, construction and preliminary tests for the necessary instruments added to the RSSB as multi-parameter stations with seismic broadband, electric polarizing and non-polarizing dipoles and Earth's magnetic field sensors. Correlations were made considering time, frequency and `natural time' domains with filtering and preprocessing algorithms. Among the main results are the almost complete lack of electric disturbances known as Seismic Electric Signals (SES) and very few of the magnetic kind. However, another kind of long period magnetic disturbances for some stations and events where found. More instruments have to be deployed in order to get a better understanding of these disturbances and develop a robust model.

  14. Microseismic Event Location Improvement Using Adaptive Filtering for Noise Attenuation

    Science.gov (United States)

    de Santana, F. L., Sr.; do Nascimento, A. F.; Leandro, W. P. D. N., Sr.; de Carvalho, B. M., Sr.

    2017-12-01

    In this work we show how adaptive filtering noise suppression improves the effectiveness of the Source Scanning Algorithm (SSA; Kao & Shan, 2004) in microseism location in the context of fracking operations. The SSA discretizes the time and region of interest in a 4D vector and, for each grid point and origin time, a brigthness value (seismogram stacking) is calculated. For a given set of velocity model parameters, when origin time and hypocenter of the seismic event are correct, a maximum value for coherence (or brightness) is achieved. The result is displayed on brightness maps for each origin time. Location methods such as SSA are most effective when the noise present in the seismograms is incoherent, however, the method may present false positives when the noise present in the data is coherent as occurs in fracking operations. To remove from the seismograms, the coherent noise from the pump and engines used in the operation, we use an adaptive filter. As the noise reference, we use the seismogram recorded at the station closest to the machinery employed. Our methodology was tested on semi-synthetic data. The microseismic was represented by Ricker pulses (with central frequency of 30Hz) on synthetics seismograms, and to simulate real seismograms on a surface microseismic monitoring situation, we added real noise recorded in a fracking operation to these synthetics seismograms. The results show that after the filtering of the seismograms, we were able to improve our detection threshold and to achieve a better resolution on the brightness maps of the located events.

  15. Seismic spectra of events at regional distances

    International Nuclear Information System (INIS)

    Springer, D.L.; Denny, M.D.

    1976-01-01

    About 40 underground nuclear explosions detonated at the Nevada Test Site (NTS) were chosen for analysis of their spectra and any relationships they might have to source parameters such as yield, depth of burial, etc. The sample covered a large yield range (less than 20 kt to greater than 1 Mt). Broadband (0.05 to 20 Hz) data recorded by the four-station seismic network operated by Lawrence Livermore Laboratory were analyzed in a search for unusual explosion signatures in their spectra. Long time windows (total wave train) as well as shorter windows (for instance, P/sub n/) were used as input to calculate the spectra. Much variation in the spectra of the long windows is typical although some gross features are similar, such as a dominant peak in the microseismic window. The variation is such that selection of corner frequencies is impractical and yield scaling could not be determined. Spectra for one NTS earthquake showed more energy in the short periods (less than 1 sec) as well as in the long periods (greater than 8 sec) compared to those for NTS explosions

  16. Monitoring changes in seismic velocity related to an ongoing rapid inflation event at Okmok volcano, Alaska

    Science.gov (United States)

    Bennington, Ninfa; Haney, Matt; De Angelis, Silvio; Thurber, Clifford; Freymueller, Jeff

    2015-01-01

    Okmok is one of the most active volcanoes in the Aleutian Arc. In an effort to improve our ability to detect precursory activity leading to eruption at Okmok, we monitor a recent, and possibly ongoing, GPS-inferred rapid inflation event at the volcano using ambient noise interferometry (ANI). Applying this method, we identify changes in seismic velocity outside of Okmok’s caldera, which are related to the hydrologic cycle. Within the caldera, we observe decreases in seismic velocity that are associated with the GPS-inferred rapid inflation event. We also determine temporal changes in waveform decorrelation and show a continual increase in decorrelation rate over the time associated with the rapid inflation event. Themagnitude of relative velocity decreases and decorrelation rate increases are comparable to previous studies at Piton de la Fournaise that associate such changes with increased production of volatiles and/ormagmatic intrusion within the magma reservoir and associated opening of fractures and/or fissures. Notably, the largest decrease in relative velocity occurs along the intrastation path passing nearest to the center of the caldera. This observation, along with equal amplitude relative velocity decreases revealed via analysis of intracaldera autocorrelations, suggests that the inflation sourcemay be located approximately within the center of the caldera and represent recharge of shallow magma storage in this location. Importantly, there is a relative absence of seismicity associated with this and previous rapid inflation events at Okmok. Thus, these ANI results are the first seismic evidence of such rapid inflation at the volcano.

  17. Seismic precursors of vulcanian explosions at Ubinas volcano (Peru) : Statistical analysis and source locations

    Science.gov (United States)

    Métaxian, J.-P.; Macedo, O.; Lengline, O.; Monteiller, V.; Taipe, E.

    2009-04-01

    Ubinas stratovolcano (5672 m), located 60 km east from Arequipa city is historically the most active volcano in Peru. The present eruption began on March 25th 2006. A lava plug has been observed at the bottom of the pit crater situated in the south part of the caldeira. The eruptive activity involves very brought closer exhalations rising a few hundred meters above the crater rim to larger plumes produced by explosions that may reach up to 3 kilometers. The seismic activity is characterized by high rates of long-period (LP) event production accompanying eruptive activity and very long period (VLP) events observed at the same time as vulcanian explosions. The LP and VLP events have a spectral content respectively dominated by frequencies between 2-5 Hz and 0.3-0.9 Hz. The vulcanian explosive activity is characterized by the occurrence of LP swarm preceding most of the VLPs by about 2 hours. In some occasions, the LP swarm merges into tremor about half an hour before the explosion. LPs belonging to the same swarm have similar waveform suggesting a unique source area, which could be the conduit and/or the lava plug surface. The monitoring system includes 4 seismic stations, among which one is equipped with a broadband sensor and 2 tiltmeters. In this work we analyzed a catalogue of data including more than 40000 LP events and 130 VLP events recorded between May 2006 and December 2008. The evolution of the average number of LP events preceding explosions was computed. The variation of the LP rate is clearly diverging from the background rate ~ 0.1 days before explosions. In particular, the most energetic explosions are correlated with the biggest increases of seismicity. However this general behavior is not observed for every single explosion. A direct test is now under study in order to check if the earthquake rate can be used as an alert tool for future explosions. To locate the source of LP events belonging to the swarms, we used a method based on the measurement of

  18. The unique contribution of the IDC Reviewed Event Bulletin to global seismicity catalogues

    Science.gov (United States)

    Koch, Karl; Kebede, Fekadu

    2010-05-01

    For monitoring the Comprehensive Nuclear-Test-Ban Treaty (CTBT) the International Monitoring System (IMS) network is currently being established that will eventually consists of 241 seismic, hydroacoustic and infrasound stations. The final result of processing and analysis of seismological and other waveform technology data from these stations is the Reviewed Event Bulletin (REB), which has been issued by the International Data Center (IDC) under provisional operation since February 2000 on a daily basis, except for a total of 28 days. The nearly 300,000 events produced since then correspond to more than 25,000 events per year. As an accompanying effort to the bulletin production at the IDC, quality assurance work has been carried out for the REB for the years from 2000 to 2008 through comparisons to similar bulletins of global seismicity, issued by the ISC and the National Earthquake Information Center (NEIC) of the United States Geological Survey. The comparisons with the NEIC bulletin concentrate on a timely identification of larger events that were either missed during interactive analysis at the IDC or which have been significantly mislocated. For the scope of this study the comparisons with the ISC bulletin are the focus, as this bulletin provides the most complete reference to global seismicity, even though it becomes available only after about two years of event occurrence. In our quality assessments we aimed at evaluating the consistency of event locations for common events, i.e. found in both the REB and the ISC bulletin having been relocated by ISC; the degree and the geospatial location of the events only produced in the REB and verified not being bogus, and those ISC relocated events not contained in the REB and which were missed during IDC analysis. Even though the seismic component of the IMS network with its maximum 170 seismometer stations is a sparse teleseismic network, locations differences of less than 1° (0.5° ) are observed, on average, for

  19. Seismic swarm associated with the 2008 eruption of Kasatochi Volcano, Alaska: earthquake locations and source parameters

    Science.gov (United States)

    Ruppert, Natalia G.; Prejean, Stephanie G.; Hansen, Roger A.

    2011-01-01

    An energetic seismic swarm accompanied an eruption of Kasatochi Volcano in the central Aleutian volcanic arc in August of 2008. In retrospect, the first earthquakes in the swarm were detected about 1 month prior to the eruption onset. Activity in the swarm quickly intensified less than 48 h prior to the first large explosion and subsequently subsided with decline of eruptive activity. The largest earthquake measured as moment magnitude 5.8, and a dozen additional earthquakes were larger than magnitude 4. The swarm exhibited both tectonic and volcanic characteristics. Its shear failure earthquake features were b value = 0.9, most earthquakes with impulsive P and S arrivals and higher-frequency content, and earthquake faulting parameters consistent with regional tectonic stresses. Its volcanic or fluid-influenced seismicity features were volcanic tremor, large CLVD components in moment tensor solutions, and increasing magnitudes with time. Earthquake location tests suggest that the earthquakes occurred in a distributed volume elongated in the NS direction either directly under the volcano or within 5-10 km south of it. Following the MW 5.8 event, earthquakes occurred in a new crustal volume slightly east and north of the previous earthquakes. The central Aleutian Arc is a tectonically active region with seismicity occurring in the crusts of the Pacific and North American plates in addition to interplate events. We postulate that the Kasatochi seismic swarm was a manifestation of the complex interaction of tectonic and magmatic processes in the Earth's crust. Although magmatic intrusion triggered the earthquakes in the swarm, the earthquakes failed in context of the regional stress field.

  20. A new event detector designed for the Seismic Research Observatories

    Science.gov (United States)

    Murdock, James N.; Hutt, Charles R.

    1983-01-01

    A new short-period event detector has been implemented on the Seismic Research Observatories. For each signal detected, a printed output gives estimates of the time of onset of the signal, direction of the first break, quality of onset, period and maximum amplitude of the signal, and an estimate of the variability of the background noise. On the SRO system, the new algorithm runs ~2.5x faster than the former (power level) detector. This increase in speed is due to the design of the algorithm: all operations can be performed by simple shifts, additions, and comparisons (floating point operations are not required). Even though a narrow-band recursive filter is not used, the algorithm appears to detect events competitively with those algorithms that employ such filters. Tests at Albuquerque Seismological Laboratory on data supplied by Blandford suggest performance commensurate with the on-line detector of the Seismic Data Analysis Center, Alexandria, Virginia.

  1. Detecting Seismic Events Using a Supervised Hidden Markov Model

    Science.gov (United States)

    Burks, L.; Forrest, R.; Ray, J.; Young, C.

    2017-12-01

    We explore the use of supervised hidden Markov models (HMMs) to detect seismic events in streaming seismogram data. Current methods for seismic event detection include simple triggering algorithms, such as STA/LTA and the Z-statistic, which can lead to large numbers of false positives that must be investigated by an analyst. The hypothesis of this study is that more advanced detection methods, such as HMMs, may decreases false positives while maintaining accuracy similar to current methods. We train a binary HMM classifier using 2 weeks of 3-component waveform data from the International Monitoring System (IMS) that was carefully reviewed by an expert analyst to pick all seismic events. Using an ensemble of simple and discrete features, such as the triggering of STA/LTA, the HMM predicts the time at which transition occurs from noise to signal. Compared to the STA/LTA detection algorithm, the HMM detects more true events, but the false positive rate remains unacceptably high. Future work to potentially decrease the false positive rate may include using continuous features, a Gaussian HMM, and multi-class HMMs to distinguish between types of seismic waves (e.g., P-waves and S-waves). Acknowledgement: Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.SAND No: SAND2017-8154 A

  2. Peak Ground Velocities for Seismic Events at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    K. Coppersmith; R. Quittmeyer

    2005-01-01

    horizontal PGV hazard curve for the waste emplacement level. The relation of this analysis to other work feeding the seismic consequence abstraction and the TSPA is shown on Figure 1-1. The ground motion hazard results from the PSHA provide the basis for inputs to a site-response model that determines the effect of site materials on the ground motion at a location of interest (e.g., the waste emplacement level). Peak ground velocity values determined from the site-response model for the waste emplacement level are then used to develop time histories (seismograms) that form input to a model of drift degradation under seismic loads potentially producing rockfall. The time histories are also used to carry out dynamic seismic structural response calculations of the drip shield and waste package system. For the drip shield, damage from seismically induced rockfall also is considered. In the seismic consequence abstraction, residual stress results from the structural response calculations are interpreted in terms of the percentage of the component (drip shield, waste package) damaged as a function of horizontal PGV. The composite hazard curve developed in this analysis, which reflects the results of site-response modeling and the bound to credible horizontal PGV at the waste emplacement level, also feeds the seismic consequence abstraction. The composite hazard curve is incorporated into the TSPA sampling process to bound horizontal PGV and related seismic consequences to values that are credible

  3. Refinements to the method of epicentral location based on surface waves from ambient seismic noise: introducing Love waves

    Science.gov (United States)

    Levshin, Anatoli L.; Barmin, Mikhail P.; Moschetti, Morgan P.; Mendoza, Carlos; Ritzwoller, Michael H.

    2012-01-01

    The purpose of this study is to develop and test a modification to a previous method of regional seismic event location based on Empirical Green’s Functions (EGFs) produced from ambient seismic noise. Elastic EGFs between pairs of seismic stations are determined by cross-correlating long ambient noise time-series recorded at the two stations. The EGFs principally contain Rayleigh- and Love-wave energy on the vertical and transverse components, respectively, and we utilize these signals between about 5 and 12 s period. The previous method, based exclusively on Rayleigh waves, may yield biased epicentral locations for certain event types with hypocentral depths between 2 and 5 km. Here we present theoretical arguments that show how Love waves can be introduced to reduce or potentially eliminate the bias. We also present applications of Rayleigh- and Love-wave EGFs to locate 10 reference events in the western United States. The separate Rayleigh and Love epicentral locations and the joint locations using a combination of the two waves agree to within 1 km distance, on average, but confidence ellipses are smallest when both types of waves are used.

  4. Study of seismic events in the Central Part of East European Platform

    Science.gov (United States)

    Gorbunova, Ella; Sanina, Irina; Ivanchenko, Galina; Nesterkina, Margarita; Konstantinovskaya, Natalya

    2015-04-01

    A measurement system for location seismic events in the Central Part of East European Platform is situated within the Mikhnevo Geophysical Observatory of the RAS Institute of Geospheres Dynamics and consists of 12 seismic stations. One vertical station is located in the center of the group in a shaft tunnel. The other stations are located on the periphery in three concentric circles and are almost equally spaced with regard to the terrain to ensure full azimuth coverage to the maximum extent possible. The unique array identifies events with a magnitude up to 3 at the distances until 1000 km within the Central Part of East European platform. Most of the events recorded by the Mikhnevo array at a distance of 60-500 km are man-made events represented by explosions in quarries during the development of mineral deposits. Long-term seismic records of explosions in quarries have been processed for the period from 2004 to 2014 to generate a database containing standard waveforms for each quarry. Some events of unknown origin appear in the records for this period; these do not correspond to the identified seismic forms for explosions in known quarries. Epicenter coordinates for these events do not match the coordinates of the known quarries. A cosmotectonic map of the Central Part of East European Platform was compiled during the studies using the LESSA software package (Lineament Extraction and Stripe Statistical Analysis) and data on the deep crustal structure, which made it possible to define the morphostructural plan and evaluate the geodynamic conditions in the area. The deep basement structure through the sedimentary cover is expressed in the surface texture of the area under study. The region's neotectonics is closely related to the history of deep structures, in particular, aulacogens extending in different directions, which may show in the contemporary morphostructural plan, mainly as inversion and partially inherited forms. Out of events of unknown nature

  5. Shallow repeating seismic events under an alpine glacier at Mount Rainier, Washington, USA

    Science.gov (United States)

    Thelen, Weston A.; Allstadt, Kate E.; De Angelis, Silvio; Malone, Stephen D.; Moran, Seth C.; Vidale, John

    2013-01-01

    We observed several swarms of repeating low-frequency (1–5 Hz) seismic events during a 3 week period in May–June 2010, near the summit of Mount Rainier, Washington, USA, that likely were a result of stick–slip motion at the base of alpine glaciers. The dominant set of repeating events ('multiplets') featured >4000 individual events and did not exhibit daytime variations in recurrence interval or amplitude. Volcanoes and glaciers around the world are known to produce seismic signals with great variability in both frequency content and size. The low-frequency character and periodic recurrence of the Mount Rainier multiplets mimic long-period seismicity often seen at volcanoes, particularly during periods of unrest. However, their near-surface location, lack of common spectral peaks across the recording network, rapid attenuation of amplitudes with distance, and temporal correlation with weather systems all indicate that ice-related source mechanisms are the most likely explanation. We interpret the low-frequency character of these multiplets to be the result of trapping of seismic energy under glacial ice as it propagates through the highly heterogeneous and attenuating volcanic material. The Mount Rainier multiplet sequences underscore the difficulties in differentiating low-frequency signals due to glacial processes from those caused by volcanic processes on glacier-clad volcanoes.

  6. The RING and Seismic Network: Data Acquisition of Co-located Stations

    Science.gov (United States)

    Falco, L.; Avallone, A.; Cattaneo, M.; Cecere, G.; Cogliano, R.; D'Agostino, N.; D'Ambrosio, C.; D'Anastasio, E.; Selvaggi, G.

    2007-12-01

    The plate boundary between Africa and Eurasia represents an interesting geodynamical region characterized by a complex pattern of deformation. First-order scientific problems regarding the existence of rigid blocks within the plate boundary, the present-day activity of the Calabrian subduction zone and the modes of release of seismic deformation are still awaiting for a better understanding. To address these issues, the INGV (Istituto Nazionale Geofisica e Vulcanlogia) deployed a permanent, integrated and real-time monitoring GPS network (RING) all over Italy. RING is now constituted by about 120 stations. The CGPS sites, acquiring at 1Hz and 30s sampling rate, are integrated either with broad band or very broad band seismometers and accelerometers for an improved definition of the seismically active regions. Most of the sites are connected to the acquisition centre (located in Rome and duplicated in Grottaminarda) through a satellite system (VSAT), while the remaining sites transmit data by Internet and classical phone connections. The satellite data transmission and the integration with seismic instruments makes this network one of the most innovative CGPS networks in Europe. The heterogeneity of the installed instrumentation, the transmission types and the increasing number of stations needed a central monitoring and acquisition system. A central acquisition system has been developed in Grottaminarda in southern Italy. Regarding the seismic monitoring we chose to use the open source system Earthworm, developed by USGS, with which we store waveforms and implement automatic localization of the seismic events occurring in the area. As most of the GPS sites are acquired by means of Nanometrics satellite technology, we developed a specific software (GpsView), written in Java, to monitor the state of health of those CGPS. This software receives GPS data from NaqsServer (Nanometrics acquisition system) and outputs information about the sites (i.e. approx position

  7. Dimensional Representation and Gradient Boosting for Seismic Event Classification

    Science.gov (United States)

    Semmelmayer, F. C.; Kappedal, R. D.; Magana-Zook, S. A.

    2017-12-01

    In this research, we conducted experiments of representational structures on 5009 seismic signals with the intent of finding a method to classify signals as either an explosion or an earthquake in an automated fashion. We also applied a gradient boosted classifier. While perfect classification was not attained (approximately 88% was our best model), some cases demonstrate that many events can be filtered out as very high probability being explosions or earthquakes, diminishing subject-matter experts'(SME) workload for first stage analysis. It is our hope that these methods can be refined, further increasing the classification probability.

  8. Focal mechanism of seismic events with a dipolar component

    Directory of Open Access Journals (Sweden)

    R. Console

    1995-06-01

    Full Text Available In this paper we model the geometry of a seismic source as a dislocation occurring on an elemental flat fault in an arbitrary direction with respect to the fault plane. This implies the use of a fourth parameter in addition to the three usual ones describing a simple double couple mechanism. We applied the radiation pattern obtained from the theory to a computer code written for the inversion of the observation data (amplitudes and polarities of the first onsets recorded by a network of stations. It allows the determination of the fault mechanism gener- alized in the above mentioned way. The computer code was verified on synthetic data and then applied to real data recorded by the seismic network operated by the Ente Nazionale per l'Energia Elettrica (ENEL, monitoring the geothermal field of Larderello. The experimental data show that for some events the source mechanism exhibits a significant dipolar component. However, due to the high standard deviation of the amplitude data, F-test applied to the results of the analysis shows that only for two events the confidence level for the general- ized model exceeds 90%.

  9. Evaluation of Multi Canister Overpack (MCO) Handling Machine Uplift Restraint for a Seismic Event During Repositioning Operations

    International Nuclear Information System (INIS)

    SWENSON, C.E.

    2000-01-01

    Insertion of the Multi-Canister Overpack (MCO) assemblies into the Canister Storage Building (CSB) storage tubes involves the use of the MCO Handling Machine (MHM). During MCO storage tube insertion operations, inadvertent movement of the MHM is prevented by engaging seismic restraints (''active restraints'') located adjacent to both the bridge and trolley wheels. During MHM repositioning operations, the active restraints are not engaged. When the active seismic restraints are not engaged, the only functioning seismic restraints are non-engageable (''passive'') wheel uplift restraints which function only if the wheel uplift is sufficient to close the nominal 0.5-inch gap at the uplift restraint interface. The MHM was designed and analyzed in accordance with ASME NOG-1-1995. The ALSTHOM seismic analysis reported seismic loads on the MHM uplift restraints and EDERER performed corresponding structural calculations to demonstrate structural adequacy of the seismic uplift restraint hardware. The ALSTHOM and EDERER calculations were performed for a parked MHM with the active seismic restraints engaged, resulting in uplift restraint loading only in the vertical direction. In support of development of the CSB Safety Analysis Report (SAR), an evaluation of the MHM seismic response was requested for the case where the active seismic restraints are not engaged. If a seismic event occurs during MHM repositioning operations, a moving contact at a seismic uplift restraint would introduce a friction load on the restraint in the direction of the movement. These potential horizontal friction loads on the uplift restraints were not included in the existing restraint hardware design calculations. One of the purposes of the current evaluation is to address the structural adequacy of the MHM seismic uplift restraints with the addition of the horizontal friction associated with MHM repositioning movements

  10. Monitoring of seismic events from a specific source region using a single regional array: A case study

    Science.gov (United States)

    Gibbons, S. J.; Kværna, T.; Ringdal, F.

    2005-07-01

    In the monitoring of earthquakes and nuclear explosions using a sparse worldwide network of seismic stations, it is frequently necessary to make reliable location estimates using a single seismic array. It is also desirable to screen out routine industrial explosions automatically in order that analyst resources are not wasted upon detections which can, with a high level of confidence, be associated with such a source. The Kovdor mine on the Kola Peninsula of NW Russia is the site of frequent industrial blasts which are well recorded by the ARCES regional seismic array at a distance of approximately 300 km. We describe here an automatic procedure for identifying signals which are likely to result from blasts at the Kovdor mine and, wherever possible, for obtaining single array locations for such events. Carefully calibrated processing parameters were chosen using measurements from confirmed events at the mine over a one-year period for which the operators supplied Ground Truth information. Phase arrival times are estimated using an autoregressive method and slowness and azimuth are estimated using broadband f{-} k analysis in fixed frequency bands and time-windows fixed relative to the initial P-onset time. We demonstrate the improvement to slowness estimates resulting from the use of fixed frequency bands. Events can be located using a single array if, in addition to the P-phase, at least one secondary phase is found with both an acceptable slowness estimate and valid onset-time estimate. We evaluate the on-line system over a twelve month period; every event known to have occured at the mine is detected by the process and 32 out of 53 confirmed events were located automatically. The remaining events were classified as “very likely” Kovdor events and were subsequently located by an analyst. The false alarm rate is low; only 84 very likely Kovdor events were identified during the whole of 2003 and none of these were subsequently located at a large distance from

  11. Peculiarity of the temporal distributions of seismic events in the Central America and Mexico.

    Science.gov (United States)

    Sasorova, E.; Levin, B.

    2010-03-01

    At first the interannual earthquake distributions and its peculiarity in predetermined region are considered. The hypothesis about within-year variability existence for the events of various energy levels was tested. The worldwide catalogs ISC (International Seismic Catalog) and NEIC (USGS) were used. It was extracted all EQs for the Pacific part of the given region from 1964 with Mb>=4.0. The entire set of events under analysis was divided into several magnitude ranges (MR). The analysis of the completeness of events in defined MRs was carried out. The aftershocks were canceled from the list. Further analysis was performed separately for each MR. Then the events in each magnitude level were subdivided once again into two groups: shallow events (H Htr), where Htr is depth threshold value. Then we are checking if the distributions of the events during the year period are uniform or these distributions are no uniform. We are testing our data separately for each magnitude level and for every depth level. The null hypothesis about uniform EQ distributions in the course of year was disproved for the most samples with shallow EQ (95%). But the null hypothesis was confirmed for deep earthquakes. We use the Chi-Square test for well-filled sequences and method of statistical testing for poor-filled sequences. The Htr value determines the boundary, which divided the seismic events in two groups. If the EQ's sources located above this boundary then such EQ's are distributed non-uniformly in the course of year. While if the EQ sources located below this boundary then distribution of such EQ during the year period are uniform. It was found by using special software procedure that the Htr boundary between the shallow and the deep events in the most cases was arranged in deep 60-80 km. The noticeable increase number of seismic events in short time intervals as a rule two times in year, and significant reducing of seismic activity in the rest part of the year was shown. It was

  12. Full-waveform detection of non-impulsive seismic events based on time-reversal methods

    Science.gov (United States)

    Solano, Ericka Alinne; Hjörleifsdóttir, Vala; Liu, Qinya

    2017-12-01

    We present a full-waveform detection method for non-impulsive seismic events, based on time-reversal principles. We use the strain Green's tensor as a matched filter, correlating it with continuous observed seismograms, to detect non-impulsive seismic events. We show that this is mathematically equivalent to an adjoint method for detecting earthquakes. We define the detection function, a scalar valued function, which depends on the stacked correlations for a group of stations. Event detections are given by the times at which the amplitude of the detection function exceeds a given value relative to the noise level. The method can make use of the whole seismic waveform or any combination of time-windows with different filters. It is expected to have an advantage compared to traditional detection methods for events that do not produce energetic and impulsive P waves, for example glacial events, landslides, volcanic events and transform-fault earthquakes for events which velocity structure along the path is relatively well known. Furthermore, the method has advantages over empirical Greens functions template matching methods, as it does not depend on records from previously detected events, and therefore is not limited to events occurring in similar regions and with similar focal mechanisms as these events. The method is not specific to any particular way of calculating the synthetic seismograms, and therefore complicated structural models can be used. This is particularly beneficial for intermediate size events that are registered on regional networks, for which the effect of lateral structure on the waveforms can be significant. To demonstrate the feasibility of the method, we apply it to two different areas located along the mid-oceanic ridge system west of Mexico where non-impulsive events have been reported. The first study area is between Clipperton and Siqueiros transform faults (9°N), during the time of two earthquake swarms, occurring in March 2012 and May

  13. Moment and moment magnitude of seismic events located by stacking

    Czech Academy of Sciences Publication Activity Database

    Cieplicki, R.; Eisner, Leo; Mueller, M.

    2014-01-01

    Roč. 79, č. 6 (2014), A57-A61 ISSN 0016-8033 Institutional support: RVO:67985891 Keywords : magnitudo * inversion * microseismicity Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.759, year: 2013

  14. Mining-induced seismicity at the Lucky Friday Mine: Seismic events of magnitude >2.5, 1989--1994

    Energy Technology Data Exchange (ETDEWEB)

    Whyatt, J.K.; Williams, T.J. [USDOE, Spokane, WA (United States). Spokane Research Center; Blake, W. [Blake (W.), Hayden Lake, ID (United States); Sprenke, K. [Idaho Univ., Moscow, ID (United States); Wideman, C. [Montana Tech, Butte, MT (United States)

    1996-09-01

    An understanding of the types of seismic events that occur in a deep mine provides a foundation for assessing the seismic characteristics of these events and the degree to which initiation of these events can be anticipated or controlled. This study is a first step toward developing such an understanding of seismic events generated by mining in the Coeur d`Alene Mining District of northern Idaho. It is based on information developed in the course of a long-standing rock burst research effort undertaken by the U. S. Bureau of Mines in cooperation with Coeur d`Alene Mining District mines and regional universities. This information was collected for 39 seismic events with local magnitudes greater than 2.5 that occurred between 1989 and 1994. One of these events occurred, on average, every 8 weeks during the study period. Five major types of characteristic events were developed from the data; these five types describe all but two of the 39 events that were studied. The most common types of events occurred, on average, once every 30 weeks. The characteristic mechanisms, first-motion patterns, damage patterns, and relationships to mining and major geologic structures were defined for each type of event. These five types of events need to be studied further to assess their ability to camouflage clandestine nuclear tests as well as the degree to which they can be anticipated and controlled.

  15. High precision locations of long-period events at La Fossa Crater (Vulcano Island, Italy

    Directory of Open Access Journals (Sweden)

    Salvatore Rapisarda

    2009-06-01

    Full Text Available Since the last eruption in 1888-90, the volcanic activity on Vulcano Island (Aeolian Archipelago, Italy has been limited to fumarolic degassing. Fumaroles are mainly concentred at the active cone of La Fossa in the northern sector of the island and are periodically characterized by increases in temperature as well as in the amount of both CO2 and He. Seismic background activity at Vulcano is dominated by micro-seismicity originating at shallow depth (<1-1.5 km under La Fossa cone. This seismicity is related to geothermal system processes and comprises long period (LP events. LPs are generally considered as the resonance of a fluid-filled volume in response to a trigger. We analyzed LP events recorded during an anomalous degassing period (August-October 2006 applying a high precision technique to define the shape of the trigger source. Absolute and high precision locations suggest that LP events recorded at Vulcano during 2006 were produced by a shallow focal zone ca. 200 m long, 40 m wide and N30-40E oriented. Their occurrence is linked to magmatic fluid inputs that by modifying the hydrothermal system cause excitation of a fluid-filled cavity.

  16. Influence of Tidal Forces on the Triggering of Seismic Events

    Science.gov (United States)

    Varga, Péter; Grafarend, Erik

    2018-05-01

    Tidal stresses are generated in any three-dimensional body influenced by an external inhomogeneous gravity field of rotating planets or moons. In this paper, as a special case, stresses caused within the solid Earth by the body tides are discussed from viewpoint of their influence on seismic activity. The earthquake triggering effects of the Moon and Sun are usually investigated by statistical comparison of tidal variations and temporal distribution of earthquake activity, or with the use of mathematical or experimental modelling of physical processes in earthquake prone structures. In this study, the magnitude of the lunisolar stress tensor in terms of its components along the latitude of the spherical surface of the Earth as well as inside the Earth (up to the core-mantle boundary) were calculated for the PREM (Dziewonski and Anderson in Phys Earth Planet Inter 25(4):297-356, 1981). Results of calculations prove that stress increases as a function of depth reaching a value around some kPa at the depth of 900-1500 km, well below the zone of deep earthquakes. At the depth of the overwhelming part of seismic energy accumulation (around 50 km) the stresses of lunisolar origin are only (0.0-1.0)·103 Pa. Despite the fact that these values are much smaller than the earthquake stress drops (1-30 MPa) (Kanamori in Annu Rev Earth Planet Sci 22:207-237, 1994) this does not exclude the possibility of an impact of tidal forces on outbreak of seismic events. Since the tidal potential and its derivatives are coordinate dependent and the zonal, tesseral and sectorial tides have different distributions from the surface down to the CMB, the lunisolar stress cannot influence the break-out of every seismological event in the same degree. The influencing lunisolar effect of the solid earth tides on earthquake occurrences is connected first of all with stress components acting parallel to the surface of the Earth. The influence of load tides is limited to the loaded area and its

  17. Relationship between eruption plume heights and seismic source amplitudes of eruption tremors and explosion events

    Science.gov (United States)

    Mori, A.; Kumagai, H.

    2016-12-01

    It is crucial to analyze and interpret eruption tremors and explosion events for estimating eruption size and understanding eruption phenomena. Kumagai et al. (EPS, 2015) estimated the seismic source amplitudes (As) and cumulative source amplitudes (Is) for eruption tremors and explosion events at Tungurahua, Ecuador, by the amplitude source location (ASL) method based on the assumption of isotropic S-wave radiation in a high-frequency band (5-10 Hz). They found scaling relations between As and Is for eruption tremors and explosion events. However, the universality of these relations is yet to be verified, and the physical meanings of As and Is are not clear. In this study, we analyzed the relations between As and Is for eruption tremors and explosion events at active volcanoes in Japan, and estimated As and Is by the ASL method. We obtained power-law relations between As and Is, in which the powers were different between eruption tremors and explosion events. These relations were consistent with the scaling relations at Tungurahua volcano. Then, we compared As with maximum eruption plume heights (H) during eruption tremors analyzed in this study, and found that H was proportional to 0.21 power of As. This relation is similar to the plume height model based on the physical process of plume rise, which indicates that H is proportional to 0.25 power of volumetric flow rate for plinian eruptions. This suggests that As may correspond to volumetric flow rate. If we assume a seismic source with volume changes and far-field S-wave, As is proportional to the source volume rate. This proportional relation and the plume height model give rise to the relation that H is proportional to 0.25 power of As. These results suggest that we may be able to estimate plume heights in realtime by estimating As during eruptions from seismic observations.

  18. A Study of Small Magnitude Seismic Events During 1961-1989 on and near the Semipalatinsk Test Site, Kazakhstan

    Science.gov (United States)

    Khalturin, V. I.; Rautian, T. G.; Richards, P. G.

    - Official Russian sources in 1996 and 1997 have stated that 340 underground nuclear tests (UNTs) were conducted during 1961-1989 at the Semipalatinsk Test Site (STS) in Eastern Kazakhstan. Only 271 of these nuclear tests appear to have been described with well-determined origin time, coordinates and magnitudes in the openly available technical literature. Thus, good open documentation has been lacking for 69 UNTs at STS.The main goal of our study was to provide detections, estimates of origin time and location, and magnitudes, for as many of these previously undocumented events as possible. We used data from temporary and permanent seismographic stations in the former USSR at distances from 500km to about 1500km from STS. As a result, we have been able to assign magnitude for eight previously located UNTs whose magnitude was not previously known. For 31 UNTs, we have estimated origin time an d assigned magnitude - and for 19 of these 31 we have obtained locations based on seismic signals. Of the remaining 30 poorly documented UNTs, 15 had announced yields that were less than one ton, and 13 occurred simultaneously with another test which was detected. There are only two UNTs, for which the announced yield exceeds one ton and we have been unable to find seismic signals.Most of the newly detected and located events were sub-kiloton. Their magnitudes range from 2.7 up to 5.1 (a multi-kiloton event on 1965 Feb. 4 that was often obscured at teleseismic stations by signals from an earthquake swarm in the Aleutians).For 17 small UNTs at STS, we compare the locations (with their uncertainties) that we had earlier determined in 1994 from analysis of regional seismic waves, with ground-truth information obtained in 1998. The average error of the seismically-determined locations is only about 5km. The ground-truth location is almost alw ays within the predicted small uncertainty of the seismically-determined location.Seismically-determined yield estimates are in good

  19. Source Inversion of Seismic Events Associated with the Sinkhole at Napoleonville Salt Dome, Louisiana using a 3D Velocity Model

    Science.gov (United States)

    Nayak, Avinash; Dreger, Douglas S.

    2018-05-01

    The formation of a large sinkhole at the Napoleonville salt dome (NSD), Assumption Parish, Louisiana, caused by the collapse of a brine cavern, was accompanied by an intense and complex sequence of seismic events. We implement a grid-search approach to compute centroid locations and point-source moment tensor (MT) solutions of these seismic events using ˜0.1-0.3 Hz displacement waveforms and synthetic Green's functions computed using a 3D velocity model of the western edge of the NSD. The 3D model incorporates the currently known approximate geometry of the salt dome and the overlying anhydrite-gypsum cap rock, and features a large velocity contrast between the high velocity salt dome and low velocity sediments overlying and surrounding it. For each possible location on the source grid, Green's functions (GFs) to each station were computed using source-receiver reciprocity and the finite-difference seismic wave propagation software SW4. We also establish an empirical method to rigorously assess uncertainties in the centroid location, MW and source type of these events under evolving network geometry, using the results of synthetic tests with hypothetical events and real seismic noise. We apply the methods on the entire duration of data (˜6 months) recorded by the temporary US Geological Survey network. During an energetic phase of the sequence from 24-31 July 2012 when 4 stations were operational, the events with the best waveform fits are primarily located at the western edge of the salt dome at most probable depths of ˜0.3-0.85 km, close to the horizontal positions of the cavern and the future sinkhole. The data are fit nearly equally well by opening crack MTs in the high velocity salt medium or by isotropic volume-increase MTs in the low velocity sediment layers. We find that data recorded by 6 stations during 1-2 August 2012, right before the appearance of the sinkhole, indicate that some events are likely located in the lower velocity media just outside the

  20. Detecting Micro-seismicity and Long-duration Tremor-like Events from the Oklahoma Wavefield Experiment

    Science.gov (United States)

    Li, C.; Li, Z.; Peng, Z.; Zhang, C.; Nakata, N.

    2017-12-01

    Oklahoma has experienced abrupt increase of induced seismicity in the last decade. An important way to fully understand seismic activities in Oklahoma is to obtain more complete earthquake catalogs and detect different types of seismic events. The IRIS Community Wavefield Demonstration Experiment was deployed near Enid, Oklahoma in Summer of 2016. The dataset from this ultra-dense array provides an excellent opportunity for detecting microseismicity in that region with wavefield approaches. Here we examine continuous waveforms recorded by 3 seismic lines using local coherence for ultra-dense arrays (Li et al., 2017), which is a measure of cross-correlation of waveform at each station with its nearby stations. So far we have detected more than 5,000 events from 06/22/2016 to 07/20/2016, and majority of them are not listed on the regional catalog of Oklahoma or global catalogs, indicating that they are local events. We also identify 15-20 long-period long-duration events, some of them lasting for more than 500 s. Such events have been found at major plate-boundary faults (also known as deep tectonic tremor), as well as during hydraulic fracturing, slow-moving landslides and glaciers. Our next step is to locate these possible tremor-like events with their relative arrival times across the array and compare their occurrence times with solid-earth tides and injection histories to better understand their driving mechanisms.

  1. Automatic reconstruction of fault networks from seismicity catalogs including location uncertainty

    International Nuclear Information System (INIS)

    Wang, Y.

    2013-01-01

    Within the framework of plate tectonics, the deformation that arises from the relative movement of two plates occurs across discontinuities in the earth's crust, known as fault zones. Active fault zones are the causal locations of most earthquakes, which suddenly release tectonic stresses within a very short time. In return, fault zones slowly grow by accumulating slip due to such earthquakes by cumulated damage at their tips, and by branching or linking between pre-existing faults of various sizes. Over the last decades, a large amount of knowledge has been acquired concerning the overall phenomenology and mechanics of individual faults and earthquakes: A deep physical and mechanical understanding of the links and interactions between and among them is still missing, however. One of the main issues lies in our failure to always succeed in assigning an earthquake to its causative fault. Using approaches based in pattern-recognition theory, more insight into the relationship between earthquakes and fault structure can be gained by developing an automatic fault network reconstruction approach using high resolution earthquake data sets at largely different scales and by considering individual event uncertainties. This thesis introduces the Anisotropic Clustering of Location Uncertainty Distributions (ACLUD) method to reconstruct active fault networks on the basis of both earthquake locations and their estimated individual uncertainties. This method consists in fitting a given set of hypocenters with an increasing amount of finite planes until the residuals of the fit compare with location uncertainties. After a massive search through the large solution space of possible reconstructed fault networks, six different validation procedures are applied in order to select the corresponding best fault network. Two of the validation steps (cross-validation and Bayesian Information Criterion (BIC)) process the fit residuals, while the four others look for solutions that

  2. The Mw=8.8 Maule earthquake aftershock sequence, event catalog and locations

    Science.gov (United States)

    Meltzer, A.; Benz, H.; Brown, L.; Russo, R. M.; Beck, S. L.; Roecker, S. W.

    2011-12-01

    The aftershock sequence of the Mw=8.8 Maule earthquake off the coast of Chile in February 2010 is one of the most well-recorded aftershock sequences from a great megathrust earthquake. Immediately following the Maule earthquake, teams of geophysicists from Chile, France, Germany, Great Britain and the United States coordinated resources to capture aftershocks and other seismic signals associated with this significant earthquake. In total, 91 broadband, 48 short period, and 25 accelerometers stations were deployed above the rupture zone of the main shock from 33-38.5°S and from the coast to the Andean range front. In order to integrate these data into a unified catalog, the USGS National Earthquake Information Center develop procedures to use their real-time seismic monitoring system (Bulletin Hydra) to detect, associate, location and compute earthquake source parameters from these stations. As a first step in the process, the USGS has built a seismic catalog of all M3.5 or larger earthquakes for the time period of the main aftershock deployment from March 2010-October 2010. The catalog includes earthquake locations, magnitudes (Ml, Mb, Mb_BB, Ms, Ms_BB, Ms_VX, Mc), associated phase readings and regional moment tensor solutions for most of the M4 or larger events. Also included in the catalog are teleseismic phases and amplitude measures and body-wave MT and CMT solutions for the larger events, typically M5.5 and larger. Tuning of automated detection and association parameters should allow a complete catalog of events to approximately M2.5 or larger for that dataset of more than 164 stations. We characterize the aftershock sequence in terms of magnitude, frequency, and location over time. Using the catalog locations and travel times as a starting point we use double difference techniques to investigate relative locations and earthquake clustering. In addition, phase data from candidate ground truth events and modeling of surface waves can be used to calibrate the

  3. Processing ser and estar to locate objects and events

    Science.gov (United States)

    Dussias, Paola E.; Contemori, Carla; Román, Patricia

    2016-01-01

    In Spanish locative constructions, a different form of the copula is selected in relation to the semantic properties of the grammatical subject: sentences that locate objects require estar while those that locate events require ser (both translated in English as ‘to be’). In an ERP study, we examined whether second language (L2) speakers of Spanish are sensitive to the selectional restrictions that the different types of subjects impose on the choice of the two copulas. Twenty-four native speakers of Spanish and two groups of L2 Spanish speakers (24 beginners and 18 advanced speakers) were recruited to investigate the processing of ‘object/event + estar/ser’ permutations. Participants provided grammaticality judgments on correct (object + estar; event + ser) and incorrect (object + ser; event + estar) sentences while their brain activity was recorded. In line with previous studies (Leone-Fernández, Molinaro, Carreiras, & Barber, 2012; Sera, Gathje, & Pintado, 1999), the results of the grammaticality judgment for the native speakers showed that participants correctly accepted object + estar and event + ser constructions. In addition, while ‘object + ser’ constructions were considered grossly ungrammatical, ‘event + estar’ combinations were perceived as unacceptable to a lesser degree. For these same participants, ERP recording time-locked to the onset of the critical word ‘en’ showed a larger P600 for the ser predicates when the subject was an object than when it was an event (*La silla es en la cocina vs. La fiesta es en la cocina). This P600 effect is consistent with syntactic repair of the defining predicate when it does not fit with the adequate semantic properties of the subject. For estar predicates (La silla está en la cocina vs. *La fiesta está en la cocina), the findings showed a central-frontal negativity between 500–700 ms. Grammaticality judgment data for the L2 speakers of Spanish showed that beginners were significantly less

  4. Geological evidence of pre-2012 Emilia, Italy, seismic events

    Science.gov (United States)

    Caputo, Riccardo; Minarelli, Luca; Papathanassiou, Giorgos; Poli, Eliana M.; Rapti-Caputo, Dimitra; Sboras, Sotiris; Stefani, Marco; Zanferrari, Adriano

    2013-04-01

    In May 2012, two moderate (ML = 5.9 and 5.8) earthquakes, associated with a noticeable aftershock sequence, affected the eastern sector of the Po Plain, Italy. The causative faults are two segments of the Ferrara Arc thrust system representing the most frontal portion of the buried Northern Apennines fold-and-thrust belt. Few weeks after the earthquake, a palaeoseismological trench was excavated south of the San Carlo village (western Ferrara Province), where a system of aligned ground ruptures were observed. In the trench walls we observed several features documenting the occurrence of past liquefaction events affecting the same site. For example, i) 10 cm-thick dikes filled with injected sand and associated with vertical displacements have no correspondence with the fractures mapped at the surface before the excavation; ii) some thick dikes are arrested below the ploughed level or even by older sedimentary layers; iii) along the internal slope of the palaeo-channel exposed by the trench, load structures and slided blocks are observed; iv) in correspondence with the ground fractures characterised by vertical displacement and opening occurred during the 2012 earthquake and thick dikes, observed at the surface and in the trench's walls, respectively, sand and water ejection did not occur. In conclusion, the results of the palaeoseismological investigation document for the first time that shacking (i.e. seismic) events occurred in the past producing a sufficient ground motion capable of triggering liquefaction phenomena prior to, but likely stronger than, the May 2012 earthquake. A likely candidate is the November 17, 1570 Ferrara earthquake.

  5. Experimental Seismic Event-screening Criteria at the Prototype International Data Center

    Science.gov (United States)

    Fisk, M. D.; Jepsen, D.; Murphy, J. R.

    - Experimental seismic event-screening capabilities are described, based on the difference of body-and surface-wave magnitudes (denoted as Ms:mb) and event depth. These capabilities have been implemented and tested at the prototype International Data Center (PIDC), based on recommendations by the IDC Technical Experts on Event Screening in June 1998. Screening scores are presented that indicate numerically the degree to which an event meets, or does not meet, the Ms:mb and depth screening criteria. Seismic events are also categorized as onshore, offshore, or mixed, based on their 90% location error ellipses and an onshore/offshore grid with five-minute resolution, although this analysis is not used at this time to screen out events.Results are presented of applications to almost 42,000 events with mb>=3.5 in the PIDC Standard Event Bulletin (SEB) and to 121 underground nuclear explosions (UNE's) at the U.S. Nevada Test Site (NTS), the Semipalatinsk and Novaya Zemlya test sites in the Former Soviet Union, the Lop Nor test site in China, and the Indian, Pakistan, and French Polynesian test sites. The screening criteria appear to be quite conservative. None of the known UNE's are screened out, while about 41 percent of the presumed earthquakes in the SEB with mb>=3.5 are screened out. UNE's at the Lop Nor, Indian, and Pakistan test sites on 8 June 1996, 11 May 1998, and 28 May 1998, respectively, have among the lowest Ms:mb scores of all events in the SEB.To assess the validity of the depth screening results, comparisons are presented of SEB depth solutions to those in other bulletins that are presumed to be reliable and independent. Using over 1600 events, the comparisons indicate that the SEB depth confidence intervals are consistent with or shallower than over 99.8 percent of the corresponding depth estimates in the other bulletins. Concluding remarks are provided regarding the performance of the experimental event-screening criteria, and plans for future

  6. Absolute locations of the North Korean nuclear tests based on differential seismic travel times and InSAR

    Science.gov (United States)

    Myers, S. C.; Ford, S. R.; Mellors, R. J.; Ichinose, G.

    2017-12-01

    We use constraints on the location of the January 6, 2016 DPRK announced nuclear test (2016_01) and differential travel times for Pn, Pg, and teleseismic P-waves to estimate the absolute locations of the 6 announced DPRK nuclear tests, as well as other nearby events. Absolute location constraints are based on the fit of commercial InSAR-derived ground displacement and predictions of elastic displacement from an isotropic source including topographic effects. Results show that the announced tests in January and September of 2016 are under the crest of highest local topography (Mt. Mantap), while the 2009 and 2013 events are south of the topographic crest at a similar contour in local topography. The first announced test in 2006 was located near the crest of a separate topographic high approximately 2.75 km east of the 2016_01 test. The September 3, 2017 event is approximately between the two 2016 tests, under the crest of the mountain ridge. Constraints from seismic data put the events within 1 km of the surface and depths may be inferred, with caution, by differencing the elevation of tunnel entrances and the topographic surface and accounting for the rise in a tunnel elevation from the entrance to facilitate drainage. Depths for the 2006_10, 2009_05, 2013_02, 2016_01, 2016_09, and 2017_09 tests are estimated to be 500 m, 530 m, 530 m, 740 m, 750 m, and 750 m, respectively. Other nearby events are considerably lower in magnitude, resulting in location estimates that are not as well constrained as the announced nuclear tests. Analysis of all events provides a bulletin of events that may occur in the future. Prepared by LLNL under Contract DE-AC52-07NA27344.

  7. Temporal and Location Based RFID Event Data Management and Processing

    Science.gov (United States)

    Wang, Fusheng; Liu, Peiya

    Advance of sensor and RFID technology provides significant new power for humans to sense, understand and manage the world. RFID provides fast data collection with precise identification of objects with unique IDs without line of sight, thus it can be used for identifying, locating, tracking and monitoring physical objects. Despite these benefits, RFID poses many challenges for data processing and management. RFID data are temporal and history oriented, multi-dimensional, and carrying implicit semantics. Moreover, RFID applications are heterogeneous. RFID data management or data warehouse systems need to support generic and expressive data modeling for tracking and monitoring physical objects, and provide automated data interpretation and processing. We develop a powerful temporal and location oriented data model for modeling and queryingRFID data, and a declarative event and rule based framework for automated complex RFID event processing. The approach is general and can be easily adapted for different RFID-enabled applications, thus significantly reduces the cost of RFID data integration.

  8. Leisure and Pleasure: Science events in unusual locations

    Science.gov (United States)

    Bultitude, Karen; Margarida Sardo, Ana

    2012-12-01

    Building on concepts relating to informal science education, this work compares science-related activities which successfully engaged public audiences at three different 'generic' locations: a garden festival, a public park, and a music festival. The purpose was to identify what factors contribute to the perceived success of science communication activities occurring within leisure spaces. This article reports the results of 71 short (2-3 min) structured interviews with public participants at the events, and 18 structured observations sessions, demonstrating that the events were considered both novel and interesting by the participants. Audience members were found to perceive both educational and affective purposes from the events. Three key elements were identified as contributing to the success of the activities across the three 'generic venues': the informality of the surroundings, the involvement of 'real' scientists, and the opportunity to re-engage participants with scientific concepts outside formal education.

  9. Absolute GPS Time Event Generation and Capture for Remote Locations

    Science.gov (United States)

    HIRES Collaboration

    The HiRes experiment operates fixed location and portable lasers at remote desert locations to generate calibration events. One physics goal of HiRes is to search for unusual showers. These may appear similar to upward or horizontally pointing laser tracks used for atmospheric calibration. It is therefore necessary to remove all of these calibration events from the HiRes detector data stream in a physics blind manner. A robust and convenient "tagging" method is to generate the calibration events at precisely known times. To facilitate this tagging method we have developed the GPSY (Global Positioning System YAG) module. It uses a GPS receiver, an embedded processor and additional timing logic to generate laser triggers at arbitrary programmed times and frequencies with better than 100nS accuracy. The GPSY module has two trigger outputs (one microsecond resolution) to trigger the laser flash-lamp and Q-switch and one event capture input (25nS resolution). The GPSY module can be programmed either by a front panel menu based interface or by a host computer via an RS232 serial interface. The latter also allows for computer logging of generated and captured event times. Details of the design and the implementation of these devices will be presented. 1 Motivation Air Showers represent a small fraction, much less than a percent, of the total High Resolution Fly's Eye data sample. The bulk of the sample is calibration data. Most of this calibration data is generated by two types of systems that use lasers. One type sends light directly to the detectors via optical fibers to monitor detector gains (Girard 2001). The other sends a beam of light into the sky and the scattered light that reaches the detectors is used to monitor atmospheric effects (Wiencke 1998). It is important that these calibration events be cleanly separated from the rest of the sample both to provide a complete set of monitoring information, and more

  10. Site Characterization of the Source Physics Experiment Phase II Location Using Seismic Reflection Data

    Science.gov (United States)

    Sexton, E. A.; Snelson, C. M.; Chipman, V.; Emer, D. F.; White, R. L.; Emmitt, R.; Wright, A. A.; Drellack, S.; Huckins-Gang, H.; Mercadante, J.; Floyd, M.; McGowin, C.; Cothrun, C.; Bonal, N.

    2013-12-01

    An objective of the Source Physics Experiment (SPE) is to identify low-yield nuclear explosions from a regional distance. Low-yield nuclear explosions can often be difficult to discriminate among the clutter of natural and man-made explosive events (e.g., earthquakes and mine blasts). The SPE is broken into three phases. Phase I has provided the first of the physics-based data to test the empirical models that have been used to discriminate nuclear events. The Phase I series of tests were placed within a highly fractured granite body. The evolution of the project has led to development of Phase II, to be placed within the opposite end member of geology, an alluvium environment, thereby increasing the database of waveforms to build upon in the discrimination models. Both the granite and alluvium sites have hosted nearby nuclear tests, which provide comparisons for the chemical test data. Phase III of the SPE is yet to be determined. For Phase II of the experiment, characterization of the location is required to develop the geologic/geophysical models for the execution of the experiment. Criteria for the location are alluvium thickness of approximately 170 m and a water table below 170 m; minimal fracturing would be ideal. A P-wave mini-vibroseis survey was conducted at a potential site in alluvium to map out the subsurface geology. The seismic reflection profile consisted of 168 geophone stations, spaced 5 m apart. The mini-vibe was a 7,000-lb peak-force source, starting 57.5 m off the north end of the profile and ending 57.5 m past the southern-most geophone. The length of the profile was 835 m. The source points were placed every 5 m, equally spaced between geophones to reduce clipping. The vibroseis sweep was from 20 Hz down to 180 Hz over 8 seconds, and four sweeps were stacked at each shot location. The shot gathers show high signal-to-noise ratios with clear first arrivals across the entire spread and the suggestion of some shallow reflectors. The data were

  11. The Alabama, U.S.A., seismic event and strata collapse of May 7, 1986

    Science.gov (United States)

    Long, L.T.; Copeland, C.W.

    1989-01-01

    On May 7, 1986, the residents of Tuscaloosa, Alabama, felt a seismic event of local magnitude 3.6 that occurred at the same time as a rock burst and roof collapse in an active longwall coal mine. Visual inspection of the seismograms reveals a deficiency in energy at frequencies above 20 Hz compared to tectonic earthquakes or surface blasts. The predominance of energy below 5 Hz may explain reports of body wave magnitudes (mb) greater than 4.2. Also, 1.0 Hz surface waves were more strongly excited than body waves and may explain local felt effects more typically associated with greater epicentral distances. All recorded first motions were dilatational. The concentration of stations in the northern hemisphere allows reverse motion on an east-trending near-vertical plane or strike-slip motion on northwest or southeast trending planes. The reverse focal mechanism is preferred, because the area of roof collapse and the area of active longwall mining are located between two east-striking loose vertical fracture zones. The characteristics of the seismic event suggest that it might have been sudden shear failure resulting from accumulated strain energy in overlying strata behind an active longwall. Although an alternate interpretation of the focal mechanism as an implosion or shear failure in the strata above previously mined out areas is also allowed by the first motion data, this alternate intepretation is not supported by geological data. ?? 1989 Birkha??user Verlag.

  12. Broadband analysis of landslides seismic signal : example of the Oso-Steelhead landslide and other recent events

    Science.gov (United States)

    Hibert, C.; Stark, C. P.; Ekstrom, G.

    2014-12-01

    Landslide failures on the scale of mountains are spectacular, dangerous, and spontaneous, making direct observations hard to obtain. Measurement of their dynamic properties during runout is a high research priority, but a logistical and technical challenge. Seismology has begun to help in several important ways. Taking advantage of broadband seismic stations, recent advances now allow: (i) the seismic detection and location of large landslides in near-real-time, even for events in very remote areas that may have remain undetected, such as the 2014 Mt La Perouse supraglacial failure in Alaska; (ii) inversion of long-period waves generated by large landslides to yield an estimate of the forces imparted by the bulk accelerating mass; (iii) inference of the landslide mass, its center-of-mass velocity over time, and its trajectory.Key questions persist, such as: What can the short-period seismic data tell us about the high-frequency impacts taking place within the granular flow and along its boundaries with the underlying bedrock? And how does this seismicity relate to the bulk acceleration of the landslide and the long-period seismicity generated by it?Our recent work on the joint analysis of short- and long-period seismic signals generated by past and recent events, such as the Bingham Canyon Mine and the Oso-Steelhead landslides, provides new insights to tackle these issues. Qualitative comparison between short-period signal features and kinematic parameters inferred from long-period surface wave inversion helps to refine interpretation of the source dynamics and to understand the different mechanisms for the origin of the short-period wave radiation. Our new results also suggest that quantitative relationships can be derived from this joint analysis, in particular between the short-period seismic signal envelope and the inferred momentum of the center-of-mass. In the future, these quantitative relationships may help to constrain and calibrate parameters used in

  13. Quantifying capability of a local seismic network in terms of locations and focal mechanism solutions of weak earthquakes

    Science.gov (United States)

    Fojtíková, Lucia; Kristeková, Miriam; Málek, Jiří; Sokos, Efthimios; Csicsay, Kristián; Zahradník, Jiří

    2016-01-01

    Extension of permanent seismic networks is usually governed by a number of technical, economic, logistic, and other factors. Planned upgrade of the network can be justified by theoretical assessment of the network capability in terms of reliable estimation of the key earthquake parameters (e.g., location and focal mechanisms). It could be useful not only for scientific purposes but also as a concrete proof during the process of acquisition of the funding needed for upgrade and operation of the network. Moreover, the theoretical assessment can also identify the configuration where no improvement can be achieved with additional stations, establishing a tradeoff between the improvement and additional expenses. This paper presents suggestion of a combination of suitable methods and their application to the Little Carpathians local seismic network (Slovakia, Central Europe) monitoring epicentral zone important from the point of seismic hazard. Three configurations of the network are considered: 13 stations existing before 2011, 3 stations already added in 2011, and 7 new planned stations. Theoretical errors of the relative location are estimated by a new method, specifically developed in this paper. The resolvability of focal mechanisms determined by waveform inversion is analyzed by a recent approach based on 6D moment-tensor error ellipsoids. We consider potential seismic events situated anywhere in the studied region, thus enabling "mapping" of the expected errors. Results clearly demonstrate that the network extension remarkably decreases the errors, mainly in the planned 23-station configuration. The already made three-station extension of the network in 2011 allowed for a few real data examples. Free software made available by the authors enables similar application in any other existing or planned networks.

  14. Risks posed by large seismic events in the gold mining districts of South Africa

    CSIR Research Space (South Africa)

    Durrheim, RJ

    2011-01-01

    Full Text Available buildings are considered vulnerable to damage by large seismic events, posing safety and financial risks. It is recommended that an earthquake engineer inspect the building stock and review the content and enforcement of building codes. Appropriate training...

  15. Fundamental aspects of seismic event detection, magnitude estimation and their interrelation

    International Nuclear Information System (INIS)

    Ringdal, F.

    1977-01-01

    The main common subject of the papers forming this thesis is statistical model development within the seismological disciplines of seismic event detection and event magnitude estimation. As more high quality seismic data become available as a result of recent seismic network developments, the opportunity will exist for large scale application and further refinement of these models. It is hoped that the work presented here will facilitate improved understanding of the basic issues, both within earthquake-explosion discrimination, in the framework of which most of this work originated, and in seismology in general. (Auth.)

  16. Simulating spontaneous aseismic and seismic slip events on evolving faults

    Science.gov (United States)

    Herrendörfer, Robert; van Dinther, Ylona; Pranger, Casper; Gerya, Taras

    2017-04-01

    Plate motion along tectonic boundaries is accommodated by different slip modes: steady creep, seismic slip and slow slip transients. Due to mainly indirect observations and difficulties to scale results from laboratory experiments to nature, it remains enigmatic which fault conditions favour certain slip modes. Therefore, we are developing a numerical modelling approach that is capable of simulating different slip modes together with the long-term fault evolution in a large-scale tectonic setting. We extend the 2D, continuum mechanics-based, visco-elasto-plastic thermo-mechanical model that was designed to simulate slip transients in large-scale geodynamic simulations (van Dinther et al., JGR, 2013). We improve the numerical approach to accurately treat the non-linear problem of plasticity (see also EGU 2017 abstract by Pranger et al.). To resolve a wide slip rate spectrum on evolving faults, we develop an invariant reformulation of the conventional rate-and-state dependent friction (RSF) and adapt the time step (Lapusta et al., JGR, 2000). A crucial part of this development is a conceptual ductile fault zone model that relates slip rates along discrete planes to the effective macroscopic plastic strain rates in the continuum. We test our implementation first in a simple 2D setup with a single fault zone that has a predefined initial thickness. Results show that deformation localizes in case of steady creep and for very slow slip transients to a bell-shaped strain rate profile across the fault zone, which suggests that a length scale across the fault zone may exist. This continuum length scale would overcome the common mesh-dependency in plasticity simulations and question the conventional treatment of aseismic slip on infinitely thin fault zones. We test the introduction of a diffusion term (similar to the damage description in Lyakhovsky et al., JMPS, 2011) into the state evolution equation and its effect on (de-)localization during faster slip events. We compare

  17. Locating scatterers while drilling using seismic noise due to tunnel boring machine

    Science.gov (United States)

    Harmankaya, U.; Kaslilar, A.; Wapenaar, K.; Draganov, D.

    2018-05-01

    Unexpected geological structures can cause safety and economic risks during underground excavation. Therefore, predicting possible geological threats while drilling a tunnel is important for operational safety and for preventing expensive standstills. Subsurface information for tunneling is provided by exploratory wells and by surface geological and geophysical investigations, which are limited by location and resolution, respectively. For detailed information about the structures ahead of the tunnel face, geophysical methods are applied during the tunnel-drilling activity. We present a method inspired by seismic interferometry and ambient-noise correlation that can be used for detecting scatterers, such as boulders and cavities, ahead of a tunnel while drilling. A similar method has been proposed for active-source seismic data and validated using laboratory and field data. Here, we propose to utilize the seismic noise generated by a Tunnel Boring Machine (TBM), and recorded at the surface. We explain our method at the hand of data from finite-difference modelling of noise-source wave propagation in a medium where scatterers are present. Using the modelled noise records, we apply cross-correlation to obtain correlation gathers. After isolating the scattered arrivals in these gathers, we cross-correlate again and invert for the correlated traveltime to locate scatterers. We show the potential of the method for locating the scatterers while drilling using noise records due to TBM.

  18. Central Italy magnetotelluric investigation. Structures and relations to seismic events: analysis of initial data

    Directory of Open Access Journals (Sweden)

    J. Marianiuk

    1996-06-01

    Full Text Available A scientific collaboration between the Warsaw Academy of Science, (Poland and the National Institute of Geophysics (Italy, gave rise to the installation of few stations for the long term measurement of magnetotelluric fields in central Italy. The selection of investigation sites was determined by the individual seismic interest of each location. The project began in the summer of 1991, with the installation of 2 magnetotelluric stations in the province of Isernia, (Collemeluccio and Montedimezzo. In 1992, 2 more stations became operative, one in the province of Rieti, (Fassinoro, the other in the province of L'Aquila, (S. Vittoria. For the purpose of this project, the magnetic observatory in L'Aquila was also equipped with electric lines, for the measurement of the telluric field. The aim of the analysis here presented, is to show that is possible to follow the temporal evolution of magnetotelluric characteristic parameters. At Collemeluccio this evolution was compared with the seismic released energy for events recorded within the study area.

  19. Reliability of the seismic characteristics in the nuclear power plant location; Pouzdanost seizmickih karakteristika pri lociranju nuklearne elektrane

    Energy Technology Data Exchange (ETDEWEB)

    Marsicanin, B [Institut za Nuklearne Nauke Boris Kidric, Belgrade (Yugoslavia)

    1982-07-01

    Seismic characteristics for a nuclear power plant location are partly obtained from the analysis of past earthquakes. Data from older history concern damages, the newer data are in the form of seismic records. These two sources are often had to correlate, and the data dissipation is very large. Therefore these, rather unreliable data are not a convenient base for the precise anti-seismic analysis. A redistribution of efforts in order to get more reliable basic data seems necessary. (author)

  20. Processing of Mining Induced Seismic Events by Spectra Analyzer Software

    Czech Academy of Sciences Publication Activity Database

    Kaláb, Zdeněk; Lednická, Markéta; Lyubushin, A. A.

    2011-01-01

    Roč. 6, č. 1 (2011), s. 75-83 ISSN 1896-3145. [Ochrona środowiska w górnictwie podziemnym, odkrywkowym i otworowym. Walbrzych, 18.05.2011-20.05.2011] Institutional research plan: CEZ:AV0Z30860518 Keywords : mining seismicity * Spectra Analyzer Software * wavelet decomposition * time-frequency map Subject RIV: DC - Siesmology, Volcanology, Earth Structure

  1. Historical and Paleo Events as an input for Seismic And Associated Natural Hazard Assessment of Javakheti highland (South Georgia)

    Science.gov (United States)

    Elashvili, M.; Javakhishvili, Z.; Godoladze, T.; Karakhanyan, A.; Sukhishvili, L.; Nikolaeva, E.; Sokhadze, G.; Avanesyan, M.

    2012-12-01

    Current study concerns Javakheti area in the Lesser Caucasus. This area comprises a volcanic plateau with more than 20 volcanoes, several of them dated as having erupted during the Holocene. In the region the upper part of Lava complex is represented by Middle-Upper Quaternary formations. The region is an area of young deformations in the Alpine belt. Formation of relief began at the neotectonic stage (Sarmatian) and continues at present. Javakheti is one of the most seismically active regions in the Caucasus, earthquakes of 1899 and 1986 with magnitudes up to 6.0, causing severe damage and hundreds of casualties, occurred there. Historical data on earthquakes in 1088 and 1899 locate them in the same region, highlighting the importance on learning about the location and characteristics of their seismic sources. Javakheti highland seems to be actively populated at least from the Bronze Age period, forming a local culture to be strongly affected by Natural catastrophes and significant changes in Landscapes and climate. Study of potential seismic and associated natural hazards, such as landslide and rockfalls, possible volcanic activity in the region, including paleo and historical evidences, were addressed by number of International Projects (ISTC A-1418, NATO SFP # 983284 ) and multidisciplinary studies carried out by the Institute of Earth Sciences. Data gathered after the Installation of local GPS and Seismic networks have provided new look on seismicity pattern of the region and major seismic sources, while field studies (Geophysical survey, Paleo trenching, Archaeological studies, etc.) have provided new information on the dramatic Natural disasters which occurred in the region and probably played a vital role in its history. Remote sensing techniques became widely used in geological investigations during the decades. Interferometric synthetic aperture radar (InSAR), aerial and optical data analysis have contributed to the development of this work.. Case studies

  2. Automatic reconstruction of fault networks from seismicity catalogs including location uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.

    2013-07-01

    Within the framework of plate tectonics, the deformation that arises from the relative movement of two plates occurs across discontinuities in the earth's crust, known as fault zones. Active fault zones are the causal locations of most earthquakes, which suddenly release tectonic stresses within a very short time. In return, fault zones slowly grow by accumulating slip due to such earthquakes by cumulated damage at their tips, and by branching or linking between pre-existing faults of various sizes. Over the last decades, a large amount of knowledge has been acquired concerning the overall phenomenology and mechanics of individual faults and earthquakes: A deep physical and mechanical understanding of the links and interactions between and among them is still missing, however. One of the main issues lies in our failure to always succeed in assigning an earthquake to its causative fault. Using approaches based in pattern-recognition theory, more insight into the relationship between earthquakes and fault structure can be gained by developing an automatic fault network reconstruction approach using high resolution earthquake data sets at largely different scales and by considering individual event uncertainties. This thesis introduces the Anisotropic Clustering of Location Uncertainty Distributions (ACLUD) method to reconstruct active fault networks on the basis of both earthquake locations and their estimated individual uncertainties. This method consists in fitting a given set of hypocenters with an increasing amount of finite planes until the residuals of the fit compare with location uncertainties. After a massive search through the large solution space of possible reconstructed fault networks, six different validation procedures are applied in order to select the corresponding best fault network. Two of the validation steps (cross-validation and Bayesian Information Criterion (BIC)) process the fit residuals, while the four others look for solutions that

  3. A methodology for the quantitative risk assessment of major accidents triggered by seismic events

    International Nuclear Information System (INIS)

    Antonioni, Giacomo; Spadoni, Gigliola; Cozzani, Valerio

    2007-01-01

    A procedure for the quantitative risk assessment of accidents triggered by seismic events in industrial facilities was developed. The starting point of the procedure was the use of available historical data to assess the expected frequencies and the severity of seismic events. Available equipment-dependant failure probability models (vulnerability or fragility curves) were used to assess the damage probability of equipment items due to a seismic event. An analytic procedure was subsequently developed to identify, evaluate the credibility and finally assess the expected consequences of all the possible scenarios that may follow the seismic events. The procedure was implemented in a GIS-based software tool in order to manage the high number of event sequences that are likely to be generated in large industrial facilities. The developed methodology requires a limited amount of additional data with respect to those used in a conventional QRA, and yields with a limited effort a preliminary quantitative assessment of the contribution of the scenarios triggered by earthquakes to the individual and societal risk indexes. The application of the methodology to several case-studies evidenced that the scenarios initiated by seismic events may have a relevant influence on industrial risk, both raising the overall expected frequency of single scenarios and causing specific severe scenarios simultaneously involving several plant units

  4. Landquake dynamics inferred from seismic source inversion: Greenland and Sichuan events of 2017

    Science.gov (United States)

    Chao, W. A.

    2017-12-01

    In June 2017 two catastrophic landquake events occurred in Greenland and Sichuan. The Greenland event leads to tsunami hazard in the small town of Nuugaarsiaq. A landquake in Sichuan hit the town, which resulted in over 100 death. Both two events generated the strong seismic signals recorded by the real-time global seismic network. I adopt an inversion algorithm to derive the landquake force time history (LFH) using the long-period waveforms, and the landslide volume ( 76 million m3) can be rapidly estimated, facilitating the tsunami-wave modeling for early warning purpose. Based on an integrated approach involving tsunami forward simulation and seismic waveform inversion, this study has significant implications to issuing actionable warnings before hazardous tsunami waves strike populated areas. Two single-forces (SFs) mechanism (two block model) yields the best explanation for Sichuan event, which demonstrates that secondary event (seismic inferred volume: 8.2 million m3) may be mobilized by collapse-mass hitting from initial rock avalanches ( 5.8 million m3), likely causing a catastrophic disaster. The later source with a force magnitude of 0.9967×1011 N occurred 70 seconds after first mass-movement occurrence. In contrast, first event has the smaller force magnitude of 0.8116×1011 N. In conclusion, seismically inferred physical parameters will substantially contribute to improving our understanding of landquake source mechanisms and mitigating similar hazards in other parts of the world.

  5. Containment performance evaluation for the GESSAR-II plant for seismic initiating events

    International Nuclear Information System (INIS)

    Shiu, K.K.; Chu, T.; Ludewig, H.; Pratt, W.T.

    1986-01-01

    As a part of the overall effort undertaken by Brookhaven National Laboratory (BNL) to review the GESSAR-II probabilistic risk assessment, an independent containment performance evaluation was performed using the containment event tree approach. This evaluation focused principally on those accident sequences which are initiated by seismic events. This paper reports the findings of this study. 1 ref

  6. Changes in water table elevation at Yucca Mountain in response to seismic events

    International Nuclear Information System (INIS)

    Arnold, B.W.

    1996-01-01

    Investigation of mechanisms which could significantly alter the elevation of the water table at Yucca Mountain are motivated by the potential impacts such an occurrence would have on the performance of a high-level radioactive waste repository. In particular, we would like to evaluate the possibility of flooding a repository by water-table excursions. Changes in the water table could occur as relatively transient phenomena in response to seismic events by the seismic pumping mechanism. Quantitative evaluation of possible fluctuations of groundwater following earthquakes was undertaken in support of performance assessment calculations including seismicity

  7. Monitoring El Hierro submarine volcanic eruption events with a submarine seismic array

    Science.gov (United States)

    Jurado, Maria Jose; Molino, Erik; Lopez, Carmen

    2013-04-01

    A submarine volcanic eruption took place near the southernmost emerged land of the El Hierro Island (Canary Islands, Spain), from October 2011 to February 2012. The Instituto Geografico Nacional (IGN) seismic stations network evidenced seismic unrest since July 2012 and was a reference also to follow the evolution of the seismic activity associated with the volcanic eruption. From the beginning of the eruption a geophone string was installed less than 2 km away from the new volcano, next to La Restinga village shore, to record seismic activity related to the volcanic activity, continuously and with special interest on high frequency events. The seismic array was endowed with 8, high frequency, 3 component, 250 Hz, geophone cable string with a separation of 6 m between them. The analysis of the dataset using spectral techniques allows the characterization of the different phases of the eruption and the study of its dynamics. The correlation of the data analysis results with the observed sea surface activity (ash and lava emission and degassing) and also with the seismic activity recorded by the IGN field seismic monitoring system, allows the identification of different stages suggesting the existence of different signal sources during the volcanic eruption and also the posteruptive record of the degassing activity. The study shows that the high frequency capability of the geophone array allow the study of important features that cannot be registered by the standard seismic stations. The accumulative spectral amplitude show features related to eruptive changes.

  8. Sources of Error and the Statistical Formulation of M S: m b Seismic Event Screening Analysis

    Science.gov (United States)

    Anderson, D. N.; Patton, H. J.; Taylor, S. R.; Bonner, J. L.; Selby, N. D.

    2014-03-01

    The Comprehensive Nuclear-Test-Ban Treaty (CTBT), a global ban on nuclear explosions, is currently in a ratification phase. Under the CTBT, an International Monitoring System (IMS) of seismic, hydroacoustic, infrasonic and radionuclide sensors is operational, and the data from the IMS is analysed by the International Data Centre (IDC). The IDC provides CTBT signatories basic seismic event parameters and a screening analysis indicating whether an event exhibits explosion characteristics (for example, shallow depth). An important component of the screening analysis is a statistical test of the null hypothesis H 0: explosion characteristics using empirical measurements of seismic energy (magnitudes). The established magnitude used for event size is the body-wave magnitude (denoted m b) computed from the initial segment of a seismic waveform. IDC screening analysis is applied to events with m b greater than 3.5. The Rayleigh wave magnitude (denoted M S) is a measure of later arriving surface wave energy. Magnitudes are measurements of seismic energy that include adjustments (physical correction model) for path and distance effects between event and station. Relative to m b, earthquakes generally have a larger M S magnitude than explosions. This article proposes a hypothesis test (screening analysis) using M S and m b that expressly accounts for physical correction model inadequacy in the standard error of the test statistic. With this hypothesis test formulation, the 2009 Democratic Peoples Republic of Korea announced nuclear weapon test fails to reject the null hypothesis H 0: explosion characteristics.

  9. Seismic survey in southeastern Socorro Island: Background noise measurements, seismic events, and T phases

    Energy Technology Data Exchange (ETDEWEB)

    Valenzuela, Raul W [Instituto de Geofisica, Universidad Nacional Autonoma de Mexico, D.F. (Mexico); Galindo, Marta [Comprehensive Nuclear-Test-Ban Treaty Organization, IMS, Vienna (Austria); Pacheco, Javier F; Iglesias, Arturo; Teran, Luis F [Instituto de Geofisica, Universidad Nacional Autonoma de Mexico, D.F. (Mexico); Barreda, Jose L; Coba, Carlos [Facultad de Ingenieria, Benemerita Universidad Autonoma de Puebla, Puebla (Mexico)

    2005-01-15

    We carried out a seismic survey and installed five portable, broadband seismometers in the southeastern corner of Socorro Island during June 1999. Power spectral densities for all five sites were relatively noisy when compared to reference curves around the world. Power spectral densities remain constant regardless of the time of day, or the day of the week. Cultural noise at the island is very small. Quiet and noisy sites were identified to determine the best location of the T phase station to be installed jointly by the Universidad Nacional Autonoma de Mexico and the Comprehensive Nuclear-Test-Ban Treaty Organization. During the survey six earthquakes were recorded at epicentral distances between 42 km and 2202 km, with magnitudes between 2.8 and 7.0. Two small earthquakes (M{sub c} = 2.8 and 3.3) occurred on the Clarion Fracture Zone. The four largest and more distant earthquakes produced T waves. One T wave from an epicenter near the coast of Guatemala had a duration of about 100 s and a frequency content between 2 and 8 Hz, with maximum amplitude at about 4.75 Hz. The Tehuacan earthquake of June 15, 1999 (M{sub w} = 7.0) produced arrivals of P {yields} T and S {yields} T waves, with energy between 2 Hz and 3.75 Hz. The earthquake occurred inland within the subducted Cocos plate at a depth of 60 km; a significant portion of the path was continental. Seismic P and S waves probably propagated upward in the subducted slab, and were converted to acoustic energy at the continental slope. Total duration of the T phase is close to 500 s and reaches its maximum amplitude about 200 s after the P {yields} T arrival. The T wave contains energy at frequencies between 2 and 10 Hz and reaches its maximum amplitude at about 2.5 Hz. T phases were also recorded from two earthquakes in Guerrero, Mexico and in the Rivera Fracture Zone. [Spanish] En junio de 1999 instalamos cinco sismometros portatiles de banda ancha en el sureste de la Isla Socorro. Se encontro que las densidades

  10. Soil–structure interaction analyses to locate nuclear power plant free-field seismic instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, James J., E-mail: jasjjoh@aol.com [James J. Johnson and Associates, Alamo, CA (United States); Ake, Jon P. [US Nuclear Regulatory Commission, Washington, DC (United States); Maslenikov, Oleg R. [James J. Johnson and Associates, Alamo, CA (United States); Kenneally, Roger M. [Consultant, Seminole, FL (United States)

    2015-12-15

    Highlights: • Determine the location of seismic instrumentation so that recorded motion will be free-field motion. • Certified Designs of nuclear island for AP1000 and EPR; ABWR Reactor Building were analyzed. • Three site conditions and multiple recorded time histories were considered. • Instrumentation located 1-diameter from the edge of structure/foundation is adequate. • Acceptance criteria were probability of non-exceedance of response spectra values. - Abstract: The recorded earthquake ground motion at the nuclear power plant site is needed for several purposes. US Nuclear Regulatory Commission (NRC) Regulatory Guide 1.12, Nuclear Power Plant Instrumentation for Earthquakes, NRC (1997a), describes acceptable instrumentation to meet the requirements in NRC's regulations pertaining to earthquake engineering criteria for nuclear power plants. The ground motion data recorded by the free-field seismic instrumentation are used to compare the actual earthquake motion at the site with the design input motion. The result of the comparison determines if the Operating Basis Earthquake ground motion (OBE) has been exceeded and plant shutdown is required per the guidance in NRC Regulatory Guide 1.166, Pre-Earthquake Planning and Immediate Nuclear Power Plant Operator Postearthquake Actions, NRC (1979b). The free-field is defined as a location on the ground surface or in the site soil column that is sufficiently distant from the site structures to be essentially unaffected by the vibration of the site structures.

  11. Automatic Classification of volcano-seismic events based on Deep Neural Networks.

    Science.gov (United States)

    Titos Luzón, M.; Bueno Rodriguez, A.; Garcia Martinez, L.; Benitez, C.; Ibáñez, J. M.

    2017-12-01

    Seismic monitoring of active volcanoes is a popular remote sensing technique to detect seismic activity, often associated to energy exchanges between the volcano and the environment. As a result, seismographs register a wide range of volcano-seismic signals that reflect the nature and underlying physics of volcanic processes. Machine learning and signal processing techniques provide an appropriate framework to analyze such data. In this research, we propose a new classification framework for seismic events based on deep neural networks. Deep neural networks are composed by multiple processing layers, and can discover intrinsic patterns from the data itself. Internal parameters can be initialized using a greedy unsupervised pre-training stage, leading to an efficient training of fully connected architectures. We aim to determine the robustness of these architectures as classifiers of seven different types of seismic events recorded at "Volcán de Fuego" (Colima, Mexico). Two deep neural networks with different pre-training strategies are studied: stacked denoising autoencoder and deep belief networks. Results are compared to existing machine learning algorithms (SVM, Random Forest, Multilayer Perceptron). We used 5 LPC coefficients over three non-overlapping segments as training features in order to characterize temporal evolution, avoid redundancy and encode the signal, regardless of its duration. Experimental results show that deep architectures can classify seismic events with higher accuracy than classical algorithms, attaining up to 92% recognition accuracy. Pre-training initialization helps these models to detect events that occur simultaneously in time (such explosions and rockfalls), increase robustness against noisy inputs, and provide better generalization. These results demonstrate deep neural networks are robust classifiers, and can be deployed in real-environments to monitor the seismicity of restless volcanoes.

  12. WILBER and PyWEED: Event-based Seismic Data Request Tools

    Science.gov (United States)

    Falco, N.; Clark, A.; Trabant, C. M.

    2017-12-01

    WILBER and PyWEED are two user-friendly tools for requesting event-oriented seismic data. Both tools provide interactive maps and other controls for browsing and filtering event and station catalogs, and downloading data for selected event/station combinations, where the data window for each event/station pair may be defined relative to the arrival time of seismic waves from the event to that particular station. Both tools allow data to be previewed visually, and can download data in standard miniSEED, SAC, and other formats, complete with relevant metadata for performing instrument correction. WILBER is a web application requiring only a modern web browser. Once the user has selected an event, WILBER identifies all data available for that time period, and allows the user to select stations based on criteria such as the station's distance and orientation relative to the event. When the user has finalized their request, the data is collected and packaged on the IRIS server, and when it is ready the user is sent a link to download. PyWEED is a downloadable, cross-platform (Macintosh / Windows / Linux) application written in Python. PyWEED allows a user to select multiple events and stations, and will download data for each event/station combination selected. PyWEED is built around the ObsPy seismic toolkit, and allows direct interaction and control of the application through a Python interactive console.

  13. Re-evaluation Of The Shallow Seismicity On Mt Etna Applying Probabilistic Earthquake Location Algorithms.

    Science.gov (United States)

    Tuve, T.; Mostaccio, A.; Langer, H. K.; di Grazia, G.

    2005-12-01

    A recent research project carried out together with the Italian Civil Protection concerns the study of amplitude decay laws in various areas on the Italian territory, including Mt Etna. A particular feature of seismic activity is the presence of moderate magnitude earthquakes causing frequently considerable damage in the epicentre areas. These earthquakes are supposed to occur at rather shallow depth, no more than 5 km. Given the geological context, however, these shallow earthquakes would origin in rather weak sedimentary material. In this study we check the reliability of standard earthquake location, in particular with respect to the calculated focal depth, using standard location methods as well as more advanced approaches such as the NONLINLOC software proposed by Lomax et al. (2000) using it with its various options (i.e., Grid Search, Metropolis-Gibbs and Oct-Tree) and 3D velocity model (Cocina et al., 2005). All three options of NONLINLOC gave comparable results with respect to hypocenter locations and quality. Compared to standard locations we note a significant improve of location quality and, in particular a considerable difference of focal depths (in the order of 1.5 - 2 km). However, we cannot find a clear bias towards greater or lower depth. Further analyses concern the assessment of the stability of locations. For this purpose we carry out various Monte Carlo experiments perturbing travel time reading randomly. Further investigations are devoted to possible biases which may arise from the use of an unsuitable velocity model.

  14. Passive seismic monitoring of the Bering Glacier during its last surge event

    Science.gov (United States)

    Zhan, Z.

    2017-12-01

    The physical causes behind glacier surges are still unclear. Numerous evidences suggest that they probably involve changes in glacier basal conditions, such as switch of basal water system from concentrated large tunnels to a distributed "layer" as "connected cavities". However, most remote sensing approaches can not penetrate to the base to monitor such changes continuously. Here we apply seismic interferometry using ambient noise to monitor glacier seismic structures, especially to detect possible signatures of the hypothesized high-pressure water "layer". As an example, we derive an 11-year long history of seismic structure of the Bering Glacier, Alaska, covering its latest surge event. We observe substantial drops of Rayleigh and Love wavespeeds across the glacier during the surge event, potentially caused by changes in crevasse density, glacier thickness, and basal conditions.

  15. Could ionospheric variations be precursors of a seismic event? A short discussion

    Energy Technology Data Exchange (ETDEWEB)

    Kouris, S.S. [Thessaloniki Univ., Thessaloniki (Greece). Dept. of Electrical and Computer Engineering; Spalla, P. [Consiglio Nazionale delle Ricerche, Istituto di Ricerca Onde Elettromagnetiche, Florence (Italy); Zolesi, B. [Istituto Nazionale di Geofisica e Vulcanologia, Rome (Italy)

    2001-04-01

    A short review of published papers on the perturbations in the ionosphere due to seismogenic effects is reported. The method to correlate different classes of phenomena as ionospheric variations and subsequent seismic events is discussed. Even if the theoretical attempts to understand or to explain the electromagnetic phenomena in the ionosphere, as precursors of earthquakes are not satisfactory, the reported results encourage further investigations.

  16. Observation of rotational component in digital data of mining induced seismic events

    Czech Academy of Sciences Publication Activity Database

    Kaláb, Zdeněk; Knejzlík, Jaromír; Lednická, Markéta

    2012-01-01

    Roč. 7, č. 1 (2012), s. 75-85 ISSN 1896-3145. [Ochrona środowiska w górnictwie podziemnym, odkrywkowym i otworowym. Wieliczka - Zakrzow, 16.05.2012-18.05.2012] Institutional research plan: CEZ:AV0Z30860518 Keywords : rotational component * mining induced seismic event * field measurement Subject RIV: DC - Siesmology, Volcanology, Earth Structure

  17. Groundwater penetrating radar and high resolution seismic for locating shallow faults in unconsolidated sediments

    International Nuclear Information System (INIS)

    Wyatt, D.E.

    1993-01-01

    Faults in shallow, unconsolidated sediments, particularly in coastal plain settings, are very difficult to discern during subsurface exploration yet have critical impact to groundwater flow, contaminant transport and geotechnical evaluations. This paper presents a case study using cross-over geophysical technologies in an area where shallow faulting is probable and known contamination exists. A comparison is made between Wenner and dipole-dipole resistivity data, ground penetrating radar, and high resolution seismic data. Data from these methods were verified with a cone penetrometer investigation for subsurface lithology and compared to existing monitoring well data. Interpretations from these techniques are compared with actual and theoretical shallow faulting found in the literature. The results of this study suggests that (1) the CPT study, combined with the monitoring well data may suggest that discontinuities in correlatable zones may indicate that faulting is present (2) the addition of the Wenner and dipole-dipole data may further suggest that offset zones exist in the shallow subsurface but not allow specific fault planes or fault stranding to be mapped (3) the high resolution seismic data will image faults to within a few feet of the surface but does not have the resolution to identify the faulting on the scale of our models, however it will suggest locations for upward continuation of faulted zones (4) offset 100 MHz and 200 MHz CMP GPR will image zones and features that may be fault planes and strands similar to our models (5) 300 MHz GPR will image higher resolution features that may suggest the presence of deeper faults and strands, and (6) the combination of all of the tools in this study, particularly the GPR and seismic may allow for the mapping of small scale, shallow faulting in unconsolidated sediments

  18. How Deep is Shallow? Improving Absolute and Relative Locations of Upper Crustal Seismicity in Switzerland

    Science.gov (United States)

    Diehl, T.; Kissling, E. H.; Singer, J.; Lee, T.; Clinton, J. F.; Waldhauser, F.; Wiemer, S.

    2017-12-01

    Information on the structure of upper-crustal fault systems and their connection with seismicity is key to the understanding of neotectonic processes. Precisely determined focal depths in combination with structural models can provide important insight into deformation styles of the upper crust (e.g. thin- vs. versus thick-skinned tectonics). Detailed images of seismogenic fault zones in the upper crust, on the other hand, will contribute to the assessment of the hazard related to natural and induced earthquakes, especially in regions targeted for radioactive waste repositories or geothermal energy production. The complex velocity structure of the uppermost crust and unfavorable network geometries, however, often hamper precise locations (i.e. focal depth) of shallow seismicity and therefore limit tectonic interpretations. In this study we present a new high-precision catalog of absolute locations of seismicity in Switzerland. High-quality travel-time data from local and regional earthquakes in the period 2000-2017 are used to solve the coupled hypocenter-velocity structure problem in 1D. For this purpose, the well-known VELEST inversion software was revised and extended to improve the quality assessment of travel-time data and to facilitate the identification of erroneous picks in the bulletin data. Results from the 1D inversion are used as initial parameters for a 3D local earthquake tomography. Well-studied earthquakes and high-quality quarry blasts are used to assess the quality of 1D and 3D relocations. In combination with information available from various controlled-source experiments, borehole data, and geological profiles, focal depths and associated host formations are assessed through comparison with the resolved 3D velocity structure. The new absolute locations and velocity models are used as initial values for relative double-difference relocation of earthquakes in Switzerland. Differential times are calculated from bulletin picks and waveform cross

  19. Use of waveform similarity to define planes of mining-induced seismic events

    CSIR Research Space (South Africa)

    Spottiswoode, SM

    1998-04-15

    Full Text Available can be associated with failure of previously unfractured rock (Ortlepp, 1978), geological discon- tinuities, large and small, play an important role. The largest mining-induced seismic events are usually as- sociated with faults and dykes (Gay et al... by SIMRAC under the project GAP033. We would like to thank Blyvooruitzicht Mine and R.J. Stewart for use of the seismic data. The au- thors thank N.C. Gay for his helpful review and discussions. References Deichmann, N., Garcia-Fernandez, M., 1992. Rupture...

  20. Evidence of a Large Triggered Event in the Nepal Himalaya Following the Gorkha Earthquake: Implications Toward Enhanced Seismic Hazard

    Science.gov (United States)

    Mandal, Prantik

    2018-03-01

    A DC (double couple) constrained multiple point-source moment-tensor inversion is performed on the band-passed (0.008-0.10 Hz) displacement data of the 25 April (M w 7.8) 2015 Nepal mainshock, from 17 broadband stations in India. Our results reveal that the 25 April event (strike = 324°, dip = 14°, rake = 88°) ruptured the north-dipping main Himalayan thrust (MHT) at 16 km depth. We modeled the Coulomb failure stress changes (ΔCFS) produced by the slip on the fault plane of the 25 April Nepal mainshock. A strong correlation with occurrences of aftershocks and regions of increased positive ΔCFS is obtained below the aftershock zone of the 2015 Nepal mainshock. We notice that predicted ΔCFS at 16 km depth show a positive Coulomb stress of 0.06 MPa at the location of the 12 May 2015 event. These small modeled stress changes can lead to trigger events if the crust is already near to failure, but these small stresses can also advance the occurrence of future earthquakes. The main finding of our ΔCFS modeling implies that the 25 April event increased the Coulomb stress changes by 0.06 MPa at 16 km depth below the site of the 12 May event, and thus, this event can be termed as triggered. We propose that the seismic hazard in the Himalaya is not only caused by the mainshock slip on the MHT; rather, the occurrence of large triggered event on the MHT can also enhance our understanding of the seismic hazard in the Nepal Himalaya.

  1. PSMG switchgear seismic analysis

    International Nuclear Information System (INIS)

    Kuehster, C.J.

    1977-01-01

    LOFT primary coolant system motor generator (PSMG) switchgear boxes were analyzed for sliding and overturning during a seismic event. Boxes are located in TAN-650, Room B-239, with the PSMG generators. Both boxes are sufficiently anchored to the floor

  2. Risk assessment of K basin twelve-inch drain valve failure from a postulated seismic initiating event

    International Nuclear Information System (INIS)

    MORGAN, R.G.

    1999-01-01

    The Spent Nuclear Fuel (SNF) Project will transfer metallic SNF from the Hanford 105 K-East and 105 K-West Basins to safe interim storage in the Canister Storage Building in the 200 Area. The initial basis for design, fabrication, installation, and operation of the fuel removal systems was that the basin leak rates which could result from a postulated accident condition would not be excessive relative to reasonable recovery operations. However, an additional potential K Basin water leak path is through the K Basin drain valves. Three twelve-inch drain valves are located in the main basin bays along the north wall. The sumps containing the valves are filled with concrete which covers the drain valve body. Visual observations suggest that only the valve's bonnet and stem are exposed above the basin concrete floor. It was recognized, however, that damage of the drain valve bonnet or stem during a seismic initiating event could provide a potential K Basin water leak path. The objectives of this activity are to: (1) evaluate the risk of damaging the three twelve-inch drain valves located along the north wall of the main basin from a seismic initiating event, and (2) determine the associated potential leak rate from a damaged valve

  3. Risk assessment of K basin twelve-inch drain valve failure from a postulated seismic initiating event

    Energy Technology Data Exchange (ETDEWEB)

    MORGAN, R.G.

    1999-04-06

    The Spent Nuclear Fuel (SNF) Project will transfer metallic SNF from the Hanford 105 K-East and 105 K-West Basins to safe interim storage in the Canister Storage Building in the 200 Area. The initial basis for design, fabrication, installation, and operation of the fuel removal systems was that the basin leak rates which could result from a postulated accident condition would not be excessive relative to reasonable recovery operations. However, an additional potential K Basin water leak path is through the K Basin drain valves. Three twelve-inch drain valves are located in the main basin bays along the north wall. The sumps containing the valves are filled with concrete which covers the drain valve body. Visual observations suggest that only the valve's bonnet and stem are exposed above the basin concrete floor. It was recognized, however, that damage of the drain valve bonnet or stem during a seismic initiating event could provide a potential K Basin water leak path. The objectives of this activity are to: (1) evaluate the risk of damaging the three twelve-inch drain valves located along the north wall of the main basin from a seismic initiating event, and (2) determine the associated potential leak rate from a damaged valve.

  4. Absolute earthquake locations using 3-D versus 1-D velocity models below a local seismic network: example from the Pyrenees

    Science.gov (United States)

    Theunissen, T.; Chevrot, S.; Sylvander, M.; Monteiller, V.; Calvet, M.; Villaseñor, A.; Benahmed, S.; Pauchet, H.; Grimaud, F.

    2018-03-01

    Local seismic networks are usually designed so that earthquakes are located inside them (primary azimuthal gap 180° and distance to the first station higher than 15 km). Errors on velocity models and accuracy of absolute earthquake locations are assessed based on a reference data set made of active seismic, quarry blasts and passive temporary experiments. Solutions and uncertainties are estimated using the probabilistic approach of the NonLinLoc (NLLoc) software based on Equal Differential Time. Some updates have been added to NLLoc to better focus on the final solution (outlier exclusion, multiscale grid search, S-phases weighting). Errors in the probabilistic approach are defined to take into account errors on velocity models and on arrival times. The seismicity in the final 3-D catalogue is located with a horizontal uncertainty of about 2.0 ± 1.9 km and a vertical uncertainty of about 3.0 ± 2.0 km.

  5. Seismic Experiment at North Arizona To Locate Washington Fault - 3D Field Test

    KAUST Repository

    Hanafy, Sherif M

    2008-10-01

    No. of receivers in the inline direction: 80, Number of lines: 6, Receiver Interval: 1 m near the fault, 2 m away from the fault (Receivers 1 to 12 at 2 m intervals, receivers 12 to 51 at 1 m intervals, and receivers 51 to 80 at 2 m intervals), No. of shots in the inline direction: 40, Shot interval: 2 and 4 m (every other receiver location). Data Recording The data are recorded using two Bison equipment, each is 120 channels. We shot at all 240 shot locations and simultaneously recorded seismic traces at receivers 1 to 240 (using both Bisons), then we shot again at all 240 shot locations and we recorded at receivers 241 to 480. The data is rearranged to match the receiver order shown in Figure 3 where receiver 1 is at left-lower corner, receivers increase to 80 at right lower corner, then receiver 81 is back to left side at Y = 1.5 m, etc.

  6. The whole story: rumours and science communication in the aftermath of seismic events

    Science.gov (United States)

    Crescimbene, Massimo; Todesco, Micol; Camassi, Romano

    2016-04-01

    Controversies that stir the public debate on geological matters in Italy often pertain to two specific aspects: the actual trigger of geological phenomena (i.e., natural vs anthropogenic) and the trustworthiness of the experts who provide information and advise on the phenomena. A typical example of such difficulties is the case of the 2012 Emilia seismic sequence, which struck an area of moderate seismic hazard. At the same time, geophysical prospecting was planned to assess the potential of a reservoir for gas storage, near the town of Rivara. The low frequency of important seismic events in the area, associated with the ongoing industrial planning prompted widespread rumours of an anthropogenic origin of the 2012 earthquake. Since then, public concern has been risen several time by the occurrence of anomalous surface phenomena (among which heating of well water). While these phenomena always occurred in the area, and were recently explained in terms of a shallow, exothermic oxidation of methane, popular belief tends to establish a causal link between anomalous temperature and seismic activity. The ambiguity in the definition of the size of seismic events may further hinder communication efforts: such size may be expressed in different ways, and may assume different values depending on the adopted computational technique and on the size and geometry of the available seismic network. As a result, different institutions may release different numbers to express the magnitude of the same earthquake, casting doubts on the reliability of the estimate. We'll present and discuss different activities that INGV (Sezione di Bologna) pursued through the years, in collaboration with various local and national institutions, to provide an effective dissemination of scientific information and to reinforce mutual trust between our research institute and the local population.

  7. Adaptive Sensor Tuning for Seismic Event Detection in Environment with Electromagnetic Noise

    Science.gov (United States)

    Ziegler, Abra E.

    The goal of this research is to detect possible microseismic events at a carbon sequestration site. Data recorded on a continuous downhole microseismic array in the Farnsworth Field, an oil field in Northern Texas that hosts an ongoing carbon capture, utilization, and storage project, were evaluated using machine learning and reinforcement learning techniques to determine their effectiveness at seismic event detection on a dataset with electromagnetic noise. The data were recorded from a passive vertical monitoring array consisting of 16 levels of 3-component 15 Hz geophones installed in the field and continuously recording since January 2014. Electromagnetic and other noise recorded on the array has significantly impacted the utility of the data and it was necessary to characterize and filter the noise in order to attempt event detection. Traditional detection methods using short-term average/long-term average (STA/LTA) algorithms were evaluated and determined to be ineffective because of changing noise levels. To improve the performance of event detection and automatically and dynamically detect seismic events using effective data processing parameters, an adaptive sensor tuning (AST) algorithm developed by Sandia National Laboratories was utilized. AST exploits neuro-dynamic programming (reinforcement learning) trained with historic event data to automatically self-tune and determine optimal detection parameter settings. The key metric that guides the AST algorithm is consistency of each sensor with its nearest neighbors: parameters are automatically adjusted on a per station basis to be more or less sensitive to produce consistent agreement of detections in its neighborhood. The effects that changes in neighborhood configuration have on signal detection were explored, as it was determined that neighborhood-based detections significantly reduce the number of both missed and false detections in ground-truthed data. The performance of the AST algorithm was

  8. Performance of Earthquake Early Warning Systems during the Major Events of the 2016-2017 Central Italy Seismic Sequence.

    Science.gov (United States)

    Festa, G.; Picozzi, M.; Alessandro, C.; Colombelli, S.; Cattaneo, M.; Chiaraluce, L.; Elia, L.; Martino, C.; Marzorati, S.; Supino, M.; Zollo, A.

    2017-12-01

    Earthquake early warning systems (EEWS) are systems nowadays contributing to the seismic risk mitigation actions, both in terms of losses and societal resilience, by issuing an alert promptly after the earthquake origin and before the ground shaking impacts the targets to be protected. EEWS systems can be grouped in two main classes: network based and stand-alone systems. Network based EEWS make use of dense seismic networks surrounding the fault (e.g. Near Fault Observatory; NFO) generating the event. The rapid processing of the P-wave early portion allows for the location and magnitude estimation of the event then used to predict the shaking through ground motion prediction equations. Stand-alone systems instead analyze the early P-wave signal to predict the ground shaking carried by the late S or surface waves, through empirically calibrated scaling relationships, at the recording site itself. We compared the network-based (PRESTo, PRobabilistic and Evolutionary early warning SysTem, www.prestoews.org, Satriano et al., 2011) and the stand-alone (SAVE, on-Site-Alert-leVEl, Caruso et al., 2017) systems, by analyzing their performance during the 2016-2017 Central Italy sequence. We analyzed 9 earthquakes having magnitude 5.0 security actions. PRESTo also evaluated the accuracy of location and magnitude. Both systems well predict the ground shaking nearby the event source, with a success rate around 90% within the potential damage zone. The lead-time is significantly larger for the network based system, increasing to more than 10s at 40 km from the event epicentre. The stand-alone system better performs in the near-source region showing a positive albeit small lead-time (operational in Italy, based on the available acceleration networks, by improving the capability of reducing the lead-time related to data telemetry.

  9. 6C polarization analysis - seismic direction finding in coherent noise, automated event identification, and wavefield separation

    Science.gov (United States)

    Schmelzbach, C.; Sollberger, D.; Greenhalgh, S.; Van Renterghem, C.; Robertsson, J. O. A.

    2017-12-01

    Polarization analysis of standard three-component (3C) seismic data is an established tool to determine the propagation directions of seismic waves recorded by a single station. A major limitation of seismic direction finding methods using 3C recordings, however, is that a correct propagation-direction determination is only possible if the wave mode is known. Furthermore, 3C polarization analysis techniques break down in the presence of coherent noise (i.e., when more than one event is present in the analysis time window). Recent advances in sensor technology (e.g., fibre-optical, magnetohydrodynamic angular rate sensors, and ring laser gyroscopes) have made it possible to accurately measure all three components of rotational ground motion exhibited by seismic waves, in addition to the conventionally recorded three components of translational motion. Here, we present an extension of the theory of single station 3C polarization analysis to six-component (6C) recordings of collocated translational and rotational ground motions. We demonstrate that the information contained in rotation measurements can help to overcome some of the main limitations of standard 3C seismic direction finding, such as handling multiple arrivals simultaneously. We show that the 6C polarisation of elastic waves measured at the Earth's free surface does not only depend on the seismic wave type and propagation direction, but also on the local P- and S-wave velocities just beneath the recording station. Using an adaptation of the multiple signal classification algorithm (MUSIC), we demonstrate how seismic events can univocally be identified and characterized in terms of their wave type. Furthermore, we show how the local velocities can be inferred from single-station 6C data, in addition to the direction angles (inclination and azimuth) of seismic arrivals. A major benefit of our proposed 6C method is that it also allows the accurate recovery of the wave type, propagation directions, and phase

  10. Severity Classification of a Seismic Event based on the Magnitude-Distance Ratio Using Only One Seismological Station

    Directory of Open Access Journals (Sweden)

    Luis Hernán Ochoa Gutiérrez

    2014-07-01

    Full Text Available Seismic event characterization is often accomplished using algorithms based only on information received at seismological stations located closest to the particular event, while ignoring historical data received at those stations. These historical data are stored and unseen at this stage. This characterization process can delay the emergency response, costing valuable time in the mitigation of the adverse effects on the affected population. Seismological stations have recorded data during many events that have been characterized by classical methods, and these data can be used as previous "knowledge" to train such stations to recognize patterns. This knowledge can be used to make faster characterizations using only one three-component broadband station by applying bio-inspired algorithms or recently developed stochastic methods, such as kernel methods. We trained a Support Vector Machine (SVM algorithm with seismograph data recorded by INGEOMINAS's National Seismological Network at a three-component station located near Bogota, Colombia. As input model descriptors, we used the following: (1 the integral of the Fourier transform/power spectrum for each component, divided into 7 windows of 2 seconds and beginning at the P onset time, and (2 the ratio between the calculated logarithm of magnitude (Mb and epicentral distance. We used 986 events with magnitudes greater than 3 recorded from late 2003 to 2008. The algorithm classifies events with magnitude-distance ratios (a measure of the severity of possible damage caused by an earthquake greater than a background value. This value can be used to estimate the magnitude based on a known epicentral distance, which is calculated from the difference between P and S onset times. This rapid (< 20 seconds magnitude estimate can be used for rapid response strategies. The results obtained in this work confirm that many hypocentral parameters and a rapid location of a seismic event can be obtained using a few

  11. Method to Calculate Accurate Top Event Probability in a Seismic PSA

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Woo Sik [Sejong Univ., Seoul (Korea, Republic of)

    2014-05-15

    ACUBE(Advanced Cutset Upper Bound Estimator) calculates the top event probability and importance measures from cutsets by dividing cutsets into major and minor groups depending on the cutset probability, where the cutsets that have higher cutset probability are included in the major group and the others in minor cutsets, converting major cutsets into a Binary Decision Diagram (BDD). By applying the ACUBE algorithm to the seismic PSA cutsets, the accuracy of a top event probability and importance measures can be significantly improved. ACUBE works by dividing the cutsets into two groups (higher and lower cutset probability groups), calculating the top event probability and importance measures in each group, and combining the two results from the two groups. Here, ACUBE calculates the top event probability and importance measures of the higher cutset probability group exactly. On the other hand, ACUBE calculates these measures of the lower cutset probability group with an approximation such as MCUB. The ACUBE algorithm is useful for decreasing the conservatism that is caused by approximating the top event probability and importance measure calculations with given cutsets. By applying the ACUBE algorithm to the seismic PSA cutsets, the accuracy of a top event probability and importance measures can be significantly improved. This study shows that careful attention should be paid and an appropriate method be provided in order to avoid the significant overestimation of the top event probability calculation. Due to the strength of ACUBE that is explained in this study, the ACUBE became a vital tool for calculating more accurate CDF of the seismic PSA cutsets than the conventional probability calculation method.

  12. Detection of invisible and crucial events: from seismic fluctuations to the war against terrorism

    Energy Technology Data Exchange (ETDEWEB)

    Allegrini, Paolo; Fronzoni, Leone; Grigolini, Paolo; Latora, Vito; Mega, Mirko S.; Palatella, Luigi E-mail: luigi.palatella@df.unipi.it; Rapisarda, Andrea; Vinciguerra, Sergio

    2004-04-01

    We argue that the recent discovery of the non-Poissonian statistics of the seismic main-shocks is a special case of a more general approach to the detection of the distribution of the time increments between one crucial but invisible event and the next. We make the conjecture that the proposed approach can be applied to the analysis of terrorist network with significant benefits for the Intelligence Community.

  13. Seismic Measurement of the Locations of the Base of Convection Zone and Helium Ionization Zone for Stars in the Kepler Seismic LEGACY Sample

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Kuldeep; Lund, Mikkel N.; Aguirre, Víctor Silva [Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Raodeo, Keyuri; Mazumdar, Anwesh [Homi Bhabha Centre for Science Education, TIFR, V. N. Purav Marg, Mankhurd, Mumbai 400088 (India); Antia, H. M. [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India); Basu, Sarbani, E-mail: kuldeep@phys.au.dk [Astronomy Department, Yale University, P.O. Box 208101, New Haven, CT 065208101 (United States)

    2017-03-01

    Acoustic glitches are regions inside a star where the sound speed or its derivatives change abruptly. These leave a small characteristic oscillatory signature in the stellar oscillation frequencies. With the precision achieved by Kepler seismic data, it is now possible to extract these small amplitude oscillatory signatures, and infer the locations of the glitches. We perform glitch analysis for all the 66 stars in the Kepler seismic LEGACY sample to derive the locations of the base of the envelope convection zone (CZ) and the helium ionization zone. The signature from helium ionization zone is found to be robust for all stars in the sample, whereas the CZ signature is found to be weak and problematic, particularly for relatively massive stars with large errorbars on the oscillation frequencies. We demonstrate that the helium glitch signature can be used to constrain the properties of the helium ionization layers and the helium abundance.

  14. Robust satellite techniques (RST for the thermal monitoring of earthquake prone areas: the case of Umbria-Marche October, 1997 seismic events

    Directory of Open Access Journals (Sweden)

    V. Tramutoli

    2008-06-01

    Full Text Available Several authors claim a space-time correlation between increases in Earth’s emitted Thermal Infra-Red (TIR radiation and earthquake occurrence. The main problems of such studies regard data analysis and interpretation, which are often done without a validation/confutation control. In this context, a robust data analysis technique (RST, i.e. Robust Satellite Techniques is proposed which permits a statistically based definition of TIR «anomaly » and uses a validation/confutation approach. This technique was already applied to satellite TIR surveys in seismic regions for about twenty earthquakes that occurred in the world. In this work RST is applied for the first time to a time sequence of seismic events. Nine years of Meteosat TIR observations have been analyzed to characterize the unperturbed TIR signal behaviour at specific observation times and locations. The main seismic events of the October 1997 Umbria-Marche sequence have been considered for validation, and relatively unperturbed periods (no earthquakes with Mb ? 4 were taken for confutation purposes. Positive time-space persistent TIR anomalies were observed during seismic periods, generally overlapping the principal tectonic lineaments of the region and sometimes focusing on the vicinity of the epicentre. No similar (in terms of relative intensity and space-time persistence TIR anomalies were detected during seismically unperturbed periods.

  15. Quantifying capability of a local seismic network in terms of locations and focal mechanism solutions of weak earthquakes

    Czech Academy of Sciences Publication Activity Database

    Fojtíková, Lucia; Kristeková, M.; Málek, Jiří; Sokos, E.; Csicsay, K.; Zahradník, J.

    2016-01-01

    Roč. 20, č. 1 (2016), 93-106 ISSN 1383-4649 R&D Projects: GA ČR GAP210/12/2336 Institutional support: RVO:67985891 Keywords : Focal-mechanism uncertainty * Little Carpathians * Relative location uncertainty * Seismic network * Uncertainty mapping * Waveform inversion * Weak earthquake s Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.089, year: 2016

  16. Optically-based Sensor System for Critical Nuclear Facilities Post-Event Seismic Structural Assessment

    Energy Technology Data Exchange (ETDEWEB)

    McCallen, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Petrone, Floriana [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Buckle, Ian [Univ. of Nevada, Reno, NV (United States); Wu, Suiwen [Univ. of Nevada, Reno, NV (United States); Coates, Jason [California State Univ., Chico, CA (United States)

    2017-09-30

    The U.S. Department of Energy (DOE) has ownership and operational responsibility for a large enterprise of nuclear facilities that provide essential functions to DOE missions ranging from national security to discovery science and energy research. These facilities support a number of DOE programs and offices including the National Nuclear Security Administration, Office of Science, and Office of Environmental Management. With many unique and “one of a kind” functions, these facilities represent a tremendous national investment, and assuring their safety and integrity is fundamental to the success of a breadth of DOE programs. Many DOE critical facilities are located in regions with significant natural phenomenon hazards including major earthquakes and DOE has been a leader in developing standards for the seismic analysis of nuclear facilities. Attaining and sustaining excellence in nuclear facility design and management must be a core competency of the DOE. An important part of nuclear facility management is the ability to monitor facilities and rapidly assess the response and integrity of the facilities after any major upset event. Experience in the western U.S. has shown that understanding facility integrity after a major earthquake is a significant challenge which, lacking key data, can require extensive effort and significant time. In the work described in the attached report, a transformational approach to earthquake monitoring of facilities is described and demonstrated. An entirely new type of optically-based sensor that can directly and accurately measure the earthquake-induced deformations of a critical facility has been developed and tested. This report summarizes large-scale shake table testing of the sensor concept on a representative steel frame building structure, and provides quantitative data on the accuracy of the sensor measurements.

  17. Towards a Systematic Search for Triggered Seismic Events in the USA

    Science.gov (United States)

    Tang, V.; Chao, K.; Van der Lee, S.

    2017-12-01

    Dynamic triggering of small earthquakes and tectonic tremor by small stress variations associated with passing surface waves from large-magnitude teleseismic earthquakes have been observed in seismically active regions in the western US. Local stress variations as small as 5 10 kPa can suffice to advance slip on local faults. Observations of such triggered events share certain distinct characteristics. With an eye towards an eventual application of machine learning, we began a systematic search for dynamically triggered seismic events in the USA that have these characteristics. Such a systematic survey has the potential to help us to better understand the fundamental process of dynamic triggering and hazards implied by it. Using visual inspection on top of timing and frequency based selection criteria for these seismic phenomena, our search yielded numerous false positives, indicating the challenge posed by moving from ad-hoc observations of dynamic triggering to a systematic search that also includes a catalog of non-triggering, even when sufficient stress variations are supplied. Our search includes a dozen large earthquakes that occurred during the tenure of USArray. One of these earthquakes (11 April 2012 Mw8.6 Sumatra), for example, was observed by USArray-TA stations in the Midwest and other station networks (such as PB and UW), and yielded candidate-triggered events at 413 stations. We kept 79 of these observations after closer visual inspection of the observed events suggested distinct P and S arrivals from a local earthquake, or a tremor modulation with the same period as the surface wave, among other criteria. We confirmed triggered seismic events in 63 stations along the western plate boundary where triggered events have previously been observed. We also newly found triggered tremor sources in eastern Oregon and Yellowstone, and candidate-triggered earthquake sources in New Mexico and Minnesota. Learning whether 14 of remaining candidates are confirmed

  18. Earthquake location determination using data from DOMERAPI and BMKG seismic networks: A preliminary result of DOMERAPI project

    Energy Technology Data Exchange (ETDEWEB)

    Ramdhan, Mohamad [Study Program of Earth Science, Institut Teknologi Bandung, Jl. Ganesa 10, Bandung, 40132 (Indonesia); Agency for Meteorology, Climatology and Geophysics of Indonesia (BMKG) Jl. Angkasa 1 No. 2 Kemayoran, Jakarta Pusat, 10720 (Indonesia); Nugraha, Andri Dian; Widiyantoro, Sri [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institut TeknologiBandung, Jl. Ganesa 10, Bandung, 40132 (Indonesia); Métaxian, Jean-Philippe [Institut de Recherche pour le Développement (IRD) (France); Valencia, Ayunda Aulia, E-mail: mohamad.ramdhan@bmkg.go.id [Study Program of Geophysical Engineering, Institut Teknologi Bandung, Jl. Ganesa 10, Bandung, 40132 (Indonesia)

    2015-04-24

    DOMERAPI project has been conducted to comprehensively study the internal structure of Merapi volcano, especially about deep structural features beneath the volcano. DOMERAPI earthquake monitoring network consists of 46 broad-band seismometers installed around the Merapi volcano. Earthquake hypocenter determination is a very important step for further studies, such as hypocenter relocation and seismic tomographic imaging. Ray paths from earthquake events occurring outside the Merapi region can be utilized to delineate the deep magma structure. Earthquakes occurring outside the DOMERAPI seismic network will produce an azimuthal gap greater than 180{sup 0}. Owing to this situation the stations from BMKG seismic network can be used jointly to minimize the azimuthal gap. We identified earthquake events manually and carefully, and then picked arrival times of P and S waves. The data from the DOMERAPI seismic network were combined with the BMKG data catalogue to determine earthquake events outside the Merapi region. For future work, we will also use the BPPTKG (Center for Research and Development of Geological Disaster Technology) data catalogue in order to study shallow structures beneath the Merapi volcano. The application of all data catalogues will provide good information as input for further advanced studies and volcano hazards mitigation.

  19. Leveraging Long-term Seismic Catalogs for Automated Real-time Event Classification

    Science.gov (United States)

    Linville, L.; Draelos, T.; Pankow, K. L.; Young, C. J.; Alvarez, S.

    2017-12-01

    We investigate the use of labeled event types available through reviewed seismic catalogs to produce automated event labels on new incoming data from the crustal region spanned by the cataloged events. Using events cataloged by the University of Utah Seismograph Stations between October, 2012 and June, 2017, we calculate the spectrogram for a time window that spans the duration of each event as seen on individual stations, resulting in 110k event spectrograms (50% local earthquakes examples, 50% quarry blasts examples). Using 80% of the randomized example events ( 90k), a classifier is trained to distinguish between local earthquakes and quarry blasts. We explore variations of deep learning classifiers, incorporating elements of convolutional and recurrent neural networks. Using a single-layer Long Short Term Memory recurrent neural network, we achieve 92% accuracy on the classification task on the remaining 20K test examples. Leveraging the decisions from a group of stations that detected the same event by using the median of all classifications in the group increases the model accuracy to 96%. Additional data with equivalent processing from 500 more recently cataloged events (July, 2017), achieves the same accuracy as our test data on both single-station examples and multi-station medians, suggesting that the model can maintain accurate and stable classification rates on real-time automated events local to the University of Utah Seismograph Stations, with potentially minimal levels of re-training through time.

  20. Adaptive neuro-fuzzy inference systems for semi-automatic discrimination between seismic events: a study in Tehran region

    Science.gov (United States)

    Vasheghani Farahani, Jamileh; Zare, Mehdi; Lucas, Caro

    2012-04-01

    Thisarticle presents an adaptive neuro-fuzzy inference system (ANFIS) for classification of low magnitude seismic events reported in Iran by the network of Tehran Disaster Mitigation and Management Organization (TDMMO). ANFIS classifiers were used to detect seismic events using six inputs that defined the seismic events. Neuro-fuzzy coding was applied using the six extracted features as ANFIS inputs. Two types of events were defined: weak earthquakes and mining blasts. The data comprised 748 events (6289 signals) ranging from magnitude 1.1 to 4.6 recorded at 13 seismic stations between 2004 and 2009. We surveyed that there are almost 223 earthquakes with M ≤ 2.2 included in this database. Data sets from the south, east, and southeast of the city of Tehran were used to evaluate the best short period seismic discriminants, and features as inputs such as origin time of event, distance (source to station), latitude of epicenter, longitude of epicenter, magnitude, and spectral analysis (fc of the Pg wave) were used, increasing the rate of correct classification and decreasing the confusion rate between weak earthquakes and quarry blasts. The performance of the ANFIS model was evaluated for training and classification accuracy. The results confirmed that the proposed ANFIS model has good potential for determining seismic events.

  1. Aftershock Sequences and Seismic-Like Organization of Acoustic Events Produced by a Single Propagating Crack

    Science.gov (United States)

    Alizee, D.; Bonamy, D.

    2017-12-01

    In inhomogeneous brittle solids like rocks, concrete or ceramics, one usually distinguish nominally brittle fracture, driven by the propagation of a single crack from quasibrittle one, resulting from the accumulation of many microcracks. The latter goes along with intermittent sharp noise, as e.g. revealed by the acoustic emission observed in lab scale compressive fracture experiments or at geophysical scale in the seismic activity. In both cases, statistical analyses have revealed a complex time-energy organization into aftershock sequences obeying a range of robust empirical scaling laws (the Omori-Utsu, productivity and Bath's law) that help carry out seismic hazard analysis and damage mitigation. These laws are usually conjectured to emerge from the collective dynamics of microcrack nucleation. In the experiments presented at AGU, we will show that such a statistical organization is not specific to the quasi-brittle multicracking situations, but also rules the acoustic events produced by a single crack slowly driven in an artificial rock made of sintered polymer beads. This simpler situation has advantageous properties (statistical stationarity in particular) permitting us to uncover the origins of these seismic laws: Both productivity law and Bath's law result from the scale free statistics for event energy and Omori-Utsu law results from the scale-free statistics of inter-event time. This yields predictions on how the associated parameters are related, which were analytically derived. Surprisingly, the so-obtained relations are also compatible with observations on lab scale compressive fracture experiments, suggesting that, in these complex multicracking situations also, the organization into aftershock sequences and associated seismic laws are also ruled by the propagation of individual microcrack fronts, and not by the collective, stress-mediated, microcrack nucleation. Conversely, the relations are not fulfilled in seismology signals, suggesting that

  2. Analysis of post-blasting source mechanisms of mining-induced seismic events in Rudna copper mine, Poland

    Directory of Open Access Journals (Sweden)

    Caputa Alicja

    2015-10-01

    Full Text Available The exploitation of georesources by underground mining can be responsible for seismic activity in areas considered aseismic. Since strong seismic events are connected with rockburst hazard, it is a continuous requirement to reduce seismic risk. One of the most effective methods to do so is blasting in potentially hazardous mining panels. In this way, small to moderate tremors are provoked and stress accumulation is substantially reduced. In this paper we present an analysis of post-blasting events using Full Moment Tensor (MT inversion at the Rudna mine, Poland, underground seismic network. In addition, we describe the problems we faced when analyzing seismic signals. Our studies show that focal mechanisms for events that occurred after blasts exhibit common features in the MT solution. The strong isotropic and small Double Couple (DC component of the MT, indicate that these events were provoked by detonations. On the other hand, post-blasting MT is considerably different than the MT obtained for strong mining events. We believe that seismological analysis of provoked and unprovoked events can be a very useful tool in confirming the effectiveness of blasting in seismic hazard reduction in mining areas.

  3. Seismic moment tensor resolution on a local scale: Simulated rockburst and mine-induced seismic events in the Kopanang gold mine, South Africa

    CSIR Research Space (South Africa)

    Sileny, J

    2006-08-01

    Full Text Available of regional events in the western Mediterranean are summarized by STICH et al. (2003). The moderate regional events around Japan are documented in the NIED catalogue by KUBO et al. (2002). Several case studies were performed to invert short- period records... and Metallurgy 101, 223? 234. Vol. 163, 2006 Seismic Moment Tensor Resolution on a Local Scale 1511 KRAVANJA, S., PANZA, G.F., and S? I? LENY? , J. (1999), Robust retrieval of a seismic point-source time function, Geophys. J. Int. 136, 385?394. KUBO, A., FUKUYAMA...

  4. Structure of the Suasselkä postglacial fault in northern Finland obtained by analysis of local events and ambient seismic noise

    Science.gov (United States)

    Afonin, Nikita; Kozlovskaya, Elena; Kukkonen, Ilmo; Dafne/Finland Working Group

    2017-04-01

    Understanding the inner structure of seismogenic faults and their ability to reactivate is particularly important in investigating the continental intraplate seismicity regime. In our study we address this problem using analysis of local seismic events and ambient seismic noise recorded by the temporary DAFNE array in the northern Fennoscandian Shield. The main purpose of the DAFNE/FINLAND passive seismic array experiment was to characterize the present-day seismicity of the Suasselkä postglacial fault (SPGF), which was proposed as one potential target for the DAFNE (Drilling Active Faults in Northern Europe) project. The DAFNE/FINLAND array comprised an area of about 20 to 100 km and consisted of eight short-period and four broadband three-component autonomous seismic stations installed in the close vicinity of the fault area. The array recorded continuous seismic data during September 2011-May 2013. Recordings of the array have being analysed in order to identify and locate natural earthquakes from the fault area and to discriminate them from the blasts in the Kittilä gold mine. As a result, we found a number of natural seismic events originating from the fault area, which proves that the fault is still seismically active. In order to study the inner structure of the SPGF we use cross-correlation of ambient seismic noise recorded by the array. Analysis of azimuthal distribution of noise sources demonstrated that during the time interval under consideration the distribution of noise sources is close to the uniform one. The continuous data were processed in several steps including single-station data analysis, instrument response removal and time-domain stacking. The data were used to estimate empirical Green's functions between pairs of stations in the frequency band of 0.1-1 Hz and to calculate corresponding surface wave dispersion curves. The S-wave velocity models were obtained as a result of dispersion curve inversion. The results suggest that the area of

  5. Explosion Monitoring with Machine Learning: A LSTM Approach to Seismic Event Discrimination

    Science.gov (United States)

    Magana-Zook, S. A.; Ruppert, S. D.

    2017-12-01

    The streams of seismic data that analysts look at to discriminate natural from man- made events will soon grow from gigabytes of data per day to exponentially larger rates. This is an interesting problem as the requirement for real-time answers to questions of non-proliferation will remain the same, and the analyst pool cannot grow as fast as the data volume and velocity will. Machine learning is a tool that can solve the problem of seismic explosion monitoring at scale. Using machine learning, and Long Short-term Memory (LSTM) models in particular, analysts can become more efficient by focusing their attention on signals of interest. From a global dataset of earthquake and explosion events, a model was trained to recognize the different classes of events, given their spectrograms. Optimal recurrent node count and training iterations were found, and cross validation was performed to evaluate model performance. A 10-fold mean accuracy of 96.92% was achieved on a balanced dataset of 30,002 instances. Given that the model is 446.52 MB it can be used to simultaneously characterize all incoming signals by researchers looking at events in isolation on desktop machines, as well as at scale on all of the nodes of a real-time streaming platform. LLNL-ABS-735911

  6. A General Event Location Algorithm with Applications to Eclipse and Station Line-of-Sight

    Science.gov (United States)

    Parker, Joel J. K.; Hughes, Steven P.

    2011-01-01

    A general-purpose algorithm for the detection and location of orbital events is developed. The proposed algorithm reduces the problem to a global root-finding problem by mapping events of interest (such as eclipses, station access events, etc.) to continuous, differentiable event functions. A stepping algorithm and a bracketing algorithm are used to detect and locate the roots. Examples of event functions and the stepping/bracketing algorithms are discussed, along with results indicating performance and accuracy in comparison to commercial tools across a variety of trajectories.

  7. A General Event Location Algorithm with Applications to Eclispe and Station Line-of-Sight

    Science.gov (United States)

    Parker, Joel J. K.; Hughes, Steven P.

    2011-01-01

    A general-purpose algorithm for the detection and location of orbital events is developed. The proposed algorithm reduces the problem to a global root-finding problem by mapping events of interest (such as eclipses, station access events, etc.) to continuous, differentiable event functions. A stepping algorithm and a bracketing algorithm are used to detect and locate the roots. Examples of event functions and the stepping/bracketing algorithms are discussed, along with results indicating performance and accuracy in comparison to commercial tools across a variety of trajectories.

  8. The risks to miners, mines, and the public posed by large seismic events in the gold mining districts of South Africa

    CSIR Research Space (South Africa)

    Durrheim, RJ

    2006-10-01

    Full Text Available are incorporating the risks of seismicity in their disaster management plans, and Johannesburg is urged to do likewise. Some buildings are considered vulnerable to damage by large seismic events, posing safety and financial risks....

  9. Variation of radon levels in spring water with meteorological parameters and seismic events in Garhwal Himalayas

    International Nuclear Information System (INIS)

    Prasad, Yogesh; Prasad, Ganesh; Negi, M.S.; Ramola, R.C.; Choubey, V.M.

    2006-01-01

    Radon is being measured continuously in spring water at Badshahi Thaul Campus, Tehri Garhwal in Himalayan region by using radon emanometer since December 2002. An effort was made to correlate the variance of radon concentration in spring water with meteorological parameters and seismic events in study area. The positive correlation (coefficient = 0.79, 0.53, 0.60 and 0.70) was observed between measured radon concentration and minimum and maximum temperature, relative humidity and water discharge rate from the spring, respectively. However, no correlation was recorded between radon concentration and rain fall in the study area. Sudden increase in radon concentration in spring water were observed before the earthquakes occurred on 24 January 2003 of magnitude 3.4 on Richter scale having epicenter near Uttarkashi in Garhwal Himalaya and on 31 January 2003 of magnitude 3.1 on Richter scale having epicenter almost in same area. Similar changes in radon concentration were recorded before the earthquakes occurred on 4 April 2003 with magnitude 4.0 having epicenter near Almora in Kumaon Himalaya and on 26 May 2003 having magnitude 3.5 in Chamoli region of Garhwal Himalaya. Regular radon anomaly was recorded with micro seismic events from 5th August to 4th September 2003, which is discussed in detail. The impact of non geophysical and geophysical events on radon concentration in spring water is discussed in details. This type of study will help us to develop earthquake alarm model from radon in near future. (author)

  10. Toward Joint Hypothesis-Tests Seismic Event Screening Analysis: Ms|mb and Event Depth

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Dale [Los Alamos National Laboratory; Selby, Neil [AWE Blacknest

    2012-08-14

    Well established theory can be used to combine single-phenomenology hypothesis tests into a multi-phenomenology event screening hypothesis test (Fisher's and Tippett's tests). Commonly used standard error in Ms:mb event screening hypothesis test is not fully consistent with physical basis. Improved standard error - Better agreement with physical basis, and correctly partitions error to include Model Error as a component of variance, correctly reduces station noise variance through network averaging. For 2009 DPRK test - Commonly used standard error 'rejects' H0 even with better scaling slope ({beta} = 1, Selby et al.), improved standard error 'fails to rejects' H0.

  11. The sequentially discounting autoregressive (SDAR) method for on-line automatic seismic event detecting on long term observation

    Science.gov (United States)

    Wang, L.; Toshioka, T.; Nakajima, T.; Narita, A.; Xue, Z.

    2017-12-01

    In recent years, more and more Carbon Capture and Storage (CCS) studies focus on seismicity monitoring. For the safety management of geological CO2 storage at Tomakomai, Hokkaido, Japan, an Advanced Traffic Light System (ATLS) combined different seismic messages (magnitudes, phases, distributions et al.) is proposed for injection controlling. The primary task for ATLS is the seismic events detection in a long-term sustained time series record. Considering the time-varying characteristics of Signal to Noise Ratio (SNR) of a long-term record and the uneven energy distributions of seismic event waveforms will increase the difficulty in automatic seismic detecting, in this work, an improved probability autoregressive (AR) method for automatic seismic event detecting is applied. This algorithm, called sequentially discounting AR learning (SDAR), can identify the effective seismic event in the time series through the Change Point detection (CPD) of the seismic record. In this method, an anomaly signal (seismic event) can be designed as a change point on the time series (seismic record). The statistical model of the signal in the neighborhood of event point will change, because of the seismic event occurrence. This means the SDAR aims to find the statistical irregularities of the record thought CPD. There are 3 advantages of SDAR. 1. Anti-noise ability. The SDAR does not use waveform messages (such as amplitude, energy, polarization) for signal detecting. Therefore, it is an appropriate technique for low SNR data. 2. Real-time estimation. When new data appears in the record, the probability distribution models can be automatic updated by SDAR for on-line processing. 3. Discounting property. the SDAR introduces a discounting parameter to decrease the influence of present statistic value on future data. It makes SDAR as a robust algorithm for non-stationary signal processing. Within these 3 advantages, the SDAR method can handle the non-stationary time-varying long

  12. Estimation of finite seismic source parameters for selected events of the West Bohemia year 2008 seismic swarm

    Czech Academy of Sciences Publication Activity Database

    Kolář, Petr; Růžek, Bohuslav

    2015-01-01

    Roč. 19, č. 2 (2015), s. 403-421 ISSN 1383-4649 R&D Projects: GA ČR GAP210/10/1728 Institutional support: RVO:67985530 Keywords : West Bohemia year 2008 seismic swarm * finite seismic source * stopping phases * stress drop Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.550, year: 2015

  13. Simultaneous Determination of Structure and Event Location Using Body and Surface Wave Measurements at a Single Station: Preparation for Mars Data from the InSight Mission

    Science.gov (United States)

    Panning, M. P.; Banerdt, W. B.; Beucler, E.; Blanchette-Guertin, J. F.; Boese, M.; Clinton, J. F.; Drilleau, M.; James, S. R.; Kawamura, T.; Khan, A.; Lognonne, P. H.; Mocquet, A.; van Driel, M.

    2015-12-01

    An important challenge for the upcoming InSight mission to Mars, which will deliver a broadband seismic station to Mars along with other geophysical instruments in 2016, is to accurately determine event locations with the use of a single station. Locations are critical for the primary objective of the mission, determining the internal structure of Mars, as well as a secondary objective of measuring the activity of distribution of seismic events. As part of the mission planning process, a variety of techniques have been explored for location of marsquakes and inversion of structure, and preliminary procedures and software are already under development as part of the InSight Mars Quake and Mars Structure Services. One proposed method, involving the use of recordings of multiple-orbit surface waves, has already been tested with synthetic data and Earth recordings. This method has the strength of not requiring an a priori velocity model of Mars for quake location, but will only be practical for larger events. For smaller events where only first orbit surface waves and body waves are observable, other methods are required. In this study, we implement a transdimensional Bayesian inversion approach to simultaneously invert for basic velocity structure and location parameters (epicentral distance and origin time) using only measurements of body wave arrival times and dispersion of first orbit surface waves. The method is tested with synthetic data with expected Mars noise and Earth data for single events and groups of events and evaluated for errors in both location and structural determination, as well as tradeoffs between resolvable parameters and the effect of 3D crustal variations.

  14. Relocating San Miguel Volcanic Seismic Events for Receiver Functions and Tomographic Models

    Science.gov (United States)

    Patlan, E.; Velasco, A. A.; Konter, J.

    2009-12-01

    The San Miguel volcano lies near the city of San Miguel, El Salvador (13.43N and -88.26W). San Miguel volcano, an active stratovolcano, presents a significant natural hazard for the city of San Miguel. Furthermore, the internal state and activity of volcanoes remains an important component to understanding volcanic hazard. The main technology for addressing volcanic hazards and processes is through the analysis of data collected from the deployment of seismic sensors that record ground motion. Six UTEP seismic stations were deployed around San Miguel volcano from 2007-2008 to define the magma chamber and assess the seismic and volcanic hazard. We utilize these data to develop images of the earth structure beneath the volcano, studying the volcanic processes by identifying different sources, and investigating the role of earthquakes and faults in controlling the volcanic processes. We will calculate receiver functions to determine the thickness of San Miguel volcano internal structure, within the Caribbean plate. Crustal thicknesses will be modeled using calculated receiver functions from both theoretical and hand-picked P-wave arrivals. We will use this information derived from receiver functions, along with P-wave delay times, to map the location of the magma chamber.

  15. Soil-structural interaction analysis of RBMK type NPP for seismic event. Progress report. From 1 July 1998 - 30 June 1999

    International Nuclear Information System (INIS)

    1999-01-01

    The objective of the project is to assess the structural behavior and safety capacity of a RBMK-1000 MW Main Building Complex under critical combination of loads including seismic events. This project is part of the Coordinated Research Program carried out by International Atomic Energy Agency on safety of RBMK Type Nuclear Power Plants (NPP) in Relation to External Events. The nuclear power plant considered for this study is the Sosnovy Bor NPP, located near St.Petersburg, Russia. The Soviet standard design RBMK-1000 MW type units installed in Sosnovy Bor NPP were originally designed for a Safe Shutdown Earthquake (SSE) with a peak ground acceleration (PGA) of 0.1 g. The relevant response spectra are not available for reference and assessment. The new international requirements for nuclear power plants in operation require site specific seismic hazard studies as a basis for the definition of a Review Level Earthquake (RLE) for reassessment of the structures and safety related equipment Ell - As the RLE site specific seismic data is still not available, the RLE earthquake spectra for Kozloduy NPP scaled to PGA=0.1 g were used in this study. This value is intentionally chosen for comparison purposes. The Russian design requirements (if design floor response spectra are available) will be compared with the international regulations. The scope of the study is to perform a Soil-Structure Interaction (SSI) seismic response analysis of the referenced RBMK-11000 MW. Main Building Complex to evaluate the effect on the structural response of a greater than design earthquake. The analysis is focused on a realistic assessment of the structural response to a potentially higher earthquake level instead of a conservative design type analysis. Special attention is paid on the seismic response of the sub-structures in the safe shutdown path, as well as on the locations of the heavy equipment

  16. Real-time monitoring of seismicity and deformation during the Bárdarbunga rifting event and associated caldera subsidence

    Science.gov (United States)

    Jónsdóttir, Kristín; Ófeigsson, Benedikt; Vogfjörd, Kristín; Roberts, Matthew; Barsotti, Sara; Gudmundsson, Gunnar; Hensch, Martin; Bergsson, Bergur; Kjartansson, vilhjálmur; Erlendsson, Pálmi; Friðriksdóttir, Hildur; Hreinsdóttir, Sigrún; Guðmundsson, Magnús; Sigmundsson, Freysteinn; Árnadóttir, Thóra; Heimisson, Elías; Hjorleifsdóttir, Vala; Soring, Jón; Björnsson, Bogi; Oddsson, Björn

    2015-04-01

    We present a monitoring overview of a rifting event and associated caldera subsidence in a glaciated environment during the Bárðarbunga volcanic crisis. Following a slight increase in seismicity and a weak deformation signal, noticed a few months before the unrest by the SIL monitoring team, an intense seismic swarm began in the subglacial Bárðarbunga caldera on August 16 2014. During the following two weeks, a dyke intruded into the crust beneath the Vatnajökull ice cap, propagating 48 km from the caldera to the east-north-east and north of the glacier where an effusive eruption started in Holuhraun. The eruption is still ongoing at the time of writing and has become the largest eruption in over 200 years in Iceland. The dyke propagation was episodic with a variable rate and on several occasions low frequency seismic tremor was observed. Four ice cauldrons, manifestations of small subglacial eruptions, were detected. Soon after the swarm began the 7x11 km wide caldera started to subside and is still subsiding (although at slower rates) and has in total subsided over 60 meters. Unrest in subglacial volcanoes always calls for interdisciplinary efforts and teamwork plays a key role for efficient monitoring. Iceland has experienced six subglacial volcanic crises since modern digital monitoring started in the early 90s. With every crisis the monitoring capabilities, data interpretations, communication and information dissemination procedures have improved. The Civil Protection calls for a board of experts and scientists (Civil Protection Science Board, CPSB) to share their knowledge and provide up-to-date information on the current status of the volcano, the relevant hazards and most likely scenarios. The evolution of the rifting was monitored in real-time by the joint interpretation of seismic and cGPS data. The dyke propagation could be tracked and new, updated models of the dyke volume were presented at the CPSB meetings, often daily. In addition, deformation

  17. Micromechanics and statistics of slipping events in a granular seismic fault model

    Energy Technology Data Exchange (ETDEWEB)

    Arcangelis, L de [Department of Information Engineering and CNISM, Second University of Naples, Aversa (Italy); Ciamarra, M Pica [CNR-SPIN, Dipartimento di Scienze Fisiche, Universita di Napoli Federico II (Italy); Lippiello, E; Godano, C, E-mail: dearcangelis@na.infn.it [Department of Environmental Sciences and CNISM, Second University of Naples, Caserta (Italy)

    2011-09-15

    The stick-slip is investigated in a seismic fault model made of a confined granular system under shear stress via three dimensional Molecular Dynamics simulations. We study the statistics of slipping events and, in particular, the dependence of the distribution on model parameters. The distribution consistently exhibits two regimes: an initial power law and a bump at large slips. The initial power law decay is in agreement with the the Gutenberg-Richter law characterizing real seismic occurrence. The exponent of the initial regime is quite independent of model parameters and its value is in agreement with experimental results. Conversely, the position of the bump is solely controlled by the ratio of the drive elastic constant and the system size. Large slips also become less probable in absence of fault gouge and tend to disappear for stiff drives. A two-time force-force correlation function, and a susceptibility related to the system response to pressure changes, characterize the micromechanics of slipping events. The correlation function unveils the micromechanical changes occurring both during microslips and slips. The mechanical susceptibility encodes the magnitude of the incoming microslip. Numerical results for the cellular-automaton version of the spring block model confirm the parameter dependence observed for size distribution in the granular model.

  18. Irregularities in Early Seismic Rupture Propagation for Large Events in a Crustal Earthquake Model

    Science.gov (United States)

    Lapusta, N.; Rice, J. R.; Rice, J. R.

    2001-12-01

    We study early seismic propagation of model earthquakes in a 2-D model of a vertical strike-slip fault with depth-variable rate and state friction properties. Our model earthquakes are obtained in fully dynamic simulations of sequences of instabilities on a fault subjected to realistically slow tectonic loading (Lapusta et al., JGR, 2000). This work is motivated by results of Ellsworth and Beroza (Science, 1995), who observe that for many earthquakes, far-field velocity seismograms during initial stages of dynamic rupture propagation have irregular fluctuations which constitute a "seismic nucleation phase". In our simulations, we find that such irregularities in velocity seismograms can be caused by two factors: (1) rupture propagation over regions of stress concentrations and (2) partial arrest of rupture in neighboring creeping regions. As rupture approaches a region of stress concentration, it sees increasing background stress and its moment acceleration (to which velocity seismographs in the far field are proportional) increases. After the peak in stress concentration, the rupture sees decreasing background stress and moment acceleration decreases. Hence a fluctuation in moment acceleration is created. If rupture starts sufficiently far from a creeping region, then partial arrest of rupture in the creeping region causes a decrease in moment acceleration. As the other parts of rupture continue to develop, moment acceleration then starts to grow again, and a fluctuation again results. Other factors may cause the irregularities in moment acceleration, e.g., phenomena such as branching and/or intermittent rupture propagation (Poliakov et al., submitted to JGR, 2001) which we have not studied here. Regions of stress concentration are created in our model by arrest of previous smaller events as well as by interactions with creeping regions. One such region is deep in the fault zone, and is caused by the temperature-induced transition from seismogenic to creeping

  19. Seismic security assessment of earth and rockfill dams located in epicentral regions

    Energy Technology Data Exchange (ETDEWEB)

    Oldecop, L.; Zabala, F.; Rodari, R. [San Juan National Univ., San Juan (Argentina). Instituto de Invest. Antisismicas

    2004-07-01

    The seismic safety of dams is of great interest to the midwest region of Argentina, the most seismically active area in the country. This paper examines factors controlling the design of dams subjected to earthquake action, criteria for safety verification and the analysis tools currently available. Data of dams, active faults and epicenters of historic earthquakes in the region were provided. Paleoseismicity research was suggested as an important area of research, potentially enhancing an understanding of a region's seismic activity. It was concluded that analysis tools currently used in engineering include simple models offering advantages in reliability and ease of result interpretation, but have shortcomings in their applicability. Care must be taken in the validation and interpretation of these models, particularly when the behaviour of a dam includes complex phenomena. More sophisticated analysis tools currently available are difficult to apply, largely due to the complexity of algorithms in the models. It was also concluded that in order to overcome difficulties in both simple and complex models, predictions should be contrasted with real behaviour data. Data from measurement of seismic behaviour is still relatively scarce, presenting an obstacle towards the further use of more sophisticated analysis tools, as they are not as yet tested against measurements and observations of real cases. 15 refs., 2 tabs., 11 figs.

  20. The forecast of mining-induced seismicity and the consequent risk of damage to the excavation in the area of seismic event

    Directory of Open Access Journals (Sweden)

    Jan Drzewiecki

    2017-01-01

    Full Text Available The Central Mining Institute has developed a method for forecasting the amount of seismic energy created by tremors induced by mining operations. The results of geophysical measurements of S wave velocity anomalies in a rock mass or the results of analytic calculations of the values of pressure on the horizon of the elastic layers are used in the process of calculating the energy. The calculation program which has been developed and adopted has been modified over recent years and it now enables not only the prediction of the energy of dynamic phenomena induced by mining but also the forecasting of the devastating range of seismic shock. The results obtained from this calculation, usually presented in a more readable graphic form, are useful for the macroscopic evaluation of locations that are potential sources of seismic energy. Forecasting of the maximum energy of seismic shock without prior knowledge of the location of the shock's source, does not allow shock attenuation that results from, for example, a distance of tremor source from the excavation which will be affected by seismic energy, to be taken into consideration. The phenomena of energy dissipation, which is taken into account in the forecasts, create a new quality of assessment of threat to the excavation. The paper presents the principle of a method of forecasting the seismic energy of a shock and the risk of damage to the excavation as a result of the impact of its energy wave. The solution assumes that the source of the energy shock is a resilient layer in which the sum of the gravitational stresses, resulting from natural disturbances and those induced by the conducted or planned mining exploitation, is estimated. The proposed solution assumes a spherical model for the tremor source, for which seismic energy is forecasted as a function of the longwall advance and the elementary value of seismic energy destroying the excavation. Subsequently, the following are calculated for the

  1. AP1000R design robustness against extreme external events - Seismic, flooding, and aircraft crash

    International Nuclear Information System (INIS)

    Pfister, A.; Goossen, C.; Coogler, K.; Gorgemans, J.

    2012-01-01

    Both the International Atomic Energy Agency (IAEA) and the U.S. Nuclear Regulatory Commission (NRC) require existing and new nuclear power plants to conduct plant assessments to demonstrate the unit's ability to withstand external hazards. The events that occurred at the Fukushima-Dai-ichi nuclear power station demonstrated the importance of designing a nuclear power plant with the ability to protect the plant against extreme external hazards. The innovative design of the AP1000 R nuclear power plant provides unparalleled protection against catastrophic external events which can lead to extensive infrastructure damage and place the plant in an extended abnormal situation. The AP1000 plant is an 1100-MWe pressurized water reactor with passive safety features and extensive plant simplifications that enhance construction, operation, maintenance and safety. The plant's compact safety related footprint and protection provided by its robust nuclear island structures prevent significant damage to systems, structures, and components required to safely shutdown the plant and maintain core and spent fuel pool cooling and containment integrity following extreme external events. The AP1000 nuclear power plant has been extensively analyzed and reviewed to demonstrate that it's nuclear island design and plant layout provide protection against both design basis and extreme beyond design basis external hazards such as extreme seismic events, external flooding that exceeds the maximum probable flood limit, and malicious aircraft impact. The AP1000 nuclear power plant uses fail safe passive features to mitigate design basis accidents. The passive safety systems are designed to function without safety-grade support systems (such as AC power, component cooling water, service water, compressed air or HVAC). The plant has been designed to protect systems, structures, and components critical to placing the reactor in a safe shutdown condition within the steel containment vessel which is

  2. AP1000{sup R} design robustness against extreme external events - Seismic, flooding, and aircraft crash

    Energy Technology Data Exchange (ETDEWEB)

    Pfister, A.; Goossen, C.; Coogler, K.; Gorgemans, J. [Westinghouse Electric Company LLC, 1000 Westinghouse Drive, Cranberry Township, PA 16066 (United States)

    2012-07-01

    Both the International Atomic Energy Agency (IAEA) and the U.S. Nuclear Regulatory Commission (NRC) require existing and new nuclear power plants to conduct plant assessments to demonstrate the unit's ability to withstand external hazards. The events that occurred at the Fukushima-Dai-ichi nuclear power station demonstrated the importance of designing a nuclear power plant with the ability to protect the plant against extreme external hazards. The innovative design of the AP1000{sup R} nuclear power plant provides unparalleled protection against catastrophic external events which can lead to extensive infrastructure damage and place the plant in an extended abnormal situation. The AP1000 plant is an 1100-MWe pressurized water reactor with passive safety features and extensive plant simplifications that enhance construction, operation, maintenance and safety. The plant's compact safety related footprint and protection provided by its robust nuclear island structures prevent significant damage to systems, structures, and components required to safely shutdown the plant and maintain core and spent fuel pool cooling and containment integrity following extreme external events. The AP1000 nuclear power plant has been extensively analyzed and reviewed to demonstrate that it's nuclear island design and plant layout provide protection against both design basis and extreme beyond design basis external hazards such as extreme seismic events, external flooding that exceeds the maximum probable flood limit, and malicious aircraft impact. The AP1000 nuclear power plant uses fail safe passive features to mitigate design basis accidents. The passive safety systems are designed to function without safety-grade support systems (such as AC power, component cooling water, service water, compressed air or HVAC). The plant has been designed to protect systems, structures, and components critical to placing the reactor in a safe shutdown condition within the steel

  3. The health and safety implications of local medical support for land seismic crews in remote locations in southeast Asia

    International Nuclear Information System (INIS)

    Win, P.M.; Suter, P.C.

    1991-01-01

    The paper attempts to detail the benefits and drawbacks of hiring local doctors to support the medical services needed for land seismic acquisition crews in remote locations in South East Asia. The actual conditions prevailing among such seismic operations will be presented highlighting the problems and risks involved. The management of these problems will be outlined in terms of prevention and actual diagnosis and treatment of disease and injuries including emergency stabilization and evacuation of critically ill patients. The results and lessons learned will be evaluated and discussed including the economics of setting up a reasonably reliable medical facility. The paper will conclude that local knowledge, high levels of training and low costs make this type of medical support beneficial for such operations and may well be applicable for similar operations in other parts of the world

  4. The Unconstrained Event Bulletin (UEB) for the IMS Seismic Network Spaning the Period May 15-28, 2010: a New Resource for Algorithm Development and Testing

    Science.gov (United States)

    Brogan, R.; Young, C. J.; Ballard, S.

    2017-12-01

    A major problem with developing new data processing algorithms for seismic event monitoring is the lack of standard, high-quality "ground-truth" data sets to test against. The unfortunate effect of this is that new algorithms are often developed and tested with new data sets, making comparison of algorithms difficult and subjective. In an effort towards resolving this problem, we have developed the Unconstrained Event Bulletin (UEB), a ground-truth data set from the International Monitoring System (IMS) primary and auxiliary seismic networks for a two-week period in May 2010. All UEB analysis was performed by the same expert, who has more than 30 years of experience analyzing seismic data for nuclear explosion monitoring. We used the most complete International Data Centre (IDC) analyst-review event bulletin (the Late Event Bulletin or LEB) as a starting point for this analysis. To make the UEB more complete, we relaxed the minimum event definite criteria to the level of a pair of P-type and an S-type phases at a single station and using azimuth/slowness as defining. To add even more events that our analyst recognized and didn't want to omit, in rare cases, events were constructed using only 1 P-phase. Perhaps most importantly, on average our analyst spent more than 60 hours per day of data, far more than was possible in the production of the LEB. The result of all this was that while the LEB had 2,101 LEB events for the 2-week time period, we ended up with 11,435 events in the UEB, an increase of over 400%. New events are located all over the world and include both earthquakes and manmade events such as mining explosions. Our intent is to make our UEB data set openly available for all researchers to use for testing detection, correlation, and location algorithms, thus making it much easier to objectively compare different research efforts. Acknowledgement: Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and

  5. Use of three-dimensional, high-resolution seismic technology to optimize the location of remedial systems

    International Nuclear Information System (INIS)

    Bainer, R.W.; Adams, M.L.

    1993-02-01

    Two three-dimensional (3-D), high-resolution seismic reflection pilot studies were conducted in California at two sites, where the primary contaminants of concern are solvents. Identify pathways of contaminant migration. Determine the subsurface stratigraphy and structure to optimize the location for placement of remedial systems. The geology at the first site, located at the Lawrence Livermore National Laboratory in Livermore, California, is characterized by unconsolidated alluvium. Ground water varies in depth from about 30 to 100 ft. The site typically is subjected to extensive cultural noise. The second site, in Southern California, is located in a broad, synclinal depression in the Transverse Range. Shallow alluvium overlies a marine turbidite sequence that crops out as massive sandstone beds. Field work for both surveys took place in August 1992. A Bison Model 90120-A, 120-channel (DIFP) seismograph was used to record the data. Thirty-hertz, natural-frequency geophones were used to receive the data, and an Elastic Wave Generator (EWG) was used as the seismic source. The use of a signal-stacking, noninvasive source was found to be an effective method of overriding background noise at the sites. Prior to the commencement of the 3-D pilot studies, a two-dimensional (2-D) profile was recorded to test the acquisition parameters, which included the geometry of the survey, digital sample rate, and analog filter settings. The data were monitored in the field with a Bison 486 Explorer outdoor computer. The 2-D data were processed and displayed in the field. Both sites displayed coherent seismic reflections from the depths of interest on the field-stacked sections

  6. On-line monitoring and data reduction of seismic events at Gauribidanur array

    International Nuclear Information System (INIS)

    Bharthur, R.N.; Rao, B.S.; Roy, F.

    1977-01-01

    Reduction of the threshold may improve the detection capability of the system, but it will lead to more spurious triggers. In order to overcome this problem, the nature of the spurious triggers is studied in detail. It is found that in general the cross correlation coefficient between the two beams viz. Ssup(A) and Ssup(B), due to spurious triggers has a maximum value of .4, where as the corresponding value of seismic events showed a minimum of .6. Therefore with the incorporation of a programme which suppresses all the triggers having a cross correlation coefficient of .4 and less, it will be possible to further bring down the threshold level. (author)

  7. Location aware event driven multipath routing in Wireless Sensor Networks: Agent based approach

    Directory of Open Access Journals (Sweden)

    A.V. Sutagundar

    2013-03-01

    Full Text Available Wireless Sensor Networks (WSNs demand reliable and energy efficient paths for critical information delivery to sink node from an event occurrence node. Multipath routing facilitates reliable data delivery in case of critical information. This paper proposes an event triggered multipath routing in WSNs by employing a set of static and mobile agents. Every sensor node is assumed to know the location information of the sink node and itself. The proposed scheme works as follows: (1 Event node computes the arbitrary midpoint between an event node and the sink node by using location information. (2 Event node establishes a shortest path from itself to the sink node through the reference axis by using a mobile agent with the help of location information; the mobile agent collects the connectivity information and other parameters of all the nodes on the way and provides the information to the sink node. (3 Event node finds the arbitrary location of the special (middle intermediate nodes (above/below reference axis by using the midpoint location information given in step 1. (4 Mobile agent clones from the event node and the clones carry the event type and discover the path passing through special intermediate nodes; the path above/below reference axis looks like an arc. While migrating from one sensor node to another along the traversed path, each mobile agent gathers the node information (such as node id, location information, residual energy, available bandwidth, and neighbors connectivity and delivers to the sink node. (5 The sink node constructs a partial topology, connecting event and sink node by using the connectivity information delivered by the mobile agents. Using the partial topology information, sink node finds the multipath and path weight factor by using link efficiency, energy ratio, and hop distance. (6 The sink node selects the number of paths among the available paths based upon the criticalness of an event, and (7 if the event is non

  8. A novel technique to extract events from access control system and locate persons

    International Nuclear Information System (INIS)

    Vincent, M.; Vaidyanathan, Mythili; Patidar, Suresh Chandra; Prabhakara Rao, G.

    2011-01-01

    Indira Gandhi Centre for Atomic Research houses many laboratories which handle radioactive materials and classified materials. Protection and accounting of men and material and critical facilities are important aspect of nuclear security. Access Control System (ACS) is used to enhance the protective measures against elevated threat environment. Access control system hardware consists of hand geometry readers, RFID readers, Controllers, Electromagnetic door locks, Turnstiles, fiber cable laying and termination etc. Access Control System controls and monitors the people accessing the secured facilities. Access Control System generates events on: 1. Showing of RFID card, 2. Rotation of turnstile, 3. Download of valid card numbers, 4. Generation of alarms etc. Access control system turnstiles are located in main entrance of a facility, entrance of inside laboratory and door locks are fixed on secured facilities. Events are stored in SQL server database. From the events stored in database a novel technique is developed to extract events and list the persons in a particular facility, list all entry/exit events on one day, list the first in and last out entries. This paper discusses the complex multi level group by queries and software developed to extract events from database, locate persons and generate reports. Software is developed as a web application in ASP.Net and query is written in SQL. User can select the doors, type of events and generate reports. Reports are generated using the master data stored about employees RFID cards and events data stored in tables. Four types of reports are generated 1. Plant Emergency Report, 2. Locate User Report, 3. Entry - Exit Report, 4. First in Last out Report. To generate plant emergency report for whole plant only events generated in outer gates have to be considered. To generate plant emergency report for inside laboratory, events generated in entrance gates have to be ignored. (author)

  9. Cross-correlation analysis of 2012-2014 seismic events in Central-Northern Italy: insights from the geochemical monitoring network of Tuscany

    Science.gov (United States)

    Pierotti, Lisa; Facca, Gianluca; Gherardi, Fabrizio

    2015-04-01

    Since late 2002, a geochemical monitoring network is operating in Tuscany, Central Italy, to collect data and possibly identify geochemical anomalies that characteristically occur before regionally significant (i.e. with magnitude > 3) seismic events. The network currently consists of 6 stations located in areas already investigated in detail for their geological setting, hydrogeological and geochemical background and boundary conditions. All these stations are equipped for remote, continuous monitoring of selected physicochemical parameters (temperature, pH, redox potential, electrical conductivity), and dissolved concentrations of CO2 and CH4. Additional information are obtained through in situ discrete monitoring. Field surveys are periodically performed to guarantee maintenance and performance control of the sensors of the automatic stations, and to collect water samples for the determination of the chemical and stable isotope composition of all the springs investigated for seismic precursors. Geochemical continuous signals are numerically processed to remove outliers, monitoring errors and aseismic effects from seasonal and climatic fluctuations. The elaboration of smoothed, long-term time series (more than 200000 data available today for each station) allows for a relatively accurate definition of geochemical background values. Geochemical values out of the two-sigma relative standard deviation domain are inspected as possible indicators of physicochemical changes related to regional seismic activity. Starting on November 2011, four stations of the Tuscany network located in two separate mountainous areas of Northern Apennines separating Tuscany from Emilia-Romagna region (Equi Terme and Gallicano), and Tuscany from Emilia-Romagna and Umbria regions (Vicchio and Caprese Michelangelo), started to register anomalous values in pH and CO2 partial pressure (PCO2). Cross-correlation analysis indicates an apparent relationship between the most important seismic

  10. Uncertainties for seismic moment tensors and applications to nuclear explosions, volcanic events, and earthquakes

    Science.gov (United States)

    Tape, C.; Alvizuri, C. R.; Silwal, V.; Tape, W.

    2017-12-01

    When considered as a point source, a seismic source can be characterized in terms of its origin time, hypocenter, moment tensor, and source time function. The seismologist's task is to estimate these parameters--and their uncertainties--from three-component ground motion recorded at irregularly spaced stations. We will focus on one portion of this problem: the estimation of the moment tensor and its uncertainties. With magnitude estimated separately, we are left with five parameters describing the normalized moment tensor. A lune of normalized eigenvalue triples can be used to visualize the two parameters (lune longitude and lune latitude) describing the source type, while the conventional strike, dip, and rake angles can be used to characterize the orientation. Slight modifications of these five parameters lead to a uniform parameterization of moment tensors--uniform in the sense that equal volumes in the coordinate domain of the parameterization correspond to equal volumes of moment tensors. For a moment tensor m that we have inferred from seismic data for an earthquake, we define P(V) to be the probability that the true moment tensor for the earthquake lies in the neighborhood of m that has fractional volume V. The average value of P(V) is then a measure of our confidence in our inference of m. The calculation of P(V) requires knowing both the probability P(w) and the fractional volume V(w) of the set of moment tensors within a given angular radius w of m. We apply this approach to several different data sets, including nuclear explosions from the Nevada Test Site, volcanic events from Uturuncu (Bolivia), and earthquakes. Several challenges remain: choosing an appropriate misfit function, handling time shifts between data and synthetic waveforms, and extending the uncertainty estimation to include more source parameters (e.g., hypocenter and source time function).

  11. Seismic loads in modularized and unmodularized large pools located on hard or intermediate hard sites

    Energy Technology Data Exchange (ETDEWEB)

    Dong, R G [California Univ., Livermore (USA). Lawrence Livermore Lab.

    1977-12-01

    To augment the present capacity of pools for storing spent nuclear fuel elements, pools larger than those in current use are being planned. These pools may or may not be modularized into cells. Because of the large size of the pools, seismic loads are of significant interest. In particular, the effects of modularization and site hardness are of concern. The study presented in this paper reveals that modularization is generally unfavourable, because it creates the option of leaving one or more cells empty which in turn results in higher structural loads. The wall which separates a filled cell from an empty cell, or the wall which bears against earth on one side and faces an empty cell on the other, becomes very highly stressed. For the particular pool geometries examined, a hard site is generally preferred over an intermediate hard site in terms of structural loads.

  12. Contribution of the Surface and Down-Hole Seismic Networks to the Location of Earthquakes at the Soultz-sous-Forêts Geothermal Site (France)

    Science.gov (United States)

    Kinnaert, X.; Gaucher, E.; Kohl, T.; Achauer, U.

    2018-03-01

    Seismicity induced in geo-reservoirs can be a valuable observation to image fractured reservoirs, to characterize hydrological properties, or to mitigate seismic hazard. However, this requires accurate location of the seismicity, which is nowadays an important seismological task in reservoir engineering. The earthquake location (determination of the hypocentres) depends on the model used to represent the medium in which the seismic waves propagate and on the seismic monitoring network. In this work, location uncertainties and location inaccuracies are modeled to investigate the impact of several parameters on the determination of the hypocentres: the picking uncertainty, the numerical precision of picked arrival times, a velocity perturbation and the seismic network configuration. The method is applied to the geothermal site of Soultz-sous-Forêts, which is located in the Upper Rhine Graben (France) and which was subject to detailed scientific investigations. We focus on a massive water injection performed in the year 2000 to enhance the productivity of the well GPK2 in the granitic basement, at approximately 5 km depth, and which induced more than 7000 earthquakes recorded by down-hole and surface seismic networks. We compare the location errors obtained from the joint or the separate use of the down-hole and surface networks. Besides the quantification of location uncertainties caused by picking uncertainties, the impact of the numerical precision of the picked arrival times as provided in a reference catalogue is investigated. The velocity model is also modified to mimic possible effects of a massive water injection and to evaluate its impact on earthquake hypocentres. It is shown that the use of the down-hole network in addition to the surface network provides smaller location uncertainties but can also lead to larger inaccuracies. Hence, location uncertainties would not be well representative of the location errors and interpretation of the seismicity

  13. The effect of tube rupture location on the consequences of multiple steam generator tube rupture event

    International Nuclear Information System (INIS)

    Jeong, Ji Hwan; Kweon, Young Chul

    2002-01-01

    A multiple steam generator tube rupture (MSGTR) event has never occurred in the commercial operation of nuclear reactors while single steam generator tube rupture (SGTR) events are reported to occur every 2 years. As there has been no occurrence of a MSGTR event, the understanding of transients and consequences of this event is very limited. In this study, a postulated MSGTR event in an advanced power reactor 1400 (APR 1400) is analyzed using the thermal-hydraulic system code, MARS1.4. The APR 1400 is a two-loop, 3893 MWt, PWR proposed to be built in 2010. The present study aims to understand the effects of rupture location in heat transfer tubes following a MSGTR event. The effects of five tube rupture locations are compared with each other. The comparison shows that the response of APR1400 allows the shortest time for operator action following a tube rupture in the vicinity of the hot-leg side tube sheet and allows the longest time following a tube rupture at the tube top. The MSSV lift time for rupture at the tube-top is evaluated as 24.5% larger than that for rupture at the hot-leg side tube sheet

  14. Response of the ionospheric electron density to different types of seismic events

    Directory of Open Access Journals (Sweden)

    Y. He

    2011-08-01

    Full Text Available The electron density data recorded by the Langmuir Probe Instrument (ISL, Instrument Sonde de Langmuir onboard the DEMETER satellite have been collected for nearly 4 yr (during 2006–2009 to perform a statistical analysis. During this time, more than 7000 earthquakes with a magnitude larger than or equal to 5.0 occurred all over the world. For the statistical studies, all these events have been divided into various categories on the basis of the seismic information, including Southern or Northern Hemisphere earthquakes, inland or sea earthquakes, earthquakes at different magnitude levels, earthquakes at different depth levels, isolated events and all events. To distinguish the pre-earthquake anomalies from the possible ionospheric anomalies related to the geomagnetic activity, the data were filtered with the Kp index. The statistical results obviously show that the electron density increases close to the epicentres both in the Northern and the Southern Hemisphere, but the position of the anomaly is slightly shifted to the north in the Northern Hemisphere and to the south in the Southern Hemisphere. The electron density related to both inland and sea earthquakes presents an anomaly approximately close to the epicentres, but the anomaly for sea earthquakes is more significant than for inland earthquakes. The intensity of the anomalies is enhanced when the magnitude increases and is reduced when the depth increases. A similar anomaly can also be seen in the statistical results concerning the isolated earthquakes. All these statistical results can help to better understand the preparation process of the earthquakes and their influence up to the ionospheric levels.

  15. Final Technical Report, 30 SEPTEMBER 2002 - 31 JANUARY 2006; ENERGY PARTIONING FOR SEISMIC EVENTS IN FENNOSCANDIA AND NW RUSSIA

    Energy Technology Data Exchange (ETDEWEB)

    Bungum, H.; Kvaerna, T.; Larsen, S.

    2006-01-31

    In this project we have addressed the problem of energy partitioning at distances ranging from very local to regional for various kinds of seismic sources. On the local and regional scale (20-220 km) we have targeted events from the region offshore Western Norway where we have both natural earthquake activity as well as frequent occurrence of underwater explosions carried out by the Norwegian Navy. On the small scale we have focused on analysis of observations from an in-mine network of 16-18 sensors in the Pyhasalmi mine in central Finland. This analysis has been supplemented with 3-D finite difference wave propagation simulations in a realistic mine model to investigate the physical mechanisms that partition seismic energy in the near source region in and around the underground mine. The results from modeling and analysis of local and regional data show that mean S/P amplitude ratios for explosions and natural events differ at individual stations and are in general higher for natural events and frequency bands above 3 Hz. However, the distributions of S/P ratios for explosions and natural events overlap in all analyzed frequency bands. Thus, for individual events in our study area, S/P amplitude ratios can only assist the discrimination between an explosion or a natural event. This observation is supported by synthetic seismograms calculated for simple 1-D models which demonstrate that explosions also generate shear-wave energy if they are fired close to an interface with a strong material contrast (as is the case for most explosions), e.g., free surface or the ocean bottom. The larger difference in S/P ratios between earthquakes and explosions for higher frequencies can be explained by the fact that at low frequencies (larger wavelengths), discontinuities and structural heterogeneities in the explosion source region are stronger generators of converted S energy. The S*-phase, for example, is most efficiently generated whenever an explosion source is located

  16. High-resolution and super stacking of time-reversal mirrors in locating seismic sources

    KAUST Repository

    Cao, Weiping; Hanafy, Sherif M.; Schuster, Gerard T.; Zhan, Ge; Boonyasiriwat, Chaiwoot

    2011-01-01

    Time reversal mirrors can be used to backpropagate and refocus incident wavefields to their actual source location, with the subsequent benefits of imaging with high-resolution and super-stacking properties. These benefits of time reversal mirrors

  17. Joint location and source mechanism inversion of microseismic events: benchmarking on seismicity induced by hydraulic fracturing

    Czech Academy of Sciences Publication Activity Database

    Anikiev, D.; Valenta, Jan; Staněk, František; Eisner, Leo

    2014-01-01

    Roč. 198, č. 1 (2014), s. 249-258 ISSN 0956-540X R&D Projects: GA ČR GAP210/12/2451 Institutional support: RVO:67985891 Keywords : inverse theory * probability distributions * wave scattering and diffraction * fractures and faults Subject RIV: DB - Geology ; Mineralogy Impact factor: 2.724, year: 2013

  18. Long-period seismicity reveals magma pathways above a laterally propagating dyke during the 2014-15 Bárðarbunga rifting event, Iceland

    Science.gov (United States)

    Woods, Jennifer; Donaldson, Clare; White, Robert S.; Caudron, Corentin; Brandsdóttir, Bryndís; Hudson, Thomas S.; Ágústsdóttir, Thorbjörg

    2018-05-01

    The 2014-15 Bárðarbunga-Holuhraun rifting event comprised the best-monitored dyke intrusion to date and the largest eruption in Iceland in 230 years. A huge variety of seismicity was produced, including over 30,000 volcano-tectonic earthquakes (VTs) associated with the dyke propagation at ∼6 km depth below sea level, and large-magnitude earthquakes accompanying the collapse of Bárðarbunga caldera. We here study the long-period seismicity associated with the rifting event. We systematically detect and locate both long-period events (LPs) and tremor during the dyke propagation phase and the first week of the eruption. We identify clusters of highly similar, repetitive LPs, which have a peak frequency of ∼1 Hz and clear P and S phases followed by a long-duration coda. The source mechanisms are remarkably consistent between clusters and also fundamentally different to those of the VTs. We accurately locate LP clusters near each of three ice cauldrons (depressions formed by basal melting) that were observed on the surface of Dyngjujökull glacier above the path of the dyke. Most events are in the vicinity of the northernmost cauldron, at shallower depth than the VTs associated with lateral dyke propagation. At the two northerly cauldrons, periods of shallow seismic tremor following the clusters of LPs are also observed. Given that the LPs occur at ∼4 km depth and in swarms during times of dyke-stalling, we infer that they result from excitation of magmatic fluid-filled cavities and indicate magma ascent. We suggest that the tremor is the climax of the vertical melt movement, arising from either rapid, repeated excitation of the same LP cavities, or sub-glacial eruption processes. This long-period seismicity therefore represents magma pathways between the depth of the dyke-VT earthquakes and the surface. Notably, we do not detect tremor associated with each cauldron, despite melt reaching the base of the overlying ice cap, a concern for hazard monitoring.

  19. Mud volcano monitoring and seismic events along the North Anatolian Fault (Sea of Marmara)

    Science.gov (United States)

    Javad Fallahi, Mohammad; Lupi, Matteo; Mazzini, Adriano; Polonia, Alina; D'Alessandro, Antonino; D'Anna, Giuseppe; Gasperini, Luca

    2017-04-01

    The Sea of Marmara, a pull-apart basin formed along the northern strand of the North Anatolian Fault (NAF) system, is considered a seismic gap, that will be filled in the next decades by a large magnitude (M>7) earthquake, close to the Istanbul Metropolitan area (12 million inhabitants). For this reason, several marine geological and geophysical studies have been carried out in this region, starting from the destructive 1999 Mw 7.4 Izmit earthquake, to gather information relative to seismogenic potential of major fault strands. Together with these studies, in the frame of EC projects (i.e., MarmESONET and Marsite, among others), an intensive program of long-term monitoring of seismogenic faults was carried out using seafloor observatories deployed during several expeditions led by Italian, French and Turkish groups. These expeditions included MARM2013, on board of the R/V Urania, of the Italian CNR, when four ocean bottom seismometers (OBS) were deployed in the central part of the Sea of Marmara, at depths between 550 and 1000 m. One of the main aims of the experiment was to assess the long-term seismic activity along an active segment of the NAF, which connects the central and the western basins (depocenters), where the principal deformation zone appears relatively narrow and almost purely strike-slip. The present study shows the results of processing and analysis of continuous data records from these OBS stations during 50 days. We were able to detect seismic signal produced by an active mud volcano located close to the NAF trace, from about 3 to 6 km of distance from the OBS stations. Additionally, we captured the May 24, 2014, Mw 6.9 strike-slip earthquake occurred in the northern Aegean Sea between Greece and Turkey, which caused serious damage on the Turkish island of Imbros and the cities of Edirne and Çanakkale, as well as on the Greek island of Lemnos. The earthquake nucleated on the westward continuation of the NAF system in the NE Aegean Sea, and was

  20. High-Precision Locations and the Stress Field from Instrumental Seismicity, Moment Tensors, and Short-Period Mechanisms through the Mina Deflection, Central Walker Lane

    Science.gov (United States)

    Ruhl, C. J.; Smith, K. D.

    2012-12-01

    The Mina Deflection (MD) region of the central Walker Lane of eastern California and western Nevada, is a complex zone of northeast-trending normal, and primarily left-lateral strike-slip to oblique-slip faulting that separates the Southern Walker Lane (SWL) from a series of east-tilted normal fault blocks in the Central Walker Lane (CWL) (Faulds and Henry, 2008; Surpless, 2008). The MD accommodates the transfer of right-lateral strike-slip motion from northwest-striking faults in the SWL to a series of left-stepping northwest-striking right-lateral strike-slip faults in the CWL, east of the Wassuk Range near Hawthorne, NV. The ~50 km wide ~80 km long right-step is a distinct transition in regional physiography that has been attributed to strain accommodation through pre-Cenozoic lithospheric structures. Several slip transfer mechanisms have been proposed within the MD, from clockwise rotation of high-angle fault blocks (Wesnousky, 2005), to low-angle displacement within the Silver Peak-Lone Mountain complex (Oldow et al., 2001), and curved fault arrays associated with localized basins and tectonic depressions (Ferranti et al., 2009). The region has been a regular source of M4+ events, the most recent being an extended sequence that included twenty-seven M 3.5+ earthquakes (largest event M 4.6) south of Hawthorne in 2011. These earthquakes (Mina, NV, and the 1932 M 7.1 Cedar Mountains earthquake east of the Pilot Mountains. Another persistent feature in the seismicity is an ~40 km long arcuate distribution of activity extending from approximately Queen Valley, north of the White Mountains, to Mono Lake that appears to reflect a southwestern boundary to northeast-striking structures in the MD. Here we develop high-precision relocations of instrumental seismicity in the MD from 1984 through 2012, including relocations of the 2004 sequence, and account for the historical seismic record. MT solutions from published reports and computed from recent M 3.5+ earthquakes as

  1. Lightning Prediction using Electric Field Measurements Associated with Convective Events at a Tropical Location

    Science.gov (United States)

    Jana, S.; Chakraborty, R.; Maitra, A.

    2017-12-01

    Nowcasting of lightning activities during intense convective events using a single electric field monitor (EFM) has been carried out at a tropical location, Kolkata (22.65oN, 88.45oE). Before and at the onset of heavy lightning, certain changes of electric field (EF) can be related to high liquid water content (LWC) and low cloud base height (CBH). The present study discusses the utility of EF observation to show a few aspects of convective events. Large convective cloud showed by high LWC and low CBH can be detected from EF variation which could be a precursor of upcoming convective events. Suitable values of EF gradient can be used as an indicator of impending lightning events. An EF variation of 0.195 kV/m/min can predict lightning within 17.5 km radius with a probability of detection (POD) of 91% and false alarm rate (FAR) of 8% with a lead time of 45 min. The total number of predicted lightning strikes is nearly 9 times less than that measured by the lightning detector. This prediction technique can, therefore, give an estimate of cloud to ground (CG) and intra cloud (IC) lighting occurrences within the surrounding area. This prediction technique involving POD, FAR and lead time information shows a better prediction capability compared to the techniques reported earlier. Thus an EFM can be effectively used for prediction of lightning events at a tropical location.

  2. Computer-Aided Analysis of Flow in Water Pipe Networks after a Seismic Event

    Directory of Open Access Journals (Sweden)

    Won-Hee Kang

    2017-01-01

    Full Text Available This paper proposes a framework for a reliability-based flow analysis for a water pipe network after an earthquake. For the first part of the framework, we propose to use a modeling procedure for multiple leaks and breaks in the water pipe segments of a network that has been damaged by an earthquake. For the second part, we propose an efficient system-level probabilistic flow analysis process that integrates the matrix-based system reliability (MSR formulation and the branch-and-bound method. This process probabilistically predicts flow quantities by considering system-level damage scenarios consisting of combinations of leaks and breaks in network pipes and significantly reduces the computational cost by sequentially prioritizing the system states according to their likelihoods and by using the branch-and-bound method to select their partial sets. The proposed framework is illustrated and demonstrated by examining two example water pipe networks that have been subjected to a seismic event. These two examples consist of 11 and 20 pipe segments, respectively, and are computationally modeled considering their available topological, material, and mechanical properties. Considering different earthquake scenarios and the resulting multiple leaks and breaks in the water pipe segments, the water flows in the segments are estimated in a computationally efficient manner.

  3. Role of the masonry in paintings during a seismic event analyzed by infrared vision

    Science.gov (United States)

    López, F.; Sfarra, S.; Ibarra-Castanedo, C.; Ambrosini, D.; Maldague, X. P. V.

    2015-06-01

    In this work, pulsed phase thermography (PPT), principal component thermography (PCT), and partial least squares thermography (PLST) techniques were applied in order to detect the masonry texture, as well as to map the subsurface damages formed beneath three different mural paintings. The latter were inspected after the 2009 earthquake, i.e., the seismic event that devastated L'Aquila City (Italy) and its surroundings. The mural supports explored by infrared thermography (IRT) are constituted by a single leaf, and the sides of the inspected paintings are confined by marble frames or by buried horizontal and vertical structures. Hence, the analyzed objects can be considered as monolithic structures. IRT can help to understand the masonry morphology, e.g. if there exist structural continuity between the arriccio layer (the first coat of plaster) and the support. In the present case, the heating phase was provided by lamps or propane gas and feature detection was enhanced by advanced signal processing. A comparison among the results is presented. Two of the three objects analyzed, painted by the art masters Serbucci and Avicola, are preserved inside Santa Maria della Croce di Roio Church in Roio Poggio (L'Aquila, Italy); they were executed on two masonries built in different periods. The last one was realized in Montorio al Vomano (Teramo, Italy) on the internal cloister of the Zoccolanti's Church (undated). The villages are separated by 50 km as the crow flies. Finally, near-infrared reflectography (NIRR) technique was also used to investigate the condition of the painting layer.

  4. The impact of relay chatter on the availability of plant systems following a seismic event

    International Nuclear Information System (INIS)

    Evans, M.G.K.; Su, Y.J.

    1985-01-01

    In performing a risk analysis of a nuclear power plant, one of the most important factors in determining the availability of those systems required to safely shut down the plant is the impact of common cause failures resulting from such events as fire, flooding or earthquakes. In the latter case it is particularly important to do a thorough analysis of the effects of the earthquake for plants built in zones of high seismicity such as the western United States, Japan or Taiwan. Much work has been done on the susceptibility of components to gross failure but little on the possibilities of relay chatter leading to the unavailability of many systems as the result of lock out of pumps or the changed status of valves. In this paper the authors look at the potential for electrical breaker failure and found that it is possible for a significant number of breakers supplying emergency pumps to be locked out following earthquakes such that the only other failure may well have been a loss of offsite power due to failure of switchyard insulators. They also identified the potential for individual valve operation within a system as the result of relay chatter, and the impact on the overall system availability. Finally they show how this can be incorporated into the quantification of the overall impact of the earthquake

  5. Automatic picker of P & S first arrivals and robust event locator

    Science.gov (United States)

    Pinsky, V.; Polozov, A.; Hofstetter, A.

    2003-12-01

    We report on further development of automatic all distances location procedure designed for a regional network. The procedure generalizes the previous "loca l" (R ratio of two STAs, calculated in two consecutive and equal time windows (instead of previously used Akike Information Criterion). "Teleseismic " location is split in two stages: preliminary and final one. The preliminary part estimates azimuth and apparent velocity by fitting a plane wave to the P automatic pickings. The apparent velocity criterion is used to decide about strategy of the following computations: teleseismic or regional. The preliminary estimates of azimuth and apparent velocity provide starting value for the final teleseismic and regional location. Apparent velocity is used to get first a pproximation distance to the source on the basis of the P, Pn, Pg travel-timetables. The distance estimate together with the preliminary azimuth estimate provides first approximations of the source latitude and longitude via sine and cosine theorems formulated for the spherical triangle. Final location is based on robust grid-search optimization procedure, weighting the number of pickings that simultaneously fit the model travel times. The grid covers initial location and becomes finer while approaching true hypocenter. The target function is a sum of the bell-shaped characteristic functions, used to emphasize true pickings and eliminate outliers. The final solution is a grid point that provides maximum to the target function. The procedure was applied to a list of ML > 4 earthquakes recorded by the Israel Seismic Network (ISN) in the 1999-2002 time period. Most of them are badly constrained relative the network. However, the results of location with average normalized error relative bulletin solutions e=dr/R of 5% were obtained, in each of the distance ranges. The first version of the procedure was incorporated in the national Early Warning System in 2001. Recently, we started to send automatic Early

  6. A study of various methods for calculating locations of lightning events

    Science.gov (United States)

    Cannon, John R.

    1995-01-01

    This article reports on the results of numerical experiments on finding the location of lightning events using different numerical methods. The methods include linear least squares, nonlinear least squares, statistical estimations, cluster analysis and angular filters and combinations of such techniques. The experiments involved investigations of methods for excluding fake solutions which are solutions that appear to be reasonable but are in fact several kilometers distant from the actual location. Some of the conclusions derived from the study are that bad data produces fakes, that no fool-proof method of excluding fakes was found, that a short base-line interferometer under development at Kennedy Space Center to measure the direction cosines of an event shows promise as a filter for excluding fakes. The experiments generated a number of open questions, some of which are discussed at the end of the report.

  7. Burar seismic station: evaluation of seismic performance

    International Nuclear Information System (INIS)

    Ghica, Daniela; Popa, Mihaela

    2005-01-01

    A new seismic monitoring system, the Bucovina Seismic Array (BURAR), has been established since July 2002, in the Northern part of Romania, in a joint effort of the Air Force Technical Applications Center, USA, and the National Institute for Earth Physics (NIEP), Romania. The small-aperture array consists of 10 seismic sensors (9 vertical short-period and one three-component broad band) located in boreholes and distributed in a 5 x 5 km 2 area. At present, the seismic data are continuously recorded by the BURAR and transmitted in real-time to the Romanian National Data Center in Bucharest and National Data Center of the USA, in Florida. Based on the BURAR seismic information gathered at the National Data Center, NIEP (ROM N DC), in the August 2002 - December 2004 time interval, analysis and statistical assessments were performed. Following the preliminary processing of the data, several observations on the global performance of the BURAR system were emphasized. Data investigation showed an excellent efficiency of the BURAR system particularly in detecting teleseismic and regional events. Also, a statistical analysis for the BURAR detection capability of the local Vrancea events was performed in terms of depth and magnitude for the year 2004. The high signal detection capability of the BURAR resulted, generally, in improving the location solutions for the Vrancea seismic events. The location solution accuracy is enhanced when adding BURAR recordings, especially in the case of low magnitude events (recorded by few stations). The location accuracy is increased, both in terms of constraining hypocenter depth and epicentral coordinates. Our analysis certifies the importance of the BURAR system in NIEP efforts to elaborate seismic bulletins. Furthermore, the specific procedures for array data processing (beam forming, f-k analysis) increase significantly the signal-to-noise ratio by summing up the coherent signals from the array components, and ensure a better accuracy

  8. Geomechanical Modeling of Fault Responses and the Potential for Notable Seismic Events during Underground CO2 Injection

    Science.gov (United States)

    Rutqvist, J.; Cappa, F.; Mazzoldi, A.; Rinaldi, A.

    2012-12-01

    The importance of geomechanics associated with large-scale geologic carbon storage (GCS) operations is now widely recognized. There are concerns related to the potential for triggering notable (felt) seismic events and how such events could impact the long-term integrity of a CO2 repository (as well as how it could impact the public perception of GCS). In this context, we review a number of modeling studies and field observations related to the potential for injection-induced fault reactivations and seismic events. We present recent model simulations of CO2 injection and fault reactivation, including both aseismic and seismic fault responses. The model simulations were conducted using a slip weakening fault model enabling sudden (seismic) fault rupture, and some of the numerical analyses were extended to fully dynamic modeling of seismic source, wave propagation, and ground motion. The model simulations illustrated what it will take to create a magnitude 3 or 4 earthquake that would not result in any significant damage at the groundsurface, but could raise concerns in the local community and could also affect the deep containment of the stored CO2. The analyses show that the local in situ stress field, fault orientation, fault strength, and injection induced overpressure are critical factors in determining the likelihood and magnitude of such an event. We like to clarify though that in our modeling we had to apply very high injection pressure to be able to intentionally induce any fault reactivation. Consequently, our model simulations represent extreme cases, which in a real GCS operation could be avoided by estimating maximum sustainable injection pressure and carefully controlling the injection pressure. In fact, no notable seismic event has been reported from any of the current CO2 storage projects, although some unfelt microseismic activities have been detected by geophones. On the other hand, potential future commercial GCS operations from large power plants

  9. Complex source mechanisms of mining-induced seismic events - implications for surface effects

    Science.gov (United States)

    Orlecka-Sikora, B.; Cesca, S.; Lasocki, S.; Rudzinski, L.; Lizurek, L.; Wiejacz, P.; Urban, P.; kozlowska, M.

    2012-04-01

    The seismicity of Legnica-Głogów Copper District (LGCD) is induced by mining activities in three mines: Lubin, Rudna and Polkowice-Sieroszowice. Ground motion caused by strong tremors might affect local infrastructure. "Żelazny Most" tailings pond, the biggest structure of this type in Europe, is here under special concern. Due to surface objects protection, Rudna Mine has been running ground motion monitoring for several years. From June 2010 to June 2011 unusually strong and extensive surface impact has been observed for 6 mining tremors induced in one of Rudna mining sections. The observed peak ground acceleration (PGA) for both horizontal and vertical component were in or even beyond 99% confidence interval for prediction. The aim of this paper is analyze the reason of such unusual ground motion. On the basis of registrations from Rudna Mine mining seismological network and records from Polish Seismological Network held by the Institute of Geophysics Polish Academy of Sciences (IGF PAN), the source mechanisms of these 6 tremors were calculated using a time domain moment tensor inversion. Furthermore, a kinematic analysis of the seismic source was performed, in order to determine the rupture planes orientations and rupture directions. These results showed that in case of the investigated tremors, point source models and shear fault mechanisms, which are most often assumed in mining seismology, are invalid. All analyzed events indicate extended sources with non-shear mechanism. The rapture planes have small dip angles and the rupture starts at the tremors hypocenter and propagates in the direction opposite to the plane dip. The tensional component plays here also big role. These source mechanisms well explain such observed strong ground motion, and calculated synthetic PGA values well correlates with observed ones. The relationship between mining tremors were also under investigation. All subsequent tremors occurred in the area of increased stress due to

  10. Identification of MHF (massive hydraulic fracturing) fracture planes and flow paths: A correlation of well log data with patterns in locations of induced seismicity

    Energy Technology Data Exchange (ETDEWEB)

    Dreesen, D.; Malzahn, M.; Fehler, M.; Dash, Z.

    1987-01-01

    One of the critical steps in developing a hot dry rock geothermal system is the creation of flow paths through the rock between two wellbores. To date, circulation systems have only been created by drilling one wellbore, hydraulically fracturing the well (which induces microearthquakes), locating the microearthquakes and then drilling a second wellbore through the zone of seismicity. A technique for analyzing the pattern of seismicity to determine where fracture planes are located in the seismically active region has recently been developed. This allows us to distinguish portions of the seismically active volume which are most likely to contain significant flow paths. We applied this technique to seismic data collected during a massive hydraulic fracturing (MHF) treatment and found that the fracture planes determined by the seismic method are confirmed by borehole temperature and caliper logs which indicate where permeable fractures and/or zones of weakness intersect the wellbores. A geometric model based on these planes and well log data has enhanced our understanding of the reservoir flow paths created by fracturing and is consistent with results obtained during production testing of the reservoir.

  11. Depth Discrimination Using Rg-to-Sg Spectral Amplitude Ratios for Seismic Events in Utah Recorded at Local Distances

    Energy Technology Data Exchange (ETDEWEB)

    Tibi, Rigobert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Koper, Keith D. [Univ. of Utah, Salt Lake City, UT (United States). Dept. of Geology and Geophysics; Pankow, Kristine L. [Univ. of Utah, Salt Lake City, UT (United States). Dept. of Geology and Geophysics; Young, Christopher J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-03-20

    Short-period fundamental-mode Rayleigh waves (Rg) are commonly observed on seismograms of anthropogenic seismic events and shallow, naturally occurring tectonic earthquakes (TEs) recorded at local distances. In the Utah region, strong Rg waves traveling with an average group velocity of about 1.8 km/s are observed at ~1 Hz on waveforms from shallow events ( depth<10 km ) recorded at distances up to about 150 km. At these distances, Sg waves, which are direct shear waves traveling in the upper crust, are generally the dominant signals for TEs. Here in this study, we leverage the well-known notion that Rg amplitude decreases dramatically with increasing event depth to propose a new depth discriminant based on Rg-to-Sg spectral amplitude ratios. The approach is successfully used to discriminate shallow events (both earthquakes and anthropogenic events) from deeper TEs in the Utah region recorded at local distances ( <150 km ) by the University of Utah Seismographic Stations (UUSS) regional seismic network. Using Mood’s median test, we obtained probabilities of nearly zero that the median Rg-to-Sg spectral amplitude ratios are the same between shallow events on the one hand (including both shallow TEs and anthropogenic events), and deeper earthquakes on the other, suggesting that there is a statistically significant difference in the estimated Rg-to-Sg ratios between the two populations. We also observed consistent disparities between the different types of shallow events (e.g., mining blasts vs. mining-induced earthquakes), implying that it may be possible to separate the subpopulations that make up this group. Lastly, this suggests that using local distance Rg-to-Sg spectral amplitude ratios one can not only discriminate shallow events from deeper events but may also be able to discriminate among different populations of shallow events.

  12. Changes and challenges following the 1997 Colfiorito earthquake: the evolution of the use of the Internet for large seismic events

    Directory of Open Access Journals (Sweden)

    R. Camassi

    2008-06-01

    Full Text Available The September 26, 1997 Central Italy earthquake represents the first Italian large seismic event on the occasion of which Internet was intensively exploited to exchange and disseminate data, information and news. The paper illustrates how national and international seismological institutions disseminate information about earthquakes ten years ago. A web evolution is sketched, and some features that can be of interest today in the seismological community are presented.

  13. Analysis of the effects of corrosion probe on riser 241-AN-102-WST-16 during seismic event

    International Nuclear Information System (INIS)

    ZIADA, H.H.

    1998-01-01

    This analysis supports the installation activity of the corrosion probe in Tank 241-AN-102. The probe is scheduled to be installed in Riser 241-AN-102-WST-16 (formerly known as Riser 15B). The purpose of this analysis is to evaluate the potential effect of the corrosion probe on the riser during a credible seismic event. The previous analysis (HNF 1997a) considered only pump jet impingement loading

  14. Nonlinear Methodologies for Identifying Seismic Event and Nuclear Explosion Using Random Forest, Support Vector Machine, and Naive Bayes Classification

    Directory of Open Access Journals (Sweden)

    Longjun Dong

    2014-01-01

    Full Text Available The discrimination of seismic event and nuclear explosion is a complex and nonlinear system. The nonlinear methodologies including Random Forests (RF, Support Vector Machines (SVM, and Naïve Bayes Classifier (NBC were applied to discriminant seismic events. Twenty earthquakes and twenty-seven explosions with nine ratios of the energies contained within predetermined “velocity windows” and calculated distance are used in discriminators. Based on the one out cross-validation, ROC curve, calculated accuracy of training and test samples, and discriminating performances of RF, SVM, and NBC were discussed and compared. The result of RF method clearly shows the best predictive power with a maximum area of 0.975 under the ROC among RF, SVM, and NBC. The discriminant accuracies of RF, SVM, and NBC for test samples are 92.86%, 85.71%, and 92.86%, respectively. It has been demonstrated that the presented RF model can not only identify seismic event automatically with high accuracy, but also can sort the discriminant indicators according to calculated values of weights.

  15. Seismic Experiment at North Arizona To Locate Washington Fault - 3D Data Interpolation

    KAUST Repository

    Hanafy, Sherif M.

    2008-10-01

    The recorded data is interpolated using sinc technique to create the following two data sets 1. Data Set # 1: Here, we interpolated only in the receiver direction to regularize the receiver interval to 1 m, however, the source locations are the same as the original data (2 and 4 m source intervals). Now the data contains 6 lines, each line has 121 receivers and a total of 240 shot gathers. 2. Data Set # 2: Here, we used the result from the previous step, and interpolated only in the shot direction to regularize the shot interval to 1 m. Now, both shot and receivers has 1 m interval. The data contains 6 lines, each line has 121 receivers and a total of 726 shot gathers.

  16. Evaluation of the seismic response of historical masonry bell towers located in South-East Lombardy, Italy

    Science.gov (United States)

    Valente, Marco; Milani, Gabriele; Shehu, Rafael

    2017-07-01

    This study presents some FE results regarding the behavior under horizontal loads of two existing masonry towers located in South-East Lombardy, Italy. The towers, albeit unique for geometric and architectural features, show some affinities that justify a comparative analysis, as for instance the location and the similar masonry material. Their structural behavior under horizontal loads is therefore influenced by geometrical issues, such as slenderness, walls thickness, perforations, irregularities, presence of internal vaults, etc., which may be responsible for a peculiar output. The geometry of the towers is deduced from both existing available documentation and in-situ surveys. On the basis of such geometrical data, a detailed 3D realistic mesh is conceived, with a point by point characterization of each single geometric element. The FE models are analyzed under seismic loads acting along geometric axes of the plan section, with non-linear dynamic excitation assumptions. A damage-plasticity material model exhibiting softening in both tension and compression, already available in the commercial code Abaqus, is used for masonry. Non-linear dynamic analyses are performed along both the X and Y directions with a real accelerogram scaled to different peak ground accelerations. Some results presented in this paper show the high vulnerability of ancient masonry towers under horizontal loads.

  17. Determination of the seismic moment tensor for local events in the South Shetland Islands and Bransfield Strait

    International Nuclear Information System (INIS)

    Guidarelli, M.; Panza, G.F.

    2005-06-01

    We present the results of the analysis for a set of earthquakes recorded in the Bransfield Strait and the South Shetland Islands in the period 1997-1998, to determine focal mechanisms and source time functions. Events with magnitudes between 3 and 5.6 have been analysed, and the source parameters have been retrieved using a robust methodology (INPAR) that allows the reliable inversion of a limited number of noisy records. This methodology is particularly important in oceanic environments, where the presence of seismic noise and the small number of stations makes it difficult to analyse small magnitude events. (author)

  18. Microseismic event location using global optimization algorithms: An integrated and automated workflow

    Science.gov (United States)

    Lagos, Soledad R.; Velis, Danilo R.

    2018-02-01

    We perform the location of microseismic events generated in hydraulic fracturing monitoring scenarios using two global optimization techniques: Very Fast Simulated Annealing (VFSA) and Particle Swarm Optimization (PSO), and compare them against the classical grid search (GS). To this end, we present an integrated and optimized workflow that concatenates into an automated bash script the different steps that lead to the microseismic events location from raw 3C data. First, we carry out the automatic detection, denoising and identification of the P- and S-waves. Secondly, we estimate their corresponding backazimuths using polarization information, and propose a simple energy-based criterion to automatically decide which is the most reliable estimate. Finally, after taking proper care of the size of the search space using the backazimuth information, we perform the location using the aforementioned algorithms for 2D and 3D usual scenarios of hydraulic fracturing processes. We assess the impact of restricting the search space and show the advantages of using either VFSA or PSO over GS to attain significant speed-ups.

  19. Seismic Anisotropy Beneath Eastern North America: Results from Multi-Event Inversion

    Science.gov (United States)

    Li, Y.; Levin, V. L.; Chen, X.

    2017-12-01

    Seismic anisotropy observed from the split core-refracted shear phases reflects upper mantle deformation. To characterize anisotropic signatures beneath eastern North America, we collected observations along a 1300 km long array from James Bay to the Fundy Basin. The averaged splitting parameters of individual sites show uniform fast polarization orientation of 80° and delay times linearly decreasing from 1.0 s in the Appalachians to 0.5 s in the Superior Province. We also see directional variation of fast polarizations at most sites, which is a likely effect of vertical changes in anisotropic properties. For sites with 10 or more observations, we used a multi-event inversion technique to solve for the underlying anisotropic structure. The technique considers the NULL observations from single-event analysis that are excluded from the averaged splitting parameters. For models with a single 100 km thick anisotropic layer with a horizontal fast axis, we find up to 6% of anisotropy in the Appalachian Orogen, equivalent to a splitting delay time of 1.5 s. Anisotropy strength reduces to 1.8% in the Superior Province, equivalent to delay times under 0.5 s. The overall decrease in anisotropic strength is modified by local changes of up to 2%, suggesting small-scale local variations near the surface. Orientations of the fast axes change from 60° in the Appalachian Orogen to 90° in the Superior Province, and are also modulated by local deviations. In the Appalachian Orogen the fast axes are close to the absolute plate motion in a hot-spot reference frame, while those in the Superior Province differ from it by almost 30°. Average values of splitting delays agree well with results of inversions in the Superior Province, and diverge in the Appalachians. Conversely, averaged fast polarizations match inversion results in the Appalachians, and are systematically different in the Superior Province. For an set of sites with recording periods exceeding 5 years, we will test more

  20. A Place for Every Event and Every Event in Its Place: Memory for Locations and Activities by 4-Year-Old Children

    Science.gov (United States)

    Bauer, Patricia J.; Stewart, Rebekah; White, Elizabeth A.; Larkina, Marina

    2016-01-01

    Episodic memories are of specific events and experiences associated with particular times and places. Whereas memory for the temporal aspects of past events has been a focus of research attention, memory for the location in which events were experienced has been less fully investigated. The limited developmental research suggests that…

  1. Spatial clustering and repeating of seismic events observed along the 1976 Tangshan fault, north China

    Science.gov (United States)

    Li, Le; Chen, Qi-Fu; Cheng, Xin; Niu, Fenglin

    2007-12-01

    Spatial and temporal features of the seismicity occurring along the Tangshan fault in 2001-2006 were investigated with data recorded by the Beijing metropolitan digital Seismic Network. The relocated seismicity with the double difference method clearly exhibits a dextral bend in the middle of the fault. More than 85% of the earthquakes were found in the two clusters forming the northern segment where relatively small coseismic slips were observed during the 1976 M7.8 earthquake. The b values calculated from the seismicity occurring in the northern and southern segment are 1.03 +/- 0.02 and 0.85 +/- 0.03, respectively. The distinct seismicity and b values are probably the collective effect of the fault geometry and the regional stress field that has an ENE-WSW oriented compression. Using cross-correlation and fine relocation analyses, we also identified a total of 21 doublets and 25 multiplets that make up >50% of the total seismicity. Most of the sequences are aperiodic with recurrence intervals varying from a few minutes to hundreds of days. Based on a quasi-periodic sequence, we obtained a fault slip rate of <=2.6 mm/yr at ~15 km, which is consistent with surface GPS measurements.

  2. NON-INVASIVE DETERMINATION OF THE LOCATION AND DISTRIBUTION OF FREE-PHASE DENSE NONAQUEOUS PHASE LIQUIDS (DNAPL) BY SEISMIC REFLECTION TECHNIQUES

    International Nuclear Information System (INIS)

    Michael G. Waddell; William J. Domoracki; Tom J. Temples; Jerome Eyer

    2001-01-01

    The Earth Sciences and Resources Institute, University of South Carolina is conducting a 14 month proof of concept study to determine the location and distribution of subsurface Dense Nonaqueous Phase Liquid (DNAPL) carbon tetrachloride (CCl 4 ) contamination at the 216-Z-9 crib, 200 West area, Department of Energy (DOE) Hanford Site, Washington by use of two-dimensional high resolution seismic reflection surveys and borehole geophysical data. The study makes use of recent advances in seismic reflection amplitude versus offset (AVO) technology to directly detect the presence of subsurface DNAPL. The techniques proposed are a noninvasive means towards site characterization and direct free-phase DNAPL detection. This report covers the results of Task 3 and change of scope of Tasks 4-6. Task 1 contains site evaluation and seismic modeling studies. The site evaluation consists of identifying and collecting preexisting geological and geophysical information regarding subsurface structure and the presence and quantity of DNAPL. The seismic modeling studies were undertaken to determine the likelihood that an AVO response exists and its probable manifestation. Task 2 is the design and acquisition of 2-D seismic reflection data designed to image areas of probable high concentration of DNAPL. Task 3 is the processing and interpretation of the 2-D data. Task 4, 5, and 6 were designing, acquiring, processing, and interpretation of a three dimensional seismic survey (3D) at the Z-9 crib area at 200 west area, Hanford

  3. Electrophysiological correlates of predictive coding of auditory location in the perception of natural audiovisual events.

    Science.gov (United States)

    Stekelenburg, Jeroen J; Vroomen, Jean

    2012-01-01

    In many natural audiovisual events (e.g., a clap of the two hands), the visual signal precedes the sound and thus allows observers to predict when, where, and which sound will occur. Previous studies have reported that there are distinct neural correlates of temporal (when) versus phonetic/semantic (which) content on audiovisual integration. Here we examined the effect of visual prediction of auditory location (where) in audiovisual biological motion stimuli by varying the spatial congruency between the auditory and visual parts. Visual stimuli were presented centrally, whereas auditory stimuli were presented either centrally or at 90° azimuth. Typical sub-additive amplitude reductions (AV - V audiovisual interaction was also found at 40-60 ms (P50) in the spatially congruent condition, while no effect of congruency was found on the suppression of the P2. This indicates that visual prediction of auditory location can be coded very early in auditory processing.

  4. Nuclear event time histories and computed site transfer functions for locations in the Los Angeles region

    Science.gov (United States)

    Rogers, A.M.; Covington, P.A.; Park, R.B.; Borcherdt, R.D.; Perkins, D.M.

    1980-01-01

    This report presents a collection of Nevada Test Site (NTS) nuclear explosion recordings obtained at sites in the greater Los Angeles, Calif., region. The report includes ground velocity time histories, as well as, derived site transfer functions. These data have been collected as part of a study to evaluate the validity of using low-level ground motions to predict the frequency-dependent response of a site during an earthquake. For this study 19 nuclear events were recorded at 98 separate locations. Some of these sites have recorded more than one of the nuclear explosions, and, consequently, there are a total of 159, three-component station records. The location of all the recording sites are shown in figures 1–5, the station coordinates and abbreviations are given in table 1. The station addresses are listed in table 2, and the nuclear explosions that were recorded are listed in table 3. The recording sites were chosen on the basis of three criteria: (1) that the underlying geological conditions were representative of conditions over significant areas of the region, (2) that the site was the location of a strong-motion recording of the 1971 San Fernando earthquake, or (3) that more complete geographical coverage was required in that location.

  5. A new seismic station in Romania the Bucovina seismic array

    International Nuclear Information System (INIS)

    Grigore, Adrian; Grecu, Bogdan; Ionescu, Constantin; Ghica, Daniela; Popa, Mihaela; Rizescu, Mihaela

    2002-01-01

    Recently, a new seismic monitoring station, the Bucovina Seismic Array, has been established in the northern part of Romania, in a joint effort of the Air Force Technical Applications Center, USA, and the National Institute for Earth Physics, Romania. The array consists of 10 seismic sensors (9 short-period and one broad band) located in boreholes and distributed in a 5 x 5 km area. On July 24, 2002 the official Opening Ceremony of Bucovina Seismic Array took place in the area near the city of Campulung Moldovenesc in the presence of Romanian Prime Minister, Adrian Nastase. Starting with this date, the new seismic monitoring system became fully operational by continuous recording and transmitting data in real-time to the National Data Center of Romania, in Bucharest and to the National Data Center of USA, in Florida. Bucovina Seismic Array, added to the present Seismic Network, will provide much better seismic monitoring coverage of Romania's territory, on-scale recording for weak-to-strong events, and will contribute to advanced seismological studies on seismic hazard and risk, local effects and microzonation, seismic source physics, Earth structure. (authors)

  6. Seismic sequences in the Sombrero Seismic Zone

    Science.gov (United States)

    Pulliam, J.; Huerfano, V. A.; ten Brink, U.; von Hillebrandt, C.

    2007-05-01

    The northeastern Caribbean, in the vicinity of Puerto Rico and the Virgin Islands, has a long and well-documented history of devastating earthquakes and tsunamis, including major events in 1670, 1787, 1867, 1916, 1918, and 1943. Recently, seismicity has been concentrated to the north and west of the British Virgin Islands, in the region referred to as the Sombrero Seismic Zone by the Puerto Rico Seismic Network (PRSN). In the combined seismicity catalog maintained by the PRSN, several hundred small to moderate magnitude events can be found in this region prior to 2006. However, beginning in 2006 and continuing to the present, the rate of seismicity in the Sombrero suddenly increased, and a new locus of activity developed to the east of the previous location. Accurate estimates of seismic hazard, and the tsunamigenic potential of seismic events, depend on an accurate and comprehensive understanding of how strain is being accommodated in this corner region. Are faults locked and accumulating strain for release in a major event? Or is strain being released via slip over a diffuse system of faults? A careful analysis of seismicity patterns in the Sombrero region has the potential to both identify faults and modes of failure, provided the aggregation scheme is tuned to properly identify related events. To this end, we experimented with a scheme to identify seismic sequences based on physical and temporal proximity, under the assumptions that (a) events occur on related fault systems as stress is refocused by immediately previous events and (b) such 'stress waves' die out with time, so that two events that occur on the same system within a relatively short time window can be said to have a similar 'trigger' in ways that two nearby events that occurred years apart cannot. Patterns that emerge from the identification, temporal sequence, and refined locations of such sequences of events carry information about stress accommodation that is obscured by large clouds of

  7. Technique and the scheme of engineering-seismometric supervision over seismic events on large dams

    Energy Technology Data Exchange (ETDEWEB)

    Karapetyan, S.; Babayan, T.; Mkrtchyan, G. [National Academy of Sciences of the Republic of Armenia (Armenia). Inst. of Geophysics and Engineering Seismology

    2004-07-01

    A network of engineering-seismometric monitoring stations have been installed at the Tavshout dam in a seismically active region of Armenia. The 37 meter high embankment dam consists of gravel-pebbles with a core of sandy clay. Recent earthquakes have presented a direct hazard for the dam and its water reservoir. In order to determine the degree of seismic hazard and prevention, it is necessary to study the interaction between the ground and the foundation of the dam. The seismometers were fixed at three points both on the foundation and the ground to obtain information on the whole route of seismic waves and to define the geology based amplification factors using empirical equations. The system of engineering-seismometric observations included a network of seismometric instruments, communications and a recording complex. 4 refs., 14 figs.

  8. Location-based technologies for supporting elderly pedestrian in "getting lost" events.

    Science.gov (United States)

    Pulido Herrera, Edith

    2017-05-01

    Localization-based technologies promise to keep older adults with dementia safe and support them and their caregivers during getting lost events. This paper summarizes mainly technological contributions to support the target group in these events. Moreover, important aspects of the getting lost phenomenon such as its concept and ethical issues are also briefly addressed. Papers were selected from scientific databases and gray literature. Since the topic is still in its infancy, other terms were used to find contributions associated with getting lost e.g. wandering. Trends of applying localization systems were identified as personal locators, perimeter systems and assistance systems. The first system barely considered the older adult's opinion, while assistance systems may involve context awareness to improve the support for both the elderly and the caregiver. Since few studies report multidisciplinary work with a special focus on getting lost, there is not a strong evidence of the real efficiency of localization systems or guidelines to design systems for the target group. Further research about getting lost is required to obtain insights for developing customizable systems. Moreover, considering conditions of the older adult might increase the impact of developments that combine localization technologies and artificial intelligence techniques. Implications for Rehabilitation Whilst there is no cure for dementia such as Alzheimer's, it is feasible to take advantage of technological developments to somewhat diminish its negative impact. For instance, location-based systems may provide information to early diagnose the Alzheimer's disease by assessing navigational impairments of older adults. Assessing the latest supportive technologies and methodologies may provide insights to adopt strategies to properly manage getting lost events. More user-centered designs will provide appropriate assistance to older adults. Namely, customizable systems could assist older adults

  9. An event-related potential study on the interaction between lighting level and stimulus spatial location

    Directory of Open Access Journals (Sweden)

    Luis eCarretié

    2015-11-01

    Full Text Available Due to heterogeneous photoreceptor distribution, spatial location of stimulation is crucial to study visual brain activity in different light environments. This unexplored issue was studied through occipital event-related potentials (ERPs recorded from 40 participants in response to discrete visual stimuli presented at different locations and in two environmental light conditions, low mesopic (L, 0.03 lux and high mesopic (H, 6.5 lux, characterized by a differential photoreceptor activity balance: rod>cone and rodlocation of stimulation: differences were greater in response to peripheral stimuli than to stimuli presented at fixation. Moreover, in the former case, significance of L vs. H differences was even stronger in response to stimuli presented at the horizontal than at the vertical periphery. These low vs. high mesopic differences may be explained by photoreceptor activation and their retinal distribution, and confirm that ERPs discriminate between rod- and cone-originated visual processing.

  10. Source mechanisms of mining-related seismic events in the Far West Rand, South Africa

    CSIR Research Space (South Africa)

    Kassa, BB

    2009-09-01

    Full Text Available . International Handbook of Earthquake and Engineering Seismology, ed. W. H. K. Lee, H. Kanamori, P. C. Jennings, and C. Kisslinger, chapter 85.12. San Diego: Academic Press. Trifu, C-I., Angus, D. and Shumila, V. (2000). A fast evaluation of the seismic...

  11. Finite seismic source parameters inferred from stopping phases for selected events of West Bohemia 2000 swarm

    Czech Academy of Sciences Publication Activity Database

    Kolář, Petr; Růžek, Bohuslav

    2012-01-01

    Roč. 9, č. 4 (2012), s. 435-447 ISSN 1214-9705 R&D Projects: GA AV ČR(CZ) IAA300120805; GA ČR GAP210/10/1728 Institutional support: RVO:67985530 Keywords : finite seismic source * stopping phases * West Bohemia earthquke swarm Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.530, year: 2011

  12. Shallow degassing events as a trigger for very-long-period seismicity at Kīlauea Volcano, Hawai‘i

    Science.gov (United States)

    Patrick, Matthew; Wilson, David; Fee, David; Orr, Tim R.; Swanson, Donald A.

    2011-01-01

    The first eruptive activity at Kīlauea Volcano’s summit in 25 years began in March 2008 with the opening of a 35-m-wide vent in Halema‘uma‘u crater. The new activity has produced prominent very-long-period (VLP) signals corresponding with two new behaviors: episodic tremor bursts and small explosive events, both of which represent degassing events from the top of the lava column. Previous work has shown that VLP seismicity has long been present at Kīlauea’s summit, and is sourced approximately 1 km below Halema‘uma‘u. By integrating video observations, infrasound and seismic data, we show that the onset of the large VLP signals occurs within several seconds of the onset of the degassing events. This timing indicates that the VLP is caused by forces—sourced at or very near the lava free surface due to degassing—transmitted down the magma column and coupling to the surrounding rock at 1 km depth.

  13. Electrophysiological correlates of predictive coding of auditory location in the perception of natural audiovisual events

    Directory of Open Access Journals (Sweden)

    Jeroen eStekelenburg

    2012-05-01

    Full Text Available In many natural audiovisual events (e.g., a clap of the two hands, the visual signal precedes the sound and thus allows observers to predict when, where, and which sound will occur. Previous studies have already reported that there are distinct neural correlates of temporal (when versus phonetic/semantic (which content on audiovisual integration. Here we examined the effect of visual prediction of auditory location (where in audiovisual biological motion stimuli by varying the spatial congruency between the auditory and visual part of the audiovisual stimulus. Visual stimuli were presented centrally, whereas auditory stimuli were presented either centrally or at 90° azimuth. Typical subadditive amplitude reductions (AV – V < A were found for the auditory N1 and P2 for spatially congruent and incongruent conditions. The new finding is that the N1 suppression was larger for spatially congruent stimuli. A very early audiovisual interaction was also found at 30-50 ms in the spatially congruent condition, while no effect of congruency was found on the suppression of the P2. This indicates that visual prediction of auditory location can be coded very early in auditory processing.

  14. Mine-induced seismicity at East-Rand proprietary mines

    CSIR Research Space (South Africa)

    Milev, AM

    1995-09-01

    Full Text Available Mining results in seismic activity of varying intensity, from small micro seismic events to larger seismic events, often associated with significant seismic induced damages. This work deals with the understanding of the present seismicity...

  15. Applications of Location Similarity Measures and Conceptual Spaces to Event Coreference and Classification

    Science.gov (United States)

    McConky, Katie Theresa

    2013-01-01

    This work covers topics in event coreference and event classification from spoken conversation. Event coreference is the process of identifying descriptions of the same event across sentences, documents, or structured databases. Existing event coreference work focuses on sentence similarity models or feature based similarity models requiring slot…

  16. Risk assessment of K Basin twelve-inch and four-inch drain valve failure from a postulated seismic initiating event

    Energy Technology Data Exchange (ETDEWEB)

    MORGAN, R.G.

    1999-06-23

    The Spent Nuclear Fuel (SNF) Project will transfer metallic SNF from the Hanford 105 K-East and 105 K-West Basins to safe interim storage in the Canister Storage Building in the 200 Area. The initial basis for design, fabrication, installation, and operation of the fuel removal systems was that the basin leak rate which could result from a postulated accident condition would not be excessive relative to reasonable recovery operations. However, an additional potential K Basin water leak path is through the K Basin drain valves. Three twelve-inch drain valves are located in the main basin bays along the north wall. Five four-inch drain valves are located in the north and south loadout pits (NLOP and SLOP), the weasel pit, the technical viewing pit, and the discharge chute pit. The sumps containing the valves are filled with concrete which covers the drain valve body. Visual observations indicate that only the valve's bonnet and stem are exposed above the basin concrete floor for the twelve-inch drain valve and that much less of the valve's bonnet and stem are exposed above the basin concrete floor for the five four-inch drain valves. It was recognized, however, that damage of the drain valve bonnet or stem during a seismic initiating event could provide a potential K Basin water leak path. The objectives of this analysis are to: (1) evaluate the likelihood of damaging the three twelve-inch drain valves located along the north wall of the main basin and the five four-inch drain valves located in the pits from a seismic initiating event, and (2) determine the likelihood of exceeding a specific consequence (initial leak rate) from a damaged valve. The analysis process is a risk-based uncertainty analysis where each variable is modeled using available information and engineering judgement. The uncertainty associated with each variable is represented by a probability distribution (probability density function). Uncertainty exists because of the inherent

  17. Fluid injection and induced seismicity

    Science.gov (United States)

    Kendall, Michael; Verdon, James

    2016-04-01

    The link between fluid injection, or extraction, and induced seismicity has been observed in reservoirs for many decades. In fact spatial mapping of low magnitude events is routinely used to estimate a stimulated reservoir volume. However, the link between subsurface fluid injection and larger felt seismicity is less clear and has attracted recent interest with a dramatic increase in earthquakes associated with the disposal of oilfield waste fluids. In a few cases, hydraulic fracturing has also been linked to induced seismicity. Much can be learned from past case-studies of induced seismicity so that we can better understand the risks posed. Here we examine 12 case examples and consider in particular controls on maximum event size, lateral event distributions, and event depths. Our results suggest that injection volume is a better control on maximum magnitude than past, natural seismicity in a region. This might, however, simply reflect the lack of baseline monitoring and/or long-term seismic records in certain regions. To address this in the UK, the British Geological Survey is leading the deployment of monitoring arrays in prospective shale gas areas in Lancashire and Yorkshire. In most cases, seismicity is generally located in close vicinity to the injection site. However, in some cases, the nearest events are up to 5km from the injection point. This gives an indication of the minimum radius of influence of such fluid injection projects. The most distant events are never more than 20km from the injection point, perhaps implying a maximum radius of influence. Some events are located in the target reservoir, but most occur below the injection depth. In fact, most events lie in the crystalline basement underlying the sedimentary rocks. This suggests that induced seismicity may not pose a leakage risk for fluid migration back to the surface, as it does not impact caprock integrity. A useful application for microseismic data is to try and forecast induced seismicity

  18. Automated phase picker and source location algorithm for local distances using a single three component seismic station

    International Nuclear Information System (INIS)

    Saari, J.

    1989-12-01

    The paper describes procedures for automatic location of local events by using single-site, three-component (3c) seismogram records. Epicentral distance is determined from the time difference between P- and S-onsets. For onset time estimates a special phase picker algorithm is introduced. Onset detection is accomplished by comparing short-term average with long-term average after multiplication of north, east and vertical components of recording. For epicentral distances up to 100 km, errors seldom exceed 5 km. The slowness vector, essentially the azimuth, is estimated independently by using the Christoffersson et al. (1988) 'polarization' technique, although a priori knowledge of the P-onset time gives the best results. Differences between 'true' and observed azimuths are generally less than 12 deg C. Practical examples are given by demonstrating the viability of the procedures for automated 3c seismogram analysis. The results obtained compare favourably with those achieved by a miniarray of three stations. (orig.)

  19. Neural network approach to the prediction of seismic events based on low-frequency signal monitoring of the Kuril-Kamchatka and Japanese regions

    Directory of Open Access Journals (Sweden)

    Irina Popova

    2013-08-01

    Full Text Available Very-low-frequency/ low-frequency (VLF/LF sub-ionospheric radiowave monitoring has been widely used in recent years to analyze earthquake preparatory processes. The connection between earthquakes with M ≥5.5 and nighttime disturbances of signal amplitude and phase has been established. Thus, it is possible to use nighttime anomalies of VLF/LF signals as earthquake precursors. Here, we propose a method for estimation of the VLF/LF signal sensitivity to seismic processes using a neural network approach. We apply the error back-propagation technique based on a three-level perceptron to predict a seismic event. The back-propagation technique involves two main stages to solve the problem; namely, network training, and recognition (the prediction itself. To train a neural network, we first create a so-called ‘training set’. The ‘teacher’ specifies the correspondence between the chosen input and the output data. In the present case, a representative database includes both the LF data received over three years of monitoring at the station in Petropavlovsk-Kamchatsky (2005-2007, and the seismicity parameters of the Kuril-Kamchatka and Japanese regions. At the first stage, the neural network established the relationship between the characteristic features of the LF signal (the mean and dispersion of a phase and an amplitude at nighttime for a few days before a seismic event and the corresponding level of correlation with a seismic event, or the absence of a seismic event. For the second stage, the trained neural network was applied to predict seismic events from the LF data using twelve time intervals in 2004, 2005, 2006 and 2007. The results of the prediction are discussed.

  20. Distributed Topological Convex Hull Estimation of Event Region in Wireless Sensor Networks without Location Information

    NARCIS (Netherlands)

    Guo, Peng; Cao, Jiannong; Zhang, Kui

    2015-01-01

    In critical event (e.g., fire or gas) monitoring applications of wireless sensor networks (WSNs), convex hull of the event region is an efficient tool in handling the usual tasks like event report, routes reconstruction and human motion planning. Existing works on estimating convex hull of event

  1. Causality between expansion of seismic cloud and maximum magnitude of induced seismicity in geothermal field

    Science.gov (United States)

    Mukuhira, Yusuke; Asanuma, Hiroshi; Ito, Takatoshi; Häring, Markus

    2016-04-01

    Occurrence of induced seismicity with large magnitude is critical environmental issues associated with fluid injection for shale gas/oil extraction, waste water disposal, carbon capture and storage, and engineered geothermal systems (EGS). Studies for prediction of the hazardous seismicity and risk assessment of induced seismicity has been activated recently. Many of these studies are based on the seismological statistics and these models use the information of the occurrence time and event magnitude. We have originally developed physics based model named "possible seismic moment model" to evaluate seismic activity and assess seismic moment which can be ready to release. This model is totally based on microseismic information of occurrence time, hypocenter location and magnitude (seismic moment). This model assumes existence of representative parameter having physical meaning that release-able seismic moment per rock volume (seismic moment density) at given field. Seismic moment density is to be estimated from microseismic distribution and their seismic moment. In addition to this, stimulated rock volume is also inferred by progress of microseismic cloud at given time and this quantity can be interpreted as the rock volume which can release seismic energy due to weakening effect of normal stress by injected fluid. Product of these two parameters (equation (1)) provide possible seismic moment which can be released from current stimulated zone as a model output. Difference between output of this model and observed cumulative seismic moment corresponds the seismic moment which will be released in future, based on current stimulation conditions. This value can be translated into possible maximum magnitude of induced seismicity in future. As this way, possible seismic moment can be used to have feedback to hydraulic stimulation operation in real time as an index which can be interpreted easily and intuitively. Possible seismic moment is defined as equation (1), where D

  2. Observations of hybrid seismic events at Soufriere Hills Volcano, Montserrat: July 1995 to September 1996

    Science.gov (United States)

    White, R.A.; Miller, A.D.; Lynch, L.; Power, J.

    1998-01-01

    Swarms of small repetitive events with similar waveforms and magnitudes are often observed during the emplacement of lava domes. Over 300 000 such events were recorded in association with the emplacement of the lava dome at Soufriere Hills Volcano, Montserrat, from August 1995 through August 1996. These events originated Soufriere Hills Volcano, Montserrat, from August 1995 through August 1996. These events originated <2-3 km deep. They exhibited energy ranging over approximately 1.5-4.5 Hz and were broader band than typical long-period events. We term the events `hybrid' between long-period and volcano-tectonic. The events were more impulsive and broader band prior to, compared with during and after, periods of inferred increased magma flux rate. Individual swarms contained up to 10,000 events often exhibiting very similar magnitudes and waveforms throughout the swarm. Swarms lasted hours to weeks, during which inter-event intervals generally increased, then decreased, often several times. Long-duration swarms began about every two months starting in late September 1995. We speculate that the events were produced as the magma column degassed into adjacent cracks.

  3. U-Th dating of broken speleothems from Cacahuamilpa cave, Mexico: Are they recording past seismic events?

    Science.gov (United States)

    Méjean, Pauline; Garduño-Monroy, Victor-Hugo; Pinti, Daniele L.; Ghaleb, Bassam; Bouvier, Laura; Gomez-Vasconcelos, Martha G.; Tremblay, Alain

    2015-01-01

    Cacahuamilpa cave is one of the largest karst systems in Central Mexico. The cave contains numerous massive speleothems broken and fallen following oriented directions, damaged during cataclysmic geological events. One fallen and two broken speleothems were sampled in the Cacahuamilpa cave for dating the rupture event using measured U-Th disequilibrium ages. A total of eight small carbonate cores were drilled perpendicular and longitudinal to the rupture surface. Results showed three groups of ages (weighted average): 0.95 ± 0.02 ka, 28.8 ± 0.2 ka and 88.0 ± 0.7 ka. This indicates that the construction of the Cacahuamilpa karst system, for which no absolute ages existed before this study, initiated at least since Late Pleistocene. The first two groups of ages might be related to two distinct episodes of intense seismic activity. Calculated minimum horizontal ground acceleration and frequency values of the seismic events needed to create the rupture of the stalagmites dated at 0.95 ± 0.02 ka and 28.8 ± 0.2 ka range between 1.3 and 2.0 m s-2 and between 13.4 and 20.8 Hz, respectively. These parameters are compatible with earthquakes of magnitude equal or higher than 7 M, with an epicentral distance between 50 and 100 km from the Cacahuamilpa cave. The stalagmite rupture dated at 88.0 ± 0.7 ka might result from the invasion of the cave by one of the older lahars deposits of the nearby volcano Nevado del Toluca, and successively fell by gravity instability.

  4. Data processing of natural and induced events recorded at the seismic station Ostrava-Kr¨¢sn¨¦ Pole (OKC

    Directory of Open Access Journals (Sweden)

    Nov¨¢k Josef

    2001-09-01

    Full Text Available The operation of the seismic station Ostrava-Kr¨¢sn¨¦ Pole (OKC (¦Õ = 49.8352¡ãN; ¦Ë = 18.1422¡ãE which is situated at present in an experimental gallery nearby the Ostrava planetarium started in the year 1983 being equiped initially by analogue instrumentation. Modernization of instrumentation at the station was aimed at the installation of a new digital data acquisition system and the respective software packages for data interpretation and transmission.Data acquisition system VISTEC is based on PC which enables continuous recording of three- component short-period and medium-period systems with the sampling frequency of 20 Hz. The basic advantage of the OS Linux adopted allows remote access (telnet and the possibility of the recorded data transmission (ftp. Possible troubles in the seismic station operation can be quickly detected (even automatically and all recorded data are with minimum delay on disposal. The use of the remote access makes possible also to change the parameters of measuring set-up. The standard form of output data allows the application of standard software packages for visualisation and evaluation. There are on disposal following formates: GSE2/CM6, GSE2/INT and MiniSEED. The output data sets can be compressed by a special procedure. For interactive interpretation od digital seismic data, software package EVENT developed in the Geophysical Institute AS CR and package WAVE developed in the Institute of Geonics AS CR are used.Experimental operation of digital seismographs at the station OKC confirmed justification of its incorporation into the seismic stations of the Czech national seismological network (CNSN. Based on the preliminary analysis of digital data it proved that following groups of seismic events are recorded: earthquakes, induced seismic events from Polish copper and coal mines, induced seismic events from the Ostrava-Karvin¨¢ Coal Basin, quarry blasts and weak regional seismic events of the

  5. An unsupervised learning algorithm: application to the discrimination of seismic events and quarry blasts in the vicinity of Istanbul

    Directory of Open Access Journals (Sweden)

    H. S. Kuyuk

    2011-01-01

    Full Text Available The results of the application of an unsupervised learning (neural network approach comprising a Self Organizing Map (SOM, to distinguish micro-earthquakes from quarry blasts in the vicinity of Istanbul, Turkey, are presented and discussed. The SOM is constructed as a neural classifier and complementary reliability estimator to distinguish seismic events, and was employed for varying map sizes. Input parameters consisting of frequency and time domain data (complexity, spectral ratio, S/P wave amplitude peak ratio and origin time of events extracted from the vertical components of digital seismograms were estimated as discriminants for 179 (1.8 < Md < 3.0 local events. The results show that complexity and amplitude peak ratio parameters of the observed velocity seismogram may suffice for a reliable discrimination, while origin time and spectral ratio were found to be fuzzy and misleading classifiers for this problem. The SOM discussed here achieved a discrimination reliability that could be employed routinely in observatory practice; however, about 6% of all events were classified as ambiguous cases. This approach was developed independently for this particular classification, but it could be applied to different earthquake regions.

  6. NON-INVASIVE DETERMINATION OF THE LOCATION AND DISTRBUTION OF FREE-PHASE DENSE NONAQUEOUS PHASE LIQUIDS (DNAPL) BY SEISMIC REFLECTION TECHNIQUES

    Energy Technology Data Exchange (ETDEWEB)

    Michael G. Waddell; William J. Domoracki; Jerome Eyer

    2003-01-01

    The Earth Sciences and Resources Institute, University of South Carolina is conducting a proof of concept study to determine the location and distribution of subsurface DNAPL carbon tetrachloride (CCl{sub 4}) contamination at the 216-Z-9 crib, 200 West area, DOE Hanford Site, Washington by use of two-dimensional high-resolution seismic reflection surveys and borehole geophysical data. The study makes use of recent advances in seismic reflection amplitude versus offset (AVO) technology to directly detect the presence of subsurface DNAPL. The techniques proposed are noninvasive means of site characterization and direct free-phase DNAPL detection. This final report covers the results of Tasks 1, 2, and 3. Task (1) contains site evaluation and seismic modeling studies. The site evaluation consists of identifying and collecting preexisting geological and geophysical information regarding subsurface structure and the presence and quantity of DNAPL. The seismic modeling studies were undertaken to determine the likelihood that an AVO response exists and its probable manifestation. Task (2) is the design and acquisition of 2-D seismic reflection data to image areas of probable high concentration of DNAPL. Task (3) is the processing and interpretation of the 2-D data. During the commission of these tasks four seismic reflection profiles were collected. Subsurface velocity information was obtained by vertical seismic profile surveys in three wells. The interpretation of these data is in two parts. Part one is the construction and interpretation of structural contour maps of the contact between the Hanford Fine unit and the underlying Plio/Pleistocene unit and of the contact between the Plio/Pleistocene unit and the underlying caliche layer. These two contacts were determined to be the most likely surfaces to contain the highest concentration CCl{sub 4}. Part two of the interpretation uses the results of the AVO modeling to locate any seismic amplitude anomalies that might be

  7. NON-INVASIVE DETERMINATION OF THE LOCATION AND DISTRBUTION OF FREE-PHASE DENSE NONAQUEOUS PHASE LIQUIDS (DNAPL) BY SEISMIC REFLECTION TECHNIQUES

    International Nuclear Information System (INIS)

    Waddell, Michael G.; Domoracki, William J.; Eyer, Jerome

    2003-01-01

    The Earth Sciences and Resources Institute, University of South Carolina is conducting a proof of concept study to determine the location and distribution of subsurface DNAPL carbon tetrachloride (CCl 4 ) contamination at the 216-Z-9 crib, 200 West area, DOE Hanford Site, Washington by use of two-dimensional high-resolution seismic reflection surveys and borehole geophysical data. The study makes use of recent advances in seismic reflection amplitude versus offset (AVO) technology to directly detect the presence of subsurface DNAPL. The techniques proposed are noninvasive means of site characterization and direct free-phase DNAPL detection. This final report covers the results of Tasks 1, 2, and 3. Task (1) contains site evaluation and seismic modeling studies. The site evaluation consists of identifying and collecting preexisting geological and geophysical information regarding subsurface structure and the presence and quantity of DNAPL. The seismic modeling studies were undertaken to determine the likelihood that an AVO response exists and its probable manifestation. Task (2) is the design and acquisition of 2-D seismic reflection data to image areas of probable high concentration of DNAPL. Task (3) is the processing and interpretation of the 2-D data. During the commission of these tasks four seismic reflection profiles were collected. Subsurface velocity information was obtained by vertical seismic profile surveys in three wells. The interpretation of these data is in two parts. Part one is the construction and interpretation of structural contour maps of the contact between the Hanford Fine unit and the underlying Plio/Pleistocene unit and of the contact between the Plio/Pleistocene unit and the underlying caliche layer. These two contacts were determined to be the most likely surfaces to contain the highest concentration CCl 4 . Part two of the interpretation uses the results of the AVO modeling to locate any seismic amplitude anomalies that might be

  8. Estimation of parameters of finite seismic source model for selected event of West Bohemia year 2008 seismic swarm-methodology improvement and data extension

    Czech Academy of Sciences Publication Activity Database

    Kolář, Petr

    2015-01-01

    Roč. 19, č. 4 (2015), s. 935-947 ISSN 1383-4649 Institutional support: RVO:67985530 Keywords : West Bohemia 2008 seismic swarm * finite seismic source * stopping phases Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.550, year: 2015

  9. The Banat seismic network: Evolution and performance

    International Nuclear Information System (INIS)

    Oros, E.

    2002-01-01

    In the Banat Seismic Region, with its important seismogenic zones (Banat and Danube), operates today the Banat Seismic Network. This network has four short period seismic stations telemetered at the Timisoara Seismological Observatory (since 1995): Siria, Banloc, Buzias and Timisoara. The stations are equipped with short-period S13 seismometers (1 second). The data recorded by the short-period stations are telemetered to Timisoara where they are digitized at 50 samples per second, with 16 bit resolution. At Timisoara works SAPS, an automated system for data acquisition and processing, which performs real-time event detection (based on Allen algorithm), discrimination between local and teleseismic events, automatic P and S waves picking, location and magnitude determination for local events and teleseisms, 'feeding' of an Automatic Data Request Manager with phases, locations and waveforms, sending of earthquake information (as phases and location), by e-mail to Bucharest. The beginning of the seismological observations in Banat is in the 1880's (Timisoara Meteorological Observatory). The first seismograph was installed in Timisoara in 1901, and its systematic observations began in 1902. The World War I interrupted its work. In 1942 Prof. I. Curea founded the Seismic Station Timisoara, and since 1967 until today this station worked into a special building. After 1972 two stations with high amplification were installed in Retezat Mts (Gura Zlata) and on Nera Valey (Susara), as a consequence of the research results. Since 1982 Buzias station began to work completing the Banat Seismic Network. Therefore, the network could detect and locate any local seismic event with M > 2.2. Moreover, up to 20 km distance from each station any seismic event could be detected over M = 0.5. The paper also presents the quality of the locations versus different local seismic sources. (author)

  10. OCT structure, COB location and magmatic type of the S Angolan & SE Brazilian margins from integrated quantitative analysis of deep seismic reflection and gravity anomaly data

    Science.gov (United States)

    Cowie, Leanne; Kusznir, Nick; Horn, Brian

    2014-05-01

    Integrated quantitative analysis using deep seismic reflection data and gravity inversion have been applied to the S Angolan and SE Brazilian margins to determine OCT structure, COB location and magmatic type. Knowledge of these margin parameters are of critical importance for understanding rifted continental margin formation processes and in evaluating petroleum systems in deep-water frontier oil and gas exploration. The OCT structure, COB location and magmatic type of the S Angolan and SE Brazilian rifted continental margins are much debated; exhumed and serpentinised mantle have been reported at these margins. Gravity anomaly inversion, incorporating a lithosphere thermal gravity anomaly correction, has been used to determine Moho depth, crustal basement thickness and continental lithosphere thinning. Residual Depth Anomaly (RDA) analysis has been used to investigate OCT bathymetric anomalies with respect to expected oceanic bathymetries and subsidence analysis has been used to determine the distribution of continental lithosphere thinning. These techniques have been validated for profiles Lusigal 12 and ISE-01 on the Iberian margin. In addition a joint inversion technique using deep seismic reflection and gravity anomaly data has been applied to the ION-GXT BS1-575 SE Brazil and ION-GXT CS1-2400 S Angola deep seismic reflection lines. The joint inversion method solves for coincident seismic and gravity Moho in the time domain and calculates the lateral variations in crustal basement densities and velocities along the seismic profiles. Gravity inversion, RDA and subsidence analysis along the ION-GXT BS1-575 profile, which crosses the Sao Paulo Plateau and Florianopolis Ridge of the SE Brazilian margin, predict the COB to be located SE of the Florianopolis Ridge. Integrated quantitative analysis shows no evidence for exhumed mantle on this margin profile. The joint inversion technique predicts oceanic crustal thicknesses of between 7 and 8 km thickness with

  11. NON-INVASIVE DETERMINATION OF THE LOCATION AND DISTRIBUTION OF FREE-PHASE DENSE NONAQUEOUS PHASE LIQUIDS (DNAPL) BY SEISMIC REFLECTION TECHNIQUES

    Energy Technology Data Exchange (ETDEWEB)

    Michael G. Waddell; William J. Domoracki; Tom J. Temples

    2001-12-01

    This annual technical progress report is for part of Task 4 (site evaluation), Task 5 (2D seismic design, acquisition, and processing), and Task 6 (2D seismic reflection, interpretation, and AVO analysis) on DOE contact number DE-AR26-98FT40369. The project had planned one additional deployment to another site other than Savannah River Site (SRS) or DOE Hanford Site. After the SUBCON midyear review in Albuquerque, NM, it was decided that two additional deployments would be performed. The first deployment is to test the feasibility of using non-invasive seismic reflection and AVO analysis as a monitoring tool to assist in determining the effectiveness of Dynamic Underground Stripping (DUS) in removal of DNAPL. The second deployment is to the Department of Defense (DOD) Charleston Naval Weapons Station Solid Waste Management Unit 12 (SWMU-12), Charleston, SC to further test the technique to detect high concentrations of DNAPL. The Charleston Naval Weapons Station SWMU-12 site was selected in consultation with National Energy Technology Laboratory (NETL) and DOD Naval Facilities Engineering Command Southern Division (NAVFAC) personnel. Based upon the review of existing data and due to the shallow target depth, the project team collected three Vertical Seismic Profiles (VSP) and an experimental P-wave seismic reflection line. After preliminary data analysis of the VSP data and the experimental reflection line data, it was decided to proceed with Task 5 and Task 6. Three high resolution P-wave reflection profiles were collected with two objectives; (1) design the reflection survey to image a target depth of 20 feet below land surface to assist in determining the geologic controls on the DNAPL plume geometry, and (2) apply AVO analysis to the seismic data to locate the zone of high concentration of DNAPL. Based upon the results of the data processing and interpretation of the seismic data, the project team was able to map the channel that is controlling the DNAPL plume

  12. Waveform correlation and coherence of short-period seismic noise within Gauribidanur array with implications for event detection

    International Nuclear Information System (INIS)

    Bhadauria, Y.S.; Arora, S.K.

    1995-01-01

    In continuation with our effort to model the short-period micro seismic noise at the seismic array at Gauribidanur (GBA), we have examined in detail time-correlation and spectral coherence of the noise field within the array space. This has implications of maximum possible improvement in signal-to-noise ratio (SNR) relevant to event detection. The basis of this study is about a hundred representative wide-band noise samples collected from GBA throughout the year 1992. Both time-structured correlation as well as coherence of the noise waveforms are found to be practically independent of the inter element distances within the array, and they exhibit strong temporal and spectral stability. It turns out that the noise is largely incoherent at frequencies ranging upwards from 2 Hz; the coherency coefficient tends to increase in the lower frequency range attaining a maximum of 0.6 close to 0.5 Hz. While the maximum absolute cross-correlation also diminishes with increasing frequency, the zero-lag cross-correlation is found to be insensitive to frequency filtering regardless of the pass band. An extremely small value of -0.01 of the zero-lag correlation and a comparatively higher year-round average estimate at 0.15 of the maximum absolute time-lagged correlation yields an SNR improvement varying between a probable high of 4.1 and a low of 2.3 for the full 20-element array. 19 refs., 6 figs

  13. Preliminary perspectives gaines from individual plant examination of external events (IPEEE) seismic and fire submittal review

    International Nuclear Information System (INIS)

    Chen, J.T.; Connell, E.; Chokshi, N.

    1997-01-01

    As a result of the U.S. Nuclear Regulatory Commission (USNRC) initiated Individual plant Examination of External Events (IPEEE) program, every operating nuclear power reactor in the United States has performed an assessment of severe accident due to external events. This paper provides a summary of the preliminary insights gained through the review of 24 IPEEE submittals

  14. Seismic qualification of equipment

    International Nuclear Information System (INIS)

    Heidebrecht, A.C.; Tso, W.K.

    1983-03-01

    This report describes the results of an investigation into the seismic qualification of equipment located in CANDU nuclear power plants. It is particularly concerned with the evaluation of current seismic qualification requirements, the development of a suitable methodology for the seismic qualification of safety systems, and the evaluation of seismic qualification analysis and testing procedures

  15. Estimating the response times of human operators working in the main control room of nuclear power plants based on the context of a seismic event – A case study

    International Nuclear Information System (INIS)

    Park, Jinkyun; Kim, Yochan; Kim, Jung Han; Jung, Wondea; Jang, Seung Cheol

    2015-01-01

    Highlights: • Response times under seismic events are necessary for human reliability analysis. • Conceptual framework to estimate response times under a seismic event is suggested. • Four kinds of representative contexts in seismic events are considered. • Rules for estimating response times on the representative contexts are extracted. - Abstract: After the Fukushima accident, a couple of novel issues have raised in terms of the safety assessment of nuclear power plants (NPPs). This means that the performance of human operators should be properly evaluated under an extreme event. However, it is unrealistic to collect a sufficient amount of human performance data from a real event, such as a great earthquake. As one of the promising solutions, a conceptual framework is suggested in this paper, which is helpful for estimating the response time data of human operators working in the main control room of NPPs under a seismic event. To this end, the four kinds of representative contexts that could be anticipated from seismic events are identified. Then the response times of human operators who are faced with similar contexts are reviewed from existing literatures and databases. As a result, a couple of rules that allow us to extrapolate the response times of human operators under seismic events are extracted. Although underlying rationales being used for determining these rules are still arguable, it is expected that response times under seismic events could be properly understood along with accumulating those of human operators against non-seismic conditions

  16. First Quarter Hanford Seismic Report for Fiscal Year 2011

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Clayton, Ray E.; Devary, Joseph L.

    2011-03-31

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. The Hanford Seismic Network recorded 16 local earthquakes during the first quarter of FY 2011. Six earthquakes were located at shallow depths (less than 4 km), seven earthquakes at intermediate depths (between 4 and 9 km), most likely in the pre-basalt sediments, and three earthquakes were located at depths greater than 9 km, within the basement. Geographically, thirteen earthquakes were located in known swarm areas and three earthquakes were classified as random events. The highest magnitude event (1.8 Mc) was recorded on October 19, 2010 at depth 17.5 km with epicenter located near the Yakima River between the Rattlesnake Mountain and Horse Heaven Hills swarm areas.

  17. Study of Site Effect at Seismic Station Located in Undermined Area of Karviná Region (Czech Republic)

    Czech Academy of Sciences Publication Activity Database

    Lednická, Markéta; Kaláb, Zdeněk

    2016-01-01

    Roč. 64, č. 5 (2016), s. 1715-1730 ISSN 1895-7455 R&D Projects: GA ČR GP13-07027P Institutional support: RVO:68145535 Keywords : Karviná region * site effect * SSR * HVSR * mining induced seismicity Subject RIV: JM - Building Engineering Impact factor: 0.968, year: 2016 http://agp.igf.edu.pl/files/64/5/Lednicka-Kalab.pdf

  18. OCT structure, COB location and magmatic type of the SE Brazilian & S Angolan margins from integrated quantitative analysis of deep seismic reflection and gravity anomaly data

    Science.gov (United States)

    Cowie, L.; Kusznir, N. J.; Horn, B.

    2013-12-01

    Knowledge of ocean-continent transition (OCT) structure, continent-ocean boundary (COB) location and magmatic type are of critical importance for understanding rifted continental margin formation processes and in evaluating petroleum systems in deep-water frontier oil and gas exploration. The OCT structure, COB location and magmatic type of the SE Brazilian and S Angolan rifted continental margins are much debated; exhumed and serpentinised mantle have been reported at these margins. Integrated quantitative analysis using deep seismic reflection data and gravity inversion have been used to determine OCT structure, COB location and magmatic type for the SE Brazilian and S Angolan margins. Gravity inversion has been used to determine Moho depth, crustal basement thickness and continental lithosphere thinning. Residual Depth Anomaly (RDA) analysis has been used to investigate OCT bathymetric anomalies with respect to expected oceanic bathymetries and subsidence analysis has been used to determine the distribution of continental lithosphere thinning. These techniques have been validated on the Iberian margin for profiles IAM9 and ISE-01. In addition a joint inversion technique using deep seismic reflection and gravity anomaly data has been applied to the ION-GXT BS1-575 SE Brazil and ION-GXT CS1-2400 S Angola. The joint inversion method solves for coincident seismic and gravity Moho in the time domain and calculates the lateral variations in crustal basement densities and velocities along profile. Gravity inversion, RDA and subsidence analysis along the S Angolan ION-GXT CS1-2400 profile has been used to determine OCT structure and COB location. Analysis suggests that exhumed mantle, corresponding to a magma poor margin, is absent beneath the allochthonous salt. The thickness of earliest oceanic crust, derived from gravity and deep seismic reflection data is approximately 7km. The joint inversion predicts crustal basement densities and seismic velocities which are

  19. Analysis of rockburst and rockfall accidents in relation to class of stope support, regional support, energy of seismic events and mining layout

    CSIR Research Space (South Africa)

    Cichowicz, A

    1994-01-01

    Full Text Available This report discusses the assessment of safety risk and the analysis of Falls Of Ground (FOG) in mines due to seismic events and mining layout during the period of 1991-1992 on a single mine. The multivariate analysis was used to obtain a...

  20. NON-INVASIVE DETERMINATION OF THE LOCATION AND DISTRIBUTION OF FREE-PHASE DENSE NONAQUEOUS PHASE LIQUIDS (DNAPL) BY SEISMIC REFLECTION TECHNIQUES

    Energy Technology Data Exchange (ETDEWEB)

    Michael G. Waddell; William J. Domoracki; Tom J. Temples

    2001-05-01

    This semi-annual technical progress report is for Task 4 site evaluation, Task 5 seismic reflection design and acquisition, and Task 6 seismic reflection processing and interpretation on DOE contact number DE-AR26-98FT40369. The project had planned one additional deployment to another site other than Savannah River Site (SRS) or DOE Hanford. During this reporting period the project had an ASME peer review. The findings and recommendation of the review panel, as well at the project team response to comments, are in Appendix A. After the SUBCON midyear review in Albuquerque, NM and the peer review it was decided that two additional deployments would be performed. The first deployment is to test the feasibility of using non-invasive seismic reflection and AVO analysis as monitoring to assist in determining the effectiveness of Dynamic Underground Stripping (DUS) in removal of DNAPL. Under the rescope of the project, Task 4 would be performed at the Charleston Navy Weapons Station, Charleston, SC and not at the Dynamic Underground Stripping (DUS) project at SRS. The project team had already completed Task 4 at the M-area seepage basin, only a few hundred yards away from the DUS site. Because the geology is the same, Task 4 was not necessary. However, a Vertical Seismic Profile (VSP) was conducted in one well to calibrate the geology to the seismic data. The first deployment to the DUS Site (Tasks 5 and 6) has been completed. Once the steam has been turned off these tasks will be performed again to compare the results to the pre-steam data. The results from the first deployment to the DUS site indicated a seismic amplitude anomaly at the location and depths of the known high concentrations of DNAPL. The deployment to another site with different geologic conditions was supposed to occur during this reporting period. The first site selected was DOE Paducah, Kentucky. After almost eight months of negotiation, site access was denied requiring the selection of another site

  1. Latest Pleistocene to Holocene thrust faulting paleoearthquakes at Monte Netto (Brescia, Italy): lessons learned from the Middle Ages seismic events in the Po Plain

    Science.gov (United States)

    Michetti, Alessandro Maria; Berlusconi, Andrea; Livio, Franz; Sileo, Giancanio; Zerboni, Andrea; Serva, Leonello; Vittori, Eutizio; Rodnight, Helena; Spötl, Christoph

    2010-05-01

    The seismicity of the Po Plain in Northern Italy is characterized by two strong Middle Ages earthquakes, the 1117, I° X MCS Verona, and the December 25, 1222, I° IX-X Brescia, events. Historical reports from these events describe relevant coseismic environmental effects, such as drainage changes, ground rupture and landslides. Due to the difficult interpretation of intensity data from such old seismic events, considerable uncertainty exists about their source parameters, and therefore about their causative tectonic structures. In a recent review, Stucchi et al. (2008) concluded that 'the historical data do not significantly help to constrain the assessment of the seismogenic potential of the area, which remains one of the most unknown, although potentially dangerous, seismic areas of the Italian region'. This issue needs therefore to be addressed by using the archaeological and geological evidence of past earthquakes, that is, archeoseismology and paleoseismology. Earthquake damage to archaeological sites in the study area has been the subject of several recent papers. Here we focus on new paleoseismological evidence, and in particular on the first observation of Holocene paleoseismic surface faulting in the Po Plain identified at the Monte Netto site, located ca. 10 km S of Brescia, in the area where the highest damage from the Christmas 1222 earthquake have been recorded. Monte Netto is a small hill, ca. 30 m higher than the surrounding piedmont plain, which represent the top of a growing fault-related fold belonging to the Quaternary frontal sector of the Southern Alps; the causative deep structure is a N-verging back thrust, well imaged in the industrial seismic reflection profiles kindly made available by ENI E&P. New trenching investigations have been conducted at the Cava Danesi of Monte Netto in October 2009, focused on the 1:10 scale analysis of the upper part of the 7 m high mid-Pleistocene to Holocene stratigraphic section exposed along the quarry

  2. Social Media and E-Learning in Response to Seismic Events: Resilient Practices

    Science.gov (United States)

    Tull, Susan; Dabner, Nicki; Ayebi-Arthur, Kofi

    2017-01-01

    The motivation to adopt innovative communication and e-learning practices in education settings can be stimulated by events such as natural disasters. Education institutions in the Pacific Rim cannot avoid the likelihood of natural disasters that could close one or more buildings on a campus and affect their ability to continue current educational…

  3. Seismic gaps and plate tectonics: seismic potential for major boundaries

    Energy Technology Data Exchange (ETDEWEB)

    McCann, W R; Nishenko, S P; Sykes, L R; Krause, J

    1979-01-01

    The theory of plate tectonics provides a basic framework for evaluating the potential for future great earthquakes to occur along major plate boundaries. Along most of the transform and convergent plate boundaries considered in this paper, the majority of seismic slip occurs during large earthquakes, i.e., those of magnitude 7 or greater. The concepts that rupture zones, as delineated by aftershocks, tend to abut rather than overlap, and large events occur in regions with histories of both long-and short-term seismic quiescence are used in this paper to delineate major seismic gaps. The term seismic gap is taken to refer to any region along an active plate boundary that has not experienced a large thrust or strike-slip earthquake for more than 30 years. A region of high seismic potential is a seismic gap that, for historic or tectonic reasons, is considered likely to produce a large shock during the next few decades. The seismic gap technique provides estimates of the location, size of future events and origin time to within a few tens of years at best. The accompanying map summarizes six categories of seismic potential for major plate boundaries in and around the margins of the Pacific Ocean and the Caribbean, South Sandwich and Sunda (Indonesia) regions for the next few decades. These six categories are meant to be interpreted as forecasts of the location and size of future large shocks and should not be considered to be predictions in which a precise estimate of the time of occurrence is specified. The categories of potential assigned here provide a rationale for assigning priorities for instrumentation, for future studies aimed at predicting large earthquakes and for making estimates of tsunami potential.

  4. Locating and mitigating risks to children associated with major sporting events

    OpenAIRE

    Brackenridge, CH; Rhind, D; Palmer-Felgate, S

    2014-01-01

    Despite recent efforts to blend sport and human rights, activism for children's rights in sport has historically been marginalised. The positive 'social legacy' of sport events frequently masks more problematic issues, including child exploitation. We argue that harms to children in hosting communities of major sporting events (MSEs) should be a focus for both research and intervention since the plight of such children is currently a political blind spot. The article examines the evidence for...

  5. Selective attention to sound location or pitch studied with event-related brain potentials and magnetic fields.

    Science.gov (United States)

    Degerman, Alexander; Rinne, Teemu; Särkkä, Anna-Kaisa; Salmi, Juha; Alho, Kimmo

    2008-06-01

    Event-related brain potentials (ERPs) and magnetic fields (ERFs) were used to compare brain activity associated with selective attention to sound location or pitch in humans. Sixteen healthy adults participated in the ERP experiment, and 11 adults in the ERF experiment. In different conditions, the participants focused their attention on a designated sound location or pitch, or pictures presented on a screen, in order to detect target sounds or pictures among the attended stimuli. In the Attend Location condition, the location of sounds varied randomly (left or right), while their pitch (high or low) was kept constant. In the Attend Pitch condition, sounds of varying pitch (high or low) were presented at a constant location (left or right). Consistent with previous ERP results, selective attention to either sound feature produced a negative difference (Nd) between ERPs to attended and unattended sounds. In addition, ERPs showed a more posterior scalp distribution for the location-related Nd than for the pitch-related Nd, suggesting partially different generators for these Nds. The ERF source analyses found no source distribution differences between the pitch-related Ndm (the magnetic counterpart of the Nd) and location-related Ndm in the superior temporal cortex (STC), where the main sources of the Ndm effects are thought to be located. Thus, the ERP scalp distribution differences between the location-related and pitch-related Nd effects may have been caused by activity of areas outside the STC, perhaps in the inferior parietal regions.

  6. Seismic sequence stratigraphy of Miocene deposits related to eustatic, tectonic and climatic events, Cap Bon Peninsula, northeastern Tunisia

    Science.gov (United States)

    Gharsalli, Ramzi; Zouaghi, Taher; Soussi, Mohamed; Chebbi, Riadh; Khomsi, Sami; Bédir, Mourad

    2013-09-01

    The Cap Bon Peninsula, belonging to northeastern Tunisia, is located in the Maghrebian Alpine foreland and in the North of the Pelagian block. By its paleoposition, during the Cenozoic, in the edge of the southern Tethyan margin, this peninsula constitutes a geological entity that fossilized the eustatic, tectonic and climatic interactions. Surface and subsurface study carried out in the Cap Bon onshore area and surrounding offshore of Hammamet interests the Miocene deposits from the Langhian-to-Messinian interval time. Related to the basin and the platform positions, sequence and seismic stratigraphy studies have been conducted to identify seven third-order seismic sequences in subsurface (SM1-SM7), six depositional sequences on the Zinnia-1 petroleum well (SDM1-SDM6), and five depositional sequences on the El Oudiane section of the Jebel Abderrahmane (SDM1-SDM5). Each sequence shows a succession of high-frequency systems tract and parasequences. These sequences are separated by remarkable sequence boundaries and maximum flooding surfaces (SB and MFS) that have been correlated to the eustatic cycles and supercycles of the Global Sea Level Chart of Haq et al. (1987). The sequences have been also correlated with Sequence Chronostratigraphic Chart of Hardenbol et al. (1998), related to European basins, allows us to arise some major differences in number and in size. The major discontinuities, which limit the sequences resulted from the interplay between tectonic and climatic phenomena. It thus appears very judicious to bring back these chronological surfaces to eustatic and/or local tectonic activity and global eustatic and climatic controls.

  7. Space-time analysis of the Seismic Waves propagation and World Wide Lightning Location Network data association with the Terrestrial Gamma-ray Flashes detected by the Fermi Gamma-ray Burst Monitor

    International Nuclear Information System (INIS)

    Sorokin, L.

    2017-01-01

    The natural high intensity sub-millisecond electromagnetic pulses associated with seismic waves from earthquakes can trigger +CG, -CG and IC lightning discharges, transient luminous events (TLEs) and non luminous events as TGFS. The lightning discharges with higher peak currents are more probable during the moments when seismic waves from earthquakes pass through a place of lightning. Huge charge transfer of triggered +CG, -CG and IC lightning discharges can radiate powerful electromagnetic emission. Space-time analysis of the seismic wave’s propagation and WWLLN data was done together with the second Fermi GBM Terrestrial Gamma-ray Flashes (TGF) Catalog. A total number of 1203 events from the WWLLN associations table were associated with the entrance the exact seismic waves from earthquakes in the place of lightning. Only 11 events from 1214 associations were rejected. After that the full list of 1049 TGFs has been checked out. As the result the 1038 TGFS has been associated with earthquakes. Among them 42 events with time difference exceeding ±100 sec were found. As the result 996 events get inside the time interval for the space-time analysis ±100 sec, they correspond to 95% from the total number of 1049 TGFS. The probability density function for the Time difference data was calculated and more preferably can be explained by the probability density functions of Cauchy distribution. The Phases of Seismic Waves and earthquakes magnitude associated with selected 996 TGFS from WWLLN associations table were studied. (author)

  8. Seismic examination for assessment of safety of location of atomic energy objects (by the example of the WWR-K reactor, Ala-Tau village)

    International Nuclear Information System (INIS)

    Belyashova, N.N.

    2001-01-01

    In the Republic of Kazakhstan there are 3 research reactors (the fourth one is temporarily stopped). One of the reactors in 1998 (WWR-K, situated in the Ala Tau village, nearby Almaty city) was conserved because of a number of reasons. Including the reason of the earth crust geological structure insufficient study for the ensuring the seismic safety of the reactor site location. In 1994-1996 a number of geological-geophysical studies was carried out by Kazakhstan specialists confirming the the geological-geophysical conditions in the reactor site location in view of its safety. These condition are meeting to IAEA requirements and up-to-date standards acting in Kazakhstan

  9. Geological evidence of pre-2012 seismic events, Emilia-Romagna, Italy

    Directory of Open Access Journals (Sweden)

    Riccardo Caputo

    2012-10-01

    Full Text Available In May 2012, two moderate (-to-strong earthquakes that were associated with a noticeable aftershock sequence affected the eastern sector of the Po Plain, Italy, in correspondence with a buried portion of the Apennines thrust belt. The Provinces of Ferrara, Modena and Bologna (Emilia Romagna Region, Mantua (Lombardy Region, and Rovigo (Veneto Region were affected to different extents. The first shock (Ml 5.9 according to the Istituto Nazionale di Geofisica e Vulcanologia (INGV; National Institute of Geophysics and Volcanology, and Mw 6.1 according to the US Geological Service occurred on May 20, 2012, at 2:03 a.m. (GMT; this was the strongest of the sequence, and it was followed by several aftershocks (up to Ml 5.1. This first event produced secondary ground deformation effects, which were mainly associated with liquefaction phenomena that were spread across the broader epicentral region, and particularly in the western sector of the Ferrara Province [Papathanassiou et al. 2012, this volume]. A few weeks after the earthquake, a paleoseismological trench was excavated south of San Carlo village, where earthquake-induced effects were widely documented. This report presents the preliminary results of the paleoseismological investigation and documents the occurrence in the same area of paleo-events older than the May 2012 earthquakes. […

  10. Seismic assessment of a site using the time series method

    International Nuclear Information System (INIS)

    Krutzik, N.J.; Rotaru, I.; Bobei, M.; Mingiuc, C.; Serban, V.; Androne, M.

    1997-01-01

    To increase the safety of a NPP located on a seismic site, the seismic acceleration level to which the NPP should be qualified must be as representative as possible for that site, with a conservative degree of safety but not too exaggerated. The consideration of the seismic events affecting the site as independent events and the use of statistic methods to define some safety levels with very low annual occurrence probability (10 -4 ) may lead to some exaggerations of the seismic safety level. The use of some very high value for the seismic acceleration imposed by the seismic safety levels required by the hazard analysis may lead to very costly technical solutions that can make the plant operation more difficult and increase maintenance costs. The considerations of seismic events as a time series with dependence among the events produced, may lead to a more representative assessment of a NPP site seismic activity and consequently to a prognosis on the seismic level values to which the NPP would be ensured throughout its life-span. That prognosis should consider the actual seismic activity (including small earthquakes in real time) of the focuses that affect the plant site. The paper proposes the applications of Autoregressive Time Series to issue a prognosis on the seismic activity of a focus and presents the analysis on Vrancea focus that affects NPP Cernavoda site, by this method. The paper also presents the manner to analyse the focus activity as per the new approach and it assesses the maximum seismic acceleration that may affect NPP Cernavoda throughout its life-span (∼ 30 years). Development and applications of new mathematical analysis method, both for long - and short - time intervals, may lead to important contributions in the process of foretelling the seismic events in the future. (authors)

  11. Lightning Location System Data from Wind Power Plants Compared to Meteorological Conditions of Warm- and Cold Thunderstorm Events

    DEFF Research Database (Denmark)

    Vogel, Stephan; Lopez, Javier; Garolera, Anna Candela

    2016-01-01

    of topography, height above mean sea level (AMSL), and average ground flash density. For three sites, the most severe lightning events have been identified during the warm and cold months whereas the other two locations exhibit severe lightning detections mainly during the warm months. In this work severity......Five years of Lightning Location System (LLS) data from five different wind turbine sites in Europe are analysed. The sites are located in Croatia, Italy, Spain, France and one offshore wind power plant in the North sea. Each location exhibits individual characteristic properties in terms...... of such an episode can vary from tens of minutes to several hours in the case of new storms being continuously developed in the same area. The distance of the charge separating -10◦ C and the ground is usually larger than 3000 meters. This analyse provides information about the different thunderstorm types which...

  12. Processing ser and estar to locate objects and events: An ERP study with L2 speakers of Spanish.

    Science.gov (United States)

    Dussias, Paola E; Contemori, Carla; Román, Patricia

    2014-01-01

    In Spanish locative constructions, a different form of the copula is selected in relation to the semantic properties of the grammatical subject: sentences that locate objects require estar while those that locate events require ser (both translated in English as 'to be'). In an ERP study, we examined whether second language (L2) speakers of Spanish are sensitive to the selectional restrictions that the different types of subjects impose on the choice of the two copulas. Twenty-four native speakers of Spanish and two groups of L2 Spanish speakers (24 beginners and 18 advanced speakers) were recruited to investigate the processing of 'object/event + estar/ser ' permutations. Participants provided grammaticality judgments on correct (object + estar ; event + ser ) and incorrect (object + ser ; event + estar ) sentences while their brain activity was recorded. In line with previous studies (Leone-Fernández, Molinaro, Carreiras, & Barber, 2012; Sera, Gathje, & Pintado, 1999), the results of the grammaticality judgment for the native speakers showed that participants correctly accepted object + estar and event + ser constructions. In addition, while 'object + ser ' constructions were considered grossly ungrammatical, 'event + estar ' combinations were perceived as unacceptable to a lesser degree. For these same participants, ERP recording time-locked to the onset of the critical word ' en ' showed a larger P600 for the ser predicates when the subject was an object than when it was an event (*La silla es en la cocina vs. La fiesta es en la cocina). This P600 effect is consistent with syntactic repair of the defining predicate when it does not fit with the adequate semantic properties of the subject. For estar predicates (La silla está en la cocina vs. *La fiesta está en la cocina), the findings showed a central-frontal negativity between 500-700 ms. Grammaticality judgment data for the L2 speakers of Spanish showed that beginners were significantly less accurate than

  13. Comparison of migration-based location and detection methods for microseismic events

    Czech Academy of Sciences Publication Activity Database

    Trojanowski, J.; Eisner, Leo

    2017-01-01

    Roč. 65, č. 1 (2017), s. 47-63 ISSN 0016-8025 R&D Projects: GA ČR GAP210/12/2451 Institutional support: RVO:67985891 Keywords : migration * location * microseismicity Subject RIV: DC - Siesmology, Volcanology, Earth Structure OBOR OECD: Geology Impact factor: 1.846, year: 2016

  14. Investigation of the effects of a seismic event on accelerated aged components and benefits in equipment life extension

    International Nuclear Information System (INIS)

    Rygg, D.E.; Epstein, J.L.

    1985-01-01

    Westinghouse has performed extensive testing to determine the effects of aging on a wide range of components. Additionally, Westinghouse has an extensive data base of nuclear plant equipment and components. This paper presents how the data base of information on plant parts can be analyzed, modified, and managed or tracked to reflect in-plant parts life extension based on actual tests on aging. Such an approach can benefit utility programs for parts inventory, plant operations and plant availability, and can also reduce the costs of parts reordering. Rather than weigh the merits of the positions in this debate, this paper presents the results of a component aging program which simulates from five to twenty years of operation followed by a seismic event and identifies the possible incorporation of this data into a plant data base which offers quick reference and provides other relevant information on the component and equipment. The use of this data as part of a well structured maintenance and surveillance program offers an avenue to resolve this debate in a cost effective manner

  15. Efficient Integration of Old and New Research Tools for Automating the Identification and Analysis of Seismic Reference Events

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Robert; Rivers, Wilmer

    2005-01-25

    any single computer program for seismic data analysis will not have all the capabilities needed to study reference events, since hese detailed studies will be highly specialized. It may be necessary to develop and test new algorithms, and then these special ;odes must be integrated with existing software to use their conventional data-processing routines. We have investigated two neans of establishing communications between the legacy and new codes: CORBA and XML/SOAP Web services. We have nvestigated making new Java code communicate with a legacy C-language program, geotool, running under Linux. Both methods vere successful, but both were difficult to implement. C programs on UNIX/Linux are poorly supported for Web services, compared vith the Java and .NET languages and platforms. Easier-to-use middleware will be required for scientists to construct distributed applications as easily as stand-alone ones. Considerable difficulty was encountered in modifying geotool, and this problem shows he need to use component-based user interfaces instead of large C-language codes where changes to one part of the program nay introduce side effects into other parts. We have nevertheless made bug fixes and enhancements to that legacy program, but t remains difficult to expand it through communications with external software.

  16. Multitemporal 3d Modelling for Cultural Heritage Emergency during Seismic Events: Damage Assesment of S. Agostino Church in Amatrice (ri)

    Science.gov (United States)

    Chiabrando, F.; Di Lolli, A.; Patrucco, G.; Spanò, A.; Sammartano, G.; Teppati Losè, L.

    2017-05-01

    One of the challenging purposes that must be undertaken by applied geomatics, is the need of monitoring by documenting continuously over time the evolution of urban spaces. Nowadays, this is a subject of great interest and study, mainly in case of sudden emergency events that implicate urban areas and specific historical buildings of our heritage. The newest Geomatics technique solutions must enable the demands of damage documentation, risk assessment, management and data sharing as efficiently as possible, in relation to the danger condition, to the accessibility constraints of areas and to the tight deadlines needs. In August 24th 2016, the first earthquake hit the area of central Italy with a magnitude of 6.0; since then, the earth never stop shaking in a wide area in the middle of Italy. On 26th and 30th of October, two other big seismic events were recorded (magnitude 5.9 and 6.5) and the already damaged built heritage were struck again. Since the beginning of the emergency all the available resources (human and material) were deployed and the world of researchers is trying to furnish an effective contribute as well. Politecnico di Torino, in coordination with the national institutions, is deploying people, expertise and resources. The geomatics research group and the connected Disaster Recovery team (DIRECT - http://areeweb.polito.it/direct/) is part of this process and is working in deep contact and collaboration with the Remotely Piloted Aircraft Systems (RPAS) group of the Italian Firefighter. Starting from the first earthquake the late medieval religious complex of S. Agostino has been carefully monitored and detected, using a multi-perspective oblique imagery strategy with the aim to achieve 3D aerial and terrestrial models, in a multi-temporal perspective concerning three different time situation.

  17. MULTITEMPORAL 3D MODELLING FOR CULTURAL HERITAGE EMERGENCY DURING SEISMIC EVENTS: DAMAGE ASSESMENT OF S. AGOSTINO CHURCH IN AMATRICE (RI

    Directory of Open Access Journals (Sweden)

    F. Chiabrando

    2017-05-01

    Full Text Available One of the challenging purposes that must be undertaken by applied geomatics, is the need of monitoring by documenting continuously over time the evolution of urban spaces. Nowadays, this is a subject of great interest and study, mainly in case of sudden emergency events that implicate urban areas and specific historical buildings of our heritage. The newest Geomatics technique solutions must enable the demands of damage documentation, risk assessment, management and data sharing as efficiently as possible, in relation to the danger condition, to the accessibility constraints of areas and to the tight deadlines needs. In August 24th 2016, the first earthquake hit the area of central Italy with a magnitude of 6.0; since then, the earth never stop shaking in a wide area in the middle of Italy. On 26th and 30th of October, two other big seismic events were recorded (magnitude 5.9 and 6.5 and the already damaged built heritage were struck again. Since the beginning of the emergency all the available resources (human and material were deployed and the world of researchers is trying to furnish an effective contribute as well. Politecnico di Torino, in coordination with the national institutions, is deploying people, expertise and resources. The geomatics research group and the connected Disaster Recovery team (DIRECT - http://areeweb.polito.it/direct/ is part of this process and is working in deep contact and collaboration with the Remotely Piloted Aircraft Systems (RPAS group of the Italian Firefighter. Starting from the first earthquake the late medieval religious complex of S. Agostino has been carefully monitored and detected, using a multi-perspective oblique imagery strategy with the aim to achieve 3D aerial and terrestrial models, in a multi-temporal perspective concerning three different time situation.

  18. Variations of the ionospheric electron density during the Bhuj seismic event

    Directory of Open Access Journals (Sweden)

    A. Trigunait

    2004-12-01

    Full Text Available Ionospheric perturbations by natural geophysical activity, such as volcanic eruptions and earthquakes, have been studied since the great Alaskan earthquake in 1964. Measurements made from the ground show a variation of the critical frequency of the ionosphere layers before and after the shock. In this paper, we present an experimental investigation of the electron density variations around the time of the Bhuj earthquake in Gujarat, India. Several experiments have been used to survey the ionosphere. Measurements of fluctuations in the integrated electron density or TEC (Total Electron Content between three satellites (TOPEX-POSEIDON, SPOT2, SPOT4 and the ground have been done using the DORIS beacons. TEC has been also evaluated from a ground-based station using GPS satellites, and finally, ionospheric data from a classical ionospheric sounder located close to the earthquake epicenter are utilized. Anomalous electron density variations are detected both in day and night times before the quake. The generation mechanism of these perturbations is explained by a modification of the electric field in the global electric circuit induced during the earthquake preparation. Key words. Ionosphere (ionospheric disturbances – Radio Science (ionospheric physics – History of geophysics (seismology

  19. Using Co-located Rotational and Translational Ground-Motion Sensors to Characterize Seismic Scattering in the P-Wave Coda

    Science.gov (United States)

    Bartrand, J.; Abbott, R. E.

    2017-12-01

    We present data and analysis of a seismic data collect at the site of a historical underground nuclear explosion at Yucca Flat, a sedimentary basin on the Nevada National Security Site, USA. The data presented here consist of active-source, six degree-of-freedom seismic signals. The translational signals were collected with a Nanometrics Trillium Compact Posthole seismometer and the rotational signals were collected with an ATA Proto-SMHD, a prototype rotational ground motion sensor. The source for the experiment was the Seismic Hammer (a 13,000 kg weight-drop), deployed on two-kilometer, orthogonal arms centered on the site of the nuclear explosion. By leveraging the fact that compressional waves have no rotational component, we generated a map of subsurface scattering and compared the results to known subsurface features. To determine scattering intensity, signals were cut to include only the P-wave and its coda. The ratio of the time-domain signal magnitudes of angular velocity and translational acceleration were sectioned into three time windows within the coda and averaged within each window. Preliminary results indicate an increased rotation/translation ratio in the vicinity of the explosion-generated chimney, suggesting mode conversion of P-wave energy to S-wave energy at that location. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

  20. Patterns of Seismicity Associated with USGS Identified Areas of Potentially Induced Seismicity.

    Science.gov (United States)

    Barnes, Caitlin; Halihan, Todd

    2018-03-13

    A systematic review across U.S. Geological Survey (USGS) identified potentially induced seismic locations was conducted to discover seismic distance patterns and trends over time away from injection disposal wells. Previous research indicates a 10 km (6 miles) average where the majority of induced seismicity is expected to occur within individual locations, with some areas reporting a larger radius of 35 km (22 miles) to over 70 km (43 miles). This research analyzed earthquake occurrences within nine USGS locations where specified wells were identified as contributors to induced seismicity to determine distance patterns from disposal wells or outward seismic migration over time using established principles of hydrogeology. Results indicate a radius of 31.6 km (20 miles) where 90% of felt earthquakes occur among locations, with the closest proximal felt seismic events, on average, occurring 3 km (1.9 miles) away from injection disposal wells. The results of this research found distance trends across multiple locations of potentially induced seismicity. © 2018, National Ground Water Association.

  1. Refinement of Regional Distance Seismic Moment Tensor and Uncertainty Analysis for Source-Type Identification

    Science.gov (United States)

    2014-09-02

    also present an application of a continuous scanning method to small events recorded locally. The events are associated with the evolution of a sinkhole ...triangles), approximate location of Oxy Geismar 3 cavern (white square) and an average point location of the sinkhole (white balloon...events of the Louisiana sinkhole seismic sequence.................................................................................49 Figure 31. (a

  2. Events

    Directory of Open Access Journals (Sweden)

    Igor V. Karyakin

    2016-02-01

    Full Text Available The 9th ARRCN Symposium 2015 was held during 21st–25th October 2015 at the Novotel Hotel, Chumphon, Thailand, one of the most favored travel destinations in Asia. The 10th ARRCN Symposium 2017 will be held during October 2017 in the Davao, Philippines. International Symposium on the Montagu's Harrier (Circus pygargus «The Montagu's Harrier in Europe. Status. Threats. Protection», organized by the environmental organization «Landesbund für Vogelschutz in Bayern e.V.» (LBV was held on November 20-22, 2015 in Germany. The location of this event was the city of Wurzburg in Bavaria.

  3. Refining locations of the 2005 Mukacheve, West Ukraine, earthquakes based on similarity of their waveforms

    Science.gov (United States)

    Gnyp, Andriy

    2009-06-01

    Based on the results of application of correlation analysis to records of the 2005 Mukacheve group of recurrent events and their subsequent relocation relative to the reference event of 7 July 2005, a conclusion has been drawn that all the events had most likely occurred on the same rup-ture plane. Station terms have been estimated for seismic stations of the Transcarpathians, accounting for variation of seismic velocities beneath their locations as compared to the travel time tables used in the study. In methodical aspect, potentials and usefulness of correlation analysis of seismic records for a more detailed study of seismic processes, tectonics and geodynamics of the Carpathian region have been demonstrated.

  4. Design and Test of an Event Detector and Locator for the ReflectoActive Seals System

    International Nuclear Information System (INIS)

    Stinson, Brad J.

    2006-01-01

    The purpose of this work was to research, design, develop and test a novel instrument for detecting fiber optic loop continuity and spatially locating fiber optic breaches. The work is for an active seal system called ReflectoActive(trademark) Seals whose purpose is to provide real time container tamper indication. A Field Programmable Gate Array was used to implement a loop continuity detector and a spatial breach locator based on a high acquisition speed single photon counting optical time domain reflectometer. Communication and other control features were added in order to create a usable instrument that met defined requirements. A host graphical user interface was developed to illustrate system use and performance. The resulting device meets performance specifications by exhibiting a dynamic range of 27dB and a spatial resolution of 1.5 ft. The communication scheme used expands installation options and allows the device to communicate to a central host via existing Local Area Networks and/or the Internet.

  5. Estimates of mean consequences and confidence bounds on the mean associated with low-probability seismic events in total system performance assessments

    International Nuclear Information System (INIS)

    Pensado, Osvaldo; Mancillas, James

    2007-01-01

    An approach is described to estimate mean consequences and confidence bounds on the mean of seismic events with low probability of breaching components of the engineered barrier system. The approach is aimed at complementing total system performance assessment models used to understand consequences of scenarios leading to radionuclide releases in geologic nuclear waste repository systems. The objective is to develop an efficient approach to estimate mean consequences associated with seismic events of low probability, employing data from a performance assessment model with a modest number of Monte Carlo realizations. The derived equations and formulas were tested with results from a specific performance assessment model. The derived equations appear to be one method to estimate mean consequences without having to use a large number of realizations. (authors)

  6. Third Quarter Hanford Seismic Report for Fiscal Year 2005

    Energy Technology Data Exchange (ETDEWEB)

    Reidel, Steve P.; Rohay, Alan C.; Hartshorn, Donald C.; Clayton, Ray E.; Sweeney, Mark D.

    2005-09-01

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 41 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. For the Hanford Seismic Network, there were 337 triggers during the third quarter of fiscal year 2005. Of these triggers, 20 were earthquakes within the Hanford Seismic Network. The largest earthquake within the Hanford Seismic Network was a magnitude 1.3 event May 25 near Vantage, Washington. During the third quarter, stratigraphically 17 (85%) events occurred in the Columbia River basalt (approximately 0-5 km), no events in the pre-basalt sediments (approximately 5-10 km), and three (15%) in the crystalline basement (approximately 10-25 km). During the first quarter, geographically five (20%) earthquakes occurred in swarm areas, 10 (50%) earthquakes were associated with a major geologic structure, and 5 (25%) were classified as random events.

  7. Seismic environment of Deccan Volcanic Province (DVP) and its suitability for location of new nuclear power plants in India - a few geoscientific opinions

    International Nuclear Information System (INIS)

    Sinha, D.K.; Parihar, P.S.

    2014-01-01

    India has an ambitious programme to expand the nuclear power capacity to 60 GWe by 2032 and 655 GWe by 2050. Such an exponential growth of nuclear power generation warranty identification of suitable sites for nuclear power reactors. Perhaps the 6000 km long vast coastline is the best choice for siting new NPPs because of ready availability of sea water and a quiet seismic environment. Large inland areas with adequate water resources provide additional locations to cater the power requirements of Central and Northern India. In this perspective, the potentials of Deccan Volcanic Province (DVP) for siting new NPPs is discussed. Five zones delineated as safer sites of nuclear power plants on Deccan Trap, are the first hand targets identified by this study. Two of them are situated to the north of Narmada-Son Lineament and have large areas. Chambal and Betwa river systems of Ganga Basin are perennial source of water along with several dams constructed on their course. The other three zones are located to the south of Narmada-Son Lineament and are small in size. The Konkan Coastal Lineament (N-S) in the west and Kurduwadi Lineament (NW-SE) in the east are major tectonic features bordering these zones. The Godavari and Krishna rivers are perennial water sources. Presence of reservoirs within the delineated zones stands advantageous considering their potential as ultimate heat sinks. All the five zones are devoid of any known major seismicity. Thick basalt cover provides good foundation conditions and engineerability for these zones. Considering above characteristics, proposed five zones could be good candidate sites for future NPPs, after their detailed geotechnical investigations. (author)

  8. Characteristics of aperiodic sequence of slip events caused by interaction between seismic patches and that caused be self-organized stress heterogeneity

    Science.gov (United States)

    Kato, N.

    2017-12-01

    Numerical simulations of earthquake cycles are conducted to investigate the origin of complexity of earthquake recurrence. There are two main causes of the complexity. One is self-organized stress heterogeneity due to dynamical effect. The other is the effect of interaction between some fault patches. In the model, friction on the fault is assumed to obey a rate- and state-dependent friction law. Circular patches of velocity-weakening frictional property are assumed on the fault. On the remaining areas of the fault, velocity-strengthening friction is assumed. We consider three models: Single patch model, two-patch model, and three-patch model. In the first model, the dynamical effect is mainly examined. The latter two models take into consideration the effect of interaction as well as the dynamical effect. Complex multiperiodic or aperiodic sequences of slip events occur when slip behavior changes from the seismic to aseismic, and when the degree of interaction between seismic patches is intermediate. The former is observed in all the models, and the latter is observed in the two-patch model and the three-patch model. Evolution of spatial distribution of shear stress on the fault suggests that aperiodicity at the transition from seismic to aseismic slip is caused by self-organized stress heterogeneity. The iteration maps of recurrence intervals of slip events in aperiodic sequences are examined, and they are approximately expressed by simple curves for aperiodicity at the transition from seismic to aseismic slip. In contrast, the iteration maps for aperiodic sequences caused by interaction between seismic patches are scattered and they are not expressed by simple curves. This result suggests that complex sequences caused by different mechanisms may be distinguished.

  9. Recurring OH Flares towards o Ceti - I. Location and structure of the 1990s' and 2010s' events

    Science.gov (United States)

    Etoka, S.; Gérard, E.; Richards, A. M. S.; Engels, D.; Brand, J.; Le Bertre, T.

    2017-06-01

    We present the analysis of the onset of the new 2010s OH flaring event detected in the OH ground-state main line at 1665 MHz towards o Ceti and compare its characteristics with those of the 1990s' flaring event. This is based on a series of complementary single-dish and interferometric observations both in OH and H2O obtained with the Nançay Radio telescope, the Medicina and Effelsberg Telescopes, the European VLBI Network and (e)Multi-Element Radio Linked Interferometer Network. We compare the overall characteristics of o Ceti's flaring events with those that have been observed towards other thin-shell Miras, and explore the implication of these events with respect to the standard OH circumstellar-envelope model. The role of binarity in the specific characteristics of o Ceti's flaring events is also investigated. The flaring regions are found to be less than ˜400 ± 40 mas (I.e. ≤40 ± 4 au) either side of o Ceti, with seemingly no preferential location with respect to the direction to the companion Mira B. Contrary to the usual expectation that the OH maser zone is located outside the H2O maser zone, the coincidence of the H2O and OH maser velocities suggests that both emissions arise at similar distances from the star. The OH flaring characteristics of Mira are similar to those observed in various Mira variables before, supporting the earlier results that the regions where the transient OH maser emission occurs are different from the standard OH maser zone.

  10. Romanian seismic network

    International Nuclear Information System (INIS)

    Ionescu, Constantin; Rizescu, Mihaela; Popa, Mihaela; Grigore, Adrian

    2000-01-01

    The research in the field of seismology in Romania is mainly carried out by the National Institute for Earth Physics (NIEP). The NIEP activities are mainly concerned with the fundamental research financed by research contracts from public sources and the maintenance and operation of the Romanian seismic network. A three stage seismic network is now operating under NIEP, designed mainly to monitor the Vrancea seismic region in a magnitude range from microearthquakes to strong events: - network of 18 short-period seismometers (S13); - Teledyne Geotech Instruments (Texas); - network of 7 stations with local digital recording (PCM-5000) on magnetic tape, made up of, S13 geophone (T=2 s) on vertical component and SH1 geophone (T=5 s) on horizontal components; - network of 28 SMA-1 accelerometers and 30 digital accelerometers (Kinemetrics - K2) installed in the free field conditions in the framework of the joint German-Romanian cooperation program (CRC); the K2 instruments cover a magnitude range from 1.4 to 8.0. Since 1994, MLR (Muntele Rosu) station has become part of the GEOFON network and was provided with high performance broad band instruments. At Bucharest and Timisoara data centers, an automated and networked seismological system performs the on-line digital acquisition and processing of the telemetered data. Automatic processing includes discrimination between local and distant seismic events, earthquake location and magnitude computation, and source parameter determination for local earthquakes. The results are rapidly distributed via Internet, to several seismological services in Europe and USA, to be used in the association/confirmation procedures. Plans for new developments of the network include the upgrade from analog to digital telemetry and new stations for monitoring local seismicity. (authors)

  11. Seismic design standardization of nuclear facilities

    International Nuclear Information System (INIS)

    Reddy, G.R.; Vaze, K.K.

    2011-01-01

    Full text: Structures, Systems and Components (SSCs) of Nuclear Facilities have to be designed for normal operating loads such as dead weight, pressure, temperature etc., and accidental loads such as earthquakes, floods, extreme, wind air craft impact, explosions etc. Man made accidents such as aircraft impact, explosions etc., some times may be considered as design basis event and some times taken care by providing administrative controls. This will not be possible in the case of natural events such as earthquakes, flooding, extreme winds etc. Among natural events earthquakes are considered as most devastating and need to be considered as design basis event. It is generally felt design of SSCs for earthquake loads is very time consuming and expensive. Conventional seismic design approaches demands for large number of supports for systems and components. This results in large space occupation and in turn creates difficulties for maintenance and in service inspection of systems and components. In addition, complete exercise of design need to be repeated for plants being located at different sites due to different seismic demands. However, advanced seismic response control methods will help to standardize the seismic design meeting the safety and economy. These methods adopt passive, semi active and active devices, and base isolators to control the seismic response. In nuclear industry, it is advisable to go for passive devices to control the seismic responses. Ideally speaking, these methods will make the designs made for normal loads can also satisfy the seismic demand without calling for change in material, geometry, layout etc. in the SSCs. This paper explain the basic ideas of seismic response control methods, demonstrate the effectiveness of control methods through case studies and eventually give the procedure to be adopted for seismic design standardization of nuclear facilities

  12. Annual Hanford Seismic Report for Fiscal Year 2008

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2008-12-29

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. During fiscal year 2008, the Hanford Seismic Network recorded 1431 triggers on the seismometer system, which included 112 seismic events in the southeast Washington area and an additional 422 regional and teleseismic events. There were 74 events determined to be local earthquakes relevant to the Hanford Site. The highest-magnitude event (3.7 Mc) occurred on May 18, 2008, and was located approximately 17 km east of Prosser at a depth of 20.5 km. With regard to the depth distribution, 13 earthquakes were located at shallow depths (less than 4 km, most likely in the Columbia River basalts), 45 earthquakes were located at intermediate depths (between 4 and 9 km, most likely in the pre-basalt sediments), and 16 earthquakes were located at depths greater than 9 km, within the crystalline basement. Geographically, 54 earthquakes were located in swarm areas and 20 earthquakes were classified as random events. The May 18 earthquake was the highest magnitude event recorded since 1975 in the vicinity of the Hanford Site (between 46 degrees and 47 degrees north latitude and

  13. The ear, the eye, earthquakes and feature selection: listening to automatically generated seismic bulletins for clues as to the differences between true and false events.

    Science.gov (United States)

    Kuzma, H. A.; Arehart, E.; Louie, J. N.; Witzleben, J. L.

    2012-04-01

    Listening to the waveforms generated by earthquakes is not new. The recordings of seismometers have been sped up and played to generations of introductory seismology students, published on educational websites and even included in the occasional symphony. The modern twist on earthquakes as music is an interest in using state-of-the-art computer algorithms for seismic data processing and evaluation. Algorithms such as such as Hidden Markov Models, Bayesian Network models and Support Vector Machines have been highly developed for applications in speech recognition, and might also be adapted for automatic seismic data analysis. Over the last three years, the International Data Centre (IDC) of the Comprehensive Test Ban Treaty Organization (CTBTO) has supported an effort to apply computer learning and data mining algorithms to IDC data processing, particularly to the problem of weeding through automatically generated event bulletins to find events which are non-physical and would otherwise have to be eliminated by the hand of highly trained human analysts. Analysts are able to evaluate events, distinguish between phases, pick new phases and build new events by looking at waveforms displayed on a computer screen. Human ears, however, are much better suited to waveform processing than are the eyes. Our hypothesis is that combining an auditory representation of seismic events with visual waveforms would reduce the time it takes to train an analyst and the time they need to evaluate an event. Since it takes almost two years for a person of extraordinary diligence to become a professional analyst and IDC contracts are limited to seven years by Treaty, faster training would significantly improve IDC operations. Furthermore, once a person learns to distinguish between true and false events by ear, various forms of audio compression can be applied to the data. The compression scheme which yields the smallest data set in which relevant signals can still be heard is likely an

  14. Geothermal Induced Seismicity National Environmental Policy Act Review

    Energy Technology Data Exchange (ETDEWEB)

    Levine, Aaron L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Cook, Jeffrey J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Beckers, Koenraad J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Young, Katherine R [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-10-04

    In 2016, the U.S. Bureau of Land Management (BLM) contracted with the National Renewable Energy Laboratory (NREL) to assist the BLM in developing and building upon tools to better understand and evaluate induced seismicity caused by geothermal projects. This review of NEPA documents for four geothermal injection or EGS projects reveals the variety of approaches to analyzing and mitigating induced seismicity. With the exception of the Geysers, where induced seismicity has been observed and monitored for an extended period of time due to large volumes of water being piped in to recharge the hydrothermal reservoir, induced seismicity caused by geothermal projects is a relative new area of study. As this review highlights, determining the level of mitigation required for induced seismic events has varied based on project location, when the review took place, whether the project utilized the International Energy Agency or DOE IS protocols, and the federal agency conducting the review. While the NEPA reviews were relatively consistent for seismic monitoring and historical evaluation of seismic events near the project location, the requirements for public outreach and mitigation for induced seismic events once stimulation has begun varied considerably between the four projects. Not all of the projects were required to notify specific community groups or local government entities before beginning the project, and only one of the reviews specifically stated the project proponent would hold meetings with the public to answer questions or address concerns.

  15. Novel ST-MUSIC-based spectral analysis for detection of ULF geomagnetic signals anomalies associated with seismic events in Mexico

    Directory of Open Access Journals (Sweden)

    Omar Chavez

    2016-05-01

    Full Text Available Recently, the analysis of ultra-low-frequency (ULF geomagnetic signals in order to detect seismic anomalies has been reported in several works. Yet, they, although having promising results, present problems for their detection since these anomalies are generally too much weak and embedded in high noise levels. In this work, a short-time multiple signal classification (ST-MUSIC, which is a technique with high-frequency resolution and noise immunity, is proposed for the detection of seismic anomalies in the ULF geomagnetic signals. Besides, the energy (E of geomagnetic signals processed by ST-MUSIC is also presented as a complementary parameter to measure the fluctuations between seismic activity and seismic calm period. The usefulness and effectiveness of the proposal are demonstrated through the analysis of a synthetic signal and five real signals with earthquakes. The analysed ULF geomagnetic signals have been obtained using a tri-axial fluxgate magnetometer at the Juriquilla station, which is localized in Queretaro, Mexico (geographic coordinates: longitude 100.45° E and latitude 20.70° N. The results obtained show the detection of seismic perturbations before, during, and after the main shock, making the proposal a suitable tool for detecting seismic precursors.

  16. Seismic protection

    International Nuclear Information System (INIS)

    Herbert, R.

    1988-01-01

    To ensure that a nuclear reactor or other damage-susceptible installation is, so far as possible, tripped and already shut down before the arrival of an earthquake shock at its location, a ring of monitoring seismic sensors is provided around it, each sensor being spaced from it by a distance (possibly several kilometres) such that (taking into account the seismic-shock propagation velocity through the intervening ground) a shock monitored by the sensor and then advancing to the installation site will arrive there later than a warning signal emitted by the sensor and received at the installation, by an interval sufficient to allow the installation to trip and shut down, or otherwise assume an optimum anti-seismic mode, in response to the warning signal. Extra sensors located in boreholes may define effectively a three-dimensional (hemispherical) sensing boundary rather than a mere two-dimensional ring. (author)

  17. Martian seismicity

    International Nuclear Information System (INIS)

    Goins, N.R.; Lazarewicz, A.R.

    1979-01-01

    During the Viking mission to Mars, the seismometer on Lander II collected approximately 0.24 Earth years of observations data, excluding periods of time dominated by wind-induced Lander vibration. The ''quiet-time'' data set contains no confirmed seismic events. A proper assessment of the significance of this fact requires quantitative estimates of the expected detection rate of the Viking seismometer. The first step is to calculate the minimum magnitude event detectable at a given distance, including the effects of geometric spreading, anelastic attenuation, seismic signal duration, seismometer frequency response, and possible poor ground coupling. Assuming various numerical quantities and a Martian seismic activity comparable to that of intraplate earthquakes, the appropriate integral gives an expected annual detection rate of 10 events, nearly all of which are local. Thus only two to three events would be expected in the observational period presently on hand and the lack of observed events is not in gross contradiction to reasonable expectations. Given the same assumptions, a seismometer 20 times more sensitive than the present instrument would be expected to detect about 120 events annually

  18. Memory for events and locations obtained in the context of elicited imitation: evidence for differential retention in the second year of life.

    Science.gov (United States)

    Lukowski, Angela F; Garcia, M Teresa Lechuga; Bauer, Patricia J

    2011-02-01

    Previous research has suggested that infants may have more robust memory for past experiences relative to memory for locations that have been encountered previously. This assertion, however, primarily results from the comparison of data that were collected using different experimental procedures. In the present study, we examined memory for events and memory for locations in the context of elicited imitation. Specifically, 13-, 16-, and 20-month-old infants were tested for long-term memory for events and locations after between-subjects delays of 1, 3, 6, 9, and 12 months. The results indicated that the event memory was retained over lengthier delays relative to the location memory, despite superior encoding of location information. The possible adaptive significance of long-term memory for events ontogenetically preceding long-term memory for locations is discussed. Copyright © 2010 Elsevier Inc. All rights reserved.

  19. Multi scenario seismic hazard assessment for Egypt

    Science.gov (United States)

    Mostafa, Shaimaa Ismail; Abd el-aal, Abd el-aziz Khairy; El-Eraki, Mohamed Ahmed

    2018-05-01

    Egypt is located in the northeastern corner of Africa within a sensitive seismotectonic location. Earthquakes are concentrated along the active tectonic boundaries of African, Eurasian, and Arabian plates. The study area is characterized by northward increasing sediment thickness leading to more damage to structures in the north due to multiple reflections of seismic waves. Unfortunately, man-made constructions in Egypt were not designed to resist earthquake ground motions. So, it is important to evaluate the seismic hazard to reduce social and economic losses and preserve lives. The probabilistic seismic hazard assessment is used to evaluate the hazard using alternative seismotectonic models within a logic tree framework. Alternate seismotectonic models, magnitude-frequency relations, and various indigenous attenuation relationships were amended within a logic tree formulation to compute and develop the regional exposure on a set of hazard maps. Hazard contour maps are constructed for peak ground acceleration as well as 0.1-, 0.2-, 0.5-, 1-, and 2-s spectral periods for 100 and 475 years return periods for ground motion on rock. The results illustrate that Egypt is characterized by very low to high seismic activity grading from the west to the eastern part of the country. The uniform hazard spectra are estimated at some important cities distributed allover Egypt. The deaggregation of seismic hazard is estimated at some cities to identify the scenario events that contribute to a selected seismic hazard level. The results of this study can be used in seismic microzonation, risk mitigation, and earthquake engineering purposes.

  20. Seismic texture classification. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Vinther, R.

    1997-12-31

    The seismic texture classification method, is a seismic attribute that can both recognize the general reflectivity styles and locate variations from these. The seismic texture classification performs a statistic analysis for the seismic section (or volume) aiming at describing the reflectivity. Based on a set of reference reflectivities the seismic textures are classified. The result of the seismic texture classification is a display of seismic texture categories showing both the styles of reflectivity from the reference set and interpolations and extrapolations from these. The display is interpreted as statistical variations in the seismic data. The seismic texture classification is applied to seismic sections and volumes from the Danish North Sea representing both horizontal stratifications and salt diapers. The attribute succeeded in recognizing both general structure of successions and variations from these. Also, the seismic texture classification is not only able to display variations in prospective areas (1-7 sec. TWT) but can also be applied to deep seismic sections. The seismic texture classification is tested on a deep reflection seismic section (13-18 sec. TWT) from the Baltic Sea. Applied to this section the seismic texture classification succeeded in locating the Moho, which could not be located using conventional interpretation tools. The seismic texture classification is a seismic attribute which can display general reflectivity styles and deviations from these and enhance variations not found by conventional interpretation tools. (LN)

  1. Induced Seismicity Monitoring System

    Science.gov (United States)

    Taylor, S. R.; Jarpe, S.; Harben, P.

    2014-12-01

    There are many seismological aspects associated with monitoring of permanent storage of carbon dioxide (CO2) in geologic formations. Many of these include monitoring underground gas migration through detailed tomographic studies of rock properties, integrity of the cap rock and micro seismicity with time. These types of studies require expensive deployments of surface and borehole sensors in the vicinity of the CO2 injection wells. Another problem that may exist in CO2 sequestration fields is the potential for damaging induced seismicity associated with fluid injection into the geologic reservoir. Seismic hazard monitoring in CO2 sequestration fields requires a seismic network over a spatially larger region possibly having stations in remote settings. Expensive observatory-grade seismic systems are not necessary for seismic hazard deployments or small-scale tomographic studies. Hazard monitoring requires accurate location of induced seismicity to magnitude levels only slightly less than that which can be felt at the surface (e.g. magnitude 1), and the frequencies of interest for tomographic analysis are ~1 Hz and greater. We have developed a seismo/acoustic smart sensor system that can achieve the goals necessary for induced seismicity monitoring in CO2 sequestration fields. The unit is inexpensive, lightweight, easy to deploy, can operate remotely under harsh conditions and features 9 channels of recording (currently 3C 4.5 Hz geophone, MEMS accelerometer and microphone). An on-board processor allows for satellite transmission of parameter data to a processing center. Continuous or event-detected data is kept on two removable flash SD cards of up to 64+ Gbytes each. If available, data can be transmitted via cell phone modem or picked up via site visits. Low-power consumption allows for autonomous operation using only a 10 watt solar panel and a gel-cell battery. The system has been successfully tested for long-term (> 6 months) remote operations over a wide range

  2. Estimation of core-damage frequency to evolutionary ALWR [advanced light water reactor] due to seismic initiating events: Task 4.3.3

    International Nuclear Information System (INIS)

    Brooks, R.D.; Harrison, D.G.; Summitt, R.L.

    1990-04-01

    The Electric Power Research Institute (EPRI) is presently developing a requirements document for the design of advanced light water reactors (ALWRs). One of the basic goals of the EPRI ALWR Requirements Document is that the core-damage frequency for an ALWR shall be less than 1.0E-5. To aid in this effort, the Department of Energy's Advanced Reactor Severe Accident Program (ARSAP) initiated a functional probabilistic risk assessment (PRA) to determine how effectively the evolutionary plant requirements contained in the existing EPRI Requirements Document assure that this safety goal will be met. This report develops an approximation of the core-damage frequency due to seismic events for both evolutionary plant designs (pressurized-water reactor (PWR) and boiling-water reactor(BWR)) as modeled in the corresponding functional PRAs. Component fragility values were taken directly form information which has been submitted for inclusion in Appendix A to Volume 1 of the EPRI Requirements Document. The results show a seismic core-damage frequency of 5.2E-6 for PWRS and 5.0E-6 for BWRs. Combined with the internal initiators from the functional PRAs, the overall core-damage frequencies are 6.0E-6 for the pwr and BWR, both of which satisfy the 1.0E-5 EPRI goal. In addition, site-specific considerations, such as more rigid components and less conservative fragility data and seismic hazard curves, may further reduce these frequencies. The effect of seismic events on structures are not addressed in this generic evaluation and should be addressed separately on a design-specific basis. 7 refs., 6 figs., 3 tabs

  3. Location, location, location

    NARCIS (Netherlands)

    Anderson, S.P.; Goeree, J.K.; Ramer, R.

    1997-01-01

    We analyze the canonical location-then-price duopoly game with general log- concave consumer densities. A unique pure-strategy equilibrium to the two-stage game exists if the density is not "too asymmetric" and not "too concave." These criteria are satisfied by many commonly used densities.

  4. Seismic qualification of safety class components in non-reactor nuclear facilities at Hanford site

    International Nuclear Information System (INIS)

    Ocoma, E.C.

    1989-01-01

    This paper presents the methods used during the walkdowns to compile as-built structural information to seismically qualify or verify the seismic adequacy of safety class components in the Plutonium Finishing Plant complex. The Plutonium finishing Plant is a non-reactor nuclear facility built during the 1950's and was designed to the Uniform Building Code criteria for both seismic and wind events. This facility is located at the US Department of Energy Hanford Site near Richland, Washington

  5. Improved Infrasound Event Location

    Science.gov (United States)

    2007-09-01

    Bolide (20) —— 1 signal —— 5-8 signals Mine Explosion (112) Volcano (20) —— 2 signals —— >8 signals Rocket Motor Test (1) Landslide (1) —— 3-4...significant bookkeeping, since the ray-tracing programs must be executed separately for each source-receiver-model scenario, each producing multiple...Infrasound monitoring of volcanoes to probe high-altitude winds, J. Geophys. Res. 110, D13106, doi: 10.1029/2004JD005587. Le Pichon, A., K

  6. First Quarter Hanford Seismic Report for Fiscal Year 2008

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2008-03-21

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The Hanford Seismic Assessment Team locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 41 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. For the Hanford Seismic Network, forty-four local earthquakes were recorded during the first quarter of fiscal year 2008. A total of thirty-one micro earthquakes were recorded within the Rattlesnake Mountain swarm area at depths in the 5-8 km range, most likely within the pre-basalt sediments. The largest event recorded by the network during the first quarter (November 25, 2007 - magnitude 1.5 Mc) was located within this swarm area at a depth of 4.3 km. With regard to the depth distribution, three earthquakes occurred at shallow depths (less than 4 km, most likely in the Columbia River basalts), thirty-six earthquakes at intermediate depths (between 4 and 9 km, most likely in the pre-basalt sediments), and five earthquakes were located at depths greater than 9 km, within the crystalline basement. Geographically, thirty-eight earthquakes occurred in swarm areas and six earth¬quakes were classified as random events.

  7. Second Quarter Hanford Seismic Report for Fiscal Year 2008

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2008-06-26

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The Hanford Seismic Assessment Team locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. For the Hanford Seismic Network, seven local earthquakes were recorded during the second quarter of fiscal year 2008. The largest event recorded by the network during the second quarter (February 3, 2008 - magnitude 2.3 Mc) was located northeast of Richland in Franklin County at a depth of 22.5 km. With regard to the depth distribution, two earthquakes occurred at shallow depths (less than 4 km, most likely in the Columbia River basalts), three earthquakes at intermediate depths (between 4 and 9 km, most likely in the pre-basalt sediments), and two earthquakes were located at depths greater than 9 km, within the crystalline basement. Geographically, five earthquakes occurred in swarm areas and two earthquakes were classified as random events.

  8. Third Quarter Hanford Seismic Report for Fiscal Year 2008

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2008-09-01

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The Hanford Seismic Assessment Team locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. For the Hanford Seismic Network, fourteen local earthquakes were recorded during the third quarter of fiscal year 2008. The largest event recorded by the network during the third quarter (May 18, 2008 - magnitude 3.7 Mc) was located approximately 17 km east of Prosser at a depth of 20.5 km. With regard to the depth distribution, five earthquakes occurred at shallow depths (less than 4 km, most likely in the Columbia River basalts), six earthquakes at intermediate depths (between 4 and 9 km, most likely in the pre-basalt sediments), and three earthquakes were located at depths greater than 9 km, within the crystalline basement. Geographically, eight earthquakes occurred in swarm areas and six earthquakes were classified as random events. The largest event recorded by the network during the third quarter occurred on May 18 (magnitude 3.7 Mc) and was located approximately 17 km east of Prosser at a depth of 20.5 km. This earthquake was the highest magnitude event recorded in the 46-47 N. latitude / 119-120 W. longitude sector since 1975

  9. New Frontiers in Characterization of Sub-Catalog Microseismicity: Utilizing Inter-Event Waveform Cross Correlation for Estimating Precise Locations, Magnitudes, and Focal Mechanisms of Tiny Earthquakes

    Science.gov (United States)

    Ellsworth, W. L.; Shelly, D. R.; Hardebeck, J.; Hill, D. P.

    2017-12-01

    Microseismicity often conveys the most direct information about active processes in the earth's subsurface. However, routine network processing typically leaves most earthquakes uncharacterized. These "sub-catalog" events can provide critical clues to ongoing processes in the source region. To address this issue, we have developed waveform-based processing that leverages the existing routine catalog of earthquakes to detect and characterize "sub-catalog" events (those absent in routine catalogs). By correlating waveforms of cataloged events with the continuous data stream, we 1) identify events with similar waveform signatures in the continuous data across multiple stations, 2) precisely measure relative time lags across these stations for both P- and S-wave time windows, and 3) estimate the relative polarity between events by the sign of the peak absolute value correlations and its height above the secondary peak. When combined, these inter-event comparisons yield robust measurements, which enable sensitive event detection, relative relocation, and relative magnitude estimation. The most recent addition, focal mechanisms derived from correlation-based relative polarities, addresses a significant shortcoming in microseismicity analyses (see Shelly et al., JGR, 2016). Depending on the application, we can characterize 2-10 times as many events as included in the initial catalog. This technique is particularly well suited for compact zones of active seismicity such as seismic swarms. Application to a 2014 swarm in Long Valley Caldera, California, illuminates complex patterns of faulting that would have otherwise remained obscured. The prevalence of such features in other environments remains an important, as yet unresolved, question.

  10. Application of Newly Developed Rotational Sensor for Monitoring of Mining Induced Seismic Events in The Karvina region

    Czech Academy of Sciences Publication Activity Database

    Kaláb, Zdeněk; Knejzlík, Jaromír; Lednická, Markéta

    2013-01-01

    Roč. 10, č. 2 (2013), s. 197-205 ISSN 1214-9705 Institutional support: RVO:68145535 Keywords : rotational ground motion * rotational sensor * seismic monitoring Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.667, year: 2013 http://www.irsm.cas.cz/materialy/acta_content/2013_02/acta_170_09_Kalab_197-205.pdf

  11. GPS observations of coseismic deformation following the May 20 and 29, 2012, Emilia seismic events (northern Italy: data, analysis and preliminary models

    Directory of Open Access Journals (Sweden)

    Enrico Serpelloni

    2012-10-01

    Full Text Available In May-July 2012, a seismic sequence struck a broad area of the Po Plain Region in northern Italy. The sequence included two Ml >5.5 mainshocks. The first one (Ml 5.9 occurred near the city of Finale Emilia (ca. 30 km west of Ferrara on May 20 at 02:03:53 (UTC, and the second (Ml 5.8 occurred on May 29 at 7:00:03 (UTC, about 12 km southwest of the May 20 mainshock (Figure 1, near the city of Mirandola. The seismic sequence involved an area that extended in an E-W direction for more than 50 km, and included seven Ml ≥5.0 events and more than 2,300 Ml >1.5 events (http://iside.rm.ingv.it. The focal mechanisms of the main events [Pondrelli et al. 2012, Scognamiglio et al. 2012, this volume] consistently showed compressional kinematics with E-W oriented reverse nodal planes. This sector of the Po Plain is known as a region characterized by slow deformation rates due to the northwards motion of the northern Apennines fold-and-thrust belt, which is buried beneath the sedimentary cover of the Po Plain [Picotti and Pazzaglia 2008, Toscani et al. 2009]. Early global positioning system (GPS measurements [Serpelloni et al. 2006] and the most recent updates [Devoti et al. 2011, Bennett et al. 2012] recognized that less than 2 mm/yr of SW-NE shortening are accommodated across this sector of the Po Plain, in agreement with other present-day stress indicators [Montone et al. 2012] and known active faults [Basili et al. 2008]. In the present study, we describe the GPS data used to study the coseismic deformation related to the May 20 and 29 mainshocks, and provide preliminary models of the two seismic sources, as inverted from consensus GPS coseismic deformation fields. […

  12. Tools for educational access to seismic data

    Science.gov (United States)

    Taber, J. J.; Welti, R.; Bravo, T. K.; Hubenthal, M.; Frechette, K.

    2017-12-01

    Student engagement can be increased both by providing easy access to real data, and by addressing newsworthy events such as recent large earthquakes. IRIS EPO has a suite of access and visualization tools that can be used for such engagement, including a set of three tools that allow students to explore global seismicity, use seismic data to determine Earth structure, and view and analyze near-real-time ground motion data in the classroom. These tools are linked to online lessons that are designed for use in middle school through introductory undergraduate classes. The IRIS Earthquake Browser allows discovery of key aspects of plate tectonics, earthquake locations (in pseudo 3D) and seismicity rates and patterns. IEB quickly displays up to 20,000 seismic events over up to 30 years, making it one of the most responsive, practical ways to visualize historical seismicity in a browser. Maps are bookmarkable and preserve state, meaning IEB map links can be shared or worked into a lesson plan. The Global Seismogram Plotter automatically creates visually clear seismic record sections from selected large earthquakes that are tablet-friendly and can also to be printed for use in a classroom without computers. The plots are designed to be appropriate for use with no parameters to set, but users can also modify the plots, such as including a recording station near a chosen location. A guided exercise is provided where students use the record section to discover the diameter of Earth's outer core. Students can pick and compare phase arrival times onscreen which is key to performing the exercise. A companion station map shows station locations and further information and is linked to the record section. jAmaSeis displays seismic data in real-time from either a local instrument and/or from remote seismic stations that stream data using standard seismic data protocols, and can be used in the classroom or as a public display. Users can filter data, fit a seismogram to travel time

  13. Nonlinear seismic analysis of a large sodium pump

    International Nuclear Information System (INIS)

    Huang, S.N.

    1985-01-01

    The bearings and seismic bumpers used in a large sodium pump of a typical breeder reactor plant may need to be characterized by nonlinear springs and gaps. Then, nonlinear seismic analysis utilizing the time-history method is an effective way to predict the pump behaviors during seismic events - especially at those bearing and seismic bumper areas. In this study, synthesized time histories were developed based on specified seismic response spectra. A nonlinear seismic analysis was then conducted and results were compared with those obtained by linear seismic analysis using the response spectrum method. In contrast to some previous nonlinear analysis trends, the bearing impact forces predicted by nonlinear analysis were higher than those obtained by the response spectrum method. This might be due to the larger gaps and stiffer bearing supports used in this specific pump. However, at locations distant from the impact source, the nonlinear seismic analysis has predicted slightly less responses than those obtained by linear seismic analysis. The seismically induced bearing impact forces were used to study the friction induced thermal stresses on the hydrostatic bearing and to predict the coastdown time of the pump. Results and discussions are presented

  14. Nonlinear seismic analysis of a large sodium pump

    International Nuclear Information System (INIS)

    Huang, S.N.

    1985-01-01

    The bearings and seismic bumpers used in a large sodium pump of a typical breeder reactor plant may need to be characterized by nonlinear springs and gaps. Then, nonlinear seismic analysis utilizing the time-history method is an effective way to predict the pump behaviors during seismic events, especially at those bearing and seismic bumper areas. In this study, synthesized time histories were developed based on specified seismic response spectra. A nonlinear seismic analysis was then conducted and results were compared with those obtained by linear seismic analysis using the response spectrum method. In contrast to some previous nonlinear analysis trends, the bearing impact forces predicted by nonlinear analysis were higher than those obtained by the response spectrum method. This might be due to the larger gaps and stiffer bearing supports used in this specific pump. However, at locations distant from the impact source, the nonlinear seismic analysis has predicted slightly less responses than those obtained by linear seismic analysis. The seismically induced bearing impact forces were used to study the friction induced thermal stresses on the hydrostatic bearing and to predict the coastdown time of the pump. Results and discussions are presented

  15. Location capability of a sparse regional network (RSTN) using a multi-phase earthquake location algorithm (REGLOC)

    Energy Technology Data Exchange (ETDEWEB)

    Hutchings, L.

    1994-01-01

    The Regional Seismic Test Network (RSTN) was deployed by the US Department of Energy (DOE) to determine whether data recorded by a regional network could be used to detect and accurately locate seismic events that might be clandestine nuclear tests. The purpose of this paper is to evaluate the location capability of the RSTN. A major part of this project was the development of the location algorithm REGLOC and application of Basian a prior statistics for determining the accuracy of the location estimates. REGLOC utilizes all identifiable phases, including backazimuth, in the location. Ninty-four events, distributed throughout the network area, detected by both the RSTN and located by local networks were used in the study. The location capability of the RSTN was evaluated by estimating the location accuracy, error ellipse accuracy, and the percentage of events that could be located, as a function of magnitude. The location accuracy was verified by comparing the RSTN results for the 94 events with published locations based on data from the local networks. The error ellipse accuracy was evaluated by determining whether the error ellipse includes the actual location. The percentage of events located was assessed by combining detection capability with location capability to determine the percentage of events that could be located within the study area. Events were located with both an average crustal model for the entire region, and with regional velocity models along with station corrections obtained from master events. Most events with a magnitude <3.0 can only be located with arrivals from one station. Their average location errors are 453 and 414 km for the average- and regional-velocity model locations, respectively. Single station locations are very unreliable because they depend on accurate backazimuth estimates, and backazimuth proved to be a very unreliable computation.

  16. The influence of the mining operation on the mine seismicity of Vorkuta coal deposit

    Science.gov (United States)

    Zmushko, T.; Turuntaev, S. B.; Kulikov, V. I.

    2012-04-01

    The mine seismicity of Vorkuta coal deposit was analyzed. Seismic network consisting of 24 seismic sensors (accelerometers) cover the area of "Komsomolskaya" and "North" mines of Vorkuta deposit. Also there is seismic station of IDG RAS with three-component seismometer near this mines for better defining energy of the seismic events. The catalogs of seismic events contain 9000 and 7000 events with maximum magnitude M=2.3 for "Komsomolskaya" and "North" mines respectively and include the period from 01.09.2008 to 01.09.2011. The b-value of the magnitude-frequency relation was -1.0 and -1.15 respectively for the mines, meanwhile b-value for the nature seismicity was -0,9. It was found, that the number of seismic events per hour during mine combine operation is higher in 2.5 times than the number of seismic events during the break in the operation. Also, the total energy of the events per hour during the operation is higher in 3-5 times than during the break. The study showed, that the number and the energy of the seismic events relate with the hours of mine combine operation. The spatial distribution of the seismic events showed, that 80% of all events and 85% of strong events (M>1.6) were located in and near the longwall under development during the mine combine operations as well asduring the breaks. The isoclines of seismic event numbers proved that the direction of motion of the boundary of seismic events extension coincides with the direction of development, the maximum number of events for any period lies within the wall under operation. The rockburst with M=2.3 occurring at the North mine at July 16, 2011 was considered. The dependences of the energy and of the number of events with different magnitudes on the time showed that the number of events with M=1 and especially M=0.5 before the rockburst decreased, which corresponds to the prognostic seismic quietness, described in the research works. The spatial distribution of the events for the 6 month before the

  17. PARAMETERS OF KAMCHATKA SEISMICITY IN 2008

    Directory of Open Access Journals (Sweden)

    Vadim A. Saltykov

    2010-01-01

    Full Text Available The paper describes seismicity of Kamchatka for the period of 2008 and presents 2D distribution of background seismicity parameters calculated from data published in the Regional Catalogue of Kamchatka Earthquakes. Parameters under study are total released seismic energy, seismic activity A10, slope of recurrence graph γ, parameters of RTL, ΔS and Z-function methods, and clustering of earthquakes. Estimations of seismicity are obtained for a region bordered by latitude 50.5–56.5N, longitude 156E–167E, with depths to 300 km. Earthquakes of energy classes not less than 8.5 as per the Fedotov’s classification are considered. The total seismic energy released in 2008 is estimated. According to a function of annual seismic energy distribution, an amount of seismic energy released in 2008 was close to the median level (Fig. 1. Over 2/3 of the total amount of seismic energy released in 2008 resulted from three largest earthquakes (МW ≥ 5.9. About 5 percent of the total number of seismic events are comprised of grouped earthquakes, i.e. aftershocks and swarms. A schematic map of the largest earthquakes (МW ≥ 5.9 and grouped seismic events which occurred in 2008 is given in Fig. 2; their parameters are listed in Table 1. Grouped earthquakes are excluded from the catalogue. A map showing epicenters of independent earthquakes is given in Fig. 3. The slope of recurrence graph γ and seismic activity A10 is based on the Gutenberg-Richter law stating the fundamental property of seismic process. The recurrence graph slope is calculated from continuous exponential distribution of earthquakes by energy classes. Using γ is conditioned by observations that in some cases the slope of the recurrence graph decreases prior to a large earthquake. Activity A10 is calculated from the number of earthquakes N and recurrence graph slope γ. Average slopes of recurrence graph γ and seismic activity A10 for the area under study in 2008 are calculated; our

  18. Third Quarter Hanford Seismic Report for Fiscal Year 2010

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2010-09-29

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. The Hanford Seismic Network recorded 23 local earthquakes during the third quarter of FY 2010. Sixteen earthquakes were located at shallow depths (less than 4 km), five earthquakes at intermediate depths (between 4 and 9 km), most likely in the pre-basalt sediments, and two earthquakes were located at depths greater than 9 km, within the basement. Geographically, twelve earthquakes were located in known swarm areas, 3 earthquakes occurred near a geologic structure (Saddle Mountain anticline), and eight earthquakes were classified as random events. The highest magnitude event (3.0 Mc) was recorded on May 8, 2010 at depth 3.0 km with epicenter located near the Saddle Mountain anticline. Later in the quarter (May 24 and June 28) two additional earthquakes were also recorded nearly at the same location. These events are not considered unusual in that earthquakes have been previously recorded at this location, for example, in October 2006 (Rohay et al; 2007). Six earthquakes were detected in the vicinity of Wooded Island, located about eight miles north of Richland just

  19. Seismic assessment of a site using the time series method

    International Nuclear Information System (INIS)

    Krutzik, N.J.; Rotaru, I.; Bobei, M.; Mingiuc, C.; Serban, V.; Androne, M.

    2001-01-01

    1. To increase the safety of a NPP located on a seismic site, the seismic acceleration level to which the NPP should be qualified must be as representative as possible for that site, with a conservative degree of safety but not too exaggerated. 2. The consideration of the seismic events affecting the site as independent events and the use of statistic methods to define some safety levels with very low annual occurrence probabilities (10 -4 ) may lead to some exaggerations of the seismic safety level. 3. The use of some very high values for the seismic accelerations imposed by the seismic safety levels required by the hazard analysis may lead to very expensive technical solutions that can make the plant operation more difficult and increase the maintenance costs. 4. The consideration of seismic events as a time series with dependence among the events produced may lead to a more representative assessment of a NPP site seismic activity and consequently to a prognosis on the seismic level values to which the NPP would be ensured throughout its life-span. That prognosis should consider the actual seismic activity (including small earthquakes in real time) of the focuses that affect the plant site. The method is useful for two purposes: a) research, i.e. homogenizing the history data basis by the generation of earthquakes during periods lacking information and correlation of the information with the existing information. The aim is to perform the hazard analysis using a homogeneous data set in order to determine the seismic design data for a site; b) operation, i.e. the performance of a prognosis on the seismic activity on a certain site and consideration of preventive measures to minimize the possible effects of an earthquake. 5. The paper proposes the application of Autoregressive Time Series to issue a prognosis on the seismic activity of a focus and presents the analysis on Vrancea focus that affects Cernavoda NPP site by this method. 6. The paper also presents the

  20. Statistical Seismology and Induced Seismicity

    Science.gov (United States)

    Tiampo, K. F.; González, P. J.; Kazemian, J.

    2014-12-01

    While seismicity triggered or induced by natural resources production such as mining or water impoundment in large dams has long been recognized, the recent increase in the unconventional production of oil and gas has been linked to rapid rise in seismicity in many places, including central North America (Ellsworth et al., 2012; Ellsworth, 2013). Worldwide, induced events of M~5 have occurred and, although rare, have resulted in both damage and public concern (Horton, 2012; Keranen et al., 2013). In addition, over the past twenty years, the increase in both number and coverage of seismic stations has resulted in an unprecedented ability to precisely record the magnitude and location of large numbers of small magnitude events. The increase in the number and type of seismic sequences available for detailed study has revealed differences in their statistics that previously difficult to quantify. For example, seismic swarms that produce significant numbers of foreshocks as well as aftershocks have been observed in different tectonic settings, including California, Iceland, and the East Pacific Rise (McGuire et al., 2005; Shearer, 2012; Kazemian et al., 2014). Similarly, smaller events have been observed prior to larger induced events in several occurrences from energy production. The field of statistical seismology has long focused on the question of triggering and the mechanisms responsible (Stein et al., 1992; Hill et al., 1993; Steacy et al., 2005; Parsons, 2005; Main et al., 2006). For example, in most cases the associated stress perturbations are much smaller than the earthquake stress drop, suggesting an inherent sensitivity to relatively small stress changes (Nalbant et al., 2005). Induced seismicity provides the opportunity to investigate triggering and, in particular, the differences between long- and short-range triggering. Here we investigate the statistics of induced seismicity sequences from around the world, including central North America and Spain, and

  1. Seismic Discrimination

    Science.gov (United States)

    1979-09-30

    were presumed nuclear explosions announced by ERDA. Of the last, 11 were at the Semipalatinsk test site , 2 at the Western Kazakh test site , 2 in Novaya...which will fulfill U.S. ob- ligations that may be incurred under a possible future Comprehensive Test Ban Treaty. This report includes 9 contributions...which could assume U.S. seismic-data-management responsibilities in the event that international agreement is reached on a Comprehensive Test Ban

  2. The seismic monitoring network of Mt. Vesuvius

    Directory of Open Access Journals (Sweden)

    Massimo Orazi

    2013-11-01

    Full Text Available Mt. Vesuvius (southern Italy is one of the most hazardous volcanoes in the world. Its activity is currently characterized by moderate seismicity, with hypocenters located beneath the crater zone with depth rarely exceeding 5 km and magnitudes generally less than 3. The current configuration of the seismic monitoring network of Mt. Vesuvius consists of 18 seismic stations and 7 infrasound microphones. During the period 2006-2010 a seismic array with 48 channels was also operative. The station distribution provides appropriate coverage of the area around the volcanic edifice. The current development of the network and its geometry, under conditions of low seismic noise, allows locating seismic events with M<1. Remote instruments continuously transmit data to the main acquisition center in Naples. Data transmission is realized using different technological solutions based on UHF, Wi-Fi radio links, and TCP/IP client-server applications. Data are collected in the monitoring center of the Osservatorio Vesuviano (Italian National Institute of Geophysics and Volcanology, Naples section, which is equipped with systems for displaying and analyzing signals, using both real-time automatic and manual procedures. 24-hour surveillance allows to immediately communicate any significant anomaly to the Civil Protection authorities.

  3. Seismic testing

    International Nuclear Information System (INIS)

    Sollogoub, Pierre

    2001-01-01

    This lecture deals with: qualification methods for seismic testing; objectives of seismic testing; seismic testing standards including examples; main content of standard; testing means; and some important elements of seismic testing

  4. Study of radiation background at various high altitude locations in preparation for rare event search in cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, R.; Dey, S.; Ghosh, Sanjay K.; Maulik, A.; Raha, Sibaji; Syam, D., E-mail: rupamoy@gmail.com, E-mail: dey_s2001@yahoo.com, E-mail: sanjay@jcbose.ac.in, E-mail: atanu.maulik@jcbose.ac.in, E-mail: sibaji.raha@jcbose.ac.in, E-mail: syam.debapriyo@gmail.com [Centre for Astroparticle Physics and Space Science, Bose Institute, Block-EN, Sector-V, Kolkata-700091 (India)

    2017-04-01

    Various phenomenological models presented over the years have hinted at the possible presence of strangelets, which are nuggets of Strange Quark Matter (SQM), in cosmic rays. One way to search for such rare events is through the deployment of large area Nuclear Track Detector (NTD) arrays at high mountain altitudes. Before the deployment of any such array can begin, a detailed study of the radiation background is essential. Also, a proper understanding of the response of detectors exposed to extreme weather conditions is necessary. With that aim, pilot studies were carried out at various high altitude locations in India such as Darjeeling (2200 m a.m.s.l), Ooty (2200 m a.m.s.l) and Hanle (4500 m a.m.s.l). Small arrays of CR-39 as well as high threshold Polyethylene Terephthalate (PET) detectors were given open air exposures for periods ranging from three months to two years. The findings of such studies are reported in this paper.

  5. Nonlinear acoustic/seismic waves in earthquake processes

    International Nuclear Information System (INIS)

    Johnson, Paul A.

    2012-01-01

    Nonlinear dynamics induced by seismic sources and seismic waves are common in Earth. Observations range from seismic strong ground motion (the most damaging aspect of earthquakes), intense near-source effects, and distant nonlinear effects from the source that have important consequences. The distant effects include dynamic earthquake triggering—one of the most fascinating topics in seismology today—which may be elastically nonlinearly driven. Dynamic earthquake triggering is the phenomenon whereby seismic waves generated from one earthquake trigger slip events on a nearby or distant fault. Dynamic triggering may take place at distances thousands of kilometers from the triggering earthquake, and includes triggering of the entire spectrum of slip behaviors currently identified. These include triggered earthquakes and triggered slow, silent-slip during which little seismic energy is radiated. It appears that the elasticity of the fault gouge—the granular material located between the fault blocks—is key to the triggering phenomenon.

  6. Analysis of induced seismicity in geothermal reservoirs – An overview

    Science.gov (United States)

    Zang, Arno; Oye, Volker; Jousset, Philippe; Deichmann, Nicholas; Gritto, Roland; McGarr, Arthur F.; Majer, Ernest; Bruhn, David

    2014-01-01

    In this overview we report results of analysing induced seismicity in geothermal reservoirs in various tectonic settings within the framework of the European Geothermal Engineering Integrating Mitigation of Induced Seismicity in Reservoirs (GEISER) project. In the reconnaissance phase of a field, the subsurface fault mapping, in situ stress and the seismic network are of primary interest in order to help assess the geothermal resource. The hypocentres of the observed seismic events (seismic cloud) are dependent on the design of the installed network, the used velocity model and the applied location technique. During the stimulation phase, the attention is turned to reservoir hydraulics (e.g., fluid pressure, injection volume) and its relation to larger magnitude seismic events, their source characteristics and occurrence in space and time. A change in isotropic components of the full waveform moment tensor is observed for events close to the injection well (tensile character) as compared to events further away from the injection well (shear character). Tensile events coincide with high Gutenberg-Richter b-values and low Brune stress drop values. The stress regime in the reservoir controls the direction of the fracture growth at depth, as indicated by the extent of the seismic cloud detected. Stress magnitudes are important in multiple stimulation of wells, where little or no seismicity is observed until the previous maximum stress level is exceeded (Kaiser Effect). Prior to drilling, obtaining a 3D P-wave (Vp) and S-wave velocity (Vs) model down to reservoir depth is recommended. In the stimulation phase, we recommend to monitor and to locate seismicity with high precision (decametre) in real-time and to perform local 4D tomography for velocity ratio (Vp/Vs). During exploitation, one should use observed and model induced seismicity to forward estimate seismic hazard so that field operators are in a position to adjust well hydraulics (rate and volume of the

  7. The Lusi seismic experiment: An initial study to understand the effect of seismic activity to Lusi

    Energy Technology Data Exchange (ETDEWEB)

    Karyono, E-mail: karyonosu@gmail.com [Agency for Meteorology, Climatology and Geophysics (BMKG), Jakarta (Indonesia); OSLO University (Norway); Padjadjaran University (UNPAD), Bandung (Indonesia); Mazzini, Adriano; Sugiharto, Anton [OSLO University (Norway); Lupi, Matteo [ETH Zurich (Switzerland); Syafri, Ildrem [Padjadjaran University (UNPAD), Bandung (Indonesia); Masturyono,; Rudiyanto, Ariska; Pranata, Bayu; Muzli,; Widodo, Handi Sulistyo; Sudrajat, Ajat [Agency for Meteorology, Climatology and Geophysics (BMKG), Jakarta (Indonesia)

    2015-04-24

    The spectacular Lumpur Sidoarjo (Lusi) eruption started in northeast Java on the 29 of May 2006 following a M6.3 earthquake striking the island [1,2]. Initially, several gas and mud eruption sites appeared along the reactivated strike-slip Watukosek fault system [3] and within weeks several villages were submerged by boiling mud. The most prominent eruption site was named Lusi. The Lusi seismic experiment is a project aims to begin a detailed study of seismicity around the Lusi area. In this initial phase we deploy 30 seismometers strategically distributed in the area around Lusi and along the Watukosek fault zone that stretches between Lusi and the Arjuno Welirang (AW) complex. The purpose of the initial monitoring is to conduct a preliminary seismic campaign aiming to identify the occurrence and the location of local seismic events in east Java particularly beneath Lusi.This network will locate small event that may not be captured by the existing BMKG network. It will be crucial to design the second phase of the seismic experiment that will consist of a local earthquake tomography of the Lusi-AW region and spatial and temporal variations of vp/vs ratios. The goal of this study is to understand how the seismicity occurring along the Sunda subduction zone affects to the behavior of the Lusi eruption. Our study will also provide a large dataset for a qualitative analysis of earthquake triggering studies, earthquake-volcano and earthquake-earthquake interactions. In this study, we will extract Green’s functions from ambient seismic noise data in order to image the shallow subsurface structure beneath LUSI area. The waveform cross-correlation technique will be apply to all of recordings of ambient seismic noise at 30 seismographic stations around the LUSI area. We use the dispersive behaviour of the retrieved Rayleigh waves to infer velocity structures in the shallow subsurface.

  8. Detection capability of the IMS seismic network based on ambient seismic noise measurements

    Science.gov (United States)

    Gaebler, Peter J.; Ceranna, Lars

    2016-04-01

    All nuclear explosions - on the Earth's surface, underground, underwater or in the atmosphere - are banned by the Comprehensive Nuclear-Test-Ban Treaty (CTBT). As part of this treaty, a verification regime was put into place to detect, locate and characterize nuclear explosion testings at any time, by anyone and everywhere on the Earth. The International Monitoring System (IMS) plays a key role in the verification regime of the CTBT. Out of the different monitoring techniques used in the IMS, the seismic waveform approach is the most effective technology for monitoring nuclear underground testing and to identify and characterize potential nuclear events. This study introduces a method of seismic threshold monitoring to assess an upper magnitude limit of a potential seismic event in a certain given geographical region. The method is based on ambient seismic background noise measurements at the individual IMS seismic stations as well as on global distance correction terms for body wave magnitudes, which are calculated using the seismic reflectivity method. From our investigations we conclude that a global detection threshold of around mb 4.0 can be achieved using only stations from the primary seismic network, a clear latitudinal dependence for the detection threshold can be observed between northern and southern hemisphere. Including the seismic stations being part of the auxiliary seismic IMS network results in a slight improvement of global detection capability. However, including wave arrivals from distances greater than 120 degrees, mainly PKP-wave arrivals, leads to a significant improvement in average global detection capability. In special this leads to an improvement of the detection threshold on the southern hemisphere. We further investigate the dependence of the detection capability on spatial (latitude and longitude) and temporal (time) parameters, as well as on parameters such as source type and percentage of operational IMS stations.

  9. Third Quarter Hanford Seismic Report for Fiscal Year 2000

    Energy Technology Data Exchange (ETDEWEB)

    DC Hartshorn; SP Reidel; AC Rohay

    2000-09-01

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and its con-tractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (E WRN) consist of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The HSN uses 21 sites and the EWRN uses 36 sites; both networks share 16 sites. The networks have 46 combined data channels because Gable Butte and Frenchman Hills East are three-component sites. The reconfiguration of the telemetry and recording systems was completed during the first quarter. All leased telephone lines have been eliminated and radio telemetry is now used exclusively. For the HSN, there were 818 triggers on two parallel detection and recording systems during the third quarter of fiscal year (FY) 2000. Thirteen seismic events were located by the Hanford Seismic Network within the reporting region of 46-47{degree} N latitude and 119-120{degree} W longitude; 7 were earthquakes in the Columbia River Basalt Group, 1 was an earthquake in the pre-basalt sediments, and 5 were earthquakes in the crystalline basement. Three earthquakes occurred in known swarm areas, and 10 earthquakes were random occurrences. No earthquakes triggered the Hanford Strong Motion Accelerometers during the third quarter of FY 2000.

  10. Second Quarter Hanford Seismic Report for Fiscal Year 2000

    International Nuclear Information System (INIS)

    Hartshorn, D.C.; Reidel, S.P.; Rohay, A.C.

    2000-01-01

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the US Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The HSN uses 21 sites and the EWRN uses 36 sites; both networks share 16 sites. The networks have 46 combined data channels because Gable Butte and Frenchman Hills East are three-component sites. The reconfiguration of the telemetry and recording systems was completed during the first quarter. All leased telephone lines have been eliminated and radio telemetry is now used exclusively. For the HSN, there were 506 triggers on two parallel detection and recording systems during the second quarter of fiscal year (FY) 2000. Twenty-seven seismic events were located by the Hanford Seismic Network within the reporting region of 46--47degree N latitude and 119--120degree W longitude; 12 were earthquakes in the Columbia River Basalt Group, 2 were earthquakes in the pre-basalt sediments, 9 were earthquakes in the crystalline basement, and 5 were quarry blasts. Three earthquakes appear to be related to geologic structures, eleven earthquakes occurred in known swarm areas, and seven earthquakes were random occurrences. No earthquakes triggered the Hanford Strong Motion

  11. Second Quarter Hanford Seismic Report for Fiscal Year 2000

    Energy Technology Data Exchange (ETDEWEB)

    DC Hartshorn; SP Reidel; AC Rohay

    2000-07-17

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the US Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The HSN uses 21 sites and the EWRN uses 36 sites; both networks share 16 sites. The networks have 46 combined data channels because Gable Butte and Frenchman Hills East are three-component sites. The reconfiguration of the telemetry and recording systems was completed during the first quarter. All leased telephone lines have been eliminated and radio telemetry is now used exclusively. For the HSN, there were 506 triggers on two parallel detection and recording systems during the second quarter of fiscal year (FY) 2000. Twenty-seven seismic events were located by the Hanford Seismic Network within the reporting region of 46--47{degree} N latitude and 119--120{degree} W longitude; 12 were earthquakes in the Columbia River Basalt Group, 2 were earthquakes in the pre-basalt sediments, 9 were earthquakes in the crystalline basement, and 5 were quarry blasts. Three earthquakes appear to be related to geologic structures, eleven earthquakes occurred in known swarm areas, and seven earthquakes were random occurrences. No earthquakes triggered the Hanford Strong Motion

  12. First quarter Hanford seismic report for fiscal year 2000

    Energy Technology Data Exchange (ETDEWEB)

    DC Hartshorn; SP Reidel; AC Rohay

    2000-02-23

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the US Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The HSN uses 21 sites and the EW uses 36 sites; both networks share 16 sites. The networks have 46 combined data channels because Gable Butte and Frenchman Hills East are three-component sites. The reconfiguration of the telemetry and recording systems was completed during the first quarter. All leased telephone lines have been eliminated and radio telemetry is now used exclusively. For the HSN, there were 311 triggers on two parallel detection and recording systems during the first quarter of fiscal year (FY) 2000. Twelve seismic events were located by the Hanford Seismic Network within the reporting region of 46--47{degree}N latitude and 119--120{degree}W longitude; 2 were earthquakes in the Columbia River Basalt Group, 3 were earthquakes in the pre-basalt sediments, 9 were earthquakes in the crystalline basement, and 1 was a quarry blast. Two earthquakes appear to be related to a major geologic structure, no earthquakes occurred in known swarm areas, and 9 earthquakes were random occurrences. No earthquakes triggered the Hanford Strong Motion Accelerometers

  13. SEISMIC HAZARD ASSESSMENT OF SCHOOL BUILDINGS IN PENINSULAR MALAYSIA

    OpenAIRE

    Tan, K.T.; Razak, H. Abdul

    2015-01-01

    Peninsular Malaysia is located on the southern edge of the Eurasian Plate. However, it is close to a seismically active plate boundary, the inter-plate boundary between the Indo-Australian and Eurasian Plates. Occasionally, tremors can be felt throughout the region even when active faults are located several hundred kilometers away. Lessons learnt from past events, active earthquakes located far from the existing building can cause potential damage. Thus, fragility curves become an essential ...

  14. Seismic qualification of multiple interconnected safety-related cabinets in a high seismic zone

    International Nuclear Information System (INIS)

    Khan, M.R.; Chen, W.H.W.; Wang, T.Y.

    1993-01-01

    Certain safety-related multiple, interconnected electrical cabinets and the devices contained therein are required to perform their intended safety functions during and after a design basis seismic event. In general, seismic testing is performed to ensure the structural integrity of the cabinets and the functionality of their associated devices. Constrained by the shake table capacity, seismic testing is usually performed only for a limited number of interconnected cabinets. Also, original shake table tests performed usually did not provide detailed response information at various locations inside the cabinets. For operational and maintenance purposes, doors and panels of some cabinets may need to be opened while the adjacent cabinets are required to remain functional. In addition, in-cabinet response spectra need to be generated for the seismic qualification of new devices and the replacement parts. Consequently, seismic analysis of safety-related multiple, interconnected cabinets is frequently required for configurations which are different from the original tested conditions. This paper presents results of seismic tests of three interconnected safety-related cabinets and finite element analyses performed to compare the analytical results with those obtained from the cabinet seismic tests. Parametric analyses are performed to determine how many panels and doors can be opened while the adjacent cabinets still remain functional. The study indicates that for cabinets located in a high seismic zone, the critical damping of the cabinet is significantly higher than 5% to 7% typically used in qualifying electrical equipment. For devices mounted on the cabinet doors to performed their intended safety function, it requires stiffening of doors and that these doors be properly bolted to the cabinet frame. It also shows that even though doors and panels bolted to the cabinet frame are the primary seismic resistant element of the cabinet, opening of a limited number of them

  15. Method to locate the polar cap boundary in the nightside ionosphere and application to a substorm event

    Directory of Open Access Journals (Sweden)

    A. T. Aikio

    2006-08-01

    Full Text Available In this paper we describe a new method to be used for the polar cap boundary (PCB determination in the nightside ionosphere by using the EISCAT Svalbard radar (ESR field-aligned measurements by the 42-m antenna and southward directed low-elevation measurements by the ESR 32 m antenna or northward directed low-elevation measurements by the EISCAT VHF radar at Tromsø. The method is based on increased electron temperature (Te caused by precipitating particles on closed field lines. Since the Svalbard field-aligned measurement provides the reference polar cap Te height profile, the method can be utilised only when the PCB is located between Svalbard and the mainland. Comparison with the Polar UVI images shows that the radar-based method is generally in agreement with the PAE (poleward auroral emission boundary from Polar UVI. The new technique to map the polar cap boundary was applied to a substorm event on 6 November 2002. Simultaneous measurements by the MIRACLE magnetometers enabled us to put the PCB location in the framework of ionospheric electrojets. During the substorm growth phase, the polar cap expands and the region of the westward electrojet shifts gradually more apart from the PCB. The substorm onset takes place deep within the region of closed magnetic field region, separated by about 6–7° in latitude from the PCB in the ionosphere. We interpret the observations in the framework of the near-Earth neutral line (NENL model of substorms. After the substorm onset, the reconnection at the NENL reaches within 3 min the open-closed field line boundary and then the PCB moves poleward together with the poleward boundary of the substorm current wedge. The poleward expansion occurs in the form of individual bursts, which are separated by 2–10 min, indicating that the reconnection in the magnetotail neutral line is impulsive. The poleward expansions of the PCB are followed by latitude dispersed intensifications in the westward electrojet

  16. Automatic Event Detection and Picking of P, S Seismic Phases for Earthquake Early Warning: A Case Study of the 2008 Wenchuan Earthquake

    Science.gov (United States)

    WANG, Z.; Zhao, B.

    2015-12-01

    We develop an automatic seismic phase arrival detection and picking algorithm for the impending earthquakes occurred with diverse focal mechanisms and depths. The polarization analysis of the three-component seismograms is utilized to distinguish between P and S waves through a sliding time window. When applying the short term average/long term average (STA/LTA) method to the polarized data, we also construct a new characteristics function that can sensitively reflect the changes of signals' amplitude and frequency, providing a better detection for the phase arrival. Then an improved combination method of the higher order statistics and the Akaike information criteria (AIC) picker is applied to the refined signal to lock on the arrival time with a higher degree of accuracy. We test our techniques to the aftershocks of the Ms8.0 Wenchuan earthquake, where hundreds of three-component acceleration records with magnitudes of 4.0 to 6.4 are treated. In comparison to the analyst picks, the results of the proposed detection algorithms are shown to perform well and can be applied from a single instrument within a network of stations for the large seismic events in the Earthquake Early Warning System (EEWS).

  17. Annual Hanford Seismic Report for Fiscal Year 2009

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2009-12-31

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. During FY 2009, the Hanford Seismic Network recorded nearly 3000 triggers on the seismometer system, which included over 1700 seismic events in the southeast Washington area and an additional 370 regional and teleseismic events. There were 1648 events determined to be local earthquakes relevant to the Hanford Site. Nearly all of these earthquakes were detected in the vicinity of Wooded Island, located about eight miles north of Richland just west of the Columbia River. Recording of the Wooded Island events began in January with over 250 events per month through June 2009. The frequency of events decreased starting in July 2009 to approximately 10-15 events per month through September 2009. Most of the events were considered minor (coda-length magnitude [Mc] less than 1.0) with 47 events in the 2.0-3.0 range. The estimated depths of the Wooded Island events are shallow (averaging less than 1.0 km deep) with a maximum depth estimated at 2.3 km. This places the Wooded Island events within the Columbia River Basalt Group (CRBG). The highest-magnitude event (3.0Mc

  18. Hanford annual first quarter seismic report, fiscal year 1998: Seismicity on and near the Hanford Site, Pasco Basin, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Hartshorn, D.C.; Reidel, S.P.; Rohay, A.C.

    1998-02-01

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the US Department of Energy and its contractors. The staff also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of an earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 41 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The operational rate for the first quarter of FY98 for stations in the HSN was 98.5%. The operational rate for the first quarter of FY98 for stations of the EWRN was 99.1%. For the first quarter of FY98, the acquisition computer triggered 184 times. Of these triggers 23 were local earthquakes: 7 in the Columbia River Basalt Group, and 16 in the crystalline basement. The geologic and tectonic environments where these earthquakes occurred are discussed in this report. The most significant earthquakes in this quarter were a series of six events which occurred in the Cold Creek depression (approximately 4 km SW of the 200 West Area), between November 6 and November 11, 1997. All events were deep (> 15 km) and were located in the crystalline basement. The first event was the largest, having a magnitude of 3.49 M{sub c}. Two events on November 9, 1997 had magnitudes of 2.81 and 2.95 M{sub c}, respectively. The other events had magnitudes between 0.7 and 1.2 M{sub c}.

  19. Southern Appalachian Regional Seismic Network

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, S.C.C.; Johnston, A.C.; Chiu, J.M. [Memphis State Univ., TN (United States). Center for Earthquake Research and Information

    1994-08-01

    The seismic activity in the southern Appalachian area was monitored by the Southern Appalachian Regional Seismic Network (SARSN) since late 1979 by the Center for Earthquake Research and Information (CERI) at Memphis State University. This network provides good spatial coverage for earthquake locations especially in east Tennessee. The level of activity concentrates more heavily in the Valley and Ridge province of eastern Tennessee, as opposed to the Blue Ridge or Inner Piedmont. The large majority of these events lie between New York - Alabama lineament and the Clingman/Ocoee lineament, magnetic anomalies produced by deep-seated basement structures. Therefore SARSN, even with its wide station spacing, has been able to define the essential first-order seismological characteristics of the Southern Appalachian seismic zone. The focal depths of the southeastern U.S. earthquakes concentrate between 8 and 16 km, occurring principally beneath the Appalachian overthrust. In cross-sectional views, the average seismicity is shallower to the east beneath the Blue Ridge and Piedmont provinces and deeper to the west beneath the Valley and Ridge and the North American craton. Results of recent focal mechanism studies by using the CERI digital earthquake catalog between October, 1986 and December, 1991, indicate that the basement of the Valley and Ridge province is under a horizontal, NE-SW compressive stress. Right-lateral strike-slip faulting on nearly north-south fault planes is preferred because it agrees with the trend of the regional magnetic anomaly pattern.

  20. Southern Appalachian Regional Seismic Network

    International Nuclear Information System (INIS)

    Chiu, S.C.C.; Johnston, A.C.; Chiu, J.M.

    1994-08-01

    The seismic activity in the southern Appalachian area was monitored by the Southern Appalachian Regional Seismic Network (SARSN) since late 1979 by the Center for Earthquake Research and Information (CERI) at Memphis State University. This network provides good spatial coverage for earthquake locations especially in east Tennessee. The level of activity concentrates more heavily in the Valley and Ridge province of eastern Tennessee, as opposed to the Blue Ridge or Inner Piedmont. The large majority of these events lie between New York - Alabama lineament and the Clingman/Ocoee lineament, magnetic anomalies produced by deep-seated basement structures. Therefore SARSN, even with its wide station spacing, has been able to define the essential first-order seismological characteristics of the Southern Appalachian seismic zone. The focal depths of the southeastern U.S. earthquakes concentrate between 8 and 16 km, occurring principally beneath the Appalachian overthrust. In cross-sectional views, the average seismicity is shallower to the east beneath the Blue Ridge and Piedmont provinces and deeper to the west beneath the Valley and Ridge and the North American craton. Results of recent focal mechanism studies by using the CERI digital earthquake catalog between October, 1986 and December, 1991, indicate that the basement of the Valley and Ridge province is under a horizontal, NE-SW compressive stress. Right-lateral strike-slip faulting on nearly north-south fault planes is preferred because it agrees with the trend of the regional magnetic anomaly pattern

  1. First Quarter Hanford Seismic Report for Fiscal Year 2009

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2009-03-15

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. This includes three recently acquired Transportable Array stations located at Cold Creek, Didier Farms, and Phinney Hill. For the Hanford Seismic Network, ten local earthquakes were recorded during the first quarter of fiscal year 2009. All earthquakes were considered as “minor” with magnitudes (Mc) less than 1.0. Two earthquakes were located at shallow depths (less than 4 km), most likely in the Columbia River basalts; five earthquakes at intermediate depths (between 4 and 9 km), most likely in the sub-basalt sediments); and three earthquakes were located at depths greater than 9 km, within the basement. Geographically, four earthquakes occurred in known swarm areas and six earthquakes were classified as random events.

  2. Annual Hanford Seismic Report for Fiscal Year 2010

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Clayton, Ray E.; Sweeney, Mark D.; Devary, Joseph L.; Hartshorn, Donald C.

    2010-12-27

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. During FY 2010, the Hanford Seismic Network recorded 873 triggers on the seismometer system, which included 259 seismic events in the southeast Washington area and an additional 324 regional and teleseismic events. There were 210 events determined to be local earthquakes relevant to the Hanford Site. One hundred and fifty-five earthquakes were detected in the vicinity of Wooded Island, located about eight miles north of Richland just west of the Columbia River. The Wooded Island events recorded this fiscal year were a continuation of the swarm events observed during fiscal year 2009 and reported in previous quarterly and annual reports (Rohay et al. 2009a, 2009b, 2009c, 2010a, 2010b, and 2010c). Most events were considered minor (coda-length magnitude [Mc] less than 1.0) with the largest event recorded on February 4, 2010 (3.0Mc). The estimated depths of the Wooded Island events are shallow (averaging approximately 1.5 km deep) placing the swarm within the Columbia River Basalt Group. Based upon the last two quarters (Q3 and Q4) data, activity at the Wooded Island

  3. Travel-time source-specific station correction improves location accuracy

    Science.gov (United States)

    Giuntini, Alessandra; Materni, Valerio; Chiappini, Stefano; Carluccio, Roberto; Console, Rodolfo; Chiappini, Massimo

    2013-04-01

    Accurate earthquake locations are crucial for investigating seismogenic processes, as well as for applications like verifying compliance to the Comprehensive Test Ban Treaty (CTBT). Earthquake location accuracy is related to the degree of knowledge about the 3-D structure of seismic wave velocity in the Earth. It is well known that modeling errors of calculated travel times may have the effect of shifting the computed epicenters far from the real locations by a distance even larger than the size of the statistical error ellipses, regardless of the accuracy in picking seismic phase arrivals. The consequences of large mislocations of seismic events in the context of the CTBT verification is particularly critical in order to trigger a possible On Site Inspection (OSI). In fact, the Treaty establishes that an OSI area cannot be larger than 1000 km2, and its larger linear dimension cannot be larger than 50 km. Moreover, depth accuracy is crucial for the application of the depth event screening criterion. In the present study, we develop a method of source-specific travel times corrections based on a set of well located events recorded by dense national seismic networks in seismically active regions. The applications concern seismic sequences recorded in Japan, Iran and Italy. We show that mislocations of the order of 10-20 km affecting the epicenters, as well as larger mislocations in hypocentral depths, calculated from a global seismic network and using the standard IASPEI91 travel times can be effectively removed by applying source-specific station corrections.

  4. Interpretation of seismic section by acoustic modeling. Study of large amplitude events; Hadoba modeling ni yoru jishin tansa danmen no kaishaku. Kyoshinhaba event ni taisuru kosatsu

    Energy Technology Data Exchange (ETDEWEB)

    Tamagawa, T; Matsuoka, T; Sato, T [Japan Petroleum Exploration Corp., Tokyo (Japan); Minegishi, M; Tsuru, T [Japan National Oil Corp., Tokyo (Japan)

    1996-05-01

    A large amplitude event difficult to interpret was discovered in the overlap section in offset data beyond 10km targeting at deep structures, and the event was examined. A wave field modeling was carried out by use of a simplified synclinal structure model because it had been estimated that the large amplitude event had something to do with a synclinal structure. A pseudospectral program was used for modeling the wave field on the assumption that the synclinal structure model would be an acoustic body and that the surface would contain free boundaries and multiple reflection. It was found as the result that a discontinuous large amplitude event is mapped out in the synclinal part of the overlap section when a far trace is applied beyond the structure during a CMP overlap process. This can be attributed to the concentration of energy produced by multiple reflection in the synclinal part and by the reflection waves beyond the critical angle. Accordingly, it is possible that phenomena similar to those encountered in the modeling process are emerging during actual observation. 2 refs., 8 figs.

  5. Effects of a significant New Madrid Seismic Zone event on oil and natural gas pipelines and their cascading effects to critical infrastructures

    Science.gov (United States)

    Fields, Damon E.

    Critical Infrastructure Protection (CIP) is a construct that relates preparedness and responsiveness to natural or man-made disasters that involve vulnerable assets deemed essential for the functioning of our economy and society. Infrastructure systems (power grids, bridges, airports, etc.) are vulnerable to disastrous types of events--natural or man-made. Failures of these systems can have devastating effects on communities and entire regions. CIP relates our willingness, ability, and capability to defend, mitigate, and re-constitute those assets that succumb to disasters affecting one or more infrastructure sectors. This qualitative research utilized ethnography and employed interviews with subject matter experts (SMEs) from various fields of study regarding CIP with respect to oil and natural gas pipelines in the New Madrid Seismic Zone. The study focused on the research question: What can be done to mitigate vulnerabilities in the oil and natural gas infrastructures, along with the potential cascading effects to interdependent systems, associated with a New Madrid fault event? The researcher also analyzed National Level Exercises (NLE) and real world events, and associated After Action Reports (AAR) and Lessons Learned (LL) in order to place a holistic lens across all infrastructures and their dependencies and interdependencies. Three main themes related to the research question emerged: (a) preparedness, (b) mitigation, and (c) impacts. These themes comprised several dimensions: (a) redundancy, (b) node hardening, (c) education, (d) infrastructure damage, (e) cascading effects, (f) interdependencies, (g) exercises, and (h) earthquake readiness. As themes and dimensions are analyzed, they are considered against findings in AARs and LL from previous real world events and large scale exercise events for validation or rejection.

  6. Hanford annual second quarter seismic report, fiscal year 1998: Seismicity on and near the Hanford Site, Pasco, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Hartshorn, D.C.; Reidel, S.P.; Rohay, A.C.

    1998-06-01

    Hanford Seismic Monitoring provides an uninterrupted collection of high quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the US Department of Energy and its contractors. The staff also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of an earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (ENN) consist of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The operational rate for the second quarter of FY98 for stations in the HSN was 99.92%. The operational rate for the second quarter of FY98 for stations of the EWRN was 99.46%. For the second quarter of FY98, the acquisition computer triggered 159 times. Of these triggers 14 were local earthquakes: 7 (50%) in the Columbia River Basalt Group, 3 (21%) in the pre-basalt sediments, and 4 (29%) in the crystalline basement. The geologic and tectonic environments where these earthquakes occurred are discussed in this report. The most significant seismic event for the second quarter was on March 23, 1998 when a 1.9 Mc occurred near Eltopia, WA and was felt by local residents. Although this was a small event, it was felt at the surface and is an indication of the potential impact on Hanford of seismic events that are common to the Site.

  7. Full wavefield migration: Seismic imaging using multiple scattering effects

    NARCIS (Netherlands)

    Davydenko, M.

    2016-01-01

    Seismic imaging aims at revealing the structural information of the subsurface using the reflected wavefields captured by sensors usually located at the surface. Wave propagation is a complex phenomenon and the measured data contain a set of backscattered events including not only primary

  8. Rockfall induced seismic signals: case study in Montserrat, Catalonia

    Science.gov (United States)

    Vilajosana, I.; Suriñach, E.; Abellán, A.; Khazaradze, G.; Garcia, D.; Llosa, J.

    2008-08-01

    After a rockfall event, a usual post event survey includes qualitative volume estimation, trajectory mapping and determination of departing zones. However, quantitative measurements are not usually made. Additional relevant quantitative information could be useful in determining the spatial occurrence of rockfall events and help us in quantifying their size. Seismic measurements could be suitable for detection purposes since they are non invasive methods and are relatively inexpensive. Moreover, seismic techniques could provide important information on rockfall size and location of impacts. On 14 February 2007 the Avalanche Group of the University of Barcelona obtained the seismic data generated by an artificially triggered rockfall event at the Montserrat massif (near Barcelona, Spain) carried out in order to purge a slope. Two 3 component seismic stations were deployed in the area about 200 m from the explosion point that triggered the rockfall. Seismic signals and video images were simultaneously obtained. The initial volume of the rockfall was estimated to be 75 m3 by laser scanner data analysis. After the explosion, dozens of boulders ranging from 10-4 to 5 m3 in volume impacted on the ground at different locations. The blocks fell down onto a terrace, 120 m below the release zone. The impact generated a small continuous mass movement composed of a mixture of rocks, sand and dust that ran down the slope and impacted on the road 60 m below. Time, time-frequency evolution and particle motion analysis of the seismic records and seismic energy estimation were performed. The results are as follows: 1 A rockfall event generates seismic signals with specific characteristics in the time domain; 2 the seismic signals generated by the mass movement show a time-frequency evolution different from that of other seismogenic sources (e.g. earthquakes, explosions or a single rock impact). This feature could be used for detection purposes; 3 particle motion plot analysis shows

  9. BUILDING 341 Seismic Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Halle, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-06-15

    The Seismic Evaluation of Building 341 located at Lawrence Livermore National Laboratory in Livermore, California has been completed. The subject building consists of a main building, Increment 1, and two smaller additions; Increments 2 and 3.

  10. Optimal Retrofit Scheme for Highway Network under Seismic Hazards

    Directory of Open Access Journals (Sweden)

    Yongxi Huang

    2014-06-01

    Full Text Available Many older highway bridges in the United States (US are inadequate for seismic loads and could be severely damaged or collapsed in a relatively small earthquake. According to the most recent American Society of Civil Engineers’ infrastructure report card, one-third of the bridges in the US are rated as structurally deficient and many of these structurally deficient bridges are located in seismic zones. To improve this situation, at-risk bridges must be identified and evaluated and effective retrofitting programs should be in place to reduce their seismic vulnerabilities. In this study, a new retrofit strategy decision scheme for highway bridges under seismic hazards is developed and seamlessly integrate the scenario-based seismic analysis of bridges and the traffic network into the proposed optimization modeling framework. A full spectrum of bridge retrofit strategies is considered based on explicit structural assessment for each seismic damage state. As an empirical case study, the proposed retrofit strategy decision scheme is utilized to evaluate the bridge network in one of the active seismic zones in the US, Charleston, South Carolina. The developed modeling framework, on average, will help increase network throughput traffic capacity by 45% with a cost increase of only $15million for the Mw 5.5 event and increase the capacity fourfold with a cost of only $32m for the Mw 7.0 event.

  11. Air-coupled seismic waves at long range from Apollo launchings.

    Science.gov (United States)

    Donn, W. L.; Dalins, I.; Mccarty, V.; Ewing, M.; Kaschak , G.

    1971-01-01

    Microphones and seismographs were co-located in arrays on Skidaway Island, Georgia, for the launchings of Apollo 13 and 14, 374 km to the south. Simultaneous acoustic and seismic waves were recorded for both events at times appropriate to the arrival of the acoustic waves from the source. The acoustic signal is relatively broadband compared to the nearly monochromatic seismic signal; the seismic signal is much more continuous than the more pulse-like acoustic signal; ground loading from the pressure variations of the acoustic waves is shown to be too small to account for the seismic waves; and the measured phase velocities of both acoustic and seismic waves across the local instrument arrays differ by less than 6 per cent and possibly 3 per cent if experimental error is included. It is concluded that the seismic waves are generated by resonant coupling to the acoustic waves along some 10 km of path on Skidaway Island.

  12. Angola Seismicity MAP

    Science.gov (United States)

    Neto, F. A. P.; Franca, G.

    2014-12-01

    The purpose of this job was to study and document the Angola natural seismicity, establishment of the first database seismic data to facilitate consultation and search for information on seismic activity in the country. The study was conducted based on query reports produced by National Institute of Meteorology and Geophysics (INAMET) 1968 to 2014 with emphasis to the work presented by Moreira (1968), that defined six seismogenic zones from macro seismic data, with highlighting is Zone of Sá da Bandeira (Lubango)-Chibemba-Oncócua-Iona. This is the most important of Angola seismic zone, covering the epicentral Quihita and Iona regions, geologically characterized by transcontinental structure tectono-magmatic activation of the Mesozoic with the installation of a wide variety of intrusive rocks of ultrabasic-alkaline composition, basic and alkaline, kimberlites and carbonatites, strongly marked by intense tectonism, presenting with several faults and fractures (locally called corredor de Lucapa). The earthquake of May 9, 1948 reached intensity VI on the Mercalli-Sieberg scale (MCS) in the locality of Quihita, and seismic active of Iona January 15, 1964, the main shock hit the grade VI-VII. Although not having significant seismicity rate can not be neglected, the other five zone are: Cassongue-Ganda-Massano de Amorim; Lola-Quilengues-Caluquembe; Gago Coutinho-zone; Cuima-Cachingues-Cambândua; The Upper Zambezi zone. We also analyzed technical reports on the seismicity of the middle Kwanza produced by Hidroproekt (GAMEK) region as well as international seismic bulletins of the International Seismological Centre (ISC), United States Geological Survey (USGS), and these data served for instrumental location of the epicenters. All compiled information made possible the creation of the First datbase of seismic data for Angola, preparing the map of seismicity with the reconfirmation of the main seismic zones defined by Moreira (1968) and the identification of a new seismic

  13. Second Quarter Hanford Seismic Report for Fiscal Year 2010

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2010-06-30

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. The Hanford Seismic Network recorded 90 local earthquakes during the second quarter of FY 2010. Eighty-one of these earthquakes were detected in the vicinity of Wooded Island, located about eight miles north of Richland just west of the Columbia River. The Wooded Island events recorded this quarter were a continuation of the swarm events observed during the 2009 and 2010 fiscal years and reported in previous quarterly and annual reports (Rohay et al; 2009a, 2009b, 2009c, and 2010). Most of the events were considered minor (coda-length magnitude [Mc] less than 1.0) with only 1 event in the 2.0-3.0 range; the maximum magnitude event (3.0 Mc) occurred February 4, 2010 at depth 2.4 km. The average depth of the Wooded Island events during the quarter was 1.6 km with a maximum depth estimated at 3.5 km. This placed the Wooded Island events within the Columbia River Basalt Group (CRBG). The low magnitude of the Wooded Island events has made them undetectable to all but local area residents. The Hanford Strong Motion Accelerometer (SMA) network was triggered several times

  14. First Quarter Hanford Seismic Report for Fiscal Year 2001

    Energy Technology Data Exchange (ETDEWEB)

    Hartshorn, Donald C.; Reidel, Stephen P.; Rohay, Alan C.; Valenta, Michelle M.

    2001-02-27

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 41 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. For the HSN, there were 477 triggers during the first quarter of fiscal year (FY) 2001 on the data acquisition system. Of these triggers, 176 were earthquakes. Forty-five earthquakes were located in the HSN area; 1 earthquake occurred in the Columbia River Basalt Group, 43 were earthquakes in the pre-basalt sediments, and 1 was earthquakes in the crystalline basement. Geographically, 44 earthquakes occurred in swarm areas, 1 earthquake was on a major structure, and no earthquakes were classified as random occurrences. The Horse Heaven Hills earthquake swarm area recorded all but one event during the first quarter of FY 2001. The peak of the activity occurred over December 12th, 13th, and 14th when 35 events occurred. No earthquakes triggered the Hanford Strong Motion Accelerometers during the first quarter of FY 2001.

  15. Identifying Faults Associated with the 2001 Avoca Induced(?) Seismicity Sequence of Western New York State Using Potential Field Wavelets.

    Science.gov (United States)

    Horowitz, F. G.; Ebinger, C.; Jordan, T. E.

    2017-12-01

    Results from recent DOE and USGS sponsored projects in the (intraplate) northeastern portions of the US and southeastern portions of Canada have identified locations of steeply dipping structures - many previously unknown - from a Poisson wavelet multiscale edge ('worm') analysis of gravity and magnetic fields. The Avoca sequence of induced(?) seismicity in western New York state occurred during January and February of 2001. The Avoca earthquake sequence is associated with industrial hydraulic fracturing activity "related to a proposed natural gas storage facility near Avoca to be constructed by solution mining" (Kim, 2001). The main Avoca event was a felt Mb = 3.2 earthquake on Feb. 3, 2001 recorded by the Lamont Cooperative Seismic Network. Earlier, smaller events were located by the Canadian Geological Survey's seismic network north of the Canadian border - implying that the event locations might be biased because they occurred off the southern edge of the array. Some of these events were also felt locally, according to local newspaper reports. By plotting the location of the seismic events and that of the injection well - reported via it's API number - we find a strong correlation with structures detected via our potential field worms. The injection occurred near a NE-SW striking structure that was not activated. All but one of the earthquakes occurred about 5 km north of the injection well on or nearby to an E-W striking structure that appears to intersect the NE-SW structure. The final, small (MN=2.2) earthquake was located on a different complex structure about 10 km north of the other events. We suggest that potential field methods such as ours might be appropriate to locating structures of concern for induced seismic activity in association with industrial activity. Reference: Kim, W.-Y. (2001). The Lamont cooperative seismic network and the national seismic system: Earthquake hazard studies in the northeastern United States. Tech. Rep. 98-01, Lamont

  16. Pre-Operational Seismic Walk-Through of NPPs in India

    International Nuclear Information System (INIS)

    Soni, R.S.; Mishra, R.K.; Agrawal, M.K.; Reddy, G.R.; Kushwaha, H.S.; Venkat Raj, V.; Badrinarayan, G.; Hawaldar, R.V.; Ingole, S.M.

    2002-01-01

    In nuclear power plants, it is essential to design the various safety and safety related systems and components of the plant in such a manner that they maintain their structural integrity as well as serve their functional performance during a seismic event. The pre-operational seismic walk-through helps in ensuring the installation of various seismic supports as per design intent, identifying the areas where supports are inadequate, identifying the interaction concerns between the systems of various safety classes and locating the various undesired loose, untied / unanchored components, tools, etc. used during the construction activity. A detailed procedure for the pre-operational seismic walk-through of the NPPs was therefore, prepared. Since the types and locations of seismic supports for the various systems and components of the plant had been already reviewed, the major emphasis during the walk-through was laid on their proper installation. (authors)

  17. Siting of nuclear desalination plants in Saudi Arabia: A seismic study

    International Nuclear Information System (INIS)

    Aljohani, M.S.; Abdul-Fattah, A.F.; Almarshad, A.I.

    2005-01-01

    This paper presents the selection criteria generally and seismic criteria specifically to select a suitable site in Saudi Arabia for a nuclear desalination plant. These criteria include geological, meteorological, cooling water supply discharge, transport infrastructure, population, electric grid, water network capacity, environmental impact and airport movement. The seismicity of the Arabian peninsula for the locations of seismic activity along the Red Sea and the Arabian Gulf coastlines from 1973 to 2000 was studied carefully. This study included towns and locations along the east and west coastlines and their distances from the seismic event site. The results showed that Rabigh City along the west coast of Saudi Arabia is a good site to build a nuclear desalination plant. This is because of the following reasons: good seismic stability; good weather statistics; no flooding; mild wave conditions; good supply and discharge; good transportation infrastructure; low population area; very close to the huge electric grid. (author)

  18. Seismic Risk Assessment for the Kyrgyz Republic

    Science.gov (United States)

    Pittore, Massimiliano; Sousa, Luis; Grant, Damian; Fleming, Kevin; Parolai, Stefano; Fourniadis, Yannis; Free, Matthew; Moldobekov, Bolot; Takeuchi, Ko

    2017-04-01

    The Kyrgyz Republic is one of the most socially and economically dynamic countries in Central Asia, and one of the most endangered by earthquake hazard in the region. In order to support the government of the Kyrgyz Republic in the development of a country-level Disaster Risk Reduction strategy, a comprehensive seismic risk study has been developed with the support of the World Bank. As part of this project, state-of-the-art hazard, exposure and vulnerability models have been developed and combined into the assessment of direct physical and economic risk on residential, educational and transportation infrastructure. The seismic hazard has been modelled with three different approaches, in order to provide a comprehensive overview of the possible consequences. A probabilistic seismic hazard assessment (PSHA) approach has been used to quantitatively evaluate the distribution of expected ground shaking intensity, as constrained by the compiled earthquake catalogue and associated seismic source model. A set of specific seismic scenarios based on events generated from known fault systems have been also considered, in order to provide insight on the expected consequences in case of strong events in proximity of densely inhabited areas. Furthermore, long-span catalogues of events have been generated stochastically and employed in the probabilistic analysis of expected losses over the territory of the Kyrgyz Republic. Damage and risk estimates have been computed by using an exposure model recently developed for the country, combined with the assignment of suitable fragility/vulnerability models. The risk estimation has been carried out with spatial aggregation at the district (rayon) level. The obtained results confirm the high level of seismic risk throughout the country, also pinpointing the location of several risk hotspots, particularly in the southern districts, in correspondence with the Ferghana valley. The outcome of this project will further support the local

  19. Second and Third Quarters Hanford Seismic Report for Fiscal Year 1999

    Energy Technology Data Exchange (ETDEWEB)

    DC Hartshorn; SP Reidel; AC Rohay

    1999-11-09

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. For the HSN, there were 270 triggers during the second quarter of fiscal year (FY) 1999 and 229 triggers during the third quarter on the primary recording system. During the second quarter, 22 seismic events were located; 11 were earthquakes in the Columbia River Basalt Group, 6 were earthquakes in the crystalline basement, and 5 were quarry blasts. Two earthquakes appear to be related to major geologic structures, eight earthquakes occurred in known swarm areas, and seven earthquakes were random occurrences. During the third quarter, 23 seismic events were located; 11 were earthquakes in the Columbia River Basalt Group, 4 were earthquakes in the pre-basalt sediments, 4 were earthquakes in the crystalline basement, and 4 were quarry blasts. Five earthquakes occurred in known swarm areas, six earthquakes formed a new swarm near the Horse Heavens Hills and Presser, Washington, and eight earthquakes were random occurrences. No earthquakes triggered the Hanford Strong Motion Accelerometers during the second or third quarters of FY 1999.

  20. Does visual working memory represent the predicted locations of future target objects? An event-related brain potential study.

    Science.gov (United States)

    Grubert, Anna; Eimer, Martin

    2015-11-11

    During the maintenance of task-relevant objects in visual working memory, the contralateral delay activity (CDA) is elicited over the hemisphere opposite to the visual field where these objects are presented. The presence of this lateralised CDA component demonstrates the existence of position-dependent object representations in working memory. We employed a change detection task to investigate whether the represented object locations in visual working memory are shifted in preparation for the known location of upcoming comparison stimuli. On each trial, bilateral memory displays were followed after a delay period by bilateral test displays. Participants had to encode and maintain three visual objects on one side of the memory display, and to judge whether they were identical or different to three objects in the test display. Task-relevant memory and test stimuli were located in the same visual hemifield in the no-shift task, and on opposite sides in the horizontal shift task. CDA components of similar size were triggered contralateral to the memorized objects in both tasks. The absence of a polarity reversal of the CDA in the horizontal shift task demonstrated that there was no preparatory shift of memorized object location towards the side of the upcoming comparison stimuli. These results suggest that visual working memory represents the locations of visual objects during encoding, and that the matching of memorized and test objects at different locations is based on a comparison process that can bridge spatial translations between these objects. This article is part of a Special Issue entitled SI: Prediction and Attention. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Looking for a Location: Dissociated Effects of Event-Related Plausibility and Verb–Argument Information on Predictive Processing in Aphasia

    Science.gov (United States)

    Dickey, Michael Walsh; Warren, Tessa

    2016-01-01

    Purpose This study examined the influence of verb–argument information and event-related plausibility on prediction of upcoming event locations in people with aphasia, as well as older and younger, neurotypical adults. It investigated how these types of information interact during anticipatory processing and how the ability to take advantage of the different types of information is affected by aphasia. Method This study used a modified visual-world task to examine eye movements and offline photo selection. Twelve adults with aphasia (aged 54–82 years) as well as 44 young adults (aged 18–31 years) and 18 older adults (aged 50–71 years) participated. Results Neurotypical adults used verb argument status and plausibility information to guide both eye gaze (a measure of anticipatory processing) and image selection (a measure of ultimate interpretation). Argument status did not affect the behavior of people with aphasia in either measure. There was only limited evidence of interaction between these 2 factors in eye gaze data. Conclusions Both event-related plausibility and verb-based argument status contributed to anticipatory processing of upcoming event locations among younger and older neurotypical adults. However, event-related likelihood had a much larger role in the performance of people with aphasia than did verb-based knowledge regarding argument structure. PMID:27997951

  2. Looking for a Location: Dissociated Effects of Event-Related Plausibility and Verb-Argument Information on Predictive Processing in Aphasia.

    Science.gov (United States)

    Hayes, Rebecca A; Dickey, Michael Walsh; Warren, Tessa

    2016-12-01

    This study examined the influence of verb-argument information and event-related plausibility on prediction of upcoming event locations in people with aphasia, as well as older and younger, neurotypical adults. It investigated how these types of information interact during anticipatory processing and how the ability to take advantage of the different types of information is affected by aphasia. This study used a modified visual-world task to examine eye movements and offline photo selection. Twelve adults with aphasia (aged 54-82 years) as well as 44 young adults (aged 18-31 years) and 18 older adults (aged 50-71 years) participated. Neurotypical adults used verb argument status and plausibility information to guide both eye gaze (a measure of anticipatory processing) and image selection (a measure of ultimate interpretation). Argument status did not affect the behavior of people with aphasia in either measure. There was only limited evidence of interaction between these 2 factors in eye gaze data. Both event-related plausibility and verb-based argument status contributed to anticipatory processing of upcoming event locations among younger and older neurotypical adults. However, event-related likelihood had a much larger role in the performance of people with aphasia than did verb-based knowledge regarding argument structure.

  3. Seismic monitoring of soft-rock landslides: the Super-Sauze and Valoria case studies

    Science.gov (United States)

    Tonnellier, Alice; Helmstetter, Agnès; Malet, Jean-Philippe; Schmittbuhl, Jean; Corsini, Alessandro; Joswig, Manfred

    2013-06-01

    This work focuses on the characterization of seismic sources observed in clay-shale landslides. Two landslides are considered: Super-Sauze (France) and Valoria (Italy). The two landslides are developed in reworked clay-shales but differ in terms of dimensions and displacement rates. Thousands of seismic signals have been identified by a small seismic array in spite of the high-seismic attenuation of the material. Several detection methods are tested. A semi-automatic detection method is validated by the comparison with a manual detection. Seismic signals are classified in three groups based on the frequency content, the apparent velocity and the differentiation of P and S waves. It is supposed that the first group of seismic signals is associated to shearing or fracture events within the landslide bodies, while the second group may correspond to rockfalls or debris flows. A last group corresponds to external earthquakes. Seismic sources are located with an automatic beam-forming location method. Sources are clustered in several parts of the landslide in agreement with geomorphological observations. We found that the rate of rockfall and fracture events increases after periods of heavy rainfall or snowmelt. The rate of microseismicity and rockfall activity is also positively correlated with landslide displacement rates. External earthquakes did not influence the microseismic activity or the landslide movement, probably because the earthquake ground motion was too weak to trigger landslide events during the observation periods.

  4. ANZA Seismic Network- From Monitoring to Science

    Science.gov (United States)

    Vernon, F.; Eakin, J.; Martynov, V.; Newman, R.; Offield, G.; Hindley, A.; Astiz, L.

    2007-05-01

    The ANZA Seismic Network (http:eqinfo.ucsd.edu) utilizes broadband and strong motion sensors with 24-bit dataloggers combined with real-time telemetry to monitor local and regional seismicity in southernmost California. The ANZA network provides real-time data to the IRIS DMC, California Integrated Seismic Network (CISN), other regional networks, and the Advanced National Seismic System (ANSS), in addition to providing near real-time information and monitoring to the greater San Diego community. Twelve high dynamic range broadband and strong motion sensors adjacent to the San Jacinto Fault zone contribute data for earthquake source studies and continue the monitoring of the seismic activity of the San Jacinto fault initiated 24 years ago. Five additional stations are located in the San Diego region with one more station on San Clemente Island. The ANZA network uses the advance wireless networking capabilities of the NSF High Performance Wireless Research and Education Network (http:hpwren.ucsd.edu) to provide the communication infrastructure for the real-time telemetry of Anza seismic stations. The ANZA network uses the Antelope data acquisition software. The combination of high quality hardware, communications, and software allow for an annual network uptime in excess of 99.5% with a median annual station real-time data return rate of 99.3%. Approximately 90,000 events, dominantly local sources but including regional and teleseismic events, comprise the ANZA network waveform database. All waveform data and event data are managed using the Datascope relational database. The ANZA network data has been used in a variety of scientific research including detailed structure of the San Jacinto Fault Zone, earthquake source physics, spatial and temporal studies of aftershocks, array studies of teleseismic body waves, and array studies on the source of microseisms. To augment the location, detection, and high frequency observations of the seismic source spectrum from local

  5. Views on seismic design standardization of structures, systems and components of nuclear facilities

    International Nuclear Information System (INIS)

    Reddy, G.R.

    2011-01-01

    Structures, Systems and Components (SSCs) of nuclear facilities have to be designed for normal operating loads such as dead weight, pressure, temperature etc., and accidental loads such as earthquakes, floods, extreme, wind air craft impact, explosions etc. Manmade accidents such as aircraft impact, explosions etc., sometimes may be considered as design basis event and sometimes taken care by providing administrative controls. This will not be possible in the case of natural events such as earthquakes, flooding, extreme winds etc. Among natural events earthquakes are considered as most devastating and need to be considered as design basis event which has certain annual frequency specified in design codes. For example nuclear power plants are designed for a seismic event has 10000 year return period. It is generally felt that design of SSCs for earthquake loads is very time consuming and expensive. Conventional seismic design approaches demands for large number of supports for systems and components. This results in large space occupation and in turn creates difficulties for maintenance and in service inspection of systems and components. In addition, complete exercise of design need to be repeated for plants being located at different sites due to different seismic demands. However, advanced seismic response control methods will help to standardize the seismic design meeting the safety and economy. These methods adopt passive, semi active and active devices, and base isolators to control the seismic response. In nuclear industry, it is advisable to go for passive devices to control the seismic responses. Ideally speaking, these methods will make the designs made for normal loads can also satisfy the seismic demand without calling for change in material, geometry, layout etc. in the SSCs. This paper explain the basic ideas of seismic response control methods, demonstrate the effectiveness of control methods through case studies and eventually give the procedure to

  6. NSR&D Program Fiscal Year (FY) 2015 Call for Proposals Mitigation of Seismic Risk at Nuclear Facilities using Seismic Isolation

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Justin [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-02-01

    Seismic isolation (SI) has the potential to drastically reduce seismic response of structures, systems, or components (SSCs) and therefore the risk associated with large seismic events (large seismic event could be defined as the design basis earthquake (DBE) and/or the beyond design basis earthquake (BDBE) depending on the site location). This would correspond to a potential increase in nuclear safety by minimizing the structural response and thus minimizing the risk of material release during large seismic events that have uncertainty associated with their magnitude and frequency. The national consensus standard America Society of Civil Engineers (ASCE) Standard 4, Seismic Analysis of Safety Related Nuclear Structures recently incorporated language and commentary for seismically isolating a large light water reactor or similar large nuclear structure. Some potential benefits of SI are: 1) substantially decoupling the SSC from the earthquake hazard thus decreasing risk of material release during large earthquakes, 2) cost savings for the facility and/or equipment, and 3) applicability to both nuclear (current and next generation) and high hazard non-nuclear facilities. Issue: To date no one has evaluated how the benefit of seismic risk reduction reduces cost to construct a nuclear facility. Objective: Use seismic probabilistic risk assessment (SPRA) to evaluate the reduction in seismic risk and estimate potential cost savings of seismic isolation of a generic nuclear facility. This project would leverage ongoing Idaho National Laboratory (INL) activities that are developing advanced (SPRA) methods using Nonlinear Soil-Structure Interaction (NLSSI) analysis. Technical Approach: The proposed study is intended to obtain an estimate on the reduction in seismic risk and construction cost that might be achieved by seismically isolating a nuclear facility. The nuclear facility is a representative pressurized water reactor building nuclear power plant (NPP) structure

  7. Earthquake clustering in modern seismicity and its relationship with strong historical earthquakes around Beijing, China

    Science.gov (United States)

    Wang, Jian; Main, Ian G.; Musson, Roger M. W.

    2017-11-01

    Beijing, China's capital city, is located in a typical intraplate seismic belt, with relatively high-quality instrumental catalogue data available since 1970. The Chinese historical earthquake catalogue contains six strong historical earthquakes of Ms ≥ 6 around Beijing, the earliest in 294 AD. This poses a significant potential hazard to one of the most densely populated and economically active parts of China. In some intraplate areas, persistent clusters of events associated with historical events can occur over centuries, for example, the ongoing sequence in the New Madrid zone of the eastern US. Here we will examine the evidence for such persistent clusters around Beijing. We introduce a metric known as the `seismic density index' that quantifies the degree of clustering of seismic energy release. For a given map location, this multi-dimensional index depends on the number of events, their magnitudes, and the distances to the locations of the surrounding population of earthquakes. We apply the index to modern instrumental catalogue data between 1970 and 2014, and identify six clear candidate zones. We then compare these locations to earthquake epicentre and seismic intensity data for the six largest historical earthquakes. Each candidate zone contains one of the six historical events, and the location of peak intensity is within 5 km or so of the reported epicentre in five of these cases. In one case—the great Ms 8 earthquake of 1679—the peak is closer to the area of strongest shaking (Intensity XI or more) than the reported epicentre. The present-day event rates are similar to those predicted by the modified Omori law but there is no evidence of ongoing decay in event rates. Accordingly, the index is more likely to be picking out the location of persistent weaknesses in the lithosphere. Our results imply zones of high seismic density index could be used in principle to indicate the location of unrecorded historical of palaeoseismic events, in China and

  8. New Seismic Monitoring Station at Mohawk Ridge, Valles Caldera

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Peter Morse [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-20

    Two new broadband digital seismic stations were installed in the Valles Caldera in 2011 and 2012. The first is located on the summit of Cerros del Abrigo (station code CDAB) and the second is located on the flanks of San Antonio Mountain (station code SAMT). Seismic monitoring stations in the caldera serve multiple purposes. These stations augment and expand the current coverage of the Los Alamos Seismic Network (LASN), which is operated to support seismic and volcanic hazards studies for LANL and northern New Mexico (Figure 1). They also provide unique continuous seismic data within the caldera that can be used for scientific studies of the caldera’s substructure and detection of very small seismic signals that may indicate changes in the current and evolving state of remnant magma that is known to exist beneath the caldera. Since the installation of CDAB and SAMT, several very small earthquakes have already been detected near San Antonio Mountain just west of SAMT (Figure 2). These are the first events to be seen in that area. Caldera stations also improve the detection and epicenter determination quality for larger local earthquakes on the Pajarito Fault System east of the Preserve and the Nacimiento Uplift to the west. These larger earthquakes are a concern to LANL Seismic Hazards assessments and seismic monitoring of the Los Alamos region, including the VCNP, is a DOE requirement. Currently the next closest seismic stations to the caldera are on Pipeline Road (PPR) just west of Los Alamos, and Peralta Ridge (PER) south of the caldera. There is no station coverage near the resurgent dome, Redondo Peak, in the center of the caldera. Filling this “hole” is the highest priority for the next new LASN station. We propose to install this station in 2018 on Mohawk Ridge just east of Redondito, in the same area already occupied by other scientific installations, such as the MCON flux tower operated by UNM.

  9. The Global Detection Capability of the IMS Seismic Network in 2013 Inferred from Ambient Seismic Noise Measurements

    Science.gov (United States)

    Gaebler, P. J.; Ceranna, L.

    2016-12-01

    All nuclear explosions - on the Earth's surface, underground, underwater or in the atmosphere - are banned by the Comprehensive Nuclear-Test-Ban Treaty (CTBT). As part of this treaty, a verification regime was put into place to detect, locate and characterize nuclear explosion testings at any time, by anyone and everywhere on the Earth. The International Monitoring System (IMS) plays a key role in the verification regime of the CTBT. Out of the different monitoring techniques used in the IMS, the seismic waveform approach is the most effective technology for monitoring nuclear underground testing and to identify and characterize potential nuclear events. This study introduces a method of seismic threshold monitoring to assess an upper magnitude limit of a potential seismic event in a certain given geographical region. The method is based on ambient seismic background noise measurements at the individual IMS seismic stations as well as on global distance correction terms for body wave magnitudes, which are calculated using the seismic reflectivity method. From our investigations we conclude that a global detection threshold of around mb 4.0 can be achieved using only stations from the primary seismic network, a clear latitudinal dependence for the detection thresholdcan be observed between northern and southern hemisphere. Including the seismic stations being part of the auxiliary seismic IMS network results in a slight improvement of global detection capability. However, including wave arrivals from distances greater than 120 degrees, mainly PKP-wave arrivals, leads to a significant improvement in average global detection capability. In special this leads to an improvement of the detection threshold on the southern hemisphere. We further investigate the dependence of the detection capability on spatial (latitude and longitude) and temporal (time) parameters, as well as on parameters such as source type and percentage of operational IMS stations.

  10. First Quarter Hanford Seismic Report for Fiscal Year 1999

    Energy Technology Data Exchange (ETDEWEB)

    DC Hartshorn; SP Reidel; AC Rohay

    1999-05-26

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and its contractors. They also locate and identify sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consists of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The operational rate for the first quarter of FY99 for stations in the HSN was 99.8%. There were 121 triggers during the first quarter of fiscal year 1999. Fourteen triggers were local earthquakes; seven (50%) were in the Columbia River Basalt Group, no earthquakes occurred in the pre-basalt sediments, and seven (50%) were in the crystalline basement. One earthquake (7%) occurred near or along the Horn Rapids anticline, seven earthquakes (50%) occurred in a known swarm area, and six earthquakes (43%) were random occurrences. No earthquakes triggered the Hanford Strong Motion Accelerometer during the first quarter of FY99.

  11. Improving the Detectability of the Catalan Seismic Network for Local Seismic Activity Monitoring

    Science.gov (United States)

    Jara, Jose Antonio; Frontera, Tànit; Batlló, Josep; Goula, Xavier

    2016-04-01

    The seismic survey of the territory of Catalonia is mainly performed by the regional seismic network operated by the Cartographic and Geologic Institute of Catalonia (ICGC). After successive deployments and upgrades, the current network consists of 16 permanent stations equipped with 3 component broadband seismometers (STS2, STS2.5, CMG3ESP and CMG3T), 24 bits digitizers (Nanometrics Trident) and VSAT telemetry. Data are continuously sent in real-time via Hispasat 1D satellite to the ICGC datacenter in Barcelona. Additionally, data from other 10 stations of neighboring areas (Spain, France and Andorra) are continuously received since 2011 via Internet or VSAT, contributing both to detect and to locate events affecting the region. More than 300 local events with Ml ≥ 0.7 have been yearly detected and located in the region. Nevertheless, small magnitude earthquakes, especially those located in the south and south-west of Catalonia may still go undetected by the automatic detection system (DAS), based on Earthworm (USGS). Thus, in order to improve the detection and characterization of these missed events, one or two new stations should be installed. Before making the decision about where to install these new stations, the performance of each existing station is evaluated taking into account the fraction of detected events using the station records, compared to the total number of events in the catalogue, occurred during the station operation time from January 1, 2011 to December 31, 2014. These evaluations allow us to build an Event Detection Probability Map (EDPM), a required tool to simulate EDPMs resulting from different network topology scenarios depending on where these new stations are sited, and becoming essential for the decision-making process to increase and optimize the event detection probability of the seismic network.

  12. Real-time monitoring of seismic data using satellite telemetry

    Directory of Open Access Journals (Sweden)

    L. Merucci

    1997-06-01

    Full Text Available This article describes the ARGO Satellite Seismic Network (ARGO SSN as a reliable system for monitoring, collection, visualisation and analysis of seismic and geophysical low-frequency data, The satellite digital telemetry system is composed of peripheral geophysical stations, a centraI communications node (master sta- tion located in CentraI Italy, and a data collection and processing centre located at ING (Istituto Nazionale di Geofisica, Rome. The task of the peripheral stations is to digitalise and send via satellite the geophysical data collected by the various sensors to the master station. The master station receives the data and forwards them via satellite to the ING in Rome; it also performs alI the monitoring functions of satellite communications. At the data collection and processing centre of ING, the data are received and analysed in real time, the seismic events are identified and recorded, the low-frequency geophysical data are stored. In addition, the generaI sta- tus of the satellite network and of each peripheral station connected, is monitored. The procedure for analysjs of acquired seismic signals allows the automatic calculation of local magnitude and duration magnitude The communication and data exchange between the seismic networks of Greece, Spain and Italy is the fruit of a recent development in the field of technology of satellite transmission of ARGO SSN (project of European Community "Southern Europe Network for Analysis of Seismic Data"

  13. Seismic rupture study using near-source data: application to seismic hazard assessment

    International Nuclear Information System (INIS)

    Hernandez, Bruno

    2000-01-01

    This work presents seismic source studies using near-field data. In accordance with the quality and the quantity of available data we developed and applied various methods to characterize the seismic source. Macro-seismic data are used to verify if simple and robust methods used on recent instrumental earthquakes may provide a good tool to calibrate historical events in France. These data are often used to characterize earthquakes to be taken into account for seismic hazard assessment in moderate seismicity regions. Geodetic data (SAR, GPS) are used to estimate the slip distribution on the fault during the 1992, Landers, California earthquake. These data are also used to precise the location and the geometry of the main events of the 1997, Colfiorito, central Italy, earthquake sequence. Finally, the strong motions contain the most complete information about rupture process. These data are used to discriminate between two possible fault planes of the 1999, north India, Chamoli earthquake. The strong motions recorded close to the 1999, Mexico, Oaxaca earthquake are used to constrain the rupture history. Strong motions a.re also used in combination with geodetic data to access the rupture history of the Landers earthquake and the main events of the Colfiorito seismic sequence. For the Landers earthquake, the data quality and complementarity offered the possibility to describe the rupture development with accuracy. The large heterogeneities in both slip amplitude and rupture velocity variations suggest that the rupture propagates by breaking successive asperities rather than by propagating like a pulse at constant velocity. The rupture front slows as it encounters barriers and accelerates within main asperities. (author)

  14. Effects of land use and sample location on nitrate-stream flow hysteresis descriptors during storm events

    Science.gov (United States)

    Feinson, Lawrence S.; Gibs, Jacob; Imbrigiotta, Thomas E.; Garrett, Jessica D.

    2016-01-01

    The U.S. Geological Survey's New Jersey and Iowa Water Science Centers deployed ultraviolet-visible spectrophotometric sensors at water-quality monitoring sites on the Passaic and Pompton Rivers at Two Bridges, New Jersey, on Toms River at Toms River, New Jersey, and on the North Raccoon River near Jefferson, Iowa to continuously measure in-stream nitrate plus nitrite as nitrogen (NO3 + NO2) concentrations in conjunction with continuous stream flow measurements. Statistical analysis of NO3 + NO2 vs. stream discharge during storm events found statistically significant links between land use types and sampling site with the normalized area and rotational direction of NO3 + NO2-stream discharge (N-Q) hysteresis patterns. Statistically significant relations were also found between the normalized area of a hysteresis pattern and several flow parameters as well as the normalized area adjusted for rotational direction and minimum NO3 + NO2 concentrations. The mean normalized hysteresis area for forested land use was smaller than that of urban and agricultural land uses. The hysteresis rotational direction of the agricultural land use was opposite of that of the urban and undeveloped land uses. An r2 of 0.81 for the relation between the minimum normalized NO3 + NO2 concentration during a storm vs. the normalized NO3 + NO2 concentration at peak flow suggested that dilution was the dominant process controlling NO3 + NO2 concentrations over the course of most storm events.

  15. Micro-seismic imaging using a source function independent full waveform inversion method

    Science.gov (United States)

    Wang, Hanchen; Alkhalifah, Tariq

    2018-03-01

    At the heart of micro-seismic event measurements is the task to estimate the location of the source micro-seismic events, as well as their ignition times. The accuracy of locating the sources is highly dependent on the velocity model. On the other hand, the conventional micro-seismic source locating methods require, in many cases manual picking of traveltime arrivals, which do not only lead to manual effort and human interaction, but also prone to errors. Using full waveform inversion (FWI) to locate and image micro-seismic events allows for an automatic process (free of picking) that utilizes the full wavefield. However, full waveform inversion of micro-seismic events faces incredible nonlinearity due to the unknown source locations (space) and functions (time). We developed a source function independent full waveform inversion of micro-seismic events to invert for the source image, source function and the velocity model. It is based on convolving reference traces with these observed and modeled to mitigate the effect of an unknown source ignition time. The adjoint-state method is used to derive the gradient for the source image, source function and velocity updates. The extended image for the source wavelet in Z axis is extracted to check the accuracy of the inverted source image and velocity model. Also, angle gathers is calculated to assess the quality of the long wavelength component of the velocity model. By inverting for the source image, source wavelet and the velocity model simultaneously, the proposed method produces good estimates of the source location, ignition time and the background velocity for synthetic examples used here, like those corresponding to the Marmousi model and the SEG/EAGE overthrust model.

  16. Micro-seismic imaging using a source function independent full waveform inversion method

    KAUST Repository

    Wang, Hanchen

    2018-03-26

    At the heart of micro-seismic event measurements is the task to estimate the location of the source micro-seismic events, as well as their ignition times. The accuracy of locating the sources is highly dependent on the velocity model. On the other hand, the conventional micro-seismic source locating methods require, in many cases manual picking of traveltime arrivals, which do not only lead to manual effort and human interaction, but also prone to errors. Using full waveform inversion (FWI) to locate and image micro-seismic events allows for an automatic process (free of picking) that utilizes the full wavefield. However, full waveform inversion of micro-seismic events faces incredible nonlinearity due to the unknown source locations (space) and functions (time). We developed a source function independent full waveform inversion of micro-seismic events to invert for the source image, source function and the velocity model. It is based on convolving reference traces with these observed and modeled to mitigate the effect of an unknown source ignition time. The adjoint-state method is used to derive the gradient for the source image, source function and velocity updates. The extended image for the source wavelet in Z axis is extracted to check the accuracy of the inverted source image and velocity model. Also, angle gathers is calculated to assess the quality of the long wavelength component of the velocity model. By inverting for the source image, source wavelet and the velocity model simultaneously, the proposed method produces good estimates of the source location, ignition time and the background velocity for synthetic examples used here, like those corresponding to the Marmousi model and the SEG/EAGE overthrust model.

  17. Focusing patterns of seismicity with relocation and collapsing

    Science.gov (United States)

    Li, Ka Lok; Gudmundsson, Ólafur; Tryggvason, Ari; Bödvarsson, Reynir; Brandsdóttir, Bryndís

    2016-07-01

    Seismicity is generally concentrated on faults or in fault zones of varying, sometimes complex geometry. An earthquake catalog, compiled over time, contains useful information about this geometry, which can help understanding the tectonics of a region. Interpreting the geometrical distribution of events in a catalog is often complicated by the diffuseness of the earthquake locations. Here, we explore a number of strategies to reduce this diffuseness and hence simplify the seismicity pattern of an earthquake catalog. These strategies utilize information about event locations contained in their overall catalog distribution. They apply this distribution as an a priori constraint on relocations of the events, or as an attractor for each individual event in a collapsing scheme, and thereby focus the locations. The latter strategy is not a relocation strategy in a strict sense, although event foci are moved, because the movements are not driven by data misfit. Both strategies simplify the seismicity pattern of the catalog and may help to interpret it. A synthetic example and a real-data example from an aftershock sequence in south west Iceland are presented to demonstrate application of the strategies. Entropy is used to quantify their effect.

  18. Local seismic monitoring east and north of Toronto - Volume 1

    International Nuclear Information System (INIS)

    Mohajer, A.A.; Doughty, M.

    1996-08-01

    Monitoring of small magnitude ('micro') earthquakes in a dense local network is one of the techniques used to delineate currently active faults and seismic sources. The conventional wisdom is that smaller, but more frequent, seismic events normally occur on active fault planes and a log linear empirical relation between frequency and magnitude can be used to estimate the magnitude and recurrence (frequency) of the larger events. A program of site-specific seismic monitoring has been supported by the AECB since 1991, to investigate the feasibility of microearthquake detection in suburban areas of east Toronto in order to assess the rate activity of local events in the vicinity of the nuclear power plants at Pickering and Darlington. For deployment of the seismic stations at the most favorable locations an extensive background noise survey was carried out. This survey involved measuring and comparing the amplitude response of the ambient vibration caused by natural phenomena (e.g. wind blow, water flow, wave action) or human activities such as farming, mining and industrial work at 25 test sites. Subsequently, a five-station seismic network, with a 30 km aperture, was selected between the Pickering and Darlington nuclear power plants on Lake Ontario, to the south, and Lake Scugog to the north. The detection threshold obtained for two of the stations allows recording of local events M L =0-2, a magnitude range which is usually not detected by regional seismic networks. An analysis of several thousand triggered signals resulted in the identification of about 120 local events, which can not be assigned to any source other than the natural release of crustal stresses. The recurrence frequency of these microearthquakes shows a linear relationship which matches that of larger events in the last two centuries in this region. The preliminary results indicate that the stress is currently accumulating and is being released within clusters of small earthquakes

  19. Seismic instrumentation

    International Nuclear Information System (INIS)

    1984-06-01

    RFS or Regles Fondamentales de Surete (Basic Safety Rules) applicable to certain types of nuclear facilities lay down requirements with which compliance, for the type of facilities and within the scope of application covered by the RFS, is considered to be equivalent to compliance with technical French regulatory practice. The object of the RFS is to take advantage of standardization in the field of safety, while allowing for technical progress in that field. They are designed to enable the operating utility and contractors to know the rules pertaining to various subjects which are considered to be acceptable by the Service Central de Surete des Installations Nucleaires, or the SCSIN (Central Department for the Safety of Nuclear Facilities). These RFS should make safety analysis easier and lead to better understanding between experts and individuals concerned with the problems of nuclear safety. The SCSIN reserves the right to modify, when considered necessary, any RFS and specify, if need be, the terms under which a modification is deemed retroactive. The aim of this RFS is to define the type, location and operating conditions for seismic instrumentation needed to determine promptly the seismic response of nuclear power plants features important to safety to permit comparison of such response with that used as the design basis

  20. The 2017 Maple Creek Seismic Swarm in Yellowstone National Park

    Science.gov (United States)

    Pang, G.; Hale, J. M.; Farrell, J.; Burlacu, R.; Koper, K. D.; Smith, R. B.

    2017-12-01

    The University of Utah Seismograph Stations (UUSS) performs near-real-time monitoring of seismicity in the region around Yellowstone National Park in partnership with the United States Geological Survey and the National Park Service. UUSS operates and maintains 29 seismic stations with network code WY (short-period, strong-motion, and broadband) and records data from five other seismic networks—IW, MB, PB, TA, and US—to enhance the location capabilities in the Yellowstone region. A seismic catalog is produced using a conventional STA/LTA detector and single-event location techniques (Hypoinverse). On June 12, 2017, a seismic swarm began in Yellowstone National Park about 5 km east of Hebgen Lake. The swarm is adjacent to the source region of the 1959 MW 7.3 Hebgen Lake earthquake, in an area corresponding to positive Coulumb stress change from that event. As of Aug. 1, 2017, the swarm consists of 1481 earthquakes with 1 earthquake above magnitude 4, 8 earthquakes in the magnitude 3 range, 115 earthquakes in the magnitude 2 range, 469 earthquakes in the magnitude 1 range, 856 earthquakes in the magnitude 0 range, 22 earthquakes with negative magnitudes, and 10 earthquakes with no magnitude. Earthquake depths are mostly between 3 and 10 km and earthquake depth increases toward the northwest. Moment tensors for the 2 largest events (3.6 MW and 4.4. MW) show strike-slip faulting with T axes oriented NE-SW, consistent with the regional stress field. We are currently using waveform cross-correlation methods to measure differential travel times that are being used with the GrowClust program to generate high-accuracy relative relocations. Those locations will be used to identify structures in the seismicity and make inferences about the tectonic and magmatic processes causing the swarm.

  1. Acoustic event location and background noise characterization on a free flying infrasound sensor network in the stratosphere

    Science.gov (United States)

    Bowman, Daniel C.; Albert, Sarah A.

    2018-06-01

    A variety of Earth surface and atmospheric sources generate low-frequency sound waves that can travel great distances. Despite a rich history of ground-based sensor studies, very few experiments have investigated the prospects of free floating microphone arrays at high altitudes. However, recent initiatives have shown that such networks have very low background noise and may sample an acoustic wave field that is fundamentally different than that at Earth's surface. The experiments have been limited to at most two stations at altitude, making acoustic event detection and localization difficult. We describe the deployment of four drifting microphone stations at altitudes between 21 and 24 km above sea level. The stations detected one of two regional ground-based chemical explosions as well as the ocean microbarom while travelling almost 500 km across the American Southwest. The explosion signal consisted of multiple arrivals; signal amplitudes did not correlate with sensor elevation or source range. The waveforms and propagation patterns suggest interactions with gravity waves at 35-45 km altitude. A sparse network method that employed curved wave front corrections was able to determine the backazimuth from the free flying network to the acoustic source. Episodic signals similar to those seen on previous flights in the same region were noted, but their source remains unclear. Background noise levels were commensurate with those on infrasound stations in the International Monitoring System below 2 s.

  2. A new moonquake catalog from Apollo 17 seismic data I: Lunar Seismic Profiling Experiment: Thermal moonquakes and implications for surface processes

    Science.gov (United States)

    Weber, R. C.; Dimech, J. L.; Phillips, D.; Molaro, J.; Schmerr, N. C.

    2017-12-01

    Apollo 17's Lunar Seismic Profiling Experiment's (LSPE) primary objective was to constrain the near-surface velocity structure at the landing site using active sources detected by a 100 m-wide triangular geophone array. The experiment was later operated in "listening mode," and early studies of these data revealed the presence of thermal moonquakes - short-duration seismic events associated with terminator crossings. However, the full data set has never been systematically analyzed for natural seismic signal content. In this study, we analyze 8 months of continuous LSPE data using an automated event detection technique that has previously successfully been applied to the Apollo 16 Passive Seismic Experiment data. We detected 50,000 thermal moonquakes from three distinct event templates, representing impulsive, intermediate, and emergent onset of seismic energy, which we interpret as reflecting their relative distance from the array. Impulsive events occur largely at sunrise, possibly representing the thermal "pinging" of the nearby lunar lander, while emergent events occur at sunset, possibly representing cracking or slumping in more distant surface rocks and regolith. Preliminary application of an iterative event location algorithm to a subset of the impulsive waveforms supports this interpretation. We also perform 3D modeling of the lunar surface to explore the relative contribution of the lander, known rocks and surrounding topography to the thermal state of the regolith in the vicinity of the Apollo 17 landing site over the course of the lunar diurnal cycle. Further development of both this model and the event location algorithm may permit definitive discrimination between different types of local diurnal events e.g. lander noise, thermally-induced rock breakdown, or fault creep on the nearby Lee-Lincoln scarp. These results could place important constraints on both the contribution of seismicity to regolith production, and the age of young lobate scarps.

  3. Local seismicity in the area of Tornio River (northern Fennoscandia) revealed by analysis of local events registered by the POLENET/LAPNET array

    Science.gov (United States)

    Kozlovskaya, E.; Usoltseva, O.; Konstantinovskaya, N.

    2012-04-01

    The region of Tornio river (22-26 deg E and 66.5-69 deg N) is very interesting for seismological studies because it is crossed by systems of tectonic faults spreading in two different directions. 56 local earthquakes originated from this region were recorded by the POLENET/LAPNET temporary array from May, 2007 to May, 2009. Hypocenter depths of earthquakes are in the range of 1-35 km and their magnitudes vary from 0.8 to 2.2. For events detection we used the bulletin of the Institute of Seismology (Helsinki university) and Norway Global Beam Forming bulletin, compiled on the base of automatic detection of events, using the data of Noress, Arcess, Finess, SPA, HFS, APA arrays. In addition to local earthquakes, the array recorded 364 blasts from this region during the POLENET/LAPNET observation period. The events were relocated using manually measured travel times of refracted P waves from events at local distances (less than 200 km) and the 1-D velocity model along the wide-angle reflection and refraction HUKKA profile. The epicenters of relocated events show good correlation with known faults in the region. For each earthquake we constructed travel-time curves with reduction velocity of 8 km/s and compared them with the theoretical travel-time curves, in order to avoid phase misinterpretation. We found out that the largest reduction of travel time residuals during relocation was reached for deep earthquakes, due to more precise depth determination. The other aim of our study was to estimate what part of travel time residuals is not connected with the reference 1D velocity model and accuracy of location, but is rather due to 3-D heterogeneities in the crust. We also analyzed the amplitude characteristics of P-wave arrivals from different layers in the crust and upper mantle and also compared spectrograms of deep earthquakes, shallow earthquakes and blasts.

  4. Methodology and results of the seismic probabilistic safety assessment of Krsko nuclear power plant

    International Nuclear Information System (INIS)

    Vermaut, M.K.; Monette, P.; Campbell, R.D.

    1995-01-01

    A seismic IPEEE (Individual Plant Examination for External Events) was performed for the Krsko plant. The methodology adopted is the seismic PSA (Probabilistic Safety Assessment). The Krsko NPP is located on a medium to high seismicity site. The PSA study described here includes all the steps in the PSA sequence, i.e. reassessment of the site hazard, calculation of plant structures response including soil-structure interaction, seismic plant walkdowns, probabilistic seismic fragility analysis of plant structures and components, and quantification of seismic core damage frequency (CDF). Also relay chatter analysis and soil stability studies were performed. The seismic PSA described here is limited to the analysis of CDF (level I PSA). The subsequent determination and quantification of plant damage states, containment behaviour and radioactive releases to the outside (level 2 PSA) have been performed for the Krsko NPP but are not further described in this paper. The results of the seismic PSA study indicate that, with some upgrades suggested by the PSA team, the seismic induced CDF is comparable to that of most US and Western Europe NPPs. (author)

  5. Seismicity, seismic input and site effects in the Sahel-Algiers region (north Algeria)

    International Nuclear Information System (INIS)

    Harbi, A.; Maouche, S.; Oussadou, F.; Vaccari, F.; Aoudia, A.; Panza, G.F.; Benouar, D.

    2005-07-01

    Algiers city is located in a seismogenic zone. To reduce the impact of seismic risk in this capital city, a realistic modelling of the seismic ground motion using the hybrid method that combines the finite-differences method and the modal summation, is conducted. For this purpose, a complete database in terms of geological, geophysical and earthquake data is constructed. A critical re-appraisal of the seismicity of the zone (2.25 deg. E-3.50 deg. E, 36.50 deg. N-37.00 deg. N) is performed and an earthquake list, for the period 1359-2002, is compiled. The analysis of existing and newly retrieved macroseismic information allowed the definition of earthquake parameters of macroseismic events for which a degree of reliability is assigned. Geological cross-sections have been built up to model the seismic ground motion in the city, caused by the 1989 Mont-Chenoua and the 1924 Douera earthquakes; a set of synthetic seismograms and response spectral ratio is produced for Algiers. The numerical results show that the soft sediments in Algiers centre are responsible of the noticed amplification of the seismic ground motion. (author)

  6. Seismic Fracture Characterization Methodologies for Enhanced Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Queen, John H. [Hi-Geophysical, Inc., Ponca, OK (United States)

    2016-05-09

    effective seismic tools for getting information on the internal structure of faults and fractures in support of fluid flow pathway management and EGS treatment. Scattered events similar to those expected from faults and fractures are seen in the VSP reported here. Unfortunately, the source offset and well depth coverage do not allow for detailed analysis of these events. This limited coverage also precluded the use of advanced migration and imaging algorithms. More extensive acquisition is needed to support fault and fracture characterization in the geothermal reservoir at Brady's Hot Springs. The VSP was effective in generating interval velocity estimates over the depths covered by the array. Upgoing reflection events are also visible in the VSP results at locations corresponding to reflection events in the surface seismic. Overall, the high temperature rated fiber optic sensors used in the VSP produced useful results. Modeling has been found useful in the interpretation of both surface reflection seismic and VSP data. It has helped identify possible near surface scattering in the surface seismic data. It has highlighted potential scattering events from deeper faults in the VSP data. Inclusion of more detailed fault and fracture specific stiffness parameters are needed to fully interpret fault and fracture scattered events for flow properties (Pyrak-Nolte and Morris, 2000, Zhu and Snieder, 2002). Shear wave methods were applied in both the surface seismic reflection and VSP work. They were not found to be effective in the Brady's Hot Springs area. This was due to the extreme attenuation of shear waves in the near surface at Brady's. This does not imply that they will be ineffective in general. In geothermal areas where good shear waves can be recorded, modeling suggests they should be very useful for characterizing faults and fractures.

  7. Seismic verification of underground explosions

    International Nuclear Information System (INIS)

    Glenn, L.A.

    1986-01-01

    The principal tools for monitoring compliance with a comprehensive test ban treaty (CTBT), prohibiting all testing of nuclear weapons, are seismic networks and surveillance satellites. On-site inspections might also be required to resolve ambiguous events. The critical element of the monitoring system is the network of seismic stations, and in particular the in-country station. Internal stations provide much more useful data than do stations outside the borders of testing nations. For large events that are not eliminated by depth or location, one of the most useful discriminants is based on the ratio of surface-wave to body-wave magnitudes (M /sub s/ :m /sub b/ ). If an explosion and an earthquake have the same body-wave magnitude, the surface-wave magnitude for the earthquake is generally larger. It has yet to be proven that M /sub s/ :m /sub b/ is useful at low magnitudes, expecially when explosions are set off in long tunnels or odd-shaped cavities. A number of other promising regional discriminants have been suggested. Evasion opportunities and cavity decoupling are discussed

  8. The Iquique 2014 sequence: understanding its nucleation and propagation from the seismicity evolution

    Science.gov (United States)

    Fuenzalida, A.; Rietbrock, A.; Woollam, J.; Tavera, H.; Ruiz, S.

    2017-12-01

    The Northern Chile and Southern Peru region is well known for its high seismic hazard due to the lack of recent major ruptures along long segments of the subduction interface. For this reason the 2014 Iquique Mw 8.1 earthquake that occurred in the Northern Chile seismic gap was expected and high quality seismic and geodetic networks were operating at the time of the event recording the precursory phase of a mega-thrust event with unprecedented detail. In this study we used seismic data collected during the 2014 Iquique sequence to generate a detailed earthquake catalogue. This catalogue consists of more than 15,000 events identified in Northern Chile during the period between 1/3/14 and 31/5/14 and provides full coverage of the immediate foreshock sequence, the main-shock and early after-shock series. The initial catalogue was obtained by automatic data processing and only selecting events with at least two associate S phases to improve the reliability of initial locations. Subsequently, this subset of events was automatically processed again using an optimized STA/LTA triggering algorithm for both P and S-waves and constraining the detection times by estimated arrival times at each station calculated for the preliminary locations. Finally, all events were relocated using a recently developed 1D velocity model and associated station corrections. For events Mw 4 or larger that occurred between the 15/3/14 and 10/04/14, we estimated it regional moment tensor by full-waveform inversion. Our results confirm the seismic activation of the upper plate during the foreshock sequence, as well highlight a crustal activity on the fore-arc during the aftershock series. The seismicity distribution was compared to the previous inter-seismic coupling studies obtained in the region, in which we observe interplay between high and low coupling areas, which are correlated to the seismicity rate. The spatial distribution of the seismicity and the complexities on the mechanisms observed

  9. SEISMIC STUDY OF THE AGUA DE PAU GEOTHERMAL PROSPECT, SAO MIGUEL, AZORES.

    Science.gov (United States)

    Dawson, Phillip B.; Rodrigues da Silva, Antonio; Iyer, H.M.; Evans, John R.

    1985-01-01

    A 16 station array was operated over the 200 km**2 central portion of Sao Miguel utilizing 8 permanent Instituto Nacional de Meterologia e Geofisica stations and 8 USGS portable stations. Forty four local events with well constrained solutions and 15 regional events were located. In addition, hundreds of unlocatable seismic events were recorded. The most interesting seismic activity occurred in a swarm on September 6 and 7, 1983 when over 200 events were recorded in a 16 hour period. The seismic activity around Agua de Pau was centered on the east and northeast slopes of the volcano. The data suggest a boiling hydrothermal system beneath the Agua de Pau volcano, consistent with a variety of other data.

  10. Bayesian Inference for Signal-Based Seismic Monitoring

    Science.gov (United States)

    Moore, D.

    2015-12-01

    Traditional seismic monitoring systems rely on discrete detections produced by station processing software, discarding significant information present in the original recorded signal. SIG-VISA (Signal-based Vertically Integrated Seismic Analysis) is a system for global seismic monitoring through Bayesian inference on seismic signals. By modeling signals directly, our forward model is able to incorporate a rich representation of the physics underlying the signal generation process, including source mechanisms, wave propagation, and station response. This allows inference in the model to recover the qualitative behavior of recent geophysical methods including waveform matching and double-differencing, all as part of a unified Bayesian monitoring system that simultaneously detects and locates events from a global network of stations. We demonstrate recent progress in scaling up SIG-VISA to efficiently process the data stream of global signals recorded by the International Monitoring System (IMS), including comparisons against existing processing methods that show increased sensitivity from our signal-based model and in particular the ability to locate events (including aftershock sequences that can tax analyst processing) precisely from waveform correlation effects. We also provide a Bayesian analysis of an alleged low-magnitude event near the DPRK test site in May 2010 [1] [2], investigating whether such an event could plausibly be detected through automated processing in a signal-based monitoring system. [1] Zhang, Miao and Wen, Lianxing. "Seismological Evidence for a Low-Yield Nuclear Test on 12 May 2010 in North Korea". Seismological Research Letters, January/February 2015. [2] Richards, Paul. "A Seismic Event in North Korea on 12 May 2010". CTBTO SnT 2015 oral presentation, video at https://video-archive.ctbto.org/index.php/kmc/preview/partner_id/103/uiconf_id/4421629/entry_id/0_ymmtpps0/delivery/http

  11. Second and Third Quarters Hanford Seismic Report for Fiscal Year 1999

    Energy Technology Data Exchange (ETDEWEB)

    Hartshorn, Donald C.; Reidel, Stephen P.; Rohay, Alan C.

    1999-10-08

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site.

  12. Evaluation of potential severe accidents during low power and shutdown operations at Grand Gulf, Unit 1. Volume 5: Analysis of core damage frequency from seismic events for plant operational state 5 during a refueling outage

    International Nuclear Information System (INIS)

    Budnitz, R.J.; Davis, P.R.; Ravindra, M.K.; Tong, W.H.

    1994-08-01

    In 1989 the US Nuclear Regulatory Commission (NRC) initiated an extensive program to examine carefully the potential risks during low-power and shutdown operations. The program included two parallel projects, one at Sandia National Laboratories studying a boiling water reactor (Grand Gulf), and the other at Brookhaven National Laboratory studying a pressurized water reactor (Surry Unit 1). Both the Sandia and Brookhaven projects have examined only accidents initiated by internal plant faults---so-called ''internal initiators.'' This project, which has explored the likelihood of seismic-initiated core damage accidents during refueling outage conditions, is complementary to the internal-initiator analyses at Brookhaven and Sandia. This report covers the seismic analysis at Grand Gulf. All of the many systems modeling assumptions, component non-seismic failure rates, and human effort rates that were used in the internal-initiator study at Grand Gulf have been adopted here, so that the results of the study can be as comparable as possible. Both the Sandia study and this study examine only one shutdown plant operating state (POS) at Grand Gulf, namely POS 5 representing cold shutdown during a refueling outage. This analysis has been limited to work analogous to a level-1 seismic PRA, in which estimates have been developed for the core-damage frequency from seismic events during POS 5. The results of the analysis are that the core-damage frequency for earthquake-initiated accidents during refueling outages in POS 5 is found to be quite low in absolute terms, less than 10 -7 /year

  13. Evaluation of potential severe accidents during low power and shutdown operations at Surry, Unit 1. Volume 5: Analysis of core damage frequency from seismic events during mid-loop operations

    International Nuclear Information System (INIS)

    Budnitz, R.J.; Davis, P.R.; Ravindra, M.K.; Tong, W.H.

    1994-08-01

    In 1989 the US Nuclear Regulatory Commission (NRC) initiated an extensive program to examine carefully the potential risks during low-power and shutdown operations. The program included two parallel projects, one at Brookhaven National Laboratory studying a pressurized water reactor (Surry Unit 1) and the other at Sandia National Laboratories studying a boiling water reactor (Grand Gulf). Both the Brookhaven and Sandia projects have examined only accidents initiated by internal plant faults--so-called ''internal initiators.'' This project, which has explored the likelihood of seismic-initiated core damage accidents during refueling shutdown conditions, is complementary to the internal-initiator analyses at Brookhaven and Sandia. This report covers the seismic analysis at Surry Unit 1. All of the many systems modeling assumptions, component non-seismic failure rates, and human error rates that were used in the internal-initiator study at Surry have been adopted here, so that the results of the two studies can be as comparable as possible. Both the Brookhaven study and this study examine only two shutdown plant operating states (POSs) during refueling outages at Surry, called POS 6 and POS 10, which represent mid-loop operation before and after refueling, respectively. This analysis has been limited to work analogous to a level-1 seismic PRA, in which estimates have been developed for the core-damage frequency from seismic events during POSs 6 and 10. The results of the analysis are that the core-damage frequency of earthquake-initiated accidents during refueling outages in POS 6 and POS 10 is found to be low in absolute terms, less than 10 -6 /year

  14. Accurate relative location estimates for the North Korean nuclear tests using empirical slowness corrections

    Science.gov (United States)

    Gibbons, S. J.; Pabian, F.; Näsholm, S. P.; Kværna, T.; Mykkeltveit, S.

    2017-01-01

    Declared North Korean nuclear tests in 2006, 2009, 2013 and 2016 were observed seismically at regional and teleseismic distances. Waveform similarity allows the events to be located relatively with far greater accuracy than the absolute locations can be determined from seismic data alone. There is now significant redundancy in the data given the large number of regional and teleseismic stations that have recorded multiple events, and relative location estimates can be confirmed independently by performing calculations on many mutually exclusive sets of measurements. Using a 1-D global velocity model, the distances between the events estimated using teleseismic P phases are found to be approximately 25 per cent shorter than the distances between events estimated using regional Pn phases. The 2009, 2013 and 2016 events all take place within 1 km of each other and the discrepancy between the regional and teleseismic relative location estimates is no more than about 150 m. The discrepancy is much more significant when estimating the location of the more distant 2006 event relative to the later explosions with regional and teleseismic estimates varying by many hundreds of metres. The relative location of the 2006 event is challenging given the smaller number of observing stations, the lower signal-to-noise ratio and significant waveform dissimilarity at some regional stations. The 2006 event is however highly significant in constraining the absolute locations in the terrain at the Punggye-ri test-site in relation to observed surface infrastructure. For each seismic arrival used to estimate the relative locations, we define a slowness scaling factor which multiplies the gradient of seismic traveltime versus distance, evaluated at the source, relative to the applied 1-D velocity model. A procedure for estimating correction terms which reduce the double-difference time residual vector norms is presented together with a discussion of the associated uncertainty. The modified

  15. Methodology and applications for the benefit cost analysis of the seismic risk reduction in building portfolios at broadscale

    OpenAIRE

    Valcarcel, Jairo A.; Mora, Miguel G.; Cardona, Omar D.; Pujades, Lluis G.; Barbat, Alex H.; Bernal, Gabriel A.

    2013-01-01

    This article presents a methodology for an estimate of the benefit cost ratio of the seismic risk reduction in buildings portfolio at broadscale, for a world region, allowing comparing the results obtained for the countries belonging to that region. This methodology encompasses (1) the generation of a set of random seismic events and the evaluation of the spectral accelerations at the buildings location; (2) the estimation of the buildings built area, the economic value, as well as the cla...

  16. Seismic assessment of selected buildings and equipment contents of a DOE facility in UBC zone 2A

    International Nuclear Information System (INIS)

    Tong, W.H.; Deneff, C.; Griffin, M.J.

    1991-01-01

    A preliminary seismic risk assessment for selected buildings and representative equipment contents in Allied-Signal Kansas City Division was performed to identify potential seismic hazard and weakness. The site is located in the Uniform Building Code Zone 2A. The selected building structures were constructed between 1940s to 1980s. The performance goal was to qualitatively assess the potential for loss of toxic or hazardous materials and injury to plant personnel due to an earthquake event

  17. Improvements on the seismic catalog previous to the 2011 El Hierro eruption.

    Science.gov (United States)

    Domínguez Cerdeña, Itahiza; del Fresno, Carmen

    2017-04-01

    Precursors from the submarine eruption of El Hierro (Canary Islands) in 2011 included 10,000 low magnitude earthquakes and 5 cm crustal deformation within 81 days previous to the eruption onset on the 10th October. Seismicity revealed a 20 km horizontal migration from the North to the South of the island and depths ranging from 10 and 17 km with deeper events occurring further South. The earthquakes of the seismic catalog were manually picked by the IGN almost in real time, but there has not been a subsequent revision to check for new non located events jet and the completeness magnitude for the seismic catalog have strong changes during the entire swarm due to the variable number of events per day. In this work we used different techniques to improve the quality of the seismic catalog. First we applied different automatic algorithms to detect new events including the LTA-STA method. Then, we performed a semiautomatic system to correlate the new P and S detections with known phases from the original catalog. The new detected earthquakes were also located using Hypoellipse algorithm. The resulting new catalog included 15,000 new events mainly concentrated in the last weeks of the swarm and we assure a completeness magnitude of 1.2 during the whole series. As the seismicity from the original catalog was already relocated using hypoDD algorithm, we improved the location of the new events using a master-cluster relocation. This method consists in relocating earthquakes towards a cluster of well located events instead of a single event as the master-event method. In our case this cluster correspond to the relocated earthquakes from the original catalog. Finally, we obtained a new equation for the local magnitude estimation which allow us to include corrections for each seismic station in order to avoid local effects. The resulting magnitude catalog has a better fit with the moment magnitude catalog obtained for the strong earthquakes of this series in previous studies

  18. Seismic safety of nuclear power plants

    International Nuclear Information System (INIS)

    Guerpinar, A.; Godoy, A.

    2001-01-01

    This paper summarizes the work performed by the International Atomic Energy Agency in the areas of safety reviews and applied research in support of programmes for the assessment and enhancement of seismic safety in Eastern Europe and in particular WWER type nuclear power plants during the past seven years. Three major topics are discussed; engineering safety review services in relation to external events, technical guidelines for the assessment and upgrading of WWER type nuclear power plants, and the Coordinated Research Programme on 'Benchmark study for the seismic analysis and testing of WWER type nuclear power plants'. These topics are summarized in a way to provide an overview of the past and present safety situation in selected WWER type plants which are all located in Eastern European countries. Main conclusion of the paper is that although there is now a thorough understanding of the seismic safety issues in these operating nuclear power plants, the implementation of seismic upgrades to structures, systems and components are lagging behind, particularly for those cases in which the re-evaluation indicated the necessity to strengthen the safety related structures or install new safety systems. (author)

  19. First attempt to assess the viability of bluefin tuna spawning events in offshore cages located in an a priori favourable larval habitat

    Directory of Open Access Journals (Sweden)

    Patricia Reglero

    2013-10-01

    Full Text Available Most of the Atlantic bluefin tuna caught by the purse-seine fleet in the Mediterranean Sea are transferred alive into transport cages and towed to coastal facilities where they are fattened. This major fishery is targeting aggregations of reproductive bluefin tuna that continue spawning within the transport cages. Our study is the first attempt to assess the viability of the spawning events within transport cages placed offshore in a priori favourable locations for larval survival. The study was conducted in June 2010 in the Balearic Sea, a main spawning area for bluefin tuna in the Mediterranean. The location of two transport cages, one with wild and one with captive tuna, coincide with the situation of the chlorophyll front using satellite imagery as a proxy for the salinity front between resident surface waters and those of recent Atlantic origin. The results showed that bluefin tuna eggs were spawned almost every day within the two cages but few or no larvae were found. The expected larval densities estimated after applying mortality curves to the daily egg densities observed in the cages were higher than the sampled larval densities. The trajectories of the eggs after hatching estimated from a particle tracking model based on observed geostrophic currents and a drifter deployed adjacent to the cage suggest that larvae were likely to be caught close to the cages within the sampling dates. Spawning events in captive tuna in transport cages may hatch into larvae though they may experience higher mortality rates than expected in natural populations. The causes of the larval mortality are further discussed in the text. Such studies should be repeated in other spawning areas in the Mediterranean if spawning in cages located offshore in areas favourable a priori for larval survival is likely to be considered a management measurement to minimize the impact of purse-seine fishing on tuna.

  20. Green's function representations for seismic interferometry

    NARCIS (Netherlands)

    Wapenaar, C.P.A.; Fokkema, J.T.

    2006-01-01

    The term seismic interferometry refers to the principle of generating new seismic responses by crosscorrelating seismic observations at different receiver locations. The first version of this principle was derived by Claerbout (1968), who showed that the reflection response of a horizontally layered

  1. Pick- and waveform-based techniques for real-time detection of induced seismicity

    Science.gov (United States)

    Grigoli, Francesco; Scarabello, Luca; Böse, Maren; Weber, Bernd; Wiemer, Stefan; Clinton, John F.

    2018-05-01

    The monitoring of induced seismicity is a common operation in many industrial activities, such as conventional and non-conventional hydrocarbon production or mining and geothermal energy exploitation, to cite a few. During such operations, we generally collect very large and strongly noise-contaminated data sets that require robust and automated analysis procedures. Induced seismicity data sets are often characterized by sequences of multiple events with short interevent times or overlapping events; in these cases, pick-based location methods may struggle to correctly assign picks to phases and events, and errors can lead to missed detections and/or reduced location resolution and incorrect magnitudes, which can have significant consequences if real-time seismicity information are used for risk assessment frameworks. To overcome these issues, different waveform-based methods for the detection and location of microseismicity have been proposed. The main advantages of waveform-based methods is that they appear to perform better and can simultaneously detect and locate seismic events providing high-quality locations in a single step, while the main disadvantage is that they are computationally expensive. Although these methods have been applied to different induced seismicity data sets, an extensive comparison with sophisticated pick-based detection methods is still missing. In this work, we introduce our improved waveform-based detector and we compare its performance with two pick-based detectors implemented within the SeiscomP3 software suite. We test the performance of these three approaches with both synthetic and real data sets related to the induced seismicity sequence at the deep geothermal project in the vicinity of the city of St. Gallen, Switzerland.

  2. Earthquake Monitoring with the MyShake Global Smartphone Seismic Network

    Science.gov (United States)

    Inbal, A.; Kong, Q.; Allen, R. M.; Savran, W. H.

    2017-12-01

    Smartphone arrays have the potential for significantly improving seismic monitoring in sparsely instrumented urban areas. This approach benefits from the dense spatial coverage of users, as well as from communication and computational capabilities built into smartphones, which facilitate big seismic data transfer and analysis. Advantages in data acquisition with smartphones trade-off with factors such as the low-quality sensors installed in phones, high noise levels, and strong network heterogeneity, all of which limit effective seismic monitoring. Here we utilize network and array-processing schemes to asses event detectability with the MyShake global smartphone network. We examine the benefits of using this network in either triggered or continuous modes of operation. A global database of ground motions measured on stationary phones triggered by M2-6 events is used to establish detection probabilities. We find that the probability of detecting an M=3 event with a single phone located 20 nearby phones closely match the regional catalog locations. We use simulated broadband seismic data to examine how location uncertainties vary with user distribution and noise levels. To this end, we have developed an empirical noise model for the metropolitan Los-Angeles (LA) area. We find that densities larger than 100 stationary phones/km2 are required to accurately locate M 2 events in the LA basin. Given the projected MyShake user distribution, that condition may be met within the next few years.

  3. Second Quarter Hanford Seismic Report for Fiscal Year 2009

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2009-07-31

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. The Hanford Seismic Network recorded over 800 local earthquakes during the second quarter of FY 2009. Nearly all of these earthquakes were detected in the vicinity of Wooded Island, located about eight miles north of Richland just west of the Columbia River. Most of the events were considered minor (magnitude (Mc) less than 1.0) with 19 events in the 2.0-2.9 range. The estimated depths of the Wooded Island events are shallow (averaging less than 1.0 km deep) with a maximum depth estimated at 1.9 km. This places the Wooded Island events within the Columbia River Basalt Group (CRBG). The low magnitude and the shallowness of the Wooded Island events have made them undetectable to most area residents. However, some Hanford employees working within a few miles of the area of highest activity, and individuals living in homes directly across the Columbia River from the swarm center, have reported feeling some movement. The Hanford SMA network was triggered numerous times by the Wooded Island swarm events. The maximum acceleration values recorded by the SMA network were

  4. Second Quarter Hanford Seismic Report for Fiscal Year 2009

    International Nuclear Information System (INIS)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2009-01-01

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. The Hanford Seismic Network recorded over 800 local earthquakes during the second quarter of FY 2009. Nearly all of these earthquakes were detected in the vicinity of Wooded Island, located about eight miles north of Richland just west of the Columbia River. Most of the events were considered minor (magnitude (Mc) less than 1.0) with 19 events in the 2.0-2.9 range. The estimated depths of the Wooded Island events are shallow (averaging less than 1.0 km deep) with a maximum depth estimated at 1.9 km. This places the Wooded Island events within the Columbia River Basalt Group (CRBG). The low magnitude and the shallowness of the Wooded Island events have made them undetectable to most area residents. However, some Hanford employees working within a few miles of the area of highest activity, and individuals living in homes directly across the Columbia River from the swarm center, have reported feeling some movement. The Hanford SMA network was triggered numerous times by the Wooded Island swarm events. The maximum acceleration values recorded by the SMA network were

  5. Methodology for seismic PSA of NPPs

    International Nuclear Information System (INIS)

    Jirsa, P.

    1999-09-01

    A general methodology is outlined for seismic PSA (probabilistic safety assessment). The main objectives of seismic PSA include: description of the course of an event; understanding the most probable failure sequences; gaining insight into the overall probability of reactor core damage; identification of the main seismic risk contributors; identification of the range of peak ground accelerations contributing significantly to the plant risk; and comparison of the seismic risk with risks from other events. The results of seismic PSA are typically compared with those of internal PSA and of PSA of other external events. If the results of internal and external PSA are available, sensitivity studies and cost benefit analyses are performed prior to any decision regarding corrective actions. If the seismic PSA involves analysis of the containment, useful information can be gained regarding potential seismic damage of the containment. (P.A.)

  6. Improved Event Location Uncertainty Estimates

    Science.gov (United States)

    2008-06-30

    and large ones at another site . Therefore we analyze only data for Degelen Mountains of the Semipalatinsk testing grounds which includes explosions...for other test sites 31 4.1.1.3. Transportability of the NTS mb-based measurement error model 33 4.1.2. SNR-dependent bias and variance 37...China test site . b) Trajectory of median mislocation using subnetworks starting with 6-station networks and gradually increasing to 400 stations (solid

  7. Data from investigation on seismic Sea-waves events in the Eastern Mediterranean from the Birth of Christ to 500 A.D.

    Directory of Open Access Journals (Sweden)

    J. ANTONOPOULOS

    1980-06-01

    Full Text Available The Eastern Mediterranean has a long history of damaging seismic sea
    waves (Tsunamis but a great number of them which are locally generated are small. They have caused no serious damage to the coasts because their
    energy is confined by many islands of the Greek Archipelagos. However,
    some of them have been rather severe and destructive to property and
    human life.
    This paper is comprised of data from an investigation into the activity
    of seismic sea waves in the Eastern Mediterranean from the Birth of
    Christ to 500 A.D. It contains a great amount of information concerning
    earthquakes, volcanic eruptions and seismic sea waves.
    All the available information has been compiled from historical accounts,
    archives, press reports, magazines and related works.

  8. Field site investigation: Effect of mine seismicity on groundwater hydrology

    International Nuclear Information System (INIS)

    Ofoegbu, G.I.; Hsiung, S.; Chowdhury, A.H.

    1995-04-01

    The results of a field investigation on the groundwater-hydrologic effect of mining-induced earthquakes are presented in this report. The investigation was conducted at the Lucky Friday Mine, a silver-lead-zinc mine in the Coeur d'Alene Mining District of Idaho. The groundwater pressure in sections of three fracture zones beneath the water table was monitored over a 24-mo period. The fracture zones were accessed through a 360-m-long inclined borehole, drilled from the 5,700 level station of the mine. The magnitude, source location, and associated ground motions of mining-induced seismic events were also monitored during the same period, using an existing seismic instrumentation network for the mine, augmented with additional instruments installed specifically for the project by the center for Nuclear Waste Regulatory Analyses (CNWRA). More than 50 seismic events of Richter magnitude 1.0 or larger occurred during the monitoring period. Several of these events caused the groundwater pressure to increase, whereas a few caused it to decrease. Generally, the groundwater pressure increased as the magnitude of seismic event increased; for an event of a given magnitude, the groundwater pressure increased by a smaller amount as the distance of the observation point from the source of the event increased. The data was examined using regression analysis. Based on these results, it is suggested that the effect of earthquakes on groundwater flow may be better understood through mechanistic modeling. The mechanical processes and material behavior that would need to be incorporated in such a model are examined. They include a description of the effect of stress change on the permeability and water storage capacity of a fracture rock mass; transient fluid flow; and the generation and transmission of seismic waves through the rock mass

  9. Annual Hanford seismic report - fiscal year 1996

    International Nuclear Information System (INIS)

    Hartshorn, D.C.; Reidel, S.P.

    1996-12-01

    Seismic monitoring (SM) at the Hanford Site was established in 1969 by the US Geological Survey (USGS) under a contract with the US Atomic Energy Commission. Since 1980, the program has been managed by several contractors under the US Department of Energy (USDOE). Effective October 1, 1996, the Seismic Monitoring workscope, personnel, and associated contracts were transferred to the USDOE Pacific Northwest National Laboratory (PNNL). SM is tasked to provide an uninterrupted collection and archives of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) located on and encircling the Hanford Site. SM is also tasked to locate and identify sources of seismic activity and monitor changes in the historical pattern of seismic activity at the Hanford Site. The data compiled are used by SM, Waste Management, and engineering activities at the Hanford Site to evaluate seismic hazards and seismic design for the Site

  10. Swedish National Seismic Network (SNSN). A short report on recorded earthquakes during the fourth quarter of the year 2010

    Energy Technology Data Exchange (ETDEWEB)

    Boedvarsson, Reynir (Uppsala Univ. (Sweden), Dept. of Earth Sciences)

    2011-01-15

    According to an agreement with Swedish Nuclear Fuel and Waste Management Company (SKB) and Uppsala Univ., the Dept. of Earth Sciences has continued to carry out observations of seismic events at seismic stations within the Swedish National Seismic Network (SNSN). This short report gives brief information about the recorded seismicity during October through December 2010. The Swedish National Seismic Network consists of 62 stations. During October through December, 2,241 events were located whereof 158 are estimated as real earthquakes, 1,457 are estimated as explosions, 444 are induced earthquakes in the vicinity of the mines in Kiruna and Malmberget and 182 events are still considered as uncertain but these are most likely explosions and are mainly located outside the network. One earthquake had a magnitude above M{sub L} = 2.0 during the period. In November one earthquake was located 13 km SW of Haernoesand with a magnitude of M{sub L} = 2.1. The largest earthquake in October had a magnitude of M{sub L} = 1.7 and was located 12 km NE of Eksjoe and in December an earthquake with a magnitude of M{sub L} = 1.8 was located 19 km north of Motala

  11. Third Quarter Hanford Seismic Report for Fiscal Year 2009

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2009-09-30

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. The Hanford Seismic Network recorded 771 local earthquakes during the third quarter of FY 2009. Nearly all of these earthquakes were detected in the vicinity of Wooded Island, located about eight miles north of Richland just west of the Columbia River. The Wooded Island events recorded this quarter is a continuation of the swarm events observed during the January – March 2009 time period and reported in the previous quarterly report (Rohay et al, 2009). The frequency of Wooded Island events has subsided with 16 events recorded during June 2009. Most of the events were considered minor (magnitude (Mc) less than 1.0) with 25 events in the 2.0-3.0 range. The estimated depths of the Wooded Island events are shallow (averaging less than 1.0 km deep) with a maximum depth estimated at 2.2 km. This places the Wooded Island events within the Columbia River Basalt Group (CRBG). The low magnitude of the Wooded Island events has made them undetectable to all but local area residents. However, some Hanford employees working within a few miles of the area of highest activity

  12. Hydrological influences on long-term gas flow trends at locations in the Vogtland/NW Bohemian seismic region (German-Czech border

    Directory of Open Access Journals (Sweden)

    J. Heinicke

    2007-06-01

    Full Text Available One of the typical methods for the identification of seismo-hydrological effects is to monitor changes in the free gas flow throughout springs or mofettes. For several years, the gas flow regime of mineral springs at Bad Brambach (Germany and mofettes in the Nature Park Soos (Czech Republic and its dependence on hydro-/meteorological parameters have been studied. The mineral spring ‘Wettinquelle’, Bad Brambach, is a well-known seismo- hydrologically sensitive location for swarmquakes at a special epicentral area of NW Bohemia. Since 2000, a slight upward trend in the gas flow of three Bad Brambach mineral springs has been observed, which became stronger after the ‘Eisenquelle’ spring capture reconstruction (winter 2003/2004. Similar behaviour could be detected at a mofette in Soos. The results correspond to a 3He/4He mantle ratio increase in gases at mofettes in the Cheb Basin (CZ traced by other authors for more than 12 years, and could give hints for a higher degassing activity of the magma body below that area. Common and special properties in the degassing regimes of the Bad Brambach and Soos locations are discussed. It is demonstrated that the long-term gas flow trend was interrupted in 2003 because of very low groundwater levels. This effect was amplified by the artificial groundwater lowering during the ‘Eisenquelle’ spring capture reconstruction.

  13. Seismic Consequence Abstraction

    International Nuclear Information System (INIS)

    Gross, M.

    2004-01-01

    The primary purpose of this model report is to develop abstractions for the response of engineered barrier system (EBS) components to seismic hazards at a geologic repository at Yucca Mountain, Nevada, and to define the methodology for using these abstractions in a seismic scenario class for the Total System Performance Assessment - License Application (TSPA-LA). A secondary purpose of this model report is to provide information for criticality studies related to seismic hazards. The seismic hazards addressed herein are vibratory ground motion, fault displacement, and rockfall due to ground motion. The EBS components are the drip shield, the waste package, and the fuel cladding. The requirements for development of the abstractions and the associated algorithms for the seismic scenario class are defined in ''Technical Work Plan For: Regulatory Integration Modeling of Drift Degradation, Waste Package and Drip Shield Vibratory Motion and Seismic Consequences'' (BSC 2004 [DIRS 171520]). The development of these abstractions will provide a more complete representation of flow into and transport from the EBS under disruptive events. The results from this development will also address portions of integrated subissue ENG2, Mechanical Disruption of Engineered Barriers, including the acceptance criteria for this subissue defined in Section 2.2.1.3.2.3 of the ''Yucca Mountain Review Plan, Final Report'' (NRC 2003 [DIRS 163274])

  14. Seismic Consequence Abstraction

    Energy Technology Data Exchange (ETDEWEB)

    M. Gross

    2004-10-25

    The primary purpose of this model report is to develop abstractions for the response of engineered barrier system (EBS) components to seismic hazards at a geologic repository at Yucca Mountain, Nevada, and to define the methodology for using these abstractions in a seismic scenario class for the Total System Performance Assessment - License Application (TSPA-LA). A secondary purpose of this model report is to provide information for criticality studies related to seismic hazards. The seismic hazards addressed herein are vibratory ground motion, fault displacement, and rockfall due to ground motion. The EBS components are the drip shield, the waste package, and the fuel cladding. The requirements for development of the abstractions and the associated algorithms for the seismic scenario class are defined in ''Technical Work Plan For: Regulatory Integration Modeling of Drift Degradation, Waste Package and Drip Shield Vibratory Motion and Seismic Consequences'' (BSC 2004 [DIRS 171520]). The development of these abstractions will provide a more complete representation of flow into and transport from the EBS under disruptive events. The results from this development will also address portions of integrated subissue ENG2, Mechanical Disruption of Engineered Barriers, including the acceptance criteria for this subissue defined in Section 2.2.1.3.2.3 of the ''Yucca Mountain Review Plan, Final Report'' (NRC 2003 [DIRS 163274]).

  15. Seismic Probabilistic Risk Assessment (SPRA), approach and results

    International Nuclear Information System (INIS)

    Campbell, R.D.

    1995-01-01

    During the past 15 years there have been over 30 Seismic Probabilistic Risk Assessments (SPRAs) and Seismic Probabilistic Safety Assessments (SPSAs) conducted of Western Nuclear Power Plants, principally of US design. In this paper PRA and PSA are used interchangeably as the overall process is essentially the same. Some similar assessments have been done for reactors in Taiwan, Korea, Japan, Switzerland and Slovenia. These plants were also principally US supplied or built under US license. Since the restructuring of the governments in former Soviet Bloc countries, there has been grave concern regarding the safety of the reactors in these countries. To date there has been considerable activity in conducting partial seismic upgrades but the overall quantification of risk has not been pursued to the depth that it has in Western countries. This paper summarizes the methodology for Seismic PRA/PSA and compares results of two partially completed and two completed PRAs of soviet designed reactors to results from earlier PRAs on US Reactors. A WWER 440 and a WWER 1000 located in low seismic activity regions have completed PRAs and results show the seismic risk to be very low for both designs. For more active regions, partially completed PRAs of a WWER 440 and WWER 1000 located at the same site show the WWER 440 to have much greater seismic risk than the WWER 1000 plant. The seismic risk from the 1000 MW plant compares with the high end of seismic risk for earlier seismic PRAs in the US. Just as for most US plants, the seismic risk appears to be less than the risk from internal events if risk is measured is terms of mean core damage frequency. However, due to the lack of containment for the earlier WWER 440s, the risk to the public may be significantly greater due to the more probable scenario of an early release. The studies reported have not taken the accident sequences beyond the stage of core damage hence the public heath risk ratios are speculative. (author)

  16. Seismic Ecology

    Science.gov (United States)

    Seleznev, V. S.; Soloviev, V. M.; Emanov, A. F.

    The paper is devoted to researches of influence of seismic actions for industrial and civil buildings and people. The seismic actions bring influence directly on the people (vibration actions, force shocks at earthquakes) or indirectly through various build- ings and the constructions and can be strong (be felt by people) and weak (be fixed by sensing devices). The great number of work is devoted to influence of violent seismic actions (first of all of earthquakes) on people and various constructions. This work is devoted to study weak, but long seismic actions on various buildings and people. There is a need to take into account seismic oscillations, acting on the territory, at construction of various buildings on urbanized territories. Essential influence, except for violent earthquakes, man-caused seismic actions: the explosions, seismic noise, emitted by plant facilities and moving transport, radiation from high-rise buildings and constructions under action of a wind, etc. can exert. Materials on increase of man- caused seismicity in a number of regions in Russia, which earlier were not seismic, are presented in the paper. Along with maps of seismic microzoning maps to be built indicating a variation of amplitude spectra of seismic noise within day, months, years. The presence of an information about amplitudes and frequencies of oscillations from possible earthquakes and man-caused oscillations in concrete regions allows carry- ing out soundly designing and construction of industrial and civil housing projects. The construction of buildings even in not seismically dangerous regions, which have one from resonance frequencies coincident on magnitude to frequency of oscillations, emitted in this place by man-caused objects, can end in failure of these buildings and heaviest consequences for the people. The practical examples of detail of engineering- seismological investigation of large industrial and civil housing projects of Siberia territory (hydro power

  17. Improved Seismic Acquisition System and Data Processing for the Italian National Seismic Network

    Science.gov (United States)

    Badiali, L.; Marcocci, C.; Mele, F.; Piscini, A.

    2001-12-01

    A new system for acquiring and processing digital signals has been developed in the last few years at the Istituto Nazionale di Geofisica e Vulcanologia (INGV). The system makes extensive use of the internet communication protocol standards such as TCP and UDP which are used as the transport highway inside the Italian network, and possibly in a near future outside, to share or redirect data among processes. The Italian National Seismic Network has been working for about 18 years equipped with vertical short period seismometers and transmitting through analog lines, to the computer center in Rome. We are now concentrating our efforts on speeding the migration towards a fully digital network based on about 150 stations equipped with either broad band or 5 seconds sensors connected to the data center partly through wired digital communication and partly through satellite digital communication. The overall process is layered through intranet and/or internet. Every layer gathers data in a simple format and provides data in a processed format, ready to be distributed towards the next layer. The lowest level acquires seismic data (raw waveforms) coming from the remote stations. It handshakes, checks and sends data in LAN or WAN according to a distribution list where other machines with their programs are waiting for. At the next level there are the picking procedures, or "pickers", on a per instrument basis, looking for phases. A picker spreads phases, again through the LAN or WAN and according to a distribution list, to one or more waiting locating machines tuned to generate a seismic event. The event locating procedure itself, the higher level in this stack, can exchange information with other similar procedures. Such a layered and distributed structure with nearby targets allows other seismic networks to join the processing and data collection of the same ongoing event, creating a virtual network larger than the original one. At present we plan to cooperate with other

  18. Using Seismic Interferometry to Investigate Seismic Swarms

    Science.gov (United States)

    Matzel, E.; Morency, C.; Templeton, D. C.

    2017-12-01

    Seismicity provides a direct means of measuring the physical characteristics of active tectonic features such as fault zones. Hundreds of small earthquakes often occur along a fault during a seismic swarm. This seismicity helps define the tectonically active region. When processed using novel geophysical techniques, we can isolate the energy sensitive to the fault, itself. Here we focus on two methods of seismic interferometry, ambient noise correlation (ANC) and the virtual seismometer method (VSM). ANC is based on the observation that the Earth's background noise includes coherent energy, which can be recovered by observing over long time periods and allowing the incoherent energy to cancel out. The cross correlation of ambient noise between a pair of stations results in a waveform that is identical to the seismogram that would result if an impulsive source located at one of the stations was recorded at the other, the Green function (GF). The calculation of the GF is often stable after a few weeks of continuous data correlation, any perturbations to the GF after that point are directly related to changes in the subsurface and can be used for 4D monitoring.VSM is a style of seismic interferometry that provides fast, precise, high frequency estimates of the Green's function (GF) between earthquakes. VSM illuminates the subsurface precisely where the pressures are changing and has the potential to image the evolution of seismicity over time, including changes in the style of faulting. With hundreds of earthquakes, we can calculate thousands of waveforms. At the same time, VSM collapses the computational domain, often by 2-3 orders of magnitude. This allows us to do high frequency 3D modeling in the fault region. Using data from a swarm of earthquakes near the Salton Sea, we demonstrate the power of these techniques, illustrating our ability to scale from the far field, where sources are well separated, to the near field where their locations fall within each other

  19. Hanford Seismic Annual Report and Fourth Quarter Report for Fiscal Year 1999

    Energy Technology Data Exchange (ETDEWEB)

    AC Rohay; DC Hartshorn; SP Reidel

    1999-12-07

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network. (EWRN) consist of 40 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. A major reconfiguration of the HSN was initiated at the end of this quarter and the results will be reported in the first quarter report for next fiscal year (FY2000). For the HSN, there were 390 triggers during the fourth quarter of fiscal year(FY) 1999 on the primary recording system. With the implementation of dual backup systems during the second quarter of the fiscal year and an overall increase observed in sensitivity, a total of 1632 triggers were examined, identified, and processed during this fiscal year. During the fourth quarter, 24 seismic events were located by the HSN within the reporting region of 46 degrees to 47 degrees north latitude and 119 degrees to 120 degrees west longitude 9 were earthquakes in the Columbia River Basalt Group, 2 were earthquakes in the pre-basalt sediments, 10 were earthquakes in the crystalline basement; and 2 were quarry blasts. One earthquake appears to be related to a major geologic structure, 14 earthquakes occurred in known swarm areas, and 7 earthquakes were random occurrences.

  20. Mine seismicity and the Comprehensive Nuclear Test Ban Treaty

    Energy Technology Data Exchange (ETDEWEB)

    Chiappetta, F. [Blasting Analysis International, Allentown, PA (United States); Heuze, F.; Walter, W. [Lawrence Livermore National Lab., CA (United States); Hopler, R. [Powderman Consulting Inc., Oxford, MD (United States); Hsu, V. [Air Force Technical Applications Center, Patrick AFB, FL (United States); Martin, B. [Thunder Basin Coal Co., Wright, WY (United States); Pearson, C. [Los Alamos National Lab., NM (United States); Stump, B. [Southern Methodist Univ., Dallas, TX (United States); Zipf, K. [Univ. of New South Wales (Australia)

    1998-12-09

    Surface and underground mining operations generate seismic ground motions which are created by chemical explosions and ground failures. It may come as a surprise to some that the ground failures (coal bumps, first caves, pillar collapses, rockbursts, etc.) can send signals whose magnitudes are as strong or stronger than those from any mining blast. A verification system that includes seismic, infrasound, hydroacoustic and radionuclide sensors is being completed as part of the CTBT. The largest mine blasts and ground failures will be detected by this system and must be identified as distinct from signals generated by small nuclear explosions. Seismologists will analyze the seismic records and presumably should be able to separate them into earthquake-like and non earthquake-like categories, using a variety of so-called seismic discriminants. Non-earthquake essentially means explosion- or implosion-like. Such signals can be generated not only by mine blasts but also by a variety of ground failures. Because it is known that single-fired chemical explosions and nuclear explosion signals of the same yield give very similar seismic records, the non-earthquake signals will be of concern to the Treaty verification community. The magnitude of the mine-related events is in the range of seismicity created by smaller nuclear explosions or decoupled tests, which are of particular concern under the Treaty. It is conceivable that legitimate mining blasts or some mine-induced ground failures could occasionally be questioned. Information such as shot time, location and design parameters may be all that is necessary to resolve the event identity. In rare instances where the legitimate origin of the event could not be resolved by a consultation and clarification procedure, it might trigger on On-Site Inspection (OSI). Because there is uncertainty in the precise location of seismic event as determined by the International Monitoring System (IMS), the OSI can cover an area of up to 1

  1. A New Moonquake Catalog from Apollo 17 Seismic Data II: Lunar Surface Gravimeter: Implications of Expanding the Passive Seismic Array

    Science.gov (United States)

    Phillips, D.; Dimech, J. L.; Weber, R. C.

    2017-12-01

    Apollo 17's Lunar Surface Gravimeter (LSG) was deployed on the Moon in 1972, and was originally intended to detect gravitational waves as a confirmation of Einstein's general theory of relativity. Due to a design problem, the instrument did not function as intended. However, remotely-issued reconfiguration commands permitted the instrument to act effectively as a passive seismometer. LSG recorded continuously until Sept. 1977, when all surface data recording was terminated. Because the instrument did not meet its primary science objective, little effort was made to archive the data. Most of it was eventually lost, with the exception of data spanning the period March 1976 until Sept. 1977, and a recent investigation demonstrated that LSG data do contain moonquake signals (Kawamura et al., 2015). The addition of useable seismic data at the Apollo 17 site has important implications for event location schemes, which improve with increasing data coverage. All previous seismic event location attempts were limited to the four stations deployed at the Apollo 12, 14, 15, and 16 sites. Apollo 17 extends the functional aperture of the seismic array significantly to the east, permitting more accurate moonquake locations and improved probing of the lunar interior. Using the standard location technique of linearized arrival time inversion through a known velocity model, Kawamura et al. (2015) used moonquake signals detected in the LSG data to refine location estimates for 49 deep moonquake clusters, and constrained new locations for five previously un-located clusters. Recent efforts of the Apollo Lunar Surface Experiments Package Data Recovery Focus Group have recovered some of the previously lost LSG data, spanning the time period April 2, 1975 to June 30, 1975. In this study, we expand Kawamura's analysis to the newly recovered data, which contain over 200 known seismic signals, including deep moonquakes, shallow moonquakes, and meteorite impacts. We have completed initial

  2. The roles of the seismic safety and monitoring systems in the PEC fast reactor

    International Nuclear Information System (INIS)

    Masoni, P.; Di Tullio, E.M.; Massa, B.; Martelli, A.; Sano, T.

    1988-01-01

    Two different seismic systems are foreseen in the case of PEC: the seismic safety system, that provides the automatic scram, and the seismic monitoring system. During earthquake, three triaxial seismic switches are triggered if a threshold value of the ground acceleration is exceeded. In this case, the signals from the seismic switches are processed by the safety system (with a 2/3 logic) and the shutdown system is triggered. Peak acceleration is the parameter used by the safety system to quantify the seismic event. This way, however, no information is obtained with regard to earthquake frequency content. Thus, reactor safety is guaranteed by adopting a threshold considerably lower than the Z.P.A. of the Design Basis Earthquake. Furthermore, in the case of significant earthquakes, the seismic motion is measured by about 20 triaxial accelerometers, located both in the free field and on the plant's structures. Data are digitazed and recordered by the seismic monitoring system. This system also elaborates the recordered time-histories providing floor response spectra and compares such spectra to the design values. The above-mentioned elaborations and comparisons are performed in short time for two triaxial measuring positions, thus allowing the Operator to immediately get a more complete information on the seismic event. The complete set of data recorded by the seismic monitoring system also allows the actual dynamic response of the plant to be determined and compared to the design values. On the basis of this comparison the necessary safety analysis can be carried out to verify whether the design limits of the plant were respected: in the positive case the reactor can be restarted. (author)

  3. Numerical Modelling of Seismic Slope Stability

    Science.gov (United States)

    Bourdeau, Céline; Havenith, Hans-Balder; Fleurisson, Jean-Alain; Grandjean, Gilles

    Earthquake ground-motions recorded worldwide have shown that many morphological and geological structures (topography, sedimentary basin) are prone to amplify the seismic shaking (San Fernando, 1971 [Davis and West 1973] Irpinia, 1980 [Del Pezzo et al. 1983]). This phenomenon, called site effects, was again recently observed in El Salvador when, on the 13th of January 2001, the country was struck by a M = 7.6 earthquake. Indeed, while horizontal accelerations on a rock site at Berlin, 80 km from the epicentre, did not exceed 0.23 g, they reached 0.6 g at Armenia, 110 km from the epicentre. Armenia is located on a small hill underlaid by a few meters thick pyroclastic deposits. Both the local topography and the presence of surface layers are likely to have caused the observed amplification effects, which are supposed to have contributed to the triggering of some of the hundreds of landslides related to this seismic event (Murphy et al. 2002). In order to better characterize the way site effects may influence the triggering of landslides along slopes, 2D numerical elastic and elasto-plastic models were developed. Various geometrical, geological and seismic conditions were analysed and the dynamic behaviour of the slope under these con- ditions was studied in terms of creation and location of a sliding surface. Preliminary results suggest that the size of modelled slope failures is dependent on site effects.

  4. Event Discrimination Using Seismoacoustic Catalog Probabilities

    Science.gov (United States)

    Albert, S.; Arrowsmith, S.; Bowman, D.; Downey, N.; Koch, C.

    2017-12-01

    Presented here are three seismoacoustic catalogs from various years and locations throughout Utah and New Mexico. To create these catalogs, we combine seismic and acoustic events detected and located using different algorithms. Seismoacoustic events are formed based on similarity of origin time and location. Following seismoacoustic fusion, the data is compared against ground truth events. Each catalog contains events originating from both natural and anthropogenic sources. By creating these seismoacoustic catalogs, we show that the fusion of seismic and acoustic data leads to a better understanding of the nature of individual events. The probability of an event being a surface blast given its presence in each seismoacoustic catalog is quantified. We use these probabilities to discriminate between events from natural and anthropogenic sources. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

  5. Quake warnings, seismic culture

    Science.gov (United States)

    Allen, Richard M.; Cochran, Elizabeth S.; Huggins, Tom; Miles, Scott; Otegui, Diego

    2017-01-01

    Since 1990, nearly one million people have died from the impacts of earthquakes. Reducing those impacts requires building a local seismic culture in which residents are aware of earthquake risks and value efforts to mitigate harm. Such efforts include earthquake early warning (EEW) systems that provide seconds to minutes notice of pending shaking. Recent events in Mexico provide an opportunity to assess performance and perception of an EEW system and highlight areas for further improvement. We have learned that EEW systems, even imperfect ones, can help people prepare for earthquakes and build local seismic culture, both beneficial in reducing earthquake-related losses.

  6. Performances of the UNDERground SEISmic array for the analysis of seismicity in Central Italy

    Directory of Open Access Journals (Sweden)

    R. Scarpa

    2006-06-01

    Full Text Available This paper presents the first results from the operation of a dense seismic array deployed in the underground Physics Laboratories at Gran Sasso (Central Italy. The array consists of 13 short-period, three-component seismometers with an aperture of about 550 m and average sensor spacing of 90 m. The reduced sensor spacing, joined to the spatially-white character of the background noise allows for quick and reliable detection of coherent wavefront arrivals even under very poor SNR conditions. We apply high-resolution frequency-slowness and polarization analyses to a set of 27 earthquakes recorded between November, 2002, and September, 2003, at epicentral distances spanning the 20-140 km interval. We locate these events using inversion of P- and S-wave backazimuths and S-P delay times, and compare the results with data from the Centralized National Seismic Network catalog. For the case of S-wave, the discrepancies among the two set of locations never exceed 10 km; the largest errors are instead observed for the case of P-waves. This observation may be due to the fact that the small array aperture does not allow for robust assessment of waves propagating at high apparent velocities. This information is discussed with special reference to the directions of future studies aimed at elucidating the location of seismogenetic structures in Central Italy from extended analysis of the micro-seismicity.

  7. Relating high-resolution tilt measurements to the source displacement of an M2.2 event located at Mponeng gold mine

    CSIR Research Space (South Africa)

    Share, P

    2013-10-01

    Full Text Available and T2 (modified from Yabe et al., 2011) al. (2011) produced a seismic moment of 2.9 × 1012 Nm. In contrast, calculations using the same data by the Institute of Mining Seismology (Hofmann et al., 2012) gave a seismic moment of 9.875 × 1011 Nm, a corner...), had been used to reproduce the actual M2.2 rupture and displacement while taking into account factors such as stress state and the presence of excavations and tunnels (Hofmann et al., 2012). Outputs of this earlier study were used as input...

  8. Seismic Data Gathering and Validation

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Justin [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-02-01

    Three recent earthquakes in the last seven years have exceeded their design basis earthquake values (so it is implied that damage to SSC’s should have occurred). These seismic events were recorded at North Anna (August 2011, detailed information provided in [Virginia Electric and Power Company Memo]), Fukushima Daichii and Daini (March 2011 [TEPCO 1]), and Kaswazaki-Kariwa (2007, [TEPCO 2]). However, seismic walk downs at some of these plants indicate that very little damage occurred to safety class systems and components due to the seismic motion. This report presents seismic data gathered for two of the three events mentioned above and recommends a path for using that data for two purposes. One purpose is to determine what margins exist in current industry standard seismic soil-structure interaction (SSI) tools. The second purpose is the use the data to validated seismic site response tools and SSI tools. The gathered data represents free field soil and in-structure acceleration time histories data. Gathered data also includes elastic and dynamic soil properties and structural drawings. Gathering data and comparing with existing models has potential to identify areas of uncertainty that should be removed from current seismic analysis and SPRA approaches. Removing uncertainty (to the extent possible) from SPRA’s will allow NPP owners to make decisions on where to reduce risk. Once a realistic understanding of seismic response is established for a nuclear power plant (NPP) then decisions on needed protective measures, such as SI, can be made.

  9. Next-generation probabilistic seismicity forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Hiemer, S.

    2014-07-01

    The development of probabilistic seismicity forecasts is one of the most important tasks of seismologists at present time. Such forecasts form the basis of probabilistic seismic hazard assessment, a widely used approach to generate ground motion exceedance maps. These hazard maps guide the development of building codes, and in the absence of the ability to deterministically predict earthquakes, good building and infrastructure planning is key to prevent catastrophes. Probabilistic seismicity forecasts are models that specify the occurrence rate of earthquakes as a function of space, time and magnitude. The models presented in this thesis are time-invariant mainshock occurrence models. Accordingly, the reliable estimation of the spatial and size distribution of seismicity are of crucial importance when constructing such probabilistic forecasts. Thereby we focus on data-driven approaches to infer these distributions, circumventing the need for arbitrarily chosen external parameters and subjective expert decisions. Kernel estimation has been shown to appropriately transform discrete earthquake locations into spatially continuous probability distributions. However, we show that neglecting the information from fault networks constitutes a considerable shortcoming and thus limits the skill of these current seismicity models. We present a novel earthquake rate forecast that applies the kernel-smoothing method to both past earthquake locations and slip rates on mapped crustal faults applied to Californian and European data. Our model is independent from biases caused by commonly used non-objective seismic zonations, which impose artificial borders of activity that are not expected in nature. Studying the spatial variability of the seismicity size distribution is of great importance. The b-value of the well-established empirical Gutenberg-Richter model forecasts the rates of hazard-relevant large earthquakes based on the observed rates of abundant small events. We propose a

  10. Next-generation probabilistic seismicity forecasting

    International Nuclear Information System (INIS)

    Hiemer, S.

    2014-01-01

    The development of probabilistic seismicity forecasts is one of the most important tasks of seismologists at present time. Such forecasts form the basis of probabilistic seismic hazard assessment, a widely used approach to generate ground motion exceedance maps. These hazard maps guide the development of building codes, and in the absence of the ability to deterministically predict earthquakes, good building and infrastructure planning is key to prevent catastrophes. Probabilistic seismicity forecasts are models that specify the occurrence rate of earthquakes as a function of space, time and magnitude. The models presented in this thesis are time-invariant mainshock occurrence models. Accordingly, the reliable estimation of the spatial and size distribution of seismicity are of crucial importance when constructing such probabilistic forecasts. Thereby we focus on data-driven approaches to infer these distributions, circumventing the need for arbitrarily chosen external parameters and subjective expert decisions. Kernel estimation has been shown to appropriately transform discrete earthquake locations into spatially continuous probability distributions. However, we show that neglecting the information from fault networks constitutes a considerable shortcoming and thus limits the skill of these current seismicity models. We present a novel earthquake rate forecast that applies the kernel-smoothing method to both past earthquake locations and slip rates on mapped crustal faults applied to Californian and European data. Our model is independent from biases caused by commonly used non-objective seismic zonations, which impose artificial borders of activity that are not expected in nature. Studying the spatial variability of the seismicity size distribution is of great importance. The b-value of the well-established empirical Gutenberg-Richter model forecasts the rates of hazard-relevant large earthquakes based on the observed rates of abundant small events. We propose a

  11. Preliminary consideration on the seismic actions recorded during the 2016 Central Italy seismic sequence

    Science.gov (United States)

    Carlo Ponzo, Felice; Ditommaso, Rocco; Nigro, Antonella; Nigro, Domenico S.; Iacovino, Chiara

    2017-04-01

    After the Mw 6.0 mainshock of August 24, 2016 at 03.36 a.m. (local time), with the epicenter located between the towns of Accumoli (province of Rieti), Amatrice (province of Rieti) and Arquata del Tronto (province of Ascoli Piceno), several activities were started in order to perform some preliminary evaluations on the characteristics of the recent seismic sequence in the areas affected by the earthquake. Ambient vibration acquisitions have been performed using two three-directional velocimetric synchronized stations, with a natural frequency equal to 0.5Hz and a digitizer resolution of equal to 24bit. The activities are continuing after the events of the seismic sequence of October 26 and October 30, 2016. In this paper, in order to compare recorded and code provision values in terms of peak (PGA, PGV and PGD), spectral and integral (Housner Intensity) seismic parameters, several preliminary analyses have been performed on accelerometric time-histories acquired by three near fault station of the RAN (Italian Accelerometric Network): Amatrice station (station code AMT), Norcia station (station code NRC) and Castelsantangelo sul Nera station (station code CNE). Several comparisons between the elastic response spectra derived from accelerometric recordings and the elastic demand spectra provided by the Italian seismic code (NTC 2008) have been performed. Preliminary results retrieved from these analyses highlight several apparent difference between experimental data and conventional code provision. Then, the ongoing seismic sequence appears compatible with the historical seismicity in terms of integral parameters, but not in terms of peak and spectral values. It seems appropriate to reconsider the necessity to revise the simplified design approach based on the conventional spectral values. Acknowledgements This study was partially funded by the Italian Department of Civil Protection within the project DPC-RELUIS 2016 - RS4 ''Seismic observatory of structures and

  12. A repeatable seismic source for tomography at volcanoes

    Directory of Open Access Journals (Sweden)

    A. Ratdomopurbo

    1999-06-01

    Full Text Available One major problem associated with the interpretation of seismic signals on active volcanoes is the lack of knowledge about the internal structure of the volcano. Assuming a 1D or a homogeneous instead of a 3D velocity structure leads to an erroneous localization of seismic events. In order to derive a high resolution 3D velocity model ofMt. Merapi (Java a seismic tomography experiment using active sources is planned as a part of the MERAPI (Mechanism Evaluation, Risk Assessment and Prediction Improvement project. During a pre-site survey in August 1996 we tested a seismic source consisting of a 2.5 l airgun shot in water basins that were constructed in different flanks of the volcano. This special source, which in our case can be fired every two minutes, produces a repeatable, identical source signal. Using this source the number of receiver locations is not limited by the number of seismometers. The seismometers can be moved to various receiver locations while the source reproduces the same source signal. Additionally, at each receiver location we are able to record the identical source signal several times so that the disadvantage of the lower energy compared to an explosion source can be reduced by skipping disturbed signals and stacking several recordings.

  13. Seismic risk assessment of a BWR

    International Nuclear Information System (INIS)

    Wells, J.E.; Bernreuter, D.L.; Chen, J.C.; Lappa, D.A.; Chuang, T.Y.; Murray, R.C.; Johnson, J.J.

    1987-01-01

    The simplified seismic risk methodology developed in the USNRC Seismic Safety Margins Research Program (SSMRP) was demonstrated by its application to the Zion nuclear power plant (PWR). The simplified seismic risk methodology was developed to reduce the costs associated with a seismic risk analysis while providing adequate results. A detailed model of Zion, including systems analysis models (initiating events, event trees, and fault trees), SSI and structure models, and piping models, was developed and used in assessing the seismic risk of the Zion nuclear power plant (FSAR). The simplified seismic risk methodology was applied to the LaSalle County Station nuclear power plant, a BWR; to further demonstrate its applicability, and if possible, to provide a basis for comparing the seismic risk from PWRs and BWRs. (orig./HP)

  14. Seismicity and Tectonics of the West Kaibab Fault Zone, AZ

    Science.gov (United States)

    Wilgus, J. T.; Brumbaugh, D. S.

    2014-12-01

    The West Kaibab Fault Zone (WKFZ) is the westernmost bounding structure of the Kaibab Plateau of northern Arizona. The WKFZ is a branching complex of high angle, normal faults downthrown to the west. There are three main faults within the WKFZ, the Big Springs fault with a maximum of 165 m offset, the Muav fault with 350 m of displacement, and the North Road fault having a maximum throw of approximately 90 m. Mapping of geologically recent surface deposits at or crossing the fault contacts indicates that the faults are likely Quaternary with the most recent offsets occurring one of the most seismically active areas in Arizona and lies within the Northern Arizona Seismic Belt (NASB), which stretches across northern Arizona trending NW-SE. The data set for this study includes 156 well documented events with the largest being a M5.75 in 1959 and including a swarm of seven earthquakes in 2012. The seismic data set (1934-2014) reveals that seismic activity clusters in two regions within the study area, the Fredonia cluster located in the NW corner of the study area and the Kaibab cluster located in the south central portion of the study area. The fault plane solutions to date indicate NE-SW to EW extension is occurring in the study area. Source relationships between earthquakes and faults within the WKFZ have not previously been studied in detail. The goal of this study is to use the seismic data set, the available data on faults, and the regional physiography to search for source relationships for the seismicity. Analysis includes source parameters of the earthquake data (location, depth, and fault plane solutions), and comparison of this output to the known faults and areal physiographic framework to indicate any active faults of the WKFZ, or suggested active unmapped faults. This research contributes to a better understanding of the present nature of the WKFZ and the NASB as well.

  15. Seismic risk map for Southeastern Brazil

    International Nuclear Information System (INIS)

    Mioto, J.A.

    1984-01-01

    During the last few years, some studies regarding seismic risk were prepared for three regions of Brazil. They were carried on account of two basic interests: first, toward the seismic history and recurrence of Brazilian seismic events; second, in a way as to provide seismic parameters for the design and construction of hydro and nuclear power plants. The first seismic risk map prepared for the southeastern region was elaborated in 1979 by 6he Universidade de Brasilia (UnB-Brasilia Seismological Station). In 1981 another seismic risk map was completed on the basis of seismotectonic studies carried out for the design and construction of the Nuclear power plants of Itaorna Beach (Angra dos Reis, Rio de Janeiro) by IPT (Mining and Applied Geology Division). In Brazil, until 1984, seismic studies concerning hydro and nuclear power plants and other civil construction of larger size did not take into account the seismic events from the point of view of probabilities of seismic recurrences. Such analysis in design is more important than the choice of a level of intensity or magnitude, or adoption of a seismicity level ased on deterministic methods. In this way, some considerations were made, concerning the use of seisms in Brazilian designs of hydro and nuclear power plants, as far as seismic analysis is concerned, recently altered over the current seismic risk panorama. (D.J.M.) [pt

  16. Earthquake location in island arcs

    Science.gov (United States)

    Engdahl, E.R.; Dewey, J.W.; Fujita, K.

    1982-01-01

    A comprehensive data set of selected teleseismic P-wave arrivals and local-network P- and S-wave arrivals from large earthquakes occurring at all depths within a small section of the central Aleutians is used to examine the general problem of earthquake location in island arcs. Reference hypocenters for this special data set are determined for shallow earthquakes from local-network data and for deep earthquakes from combined local and teleseismic data by joint inversion for structure and location. The high-velocity lithospheric slab beneath the central Aleutians may displace hypocenters that are located using spherically symmetric Earth models; the amount of displacement depends on the position of the earthquakes with respect to the slab and on whether local or teleseismic data are used to locate the earthquakes. Hypocenters for trench and intermediate-depth events appear to be minimally biased by the effects of slab structure on rays to teleseismic stations. However, locations of intermediate-depth events based on only local data are systematically displaced southwards, the magnitude of the displacement being proportional to depth. Shallow-focus events along the main thrust zone, although well located using only local-network data, are severely shifted northwards and deeper, with displacements as large as 50 km, by slab effects on teleseismic travel times. Hypocenters determined by a method that utilizes seismic ray tracing through a three-dimensional velocity model of the subduction zone, derived by thermal modeling, are compared to results obtained by the method of joint hypocenter determination (JHD) that formally assumes a laterally homogeneous velocity model over the source region and treats all raypath anomalies as constant station corrections to the travel-time curve. The ray-tracing method has the theoretical advantage that it accounts for variations in travel-time anomalies within a group of events distributed over a sizable region of a dipping, high

  17. Hanford Quarter Seismic Report - 98C Seismicity On and Near the Hanford Site, Pasco Basin, Washington: April 1, 1998 Through June 30, 1998

    Energy Technology Data Exchange (ETDEWEB)

    DC Hartshorn, SP Reidel, AC Rohay

    1998-10-23

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and its contractors. The staff also locates aud identifies sources of seismic activity and monitors changes in the hi~orical pattern of seismic activity at the Hanford Site. The data are. compiled archived, and published for use by the Hanford Site for waste management Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of zin earthquake on the Hanford Site. The HSN and Ihe Eastern Washington Regional Network (EN/RN) consist-of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The operational rate for the third quarter of FY 1998 for stations in the HSN was 99.99%. The operational rate for the third quarter of FY 1998 for stations of the EWRN was 99.95%. For the third quarter of FY 1998, the acquisition computer triggered 133 times. Of these triggers 11 were local earthquakes: 5 (45Yo) in the Columbia River Basalt Group, 2(1 8%) in the pre-basalt sediments, and 4 (36%) in the crystalline basement. The geologic and tectonic environments where these earthquakes occurred are discussed in this report.

  18. Hanford quarterly seismic report - 97B seismicity on and near the Hanford Site, Pasco Basin, Washington, January 1, 1997--March 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Hartshorn, D.C.; Reidel, S.P.

    1997-05-01

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and contractors. The staff also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for activities ranging from waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organizations works with the Hanford Site Emergency Services Organization to provide assistance in the event of an earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 41 individual sensor sites and 15 radio relay sites maintained by the Seismic Monitoring staff. Most stations and five relay sites are solar powered. The operational rate for the second quarter of FY97 for stations in the HSN was 97.23% and for stations of the EWRN was 99.93%. For fiscal year (FY) 1997 second quarter (97B), the acquisition computer triggered two hundred and forth-eight times. Of these triggers three were local earthquakes: one in the pre-basalt sediments, and two in the crystalline basement. The geologic and tectonic environments are discussed in the report.

  19. Hanford quarterly seismic report - 97C seismicity on and near the Hanford Site, Pasco Basin, Washington. Quarterly report, April 1, 1997--June 30, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Hartshorn, D.C.; Reidel, S.P.; Rohay, A.C.

    1997-08-01

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and contractors. The staff also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for activities ranging from waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of an earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 41 individual sensor sites and 15 radio relay sites maintained by the Seismic Monitoring staff. Most stations and five relay sites are solar powered. The operational rate for the second quarter of FY97 for stations in the HSN was 100% and for stations of the EWRN was 99.99%. For fiscal year (FY) 1997 third quarter (97C), the acquisition computer triggered 183. Of these triggers twenty one were local earthquakes: sixteen in the Columbus River Basalt Group, one in the pre-basalt sediments, and four in the crystalline basement. The geologic and tectonic environments are discussed in the report.

  20. Hanford quarterly seismic report - 97B seismicity on and near the Hanford Site, Pasco Basin, Washington, January 1, 1997 - March 31, 1997

    International Nuclear Information System (INIS)

    Hartshorn, D.C.; Reidel, S.P.

    1997-05-01

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and contractors. The staff also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for activities ranging from waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organizations works with the Hanford Site Emergency Services Organization to provide assistance in the event of an earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 41 individual sensor sites and 15 radio relay sites maintained by the Seismic Monitoring staff. Most stations and five relay sites are solar powered. The operational rate for the second quarter of FY97 for stations in the HSN was 97.23% and for stations of the EWRN was 99.93%. For fiscal year (FY) 1997 second quarter (97B), the acquisition computer triggered two hundred and forth-eight times. Of these triggers three were local earthquakes: one in the pre-basalt sediments, and two in the crystalline basement. The geologic and tectonic environments are discussed in the report

  1. Seismic array processing and computational infrastructure for improved monitoring of Alaskan and Aleutian seismicity and volcanoes

    Science.gov (United States)

    Lindquist, Kent Gordon

    We constructed a near-real-time system, called Iceworm, to automate seismic data collection, processing, storage, and distribution at the Alaska Earthquake Information Center (AEIC). Phase-picking, phase association, and interprocess communication components come from Earthworm (U.S. Geological Survey). A new generic, internal format for digital data supports unified handling of data from diverse sources. A new infrastructure for applying processing algorithms to near-real-time data streams supports automated information extraction from seismic wavefields. Integration of Datascope (U. of Colorado) provides relational database management of all automated measurements, parametric information for located hypocenters, and waveform data from Iceworm. Data from 1997 yield 329 earthquakes located by both Iceworm and the AEIC. Of these, 203 have location residuals under 22 km, sufficient for hazard response. Regionalized inversions for local magnitude in Alaska yield Msb{L} calibration curves (logAsb0) that differ from the Californian Richter magnitude. The new curve is 0.2\\ Msb{L} units more attenuative than the Californian curve at 400 km for earthquakes north of the Denali fault. South of the fault, and for a region north of Cook Inlet, the difference is 0.4\\ Msb{L}. A curve for deep events differs by 0.6\\ Msb{L} at 650 km. We expand geographic coverage of Alaskan regional seismic monitoring to the Aleutians, the Bering Sea, and the entire Arctic by initiating the processing of four short-period, Alaskan seismic arrays. To show the array stations' sensitivity, we detect and locate two microearthquakes that were missed by the AEIC. An empirical study of the location sensitivity of the arrays predicts improvements over the Alaskan regional network that are shown as map-view contour plots. We verify these predictions by detecting an Msb{L} 3.2 event near Unimak Island with one array. The detection and location of four representative earthquakes illustrates the expansion

  2. The Effects of Vent Location, Event Scale, and Time Forecasts on Pyroclastic Density Current Hazard Maps at Campi Flegrei Caldera (Italy

    Directory of Open Access Journals (Sweden)

    Andrea Bevilacqua

    2017-09-01

    Full Text Available This study presents a new method for producing long-term hazard maps for pyroclastic density currents (PDC originating at Campi Flegrei caldera. Such method is based on a doubly stochastic approach and is able to combine the uncertainty assessments on the spatial location of the volcanic vent, the size of the flow and the expected time of such an event. The results are obtained by using a Monte Carlo approach and adopting a simplified invasion model based on the box model integral approximation. Temporal assessments are modeled through a Cox-type process including self-excitement effects, based on the eruptive record of the last 15 kyr. Mean and percentile maps of PDC invasion probability are produced, exploring their sensitivity to some sources of uncertainty and to the effects of the dependence between PDC scales and the caldera sector where they originated. Conditional maps representative of PDC originating inside limited zones of the caldera, or of PDC with a limited range of scales are also produced. Finally, the effect of assuming different time windows for the hazard estimates is explored, also including the potential occurrence of a sequence of multiple events. Assuming that the last eruption of Monte Nuovo (A.D. 1538 marked the beginning of a new epoch of activity similar to the previous ones, results of the statistical analysis indicate a mean probability of PDC invasion above 5% in the next 50 years on almost the entire caldera (with a probability peak of ~25% in the central part of the caldera. In contrast, probability values reduce by a factor of about 3 if the entire eruptive record is considered over the last 15 kyr, i.e., including both eruptive epochs and quiescent periods.

  3. The Crustal Structure and Seismicity of Eastern Venezuela

    Science.gov (United States)

    Schmitz, M.; Martins, A.; Sobiesiak, M.; Alvarado, L.; Vasquez, R.

    2001-12-01

    Eastern Venezuela is characterized by a moderate to high seismicity, evidenced recently by the 1997 Cariaco earthquake located on the El Pilar Fault, a right lateral strike slip fault which marks the plate boundary between the Caribbean and South-American plates in this region. Recently, the seismic activity seems to migrate towards the zone of subduction of the Lesser Antilles in the northeast, where a mb 6.0 earthquake occurred in October 2000 at 120 km of depth. Periodical changes in the seismic activity are related to the interaction of the stress fields of the strike-slip and the subduction regimes. The seismic activity decreases rapidly towards to the south with some disperse events on the northern edge of the Guayana Shield, related to the Guri fault system. The crustal models used in the region are derived from the information generated by the national seismological network since 1982 and by microseismicity studies in northeastern Venezuela, coinciding in a crustal thickness of about 35 km in depth. Results of seismic refraction measurements for the region were obtained during field campains in 1998 (ECOGUAY) for the Guayana Shield and the Cariaco sedimentary basin and in 2001 (ECCO) for the Oriental Basin. The total crustal thickness decreases from about 45 km on the northern edge of the Guayana Shield to some 36 km close to El Tigre in the center of the Oriental Basin. The average crustal velocity decreases in the same sense from 6.5 to 5.8 km/s. In the Cariaco sedimentary basin a young sedimentary cover of 1 km thickness with a seismic velocity of 2 km/s was derived. Towards the northern limit of the South-American plate, no deep seismic refraction data are available up to now. The improvement of the crustal models used in that region would constitute a step forward in the analysis of the seismic hazard. Seismic refraction studies funded by CONICIT S1-97002996 and S1-2000000685 projects and PDVSA (additional drilling and blasting), recording equipment

  4. Seismic component fragility data base for IPEEE

    International Nuclear Information System (INIS)

    Bandyopadhyay, K.; Hofmayer, C.

    1990-01-01

    Seismic probabilistic risk assessment or a seismic margin study will require a reliable data base of seismic fragility of various equipment classes. Brookhaven National Laboratory (BNL) has selected a group of equipment and generically evaluated the seismic fragility of each equipment class by use of existing test data. This paper briefly discusses the evaluation methodology and the fragility results. The fragility analysis results when used in the Individual Plant Examination for External Events (IPEEE) Program for nuclear power plants are expected to provide insights into seismic vulnerabilities of equipment for earthquakes beyond the design basis. 3 refs., 1 fig., 1 tab

  5. Probabilistic Seismic Hazard Analysis for Yemen

    Directory of Open Access Journals (Sweden)

    Rakesh Mohindra

    2012-01-01

    Full Text Available A stochastic-event probabilistic seismic hazard model, which can be used further for estimates of seismic loss and seismic risk analysis, has been developed for the territory of Yemen. An updated composite earthquake catalogue has been compiled using the databases from two basic sources and several research publications. The spatial distribution of earthquakes from the catalogue was used to define and characterize the regional earthquake source zones for Yemen. To capture all possible scenarios in the seismic hazard model, a stochastic event set has been created consisting of 15,986 events generated from 1,583 fault segments in the delineated seismic source zones. Distribution of horizontal peak ground acceleration (PGA was calculated for all stochastic events considering epistemic uncertainty in ground-motion modeling using three suitable ground motion-prediction relationships, which were applied with equal weight. The probabilistic seismic hazard maps were created showing PGA and MSK seismic intensity at 10% and 50% probability of exceedance in 50 years, considering local soil site conditions. The resulting PGA for 10% probability of exceedance in 50 years (return period 475 years ranges from 0.2 g to 0.3 g in western Yemen and generally is less than 0.05 g across central and eastern Yemen. The largest contributors to Yemen’s seismic hazard are the events from the West Arabian Shield seismic zone.

  6. DEFORMATION WAVES AS A TRIGGER MECHANISM OF SEISMIC ACTIVITY IN SEISMIC ZONES OF THE CONTINENTAL LITHOSPHERE