WorldWideScience

Sample records for seismic detection programs

  1. Detection capability of the IMS seismic network based on ambient seismic noise measurements

    Science.gov (United States)

    Gaebler, Peter J.; Ceranna, Lars

    2016-04-01

    All nuclear explosions - on the Earth's surface, underground, underwater or in the atmosphere - are banned by the Comprehensive Nuclear-Test-Ban Treaty (CTBT). As part of this treaty, a verification regime was put into place to detect, locate and characterize nuclear explosion testings at any time, by anyone and everywhere on the Earth. The International Monitoring System (IMS) plays a key role in the verification regime of the CTBT. Out of the different monitoring techniques used in the IMS, the seismic waveform approach is the most effective technology for monitoring nuclear underground testing and to identify and characterize potential nuclear events. This study introduces a method of seismic threshold monitoring to assess an upper magnitude limit of a potential seismic event in a certain given geographical region. The method is based on ambient seismic background noise measurements at the individual IMS seismic stations as well as on global distance correction terms for body wave magnitudes, which are calculated using the seismic reflectivity method. From our investigations we conclude that a global detection threshold of around mb 4.0 can be achieved using only stations from the primary seismic network, a clear latitudinal dependence for the detection threshold can be observed between northern and southern hemisphere. Including the seismic stations being part of the auxiliary seismic IMS network results in a slight improvement of global detection capability. However, including wave arrivals from distances greater than 120 degrees, mainly PKP-wave arrivals, leads to a significant improvement in average global detection capability. In special this leads to an improvement of the detection threshold on the southern hemisphere. We further investigate the dependence of the detection capability on spatial (latitude and longitude) and temporal (time) parameters, as well as on parameters such as source type and percentage of operational IMS stations.

  2. Seismic safety margins research program overview

    International Nuclear Information System (INIS)

    Tokarz, F.J.; Smith, P.D.

    1978-01-01

    A multiyear seismic research program has been initiated at the Lawrence Livermore Laboratory. This program, the Seismic Safety Margins Research Program (SSMRP) is funded by the U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research. The program is designed to develop a probabilistic systems methodology for determining the seismic safety margins of nuclear power plants. Phase I, extending some 22 months, began in July 1978 at a funding level of approximately $4.3 million. Here we present an overview of the SSMRP. Included are discussions on the program objective, the approach to meet the program goal and objectives, end products, the probabilistic systems methodology, and planned activities for Phase I

  3. Automated seismic detection of landslides at regional scales: a Random Forest based detection algorithm

    Science.gov (United States)

    Hibert, C.; Michéa, D.; Provost, F.; Malet, J. P.; Geertsema, M.

    2017-12-01

    Detection of landslide occurrences and measurement of their dynamics properties during run-out is a high research priority but a logistical and technical challenge. Seismology has started to help in several important ways. Taking advantage of the densification of global, regional and local networks of broadband seismic stations, recent advances now permit the seismic detection and location of landslides in near-real-time. This seismic detection could potentially greatly increase the spatio-temporal resolution at which we study landslides triggering, which is critical to better understand the influence of external forcings such as rainfalls and earthquakes. However, detecting automatically seismic signals generated by landslides still represents a challenge, especially for events with small mass. The low signal-to-noise ratio classically observed for landslide-generated seismic signals and the difficulty to discriminate these signals from those generated by regional earthquakes or anthropogenic and natural noises are some of the obstacles that have to be circumvented. We present a new method for automatically constructing instrumental landslide catalogues from continuous seismic data. We developed a robust and versatile solution, which can be implemented in any context where a seismic detection of landslides or other mass movements is relevant. The method is based on a spectral detection of the seismic signals and the identification of the sources with a Random Forest machine learning algorithm. The spectral detection allows detecting signals with low signal-to-noise ratio, while the Random Forest algorithm achieve a high rate of positive identification of the seismic signals generated by landslides and other seismic sources. The processing chain is implemented to work in a High Performance Computers centre which permits to explore years of continuous seismic data rapidly. We present here the preliminary results of the application of this processing chain for years

  4. Seismic detection of tornadoes

    Science.gov (United States)

    Tatom, F. B.

    1993-01-01

    Tornadoes represent the most violent of all forms of atmospheric storms, each year resulting in hundreds of millions of dollars in property damage and approximately one hundred fatalities. In recent years, considerable success has been achieved in detecting tornadic storms by means of Doppler radar. However, radar systems cannot determine when a tornado is actually in contact with the ground, expect possibly at extremely close range. At the present time, human observation is the only truly reliable way of knowing that a tornado is actually on the ground. However, considerable evidence exists indicating that a tornado in contact with the ground produces a significant seismic signal. If such signals are generated, the seismic detection and warning of an imminent tornado can become a distinct possibility. 

  5. Adaptive prediction applied to seismic event detection

    International Nuclear Information System (INIS)

    Clark, G.A.; Rodgers, P.W.

    1981-01-01

    Adaptive prediction was applied to the problem of detecting small seismic events in microseismic background noise. The Widrow-Hoff LMS adaptive filter used in a prediction configuration is compared with two standard seismic filters as an onset indicator. Examples demonstrate the technique's usefulness with both synthetic and actual seismic data

  6. Adaptive prediction applied to seismic event detection

    Energy Technology Data Exchange (ETDEWEB)

    Clark, G.A.; Rodgers, P.W.

    1981-09-01

    Adaptive prediction was applied to the problem of detecting small seismic events in microseismic background noise. The Widrow-Hoff LMS adaptive filter used in a prediction configuration is compared with two standard seismic filters as an onset indicator. Examples demonstrate the technique's usefulness with both synthetic and actual seismic data.

  7. GUI program to compute probabilistic seismic hazard analysis

    International Nuclear Information System (INIS)

    Shin, Jin Soo; Chi, H. C.; Cho, J. C.; Park, J. H.; Kim, K. G.; Im, I. S.

    2006-12-01

    The development of program to compute probabilistic seismic hazard is completed based on Graphic User Interface(GUI). The main program consists of three part - the data input processes, probabilistic seismic hazard analysis and result output processes. The probabilistic seismic hazard analysis needs various input data which represent attenuation formulae, seismic zoning map, and earthquake event catalog. The input procedure of previous programs based on text interface take a much time to prepare the data. The data cannot be checked directly on screen to prevent input erroneously in existing methods. The new program simplifies the input process and enable to check the data graphically in order to minimize the artificial error within limits of the possibility

  8. GUI program to compute probabilistic seismic hazard analysis

    International Nuclear Information System (INIS)

    Shin, Jin Soo; Chi, H. C.; Cho, J. C.; Park, J. H.; Kim, K. G.; Im, I. S.

    2005-12-01

    The first stage of development of program to compute probabilistic seismic hazard is completed based on Graphic User Interface (GUI). The main program consists of three part - the data input processes, probabilistic seismic hazard analysis and result output processes. The first part has developed and others are developing now in this term. The probabilistic seismic hazard analysis needs various input data which represent attenuation formulae, seismic zoning map, and earthquake event catalog. The input procedure of previous programs based on text interface take a much time to prepare the data. The data cannot be checked directly on screen to prevent input erroneously in existing methods. The new program simplifies the input process and enable to check the data graphically in order to minimize the artificial error within the limits of the possibility

  9. NRC Seismic Design Margins Program Plan

    International Nuclear Information System (INIS)

    Cummings, G.E.; Johnson, J.J.; Budnitz, R.J.

    1985-08-01

    Recent studies estimate that seismically induced core melt comes mainly from earthquakes in the peak ground acceleration range from 2 to 4 times the safe shutdown earthquake (SSE) acceleration used in plant design. However, from the licensing perspective of the US Nuclear Regulatory Commission, there is a continuing need for consideration of the inherent quantitative seismic margins because of, among other things, the changing perceptions of the seismic hazard. This paper discusses a Seismic Design Margins Program Plan, developed under the auspices of the US NRC, that provides the technical basis for assessing the significance of design margins in terms of overall plant safety. The Plan will also identify potential weaknesses that might have to be addressed, and will recommend technical methods for assessing margins at existing plants. For the purposes of this program, a general definition of seismic design margin is expressed in terms of how much larger that the design basis earthquake an earthquake must be to compromise plant safety. In this context, margin needs to be determined at the plant, system/function, structure, and component levels. 14 refs., 1 fig

  10. The Global Detection Capability of the IMS Seismic Network in 2013 Inferred from Ambient Seismic Noise Measurements

    Science.gov (United States)

    Gaebler, P. J.; Ceranna, L.

    2016-12-01

    All nuclear explosions - on the Earth's surface, underground, underwater or in the atmosphere - are banned by the Comprehensive Nuclear-Test-Ban Treaty (CTBT). As part of this treaty, a verification regime was put into place to detect, locate and characterize nuclear explosion testings at any time, by anyone and everywhere on the Earth. The International Monitoring System (IMS) plays a key role in the verification regime of the CTBT. Out of the different monitoring techniques used in the IMS, the seismic waveform approach is the most effective technology for monitoring nuclear underground testing and to identify and characterize potential nuclear events. This study introduces a method of seismic threshold monitoring to assess an upper magnitude limit of a potential seismic event in a certain given geographical region. The method is based on ambient seismic background noise measurements at the individual IMS seismic stations as well as on global distance correction terms for body wave magnitudes, which are calculated using the seismic reflectivity method. From our investigations we conclude that a global detection threshold of around mb 4.0 can be achieved using only stations from the primary seismic network, a clear latitudinal dependence for the detection thresholdcan be observed between northern and southern hemisphere. Including the seismic stations being part of the auxiliary seismic IMS network results in a slight improvement of global detection capability. However, including wave arrivals from distances greater than 120 degrees, mainly PKP-wave arrivals, leads to a significant improvement in average global detection capability. In special this leads to an improvement of the detection threshold on the southern hemisphere. We further investigate the dependence of the detection capability on spatial (latitude and longitude) and temporal (time) parameters, as well as on parameters such as source type and percentage of operational IMS stations.

  11. NRC systematic evaluation program: seismic review

    International Nuclear Information System (INIS)

    Levin, H.A.

    1980-01-01

    The NRC Systematic Evaluation Program is currently making an assessment of the seismic design safety of 11 older nuclear power plant facilities. The general review philosophy and review criteria relative to seismic input, structural response, and equipment functionability are presented, including the rationale for the development of these guidelines considering the significant evolution of seismic design criteria since these plants were originally licensed. Technical approaches thought more realistic in light of current knowledge are utilized. Initial findings for plants designed to early seismic design procedures suggest that with minor exceptions, these plants possess adequate seismic design margins when evaluated against the intent of current criteria. However, seismic qualification of electrical equipment has been identified as a subject which requires more in-depth evaluation

  12. Detecting Seismic Infrasound Signals on Balloon Platforms

    Science.gov (United States)

    Krishnamoorthy, S.; Komjathy, A.; Cutts, J. A.; Pauken, M.; Garcia, R.; Mimoun, D.; Jackson, J. M.; Kedar, S.; Smrekar, S. E.; Hall, J. L.

    2017-12-01

    The determination of the interior structure of a planet requires detailed seismic investigations - a process that entails the detection and characterization of seismic waves due to geological activities (e.g., earthquakes, volcanoes, etc.). For decades, this task has primarily been performed on Earth by an ever-expanding network of terrestrial seismic stations. However, on planets such as Venus, where the surface pressure and temperature can reach as high as 90 atmospheres and 450 degrees Celsius respectively, placing seismometers on the planet's surface poses a vexing technological challenge. However, the upper layers of the Venusian atmosphere are more benign and capable of hosting geophysical payloads for longer mission lifetimes. In order to achieve the aim of performing geophysical experiments from an atmospheric platform, JPL and its partners (ISAE-SUPAERO and California Institute of Technology) are in the process of developing technologies for detection of infrasonic waves generated by earthquakes from a balloon. The coupling of seismic energy into the atmosphere critically depends on the density differential between the surface of the planet and the atmosphere. Therefore, the successful demonstration of this technique on Earth would provide ample reason to expect success on Venus, where the atmospheric impedance is approximately 60 times that of Earth. In this presentation, we will share results from the first set of Earth-based balloon experiments performed in Pahrump, Nevada in June 2017. These tests involved the generation of artificial sources of known intensity using a seismic hammer and their detection using a complex network of sensors, including highly sensitive micro-barometers suspended from balloons, GPS receivers, geophones, microphones, and seismometers. This experiment was the first of its kind and was successful in detecting infrasonic waves from the earthquakes generated by the seismic hammer. We will present the first comprehensive analysis

  13. Detecting aseismic strain transients from seismicity data

    Science.gov (United States)

    Llenos, A.L.; McGuire, J.J.

    2011-01-01

    Aseismic deformation transients such as fluid flow, magma migration, and slow slip can trigger changes in seismicity rate. We present a method that can detect these seismicity rate variations and utilize these anomalies to constrain the underlying variations in stressing rate. Because ordinary aftershock sequences often obscure changes in the background seismicity caused by aseismic processes, we combine the stochastic Epidemic Type Aftershock Sequence model that describes aftershock sequences well and the physically based rate- and state-dependent friction seismicity model into a single seismicity rate model that models both aftershock activity and changes in background seismicity rate. We implement this model into a data assimilation algorithm that inverts seismicity catalogs to estimate space-time variations in stressing rate. We evaluate the method using a synthetic catalog, and then apply it to a catalog of M???1.5 events that occurred in the Salton Trough from 1990 to 2009. We validate our stressing rate estimates by comparing them to estimates from a geodetically derived slip model for a large creep event on the Obsidian Buttes fault. The results demonstrate that our approach can identify large aseismic deformation transients in a multidecade long earthquake catalog and roughly constrain the absolute magnitude of the stressing rate transients. Our method can therefore provide a way to detect aseismic transients in regions where geodetic resolution in space or time is poor. Copyright 2011 by the American Geophysical Union.

  14. CRIEPI test program for seismic isolation of the FBR

    International Nuclear Information System (INIS)

    Shiojiri, Hiroo

    1989-01-01

    This paper describes the Central Research Institute of Electric Power Industry's (CRIEPIs) seismic isolation program. The test and research program on seismic isolation was started in 1987 by CRIEPI under contract with the Ministry of International Trade and Industry (MITI) of Japan. It was intended to establish a technical basis for the application of seismic isolation to fast breeder reactors (FBRs). In this paper, some details of the program and results of the preliminary study are described

  15. Adaptive Sensor Tuning for Seismic Event Detection in Environment with Electromagnetic Noise

    Science.gov (United States)

    Ziegler, Abra E.

    The goal of this research is to detect possible microseismic events at a carbon sequestration site. Data recorded on a continuous downhole microseismic array in the Farnsworth Field, an oil field in Northern Texas that hosts an ongoing carbon capture, utilization, and storage project, were evaluated using machine learning and reinforcement learning techniques to determine their effectiveness at seismic event detection on a dataset with electromagnetic noise. The data were recorded from a passive vertical monitoring array consisting of 16 levels of 3-component 15 Hz geophones installed in the field and continuously recording since January 2014. Electromagnetic and other noise recorded on the array has significantly impacted the utility of the data and it was necessary to characterize and filter the noise in order to attempt event detection. Traditional detection methods using short-term average/long-term average (STA/LTA) algorithms were evaluated and determined to be ineffective because of changing noise levels. To improve the performance of event detection and automatically and dynamically detect seismic events using effective data processing parameters, an adaptive sensor tuning (AST) algorithm developed by Sandia National Laboratories was utilized. AST exploits neuro-dynamic programming (reinforcement learning) trained with historic event data to automatically self-tune and determine optimal detection parameter settings. The key metric that guides the AST algorithm is consistency of each sensor with its nearest neighbors: parameters are automatically adjusted on a per station basis to be more or less sensitive to produce consistent agreement of detections in its neighborhood. The effects that changes in neighborhood configuration have on signal detection were explored, as it was determined that neighborhood-based detections significantly reduce the number of both missed and false detections in ground-truthed data. The performance of the AST algorithm was

  16. National Earthquake Information Center Seismic Event Detections on Multiple Scales

    Science.gov (United States)

    Patton, J.; Yeck, W. L.; Benz, H.; Earle, P. S.; Soto-Cordero, L.; Johnson, C. E.

    2017-12-01

    The U.S. Geological Survey National Earthquake Information Center (NEIC) monitors seismicity on local, regional, and global scales using automatic picks from more than 2,000 near-real time seismic stations. This presents unique challenges in automated event detection due to the high variability in data quality, network geometries and density, and distance-dependent variability in observed seismic signals. To lower the overall detection threshold while minimizing false detection rates, NEIC has begun to test the incorporation of new detection and picking algorithms, including multiband (Lomax et al., 2012) and kurtosis (Baillard et al., 2014) pickers, and a new bayesian associator (Glass 3.0). The Glass 3.0 associator allows for simultaneous processing of variably scaled detection grids, each with a unique set of nucleation criteria (e.g., nucleation threshold, minimum associated picks, nucleation phases) to meet specific monitoring goals. We test the efficacy of these new tools on event detection in networks of various scales and geometries, compare our results with previous catalogs, and discuss lessons learned. For example, we find that on local and regional scales, rapid nucleation of small events may require event nucleation with both P and higher-amplitude secondary phases (e.g., S or Lg). We provide examples of the implementation of a scale-independent associator for an induced seismicity sequence (local-scale), a large aftershock sequence (regional-scale), and for monitoring global seismicity. Baillard, C., Crawford, W. C., Ballu, V., Hibert, C., & Mangeney, A. (2014). An automatic kurtosis-based P-and S-phase picker designed for local seismic networks. Bulletin of the Seismological Society of America, 104(1), 394-409. Lomax, A., Satriano, C., & Vassallo, M. (2012). Automatic picker developments and optimization: FilterPicker - a robust, broadband picker for real-time seismic monitoring and earthquake early-warning, Seism. Res. Lett. , 83, 531-540, doi: 10

  17. Opto-mechanical lab-on-fibre seismic sensors detected the Norcia earthquake.

    Science.gov (United States)

    Pisco, Marco; Bruno, Francesco Antonio; Galluzzo, Danilo; Nardone, Lucia; Gruca, Grzegorz; Rijnveld, Niek; Bianco, Francesca; Cutolo, Antonello; Cusano, Andrea

    2018-04-27

    We have designed and developed lab-on-fibre seismic sensors containing a micro-opto-mechanical cavity on the fibre tip. The mechanical cavity is designed as a double cantilever suspended on the fibre end facet and connected to a proof mass to tune its response. Ground acceleration leads to displacement of the cavity length, which in turn can be remotely detected using an interferometric interrogation technique. After the sensors characterization, an experimental validation was conducted at the Italian National Institute of Geophysics and Volcanology (INGV), which is responsible for seismic surveillance over the Italian country. The fabricated sensors have been continuously used for long periods to demonstrate their effectiveness as seismic accelerometer sensors. During the tests, fibre optic seismic accelerometers clearly detected the seismic sequence that culminated in the severe Mw6.5 Norcia earthquake that struck central Italy on October 30, 2016. The seismic data provided by the optical sensors were analysed by specialists at the INGV. The wave traces were compared with state-of-the-art traditional sensors typically incorporated into the INGV seismic networks. The comparison verifies the high fidelity of the optical sensors in seismic wave detection, indicating their suitability for a novel class of seismic sensors to be employed in practical scenarios.

  18. 41 CFR 128-1.8006 - Seismic Safety Program requirements.

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Seismic Safety Program requirements. 128-1.8006 Section 128-1.8006 Public Contracts and Property Management Federal Property Management Regulations System (Continued) DEPARTMENT OF JUSTICE 1-INTRODUCTION 1.80-Seismic Safety Program...

  19. Seismic safety margin assessment program (Annual safety research report, JFY 2010)

    International Nuclear Information System (INIS)

    Suzuki, Kenichi; Iijima, Toru; Inagaki, Masakatsu; Taoka, Hideto; Hidaka, Shinjiro

    2011-01-01

    Seismic capacity test data, analysis method and evaluation code provided by Seismic Safety Margin Assessment Program have been utilized for the support of seismic back-check evaluation of existing plants. The summary of the program in 2010 is as follows. 1. Component seismic capacity test and quantitative seismic capacity evaluation. Many seismic capacity tests of various snubbers were conducted and quantitative seismic capacities were evaluated. One of the emergency diesel generator partial-model seismic capacity tests was conducted and quantitative seismic capacity was evaluated. Some of the analytical evaluations of piping-system seismic capacities were conducted. 2. Analysis method for minute evaluation of component seismic response. The difference of seismic response of large components such as primary containment vessel and reactor pressure vessel when they were coupled with 3-dimensional FEM building model or 1-dimensional lumped mass building model, was quantitatively evaluated. 3. Evaluation code for quantitative evaluation of seismic safety margin of systems, structures and components. As the example, quantitative evaluation of seismic safety margin of systems, structures and components were conducted for the reference plant. (author)

  20. Seismic safety margins research program. Phase I final report - Overview

    International Nuclear Information System (INIS)

    Smith, P.D.; Dong, R.G.; Bernreuter, D.L.; Bohn, M.P.; Chuang, T.Y.; Cummings, G.E.; Johnson, J.J.; Mensing, R.W.; Wells, J.E.

    1981-04-01

    The Seismic Safety Margins Research Program (SSMRP) is a multiyear, multiphase program whose overall objective is to develop improved methods for seismic safety assessments of nuclear power plants, using a probabilistic computational procedure. The program is being carried out at the Lawrence Livermore National Laboratory and is sponsored by the U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research. Phase I of the SSMRP was successfully completed in January 1981: A probabilistic computational procedure for the seismic risk assessment of nuclear power plants has been developed and demonstrated. The methodology is implemented by three computer programs: HAZARD, which assesses the seismic hazard at a given site, SMACS, which computes in-structure and subsystem seismic responses, and SEISIM, which calculates system failure probabilities and radioactive release probabilities, given (1) the response results of SMACS, (2) a set of event trees, (3) a family of fault trees, (4) a set of structural and component fragility descriptions, and (5) a curve describing the local seismic hazard. The practicality of this methodology was demonstrated by computing preliminary release probabilities for Unit 1 of the Zion Nuclear Power Plant north of Chicago, Illinois. Studies have begun aimed at quantifying the sources of uncertainty in these computations. Numerous side studies were undertaken to examine modeling alternatives, sources of error, and available analysis techniques. Extensive sets of data were amassed and evaluated as part of projects to establish seismic input parameters and to produce the fragility curves. (author)

  1. Detecting Seismic Events Using a Supervised Hidden Markov Model

    Science.gov (United States)

    Burks, L.; Forrest, R.; Ray, J.; Young, C.

    2017-12-01

    We explore the use of supervised hidden Markov models (HMMs) to detect seismic events in streaming seismogram data. Current methods for seismic event detection include simple triggering algorithms, such as STA/LTA and the Z-statistic, which can lead to large numbers of false positives that must be investigated by an analyst. The hypothesis of this study is that more advanced detection methods, such as HMMs, may decreases false positives while maintaining accuracy similar to current methods. We train a binary HMM classifier using 2 weeks of 3-component waveform data from the International Monitoring System (IMS) that was carefully reviewed by an expert analyst to pick all seismic events. Using an ensemble of simple and discrete features, such as the triggering of STA/LTA, the HMM predicts the time at which transition occurs from noise to signal. Compared to the STA/LTA detection algorithm, the HMM detects more true events, but the false positive rate remains unacceptably high. Future work to potentially decrease the false positive rate may include using continuous features, a Gaussian HMM, and multi-class HMMs to distinguish between types of seismic waves (e.g., P-waves and S-waves). Acknowledgement: Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.SAND No: SAND2017-8154 A

  2. 41 CFR 128-1.8009 - Review of Seismic Safety Program.

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Review of Seismic Safety Program. 128-1.8009 Section 128-1.8009 Public Contracts and Property Management Federal Property Management Regulations System (Continued) DEPARTMENT OF JUSTICE 1-INTRODUCTION 1.80-Seismic Safety Program...

  3. Improving the Detectability of the Catalan Seismic Network for Local Seismic Activity Monitoring

    Science.gov (United States)

    Jara, Jose Antonio; Frontera, Tànit; Batlló, Josep; Goula, Xavier

    2016-04-01

    The seismic survey of the territory of Catalonia is mainly performed by the regional seismic network operated by the Cartographic and Geologic Institute of Catalonia (ICGC). After successive deployments and upgrades, the current network consists of 16 permanent stations equipped with 3 component broadband seismometers (STS2, STS2.5, CMG3ESP and CMG3T), 24 bits digitizers (Nanometrics Trident) and VSAT telemetry. Data are continuously sent in real-time via Hispasat 1D satellite to the ICGC datacenter in Barcelona. Additionally, data from other 10 stations of neighboring areas (Spain, France and Andorra) are continuously received since 2011 via Internet or VSAT, contributing both to detect and to locate events affecting the region. More than 300 local events with Ml ≥ 0.7 have been yearly detected and located in the region. Nevertheless, small magnitude earthquakes, especially those located in the south and south-west of Catalonia may still go undetected by the automatic detection system (DAS), based on Earthworm (USGS). Thus, in order to improve the detection and characterization of these missed events, one or two new stations should be installed. Before making the decision about where to install these new stations, the performance of each existing station is evaluated taking into account the fraction of detected events using the station records, compared to the total number of events in the catalogue, occurred during the station operation time from January 1, 2011 to December 31, 2014. These evaluations allow us to build an Event Detection Probability Map (EDPM), a required tool to simulate EDPMs resulting from different network topology scenarios depending on where these new stations are sited, and becoming essential for the decision-making process to increase and optimize the event detection probability of the seismic network.

  4. Seismic Safety Margins Research Program: Phase II program plan (FY 83-FY 84)

    International Nuclear Information System (INIS)

    Bohn, M.P.; Bernreuter, D.L.; Cover, L.E.; Johnson, J.J.; Shieh, L.C.; Shukla, S.N.; Wells, J.E.

    1982-01-01

    The Seismic Safety Margins Research Program (SSMRP) is an NRC-funded, multiyear program conducted by Lawrence Livermore National Laboratory (LLNL). Its goal is to develop a complete, fully coupled analysis procedure (including methods and computer codes) for estimating the risk of an earthquake-caused radioactive release from a commercial nuclear power plant. The analysis procedure is based upon a state-of-the-art evaluation of the current seismic analysis and design process and explicitly includes the uncertainties inherent in such a process. The results will be used to improve seismic licensing requirements for nuclear power plants. As currently planned, the SSMRP will be completed in September, 1984. This document presents the program plan for work to be done during the remainder of the program. In Phase I of the SSMRP, the necessary tools (both computer codes and data bases) for performing a detailed seismic risk analysis were identified and developed. Demonstration calculations were performed on the Zion Nuclear Power Plant. In the remainder of the program (Phase II) work will be concentrated on developing a simplified SSMRP methodology for routine probabilistic risk assessments, quantitative validation of the tools developed and application of the simplified methodology to a Boiling Water Reactor. (The Zion plant is a pressurized water reactor.) In addition, considerable effort will be devoted to making the codes and data bases easily accessible to the public

  5. The U.S. Nuclear Regulatory Commission seismic safety research program

    International Nuclear Information System (INIS)

    Kenneally, R.M.; Guzy, D.J.; Murphy, A.J.

    1988-01-01

    The seismic safety research program sponsored by the U.S. Nuclear Regulatory Commission is directed toward improving the evaluation of potential earthquake effects on nuclear power plant operations. The research has been divided into three major program areas: earth sciences, seismic design margins, and fragilities and response. A major thrust of this research is to assess plant behavior for seismic events more severe and less probable than those considered in design. However, there is also research aimed at improving the evaluation of earthquake input and plant response at plant design levels

  6. Handbook of nuclear power plant seismic fragilities, Seismic Safety Margins Research Program

    International Nuclear Information System (INIS)

    Cover, L.E.; Bohn, M.P.; Campbell, R.D.; Wesley, D.A.

    1983-12-01

    The Seismic Safety Margins Research Program (SSMRP) has a gola to develop a complete fully coupled analysis procedure (including methods and computer codes) for estimating the risk of an earthquake-induced radioactive release from a commercial nuclear power plant. As part of this program, calculations of the seismic risk from a typical commercial nuclear reactor were made. These calculations required a knowledge of the probability of failure (fragility) of safety-related components in the reactor system which actively participate in the hypothesized accident scenarios. This report describes the development of the required fragility relations and the data sources and data reduction techniques upon which they are based. Both building and component fragilities are covered. The building fragilities are for the Zion Unit 1 reactor which was the specific plant used for development of methodology in the program. Some of the component fragilities are site-specific also, but most would be usable for other sites as well

  7. Seismic safety margin research program. Program plan, Revision I

    International Nuclear Information System (INIS)

    Smith, P.D.; Tokarz, F.J.; Bernreuter, D.L.; Cummings, G.E.; Chou, C.K.; Vagliente, V.N.

    1978-01-01

    The overall objective of the SSMRP is to develop mathematical models that realistically predict the probability of radioactive releases from seismically induced events in nuclear power plants. These models will be used for four purposes: (1) To perform sensitivity studies to determine the weak links in seismic methodology. The weak links will then be improved by research and development. (2) To estimate the probability of release for a plant. It is believed that the major difficulty in the program will be to obtain acceptably small confidence limits on the probability of release. (3) To estimate the conservatisms in the Standard Review Plan (SRP) seismic design methodology. This will be done by comparing the results of the SRP methodology and the methodology resulting from the research and development in (1). (4) To develop an improved seismic design methodology based on probability. The Phase I objective proposed in this report is to develop mathematical models which will accomplish the purposes No. 1 and No. 2 with simplified assumptions such as linear elastic analysis, limited assessment on component fragility (considering only accident sequences leading to core melt), and simplified safety system

  8. Methods for use in detecting seismic waves in a borehole

    Science.gov (United States)

    West, Phillip B.; Fincke, James R.; Reed, Teddy R.

    2007-02-20

    The invention provides methods and apparatus for detecting seismic waves propagating through a subterranean formation surrounding a borehole. In a first embodiment, a sensor module uses the rotation of bogey wheels to extend and retract a sensor package for selective contact and magnetic coupling to casing lining the borehole. In a second embodiment, a sensor module is magnetically coupled to the casing wall during its travel and dragged therealong while maintaining contact therewith. In a third embodiment, a sensor module is interfaced with the borehole environment to detect seismic waves using coupling through liquid in the borehole. Two or more of the above embodiments may be combined within a single sensor array to provide a resulting seismic survey combining the optimum of the outputs of each embodiment into a single data set.

  9. Seismic Safety Program: Ground motion and structural response

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    In 1964, John A. Blume & Associates Research Division (Blume) began a broad-range structural response program to assist the Nevada Operations Office of the US Atomic Energy Commission (AEC) in ensuring the continued safe conduct of underground nuclear detonation testing at the Nevada Test Site (NTS) and elsewhere. Blume`s long experience in earthquake engineering provided a general basis for the program, but much more specialized knowledge was required for the AEC`s purposes. Over the next 24 years Blume conducted a major research program to provide essential understanding of the detailed nature of the response of structures to dynamic loads such as those imposed by seismic wave propagation. The program`s results have been embodied in a prediction technology which has served to provide reliable advanced knowledge of the probable effects of seismic ground motion on all kinds of structures, for use in earthquake engineering and in building codes as well as for the continuing needs of the US Department of Energy`s Nevada Operations Office (DOE/NV). This report is primarily an accounting of the Blume work, beginning with the setting in 1964 and the perception of the program needs as envisioned by Dr. John A. Blume. Subsequent chapters describe the structural response program in detail and the structural prediction procedures which resulted; the intensive data acquisition program which, as is discussed at some length, relied heavily on the contributions of other consultant-contractors in the DOE/NV Seismic Safety Support Program; laboratory and field studies to provide data on building elements and structures subjected to dynamic loads from sources ranging from testing machines to earthquakes; structural response activities undertaken for testing at the NTS and for off-NTS underground nuclear detonations; and concluding with an account of corollary studies including effects of natural forces and of related studies on building response.

  10. Japan's international cooperation programs on seismic safety of nuclear power plants

    International Nuclear Information System (INIS)

    Sanada, Akira

    1997-01-01

    MITI is promoting many international cooperation programs on nuclear safety area. The seismic safety of nuclear power plants (NPPs) is a one of most important cooperation areas. Experts from MITI and related organization join the multilateral cooperation programs carried out by international organization such as IAEA, OECD/NEA etc. MITI is also promoting bilateral cooperation programs such as information exchange meetings, training programs and seminars on nuclear safety with several countries. Concerning to the cooperation programs on seismic safety of NPPs such as information exchange and training, MITI shall continue and expand these programs. (J.P.N.)

  11. The Global Seismic Hazard Assessment Program (GSHAP - 1992/1999

    Directory of Open Access Journals (Sweden)

    D. Giardini

    1999-06-01

    Full Text Available The United Nations, recognizing natural disasters as a major threat to human life and development, designed the 1990-1999 period as the International Decade for Natural Disaster Reduction (UN/IDNDR; UN Res. 42/169/ 1987. Among the IDNDR Demonstration Projects is the Global Seismic Hazard Assessment Program (GSHAP, launched in 1992 by the International Lithosphere Program (ILP and implemented in the 1992-1999 period. In order to mitigate the risk associated to the recurrence of earthquakes, the GSHAP promoted a regionally coordinated, homogeneous approach to seismic hazard evaluation. To achieve a global dimension, the GSHAP established initially a mosaic of regions and multinational test areas, then expanded to cover whole continents and finally the globe. The GSHAP Global Map of Seismic Hazard integrates the results obtained in the regional areas and depicts Peak-Ground-Acceleration (PGA with 10% chance of exceedance in 50 years, corresponding to a return period of 475 years. All regional results and the Global Map of Seismic Hazard are published in 1999 and available on the GSHAP homepage on http://seismo.ethz.ch/GSHAP/.

  12. Seismic safety margin research program. Program plan, Revision II

    International Nuclear Information System (INIS)

    Smith, P.D.; Tokarz, F.J.; Bernreuter, D.L.; Cummings, G.E.; Chou, C.K.; Vagliente, V.N.; Johnson, J.J.; Dong, R.G.

    1978-01-01

    The document has been prepared pursuant to the second meeting of the Senior Research Review Group of the Seismic Safety Margin Research Program (SSMRP), which was held on June 15, 16, 1978. The major portion of the material contained in the document is descriptions of specific subtasks to be performed on the SSMRP. This is preceded by a brief discussion of the objective of the SSMRP and the approach to be used. Specific subtasks to be performed in Phase I of the SSMRP are as follows: (1) plant/site selection, (2) seismic input, (3) soil structure interaction, (4) structural building response, (5) structural sub-system response, (6) fragility, (7) system analysis, and (8) Phase II task definition

  13. Seismic analysis program group: SSAP

    International Nuclear Information System (INIS)

    Uchida, Masaaki

    2002-05-01

    A group of programs SSAP has been developed, each member of which performs seismic calculation using simple single-mass system model or multi-mass system model. For response of structures to a transverse s-wave, a single-mass model program calculating response spectrum and a multi-mass model program are available. They perform calculation using the output of another program, which produces simulated earthquakes having the so-called Ohsaki-spectrum characteristic. Another program has been added, which calculates the response of one-dimensional multi-mass systems to vertical p-wave input. It places particular emphasis on the analysis of the phenomena observed at some shallow earthquakes in which stones jump off the ground. Through a series of test calculations using these programs, some interesting information has been derived concerning the validity of superimposing single-mass model calculation, and also the condition for stones to jump. (author)

  14. Seismic Category I Structures Program

    International Nuclear Information System (INIS)

    Endebrock, E.G.; Dove, R.C.; Anderson, C.A.

    1984-01-01

    The Seismic Category I Structures Program currently being carried out at the Los Alamos National Laboratory is sponsored by the Mechanical/Structural Engineering Branch, Division of Engineering Technology of the Nuclear Regulatory Commission (NRC). This project is part of a program designed to increase confidence in the assessment of Category I nuclear power plant structural behavior beyond the design limit. The program involves the design, construction, and testing of heavily reinforced concrete models of auxiliary buildings, fuel-handling buildings, etc., but doe not include the reactor containment building. The overall goal of the program is to supply to the Nuclear Regulatory Commission experimental information and a validated procedure to establish the sensitivity of the dynamic response of these structures to earthquakes of magnitude beyond the design basis earthquake

  15. Automatic detection of karstic sinkholes in seismic 3D images using circular Hough transform

    International Nuclear Information System (INIS)

    Parchkoohi, Mostafa Heydari; Farajkhah, Nasser Keshavarz; Delshad, Meysam Salimi

    2015-01-01

    More than 30% of hydrocarbon reservoirs are reported in carbonates that mostly include evidence of fractures and karstification. Generally, the detection of karstic sinkholes prognosticate good quality hydrocarbon reservoirs where looser sediments fill the holes penetrating hard limestone and the overburden pressure on infill sediments is mostly tolerated by their sturdier surrounding structure. They are also useful for the detection of erosional surfaces in seismic stratigraphic studies and imply possible relative sea level fall at the time of establishment. Karstic sinkholes are identified straightforwardly by using seismic geometric attributes (e.g. coherency, curvature) in which lateral variations are much more emphasized with respect to the original 3D seismic image. Then, seismic interpreters rely on their visual skills and experience in detecting roughly round objects in seismic attribute maps. In this paper, we introduce an image processing workflow to enhance selective edges in seismic attribute volumes stemming from karstic sinkholes and finally locate them in a high quality 3D seismic image by using circular Hough transform. Afterwards, we present a case study from an on-shore oilfield in southwest Iran, in which the proposed algorithm is applied and karstic sinkholes are traced. (paper)

  16. Pick- and waveform-based techniques for real-time detection of induced seismicity

    Science.gov (United States)

    Grigoli, Francesco; Scarabello, Luca; Böse, Maren; Weber, Bernd; Wiemer, Stefan; Clinton, John F.

    2018-05-01

    The monitoring of induced seismicity is a common operation in many industrial activities, such as conventional and non-conventional hydrocarbon production or mining and geothermal energy exploitation, to cite a few. During such operations, we generally collect very large and strongly noise-contaminated data sets that require robust and automated analysis procedures. Induced seismicity data sets are often characterized by sequences of multiple events with short interevent times or overlapping events; in these cases, pick-based location methods may struggle to correctly assign picks to phases and events, and errors can lead to missed detections and/or reduced location resolution and incorrect magnitudes, which can have significant consequences if real-time seismicity information are used for risk assessment frameworks. To overcome these issues, different waveform-based methods for the detection and location of microseismicity have been proposed. The main advantages of waveform-based methods is that they appear to perform better and can simultaneously detect and locate seismic events providing high-quality locations in a single step, while the main disadvantage is that they are computationally expensive. Although these methods have been applied to different induced seismicity data sets, an extensive comparison with sophisticated pick-based detection methods is still missing. In this work, we introduce our improved waveform-based detector and we compare its performance with two pick-based detectors implemented within the SeiscomP3 software suite. We test the performance of these three approaches with both synthetic and real data sets related to the induced seismicity sequence at the deep geothermal project in the vicinity of the city of St. Gallen, Switzerland.

  17. Testing seismic amplitude source location for fast debris-flow detection at Illgraben, Switzerland

    Science.gov (United States)

    Walter, Fabian; Burtin, Arnaud; McArdell, Brian W.; Hovius, Niels; Weder, Bianca; Turowski, Jens M.

    2017-06-01

    Heavy precipitation can mobilize tens to hundreds of thousands of cubic meters of sediment in steep Alpine torrents in a short time. The resulting debris flows (mixtures of water, sediment and boulders) move downstream with velocities of several meters per second and have a high destruction potential. Warning protocols for affected communities rely on raising awareness about the debris-flow threat, precipitation monitoring and rapid detection methods. The latter, in particular, is a challenge because debris-flow-prone torrents have their catchments in steep and inaccessible terrain, where instrumentation is difficult to install and maintain. Here we test amplitude source location (ASL) as a processing scheme for seismic network data for early warning purposes. We use debris-flow and noise seismograms from the Illgraben catchment, Switzerland, a torrent system which produces several debris-flow events per year. Automatic in situ detection is currently based on geophones mounted on concrete check dams and radar stage sensors suspended above the channel. The ASL approach has the advantage that it uses seismometers, which can be installed at more accessible locations where a stable connection to mobile phone networks is available for data communication. Our ASL processing uses time-averaged ground vibration amplitudes to estimate the location of the debris-flow front. Applied to continuous data streams, inversion of the seismic amplitude decay throughout the network is robust and efficient, requires no manual identification of seismic phase arrivals and eliminates the need for a local seismic velocity model. We apply the ASL technique to a small debris-flow event on 19 July 2011, which was captured with a temporary seismic monitoring network. The processing rapidly detects the debris-flow event half an hour before arrival at the outlet of the torrent and several minutes before detection by the in situ alarm system. An analysis of continuous seismic records furthermore

  18. Testing seismic amplitude source location for fast debris-flow detection at Illgraben, Switzerland

    Directory of Open Access Journals (Sweden)

    F. Walter

    2017-06-01

    Full Text Available Heavy precipitation can mobilize tens to hundreds of thousands of cubic meters of sediment in steep Alpine torrents in a short time. The resulting debris flows (mixtures of water, sediment and boulders move downstream with velocities of several meters per second and have a high destruction potential. Warning protocols for affected communities rely on raising awareness about the debris-flow threat, precipitation monitoring and rapid detection methods. The latter, in particular, is a challenge because debris-flow-prone torrents have their catchments in steep and inaccessible terrain, where instrumentation is difficult to install and maintain. Here we test amplitude source location (ASL as a processing scheme for seismic network data for early warning purposes. We use debris-flow and noise seismograms from the Illgraben catchment, Switzerland, a torrent system which produces several debris-flow events per year. Automatic in situ detection is currently based on geophones mounted on concrete check dams and radar stage sensors suspended above the channel. The ASL approach has the advantage that it uses seismometers, which can be installed at more accessible locations where a stable connection to mobile phone networks is available for data communication. Our ASL processing uses time-averaged ground vibration amplitudes to estimate the location of the debris-flow front. Applied to continuous data streams, inversion of the seismic amplitude decay throughout the network is robust and efficient, requires no manual identification of seismic phase arrivals and eliminates the need for a local seismic velocity model. We apply the ASL technique to a small debris-flow event on 19 July 2011, which was captured with a temporary seismic monitoring network. The processing rapidly detects the debris-flow event half an hour before arrival at the outlet of the torrent and several minutes before detection by the in situ alarm system. An analysis of continuous seismic

  19. A semi-supervised method to detect seismic random noise with fuzzy GK clustering

    International Nuclear Information System (INIS)

    Hashemi, Hosein; Javaherian, Abdolrahim; Babuska, Robert

    2008-01-01

    We present a new method to detect random noise in seismic data using fuzzy Gustafson–Kessel (GK) clustering. First, using an adaptive distance norm, a matrix is constructed from the observed seismic amplitudes. The next step is to find centres of ellipsoidal clusters and construct a partition matrix which determines the soft decision boundaries between seismic events and random noise. The GK algorithm updates the cluster centres in order to iteratively minimize the cluster variance. Multiplication of the fuzzy membership function with values of each sample yields new sections; we name them 'clustered sections'. The seismic amplitude values of the clustered sections are given in a way to decrease the level of noise in the original noisy seismic input. In pre-stack data, it is essential to study the clustered sections in a f–k domain; finding the quantitative index for weighting the post-stack data needs a similar approach. Using the knowledge of a human specialist together with the fuzzy unsupervised clustering, the method is a semi-supervised random noise detection. The efficiency of this method is investigated on synthetic and real seismic data for both pre- and post-stack data. The results show a significant improvement of the input noisy sections without harming the important amplitude and phase information of the original data. The procedure for finding the final weights of each clustered section should be carefully done in order to keep almost all the evident seismic amplitudes in the output section. The method interactively uses the knowledge of the seismic specialist in detecting the noise

  20. Japan`s international cooperation programs on seismic safety of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Sanada, Akira [Agency of Natural Resources and Energy, Tokyo (Japan)

    1997-03-01

    MITI is promoting many international cooperation programs on nuclear safety area. The seismic safety of nuclear power plants (NPPs) is a one of most important cooperation areas. Experts from MITI and related organization join the multilateral cooperation programs carried out by international organization such as IAEA, OECD/NEA etc. MITI is also promoting bilateral cooperation programs such as information exchange meetings, training programs and seminars on nuclear safety with several countries. Concerning to the cooperation programs on seismic safety of NPPs such as information exchange and training, MITI shall continue and expand these programs. (J.P.N.)

  1. SEISRISK II; a computer program for seismic hazard estimation

    Science.gov (United States)

    Bender, Bernice; Perkins, D.M.

    1982-01-01

    The computer program SEISRISK II calculates probabilistic ground motion values for use in seismic hazard mapping. SEISRISK II employs a model that allows earthquakes to occur as points within source zones and as finite-length ruptures along faults. It assumes that earthquake occurrences have a Poisson distribution, that occurrence rates remain constant during the time period considered, that ground motion resulting from an earthquake is a known function of magnitude and distance, that seismically homogeneous source zones are defined, that fault locations are known, that fault rupture lengths depend on magnitude, and that earthquake rates as a function of magnitude are specified for each source. SEISRISK II calculates for each site on a grid of sites the level of ground motion that has a specified probability of being exceeded during a given time period. The program was designed to process a large (essentially unlimited) number of sites and sources efficiently and has been used to produce regional and national maps of seismic hazard.}t is a substantial revision of an earlier program SEISRISK I, which has never been documented. SEISRISK II runs considerably [aster and gives more accurate results than the earlier program and in addition includes rupture length and acceleration variability which were not contained in the original version. We describe the model and how it is implemented in the computer program and provide a flowchart and listing of the code.

  2. Fundamental aspects of seismic event detection, magnitude estimation and their interrelation

    International Nuclear Information System (INIS)

    Ringdal, F.

    1977-01-01

    The main common subject of the papers forming this thesis is statistical model development within the seismological disciplines of seismic event detection and event magnitude estimation. As more high quality seismic data become available as a result of recent seismic network developments, the opportunity will exist for large scale application and further refinement of these models. It is hoped that the work presented here will facilitate improved understanding of the basic issues, both within earthquake-explosion discrimination, in the framework of which most of this work originated, and in seismology in general. (Auth.)

  3. Seismic safety margins research program. Project I SONGS 1 AFWS Project

    International Nuclear Information System (INIS)

    Chuang, T.Y.; Smith, P.D.; Dong, R.G.; Bernreuter, D.L.; Bohn, M.P.; Cummings, G.E.; Wells, J.E.

    1981-01-01

    The seismic qualification requirements of auxiliary feedwater systems (AFWS) of Pressurized Water Reactors (PWR) were developed over a number of years. These are formalized in the publication General Design Criteria (Appendix A to 10CFR50). The full recognition of the system as an engineered safety feature did not occur until publication of the Standard Review Plan (1975). Efforts to determine how to backfit seismic requirements to earlier plants has been undertaken primarily in the Systematic Evaluation Program (SEP) for a limited number of operating reactors. Nuclear Reactor Research (RES) and NRR have requested LLNL to perform a probabilistic study on the AFWS of San Onofre Nuclear Generating Station (SONGS) Unit 1 utilizing the tools developed by the Seismic Safety Margins Research Program (SSMRP). The main objectives of this project are to: identify the weak links of AFWS; compare the failure probabilities of SONGS 1 and Zion 1 AFWS: and compare the seismic responses due to different input spectra and design values

  4. BNL NONLINEAR PRE TEST SEISMIC ANALYSIS FOR THE NUPEC ULTIMATE STRENGTH PIPING TEST PROGRAM

    International Nuclear Information System (INIS)

    DEGRASSI, G.; HOFMAYER, C.; MURPHY, C.; SUZUKI, K.; NAMITA, Y.

    2003-01-01

    The Nuclear Power Engineering Corporation (NUPEC) of Japan has been conducting a multi-year research program to investigate the behavior of nuclear power plant piping systems under large seismic loads. The objectives of the program are: to develop a better understanding of the elasto-plastic response and ultimate strength of nuclear piping; to ascertain the seismic safety margin of current piping design codes; and to assess new piping code allowable stress rules. Under this program, NUPEC has performed a large-scale seismic proving test of a representative nuclear power plant piping system. In support of the proving test, a series of materials tests, static and dynamic piping component tests, and seismic tests of simplified piping systems have also been performed. As part of collaborative efforts between the United States and Japan on seismic issues, the US Nuclear Regulatory Commission (USNRC) and its contractor, the Brookhaven National Laboratory (BNL), are participating in this research program by performing pre-test and post-test analyses, and by evaluating the significance of the program results with regard to safety margins. This paper describes BNL's pre-test analysis to predict the elasto-plastic response for one of NUPEC's simplified piping system seismic tests. The capability to simulate the anticipated ratcheting response of the system was of particular interest. Analyses were performed using classical bilinear and multilinear kinematic hardening models as well as a nonlinear kinematic hardening model. Comparisons of analysis results for each plasticity model against test results for a static cycling elbow component test and for a simplified piping system seismic test are presented in the paper

  5. Detecting earthquakes over a seismic network using single-station similarity measures

    Science.gov (United States)

    Bergen, Karianne J.; Beroza, Gregory C.

    2018-06-01

    New blind waveform-similarity-based detection methods, such as Fingerprint and Similarity Thresholding (FAST), have shown promise for detecting weak signals in long-duration, continuous waveform data. While blind detectors are capable of identifying similar or repeating waveforms without templates, they can also be susceptible to false detections due to local correlated noise. In this work, we present a set of three new methods that allow us to extend single-station similarity-based detection over a seismic network; event-pair extraction, pairwise pseudo-association, and event resolution complete a post-processing pipeline that combines single-station similarity measures (e.g. FAST sparse similarity matrix) from each station in a network into a list of candidate events. The core technique, pairwise pseudo-association, leverages the pairwise structure of event detections in its network detection model, which allows it to identify events observed at multiple stations in the network without modeling the expected moveout. Though our approach is general, we apply it to extend FAST over a sparse seismic network. We demonstrate that our network-based extension of FAST is both sensitive and maintains a low false detection rate. As a test case, we apply our approach to 2 weeks of continuous waveform data from five stations during the foreshock sequence prior to the 2014 Mw 8.2 Iquique earthquake. Our method identifies nearly five times as many events as the local seismicity catalogue (including 95 per cent of the catalogue events), and less than 1 per cent of these candidate events are false detections.

  6. Review of the SQUG type seismic program at Savannah River Site

    International Nuclear Information System (INIS)

    Bitner, J.L.; Lin, C.W.; Anderson, N.R.; Bezler, P.

    1991-01-01

    The production reactors at Savannah River were shut down in 1988 because of questions about their safety. One question is whether they can withstand earthquakes. To answer the earthquake question, the site operator (Westinghouse Savannah River Company) developed a program to evaluate the capability of the safety systems in the K, L, and P reactors to function during and after an earthquake, and to upgrade them if necessary. The seismic program for Savannah River relies heavily on the Generic Implementation Procedure (GIP) developed by the Seismic qualification Utility Group. The GIP was originally developed for application to over 65 commercial power reactors throughout the U.S. It has been thoroughly reviewed by the U.S. Nuclear Regulatory Commission. The objectives of the ISWRT (Independent Seismic Walkdown Review Team) review were to: evaluate the program and evaluate its execution. The first objective was accomplished using an in-office review of the program. The second objective was accomplished using an in-office review and in-plant walkdown of selected safety systems. The ISWRT review and walkdown are summarized in this paper

  7. Seismic II over I Drop Test Program results and interpretation

    International Nuclear Information System (INIS)

    Thomas, B.

    1993-03-01

    The consequences of non-seismically qualified (Category 2) objects falling and striking essential seismically qualified (Category 1) objects has always been a significant, yet analytically difficult problem, particularly in evaluating the potential damage to equipment that may result from earthquakes. Analytical solutions for impact problems are conservative and available for mostly simple configurations. In a nuclear facility, the open-quotes sourcesclose quotes and open-quotes targetsclose quotes requiring evaluation are frequently irregular in shape and configuration, making calculations and computer modeling difficult. Few industry or regulatory rules are available on this topic even though it is a source of considerable construction upgrade costs. A drop test program was recently conducted to develop a more accurate understanding of the consequences of seismic interactions. The resulting data can be used as a means to improve the judgment of seismic qualification engineers performing interaction evaluations and to develop realistic design criteria for seismic interactions. Impact tests on various combinations of sources and targets commonly found in one Savannah River Site (SRS) nuclear facility were performed by dropping the sources from various heights onto the targets. This report summarizes results of the Drop Test Program. Force and acceleration time history data are presented as well as general observations on the overall ruggedness of various targets when subjected to impacts from different types of sources

  8. Seismic II over I Drop Test Program results and interpretation

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, B.

    1993-03-01

    The consequences of non-seismically qualified (Category 2) objects falling and striking essential seismically qualified (Category 1) objects has always been a significant, yet analytically difficult problem, particularly in evaluating the potential damage to equipment that may result from earthquakes. Analytical solutions for impact problems are conservative and available for mostly simple configurations. In a nuclear facility, the {open_quotes}sources{close_quotes} and {open_quotes}targets{close_quotes} requiring evaluation are frequently irregular in shape and configuration, making calculations and computer modeling difficult. Few industry or regulatory rules are available on this topic even though it is a source of considerable construction upgrade costs. A drop test program was recently conducted to develop a more accurate understanding of the consequences of seismic interactions. The resulting data can be used as a means to improve the judgment of seismic qualification engineers performing interaction evaluations and to develop realistic design criteria for seismic interactions. Impact tests on various combinations of sources and targets commonly found in one Savannah River Site (SRS) nuclear facility were performed by dropping the sources from various heights onto the targets. This report summarizes results of the Drop Test Program. Force and acceleration time history data are presented as well as general observations on the overall ruggedness of various targets when subjected to impacts from different types of sources.

  9. Seismic II over I Drop Test Program results and interpretation

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, B.

    1993-03-01

    The consequences of non-seismically qualified (Category 2) objects falling and striking essential seismically qualified (Category 1) objects has always been a significant, yet analytically difficult problem, particularly in evaluating the potential damage to equipment that may result from earthquakes. Analytical solutions for impact problems are conservative and available for mostly simple configurations. In a nuclear facility, the [open quotes]sources[close quotes] and [open quotes]targets[close quotes] requiring evaluation are frequently irregular in shape and configuration, making calculations and computer modeling difficult. Few industry or regulatory rules are available on this topic even though it is a source of considerable construction upgrade costs. A drop test program was recently conducted to develop a more accurate understanding of the consequences of seismic interactions. The resulting data can be used as a means to improve the judgment of seismic qualification engineers performing interaction evaluations and to develop realistic design criteria for seismic interactions. Impact tests on various combinations of sources and targets commonly found in one Savannah River Site (SRS) nuclear facility were performed by dropping the sources from various heights onto the targets. This report summarizes results of the Drop Test Program. Force and acceleration time history data are presented as well as general observations on the overall ruggedness of various targets when subjected to impacts from different types of sources.

  10. Large-Scale Seismic Test Program at Hualien, Taiwan

    International Nuclear Information System (INIS)

    Tang, H.T.; Graves, H.L.; Yeh, Y.S.

    1991-01-01

    The Large-Scale Seismic Test (LSST) Program at Hualien, Taiwan, is a follow-on to the soil-structure interaction (SSI) experiments at Lotung, Taiwan. The planned SSI studies will be performed at a stiff soil site in Hualien, Taiwan, that historically has had slightly more destructive earthquakes in the past than Lotung. The objectives of the LSST project is as follows: To obtain earthquake-induced SSI data at a stiff soil site having similar prototypical nuclear power plant soil conditions. To confirm the findings and methodologies validated against the Lotung soft soil SSI data for prototypical plant condition applications. To further validate the technical basis of realistic SSI analysis approaches. To further support the resolution of USI A-40 Seismic Design Criteria issue. These objectives will be accomplished through an integrated and carefully planned experimental program consisting of: soil characterization, test model design and field construction, instrumentation layout and deployment, in-situ geophysical information collection, forced vibration test, and synthesis of results and findings. The LSST is a joint effort among many interested parties. EPRI and Taipower are the organizers of the program and have the lead in planning and managing the program

  11. Methods and apparatus for use in detecting seismic waves in a borehole

    Science.gov (United States)

    West, Phillip B.; Fincke, James R.; Reed, Teddy R.

    2006-05-23

    The invention provides methods and apparatus for detecting seismic waves propagating through a subterranean formation surrounding a borehole. In a first embodiment, a sensor module uses the rotation of bogey wheels to extend and retract a sensor package for selective contact and magnetic coupling to casing lining the borehole. In a second embodiment, a sensor module is magnetically coupled to the casing wall during its travel and dragged therealong while maintaining contact therewith. In a third embodiment, a sensor module is interfaced with the borehole environment to detect seismic waves using coupling through liquid in the borehole. Two or more of the above embodiments may be combined within a single sensor array to provide a resulting seismic survey combining the optimum of the outputs of each embodiment into a single data set.

  12. An academic program for experience-based seismic evaluation

    International Nuclear Information System (INIS)

    Nix, S.J.; Meyer, W.; Clemence, S.P.

    1990-01-01

    The authors have been involved in a project, sponsored by the Niagara Mohawk Power Corporation, to develop knowledge-based expert systems to aid in the implementation of the Seismic Qualification Utility Group (SQUG) approach for the seismic qualification of equipment in operating nuclear power plants. This approach, being founded on the use of engineering judgment in the application of prior earthquake experience data, requires comprehensive training. There seems to be general consensus that the experience-based approach is a more cost-effective means of qualifying nuclear power plant equipment when compared to the more traditional analytical methods. The experience-based approach has a number of potential applications in civil engineering, including bridge evaluation and design, seismic adequacy of general structures, foundation design, and water and wastewater treatment plant design and operation. The objective of this paper is to outline an academic curriculum, at the master's level, to educate structural engineers to use and further develop the experience-based approach for seismic evaluation. In the long term, this could lead to the development of academic programs in experience-based assessment and design for a wide range of applications in maintaining the nation's infrastructure

  13. The sequentially discounting autoregressive (SDAR) method for on-line automatic seismic event detecting on long term observation

    Science.gov (United States)

    Wang, L.; Toshioka, T.; Nakajima, T.; Narita, A.; Xue, Z.

    2017-12-01

    In recent years, more and more Carbon Capture and Storage (CCS) studies focus on seismicity monitoring. For the safety management of geological CO2 storage at Tomakomai, Hokkaido, Japan, an Advanced Traffic Light System (ATLS) combined different seismic messages (magnitudes, phases, distributions et al.) is proposed for injection controlling. The primary task for ATLS is the seismic events detection in a long-term sustained time series record. Considering the time-varying characteristics of Signal to Noise Ratio (SNR) of a long-term record and the uneven energy distributions of seismic event waveforms will increase the difficulty in automatic seismic detecting, in this work, an improved probability autoregressive (AR) method for automatic seismic event detecting is applied. This algorithm, called sequentially discounting AR learning (SDAR), can identify the effective seismic event in the time series through the Change Point detection (CPD) of the seismic record. In this method, an anomaly signal (seismic event) can be designed as a change point on the time series (seismic record). The statistical model of the signal in the neighborhood of event point will change, because of the seismic event occurrence. This means the SDAR aims to find the statistical irregularities of the record thought CPD. There are 3 advantages of SDAR. 1. Anti-noise ability. The SDAR does not use waveform messages (such as amplitude, energy, polarization) for signal detecting. Therefore, it is an appropriate technique for low SNR data. 2. Real-time estimation. When new data appears in the record, the probability distribution models can be automatic updated by SDAR for on-line processing. 3. Discounting property. the SDAR introduces a discounting parameter to decrease the influence of present statistic value on future data. It makes SDAR as a robust algorithm for non-stationary signal processing. Within these 3 advantages, the SDAR method can handle the non-stationary time-varying long

  14. Seismic Safety Margins Research Program: a concluding look

    International Nuclear Information System (INIS)

    Cummings, G.E.

    1984-01-01

    The Seismic Safety Margins Research Program (SSMRP) was started in 1978 with the goal of developing tools and data bases to compute the probability of earthquake - caused radioactive release from commercial nuclear power plants. These tools and data bases were to help NRC to assess seismic safety at nuclear plants. The methodology to be used was finalized in 1982 and applied to the Zion Nuclear Power Station. The SSMRP will be completed this year with the development of a more simplified method of analysis and a demonstration of its use on Zion. This simplified method is also being applied to a boiling-water-reactor, LaSalle

  15. Passive monitoring for near surface void detection using traffic as a seismic source

    Science.gov (United States)

    Zhao, Y.; Kuzma, H. A.; Rector, J.; Nazari, S.

    2009-12-01

    In this poster we present preliminary results based on our several field experiments in which we study seismic detection of voids using a passive array of surface geophones. The source of seismic excitation is vehicle traffic on nearby roads, which we model as a continuous line source of seismic energy. Our passive seismic technique is based on cross-correlation of surface wave fields and studying the resulting power spectra, looking for "shadows" caused by the scattering effect of a void. High frequency noise masks this effect in the time domain, so it is difficult to see on conventional traces. Our technique does not rely on phase distortions caused by small voids because they are generally too tiny to measure. Unlike traditional impulsive seismic sources which generate highly coherent broadband signals, perfect for resolving phase but too weak for resolving amplitude, vehicle traffic affords a high power signal a frequency range which is optimal for finding shallow structures. Our technique results in clear detections of an abandoned railroad tunnel and a septic tank. The ultimate goal of this project is to develop a technology for the simultaneous imaging of shallow underground structures and traffic monitoring near these structures.

  16. Automated detection and characterization of harmonic tremor in continuous seismic data

    Science.gov (United States)

    Roman, Diana C.

    2017-06-01

    Harmonic tremor is a common feature of volcanic, hydrothermal, and ice sheet seismicity and is thus an important proxy for monitoring changes in these systems. However, no automated methods for detecting harmonic tremor currently exist. Because harmonic tremor shares characteristics with speech and music, digital signal processing techniques for analyzing these signals can be adapted. I develop a novel pitch-detection-based algorithm to automatically identify occurrences of harmonic tremor and characterize their frequency content. The algorithm is applied to seismic data from Popocatepetl Volcano, Mexico, and benchmarked against a monthlong manually detected catalog of harmonic tremor events. During a period of heightened eruptive activity from December 2014 to May 2015, the algorithm detects 1465 min of harmonic tremor, which generally precede periods of heightened explosive activity. These results demonstrate the algorithm's ability to accurately characterize harmonic tremor while highlighting the need for additional work to understand its causes and implications at restless volcanoes.

  17. Detection of sinkholes or anomalies using full seismic wave fields.

    Science.gov (United States)

    2013-04-01

    This research presents an application of two-dimensional (2-D) time-domain waveform tomography for detection of embedded sinkholes and anomalies. The measured seismic surface wave fields were inverted using a full waveform inversion (FWI) technique, ...

  18. Seismic structural fragility investigation for the Zion Nuclear Power Plant. Seismic safety margins research program (phase 1)

    International Nuclear Information System (INIS)

    Wesley, D.A.; Hashimoto, P.S.

    1981-10-01

    An evaluation of the seismic capacity of the essential structures for the Zion Nuclear Power Plant in Zion, Illinois, was conducted as part of the Seismic Safety Margins Research Program (SSMRP). The structures included the reactor containment building, the turbine/auxiliary building, and the crib house (intake structure). The evaluation was devoted to seismically induced failures rather than those resulting from combined Loss of Coolant Accident (LOCA) or other extreme load combinations. The seismic loads used in the investigation were based on elastic analyses. The loads for the reactor containment and turbine/auxiliary buildings were developed by Lawrence Livermore Laboratory using time history analyses. The loads used for the crib house were the original seismic design loads developed by Sargent and Lundy. No non-linear seismic analyses were conducted. The seismic capacity of the structures accounted for the actual concrete and steel material properties including the aging of the concrete. Median centered properties were used throughout the evaluation including levels of damping considered appropriate for structures close to collapse as compared to the more conservative values used for design. The inelastic effects were accounted for using ductility modified response spectrum techniques based on system ductility ratios expected for structures near collapse. Sources of both inherent randomness and uncertainties resulting from lack of knowledge or approximations in analytical modelling were considered in developing the dispersion of the structural dynamic characteristics. Coefficients of variation were developed assuming lognormal distributions for all variables. The earthquake levels for many of the seismically induced failure modes are so high as to be considered physically incredible. (author)

  19. Seismic safety research program plan

    International Nuclear Information System (INIS)

    1987-05-01

    This document presents a plan for seismic research to be performed by the Structural and Seismic Engineering Branch in the Office of Nuclear Regulatory Research. The plan describes the regulatory needs and related research necessary to address the following issues: uncertainties in seismic hazard, earthquakes larger than the design basis, seismic vulnerabilities, shifts in building frequency, piping design, and the adequacy of current criteria and methods. In addition to presenting current and proposed research within the NRC, the plan discusses research sponsored by other domestic and foreign sources

  20. An Analysis of Mechanical Constraints when Using Superconducting Gravimeters for Far-Field Pre-Seismic Anomaly Detection

    Directory of Open Access Journals (Sweden)

    Shyh-Chin Lan

    2011-01-01

    Full Text Available Pre-seismic gravity anomalies from records obtained at a 1 Hz sampling rate from superconducting gravimeters (SG around East Asia are analyzed. A comparison of gravity anomalies to the source parameters of associated earthquakes shows that the detection of pre-seismic gravity anomalies is constrained by several mechanical conditions of the seismic fault plane. The constraints of the far-field pre-seismic gravity amplitude perturbation were examined and the critical spatial relationship between the SG station and the epicenter precursory signal for detection was determined. The results show that: (1 the pre-seismic amplitude perturbation of gravity is inversely proportional to distance; (2 the transfer path from the epicenter to the SG station that crosses a tectonic boundary has a relatively low pre-seismic gravity anomaly amplitude; (3 the pre-seismic gravity perturbation amplitude is also affected by the attitude between the location of an SG station and the strike of the ruptured fault plane. The removal of typhoon effects and the selection of SG stations within a certain intersection angle to the strike of the fault plane are essential for obtaining reliable pre-seismic gravity anomaly results.

  1. Detection of Artificially Generated Seismic Signals using Balloon-borne Infrasound Sensors

    OpenAIRE

    Krishnamoorthy, Siddharth; Komjathy, Attila; Pauken, Michael T.; Cutts, James A.; Garcia, Raphael F.; Mimoun, David; Cadu, Alexandre; Sournac, Anthony; Jackson, Jennifer M.; Lai, Voon Hui; Bowman, Daniel C.

    2018-01-01

    We conducted an experiment in Pahrump, Nevada, in June 2017, where artificial seismic signals were created using a seismic hammer, and the possibility of detecting them from their acoustic signature was examined. In this work, we analyze the pressure signals recorded by highly sensitive barometers deployed on the ground and on tethers suspended from balloons. Our signal processing results show that wind noise experienced by a barometer on a free‐flying balloon is lower compared to one on a mo...

  2. Modern Adaptive Analytics Approach to Lowering Seismic Network Detection Thresholds

    Science.gov (United States)

    Johnson, C. E.

    2017-12-01

    Modern seismic networks present a number of challenges, but perhaps most notably are those related to 1) extreme variation in station density, 2) temporal variation in station availability, and 3) the need to achieve detectability for much smaller events of strategic importance. The first of these has been reasonably addressed in the development of modern seismic associators, such as GLASS 3.0 by the USGS/NEIC, though some work still remains to be done in this area. However, the latter two challenges demand special attention. Station availability is impacted by weather, equipment failure or the adding or removing of stations, and while thresholds have been pushed to increasingly smaller magnitudes, new algorithms are needed to achieve even lower thresholds. Station availability can be addressed by a modern, adaptive architecture that maintains specified performance envelopes using adaptive analytics coupled with complexity theory. Finally, detection thresholds can be lowered using a novel approach that tightly couples waveform analytics with the event detection and association processes based on a principled repicking algorithm that uses particle realignment for enhanced phase discrimination.

  3. An automated multi-scale network-based scheme for detection and location of seismic sources

    Science.gov (United States)

    Poiata, N.; Aden-Antoniow, F.; Satriano, C.; Bernard, P.; Vilotte, J. P.; Obara, K.

    2017-12-01

    We present a recently developed method - BackTrackBB (Poiata et al. 2016) - allowing to image energy radiation from different seismic sources (e.g., earthquakes, LFEs, tremors) in different tectonic environments using continuous seismic records. The method exploits multi-scale frequency-selective coherence in the wave field, recorded by regional seismic networks or local arrays. The detection and location scheme is based on space-time reconstruction of the seismic sources through an imaging function built from the sum of station-pair time-delay likelihood functions, projected onto theoretical 3D time-delay grids. This imaging function is interpreted as the location likelihood of the seismic source. A signal pre-processing step constructs a multi-band statistical representation of the non stationary signal, i.e. time series, by means of higher-order statistics or energy envelope characteristic functions. Such signal-processing is designed to detect in time signal transients - of different scales and a priori unknown predominant frequency - potentially associated with a variety of sources (e.g., earthquakes, LFE, tremors), and to improve the performance and the robustness of the detection-and-location location step. The initial detection-location, based on a single phase analysis with the P- or S-phase only, can then be improved recursively in a station selection scheme. This scheme - exploiting the 3-component records - makes use of P- and S-phase characteristic functions, extracted after a polarization analysis of the event waveforms, and combines the single phase imaging functions with the S-P differential imaging functions. The performance of the method is demonstrated here in different tectonic environments: (1) analysis of the one year long precursory phase of 2014 Iquique earthquake in Chile; (2) detection and location of tectonic tremor sources and low-frequency earthquakes during the multiple episodes of tectonic tremor activity in southwestern Japan.

  4. Novel ST-MUSIC-based spectral analysis for detection of ULF geomagnetic signals anomalies associated with seismic events in Mexico

    Directory of Open Access Journals (Sweden)

    Omar Chavez

    2016-05-01

    Full Text Available Recently, the analysis of ultra-low-frequency (ULF geomagnetic signals in order to detect seismic anomalies has been reported in several works. Yet, they, although having promising results, present problems for their detection since these anomalies are generally too much weak and embedded in high noise levels. In this work, a short-time multiple signal classification (ST-MUSIC, which is a technique with high-frequency resolution and noise immunity, is proposed for the detection of seismic anomalies in the ULF geomagnetic signals. Besides, the energy (E of geomagnetic signals processed by ST-MUSIC is also presented as a complementary parameter to measure the fluctuations between seismic activity and seismic calm period. The usefulness and effectiveness of the proposal are demonstrated through the analysis of a synthetic signal and five real signals with earthquakes. The analysed ULF geomagnetic signals have been obtained using a tri-axial fluxgate magnetometer at the Juriquilla station, which is localized in Queretaro, Mexico (geographic coordinates: longitude 100.45° E and latitude 20.70° N. The results obtained show the detection of seismic perturbations before, during, and after the main shock, making the proposal a suitable tool for detecting seismic precursors.

  5. Multi-hole seismic modeling in 3-D space and cross-hole seismic tomography analysis for boulder detection

    Science.gov (United States)

    Cheng, Fei; Liu, Jiangping; Wang, Jing; Zong, Yuquan; Yu, Mingyu

    2016-11-01

    A boulder stone, a common geological feature in south China, is referred to the remnant of a granite body which has been unevenly weathered. Undetected boulders could adversely impact the schedule and safety of subway construction when using tunnel boring machine (TBM) method. Therefore, boulder detection has always been a key issue demanded to be solved before the construction. Nowadays, cross-hole seismic tomography is a high resolution technique capable of boulder detection, however, the method can only solve for velocity in a 2-D slice between two wells, and the size and central position of the boulder are generally difficult to be accurately obtained. In this paper, the authors conduct a multi-hole wave field simulation and characteristic analysis of a boulder model based on the 3-D elastic wave staggered-grid finite difference theory, and also a 2-D imaging analysis based on first arrival travel time. The results indicate that (1) full wave field records could be obtained from multi-hole seismic wave simulations. Simulation results describe that the seismic wave propagation pattern in cross-hole high-velocity spherical geological bodies is more detailed and can serve as a basis for the wave field analysis. (2) When a cross-hole seismic section cuts through the boulder, the proposed method provides satisfactory cross-hole tomography results; however, when the section is closely positioned to the boulder, such high-velocity object in the 3-D space would impact on the surrounding wave field. The received diffracted wave interferes with the primary wave and in consequence the picked first arrival travel time is not derived from the profile, which results in a false appearance of high-velocity geology features. Finally, the results of 2-D analysis in 3-D modeling space are comparatively analyzed with the physical model test vis-a-vis the effect of high velocity body on the seismic tomographic measurements.

  6. The passive seismic aftershock Monitoring system: testing program and preliminary results

    International Nuclear Information System (INIS)

    Mokhtari, M.

    2005-01-01

    The paper is dedicated to testing program (phase of the passive seismic aftershock monitoring system with RefTek equipment (Refraction Technology, Inc., USA) for On-Site Inspection purposes that was carried out near Vienna International Centre in 2000. Equipment and applied software are described. Testing results were analyzed; in particular, least needs in maintenance personnel during operation. Development perspectives of passive seismic aftershock monitoring system for On-Site Inspection have been discussed. (author)

  7. Final Scientific Report, Integrated Seismic Event Detection and Location by Advanced Array Processing

    Energy Technology Data Exchange (ETDEWEB)

    Kvaerna, T.; Gibbons. S.J.; Ringdal, F; Harris, D.B.

    2007-01-30

    In the field of nuclear explosion monitoring, it has become a priority to detect, locate, and identify seismic events down to increasingly small magnitudes. The consideration of smaller seismic events has implications for a reliable monitoring regime. Firstly, the number of events to be considered increases greatly; an exponential increase in naturally occurring seismicity is compounded by large numbers of seismic signals generated by human activity. Secondly, the signals from smaller events become more difficult to detect above the background noise and estimates of parameters required for locating the events may be subject to greater errors. Thirdly, events are likely to be observed by a far smaller number of seismic stations, and the reliability of event detection and location using a very limited set of observations needs to be quantified. For many key seismic stations, detection lists may be dominated by signals from routine industrial explosions which should be ascribed, automatically and with a high level of confidence, to known sources. This means that expensive analyst time is not spent locating routine events from repeating seismic sources and that events from unknown sources, which could be of concern in an explosion monitoring context, are more easily identified and can be examined with due care. We have obtained extensive lists of confirmed seismic events from mining and other artificial sources which have provided an excellent opportunity to assess the quality of existing fully-automatic event bulletins and to guide the development of new techniques for online seismic processing. Comparing the times and locations of confirmed events from sources in Fennoscandia and NW Russia with the corresponding time and location estimates reported in existing automatic bulletins has revealed substantial mislocation errors which preclude a confident association of detected signals with known industrial sources. The causes of the errors are well understood and are

  8. Final Scientific Report, Integrated Seismic Event Detection and Location by Advanced Array Processing

    International Nuclear Information System (INIS)

    Kvaerna, T.; Gibbons. S.J.; Ringdal, F; Harris, D.B.

    2007-01-01

    In the field of nuclear explosion monitoring, it has become a priority to detect, locate, and identify seismic events down to increasingly small magnitudes. The consideration of smaller seismic events has implications for a reliable monitoring regime. Firstly, the number of events to be considered increases greatly; an exponential increase in naturally occurring seismicity is compounded by large numbers of seismic signals generated by human activity. Secondly, the signals from smaller events become more difficult to detect above the background noise and estimates of parameters required for locating the events may be subject to greater errors. Thirdly, events are likely to be observed by a far smaller number of seismic stations, and the reliability of event detection and location using a very limited set of observations needs to be quantified. For many key seismic stations, detection lists may be dominated by signals from routine industrial explosions which should be ascribed, automatically and with a high level of confidence, to known sources. This means that expensive analyst time is not spent locating routine events from repeating seismic sources and that events from unknown sources, which could be of concern in an explosion monitoring context, are more easily identified and can be examined with due care. We have obtained extensive lists of confirmed seismic events from mining and other artificial sources which have provided an excellent opportunity to assess the quality of existing fully-automatic event bulletins and to guide the development of new techniques for online seismic processing. Comparing the times and locations of confirmed events from sources in Fennoscandia and NW Russia with the corresponding time and location estimates reported in existing automatic bulletins has revealed substantial mislocation errors which preclude a confident association of detected signals with known industrial sources. The causes of the errors are well understood and are

  9. Ground sounds: Seismic detection in the golden mole

    Science.gov (United States)

    Narins, Peter M.; Lewis, Edwin R.

    2004-05-01

    The Namib Desert golden mole is a nocturnal, surface-foraging mammal, possessing a massively hypertrophied malleus which presumably confers low-frequency, substrate-vibration sensitivity through inertial bone conduction. Foraging trails are punctuated with characteristic sand disturbances in which the animal's head dips under the sand. The function of this behavior is not known but it is thought that it may be used to obtain a seismic fix on the next mound to be visited. To test this, we measured the local seismic vibrations both on the top of a mound and on the flats. The spectrum recorded on the flats shows a relatively low-amplitude peak at about 120 Hz, whereas the spectral peak recorded from the mound is nearly 17 dB greater in amplitude and centered at 310 Hz. This suggests that mounds act as seismic beacons for the golden moles that would be detectable from distances corresponding to typical intermound distances of 20-25 m. In addition, out of the 117 species for which data are available, these golden moles have the greatest ossicular mass relative to body size (Mason, personal communication). Functionally, they appear to be low-frequency specialists, and it is likely that golden moles hear through substrate conduction. [Work supported by NIH.

  10. U.S. experience in seismic re-evaluation and verification programs

    International Nuclear Information System (INIS)

    Stevenson, J.D.

    1995-01-01

    The purpose of this paper is to present a summary of the development of a seismic re-evaluation program for older nuclear power plants in the U.S. The principal focus of this reevaluation is the use of actual strong motion earthquake response data for structures and mechanical and electrical systems and components. These data are supplemented by generic shake table test results. Use of this type of seismic re-evaluation has led to major cost reductions as compared to more conventional analytical and component specific testing procedures. (author)

  11. An overview of the U.S. Department of Energy's program for liquid metal reactor seismic technology

    International Nuclear Information System (INIS)

    Jetter, R.I.; Seidensticker, R.W.

    1988-01-01

    During the past decade, the U.S. Department of Energy (DOE) has sponsored the development of seismic design technology in support of Liquid Metal Reactors (LMR's). This has been accomplished through 1) major projects such as the Fast Flux Test Facility (FFTF) and the Clinch River Breeder Reactor (CRBR), 2) base technology programs and 3) support to the design development of innovative LMR's, SAFR and PRISM. These developments have come in the areas of ground motion definition, soil-structure interaction, seismic isolation, fluid-structure interaction and structural analysis methods and criteria for equipment and components such as piping, reactor core and vessels. The initial developments in seismic design technology by DOE and others were directed toward ensuring that the plant, equipment and components had sufficient seismic resistance to ensure availability after an Operations Basis Earthquake (OBE) and to survive a Safe Shutdown Earthquake (SSE). During this period, the emphasis on conservative design had significant cost impacts. The current focus is directed toward a better understanding of seismic design margins and the development of methods to reduce seismic loads on plant and equipment and to enhance siting flexibility. From this perspective, the DOE is currently reassessing the needs and priorities for future seismic technology development. Coordination with University research programs and ongoing seismic technology development sponsored by other governmental agencies and institutions is an integral part of this planning process. The purpose of this paper is to highlight the current status of DOE's seismic technology program for LMR's and to provide an overview of future areas of interest. (author). 7 refs

  12. The seismic project of the National Tsunami Hazard Mitigation Program

    Science.gov (United States)

    Oppenheimer, D.H.; Bittenbinder, A.N.; Bogaert, B.M.; Buland, R.P.; Dietz, L.D.; Hansen, R.A.; Malone, S.D.; McCreery, C.S.; Sokolowski, T.J.; Whitmore, P.M.; Weaver, C.S.

    2005-01-01

    In 1997, the Federal Emergency Management Agency (FEMA), National Oceanic and Atmospheric Administration (NOAA), U.S. Geological Survey (USGS), and the five western States of Alaska, California, Hawaii, Oregon, and Washington joined in a partnership called the National Tsunami Hazard Mitigation Program (NTHMP) to enhance the quality and quantity of seismic data provided to the NOAA tsunami warning centers in Alaska and Hawaii. The NTHMP funded a seismic project that now provides the warning centers with real-time seismic data over dedicated communication links and the Internet from regional seismic networks monitoring earthquakes in the five western states, the U.S. National Seismic Network in Colorado, and from domestic and global seismic stations operated by other agencies. The goal of the project is to reduce the time needed to issue a tsunami warning by providing the warning centers with high-dynamic range, broadband waveforms in near real time. An additional goal is to reduce the likelihood of issuing false tsunami warnings by rapidly providing to the warning centers parametric information on earthquakes that could indicate their tsunamigenic potential, such as hypocenters, magnitudes, moment tensors, and shake distribution maps. New or upgraded field instrumentation was installed over a 5-year period at 53 seismic stations in the five western states. Data from these instruments has been integrated into the seismic network utilizing Earthworm software. This network has significantly reduced the time needed to respond to teleseismic and regional earthquakes. Notably, the West Coast/Alaska Tsunami Warning Center responded to the 28 February 2001 Mw 6.8 Nisqually earthquake beneath Olympia, Washington within 2 minutes compared to an average response time of over 10 minutes for the previous 18 years. ?? Springer 2005.

  13. Detection of Artificially Generated Seismic Signals Using Balloon-Borne Infrasound Sensors

    Science.gov (United States)

    Krishnamoorthy, Siddharth; Komjathy, Attila; Pauken, Michael T.; Cutts, James A.; Garcia, Raphael F.; Mimoun, David; Cadu, Alexandre; Sournac, Anthony; Jackson, Jennifer M.; Lai, Voon Hui; Bowman, Daniel C.

    2018-04-01

    We conducted an experiment in Pahrump, Nevada, in June 2017, where artificial seismic signals were created using a seismic hammer, and the possibility of detecting them from their acoustic signature was examined. In this work, we analyze the pressure signals recorded by highly sensitive barometers deployed on the ground and on tethers suspended from balloons. Our signal processing results show that wind noise experienced by a barometer on a free-flying balloon is lower compared to one on a moored balloon. This has never been experimentally demonstrated in the lower troposphere. While seismoacoustic signals were not recorded on the hot air balloon platform owing to operational challenges, we demonstrate the detection of seismoacoustic signals on our moored balloon platform. Our results have important implications for performing seismology in harsh surface environments such as Venus through atmospheric remote sensing.

  14. Burar seismic station: evaluation of seismic performance

    International Nuclear Information System (INIS)

    Ghica, Daniela; Popa, Mihaela

    2005-01-01

    A new seismic monitoring system, the Bucovina Seismic Array (BURAR), has been established since July 2002, in the Northern part of Romania, in a joint effort of the Air Force Technical Applications Center, USA, and the National Institute for Earth Physics (NIEP), Romania. The small-aperture array consists of 10 seismic sensors (9 vertical short-period and one three-component broad band) located in boreholes and distributed in a 5 x 5 km 2 area. At present, the seismic data are continuously recorded by the BURAR and transmitted in real-time to the Romanian National Data Center in Bucharest and National Data Center of the USA, in Florida. Based on the BURAR seismic information gathered at the National Data Center, NIEP (ROM N DC), in the August 2002 - December 2004 time interval, analysis and statistical assessments were performed. Following the preliminary processing of the data, several observations on the global performance of the BURAR system were emphasized. Data investigation showed an excellent efficiency of the BURAR system particularly in detecting teleseismic and regional events. Also, a statistical analysis for the BURAR detection capability of the local Vrancea events was performed in terms of depth and magnitude for the year 2004. The high signal detection capability of the BURAR resulted, generally, in improving the location solutions for the Vrancea seismic events. The location solution accuracy is enhanced when adding BURAR recordings, especially in the case of low magnitude events (recorded by few stations). The location accuracy is increased, both in terms of constraining hypocenter depth and epicentral coordinates. Our analysis certifies the importance of the BURAR system in NIEP efforts to elaborate seismic bulletins. Furthermore, the specific procedures for array data processing (beam forming, f-k analysis) increase significantly the signal-to-noise ratio by summing up the coherent signals from the array components, and ensure a better accuracy

  15. Detecting Micro-seismicity and Long-duration Tremor-like Events from the Oklahoma Wavefield Experiment

    Science.gov (United States)

    Li, C.; Li, Z.; Peng, Z.; Zhang, C.; Nakata, N.

    2017-12-01

    Oklahoma has experienced abrupt increase of induced seismicity in the last decade. An important way to fully understand seismic activities in Oklahoma is to obtain more complete earthquake catalogs and detect different types of seismic events. The IRIS Community Wavefield Demonstration Experiment was deployed near Enid, Oklahoma in Summer of 2016. The dataset from this ultra-dense array provides an excellent opportunity for detecting microseismicity in that region with wavefield approaches. Here we examine continuous waveforms recorded by 3 seismic lines using local coherence for ultra-dense arrays (Li et al., 2017), which is a measure of cross-correlation of waveform at each station with its nearby stations. So far we have detected more than 5,000 events from 06/22/2016 to 07/20/2016, and majority of them are not listed on the regional catalog of Oklahoma or global catalogs, indicating that they are local events. We also identify 15-20 long-period long-duration events, some of them lasting for more than 500 s. Such events have been found at major plate-boundary faults (also known as deep tectonic tremor), as well as during hydraulic fracturing, slow-moving landslides and glaciers. Our next step is to locate these possible tremor-like events with their relative arrival times across the array and compare their occurrence times with solid-earth tides and injection histories to better understand their driving mechanisms.

  16. Detecting P and S-wave of Mt. Rinjani seismic based on a locally stationary autoregressive (LSAR) model

    Science.gov (United States)

    Nurhaida, Subanar, Abdurakhman, Abadi, Agus Maman

    2017-08-01

    Seismic data is usually modelled using autoregressive processes. The aim of this paper is to find the arrival times of the seismic waves of Mt. Rinjani in Indonesia. Kitagawa algorithm's is used to detect the seismic P and S-wave. Householder transformation used in the algorithm made it effectively finding the number of change points and parameters of the autoregressive models. The results show that the use of Box-Cox transformation on the variable selection level makes the algorithm works well in detecting the change points. Furthermore, when the basic span of the subinterval is set 200 seconds and the maximum AR order is 20, there are 8 change points which occur at 1601, 2001, 7401, 7601,7801, 8001, 8201 and 9601. Finally, The P and S-wave arrival times are detected at time 1671 and 2045 respectively using a precise detection algorithm.

  17. Piezoelectric dynamic strain monitoring for detecting local seismic damage in steel buildings

    International Nuclear Information System (INIS)

    Kurata, Masahiro; Li, Xiaohua; Fujita, Kohei; Yamaguchi, Mayako

    2013-01-01

    This research presents a methodology for damage detection along with a sensing system for monitoring seismic damage in steel buildings. The system extracts the location and extent of local damage, such as fracture at a beam–column connection, from changes in the bending moment distribution in a steel moment-resisting frame. We developed a dynamic strain-based sensing system utilizing piezoelectric film sensors and wireless sensing techniques to estimate the bending moments resisted by individual structural members under small amplitude loadings such as ambient vibrations and minor earthquakes. We introduce a new damage index that extracts local damage information from the comparative study of the dynamic strain responses of the structural members before and after a large earthquake event. The damage detection scheme was examined both analytically and numerically using a simple frame example. Then, the entire local damage detection scheme was verified through a series of vibration tests using a one-quarter-scale steel testbed that simulated seismic damage at member ends. (paper)

  18. Seismic network based detection, classification and location of volcanic tremors

    Science.gov (United States)

    Nikolai, S.; Soubestre, J.; Seydoux, L.; de Rosny, J.; Droznin, D.; Droznina, S.; Senyukov, S.; Gordeev, E.

    2017-12-01

    Volcanic tremors constitute an important attribute of volcanic unrest in many volcanoes, and their detection and characterization is a challenging issue of volcano monitoring. The main goal of the present work is to develop a network-based method to automatically classify volcanic tremors, to locate their sources and to estimate the associated wave speed. The method is applied to four and a half years of seismic data continuously recorded by 19 permanent seismic stations in the vicinity of the Klyuchevskoy volcanic group (KVG) in Kamchatka (Russia), where five volcanoes were erupting during the considered time period. The method is based on the analysis of eigenvalues and eigenvectors of the daily array covariance matrix. As a first step, following Seydoux et al. (2016), most coherent signals corresponding to dominating tremor sources are detected based on the width of the covariance matrix eigenvalues distribution. With this approach, the volcanic tremors of the two volcanoes known as most active during the considered period, Klyuchevskoy and Tolbachik, are efficiently detected. As a next step, we consider the array covariance matrix's first eigenvectors computed every day. The main hypothesis of our analysis is that these eigenvectors represent the principal component of the daily seismic wavefield and, for days with tremor activity, characterize the dominant tremor sources. Those first eigenvectors can therefore be used as network-based fingerprints of tremor sources. A clustering process is developed to analyze this collection of first eigenvectors, using correlation coefficient as a measure of their similarity. Then, we locate tremor sources based on cross-correlations amplitudes. We characterize seven tremor sources associated with different periods of activity of four volcanoes: Tolbachik, Klyuchevskoy, Shiveluch, and Kizimen. The developed method does not require a priori knowledge, is fully automatic and the database of network-based tremor fingerprints

  19. Seismic behaviour of LMFBR reactor cores. The SYMPHONY program

    International Nuclear Information System (INIS)

    Broc, Daniel

    2001-01-01

    As part of a comprehensive program on the seismic behaviour of the LMFBR reactor cores, the SYMPHONY experimental program, performed at the CEA Saclay, is carried out from 1993 up to now. LMFBR reactor cores are composed of fuel assemblies and neutronic shields, immersed in sodium (the primary coolant) or water (for the experimental tests). The main objective of the seismic studies is to evaluate the assembly motions, with consequences on the reactivity and the control rod insertability, and to verify the structural integrity of the assemblies under the impact forces. The experimental program has reached its objectives. Tests have been performed in a satisfying way. Instrumentation allowed to collect displacements, accelerations, and shock forces. All the results constitute a comprehensive base of valuable and reliable data. The interpretation of the tests is based on beam models, taking into account the Fluid Structure Interaction, and the shocks between the assemblies. Theoretical results are in a quite good agreement with the experimental ones. The interpretation of the hexagonal tests in water pointed out very strong coupling between the assemblies and lead to the development of a specific Fluid Structure Interaction, taking into account not only inertial effects, but dissipative effects also. (author)

  20. Operations plan for the Regional Seismic Test Network

    International Nuclear Information System (INIS)

    1981-01-01

    The Regional Seismic Test Network program was established to provide a capability for detection of extremely sensitive earth movements. Seismic signals from both natural and man-made earth motions will be analyzed with the ultimate objective of accurately locating underground nuclear explosions. The Sandia National Laboratories, Albuquerque, has designed an unattended seismic station capable of recording seismic information received at the location of the seismometers installed as part of that specific station. A network of stations is required to increase the capability of determining the source of the seismic signal and the location of the source. Current plans are to establish a five-station seismic network in the United States and Canada. The Department of Energy, Nevada Operations Office, has been assigned the responsibility for deploying, installing, and operating these remote stations. This Operation Plan provides the basic information and tasking to accomplish this assignment

  1. Seismic properties of fluid bearing formations in magmatic geothermal systems: can we directly detect geothermal activity with seismic methods?

    Science.gov (United States)

    Grab, Melchior; Scott, Samuel; Quintal, Beatriz; Caspari, Eva; Maurer, Hansruedi; Greenhalgh, Stewart

    2016-04-01

    Seismic methods are amongst the most common techniques to explore the earth's subsurface. Seismic properties such as velocities, impedance contrasts and attenuation enable the characterization of the rocks in a geothermal system. The most important goal of geothermal exploration, however, is to describe the enthalpy state of the pore fluids, which act as the main transport medium for the geothermal heat, and to detect permeable structures such as fracture networks, which control the movement of these pore fluids in the subsurface. Since the quantities measured with seismic methods are only indirectly related with the fluid state and the rock permeability, the interpretation of seismic datasets is difficult and usually delivers ambiguous results. To help overcome this problem, we use a numerical modeling tool that quantifies the seismic properties of fractured rock formations that are typically found in magmatic geothermal systems. We incorporate the physics of the pore fluids, ranging from the liquid to the boiling and ultimately vapor state. Furthermore, we consider the hydromechanics of permeable structures at different scales from small cooling joints to large caldera faults as are known to be present in volcanic systems. Our modeling techniques simulate oscillatory compressibility and shear tests and yield the P- and S-wave velocities and attenuation factors of fluid saturated fractured rock volumes. To apply this modeling technique to realistic scenarios, numerous input parameters need to be indentified. The properties of the rock matrix and individual fractures were derived from extensive literature research including a large number of laboratory-based studies. The geometries of fracture networks were provided by structural geologists from their published studies of outcrops. Finally, the physical properties of the pore fluid, ranging from those at ambient pressures and temperatures up to the supercritical conditions, were taken from the fluid physics

  2. Seismic safety programme at NPP Paks. Propositions for coordinated international activity in seismic safety of the WWER-440 V-213

    International Nuclear Information System (INIS)

    Katona, T.

    1995-01-01

    This paper presents the Paks NPP seismic safety program, highlighting the specifics of the WWER-440/213 type in operation, and the results of work obtained so far. It covers the following scope: establishment of the seismic safety program (original seismic design, current requirements, principles and structure of the seismic safety program); implementation of the seismic safety program (assessing the seismic hazard of the site, development of the new concept of seismic safety for the NPP, assessing the seismic resistance of the building and the technology); realization of the seismic safety of higher level (technical solutions, drawings, realization); ideas and propositions for coordinated international activity

  3. An analysis of seismic background noise variation and evaluation of detection capability of Keskin Array (BRTR PS-43) in Turkey

    Science.gov (United States)

    Bakir, M. E.; Ozel, N. M.; Semin, K. U.

    2011-12-01

    Bogazici University, Kandilli Observatory and Earthquake Research Institute (KOERI) is currently operating the Keskin seismic array (BRTR-PS 43) located in town Keskin, providing real-time data to IDC. The instrumentaion of seismic array includes six short period borehole seismometers and one broadband borehole seismometer. The seismic background noise variation of Keskin array are studied in order to estimate the local and regional event detection capability in the frequency range from 1 Hz to 10 Hz. The Power density spectrum and also probability density function of Keskin array data were computed for seasonal and diurnal noise variations between 2008 and 2010. The computation will be extended to cover the period between 2005 and 2008. We attempt to determine the precise frequency characteristics of the background noise, which will help us to assess the station sensitivity. Minimum detectable magnitude versus distance for Keskin seismic array will be analyzed based on the seismic noise analysis. Detailed analysis results of seismic background noise and detection capability will be presented by this research.

  4. Detection of rainfall-induced landslides on regional seismic networks

    Science.gov (United States)

    Manconi, Andrea; Coviello, Velio; Gariano, Stefano Luigi; Picozzi, Matteo

    2017-04-01

    Seismic techniques are increasingly adopted to detect signals induced by mass movements and to quantitatively evaluate geo-hydrological hazards at different spatial and temporal scales. By analyzing landslide-induced seismicity, it is possible obtaining significant information on the source of the mass wasting, as well as on its dynamics. However, currently only few studies have performed a systematic back analysis on comprehensive catalogues of events to evaluate the performance of proposed algorithms. In this work, we analyze a catalogue of 1058 landslides induced by rainfall in Italy. Among these phenomena, there are 234 rock falls, 55 debris flows, 54 mud flows, and 715 unspecified shallow landslides. This is a subset of a larger catalogue collected by the Italian research institute for geo-hydrological protection (CNR IRPI) during the period 2000-2014 (Brunetti et al., 2015). For each record, the following information are available: the type of landslide; the geographical location of the landslide (coordinates, site, municipality, province, and 3 classes of geographic accuracy); the temporal information on the landslide occurrence (day, month, year, time, date, and 3 classes of temporal accuracy); the rainfall conditions (rainfall duration and cumulated event rainfall) that have resulted in the landslide. We consider here only rainfall-induced landslides for which exact date and time were known from chronicle information. The analysis of coeval seismic data acquired by regional seismic networks show clear signals in at least 3 stations for 64 events (6% of the total dataset). Among them, 20 are associated to local earthquakes and 2 to teleseisms; 10 are anomalous signals characterized by irregular and impulsive waveforms in both time and frequency domains; 33 signals are likely associated to the landslide occurrence, as they have a cigar-shaped waveform characterized by emerging onsets, duration of several tens of seconds, and low frequencies (1-10 Hz). For

  5. A Benchmark Study of a Seismic Analysis Program for a Single Column of a HTGR Core

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Ji Ho [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    A seismic analysis program, SAPCOR (Seismic Analysis of Prismatic HTGR Core), was developed in Korea Atomic Energy Research Institute. The program is used for the evaluation of deformed shapes and forces on the graphite blocks which using point-mass rigid bodies with Kelvin-Voigt impact models. In the previous studies, the program was verified using theoretical solutions and benchmark problems. To validate the program for more complicated problems, a free vibration analysis of a single column of a HTGR core was selected and the calculation results of the SAPCOR and a commercial FEM code, Abaqus, were compared in this study.

  6. Seismic isolation development for the US advanced liquid-metal reactor program

    International Nuclear Information System (INIS)

    Gluekler, E.L.; Bigelow, C.C.; DeVita, V.; Kelly, J.M.; Seidensticker, R.W.; Tajirian, F.F.

    1991-01-01

    GE Nuclear Energy, in association with a US Industrial Team and support from the US National Laboratories and Universities, is developing a modular liquid-metal reactor concept for the US DOE. The objective of this development is to provide, by the turn of the century, a reactor with optimized passive safety features that is economically competitive with other domestic energy sources, licensable, and ready for commercial deployment. One of the unique features of the concept is the seismic isolation of the reactor modules which decouples the reactors and their safety systems from potentially damaging ground motions and significantly enhances the structural resistance to high energy, as well as long-duration earthquakes. Seismic isolation is accomplished with high-damping natural-rubber bearings. The reactors are located in individual silos below grade level and are supported by the isolator bearings at approximately their center of gravity. This application of seismic isolation is the first for a US nuclear power plant. A development program has been established to assure the full benefits from the utilization of this new approach and to provide adequate system characterization and qualification for licensing certification. The development program, which is supported by the US DOE, ANL, Energy Technology Engineering Center (ETEC), the University of California at Berkeley (UC-Berkeley), GE, and Bechtel National, Inc. (BNI), is described and selected results are presented. The initial testing indicated excellent performance of high-damping natural-rubber bearings. The development of seismic isolation guidelines is in progress as a joint activity between ENEA of Italy and the GE Team. (orig./HP)

  7. Application of the SQUG-GIP to the seismic upgrade program of the Savannah River reactors

    International Nuclear Information System (INIS)

    Antaki, G.A.

    1991-01-01

    In August 1991, the Savannah River Site (SRS) seismic evaluation program using the Generic Implementation Procedure (GIP) celebrated its third anniversary-a respectable age for such a new methodology. During these three years, the GIP, developed for the commercial nuclear industry's Seismic Qualification Utility Group (SQUG), had evolved through Revision 01, Revision 1, Revision 2 and a Revision 2 open-quotes updateclose quotes which is currently in the works. This evolution is not surprising for such an important, and in many ways pioneering, document. The various revisions were anticipated at SRS, and the program adjusted accordingly. The verification of seismic adequacy of equipment at the SRS nuclear reactors has been outlined in previous publications. The purpose of this paper is to relate the more practical and managerial aspects of our relatively mature SQUG-GIP implementation program, which will hopefully prove useful to future users of the GIP. This report is divided into four sections, which follow the normal flow of work under GIP: (1) Program Prerequisites; (2) Definition of Scope; (3) Equipment Evaluations; and (4) Resolution of Outliers

  8. Spatiotemporal patterns, triggers and anatomies of seismically detected rockfalls

    Directory of Open Access Journals (Sweden)

    M. Dietze

    2017-11-01

    Full Text Available Rockfalls are a ubiquitous geomorphic process and a natural hazard in steep landscapes across the globe. Seismic monitoring can provide precise information on the timing, location and event anatomy of rockfalls, which are parameters that are otherwise hard to constrain. By pairing data from 49 seismically detected rockfalls in the Lauterbrunnen Valley in the Swiss Alps with auxiliary meteorologic and seismic data of potential triggers during autumn 2014 and spring 2015, we are able to (i analyse the evolution of single rockfalls and their common properties, (ii identify spatial changes in activity hotspots (iii and explore temporal activity patterns on different scales ranging from months to minutes to quantify relevant trigger mechanisms. Seismic data allow for the classification of rockfall activity into two distinct phenomenological types. The signals can be used to discern multiple rock mass releases from the same spot, identify rockfalls that trigger further rockfalls and resolve modes of subsequent talus slope activity. In contrast to findings based on discontinuous methods with integration times of several months, rockfall in the monitored limestone cliff is not spatially uniform but shows a systematic downward shift of a rock mass release zone following an exponential law, most likely driven by a continuously lowering water table. Freeze–thaw transitions, approximated at first order from air temperature time series, account for only 5 out of the 49 rockfalls, whereas 19 rockfalls were triggered by rainfall events with a peak lag time of 1 h. Another 17 rockfalls were triggered by diurnal temperature changes and occurred during the coldest hours of the day and during the highest temperature change rates. This study is thus the first to show direct links between proposed rockfall triggers and the spatiotemporal distribution of rockfalls under natural conditions; it extends existing models by providing seismic observations of the

  9. Seismic Structure of Perth Basin (Australia) and surroundings from Passive Seismic Deployments

    Science.gov (United States)

    Issa, N.; Saygin, E.; Lumley, D. E.; Hoskin, T. E.

    2016-12-01

    We image the subsurface structure of Perth Basin, Western Australia and surroundings by using ambient seismic noise data from 14 seismic stations recently deployed by University of Western Australia (UWA) and other available permanent stations from Geoscience Australia seismic network and the Australian Seismometers in Schools program. Each of these 14 UWA seismic stations comprises a broadband sensor and a high fidelity 3-component 10 Hz geophone, recording in tandem at 250 Hz and 1000 Hz. The other stations used in this study are equipped with short period and broadband sensors. In addition, one shallow borehole station is operated with eight 3 component geophones at depths of between 2 and 44 m. The network is deployed to characterize natural seismicity in the basin and to try and identify any microseismic activity across Darling Fault Zone (DFZ), bounding the basin to the east. The DFZ stretches to approximately 1000 km north-south in Western Australia, and is one of the longest fault zones on the earth with a limited number of detected earthquakes. We use seismic noise cross- and auto-correlation methods to map seismic velocity perturbations across the basin and the transition from DFZ to the basin. Retrieved Green's functions are stable and show clear dispersed waveforms. Travel times of the surface wave Green's functions from noise cross-correlations are inverted with a two-step probabilistic framework to map the absolute shear wave velocities as a function of depth. The single station auto-correlations from the seismic noise yields P wave reflectivity under each station, marking the major discontinuities. Resulting images show the shear velocity perturbations across the region. We also quantify the variation of ambient seismic noise at different depths in the near surface using the geophones in the shallow borehole array.

  10. Seismic Record Processing Program (SRP), Version 1.03

    International Nuclear Information System (INIS)

    Karabalis, D.L.; Cokkinides, G.J.; Rizos, D.C.

    1992-04-01

    The Seismic Record Processing Program (SRP) is an interactive computer code developed for the calculation of artificial earthquake records that comply with the US Nuclear Regulatory Commission Standard Review Plan. The basic objective of SRP is the calculation of artificial seismic time histories that correspond to Design Response Spectra specified in the US Atomic Energy Commission Regulatory Guide 1.60 and/or the Power Spectral Density (PSD) requirements of the NRC Standard Review Plan. However, SRP is a general computer code and can accommodate any arbitrarily specified Target Response Spectra (TRS) or PSD requirements. In addition, among its other futures, SRP performs quadratic baseline correction and calculates correlations factors for a set of up to three earthquake records. This manual is prepared in two parts. The first part describes the methodologies and criteria used while the second is a user's manual. In section 1 of the first part, the techniques used for the adjustment of a given earthquake record to a required TRS family of curves for a set of specified damping ratios are presented. Similarly, in section 2 of the first part, the PSD of an earthquake record is compared to a target PSD and adjusted accordingly. Sections 3 and 4 of the first part deal with the subjects of baseline correction and correlation of earthquake records, respectively. The second part is the user's manual. The user's manual contains a list of the computer hardware requirements, instructions for the program installation, a description of the user generated input files, and a description of all the program menus and commands

  11. Fault detection by surface seismic scanning tunneling macroscope: Field test

    KAUST Repository

    Hanafy, Sherif M.

    2014-08-05

    The seismic scanning tunneling macroscope (SSTM) is proposed for detecting the presence of near-surface impedance anomalies and faults. Results with synthetic data are consistent with theory in that scatterers closer to the surface provide brighter SSTM profiles than those that are deeper. The SSTM profiles show superresolution detection if the scatterers are in the near-field region of the recording line. The field data tests near Gulf of Aqaba, Haql, KSA clearly show the presence of the observable fault scarp, and identify the subsurface presence of the hidden faults indicated in the tomograms. Superresolution detection of the fault is achieved, even when the 35 Hz data are lowpass filtered to the 5-10 Hz band.

  12. Fault detection by surface seismic scanning tunneling macroscope: Field test

    KAUST Repository

    Hanafy, Sherif M.; Schuster, Gerard T.

    2014-01-01

    The seismic scanning tunneling macroscope (SSTM) is proposed for detecting the presence of near-surface impedance anomalies and faults. Results with synthetic data are consistent with theory in that scatterers closer to the surface provide brighter SSTM profiles than those that are deeper. The SSTM profiles show superresolution detection if the scatterers are in the near-field region of the recording line. The field data tests near Gulf of Aqaba, Haql, KSA clearly show the presence of the observable fault scarp, and identify the subsurface presence of the hidden faults indicated in the tomograms. Superresolution detection of the fault is achieved, even when the 35 Hz data are lowpass filtered to the 5-10 Hz band.

  13. Seismic Safety Margins Research Program (Phase I). Project VII. Systems analysis specification of computational approach

    International Nuclear Information System (INIS)

    Wall, I.B.; Kaul, M.K.; Post, R.I.; Tagart, S.W. Jr.; Vinson, T.J.

    1979-02-01

    An initial specification is presented of a computation approach for a probabilistic risk assessment model for use in the Seismic Safety Margin Research Program. This model encompasses the whole seismic calculational chain from seismic input through soil-structure interaction, transfer functions to the probability of component failure, integration of these failures into a system model and thereby estimate the probability of a release of radioactive material to the environment. It is intended that the primary use of this model will be in sensitivity studies to assess the potential conservatism of different modeling elements in the chain and to provide guidance on priorities for research in seismic design of nuclear power plants

  14. Development of a seismic damage assessment program for nuclear power plant structures

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Hyun Moo; Cho, Yang Heui; Shin, Hyun Mok [Seoul National Univ., Seoul (Korea, Republic of)] (and others)

    2001-12-15

    The most part of the nuclear power plants operating currently in Korea are more than 20 years old and obviously we cannot pretend that their original performance is actually maintained. In addition, earthquake occurrences show an increasing trend all over the world, and Korea can no more be considered as a zone safe from earthquake. Therefore, need is to guarantee the safety of these power plant structures against seismic accident, to decide to maintain them operational and to obtain data relative to maintenance/repair. Such objectives can be reached by damage assessment using inelastic seismic analysis considering aging degradation. It appears to be more important particularly for the structure enclosing the nuclear reactor that must absolutely protect against any radioactive leakage. Actually, the tendency of the technical world, led by the OECD/NEA, BNL in the United States, CEA in France and IAEA, is to develop researches or programs to assess the seismic safety considering aging degradation of operating nuclear power plants. Regard to the above-mentioned international technical trend, a technology to establish inelastic seismic analysis considering aging degradation so as to assess damage level and seismic safety margin appears to be necessary. Damage assessment and prediction system to grasp in real-time the actual seismic resistance capacity and damage level by 3-dimensional graphic representations are also required.

  15. Development of a seismic damage assessment program for nuclear power plant structures

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Hyun Moo; Cho, Ho Hyun; Cho, Yang Hui [Seoul National Univ., Seoul (Korea, Republic of)] (and others)

    2000-12-15

    Some of nuclear power plants operating currently in Korea have been passed about 20 years after construction. Moreover, in the case of KORI I the service year is over 20 years, so their abilities are different from initial abilities. Also, earthquake outbreak increase, our country is not safe area for earthquake. Therefore, need is to guarantee the safety of these power plant structures against seismic accident, to decide to maintain them operational and to obtain data relative to maintenance/repair. Such objectives can be reached by damage assessment using inelastic seismic analysis considering aging degradation. It appears to be more important particularly for the structure enclosing the nuclear reactor that must absolutely protect against any radioactive leakage. Actually, the tendency of the technical world, led by the OECD/NEA, BNL in the United States, CEA in France and IAEA, is to develop researches or programs to assess the seismic safety considering aging degradation of operating nuclear power plants. Regard to the above-mentioned international technical trend, a technology to establish inelastic seismic analysis considering aging degradation so as to assess damage level and seismic safety margin appears to be necessary. Damage assessment and prediction system to grasp in real-time the actual seismic resistance capacity and damage level by 3-dimensional graphic representations are also required.

  16. SMACS: a system of computer programs for probabilistic seismic analysis of structures and subsystems. Volume I. User's manual

    International Nuclear Information System (INIS)

    Maslenikov, O.R.; Johnson, J.J.; Tiong, L.W.; Mraz, M.J.; Bumpus, S.; Gerhard, M.A.

    1985-03-01

    The SMACS (Seismic Methodology Analysis Chain with Statistics) system of computer programs, one of the major computational tools of the Seismic Safety Margins Research Program (SSMRP), links the seismic input with the calculation of soil-structure interaction, major structure response, and subsystem response. The seismic input is defined by ensembles of acceleration time histories in three orthogonal directions. Soil-structure interaction and detailed structural response are then determined simultaneously, using the substructure approach to SSI as implemented in the CLASSI family of computer programs. The modus operandi of SMACS is to perform repeated deterministic analyses, each analysis simulating an earthquake occurrence. Parameter values for each simulation are sampled from assumed probability distributions according to a Latin hypercube experimental design. The user may specify values of the coefficients of variation (COV) for the distributions of the input variables. At the heart of the SMACS system is the computer program SMAX, which performs the repeated SSI response calculations for major structure and subsystem response. This report describes SMAX and the pre- and post-processor codes, used in conjunction with it, that comprise the SMACS system

  17. Full-waveform detection of non-impulsive seismic events based on time-reversal methods

    Science.gov (United States)

    Solano, Ericka Alinne; Hjörleifsdóttir, Vala; Liu, Qinya

    2017-12-01

    We present a full-waveform detection method for non-impulsive seismic events, based on time-reversal principles. We use the strain Green's tensor as a matched filter, correlating it with continuous observed seismograms, to detect non-impulsive seismic events. We show that this is mathematically equivalent to an adjoint method for detecting earthquakes. We define the detection function, a scalar valued function, which depends on the stacked correlations for a group of stations. Event detections are given by the times at which the amplitude of the detection function exceeds a given value relative to the noise level. The method can make use of the whole seismic waveform or any combination of time-windows with different filters. It is expected to have an advantage compared to traditional detection methods for events that do not produce energetic and impulsive P waves, for example glacial events, landslides, volcanic events and transform-fault earthquakes for events which velocity structure along the path is relatively well known. Furthermore, the method has advantages over empirical Greens functions template matching methods, as it does not depend on records from previously detected events, and therefore is not limited to events occurring in similar regions and with similar focal mechanisms as these events. The method is not specific to any particular way of calculating the synthetic seismograms, and therefore complicated structural models can be used. This is particularly beneficial for intermediate size events that are registered on regional networks, for which the effect of lateral structure on the waveforms can be significant. To demonstrate the feasibility of the method, we apply it to two different areas located along the mid-oceanic ridge system west of Mexico where non-impulsive events have been reported. The first study area is between Clipperton and Siqueiros transform faults (9°N), during the time of two earthquake swarms, occurring in March 2012 and May

  18. Seismic Safety Margins Research Program. Phase 1. Project V. Structural sub-system response: subsystem response review

    International Nuclear Information System (INIS)

    Fogelquist, J.; Kaul, M.K.; Koppe, R.; Tagart, S.W. Jr.; Thailer, H.; Uffer, R.

    1980-03-01

    This project is directed toward a portion of the Seismic Safety Margins Research Program which includes one link in the seismic methodology chain. The link addressed here is the structural subsystem dynamic response which consists of those components and systems whose behavior is often determined decoupled from the major structural response. Typically the mathematical model utilized for the major structural response will include only the mass effects of the subsystem and the main model is used to produce the support motion inputs for subsystem seismic qualification. The main questions addressed in this report have to do with the seismic response uncertainty of safety-related components or equipment whose seismic qualification is performed by (a) analysis, (b) tests, or (c) combinations of analysis and tests, and where the seismic input is assumed to have no uncertainty

  19. Advances in crosshole seismic instrumentation for dam safety monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Anderlini, G.; Anderlini, C. [BC Hydro, Burnaby, BC (Canada); Taylor, R. [RST Instruments Ltd., Coquitlam, BC (Canada)

    2009-07-01

    Since 1996, crosshole shear wave velocity measurements have been performed annually at the WAC Bennett Dam in order to monitor the performance of the dam core and integrity of the 1997 sinkhole repairs. As the testing showed to be responsive to embankment conditions and capable of detecting subtle changes, the testing program was expanded to include the development of an electrical shear wave source capable of carrying out crosshole seismic testing in Mica and Revelstoke Dams over distances of 100 metres and depths of 250 metres. This paper discussed the development and capabilities of the crosshole seismic instrumentation and presented preliminary results obtained during initial testing. Specific topics that were discussed included conventional crosshole seismic equipment; design basics; description of new crosshole seismic equipment; and automated in-situ crosshole seismic system (ACSS) system description and operation. It was concluded that the ACSS and accompanying electrical shear wave source, developed as part of the project, has advanced and improved on traditional crosshole seismic equipment. 7 refs., 9 figs.

  20. Crosshole investigations - short and medium range seismic tomography

    International Nuclear Information System (INIS)

    Cosma, C.

    1987-02-01

    Seismic tomographic tests were conducted as a part of the Crosshole Investigations program of the Stripa Project. The aim has been to study if it is possible to detect by seismic tomography major fracture zones and determine their dimensions and orientation. The analysis was based on both compressional (P) and transversal (S) waves. The Young's modulus has been also calculated for a sub-set of measurements as a cross check for the P and S wave velocities. The experimental data was collected at the crosshole site in the Stripa mine during 1984-1985. A down-the-hole impact source was used together with triaxial detectors and a digital seismograph. Five tomographic sections were obtained. The number of records per section was appr. 250. Measurements were done down to 200 m depth in all boreholes. The main conclusion is that it is possible to detect major fracture zones by seismic tomography. Their position and orientation can also be estimated. (orig./HP)

  1. Seismic isolation development for the US advanced liquid-metal reactor program

    International Nuclear Information System (INIS)

    Gluekler, E.L.; Bigelow, C.C.; DeVita, V.; Kelly, J.M.; Seidensticker, R.W.; Tajirian, F.F.

    1989-01-01

    GE Nuclear Energy, in association with a US Industrial Team and support from the US National Laboratories and Universities, is developing a modular liquid-metal reactor concept for the US Department of Energy (DOE). The objective of this development is to provide, by the turn of the century, a reactor concept with optimized passive safety features that is economically competitive with other domestic energy sources, licensable, and ready for commercial deployment. One of the unique features of the concept is the seismic isolation of the reactor modules which decouples the reactor and their safety systems from potentially damaging ground motions and significantly enhances the structural resistance to high energy, as well as long duration earthquakes. Seismic isolation is accomplished with high damping natural rubber bearings. The reactors are located in individual silos below grade level and are supported by the isolator bearings at approximately their center of gravity. This application of seismic isolation is the first for a US nuclear power plant. A development program has been established to assure the full benefits from the utilization of this new approach and to provide adequate system characterization and qualification for licensing certification. The development program is described in this paper and selected results are presented. The initial testing indicated excellent performance of high damping natural rubber bearings

  2. Simulation of the control rod drop under seismic excitations. Experimental program

    International Nuclear Information System (INIS)

    Chaudat, Th.

    2001-01-01

    This paper describes the experimental program that will be performed at the end of 1998 at the CEA Saclay on a specially constructed analytical mock-up of a control rod. The purpose of these tests is to partially validate the current methodology of the drop time numerical calculations of a PWR (pressurized water reactor) control rod under seismic excitations. The French nuclear partners (EDF and FRAMATOME) are involved in this program. (author)

  3. The development of the operational program for seismic monitoring system of Uljin Unit 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.R.; Heo, T.Y.; Cho, B.H. [Korea Electric Power Research Institute, Taejeon (Korea, Republic of); Kang, T.G.; Kim, H.M.; Kim, Y.S.; Oh, S.M.; Kang, Y.S. [Korea Electric Power Data Network Co., Seoul (Korea, Republic of)

    1997-12-31

    Due to aging of the imported seismic monitoring system of Uljin of t 1 and 2 units it is difficult for this system to provide enough functions needed for the security of seismic safety and the evaluation of the earthquake data from the seismic instrumentation. For this reason, it is necessary to replace the seismic monitoring system of Uljin 1 and 2 units with a new system which has the localized and upgraded hardware and corresponding software. In the part of standardization of existing seismic monitoring system, furthermore, it is necessary to develop the seismic wave analysis system which incorporate newly developed software and can real-timely analyze the seismic wave. This report is the finial product of research project ``The development of the operational program for seismic monitoring system of Uljin Unit 1 and 2`` which have been performed from June 1996 to June 1997 by KEPRI and KDN. Main accomplishments - Review of regulatory criteria for seismic monitoring system -Analysis and upgrade of hardware system -Analysis and upgrade of software system - Development of seismic wave analysis system. (author). 17 refs., 49 figs., 6 tabs.

  4. Recommended research program for improving seismic safety of light-water nuclear power plants

    International Nuclear Information System (INIS)

    1979-04-01

    Recommendations are presented for research areas concerned with seismic safety. These recommendations are based on an analysis of the answers to a questionnaire which was sent to over 80 persons working in the area of seismic safety of nuclear power plants. In addition to the answers of the 55 questionnaires which were received, the recommendations are based on ideas expressed at a meeting of an ad hoc group of professionals formed by Sandia, review of literature, current research programs, and engineering judgement

  5. Real-time Microseismic Processing for Induced Seismicity Hazard Detection

    Energy Technology Data Exchange (ETDEWEB)

    Matzel, Eric M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-31

    Induced seismicity is inherently associated with underground fluid injections. If fluids are injected in proximity to a pre-existing fault or fracture system, the resulting elevated pressures can trigger dynamic earthquake slip, which could both damage surface structures and create new migration pathways. The goal of this research is to develop a fundamentally better approach to geological site characterization and early hazard detection. We combine innovative techniques for analyzing microseismic data with a physics-based inversion model to forecast microseismic cloud evolution. The key challenge is that faults at risk of slipping are often too small to detect during the site characterization phase. Our objective is to devise fast-running methodologies that will allow field operators to respond quickly to changing subsurface conditions.

  6. National Seismic Station

    International Nuclear Information System (INIS)

    Stokes, P.A.

    1982-06-01

    The National Seismic Station was developed to meet the needs of regional or worldwide seismic monitoring of underground nuclear explosions to verify compliance with a nuclear test ban treaty. The Station acquires broadband seismic data and transmits it via satellite to a data center. It is capable of unattended operation for periods of at least a year, and will detect any tampering that could result in the transmission of unauthentic seismic data

  7. Adaptive endpoint detection of seismic signal based on auto-correlated function

    International Nuclear Information System (INIS)

    Fan Wanchun; Shi Ren

    2000-01-01

    There are certain shortcomings for the endpoint detection by time-waveform envelope and/or by checking the travel table (both labelled as the artificial detection method). Based on the analysis of the auto-correlation function, the notion of the distance between auto-correlation functions was quoted, and the characterizations of the noise and the signal with noise were discussed by using the distance. Then, the method of auto-adaptable endpoint detection of seismic signal based on auto-correlated similarity was summed up. The steps of implementation and determining of the thresholds were presented in detail. The experimental results that were compared with the methods based on artificial detecting show that this method has higher sensitivity even in a low SNR circumstance

  8. Two applications of time reversal mirrors: Seismic radio and seismic radar

    KAUST Repository

    Hanafy, Sherif M.

    2011-07-08

    Two seismic applications of time reversal mirrors (TRMs) are introduced and tested with field experiments. The first one is sending, receiving, and decoding coded messages similar to a radio except seismic waves are used. The second one is, similar to radar surveillance, detecting and tracking a moving object(s) in a remote area, including the determination of the objects speed of movement. Both applications require the prior recording of calibrationGreen’s functions in the area of interest. This reference Green’s function will be used as a codebook to decrypt the coded message in the first application and as a moving sensor for the second application. Field tests show that seismicradar can detect the moving coordinates ( x(t), y(t), z(t)) of a person running through a calibration site. This information also allows for a calculation of his velocity as a function of location. Results with the seismic radio are successful in seismically detecting and decoding coded pulses produced by a hammer. Both seismic radio and radar are highly robust to signals in high noise environments due to the super-stacking property of TRMs.

  9. Martian seismicity

    International Nuclear Information System (INIS)

    Goins, N.R.; Lazarewicz, A.R.

    1979-01-01

    During the Viking mission to Mars, the seismometer on Lander II collected approximately 0.24 Earth years of observations data, excluding periods of time dominated by wind-induced Lander vibration. The ''quiet-time'' data set contains no confirmed seismic events. A proper assessment of the significance of this fact requires quantitative estimates of the expected detection rate of the Viking seismometer. The first step is to calculate the minimum magnitude event detectable at a given distance, including the effects of geometric spreading, anelastic attenuation, seismic signal duration, seismometer frequency response, and possible poor ground coupling. Assuming various numerical quantities and a Martian seismic activity comparable to that of intraplate earthquakes, the appropriate integral gives an expected annual detection rate of 10 events, nearly all of which are local. Thus only two to three events would be expected in the observational period presently on hand and the lack of observed events is not in gross contradiction to reasonable expectations. Given the same assumptions, a seismometer 20 times more sensitive than the present instrument would be expected to detect about 120 events annually

  10. SONATINA-1: a computer program for seismic response analysis of column in HTGR core

    International Nuclear Information System (INIS)

    Ikushima, Takeshi

    1980-11-01

    An computer program SONATINA-1 for predicting the behavior of a prismatic high-temperature gas-cooled reactor (HTGR) core under seismic excitation has been developed. In this analytical method, blocks are treated as rigid bodies and are constrained by dowel pins which restrict relative horizontal movement but allow vertical and rocking motions. Coulomb friction between blocks and between dowel holes and pins is also considered. A spring dashpot model is used for the collision process between adjacent blocks and between blocks and boundary walls. Analytical results are compared with experimental results and are found to be in good agreement. The computer program can be used to predict the behavior of the HTGR core under seismic excitation. (author)

  11. Independent review of Oak Ridge HCTW test program and development of seismic evaluation criteria

    International Nuclear Information System (INIS)

    1995-05-01

    Many of the existing buildings at the Oak Ridge Y-12 Plant are steel frame construction with unreinforced hollow clay tile infill walls (HCTW). The HCTW infill provides some lateral seismic resistance to the design/evaluation basis earthquake; however acceptance criteria for this construction must be developed. The basis for the development of seismic criteria is the Oak Ridge HCTW testing and analysis program and the target performance goals of DOE 5480.28 and DOE-STD-1020-94. This report documents and independent review of the testing and analysis program and development of recommended acceptance criteria for Oak Ridge HCTW construction. The HCTW test program included ''macro'' wall in-plane and out-of-plane tests, full-scale wall in-plane and out-of-plane tests, in-situ out-of-plane test, shake table tests, and masonry component tests

  12. AECB workshop on seismic hazard assessment in Southern Ontario. Program, list of participants and abstracts

    International Nuclear Information System (INIS)

    1995-01-01

    The purpose of the workshop was to review available geological and seismological data which could affect earthquake occurrence in southern Ontario and to develop a consensus on approaches that should be adopted for characterization of seismic hazard. The workshop was structured in technical sessions to focus presentations and discussions on four technical issues relevant to seismic hazard in southern Ontario, as follows: (1) The importance of geological and geophysical observations for the determination of seismic sources, (2) Methods and approaches which may be adopted for determining seismic sources based on integrated interpretations of geological and seismological information, (3) Methods and data which should be used for characterizing the seismicity parameters of seismic sources, and (4) Methods for assessment of vibratory ground motion hazard. This document presents a copy of the workshop program, the list of participants and extended abstracts received from speakers. It was distributed to the participants prior to the workshop. The abstracts were intended to provide advance information and to afford some basis for meaningful discussion and exchange of information

  13. AECB workshop on seismic hazard assessment in Southern Ontario. Program, list of participants and abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The purpose of the workshop was to review available geological and seismological data which could affect earthquake occurrence in southern Ontario and to develop a consensus on approaches that should be adopted for characterization of seismic hazard. The workshop was structured in technical sessions to focus presentations and discussions on four technical issues relevant to seismic hazard in southern Ontario, as follows: (1) The importance of geological and geophysical observations for the determination of seismic sources, (2) Methods and approaches which may be adopted for determining seismic sources based on integrated interpretations of geological and seismological information, (3) Methods and data which should be used for characterizing the seismicity parameters of seismic sources, and (4) Methods for assessment of vibratory ground motion hazard. This document presents a copy of the workshop program, the list of participants and extended abstracts received from speakers. It was distributed to the participants prior to the workshop. The abstracts were intended to provide advance information and to afford some basis for meaningful discussion and exchange of information.

  14. Detection and localization capability of an urban seismic sinkhole monitoring network

    Science.gov (United States)

    Becker, Dirk; Dahm, Torsten; Schneider, Fabian

    2017-04-01

    Microseismic events linked to underground processes in sinkhole areas might serve as precursors to larger mass dislocation or rupture events which can cause felt ground shaking or even structural damage. To identify these weak and shallow events, a sensitive local seismic monitoring network is needed. In case of an urban environment the performance of local monitoring networks is severely compromised by the high anthropogenic noise level. We study the detection and localization capability of such a network, which is already partly installed in the urban area of the city of Hamburg, Germany, within the joint project SIMULTAN (http://www.gfz-potsdam.de/en/section/near-surface-geophysics/projects/simultan/). SIMULTAN aims to monitor a known sinkhole structure and gain a better understanding of the underlying processes. The current network consists of six surface stations installed in the basement of private houses and underground structures of a research facility (DESY - Deutsches Elektronen Synchrotron). During the started monitoring campaign since 2015, no microseismic events could be unambiguously attributed to the sinkholes. To estimate the detection and location capability of the network, we calculate synthetic waveforms based on the location and mechanism of former events in the area. These waveforms are combined with the recorded urban seismic noise at the station sites. As detection algorithms a simple STA/LTA trigger and a more sophisticated phase detector are used. While the STA/LTA detector delivers stable results and is able to detect events with a moment magnitude as low as 0.35 at a distance of 1.3km from the source even under the present high noise conditions the phase detector is more sensitive but also less stable. It should be stressed that due to the local near surface conditions of the wave propagation the detections are generally performed on S- or surface waves and not on P-waves, which have a significantly lower amplitude. Due to the often

  15. Adaptive endpoint detection of seismic signal based on auto-correlated function

    International Nuclear Information System (INIS)

    Fan Wanchun; Shi Ren

    2001-01-01

    Based on the analysis of auto-correlation function, the notion of the distance between auto-correlation function was quoted, and the characterization of the noise and the signal with noise were discussed by using the distance. Then, the method of auto- adaptable endpoint detection of seismic signal based on auto-correlated similarity was summed up. The steps of implementation and determining of the thresholds were presented in detail. The experimental results that were compared with the methods based on artificial detecting show that this method has higher sensitivity even in a low signal with noise ratio circumstance

  16. Detection capability of seismic network based on noise analysis and magnitude of completeness

    Czech Academy of Sciences Publication Activity Database

    Fischer, Tomáš; Bachura, M.

    2014-01-01

    Roč. 18, č. 1 (2014), s. 137-150 ISSN 1383-4649 R&D Projects: GA MŠk LM2010008 Institutional support: RVO:67985530 Keywords : seismic monitoring * magnitude of completeness * detection capability Subject RIV: DC - Siesmology, Volcanology, Earth Structure OBOR OECD: Volcanology Impact factor: 1.386, year: 2014

  17. Seismic Monitoring Prior to and During DFDP-2 Drilling, Alpine Fault, New Zealand: Matched-Filter Detection Testing and the Real-Time Monitoring System

    Science.gov (United States)

    Boese, C. M.; Chamberlain, C. J.; Townend, J.

    2015-12-01

    In preparation for the second stage of the Deep Fault Drilling Project (DFDP) and as part of related research projects, borehole and surface seismic stations were installed near the intended DFDP-2 drill-site in the Whataroa Valley from late 2008. The final four borehole stations were installed within 1.2 km of the drill-site in early 2013 to provide near-field observations of any seismicity that occurred during drilling and thus provide input into operational decision-making processes if required. The basis for making operational decisions in response to any detected seismicity had been established as part of a safety review conducted in early 2014 and was implemented using a "traffic light" system, a communications plan, and other operational documents. Continuous real-time earthquake monitoring took place throughout the drilling period, between September and late December 2014, and involved a team of up to 15 seismologists working in shifts near the drill-site and overseas. Prior to drilling, records from 55 local earthquakes and 14 quarry blasts were used as master templates in a matched-filter detection algorithm to test the capabilities of the seismic network for detecting seismicity near the drill site. The newly detected microseismicity was clustered near the DFDP-1 drill site at Gaunt Creek, 7.4 km southwest of DFDP-2. Relocations of these detected events provide more information about the fault geometry in this area. Although no detectable seismicity occurred within 5 km of the drill site during the drilling period, the region is capable of generating earthquakes that would have required an operational response had they occurred while drilling was underway (including a M2.9 event northwest of Gaunt Creek on 15 August 2014). The largest event to occur while drilling was underway was of M4.5 and occurred approximately 40 km east of the DFDP-2 drill site. In this presentation, we summarize the setup and operations of the seismic network and discuss key

  18. Heat-flow and lateral seismic-velocity heterogeneities near Deep Sea Drilling Project-Ocean Drilling Program Site 504

    Science.gov (United States)

    Lowell, Robert P.; Stephen, Ralph A.

    1991-11-01

    Both conductive heat-flow and seismic-velocity data contain information relating to the permeability of the oceanic crust. Deep Sea Drilling Project-Ocean Drilling Program Site 504 is the only place where both detailed heat-flow and seismic-velocity field studies have been conducted at the same scale. In this paper we examine the correlation between heat flow and lateral heterogeneities in seismic velocity near Site 504. Observed heterogeneities in seismic velocity, which are thought to be related to variations in crack density in the upper 500 m of the basaltic crust, show little correlation with the heat-flow pattern. This lack of correlation highlights some of the current difficulties in using seismic-velocity data to infer details of spatial variations in permeability that are significant in controlling hydrothermal circulation.

  19. Evaluation of potential surface rupture and review of current seismic hazards program at the Los Alamos National Laboratory. Final report

    International Nuclear Information System (INIS)

    1991-01-01

    This report summarizes the authors review and evaluation of the existing seismic hazards program at Los Alamos National Laboratory (LANL). The report recommends that the original program be augmented with a probabilistic analysis of seismic hazards involving assignment of weighted probabilities of occurrence to all potential sources. This approach yields a more realistic evaluation of the likelihood of large earthquake occurrence particularly in regions where seismic sources may have recurrent intervals of several thousand years or more. The report reviews the locations and geomorphic expressions of identified fault lines along with the known displacements of these faults and last know occurrence of seismic activity. Faults are mapped and categorized into by their potential for actual movement. Based on geologic site characterization, recommendations are made for increased seismic monitoring; age-dating studies of faults and geomorphic features; increased use of remote sensing and aerial photography for surface mapping of faults; the development of a landslide susceptibility map; and to develop seismic design standards for all existing and proposed facilities at LANL

  20. Detection of induced seismicity effects on ground surface using data from Sentinel 1A/1B satellites

    Science.gov (United States)

    Milczarek, W.

    2017-12-01

    Induced seismicity is the result of human activity and manifests itself in the form of shock and vibration of the ground surface. One of the most common factors causing the occurrence of induced shocks is underground mining activity. Sufficiently strong high-energy shocks may cause displacements of the ground surface. This type of shocks can have a significant impact on buildings and infrastructure. Assessment of the size and influence of induced seismicity on the ground surface is one of the major problems associated with mining activity. In Poland (Central Eastern Europe) induced seismicity occurs in the area of hard coal mining in the Upper Silesian Coal Basin and in the area of the Legnica - Głogów Copper Basin.The study presents an assessment of the use of satellite radar data (SAR) for the detection influence of induced seismicity in mining regions. Selected induced shocks from the period 2015- 2017 which occurred in the Upper Silesian Coal Basin and the Legnica - Głogów Copper Basin areas have been analyzed. In the calculations SAR data from the Sentinel 1A and Sentinel 1B satellites have been used. The results indicate the possibility of quickly and accurate detection of ground surface displacements after an induced shock. The results of SAR data processing were compared with the results from geodetic measurements. It has been shown that SAR data can be used to detect ground surface displacements on the relative small regions.

  1. Cascadia Seismicity Related to Seamount Subduction as detected by the Cascadia Initiative Amphibious Data

    Science.gov (United States)

    Morton, E.; Bilek, S. L.; Rowe, C. A.

    2016-12-01

    Unlike other subduction zones, the Cascadia subduction zone (CSZ) is notable for the absence of detected and located small and moderate magnitude interplate earthquakes, despite the presence of recurring episodic tremor and slip (ETS) downdip and evidence of pre-historic great earthquakes. Thermal and geodetic models indicate that the seismogenic zone exists primarily, if not entirely, offshore; therefore the perceived unusual seismic quiescence may be a consequence of seismic source location in relation to land based seismometers. The Cascadia Initiative (CI) amphibious community seismic experiment includes ocean bottom seismometers (OBS) deployed directly above the presumed locked seismogenic zone. We use the CI dataset to search for small magnitude interplate earthquakes previously undetected using the on-land sensors alone. We implement subspace detection to search for small earthquakes. We build our subspace with template events from existing earthquake catalogs that appear to have occurred on the plate interface, windowing waveforms on CI OBS and land seismometers. Although our efforts will target the entire CSZ margin and full 4-year CI deployment, here we focus on a previously identified cluster off the coast of Oregon, related to a subducting seamount. During the first year of CI deployment, this target area yields 293 unique detections with 86 well-located events. Thirty-two of these events occurred within the seamount cluster, and 13 events were located in another cluster to the northwest of the seamount. Events within the seamount cluster are separated into those whose depths place them on the plate interface, and a shallower set ( 5 km depth). These separate event groups track together temporally, and seem to agree with a model of seamount subduction that creates extensive fracturing around the seamount, rather than stress concentrated at the seamount-plate boundary. During CI year 2, this target area yields >1000 additional event detections.

  2. Imaging Fracture Networks Using Angled Crosshole Seismic Logging and Change Detection Techniques

    Science.gov (United States)

    Knox, H. A.; Grubelich, M. C.; Preston, L. A.; Knox, J. M.; King, D. K.

    2015-12-01

    We present results from a SubTER funded series of cross borehole geophysical imaging efforts designed to characterize fracture zones generated with an alternative stimulation method, which is being developed for Enhanced Geothermal Systems (EGS). One important characteristic of this stimulation method is that each detonation will produce multiple fractures without damaging the wellbore. To date, we have collected six full data sets with ~30k source-receiver pairs each for the purposes of high-resolution cross borehole seismic tomographic imaging. The first set of data serves as the baseline measurement (i.e. un-stimulated), three sets evaluate material changes after fracture emplacement and/or enhancement, and two sets are used for evaluation of pick error and seismic velocity changes attributable to changing environmental factors (i.e. saturation due to rain/snowfall in the shallow subsurface). Each of the six datasets has been evaluated for data quality and first arrivals have been picked on nearly 200k waveforms in the target area. Each set of data is then inverted using a Vidale-Hole finite-difference 3-D eikonal solver in two ways: 1) allowing for iterative ray tracing and 2) with fixed ray paths determined from the test performed before the fracture stimulation of interest. Utilizing these two methods allows us to compare and contrast the results from two commonly used change detection techniques. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  3. Fracture detection, mapping, and analysis of naturally fractured gas reservoirs using seismic technology. Final report, November 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    Many basins in the Rocky Mountains contain naturally fractured gas reservoirs. Production from these reservoirs is controlled primarily by the shape, orientation and concentration of the natural fractures. The detection of gas filled fractures prior to drilling can, therefore, greatly benefit the field development of the reservoirs. The objective of this project was to test and verify specific seismic methods to detect and characterize fractures in a naturally fractured reservoir. The Upper Green River tight gas reservoir in the Uinta Basin, Northeast Utah was chosen for the project as a suitable reservoir to test the seismic technologies. Knowledge of the structural and stratigraphic geologic setting, the fracture azimuths, and estimates of the local in-situ stress field, were used to guide the acquisition and processing of approximately ten miles of nine-component seismic reflection data and a nine-component Vertical Seismic Profile (VSP). Three sources (compressional P-wave, inline shear S-wave, and cross-line, shear S-wave) were each recorded by 3-component (3C) geophones, to yield a nine-component data set. Evidence of fractures from cores, borehole image logs, outcrop studies, and production data, were integrated with the geophysical data to develop an understanding of how the seismic data relate to the fracture network, individual well production, and ultimately the preferred flow direction in the reservoir. The multi-disciplinary approach employed in this project is viewed as essential to the overall reservoir characterization, due to the interdependency of the above factors.

  4. Seismic Safety Margins Research Program. Phase I. Interim definition of terms

    International Nuclear Information System (INIS)

    Smith, P.D.; Dong, R.G.

    1980-01-01

    This report documents interim definitions of terms in the Seismic Safety Margins Research Program (SSMRP). Intent is to establish a common-based terminology integral to the probabilistic methods that predict more realistically the behavior of nuclear power plants during an earthquake. These definitions are a response to a request by the Nuclear Regulatory Commission Advisory Committee on Reactor Safeguards at its meeting held November 15-16, 1979

  5. Major structural response methods used in the seismic safety margins research program

    International Nuclear Information System (INIS)

    Chou, C.K.; Lo, T.; Vagliente, V.

    1979-01-01

    In order to evaluate the conservatisms in present nuclear power plant seismic safety requirements, a probabilistic based systems model is being developed. This model will also be used to develop improved requirements. In Phase I of the Seismic Safety Margins Research Program (SSMRP), this methodology will be developed for a specific nuclear power plant and used to perform probabilistic sensitivity studies to gain engineering insights into seismic safety requirements. Random variables in the structural response analysis area, or parameters which cause uncertainty in the response, are discussed and classified into three categories; i.e., material properties, structural dynamic characteristics and related modeling techniques, and analytical methods. The sensitivity studies are grouped into two categories; deterministic and probabilistic. In a system analysis, transfer functions in simple form are needed since there are too many responses which have to be calculated in a Monte Carlo simulation to use the usual straightforward calculation approach. Therefore, the development of these simple transfer functions is one of the important tasks in SSMRP. Simplified as well as classical transfer functions are discussed

  6. Seismic Safety Margins Research Program (Phase I). Project IV. Structural building response; Structural Building Response Review

    International Nuclear Information System (INIS)

    Healey, J.J.; Wu, S.T.; Murga, M.

    1980-02-01

    As part of the Phase I effort of the Seismic Safety Margins Research Program (SSMRP) being performed by the University of California Lawrence Livermore Laboratory for the US Nuclear Regulatory Commission, the basic objective of Subtask IV.1 (Structural Building Response Review) is to review and summarize current methods and data pertaining to seismic response calculations particularly as they relate to the objectives of the SSMRP. This material forms one component in the development of the overall computational methodology involving state of the art computations including explicit consideration of uncertainty and aimed at ultimately deriving estimates of the probability of radioactive releases due to seismic effects on nuclear power plant facilities

  7. Seismic monitoring of the Yucca Mountain facility

    International Nuclear Information System (INIS)

    Garbin, H.D.; Herrington, P.B.; Kromer, R.P.

    1997-01-01

    Questions have arisen regarding the applicability of seismic sensors to detect mining (re-entry) with a tunnel boring machine (TBM). Unlike cut and blast techniques of mining which produce impulsive seismic signals, the TBM produces seismic signals which are of long duration. (There are well established techniques available for detecting and locating the sources of the impulsive signals.) The Yucca Mountain repository offered an opportunity to perform field evaluations of the capabilities of seismic sensors because during much of 1996, mining there was progressing with the use of a TBM. During the mining of the repository's southern branch, an effort was designed to evaluate whether the TBM could be detected, identified and located using seismic sensors. Three data acquisition stations were established in the Yucca Mountain area to monitor the TBM activity. A ratio of short term average to long term average algorithm was developed for use in signal detection based on the characteristics shown in the time series. For location of the source of detected signals, FK analysis was used on the array data to estimate back azimuths. The back azimuth from the 3 component system was estimated from the horizontal components. Unique features in the timing of the seismic signal were used to identify the source as the TBM

  8. Summary report on the Seismic Safety Margins Research Program

    International Nuclear Information System (INIS)

    Cummings, G.E.

    1986-01-01

    The Seismic Safety Margins Research Program (SSMRP) was a program to develop a complete, fully coupled analysis procedure (including methods and computer codes) for estimating the risk of an earthquake-induced radioactive release from a commercial nuclear power plant. The SSMRP was the first effort to trace seismically induced failure modes in a reactor system down to the individual component level, and to take into account common-cause earthquake-induced failures at the component level. This report summarizes methods and results generated by SSMRP. The SSMRP method makes use of three computer codes, HAZARD, SMACS and SEISIM to calculate ground motion acceleration time histories, structure and component responses and failure, and radioactive release probabilities. To demonstrate the methodology, an analysis was done of the Zion Nuclear Power Plant. The median frequency of core melt was computed to be 3E-5 per year, with upper (90%) and lower (10%) bounds of 8E-4 and 6E-7 per year. The main contribution to risk came from earthquakes about 2 through 4 times the design basis earthquake level. Risk was dominated by structural and inter-building piping failures and loss of off-site power. Sensitivity studies were undertaken to test assumptions and modeling procedures relative to soil-structure interaction effects, feed-and-bleed cooling, and structural failures. Assumptions made could have an order-of-magnitude effect on core melt frequency. Also, guidelines were developed for simplifying the SSMRP method, and importance rankings were generated based on the Zion analysis. 56 refs., 6 figs

  9. Test on large-scale seismic isolation elements, 2

    International Nuclear Information System (INIS)

    Mazda, T.; Moteki, M.; Ishida, K.; Shiojiri, H.; Fujita, T.

    1991-01-01

    Seismic isolation test program of Central Research Inst. of Electric Power Industry (CRIEPI) to apply seismic isolation to Fast Breeder Reactor (FBR) plant was started in 1987. In this test program, demonstration test of seismic isolation elements was considered as one of the most important research items. Facilities for testing seismic isolation elements were built in Abiko Research Laboratory of CRIEPI. Various tests of large-scale seismic isolation elements were conducted up to this day. Many important test data to develop design technical guidelines was obtained. (author)

  10. Latest results from the Seismic Category I Structures Program

    International Nuclear Information System (INIS)

    Bennett, J.G.; Dove, R.C.; Dunwoody, W.E.; Farrar, C.

    1985-01-01

    With the use of scale models, the Seismic Category I Structures Program has demonstrated consistent results for measured values of stiffness at working loads. Furthermore, the values are well below the theoretical stiffnesses calculated from an uncracked strength-of-materials approach. The scale model structures, which are also models of each other, have demonstrated scalability between models. The current effort is to demonstrate that the use of microconcrete and other modeling effects do not introduce significant distortions that could drastically change conclusions regarding prototype behavior for these very stiff, shear dominated structures. 3 refs., 3 figs., 1 tab

  11. Seismic safety of Paks nuclear power plant

    International Nuclear Information System (INIS)

    Katona, T.

    1993-01-01

    An extensive program is underway at Paks NPP for evaluation of the seismic safety and for development of the necessary safety increasing measures. This program includes the following five measures: investigation of methods, regulations and techniques utilized for reassessment of seismic safety of operating NPPs and promoting safety; investigation of earthquake hazards; development of concepts for creating the seismic safety location of earthquake warning system; determination of dynamic features of systems and facilities determined by the concept, and preliminary evaluation of the seismic safety

  12. Interpretation of a seismic test of the IPIRG2 program

    International Nuclear Information System (INIS)

    Blay, N.; Gantenbein, F.

    1995-01-01

    In the framework of the linear and non linear analysis of PWR cracked pipes under seismic loading, the calculations of the 1.2 seismic test of the important IPIRG2 program (International Piping Integrity Research Group) was undertaken. This seismic test was performed on a pipe with a surface crack and loaded by an imposed displacement. A low level and a high level of excitation were applied to the pipe. The calculations are made with a global model including a through wall crack pipe finite element. The modal analysis made for the non-cracked pipe and the real geometrical characteristics gives a first frequency of the pipe with pressure and temperature in good agreement with the test. For the cracked pipe, the first frequency decrease is less than 0.5%. The low level response was calculated with a linear model by modal combination in order to study the importance of the both inertial and differential displacement responses in the total response. For both configurations, non-cracked and cracked, the inertial contribution to the moment at the crack location is approximately equal to 80% of the total moment. For the linear behaviour, the influence of the crack appears weak. The non linear calculations are performed with the equivalent crack previously defined up to penetration. To study the behaviour after penetration, various hypothesis for the crack size are taken. (authors). 3 refs., 6 figs., 4 tabs

  13. SSI sensitivity studies and model improvements for the US NRC Seismic Safety Margins Research Program. Rev. 1

    International Nuclear Information System (INIS)

    Johnson, J.J.; Maslenikov, O.R.; Benda, B.J.

    1984-10-01

    The Seismic Safety Margins Research Program (SSMRP) is a US NRC-funded program conducted by Lawrence Livermore National Laboratory. Its goal is to develop a complete fully coupled analysis procedure for estimating the risk of an earthquake-induced radioactive release from a commercial nuclear power plant. In Phase II of the SSMRP, the methodology was applied to the Zion nuclear power plant. Three topics in the SSI analysis of Zion were investigated and reported here - flexible foundation modeling, structure-to-structure interaction, and basemat uplift. The results of these investigations were incorporated in the SSMRP seismic risk analysis. 14 references, 51 figures, 13 tables

  14. The Seismic Category I Structures Program results for FY 1987

    International Nuclear Information System (INIS)

    Farrar, C.R.; Bennett, J.G.; Dunwoody, W.E.; Baker, W.E.

    1990-10-01

    The accomplishments of the Seismic Category I Structures Program for FY 1987 are summarized. These accomplishments include the quasi-static load cycle testing of large shear wall elements, an extensive analysis of previous data to determine if equivalent linear analytical models can predict the response of damaged shear wall structures, and code committee activities. In addition, previous testing and results that led to the FY 1987 program plan are discussed and all previous data relating to shear wall stiffness are summarized. Because separate reports have already summarized the experimental and analytical work in FY 1987, this report will briefly highlight this work and the appropriate reports will be references for a more detailed discussion. 12 refs., 23 figs., 18 tabs

  15. Spontaneous non-volcanic tremor detected in the Anza Seismic Gap of San Jacinto Fault

    Science.gov (United States)

    Hutchison, A. A.; Ghosh, A.

    2017-12-01

    Non-volcanic tremor (NVT), a type of slow earthquake, is becoming more frequently detected along plate boundaries, particularly in subduction zones, and is also observed along the San Andreas Fault [e.g. Nadeau & Dolenc, 2005]. NVT is typically associated with transient deformation (i.e. slow slip) in the transition zone [e.g. Ide et al., 2007], and at times it is observed with deep creep along faults [e.g. Beroza & Ide, 2011]. Using several independent location and detection methods including multi-beam backprojection [Ghosh et al., 2009a; 2012], envelope cross correlation [Wech & Creager, 2008], spectral analyses and visual inspection of existing network stations and high-density mini seismic array data, we detect multiple discrete spontaneous tremor events in the Anza Gap of the San Jacinto Fault (SJF) in June, 2011. The events occur on the SJF where the Hot Springs Fault terminates, on the northwestern boundary of the Anza Gap, below the inferred seismogenic zone characterized by velocity weakening frictional behavior [e.g. Lindsay et al., 2014]. The location methods provide consistent locations for each event in our catalog. Low slowness values help rule-out surface noise that may result in false detections. Analyses of frequency spectra show these time windows are depleted in high frequency energy in the displacement amplitude spectrum compared to small local regular (fast) earthquakes. This spectral pattern is characteristic of tremor [Shelly et al., 2007]. We interpret this tremor to be a seismic manifestation of slow-slip events below the seismogenic zone. Recently, an independent geodetic study suggests that the 2010 El Mayor-Cucupah earthquake triggered a slow-slip event in the Anza Gap [Inbal et al., 2017]. In addition, multiple studies infer deep creep in the SJF [e.g. Meng & Peng et al., 2016; Jiang & Fialko, 2016] indicating that this fault is capable of producing slow slip events. Transient tectonic behavior like tremor and slow slip may be playing

  16. Time-lapse refraction seismic tomography for the detection of ground ice degradation

    Directory of Open Access Journals (Sweden)

    C. Hilbich

    2010-07-01

    Full Text Available The ice content of the subsurface is a major factor controlling the natural hazard potential of permafrost degradation in alpine terrain. Monitoring of changes in ice content is therefore similarly important as temperature monitoring in mountain permafrost. Although electrical resistivity tomography monitoring (ERTM proved to be a valuable tool for the observation of ice degradation, results are often ambiguous or contaminated by inversion artefacts. In theory, the sensitivity of P-wave velocity of seismic waves to phase changes between unfrozen water and ice is similar to the sensitivity of electric resistivity. Provided that the general conditions (lithology, stratigraphy, state of weathering, pore space remain unchanged over the observation period, temporal changes in the observed travel times of repeated seismic measurements should indicate changes in the ice and water content within the pores and fractures of the subsurface material. In this paper, a time-lapse refraction seismic tomography (TLST approach is applied as an independent method to ERTM at two test sites in the Swiss Alps. The approach was tested and validated based on a the comparison of time-lapse seismograms and analysis of reproducibility of the seismic signal, b the analysis of time-lapse travel time curves with respect to shifts in travel times and changes in P-wave velocities, and c the comparison of inverted tomograms including the quantification of velocity changes. Results show a high potential of the TLST approach concerning the detection of altered subsurface conditions caused by freezing and thawing processes. For velocity changes on the order of 3000 m/s even an unambiguous identification of significant ice loss is possible.

  17. First field test of NAPL detection with high resolution borehole seismic imaging

    International Nuclear Information System (INIS)

    Geller, Jil T.; Peterson, John E.; Williams, Kenneth H.; Ajo-Franklin, Jonathan B.; Majer, Ernest L.

    2002-01-01

    The purpose of this field test is to evaluate the detectability of NAPLs by high resolution tomographic borehole seismic imaging. The site is a former Department of Energy (DOE) manufacturing facility in Pinellas County, Florida. Cross-hole seismic and radar measurements were made in a shallow aquifer contaminated with non-aqueous phase liquids (NAPLs). Cone penetration test (CPT) and induction logging were performed for lithology and conductivity, respectively. The main challenge is to distinguish fluid phase heterogeneities from anomalies arising from geologic structure. Our approach is to compare measurements between locations of known contamination with a nearby uncontaminated location of similar lithology where differences in signal transmission may be attributed to fluid phase changes. The CPT data show similar lithologic structure at the locations both within and outside the NAPL-contaminated area. Zones of low seismic amplitude at about 7 m depth appear more extensive in the NAPL-contaminated area. These zones may be the result of fluid phase heterogeneities (NAPL or gas), or they may be due to the lithology, i.e. attenuating nature of the layer itself, or the transition between two distinct layers. The presence of lithologic contrasts, specifically from higher permeability sands to lower permeability silts and clays, also indicate potential locations of NAPL, as they could be flow barriers to downward NAPL migration

  18. Seismic Search Engine: A distributed database for mining large scale seismic data

    Science.gov (United States)

    Liu, Y.; Vaidya, S.; Kuzma, H. A.

    2009-12-01

    The International Monitoring System (IMS) of the CTBTO collects terabytes worth of seismic measurements from many receiver stations situated around the earth with the goal of detecting underground nuclear testing events and distinguishing them from other benign, but more common events such as earthquakes and mine blasts. The International Data Center (IDC) processes and analyzes these measurements, as they are collected by the IMS, to summarize event detections in daily bulletins. Thereafter, the data measurements are archived into a large format database. Our proposed Seismic Search Engine (SSE) will facilitate a framework for data exploration of the seismic database as well as the development of seismic data mining algorithms. Analogous to GenBank, the annotated genetic sequence database maintained by NIH, through SSE, we intend to provide public access to seismic data and a set of processing and analysis tools, along with community-generated annotations and statistical models to help interpret the data. SSE will implement queries as user-defined functions composed from standard tools and models. Each query is compiled and executed over the database internally before reporting results back to the user. Since queries are expressed with standard tools and models, users can easily reproduce published results within this framework for peer-review and making metric comparisons. As an illustration, an example query is “what are the best receiver stations in East Asia for detecting events in the Middle East?” Evaluating this query involves listing all receiver stations in East Asia, characterizing known seismic events in that region, and constructing a profile for each receiver station to determine how effective its measurements are at predicting each event. The results of this query can be used to help prioritize how data is collected, identify defective instruments, and guide future sensor placements.

  19. Seismic retrofitting of Apsara reactor building

    International Nuclear Information System (INIS)

    Reddy, G.R.; Parulekar, Y.M.; Sharma, A.; Rao, K.N.; Narasimhan, Rajiv; Srinivas, K.; Basha, S.M.; Thomas, V.S.; Soma Kumar, K.

    2006-01-01

    Seismic analysis of Apsara Reactor building was carried out and was found not meeting the current seismic requirements. Due to the building not qualifying for seismic loads, a retrofit scheme using elasto-plastic dampers is proposed. Following activities have been performed in this direction: Carried out detailed seismic analysis of Apsara reactor building structure incorporating proposed seismic retrofit. Demonstrating the capability of the retrofitted structure to with stand the earth quake level for Trombay site as per the current standards by analysis and by model studies. Implementation of seismic retrofit program. This paper presents the details of above aspects related to Seismic analysis and retrofitting of Apsara reactor building. (author)

  20. Seismic margins and calibration of piping systems

    International Nuclear Information System (INIS)

    Shieh, L.C.; Tsai, N.C.; Yang, M.S.; Wong, W.L.

    1985-01-01

    The Seismic Safety Margins Research Program (SSMRP) is a US Nuclear Regulatory Commission-funded, multiyear program conducted by Lawrence Livermore National Laboratory (LLNL). Its objective is to develop a complete, fully coupled analysis procedure for estimating the risk of earthquake-induced radioactive release from a commercial nuclear power plant and to determine major contributors to the state-of-the-art seismic and systems analysis process and explicitly includes the uncertainties in such a process. The results will be used to improve seismic licensing requirements for nuclear power plants. In Phase I of SSMRP, the overall seismic risk assessment methodology was developed and assembled. The application of this methodology to the seismic PRA (Probabilistic Risk Assessment) at the Zion Nuclear Power Plant has been documented. This report documents the method deriving response factors. The response factors, which relate design calculated responses to best estimate values, were used in the seismic response determination of piping systems for a simplified seismic probablistic risk assessment. 13 references, 31 figures, 25 tables

  1. Mobile seismic exploration

    Energy Technology Data Exchange (ETDEWEB)

    Dräbenstedt, A., E-mail: a.draebenstedt@polytec.de, E-mail: rembe@iei.tu-clausthal.de, E-mail: ulrich.polom@liag-hannover.de; Seyfried, V. [Research & Development, Polytec GmbH, Waldbronn (Germany); Cao, X.; Rembe, C., E-mail: a.draebenstedt@polytec.de, E-mail: rembe@iei.tu-clausthal.de, E-mail: ulrich.polom@liag-hannover.de [Institute of Electrical Information Technology, TU Clausthal, Clausthal-Zellerfeld (Germany); Polom, U., E-mail: a.draebenstedt@polytec.de, E-mail: rembe@iei.tu-clausthal.de, E-mail: ulrich.polom@liag-hannover.de [Leibniz Institute of Applied Geophysics, Hannover (Germany); Pätzold, F.; Hecker, P. [Institute of Flight Guidance, TU Braunschweig, Braunschweig (Germany); Zeller, T. [Clausthaler Umwelttechnik Institut CUTEC, Clausthal-Zellerfeld (Germany)

    2016-06-28

    Laser-Doppler-Vibrometry (LDV) is an established technique to measure vibrations in technical systems with picometer vibration-amplitude resolution. Especially good sensitivity and resolution can be achieved at an infrared wavelength of 1550 nm. High-resolution vibration measurements are possible over more than 100 m distance. This advancement of the LDV technique enables new applications. The detection of seismic waves is an application which has not been investigated so far because seismic waves outside laboratory scales are usually analyzed at low frequencies between approximately 1 Hz and 250 Hz and require velocity resolutions in the range below 1 nm/s/√Hz. Thermal displacements and air turbulence have critical influences to LDV measurements at this low-frequency range leading to noise levels of several 100 nm/√Hz. Commonly seismic waves are measured with highly sensitive inertial sensors (geophones or Micro Electro-Mechanical Sensors (MEMS)). Approaching a laser geophone based on LDV technique is the topic of this paper. We have assembled an actively vibration-isolated optical table in a minivan which provides a hole in its underbody. The laser-beam of an infrared LDV assembled on the optical table impinges the ground below the car through the hole. A reference geophone has detected remaining vibrations on the table. We present the results from the first successful experimental demonstration of contactless detection of seismic waves from a movable vehicle with a LDV as laser geophone.

  2. The Virtual Seismic Atlas Project: sharing the interpretation of seismic data

    Science.gov (United States)

    Butler, R.; Mortimer, E.; McCaffrey, B.; Stuart, G.; Sizer, M.; Clayton, S.

    2007-12-01

    Through the activities of academic research programs, national institutions and corporations, especially oil and gas companies, there is a substantial volume of seismic reflection data. Although the majority is proprietary and confidential, there are significant volumes of data that are potentially within the public domain and available for research. Yet the community is poorly connected to these data and consequently geological and other research using seismic reflection data is limited to very few groups of researchers. This is about to change. The Virtual Seismic Atlas (VSA) is generating an independent, free-to-use, community based internet resource that captures and shares the geological interpretation of seismic data globally. Images and associated documents are explicitly indexed using not only existing survey and geographical data but also on the geology they portray. By using "Guided Navigation" to search, discover and retrieve images, users are exposed to arrays of geological analogues that provide novel insights and opportunities for research and education. The VSA goes live, with evolving content and functionality, through 2008. There are opportunities for designed integration with other global data programs in the earth sciences.

  3. Aging evaluation of class 1E batteries: Seismic testing

    International Nuclear Information System (INIS)

    Edson, J.L.

    1990-08-01

    This report presents the results of a seismic testing program on naturally aged class 1E batteries obtained from a nuclear plant. The testing program is a Phase 2 activity resulting from a Phase 1 aging evaluation of class 1E batteries in safety systems of nuclear power plants, performed previously as a part of the US Nuclear Regulatory Commission's Nuclear Plant Aging Research Program and reported in NUREG/CR-4457. The primary purpose of the program was to evaluate the seismic ruggedness of naturally aged batteries to determine if aged batteries could have adequate electrical capacity, as determined by tests recommended by IEEE Standards, and yet have inadequate seismic ruggedness to provide needed electrical power during and after a safe shutdown earthquake (SSE) event. A secondary purpose of the program was to evaluate selected advanced surveillance methods to determine if they were likely to be more sensitive to the aging degradation that reduces seismic ruggedness. The program used twelve batteries naturally aged to about 14 years of age in a nuclear facility and tested them at four different seismic levels representative of the levels of possible earthquakes specified for nuclear plants in the United States. Seismic testing of the batteries did not cause any loss of electrical capacity. 19 refs., 29 figs., 7 tabs

  4. Large-Scale Seismic Test Program at Hualien, Taiwan

    International Nuclear Information System (INIS)

    Tang, H.T.; Graves, H.L.; Chen, P.C.

    1992-01-01

    The Large-Scale Seismic Test (LSST) Program at Hualien, Taiwan, is a follow-on to the soil-structure interaction (SSI) experiments at Lotung, Taiwan. The planned SSI studies will be performed at a stiff soil site in Hualien, Taiwan, that historically has had slightly more destructive earthquakes in the past than Lotung. The LSST is a joint effort among many interested parties. Electric Power Research Institute (EPRI) and Taipower are the organizers of the program and have the lead in planning and managing the program. Other organizations participating in the LSST program are US Nuclear Regulatory Commission, the Central Research Institute of Electric Power Industry, the Tokyo Electric Power Company, the Commissariat A L'Energie Atomique, Electricite de France and Framatome. The LSST was initiated in January 1990, and is envisioned to be five years in duration. Based on the assumption of stiff soil and confirmed by soil boring and geophysical results the test model was designed to provide data needed for SSI studies covering: free-field input, nonlinear soil response, non-rigid body SSI, torsional response, kinematic interaction, spatial incoherency and other effects. Taipower had the lead in design of the test model and received significant input from other LSST members. Questions raised by LSST members were on embedment effects, model stiffness, base shear, and openings for equipment. This paper describes progress in site preparation, design and construction of the model and development of an instrumentation plan

  5. Local seismic monitoring east and north of Toronto - Volume 1

    International Nuclear Information System (INIS)

    Mohajer, A.A.; Doughty, M.

    1996-08-01

    Monitoring of small magnitude ('micro') earthquakes in a dense local network is one of the techniques used to delineate currently active faults and seismic sources. The conventional wisdom is that smaller, but more frequent, seismic events normally occur on active fault planes and a log linear empirical relation between frequency and magnitude can be used to estimate the magnitude and recurrence (frequency) of the larger events. A program of site-specific seismic monitoring has been supported by the AECB since 1991, to investigate the feasibility of microearthquake detection in suburban areas of east Toronto in order to assess the rate activity of local events in the vicinity of the nuclear power plants at Pickering and Darlington. For deployment of the seismic stations at the most favorable locations an extensive background noise survey was carried out. This survey involved measuring and comparing the amplitude response of the ambient vibration caused by natural phenomena (e.g. wind blow, water flow, wave action) or human activities such as farming, mining and industrial work at 25 test sites. Subsequently, a five-station seismic network, with a 30 km aperture, was selected between the Pickering and Darlington nuclear power plants on Lake Ontario, to the south, and Lake Scugog to the north. The detection threshold obtained for two of the stations allows recording of local events M L =0-2, a magnitude range which is usually not detected by regional seismic networks. An analysis of several thousand triggered signals resulted in the identification of about 120 local events, which can not be assigned to any source other than the natural release of crustal stresses. The recurrence frequency of these microearthquakes shows a linear relationship which matches that of larger events in the last two centuries in this region. The preliminary results indicate that the stress is currently accumulating and is being released within clusters of small earthquakes

  6. Detection of ULF geomagnetic signals associated with seismic events in Central Mexico using Discrete Wavelet Transform

    Directory of Open Access Journals (Sweden)

    O. Chavez

    2010-12-01

    Full Text Available The geomagnetic observatory of Juriquilla Mexico, located at longitude –100.45° and latitude 20.70°, and 1946 m a.s.l., has been operational since June 2004 compiling geomagnetic field measurements with a three component fluxgate magnetometer. In this paper, the results of the analysis of these measurements in relation to important seismic activity in the period of 2007 to 2009 are presented. For this purpose, we used superposed epochs of Discrete Wavelet Transform of filtered signals for the three components of the geomagnetic field during relative seismic calm, and it was compared with seismic events of magnitudes greater than Ms > 5.5, which have occurred in Mexico. The analysed epochs consisted of 18 h of observations for a dataset corresponding to 18 different earthquakes (EQs. The time series were processed for a period of 9 h prior to and 9 h after each seismic event. This data processing was compared with the same number of observations during a seismic calm. The proposed methodology proved to be an efficient tool to detect signals associated with seismic activity, especially when the seismic events occur in a distance (D from the observatory to the EQ, such that the ratio D/ρ < 1.8 where ρ is the earthquake radius preparation zone. The methodology presented herein shows important anomalies in the Ultra Low Frequency Range (ULF; 0.005–1 Hz, primarily for 0.25 to 0.5 Hz. Furthermore, the time variance (σ2 increases prior to, during and after the seismic event in relation to the coefficient D1 obtained, principally in the Bx (N-S and By (E-W geomagnetic components. Therefore, this paper proposes and develops a new methodology to extract the abnormal signals of the geomagnetic anomalies related to different stages of the EQs.

  7. Light Water Reactor Sustainability Program Advanced Seismic Soil Structure Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Bolisetti, Chandrakanth [Idaho National Lab. (INL), Idaho Falls, ID (United States); Coleman, Justin Leigh [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-06-01

    Risk calculations should focus on providing best estimate results, and associated insights, for evaluation and decision-making. Specifically, seismic probabilistic risk assessments (SPRAs) are intended to provide best estimates of the various combinations of structural and equipment failures that can lead to a seismic induced core damage event. However, in some instances the current SPRA approach has large uncertainties, and potentially masks other important events (for instance, it was not the seismic motions that caused the Fukushima core melt events, but the tsunami ingress into the facility). SPRA’s are performed by convolving the seismic hazard (this is the estimate of all likely damaging earthquakes at the site of interest) with the seismic fragility (the conditional probability of failure of a structure, system, or component given the occurrence of earthquake ground motion). In this calculation, there are three main pieces to seismic risk quantification, 1) seismic hazard and nuclear power plants (NPPs) response to the hazard, 2) fragility or capacity of structures, systems and components (SSC), and 3) systems analysis. Two areas where NLSSI effects may be important in SPRA calculations are, 1) when calculating in-structure response at the area of interest, and 2) calculation of seismic fragilities (current fragility calculations assume a lognormal distribution for probability of failure of components). Some important effects when using NLSSI in the SPRA calculation process include, 1) gapping and sliding, 2) inclined seismic waves coupled with gapping and sliding of foundations atop soil, 3) inclined seismic waves coupled with gapping and sliding of deeply embedded structures, 4) soil dilatancy, 5) soil liquefaction, 6) surface waves, 7) buoyancy, 8) concrete cracking and 9) seismic isolation The focus of the research task presented here-in is on implementation of NLSSI into the SPRA calculation process when calculating in-structure response at the area

  8. Seismic assessment of air-cooled type emergency electric power supply system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    JNES initiated seismic assessment programs to develop seismic review criterions for the air-cooled system (diesel generator, gas turbine generator), which will be newly installed for enhancing the diversity of emergency electric power supply system. Five principal subjects are involved in the programs: two subjects for fiscal 2011 and three ones for fiscal 2012 and 2013. The summary of outcomes is as follows: 1) Past capacity test data and related technical issues (2011). Seismic capacity data obtained from past seismic shaking tests were investigated. 2) Test programs based on the investigation of system specification (2011). Design specifications for the air-cooled system were investigated. 3) Large Air Fin Cooler (AFC) one unit model seismic capacity test and quantitative seismic capacity evaluation. AFC one unit model seismic capacity tests were conducted and quantitative seismic capacities were evaluated. (author)

  9. Seismic assessment of air-cooled type emergency electric power supply system

    International Nuclear Information System (INIS)

    2013-01-01

    JNES initiated seismic assessment programs to develop seismic review criterions for the air-cooled system (diesel generator, gas turbine generator), which will be newly installed for enhancing the diversity of emergency electric power supply system. Five principal subjects are involved in the programs: two subjects for fiscal 2011 and three ones for fiscal 2012 and 2013. The summary of outcomes is as follows: 1) Past capacity test data and related technical issues (2011). Seismic capacity data obtained from past seismic shaking tests were investigated. 2) Test programs based on the investigation of system specification (2011). Design specifications for the air-cooled system were investigated. 3) Large Air Fin Cooler (AFC) one unit model seismic capacity test and quantitative seismic capacity evaluation. AFC one unit model seismic capacity tests were conducted and quantitative seismic capacities were evaluated. (author)

  10. Lessons learned from NRC systematic evaluation program seismic review

    International Nuclear Information System (INIS)

    Cheng, T.M.; Hermann, R.A.; Russell, W.T.

    1983-01-01

    In October 1977, the Nuclear Regulatory Commission approved initiation of Phase II of the Systematic Evaluation Program (SEP) which consists of a plant-specific reassessment of the safety of 11 older operating nuclear reactors. Many safety criteria have rapidly evolved since the time of initial licensing of these plants. The purpose of the SEP is to develop a current documented basis for the safety of these older facilities by comparing them to current criteria. Phase I of the SEP developed a comprehensive list of 137 topics of safety significance which collectively affect the plant's capability to respond to various Design Basis Events (DBEs). Seismic Design Consideration is one of the 137 safety topics. (orig./GL)

  11. Comparison of seismic isolation concepts for FBR

    International Nuclear Information System (INIS)

    Shiojiri, H.; Mazda, T.; Kasai, H.; Kanda, J.N.; Kubo, T.; Madokoro, M.; Shimomura, T.; Nojima, O.

    1989-01-01

    This paper seeks to verify the reliability and effectiveness of seismic isolation for FBR. Some results of the preliminary study of the program are described. Seismic isolation concepts and corresponding seismic isolation devices were selected. Three kinds of seismically-isolated FBR plant concepts were developed by applying promising seismic isolation concepts to the non-isolated FBR plant, and by developing plant component layout plans and building structural designs. Each plant was subjected to seismic response analysis and reduction in the amount of material of components and buildings were estimated for each seismic isolation concepts. Research and development items were evaluated

  12. Detection of cracks with low vertical offset in clayey formations from galleries by using seismic methods. Tournemire experimental station. First part: problem analysis and measurement sizing

    International Nuclear Information System (INIS)

    Bretaudeau, Francois; Gelis, Celine; Cabrera, Justo; Leparoux, Donatienne; Cote, Philippe

    2012-01-01

    Within the frame of the expertise of the ANDRA file on the project of storage of radioactive wastes in clayey formations, the detection of natural cracks which could locally alter the argillite containment properties is a crucial issue. As some previous studies showed that some cracks exhibiting a low vertical offset could not be detected in clayey formations from the surface, this document reports a study which aimed at assessing the possibility of detection of such a crack by means of seismic methods directly implemented from underground works. It reports a detailed analysis of the seismic imagery problem, the characterization of different areas of the investigated environment, the assessment and validation of various hypotheses by using experimental data obtained in an experimental station and numerical simulations. The potential of each envisaged method (migration, tomography, wave form inversion) is assessed, notably with respect to synthetic seismic data obtained by numerical modelling. Preliminary results are used to size a complete seismic measurement campaign aimed at the characterization of the crack area, and at the assessment of detection limitations of the different methods

  13. Continuous recording of seismic signals in Alpine permafrost

    Science.gov (United States)

    Hausmann, H.; Krainer, K.; Staudinger, M.; Brückl, E.

    2009-04-01

    Over the past years various geophysical methods were applied to study the internal structure and the temporal variation of permafrost whereof seismic is of importance. For most seismic investigations in Alpine permafrost 24-channel equipment in combination with long data and trigger cables is used. Due to the harsh environment source and geophone layouts are often limited to 2D profiles. With prospect for future 3D-layouts we introduce an alternative of seismic equipment that can be used for several applications in Alpine permafrost. This study is focussed on controlled and natural source seismic experiments in Alpine permafrost using continuous data recording. With recent data from an ongoing project ("Permafrost in Austria") we will highlight the potential of the used seismic equipment for three applications: (a) seismic permafrost mapping of unconsolidated sediments, (b) seismic tomography in rock mass, and (c) passive seismic monitoring of rock falls. Single recording units (REFTEK 130, 6 channels) are used to continuously record the waveforms of both the seismic signals and a trigger signal. The combination of a small number of recording units with different types of geophones or a trigger allow numerous applications in Alpine permafrost with regard to a high efficiency and flexible seismic layouts (2D, 3D, 4D). The efficiency of the light and robust seismic equipment is achieved by the simple acquisition and the flexible and fast deployment of the (omni-directional) geophones. Further advantages are short (data and trigger) cables and the prevention of trigger errors. The processing of the data is aided by 'Seismon' which is an open source software project based on Matlab® and MySQL (see SM1.0). For active-source experiments automatic stacking of the seismic signals is implemented. For passive data a program for automatic detection of events (e.g. rock falls) is available which allows event localization. In summer 2008 the seismic equipment was used for the

  14. NRC-BNL Benchmark Program on Evaluation of Methods for Seismic Analysis of Coupled Systems

    International Nuclear Information System (INIS)

    Chokshi, N.; DeGrassi, G.; Xu, J.

    1999-01-01

    A NRC-BNL benchmark program for evaluation of state-of-the-art analysis methods and computer programs for seismic analysis of coupled structures with non-classical damping is described. The program includes a series of benchmarking problems designed to investigate various aspects of complexities, applications and limitations associated with methods for analysis of non-classically damped structures. Discussions are provided on the benchmarking process, benchmark structural models, and the evaluation approach, as well as benchmarking ground rules. It is expected that the findings and insights, as well as recommendations from this program will be useful in developing new acceptance criteria and providing guidance for future regulatory activities involving licensing applications of these alternate methods to coupled systems

  15. Seismic and tsunami safety margin assessment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    Nuclear Regulation Authority is going to establish new seismic and tsunami safety guidelines to increase the safety of NPPs. The main purpose of this research is testing structures/components important to safety and tsunami resistant structures/components, and evaluating the capacity of them against earthquake and tsunami. Those capacity data will be utilized for the seismic and tsunami back-fit review based on the new seismic and tsunami safety guidelines. The summary of the program in 2012 is as follows. 1. Component seismic capacity test and quantitative seismic capacity evaluation. PWR emergency diesel generator partial-model seismic capacity tests have been conducted and quantitative seismic capacities have been evaluated. 2. Seismic capacity evaluation of switching-station electric equipment. Existing seismic test data investigation, specification survey and seismic response analyses have been conducted. 3. Tsunami capacity evaluation of anti-inundation measure facilities. Tsunami pressure test have been conducted utilizing a small breakwater model and evaluated basic characteristics of tsunami pressure against seawall structure. (author)

  16. Seismic and tsunami safety margin assessment

    International Nuclear Information System (INIS)

    2013-01-01

    Nuclear Regulation Authority is going to establish new seismic and tsunami safety guidelines to increase the safety of NPPs. The main purpose of this research is testing structures/components important to safety and tsunami resistant structures/components, and evaluating the capacity of them against earthquake and tsunami. Those capacity data will be utilized for the seismic and tsunami back-fit review based on the new seismic and tsunami safety guidelines. The summary of the program in 2012 is as follows. 1. Component seismic capacity test and quantitative seismic capacity evaluation. PWR emergency diesel generator partial-model seismic capacity tests have been conducted and quantitative seismic capacities have been evaluated. 2. Seismic capacity evaluation of switching-station electric equipment. Existing seismic test data investigation, specification survey and seismic response analyses have been conducted. 3. Tsunami capacity evaluation of anti-inundation measure facilities. Tsunami pressure test have been conducted utilizing a small breakwater model and evaluated basic characteristics of tsunami pressure against seawall structure. (author)

  17. Signal-to-noise ratio application to seismic marker analysis and fracture detection

    Science.gov (United States)

    Xu, Hui-Qun; Gui, Zhi-Xian

    2014-03-01

    Seismic data with high signal-to-noise ratios (SNRs) are useful in reservoir exploration. To obtain high SNR seismic data, significant effort is required to achieve noise attenuation in seismic data processing, which is costly in materials, and human and financial resources. We introduce a method for improving the SNR of seismic data. The SNR is calculated by using the frequency domain method. Furthermore, we optimize and discuss the critical parameters and calculation procedure. We applied the proposed method on real data and found that the SNR is high in the seismic marker and low in the fracture zone. Consequently, this can be used to extract detailed information about fracture zones that are inferred by structural analysis but not observed in conventional seismic data.

  18. NSR&D Program Fiscal Year (FY) 2015 Call for Proposals Mitigation of Seismic Risk at Nuclear Facilities using Seismic Isolation

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Justin [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-02-01

    Seismic isolation (SI) has the potential to drastically reduce seismic response of structures, systems, or components (SSCs) and therefore the risk associated with large seismic events (large seismic event could be defined as the design basis earthquake (DBE) and/or the beyond design basis earthquake (BDBE) depending on the site location). This would correspond to a potential increase in nuclear safety by minimizing the structural response and thus minimizing the risk of material release during large seismic events that have uncertainty associated with their magnitude and frequency. The national consensus standard America Society of Civil Engineers (ASCE) Standard 4, Seismic Analysis of Safety Related Nuclear Structures recently incorporated language and commentary for seismically isolating a large light water reactor or similar large nuclear structure. Some potential benefits of SI are: 1) substantially decoupling the SSC from the earthquake hazard thus decreasing risk of material release during large earthquakes, 2) cost savings for the facility and/or equipment, and 3) applicability to both nuclear (current and next generation) and high hazard non-nuclear facilities. Issue: To date no one has evaluated how the benefit of seismic risk reduction reduces cost to construct a nuclear facility. Objective: Use seismic probabilistic risk assessment (SPRA) to evaluate the reduction in seismic risk and estimate potential cost savings of seismic isolation of a generic nuclear facility. This project would leverage ongoing Idaho National Laboratory (INL) activities that are developing advanced (SPRA) methods using Nonlinear Soil-Structure Interaction (NLSSI) analysis. Technical Approach: The proposed study is intended to obtain an estimate on the reduction in seismic risk and construction cost that might be achieved by seismically isolating a nuclear facility. The nuclear facility is a representative pressurized water reactor building nuclear power plant (NPP) structure

  19. Detection of invisible and crucial events: from seismic fluctuations to the war against terrorism

    Energy Technology Data Exchange (ETDEWEB)

    Allegrini, Paolo; Fronzoni, Leone; Grigolini, Paolo; Latora, Vito; Mega, Mirko S.; Palatella, Luigi E-mail: luigi.palatella@df.unipi.it; Rapisarda, Andrea; Vinciguerra, Sergio

    2004-04-01

    We argue that the recent discovery of the non-Poissonian statistics of the seismic main-shocks is a special case of a more general approach to the detection of the distribution of the time increments between one crucial but invisible event and the next. We make the conjecture that the proposed approach can be applied to the analysis of terrorist network with significant benefits for the Intelligence Community.

  20. Seismic risk assessment of a BWR

    International Nuclear Information System (INIS)

    Wells, J.E.; Bernreuter, D.L.; Chen, J.C.; Lappa, D.A.; Chuang, T.Y.; Murray, R.C.; Johnson, J.J.

    1987-01-01

    The simplified seismic risk methodology developed in the USNRC Seismic Safety Margins Research Program (SSMRP) was demonstrated by its application to the Zion nuclear power plant (PWR). The simplified seismic risk methodology was developed to reduce the costs associated with a seismic risk analysis while providing adequate results. A detailed model of Zion, including systems analysis models (initiating events, event trees, and fault trees), SSI and structure models, and piping models, was developed and used in assessing the seismic risk of the Zion nuclear power plant (FSAR). The simplified seismic risk methodology was applied to the LaSalle County Station nuclear power plant, a BWR; to further demonstrate its applicability, and if possible, to provide a basis for comparing the seismic risk from PWRs and BWRs. (orig./HP)

  1. Time-resolved seismic tomography detects magma intrusions at Mount Etna.

    Science.gov (United States)

    Patanè, D; Barberi, G; Cocina, O; De Gori, P; Chiarabba, C

    2006-08-11

    The continuous volcanic and seismic activity at Mount Etna makes this volcano an important laboratory for seismological and geophysical studies. We used repeated three-dimensional tomography to detect variations in elastic parameters during different volcanic cycles, before and during the October 2002-January 2003 flank eruption. Well-defined anomalous low P- to S-wave velocity ratio volumes were revealed. Absent during the pre-eruptive period, the anomalies trace the intrusion of volatile-rich (>/=4 weight percent) basaltic magma, most of which rose up only a few months before the onset of eruption. The observed time changes of velocity anomalies suggest that four-dimensional tomography provides a basis for more efficient volcano monitoring and short- and midterm eruption forecasting of explosive activity.

  2. Reflection and tubewave analysis of the seismic data from the Stripa crosshole site

    International Nuclear Information System (INIS)

    Cosma, C.; Baehler, S.; Hammarstroem, M.; Pihl, J.

    1986-12-01

    The data from the crosshole research program (radar, seismics and hydraulics) in the Stripa Phase II Project resulted in the construction of a model. The results from the present study were compared to this model. It was found that the existing data set used for tomographic analysis could only be used to a limited extent, as reflection analysis requires a more dense detector coverage. Nevertheless two reflectors were detected. The positions of the reflectors were compared to the existing crosshole model and proved to correlate well. For the tubewave analysis almost all crosshole seismic data could be used. By comparing the results with previous hydraulic tests, it was found that tubewave sources and hydraulically conductive zones are in concordance. All previously defined zones but one could be detected. (orig./HP)

  3. Non-seismic tsunamis: filling the forecast gap

    Science.gov (United States)

    Moore, C. W.; Titov, V. V.; Spillane, M. C.

    2015-12-01

    Earthquakes are the generation mechanism in over 85% of tsunamis. However, non-seismic tsunamis, including those generated by meteorological events, landslides, volcanoes, and asteroid impacts, can inundate significant area and have a large far-field effect. The current National Oceanographic and Atmospheric Administration (NOAA) tsunami forecast system falls short in detecting these phenomena. This study attempts to classify the range of effects possible from these non-seismic threats, and to investigate detection methods appropriate for use in a forecast system. Typical observation platforms are assessed, including DART bottom pressure recorders and tide gauges. Other detection paths include atmospheric pressure anomaly algorithms for detecting meteotsunamis and the early identification of asteroids large enough to produce a regional hazard. Real-time assessment of observations for forecast use can provide guidance to mitigate the effects of a non-seismic tsunami.

  4. Improved Seismic Acquisition System and Data Processing for the Italian National Seismic Network

    Science.gov (United States)

    Badiali, L.; Marcocci, C.; Mele, F.; Piscini, A.

    2001-12-01

    A new system for acquiring and processing digital signals has been developed in the last few years at the Istituto Nazionale di Geofisica e Vulcanologia (INGV). The system makes extensive use of the internet communication protocol standards such as TCP and UDP which are used as the transport highway inside the Italian network, and possibly in a near future outside, to share or redirect data among processes. The Italian National Seismic Network has been working for about 18 years equipped with vertical short period seismometers and transmitting through analog lines, to the computer center in Rome. We are now concentrating our efforts on speeding the migration towards a fully digital network based on about 150 stations equipped with either broad band or 5 seconds sensors connected to the data center partly through wired digital communication and partly through satellite digital communication. The overall process is layered through intranet and/or internet. Every layer gathers data in a simple format and provides data in a processed format, ready to be distributed towards the next layer. The lowest level acquires seismic data (raw waveforms) coming from the remote stations. It handshakes, checks and sends data in LAN or WAN according to a distribution list where other machines with their programs are waiting for. At the next level there are the picking procedures, or "pickers", on a per instrument basis, looking for phases. A picker spreads phases, again through the LAN or WAN and according to a distribution list, to one or more waiting locating machines tuned to generate a seismic event. The event locating procedure itself, the higher level in this stack, can exchange information with other similar procedures. Such a layered and distributed structure with nearby targets allows other seismic networks to join the processing and data collection of the same ongoing event, creating a virtual network larger than the original one. At present we plan to cooperate with other

  5. Detection of Natural Fractures from Observed Surface Seismic Data Based on a Linear-Slip Model

    Science.gov (United States)

    Chen, Huaizhen; Zhang, Guangzhi

    2018-03-01

    Natural fractures play an important role in migration of hydrocarbon fluids. Based on a rock physics effective model, the linear-slip model, which defines fracture parameters (fracture compliances) for quantitatively characterizing the effects of fractures on rock total compliance, we propose a method to detect natural fractures from observed seismic data via inversion for the fracture compliances. We first derive an approximate PP-wave reflection coefficient in terms of fracture compliances. Using the approximate reflection coefficient, we derive azimuthal elastic impedance as a function of fracture compliances. An inversion method to estimate fracture compliances from seismic data is presented based on a Bayesian framework and azimuthal elastic impedance, which is implemented in a two-step procedure: a least-squares inversion for azimuthal elastic impedance and an iterative inversion for fracture compliances. We apply the inversion method to synthetic and real data to verify its stability and reasonability. Synthetic tests confirm that the method can make a stable estimation of fracture compliances in the case of seismic data containing a moderate signal-to-noise ratio for Gaussian noise, and the test on real data reveals that reasonable fracture compliances are obtained using the proposed method.

  6. Real-time detection and characterization of nuclear explosion using broadband analyses of regional seismic stations

    Science.gov (United States)

    Prastowo, T.; Madlazim

    2018-01-01

    This preliminary study aims to propose a new method of real-time detection and characterization of nuclear explosions by analyzing broadband seismic waveforms acquired from a network of regional seismic stations. Signal identification generated by a nuclear test was differentiated from natural sources of either earthquakes or other natural seismo-tectonic events by verifying crucial parameters, namely source depth, type of first motion, and P-wave domination of the broadband seismic wavesunder consideration. We examined and analyzed a recently hypothetical nuclear test performed by the North Koreangovernment that occurred on September 3, 2017 as a vital point to study. From spectral analyses, we found that the source of corresponding signals associated with detonations of the latest underground nuclear test was at a much shallower depth below the surface relatively compared with that of natural earthquakes, the suspected nuclear explosions produced compressional waves with radially directed outward from the source for their first motions, and the waves were only dominated by P-components. The results are then discussed in the context of potential uses of the proposed methodology for human-induced disaster early warning system and/or the need of rapid response purposes for minimizing the disaster risks.

  7. Advanced Seismic Data Analysis Program (The Hot Pot Project), DOE Award: DE-EE0002839, Phase 1 Report

    Energy Technology Data Exchange (ETDEWEB)

    Oski Energy, LLC,

    2013-03-28

    A five-line (23 mile) reflection- seismic survey was conducted at the Hot Pot geothermal prospect area in north-central Nevada under the USDOE (United States Department of Energy) Geothermal Technologies Program. The project objective was to utilize innovative seismic data processing, integrated with existing geological, geophysical and geochemical information, to identify high-potential drilling targets and to reduce drilling risk. Data acquisition and interpretation took place between October 2010 and April 2011. The first round of data processing resulted in large areas of relatively poor data, and obvious reflectors known from existing subsurface information either did not appear on the seismic profiles or appeared at the wrong depth. To resolve these issues, the velocity model was adjusted to include geologic input, and the lines were reprocessed. The resulting products were significantly improved, and additional detail was recovered within the high-velocity and in part acoustically isotropic basement. Features visible on the improved seismic images include interpreted low angle thrust faults within the Paleozoic Valmy Formation, which potentially are reactivated in the current stress field. Intermediate-depth wells are currently targeted to test these features. The seismic images also suggest the existence of Paleogene sedimentary and volcanic rocks which potentially may function as a near- surface reservoir, charged by deeper structures in Paleozoic rocks.

  8. Quasi-seismic scaling processes in sea ice

    International Nuclear Information System (INIS)

    Chmel, A; Smirnov, V N

    2011-01-01

    The cracking, shearing and stick–slip motions in sea ice are similar to those in fracturing geostructures. In this work, the fracture-related, quasi-seismic activity in the Arctic ice pack was monitored during a large-scale ice cover fragmentation that occurred in March 2008. This fragmentation resulted in the formation of a two-dimensional 'fault' clearly seen in satellite images. The energy distribution in elastic waves detected by seismic tiltmeters follows the power law in pre- and post-faulting periods. The power exponent decreases as the 'catastrophe' approaches, and exhibits a trend to restore its initial value after the large-scale perturbation. The detected fracture events are correlated in time in the sense of a scaling relation. A quiescent period (very low quasi-seismic activity) was observed before 'faulting'. A close similarity in scaling characteristics between the crustal seismicity and quasi-seismic activity observed in the ice pack is discussed from the viewpoint of the role of heterogeneity in the behavior of large-scale critical systems

  9. Seismic analysis for the ALMR

    International Nuclear Information System (INIS)

    Tajirian, F.F.

    1992-01-01

    The Advanced Liquid Metal Reactor (ALMR) design uses seismic isolation as a cost effective approach for simplifying seismic design of the reactor module, and for enhancing margins to handle beyond design basis earthquakes (BDBE). A comprehensive seismic analysis plan has been developed to confirm the adequacy of the design and to support regulatory licensing activities. In this plan state-of-the-art computer programs are used to evaluate the system response of the ALMR. Several factors that affect seismic response will be investigated. These include variability in the input earthquake mechanism, soil-structure interaction effects, and nonlinear response of the isolators. This paper reviews the type of analyses that are planned, and discuses the approach that will be used for validating the specific features of computer programs that are required in the analysis of isolated structures. To date, different linear and nonlinear seismic analyses have been completed. The results of recently completed linear analyses have been summarized elsewhere. The findings of three-dimensional seismic nonlinear analyses are presented in this paper. These analyses were performed to evaluate the effect of changes of isolator horizontal stiffness with horizontal displacement on overall response, to develop an approach for representing BDBE events with return periods exceeding 10,000 years, and to assess margins in the design for BDBEs. From the results of these analyses and bearing test data, it can be concluded that a properly designed and constructed seismic isolation system can accommodate displacements several times the design safe shutdown earthquake (SSE) for the ALMR. (author)

  10. Development and seismic evaluation of the seismic monitoring analysis system for HANARO

    International Nuclear Information System (INIS)

    Ryu, J. S.; Youn, D. B.; Kim, H. G.; Woo, J. S.

    2003-01-01

    Since the start of operation, the seismic monitoring system has been utilized for monitoring an earthquake at the HANARO site. The existing seismic monitoring system consists of field sensors and monitoring panel. The analog-type monitoring system with magnetic tape recorder is out-of-date model. In addition, the disadvantage of the existing system is that it does not include signal-analyzing equipment. Therefore, we have improved the analog seismic monitoring system except the field sensors into a new digital Seismic Monitoring Analysis System(SMAS) that can monitor and analyze earthquake signals. To achieve this objective for HANARO, the digital type hardware of the SMAS has been developed. The seismic monitoring and analysis programs that can provide rapid and precise information for an earthquake were developed. After the installation of the SMAS, we carried out the Site Acceptance Test (SAT) to confirm the functional capability of the newly developed system. The results of the SAT satisfy the requirements of the fabrication technical specifications. In addition, the seismic characteristics and structural integrity of the SMAS were evaluated. The results show that the cabinet of SMAS can withstand the effects of seismic loads and remain functional. This new SMAS is operating in the HANARO instrument room to acquire and analyze the signal of an earthquake

  11. Reassessment of seismic hazards at the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Wong, I.G.; Hemphill-Haley, M.A.; Kelson, K.I.; Gardner, J.N.; House, L.S.

    1991-01-01

    A comprehensive seismic hazards evaluation program has been initiated at the Los Alamos National Laboratory (LANL) to update the current seismic design criteria. In part, this program has been motivated by recent studies which suggest that faults of the nearby Pajarito fault system may be capable of generating a large magnitude earthquake (M > 7). The specific objectives of this program are to: (1) characterize the tectonic setting of the LANL area; (2) characterize the nature, amount, and timing of late Quaternary fault displacements; (3) reevaluate the recorded seismicity in the LANL region to allow for the evaluation of seismogenic faults and the tectonic state of stress; (4) characterize the subsurface geologic conditions beneath the LANL required for the estimation of strong ground motions and site response; (5) estimate potential strong ground shaking both deterministically and probabilistically; and (6) develop the appropriate seismic design criteria. The approach and initial results of this seismic hazards program are described in this paper

  12. Seismic data acquisition systems

    International Nuclear Information System (INIS)

    Kolvankar, V.G.; Nadre, V.N.; Rao, D.S.

    1989-01-01

    Details of seismic data acquisition systems developed at the Bhabha Atomic Research Centre, Bombay are reported. The seismic signals acquired belong to different signal bandwidths in the band from 0.02 Hz to 250 Hz. All these acquisition systems are built around a unique technique of recording multichannel data on to a single track of an audio tape and in digital form. Techniques of how these signals in different bands of frequencies were acquired and recorded are described. Method of detecting seismic signals and its performance is also discussed. Seismic signals acquired in different set-ups are illustrated. Time indexing systems for different set-ups and multichannel waveform display systems which form essential part of the data acquisition systems are also discussed. (author). 13 refs., 6 figs., 1 tab

  13. SIG-VISA: Signal-based Vertically Integrated Seismic Monitoring

    Science.gov (United States)

    Moore, D.; Mayeda, K. M.; Myers, S. C.; Russell, S.

    2013-12-01

    Traditional seismic monitoring systems rely on discrete detections produced by station processing software; however, while such detections may constitute a useful summary of station activity, they discard large amounts of information present in the original recorded signal. We present SIG-VISA (Signal-based Vertically Integrated Seismic Analysis), a system for seismic monitoring through Bayesian inference on seismic signals. By directly modeling the recorded signal, our approach incorporates additional information unavailable to detection-based methods, enabling higher sensitivity and more accurate localization using techniques such as waveform matching. SIG-VISA's Bayesian forward model of seismic signal envelopes includes physically-derived models of travel times and source characteristics as well as Gaussian process (kriging) statistical models of signal properties that combine interpolation of historical data with extrapolation of learned physical trends. Applying Bayesian inference, we evaluate the model on earthquakes as well as the 2009 DPRK test event, demonstrating a waveform matching effect as part of the probabilistic inference, along with results on event localization and sensitivity. In particular, we demonstrate increased sensitivity from signal-based modeling, in which the SIGVISA signal model finds statistical evidence for arrivals even at stations for which the IMS station processing failed to register any detection.

  14. Seismic soil-structure interaction with consideration of spatial incoherence of seismic ground motions: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Wen S., E-mail: wen.tseng@rizzoassoc.com [Paul C. Rizzo Associates, Inc., Western Region, 2201 Broadway, Suite 400, Oakland, CA 94612 (United States); Lilhanand, Kiat; Hamasaki, Don; Garcia, Julio A. [Paul C. Rizzo Associates, Inc., Western Region, 2201 Broadway, Suite 400, Oakland, CA 94612 (United States); Srinivasan, Ram [AREVA, NP, Inc., 6399 San Ignacio Avenue, San Jose, CA 95119 (United States)

    2014-04-01

    This paper presents a case study of seismic soil-structure interaction (SSI) analysis with consideration of spatial incoherence of seismic input ground motions. The SSI analyses were performed using the SASSI computer program for the Auxiliary Control Building (ACB) structure of an existing nuclear power plant on a hard rock site located in the Center and Eastern United States (CEUS) region. The incoherent seismic input motions for the hard rock site used for the analyses were generated using the computer program INCOH that works together with SASSI. The objective of the analyses was to generate maximum seismic response parameters for assessment of potential impact of newly developed site-specific (ground motion) response spectra (SSRS) on the seismic design of the ACB and potential benefits that could be gained by considering spatial incoherence of seismic input motions. Maximum seismic response values for selected response parameters of interest were generated with both SSRS-compatible coherent and incoherent seismic input motions. Comparisons were made of the corresponding maximum response parameter values and in-structure (acceleration) response spectra (ISRS) generated for both the coherent and incoherent motion inputs. These comparisons indicate that, by incorporating incoherence of ground motions in the seismic input, the maximum response values reduces and the ISRS peak amplitudes in the high frequency range (>10 Hz) also reduce from the corresponding response values resulting from the coherent motion input. The amount of ISRS-amplitude reduction increases as the spectral frequency increases, as expected. Such reductions can be as much as 20–50%. This case study demonstrates that, for a CEUS hard rock site where relatively high high-frequency in the seismic input response spectra exist, consideration of spatial incoherence of input motions would result in substantial benefits in reducing the high-frequency seismic responses. Such benefits are especially

  15. Development of methodology and computer programs for the ground response spectrum and the probabilistic seismic hazard analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Joon Kyoung [Semyung Univ., Research Institute of Industrial Science and Technol , Jecheon (Korea, Republic of)

    1996-12-15

    Objective of this study is to investigate and develop the methodologies and corresponding computer codes, compatible to the domestic seismological and geological environments, for estimating ground response spectrum and probabilistic seismic hazard. Using the PSHA computer program, the Cumulative Probability Functions(CPDF) and Probability Functions (PDF) of the annual exceedence have been investigated for the analysis of the uncertainty space of the annual probability at ten interested seismic hazard levels (0.1 g to 0.99 g). The cumulative provability functions and provability functions of the annual exceedence have been also compared to those results from the different input parameter spaces.

  16. The Banat seismic network: Evolution and performance

    International Nuclear Information System (INIS)

    Oros, E.

    2002-01-01

    In the Banat Seismic Region, with its important seismogenic zones (Banat and Danube), operates today the Banat Seismic Network. This network has four short period seismic stations telemetered at the Timisoara Seismological Observatory (since 1995): Siria, Banloc, Buzias and Timisoara. The stations are equipped with short-period S13 seismometers (1 second). The data recorded by the short-period stations are telemetered to Timisoara where they are digitized at 50 samples per second, with 16 bit resolution. At Timisoara works SAPS, an automated system for data acquisition and processing, which performs real-time event detection (based on Allen algorithm), discrimination between local and teleseismic events, automatic P and S waves picking, location and magnitude determination for local events and teleseisms, 'feeding' of an Automatic Data Request Manager with phases, locations and waveforms, sending of earthquake information (as phases and location), by e-mail to Bucharest. The beginning of the seismological observations in Banat is in the 1880's (Timisoara Meteorological Observatory). The first seismograph was installed in Timisoara in 1901, and its systematic observations began in 1902. The World War I interrupted its work. In 1942 Prof. I. Curea founded the Seismic Station Timisoara, and since 1967 until today this station worked into a special building. After 1972 two stations with high amplification were installed in Retezat Mts (Gura Zlata) and on Nera Valey (Susara), as a consequence of the research results. Since 1982 Buzias station began to work completing the Banat Seismic Network. Therefore, the network could detect and locate any local seismic event with M > 2.2. Moreover, up to 20 km distance from each station any seismic event could be detected over M = 0.5. The paper also presents the quality of the locations versus different local seismic sources. (author)

  17. Seismic component fragility data base for IPEEE

    International Nuclear Information System (INIS)

    Bandyopadhyay, K.; Hofmayer, C.

    1990-01-01

    Seismic probabilistic risk assessment or a seismic margin study will require a reliable data base of seismic fragility of various equipment classes. Brookhaven National Laboratory (BNL) has selected a group of equipment and generically evaluated the seismic fragility of each equipment class by use of existing test data. This paper briefly discusses the evaluation methodology and the fragility results. The fragility analysis results when used in the Individual Plant Examination for External Events (IPEEE) Program for nuclear power plants are expected to provide insights into seismic vulnerabilities of equipment for earthquakes beyond the design basis. 3 refs., 1 fig., 1 tab

  18. Peer review for USI A-46 and the seismic IPE

    International Nuclear Information System (INIS)

    Smith, P.; Johnson, H.

    1993-01-01

    Two major seismic re-evaluation programs are underway at many US nuclear power plants. Over 60 units are being examined as part of the Nuclear Regulatory Commission's (NRC's) Unresolved Safety Issue A46 (Seismic Qualification of Equipment in Operating Plants). In addition, almost all plants are being examined as part of the seismic portion of NRC's Individual Plant Examination of External Events for Severe Accident Vulnerabilities. Both programs require an independent peer review of the evaluation performed by the utility. This paper presents observations on peer reviews, based on the authors's experience with them. Suggestions are presented on the scope of peer review, as well as some of the unique peer review issues inherent to these seismic programs

  19. Multicomponent seismic applications in coalbed methane development

    Energy Technology Data Exchange (ETDEWEB)

    Lawton, D.; Trend, S. [Calgary Univ., AB (Canada). Dept. of Geology and Geophysics

    2004-07-01

    Seismic applications for coalbed methane (CBM) development are used to address the following challenges: lateral continuity of coal zones; vertical continuity of coal seams; permeability of cleats and fractures; coal quality and gas content; wet versus dry coal zones; and, monitoring storage of greenhouse gases. This paper presented a brief description of existing seismic programs, including 2-D and 3-D surface seismic surveys; multicomponent seismic surveys; vertical seismic profiles; cross-well seismic surveys; and, time-lapse seismic surveys. A comparative evaluation of their use in the Horseshoe Canyon Formation and the Ardley Formation was presented. The study showed that variations in reservoir properties resulting from gas production and dewatering can be effectively imaged using seismic surveys. Seismic surveys are useful in reservoir management, monitoring sweep efficiency during enhanced natural gas from coal (NGC) production, monitoring disposal of produced water and verifying storage of carbon dioxide for carbon credits. tabs., figs.

  20. Seismic attribute detection of faults and fluid pathways within an active strike-slip shear zone: New insights from high-resolution 3D P-Cable™ seismic data along the Hosgri Fault, offshore California

    Science.gov (United States)

    Kluesner, Jared W.; Brothers, Daniel

    2016-01-01

    Poststack data conditioning and neural-network seismic attribute workflows are used to detect and visualize faulting and fluid migration pathways within a 13.7 km2 13.7 km2 3D P-Cable™ seismic volume located along the Hosgri Fault Zone offshore central California. The high-resolution 3D volume used in this study was collected in 2012 as part of Pacific Gas and Electric’s Central California Seismic Imaging Project. Three-dimensional seismic reflection data were acquired using a triple-plate boomer source (1.75 kJ) and a short-offset, 14-streamer, P-Cable system. The high-resolution seismic data were processed into a prestack time-migrated 3D volume and publically released in 2014. Postprocessing, we employed dip-steering (dip and azimuth) and structural filtering to enhance laterally continuous events and remove random noise and acquisition artifacts. In addition, the structural filtering was used to enhance laterally continuous edges, such as faults. Following data conditioning, neural-network based meta-attribute workflows were used to detect and visualize faults and probable fluid-migration pathways within the 3D seismic volume. The workflow used in this study clearly illustrates the utility of advanced attribute analysis applied to high-resolution 3D P-Cable data. For example, results from the fault attribute workflow reveal a network of splayed and convergent fault strands within an approximately 1.3 km wide shear zone that is characterized by distinctive sections of transpressional and transtensional dominance. Neural-network chimney attribute calculations indicate that fluids are concentrated along discrete faults in the transtensional zones, but appear to be more broadly distributed amongst fault bounded anticlines and structurally controlled traps in the transpressional zones. These results provide high-resolution, 3D constraints on the relationships between strike-slip fault mechanics, substrate deformation, and fluid migration along an active

  1. Detection of Induced Seismicity Due to Oil and Gas Extraction in the Northern Gulf of Mexico, USA

    Science.gov (United States)

    Fadugba, O. I.; Ebel, J.

    2014-12-01

    Drilling operations and extraction of oil and gas (O&G) may lead to subsurface slumping or compression of sediments due to reduced vertical principal stress which may lead to small earthquakes at the drilling site. O&G extraction is common in the northern Gulf of Mexico (NGM) and only thirty-five earthquakes of magnitudes between 2.3 and 6.0 have been recorded in the area from 1974 to the present. The purpose of this research is to detect more earthquakes using stacks of seismic data from the EarthScope Transportable USArray (TA) from 2011 to 2013, and determine the spatiotemporal relationship between the detected earthquakes and O&G extraction. TA waveform records were retrieved from IRIS database and a narrow bandpass filter of 1 - 2 Hz was applied to remove background and high frequency noises and focus on the low energy part of the signal. The seismic record at all stations was plotted vertically with respect to distance from the Gulf. An Automatic Gain Control (AGC) using Root Mean Square was applied to boost the signals at farther stations. More than 1500 events have been detected, including teleseisms and local blasts from the area, especially from the three Walter Minerals coal mines in Alabama. No offshore earthquakes have been detected in the data, although data processing is still ongoing. Therefore, any earthquake activity, if present, associated with the offshore oil and gas production must be at a magnitude below the detection threshold of the algorithm.

  2. Proceedings of the 24th Seismic Research Review: Nuclear Explosion Monitoring: Innovation and Integration

    International Nuclear Information System (INIS)

    Warren, N. Jill

    2002-01-01

    These proceedings contain papers prepared for the 24th Seismic Research Review: Nuclear Explosion Monitoring: Innovation and Integration, held 17-19 September, 2002 in Ponte Vedra Beach, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  3. Proceedings of the 24th Seismic Research Review: Nuclear Explosion Monitoring: Innovation and Integration

    Energy Technology Data Exchange (ETDEWEB)

    Warren, N. Jill [Editor

    2002-09-17

    These proceedings contain papers prepared for the 24th Seismic Research Review: Nuclear Explosion Monitoring: Innovation and Integration, held 17-19 September, 2002 in Ponte Vedra Beach, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  4. Seismic response and damage detection analyses of an instrumented steel moment-framed building

    Science.gov (United States)

    Rodgers, J.E.; Celebi, M.

    2006-01-01

    The seismic performance of steel moment-framed buildings has been of particular interest since brittle fractures were discovered at the beam-column connections in a number of buildings following the M 6.7 Northridge earthquake of January 17, 1994. A case study of the seismic behavior of an extensively instrumented 13-story steel moment frame building located in the greater Los Angeles area of California is described herein. Response studies using frequency domain, joint time-frequency, system identification, and simple damage detection analyses are performed using an extensive strong motion dataset dating from 1971 to the present, supported by engineering drawings and results of postearthquake inspections. These studies show that the building's response is more complex than would be expected from its highly symmetrical geometry. The response is characterized by low damping in the fundamental mode, larger accelerations in the middle and lower stories than at the roof and base, extended periods of vibration after the cessation of strong input shaking, beating in the response, elliptical particle motion, and significant torsion during strong shaking at the top of the concrete piers which extend from the basement to the second floor. The analyses conducted indicate that the response of the structure was elastic in all recorded earthquakes to date, including Northridge. Also, several simple damage detection methods employed did not indicate any structural damage or connection fractures. The combination of a large, real structure and low instrumentation density precluded the application of many recently proposed advanced damage detection methods in this case study. Overall, however, the findings of this study are consistent with the limited code-compliant postearthquake intrusive inspections conducted after the Northridge earthquake, which found no connection fractures or other structural damage. ?? ASCE.

  5. Geophysical investigation program Northern Switzerland: Refraction-seismic measurements 84

    International Nuclear Information System (INIS)

    Fromm, G.; Driessen, L.; Lehnen, I.

    1985-01-01

    Acting on instructions from the SGPK/Nagra working group (Baden, Switzerland), PRAKLA-SEISMOS GmbH, Hanover, planned, processed and interpreted seismic refraction measurements in northern Switzerland; CGG, Massy (France) was responsible for carrying out the field work. The aim of the survey was to investigate the shape and depth of a regional, WSW-ENE striking Permocarboniferous trough which underlays the mesozoic sediments of the Tabular Jura. The crystalline basement surface and possibly other geological boundaries were to be identified on the basis of refractor velocities. The recording arrangement included a 36 km spread in the assumed trough axis and four 12 km long spreads perpendicular to the axis (broad side 'T') which covered the trough edges. The resulting good quality data indicated two refractors: horizon H5 which is attributable to the lower Permocarboniferous could only be detected in the western half of the spread with any certainty. Horizon H6 probably represents the crystalline basement surface. If anisotropy is taken into account, the refractor velocity closely corresponds to the Gneiss of the WEIACH- and the Granite 3 of the BOETTSTEIN-borehole. This horizon was clearly discernible on all recordings and allowed the approximate mapping of the trough's shape. The assumed strike direction and depth was largely confirmed. In the WSW section the trough is more than 3300 m deep, it rises to - 3000 m in the ESE section and shows only in the east of the survey area a tendency towards a narrower width and shallower depth (depth data relate to the seismic reference datum at 500 m above MSL). (author)

  6. Processing of seismic signals from a seismometer network

    International Nuclear Information System (INIS)

    Key, F.A.; Warburton, P.J.

    1983-08-01

    A description is given of the Seismometer Network Analysis Computer (SNAC) which processes short period data from a network of seismometers (UKNET). The nine stations of the network are distributed throughout the UK and their outputs are transmitted to a control laboratory (Blacknest) where SNAC monitors the data for seismic signals. The computer gives an estimate of the source location of the detected signals and stores the waveforms. The detection logic is designed to maintain high sensitivity without excessive ''false alarms''. It is demonstrated that the system is able to detect seismic signals at an amplitude level consistent with a network of single stations and, within the limitations of signal onset time measurements made by machine, can locate the source of the seismic disturbance. (author)

  7. Annual Hanford seismic report - fiscal year 1996

    International Nuclear Information System (INIS)

    Hartshorn, D.C.; Reidel, S.P.

    1996-12-01

    Seismic monitoring (SM) at the Hanford Site was established in 1969 by the US Geological Survey (USGS) under a contract with the US Atomic Energy Commission. Since 1980, the program has been managed by several contractors under the US Department of Energy (USDOE). Effective October 1, 1996, the Seismic Monitoring workscope, personnel, and associated contracts were transferred to the USDOE Pacific Northwest National Laboratory (PNNL). SM is tasked to provide an uninterrupted collection and archives of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) located on and encircling the Hanford Site. SM is also tasked to locate and identify sources of seismic activity and monitor changes in the historical pattern of seismic activity at the Hanford Site. The data compiled are used by SM, Waste Management, and engineering activities at the Hanford Site to evaluate seismic hazards and seismic design for the Site

  8. Seismic Safety Margins Research Program. Phase I final report - Subsystem response (Project V)

    International Nuclear Information System (INIS)

    Shieh, L.C.; Chuang, T.Y.; O'Connell, W.J.

    1981-10-01

    This document reports on (1) the computation of the responses of subsystems, given the input subsystem support motion for components and systems whose failure can lead to an accident sequence (radioactive release), and (2) the results of a sensitivity study undertaken to determine the contributions of the several links in the seismic methodology chain (SMC) - seismic input (SI), soil-structure interaction (SSI), structure response (STR), and subsystem response (SUB) - to the uncertainty in subsystem response. For the singly supported subsystems (e.g., pumps, turbines, electrical control panels, etc.), we used the spectral acceleration response of the structure at the point where the subsystem components were mounted. For the multiple supported subsystems, we developed 13 piping models of five safety-related systems, and then used the pseudostatic-mode method with multisupport input motion to compute the response parameters in terms of the parameters used in the fragility descriptions (i.e., peak resultant accelerations for valves and peak resultant moments for piping). Damping and frequency were varied to represent the sources of modeling and random uncertainty. Two codes were developed: a modified version of SAPIV which assembles the piping supports into groups depending on the support's location relative to the attached structure, and SAPPAC a stand-alone modular program from which the time-history analysis module is extracted. On the basis of our sensitivity study, we determined that the variability in the combined soil-structure interaction, structural response, and subsystem response areas contribute more to uncertainty in subsystem response than does the variability in the seismic input area, assuming an earthquake within the limited peak ground acceleration range, i.e., 0.15 to 0.30g. The seismic input variations were in terms of different earthquake time histories. (author)

  9. Induced Seismicity Monitoring System

    Science.gov (United States)

    Taylor, S. R.; Jarpe, S.; Harben, P.

    2014-12-01

    There are many seismological aspects associated with monitoring of permanent storage of carbon dioxide (CO2) in geologic formations. Many of these include monitoring underground gas migration through detailed tomographic studies of rock properties, integrity of the cap rock and micro seismicity with time. These types of studies require expensive deployments of surface and borehole sensors in the vicinity of the CO2 injection wells. Another problem that may exist in CO2 sequestration fields is the potential for damaging induced seismicity associated with fluid injection into the geologic reservoir. Seismic hazard monitoring in CO2 sequestration fields requires a seismic network over a spatially larger region possibly having stations in remote settings. Expensive observatory-grade seismic systems are not necessary for seismic hazard deployments or small-scale tomographic studies. Hazard monitoring requires accurate location of induced seismicity to magnitude levels only slightly less than that which can be felt at the surface (e.g. magnitude 1), and the frequencies of interest for tomographic analysis are ~1 Hz and greater. We have developed a seismo/acoustic smart sensor system that can achieve the goals necessary for induced seismicity monitoring in CO2 sequestration fields. The unit is inexpensive, lightweight, easy to deploy, can operate remotely under harsh conditions and features 9 channels of recording (currently 3C 4.5 Hz geophone, MEMS accelerometer and microphone). An on-board processor allows for satellite transmission of parameter data to a processing center. Continuous or event-detected data is kept on two removable flash SD cards of up to 64+ Gbytes each. If available, data can be transmitted via cell phone modem or picked up via site visits. Low-power consumption allows for autonomous operation using only a 10 watt solar panel and a gel-cell battery. The system has been successfully tested for long-term (> 6 months) remote operations over a wide range

  10. Development of seismic risk analysis methodologies at JAERI

    International Nuclear Information System (INIS)

    Tanaka, T.; Abe, K.; Ebisawa, K.; Oikawa, T.

    1988-01-01

    The usefulness of probabilistic safety assessment (PSA) is recognized worldwidely for balanced design and regulation of nuclear power plants. In Japan, the Japan Atomic Energy Research Institute (JAERI) has been engaged in developing methodologies necessary for carrying out PSA. The research and development program was started in 1980. In those days the effort was only for internal initiator PSA. In 1985 the program was expanded so as to include external event analysis. Although this expanded program is to cover various external initiators, the current effort is dedicated for seismic risk analysis. There are three levels of seismic PSA, similarly to internal initiator PSA: Level 1: Evaluation of core damage frequency, Level 2: Evaluation of radioactive release frequency and source terms, and Level 3: Evaluation of environmental consequence. In the JAERI's program, only the methodologies for level 1 seismic PSA are under development. The methodology development for seismic risk analysis is divided into two phases. The Phase I study is to establish a whole set of simple methodologies based on currently available data. In the Phase II, Sensitivity study will be carried out to identify the parameters whose uncertainty may result in lage uncertainty in seismic risk, and For such parameters, the methodology will be upgraded. Now the Phase I study has almost been completed. In this report, outlines of the study and some of its outcomes are described

  11. Structural concepts and details for seismic design

    International Nuclear Information System (INIS)

    Johnson, M.W.; Smietana, E.A.; Murray, R.C.

    1991-01-01

    As a part of the DOE Natural Phenomena Hazards Program, a new manual has been developed, entitled UCRL-CR-106554, open-quotes Structural Concepts and Details for Seismic Design.close quotes This manual describes and illustrates good practice for seismic-resistant design

  12. Proceedings of the 26th Seismic Research Review: Trends in Nuclear Explosion Monitoring

    International Nuclear Information System (INIS)

    Chavez, Francesca C.; Benson, Jody; Hanson, Stephanie; Mark, Carol; Wetovsky, Marvin A.

    2004-01-01

    These proceedings contain papers prepared for the 26th Seismic Research Review: Trends in Nuclear Explosion Monitoring, held 21-23 September, 2004 in Orlando, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  13. Proceedings of the 23rd Seismic Research Symposium: Worldwide Monitoring of Nuclear Explosions

    International Nuclear Information System (INIS)

    Warren, N. Jill; Chavez, Francesca C.

    2001-01-01

    These proceedings contain papers prepared for the 23rd Seismic Research Review: Worldwide Monitoring of Nuclear Explosions, held 2-5 October, 2001 in Jackson Hole, Wyoming. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Technical Applications Center (AFTAC), the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  14. Proceedings of the 26th Seismic Research Review: Trends in Nuclear Explosion Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, Francesca C [Editor; Benson, Jody [Editor; Hanson, Stephanie [Editor; Mark, Carol [Editor; Wetovsky, Marvin A [Editor

    2004-09-21

    These proceedings contain papers prepared for the 26th Seismic Research Review: Trends in Nuclear Explosion Monitoring, held 21-23 September, 2004 in Orlando, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  15. UK contribution to CEGB-EPRI-CRIEPI program on seismic isolation

    International Nuclear Information System (INIS)

    Austin, N.M.; Hattori, S.; Rodwell, E.; Womack, G.J.

    1989-01-01

    Over the last decade the concept of seismic isolation applied to nuclear power plants has generated a great deal of interest worldwide and a number of comprehensive reviews on the topic have been published. Understandably, most of the design and research and development (R and D) effort on seismic isolation has come from countries where larger magnitude earthquakes are an ever-present problem; e.g., Japan, USA, etc. In some areas of these countries seismic isolation may in fact present the only feasible design solution for potential sites of Liquid-Metal-Cooled Reactors (LMR's). This paper summarizes the test results obtained from a small scale seismic isolation system consisting of a laminated steel/natural rubber bearing and a viscodamper. Dynamic characteristics of the system; e.g., stiffness and damping, were measured for a variety of loading conditions. The results are suitable for developing a mathematical model of the isolation system and providing data for use in the design of larger scale bearings and viscodampers

  16. Pre-seismic anomalies from optical satellite observations: a review

    Science.gov (United States)

    Jiao, Zhong-Hu; Zhao, Jing; Shan, Xinjian

    2018-04-01

    Detecting various anomalies using optical satellite data prior to strong earthquakes is key to understanding and forecasting earthquake activities because of its recognition of thermal-radiation-related phenomena in seismic preparation phases. Data from satellite observations serve as a powerful tool in monitoring earthquake preparation areas at a global scale and in a nearly real-time manner. Over the past several decades, many new different data sources have been utilized in this field, and progressive anomaly detection approaches have been developed. This paper reviews the progress and development of pre-seismic anomaly detection technology in this decade. First, precursor parameters, including parameters from the top of the atmosphere, in the atmosphere, and on the Earth's surface, are stated and discussed. Second, different anomaly detection methods, which are used to extract anomalous signals that probably indicate future seismic events, are presented. Finally, certain critical problems with the current research are highlighted, and new developing trends and perspectives for future work are discussed. The development of Earth observation satellites and anomaly detection algorithms can enrich available information sources, provide advanced tools for multilevel earthquake monitoring, and improve short- and medium-term forecasting, which play a large and growing role in pre-seismic anomaly detection research.

  17. Numerical modeling and the physical basis of seismic discriminants

    International Nuclear Information System (INIS)

    Denny, M.D.

    1993-01-01

    Accurate seismic event discrimination is critical to detection of nuclear explosions. Numerical modeling applied to seismic event discrimination can lead to increased reliability of proliferation detection. It is particularly applicable to error budgeting and to understanding explosion and earthquake phenomenologies. There also is a need for minimum requirements to validate the models used in numerical modeling

  18. An assessment of seismic margins in nuclear plant piping

    International Nuclear Information System (INIS)

    Chen, W.P.; Jaquay, K.R.; Chokshi, N.C.; Terao, D.

    1995-01-01

    Interim results of an ongoing program to assist the U.S. Nuclear Regulatory Commission (NRC) in developing regulatory positions on the seismic analyses of piping and overall safety margins of piping systems are reported. Results of reviews of previous seismic testing, primarily the Electric Power Research Institute (EPRI)/NRC Piping and Fitting Dynamic Reliability Program, and assessments of the ASME Code, Section III, piping seismic design criteria as revised by the 1994 Addenda are reported. Major issues are identified herein only. Technical details are to be provided elsewhere. (author). 4 refs., 2 figs

  19. Annual report on the KSRS seismic array operation

    Energy Technology Data Exchange (ETDEWEB)

    Jun, Myung-Soon; Jeon, Jeong-Soo; Kang, Ik-Bum [Korea Institute of Geology Mining and Materials, Taejon (KR)] (and others)

    1999-12-01

    Wonju KSRS (PS31) is one of the primary seismic stations under the IMS of CTBT. Korean NDC has been transmitting real time seismic data to IDC successfully during 1999. We have installed four elements seismo-acoustic array KISS(Korea Infrasound and Seismic Station) to detect and identify the seismic events in and around the Korean peninsula as a joint cooperation between KIGAM and SMU(Southern Methodist University). Continuous data from KSRS, KISS and other stations were automatically detected and analyzed using KEMS(Korea Earthquake Monitoring System) at KIGAM. KEMS has automatically detected and analyzed 1943 events between 1998.12.10 and 1999.12.22 and 876 events were reviewed by analyst and listed. Some electric poles used for data transmission inside the KSRS were eliminated and replaced to radio transmission. To increase the accuracy of earthquake observation velocity structure under the Korean peninsula was studied. To develop the Magnitude scale in Korea, the same approach which Richter applied in USA, 1935, was studied using Korean data. (author). 23 refs., 13 tabs., 89 figs.

  20. Seismic qualification program plan for continued operation at DOE-SRS nuclear material processing facilities

    International Nuclear Information System (INIS)

    Talukdar, B.K.; Kennedy, W.N.

    1991-01-01

    The Savannah River Facilities for the most part were constructed and maintained to standards that were developed by Du Pont and are not rigorously in compliance with the current General Design Criteria (GDC); DOE Order 6430.IA requirements. In addition, many of the facilities were built more than 30 years ago, well before DOE standards for design were issued. The Westinghouse Savannah River Company (WSRC) his developed a program to address the evaluation of the Nuclear Material Processing (NMP) facilities to GDC requirements. The program includes a facility base-line review, assessment of areas that are not in compliance with the GDC requirements, planned corrective actions or exemptions to address the requirements, and a safety assessment. The authors from their direct involvement with the Program, describe the program plan for seismic qualification including other natural phenomena hazards,for existing NMP facility structures to continue operation Professionals involved in similar effort at other DOE facilities may find the program useful

  1. Subsystem response review. Seismic safety margins research program

    International Nuclear Information System (INIS)

    Kennedy, R.P.; Campbell, R.D.; Wesley, D.A.; Kamil, H.; Gantayat, A.; Vasudevan, R.

    1981-07-01

    A study was conducted to document the state of the art in seismic qualification of nuclear power plant components and subsystems by analysis and testing and to identify the sources and magnitude of the uncertainties associated with analysis and testing methods. The uncertainties are defined in probabilistic terms for use in probabilistic seismic risk studies. Recommendations are made for the most appropriate subsystem response analysis methods to minimize response uncertainties. Additional studies, to further quantify testing uncertainties, are identified. Although the general effect of non-linearities on subsystem response is discussed, recommendations and conclusions are based principally on linear elastic analysis and testing models. (author)

  2. Overview of Japanese seismic research program for HTR

    International Nuclear Information System (INIS)

    Ikushima, T.

    1978-01-01

    In order to obtain the license for construction and operation of HTR developed in and/or introduced into Japan, it is necessary to insure the integrity of reactor structures and the capability of reactor shutdown and the maintenance of safety shutdown for the seismic design condition. Because Japan is located in relatively high seismicity zone, even when an excessive earthquake would occur, the public and plant personnel should be protected from radiation hazard. The report describes the following: (1) present status of development and construction plan of HTR, (2) guideline of aseismic design, (3) need of aseismic research, (4) present status of research and development, and (5) future plans

  3. Lateral variations of the Guerrero-Oaxaca subduction zone (Mexico) derived from weak seismicity (Mb3.5+) detected on a single array at teleseismic distance

    Science.gov (United States)

    Letort, Jean; Retailleau, Lise; Boué, Pierre; Radiguet, Mathilde; Gardonio, Blandine; Cotton, Fabrice; Campillo, Michel

    2018-05-01

    Detections of pP and sP phase arrivals (the so-called depth phases) at teleseismic distance provide one of the best ways to estimate earthquake focal depth, as the P-pP and the P-sP delays are strongly dependent on the depth. Based on a new processing workflow and using a single seismic array at teleseismic distance, we can estimate the depth of clusters of small events down to magnitude Mb 3.5. Our method provides a direct view of the relative variations of the seismicity depth from an active area. This study focuses on the application of this new methodology to study the lateral variations of the Guerrero subduction zone (Mexico) using the Eielson seismic array in Alaska (USA). After denoising the signals, 1232 Mb 3.5 + events were detected, with clear P, pP, sP and PcP arrivals. A high-resolution view of the lateral variations of the depth of the seismicity of the Guerero-Oaxaca area is thus obtained. The seismicity is shown to be mainly clustered along the interface, coherently following the geometry of the plate as constrained by the receiver-function analysis along the Meso America Subduction Experiment profile. From this study, the hypothesis of tears on the western part of Guerrero and the eastern part of Oaxaca are strongly confirmed by dramatic lateral changes in the depth of the earthquake clusters. The presence of these two tears might explain the observed lateral variations in seismicity, which is correlated with the boundaries of the slow slip events.

  4. The Effects of Realistic Geological Heterogeneity on Seismic Modeling: Applications in Shear Wave Generation and Near-Surface Tunnel Detection

    Science.gov (United States)

    Sherman, Christopher Scott

    compressional wave energy may be generated within the shear radiation node of the source. Interestingly, in some cases this shear wave may arise as a coherent pulse, which may be used to improve seismic imaging efforts. In the third and fourth chapters, I discuss the results of a numerical analysis and field study of seismic near-surface tunnel detection methods. Detecting unknown tunnels and voids, such as old mine workings or solution cavities in karst terrain, is a challenging prob- lem in geophysics and has implications for geotechnical design, public safety, and domestic security. Over the years, a number of different geophysical methods have been developed to locate these objects (microgravity, resistivity, seismic diffraction, etc.), each with varying results. One of the major challenges facing these methods is understanding the influence of geologic heterogeneity on their results, which makes this problem a natural extension of the modeling work discussed in previous chapters. In the third chapter, I present the results of a numerical study of surface-wave based tunnel detection methods. The results of this analysis show that these methods are capable of detecting a void buried within one wavelength of the surface, with size potentially much less than one wavelength. In addition, seismic surface- wave based detection methods are effective in media with moderate heterogeneity (epsilon < 5 %), and in fact, this heterogeneity may serve to increase the resolution of these methods. In the fourth chapter, I discuss the results of a field study of tunnel detection methods at a site within the Black Diamond Mines Regional Preserve, near Antioch California. I use a com- bination of surface wave backscattering, 1D surface wave attenuation, and 2D attenuation tomography to locate and determine the condition of two tunnels at this site. These results compliment the numerical study in chapter 3 and highlight their usefulness for detecting tunnels at other sites.

  5. Deep seismic sounding in northern Eurasia

    Science.gov (United States)

    Benz, H.M.; Unger, J.D.; Leith, W.S.; Mooney, W.D.; Solodilov, L.; Egorkin, A.V.; Ryaboy, V.Z.

    1992-01-01

    For nearly 40 years, the former Soviet Union has carried out an extensive program of seismic studies of the Earth's crust and upper mantle, known as “Deep Seismic Sounding” or DSS [Piwinskii, 1979; Zverev and Kosminskaya, 1980; Egorkin and Pavlenkova, 1981; Egorkin and Chernyshov, 1983; Scheimer and Borg, 1985]. Beginning in 1939–1940 with a series of small-scale seismic experiments near Moscow, DSS profiling has broadened into a national multiinstitutional exploration effort that has completed almost 150,000 km of profiles covering all major geological provinces of northern Eurasia [Ryaboy, 1989].

  6. Global propagation of cyclone-induced seismic wave from the Atlantic detected by the high-sensitivity accelerometers of Hi-net, Japan

    Science.gov (United States)

    Matsuzawa, T.; Obara, K.; Maeda, T.

    2008-12-01

    A nationwide seismic network in Japan detected long period microtremors from the northern Atlantic region. It is reported that a cyclone generate ocean swells which excite microtremors. If the microtremors have sufficient intensity, the seismic waves propagate far from the source. Such propagation was sometimes observed at the high-sensitivity accelerometers of Hi-net, NIED. In this study, a migration of the source location with a cyclone is estimated by an array analysis technique, combining broadband seismic data of another array. In the middle of March 2007, anomalous seismic waves were continuously arrived from the north direction in Japan. Such waves were automatically detected by the array analysis of Hi-net data. The automated analysis also shows that the seismic wave is originated far from Japan because the propagation is well approximated to plane waves rather than cylindrical waves. The waves are especially predominant at the period of around 20 s. In addition, from a semblance analysis, apparent velocity is estimated to 3.4--3.6 km/s and 3.8--4.0 km/s in radial and transverse components, respectively. This suggests that the observed waves are composed both of Rayleigh and Love waves. To discuss the more accurate direction and the temporal change, we apply a multiple signal classification (MUSIC) method to the data of high-sensitivity accelerometers. The arrival direction rotated to several degrees clockwise from the azimuth of -15 degrees. In addition, we analyze broadband seismic data of the Graefenberg-array (GRF array) in Germany, and also obtain an evident rotation of the arrival direction from - 40 to -5 degrees. The result of array analysis suggests that the source of seismic wave moves to the north direction at the North Sea and the Norwegian Sea. The location of the source is estimated as the intersections of the expected ray paths from two arrays. To calculate a ray path, we assumed the Rayleigh wave velocity at the period of 35 s. The shooting

  7. SONATINA-2V: a computer program for seismic analysis of the two-dimensional vertical slice HTGR core

    International Nuclear Information System (INIS)

    Ikushima, Takeshi

    1982-07-01

    A computer program SONATINA-2V has been developed for predicting the behavior of a two-dimensional vertical slice HTGR core under seismic excitation. SONATINA-2V is a general two-dimensional computer program capable of analyzing the vertical slice HTGR core with the permanent side reflector blocks and its restraint structures. In the analytical model, each block is treated as rigid body and is restrained by dowel pins which restrict relative horizontal movement but allow vertical and rocking motions between upper and lower blocks. Coulomb friction is taken into account between blocks and between dowel pin and hole. A spring dashpot model is used for the collision process between adjacent blocks. The core support structure is represented by a single block. The computer program SONATINA-2V is capable of analyzing the core behavior for an excitation input applied simultaneously to both vertical and horizontal directions. Analytical results obtained from SONATINA-2V are compared with experimental results and are found to be in good agreement. The computer program can thus be used to predict with a good accuracy the behavior of the HTGR core under seismic excitation. In the present report are given, the theoretical formulation of the analytical model, a user's manual to describe the input and output format, and sample problems. (author)

  8. Proceedings of the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marvin A. [Editor; Benson, Jody [Editor; Patterson, Eileen F. [Editor

    2005-09-20

    These proceedings contain papers prepared for the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 20-22 September, 2005 in Rancho Mirage, California. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  9. Proceedings of the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    International Nuclear Information System (INIS)

    Wetovsky, Marvin A.; Benson, Jody; Patterson, Eileen F.

    2005-01-01

    These proceedings contain papers prepared for the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 20-22 September, 2005 in Rancho Mirage, California. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  10. Proceedings of the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marvin A. [Editor; Benson, Jody [Editor; Patterson, Eileen F. [Editor

    2006-09-19

    These proceedings contain papers prepared for the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 19-21 September, 2006 in Orlando, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  11. Proceedings of the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    International Nuclear Information System (INIS)

    Wetovsky, Marvin A.; Benson, Jody; Patterson, Eileen F.

    2006-01-01

    These proceedings contain papers prepared for the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 19-21 September, 2006 in Orlando, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  12. Effects of seismic survey sound on cetaceans in the Northwest Atlantic

    Energy Technology Data Exchange (ETDEWEB)

    Moulton, Valerie D.; Holst, Meike [LGL Limited, Environmental Research Associates (Canada)

    2010-06-15

    Hydrocarbon exploration with marine seismic programs in the Canadian Beaufort Sea is expected to continue in the future. However the effect of those seismic surveys on cetaceans is a controversial subject, the sound emitted by airguns might result in hearing impairment or injury to marine mammals if they are at close range. The aim of this paper is to determine the behavior of cetaceans during seismic surveys. From 2003 to 2008, studies were conducted for 9180 hours over 8 seismic programs to observe the difference in number, sighting distance and behavior of marine mammals between seismic and non-seismic periods. Results showed that mysticetes and baleen whales tend to avoid the active airgun array while large toothed whales showed no difference in sighting rate and distances whether the airgun was active or not. This study showed that the effectiveness of ramping up the airgun to alert cetaceans of seismic operations depends on the species.

  13. Test and evaluation about damping characteristics of hanger supports for nuclear power plant piping systems (Seismic Damping Ratio Evaluation Program)

    International Nuclear Information System (INIS)

    Shibata, H.; Ito, A.; Tanaka, K.; Niino, T.; Gotoh, N.

    1981-01-01

    Generally, damping phenomena of structures and equipments is caused by very complex energy dissipation. Especially, as piping systems are composed of many components, it is very difficult to evaluate damping characteristics of its system theoretically. On the other hand, the damping value for aseismic design of nuclear power plants is very important design factor to decide seismic response loads of structures, equipments and piping systems. The very extensive studies titled SDREP (Seismic Damping Ratio Evaluation Program) were performed to establish proper damping values for seismic design of piping as a joint work among a university, electric companies and plant makers. In SDREP, various systematic vibration tests were conducted to investigate factors which may contribute to damping characteristics of piping systems and to supplement the data of the pre-operating tests. This study is related to the component damping characteristics tests of that program. The object of this study is to clarify damping characteristics and mechanism of hanger supports used in piping systems, and to establish the evaluation technique of dispersing energy at hanger support points and its effect to the total damping ability of piping system. (orig./WL)

  14. Structuring agreements for seismic group shoots

    International Nuclear Information System (INIS)

    Keeping, C.E.

    1999-01-01

    Sigma Explorations Inc. sells licenses to use Sigma owned seismic data. The company participates with exploration and production companies in the joint acquisition of semi-private participation surveys. This paper discusses three major types of seismic group shoots and the essential elements of the agreements that govern or should govern them. They are: (1) exploration and production company joint ventures, (2) publicly offered spec shoots, and (3) semi-private participation surveys. The key issue with the exploration and production company joint ventures is that the companies are owners of the seismic data in proportion to their contribution towards the cost of the program. Their use of the data should be restricted to those situations permitted by the other owners. These are not often well documented, and there is much concern in the industry as a result. The key issue with publicly offered spec shoots is that the seismic company ultimately owns the data and the client exploration and production company is a licensee and must behave as such. In most such cases the rights and responsibilities are well documented in formal agreements that are signed in advance of the program's beginning date

  15. Toe-of-slope of a Cretaceous carbonate platform in outcrop, seismic model and offshore seismic data (Apulia, Italy)

    Science.gov (United States)

    Bracco Gartner, Guido; Morsilli, Michele; Schlager, Wolfgang; Bosellini, Alfonso

    Synthetic seismic models of outcrops in the Early Cretaceous slope of a carbonate platform on the Gargano Promontory (southern Italy) were compared to an offshore seismic section south of the Promontory. Outcrops of the same age on the promontory have the same sequence stratigraphic characteristics as their offshore equivalent, and are the only areas where the transition from platform to basin of Early Cretaceous is exposed on land. Two adjacent outcrop areas were combined into one seismic-scale lithologic model with the aid of photo mosaics, measured sections, and biostratigraphic data. Velocity, density, and porosity measurements on spot samples were used to construct the impedance model. Seismic models were generated by vertical incidence and finite difference programs. The results indicate that the reflections in the seismic model are controlled by the impedance contrast between low porous intervals rich in debris from the platform and highly porous intervals of pelagic lime mudstone, nearly devoid of debris. Finite difference seismic display showed best resemblance with the real seismic data, especially by mapping a drowning unconformity.

  16. A study of the feasibility of monitoring sealed geological repositories using seismic sensors

    International Nuclear Information System (INIS)

    Garbin, H.D.; Herrington, P.B.; Kromer, R.P.

    1999-01-01

    Questions have arisen regarding the applicability of seismic sensors to detect mining (re-entry) with a tunnel boring machine (TBM). Unlike cut and blast techniques of mining which produce impulsive seismic signals, the TBM produces seismic signals which are of long duration. (There are well established techniques available for detecting and locating the sources of the impulsive signals). The Yucca Mountain repository offered an opportunity to perform field evaluations of the capabilities of seismic sensors because during much of 1996, mining there was progressing with the use of a TBM. During the mining of the repository's southern branch, an effort was designed to evaluate whether the TBM could be detected, identified and located using seismic sensors. Three data acquisition stations were established in the Yucca Mountain area to monitor the TBM activity. A ratio of short term average to long term average algorithm was developed for use in detection based on the characteristics shown in the time series. For location of the source of detected signals, FK analysis was used on the array data to estimate back azimuths. The back azimuth from the 3 component system was estimated from the horizontal components. Unique features in the timing of the seismic signal were used to identify the source as the TBM. (author)

  17. A study of the feasibility of monitoring sealed geological repositories using seismic sensors

    International Nuclear Information System (INIS)

    Garbin, H.D.; Herrington, P.B.; Kromer, R.P.

    1997-10-01

    Questions have arisen regarding the applicability of seismic sensors to detect mining (re-entry) with a tunnel boring machine (TBM). Unlike cut and blast techniques of mining which produce impulsive seismic signals, the TBM produces seismic signals which are of long duration. (There are well established techniques available for detecting and locating the sources of the impulsive signals.) The Yucca Mountain repository offered an opportunity to perform field evaluations of the capabilities of seismic sensors because during much of 1996, mining there was progressing with the use of a TBM. During the mining of the repository's southern branch, an effort was designed to evaluate whether the TBM could be detected, identified and located using seismic sensors. Three data acquisition stations were established in the Yucca Mountain area to monitor the TBM activity. A ratio of short term average to long term average algorithm was developed for use in detection based on the characteristics shown in the time series. For location of the source of detected signals, FK analysis was used on the array data to estimate back azimuths. The back azimuth from the 3 component system was estimated from the horizontal components. Unique features in the timing of the seismic signal were used to identify the source as the TBM

  18. New seismic attributes and methodology for automated stratigraphic, structural, and reservoir analysis

    Energy Technology Data Exchange (ETDEWEB)

    Randen, Trygve; Reymond, Benoit; Sjulstad, Hans Ivar; Soenneland, Lars

    1998-12-31

    Seismic stratigraphy represents an attractive framework for interpretation of 3-D data. This presentation is an introduction to a set of primitives that will enable guided interpretation of seismic signals in the framework of seismic stratigraphy. A method capable of automatic detection of terminations is proposed. The new procedure can be run on the entire seismic volume or it may be restricted to a limited time interval and detects terminations in an unguided manner without prior interpretation. The density of terminations can be computed. The procedure may alternatively be guided by pre-existing interpretation, e.g. detecting terminations onto an interpreted horizon. In such a case, the density of terminations will be a new surface attribute. 6 refs., 3 figs.

  19. New seismic attributes and methodology for automated stratigraphic, structural, and reservoir analysis

    Energy Technology Data Exchange (ETDEWEB)

    Randen, Trygve; Reymond, Benoit; Sjulstad, Hans Ivar; Soenneland, Lars

    1999-12-31

    Seismic stratigraphy represents an attractive framework for interpretation of 3-D data. This presentation is an introduction to a set of primitives that will enable guided interpretation of seismic signals in the framework of seismic stratigraphy. A method capable of automatic detection of terminations is proposed. The new procedure can be run on the entire seismic volume or it may be restricted to a limited time interval and detects terminations in an unguided manner without prior interpretation. The density of terminations can be computed. The procedure may alternatively be guided by pre-existing interpretation, e.g. detecting terminations onto an interpreted horizon. In such a case, the density of terminations will be a new surface attribute. 6 refs., 3 figs.

  20. 41 CFR 128-1.8004 - Seismic Safety Coordinators.

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Seismic Safety Coordinators. 128-1.8004 Section 128-1.8004 Public Contracts and Property Management Federal Property Management Regulations System (Continued) DEPARTMENT OF JUSTICE 1-INTRODUCTION 1.80-Seismic Safety Program...

  1. Overview of Japanese seismic research program for HTR

    International Nuclear Information System (INIS)

    Ikushima, Takeshi

    1978-07-01

    In order to obtain the license for construction and operation of HTR developed and introduced into Japan, it is necessary to assure integrity of reactor structures and the capability of reactor shutdown and maintain safety shutdown for the seismic design condition. Because Japanese land is located in relatively high seismacity zone, when an excessive earthquake would occur, the public and plant personnel should be protected from radiation hazard. For the above reason, many efforts of seismic research and development for HTR have been made at institutes and companies in Japan. In the paper, descriptions are: (1) Present status of development and construction plans of HTR, (2) guideline of aseismic design, (3) need of aseismic research, (4) present status of research and development, (5) future plan. (auth.)

  2. Proceedings of the 25th Seismic Research Review -- Nuclear Explosion Monitoring: Building the Knowledge Base

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, Francesca C. [Editor; Mendius, E. Louise [Editor

    2003-09-23

    These proceedings contain papers prepared for the 25th Seismic Research Review -- Nuclear Explosion Monitoring: Building the Knowledge Base, held 23-25 September, 2003 in Tucson, Arizona. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  3. Proceedings of the 25th Seismic Research Review -- Nuclear Explosion Monitoring: Building the Knowledge Base

    International Nuclear Information System (INIS)

    Chavez, Francesca C.; Mendius, E. Louise

    2003-01-01

    These proceedings contain papers prepared for the 25th Seismic Research Review -- Nuclear Explosion Monitoring: Building the Knowledge Base, held 23-25 September, 2003 in Tucson, Arizona. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  4. Calculations on seismic coupling of underground explosions in salt

    International Nuclear Information System (INIS)

    Heusinkveld, M.E.

    1981-01-01

    This report details the results of a theoretical study of seismic coupling and decoupling of underground explosions in a salt medium. A series of chemical and nuclear explosions was carried out years ago in salt domes for the Cowboy and the Dribble programs to provide experimental data on seismic coupling for both tamped explosions and explosions in cavities. The Cowboy program consisted of a series of chemical explosions, and the Dribble program consisted of the tamped nuclear Salmon event, the Sterling nuclear event in the Salmon cavity, and an associated site calibration effort. This report presents the results of extensive computer calculations, which are in satisfactory agreement with the experimental data. The calculations were extended to give general results on seismic coupling in salt. The measure of seismic coupling for most of this work was the residual reduced displacement potential (residual RDP). The decoupling associated with a shot in a cavity was expressed as the ratio of the resulting residual RDP to that of an equal-sized tamped shot

  5. New Seismic Monitoring Station at Mohawk Ridge, Valles Caldera

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Peter Morse [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-20

    Two new broadband digital seismic stations were installed in the Valles Caldera in 2011 and 2012. The first is located on the summit of Cerros del Abrigo (station code CDAB) and the second is located on the flanks of San Antonio Mountain (station code SAMT). Seismic monitoring stations in the caldera serve multiple purposes. These stations augment and expand the current coverage of the Los Alamos Seismic Network (LASN), which is operated to support seismic and volcanic hazards studies for LANL and northern New Mexico (Figure 1). They also provide unique continuous seismic data within the caldera that can be used for scientific studies of the caldera’s substructure and detection of very small seismic signals that may indicate changes in the current and evolving state of remnant magma that is known to exist beneath the caldera. Since the installation of CDAB and SAMT, several very small earthquakes have already been detected near San Antonio Mountain just west of SAMT (Figure 2). These are the first events to be seen in that area. Caldera stations also improve the detection and epicenter determination quality for larger local earthquakes on the Pajarito Fault System east of the Preserve and the Nacimiento Uplift to the west. These larger earthquakes are a concern to LANL Seismic Hazards assessments and seismic monitoring of the Los Alamos region, including the VCNP, is a DOE requirement. Currently the next closest seismic stations to the caldera are on Pipeline Road (PPR) just west of Los Alamos, and Peralta Ridge (PER) south of the caldera. There is no station coverage near the resurgent dome, Redondo Peak, in the center of the caldera. Filling this “hole” is the highest priority for the next new LASN station. We propose to install this station in 2018 on Mohawk Ridge just east of Redondito, in the same area already occupied by other scientific installations, such as the MCON flux tower operated by UNM.

  6. Salt Repository Project input to seismic design: Revision 0

    International Nuclear Information System (INIS)

    1987-12-01

    The Salt Repository Program (SRP) Input to Seismic Design (ISD) documents the assumptions, rationale, approaches, judgments, and analyses that support the development of seismic-specific data and information to be used for shaft design in accordance with the SRP Shaft Design Guide (SDG). The contents of this document are divided into four subject areas: (1) seismic assessment, (2) stratigraphy and material properties for seismic design, (3) development of seismic design parameters, and (4) host media stability. These four subject areas have been developed considering expected conditions at a proposed site in Deaf Smith County, Texas. The ISD should be used only in conjunction with seismic design of the exploratory and repository shafts. Seismic design considerations relating to surface facilities are not addressed in this document. 54 refs., 55 figs., 18 tabs

  7. Seismic re-evaluation process in Medzamor-2 NPP

    International Nuclear Information System (INIS)

    Zadoyan, P.

    2000-01-01

    Seismic re-evaluation process for Medzamor-2 NPP describes the following topics: program implementation status; re-evaluation program structure; regulatory procedure and review plan; current tasks and practice; and regulatory assessment and research programs

  8. Guideline for the seismic technical evaluation of replacement items for nuclear power plants

    International Nuclear Information System (INIS)

    Harris, S.P.; Cushing, R.W.; Johnson, H.W.; Abeles, J.M.

    1993-02-01

    Seismic qualification for equipment originally installed in nuclear power plants was typically performed by the original equipment suppliers or manufactures (OES/OEM). Many of the OES/OEM no longer maintain quality assurance programs with adequate controls for supplying nuclear equipment. Utilities themselves must provide reasonable assurance in the continued seismic adequacy of such replacement items. This guideline provides practical, cost-effective techniques which can be used to provide reasonable assurance that replacement items will meet seismic performance requirements necessary to maintain the seismic design basis of commercial nuclear power plants. It also provides a method for determining when a seismic technical evaluation of replacement items (STERI) is required as part of the procurement process for spare and replacement items. Guidance on supplier program requirements necessary to maintain continued seismic adequacy and on documentation of maintaining required seismic adequacy is also included

  9. Automatic Seismic-Event Classification with Convolutional Neural Networks.

    Science.gov (United States)

    Bueno Rodriguez, A.; Titos Luzón, M.; Garcia Martinez, L.; Benitez, C.; Ibáñez, J. M.

    2017-12-01

    Active volcanoes exhibit a wide range of seismic signals, providing vast amounts of unlabelled volcano-seismic data that can be analyzed through the lens of artificial intelligence. However, obtaining high-quality labelled data is time-consuming and expensive. Deep neural networks can process data in their raw form, compute high-level features and provide a better representation of the input data distribution. These systems can be deployed to classify seismic data at scale, enhance current early-warning systems and build extensive seismic catalogs. In this research, we aim to classify spectrograms from seven different seismic events registered at "Volcán de Fuego" (Colima, Mexico), during four eruptive periods. Our approach is based on convolutional neural networks (CNNs), a sub-type of deep neural networks that can exploit grid structure from the data. Volcano-seismic signals can be mapped into a grid-like structure using the spectrogram: a representation of the temporal evolution in terms of time and frequency. Spectrograms were computed from the data using Hamming windows with 4 seconds length, 2.5 seconds overlapping and 128 points FFT resolution. Results are compared to deep neural networks, random forest and SVMs. Experiments show that CNNs can exploit temporal and frequency information, attaining a classification accuracy of 93%, similar to deep networks 91% but outperforming SVM and random forest. These results empirically show that CNNs are powerful models to classify a wide range of volcano-seismic signals, and achieve good generalization. Furthermore, volcano-seismic spectrograms contains useful discriminative information for the CNN, as higher layers of the network combine high-level features computed for each frequency band, helping to detect simultaneous events in time. Being at the intersection of deep learning and geophysics, this research enables future studies of how CNNs can be used in volcano monitoring to accurately determine the detection and

  10. A seismic study on cracks in crystalline rock

    International Nuclear Information System (INIS)

    Israelsson, H.

    1981-07-01

    This report summarizes results from a field study with in-situ seismic measurements in crystalline rock. It was found that among a few potential seismic techniques the so called cross hole method would probably provide the most powerful capability for detecting cracks and fracture zones. By this method the area between two holes are systematically scanned by seismic raypaths. Seismic signals are generated in one hole by micro explosions and recorded in the other at various combinations of depths. A test sample of scanning data showed a rather dramatic variation of the seismic P-wave velocity (5-6 km/s). Analysis procedures like tomographic imaging was applied to this data set primarily to illustrate the kind of structural mapping such procedures can provide. (Author)

  11. Seismic re-evaluation of French nuclear power plants

    International Nuclear Information System (INIS)

    Andrieu, R.

    1995-01-01

    After a presentation of the seismic inputs which have been taken into account in the design of the French Nuclear Power Plants, the re-assessed values of these inputs are shown. Some considerations about the specificity of the French PWR program with regard to the standardisation of plants are given together with the present objectives of seismic re-evaluations. Finally the main results of the seismic re-analysis being performed for the Phenix Fast Reactor are considered. (author)

  12. Seismic image watermarking using optimized wavelets

    International Nuclear Information System (INIS)

    Mufti, M.

    2010-01-01

    Geotechnical processes and technologies are becoming more and more sophisticated by the use of computer and information technology. This has made the availability, authenticity and security of geo technical data even more important. One of the most common methods of storing and sharing seismic data images is through standardized SEG- Y file format.. Geo technical industry is now primarily data centric. The analytic and detection capability of seismic processing tool is heavily dependent on the correctness of the contents of the SEG-Y data file. This paper describes a method through an optimized wavelet transform technique which prevents unauthorized alteration and/or use of seismic data. (author)

  13. SeismicWaveTool: Continuous and discrete wavelet analysis and filtering for multichannel seismic data

    Science.gov (United States)

    Galiana-Merino, J. J.; Rosa-Herranz, J. L.; Rosa-Cintas, S.; Martinez-Espla, J. J.

    2013-01-01

    A MATLAB-based computer code has been developed for the simultaneous wavelet analysis and filtering of multichannel seismic data. The considered time-frequency transforms include the continuous wavelet transform, the discrete wavelet transform and the discrete wavelet packet transform. The developed approaches provide a fast and precise time-frequency examination of the seismograms at different frequency bands. Moreover, filtering methods for noise, transients or even baseline removal, are implemented. The primary motivation is to support seismologists with a user-friendly and fast program for the wavelet analysis, providing practical and understandable results. Program summaryProgram title: SeismicWaveTool Catalogue identifier: AENG_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENG_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 611072 No. of bytes in distributed program, including test data, etc.: 14688355 Distribution format: tar.gz Programming language: MATLAB (MathWorks Inc.) version 7.8.0.347 (R2009a) or higher. Wavelet Toolbox is required. Computer: Developed on a MacBook Pro. Tested on Mac and PC. No computer-specific optimization was performed. Operating system: Any supporting MATLAB (MathWorks Inc.) v7.8.0.347 (R2009a) or higher. Tested on Mac OS X 10.6.8, Windows XP and Vista. Classification: 13. Nature of problem: Numerous research works have developed a great number of free or commercial wavelet based software, which provide specific solutions for the analysis of seismic data. On the other hand, standard toolboxes, packages or libraries, such as the MathWorks' Wavelet Toolbox for MATLAB, offer command line functions and interfaces for the wavelet analysis of one-component signals. Thus, software usually is focused on very specific problems

  14. Proposal for a seismic facility for reactor safety research

    International Nuclear Information System (INIS)

    Anderson, C.A.; Dove, R.C.; Rhorer, R.L.

    1976-07-01

    Certain problem areas in the seismic analysis and design of nuclear reactors are enumerated and the way in which an experimental program might contribute to each area is examined. The use of seismic simulation testing receives particular attention, especially with regard to the verification of structural response analysis. The importance of scale modeling used in conjunction with seismic simulation is also stressed. The capabilities of existing seismic simulators are summarized, and a proposed facility is described which would considerably extend the ability to conduct, with confidence, confirmatory experiments on the behavior of reactor components when subjected to seismic excitation. Particular applications to gas-cooled and other reactor types are described

  15. Rockfall induced seismic signals: case study in Montserrat, Catalonia

    Science.gov (United States)

    Vilajosana, I.; Suriñach, E.; Abellán, A.; Khazaradze, G.; Garcia, D.; Llosa, J.

    2008-08-01

    After a rockfall event, a usual post event survey includes qualitative volume estimation, trajectory mapping and determination of departing zones. However, quantitative measurements are not usually made. Additional relevant quantitative information could be useful in determining the spatial occurrence of rockfall events and help us in quantifying their size. Seismic measurements could be suitable for detection purposes since they are non invasive methods and are relatively inexpensive. Moreover, seismic techniques could provide important information on rockfall size and location of impacts. On 14 February 2007 the Avalanche Group of the University of Barcelona obtained the seismic data generated by an artificially triggered rockfall event at the Montserrat massif (near Barcelona, Spain) carried out in order to purge a slope. Two 3 component seismic stations were deployed in the area about 200 m from the explosion point that triggered the rockfall. Seismic signals and video images were simultaneously obtained. The initial volume of the rockfall was estimated to be 75 m3 by laser scanner data analysis. After the explosion, dozens of boulders ranging from 10-4 to 5 m3 in volume impacted on the ground at different locations. The blocks fell down onto a terrace, 120 m below the release zone. The impact generated a small continuous mass movement composed of a mixture of rocks, sand and dust that ran down the slope and impacted on the road 60 m below. Time, time-frequency evolution and particle motion analysis of the seismic records and seismic energy estimation were performed. The results are as follows: 1 A rockfall event generates seismic signals with specific characteristics in the time domain; 2 the seismic signals generated by the mass movement show a time-frequency evolution different from that of other seismogenic sources (e.g. earthquakes, explosions or a single rock impact). This feature could be used for detection purposes; 3 particle motion plot analysis shows

  16. Near‐surface void detection using a seismic landstreamer and horizontal velocity and attenuation tomography

    Science.gov (United States)

    Buckley, Sean F.; Lane, John W.

    2012-01-01

    The detection and characterization of subsurface voids plays an important role in the study of karst formations and clandestine tunnels. Horizontal velocity and attenuation tomography (HVAT) using offset‐fan shooting and a towed seismic land streamer is a simple, rapid, minimally invasive method that shows promise for detecting near‐surface voids and providing information on the orientation of linear voids. HVAT surveys were conducted over a known subsurface steam tunnel on the University of Connecticut Depot Campus, Storrs, Connecticut. First‐arrival travel‐time and amplitude data were used to produce two‐dimensional (2D) horizontal (map view) velocity and attenuation tomograms. In addition, attenuation tomograms were produced based on normalized total trace energy (TTE). Both the velocity and TTE attenuation tomograms depict an anomaly consistent with the location and orientation of the known tunnel; the TTE method, however, requires significantly less processing time, and therefore may provide a path forward to semi‐automated, near real‐time detection of near‐surface voids. Further study is needed to assess the utility of the HVAT method to detect deeper voids and the effects of a more complex geology on HVAT results.

  17. Seismic risk assessment of a BWR: status report

    International Nuclear Information System (INIS)

    Chuang, T.Y.; Bernreuter, D.L.; Wells, J.E.; Johnson, J.J.

    1985-02-01

    The seismic risk methodology developed in the US NRC Seismic Safety Margins Research Program (SSMRP) was demonstrated by its application to the Zion nuclear power plant, a pressurized water reactor (PWR). A detailed model of Zion, including systems analysis models (initiating events, event trees, and fault trees), SSI and structure models, and piping models was developed and analyzed. The SSMRP methodology can equally be applied to a boiling water reactor (BWR). To demonstrate its applicability, to identify fundamental differences in seismic risk between a PWR and a BWR, and to provide a basis of comparison of seismic risk between a PWR and a BWR when analyzed with comparable methodology and assumptions, a seismic risk analysis is being performed on the LaSalle County Station nuclear power plant

  18. Piedmont seismic reflection study: A program integrated with tectonics to probe the cause of eastern seismicity

    Energy Technology Data Exchange (ETDEWEB)

    Glover, L. III; Coruh, C.; Costain, J.K.; Bollinger, G.A. (Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States). Dept. of Geological Sciences)

    1992-03-01

    A new tectonic model of the Appalachian orogen indicates that one, not two or more, terrane boundaries is present in the Piedmont and Blue Ridge of the central and southern Appalachians. This terrane boundary is the Taconic suture, it has been transported in the allochthonous Blue Ridge/Piedmont crystalline thrust nappe, and it is repeated at the surface by faulting and folding associated with later Paleozoic orogenies. The suture passes through the lower crust and lithosphere somewhere east of Richmond. It is spatially associated with seismicity in the central Virginia seismic zone, but is not conformable with earthquake focal planes and appears to have little causal relation to their localization.

  19. Model design for Large-Scale Seismic Test Program at Hualien, Taiwan

    International Nuclear Information System (INIS)

    Tang, H.T.; Graves, H.L.; Chen, P.C.

    1991-01-01

    The Large-Scale Seismic Test (LSST) Program at Hualien, Taiwan, is a follow-on to the soil-structure interaction (SSI) experiments at Lotung, Taiwan. The planned SSI studies will be performed at a stiff soil site in Hualien, Taiwan, that historically has had slightly more destructive earthquakes in the past than Lotung. The LSST is a joint effort among many interested parties. Electric Power Research Institute (EPRI) and Taipower are the organizers of the program and have the lead in planning and managing the program. Other organizations participating in the LSST program are US Nuclear Regulatory Commission (NRC), the Central Research Institute of Electric Power Industry (CRIEPI), the Tokyo Electric Power Company (TEPCO), the Commissariat A L'Energie Atomique (CEA), Electricite de France (EdF) and Framatome. The LSST was initiated in January 1990, and is envisioned to be five years in duration. Based on the assumption of stiff soil and confirmed by soil boring and geophysical results the test model was designed to provide data needed for SSI studies covering: free-field input, nonlinear soil response, non-rigid body SSI, torsional response, kinematic interaction, spatial incoherency and other effects. Taipower had the lead in design of the test model and received significant input from other LSST members. Questions raised by LSST members were on embedment effects, model stiffness, base shear, and openings for equipment. This paper describes progress in site preparation, design and construction of the model and development of an instrumentation plan

  20. Post-seismic velocity changes following the 2010 Mw 7.1 Darfield earthquake, New Zealand, revealed by ambient seismic field analysis

    Science.gov (United States)

    Heckels, R. EG; Savage, M. K.; Townend, J.

    2018-05-01

    Quantifying seismic velocity changes following large earthquakes can provide insights into fault healing and reloading processes. This study presents temporal velocity changes detected following the 2010 September Mw 7.1 Darfield event in Canterbury, New Zealand. We use continuous waveform data from several temporary seismic networks lying on and surrounding the Greendale Fault, with a maximum interstation distance of 156 km. Nine-component, day-long Green's functions were computed for frequencies between 0.1 and 1.0 Hz for continuous seismic records from immediately after the 2010 September 04 earthquake until 2011 January 10. Using the moving-window cross-spectral method, seismic velocity changes were calculated. Over the study period, an increase in seismic velocity of 0.14 ± 0.04 per cent was determined near the Greendale Fault, providing a new constraint on post-seismic relaxation rates in the region. A depth analysis further showed that velocity changes were confined to the uppermost 5 km of the subsurface. We attribute the observed changes to post-seismic relaxation via crack healing of the Greendale Fault and throughout the surrounding region.

  1. Program outline of seismic fragility capacity tests on nuclear power plant equipment

    International Nuclear Information System (INIS)

    Lijima, T.; Abe, H.; Fujita, T.

    2004-01-01

    A seismic probabilistic safety assessment (PSA) is an available method to evaluate residual risk of nuclear plant that is designed with definitive seismic design condition. Seismic fragility capacity data are necessary for seismic PSA, but we don't have sufficient data of active components of nuclear plants in Japan. This paper describes a plan of seismic fragility capacity tests on nuclear power plant equipment. The purpose of those tests is to obtain seismic fragility capacity of important equipment from a safety design point of view. And the equipment for the fragility capacity tests were selected considering effect on core damage frequency (CDF) that was evaluated by our preliminary seismic PSA. Consequently horizontal shaft pump, electric cabinets, Control Rod Drive system (CRD system) of BWR and PWR plant and vertical shaft pump were selected. The seismic fragility capacity tests are conducted from phase-1 to phase-3, and horizontal shaft pump and electric cabinets are tested on phase-1. The fragility capacity test consists of two types of tests. One is actual equipment test and another is element test. On actual equipment test, a real size model is tested with high-level seismic motion, and critical acceleration and failure mode are investigated. Regarding fragility test phase-1, we selected typical type horizontal shaft pump and electric cabinets for the actual equipment test. Those were Reactor Building Closed Cooling Water (RCW) Pump and eight kinds of electric cabinets such as relay cabinet, motor control center. On the test phase-1, maximum input acceleration for the actual equipment test is intended to be 6-G-force. Since the shaking table of TADOTSU facility did not have capability for high acceleration, we made vibration amplifying system. In this system, amplifying device is mounted on original shaking table and it moves in synchronization with original table. The element test is conducted with many samples and critical acceleration, median and

  2. High Resolution Vertical Seismic Profile from the Chicxulub IODP/ICDP Expedition 364 Borehole: Wave Speeds and Seismic Reflectivity.

    Science.gov (United States)

    Nixon, C.; Kofman, R.; Schmitt, D. R.; Lofi, J.; Gulick, S. P. S.; Christeson, G. L.; Saustrup, S., Sr.; Morgan, J. V.

    2017-12-01

    We acquired a closely-spaced vertical seismic profile (VSP) in the Chicxulub K-Pg Impact Crater drilling program borehole to calibrate the existing surface seismic profiles and provide complementary measurements of in situ seismic wave speeds. Downhole seismic records were obtained at spacings ranging from 1.25 m to 5 m along the borehole from 47.5 m to 1325 mwsf (meters wireline below sea floor) (Fig 1a) using a Sercel SlimwaveTM geophone chain (University of Alberta). The seismic source was a 30/30ci Sercel Mini GI airgun (University of Texas), fired a minimum of 5 times per station. Seismic data processing used a combination of a commercial processing package (Schlumberger's VISTA) and MatlabTM codes. The VSP displays detailed reflectivity (Fig. 1a) with the strongest reflection seen at 600 mwsf (280 ms one-way time), geologically corresponding to the sharp contact between the post-impact sediments and the target peak ring rock, thus confirming the pre-drilling interpretations of the seismic profiles. A two-way time trace extracted from the separated up-going wavefield matches the major reflection both in travel time and character. In the granitic rocks that form the peak ring of the Chicxulub impact crater, we observe P-wave velocities of 4000-4500 m/s which are significantly less than the expected values of granitoids ( 6000 m/s) (Fig. 1b). The VSP measured wave speeds are confirmed against downhole sonic logging and in laboratory velocimetry measurements; these data provide additional evidence that the crustal material displaced by the impact experienced a significant amount of damage. Samples and data provided by IODP. Samples can be requested at http://web.iodp.tamu.edu/sdrm after 19 October 2017. Expedition 364 was jointly funded by ECORD, ICDP, and IODP with contributions and logistical support from the Yucatan State Government and UNAM. The downhole seismic chain and wireline system is funded by grants to DRS from the Canada Foundation for Innovation and

  3. Seismic Imaging of Mantle Plumes

    Science.gov (United States)

    Nataf, Henri-Claude

    The mantle plume hypothesis was proposed thirty years ago by Jason Morgan to explain hotspot volcanoes such as Hawaii. A thermal diapir (or plume) rises from the thermal boundary layer at the base of the mantle and produces a chain of volcanoes as a plate moves on top of it. The idea is very attractive, but direct evidence for actual plumes is weak, and many questions remain unanswered. With the great improvement of seismic imagery in the past ten years, new prospects have arisen. Mantle plumes are expected to be rather narrow, and their detection by seismic techniques requires specific developments as well as dedicated field experiments. Regional travel-time tomography has provided good evidence for plumes in the upper mantle beneath a few hotspots (Yellowstone, Massif Central, Iceland). Beneath Hawaii and Iceland, the plume can be detected in the transition zone because it deflects the seismic discontinuities at 410 and 660 km depths. In the lower mantle, plumes are very difficult to detect, so specific methods have been worked out for this purpose. There are hints of a plume beneath the weak Bowie hotspot, as well as intriguing observations for Hawaii. Beneath Iceland, high-resolution tomography has just revealed a wide and meandering plume-like structure extending from the core-mantle boundary up to the surface. Among the many phenomena that seem to take place in the lowermost mantle (or D''), there are also signs there of the presence of plumes. In this article I review the main results obtained so far from these studies and discuss their implications for plume dynamics. Seismic imaging of mantle plumes is still in its infancy but should soon become a turbulent teenager.

  4. Application of seismic interferometric migration for shallow seismic high precision data processing: A case study in the Shenhu area

    Science.gov (United States)

    Wei, Jia; Liu, Huaishan; Xing, Lei; Du, Dong

    2018-02-01

    The stability of submarine geological structures has a crucial influence on the construction of offshore engineering projects and the exploitation of seabed resources. Marine geologists should possess a detailed understanding of common submarine geological hazards. Current marine seismic exploration methods are based on the most effective detection technologies. Therefore, current research focuses on improving the resolution and precision of shallow stratum structure detection methods. In this article, the feasibility of shallow seismic structure imaging is assessed by building a complex model, and differences between the seismic interferometry imaging method and the traditional imaging method are discussed. The imaging effect of the model is better for shallow layers than for deep layers because coherent noise produced by this method can result in an unsatisfactory imaging effect for deep layers. The seismic interference method has certain advantages for geological structural imaging of shallow submarine strata, which indicates continuous horizontal events, a high resolution, a clear fault, and an obvious structure boundary. The effects of the actual data applied to the Shenhu area can fully illustrate the advantages of the method. Thus, this method has the potential to provide new insights for shallow submarine strata imaging in the area.

  5. Overview of the U.S. seismic research program

    International Nuclear Information System (INIS)

    Harbour, J.; Schamberger, R.D.

    1978-01-01

    A brief survey discussion is presented which touches on a number of topics which are related to the dynamic response of nuclear systems. The principal emphasis is on high temperature graphite-moderated helium-cooled reactors and on the seismic excitation mechanism

  6. Current USAEC seismic requirements for nuclear power plants

    International Nuclear Information System (INIS)

    Mehta, D.S.

    1975-01-01

    The principal seismic and geologic considerations which guide the USAEC in its evaluation of the suitability of proposed sites for nuclear power plants and plant design bases are set forth as design criteria in the AEC regulatory guides. The basic requirements of seismic design and analysis for seismic Category I structures, components, and systems important to public safety have been established in the USAEC regulatory guides and Code of Federal Regulations. It is pointed out that the current state-of-art techniques, best available technology, and additional studies in the field of earthquake engineering can be utilized to resolve seismic concerns. The seismic design requirements for nuclear plants to withstand postulated earthquakes can be standardized and this will be a significant milestone in the continuation of the Nuclear Standardization Program. (author)

  7. A new moonquake catalog from Apollo 17 seismic data I: Lunar Seismic Profiling Experiment: Thermal moonquakes and implications for surface processes

    Science.gov (United States)

    Weber, R. C.; Dimech, J. L.; Phillips, D.; Molaro, J.; Schmerr, N. C.

    2017-12-01

    Apollo 17's Lunar Seismic Profiling Experiment's (LSPE) primary objective was to constrain the near-surface velocity structure at the landing site using active sources detected by a 100 m-wide triangular geophone array. The experiment was later operated in "listening mode," and early studies of these data revealed the presence of thermal moonquakes - short-duration seismic events associated with terminator crossings. However, the full data set has never been systematically analyzed for natural seismic signal content. In this study, we analyze 8 months of continuous LSPE data using an automated event detection technique that has previously successfully been applied to the Apollo 16 Passive Seismic Experiment data. We detected 50,000 thermal moonquakes from three distinct event templates, representing impulsive, intermediate, and emergent onset of seismic energy, which we interpret as reflecting their relative distance from the array. Impulsive events occur largely at sunrise, possibly representing the thermal "pinging" of the nearby lunar lander, while emergent events occur at sunset, possibly representing cracking or slumping in more distant surface rocks and regolith. Preliminary application of an iterative event location algorithm to a subset of the impulsive waveforms supports this interpretation. We also perform 3D modeling of the lunar surface to explore the relative contribution of the lander, known rocks and surrounding topography to the thermal state of the regolith in the vicinity of the Apollo 17 landing site over the course of the lunar diurnal cycle. Further development of both this model and the event location algorithm may permit definitive discrimination between different types of local diurnal events e.g. lander noise, thermally-induced rock breakdown, or fault creep on the nearby Lee-Lincoln scarp. These results could place important constraints on both the contribution of seismicity to regolith production, and the age of young lobate scarps.

  8. The data quality analyzer: a quality control program for seismic data

    Science.gov (United States)

    Ringler, Adam; Hagerty, M.T.; Holland, James F.; Gonzales, A.; Gee, Lind S.; Edwards, J.D.; Wilson, David; Baker, Adam

    2015-01-01

    The U.S. Geological Survey's Albuquerque Seismological Laboratory (ASL) has several initiatives underway to enhance and track the quality of data produced from ASL seismic stations and to improve communication about data problems to the user community. The Data Quality Analyzer (DQA) is one such development and is designed to characterize seismic station data quality in a quantitative and automated manner.

  9. Probabilistic Seismic Hazard Assessment for Iraq

    Energy Technology Data Exchange (ETDEWEB)

    Onur, Tuna [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gok, Rengin [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Abdulnaby, Wathiq [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Shakir, Ammar M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mahdi, Hanan [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Numan, Nazar M.S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Al-Shukri, Haydar [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chlaib, Hussein K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ameen, Taher H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Abd, Najah A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-05-06

    Probabilistic Seismic Hazard Assessments (PSHA) form the basis for most contemporary seismic provisions in building codes around the world. The current building code of Iraq was published in 1997. An update to this edition is in the process of being released. However, there are no national PSHA studies in Iraq for the new building code to refer to for seismic loading in terms of spectral accelerations. As an interim solution, the new draft building code was considering to refer to PSHA results produced in the late 1990s as part of the Global Seismic Hazard Assessment Program (GSHAP; Giardini et al., 1999). However these results are: a) more than 15 years outdated, b) PGA-based only, necessitating rough conversion factors to calculate spectral accelerations at 0.3s and 1.0s for seismic design, and c) at a probability level of 10% chance of exceedance in 50 years, not the 2% that the building code requires. Hence there is a pressing need for a new, updated PSHA for Iraq.

  10. Time-lapse seismic attribute analysis for a water-flooded reservoir

    International Nuclear Information System (INIS)

    Jin, Long; Sen, M K; Stoffa, P L; Seif, R K

    2008-01-01

    One of the goals of time-lapse seismic monitoring is the direct detection of the fluid front and two-phase contact area. However, several factors affect the quality of time-lapse seismic difference data and decrease detectability. One of these factors is random noise. In this paper, we propose five different methods aimed at improving the quality and detectability of noisy time-lapse seismic difference data. Common to these methods is the transform of the differences to a domain where the time-lapse signal and random noise are well separated. Our proposed methods include direct Fourier transform based spectral decomposition, bispectra, wavelet transform, singular value decomposition and hybrid methods. We also propose a method that combines multiple time-lapse difference data and gives a final difference which enhances the common part and attenuates the differences of the multiple difference images resulting in a better detectability than the original images. A synthetic time-lapse model is used to demonstrate the feasibility of our proposed methods

  11. Seismic detection method for small-scale discontinuities based on dictionary learning and sparse representation

    Science.gov (United States)

    Yu, Caixia; Zhao, Jingtao; Wang, Yanfei

    2017-02-01

    Studying small-scale geologic discontinuities, such as faults, cavities and fractures, plays a vital role in analyzing the inner conditions of reservoirs, as these geologic structures and elements can provide storage spaces and migration pathways for petroleum. However, these geologic discontinuities have weak energy and are easily contaminated with noises, and therefore effectively extracting them from seismic data becomes a challenging problem. In this paper, a method for detecting small-scale discontinuities using dictionary learning and sparse representation is proposed that can dig up high-resolution information by sparse coding. A K-SVD (K-means clustering via Singular Value Decomposition) sparse representation model that contains two stage of iteration procedure: sparse coding and dictionary updating, is suggested for mathematically expressing these seismic small-scale discontinuities. Generally, the orthogonal matching pursuit (OMP) algorithm is employed for sparse coding. However, the method can only update one dictionary atom at one time. In order to improve calculation efficiency, a regularized version of OMP algorithm is presented for simultaneously updating a number of atoms at one time. Two numerical experiments demonstrate the validity of the developed method for clarifying and enhancing small-scale discontinuities. The field example of carbonate reservoirs further demonstrates its effectiveness in revealing masked tiny faults and small-scale cavities.

  12. Research program for seismic qualification of nuclear plant electrical and mechanical equipment. Task 4. Use of fragility in seismic design of nuclear plant equipment. Volume 4

    International Nuclear Information System (INIS)

    Kana, D.D.; Pomerening, D.J.

    1984-08-01

    The Research Program for Seismic Qualification of Nuclear Plant Electrical and Mechanical Equipment has spanned a period of three years and resulted in seven technical summary reports, each of which have covered in detail the findings of different tasks and subtasks, and have been combined into five NUREG/CR volumes. Volume 4 presents study of the use of fragility concepts in the design of nuclear plant equipment and compares the results of state-of-the-art proof testing with fragility testing

  13. Proceedings of the 21st Seismic Research Symposium: Technologies for Monitoring The Comprehensive Nuclear Test-Ban Treaty

    Energy Technology Data Exchange (ETDEWEB)

    Warren, N. Jill [Editor

    1999-09-21

    These proceedings contain papers prepared for the 21st Seismic Research Symposium: Technologies for Monitoring The Comprehensive Nuclear-Test-Ban Treaty, held 21-24 September 1999 in Las Vegas, Nevada. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Technical Applications Center (AFTAC), Department of Defense (DoD), the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  14. Bayesian Inference for Signal-Based Seismic Monitoring

    Science.gov (United States)

    Moore, D.

    2015-12-01

    Traditional seismic monitoring systems rely on discrete detections produced by station processing software, discarding significant information present in the original recorded signal. SIG-VISA (Signal-based Vertically Integrated Seismic Analysis) is a system for global seismic monitoring through Bayesian inference on seismic signals. By modeling signals directly, our forward model is able to incorporate a rich representation of the physics underlying the signal generation process, including source mechanisms, wave propagation, and station response. This allows inference in the model to recover the qualitative behavior of recent geophysical methods including waveform matching and double-differencing, all as part of a unified Bayesian monitoring system that simultaneously detects and locates events from a global network of stations. We demonstrate recent progress in scaling up SIG-VISA to efficiently process the data stream of global signals recorded by the International Monitoring System (IMS), including comparisons against existing processing methods that show increased sensitivity from our signal-based model and in particular the ability to locate events (including aftershock sequences that can tax analyst processing) precisely from waveform correlation effects. We also provide a Bayesian analysis of an alleged low-magnitude event near the DPRK test site in May 2010 [1] [2], investigating whether such an event could plausibly be detected through automated processing in a signal-based monitoring system. [1] Zhang, Miao and Wen, Lianxing. "Seismological Evidence for a Low-Yield Nuclear Test on 12 May 2010 in North Korea". Seismological Research Letters, January/February 2015. [2] Richards, Paul. "A Seismic Event in North Korea on 12 May 2010". CTBTO SnT 2015 oral presentation, video at https://video-archive.ctbto.org/index.php/kmc/preview/partner_id/103/uiconf_id/4421629/entry_id/0_ymmtpps0/delivery/http

  15. Seismic safety margins research program. Phase I. Project VII: systems analysis specifications of computational approach

    International Nuclear Information System (INIS)

    Collins, J.D.; Hudson, J.M.; Chrostowski, J.D.

    1979-02-01

    A computational methodology is presented for the prediction of core melt probabilities in a nuclear power plant due to earthquake events. The proposed model has four modules: seismic hazard, structural dynamic (including soil-structure interaction), component failure and core melt sequence. The proposed modules would operate in series and would not have to be operated at the same time. The basic statistical approach uses a Monte Carlo simulation to treat random and systematic error but alternate statistical approaches are permitted by the program design

  16. Seismic facies; Facies sismicas

    Energy Technology Data Exchange (ETDEWEB)

    Johann, Paulo Roberto Schroeder [PETROBRAS, Rio de Janeiro, RJ (Brazil). Exploracao e Producao Corporativo. Gerencia de Reservas e Reservatorios]. E-mail: johann@petrobras.com.br

    2004-11-01

    The method presented herein describes the seismic facies as representations of curves and vertical matrixes of the lithotypes proportions. The seismic facies are greatly interested in capturing the spatial distributions (3D) of regionalized variables, as for example, lithotypes, sedimentary facies groups and/ or porosity and/or other properties of the reservoirs and integrate them into the 3D geological modeling (Johann, 1997). Thus when interpreted as curves or vertical matrixes of proportions, seismic facies allow us to build a very important tool for structural analysis of regionalized variables. The matrixes have an important application in geostatistical modeling. In addition, this approach provides results about the depth and scale of the wells profiles, that is, seismic data is integrated to the characterization of reservoirs in depth maps and in high resolution maps. The link between the different necessary technical phases involved in the classification of the segments of seismic traces is described herein in groups of predefined traces of two approaches: a) not supervised and b) supervised by the geological knowledge available on the studied reservoir. The multivariate statistical methods used to obtain the maps of the seismic facies units are interesting tools to be used to provide a lithostratigraphic and petrophysical understanding of a petroleum reservoir. In the case studied these seismic facies units are interpreted as representative of the depositional system as a part of the Namorado Turbiditic System, Namorado Field, Campos Basin.Within the scope of PRAVAP 19 (Programa Estrategico de Recuperacao Avancada de Petroleo - Strategic Program of Advanced Petroleum Recovery) some research work on algorithms is underway to select new optimized attributes to apply seismic facies. One example is the extraction of attributes based on the wavelet transformation and on the time-frequency analysis methodology. PRAVAP is also carrying out research work on an

  17. Long-term changes of the glacial seismicity: case study from Spitsbergen

    Science.gov (United States)

    Gajek, Wojciech; Trojanowski, Jacek; Malinowski, Michał

    2016-04-01

    Changes in global temperature balance have proved to have a major impact on the cryosphere, and therefore withdrawing glaciers are the symbol of the warming climate. Our study focuses on year-to-year changes in glacier-generated seismicity. We have processed 7-year long continuous seismological data recorded by the HSP broadband station located in the proximity of Hansbreen glacier (Hornsund, southern Spitsbergen), obtaining seismic activity distribution between 2008 and 2014. We developed a new fuzzy logic algorithm to distinguish between glacier- and non-glacier-origin events. The algorithm takes into account the frequency of seismic signal and the energy flow in certain time interval. Our research has revealed that the number of detected glacier-origin events over last two years has doubled. Annual events distribution correlates well with temperature and precipitation curves, illustrating characteristic yearlong behaviour of glacier seismic activity. To further support our observations, we have analysed 5-year long distribution of glacier-origin tremors detected in the vicinity of the Kronebreen glacier using KBS broadband station located in Ny-Ålesund (western Spitsbergen). We observe a steady increase in the number of detected events. detected each year, however not as significant as for Hornsund dataset.

  18. Use of experience data for DOE seismic evaluations

    International Nuclear Information System (INIS)

    Barlow, M.W.; Budnitz, R.; Eder, S.J.; Eli, M.W.

    1993-01-01

    As dictated by DOE Order 5480.28, seismic evaluations of essential systems and components at DOE facilities will be conducted over the next several years. For many of these systems and components, few, if any, seismic requirements applied to the original design, procurement, installation, and maintenance process. Thus the verification of the seismic adequacy of existing systems and components presents a difficult challenge. DOE has undertaken development of the criteria and procedures for these seismic evaluations that will maximize safety benefits in a timely and cost effective manner. As demonstrated in previous applications at DOE facilities and by the experience from the commercial nuclear power industry, use of experience data for these evaluations is the only viable option for most existing systems and components. This paper describes seismic experience data, the needs at DOE facilities, the precedent of application at nuclear power plants and DOE facilities, and the program being put in place for the seismic verification task ahead for DOE

  19. Seismic hazard maps for earthquake-resistant construction designs

    International Nuclear Information System (INIS)

    Ohkawa, Izuru

    2004-01-01

    Based on the idea that seismic phenomena in Japan varying in different localities are to be reflected in designing specific nuclear facilities in specific site, the present research program started to make seismic hazard maps representing geographical distribution of seismic load factors. First, recent research data on historical earthquakes and materials on active faults in Japan have been documented. Differences in character due to different localities are expressed by dynamic load in consideration of specific building properties. Next, hazard evaluation corresponding to seismic-resistance factor is given as response index (spectrum) of an adequately selected building, for example a nuclear power station, with the help of investigation results of statistical analysis. (S. Ohno)

  20. The CEA program on boiling noise detection

    International Nuclear Information System (INIS)

    Le Guillou, G.; Brunet, M.; Girard, J.P.; Flory, D.

    1982-01-01

    The research program on the application of noise analysis on boiling detection in a fast subassembly began 10 years ago at the CEA, mainly in the Nuclear Center of Cadarache. Referring exclusively to the aspects of premature detection of the boiling phenomenon it can be said that this program is organized around the following three detection techniques: acoustic noise analysis; neutron noise analysis; temperature noise analysis. Its development is in conjunction with in-pile experiments in Phenix or Rapsodie as well as 'ex-pile' (boiling experiments through electric heating). Three detection techniques were developed independent of each other, but that they were regrouped during the execution of the most important experiments and with the 'Super Phenix' project. The noise analysis system ANABEL with which Superphenix will be equipped with shows the industrial interest in detection methods based on noises. One of the results of the CEA program today is the possibility to evaluate the potential capacity for boiling detection in the subassembly. But in order to obtain the necessary funds from the commercial nuclear plant operators it is mandatory to have successful demonstrations which will be the objective of the future program

  1. Seismicity and seismic hazard in Sabah, East Malaysia from earthquake and geodetic data

    Science.gov (United States)

    Gilligan, A.; Rawlinson, N.; Tongkul, F.; Stephenson, R.

    2017-12-01

    While the levels of seismicity are low in most of Malaysia, the state of Sabah in northern Borneo has moderate levels of seismicity. Notable earthquakes in the region include the 1976 M6.2 Lahad Datu earthquake and the 2015 M6 Ranau earthquake. The recent Ranau earthquake resulted in the deaths of 18 people on Mt Kinabalu, an estimated 100 million RM ( US$23 million) damage to buildings, roads, and infrastructure from shaking, and flooding, reduced water quality, and damage to farms from landslides. Over the last 40 years the population of Sabah has increased to over four times what it was in 1976, yet seismic hazard in Sabah remains poorly understood. Using seismic and geodetic data we hope to better quantify the hazards posed by earthquakes in Sabah, and thus help to minimize risk. In order to do this we need to know about the locations of earthquakes, types of earthquakes that occur, and faults that are generating them. We use data from 15 MetMalaysia seismic stations currently operating in Sabah to develop a region-specific velocity model from receiver functions and a pre-existing surface wave model. We use this new velocity model to (re)locate earthquakes that occurred in Sabah from 2005-2016, including a large number of aftershocks from the 2015 Ranau earthquake. We use a probabilistic nonlinear earthquake location program to locate the earthquakes and then refine their relative locations using a double difference method. The recorded waveforms are further used to obtain moment tensor solutions for these earthquakes. Earthquake locations and moment tensor solutions are then compared with the locations of faults throughout Sabah. Faults are identified from high-resolution IFSAR images and subsequent fieldwork, with a particular focus on the Lahad Datau and Ranau areas. Used together, these seismic and geodetic data can help us to develop a new seismic hazard model for Sabah, as well as aiding in the delivery of outreach activities regarding seismic hazard

  2. Seismic data processing for domestic seismic survey over the continental shelf of Korea using the Geobit

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jin Yong [Korea Inst. of Geology Mining and Materials, Taejon (Korea, Republic of)

    1995-12-01

    The `Geobit`, a new seismic data processing software introduced by the Korea Institute of Geology, Mining and Materials recently, is the token of the achievement for the development of technology in the oil exploration over the Korean continental shelf. In comparison with the foreign seismic data processing systems previously used in Korea, the Geobit system has some advanced facilities; it provides an interactive mode which makes the seismic processing easier and has the user-friendly programs which allow the construction of a job control file simpler. Most of all, the Geobit can be run with many computer hardware systems, from PC to supercomputer. The current version of the Geobit can take care of the two-dimensional multi-channel seismic data and is open to the public for an education tool and a research purpose. To demonstrate the ability of the Geobit, a multi-channel field data acquired in the domestic continental shelf over the Yellow Sea in 1970 has been selected and processed with standard seismic data processing techniques. In this report, the Geobit job files and the corresponding results for the construction of a stack are provided. (author). 8 refs., 14 figs., 1 tab.

  3. Broadband Seismic Studies at the Mallik Gas Hydrate Research Well

    Science.gov (United States)

    Sun, L. F.; Huang, J.; Lyons-Thomas, P.; Qian, W.; Milkereit, B.; Schmitt, D. R.

    2005-12-01

    The JAPEX/JNOC/GSC et al. Mallik 3L-38, 4L-38 and 5L-38 scientific wells were drilled in the MacKenzie Delta, NWT, Canada in early 2002 primarily for carrying out initial tests of the feasibility of producing methane gas from the large gas hydrate deposits there [1]. As part of this study, high resolution seismic profiles, a pseudo-3D single fold seismic volume and broadband (8~180Hz) multi-offset vertical seismic profiles (VSP) were acquired at the Mallik site. Here, we provide details on the acquisition program, present the results of the 2D field profile, and discuss the potential implications of these observations for the structure of the permafrost and gas hydrate zones. These zones have long been problematic in seismic imaging due to the lateral heterogeneities. Conventional seismic data processing usually assume a stratified, weak-contrast elastic earth model. However, in permafrost and gas hydrate zones this approximation often becomes invalid. This leads to seismic wave scattering caused by multi-scale perturbation of elastic properties. A 3D viscoelastic finite difference modeling algorithm was employed to simulate wave propagation in a medium with strong contrast. Parameters in this modeling analysis are based on the borehole geophysical log data. In addition, an uncorrelated Vibroseis VSP data set was studied to investigate frequency-dependent absorption and velocity dispersion. Our results indicate that scattering and velocity dispersion are important for a better understanding of attenuation mechanisms in heterogeneous permafrost and gas hydrate zones. [1] Dallimore, S.R., Collett, T.S., Uchida, T., and Weber, M., 2005, Overview of the science program for the Mallik 2002 Gas Hydrate Production Research Well Program; in Scientific Results from Mallik 2002 Gas Hydrate production Research Well Program, MacKenzie Delta, Northwest Territories, Canada, (ed.) S.R. Dallimore and T.S. Collett; Geological Survey of Canada, Bulletin 585, in press.

  4. GSETT-3: testing the experimental international seismic monitoring system

    International Nuclear Information System (INIS)

    Ringdal, Frode

    1995-01-01

    Global seismic monitoring system has been developed by the Conference on Disarmaments (CDs) ad hoc group of scientific experts to consider international cooperative measures to detect and identify seismic events (the GSE), based in Geneva. In the course of its work, the GSE has conducted two large-scale global technical tests, Global Seismic Events Technical Test-1 (GSETT-1) in 1984 and GSETT-2 in 1991. The GSE has now embarked upon its third and most ambitious technical test, GSETT-3, which will encompass the development, testing and evaluation of a working prototype of the eventual Comprehensive Test Ban Treaty (CTBT) seismic monitoring system

  5. Seismic array processing and computational infrastructure for improved monitoring of Alaskan and Aleutian seismicity and volcanoes

    Science.gov (United States)

    Lindquist, Kent Gordon

    We constructed a near-real-time system, called Iceworm, to automate seismic data collection, processing, storage, and distribution at the Alaska Earthquake Information Center (AEIC). Phase-picking, phase association, and interprocess communication components come from Earthworm (U.S. Geological Survey). A new generic, internal format for digital data supports unified handling of data from diverse sources. A new infrastructure for applying processing algorithms to near-real-time data streams supports automated information extraction from seismic wavefields. Integration of Datascope (U. of Colorado) provides relational database management of all automated measurements, parametric information for located hypocenters, and waveform data from Iceworm. Data from 1997 yield 329 earthquakes located by both Iceworm and the AEIC. Of these, 203 have location residuals under 22 km, sufficient for hazard response. Regionalized inversions for local magnitude in Alaska yield Msb{L} calibration curves (logAsb0) that differ from the Californian Richter magnitude. The new curve is 0.2\\ Msb{L} units more attenuative than the Californian curve at 400 km for earthquakes north of the Denali fault. South of the fault, and for a region north of Cook Inlet, the difference is 0.4\\ Msb{L}. A curve for deep events differs by 0.6\\ Msb{L} at 650 km. We expand geographic coverage of Alaskan regional seismic monitoring to the Aleutians, the Bering Sea, and the entire Arctic by initiating the processing of four short-period, Alaskan seismic arrays. To show the array stations' sensitivity, we detect and locate two microearthquakes that were missed by the AEIC. An empirical study of the location sensitivity of the arrays predicts improvements over the Alaskan regional network that are shown as map-view contour plots. We verify these predictions by detecting an Msb{L} 3.2 event near Unimak Island with one array. The detection and location of four representative earthquakes illustrates the expansion

  6. WheelerLab: An interactive program for sequence stratigraphic analysis of seismic sections, outcrops and well sections and the generation of chronostratigraphic sections and dynamic chronostratigraphic sections

    OpenAIRE

    Adewale Amosu; Yuefeng Sun

    2017-01-01

    WheelerLab is an interactive program that facilitates the interpretation of stratigraphic data (seismic sections, outcrop data and well sections) within a sequence stratigraphic framework and the subsequent transformation of the data into the chronostratigraphic domain. The transformation enables the identification of significant geological features, particularly erosional and non-depositional features that are not obvious in the original seismic domain. Although there are some software produ...

  7. Toward predicting clay landslide with ambient seismic noise

    Science.gov (United States)

    Larose, E. F.; Mainsant, G.; Carriere, S.; Chambon, G.; Michoud, C.; Jongmans, D.; Jaboyedoff, M.

    2013-12-01

    Clay-rich pose critical problems in risk management worldwide. The most widely proposed mechanism leading to such flow-like movements is the increase in water pore pressure in the sliding mass, generating partial or complete liquefaction. This solid-to-liquid transition results in a dramatic reduction of mechanical rigidity, which could be detected by monitoring shear wave velocity variations, The ambient seismic noise correlation technique has been applied to measure the variation in the seismic surface wave velocity in the Pont Bourquin landslide (Swiss Alps). This small but active composite earthslide-earthflow was equipped with continuously recording seismic sensors during spring and summer 2010, and then again from fall 2011 on. An earthslide of a few thousand cubic meters was triggered in mid-August 2010, after a rainy period. This article shows that the seismic velocity of the sliding material, measured from daily noise correlograms, decreased continuously and rapidly for several days prior to the catastrophic event. From a spectral analysis of the velocity decrease, it was possible to determine the location of the change at the base of the sliding layer. These results are confirmed by analogous small-scale experiments in the laboratory. These results demonstrate that ambient seismic noise can be used to detect rigidity variations before failure and could potentially be used to predict landslides.

  8. High-resolution seismic data regularization and wavefield separation

    Science.gov (United States)

    Cao, Aimin; Stump, Brian; DeShon, Heather

    2018-04-01

    We present a new algorithm, non-equispaced fast antileakage Fourier transform (NFALFT), for irregularly sampled seismic data regularization. Synthetic tests from 1-D to 5-D show that the algorithm may efficiently remove leaked energy in the frequency wavenumber domain, and its corresponding regularization process is accurate and fast. Taking advantage of the NFALFT algorithm, we suggest a new method (wavefield separation) for the detection of the Earth's inner core shear wave with irregularly distributed seismic arrays or networks. All interfering seismic phases that propagate along the minor arc are removed from the time window around the PKJKP arrival. The NFALFT algorithm is developed for seismic data, but may also be used for other irregularly sampled temporal or spatial data processing.

  9. Seismic Imaging of the Source Physics Experiment Site with the Large-N Seismic Array

    Science.gov (United States)

    Chen, T.; Snelson, C. M.; Mellors, R. J.

    2017-12-01

    The Source Physics Experiment (SPE) consists of a series of chemical explosions at the Nevada National Security Site. The goal of SPE is to understand seismic wave generation and propagation from these explosions. To achieve this goal, we need an accurate geophysical model of the SPE site. A Large-N seismic array that was deployed at the SPE site during one of the chemical explosions (SPE-5) helps us construct high-resolution local geophysical model. The Large-N seismic array consists of 996 geophones, and covers an area of approximately 2 × 2.5 km. The array is located in the northern end of the Yucca Flat basin, at a transition from Climax Stock (granite) to Yucca Flat (alluvium). In addition to the SPE-5 explosion, the Large-N array also recorded 53 weight drops. Using the Large-N seismic array recordings, we perform body wave and surface wave velocity analysis, and obtain 3D seismic imaging of the SPE site for the top crust of approximately 1 km. The imaging results show clear variation of geophysical parameter with local geological structures, including heterogeneous weathering layer and various rock types. The results of this work are being incorporated in the larger 3D modeling effort of the SPE program to validate the predictive models developed for the site.

  10. 4D seismic reservoir characterization, integrated with geo-mechanical modelling

    NARCIS (Netherlands)

    Angelov, P.V.

    2009-01-01

    Hydrocarbon production induces time-lapse changes in the seismic attributes (travel time and amplitude) both at the level of the producing reservoir and in the surrounding rock. The detected time-lapse changes in the seismic are induced from the changes in the petrophysical properties of the rock,

  11. 3D seismic surveys for shallow targets

    Energy Technology Data Exchange (ETDEWEB)

    Lawton, D.C.; Stewart, R.R.; Bertram, M.B. [Calgary Univ., AB (Canada). Dept. of Geoscience, Consortium for Research in Elastic Wave Exploration Seismology

    2008-07-01

    Although 3D seismic surveys are generally used to map deep hydrocarbon plays, this study demonstrated that they can be useful for characterizing shallow targets, such as oilsands deposits. A high-resolution 3D seismic survey was undertaken to map shallow stratigraphy near Calgary, Alberta. The project demonstrated the efficacy of reflection seismic surveys for shallow targets ranging from 100 to 500 metres. The purpose of the program was to map shallow stratigraphy and structure to depths of up to 500m, and to investigate shallow aquifers in the study area. The results of the survey illustrated the opportunity that 3D seismic surveys provide for mapping shallow reflectors and the acquisition geometry needed to image them. Applications include mapping the distribution of shallow aquifers, delineating shallow coals and investigating oilsands deposits. 2 refs., 5 figs.

  12. Seismic isolation - efficient procedure for seismic response assessement

    International Nuclear Information System (INIS)

    Zamfir, M. A.; Androne, M.

    2016-01-01

    The aim of this analysis is to reduce the dynamic response of a structure. The seismic isolation solution must take into consideration the specific site ground motion. In this paper will be presented results obtained by applying the seismic isolation method. Based on the obtained results, important conclusions can be outlined: the seismic isolation device has the ability to reduce seismic acceleration of the seismic isolated structure to values that no longer present a danger to people and environment; the seismic isolation solution is limiting devices deformations to safety values for ensuring structural integrity and stability of the entire system; the effective seismic energy dissipation and with no side effects both for the seismic isolated building and for the devices used, and the return to the initial position before earthquake occurence are obtained with acceptable permanent displacement. (authors)

  13. Calculation of anti-seismic design for Xi'an pulsed reactor

    International Nuclear Information System (INIS)

    Li Shuian

    2002-01-01

    The author describes the reactor safety rule, safety regulation and design code that must be observed to anti-seismic design in Xi'an pulsed reactor. It includes the classification of reactor installation, determination of seismic loads, calculate contents, program, method, results and synthetically evaluation. According to the different anti-seismic structure character of reactor installation, an appropriate method was selected to calculate the seismic response. The results were evaluated synthetically using the design code and design requirement. The evaluate results showed that the anti-seismic design function of reactor installation of Xi'an pules reactor is well, and the structure integrality and normal property of reactor installation can be protect under the designed classification of the earthquake

  14. Variable post-Paleozoic deformation detected by seismic reflection profiling across the northwestern "prong" of New Madrid seismic zone

    Science.gov (United States)

    McBride, J.H.; Pugin, Andre J.M.; Nelson, W.J.; Larson, T.H.; Sargent, S.L.; Devera, J.A.; Denny, F.B.; Woolery, E.W.

    2003-01-01

    High-resolution shallow seismic reflection profiles across the northwesternmost part of the New Madrid seismic zone (NMSZ) and northwestern margin of the Reelfoot rift, near the confluence of the Ohio and Mississippi Rivers in the northern Mississippi embayment, reveal intense structural deformation that apparently took place during the late Paleozoic and/or Mesozoic up to near the end of the Cretaceous Period. The seismic profiles were sited on both sides of the northeast-trending Olmsted fault, defined by varying elevations of the top of Mississippian (locally base of Cretaceous) bedrock. The trend of this fault is close to and parallel with an unusually straight segment of the Ohio River and is approximately on trend with the westernmost of two groups of northeast-aligned epicenters ("prongs") in the NMSZ. Initially suspected on the basis of pre-existing borehole data, the deformation along the fault has been confirmed by four seismic reflection profiles, combined with some new information from drilling. The new data reveal (1) many high-angle normal and reverse faults expressed as narrow grabens and anticlines (suggesting both extensional and compressional regimes) that involved the largest displacements during the late Cretaceous (McNairy); (2) a different style of deformation involving probably more horizontal displacements (i.e., thrusting) that occurred at the end of this phase near the end of McNairy deposition, with some fault offsets of Paleocene and younger units; (3) zones of steeply dipping faults that bound chaotic blocks similar to that observed previously from the nearby Commerce geophysical lineament (CGL); and (4) complex internal deformation stratigraphically restricted to the McNairy, suggestive of major sediment liquefaction or landsliding. Our results thus confirm the prevalence of complex Cretaceous deformations continuing up into Tertiary strata near the northern terminus of the NMSZ. ?? 2003 Elsevier Science B.V. All rights reserved.

  15. Automatic Event Detection and Picking of P, S Seismic Phases for Earthquake Early Warning: A Case Study of the 2008 Wenchuan Earthquake

    Science.gov (United States)

    WANG, Z.; Zhao, B.

    2015-12-01

    We develop an automatic seismic phase arrival detection and picking algorithm for the impending earthquakes occurred with diverse focal mechanisms and depths. The polarization analysis of the three-component seismograms is utilized to distinguish between P and S waves through a sliding time window. When applying the short term average/long term average (STA/LTA) method to the polarized data, we also construct a new characteristics function that can sensitively reflect the changes of signals' amplitude and frequency, providing a better detection for the phase arrival. Then an improved combination method of the higher order statistics and the Akaike information criteria (AIC) picker is applied to the refined signal to lock on the arrival time with a higher degree of accuracy. We test our techniques to the aftershocks of the Ms8.0 Wenchuan earthquake, where hundreds of three-component acceleration records with magnitudes of 4.0 to 6.4 are treated. In comparison to the analyst picks, the results of the proposed detection algorithms are shown to perform well and can be applied from a single instrument within a network of stations for the large seismic events in the Earthquake Early Warning System (EEWS).

  16. In-situ measurements of seismic velocities in the San Francisco Bay region...part II

    Science.gov (United States)

    Gibbs, James F.; Fumal, Thomas E.; Borcherdt, Roger D.

    1976-01-01

    Seismic wave velocities (compressional and shear) are important parameters for determining the seismic response characteristics of various geologic units when subjected to strong earthquake ground shaking. Seismic velocities of various units often show a strong correlation with the amounts of damage following large earthquakes and have been used as a basis for certain types of seismic zonation studies. Currently a program is in progress to measure seismic velocities in the San Francisco Bay region at an estimated 150 sites. At each site seismic travel times are measured in drill holes, normally at 2.5-m intervals to a depth of 30 m. Geologic logs are determined from drill hole cuttings, undisturbed samples, and penetrometer samples. The data provide a detailed comparison of geologic and seismic characteristics and provide parameters for estimating strong earthquake ground motions quantitatively at each of the site. A major emphasis of this program is to obtain a detailed comparison of geologic and seismic data on a regional scale for use in seismic zonation. The broad data base available in the San Francisco Bay region suggests using the area as a pilot area for the development of general techniques applicable to other areas.

  17. Persistent pre-seismic signature detected by means of Na-K-Mg geothermometry records in a saline spring of Vrancea area (Romania

    Directory of Open Access Journals (Sweden)

    H. Mitrofan

    2010-02-01

    Full Text Available A six year-long hydrochemical monitoring operation was conducted in Vrancea seismic zone (Romania, addressing a saline spring that proved to be suitable for Na-K-Mg geothermometry diagnosis. During the considered time-interval (2003–2009, only one important earthquake (mb=5.8 occurred in Vrancea region, this circumstance providing an unambiguous reference-moment between pre-seismic and post-seismic periods. On occurrence of that earthquake, an anomalous fluctuation of the Na-K temperature was detected – a result largely similar to previous ones recorded worldwide (California, southwest Egypt, northeast India. Yet such fluctuations may not necessarily be induced by earthquake-associated processes: they can occur also "routinely", possibly reflecting some environmental, meteorologically-induced "noise". It was therefore important to examine whether the variations observed in the data values could be plausibly related to a seismogenesis process. By additionally investigating (in a "scattterplot" diagram the correlation between the Na-K temperatures and the values of a so-called "maturity index", a specific pattern emerged, with pre-seismic data-points plotting in a distinct domain of the diagram; moreover, those data-points appeared to describe a "drift away" pathway with respect to the remaining data-points "cluster", recorded during the subsequent 4 years of post-seismic monitoring. The "drift away" pattern persistently evolved for at least 18 months, ending just before the mb=5.8 earthquake and consequently suggesting the existence of some kind of long-term precursory phenomenon.

  18. Seismic refraction survey of the ANS preferred site

    Energy Technology Data Exchange (ETDEWEB)

    Davis, R.K. (Automated Sciences Group, Inc., Oak Ridge, TN (United States)); Hopkins, R.A. (Marrich, Inc., Knoxville, TN (United States)); Doll, W.E. (Oak Ridge National Lab., TN (United States))

    1992-02-01

    Between September 19, 1991 and October 8, 1991 personnel from Martin Marietta Energy Systems, Inc. (Energy Systems), Automated Sciences Group, Inc., and Marrich, Inc. performed a seismic refraction survey at the Advanced Neutron Source (ANS) preferred site. The purpose of this survey was to provide estimates of top-of-rock topography, based on seismic velocities, and to delineate variations in rock and soil velocities. Forty-four seismic refraction spreads were shot to determine top-of-rock depths at 42 locations. Nine of the seismic spreads were shot with long offsets to provide 216 top-of-rock depths for 4 seismic refraction profiles. The refraction spread locations were based on the grid for the ANS Phase I drilling program. Interpretation of the seismic refraction data supports the assumption that the top-of-rock surface generally follows the local topography. The shallow top-of-rock interface interpreted from the seismic refraction data is also supported by limited drill information at the site. Some zones of anomalous data are present that could be the result of locally variable weathering, a localized variation in shale content, or depth to top-of-rock greater than the site norm.

  19. HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT SEISMIC ANALYSIS OF HANFORD DOUBLE SHELL TANKS

    Energy Technology Data Exchange (ETDEWEB)

    MACKEY TC; RINKER MW; CARPENTER BG; HENDRIX C; ABATT FG

    2009-01-15

    M&D Professional Services, Inc. (M&D) is under subcontract to Pacific Northwest National Laboratories (PNNL) to perform seismic analysis of the Hanford Site Double-Shell Tanks (DSTs) in support of a project entitled Double-Shell Tank (DST) Integrity Project - DST Thermal and Seismic Analyses. The original scope of the project was to complete an up-to-date comprehensive analysis of record of the DST System at Hanford in support of Tri-Party Agreement Milestone M-48-14. The work described herein was performed in support of the seismic analysis of the DSTs. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). Although Milestone M-48-14 has been met, Revision I is being issued to address external review comments with emphasis on changes in the modeling of anchor bolts connecting the concrete dome and the steel primary tank. The work statement provided to M&D (PNNL 2003) required that a nonlinear soil structure interaction (SSI) analysis be performed on the DSTs. The analysis is required to include the effects of sliding interfaces and fluid sloshing (fluid-structure interaction). SSI analysis has traditionally been treated by frequency domain computer codes such as SHAKE (Schnabel, et al. 1972) and SASSI (Lysmer et al. 1999a). Such frequency domain programs are limited to the analysis of linear systems. Because of the contact surfaces, the response of the DSTs to a seismic event is inherently nonlinear and consequently outside the range of applicability of the linear frequency domain programs. That is, the nonlinear response of the DSTs to seismic excitation requires the use of a time domain code. The capabilities and limitations of the commercial time domain codes ANSYS{reg_sign} and MSC Dytran{reg_sign} for performing seismic SSI analysis of the DSTs and the methodology required to perform the detailed seismic analysis of the DSTs has been addressed in Rinker et al (2006a). On the basis of the results reported in Rinker et al

  20. the Preliminary Research Based on Seismic Signals Generated by Hutubi Transmitting Seismic Station with One Large-volume Airgun Array

    Science.gov (United States)

    Wang, Q.; Su, J.; Wei, Y.; Zhang, W.; Wang, H.; Wang, B.; Ji, Z.

    2017-12-01

    For studying the subsurface structure and its subtle changes, we built the Hutubi transmitting seismic station with one large-volume airgun array at one artificial water pool in the northern segment of Tianshan mountain, where earthquakes occurred frequently. The airgun array consists of six airguns with every airgun capacity of 2000in3, and the artificial water pool with the top diameter of 100m, bottom diameter of 20m and the depth of 18m.We started the regular excitation experiment with the large-volume airgun source every week since June, 2013. Using seismic signals geneated by the Hutubi airgun source, we made the preliminary research on the airgun source, waveform characteristics and the subsurface velocity changes in the northern Tiansh mountain. The results are as follows: The seismic signal exited by the airgun source is characteristic of low-frequency ,and the dominant frequency is in the range of 2 6Hz. The Hutubi transmitting seismic station can continuously generate long-distance detectable and highly repeatable signals, and the correlation coefficient of sigals is greater than 0.95; and the longest propagation distance arrives to 380km, in addition, the 5000-shot stacked sigal using the phase weighted stack technique can be identified in the station, which is about 1300km from the Hutubi transmitting seismic station. Hutubi large-volume airgun source is fitted to detect and monitor the regional-scale subsurface stress state. Applying correlation test method, we measured weak subsurface velocity changes in the northern Tianshan mountain, and found that the several stations, which are within 150km from the the Hutubi transmitting seismic station, appeared 0.1 0.2% relative velocity changes before the Hutubi MS6.2 earthquake on Dec.8, 2016.

  1. xQuake: A Modern Approach to Seismic Network Analytics

    Science.gov (United States)

    Johnson, C. E.; Aikin, K. E.

    2017-12-01

    While seismic networks have expanded over the past few decades, and social needs for accurate and timely information has increased dramatically, approaches to the operational needs of both global and regional seismic observatories have been slow to adopt new technologies. This presentation presents the xQuake system that provides a fresh approach to seismic network analytics based on complexity theory and an adaptive architecture of streaming connected microservices as diverse data (picks, beams, and other data) flow into a final, curated catalog of events. The foundation for xQuake is the xGraph (executable graph) framework that is essentially a self-organizing graph database. An xGraph instance provides both the analytics as well as the data storage capabilities at the same time. Much of the analytics, such as synthetic annealing in the detection process and an evolutionary programing approach for event evolution, draws from the recent GLASS 3.0 seismic associator developed by and for the USGS National Earthquake Information Center (NEIC). In some respects xQuake is reminiscent of the Earthworm system, in that it comprises processes interacting through store and forward rings; not surprising as the first author was the lead architect of the original Earthworm project when it was known as "Rings and Things". While Earthworm components can easily be integrated into the xGraph processing framework, the architecture and analytics are more current (e.g. using a Kafka Broker for store and forward rings). The xQuake system is being released under an unrestricted open source license to encourage and enable sthe eismic community support in further development of its capabilities.

  2. Seismic testing

    International Nuclear Information System (INIS)

    Sollogoub, Pierre

    2001-01-01

    This lecture deals with: qualification methods for seismic testing; objectives of seismic testing; seismic testing standards including examples; main content of standard; testing means; and some important elements of seismic testing

  3. Detection and monitoring of shear crack growth using S-P conversion of seismic waves

    Science.gov (United States)

    Modiriasari, A.; Bobet, A.; Pyrak-Nolte, L. J.

    2017-12-01

    , which causes energy partitioning into P, S, and P-to-S or S-to-P waves. This finding provides a diagnostic method for detecting shear crack initiation and growth using seismic wave conversions. Acknowledgments: This material is based upon work supported by the National Science Foundation, Geomechanics and Geotechnical Systems Program (award No. CMMI-1162082).

  4. Introducing Seismic Tomography with Computational Modeling

    Science.gov (United States)

    Neves, R.; Neves, M. L.; Teodoro, V.

    2011-12-01

    Learning seismic tomography principles and techniques involves advanced physical and computational knowledge. In depth learning of such computational skills is a difficult cognitive process that requires a strong background in physics, mathematics and computer programming. The corresponding learning environments and pedagogic methodologies should then involve sets of computational modelling activities with computer software systems which allow students the possibility to improve their mathematical or programming knowledge and simultaneously focus on the learning of seismic wave propagation and inverse theory. To reduce the level of cognitive opacity associated with mathematical or programming knowledge, several computer modelling systems have already been developed (Neves & Teodoro, 2010). Among such systems, Modellus is particularly well suited to achieve this goal because it is a domain general environment for explorative and expressive modelling with the following main advantages: 1) an easy and intuitive creation of mathematical models using just standard mathematical notation; 2) the simultaneous exploration of images, tables, graphs and object animations; 3) the attribution of mathematical properties expressed in the models to animated objects; and finally 4) the computation and display of mathematical quantities obtained from the analysis of images and graphs. Here we describe virtual simulations and educational exercises which enable students an easy grasp of the fundamental of seismic tomography. The simulations make the lecture more interactive and allow students the possibility to overcome their lack of advanced mathematical or programming knowledge and focus on the learning of seismological concepts and processes taking advantage of basic scientific computation methods and tools.

  5. Detection of induced seismicity due to oil and gas extraction in the northern Gulf of Mexico, USA

    Science.gov (United States)

    Fadugba, Oluwaseun Idowu

    Drilling operations and extraction of oil and gas (O&G) may lead to subsurface slumping or compression of sediments due to reduced vertical principal stress which may lead to small earthquakes at the drilling site. O&G extraction is common in the northern Gulf of Mexico (NGM) and only thirty-five earthquakes of magnitudes between 2.3 and 6.0 have been recorded in the area from 1974 to the present. The purpose of this research is to detect more earthquakes using stacks of seismic data from the Transportable USArray (TA) from 2011 to 2013, and determine the spatiotemporal relationship between the detected earthquakes and O&G extraction. Five new small offshore earthquakes, that may be associated with the offshore O&G production, have been detected in the data. Spatial correlation of the epicenters with offshore drilling sites shows that the earthquakes may be due to the O&G extraction.

  6. Romanian seismic network

    International Nuclear Information System (INIS)

    Ionescu, Constantin; Rizescu, Mihaela; Popa, Mihaela; Grigore, Adrian

    2000-01-01

    The research in the field of seismology in Romania is mainly carried out by the National Institute for Earth Physics (NIEP). The NIEP activities are mainly concerned with the fundamental research financed by research contracts from public sources and the maintenance and operation of the Romanian seismic network. A three stage seismic network is now operating under NIEP, designed mainly to monitor the Vrancea seismic region in a magnitude range from microearthquakes to strong events: - network of 18 short-period seismometers (S13); - Teledyne Geotech Instruments (Texas); - network of 7 stations with local digital recording (PCM-5000) on magnetic tape, made up of, S13 geophone (T=2 s) on vertical component and SH1 geophone (T=5 s) on horizontal components; - network of 28 SMA-1 accelerometers and 30 digital accelerometers (Kinemetrics - K2) installed in the free field conditions in the framework of the joint German-Romanian cooperation program (CRC); the K2 instruments cover a magnitude range from 1.4 to 8.0. Since 1994, MLR (Muntele Rosu) station has become part of the GEOFON network and was provided with high performance broad band instruments. At Bucharest and Timisoara data centers, an automated and networked seismological system performs the on-line digital acquisition and processing of the telemetered data. Automatic processing includes discrimination between local and distant seismic events, earthquake location and magnitude computation, and source parameter determination for local earthquakes. The results are rapidly distributed via Internet, to several seismological services in Europe and USA, to be used in the association/confirmation procedures. Plans for new developments of the network include the upgrade from analog to digital telemetry and new stations for monitoring local seismicity. (authors)

  7. Seismic monitoring of soft-rock landslides: the Super-Sauze and Valoria case studies

    Science.gov (United States)

    Tonnellier, Alice; Helmstetter, Agnès; Malet, Jean-Philippe; Schmittbuhl, Jean; Corsini, Alessandro; Joswig, Manfred

    2013-06-01

    This work focuses on the characterization of seismic sources observed in clay-shale landslides. Two landslides are considered: Super-Sauze (France) and Valoria (Italy). The two landslides are developed in reworked clay-shales but differ in terms of dimensions and displacement rates. Thousands of seismic signals have been identified by a small seismic array in spite of the high-seismic attenuation of the material. Several detection methods are tested. A semi-automatic detection method is validated by the comparison with a manual detection. Seismic signals are classified in three groups based on the frequency content, the apparent velocity and the differentiation of P and S waves. It is supposed that the first group of seismic signals is associated to shearing or fracture events within the landslide bodies, while the second group may correspond to rockfalls or debris flows. A last group corresponds to external earthquakes. Seismic sources are located with an automatic beam-forming location method. Sources are clustered in several parts of the landslide in agreement with geomorphological observations. We found that the rate of rockfall and fracture events increases after periods of heavy rainfall or snowmelt. The rate of microseismicity and rockfall activity is also positively correlated with landslide displacement rates. External earthquakes did not influence the microseismic activity or the landslide movement, probably because the earthquake ground motion was too weak to trigger landslide events during the observation periods.

  8. Site study plan for EDBH [Engineering Design Boreholes] seismic surveys, Deaf Smith County site, Texas: Revision 1

    International Nuclear Information System (INIS)

    Hume, H.

    1987-12-01

    This site study plan describes seismic reflection surveys to run north-south and east-west across the Deaf Smith County site, and intersecting near the Engineering Design Boreholes (EDBH). Both conventional and shallow high-resolution surveys will be run. The field program has been designed to acquire subsurface geologic and stratigraphic data to address information/data needs resulting from Federal and State regulations and Repository program requirements. The data acquired by the conventional surveys will be common-depth- point, seismic reflection data optimized for reflection events that indicate geologic structure near the repository horizon. The data will also resolve the basement structure and shallow reflection events up to about the top of the evaporite sequence. Field acquisition includes a testing phase to check/select parameters and a production phase. The field data will be subjected immediately to conventional data processing and interpretation to determine if there are any anamolous structural for stratigraphic conditions that could affect the choice of the EDBH sites. After the EDBH's have been drilled and logged, including vertical seismic profiling, the data will be reprocessed and reinterpreted for detailed structural and stratigraphic information to guide shaft development. The shallow high-resulition seismic reflection lines will be run along the same alignments, but the lines will be shorter and limited to immediate vicinity of the EDBH sites. These lines are planned to detect faults or thick channel sands that may be present at the EDBH sites. 23 refs. , 7 figs., 5 tabs

  9. Seismic investigations of the HDR Safety Program. Summary report

    International Nuclear Information System (INIS)

    Malcher, L.; Schrammel, D.; Steinhilber, H.; Kot, C.A.

    1994-08-01

    The primary objective of the seismic investigations, performed at the HDR facility in Kahl/Main, FRG was to validate calculational methods for the seismic evaluation of nuclear-reactor systems, using experimental data from an actual nuclear plant. Using eccentric mass shaker excitation the HDR soil/structure system was tested to incipient failure, exhibiting highly nonlinear response and demonstrating that structures not seismically designed can sustain loads equivalent to a design basin earthquake (DBE). Load transmission from the structure to piping/equipment indicated significant response amplifications and shifts to higher frequencies, while the response of tanks/vessels depended mainly on their support conditions. The evaluation of various piping support configurations demonstrated that proper system design (for a given spectrum) rather than number of supports or system stiffness is important to limiting pipe greens. Piping at loads exceeding the DBE eightfold still had significant margins and failure is improbable inspite of multiple support failures. The mean value for pipe damping, even under extreme loads, was found to be about 4%. Comparison of linear and nonlinear computational results with piping response measurements showed that predictions have a wide scatter and do not necessarily yield conservative responses underpredicting, in particular, peak support forces. For the soil/structure system the quality of the predictions did not depend so much on the complexity of the modeling, but rather on whether the model captured the salient features and nonlinearities of the system

  10. Cost reduction through improved seismic design

    International Nuclear Information System (INIS)

    Severud, L.K.

    1984-01-01

    During the past decade, many significnt seismic technology developments have been accomplished by the United States Department of Energy (USDOE) programs. Both base technology and major projects, such as the Fast Flux Test Facility (FFTF) and the Clinch River Breeder Reactor (CRBR) plant, have contributed to seismic technology development and validation. Improvements have come in the areas of ground motion definitions, soil-structure interaction, and structural analysis methods and criteria for piping, equipment, components, reactor core, and vessels. Examples of some of these lessons learned and technology developments are provided. Then, the highest priority seismic technology needs, achievable through DOE actions and sponsorship are identified and discussed. Satisfaction of these needs are expected to make important contributions toward cost avoidances and reduced capital costs of future liquid metal nuclear plants. 23 references, 12 figures

  11. HTGR core seismic analysis using an array processor

    International Nuclear Information System (INIS)

    Shatoff, H.; Charman, C.M.

    1983-01-01

    A Floating Point Systems array processor performs nonlinear dynamic analysis of the high-temperature gas-cooled reactor (HTGR) core with significant time and cost savings. The graphite HTGR core consists of approximately 8000 blocks of various shapes which are subject to motion and impact during a seismic event. Two-dimensional computer programs (CRUNCH2D, MCOCO) can perform explicit step-by-step dynamic analyses of up to 600 blocks for time-history motions. However, use of two-dimensional codes was limited by the large cost and run times required. Three-dimensional analysis of the entire core, or even a large part of it, had been considered totally impractical. Because of the needs of the HTGR core seismic program, a Floating Point Systems array processor was used to enhance computer performance of the two-dimensional core seismic computer programs, MCOCO and CRUNCH2D. This effort began by converting the computational algorithms used in the codes to a form which takes maximum advantage of the parallel and pipeline processors offered by the architecture of the Floating Point Systems array processor. The subsequent conversion of the vectorized FORTRAN coding to the array processor required a significant programming effort to make the system work on the General Atomic (GA) UNIVAC 1100/82 host. These efforts were quite rewarding, however, since the cost of running the codes has been reduced approximately 50-fold and the time threefold. The core seismic analysis with large two-dimensional models has now become routine and extension to three-dimensional analysis is feasible. These codes simulate the one-fifth-scale full-array HTGR core model. This paper compares the analysis with the test results for sine-sweep motion

  12. seismic-py: Reading seismic data with Python

    Directory of Open Access Journals (Sweden)

    2008-08-01

    Full Text Available The field of seismic exploration of the Earth has changed
    dramatically over the last half a century. The Society of Exploration
    Geophysicists (SEG has worked to create standards to store the vast
    amounts of seismic data in a way that will be portable across computer
    architectures. However, it has been impossible to predict the needs of the
    immense range of seismic data acquisition systems. As a result, vendors have
    had to bend the rules to accommodate the needs of new instruments and
    experiment types. For low level access to seismic data, there is need for a
    standard open source library to allow access to a wide range of vendor data
    files that can handle all of the variations. A new seismic software package,
    seismic-py, provides an infrastructure for creating and managing drivers for
    each particular format. Drivers can be derived from one of the known formats
    and altered to handle any slight variations. Alternatively drivers can be
    developed from scratch for formats that are very different from any previously
    defined format. Python has been the key to making driver development easy
    and efficient to implement. The goal of seismic-py is to be the base system
    that will power a wide range of experimentation with seismic data and at the
    same time provide clear documentation for the historical record of seismic
    data formats.

  13. The Time-Frequency Signatures of Advanced Seismic Signals Generated by Debris Flows

    Science.gov (United States)

    Chu, C. R.; Huang, C. J.; Lin, C. R.; Wang, C. C.; Kuo, B. Y.; Yin, H. Y.

    2014-12-01

    The seismic monitoring is expected to reveal the process of debris flow from the initial area to alluvial fan, because other field monitoring techniques, such as the video camera and the ultrasonic sensor, are limited by detection range. For this reason, seismic approaches have been used as the detection system of debris flows over the past few decades. The analysis of the signatures of the seismic signals in time and frequency domain can be used to identify the different phases of debris flow. This study dedicates to investigate the different stages of seismic signals due to debris flow, including the advanced signal, the main front, and the decaying tail. Moreover, the characteristics of the advanced signals forward to the approach of main front were discussed for the warning purpose. This study presents a permanent system, composed by two seismometers, deployed along the bank of Ai-Yu-Zi Creek in Nantou County, which is one of the active streams with debris flow in Taiwan. The three axes seismometer with frequency response of 7 sec - 200 Hz was developed by the Institute of Earth Sciences (IES), Academia Sinica for the purpose to detect debris flow. The original idea of replacing the geophone system with the seismometer technique was for catching the advanced signals propagating from the upper reach of the stream before debris flow arrival because of the high sensitivity. Besides, the low frequency seismic waves could be also early detected because of the low attenuation. However, for avoiding other unnecessary ambient vibrations, the sensitivity of seismometer should be lower than the general seismometer for detecting teleseism. Three debris flows with different mean velocities were detected in 2013 and 2014. The typical triangular shape was obviously demonstrated in time series data and the spectrograms of the seismic signals from three events. The frequency analysis showed that enormous debris flow bearing huge boulders would induce low frequency seismic

  14. Seismic recording at the Los Medanos area of Southeastern New Mexico, 1974-1975

    International Nuclear Information System (INIS)

    Sanford, A.R.; Johansen, S.J.; Caravella, F.J.; Ward, R.M.

    1976-01-01

    The objective has been to determine if low-level seismic activity is occurring at or near the proposed nuclear waste repository in southeastern New Mexico. The research involved installation and maintenance of a continuously recording seismograph at the Los Medanos site and interpretation of the seismic events detected by that station. The following topics are discussed: (1) a description of the seismic instrumentation and its performance; (2) statistics on the local and regional earthquakes detected by the seismograph station at the Los Medanos site; (3) special studies on the seismic events associated with rockfalls at the National Potash Co. Eddy County Mine on July 26, 1972 and November 28, 1974; and (4) improved estimates of recurrence intervals for major earthquakes likely to effect the Los Medanos site

  15. Naturally fractured tight gas: Gas reservoir detection optimization. Quarterly report, January 1--March 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    Economically viable natural gas production from the low permeability Mesaverde Formation in the Piceance Basin, Colorado requires the presence of an intense set of open natural fractures. Establishing the regional presence and specific location of such natural fractures is the highest priority exploration goal in the Piceance and other western US tight, gas-centered basins. Recently, Advanced Resources International, Inc. (ARI) completed a field program at Rulison Field, Piceance Basin, to test and demonstrate the use of advanced seismic methods to locate and characterize natural fractures. This project began with a comprehensive review of the tectonic history, state of stress and fracture genesis of the basin. A high resolution aeromagnetic survey, interpreted satellite and SLAR imagery, and 400 line miles of 2-D seismic provided the foundation for the structural interpretation. The central feature of the program was the 4.5 square mile multi-azimuth 3-D seismic P-wave survey to locate natural fracture anomalies. The interpreted seismic attributes are being tested against a control data set of 27 wells. Additional wells are currently being drilled at Rulison, on close 40 acre spacings, to establish the productivity from the seismically observed fracture anomalies. A similar regional prospecting and seismic program is being considered for another part of the basin. The preliminary results indicate that detailed mapping of fault geometries and use of azimuthally defined seismic attributes exhibit close correlation with high productivity gas wells. The performance of the ten new wells, being drilled in the seismic grid in late 1996 and early 1997, will help demonstrate the reliability of this natural fracture detection and mapping technology.

  16. Seismic hazard review for the systematic evaluation program: a use of probability in decision making

    International Nuclear Information System (INIS)

    Reiter, L.; Jackson, R.E.

    1983-03-01

    This document presents the US Nuclear Regulatory Commission (NRC) Geosciences Branch review and recommendations with respect to earthquake ground motion considerations in the Systematic Evaluation Program (SEP) Phases I and II. It evaluates the probabilistic estimates presented in the 5-volume report entitled Seismic Hazard Analysis (NUREG/CR-1582) and compares and modifies them to take into account deterministic estimates. It presents the NRC's Geosciences Branch first approach to utilizing complex state-of-the-art probabilistic studies in an area where probabilistic criteria have not yet been set and where decisions for specific plants have been previously made in a non-probabilistic way

  17. Seismic scanning tunneling macroscope - Theory

    KAUST Repository

    Schuster, Gerard T.

    2012-09-01

    We propose a seismic scanning tunneling macroscope (SSTM) that can detect the presence of sub-wavelength scatterers in the near-field of either the source or the receivers. Analytic formulas for the time reverse mirror (TRM) profile associated with a single scatterer model show that the spatial resolution limit to be, unlike the Abbe limit of λ/2, independent of wavelength and linearly proportional to the source-scatterer separation as long as the point scatterer is in the near-field region; if the sub-wavelength scatterer is a spherical impedance discontinuity then the resolution will also be limited by the radius of the sphere. Therefore, superresolution imaging can be achieved as the scatterer approaches the source. This is analogous to an optical scanning tunneling microscope that has sub-wavelength resolution. Scaled to seismic frequencies, it is theoretically possible to extract 100 Hz information from 20 Hz data by imaging of near-field seismic energy.

  18. Seismic scanning tunneling macroscope - Theory

    KAUST Repository

    Schuster, Gerard T.; Hanafy, Sherif M.; Huang, Yunsong

    2012-01-01

    We propose a seismic scanning tunneling macroscope (SSTM) that can detect the presence of sub-wavelength scatterers in the near-field of either the source or the receivers. Analytic formulas for the time reverse mirror (TRM) profile associated with a single scatterer model show that the spatial resolution limit to be, unlike the Abbe limit of λ/2, independent of wavelength and linearly proportional to the source-scatterer separation as long as the point scatterer is in the near-field region; if the sub-wavelength scatterer is a spherical impedance discontinuity then the resolution will also be limited by the radius of the sphere. Therefore, superresolution imaging can be achieved as the scatterer approaches the source. This is analogous to an optical scanning tunneling microscope that has sub-wavelength resolution. Scaled to seismic frequencies, it is theoretically possible to extract 100 Hz information from 20 Hz data by imaging of near-field seismic energy.

  19. 4-D High-Resolution Seismic Reflection Monitoring of Miscible CO2 Injected into a Carbonate Reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Richard D. Miller; Abdelmoneam E. Raef; Alan P. Byrnes; William E. Harrison

    2007-06-30

    The objective of this research project was to acquire, process, and interpret multiple high-resolution 3-D compressional wave and 2-D, 2-C shear wave seismic data in the hopes of observing changes in fluid characteristics in an oil field before, during, and after the miscible carbon dioxide (CO{sub 2}) flood that began around December 1, 2003, as part of the DOE-sponsored Class Revisit Project (DOE No.DE-AC26-00BC15124). Unique and key to this imaging activity is the high-resolution nature of the seismic data, minimal deployment design, and the temporal sampling throughout the flood. The 900-m-deep test reservoir is located in central Kansas oomoldic limestones of the Lansing-Kansas City Group, deposited on a shallow marine shelf in Pennsylvanian time. After 30 months of seismic monitoring, one baseline and eight monitor surveys clearly detected changes that appear consistent with movement of CO{sub 2} as modeled with fluid simulators and observed in production data. Attribute analysis was a very useful tool in enhancing changes in seismic character present, but difficult to interpret on time amplitude slices. Lessons learned from and tools/techniques developed during this project will allow high-resolution seismic imaging to be routinely applied to many CO{sub 2} injection programs in a large percentage of shallow carbonate oil fields in the midcontinent.

  20. Seismic rehabilitation and analysis of Chaohe earth dam

    Science.gov (United States)

    Fu, Lei; Zeng, Xiangwu

    2005-12-01

    Stability of earth dams during earthquakes has been a major concern for geotechnical engineers in seismic active regions. Liquefaction induced slope failure occurred at the upstream slope of a major earth dam in the suburb of Beijing, China, during the 1976 Tangshan Earthquake. The gravelly soil with loose initial condition liquefied under relatively small ground vibration. In recent years, a major seismic rehabilitation project was carried out on a similar earth dam nearby using dumped quarry stone. Seismic stability analysis was carried out using model test, finite element simulation, and pseudo-static slope stability program after taking into account the influence of excess pore pressure.

  1. Seismicity within the Irpinia Fault System As Monitored By Isnet (Irpinia Seismic Network) and Its Possible Relation with Fluid Storage

    Science.gov (United States)

    Festa, G.; Zollo, A.; Amoroso, O.; Ascione, A.; Colombelli, S.; Elia, L.; Emolo, A.; Martino, C.; Mazzoli, S.; Orefice, A.; Russo, G.

    2014-12-01

    ISNet (http://isnet.fisica.unina.it) is deployed in Southern Apennines along the active fault system responsible for the 1980, M 6.9 Irpinia earthquake. ISNet consists of 32 seismic stations equipped with both strong motion and velocimetric instruments (either broadband or short-period), with the aim of capture a broad set of seismic signals, from ambient noise to strong motion. Real time and near real time procedures run at ISNet with the goal of monitoring the seismicity, check possible space-time anomalies, detect seismic sequences and launch an earthquake early warning in the case of potential significant ground shaking in the area. To understand the role of fluids on the seismicity of the area, we investigated velocity and attenuation models. The former is built from accurate cross-correlation picking and S wave detection based onto polarization analysis. Joint inversion of both P and S arrival times is then based on a linearized multi-scale tomographic approach. Attenuation is instead obtained from inversion of displacement spectra, deconvolving for the source effect. High VP/VS and QS/QP >1 were found within a ~15 km wide rock volume where intense microseismicity is located. This indicates that concentration of seismicity is possibly controlled by high pore fluid pressure. This earthquake reservoir may come from a positive feedback between the seismic pumping that controls the fluid transmission through the fractured damage zone and the low permeability of cross fault barrier, increasing the fluid pore pressure within the fault bounded block. In this picture, sequences mostly occur at the base of this fluid rich layer. They show an anomalous pattern in the earthquake occurrence per magnitude classes; main events evolve with a complex source kinematics, as obtained from backprojection of apparent source time functions, indicating possible directivity effects. In this area sequences might be the key for understanding the transition between the deep

  2. General discrimination technique to determine between earthquake and nuclear test with seismic data

    International Nuclear Information System (INIS)

    Bashillah Baharuddin; Alawiah Musa; Roslan Mohd Ali

    2007-01-01

    The Comprehensive Nuclear-Test-Ban Treaty (CTBT) was developed to ban of any nuclear weapon test explosion moreover will restrict the development and qualitative improvement of nuclear weapons and end the development of advanced new types of these weapons. The Treaty provides for a comprehensive global verification regime, which includes an International Monitoring System (IMS). The IMS comprises a network of 321 monitoring stations and 16 radionuclide laboratories that monitor the Earth for evidence of nuclear explosions, which cover underground, underwater and atmosphere environments. Presently, Malaysia receives seismic, infrasound, hydroacoustic and radionuclide data from the International Data Centre (IDC) of the CTBT. In order to maximise the use of the data for the purposes of the CTBT, the Malaysian Nuclear Agency is developing capability to analyse the data in order to detect nuclear weapon test, with an initial focus on the seismic data. Through the CTBT IMS, seismic data is constantly being obtained to monitor and detect nuclear explosions. However, in the process, other natural and man-made activities that generate seismic waves, especially earthquakes and large man-made explosions, are also detectable through the IMS, and need to be differentiated and discriminated before any nuclear explosions can be identified. The detection capability by using seismological methods was proven through simulated explosion tests at selected nuclear weapon test sites. This is supported by data previously collected from a total of 2089 nuclear weapon tests that have been carried out globally, out of which 1567 were underground, 514 in the atmosphere, including outer space, and 8 underwater. The discrimination of seismic data to detect nuclear explosions from natural earthquake and explosions can be undertaken through the identification of the epicentre location, hypocentre depth, magnitude and short-period discrimination of the seismic events. (Author)

  3. A New Moonquake Catalog from Apollo 17 Seismic Data II: Lunar Surface Gravimeter: Implications of Expanding the Passive Seismic Array

    Science.gov (United States)

    Phillips, D.; Dimech, J. L.; Weber, R. C.

    2017-12-01

    Apollo 17's Lunar Surface Gravimeter (LSG) was deployed on the Moon in 1972, and was originally intended to detect gravitational waves as a confirmation of Einstein's general theory of relativity. Due to a design problem, the instrument did not function as intended. However, remotely-issued reconfiguration commands permitted the instrument to act effectively as a passive seismometer. LSG recorded continuously until Sept. 1977, when all surface data recording was terminated. Because the instrument did not meet its primary science objective, little effort was made to archive the data. Most of it was eventually lost, with the exception of data spanning the period March 1976 until Sept. 1977, and a recent investigation demonstrated that LSG data do contain moonquake signals (Kawamura et al., 2015). The addition of useable seismic data at the Apollo 17 site has important implications for event location schemes, which improve with increasing data coverage. All previous seismic event location attempts were limited to the four stations deployed at the Apollo 12, 14, 15, and 16 sites. Apollo 17 extends the functional aperture of the seismic array significantly to the east, permitting more accurate moonquake locations and improved probing of the lunar interior. Using the standard location technique of linearized arrival time inversion through a known velocity model, Kawamura et al. (2015) used moonquake signals detected in the LSG data to refine location estimates for 49 deep moonquake clusters, and constrained new locations for five previously un-located clusters. Recent efforts of the Apollo Lunar Surface Experiments Package Data Recovery Focus Group have recovered some of the previously lost LSG data, spanning the time period April 2, 1975 to June 30, 1975. In this study, we expand Kawamura's analysis to the newly recovered data, which contain over 200 known seismic signals, including deep moonquakes, shallow moonquakes, and meteorite impacts. We have completed initial

  4. The New Italian Seismic Hazard Model

    Science.gov (United States)

    Marzocchi, W.; Meletti, C.; Albarello, D.; D'Amico, V.; Luzi, L.; Martinelli, F.; Pace, B.; Pignone, M.; Rovida, A.; Visini, F.

    2017-12-01

    In 2015 the Seismic Hazard Center (Centro Pericolosità Sismica - CPS) of the National Institute of Geophysics and Volcanology was commissioned of coordinating the national scientific community with the aim to elaborate a new reference seismic hazard model, mainly finalized to the update of seismic code. The CPS designed a roadmap for releasing within three years a significantly renewed PSHA model, with regard both to the updated input elements and to the strategies to be followed. The main requirements of the model were discussed in meetings with the experts on earthquake engineering that then will participate to the revision of the building code. The activities were organized in 6 tasks: program coordination, input data, seismicity models, ground motion predictive equations (GMPEs), computation and rendering, testing. The input data task has been selecting the most updated information about seismicity (historical and instrumental), seismogenic faults, and deformation (both from seismicity and geodetic data). The seismicity models have been elaborating in terms of classic source areas, fault sources and gridded seismicity based on different approaches. The GMPEs task has selected the most recent models accounting for their tectonic suitability and forecasting performance. The testing phase has been planned to design statistical procedures to test with the available data the whole seismic hazard models, and single components such as the seismicity models and the GMPEs. In this talk we show some preliminary results, summarize the overall strategy for building the new Italian PSHA model, and discuss in detail important novelties that we put forward. Specifically, we adopt a new formal probabilistic framework to interpret the outcomes of the model and to test it meaningfully; this requires a proper definition and characterization of both aleatory variability and epistemic uncertainty that we accomplish through an ensemble modeling strategy. We use a weighting scheme

  5. Fluid injection and induced seismicity

    Science.gov (United States)

    Kendall, Michael; Verdon, James

    2016-04-01

    The link between fluid injection, or extraction, and induced seismicity has been observed in reservoirs for many decades. In fact spatial mapping of low magnitude events is routinely used to estimate a stimulated reservoir volume. However, the link between subsurface fluid injection and larger felt seismicity is less clear and has attracted recent interest with a dramatic increase in earthquakes associated with the disposal of oilfield waste fluids. In a few cases, hydraulic fracturing has also been linked to induced seismicity. Much can be learned from past case-studies of induced seismicity so that we can better understand the risks posed. Here we examine 12 case examples and consider in particular controls on maximum event size, lateral event distributions, and event depths. Our results suggest that injection volume is a better control on maximum magnitude than past, natural seismicity in a region. This might, however, simply reflect the lack of baseline monitoring and/or long-term seismic records in certain regions. To address this in the UK, the British Geological Survey is leading the deployment of monitoring arrays in prospective shale gas areas in Lancashire and Yorkshire. In most cases, seismicity is generally located in close vicinity to the injection site. However, in some cases, the nearest events are up to 5km from the injection point. This gives an indication of the minimum radius of influence of such fluid injection projects. The most distant events are never more than 20km from the injection point, perhaps implying a maximum radius of influence. Some events are located in the target reservoir, but most occur below the injection depth. In fact, most events lie in the crystalline basement underlying the sedimentary rocks. This suggests that induced seismicity may not pose a leakage risk for fluid migration back to the surface, as it does not impact caprock integrity. A useful application for microseismic data is to try and forecast induced seismicity

  6. U.S. Nuclear Regulatory Commission seismic regulations, research, and emerging trends

    International Nuclear Information System (INIS)

    Chokshi, N.C.; Shao, L.C.; Apostolakis, G.

    1997-01-01

    Historically in the United States, seismic issues have played an important role in determining site suitability and, in some cases, have determined the ultimate fate of power plants. During the late 1960s and early 1970s, a seismic design philosophy evolved as the licensing of the earlier plants was in progress. Concepts such as the Safe Shutdown Earthquake (SSE) and the Operating Basis Earthquake (OBE) emerged and were codified into the federal regulations with the publication in December 1973 of Appendix A, 'Seismic and Geologic Siting Criteria for Nuclear Power Plants,' to 10 CFR Part 100, 'Reactor Site Criteria.' Seismic considerations are also important in siting and design of other fuel cycle and waste facilities. In this paper, a brief overview of the current seismic siting and design regulations are described along with some recent and planned changes based on the past experience, advancement in the state-of-the-art, and research results. In particular, the recently revised siting rule and use of the probabilistic seismic hazard analysis in implementation of the rule will be described in more detail. The paper includes discussion of some recent seismic issues and research activities, including issues related to aging. Some emerging trends are highlighted. In particular, the paper focuses on use of 'expert opinion' in the probabilistic analysis and risk informed regulations and their implications to the seismic design. An additional focus is on international cooperative programs and how to initiate such programs such that better use can be made of limited resources to resolve issues of common interest. (author)

  7. U.S. Nuclear Regulatory Commission seismic regulations, research, and emerging trends

    Energy Technology Data Exchange (ETDEWEB)

    Chokshi, N C; Shao, L C [Nuclear Regulatory Commission, Washington, DC (United States). Office of Nuclear Regulatory Research; Apostolakis, G

    1997-03-01

    Historically in the United States, seismic issues have played an important role in determining site suitability and, in some cases, have determined the ultimate fate of power plants. During the late 1960s and early 1970s, a seismic design philosophy evolved as the licensing of the earlier plants was in progress. Concepts such as the Safe Shutdown Earthquake (SSE) and the Operating Basis Earthquake (OBE) emerged and were codified into the federal regulations with the publication in December 1973 of Appendix A, `Seismic and Geologic Siting Criteria for Nuclear Power Plants,` to 10 CFR Part 100, `Reactor Site Criteria.` Seismic considerations are also important in siting and design of other fuel cycle and waste facilities. In this paper, a brief overview of the current seismic siting and design regulations are described along with some recent and planned changes based on the past experience, advancement in the state-of-the-art, and research results. In particular, the recently revised siting rule and use of the probabilistic seismic hazard analysis in implementation of the rule will be described in more detail. The paper includes discussion of some recent seismic issues and research activities, including issues related to aging. Some emerging trends are highlighted. In particular, the paper focuses on use of `expert opinion` in the probabilistic analysis and risk informed regulations and their implications to the seismic design. An additional focus is on international cooperative programs and how to initiate such programs such that better use can be made of limited resources to resolve issues of common interest. (author)

  8. The forecast of mining-induced seismicity and the consequent risk of damage to the excavation in the area of seismic event

    Directory of Open Access Journals (Sweden)

    Jan Drzewiecki

    2017-01-01

    Full Text Available The Central Mining Institute has developed a method for forecasting the amount of seismic energy created by tremors induced by mining operations. The results of geophysical measurements of S wave velocity anomalies in a rock mass or the results of analytic calculations of the values of pressure on the horizon of the elastic layers are used in the process of calculating the energy. The calculation program which has been developed and adopted has been modified over recent years and it now enables not only the prediction of the energy of dynamic phenomena induced by mining but also the forecasting of the devastating range of seismic shock. The results obtained from this calculation, usually presented in a more readable graphic form, are useful for the macroscopic evaluation of locations that are potential sources of seismic energy. Forecasting of the maximum energy of seismic shock without prior knowledge of the location of the shock's source, does not allow shock attenuation that results from, for example, a distance of tremor source from the excavation which will be affected by seismic energy, to be taken into consideration. The phenomena of energy dissipation, which is taken into account in the forecasts, create a new quality of assessment of threat to the excavation. The paper presents the principle of a method of forecasting the seismic energy of a shock and the risk of damage to the excavation as a result of the impact of its energy wave. The solution assumes that the source of the energy shock is a resilient layer in which the sum of the gravitational stresses, resulting from natural disturbances and those induced by the conducted or planned mining exploitation, is estimated. The proposed solution assumes a spherical model for the tremor source, for which seismic energy is forecasted as a function of the longwall advance and the elementary value of seismic energy destroying the excavation. Subsequently, the following are calculated for the

  9. Calculating seismic of slabs ITA NNP Garona

    International Nuclear Information System (INIS)

    Ezeberry, J. I.; Guerrero, A.; Gamarra, J.; Beltran, F.

    2014-01-01

    This article describes the methodology that Idom has employed to perform the seismic evaluation of slabs within the ITA project of the NPP Santa Maria de Garona. Seismic calculations that have been conducted include consideration of the effects of the interaction of soil structure as well as the possible take-off containers with respect to slab during the earthquake. Therefore, the main contribution of the work is the study of the coupling of rolling containers with the flexibility of the whole ground-slab For calculations has been used ABAQUS/Explicit program, allowing to solve effectively the nonlinearities listed above using explicit integration algorithms over time. The results of the calculations reflect the importance of jointly analyse the seismic responses of slab and containers. (Author)

  10. Seismic stops for nuclear power plants

    International Nuclear Information System (INIS)

    Cloud, R.L.; Leung, J.S.M.; Anderson, P.H.

    1989-01-01

    In the regulated world of nuclear power, the need to have analytical proof of performance in hypothetical design-basis events such as earth quakes has placed a premium on design configurations that are mathematically tractable and easily analyzed. This is particularly true for the piping design. Depending on how the piping analyses are organized and on how old the plant is, there may be from 200 to 1000 separate piping runs to be designed, analyzed, and qualified. In this situation, the development of snubbers seemed like the answer to a piping engineer's prayer. At any place where seismic support was required but thermal motion had to be accommodated, a snubber could be specified. But, as experience has now shown, the program was solved only on paper. This article presents an alternative to conventional snubbers. These new devices, termed Seismic Stops are designed to replace snubbers directly and look like snubbers on the outside. But their design is based on a completely different principle. The original concept has adapted from early seismic-resistant pipe support designs used on fossil power plants in California. The fundamental idea is to provide a space envelope in which the pipe can expand freely between the hot and cold positions, but cannot move outside the envelope. Seismic Stops are designed to transmit any possible impact load, as would occur in an earthquake, away from the pipe itself to the Seismic Stop. The Seismic Stop pipe support is shown

  11. Seismic design of nuclear power plants - an assessment

    International Nuclear Information System (INIS)

    Howard, G.E.; Ibanez, P.; Smith, C.B.

    1976-01-01

    This paper presents a review and evaluation of the design standards and the analytical and experimental methods used in the seismic design of nuclear power plants with emphasis on United States practice. Three major areas were investigated: (a) soils, siting, and seismic ground motion specification; (b) soil-structure interaction; and (c) the response of major nuclear power plant structures and components. The purpose of this review and evaluation program was to prepare an independent assessment of the state-of-the-art of the seismic design of nuclear power plants and to identify seismic analysis and design research areas meriting support by the various organizations comprising the 'nuclear power industry'. Criteria used for evaluating the relative importance of alternative research areas included the potential research impact on nuclear power plant siting, design, construction, cost, safety, licensing, and regulation. (Auth.)

  12. IAEA specialists' meeting on seismic isolation technology. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-07-01

    The objective of the Meeting on Seismic Isolation Technology was to provide a forum for review and discussion of seismic isolation technology applicable to thermal and fast reactors. The meeting was conducted consistent with the recommendations of the IAEA Working Group Meeting on Fast Breeder Reactor-Block Antiseismic Design and Verification in October 1987, to augment a coordinated research program with specific recommendations and an assessment of technology in the area of seismic isolation. Seismic isolation has become an attractive means for mitigating the consequences of severe earthquakes. Although the general idea of seismic isolation has been considered since the turn of the century, real practical applications have evolved, at an accelerating pace, over the last fifteen years aided by several key developments: (1) recent advances in hardware developments in the form of reliable elastomer bearings, (2) development of reliable analytical methods for the prediction of dynamic responses of structures (3) construction of large bearing test machines and large shake tables to simulate earthquake effects on structures for validation analytical models and demonstration of performance characteristics, and (4) advances in seismological engineering. Although the applications and developments of seismic isolation technology have mainly benefited commercial facilities and structures, including office buildings, research laboratories, hospitals, museums, bridges, ship loaders, etc., several seismically isolated nuclear facilities were implemented: the four 900 MWe pressurized water reactor units of the Cruas plant in France, the two Framatome units in Koeberg, South Africa, a nuclear waste storage facility in France and a nuclear fuel reprocessing plant in England. The scope of this specialists' meeting was to review the state-of-the-art technology related to the performance of seismic isolator elements and systems, performance limits and margins, criteria for the

  13. IAEA specialists' meeting on seismic isolation technology. Proceedings

    International Nuclear Information System (INIS)

    1992-01-01

    The objective of the Meeting on Seismic Isolation Technology was to provide a forum for review and discussion of seismic isolation technology applicable to thermal and fast reactors. The meeting was conducted consistent with the recommendations of the IAEA Working Group Meeting on Fast Breeder Reactor-Block Antiseismic Design and Verification in October 1987, to augment a coordinated research program with specific recommendations and an assessment of technology in the area of seismic isolation. Seismic isolation has become an attractive means for mitigating the consequences of severe earthquakes. Although the general idea of seismic isolation has been considered since the turn of the century, real practical applications have evolved, at an accelerating pace, over the last fifteen years aided by several key developments: (1) recent advances in hardware developments in the form of reliable elastomer bearings, (2) development of reliable analytical methods for the prediction of dynamic responses of structures (3) construction of large bearing test machines and large shake tables to simulate earthquake effects on structures for validation analytical models and demonstration of performance characteristics, and (4) advances in seismological engineering. Although the applications and developments of seismic isolation technology have mainly benefited commercial facilities and structures, including office buildings, research laboratories, hospitals, museums, bridges, ship loaders, etc., several seismically isolated nuclear facilities were implemented: the four 900 MWe pressurized water reactor units of the Cruas plant in France, the two Framatome units in Koeberg, South Africa, a nuclear waste storage facility in France and a nuclear fuel reprocessing plant in England. The scope of this specialists' meeting was to review the state-of-the-art technology related to the performance of seismic isolator elements and systems, performance limits and margins, criteria for the

  14. Historical seismicity in France. Its role in the assessment of seismic risk on French nuclear sites

    International Nuclear Information System (INIS)

    Levret, A.

    1987-11-01

    Since 1975 in order to be in conformity with the requirements of the French nuclear program, a review of historical seismicity was undertaken in France. The assessment of seismic hazard for the safety of nuclear plants is in fact based upon a seismotectonic approach which needs to take into account the seismic activity over as long a period of time as possible. The method adopted for reviewing historical earthquakes entails a systematic consultation of the original sources and a critical analysis there of in the light of the historical, geographical and political contexts of the time. The same standards apply where the acquisition of new elements of information is involved. Each item of information is assigned a degree of reliability, then compiled in a computer file, up-dated annually; this file currently contains more than 4.500 events covering a period of time of about a millenary

  15. Integrated circuit for processing a low-frequency signal from a seismic detector

    Energy Technology Data Exchange (ETDEWEB)

    Malashevich, N. I.; Roslyakov, A. S.; Polomoshnov, S. A., E-mail: S.Polomoshnov@tsen.ru; Fedorov, R. A. [Research and Production Complex ' Technological Center' of the Moscow Institute of Electronic Technology (Russian Federation)

    2011-12-15

    Specific features for the detection and processing of a low-frequency signal from a seismic detector are considered in terms of an integrated circuit based on a large matrix crystal of the 5507 series. This integrated circuit is designed for the detection of human movements. The specific features of the information signal, obtained at the output of the seismic detector, and the main characteristics of the integrated circuit and its structure are reported.

  16. Seismic evaluation of non-seismically designed existing Magnox nuclear power plants

    International Nuclear Information System (INIS)

    Kunar, R.R.

    1984-01-01

    The philosophy and method adopted for the seismic assessment of three existing Magnox nuclear stations in the United Kingdom are presented in this paper. The plants were not seismically designed. The particular procedures that were applied were tailored to suit the difficulties of lack of data which is somewhat inevitable for plants designed and built about 25 to 30 years ago. Special procedures included on-site testing with a portable shake table, low vibration testing using a structural dynamics analyser, and on-site inspections. The low vibration testing was most invaluable in detecting differences between 'as-built' conditions and the engineering drawings. From the point of view of economics, this was more effective than conducting full structural surveys to determine the as-built conditions. The testing results also provided confidence in the answers from numerical models. The philosophy adopted for the Magnox reactors in the seismic assessment was to determine what peak ground accelerations the sites can sustain and then evaluate the chances of exceeding the ground accelerations over the remaining lifetime of the plants. The peak ground acceleration for each site was determined on the basis of the criteria of safe shutdown and prevention of significant off-site radiological exposure

  17. Seismic hazard assessment for the Caucasus test area

    Czech Academy of Sciences Publication Activity Database

    Balassanian, S.; Ashirov, T.; Chelidze, T.; Gassanov, A.; Kondorskaya, N.; Molchan, G.; Pustovitenko, B.; Trifonov, V.; Ulomov, V.; Giardini, D.; Erdik, M.; Ghafory-Ashtiany, M.; Grunthal, G.; Mayer-Rosa, D.; Schenk, Vladimír; Stucchi, M.

    1999-01-01

    Roč. 42, č. 6 (1999), s. 1139-1151 ISSN 0365-2556 R&D Projects: GA AV ČR Global Seismic Hazard Assessment Program (GSHAP) - project of the UN International Decade of Natural Disaster Reduction and International Litosphere Program. Subject RIV: DC - Siesmology, Volcanology, Earth Structure

  18. Study on structural seismic margin and probabilistic seismic risk. Development of a structural capacity-seismic risk diagram

    International Nuclear Information System (INIS)

    Nakajima, Masato; Ohtori, Yasuki; Hirata, Kazuta

    2010-01-01

    Seismic margin is extremely important index and information when we evaluate and account seismic safety of critical structures, systems and components quantitatively. Therefore, it is required that electric power companies evaluate the seismic margin of each plant in back-check of nuclear power plants in Japan. The seismic margin of structures is usually defined as a structural capacity margin corresponding to design earthquake ground motion. However, there is little agreement as to the definition of the seismic margin and we have no knowledge about a relationship between the seismic margin and seismic risk (annual failure probability) which is obtained in PSA (Probabilistic Safety Assessment). The purpose of this report is to discuss a definition of structural seismic margin and to develop a diagram which can identify a relation between seismic margin and seismic risk. The main results of this paper are described as follows: (1) We develop seismic margin which is defined based on the fact that intensity of earthquake ground motion is more appropriate than the conventional definition (i.e., the response-based seismic margin) for the following reasons: -seismic margin based on earthquake ground motion is invariant where different typed structures are considered, -stakeholders can understand the seismic margin based on the earthquake ground motion better than the response-based one. (2) The developed seismic margin-risk diagram facilitates us to judge easily whether we need to perform detailed probabilistic risk analysis or only deterministic analysis, given that the reference risk level although information on the uncertainty parameter beta is not obtained. (3) We have performed numerical simulations based on the developed method for four sites in Japan. The structural capacity-risk diagram differs depending on each location because the diagram is greatly influenced by seismic hazard information for a target site. Furthermore, the required structural capacity

  19. Slow Earthquakes in the Alaska-Aleutian Subduction Zone Detected by Multiple Mini Seismic Arrays

    Science.gov (United States)

    LI, B.; Ghosh, A.; Thurber, C. H.; Lanza, F.

    2017-12-01

    The Alaska-Aleutian subduction zone is one of the most seismically and volcanically active plate boundaries on earth. Compared to other subduction zones, the slow earthquakes, such as tectonic tremors (TTs) and low frequency earthquakes (LFEs), are relatively poorly studied due to the limited data availability and difficult logistics. The analysis of two-months of continuous data from a mini array deployed in 2012 shows abundant tremor and LFE activities under Unalaska Island that is heterogeneously distributed [Li & Ghosh, 2017]. To better study slow earthquakes and understand their physical characteristics in the study region, we deployed a hybrid array of arrays, consisting of three well-designed mini seismic arrays and five stand alone stations, in the Unalaska Island in 2014. They were operational for between one and two years. Using the beam back-projection method [Ghosh et al., 2009, 2012], we detect continuous tremor activities for over a year when all three arrays are running. The sources of tremors are located south of the Unalaska and Akutan Islands, at the eastern and down-dip edge of the rupture zone of the 1957 Mw 8.6 earthquake, and they are clustered in several patches, with a gap between the two major clusters. Tremors show multiple migration patterns with propagation in both along-strike and dip directions and a wide range of velocities. We also identify tens of LFE families and use them as templates to search for repeating LFE events with the matched-filter method. Hundreds to thousands of LFEs for each family are detected and their activities are spatiotemporally consistent with tremor activities. The array techniques are revealing a near-continuous tremor activity in this area with remarkable spatiotemporal details. It helps us to better recognize the physical properties of the transition zone, provides new insights into the slow earthquake activities in this area, and explores their relation with the local earthquakes and the potential slow

  20. Third Quarter Hanford Seismic Report for Fiscal Year 2010

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2010-09-29

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. The Hanford Seismic Network recorded 23 local earthquakes during the third quarter of FY 2010. Sixteen earthquakes were located at shallow depths (less than 4 km), five earthquakes at intermediate depths (between 4 and 9 km), most likely in the pre-basalt sediments, and two earthquakes were located at depths greater than 9 km, within the basement. Geographically, twelve earthquakes were located in known swarm areas, 3 earthquakes occurred near a geologic structure (Saddle Mountain anticline), and eight earthquakes were classified as random events. The highest magnitude event (3.0 Mc) was recorded on May 8, 2010 at depth 3.0 km with epicenter located near the Saddle Mountain anticline. Later in the quarter (May 24 and June 28) two additional earthquakes were also recorded nearly at the same location. These events are not considered unusual in that earthquakes have been previously recorded at this location, for example, in October 2006 (Rohay et al; 2007). Six earthquakes were detected in the vicinity of Wooded Island, located about eight miles north of Richland just

  1. WheelerLab: An interactive program for sequence stratigraphic analysis of seismic sections, outcrops and well sections and the generation of chronostratigraphic sections and dynamic chronostratigraphic sections

    Science.gov (United States)

    Amosu, Adewale; Sun, Yuefeng

    WheelerLab is an interactive program that facilitates the interpretation of stratigraphic data (seismic sections, outcrop data and well sections) within a sequence stratigraphic framework and the subsequent transformation of the data into the chronostratigraphic domain. The transformation enables the identification of significant geological features, particularly erosional and non-depositional features that are not obvious in the original seismic domain. Although there are some software products that contain interactive environments for carrying out chronostratigraphic analysis, none of them are open-source codes. In addition to being open source, WheelerLab adds two important functionalities not present in currently available software: (1) WheelerLab generates a dynamic chronostratigraphic section and (2) WheelerLab enables chronostratigraphic analysis of older seismic data sets that exist only as images and not in the standard seismic file formats; it can also be used for the chronostratigraphic analysis of outcrop images and interpreted well sections. The dynamic chronostratigraphic section sequentially depicts the evolution of the chronostratigraphic chronosomes concurrently with the evolution of identified genetic stratal packages. This facilitates a better communication of the sequence-stratigraphic process. WheelerLab is designed to give the user both interactive and interpretational control over the transformation; this is most useful when determining the correct stratigraphic order for laterally separated genetic stratal packages. The program can also be used to generate synthetic sequence stratigraphic sections for chronostratigraphic analysis.

  2. WheelerLab: An interactive program for sequence stratigraphic analysis of seismic sections, outcrops and well sections and the generation of chronostratigraphic sections and dynamic chronostratigraphic sections

    Directory of Open Access Journals (Sweden)

    Adewale Amosu

    2017-01-01

    Full Text Available WheelerLab is an interactive program that facilitates the interpretation of stratigraphic data (seismic sections, outcrop data and well sections within a sequence stratigraphic framework and the subsequent transformation of the data into the chronostratigraphic domain. The transformation enables the identification of significant geological features, particularly erosional and non-depositional features that are not obvious in the original seismic domain. Although there are some software products that contain interactive environments for carrying out chronostratigraphic analysis, none of them are open-source codes. In addition to being open source, WheelerLab adds two important functionalities not present in currently available software: (1 WheelerLab generates a dynamic chronostratigraphic section and (2 WheelerLab enables chronostratigraphic analysis of older seismic data sets that exist only as images and not in the standard seismic file formats; it can also be used for the chronostratigraphic analysis of outcrop images and interpreted well sections. The dynamic chronostratigraphic section sequentially depicts the evolution of the chronostratigraphic chronosomes concurrently with the evolution of identified genetic stratal packages. This facilitates a better communication of the sequence-stratigraphic process. WheelerLab is designed to give the user both interactive and interpretational control over the transformation; this is most useful when determining the correct stratigraphic order for laterally separated genetic stratal packages. The program can also be used to generate synthetic sequence stratigraphic sections for chronostratigraphic analysis.

  3. A guidebook for the operation and maintenance of HANARO seismic monitoring analysis system

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Jeong Soo; Yoon, Doo Byung; Kim, Hyung Kyoo

    2003-09-01

    Systems and structures related to HANARO safety are classified as seismic category I. Since 1995, the seismic monitoring system has been utilized for monitoring an earthquake at the HANARO site. The existing seismic monitoring system consists of field sensors and monitoring panel. The analog-type monitoring system with magnetic tape recorder is out-of-date model. In addition, the disadvantage of the existing system is that it does not include signal-analyzing equipment. Therefore, we have improved the analog seismic monitoring system into a new digital Seismic Monitoring Analysis System(SMAS) that can offer precise and detail information of the earthquake signals. This newly developed SMAS is operating at the HANARO instrument room to acquire and analyze the signal of an earthquake. This document is a guidebook for the operation and maintenance of the SMAS. The first chapter gives an outline of the SMAS. The second chapter describes functional capability and specification of the hardware. Chapters 3 and 4 describe starting procedure of the SMAS and how to operate the seismic monitoring program, respectively. Chapter 5 illustrates the seismic analysis algorithm used in the SMAS. The way of operating the seismic analysis program is described in chapter 6. Chapter 7 illustrates the calibration procedure for data acquisition module. Chapter 8 describes the symptoms of common malfunctions and its countermeasure suited to the occasions.

  4. Seismic Ecology

    Science.gov (United States)

    Seleznev, V. S.; Soloviev, V. M.; Emanov, A. F.

    The paper is devoted to researches of influence of seismic actions for industrial and civil buildings and people. The seismic actions bring influence directly on the people (vibration actions, force shocks at earthquakes) or indirectly through various build- ings and the constructions and can be strong (be felt by people) and weak (be fixed by sensing devices). The great number of work is devoted to influence of violent seismic actions (first of all of earthquakes) on people and various constructions. This work is devoted to study weak, but long seismic actions on various buildings and people. There is a need to take into account seismic oscillations, acting on the territory, at construction of various buildings on urbanized territories. Essential influence, except for violent earthquakes, man-caused seismic actions: the explosions, seismic noise, emitted by plant facilities and moving transport, radiation from high-rise buildings and constructions under action of a wind, etc. can exert. Materials on increase of man- caused seismicity in a number of regions in Russia, which earlier were not seismic, are presented in the paper. Along with maps of seismic microzoning maps to be built indicating a variation of amplitude spectra of seismic noise within day, months, years. The presence of an information about amplitudes and frequencies of oscillations from possible earthquakes and man-caused oscillations in concrete regions allows carry- ing out soundly designing and construction of industrial and civil housing projects. The construction of buildings even in not seismically dangerous regions, which have one from resonance frequencies coincident on magnitude to frequency of oscillations, emitted in this place by man-caused objects, can end in failure of these buildings and heaviest consequences for the people. The practical examples of detail of engineering- seismological investigation of large industrial and civil housing projects of Siberia territory (hydro power

  5. Seismic Safety Guide

    International Nuclear Information System (INIS)

    Eagling, D.G.

    1985-01-01

    The Seismic Safety Guide provides facilities managers with practical guidelines for administering a comprehensive earthquake safety program. Most facilities managers, unfamiliar with earthquake engineering, tend to look for answers in techniques more sophisticated than required to solve the actual problems in earthquake safety. Often the approach to solutions to these problems is so academic, legalistic, and financially overwhelming that mitigation of actual seismic hazards simply does not get done in a timely, cost-effective way. The objective of the Guide is to provide practical advice about earthquake safety so that managers and engineers can get the job done without falling into common pitfalls, prolonged diagnosis, and unnecessary costs. It is comprehensive with respect to earthquakes in that it covers the most important aspects of natural hazards, site planning, rehabilitation of existing buildings, design of new facilities, operational safety, emergency planning, non-structural elements, life lines, and risk management. 5 references

  6. Radiation detection technology assessment program (RADTAP)

    International Nuclear Information System (INIS)

    Smith, D.E.

    1998-01-01

    The U.S. Customs Service and the U.S. Department of Energy (DOE) conducted a technical and operational assessment of gamma ray radiation detection equipment during the period May 5-16, 1997 at a testing facility in North Carolina. The effort was entitled, ''Radiation Detection Technology Assessment Program (RADTAP)'', and was conducted for the purpose of assessing the applicability, sensitivity and robustness of a diverse suite of gamma ray detection and identification equipment for possible use by Customs and other law enforcement agencies. Thirteen companies entered 25 instruments into the assessment program. All detection equipment entered had to exhibit a minimum sensitivity of 20 micro-R per hour (background included) from a Cesium-137 point source. Isotope identifying spectrometers entered were man portable and operable at room temperature with read-out that could be interpreted by non-technical personnel. Radioactive sources used in the assessment included special nuclear material, industrial and health isotopes. Evaluators included Customs inspectors and technical experts from DOE and Customs. No conclusions or recommendations were issued based on the quantitative and qualitative test results, however, the results of the program provided law enforcement agencies with the necessary data to select equipment that best meets their operational needs and budgets. (author)

  7. Spectral-element Seismic Wave Propagation on CUDA/OpenCL Hardware Accelerators

    Science.gov (United States)

    Peter, D. B.; Videau, B.; Pouget, K.; Komatitsch, D.

    2015-12-01

    Seismic wave propagation codes are essential tools to investigate a variety of wave phenomena in the Earth. Furthermore, they can now be used for seismic full-waveform inversions in regional- and global-scale adjoint tomography. Although these seismic wave propagation solvers are crucial ingredients to improve the resolution of tomographic images to answer important questions about the nature of Earth's internal processes and subsurface structure, their practical application is often limited due to high computational costs. They thus need high-performance computing (HPC) facilities to improving the current state of knowledge. At present, numerous large HPC systems embed many-core architectures such as graphics processing units (GPUs) to enhance numerical performance. Such hardware accelerators can be programmed using either the CUDA programming environment or the OpenCL language standard. CUDA software development targets NVIDIA graphic cards while OpenCL was adopted by additional hardware accelerators, like e.g. AMD graphic cards, ARM-based processors as well as Intel Xeon Phi coprocessors. For seismic wave propagation simulations using the open-source spectral-element code package SPECFEM3D_GLOBE, we incorporated an automatic source-to-source code generation tool (BOAST) which allows us to use meta-programming of all computational kernels for forward and adjoint runs. Using our BOAST kernels, we generate optimized source code for both CUDA and OpenCL languages within the source code package. Thus, seismic wave simulations are able now to fully utilize CUDA and OpenCL hardware accelerators. We show benchmarks of forward seismic wave propagation simulations using SPECFEM3D_GLOBE on CUDA/OpenCL GPUs, validating results and comparing performances for different simulations and hardware usages.

  8. Seismic analysis response factors and design margins of piping systems

    International Nuclear Information System (INIS)

    Shieh, L.C.; Tsai, N.C.; Yang, M.S.; Wong, W.L.

    1985-01-01

    The objective of the simplified methods project of the Seismic Safety Margins Research Program is to develop a simplified seismic risk methodology for general use. The goal is to reduce seismic PRA costs to roughly 60 man-months over a 6 to 8 month period, without compromising the quality of the product. To achieve the goal, it is necessary to simplify the calculational procedure of the seismic response. The response factor approach serves this purpose. The response factor relates the median level response to the design data. Through a literature survey, we identified the various seismic analysis methods adopted in the U.S. nuclear industry for the piping system. A series of seismic response calculations was performed. The response factors and their variabilities for each method of analysis were computed. A sensitivity study of the effect of piping damping, in-structure response spectra envelop method, and analysis method was conducted. In addition, design margins, which relate the best-estimate response to the design data, are also presented

  9. Outline of the seismic design guideline of an FBR - a tentative draft

    International Nuclear Information System (INIS)

    Akiyama, Hiroshi; Ohtsubo, Hideomi; Nakamura, Hideharu; Matsuura, Shinichi; Hagiwara, Yutaka; Yuhara, Tetsuo; Hirayama, Hiroshi; Kokubo, Kunio; Ooka, Yuji.

    1993-01-01

    Central Research Institute of Electric Power Industry (Japan) is carrying out the Demonstration Test and Research Program of Buckling of FBR (FY 1987-FY 1993). The first half of the research program was finished after establishing a seismic buckling design guideline (a tentative draft). The purpose of this paper is to describe the dynamic buckling characteristics of FBR main vessels and the outline of the rationalized buckling design guideline for seismic loadings. (orig.)

  10. Potential seismic structural failure modes associated with the Zion Nuclear Plant. Seismic safety margins research program (Phase I). Project VI. Fragilities

    International Nuclear Information System (INIS)

    1979-10-01

    The Zion 1 and 2 Nuclear Power Plant consists of a number of structures. The most important of these from the viewpoint of safety are the containment buildings, the auxiliary building, the turbine building, and the crib house (or intake structure). The evaluation of the potential seismic failure modes and determination of the ultimate seismic capacity of the structures is a complex undertaking which will require a large number of detailed calculations. As the first step in this evaluation, a number of potential modes of structural failure have been determined and are discussed. The report is principally directed towards seismically induced failure of structures. To some extent, modes involving soil foundation failures are discussed in so far as they affect the buildings. However, failure modes involving soil liquefaction, surface faulting, tsunamis, etc., are considered outside the scope of this evaluation

  11. Analytical Study on the Beyond Design Seismic Capacity of Reinforced Concrete Shear Walls

    Energy Technology Data Exchange (ETDEWEB)

    Nugroho, Tino Sawaldi Adi [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Chi, Ho-Seok [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2015-10-15

    The OECD-NEA has organized an international benchmarking program to better understand this critical issue. The benchmark program provides test specimen geometry, test setup, material properties, loading conditions, recorded measures, and observations of the test specimens. The main objective of this research is to assess the beyond design seismic capacity of the reinforced concrete shear walls tested at the European Laboratory for Structural Assessment between 1997 and 1998 through participation in the OECD-NEA benchmark program. In this study, assessing the beyond design seismic capacity of reinforced concrete shear walls is performed analytically by comparing numerical results with experimental results. The seismic shear capacity of the reinforced concrete shear wall was predicted reasonably well using ABAQUS program. However, the proper calibration of the concrete material model was necessary for better prediction of the behavior of the reinforced concrete shear walls since the response was influenced significantly by the material constitutive model.

  12. Relay testing parametric investigation of seismic fragility

    International Nuclear Information System (INIS)

    Bandyopadhyay, K.; Hofmayer, C.; Kassir, M.; Pepper, S.

    1989-01-01

    The seismic capacity of most electrical equipment is governed by malfunction of relays. An evaluation of the existing relay test data base at Brookhaven National Laboratory (BNL) has indicated that the seismic fragility of a relay may depend on various parameters related to the design or the input motion. In particular, the electrical mode, contact state, adjustment, chatter duration acceptance limit, and the frequency and the direction of the vibration input have been considered to influence the relay fragility level. For a particular relay type, the dynamics of its moving parts depends on the exact model number and vintage and hence, these parameters may also influence the fragility level. In order to investigate the effect of most of these parameters on the seismic fragility level, BNL has conducted a relay test program. The testing has been performed at Wyle Laboratories. Establishing the correlation between the single frequency fragility test input and the corresponding multifrequency response spectrum (TRS) is also an objective of this test program. This paper discusses the methodology used for testing and presents a brief summary of important test results. 1 ref., 10 figs

  13. Broadband seismic deployments in East Antarctica: IPY contribution to monitoring the Earth’s interiors

    Directory of Open Access Journals (Sweden)

    Masaki Kanao

    2014-06-01

    Full Text Available “Deployment of broadband seismic stations on the Antarctica continent” is an ambitious project to improve the spatial resolution of seismic data across the Antarctic Plate and surrounding regions. Several international collaborative programs for the purpose of geomonitoring were conducted in Antarctica during the International Polar Year (IPY 2007-2008. The Antarctica’s GAmburtsev Province (AGAP; IPY #147, the GAmburtsev Mountain SEISmic experiment (GAMSEIS, a part of AGAP, and the Polar Earth Observing Network (POLENET; IPY #185 were major contributions in establishing a geophysical network in Antarctica. The AGAP/GAMSEIS project was an internationally coordinated deployment of more than 30 broadband seismographs over the crest of the Gambursev Mountains (Dome-A, Dome-C and Dome-F area. The investigations provide detailed information on crustal thickness and mantle structure; provide key constraints on the origin of the Gamburtsev Mountains; and more broadly on the structure and evolution of the East Antarctic craton and subglacial environment. From GAMSEIS and POLENET data obtained, local and regional seismic signals associated with ice movements, oceanic loading, and local meteorological variations were recorded together with a significant number of teleseismic events. In this chapter, in addition to the Earth’s interiors, we will demonstrate some of the remarkable seismic signals detected during IPY that illustrate the capabilities of broadband seismometers to study the sub-glacial environment, particularly at the margins of Antarctica. Additionally, the AGAP and POLENET stations have an important role in the Federation of Digital Seismographic Network (FDSN in southern high latitude.

  14. Seismic aftershock monitoring for on-site inspection purposes. Experience from Integrated Field Exercise 2008.

    Science.gov (United States)

    Labak, P.; Arndt, R.; Villagran, M.

    2009-04-01

    One of the sub-goals of the Integrated Field Experiment in 2008 (IFE08) in Kazakhstan was testing the prototype elements of the Seismic aftershock monitoring system (SAMS) for on-site inspection purposes. The task of the SAMS is to collect the facts, which should help to clarify nature of the triggering event. Therefore the SAMS has to be capable to detect and identify events as small as magnitude -2 in the inspection area size up to 1000 km2. Equipment for 30 mini-arrays and 10 3-component stations represented the field equipment of the SAMS. Each mini-array consisted of a central 3-component seismometer and 3 vertical seismometers at the distance about 100 m from the central seismometer. The mini-arrays covered approximately 80% of surrogate inspection area (IA) on the territory of former Semipalatinsk test site. Most of the stations were installed during the first four days of field operations by the seismic sub-team, which consisted of 10 seismologists. SAMS data center comprised 2 IBM Blade centers and 8 working places for data archiving, detection list production and event analysis. A prototype of SAMS software was tested. Average daily amount of collected raw data was 15-30 GB and increased according to the amount of stations entering operation. Routine manual data screening and data analyses were performed by 2-6 subteam members. Automatic screening was used for selected time intervals. Screening was performed using the Sonoview program in frequency domain and using the Geotool and Hypolines programs for screening in time domain. The screening results were merged into the master event list. The master event list served as a basis of detailed analysis of unclear events and events identified to be potentially in the IA. Detailed analysis of events to be potentially in the IA was performed by the Hypoline and Geotool programs. In addition, the Hyposimplex and Hypocenter programs were also used for localization of events. The results of analysis were integrated

  15. A new seismic station in Romania the Bucovina seismic array

    International Nuclear Information System (INIS)

    Grigore, Adrian; Grecu, Bogdan; Ionescu, Constantin; Ghica, Daniela; Popa, Mihaela; Rizescu, Mihaela

    2002-01-01

    Recently, a new seismic monitoring station, the Bucovina Seismic Array, has been established in the northern part of Romania, in a joint effort of the Air Force Technical Applications Center, USA, and the National Institute for Earth Physics, Romania. The array consists of 10 seismic sensors (9 short-period and one broad band) located in boreholes and distributed in a 5 x 5 km area. On July 24, 2002 the official Opening Ceremony of Bucovina Seismic Array took place in the area near the city of Campulung Moldovenesc in the presence of Romanian Prime Minister, Adrian Nastase. Starting with this date, the new seismic monitoring system became fully operational by continuous recording and transmitting data in real-time to the National Data Center of Romania, in Bucharest and to the National Data Center of USA, in Florida. Bucovina Seismic Array, added to the present Seismic Network, will provide much better seismic monitoring coverage of Romania's territory, on-scale recording for weak-to-strong events, and will contribute to advanced seismological studies on seismic hazard and risk, local effects and microzonation, seismic source physics, Earth structure. (authors)

  16. Employing Program Semantics for Malware Detection

    OpenAIRE

    Naval, S.; Laxmi, V.; Rajarajan, M.; Gaur, M. S.; Conti, M.

    2015-01-01

    In recent years, malware has emerged as a critical security threat. Additionally, malware authors continue to embed numerous anti–detection features to evade existing malware detection approaches. Against this advanced class of malicious programs, dynamic behavior–based malware detection approaches outperform the traditional signature–based approaches by neutralizing the effects of obfuscation and morphing techniques. The majority of dynamic behavior detectors rely on system–calls to model th...

  17. Evaluation of Fourier integral. Spectral analysis of seismic events

    International Nuclear Information System (INIS)

    Chitaru, Cristian; Enescu, Dumitru

    2003-01-01

    Spectral analysis of seismic events represents a method for great earthquake prediction. The seismic signal is not a sinusoidal signal; for this, it is necessary to find a method for best approximation of real signal with a sinusoidal signal. The 'Quanterra' broadband station allows the data access in numerical and/or graphical forms. With the numerical form we can easily make a computer program (MSOFFICE-EXCEL) for spectral analysis. (authors)

  18. Management of seismic data on network

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Bu Heung [Korea Inst. of Geology Mining and Materials, Taejon (Korea, Republic of)

    1995-12-01

    KIGAM has managed magnetic tapes written in seismic data acquired in Korea offshore and abroad since 1979. For now, it amounts about 13,000 tapes and other documents of seismic data are reserved by KIGAM also. For handling with them, FOX-PRO database management system has been used since 1993. In case of one user, it seems useful and convenient because the program is very easy to use and many well done utility was provided. In contrast with that, it has many problems also. For example, a user who wants to query information of these magnetic tapes must go magnetic tape room where the system is installed and he must know how to use the utilities of the FOX-PRO database management system. For the reason of above, the seismic data processing team attempted to change the FOX-PRO system with other client-server system supports networking on internet. After many testing and considering, they selected like as following hardware and software( System: PC with networking, OS: Linux and Unix, Software: Just Logic/SQL). The main reasons for selecting above system, first, any kinds of personal computer are available and easy to get. Secondly, Linux and Unix OS are good for using network. Especially, Linux is free and easy to get on many internet ftp sites. Lastly Just Logic/SQL is for client-server system, supports Linux OS and the programming style is very similar to C language. The contents of this report are as follows. In chapter 2, the Just Logic/SQL system structure and existing files through the sub-directories are showed and commented. In chapter 3, the statements using in Just Logic/SQL are explained and some examples are showed. In chapter 4, shows two example programs making seismic database including rack list, optical disk table respectively. The rack list table is the database of magnetic tapes managed by KIGAM. The optical disk table is the information record about how many, what tapes are converted to optical disk. (author). 4 tabs.

  19. The regulatory requirements, design bases, researches and assessments in the field of Ukrainian NPP's seismic safety

    International Nuclear Information System (INIS)

    Mykolaychuk, O.; Mayboroda, O.; Krytskyy, V.; Karnaukhov, O.

    2001-01-01

    State Nuclear Regulatory Authority of Ukraine (SNRA) pays large attention to problem of nuclear installations seismic stability. As a result the seismic design regulatory guides is revised, additional seismic researches of NPP sites are conducted, seismic reassessment of NPP designs were begun. The experts involved address all seismic related factors under close contact with the staff of NPP, design institutes and research organizations. This document takes stock on the situation and the research programs. (author)

  20. Seismic signal auto-detecing from different features by using Convolutional Neural Network

    Science.gov (United States)

    Huang, Y.; Zhou, Y.; Yue, H.; Zhou, S.

    2017-12-01

    We try Convolutional Neural Network to detect some features of seismic data and compare their efficience. The features include whether a signal is seismic signal or noise and the arrival time of P and S phase and each feature correspond to a Convolutional Neural Network. We first use traditional STA/LTA to recongnize some events and then use templete matching to find more events as training set for the Neural Network. To make the training set more various, we add some noise to the seismic data and make some synthetic seismic data and noise. The 3-component raw signal and time-frequancy ananlyze are used as the input data for our neural network. Our Training is performed on GPUs to achieve efficient convergence. Our method improved the precision in comparison with STA/LTA and template matching. We will move to recurrent neural network to see if this kind network is better in detect P and S phase.

  1. Second Quarter Hanford Seismic Report for Fiscal Year 2008

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2008-06-26

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The Hanford Seismic Assessment Team locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. For the Hanford Seismic Network, seven local earthquakes were recorded during the second quarter of fiscal year 2008. The largest event recorded by the network during the second quarter (February 3, 2008 - magnitude 2.3 Mc) was located northeast of Richland in Franklin County at a depth of 22.5 km. With regard to the depth distribution, two earthquakes occurred at shallow depths (less than 4 km, most likely in the Columbia River basalts), three earthquakes at intermediate depths (between 4 and 9 km, most likely in the pre-basalt sediments), and two earthquakes were located at depths greater than 9 km, within the crystalline basement. Geographically, five earthquakes occurred in swarm areas and two earthquakes were classified as random events.

  2. Seismic qualification of motor operated valves - alternate approach

    International Nuclear Information System (INIS)

    Bruck, P.M.; Eissa, M.A.

    1998-01-01

    This paper presents a potential alternate method for determining operating capacity of motor-operated valves subjected to seismic and other applicable loadings. As a result of programs at nuclear facilities to ensure the operational capability of MOVs (under NRC GL89-10), extensive analytical focus to develop the structural capability of valves has ensued. In the past, seismic qualification of valves typically addressed the strength of the topwork structure to resist inertial loading from excitation of the large valve actuator mass. These evaluations paid little or no consideration to the loading resulting from valve closing forces. The focus of the recent efforts is to develop the maximum operational capability of the valve, in terms of thrust, with consideration of seismic and other services loading as applicable. The alternate method outlined in this paper presents a series of thrust capacity curves, with reduction factors for seismic loading which can be applied and developed to determine safe thrust loadings without performing extensive analytical effort. A similar approach was put forward by the SQUG GIP approach to MOVs to ensure the safe operation of valves based on past earthquake experience. However, the GIP approach cannot be used to determine safe operational loads and thus has limited use in the necessary analysis required for GL89-10 programs at nuclear facilities. (orig.)

  3. Seismic margin review of the Maine Yankee Atomic Power Station: Fragility analysis

    International Nuclear Information System (INIS)

    Ravindra, M.K.; Hardy, G.S.; Hashimoto, P.S.; Griffin, M.J.

    1987-03-01

    This Fragility Analysis is the third of three volumes for the Seismic Margin Review of the Maine Yankee Atomic Power Station. Volume 1 is the Summary Report of the first trial seismic margin review. Volume 2, Systems Analysis, documents the results of the systems screening for the review. The three volumes are part of the Seismic Margins Program initiated in 1984 by the Nuclear Regulatory Commission (NRC) to quantify seismic margins at nuclear power plants. The overall objectives of the trial review are to assess the seismic margins of a particular pressurized water reactor, and to test the adequacy of this review approach, quantification techniques, and guidelines for performing the review. Results from the trial review will be used to revise the seismic margin methodology and guidelines so that the NRC and industry can readily apply them to assess the inherent quantitative seismic capacity of nuclear power plants

  4. Seismic margin review of the Maine Yankee Atomic Power Station: Fragility analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ravindra, M. K.; Hardy, G. S.; Hashimoto, P. S.; Griffin, M. J.

    1987-03-01

    This Fragility Analysis is the third of three volumes for the Seismic Margin Review of the Maine Yankee Atomic Power Station. Volume 1 is the Summary Report of the first trial seismic margin review. Volume 2, Systems Analysis, documents the results of the systems screening for the review. The three volumes are part of the Seismic Margins Program initiated in 1984 by the Nuclear Regulatory Commission (NRC) to quantify seismic margins at nuclear power plants. The overall objectives of the trial review are to assess the seismic margins of a particular pressurized water reactor, and to test the adequacy of this review approach, quantification techniques, and guidelines for performing the review. Results from the trial review will be used to revise the seismic margin methodology and guidelines so that the NRC and industry can readily apply them to assess the inherent quantitative seismic capacity of nuclear power plants.

  5. Design and development of digital seismic amplifier recorder

    Energy Technology Data Exchange (ETDEWEB)

    Samsidar, Siti Alaa; Afuar, Waldy; Handayani, Gunawan, E-mail: gunawanhandayani@gmail.com [Department of Physics, ITB (Indonesia)

    2015-04-16

    A digital seismic recording is a recording technique of seismic data in digital systems. This method is more convenient because it is more accurate than other methods of seismic recorders. To improve the quality of the results of seismic measurements, the signal needs to be amplified to obtain better subsurface images. The purpose of this study is to improve the accuracy of measurement by amplifying the input signal. We use seismic sensors/geophones with a frequency of 4.5 Hz. The signal is amplified by means of 12 units of non-inverting amplifier. The non-inverting amplifier using IC 741 with the resistor values 1KΩ and 1MΩ. The amplification results were 1,000 times. The results of signal amplification converted into digital by using the Analog Digital Converter (ADC). Quantitative analysis in this study was performed using the software Lab VIEW 8.6. The Lab VIEW 8.6 program was used to control the ADC. The results of qualitative analysis showed that the seismic conditioning can produce a large output, so that the data obtained is better than conventional data. This application can be used for geophysical methods that have low input voltage such as microtremor application.

  6. The Seismic Analyzer: Interpreting and Illustrating 2D Seismic Data

    OpenAIRE

    Patel, Daniel; Giertsen, Christopher; Thurmond, John; Gjelberg, John; Gröller, Eduard

    2008-01-01

    We present a toolbox for quickly interpreting and illustrating 2D slices of seismic volumetric reflection data. Searching for oil and gas involves creating a structural overview of seismic reflection data to identify hydrocarbon reservoirs. We improve the search of seismic structures by precalculating the horizon structures of the seismic data prior to interpretation. We improve the annotation of seismic structures by applying novel illustrative rendering algorithms tailored to seism...

  7. Lunar Seismic Detector to Advance the Search for Strange Quark Matter

    Science.gov (United States)

    Galitzki, Nicholas B.

    2005-01-01

    Detection of small seismic signals on the Moon are needed to study lunar internal structure and to detect possible signals from Strange Quark m&er transit events. The immediate objective is to create a prototype seismic detector using a tunnel diode oscillator with a variable capacitor attached to a proof mass. The device is designed to operate effectively on the Moon, which requires a low power consumption to operate through lunar night, while preserving sensitivity. The goal is capacitance resolution of better than 1 part in 10' and power consumption of less than 1 watt.

  8. Gabor Deconvolution as Preliminary Method to Reduce Pitfall in Deeper Target Seismic Data

    Science.gov (United States)

    Oktariena, M.; Triyoso, W.

    2018-03-01

    Anelastic attenuation process during seismic wave propagation is the trigger of seismic non-stationary characteristic. An absorption and a scattering of energy are causing the seismic energy loss as the depth increasing. A series of thin reservoir layers found in the study area is located within Talang Akar Fm. Level, showing an indication of interpretation pitfall due to attenuation effect commonly occurred in deeper level seismic data. Attenuation effect greatly influences the seismic images of deeper target level, creating pitfalls in several aspect. Seismic amplitude in deeper target level often could not represent its real subsurface character due to a low amplitude value or a chaotic event nearing the Basement. Frequency wise, the decaying could be seen as the frequency content diminishing in deeper target. Meanwhile, seismic amplitude is the simple tool to point out Direct Hydrocarbon Indicator (DHI) in preliminary Geophysical study before a further advanced interpretation method applied. A quick-look of Post-Stack Seismic Data shows the reservoir associated with a bright spot DHI while another bigger bright spot body detected in the North East area near the field edge. A horizon slice confirms a possibility that the other bright spot zone has smaller delineation; an interpretation pitfall commonly occurs in deeper level of seismic. We evaluates this pitfall by applying Gabor Deconvolution to address the attenuation problem. Gabor Deconvolution forms a Partition of Unity to factorize the trace into smaller convolution window that could be processed as stationary packets. Gabor Deconvolution estimates both the magnitudes of source signature alongside its attenuation function. The enhanced seismic shows a better imaging in the pitfall area that previously detected as a vast bright spot zone. When the enhanced seismic is used for further advanced reprocessing process, the Seismic Impedance and Vp/Vs Ratio slices show a better reservoir delineation, in which the

  9. Accelerometer Sensor Specifications to Predict Hydrocarbon Using Passive Seismic Technique

    Directory of Open Access Journals (Sweden)

    M. H. Md Khir

    2016-01-01

    Full Text Available The ambient seismic ground noise has been investigated in several surveys worldwide in the last 10 years to verify the correlation between observed seismic energy anomalies at the surface and the presence of hydrocarbon reserves beneath. This is due to the premise that anomalies provide information about the geology and potential presence of hydrocarbon. However a technology gap manifested in nonoptimal detection of seismic signals of interest is observed. This is due to the fact that available sensors are not designed on the basis of passive seismic signal attributes and mainly in terms of amplitude and bandwidth. This is because of that fact that passive seismic acquisition requires greater instrumentation sensitivity, noise immunity, and bandwidth, with active seismic acquisition, where vibratory or impulsive sources were utilized to receive reflections through geophones. Therefore, in the case of passive seismic acquisition, it is necessary to select the best monitoring equipment for its success or failure. Hence, concerning sensors performance, this paper highlights the technological gap and motivates developing dedicated sensors for optimal solution at lower frequencies. Thus, the improved passive seismic recording helps in oil and gas industry to perform better fracture mapping and identify more appropriate stratigraphy at low frequencies.

  10. Seismic characterization of CO{sub 2} in coals

    Energy Technology Data Exchange (ETDEWEB)

    McCrank, J.; Lawton, D.C. [Calgary Univ., AB (Canada). Dept. of Geoscience, Consortium for Research in Elastic Wave Exploration Seismology

    2008-07-01

    The Mynheer coal seam was targeted for an enhanced coalbed methane (CBM) experiment. During initial testing of the reservoir permeability, 180 tonnes of carbon dioxide (CO{sub 2}) was injected into the seam. The objective of the study was to characterize the coal zones and to determine if the small volume of CO{sub 2} in the thinly bedded and seismically tuned reservoir can be detected in the 3D surface seismic data. The multi-well pilot project took place in the Pembina Field of west-central Alberta. The Ardley coals were tested for CO{sub 2} injection, enhanced CBM production, and CO{sub 2} sequestration. The seismic survey captured the condition of the reservoir after formation permeability tests. It was concluded that the anomalies seen in the seismic data can be attributed to changes in the physical properties of the coal due to CO{sub 2} adsorption. 2 refs., 5 figs.

  11. Multi-Parameter Observation and Detection of Pre-Earthquake Signals in Seismically Active Areas

    Science.gov (United States)

    Ouzounov, D.; Pulinets, S.; Parrot, M.; Liu, J. Y.; Hattori, K.; Kafatos, M.; Taylor, P.

    2012-01-01

    The recent large earthquakes (M9.0 Tohoku, 03/2011; M7.0 Haiti, 01/2010; M6.7 L Aquila, 04/2008; and M7.9 Wenchuan 05/2008) have renewed interest in pre-anomalous seismic signals associated with them. Recent workshops (DEMETER 2006, 2011 and VESTO 2009 ) have shown that there were precursory atmospheric /ionospheric signals observed in space prior to these events. Our initial results indicate that no single pre-earthquake observation (seismic, magnetic field, electric field, thermal infrared [TIR], or GPS/TEC) can provide a consistent and successful global scale early warning. This is most likely due to complexity and chaotic nature of earthquakes and the limitation in existing ground (temporal/spatial) and global satellite observations. In this study we analyze preseismic temporal and spatial variations (gas/radon counting rate, atmospheric temperature and humidity change, long-wave radiation transitions and ionospheric electron density/plasma variations) which we propose occur before the onset of major earthquakes:. We propose an Integrated Space -- Terrestrial Framework (ISTF), as a different approach for revealing pre-earthquake phenomena in seismically active areas. ISTF is a sensor web of a coordinated observation infrastructure employing multiple sensors that are distributed on one or more platforms; data from satellite sensors (Terra, Aqua, POES, DEMETER and others) and ground observations, e.g., Global Positioning System, Total Electron Content (GPS/TEC). As a theoretical guide we use the Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) model to explain the generation of multiple earthquake precursors. Using our methodology, we evaluated retrospectively the signals preceding the most devastated earthquakes during 2005-2011. We observed a correlation between both atmospheric and ionospheric anomalies preceding most of these earthquakes. The second phase of our validation include systematic retrospective analysis for more than 100 major earthquakes (M>5

  12. Seismic stops vs. snubbers, a reliable alternative

    International Nuclear Information System (INIS)

    Cloud, R.L.; Anderson, P.H.; Leung, J.S.M.

    1988-01-01

    The Seismic Stops methodology has been developed to provide a reliable alternative for providing seismic support to nuclear power plant piping. The concept is based on using rigid passive supports with large clearances. These gaps permit unrestrained thermal expansion while limiting excessive seismic displacements. This type of restraint has performed successfully in fossil fueled power plants. A simplified production analysis tool has been developed which evaluates the nonlinear piping response including the effect of the gapped supports. The methodology utilizes the response spectrum approach and has been incorporated into a piping analysis computer program RLCA-GAP. Full scale shake table tests of piping specimens were performed to provide test correlation with the developed methodology. Analyses using RLCA-GAP were in good agreement with test results. A sample piping system was evaluated using the Seismic Stops methodology to replace the existing snubbers with passive gapped supports. To provide further correlation data, the sample system was also evaluated using nonlinear time history analysis. The correlation comparisons showed RLCA-GAP to be a viable methodology and a reliable alternative for snubber optimization and elimination. (orig.)

  13. Mid-European seismic attenuation anomaly

    Czech Academy of Sciences Publication Activity Database

    Málek, Jiří; Brokešová, J.; Vackář, Jiří

    2017-01-01

    Roč. 712, AUG 21 (2017), s. 557-577 ISSN 0040-1951 Grant - others:AV ČR(CZ) StrategieAV21/4 Program:StrategieAV Institutional support: RVO:67985891 Keywords : seismic wave attenuation * peak ground motion * H/V ratio Subject RIV: DC - Siesmology, Volcanology, Earth Structure OBOR OECD: Geology Impact factor: 2.693, year: 2016

  14. Seismic analysis, evaluation and upgrade design for a nuclear facility exhaust stack building

    International Nuclear Information System (INIS)

    Malik, L.E.; Kabir, A.F.

    1991-01-01

    This paper reports on an exhaust stack building of a nuclear reactor facility with complex structural configuration that has been analyzed and evaluated for seismic forces. This building was built in the 1950's and had not been designed to resist seismic forces. A very rigorous analysis and evaluation program was implemented to minimize the costly retrofits required to upgrade the building to resist high seismic forces. The seismic evaluations were performed for the building in its as-is configuration, and as modified for several upgrade schemes. Soil-structure-interaction, base mat flexibility and the influence of the nearby reactor building have been considered in the seismic analyses. The rigorous analyses and evaluation enabled limited upgrades to qualify the stack building for the seismic forces

  15. Seismic exploration for water on Mars

    International Nuclear Information System (INIS)

    Page, T.

    1987-01-01

    It is proposed to soft-land three seismometers in the Utopia-Elysium region and three or more radio controlled explosive charges at nearby sites that can be accurately located by an orbiter. Seismic signatures of timed explosions, to be telemetered to the orbiter, will be used to detect present surface layers, including those saturated by volatiles such as water and/or ice. The Viking Landers included seismometers that showed that at present Mars is seismically quiet, and that the mean crustal thickness at the site is about 14 to 18 km. The new seismic landers must be designed to minimize wind vibration noise, and the landing sites selected so that each is well formed on the regolith, not on rock outcrops or in craters. The explosive charges might be mounted on penetrators aimed at nearby smooth areas. They must be equipped with radio emitters for accurate location and radio receivers for timed detonation

  16. A nautical study of towed marine seismic streamer cable configurations

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, Egil

    1996-12-31

    This study concerns marine seismic surveying and especially the towed in-sea hardware which is dominated by recording cables (streamers) that are extremely long compared to their diameter, neutrally buoyant and depth controlled. The present work aims to examine the operations from a nautical viewpoint, and the final objective is to propose improvements to the overall efficiency of marine seismic operations. Full-scale data were gathered from seismic vessels in order to identify which physical parameters affect the dynamic motion of the towing vessel and its in-sea hardware. Experimental test programmes have been carried out, and data bases with the hydrodynamic characteristics of the test equipment have been established at speeds comparable to those used in seismic operations. A basic analysis tool to provide dynamic simulations of a seismic streamer cable has been developed by tailoring the computer program system Riflex, and the validation and accuracy of this modified Riflex system are evaluated by performing uncertainty analyses of measurements and computations. Unexpected, low-frequency depth motions in towed seismic streamer cables occasionally take place when seismic data are being acquired. The phenomenon is analysed and discussed. 99 refs., 116 figs., 5 tabs.

  17. A nautical study of towed marine seismic streamer cable configurations

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, Egil

    1997-12-31

    This study concerns marine seismic surveying and especially the towed in-sea hardware which is dominated by recording cables (streamers) that are extremely long compared to their diameter, neutrally buoyant and depth controlled. The present work aims to examine the operations from a nautical viewpoint, and the final objective is to propose improvements to the overall efficiency of marine seismic operations. Full-scale data were gathered from seismic vessels in order to identify which physical parameters affect the dynamic motion of the towing vessel and its in-sea hardware. Experimental test programmes have been carried out, and data bases with the hydrodynamic characteristics of the test equipment have been established at speeds comparable to those used in seismic operations. A basic analysis tool to provide dynamic simulations of a seismic streamer cable has been developed by tailoring the computer program system Riflex, and the validation and accuracy of this modified Riflex system are evaluated by performing uncertainty analyses of measurements and computations. Unexpected, low-frequency depth motions in towed seismic streamer cables occasionally take place when seismic data are being acquired. The phenomenon is analysed and discussed. 99 refs., 116 figs., 5 tabs.

  18. SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Joel Walls; M.T. Taner; Naum Derzhi; Gary Mavko; Jack Dvorkin

    2003-12-01

    We have developed and tested technology for a new type of direct hydrocarbon detection. The method uses inelastic rock properties to greatly enhance the sensitivity of surface seismic methods to the presence of oil and gas saturation. These methods include use of energy absorption, dispersion, and attenuation (Q) along with traditional seismic attributes like velocity, impedance, and AVO. Our approach is to combine three elements: (1) a synthesis of the latest rock physics understanding of how rock inelasticity is related to rock type, pore fluid types, and pore microstructure, (2) synthetic seismic modeling that will help identify the relative contributions of scattering and intrinsic inelasticity to apparent Q attributes, and (3) robust algorithms that extract relative wave attenuation attributes from seismic data. This project provides: (1) Additional petrophysical insight from acquired data; (2) Increased understanding of rock and fluid properties; (3) New techniques to measure reservoir properties that are not currently available; and (4) Provide tools to more accurately describe the reservoir and predict oil location and volumes. These methodologies will improve the industry's ability to predict and quantify oil and gas saturation distribution, and to apply this information through geologic models to enhance reservoir simulation. We have applied for two separate patents relating to work that was completed as part of this project.

  19. Overview of seismic re-evaluation methodologies

    International Nuclear Information System (INIS)

    Campbell, R.D.; Johnson, J.J.

    1993-01-01

    Several seismic licensing and safety issues have emerged over the past fifteen years for commercial U.S. Nuclear Power Plants and U.S. Government research reactors, production reactors and process facilities. The methodologies for resolution of these issues have been developed in numerous government and utility sponsored research programs. The resolution criteria have included conservative deterministic design criteria, deterministic seismic margins assessments criteria (SMA) and seismic probabilistic safety assessment criteria (SPSA). The criteria for SMAs and SPSAs have been based on realistically considering the inelastic energy absorption capability of ductile structures, equipment and piping and have incorporated the use of earthquake and testing experience to evaluate the operability of complex mechanical and electrical equipment. Most of the applications to date have been confined to the U.S. but there have been several applications to Asian, Western and Eastern Europe reactors. This paper summarizes the major issues addressed, the development of reevaluation criteria and selected applications to non U.S. reactors including WWER reactors. (author)

  20. Real-Time Seismic Data from the Bottom Sea

    Directory of Open Access Journals (Sweden)

    Xavier Roset

    2018-04-01

    Full Text Available An anchored marine seismometer, acquiring real-time seismic data, has been built and tested. The system consists of an underwater seismometer, a surface buoy, and a mooring line that connects them. Inductive communication through the mooring line provides an inexpensive, reliable, and flexible solution. Prior to the deployment the dynamics of the system have been simulated numerically in order to find optimal materials, cables, buoys, and connections under critical marine conditions. The seismometer used is a high sensitivity triaxial broadband geophone able to measure low vibrational signals produced by the underwater seismic events. The power to operate the surface buoy is provided by solar panels. Additional batteries are needed for the underwater unit. In this paper we also present the first results and an earthquake detection of a prototype system that demonstrates the feasibility of this concept. The seismometer transmits continuous data at a rate of 1000 bps to a controller equipped with a radio link in the surface buoy. A GPS receiver on the surface buoy has been configured to perform accurate timestamps on the seismic data, which makes it possible to integrate the seismic data from these marine seismometers into the existing seismic network.

  1. Real-Time Seismic Data from the Bottom Sea.

    Science.gov (United States)

    Roset, Xavier; Trullols, Enric; Artero-Delgado, Carola; Prat, Joana; Del Río, Joaquin; Massana, Immaculada; Carbonell, Montserrat; Barco de la Torre, Jaime; Toma, Daniel Mihai

    2018-04-08

    An anchored marine seismometer, acquiring real-time seismic data, has been built and tested. The system consists of an underwater seismometer, a surface buoy, and a mooring line that connects them. Inductive communication through the mooring line provides an inexpensive, reliable, and flexible solution. Prior to the deployment the dynamics of the system have been simulated numerically in order to find optimal materials, cables, buoys, and connections under critical marine conditions. The seismometer used is a high sensitivity triaxial broadband geophone able to measure low vibrational signals produced by the underwater seismic events. The power to operate the surface buoy is provided by solar panels. Additional batteries are needed for the underwater unit. In this paper we also present the first results and an earthquake detection of a prototype system that demonstrates the feasibility of this concept. The seismometer transmits continuous data at a rate of 1000 bps to a controller equipped with a radio link in the surface buoy. A GPS receiver on the surface buoy has been configured to perform accurate timestamps on the seismic data, which makes it possible to integrate the seismic data from these marine seismometers into the existing seismic network.

  2. Patterned basal seismicity shows sub-ice stream bedforms

    Science.gov (United States)

    Barcheck, C. G.; Tulaczyk, S. M.; Schwartz, S. Y.

    2017-12-01

    Patterns in seismicity emanating from the bottom of fast-moving ice streams and glaciers may indicate localized patches of higher basal resistance— sometimes called 'sticky spots', or otherwise varying basal properties. These seismogenic basal areas resist an unknown portion of the total driving stress of the Whillans Ice Plain (WIP), in West Antarctica, but may play an important role in the WIP stick-slip cycle and ice stream slowdown. To better understand the mechanism and importance of basal seismicity beneath the WIP, we analyze seismic data collected by a small aperture (micro-earthquakes in Dec 2014, and we compare the resulting map of seismicity to ice bottom depth measured by airborne radar. The number of basal earthquakes per area within the network is spatially heterogeneous, but a pattern of two 400m wide streaks of high seismicity rates is evident, with >50-500 earthquakes detected per 50x50m grid cell in 2 weeks. These seismically active streaks are elongated approximately in the ice flow direction with a spacing of 750m. Independent airborne radar measurements of ice bottom depth from Jan 2013 show a low-amplitude ( 5m) undulation in the basal topography superposed on a regional gradient in ice bottom depth. The flow-perpendicular wavelength of these low-amplitude undulations is comparable to the spacing of the high seismicity bands, and the streaks of high seismicity intersect local lows in the undulating basal topography. We interpret these seismic and radar observations as showing seismically active sub-ice stream bedforms that are low amplitude and elongated in the direction of ice flow, comparable to the morphology of mega scale glacial lineations (MSGLs), with high basal seismicity rates observed in the MSGL troughs. These results have implications for understanding the formation mechanism of MSGLS and well as understanding the interplay between basal topographic roughness, spatially varying basal till and hydrologic properties, basal

  3. Unresolved Safety Issue A-46 - seismic qualification of equipment in operating plants

    International Nuclear Information System (INIS)

    Anderson, N.

    1985-01-01

    Seismic Qualification of Equipment in Operating Plants was designated as an Unresolved Safety Issue (USI) in December, 1980. The USI A-46 program was developed in early 1981 to investigate the adequacy of mechanical and electrical equipment in operating plants to withstand a safe shutdown earthquake. The approach taken was to develop viable, cost effective alternatives to current seismic qualification licensing requirements which could be applied to operating nuclear power plants. The tasks investigated include: (1) identification of seismic sensitive systems and equipment; (2) assessment of adequacy of existing seismic qualification methods; (3) development and assessment of in-situ test procedures to assist in qualification of equipment; (4) seismic qualification of equipment using seismic experience data; and (5) development of methods to generate generic floor response spectra. Progress to date and plans for completion of resolution are reported

  4. An experimental study of damping characteristics with emphasis on insulation for nuclear power plant piping system (Seismic Damping Ratio Evaluation Program)

    International Nuclear Information System (INIS)

    Shibata, H.; Ito, M.; Hayashi, T.; Chiba, T.; Kobayashi, H.; Kitamura, K.; Ando, K.; Koyanagi, R.

    1981-01-01

    To clarify the damping characteristics and mechanism in nuclear power plant piping systems, the study group was established and conducted to study SDREP (Seismic Damping Ratio Evaluation Program). As the Phase II of this study, vibration tests were conducted to investigate factors which might contribute to damping characteristics of piping systems. These tests are composed of the next three model tests: 1) The component damping characteristics test of thermal insulator 2) The simplified piping model test 3) The scale model test. In these tests, we studied damping characteristics with emphasis on thermal insulator (mainly calcium silicate insulator). The acceleartion level of pipings is the same as that of the actual seismic response. The excitation was by sinusoidal sweep method using the shaking table and by free vibration method using snapback. (orig./RW)

  5. Instrumentation qualification. Seismic qualification of C-E instrumentation equipment. Part One

    International Nuclear Information System (INIS)

    1977-05-01

    A summary of the C-E seismic qualification program utilized to demonstrate the seismic design adequacy of the instrumentation and control equipment used in C-E supplied Nuclear Steam Supply Systems (NSSS) is presented. The report is divided into two parts. Part One includes the equipment seismic requirements and a description of the qualification methods. Part Two lists the specific equipment by nuclear station in which it is used and the equipment test results are summarized in a standard data sheet format to facilitate review. The seismic requirements are based on individual contract commitments with C-E customers and the NRC Standard Review Plan, Section 3.10 ''Seismic Qualification of Category I Instrumentation and Electrical Equipment.'' Equipment is qualified for use in a seismic environment where damage potential to the equipment is less than or equal to that simulated seismic environment to which it has been qualified. The anticipated Safe Shutdown Earthquake (SSE) environment at the inservice location of equipment should be confirmed by each applicant as not exceeding that to which it is qualified

  6. Earthquake Monitoring with the MyShake Global Smartphone Seismic Network

    Science.gov (United States)

    Inbal, A.; Kong, Q.; Allen, R. M.; Savran, W. H.

    2017-12-01

    Smartphone arrays have the potential for significantly improving seismic monitoring in sparsely instrumented urban areas. This approach benefits from the dense spatial coverage of users, as well as from communication and computational capabilities built into smartphones, which facilitate big seismic data transfer and analysis. Advantages in data acquisition with smartphones trade-off with factors such as the low-quality sensors installed in phones, high noise levels, and strong network heterogeneity, all of which limit effective seismic monitoring. Here we utilize network and array-processing schemes to asses event detectability with the MyShake global smartphone network. We examine the benefits of using this network in either triggered or continuous modes of operation. A global database of ground motions measured on stationary phones triggered by M2-6 events is used to establish detection probabilities. We find that the probability of detecting an M=3 event with a single phone located 20 nearby phones closely match the regional catalog locations. We use simulated broadband seismic data to examine how location uncertainties vary with user distribution and noise levels. To this end, we have developed an empirical noise model for the metropolitan Los-Angeles (LA) area. We find that densities larger than 100 stationary phones/km2 are required to accurately locate M 2 events in the LA basin. Given the projected MyShake user distribution, that condition may be met within the next few years.

  7. SONATINA-2H: a computer program for seismic analysis of the two-dimensional horizontal slice HTGR core

    International Nuclear Information System (INIS)

    Ikushima, Takeshi

    1990-02-01

    A Computer program SONATINA-2H has been developed for predicting the behavior of a two-dimensional horizontal HTGR core under seismic excitation. SONATINA-2H is a general two-dimensional computer program capable of analyzing the horizontal slice HTGR core with the fixed side reflector blocks and its restraint structures and the core support structure. In the analytical model, each block is treated as a rigid body and represent one column of the reactor core and is connected to the core support structure by means of column springs and viscous dampers. A single dashpot model is used for the collision process between adjacent blocks. The core support structure is represented by a single block. The computer program SONATINA-2H is capable of analyzing the core behavior for an excitation input applied simultaneously in two mutually perpendicular horizontal directions. In the present report are given, the theoretical formulation of the analytical model, an user's manual to describe the input and output format and sample problems. (author)

  8. Seismic Microzonation for Refinement of Seismic Load Parameters

    Energy Technology Data Exchange (ETDEWEB)

    Savich, A. I.; Bugaevskii, A. G., E-mail: office@geodyn.ru, E-mail: bugaevskiy@geodyn.ru [Center of the Office of Geodynamic Observations in the Power Sector, an affiliate of JSC “Institut Gidroproekt” (Russian Federation)

    2016-05-15

    Functional dependencies are established for the characteristics of seismic transients recorded at various points of a studied site, which are used to propose a new approach to seismic microzonation (SMZ) that enables the creation of new SMZ maps of strong seismic motion, with due regard for dynamic parameters of recorded transients during weak earthquakes.

  9. The seismic analyzer: interpreting and illustrating 2D seismic data.

    Science.gov (United States)

    Patel, Daniel; Giertsen, Christopher; Thurmond, John; Gjelberg, John; Gröller, M Eduard

    2008-01-01

    We present a toolbox for quickly interpreting and illustrating 2D slices of seismic volumetric reflection data. Searching for oil and gas involves creating a structural overview of seismic reflection data to identify hydrocarbon reservoirs. We improve the search of seismic structures by precalculating the horizon structures of the seismic data prior to interpretation. We improve the annotation of seismic structures by applying novel illustrative rendering algorithms tailored to seismic data, such as deformed texturing and line and texture transfer functions. The illustrative rendering results in multi-attribute and scale invariant visualizations where features are represented clearly in both highly zoomed in and zoomed out views. Thumbnail views in combination with interactive appearance control allows for a quick overview of the data before detailed interpretation takes place. These techniques help reduce the work of seismic illustrators and interpreters.

  10. Intelligent seismic risk mitigation system on structure building

    Science.gov (United States)

    Suryanita, R.; Maizir, H.; Yuniorto, E.; Jingga, H.

    2018-01-01

    Indonesia located on the Pacific Ring of Fire, is one of the highest-risk seismic zone in the world. The strong ground motion might cause catastrophic collapse of the building which leads to casualties and property damages. Therefore, it is imperative to properly design the structural response of building against seismic hazard. Seismic-resistant building design process requires structural analysis to be performed to obtain the necessary building responses. However, the structural analysis could be very difficult and time consuming. This study aims to predict the structural response includes displacement, velocity, and acceleration of multi-storey building with the fixed floor plan using Artificial Neural Network (ANN) method based on the 2010 Indonesian seismic hazard map. By varying the building height, soil condition, and seismic location in 47 cities in Indonesia, 6345 data sets were obtained and fed into the ANN model for the learning process. The trained ANN can predict the displacement, velocity, and acceleration responses with up to 96% of predicted rate. The trained ANN architecture and weight factors were later used to build a simple tool in Visual Basic program which possesses the features for prediction of structural response as mentioned previously.

  11. Automatic Classification of volcano-seismic events based on Deep Neural Networks.

    Science.gov (United States)

    Titos Luzón, M.; Bueno Rodriguez, A.; Garcia Martinez, L.; Benitez, C.; Ibáñez, J. M.

    2017-12-01

    Seismic monitoring of active volcanoes is a popular remote sensing technique to detect seismic activity, often associated to energy exchanges between the volcano and the environment. As a result, seismographs register a wide range of volcano-seismic signals that reflect the nature and underlying physics of volcanic processes. Machine learning and signal processing techniques provide an appropriate framework to analyze such data. In this research, we propose a new classification framework for seismic events based on deep neural networks. Deep neural networks are composed by multiple processing layers, and can discover intrinsic patterns from the data itself. Internal parameters can be initialized using a greedy unsupervised pre-training stage, leading to an efficient training of fully connected architectures. We aim to determine the robustness of these architectures as classifiers of seven different types of seismic events recorded at "Volcán de Fuego" (Colima, Mexico). Two deep neural networks with different pre-training strategies are studied: stacked denoising autoencoder and deep belief networks. Results are compared to existing machine learning algorithms (SVM, Random Forest, Multilayer Perceptron). We used 5 LPC coefficients over three non-overlapping segments as training features in order to characterize temporal evolution, avoid redundancy and encode the signal, regardless of its duration. Experimental results show that deep architectures can classify seismic events with higher accuracy than classical algorithms, attaining up to 92% recognition accuracy. Pre-training initialization helps these models to detect events that occur simultaneously in time (such explosions and rockfalls), increase robustness against noisy inputs, and provide better generalization. These results demonstrate deep neural networks are robust classifiers, and can be deployed in real-environments to monitor the seismicity of restless volcanoes.

  12. Seismicity and seismic monitoring in the Asse salt mine

    International Nuclear Information System (INIS)

    Flach, D.; Gommlich, G.; Hente, B.

    1987-01-01

    Seismicity analyses are made in order to assess the safety of candidate sites for ultimate disposal of hazardous wastes. The report in hand reviews the seismicity history of the Asse salt mine and presents recent results of a measuring campaign made in the area. The monitoring network installed at the site supplies data and information on the regional seismicity, on seismic amplitudes under ground and above ground, and on microseismic activities. (DG) [de

  13. The impact of seismically-induced relay chatter on nuclear plant risk

    International Nuclear Information System (INIS)

    Bley, D.C.; McIntyre, T.J.; Smith, B.; Kassawara, R.P.

    1987-01-01

    This paper describes a systematic scheme for analyzing the impact of relay chatter that is amenable to both PRA analysis and seismic margins analysis. It uses knowledge of the systems engineering of the plant to bound the scope of the problem to a tractable size and has been applied to both the Diablo Canyon PRA and the EPRI seismic margines program trial evaluation at the Catawba Nuclear Power Plant. It has also been coordinated with similar EPRI-sponsored work on relay functionality for the Seismic Qualification Utility Group. (orig./HP)

  14. Lessons learned from the seismic reevaluation of San Onofre Nuclear Generating Station, Unit 1

    International Nuclear Information System (INIS)

    Russell, M.J.; Shieh, L.C.; Tsai, N.C.; Cheng, T.M.

    1987-01-01

    A seismic reevaluation program was conducted for the San Onofre Nuclear Generating Station, Unit No. 1 (SONGS 1). SEP was created by the NRC to provide (1) an assessment of the significance of differences between current technical positions on safety issues and those that existed when a particular plant was licensed, (2) a basis for deciding on how these differences should be resolved in an integrated plant review, and (3) a documented evaluation of plant safety. The Systematic Evaluation Program (SEP) seismic review for SONGS 1 was exacerbated by the results of an evaluation of an existing capable fault near the site during the design review for Units 2 and 3, which resulted in a design ground acceleration of 0.67g. Southern California Edison Company (SCE), the licensee for SONGS 1, realized that a uniform application of existing seismic criteria and methods would not be feasible for the upgrading of SONGS 1 to such a high seismic requirement. Instead, SCE elected to supplement existing seismic criteria and analysis methods by developing criteria and methods closer to the state of the art in seismic evaluation techniques

  15. Synchrosqueezing-based Transform and its Application in Seismic Data Analysis

    Directory of Open Access Journals (Sweden)

    Saman Gholtashi

    2015-10-01

    Full Text Available Seismic waves are non-stationary due to its propagation through the earth. Time-frequency transforms are suitable tools for analyzing non-stationary seismic signals. Spectral decomposition can reveal the non-stationary characteristics which cannot be easily observed in the time or frequency representation alone. Various types of spectral decomposition methods have been introduced by some researchers. Conventional spectral decompositions have some restrictions such as Heisenberg uncertainty principle and cross-terms which limit their applications in signal analysis. In this paper, synchrosqueezingbased transforms were used to overcome the mentioned restrictions; also, as an application of this new high resolution time-frequency analysis method, it was applied to random noise removal and the detection of low-frequency shadows in seismic data. The efficiency of this method is evaluated by applying it to both synthetic and real seismic data. The results show that the mentioned transform is a proper tool for seismic data processing and interpretation.

  16. Regional seismic lines reprocessed using post-stack processing techniques; National Petroleum Reserve, Alaska

    Science.gov (United States)

    Miller, John J.; Agena, W.F.; Lee, M.W.; Zihlman, F.N.; Grow, J.A.; Taylor, D.J.; Killgore, Michele; Oliver, H.L.

    2000-01-01

    This CD-ROM contains stacked, migrated, 2-Dimensional seismic reflection data and associated support information for 22 regional seismic lines (3,470 line-miles) recorded in the National Petroleum Reserve ? Alaska (NPRA) from 1974 through 1981. Together, these lines constitute about one-quarter of the seismic data collected as part of the Federal Government?s program to evaluate the petroleum potential of the Reserve. The regional lines, which form a grid covering the entire NPRA, were created by combining various individual lines recorded in different years using different recording parameters. These data were reprocessed by the USGS using modern, post-stack processing techniques, to create a data set suitable for interpretation on interactive seismic interpretation computer workstations. Reprocessing was done in support of ongoing petroleum resource studies by the USGS Energy Program. The CD-ROM contains the following files: 1) 22 files containing the digital seismic data in standard, SEG-Y format; 2) 1 file containing navigation data for the 22 lines in standard SEG-P1 format; 3) 22 small scale graphic images of each seismic line in Adobe Acrobat? PDF format; 4) a graphic image of the location map, generated from the navigation file, with hyperlinks to the graphic images of the seismic lines; 5) an ASCII text file with cross-reference information for relating the sequential trace numbers on each regional line to the line number and shotpoint number of the original component lines; and 6) an explanation of the processing used to create the final seismic sections (this document). The SEG-Y format seismic files and SEG-P1 format navigation file contain all the information necessary for loading the data onto a seismic interpretation workstation.

  17. First Quarter Hanford Seismic Report for Fiscal Year 2011

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Clayton, Ray E.; Devary, Joseph L.

    2011-03-31

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. The Hanford Seismic Network recorded 16 local earthquakes during the first quarter of FY 2011. Six earthquakes were located at shallow depths (less than 4 km), seven earthquakes at intermediate depths (between 4 and 9 km), most likely in the pre-basalt sediments, and three earthquakes were located at depths greater than 9 km, within the basement. Geographically, thirteen earthquakes were located in known swarm areas and three earthquakes were classified as random events. The highest magnitude event (1.8 Mc) was recorded on October 19, 2010 at depth 17.5 km with epicenter located near the Yakima River between the Rattlesnake Mountain and Horse Heaven Hills swarm areas.

  18. German seismic regulations

    International Nuclear Information System (INIS)

    Danisch, Ruediger

    2002-01-01

    Rules and regulations for seismic design in Germany cover the following: seismic design of conventional buildings; and seismic design of nuclear facilities. Safety criteria for NPPs, accident guidelines, and guidelines for PWRs as well as safety standards are cited. Safety standards concerned with NPPs seismic design include basic principles, soil analysis, design of building structures, design of mechanical and electrical components, seismic instrumentation, and measures to be undertaken after the earthquake

  19. Establishing seismic design criteria to achieve an acceptable seismic margin

    International Nuclear Information System (INIS)

    Kennedy, R.P.

    1997-01-01

    In order to develop a risk based seismic design criteria the following four issues must be addressed: (1) What target annual probability of seismic induced unacceptable performance is acceptable? (2). What minimum seismic margin is acceptable? (3) Given the decisions made under Issues 1 and 2, at what annual frequency of exceedance should the Safe Shutdown Earthquake ground motion be defined? (4) What seismic design criteria should be established to reasonably achieve the seismic margin defined under Issue 2? The first issue is purely a policy decision and is not addressed in this paper. Each of the other three issues are addressed. Issues 2 and 3 are integrally tied together so that a very large number of possible combinations of responses to these two issues can be used to achieve the target goal defined under Issue 1. Section 2 lays out a combined approach to these two issues and presents three potentially attractive combined resolutions of these two issues which reasonably achieves the target goal. The remainder of the paper discusses an approach which can be used to develop seismic design criteria aimed at achieving the desired seismic margin defined in resolution of Issue 2. Suggestions for revising existing seismic design criteria to more consistently achieve the desired seismic margin are presented

  20. Seismic capacity of a reinforced concrete frame structure without seismic detailing and limited ductility seismic design in moderate seismicity

    International Nuclear Information System (INIS)

    Kim, J. K.; Kim, I. H.

    1999-01-01

    A four-story reinforced concrete frame building model is designed for the gravity loads only. Static nonlinear pushover analyses are performed in two orthogonal horizontal directions. The overall capacity curves are converted into ADRS spectra and compared with demand spectra. At several points the deformed shape, moment and shear distribution are calculated. Based on these results limited ductility seismic design concept is proposed as an alternative seismic design approach in moderate seismicity resign

  1. Vrancea earthquakes. Courses for specific actions to mitigate seismic risk

    International Nuclear Information System (INIS)

    Marmureanu, Gheorghe; Marmureanu, Alexandru

    2005-01-01

    Earthquakes in the Carpathian-Pannonian region are confined to the crust, except the Vrancea zone, where earthquakes with focal depth down to 200 Km occur. For example, the ruptured area migrated from 150 km to 180 km (November 10,1940, M w = 7.7) from 90 km to 110 km (March 4, 1977, M w 7.4), from 130 km to 150 km (August 30, 1986, M w = 7.1) and from 70 km to 90 km (May 30, 1990, M w = 6.9) depth. The depth interval between 110 km and 130 km remains not ruptured since 1802, October 26, when it was the strongest earthquake occurred in this part of Central Europe. The magnitude is assumed to be M w = 7.9 - 8.0 and this depth interval is a natural candidate for the next strong Vrancea event. While no country in the world is entirely safe, the lack of capacity to limit the impact of seismic hazards remains a major burden for all countries and while the world has witnessed an exponential increase in human and material losses due to natural disasters given by earthquakes, there is a need to reverse trends in seismic risk mitigation to future events. Main courses for specific actions to mitigate the seismic risk given by strong deep Vrancea earthquakes should be considered as key for development actions: - Early warning system for industrial facilities. Early warning is more than a technological instrument to detect, monitor and submit warnings. It should become part of a management information system for decision-making in the context of national institutional frameworks for disaster management and part of national and local strategies and programmers for risk mitigation; - Prediction program of Vrancea strong earthquakes of short and long term; - Hazard seismic map of Romania. The wrong assessment of the seismic hazard can lead to dramatic situations as those from Bucharest or Kobe. Before the 1977 Vrancea earthquake, the city of Bucharest was designed to intensity I = VII (MMI) and the real intensity was I = IX1/2-X (MMI); - Seismic microzonation of large populated

  2. Progress of R and D on seismic emergency information system

    International Nuclear Information System (INIS)

    2000-09-01

    After the Great Hansin-Awaji Earthquake Disaster occurred in 1995, the Science and Technology Agency commenced 'Frontier Research Program on Earthquake' in FY1996. As a part of this research program, four-year program on 'Research on Real-time Earthquake Information Transmission' has been carried out at JAERI since FY1997. Through the experience of the above earthquake disaster, the importance of accurate and prompt seismic information transmission immediately after the occurrence of the earthquake has been recognized from the viewpoint of disaster mitigation. Under this circumstance, the main activity in Real-time Earthquake Information Transmission Research at JAERI has been placed on the development of a seismic emergency information system. In order to respond to the above R and D, Seismic Emergency Information System Research Team was organized in JAERI in FY1998. In the meantime a part of this R and D program is performed under the coordinated research between JAERI and NIED(National Research Institute for Science and Disaster Prevention). This report describes the recent progress of R and D until FY1999. In the R and D, estimation techniques of hypocenter, fault and earthquake motion parameters, in which the latest results in the field of earthquake engineering were involved, were developed. Until the end of FY1999, the main part of the system, in which the above estimation techniques are introduced, is completed. By this system the seismic information is being transmitted using E-mail and homepage through the inter-net. In addition the databases on the estimated earthquake motion parameter distribution under scenario earthquakes and the surface soil amplification function around JAERI-Tokai site are prepared to examine the applicability of the system. (author)

  3. Seismic analysis, evaluation and upgrade design for a DOE exhaust stack building

    International Nuclear Information System (INIS)

    Malik, L.E.; Maryak, M.E.

    1991-01-01

    An exhaust stack building of a nuclear reactor facility with complex structural configuration has been analyzed and evaluated and retrofitted for seismic forces. The building was built in the 1950's and had not been designed to resist seismic forces. A rigorous analysis and evaluation program was implemented to minimize costly retrofits required to upgrade the building to resist high seismic forces. Seismic evaluations were performed for the building in its as-is configuration, and as modified for several upgrade schemes. Soil-structure-interaction, basemat flexibility and the influence of the nearby reactor building were considered in rigorous seismic analyses. These analyses and evaluations enabled limited upgrades to qualify the stack building for the seismic forces. Some of the major conclusions of this study are: (1) a phased approach of seismic analyses, utilizing simplified models to evaluate practicable upgrade schemes, and, then incorporating the most suitable scheme in a rigorous model to obtain design forces for upgrades, is an efficient and cost-effective approach for seismic qualification of nuclear facilities to higher seismic criteria; and, (2) finalizing the upgrade of a major nuclear facility is an iterative process, which continues throughout the construction of the upgrades

  4. Birth of the Program for Array Seismic Studies of the Continental Lithosphere (PASSCAL)

    Science.gov (United States)

    James, D. E.; Sacks, I. S.

    2002-05-01

    Global Seismic Network (GSN) under the overall umbrella of the Incorporated Research Institutions for Seismology (IRIS) consortium. Pre-startup funding for PASSCAL was provided by NSF via a so-called "Phase Zero" grant to the Carnegie Institution in June, 1984, to initiate design of new digital instrumentation and to facilitate preparation of the PASSCAL Program Plan. A working group met at Princeton in July 1984 to draft the PASSCAL Program Plan for the IRIS 10-year proposal to NSF, submitted in December 1984. PASSCAL functions as a national facility for seismological research, acquiring and maintaining a large complement of state-of-the-art portable instrumentation for scientists in member institutions. Within a year of its formation, PASSCAL had retained an engineer/program manager and begun the specification process for the manufacture and acquisition of a national instrumentation facility of broadband and short period seismographs. Instrument centers staffed by hardware and software engineers were established to maintain and distribute equipment, and to assist in field installations. By the late 1980s substantial volumes of standardized digital data were flowing from portable experiments to the archives of the newly formed Data Management Center (DMC). Portable broadband sensors built to PASSCAL specifications came on the market in 1989 and transformed the nature of portable experiments by expanding the technical capabilities of portable stations almost to the level of permanent global stations. Today PASSCAL through the instrument center at New Mexico Tech supports dozens of experiments worldwide for high resolution imaging of the earth's interior on all scales.

  5. SeismoDome: Sonic and visual representation of earthquakes and seismic waves in the planetarium

    Science.gov (United States)

    Holtzman, B. K.; Candler, J.; Repetto, D.; Pratt, M. J.; Paté, A.; Turk, M.; Gualtieri, L.; Peter, D. B.; Trakinski, V.; Ebel, D. S. S.; Gossmann, J.; Lem, N.

    2017-12-01

    Since 2014, we have produced four "Seismodome" public programs in the Hayden Planetarium at the American Museum of Natural History in New York City. To teach the general public about the dynamics of the Earth, we use a range of seismic data (seismicity catalogs, surface and body wave fields, ambient noise, free oscillations) to generate movies and sounds conveying aspects of the physics of earthquakes and seismic waves. The narrative aims to stretch people's sense of time and scale, starting with 2 billion years of convection, then zooming in seismicity over days to twenty years at different length scales, to hours of global seismic wave propagation, all compressed to minute long movies. To optimize the experience in the planetarium, the 180-degree fisheye screen corresponds directly to the surface of the Earth, such that the audience is inside the planet. The program consists of three main elements (1) Using sonified and animated seismicity catalogs, comparison of several years of earthquakes on different plate boundaries conveys the dramatic differences in their dynamics and the nature of great and "normal" earthquakes. (2) Animations of USArray data (based on "Ground Motion Visualizations" methods from IRIS but in 3D, with added sound) convey the basic observations of seismic wave fields, with which we raise questions about what they tell us about earthquake physics and the Earth's interior structure. (3) Movies of spectral element simulations of global seismic wave fields synchronized with sonified natural data push these questions further, especially when viewed from the interior of the planet. Other elements include (4) sounds of the global ambient noise field coupled to movies of mean ocean wave height (related to the noise source) and (5) three months of free oscillations / normal modes ringing after the Tohoku earthquake. We use and develop a wide range of sonification and animation methods, written mostly in python. Flat-screen versions of these movies

  6. Optimal Retrofit Scheme for Highway Network under Seismic Hazards

    Directory of Open Access Journals (Sweden)

    Yongxi Huang

    2014-06-01

    Full Text Available Many older highway bridges in the United States (US are inadequate for seismic loads and could be severely damaged or collapsed in a relatively small earthquake. According to the most recent American Society of Civil Engineers’ infrastructure report card, one-third of the bridges in the US are rated as structurally deficient and many of these structurally deficient bridges are located in seismic zones. To improve this situation, at-risk bridges must be identified and evaluated and effective retrofitting programs should be in place to reduce their seismic vulnerabilities. In this study, a new retrofit strategy decision scheme for highway bridges under seismic hazards is developed and seamlessly integrate the scenario-based seismic analysis of bridges and the traffic network into the proposed optimization modeling framework. A full spectrum of bridge retrofit strategies is considered based on explicit structural assessment for each seismic damage state. As an empirical case study, the proposed retrofit strategy decision scheme is utilized to evaluate the bridge network in one of the active seismic zones in the US, Charleston, South Carolina. The developed modeling framework, on average, will help increase network throughput traffic capacity by 45% with a cost increase of only $15million for the Mw 5.5 event and increase the capacity fourfold with a cost of only $32m for the Mw 7.0 event.

  7. Seismic hazard estimation based on the distributed seismicity in northern China

    Science.gov (United States)

    Yang, Yong; Shi, Bao-Ping; Sun, Liang

    2008-03-01

    In this paper, we have proposed an alternative seismic hazard modeling by using distributed seismicites. The distributed seismicity model does not need delineation of seismic source zones, and simplify the methodology of probabilistic seismic hazard analysis. Based on the devastating earthquake catalogue, we established three seismicity model, derived the distribution of a-value in northern China by using Gaussian smoothing function, and calculated peak ground acceleration distributions for this area with 2%, 5% and 10% probability of exceedance in a 50-year period by using three attenuation models, respectively. In general, the peak ground motion distribution patterns are consistent with current seismic hazard map of China, but in some specific seismic zones which include Shanxi Province and Shijiazhuang areas, our results indicated a little bit higher peak ground motions and zonation characters which are in agreement with seismicity distribution patterns in these areas. The hazard curves have been developed for Beijing, Tianjin, Taiyuan, Tangshan, and Ji’nan, the metropolitan cities in the northern China. The results showed that Tangshan, Taiyuan, Beijing has a higher seismic hazard than that of other cities mentioned above.

  8. ROCKING. A computer program for seismic response analysis of radioactive materials transport AND/OR storage casks

    International Nuclear Information System (INIS)

    Ikushima, Takeshi

    1995-11-01

    The computer program ROCKING has been developed for seismic response analysis, which includes rocking and sliding behavior, of radioactive materials transport and/or storage casks. Main features of ROCKING are as follows; (1) Cask is treated as a rigid body. (2) Rocking and sliding behavior are considered. (3) Impact forces are represented by the spring dashpot model located at impact points. (4) Friction force is calculated at interface between a cask and a floor. (5) Forces of wire ropes against tip-over work only as tensile loads. In the paper, the calculation model, the calculation equations, validity calculations and user's manual are shown. (author)

  9. Ambient seismic noise monitoring of a clay landslide: Toward failure prediction

    Science.gov (United States)

    Mainsant, Guénolé; Larose, Eric; Brönnimann, Cornelia; Jongmans, Denis; Michoud, Clément; Jaboyedoff, Michel

    2012-03-01

    Given that clay-rich landslides may become mobilized, leading to rapid mass movements (earthflows and debris flows), they pose critical problems in risk management worldwide. The most widely proposed mechanism leading to such flow-like movements is the increase in water pore pressure in the sliding mass, generating partial or complete liquefaction. This solid-to-liquid transition results in a dramatic reduction of mechanical rigidity in the liquefied zones, which could be detected by monitoring shear wave velocity variations. With this purpose in mind, the ambient seismic noise correlation technique has been applied to measure the variation in the seismic surface wave velocity in the Pont Bourquin landslide (Swiss Alps). This small but active composite earthslide-earthflow was equipped with continuously recording seismic sensors during spring and summer 2010. An earthslide of a few thousand cubic meters was triggered in mid-August 2010, after a rainy period. This article shows that the seismic velocity of the sliding material, measured from daily noise correlograms, decreased continuously and rapidly for several days prior to the catastrophic event. From a spectral analysis of the velocity decrease, it was possible to determine the location of the change at the base of the sliding layer. These results demonstrate that ambient seismic noise can be used to detect rigidity variations before failure and could potentially be used to predict landslides.

  10. Bridging the Gap - Networking Educators using Real-Time Seismic Data

    Science.gov (United States)

    Ortiz, A. M.; Renwald, M. D.; Baldwin, T. K.; Hall, M. K.

    2004-12-01

    After nearly a decade, the seismology community has made critical advances in identifying what is effective and what is needed for success in incorporating real-time seismic data in the classroom. Today's K-16 classroom teachers have many options and opportunities for incorporating short- and long-term inquiry activities for monitoring earthquakes and analyzing seismic data in their daily instruction. Through the SpiNet program, we are providing web-based tools that support educators working with real-time seismic data (http://www.scieds.com/spinet/). Our site includes a Recent Seismicity section, which allows users to share seismic data in real-time, and provides near real-time information about global seismicity. Our Activities section provides data and lessons to assist educators who wish to integrate seismology into their classroom. The Research section, currently under development, will allow educators to share general information about how they teach seismology in their classroom through a discussion board and by posting lesson plans. In addition, we are developing a user-friendly tool for students to post results of their research projects. Designing a website which targets a range of users requires a working knowledge of both user needs and website programming and design. User needs include providing a logical navigational structure and accounting for differences in browser functionality, internet access, and users' abilities. Using website development tools, such as PHP, MySQL, RDF feeds, and specialized geoscience applications, we are automating site maintenance; incorporating databases for information storage and retrieval; and providing accessibility for users with a range of skills and physical limitations. By incorporating these features, we have built a dynamic interface for a broad range of users interested in educational seismology.

  11. Statement of Canadian practice with respect to the mitigation of seismic sound in the marine environment : background paper

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This paper discussed the background research conducted by federal and provincial governments to prepare the statement of Canadian practice with respect to the mitigation of seismic sound in the marine environment. The statement was prepared to establish the minimum standards applicable to all seismic activities that used air source arrays in non-ice covered marine waters. The statement was designed to complement current environmental assessment processes and existing regulatory requirements governing marine seismic activities. The biological impacts of seismic sound on marine life were examined in relation to the physical, physiological and behavioural impacts to marine organisms. A peer review process was used to develop a risk-based approach to direct, indirect, chronic, and cumulative impacts. The background studies showed that biological impacts range from species to species as well as in relation to the proximity of the sound source arrays. Seismic sounds result in auditory impairment or other direct physical impacts to many marine animals. The peer review process demonstrated that mitigation measures should be used where potentially detrimental population-scale impacts may occur, or where adverse impacts may lead to the death, harm or harassment of marine mammals or turtles listed as endangered. Results of the research program and review process were used to develop mitigation requirements for planning seismic surveys; establishing safety zones; prescribing marine mammal and detection measures; and establishing prescribed start-up and shut-down procedures. It was concluded that variations to the mitigative measures can be used when environmental assessment processes point to regional specificities requiring modifications.

  12. Progressive Seismic Failure, Seismic Gap, and Great Seismic Risk across the Densely Populated North China Basin

    Science.gov (United States)

    Yin, A.; Yu, X.; Shen, Z.

    2014-12-01

    Although the seismically active North China basin has the most complete written records of pre-instrumentation earthquakes in the world, this information has not been fully utilized for assessing potential earthquake hazards of this densely populated region that hosts ~200 million people. In this study, we use the historical records to document the earthquake migration pattern and the existence of a 180-km seismic gap along the 600-km long right-slip Tangshan-Hejian-Cixian (THC) fault zone that cuts across the North China basin. The newly recognized seismic gap, which is centered at Tianjin with a population of 11 million people and ~120 km from Beijing (22 million people) and Tangshan (7 million people), has not been ruptured in the past 1000 years by M≥6 earthquakes. The seismic migration pattern in the past millennium suggests that the epicenters of major earthquakes have shifted towards this seismic gap along the THC fault, which implies that the 180- km gap could be the site of the next great earthquake with M≈7.6 if it is ruptured by a single event. Alternatively, the seismic gap may be explained by aseismic creeping or seismic strain transfer between active faults.

  13. Time-Independent Annual Seismic Rates, Based on Faults and Smoothed Seismicity, Computed for Seismic Hazard Assessment in Italy

    Science.gov (United States)

    Murru, M.; Falcone, G.; Taroni, M.; Console, R.

    2017-12-01

    In 2015 the Italian Department of Civil Protection, started a project for upgrading the official Italian seismic hazard map (MPS04) inviting the Italian scientific community to participate in a joint effort for its realization. We participated providing spatially variable time-independent (Poisson) long-term annual occurrence rates of seismic events on the entire Italian territory, considering cells of 0.1°x0.1° from M4.5 up to M8.1 for magnitude bin of 0.1 units. Our final model was composed by two different models, merged in one ensemble model, each one with the same weight: the first one was realized by a smoothed seismicity approach, the second one using the seismogenic faults. The spatial smoothed seismicity was obtained using the smoothing method introduced by Frankel (1995) applied to the historical and instrumental seismicity. In this approach we adopted a tapered Gutenberg-Richter relation with a b-value fixed to 1 and a corner magnitude estimated with the bigger events in the catalogs. For each seismogenic fault provided by the Database of the Individual Seismogenic Sources (DISS), we computed the annual rate (for each cells of 0.1°x0.1°) for magnitude bin of 0.1 units, assuming that the seismic moments of the earthquakes generated by each fault are distributed according to the same tapered Gutenberg-Richter relation of the smoothed seismicity model. The annual rate for the final model was determined in the following way: if the cell falls within one of the seismic sources, we merge the respective value of rate determined by the seismic moments of the earthquakes generated by each fault and the value of the smoothed seismicity model with the same weight; if instead the cells fall outside of any seismic source we considered the rate obtained from the spatial smoothed seismicity. Here we present the final results of our study to be used for the new Italian seismic hazard map.

  14. Continuous distribution of elastic parameters of the shallow quaternary layers along the 3C seismic profile of east Bucharest

    International Nuclear Information System (INIS)

    Bala, A.; Raileanu, V.; Cristea, P.; Nitica, C.

    2008-01-01

    Processing techniques applied to seismic data acquired by reflection methods. Seismic methods are efficient research methods for civil engineering and environmental geology, which invite to develop specific methodologies. Therefore, programs for processing data collected with refraction seismic techniques (based on head and transmitted waves) and by transmission tomography for velocity were developed. The visual programming medium Borland Delphi was utilized to create the program MEDCONT, whose abilities, by menus and dialog windows, are both commanded and controlled. The accuracy and the adaptability of the program to field cases are validated by data resulted from forward models and also collected by applications on field objectives. (authors)

  15. Third Quarter Hanford Seismic Report for Fiscal Year 2000

    Energy Technology Data Exchange (ETDEWEB)

    DC Hartshorn; SP Reidel; AC Rohay

    2000-09-01

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and its con-tractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (E WRN) consist of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The HSN uses 21 sites and the EWRN uses 36 sites; both networks share 16 sites. The networks have 46 combined data channels because Gable Butte and Frenchman Hills East are three-component sites. The reconfiguration of the telemetry and recording systems was completed during the first quarter. All leased telephone lines have been eliminated and radio telemetry is now used exclusively. For the HSN, there were 818 triggers on two parallel detection and recording systems during the third quarter of fiscal year (FY) 2000. Thirteen seismic events were located by the Hanford Seismic Network within the reporting region of 46-47{degree} N latitude and 119-120{degree} W longitude; 7 were earthquakes in the Columbia River Basalt Group, 1 was an earthquake in the pre-basalt sediments, and 5 were earthquakes in the crystalline basement. Three earthquakes occurred in known swarm areas, and 10 earthquakes were random occurrences. No earthquakes triggered the Hanford Strong Motion Accelerometers during the third quarter of FY 2000.

  16. Seismic safety margins research program. Phase I final report - Plant/site selection and data collection (Project I)

    International Nuclear Information System (INIS)

    Chuang, T.Y.

    1981-07-01

    Project I of Phase I of the Seismic Safety Margins Research Program (SSMRP) comprised two parts: the selection of a representative nuclear power plant/site for study in Phase I and the collection of data needed by the other SSMRP projects. Unit 1 of the Zion Nuclear Power Plant in Zion, Illinois, was selected for the SSMRP Phase I studies. Unit 1 of the Zion plant has been validated as a good choice for the Phase I study plant. Although no single nuclear power plant can represent all such plants equally well, selection criteria were developed to maximize the generic implications of Phase I of the SSMRP. On the basis of the selection criteria, the Zion plant and its site were found to be reasonably representative of operating and future plants with regard to its nuclear steam supply system; the type of containment structure (prestressed concrete); its electrical capacity (1100 MWe); its location (the Midwest); the peak seismic acceleration used for design (0.17g); and the properties of the underlying soil (the low-strain shear-wave velocity is 1650 ft/s in a 50- to 100-ft-thick layer of soil overlying sedimentary bedrock). (author)

  17. Seismic Azimuthal Anisotropy of the Lower Paleozoic Shales in Northern Poland: can we reliably detect it?

    Science.gov (United States)

    Cyz, Marta; Malinowski, Michał

    2017-04-01

    Analysis of the azimuthal anisotropy is an important aspect of characterization the Lower Paleozoic shale play in northern Poland, since it can be used to map pre-existing fracture networks or help in optimal placement of the horizontal wells. Previous studies employed Velocity versus Azimuth (VVAz) method and found that this anisotropy is weak - on the order of 1-2%, only locally - close to major fault zones - being higher (ca. 7%). This is consistent with the recent re-interpretation of the cross-dipole sonic data, which indicates average shear wave anisotropy of 1%. The problem with the VVAz method is that it requires good definition of the interval, for which the analysis is made and it should be minimum 100 ms thick. In our case, the target intervals are thin - upper reservoir (Lower Silurian Jantar formation) is 15 m thick, lower reservoir (Upper Ordovician Sasino formation) is 25 m thick. Therefore, we prefer to use the Amplitude vs Azimuth (AVAz) method, which can be applied on a single horizon (e.g. the base of the reservoir). However, the AVAz method depends critically on the quality of the seismic data and preservation of amplitudes during processing. On top of the above mentioned issues, physical properties of the Lower Paleozoic shales from Poland seem to be unfavourable for detecting azimuthal anisotropy. For example, for both target formations, parameter g=(Vs/Vp)2 is close to 0.32, which implies that the anisotropy expressed by the anisotropic gradient in the dry (i.e. gas-filled fractures) case is close to zero. In case of e.g. the Bakken Shale, g is much higher (0.38-0.4), leading to a detectable anisotropic signature even in the dry case. Modelling of the synthetic AVAz response performed using available well data suggested that anisotropic gradient in the wet (fluid-filled) case should be detectable even in case of the weak anisotropy (1-2%). This scenario is consistent with the observation, that the studied area is located in the liquid

  18. Advanced Seismic While Drilling System

    Energy Technology Data Exchange (ETDEWEB)

    Robert Radtke; John Fontenot; David Glowka; Robert Stokes; Jeffery Sutherland; Ron Evans; Jim Musser

    2008-06-30

    . An APS Turbine Alternator powered the SeismicPULSER{trademark} to produce two Hz frequency peak signals repeated every 20 seconds. Since the ION Geophysical, Inc. (ION) seismic survey surface recording system was designed to detect a minimum downhole signal of three Hz, successful performance was confirmed with a 5.3 Hz recording with the pumps running. The two Hz signal generated by the sparker was modulated with the 3.3 Hz signal produced by the mud pumps to create an intense 5.3 Hz peak frequency signal. The low frequency sparker source is ultimately capable of generating selectable peak frequencies of 1 to 40 Hz with high-frequency spectra content to 10 kHz. The lower frequencies and, perhaps, low-frequency sweeps, are needed to achieve sufficient range and resolution for realtime imaging in deep (15,000 ft+), high-temperature (150 C) wells for (a) geosteering, (b) accurate seismic hole depth, (c) accurate pore pressure determinations ahead of the bit, (d) near wellbore diagnostics with a downhole receiver and wired drill pipe, and (e) reservoir model verification. Furthermore, the pressure of the sparker bubble will disintegrate rock resulting in an increased overall rates of penetration. Other applications for the SeismicPULSER{trademark} technology are to deploy a low-frequency source for greater range on a wireline for Reverse Vertical Seismic Profiling (RVSP) and Cross-Well Tomography. Commercialization of the technology is being undertaken by first contacting stakeholders to define the value proposition for rig site services utilizing SeismicPULSER{trademark} technologies. Stakeholders include national oil companies, independent oil companies, independents, service companies, and commercial investors. Service companies will introduce a new Drill Bit SWD service for deep HTHP wells. Collaboration will be encouraged between stakeholders in the form of joint industry projects to develop prototype tools and initial field trials. No barriers have been identified

  19. The Great Maule earthquake: seismicity prior to and after the main shock from amphibious seismic networks

    Science.gov (United States)

    Lieser, K.; Arroyo, I. G.; Grevemeyer, I.; Flueh, E. R.; Lange, D.; Tilmann, F. J.

    2013-12-01

    The Chilean subduction zone is among the seismically most active plate boundaries in the world and its coastal ranges suffer from a magnitude 8 or larger megathrust earthquake every 10-20 years. The Constitución-Concepción or Maule segment in central Chile between ~35.5°S and 37°S was considered to be a mature seismic gap, rupturing last in 1835 and being seismically quiet without any magnitude 4.5 or larger earthquakes reported in global catalogues. It is located to the north of the nucleation area of the 1960 magnitude 9.5 Valdivia earthquake and to the south of the 1928 magnitude 8 Talca earthquake. On 27 February 2010 this segment ruptured in a Mw=8.8 earthquake, nucleating near 36°S and affecting a 500-600 km long segment of the margin between 34°S and 38.5°S. Aftershocks occurred along a roughly 600 km long portion of the central Chilean margin, most of them offshore. Therefore, a network of 30 ocean-bottom-seismometers was deployed in the northern portion of the rupture area for a three month period, recording local offshore aftershocks between 20 September 2010 and 25 December 2010. In addition, data of a network consisting of 33 landstations of the GeoForschungsZentrum Potsdam were included into the network, providing an ideal coverage of both the rupture plane and areas affected by post-seismic slip as deduced from geodetic data. Aftershock locations are based on automatically detected P wave onsets and a 2.5D velocity model of the combined on- and offshore network. Aftershock seismicity analysis in the northern part of the survey area reveals a well resolved seismically active splay fault in the accretionary prism of the Chilean forearc. Our findings imply that in the northernmost part of the rupture zone, co-seismic slip most likely propagated along the splay fault and not the subduction thrust fault. In addition, the updip limit of aftershocks along the plate interface can be verified to about 40 km landwards from the deformation front. Prior to

  20. Seismic signal of near steady uniform flows

    Science.gov (United States)

    Mangeney, A.; Bachelet, V.; Toussaint, R.; de Rosny, J.

    2017-12-01

    The seismic signal generated by rockfalls, landslides or avalanches is a unique tool to detect, characterize and monitor gravitational flow activity. A major challenge in this domain is to retrieve the dynamic properties of the flow from the emitted seismic signal. In this study, we propose laboratory experiments where the dynamic properties of the flow (velocity, granular temperature, density, etc.) are measured together with the generated seismic signal. We investigate near steady uniform flows made of glass beads of 2mm diameter, flowing throughout a thin rectangular channel of 10 cm width, with tunable tilt angle and height flow, thanks to an adjustable opening gate. The flow is monitored from the spine with a fast camera (5000 fps), and the emitted waves are recorded by accelerometers (10Hz - 54 kHz), stuck on the back side of the bottom of the channel. Among others, three seismic parameters are analyzed: the power radiated by the flow, the mean frequency of the signal, and the modulation of its amplitude. We show that they are linked to three dynamical properties: the mean kinetic energy of the flow, the speed of collisions between beads and the vertical oscillation of the beads, respectively.

  1. Seismic capacity of switchgear

    International Nuclear Information System (INIS)

    Bandyopadhyay, K.; Hofmayer, C.; Kassir, M.; Pepper, S.

    1989-01-01

    As part of a component fragility program sponsored by the USNRC, BNL has collected existing information on the seismic capacity of switchgear assemblies from major manufacturers. Existing seismic test data for both low and medium voltage switchgear assemblies have been evaluated and the generic results are presented in this paper. The failure modes are identified and the corresponding generic lower bound capacity levels are established. The test response spectra have been used as a measure of the test vibration input. The results indicate that relays chatter at a very low input level at the base of the switchgear cabinet. This change of state of devices including relays have been observed. Breaker tripping occurs at a higher vibration level. Although the structural failure of internal elements have been noticed, the overall switchgear cabinet structure withstands a high vibration level. 5 refs., 2 figs., 2 tabs

  2. Long seismic activity in the Porto dos Gaúchos Seismic Zone(PGSZ) - Amazon Craton Brazil

    Science.gov (United States)

    Barros, L. V.; Bowen, B. M. D.; Schmidt, K.

    2017-12-01

    The largest earthquake ever observed in the stable continental interior of the South American plate occurred in Serra do Tombador (ST), Mato Grosso state - Brazil, on January 31, 1955 with magnitude 6.2 m b . Since then no other earthquake has been located near the 1955 epicenter. However, in Porto dos Gaúchos (PG), 100 km northeast of ST, a recurrent seismicity has been observed since 1959. Both ST and PG are located in the Phanerozoic Parecis basin whose sediments overlies the crystalline basement of Amazon craton. Two magnitude 5 earthquakes occurred in PG, in 1998 and 2005 with intensities up to VI and V, respectively. These two main shocks were followed by aftershock sequences, studied by local seismic networks, last up today, almost 30 years later, period in which it was detected more than seven thousand of seismic events. Both sequences occurred in the same WSW-ENE oriented fault zone with right-lateral strike-slip mechanisms. The epicentral zone is near the northern border of Parecis basin, where there are buried grabens, generally trending WNW-ESE, such as the deep Mesoproterozoic Caiabis graben which lies partly beneath the Parecis basin. The seismogenic fault is located in a basement high, which is probably related with the same seismogenic feature responsible for the earthquakes in PGSZ. The 1955 earthquake, despite the uncertainty in its epicenter, does not seem to be directly related to any buried graben either. The seismicity in the PGSZ, therefore, is not directly related to rifted crust.Not considering the possibility of miss location in the ST earthquake, its isolated occurrence - from the perspective of new studies on intraplate seismicity - lead us to think that the PGSZ was activated by stresses released by the earthquake of 1955 and that the seismogenic fault of ST would have closed a cycle of activity. This would explain its seismic quiescence. However, other studies are necessary to prove this hypothesis, such as the measurement of the

  3. Evaluation of the seismic integrity of a plutonium-handling facility

    International Nuclear Information System (INIS)

    Coats, D.W.

    1981-01-01

    Many studies have been made by and for the Lawrence Livermore National Laboratory (LLNL) to ensure the seismic safety of its Plutonium Facility (Building 332). These studies have included seismological and geologic field investigations to define the actual seismic hazard existing at the Laboratory site as well as structural studies of the Facility itself. Because the basic seismic design criteria has undergone changes over the years, numerous structural studies and upgrades have been completed. The seismic criteria in use at the LLNL site is reviewed on a continuing basis as new information on the seismicity and geology of the Livermore Valley is obtained. At present, the Laboratory's Earth Sciences Division is conducting a multi-million dollar program to identify and characterize the geologic hazards at the Livermore site, with the primary emphasis on earthquake hazards in the Livermore Valley. This effort is undergoing an independent review by Woodward-Clyde Associates. Additionally, because of increased concerns over the seismic safety of Building 332, the Laboratory has initiated an independent structural review. This review effort will be monitored by the California Seismic Safety Commission to ensure its independence. Both of these studiies are in their early stages and results are not yet available

  4. First Quarter Hanford Seismic Report for Fiscal Year 2008

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2008-03-21

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The Hanford Seismic Assessment Team locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 41 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. For the Hanford Seismic Network, forty-four local earthquakes were recorded during the first quarter of fiscal year 2008. A total of thirty-one micro earthquakes were recorded within the Rattlesnake Mountain swarm area at depths in the 5-8 km range, most likely within the pre-basalt sediments. The largest event recorded by the network during the first quarter (November 25, 2007 - magnitude 1.5 Mc) was located within this swarm area at a depth of 4.3 km. With regard to the depth distribution, three earthquakes occurred at shallow depths (less than 4 km, most likely in the Columbia River basalts), thirty-six earthquakes at intermediate depths (between 4 and 9 km, most likely in the pre-basalt sediments), and five earthquakes were located at depths greater than 9 km, within the crystalline basement. Geographically, thirty-eight earthquakes occurred in swarm areas and six earth¬quakes were classified as random events.

  5. Building a Smartphone Seismic Network

    Science.gov (United States)

    Kong, Q.; Allen, R. M.

    2013-12-01

    We are exploring to build a new type of seismic network by using the smartphones. The accelerometers in smartphones can be used to record earthquakes, the GPS unit can give an accurate location, and the built-in communication unit makes the communication easier for this network. In the future, these smartphones may work as a supplement network to the current traditional network for scientific research and real-time applications. In order to build this network, we developed an application for android phones and server to record the acceleration in real time. These records can be sent back to a server in real time, and analyzed at the server. We evaluated the performance of the smartphone as a seismic recording instrument by comparing them with high quality accelerometer while located on controlled shake tables for a variety of tests, and also the noise floor test. Based on the daily human activity data recorded by the volunteers and the shake table tests data, we also developed algorithm for the smartphones to detect earthquakes from daily human activities. These all form the basis of setting up a new prototype smartphone seismic network in the near future.

  6. Subsystem response analysis for the Seismic Safety Margins Research Program

    International Nuclear Information System (INIS)

    Chuang, T.Y.

    1981-01-01

    A review of the state-of-the-art of seismic qualification methods of subsystem has been completed. This task assesses the accuracy of seismic analysis techniques to predict dynamic response, and also identifies and quantifies sources of random and modeling undertainty in subsystem response determination. The subsystem has been classified as two categories according to the nature of support: multiply supported subsystems (e.g., piping systems) and singly supported subsystems (e.g., pumps, turbines, electrical control panels, etc.). The mutliply supported piping systems are analyzed by multisupport input time history method. The input motions are the responses of major structures. The dynamic models of the subsystems identified by the event/fault tree are created. The responses calculated by multisupport input time history method are consistent with the fragility parameters. These responses are also coordinated with the event/fault tree description. The subsystem responses are then evaluated against the fragility curves of components and systems and incorporated in the event/fault tree analysis. (orig./HP)

  7. Guided Seismic Waves: Possible Diagnostics for Hot Plumes in the Mantle

    Science.gov (United States)

    Evans, J. R.; Julian, B. R.; Foulger, G. R.

    2005-12-01

    Seismic waves potentially provide by far the highest resolution view of the three-dimensional structure of the mantle, and the hope of detecting wave-speed anomalies caused by hot or compositionally buoyant mantle plumes has been a major incentive to the development of tomographic seismic techniques. Seismic tomography is limited, however, by the uneven geographical distribution of earthquakes and seismometers, which can produce artificial tomographic wave-speed anomalies that are difficult to distinguish from real structures in the mantle. An alternate approach may be possible, because hot plumes and possibly some compositional upwellings would have low seismic-wave speeds and would act as efficient waveguides over great depth ranges in the mantle. Plume-guided waves would be little affected by bends or other geometric complexities in the waveguides (analogously to French horns and fiber-optic cables), and their dispersion would make them distinctive on seismograms and would provide information on the size and structure of the waveguide. The main unanswered question is whether guided waves in plumes could be excited sufficiently to be observable. Earthquakes do not occur in the deep mantle, but at least two other possible sources of excitation can be imagined: (1) shallow earthquakes at or near plume-fed hotspots; and (2) coupling of plume-guided waves to seismic body waves near the bottom of the mantle. In the first case, downward-traveling guided waves transformed to seismic body waves at the bottom of the waveguide would have to be detected at teleseismic distances. In the second case, upward-traveling guided waves generated by teleseismic body waves would be detected on seismometers at hotspots. Qualitative reasoning based on considerations of reciprocity suggests that the signals in these two situations should be similar in size and appearance. The focusing of seismic core phases at caustics would amplify plume waves excited by either mechanism (1) or (2) at

  8. Delineation of seismic source zones based on seismicity parameters ...

    Indian Academy of Sciences (India)

    In the present study, an attempt has been made to delineate seismic source zones in the study area (south India) based on the seismicity parameters. Seismicity parameters and the maximum probable earthquake for these source zones were evaluated and were used in the hazard evaluation. The probabilistic evaluation of ...

  9. Russian regulatory approaches to seismic design and seismic analysis of NPP piping

    International Nuclear Information System (INIS)

    Kaliberda, Y.V.

    2003-01-01

    The paper presents an overview of Russian regulatory approaches to seismic design and seismic analysis of NPP piping. The paper is focused on categorization and seismic analysis of nuclear power plant items (piping, equipment, supports, valves, but not building structures). The paper outlines the current seismic recommendations, corresponding methods with the examples of calculation models. The paper considers calculation results of the mechanisms of dynamic behavior and the problems of developing a rational and economical approaches to seismic design and seismic protection. (author)

  10. Angola Seismicity MAP

    Science.gov (United States)

    Neto, F. A. P.; Franca, G.

    2014-12-01

    The purpose of this job was to study and document the Angola natural seismicity, establishment of the first database seismic data to facilitate consultation and search for information on seismic activity in the country. The study was conducted based on query reports produced by National Institute of Meteorology and Geophysics (INAMET) 1968 to 2014 with emphasis to the work presented by Moreira (1968), that defined six seismogenic zones from macro seismic data, with highlighting is Zone of Sá da Bandeira (Lubango)-Chibemba-Oncócua-Iona. This is the most important of Angola seismic zone, covering the epicentral Quihita and Iona regions, geologically characterized by transcontinental structure tectono-magmatic activation of the Mesozoic with the installation of a wide variety of intrusive rocks of ultrabasic-alkaline composition, basic and alkaline, kimberlites and carbonatites, strongly marked by intense tectonism, presenting with several faults and fractures (locally called corredor de Lucapa). The earthquake of May 9, 1948 reached intensity VI on the Mercalli-Sieberg scale (MCS) in the locality of Quihita, and seismic active of Iona January 15, 1964, the main shock hit the grade VI-VII. Although not having significant seismicity rate can not be neglected, the other five zone are: Cassongue-Ganda-Massano de Amorim; Lola-Quilengues-Caluquembe; Gago Coutinho-zone; Cuima-Cachingues-Cambândua; The Upper Zambezi zone. We also analyzed technical reports on the seismicity of the middle Kwanza produced by Hidroproekt (GAMEK) region as well as international seismic bulletins of the International Seismological Centre (ISC), United States Geological Survey (USGS), and these data served for instrumental location of the epicenters. All compiled information made possible the creation of the First datbase of seismic data for Angola, preparing the map of seismicity with the reconfirmation of the main seismic zones defined by Moreira (1968) and the identification of a new seismic

  11. Deterministic seismic hazard macrozonation of India

    Indian Academy of Sciences (India)

    The sesismotectonic map of the study area was prepared by considering the faults, lineaments and the shear zones which are associated with earthquakes of magnitude 4 and above. A new program was developed in MATLAB for smoothing of the point sources. For assessing the seismic hazard, the study area was divided ...

  12. France's seismic zoning

    International Nuclear Information System (INIS)

    Mohammadioun, B.

    1997-01-01

    In order to assess the seismic hazard in France in relation to nuclear plant siting, the CEA, EDF and the BRGM (Mine and Geology Bureau) have carried out a collaboration which resulted in a seismic-tectonic map of France and a data base on seismic history (SIRENE). These studies were completed with a seismic-tectonic zoning, taking into account a very long period of time, that enabled a probabilistic evaluation of the seismic hazard in France, and that may be related to adjacent country hazard maps

  13. Integrated Seismic Survey for Detecting Landslide Effects on High Speed Rail Line at Istanbul–Turkey

    Directory of Open Access Journals (Sweden)

    Grit Mert

    2016-02-01

    Full Text Available In this study, Multichannel Analysis of Surface Waves Method (MASW, seismic refraction tomography and seismic reflection methods are used together at Silivri district in Istanbul – a district with a landslide problem because of the high speed rail line project crossing through the area. The landslide structure, border and depth of the slip plane are investigated and correlated within the local geology. According to the obtained 2D seismic sections, the landslide occurs through the East-West direction in the study area and the landslide slip plane with its border are clearly obtained under the subsurface. The results prove that the study area is suitable enough for the landslide development and this evolution also affects the high speed rail line project.

  14. Automatic seismic support design of piping system by an object oriented expert system

    International Nuclear Information System (INIS)

    Nakatogawa, T.; Takayama, Y.; Hayashi, Y.; Fukuda, T.; Yamamoto, Y.; Haruna, T.

    1990-01-01

    The seismic support design of piping systems of nuclear power plants requires many experienced engineers and plenty of man-hours, because the seismic design conditions are very severe, the bulk volume of the piping systems is hyge and the design procedures are very complicated. Therefore we have developed a piping seismic design expert system, which utilizes the piping design data base of a 3 dimensional CAD system and automatically determines the piping support locations and support styles. The data base of this system contains the maximum allowable seismic support span lengths for straight piping and the span length reduction factors for bends, branches, concentrated masses in the piping, and so forth. The system automatically produces the support design according to the design knowledge extracted and collected from expert design engineers, and using design information such as piping specifications which give diameters and thickness and piping geometric configurations. The automatic seismic support design provided by this expert system achieves in the reduction of design man-hours, improvement of design quality, verification of design result, optimization of support locations and prevention of input duplication. In the development of this system, we had to derive the design logic from expert design engineers and this could not be simply expressed descriptively. Also we had to make programs for different kinds of design knowledge. For these reasons we adopted the object oriented programming paradigm (Smalltalk-80) which is suitable for combining programs and carrying out the design work

  15. First Quarter Hanford Seismic Report for Fiscal Year 2009

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2009-03-15

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. This includes three recently acquired Transportable Array stations located at Cold Creek, Didier Farms, and Phinney Hill. For the Hanford Seismic Network, ten local earthquakes were recorded during the first quarter of fiscal year 2009. All earthquakes were considered as “minor” with magnitudes (Mc) less than 1.0. Two earthquakes were located at shallow depths (less than 4 km), most likely in the Columbia River basalts; five earthquakes at intermediate depths (between 4 and 9 km), most likely in the sub-basalt sediments); and three earthquakes were located at depths greater than 9 km, within the basement. Geographically, four earthquakes occurred in known swarm areas and six earthquakes were classified as random events.

  16. Seismic Noise Analysis and Reduction through Utilization of Collocated Seismic and Atmospheric Sensors at the GRO Chile Seismic Network

    Science.gov (United States)

    Farrell, M. E.; Russo, R. M.

    2013-12-01

    The installation of Earthscope Transportable Array-style geophysical observatories in Chile expands open data seismic recording capabilities in the southern hemisphere by nearly 30%, and has nearly tripled the number of seismic stations providing freely-available data in southern South America. Through the use of collocated seismic and atmospheric sensors at these stations we are able to analyze how local atmospheric conditions generate seismic noise, which can degrade data in seismic frequency bands at stations in the ';roaring forties' (S latitudes). Seismic vaults that are climate-controlled and insulated from the local environment are now employed throughout the world in an attempt to isolate seismometers from as many noise sources as possible. However, this is an expensive solution that is neither practical nor possible for all seismic deployments; and also, the increasing number and scope of temporary seismic deployments has resulted in the collection and archiving of terabytes of seismic data that is affected to some degree by natural seismic noise sources such as wind and atmospheric pressure changes. Changing air pressure can result in a depression and subsequent rebound of Earth's surface - which generates low frequency noise in seismic frequency bands - and even moderate winds can apply enough force to ground-coupled structures or to the surface above the seismometers themselves, resulting in significant noise. The 10 stations of the permanent Geophysical Reporting Observatories (GRO Chile), jointly installed during 2011-12 by IRIS and the Chilean Servicio Sismológico, include instrumentation in addition to the standard three seismic components. These stations, spaced approximately 300 km apart along the length of the country, continuously record a variety of atmospheric data including infrasound, air pressure, wind speed, and wind direction. The collocated seismic and atmospheric sensors at each station allow us to analyze both datasets together, to

  17. Seismic Excitation of the Polar Motion

    Science.gov (United States)

    Chao, Benjamin Fong; Gross, Richard S.; Han, Yan-Ben

    1996-01-01

    The mass redistribution in the earth as a result of an earthquake faulting changes the earth's inertia tensor, and hence its rotation. Using the complete formulae developed by Chao and Gross (1987) based on the normal mode theory, we calculated the earthquake-induced polar motion excitation for the largest 11,015 earthquakes that occurred during 1977.0-1993.6. The seismic excitations in this period are found to be two orders of magnitude below the detection threshold even with today's high precision earth rotation measurements. However, it was calculated that an earthquake of only one tenth the size of the great 1960 Chile event, if happened today, could be comfortably detected in polar motion observations. Furthermore, collectively these seismic excitations have a strong statistical tendency to nudge the pole towards approx. 140 deg E, away from the actually observed polar drift direction. This non-random behavior, similarly found in other earthquake-induced changes in earth rotation and low-degree gravitational field by Chao and Gross (1987), manifests some geodynamic behavior yet to be explored.

  18. Seismicity Structure of the Downgoing Nazca Slab in Northern Chile

    Science.gov (United States)

    Sippl, C.; Schurr, B.

    2017-12-01

    We applied an automatized earthquake detection and location algorithm to 8 years of continuous seismic data from the IPOC network in Northern Chile, located in the forearc between about 18.5°S and 24°S. The resulting seismicity catalog contains more than 113k double-difference relocated earthquake hypocenters and features a completeness magnitude around 2.8. Despite the occurrence of two megathrust earthquakes with vigorous aftershock seismicity in the studied time period (the 2007 Tocopilla and the 2014 Iquique earthquakes), >60% of the retrieved seismicity is located in a highly active band of intermediate-depth earthquakes (80-120 km deep) within the downgoing Nazca slab.We obtain a triple seismic zone in the updip part of the slab, with the three parallel dipping planes corresponding to the plate interface, the oceanic Moho (ca. 8 km below the interface) and a third band in the mantle lithosphere 26-28 km beneath the slab top. The plate interface seismicity terminates abruptly at a depth of 55 km. At about 80-90 km depth, the remaining two planes of seismicity then merge into the single, 20 km thick cluster of vigorous seismicity mentioned above, which terminates at 120 km depth. This cluster is located directly beneath the volcanic arc and shows a pronounced kink in the slab dipping angle. Intra-slab seismicity is most likely related to metamorphic dehydration reactions, hence our high-resolution earthquake distribution can be considered a map of metamorphic reactions (although a possibly incomplete one, since not all reactions necessarily invoke seismicity). By correlating this distribution with isotherms from thermal models as well as geophysical imaging results from previous studies, we attempt to get a glimpse at the processes that produce the different patches of intraslab seismicity at intermediate depths.

  19. Astor Pass Seismic Surveys Preliminary Report

    Energy Technology Data Exchange (ETDEWEB)

    Louie, John [UNR; Pullammanappallil, Satish [Optim; Faulds, James; Eisses, Amy; Kell, Annie; Frary, Roxanna; Kent, Graham

    2011-08-05

    activity do not have enough offset to produce seismic terminations. We are conducting further high-resolution seismic studies (to 200 ft depths) at the tufa spire to test this hypothesis. Additional work in progress includes a collaborative, iterative joint interpretation of geologic mapping and the seismic sections for fault locations, building the geologic model; and 3d velocity modeling and imaging to locate additional faultplane images appearing between the 2d lines. Overall, the seismic exploration program cost less than $0.5M from all funders. It defines in detail the geologic structure of much of the north margin of Pyramid Lake.

  20. Estimation of pore pressure from seismic velocities

    International Nuclear Information System (INIS)

    Perez, Zayra; Ojeda, German Y; Mateus, Darwin

    2009-01-01

    On pore pressure calculations it is common to obtain a profile in a well bore, which is then extrapolated toward offset wells. This practice might generate mistakes on pore pressure measurements, since geological conditions may change from a well bore to another, even into the same basin. Therefore, it is important to use other tools which allow engineers not only to detect and estimate in an indirect way overpressure zones, but also to keep a lateral tracking of possible changes that may affect those values in the different formations. Taking into account this situation, we applied a methodology that estimates formation pressure from 3D seismic velocities by using the Eaton method. First, we estimated formation pore pressure; then, we identified possible overpressure zones. Finally, those results obtained from seismic information were analyzed involving well logs and pore pressure tests, in order to compare real data with prediction based on seismic information from the Colombian foothill.

  1. Enhanced seismic criteria for piping

    International Nuclear Information System (INIS)

    Touboul, F. . E-mail francoise.touboul@cea.fr; Blay, N.; Sollogoub, P.; Chapuliot, S.

    2006-01-01

    In situ or laboratory experiments have shown that piping systems exhibit satisfactory seismic behavior. Seismic motion is not severe enough to significantly damage piping systems unless large differential motions of anchorage are imposed. Nevertheless, present design criteria for piping are very severe and require a large number of supports, which creates overly rigid piping systems. CEA, in collaboration with EDF, FRAMATOME and IRSN, has launched a large R and D program on enhanced design methods which will be less severe, but still conservative, and compatible with defect justification during operation. This paper presents the background of the R and D work on this matter, and CEA proposed equations. Our approach is based on the difference between the real behavior (or the best estimated computed one) with the one supposed by codified methods. Codified criteria are applied on an elastically calculated behavior that can be significantly different from the real one: the effect of plasticity may be very meaningful, even with low incursion in the plastic domain. Moreover, and particularly in piping systems, the elastic follow-up effect affects stress distribution for both seismic and thermal loads. For seismic load, we have proposed to modify the elastic moment limitation, based on the interpretation of experimental results on piping systems. The methods have been validated on more industrial cases, and some of the consequences of the changes have been studied: modification of the drawings and of the number of supports, global displacements, forces in the supports, stability of potential defects, etc. The basic aim of the studies undertaken is to make a decision on the stress classification problem, one that is not limited to seismic induced stresses, and to propose simplified methods for its solution

  2. Comprehensive Final Report for the Marine Seismic System Program

    Science.gov (United States)

    1985-08-01

    serve as a principal reference for transitioning marine seismic system techniques and results from the research and development arena to the...vM . .’ .■ .» .%■■.•. - Viaj ^."-;/-.■■ *• -’•’■■’■ ■ ■ - ■ • ■ -. . -. • ^;-■:■:-:•:> •■•."--.--.v. ’-• V ’.■ *.- ".i • ■ - ■ ■ v V

  3. Seismic safety margins research program. Phase I final report - Major structure response (Project IV)

    International Nuclear Information System (INIS)

    Benda, B.J.; Johnson, J.J.; Lo, T.Y.

    1981-08-01

    The primary task of the Major Structure Response Project within the Seismic Safety Margins Research Program (SSMRP) was to develop detailed finite element models of the Zion Nuclear Power Plant's containment building and auxiliary-fuel-turbine (AFT) complex. The resulting models served as input to the seismic methodology analysis chain. The containment shell was modeled as a series of beam elements with the shear and bending characteristics of a circular cylindrical shell. Masses and rotary inertias were lumped at nodal points; thirteen modes were included in the analysis. The internal structure was modeled with three-dimensional finite elements, with masses again lumped at selected nodes; sixty modes were included in the analysis. The model of the AFT complex employed thin plate and shell elements to represent the concrete shear walls and floor diaphragms, and beam and truss elements to model the braced frames. Because of the size and complexity of the model, and the potentially large number of degrees of freedom, masses were lumped at a limited number of node points. These points were selected so as to minimize the effect of the discrete mass distribution on structural response. One hundred and thirteen modes were extracted. A second objective of Project IV was to investigate the effects of uncertainty and variability on structural response. To this end, four side studies were conducted. Three of them, briefly summarized in this volume, addressed themselves respectively to an investigation of sources of random variability in the dynamic response of nuclear power plant structures; formulation of a methodology for modeling and evaluating the effects of structural uncertainty on predicted modal characteristics of major nuclear power plant structures and substructures; and a preliminary evaluation of nonlinear responses in shear-wall structures. A fourth side study, reported in detail in this volume, quantified variations in dynamic characteristics and seismic

  4. Seismic re-evaluation of Mochovce nuclear power plant. Seismic reevaluation of civil structures

    International Nuclear Information System (INIS)

    Podrouzek, P.

    1997-01-01

    In this contribution, an overview of seismic design procedures used for reassessment of seismic safety of civil structures at the Mochovce NPP in Slovak Republic presented. As an introduction, the objectives, history, and current status of seismic design of the NPP have been explained. General philosophy of design methods, seismic classification of buildings, seismic data, calculation methods, assumptions on structural behavior under seismic loading and reliability assessment were described in detail in the subsequent section. Examples of calculation models used for dynamic calculations of seismic response are given in the last section. (author)

  5. Reduction of seismic response in breeder plants

    International Nuclear Information System (INIS)

    Tajirian, F.F.; Somes, N.F.; Todeschini, R.A.

    1984-01-01

    Thin-walled vessels to be used in the Nuclear Steam Supply Systems (NSSS) of future LMFBR's will be more sensitive to seismic excitation than their equivalents used in conventional LWR plants. Optimization studies of building arrangement have indicated that embedment of future plants may be one feasible strategy for reducing seismic response. This paper presents the results of a three-dimensional soil-structure interaction analysis using the computer program SASSI. Two types of embedded buildings are considered: full embedment of the nuclear island, and embedment of the reactor cavity alone. A comparison, between the response of the embedded structure with that of a plant supported on the surface, indicates that the seismic response at the reactor vessel support ledge can be lowered by embedment of either the entire nuclear island or the reactor cavity alone. This reduction is larger when the plant is embedded in a softer site due to the increased effect of soil-structure interaction

  6. Armenian nuclear power plant: US NRC assistance programme for seismic upgrade and safety analysis

    International Nuclear Information System (INIS)

    Simos, N.; Perkins, K.; Jo, J.; Carew, J.; Ramsey, J.

    2003-01-01

    This paper summarizes the U.S. Nuclear Regulatory Commission's (US NRC) technical support program activities associated with the Armenian Nuclear Power Plant (ANPP) safety upgrade. The US NRC program, integrated within the overall IAEA-led initiative for safety re-evaluation of the WWER plants, has as its main thrust the technical support to the Armenian Nuclear Regulatory Authority (ANRA) through close collaboration with the scientific staff at Brookhaven National Laboratory (BNL). Several major technical areas of support to ANRA form the basis of the NRC program. These include the seismic re-evaluation and upgrade of the ANPP, safety evaluation of critical systems, and the generation of the Safety Analysis Report (SAR). Specifically, the seismic re-evaluation of the ANPP is part of a broader activity that involves the re-assessment of the seismic hazard at the site, the identification of the Safe Shutdown Equipment at the plant and the evaluation of their seismic capacity, the detailed modeling and analysis of the critical facilities at ANPP, and the generation of the Floor Response Spectra (FRS). Based on the new spectra that incorporate all new findings (hazard, site soil, structure, etc.), the overall capacity of the main structures and the seismic capacity of the critical systems are being re-evaluated. In addition, analyses of critical safe shutdown systems and safe shutdown processes are being performed to ensure both the capabilities of the operating systems and the enhancement of safety due to system upgrades. At present, one of the principal goals of the US NRC's regulatory assistance activities with ANRA is enhancing ANRA's regulatory oversight of high-priority safety issues (both generic and plant-specific) associated with operation of the ANPP. As such, assisting ANRA in understanding and assessing plant-specific seismic and other safety issues associated with the ANPP is a high priority given the ANPP's being located in a seismically active area

  7. Role of seismic PRA in seismic safety decisions of nuclear power plants

    International Nuclear Information System (INIS)

    Ravindra, M.K.; Kennedy, R.P.; Sues, R.H.

    1985-01-01

    This paper highlights the important roles that seismic probabilistic risk assessments (PRAs) can play in the seismic safety decisions of nuclear power plants. If a seismic PRA has been performed for a plant, its results can be utilized to evaluate the seismic capability beyond the safe shutdown event (SSE). Seismic fragilities of key structures and equipment, fragilities of dominant plant damage states and the frequencies of occurrence of these plant damage states are reviewed to establish the seismic safety of the plant beyond the SSE level. Guidelines for seismic margin reviews and upgrading may be developed by first identifying the generic classes of structures and equipment that have been shown to be dominant risk contributors in the completed seismic PRAs, studying the underlying causes for their contribution and examining why certain other items (e.g., piping) have not proved to be high-risk-contributors

  8. Lunar seismicity, structure, and tectonics

    Science.gov (United States)

    Lammlein, D. R.; Latham, G. V.; Dorman, J.; Nakamura, Y.; Ewing, M.

    1974-01-01

    Natural seismic events have been detected by the long-period seismometers at Apollo stations 16, 14, 15, and 12 at annual rates of 3300, 1700, 800, and 700, respectively, with peak activity at 13- to 14-day intervals. The data are used to describe magnitudes, source characteristics, and periodic features of lunar seismicity. In a present model, the rigid lithosphere overlies an asthenosphere of reduced rigidity in which present-day partial melting is probable. Tidal deformation presumably leads to critical stress concentrations at the base of the lithosphere, where moonquakes are found to occur. The striking tidal periodicities in the pattern of moonquake occurrence and energy release suggest that tidal energy is the dominant source of energy released as moonquakes. Thus, tidal energy is dissipated by moonquakes in the lithosphere and probably by inelastic processes in the asthenosphere.

  9. Comparison of seismic margin assessment and probabilistic risk assessment in seismic IPE

    International Nuclear Information System (INIS)

    Reed, J.W.; Kassawara, R.P.

    1993-01-01

    A comparison of technical requirements and managerial issues between seismic margin assessment (SMA) and seismic probabilistic risk assessment (SPRA) in a seismic Individual Plant Examination (IPE) is presented and related to requirements for an Unresolved Safety Issue (USI) A-46 review which is required for older nuclear power plants. Advantages and disadvantages are discussed for each approach. Technical requirements reviewed for a seismic IPE include: scope of plants covered, seismic input, scope of review, selection of equipment, required experience and training of engineers, walkdown procedure, evaluation of components, relay review, containment review, quality assurance, products, documentation requirements, and closure procedure. Managerial issues discussed include regulatory acceptability, compatibility with seismic IPE, compliance with seismic IPE requirements, ease of use by utilities, and relative cost

  10. Evaluation of induced seismicity forecast models in the Induced Seismicity Test Bench

    Science.gov (United States)

    Király, Eszter; Gischig, Valentin; Zechar, Jeremy; Doetsch, Joseph; Karvounis, Dimitrios; Wiemer, Stefan

    2016-04-01

    Induced earthquakes often accompany fluid injection, and the seismic hazard they pose threatens various underground engineering projects. Models to monitor and control induced seismic hazard with traffic light systems should be probabilistic, forward-looking, and updated as new data arrive. Here, we propose an Induced Seismicity Test Bench to test and rank such models. We apply the test bench to data from the Basel 2006 and Soultz-sous-Forêts 2004 geothermal stimulation projects, and we assess forecasts from two models that incorporate a different mix of physical understanding and stochastic representation of the induced sequences: Shapiro in Space (SiS) and Hydraulics and Seismics (HySei). SiS is based on three pillars: the seismicity rate is computed with help of the seismogenic index and a simple exponential decay of the seismicity; the magnitude distribution follows the Gutenberg-Richter relation; and seismicity is distributed in space based on smoothing seismicity during the learning period with 3D Gaussian kernels. The HySei model describes seismicity triggered by pressure diffusion with irreversible permeability enhancement. Our results show that neither model is fully superior to the other. HySei forecasts the seismicity rate well, but is only mediocre at forecasting the spatial distribution. On the other hand, SiS forecasts the spatial distribution well but not the seismicity rate. The shut-in phase is a difficult moment for both models in both reservoirs: the models tend to underpredict the seismicity rate around, and shortly after, shut-in. Ensemble models that combine HySei's rate forecast with SiS's spatial forecast outperform each individual model.

  11. Seismic PSA method for multiple nuclear power plants in a site

    Energy Technology Data Exchange (ETDEWEB)

    Hakata, Tadakuni [Nuclear Safety Commission, Tokyo (Japan)

    2007-07-15

    The maximum number of nuclear power plants in a site is eight and about 50% of power plants are built in sites with three or more plants in the world. Such nuclear sites have potential risks of simultaneous multiple plant damages especially at external events. Seismic probabilistic safety assessment method (Level-1 PSA) for multi-unit sites with up to 9 units has been developed. The models include Fault-tree linked Monte Carlo computation, taking into consideration multivariate correlations of components and systems from partial to complete, inside and across units. The models were programmed as a computer program CORAL reef. Sample analysis and sensitivity studies were performed to verify the models and algorithms and to understand some of risk insights and risk metrics, such as site core damage frequency (CDF per site-year) for multiple reactor plants. This study will contribute to realistic state of art seismic PSA, taking consideration of multiple reactor power plants, and to enhancement of seismic safety. (author)

  12. ConvNetQuake: Convolutional Neural Network for Earthquake Detection and Location

    Science.gov (United States)

    Denolle, M.; Perol, T.; Gharbi, M.

    2017-12-01

    Over the last decades, the volume of seismic data has increased exponentially, creating a need for efficient algorithms to reliably detect and locate earthquakes. Today's most elaborate methods scan through the plethora of continuous seismic records, searching for repeating seismic signals. In this work, we leverage the recent advances in artificial intelligence and present ConvNetQuake, a highly scalable convolutional neural network for probabilistic earthquake detection and location from single stations. We apply our technique to study two years of induced seismicity in Oklahoma (USA). We detect 20 times more earthquakes than previously cataloged by the Oklahoma Geological Survey. Our algorithm detection performances are at least one order of magnitude faster than other established methods.

  13. EMERALD: Coping with the Explosion of Seismic Data

    Science.gov (United States)

    West, J. D.; Fouch, M. J.; Arrowsmith, R.

    2009-12-01

    , extensible, standalone database server system based on the open-source PostgreSQL database engine. The system is designed for fast and easy processing of seismic datasets, and provides the necessary tools to manage very large datasets and all associated metadata. EMERALD provides methods for efficient preprocessing of seismic records; large record sets can be easily and quickly searched, reviewed, revised, reprocessed, and exported. EMERALD can retrieve and store station metadata and alert the user to metadata changes. The system provides many methods for visualizing data, analyzing dataset statistics, and tracking the processing history of individual datasets. EMERALD allows development and sharing of visualization and processing methods using any of 12 programming languages. EMERALD is designed to integrate existing software tools; the system provides wrapper functionality for existing widely-used programs such as GMT, SOD, and TauP. Users can interact with EMERALD via a web browser interface, or they can directly access their data from a variety of database-enabled external tools. Data can be imported and exported from the system in a variety of file formats, or can be directly requested and downloaded from the IRIS DMC from within EMERALD.

  14. Satellite Monitoring of Accumulation of Strain in the Earth's Crust Related to Seismic and Volcanic Activity

    Science.gov (United States)

    Arellano-Baeza, A. A.

    2009-12-01

    Our studies have shown that the strain energy accumulation deep in the Earth’s crust that precedes seismic and volcanic activity can be detected by applying a lineament extraction technique to the high-resolution multispectral satellite images. A lineament is a straight or a somewhat curved feature in a satellite image, which it is possible to detect by a special processing of images based on directional filtering and or Hough transform. We analyzed tens of earthquakes occurred in the Pacific coast of the South America with the magnitude > 4 Mw, using ASTER/TERRA multispectral satellite images for detection and analysis of changes in the system of lineaments previous to a strong earthquake. All events were located in the regions with small seasonal variations and limited vegetation to facilitate the tracking of features associated with the seismic activity only. It was found that the number and orientation of lineaments changed significantly about one month before an earthquake approximately, and a few months later the system returns to its initial state. This effect increases with the earthquake magnitude. It also was shown that the behavior of lineaments associated to the volcano seismic activity is opposite to that obtained previously for earthquakes. This discrepancy can be explained assuming that in the last case the main reason of earthquakes is compression and accumulation of strength in the Earth’s crust due to subduction of tectonic plates, whereas in the first case we deal with the inflation of a volcano edifice due to elevation of pressure and magma intrusion. The results obtained made it possible to include this research as a part of scientific program of Chilean Remote Sensing Satellite mission to be launched in 2010.

  15. Direct methods for seismic profiling. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bleistein, N.; Cohen, J.K.; Hagin, F.G.

    1979-12-12

    A coordinated research program in inverse problems was concluded. The program evolved from formulation to analytical solution to implemented computer algorithms. There were two main lines of research in this program: a velocity inversion method, with application to seismic exploration, and a physical optics inverse scattering method for reflector mapping, with application to nondestructive evaluation. In each case, computer algorithms based on the theoretical results were tested on real or testbed data from the area of the cited application. Research goals of both a theoretical and practical nature were achieved. 34 figures.

  16. Annual Hanford Seismic Report for Fiscal Year 2010

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Clayton, Ray E.; Sweeney, Mark D.; Devary, Joseph L.; Hartshorn, Donald C.

    2010-12-27

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. During FY 2010, the Hanford Seismic Network recorded 873 triggers on the seismometer system, which included 259 seismic events in the southeast Washington area and an additional 324 regional and teleseismic events. There were 210 events determined to be local earthquakes relevant to the Hanford Site. One hundred and fifty-five earthquakes were detected in the vicinity of Wooded Island, located about eight miles north of Richland just west of the Columbia River. The Wooded Island events recorded this fiscal year were a continuation of the swarm events observed during fiscal year 2009 and reported in previous quarterly and annual reports (Rohay et al. 2009a, 2009b, 2009c, 2010a, 2010b, and 2010c). Most events were considered minor (coda-length magnitude [Mc] less than 1.0) with the largest event recorded on February 4, 2010 (3.0Mc). The estimated depths of the Wooded Island events are shallow (averaging approximately 1.5 km deep) placing the swarm within the Columbia River Basalt Group. Based upon the last two quarters (Q3 and Q4) data, activity at the Wooded Island

  17. Comparison of seismic sources for shallow seismic: sledgehammer and pyrotechnics

    Directory of Open Access Journals (Sweden)

    Brom Aleksander

    2015-10-01

    Full Text Available The pyrotechnic materials are one of the types of the explosives materials which produce thermal, luminous or sound effects, gas, smoke and their combination as a result of a self-sustaining chemical reaction. Therefore, pyrotechnics can be used as a seismic source that is designed to release accumulated energy in a form of seismic wave recorded by tremor sensors (geophones after its passage through the rock mass. The aim of this paper was to determine the utility of pyrotechnics for shallow seismic engineering. The work presented comparing the conventional method of seismic wave excitation for seismic refraction method like plate and hammer and activating of firecrackers on the surface. The energy released by various sources and frequency spectra was compared for the two types of sources. The obtained results did not determine which sources gave the better results but showed very interesting aspects of using pyrotechnics in seismic measurements for example the use of pyrotechnic materials in MASW.

  18. Third Quarter Hanford Seismic Report for Fiscal Year 2009

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2009-09-30

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. The Hanford Seismic Network recorded 771 local earthquakes during the third quarter of FY 2009. Nearly all of these earthquakes were detected in the vicinity of Wooded Island, located about eight miles north of Richland just west of the Columbia River. The Wooded Island events recorded this quarter is a continuation of the swarm events observed during the January – March 2009 time period and reported in the previous quarterly report (Rohay et al, 2009). The frequency of Wooded Island events has subsided with 16 events recorded during June 2009. Most of the events were considered minor (magnitude (Mc) less than 1.0) with 25 events in the 2.0-3.0 range. The estimated depths of the Wooded Island events are shallow (averaging less than 1.0 km deep) with a maximum depth estimated at 2.2 km. This places the Wooded Island events within the Columbia River Basalt Group (CRBG). The low magnitude of the Wooded Island events has made them undetectable to all but local area residents. However, some Hanford employees working within a few miles of the area of highest activity

  19. Post-seismic relaxation from geodetic and seismic data

    Directory of Open Access Journals (Sweden)

    Mikhail V. Rodkin

    2017-01-01

    Full Text Available We have examined the aftershock sequence and the post-seismic deformation process of the Parkfield earthquake (2004, M = 6, California, USA source area using GPS data. This event was chosen because of the possibility of joint analysis of data from the rather dense local GPS network (from SOPAC Internet archive and of the availability of the rather detailed aftershock sequence data (http://www.ncedc.org/ncedc/catalog-search.html. The relaxation process of post-seismic deformation prolongs about the same 400 days as the seismic aftershock process does. Thus, the aftershock process and the relaxation process in deformation could be the different sides of the same process. It should be noted that the ratio of the released seismic energy and of the GPS obtained deformation is quite different for the main shock and for the aftershock stage. The ratio of the released seismic energy to the deformation value decreases essentially for the post-shock process. The similar change in the seismic energy/deformation value ratio is valid in a few other strong earthquakes. Thus, this decrease seems typical of aftershock sequences testifying for decrease of ratio of elastic to inelastic deformation in the process of post-shock relaxation when the source area appears to be mostly fractured after the main shock occurs, but the healing process had no yet sufficient time to develop.

  20. Seismic texture classification. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Vinther, R.

    1997-12-31

    The seismic texture classification method, is a seismic attribute that can both recognize the general reflectivity styles and locate variations from these. The seismic texture classification performs a statistic analysis for the seismic section (or volume) aiming at describing the reflectivity. Based on a set of reference reflectivities the seismic textures are classified. The result of the seismic texture classification is a display of seismic texture categories showing both the styles of reflectivity from the reference set and interpolations and extrapolations from these. The display is interpreted as statistical variations in the seismic data. The seismic texture classification is applied to seismic sections and volumes from the Danish North Sea representing both horizontal stratifications and salt diapers. The attribute succeeded in recognizing both general structure of successions and variations from these. Also, the seismic texture classification is not only able to display variations in prospective areas (1-7 sec. TWT) but can also be applied to deep seismic sections. The seismic texture classification is tested on a deep reflection seismic section (13-18 sec. TWT) from the Baltic Sea. Applied to this section the seismic texture classification succeeded in locating the Moho, which could not be located using conventional interpretation tools. The seismic texture classification is a seismic attribute which can display general reflectivity styles and deviations from these and enhance variations not found by conventional interpretation tools. (LN)

  1. Seismic reflection survey conducted in Benton County, Washinton

    International Nuclear Information System (INIS)

    Beggs, H.G.; Heineck, R.L.

    1980-01-01

    The massive Columbia River Basalt group that underlies the Hanford Site is being considered as a potential geologic repository for spent nuclear fuel. As part of the effort to ascertain and better understand the physical and geological properties of these basalt flows, a multiphased seismic reflection program has been undertaken. This phase was designed to more thoroughly define geologic features and structural attitudes in an areas in the central part of the Hanford Site. The specific feature of interest is known as the Cold Creek Syncline. This seismic survey, utilized the ''VIBROSEIS'' energy source and multifold common depth point recording. 2 figs

  2. Enhancing the seismic margin review methodology to obtain risk insights

    International Nuclear Information System (INIS)

    Budnitz, R.J.

    1992-01-01

    This paper discusses methods for obtaining risk insights from the seismic margin review (SMR) methodology. The SMR methodology was originally developed in 1984-1987 with the objective of analyzing an individual nuclear power plant to ascertain whether the plant has the ability to withstand earthquakes substantially beyond the design-basis earthquake without suffering a core-damage accident. Recently, in the context of Nuclear Regulatory Commission's (NRC's) Individual Plant Evaluation for External Events (IPEEE) program, the SMR methodology has been developed further by NRC to allow plants to identify plant-specific vulnerabilities (in the IPEEE sense) to seismic events. The objective of these enhancements has been to provide a methodology for IPEEE seismic review that is substantially less expensive than a full-scope seismic PRA, but that achieves the IPEEE's vulnerability-search objectives. In this paper, the steps involved in the enhanced methodology are discussed

  3. Utilization of real-time seismic hazard information to make facilities more resilient

    International Nuclear Information System (INIS)

    Fujinawa, Yukio

    2014-01-01

    Though the JMA early warning system (EEW) has been in operation for a long time, there are some shortcomings. Most people receive only EEWg (general public) alerts, but these do not reach those in places near the epicenter in time because issuing even the first alert requires three to five seconds. This presentation explained a hybrid seismic hazard evaluation system that uses regional EEW as well as on-site vertical and horizontal seismic observation data. A hybrid alert system using on-site instrumentation that detects initial small tremors and EEW can provide alerts much earlier than use of EEW alone. This system has been in practical use in a semiconductor factory since 2005. In addition, seismic hazard forecasts using deep borehole data and the possibility of just before prediction of earthquake occurrence by detecting electric field pulses in the subsurface were also mentioned in this presentation. (authors)

  4. Recent Vs. Historical Seismicity Analysis For Banat Seismic Region (Western Part Of Romania)

    OpenAIRE

    Oros Eugen; Diaconescu Mihai

    2015-01-01

    The present day seismic activity from a region reflects the active tectonics and can confirm the seismic potential of the seismogenic sources as they are modelled using the historical seismicity. This paper makes a comparative analysis of the last decade seismicity recorded in the Banat Seismic Region (western part of Romania) and the historical seismicity of the region (Mw≥4.0). Four significant earthquake sequences have been recently localized in the region, three of them nearby the city of...

  5. Integrating 3D seismic curvature and curvature gradient attributes for fracture characterization: Methodologies and interpretational implications

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Dengliang

    2013-03-01

    In 3D seismic interpretation, curvature is a popular attribute that depicts the geometry of seismic reflectors and has been widely used to detect faults in the subsurface; however, it provides only part of the solutions to subsurface structure analysis. This study extends the curvature algorithm to a new curvature gradient algorithm, and integrates both algorithms for fracture detection using a 3D seismic test data set over Teapot Dome (Wyoming). In fractured reservoirs at Teapot Dome known to be formed by tectonic folding and faulting, curvature helps define the crestal portion of the reservoirs that is associated with strong seismic amplitude and high oil productivity. In contrast, curvature gradient helps better define the regional northwest-trending and the cross-regional northeast-trending lineaments that are associated with weak seismic amplitude and low oil productivity. In concert with previous reports from image logs, cores, and outcrops, the current study based on an integrated seismic curvature and curvature gradient analysis suggests that curvature might help define areas of enhanced potential to form tensile fractures, whereas curvature gradient might help define zones of enhanced potential to develop shear fractures. In certain fractured reservoirs such as at Teapot Dome where faulting and fault-related folding contribute dominantly to the formation and evolution of fractures, curvature and curvature gradient attributes can be potentially applied to differentiate fracture mode, to predict fracture intensity and orientation, to detect fracture volume and connectivity, and to model fracture networks.

  6. Investigating the temporal variations of the time-clustering behavior of the Koyna-Warna (India) reservoir-triggered seismicity

    International Nuclear Information System (INIS)

    Telesca, Luciano

    2011-01-01

    Research highlights: → Time-clustering behaviour in seismicity can be detected by applying the Allan Factor. → The reservoir-induced seismicity at Koyna-Warna (India) is time-clusterized. → Pre- and co-seismic increases of the time-clustering degree are revealed. - Abstract: The time-clustering behavior of the 1996-2005 seismicity of Koyna-Warna region (India), a unique site where reservoir-triggered earthquakes have been continuously occurring over the last about 50 year, has been analyzed. The scaling exponent α, estimated by using the Allan Factor method, a powerful tool to investigate clusterization in point processes, shows co-seismic and pre-seismic enhancements associated with the occurrence of the major events.

  7. Analysis of induced seismicity in geothermal reservoirs – An overview

    Science.gov (United States)

    Zang, Arno; Oye, Volker; Jousset, Philippe; Deichmann, Nicholas; Gritto, Roland; McGarr, Arthur F.; Majer, Ernest; Bruhn, David

    2014-01-01

    In this overview we report results of analysing induced seismicity in geothermal reservoirs in various tectonic settings within the framework of the European Geothermal Engineering Integrating Mitigation of Induced Seismicity in Reservoirs (GEISER) project. In the reconnaissance phase of a field, the subsurface fault mapping, in situ stress and the seismic network are of primary interest in order to help assess the geothermal resource. The hypocentres of the observed seismic events (seismic cloud) are dependent on the design of the installed network, the used velocity model and the applied location technique. During the stimulation phase, the attention is turned to reservoir hydraulics (e.g., fluid pressure, injection volume) and its relation to larger magnitude seismic events, their source characteristics and occurrence in space and time. A change in isotropic components of the full waveform moment tensor is observed for events close to the injection well (tensile character) as compared to events further away from the injection well (shear character). Tensile events coincide with high Gutenberg-Richter b-values and low Brune stress drop values. The stress regime in the reservoir controls the direction of the fracture growth at depth, as indicated by the extent of the seismic cloud detected. Stress magnitudes are important in multiple stimulation of wells, where little or no seismicity is observed until the previous maximum stress level is exceeded (Kaiser Effect). Prior to drilling, obtaining a 3D P-wave (Vp) and S-wave velocity (Vs) model down to reservoir depth is recommended. In the stimulation phase, we recommend to monitor and to locate seismicity with high precision (decametre) in real-time and to perform local 4D tomography for velocity ratio (Vp/Vs). During exploitation, one should use observed and model induced seismicity to forward estimate seismic hazard so that field operators are in a position to adjust well hydraulics (rate and volume of the

  8. Seismic changes industry

    International Nuclear Information System (INIS)

    Taylor, G.

    1992-01-01

    This paper discusses the growth in the seismic industry as a result of the recent increases in the foreign market. With the decline of communism and the opening of Latin America to exploration, seismic teams have moved out into these areas in support of the oil and gas industry. The paper goes on to discuss the improved technology available for seismic resolution and the subsequent use of computers to field-proof the data while the seismic team is still on-site. It also discusses the effects of new computer technology on reducing the amount of support staff that is required to both conduct and interpret seismic information

  9. Seismic verification of nuclear plant equipment anchorage

    International Nuclear Information System (INIS)

    Lepiece, M.; Van Vyve, J.

    1991-01-01

    More than 60% of the electrical power of Belgium is generated by seven PWR nuclear power plants. For three of them, the electro-mechanical equipment had to be reassessed after ten years of operation, because the seismic requirements were upgraded from 0.1 g to 0.17 g free field ground acceleration. The seismic requalification of the active equipment was a critical problem as the classical methods were too conservative. The approach based on the use of the past experience on the seismic behavior of nonnuclear equipment, chosen and developed by the SQUG, had to be transposed to the Belgian N.P.P. The decision of the accept-ability of equipment relies heavily on the aseismatic capacity of anchorage. The Electrical Power Research Institute (EPRI) developed the procedure and guideline for the demonstration of the aseismatic adequacy of equipment anchorage in a cost-effective and consistent manner, to support the decision by Seismic Review Team. The field inspection procedure to identify the type of fasteners and detect their possible defects and the verification procedure developed to calculate the aseismatic capacity of equipment anchorage on the strength of fasteners, the aseismatic capacity of anchorage and the comparison of the capacity with the demand are reported. (K.I.)

  10. Seismic hazard studies in Egypt

    Directory of Open Access Journals (Sweden)

    Abuo El-Ela A. Mohamed

    2012-12-01

    Full Text Available The study of earthquake activity and seismic hazard assessment of Egypt is very important due to the great and rapid spreading of large investments in national projects, especially the nuclear power plant that will be held in the northern part of Egypt. Although Egypt is characterized by low seismicity, it has experienced occurring of damaging earthquake effect through its history. The seismotectonic sitting of Egypt suggests that large earthquakes are possible particularly along the Gulf of Aqaba–Dead Sea transform, the Subduction zone along the Hellenic and Cyprean Arcs, and the Northern Red Sea triple junction point. In addition some inland significant sources at Aswan, Dahshour, and Cairo-Suez District should be considered. The seismic hazard for Egypt is calculated utilizing a probabilistic approach (for a grid of 0.5° × 0.5° within a logic-tree framework. Alternative seismogenic models and ground motion scaling relationships are selected to account for the epistemic uncertainty. Seismic hazard values on rock were calculated to create contour maps for four ground motion spectral periods and for different return periods. In addition, the uniform hazard spectra for rock sites for different 25 periods, and the probabilistic hazard curves for Cairo, and Alexandria cities are graphed. The peak ground acceleration (PGA values were found close to the Gulf of Aqaba and it was about 220 gal for 475 year return period. While the lowest (PGA values were detected in the western part of the western desert and it is less than 25 gal.

  11. Improvements on the seismic catalog previous to the 2011 El Hierro eruption.

    Science.gov (United States)

    Domínguez Cerdeña, Itahiza; del Fresno, Carmen

    2017-04-01

    Precursors from the submarine eruption of El Hierro (Canary Islands) in 2011 included 10,000 low magnitude earthquakes and 5 cm crustal deformation within 81 days previous to the eruption onset on the 10th October. Seismicity revealed a 20 km horizontal migration from the North to the South of the island and depths ranging from 10 and 17 km with deeper events occurring further South. The earthquakes of the seismic catalog were manually picked by the IGN almost in real time, but there has not been a subsequent revision to check for new non located events jet and the completeness magnitude for the seismic catalog have strong changes during the entire swarm due to the variable number of events per day. In this work we used different techniques to improve the quality of the seismic catalog. First we applied different automatic algorithms to detect new events including the LTA-STA method. Then, we performed a semiautomatic system to correlate the new P and S detections with known phases from the original catalog. The new detected earthquakes were also located using Hypoellipse algorithm. The resulting new catalog included 15,000 new events mainly concentrated in the last weeks of the swarm and we assure a completeness magnitude of 1.2 during the whole series. As the seismicity from the original catalog was already relocated using hypoDD algorithm, we improved the location of the new events using a master-cluster relocation. This method consists in relocating earthquakes towards a cluster of well located events instead of a single event as the master-event method. In our case this cluster correspond to the relocated earthquakes from the original catalog. Finally, we obtained a new equation for the local magnitude estimation which allow us to include corrections for each seismic station in order to avoid local effects. The resulting magnitude catalog has a better fit with the moment magnitude catalog obtained for the strong earthquakes of this series in previous studies

  12. The development of seismic guidelines for the Stanford Linear Accelerator Center

    International Nuclear Information System (INIS)

    Huggins, R.

    1996-08-01

    This paper describes the development of Seismic Guidelines for the Stanford Linear Accelerator Center (SLAC). Although structures have always been built conservatively, SLAC management decided to review and update their seismic guidelines. SLAC is about mid-way between the epicenters of the 8.3 Richter magnitude 1906 San Francisco and the 7.2 Loma Prieta Earthquakes. The west end of the two mile long electron/positron particle accelerator lies a half mile from the large San Andreas Fault. Suggestions for seismic planning processes were solicited from local computer manufacturing firms, universities, and federal laboratories. A Committee of the various stakeholders in SLAC's seismic planning retained an internationally known Seismic Planning Consultant and reviewed relevant standards and drafted Guidelines. A panel of seismic experts was convened to help define the hazard, site response spectra, probabilistic analysis of shaking, and near field effects. The Facility's structures were assigned to seismic classes of importance, and an initial assessment of a sample of a dozen buildings conducted. This assessment resulted in emergency repairs to one structure, and provided a open-quotes reality basisclose quotes for establishing the final Guidelines and Administrative Procedures, and a program to evaluate remaining buildings, shielding walls, tunnels, and other special structures

  13. The development of seismic guidelines for the Stanford Linear Accelerator Center

    Energy Technology Data Exchange (ETDEWEB)

    Huggins, R.

    1996-08-01

    This paper describes the development of Seismic Guidelines for the Stanford Linear Accelerator Center (SLAC). Although structures have always been built conservatively, SLAC management decided to review and update their seismic guidelines. SLAC is about mid-way between the epicenters of the 8.3 Richter magnitude 1906 San Francisco and the 7.2 Loma Prieta Earthquakes. The west end of the two mile long electron/positron particle accelerator lies a half mile from the large San Andreas Fault. Suggestions for seismic planning processes were solicited from local computer manufacturing firms, universities, and federal laboratories. A Committee of the various stakeholders in SLAC`s seismic planning retained an internationally known Seismic Planning Consultant and reviewed relevant standards and drafted Guidelines. A panel of seismic experts was convened to help define the hazard, site response spectra, probabilistic analysis of shaking, and near field effects. The Facility`s structures were assigned to seismic classes of importance, and an initial assessment of a sample of a dozen buildings conducted. This assessment resulted in emergency repairs to one structure, and provided a {open_quotes}reality basis{close_quotes} for establishing the final Guidelines and Administrative Procedures, and a program to evaluate remaining buildings, shielding walls, tunnels, and other special structures.

  14. Second Quarter Hanford Seismic Report for Fiscal Year 2000

    International Nuclear Information System (INIS)

    Hartshorn, D.C.; Reidel, S.P.; Rohay, A.C.

    2000-01-01

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the US Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The HSN uses 21 sites and the EWRN uses 36 sites; both networks share 16 sites. The networks have 46 combined data channels because Gable Butte and Frenchman Hills East are three-component sites. The reconfiguration of the telemetry and recording systems was completed during the first quarter. All leased telephone lines have been eliminated and radio telemetry is now used exclusively. For the HSN, there were 506 triggers on two parallel detection and recording systems during the second quarter of fiscal year (FY) 2000. Twenty-seven seismic events were located by the Hanford Seismic Network within the reporting region of 46--47degree N latitude and 119--120degree W longitude; 12 were earthquakes in the Columbia River Basalt Group, 2 were earthquakes in the pre-basalt sediments, 9 were earthquakes in the crystalline basement, and 5 were quarry blasts. Three earthquakes appear to be related to geologic structures, eleven earthquakes occurred in known swarm areas, and seven earthquakes were random occurrences. No earthquakes triggered the Hanford Strong Motion

  15. Second Quarter Hanford Seismic Report for Fiscal Year 2000

    Energy Technology Data Exchange (ETDEWEB)

    DC Hartshorn; SP Reidel; AC Rohay

    2000-07-17

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the US Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The HSN uses 21 sites and the EWRN uses 36 sites; both networks share 16 sites. The networks have 46 combined data channels because Gable Butte and Frenchman Hills East are three-component sites. The reconfiguration of the telemetry and recording systems was completed during the first quarter. All leased telephone lines have been eliminated and radio telemetry is now used exclusively. For the HSN, there were 506 triggers on two parallel detection and recording systems during the second quarter of fiscal year (FY) 2000. Twenty-seven seismic events were located by the Hanford Seismic Network within the reporting region of 46--47{degree} N latitude and 119--120{degree} W longitude; 12 were earthquakes in the Columbia River Basalt Group, 2 were earthquakes in the pre-basalt sediments, 9 were earthquakes in the crystalline basement, and 5 were quarry blasts. Three earthquakes appear to be related to geologic structures, eleven earthquakes occurred in known swarm areas, and seven earthquakes were random occurrences. No earthquakes triggered the Hanford Strong Motion

  16. First quarter Hanford seismic report for fiscal year 2000

    Energy Technology Data Exchange (ETDEWEB)

    DC Hartshorn; SP Reidel; AC Rohay

    2000-02-23

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the US Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The HSN uses 21 sites and the EW uses 36 sites; both networks share 16 sites. The networks have 46 combined data channels because Gable Butte and Frenchman Hills East are three-component sites. The reconfiguration of the telemetry and recording systems was completed during the first quarter. All leased telephone lines have been eliminated and radio telemetry is now used exclusively. For the HSN, there were 311 triggers on two parallel detection and recording systems during the first quarter of fiscal year (FY) 2000. Twelve seismic events were located by the Hanford Seismic Network within the reporting region of 46--47{degree}N latitude and 119--120{degree}W longitude; 2 were earthquakes in the Columbia River Basalt Group, 3 were earthquakes in the pre-basalt sediments, 9 were earthquakes in the crystalline basement, and 1 was a quarry blast. Two earthquakes appear to be related to a major geologic structure, no earthquakes occurred in known swarm areas, and 9 earthquakes were random occurrences. No earthquakes triggered the Hanford Strong Motion Accelerometers

  17. Earthquake engineering programs at the Lawrence Livermore Laboratory

    International Nuclear Information System (INIS)

    Tokarz, F.J.

    1980-01-01

    Information is presented concerning assessments of current seismic design methods; systematic evaluation program for older operating reactors; seismic vulnerability of fuel reprocessing facilities; and advisability of seismic scram

  18. The SISIFO project: Seismic Safety at High Schools

    Science.gov (United States)

    Peruzza, Laura; Barnaba, Carla; Bragato, Pier Luigi; Dusi, Alberto; Grimaz, Stefano; Malisan, Petra; Saraò, Angela; Mucciarelli, Marco

    2014-05-01

    For many years, the Italian scientific community has faced the problem of the reduction of earthquake risk using innovative educational techniques. Recent earthquakes in Italy and around the world have clearly demonstrated that seismic codes alone are not able to guarantee an effective mitigation of risk. After the tragic events of San Giuliano di Puglia (2002), where an earthquake killed 26 school children, special attention was paid in Italy to the seismic safety of schools, but mainly with respect to structural aspects. Little attention has been devoted to the possible and even significant damage to non-structural elements (collapse of ceilings, tipping of cabinets and shelving, obstruction of escape routes, etc..). Students and teachers trained on these aspects may lead to a very effective preventive vigilance. Since 2002, the project EDURISK (www.edurisk.it) proposed educational tools and training programs for schools, at primary and middle levels. More recently, a nationwide campaign aimed to adults (www.iononrischio.it) was launched with the extensive support of civil protection volounteers. There was a gap for high schools, and Project SISIFO was designed to fill this void and in particular for those schools with technical/scientific curricula. SISIFO (https://sites.google.com/site/ogssisifo/) is a multidisciplinary initiative, aimed at the diffusion of scientific culture for achieving seismic safety in schools, replicable and can be structured in training the next several years. The students, helped by their teachers and by experts from scientific institutions, followed a course on specialized training on earthquake safety. The trial began in North-East Italy, with a combination of hands-on activities for the measurement of earthquakes with low-cost instruments and lectures with experts in various disciplines, accompanied by specifically designed teaching materials, both on paper and digital format. We intend to raise teachers and students knowledge of the

  19. Seismicity of the Paradox Basin and the Colorado Plateau interior

    International Nuclear Information System (INIS)

    Wong, I.G.

    1984-04-01

    National Waste Terminal Storage Program site qualification criteria require that a nuclear waste repository be located so that ground motion associated with the maximum credible and maximum probable earthquakes or other earthquake-associated effects will not have an unacceptable adverse impact on system performance. To determine whether a potential repository site located in the Paradox salt formation in the Paradox Basin of southeastern Utah satisfies these criteria, seismological studies were undertaken by Woodward-Clyde Consultants (WCC) in March 1978. These studies included: (1) analysis of historical seismicity; (2) analysis of contemporary seismicity and tectonics of both the Paradox Basin and surrounding Colorado Plateau, including an extensive program of microearthquake monitoring; (3) evaluation of the Paradox Basin crustal structure; (4) evaluation of mining-induced seismicity; and (5) characterization of design-related earthquake-induced ground motions pertinent to a potential repository site through studies of attentation and subsurface ground motions. A detailed discussion of the results of the seismological studies performed through December 1980 is contained in WCC (1982). The purpose of this topical report is to update and summarize the studies on the local, regional, and mining-induced seismicity conducted through December 1982. The limitations of any interpretations are also discussed and additional information that remains to be acquired is identified. 56 references, 45 figures, 4 tables

  20. Sequence stratigraphy, seismic stratigraphy, and seismic structures of the lower intermediate confining unit and most of the Floridan aquifer system, Broward County, Florida

    Science.gov (United States)

    Cunningham, Kevin J.; Kluesner, Jared W.; Westcott, Richard L.; Robinson, Edward; Walker, Cameron; Khan, Shakira A.

    2017-12-08

    Deep well injection and disposal of treated wastewater into the highly transmissive saline Boulder Zone in the lower part of the Floridan aquifer system began in 1971. The zone of injection is a highly transmissive hydrogeologic unit, the Boulder Zone, in the lower part of the Floridan aquifer system. Since the 1990s, however, treated wastewater injection into the Boulder Zone in southeastern Florida has been detected at three treated wastewater injection utilities in the brackish upper part of the Floridan aquifer system designated for potential use as drinking water. At a time when usage of the Boulder Zone for treated wastewater disposal is increasing and the utilization of the upper part of the Floridan aquifer system for drinking water is intensifying, there is an urgency to understand the nature of cross-formational fluid flow and identify possible fluid pathways from the lower to upper zones of the Floridan aquifer system. To better understand the hydrogeologic controls on groundwater movement through the Floridan aquifer system in southeastern Florida, the U.S. Geological Survey and the Broward County Environmental Planning and Community Resilience Division conducted a 3.5-year cooperative study from July 2012 to December 2015. The study characterizes the sequence stratigraphy, seismic stratigraphy, and seismic structures of the lower part of the intermediate confining unit aquifer and most of the Floridan aquifer system.Data obtained to meet the study objective include 80 miles of high-resolution, two-dimensional (2D), seismic-reflection profiles acquired from canals in eastern Broward County. These profiles have been used to characterize the sequence stratigraphy, seismic stratigraphy, and seismic structures in a 425-square-mile study area. Horizon mapping of the seismic-reflection profiles and additional data collection from well logs and cores or cuttings from 44 wells were focused on construction of three-dimensional (3D) visualizations of eight

  1. Reliability of lifeline networks under seismic hazard

    International Nuclear Information System (INIS)

    Selcuk, A. Sevtap; Yuecemen, M. Semih

    1999-01-01

    Lifelines, such as pipelines, transportation, communication and power transmission systems, are networks which extend spatially over large geographical regions. The quantification of the reliability (survival probability) of a lifeline under seismic threat requires attention, as the proper functioning of these systems during or after a destructive earthquake is vital. In this study, a lifeline is idealized as an equivalent network with the capacity of its elements being random and spatially correlated and a comprehensive probabilistic model for the assessment of the reliability of lifelines under earthquake loads is developed. The seismic hazard that the network is exposed to is described by a probability distribution derived by using the past earthquake occurrence data. The seismic hazard analysis is based on the 'classical' seismic hazard analysis model with some modifications. An efficient algorithm developed by Yoo and Deo (Yoo YB, Deo N. A comparison of algorithms for terminal pair reliability. IEEE Transactions on Reliability 1988; 37: 210-215) is utilized for the evaluation of the network reliability. This algorithm eliminates the CPU time and memory capacity problems for large networks. A comprehensive computer program, called LIFEPACK is coded in Fortran language in order to carry out the numerical computations. Two detailed case studies are presented to show the implementation of the proposed model

  2. Extreme loads seismic testing of conduit systems

    International Nuclear Information System (INIS)

    Howard, G.E.; Ibanez, P.; Harrison, S.; Shi, Z.T.

    1991-01-01

    Rigid steel conduit (thin-wall tubes with threaded connections) containing electrical cabling are a common feature in nuclear power plants. Conduit systems are in many cases classified in U.S.A. practice as Seismic Category I structures. this paper summarizes results and others aspects of a dynamic test program conducted to investigate conduit systems seismic performance under three-axis excitation for designs representative at a nuclear power plant sited near Ft. Worth, Texas (a moderate seismic zone), with a Safe Shutdown Earthquake (SSE) of 0.12 g. Test specimens where subjected to postulated seismic events, including excitation well in excess of Safe Shutdown Earthquake events typical for U.S.A. nuclear power stations. A total of 18 conduit systems of 9-meter nominal lengths were shake table mounted and subjected to a variety of tests. None of the specimens suffered loss of load capacity when subjected to a site-enveloping Safe Shutdown Earthquake (SSE). Clamp/attachment hardware failures only began to occur when earthquake input motion was scaled upward to minimum values of 2.3-4.6 times site enveloping SSE response spectra. Tensile and/or shear failure of clamp attachment bolts or studs was the failure mode in all case in which failure was induced. (author)

  3. Overview of seismic margin insights gained from seismic PRA results

    International Nuclear Information System (INIS)

    Kennedy, R.P.; Sues, R.H.; Campbell, R.D.

    1986-01-01

    This paper presents the findings of a study conducted under NRC and EPRI sponsorship in which published seismic PRAs were reviewed in order to gain insight to the seismic margins inherent in existing nuclear plants. The approach taken was to examine the fragilities of those components which have been found to be dominant contributors to seismic risk at plants in low-to-moderate seismic regions (SSE levels between 0.12g and 0.25g). It is concluded that there is significant margin inherent in the capacity of most critical components above the plant design basis. For ground motions less than about 0.3g, the predominant sources of seismic risk are loss of offsite power coupled with random failure of the emergency diesels, non-recoverable circuit breaker trip due to relay chatter, unanchored equipment, unreinforced non-load bearing block walls, vertical water storage tanks, systems interactions and possibly soil liquefaction. Recommendations as to which components should be reviewed in seismic margin studies for margin earthquakes less than 0.3g, between 0.3g and 0.5g, and greater than 0.5g, developed by the NRC expert panel on the quantification of seismic margins (based on the review of past PRA data, earthquake experience data, and their own personal experience) are presented

  4. Adding seismic broadband analysis to characterize Andean backarc seismicity in Argentina

    Science.gov (United States)

    Alvarado, P.; Giuliano, A.; Beck, S.; Zandt, G.

    2007-05-01

    Characterization of the highly seismically active Andean backarc is crucial for assessment of earthquake hazards in western Argentina. Moderate-to-large crustal earthquakes have caused several deaths, damage and drastic economic consequences in Argentinean history. We have studied the Andean backarc crust between 30°S and 36°S using seismic broadband data available from a previous ("the CHARGE") IRIS-PASSCAL experiment. We collected more than 12 terabytes of continuous seismic data from 22 broadband instruments deployed across Chile and Argentina during 1.5 years. Using free software we modeled full regional broadband waveforms and obtained seismic moment tensor inversions of crustal earthquakes testing for the best focal depth for each event. We also mapped differences in the Andean backarc crustal structure and found a clear correlation with different types of crustal seismicity (i.e. focal depths, focal mechanisms, magnitudes and frequencies of occurrence) and previously mapped terrane boundaries. We now plan to use the same methodology to study other regions in Argentina using near-real time broadband data available from the national seismic (INPRES) network and global seismic networks operating in the region. We will re-design the national seismic network to optimize short-period and broadband seismic station coverage for different network purposes. This work is an international effort that involves researchers and students from universities and national government agencies with the goal of providing more information about earthquake hazards in western Argentina.

  5. Seismic failure modes and seismic safety of Hardfill dam

    Directory of Open Access Journals (Sweden)

    Kun Xiong

    2013-04-01

    Full Text Available Based on microscopic damage theory and the finite element method, and using the Weibull distribution to characterize the random distribution of the mechanical properties of materials, the seismic response of a typical Hardfill dam was analyzed through numerical simulation during the earthquakes with intensities of 8 degrees and even greater. The seismic failure modes and failure mechanism of the dam were explored as well. Numerical results show that the Hardfill dam remains at a low stress level and undamaged or slightly damaged during an earthquake with an intensity of 8 degrees. During overload earthquakes, tensile cracks occur at the dam surfaces and extend to inside the dam body, and the upstream dam body experiences more serious damage than the downstream dam body. Therefore, under the seismic conditions, the failure pattern of the Hardfill dam is the tensile fracture of the upstream regions and the dam toe. Compared with traditional gravity dams, Hardfill dams have better seismic performance and greater seismic safety.

  6. Detection of sinkholes or anomalies using full seismic wave fields : phase II.

    Science.gov (United States)

    2016-08-01

    A new 2-D Full Waveform Inversion (FWI) software code was developed to characterize layering and anomalies beneath the ground surface using seismic testing. The software is capable of assessing the shear and compression wave velocities (Vs and Vp) fo...

  7. Indigenous technology development : seismic switch for nuclear reactors

    International Nuclear Information System (INIS)

    Varghese, Shiju; Shah, Jay; Limaye, P.K.; Soni, N.L; Patel, R.J.

    2016-01-01

    After Fukushima incident it has become a regulatory requirement to have automatic reactor trip on detection of earthquake beyond OBE level. Seismic Switches that meets the technical specifications required for nuclear reactor use were not available in the market. Hence, on Nuclear Power Corporation of India Ltd (NPCIL's) request, Refuelling Technology Division, BARC has developed Seismic Switches (electronic earthquake detectors) required for this application. Functionality of the system was successfully tested using a Shake Table. Two different designs of seismic switches have been developed. One is a microcontroller based system (digital) and the other is fully analogue electronics (analog) based. These switches are designed to meet the technical requirements of Class IA systems of nuclear reactors. It is also designed to meet other qualification tests such as EMI/EMC, climatic, vibration, and reliability requirements. In addition to nuclear industry seismic switches are having potential use in oil and gas, power plants, buildings and other industrial installations. These technologies are currently available for technology transfer and details are published in BARC website. This paper describes the requirements, principle of operation, and features and testing of the developed systems. (author)

  8. Propagation of Regional Seismic Phases in Western Europe

    Science.gov (United States)

    1991-03-08

    and Southeastern France recorded at short period stations of the LDG (Laboratoire de Detection Geophysique , France) and IGG (Istituto Geofisico di...here were provided by the L.D.G. (Laboratoire de Geophysique ). The french seismic network consists of 27 stations with the same features : the

  9. Data quality control and tools in passive seismic experiments exemplified on the Czech broadband seismic pool MOBNET in the AlpArray collaborative project

    Science.gov (United States)

    Vecsey, Luděk; Plomerová, Jaroslava; Jedlička, Petr; Munzarová, Helena; Babuška, Vladislav; AlpArray Working Group

    2017-12-01

    This paper focuses on major issues related to the data reliability and network performance of 20 broadband (BB) stations of the Czech (CZ) MOBNET (MOBile NETwork) seismic pool within the AlpArray seismic experiments. Currently used high-resolution seismological applications require high-quality data recorded for a sufficiently long time interval at seismological observatories and during the entire time of operation of the temporary stations. In this paper we present new hardware and software tools we have been developing during the last two decades while analysing data from several international passive experiments. The new tools help to assure the high-quality standard of broadband seismic data and eliminate potential errors before supplying data to seismological centres. Special attention is paid to crucial issues like the detection of sensor misorientation, timing problems, interchange of record components and/or their polarity reversal, sensor mass centring, or anomalous channel amplitudes due to, for example, imperfect gain. Thorough data quality control should represent an integral constituent of seismic data recording, preprocessing, and archiving, especially for data from temporary stations in passive seismic experiments. Large international seismic experiments require enormous efforts from scientists from different countries and institutions to gather hundreds of stations to be deployed in the field during a limited time period. In this paper, we demonstrate the beneficial effects of the procedures we have developed for acquiring a reliable large set of high-quality data from each group participating in field experiments. The presented tools can be applied manually or automatically on data from any seismic network.

  10. Theory and feasibility tests for a seismic scanning tunnelling macroscope

    KAUST Repository

    Schuster, Gerard T.

    2012-09-01

    We propose a seismic scanning tunnelling macroscope (SSTM) that can detect subwavelength scatterers in the near-field of either the source or the receivers. Analytic formulas for the time reverse mirror (TRM) profile associated with a single scatterer model show that the spatial resolution limit to be, unlike the Abbe limit of λ/2, independent of wavelength and linearly proportional to the source-scatterer separation as long as the scatterer is in the near-field region. This means that, as the scatterer approaches the source, imaging of the scatterer with super-resolution can be achieved. Acoustic and elastic simulations support this concept, and a seismic experiment in an Arizona tunnel shows a TRM profile with super-resolution adjacent to the fault location. The SSTM is analogous to the optical scanning tunnelling microscopes having subwavelength resolution. Scaled to seismic frequencies, it is theoretically possible to extract 100 Hz information from 20 Hz data by the imaging of near-field seismic energy.

  11. Evolution of a seismic risk assessment technique

    International Nuclear Information System (INIS)

    Wells, J.E.; Cummings, G.E.

    1985-01-01

    To assist the NRC in its licensing evaluation role the Seismic Safety Margins Research Program (SSMRP) was started at LLNL in 1978. Its goal was to develop tools and data bases to evaluate the probability of earthquake caused radioactive releases from commercial nuclear power plants. The methodology was finalized in 1982 and a seismic risk assessment of the Zion Nuclear Power Plant was finished in 1983. Work continues on the study of the LaSalle Boiling Water Reactor. This paper will discuss some of the effects of the assumptions made during development of the systems analysis techniques used in SSMRP in light of the results obtained on studies to date. 5 refs

  12. Seismic monitoring of the unstable rock slope at Aaknes, Norway

    Science.gov (United States)

    Roth, M.; Blikra, L. H.

    2009-04-01

    The unstable rock slope at Aaknes has an estimated volume of about 70 million cubic meters, and parts of the slope are moving at a rate between 2-15 cm/year. Amongst many other direct monitoring systems we have installed a small-scale seismic network (8 three-component geophones over an area of 250 x 150 meters) in order to monitor microseismic events related to the movement of the slope. The network has been operational since November 2005 with only a few short-term outages. Seismic data are transferred in real-time from the site to NORSAR for automatic detection processing. The resulting detection lists and charts and the associated waveform are forwarded immediately to the early warning centre of the Municipality of Stranda. Furthermore, we make them available after a delay of about 10-15 minutes on our public project web page (http://www.norsar.no/pc-47-48-Latest-Data.aspx). Seismic monitoring provides independent and complementary data to the more direct monitoring systems at Aaknes. We observe increased seismic activity in periods of heavy rain fall or snow melt, when laser ranging data and extensometer readings indicate temporary acceleration phases of the slope. The seismic network is too small and the velocity structure is too heterogeneous in order to obtain reliable localizations of the microseismic events. In summer 2009 we plan to install a high-sensitive broadband seismometer (60 s - 100 Hz) in the middle of the unstable slope. This will allow us to better constrain the locations of the microseismic events and to investigate potential low-frequency signals associated with the slope movement.

  13. Three dimensional marine seismic survey has no measurable effect on species richness or abundance of a coral reef associated fish community

    International Nuclear Information System (INIS)

    Miller, Ian; Cripps, Edward

    2013-01-01

    Highlights: • A marine seismic survey was conducted at Scott Reef, North Western Australia. • Effects of the survey on demersal fish were gauged using underwater visual census. • There was no detectable impact of the seismic survey on species abundance. • There was no detectable impact of the seismic survey on species richness. -- Abstract: Underwater visual census was used to determine the effect of a three dimensional seismic survey on the shallow water coral reef slope associated fish community at Scott Reef. A census of the fish community was conducted on six locations at Scott Reef both before and after the survey. The census included small site attached demersal species belonging to the family Pomacentridae and larger roving demersal species belonging to the non-Pomacentridae families. These data were combined with a decade of historical data to assess the impact of the seismic survey. Taking into account spatial, temporal, spatio-temporal and observer variability, modelling showed no significant effect of the seismic survey on the overall abundance or species richness of Pomacentridae or non-Pomacentridae. The six most abundant species were also analysed individually. In all cases no detectable effect of the seismic survey was found on the abundance of these fish species at Scott Reef

  14. Investigating subduction reversal in Papua New Guinea from automatic analysis of seismicity recorded on a temporary local network

    Science.gov (United States)

    Hicks, S. P.; Harmon, N.; Rychert, C.; Tharimena, S.; Bogiatzis, P.; Savage, B.; Shen, Y.; Baillard, C.

    2017-12-01

    The area of Papua New Guinea is one of the most seismically active regions on the planet. Seismicity in the region results from oblique convergence between the Pacific and India-Australia plates, with deformation occurring across a broad region involving several microplates. The region gives an excellent natural laboratory to test geodynamic models of subduction polarity reversal, microplate interaction, and to delineate the structure of subducting plates and relic structures at depth. However, a lack of permanent seismic stations means that routine earthquake locations for small to intermediate sized earthquakes have significant location errors. In 2014, we deployed a temporary network of eight broadband stations on islands in eastern Papua New Guinea to record ongoing seismic deformation. The network straddles a complex region where subduction of the Solomon plate occurs to the south and possible subduction of the Ontong-Java plateau occurs to the north. The stations were installed for 27 months. During the deployment period, there were 13 M>6.5 earthquakes in the area, including M7.5 doublet events in 2015, giving a rich seismic dataset. A high-quality catalogue of local events was formed by a multi-step process. Using the scanloc module of SeisComp3, we first detect P-onsets using a STA/LTA detection. Once clusters of P onsets are found, S-wave picks are incorporated based on a pre-defined window length of maximum S-P time. Groups of onsets are then associated to events, giving us a starting catalogue of 269 events (1765 P-onsets) with minimum magnitude of M 3.5. In a second step, we refine onset times using a Kurtosis picker to improve location accuracy. To form robust hypocentral locations using an appropriate structural model for the area and to constrain crust and mantle structure in the region, we derive a minimum 1-D velocity model using the VELEST program. We use a starting model from Abers et al. (1991) and we restrict our catalogue to events with an

  15. Early estimation of epicenter seismic intensities according to co-seismic deformation

    OpenAIRE

    Weidong, Li; Chaojun, Zhang; Dahui, Li; Jiayong, He; Huizhong, Chen; Lomnitz, Cinna

    2010-01-01

    The absolute fault displacement in co-seismic deformation is derived assuming that location, depth, faulting mechanism and magnitude of the earthquake are known. The 2008 Wenchuan earthquake (M8.0) is used as an example to determine the distribution of seismic intensities using absolute displacement and a crustal model. We fnd that an early prediction of the distribution of seismic intensities after a large earthquake may be performed from the estimated absolute co-seismic displacements using...

  16. Excitation of seismic waves by a tornado

    Science.gov (United States)

    Valovcin, A.; Tanimoto, T.; Twardzik, C.

    2016-12-01

    Tornadoes are among the most common natural disasters to occur in the United States. Various methods are currently used in tornado forecasting, including surface weather stations, weather balloons and satellite and Doppler radar. These methods work for detecting possible locations of tornadoes and funnel clouds, but knowing when a tornado has touched down still strongly relies on reports from spotters. Studying tornadoes seismically offers an opportunity to know when a tornado has touched down without requiring an eyewitness report. With the installation of Earthscope's Transportable Array (TA), there have been an increased number of tornadoes that have come within close range of seismometers. We have identified seismic signals corresponding to three tornadoes that occurred in 2011 in the central US. These signals were recorded by the TA station closest to each of the tornado tracks. For each tornado, the amplitudes of the seismic signals increase when the storm is in contact with the ground, and continue until the tornado lifts off some time later. This occurs at both high and low frequencies. In this study we will model the seismic signal generated by a tornado at low frequencies (below 0.1 Hz). We will begin by modeling the signal from the Joplin tornado, an EF5 rated tornado which occurred in Missouri on May 22, 2011. By approximating the tornado as a vertical force, we model the generated signal as the tornado moves along its track and changes in strength. By modeling the seismic waveform generated by a tornado, we can better understand the seismic-excitation process. It could also provide a way to quantitatively compare tornadoes. Additional tornadoes to model include the Calumet-El Reno-Piedmont-Guthrie (CEPG) and Chickasa-Blanchard-Newcastle (CBN) tornadoes, both of which occurred on May 24, 2011 in Oklahoma.

  17. Analysis of Seismic Hazard. Slovak National Report to IUGG, 1995-1998

    Czech Academy of Sciences Publication Activity Database

    Schenk, Vladimír; Schenková, Zdeňka; Kottnauer, Pavel; Guterch, B.; Labák, P.

    1999-01-01

    Roč. 29, Spec. issue (1999), s. 99-102 ISSN 1335-2806 R&D Projects: GA AV ČR Global Seismic Hazard Assessment Program (GSHAP) - project of the UN International Decade of Natural Disaster Reduction and International Litosphere Program. Subject RIV: DC - Siesmology, Volcanology, Earth Structure

  18. Final recommendations of the Peer Review Panel on the use of seismic methods for characterizing Yucca Mountain and vicinity

    International Nuclear Information System (INIS)

    1991-01-01

    The Peer Review Panel was charged with deciding whether seismic methods, which had been utilized at Yucca Mountain with mixed results in the past, could provide useful information about the Tertiary structure in the Yucca Mountain area. The objectives of using seismic methods at Yucca Mountain are to: (a) obtain information about the structural character of the Paleozoic-Tertiary (Pz-T) contact, and (b) obtain information about the structural and volcanic details within the Tertiary and Quaternary section. The Panel recommends that a four part program be undertaken to test the utility of seismic reflection data for characterizing the structural setting of the Yucca Mountain area. The Panel feels strongly that all four parts of the program must be completed in order to provide the highest probability of success. The four parts of the program are: (a) drill or extend a deep hole in Crater Flat to provide depth control and allow for the identification of seismic reflectors in an area where good quality seismic reflection data are expected; (b) undertake a full seismic noise test in Crater Flat, test 2D receiver arrays as well as linear arrays; perform an expanding spread test using both P and S wave sources to obtain a quick look at the reflection quality in the area and see if shear wave reflections might provide structural information in areas of unsaturated rock; (c) acquire a P wave seismic reflection profile across Crater Flat through the deep control well, across Yucca Mountain, and continuing into Jackass Flats; and (d) acquire a standard VSP (vertical seismic profiling) in the deep control well to tie the seismic data into depth and to identify reflectors correctly

  19. Detecting C Program Vulnerabilities

    OpenAIRE

    Anton, Ermakov; Natalia, Kushik

    2011-01-01

    C/C++ language is widely used for developing tools in various applications, in particular, software tools for critical systems are often written in C language. Therefore, the security of such software should be thoroughly tested, i.e., the absence of vulnerabilities has to be confirmed. When detecting C program vulnerabilities static source code analysis can be used. In this paper, we present a short survey of existing software tools for such analysis and show that for some kinds of C code vu...

  20. Seismic response of base-isolated buildings using a viscoelastic model

    International Nuclear Information System (INIS)

    Uras, R.A.

    1993-01-01

    Due to recent developments in elastomer technology,seismic isolation using elastomer bearings is rapidly gaining acceptance as a design tool to enhance structural seismic margins and to protect people and equipment from earthquake damage. With proper design of isolators, the fundamental frequency of the structure can be reduced to a value that is lower than the dominant frequencies of earthquake ground motions. The other feature of an isolation system is that it can provide a mechanism for energy dissipation. In the USA, the use of seismic base-isolation has become an alternate strategy for advanced Liquid Metal-cooled Reactors (LMRs). ANL has been deeply involved in the development and implementation of seismic isolation for use in both nuclear facilities and civil structures for the past decade. Shimizu Corporation of Japan has a test facility at Tohoku University in Sendai, Japan. The test facility has two buildings: one is base isolated and the other is conventionally founded. The buildings are full-size, three-story reinforced concrete structures. The dimensions and construction of the superstructures are identical. They were built side by side in a seismically active area. In 1988, the ANL/Shimizu Joint Program was established to study the differences in behavior of base-isolated and ordinarily founded structures when subjected to earthquake loading. A more comprehensive description of this joint program is presented in a companion paper (Wang et al. 1993). With the increased use of elastomeric polymers in industrial applications such as isolation bearings, the importance of constitutive modeling of viscoelastic materials is more and more pronounced. A realistic representation of material behavior is essential for computer simulations to replicate the response observed in experiments

  1. Evaluation of Seismic Risk of Siberia Territory

    Science.gov (United States)

    Seleznev, V. S.; Soloviev, V. M.; Emanov, A. F.

    The outcomes of modern geophysical researches of the Geophysical Survey SB RAS, directed on study of geodynamic situation in large industrial and civil centers on the territory of Siberia with the purpose of an evaluation of seismic risk of territories and prediction of origin of extreme situations of natural and man-caused character, are pre- sented in the paper. First of all it concerns the testing and updating of a geoinformation system developed by Russian Emergency Ministry designed for calculations regarding the seismic hazard and response to distructive earthquakes. The GIS database contains the catalogues of earthquakes and faults, seismic zonation maps, vectorized city maps, information on industrial and housing fund, data on character of building and popula- tion in inhabited places etc. The geoinformation system allows to solve on a basis of probabilistic approaches the following problems: - estimating the earthquake impact, required forces, facilities and supplies for life-support of injured population; - deter- mining the consequences of failures on chemical and explosion-dangerous objects; - optimization problems on assurance technology of conduct of salvage operations. Using this computer program, the maps of earthquake risk have been constructed for several seismically dangerous regions of Siberia. These maps display the data on the probable amount of injured people and relative economic damage from an earthquake, which can occur in various sites of the territory according to the map of seismic zona- tion. The obtained maps have allowed determining places where the detailed seismo- logical observations should be arranged. Along with it on the territory of Siberia the wide-ranging investigations with use of new methods of evaluation of physical state of industrial and civil establishments (buildings and structures, hydroelectric power stations, bridges, dams, etc.), high-performance detailed electromagnetic researches of ground conditions of city

  2. Seismic behaviour of gas cooled reactor components

    International Nuclear Information System (INIS)

    1990-08-01

    On invitation of the French Government the Specialists' Meeting on the Seismic Behaviour of Gas-Cooled Reactor Components was held at Gif-sur-Yvette, 14-16 November 1989. This was the second Specialists' Meeting on the general subject of gas-cooled reactor seismic design. There were 27 participants from France, the Federal Republic of Germany, Israel, Japan, Spain, Switzerland, the United Kingdom, the Soviet Union, the United States, the CEC and IAEA took the opportunity to present and discuss a total of 16 papers reflecting the state of the art of gained experiences in the field of their seismic qualification approach, seismic analysis methods and of the capabilities of various facilities used to qualify components and verify analytical methods. Since the first meeting, the sophistication and expanded capabilities of both the seismic analytical methods and the test facilities are apparent. The two main methods for seismic analysis, the impedance method and the finite element method, have been computer-programmed in several countries with the capability of each of the codes dependent on the computer capability. The correlations between calculation and tests are dependent on input assumptions such as boundary conditions, soil parameters and various interactions between the soil, the buildings and the contained equipment. The ability to adjust these parameters and match experimental results with calculations was displayed in several of the papers. The expanded capability of some of the new test facilities was graphically displayed by the description of the SAMSON vibration test facility at Juelich, FRG, capable of dynamically testing specimens weighing up to 25 tonnes, and the TAMARIS facility at the CEA laboratories in Gif-sur-Yvette where the largest table is capable of testing specimens weighing up to 100 tonnes. The proceedings of this meeting contain all 16 presented papers. A separate abstract was prepared for each of these papers. Refs, figs and tabs

  3. Combined Gravimetric-Seismic Crustal Model for Antarctica

    Science.gov (United States)

    Baranov, Alexey; Tenzer, Robert; Bagherbandi, Mohammad

    2018-01-01

    The latest seismic data and improved information about the subglacial bedrock relief are used in this study to estimate the sediment and crustal thickness under the Antarctic continent. Since large parts of Antarctica are not yet covered by seismic surveys, the gravity and crustal structure models are used to interpolate the Moho information where seismic data are missing. The gravity information is also extended offshore to detect the Moho under continental margins and neighboring oceanic crust. The processing strategy involves the solution to the Vening Meinesz-Moritz's inverse problem of isostasy constrained on seismic data. A comparison of our new results with existing studies indicates a substantial improvement in the sediment and crustal models. The seismic data analysis shows significant sediment accumulations in Antarctica, with broad sedimentary basins. According to our result, the maximum sediment thickness in Antarctica is about 15 km under Filchner-Ronne Ice Shelf. The Moho relief closely resembles major geological and tectonic features. A rather thick continental crust of East Antarctic Craton is separated from a complex geological/tectonic structure of West Antarctica by the Transantarctic Mountains. The average Moho depth of 34.1 km under the Antarctic continent slightly differs from previous estimates. A maximum Moho deepening of 58.2 km under the Gamburtsev Subglacial Mountains in East Antarctica confirmed the presence of deep and compact orogenic roots. Another large Moho depth in East Antarctica is detected under Dronning Maud Land with two orogenic roots under Wohlthat Massif (48-50 km) and the Kottas Mountains (48-50 km) that are separated by a relatively thin crust along Jutulstraumen Rift. The Moho depth under central parts of the Transantarctic Mountains reaches 46 km. The maximum Moho deepening (34-38 km) in West Antarctica is under the Antarctic Peninsula. The Moho depth minima in East Antarctica are found under the Lambert Trench (24

  4. Mathematical approaches in deriving hydrocarbons expressions from seismic data

    Energy Technology Data Exchange (ETDEWEB)

    Farfour, Mohammed; Yoon, Wang Jung; Yoon-Geun [Geophysical Prospecting Lab, Energy & Resources Eng., Dept., Chonnam National University, Gwangju (Korea, Republic of); Lee, Jeong-Hwan [Petroleum Engineering & Reservoir Simulation Lab, Energy & Resources Eng., Dept., Chonnam National University, Gwangju (Korea, Republic of)

    2016-06-08

    Defining and understanding hydrocarbon expressions in seismic expression is main concern of geoscientists in oil and gas exploration and production. Over the last decades several mathematical approaches have been developed in this regard. Most of approaches have addressed information in amplitude of seismic data. Recently, more attention has been drawn towards frequency related information in order to extract frequency behaviors of hydrocarbons bearing sediments. Spectrally decomposing seismic data into individual frequencies found to be an excellent tool for investigating geological formations and their pore fluids. To accomplish this, several mathematical approaches have been invoked. Continuous wavelet transform and Short Time Window Fourier transform are widely used techniques for this purpose. This paper gives an overview of some widely used mathematical technique in hydrocarbon reservoir detection and mapping. This is followed by an application on real data from Boonsville field.

  5. Seismic applications in CBM exploration and development

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, S.E.; Lawton, D.C. [Calgary Univ., AB (Canada)

    2002-07-01

    This Power Point presentation reviewed seismic methods, coal seam seismology, seismology and coalbed methane (CBM) development, and time-lapse seismic imaging with reference to numerical modelling and physical testing. The issue of resolution versus detection in various seismic methods was discussed. The thinnest resolvable beds are usually about 1.0 m thick. Coal zones with thin seams can be mapped using seismic reflection, but individual seams are difficult to resolve in field data. In terms of coal seismology, it was noted that seismic surveys make it possible to identify seam thickness, field geometry, subsurface structuring and facies changes. Facies model make it possible to determine the depositional environment, coal type, coal quality and lateral continuity. Some successes in coal seismology include the Cedar Hill and Ferron fields in the San Juan Basin. Numerical modelling methods include digital dipole compressional sonic and density well logs through Ardley Coal Zone, P-wave synthetic seismograms generated in SYNTH (MATLAB), and the alteration of density/velocity values to create new seismograms. Another numerical method is to take the difference between original and altered seismograms. It was shown that dewatering causes a decrease in velocity of about 20 per cent, and a 15 per cent decrease in density. Changes as small as 5 per cent in reservoir properties can be successfully imaged. It was concluded that the identification of dewatered zones allow for optimal positioning of development wells. Further physical testing will involve wet and dry p-wave velocities, s-wave velocities will be tested, and velocities will be measured under pressure. 2 tabs., 10 figs.

  6. Seismicity Pattern and Fault Structure in the Central Himalaya Seismic Gap Using Precise Earthquake Hypocenters and their Source Parameters

    Science.gov (United States)

    Mendoza, M.; Ghosh, A.; Rai, S. S.

    2017-12-01

    The devastation brought on by the Mw 7.8 Gorkha earthquake in Nepal on 25 April 2015, reconditioned people to the high earthquake risk along the Himalayan arc. It is therefore imperative to learn from the Gorkha earthquake, and gain a better understanding of the state of stress in this fault regime, in order to identify areas that could produce the next devastating earthquake. Here, we focus on what is known as the "central Himalaya seismic gap". It is located in Uttarakhand, India, west of Nepal, where a large (> Mw 7.0) earthquake has not occurred for over the past 200 years [Rajendran, C.P., & Rajendran, K., 2005]. This 500 - 800 km long along-strike seismic gap has been poorly studied, mainly due to the lack of modern and dense instrumentation. It is especially concerning since it surrounds densely populated cities, such as New Delhi. In this study, we analyze a rich seismic dataset from a dense network consisting of 50 broadband stations, that operated between 2005 and 2012. We use the STA/LTA filter technique to detect earthquake phases, and the latest tools contributed to the Antelope software environment, to develop a large and robust earthquake catalog containing thousands of precise hypocentral locations, magnitudes, and focal mechanisms. By refining those locations in HypoDD [Waldhauser & Ellsworth, 2000] to form a tighter cluster of events using relative relocation, we can potentially illustrate fault structures in this region with high resolution. Additionally, using ZMAP [Weimer, S., 2001], we perform a variety of statistical analyses to understand the variability and nature of seismicity occurring in the region. Generating a large and consistent earthquake catalog not only brings to light the physical processes controlling the earthquake cycle in an Himalayan seismogenic zone, it also illustrates how stresses are building up along the décollment and the faults that stem from it. With this new catalog, we aim to reveal fault structure, study

  7. DEFORMATION WAVES AS A TRIGGER MECHANISM OF SEISMIC ACTIVITY IN SEISMIC ZONES OF THE CONTINENTAL LITHOSPHERE

    Directory of Open Access Journals (Sweden)

    S. I. Sherman

    2013-01-01

    Full Text Available Deformation waves as a trigger mechanism of seismic activity and migration of earthquake foci have been under discussion by researchers in seismology and geodynamics for over 50 years. Four sections of this article present available principal data on impacts of wave processes on seismicity and new data. The first section reviews analytical and experimental studies aimed at identification of relationships between wave processes in the lithosphere and seismic activity manifested as space-and-time migration of individual earthquake foci or clusters of earthquakes. It is concluded that with a systematic approach, instead of using a variety of terms to denote waves that trigger seismic process in the lithosphere, it is reasonable to apply the concise definition of ‘deformation waves’, which is most often used in fact.The second section contains a description of deformation waves considered as the trigger mechanism of seismic activity. It is concluded that a variety of methods are applied to identify deformation waves, and such methods are based on various research methods and concepts that naturally differ in sensitivity concerning detection of waves and/or impact of the waves on seismic process. Epicenters of strong earthquakes are grouped into specific linear or arc-shaped systems, which common criterion is the same time interval of the occurrence of events under analysis. On site the systems compose zones with similar time sequences, which correspond to the physical notion of moving waves (Fig. 9. Periods of manifestation of such waves are estimated as millions of years, and a direct consideration of the presence of waves and wave parameters is highly challenging. In the current state-of-the-art, geodynamics and seismology cannot provide any other solution yet.The third section presents a solution considering record of deformation waves in the lithosphere. With account of the fact that all the earthquakes with М≥3.0 are associated with

  8. Automatic Identification of Alpine Mass Movements by a Combination of Seismic and Infrasound Sensors

    Science.gov (United States)

    Hübl, Johannes; McArdell, Brian W.; Walter, Fabian

    2018-01-01

    The automatic detection and identification of alpine mass movements such as debris flows, debris floods, or landslides have been of increasing importance for devising mitigation measures in densely populated and intensively used alpine regions. Since these mass movements emit characteristic seismic and acoustic waves in the low-frequency range (<30 Hz), several approaches have already been developed for detection and warning systems based on these signals. However, a combination of the two methods, for improving detection probability and reducing false alarms, is still applied rarely. This paper presents an update and extension of a previously published approach for a detection and identification system based on a combination of seismic and infrasound sensors. Furthermore, this work evaluates the possible early warning times at several test sites and aims to analyze the seismic and infrasound spectral signature produced by different sediment-related mass movements to identify the process type and estimate the magnitude of the event. Thus, this study presents an initial method for estimating the peak discharge and total volume of debris flows based on infrasound data. Tests on several catchments show that this system can detect and identify mass movements in real time directly at the sensor site with high accuracy and a low false alarm ratio. PMID:29789449

  9. Automatic Identification of Alpine Mass Movements by a Combination of Seismic and Infrasound Sensors

    Directory of Open Access Journals (Sweden)

    Andreas Schimmel

    2018-05-01

    Full Text Available The automatic detection and identification of alpine mass movements such as debris flows, debris floods, or landslides have been of increasing importance for devising mitigation measures in densely populated and intensively used alpine regions. Since these mass movements emit characteristic seismic and acoustic waves in the low-frequency range (<30 Hz, several approaches have already been developed for detection and warning systems based on these signals. However, a combination of the two methods, for improving detection probability and reducing false alarms, is still applied rarely. This paper presents an update and extension of a previously published approach for a detection and identification system based on a combination of seismic and infrasound sensors. Furthermore, this work evaluates the possible early warning times at several test sites and aims to analyze the seismic and infrasound spectral signature produced by different sediment-related mass movements to identify the process type and estimate the magnitude of the event. Thus, this study presents an initial method for estimating the peak discharge and total volume of debris flows based on infrasound data. Tests on several catchments show that this system can detect and identify mass movements in real time directly at the sensor site with high accuracy and a low false alarm ratio.

  10. Performances of the UNDERground SEISmic array for the analysis of seismicity in Central Italy

    Directory of Open Access Journals (Sweden)

    R. Scarpa

    2006-06-01

    Full Text Available This paper presents the first results from the operation of a dense seismic array deployed in the underground Physics Laboratories at Gran Sasso (Central Italy. The array consists of 13 short-period, three-component seismometers with an aperture of about 550 m and average sensor spacing of 90 m. The reduced sensor spacing, joined to the spatially-white character of the background noise allows for quick and reliable detection of coherent wavefront arrivals even under very poor SNR conditions. We apply high-resolution frequency-slowness and polarization analyses to a set of 27 earthquakes recorded between November, 2002, and September, 2003, at epicentral distances spanning the 20-140 km interval. We locate these events using inversion of P- and S-wave backazimuths and S-P delay times, and compare the results with data from the Centralized National Seismic Network catalog. For the case of S-wave, the discrepancies among the two set of locations never exceed 10 km; the largest errors are instead observed for the case of P-waves. This observation may be due to the fact that the small array aperture does not allow for robust assessment of waves propagating at high apparent velocities. This information is discussed with special reference to the directions of future studies aimed at elucidating the location of seismogenetic structures in Central Italy from extended analysis of the micro-seismicity.

  11. Causality between expansion of seismic cloud and maximum magnitude of induced seismicity in geothermal field

    Science.gov (United States)

    Mukuhira, Yusuke; Asanuma, Hiroshi; Ito, Takatoshi; Häring, Markus

    2016-04-01

    Occurrence of induced seismicity with large magnitude is critical environmental issues associated with fluid injection for shale gas/oil extraction, waste water disposal, carbon capture and storage, and engineered geothermal systems (EGS). Studies for prediction of the hazardous seismicity and risk assessment of induced seismicity has been activated recently. Many of these studies are based on the seismological statistics and these models use the information of the occurrence time and event magnitude. We have originally developed physics based model named "possible seismic moment model" to evaluate seismic activity and assess seismic moment which can be ready to release. This model is totally based on microseismic information of occurrence time, hypocenter location and magnitude (seismic moment). This model assumes existence of representative parameter having physical meaning that release-able seismic moment per rock volume (seismic moment density) at given field. Seismic moment density is to be estimated from microseismic distribution and their seismic moment. In addition to this, stimulated rock volume is also inferred by progress of microseismic cloud at given time and this quantity can be interpreted as the rock volume which can release seismic energy due to weakening effect of normal stress by injected fluid. Product of these two parameters (equation (1)) provide possible seismic moment which can be released from current stimulated zone as a model output. Difference between output of this model and observed cumulative seismic moment corresponds the seismic moment which will be released in future, based on current stimulation conditions. This value can be translated into possible maximum magnitude of induced seismicity in future. As this way, possible seismic moment can be used to have feedback to hydraulic stimulation operation in real time as an index which can be interpreted easily and intuitively. Possible seismic moment is defined as equation (1), where D

  12. Guidelines for drafting national and international seismic standards

    International Nuclear Information System (INIS)

    Podrouzek, J.

    1989-01-01

    The main principles of engineering reliability are discussed in relation to the formation of seismic standards. The basic recommendations of the International Association of Earthquake Engineering in the field of inspection and earthquake resistance evaluation of engineering structures and systems are characterized. Attention is also paid to efforts aimed at a unification of standards and regulations, based on the fact that quasistatic and response spectra methods are largely common to the standards amd regulations. However, as the potential of computer techniques increases, more complex computer programs appear and the amount of tenuous input data increases, and this can affect the quality of seismic inspections. (Z.M.). 5 figs., 1 ref

  13. 100 years of seismic research on the Moho

    DEFF Research Database (Denmark)

    Prodehl, Claus; Kennett, Brian; Artemieva, Irina

    2013-01-01

    on the Moho is primarily based on the comprehensive overview of the worldwide history of seismological studies of the Earth's crust using controlled sources from 1850 to 2005, by Prodehl and Mooney (2012). Though the art of applying explosions, so-called “artificial events”, as energy sources for studies......The detection of a seismic boundary, the “Moho”, between the outermost shell of the Earth, the Earth's crust, and the Earth's mantle by A. Mohorovičić was the consequence of increased insight into the propagation of seismic waves caused by earthquakes. This short history of seismic research...... of the uppermost crustal layers began in the early 1900s, its effective use for studying the entire crust only began at the end of World War II. From 1945 onwards, controlled-source seismology has been the major approach to study details of the crust and underlying crust–mantle boundary, the Moho. The subsequent...

  14. Field test investigation of high sensitivity fiber optic seismic geophone

    Science.gov (United States)

    Wang, Meng; Min, Li; Zhang, Xiaolei; Zhang, Faxiang; Sun, Zhihui; Li, Shujuan; Wang, Chang; Zhao, Zhong; Hao, Guanghu

    2017-10-01

    Seismic reflection, whose measured signal is the artificial seismic waves ,is the most effective method and widely used in the geophysical prospecting. And this method can be used for exploration of oil, gas and coal. When a seismic wave travelling through the Earth encounters an interface between two materials with different acoustic impedances, some of the wave energy will reflect off the interface and some will refract through the interface. At its most basic, the seismic reflection technique consists of generating seismic waves and measuring the time taken for the waves to travel from the source, reflect off an interface and be detected by an array of geophones at the surface. Compared to traditional geophones such as electric, magnetic, mechanical and gas geophone, optical fiber geophones have many advantages. Optical fiber geophones can achieve sensing and signal transmission simultaneously. With the development of fiber grating sensor technology, fiber bragg grating (FBG) is being applied in seismic exploration and draws more and more attention to its advantage of anti-electromagnetic interference, high sensitivity and insensitivity to meteorological conditions. In this paper, we designed a high sensitivity geophone and tested its sensitivity, based on the theory of FBG sensing. The frequency response range is from 10 Hz to 100 Hz and the acceleration of the fiber optic seismic geophone is over 1000pm/g. sixteen-element fiber optic seismic geophone array system is presented and the field test is performed in Shengli oilfield of China. The field test shows that: (1) the fiber optic seismic geophone has a higher sensitivity than the traditional geophone between 1-100 Hz;(2) The low frequency reflection wave continuity of fiber Bragg grating geophone is better.

  15. Seismic Studies

    Energy Technology Data Exchange (ETDEWEB)

    R. Quittmeyer

    2006-09-25

    This technical work plan (TWP) describes the efforts to develop and confirm seismic ground motion inputs used for preclosure design and probabilistic safety 'analyses and to assess the postclosure performance of a repository at Yucca Mountain, Nevada. As part of the effort to develop seismic inputs, the TWP covers testing and analyses that provide the technical basis for inputs to the seismic ground-motion site-response model. The TWP also addresses preparation of a seismic methodology report for submission to the U.S. Nuclear Regulatory Commission (NRC). The activities discussed in this TWP are planned for fiscal years (FY) 2006 through 2008. Some of the work enhances the technical basis for previously developed seismic inputs and reduces uncertainties and conservatism used in previous analyses and modeling. These activities support the defense of a license application. Other activities provide new results that will support development of the preclosure, safety case; these results directly support and will be included in the license application. Table 1 indicates which activities support the license application and which support licensing defense. The activities are listed in Section 1.2; the methods and approaches used to implement them are discussed in more detail in Section 2.2. Technical and performance objectives of this work scope are: (1) For annual ground motion exceedance probabilities appropriate for preclosure design analyses, provide site-specific seismic design acceleration response spectra for a range of damping values; strain-compatible soil properties; peak motions, strains, and curvatures as a function of depth; and time histories (acceleration, velocity, and displacement). Provide seismic design inputs for the waste emplacement level and for surface sites. Results should be consistent with the probabilistic seismic hazard analysis (PSHA) for Yucca Mountain and reflect, as appropriate, available knowledge on the limits to extreme ground

  16. Seismic Studies

    International Nuclear Information System (INIS)

    R. Quittmeyer

    2006-01-01

    This technical work plan (TWP) describes the efforts to develop and confirm seismic ground motion inputs used for preclosure design and probabilistic safety 'analyses and to assess the postclosure performance of a repository at Yucca Mountain, Nevada. As part of the effort to develop seismic inputs, the TWP covers testing and analyses that provide the technical basis for inputs to the seismic ground-motion site-response model. The TWP also addresses preparation of a seismic methodology report for submission to the U.S. Nuclear Regulatory Commission (NRC). The activities discussed in this TWP are planned for fiscal years (FY) 2006 through 2008. Some of the work enhances the technical basis for previously developed seismic inputs and reduces uncertainties and conservatism used in previous analyses and modeling. These activities support the defense of a license application. Other activities provide new results that will support development of the preclosure, safety case; these results directly support and will be included in the license application. Table 1 indicates which activities support the license application and which support licensing defense. The activities are listed in Section 1.2; the methods and approaches used to implement them are discussed in more detail in Section 2.2. Technical and performance objectives of this work scope are: (1) For annual ground motion exceedance probabilities appropriate for preclosure design analyses, provide site-specific seismic design acceleration response spectra for a range of damping values; strain-compatible soil properties; peak motions, strains, and curvatures as a function of depth; and time histories (acceleration, velocity, and displacement). Provide seismic design inputs for the waste emplacement level and for surface sites. Results should be consistent with the probabilistic seismic hazard analysis (PSHA) for Yucca Mountain and reflect, as appropriate, available knowledge on the limits to extreme ground motion at

  17. Using Seismic Interferometry to Investigate Seismic Swarms

    Science.gov (United States)

    Matzel, E.; Morency, C.; Templeton, D. C.

    2017-12-01

    Seismicity provides a direct means of measuring the physical characteristics of active tectonic features such as fault zones. Hundreds of small earthquakes often occur along a fault during a seismic swarm. This seismicity helps define the tectonically active region. When processed using novel geophysical techniques, we can isolate the energy sensitive to the fault, itself. Here we focus on two methods of seismic interferometry, ambient noise correlation (ANC) and the virtual seismometer method (VSM). ANC is based on the observation that the Earth's background noise includes coherent energy, which can be recovered by observing over long time periods and allowing the incoherent energy to cancel out. The cross correlation of ambient noise between a pair of stations results in a waveform that is identical to the seismogram that would result if an impulsive source located at one of the stations was recorded at the other, the Green function (GF). The calculation of the GF is often stable after a few weeks of continuous data correlation, any perturbations to the GF after that point are directly related to changes in the subsurface and can be used for 4D monitoring.VSM is a style of seismic interferometry that provides fast, precise, high frequency estimates of the Green's function (GF) between earthquakes. VSM illuminates the subsurface precisely where the pressures are changing and has the potential to image the evolution of seismicity over time, including changes in the style of faulting. With hundreds of earthquakes, we can calculate thousands of waveforms. At the same time, VSM collapses the computational domain, often by 2-3 orders of magnitude. This allows us to do high frequency 3D modeling in the fault region. Using data from a swarm of earthquakes near the Salton Sea, we demonstrate the power of these techniques, illustrating our ability to scale from the far field, where sources are well separated, to the near field where their locations fall within each other

  18. Testing of seismic isolation bearings for advanced liquid metal reactor prism

    International Nuclear Information System (INIS)

    Tajirian, F.F.; Kelly, J.M.

    1988-01-01

    Seismic isolation can significantly mitigate earthquake loads on liquid metal reactors (LMR), thus reducing the impact of seismic loads on design. This improves plant safety margins for beyond-design basis seismic events and enhances adaptability of a standardized design to a variety of sites, with potential cost benefits. The PRISM (Power Reactor Inherently Safe Module) LMR incorporates a horizontal isolation system which consists of high damping steel laminated rubber bearings. The results of an experimental program to determine the mechanical properties of the rubber compound and the bearing performance under different loading conditions are presented. The test results demonstrate the excellent performance of the bearings and their suitability for isolating compact LMR plants

  19. Seismic 2D reflection processing and interpretation of shallow refraction data

    International Nuclear Information System (INIS)

    Oehman, I.; Heikkinen, E.; Lehtimaeki, T.

    2006-12-01

    Posiva Oy takes care of the final disposal of spent nuclear fuel in Finland. In year 2001 Olkiluoto was selected for the site of final disposal. Currently construction of the underground research facility, ONKALO, is going on at the Olkiluoto site. The aim of this work was to use two-dimensional reflection seismic processing methods to refraction seismic data collected from the ONKALO area in year 2002, and to locate gently dipping reflectors from the stacked sections. Processing was done using mainly open source software Seismic Unix. After the processing, the most distinct two-dimensional reflectors were picked from seismic sections using visualization environment OpendTect. After picking the features from crossing lines were combined into three-dimensional surfaces. Special attention was given for the detection of possible faults and discontinuities. The surfaces were given coordinates and their orientation was adjusted using a geometric procedure, which corresponds roughly a 3D migration, transferred to 3D presentation utility and compared to available geological information. The advantage of this work is to be able to get three-dimensional reflection seismic results from existing data set at only processing costs. Survey lines are also partly located in ONKALO area where extensive surface seismic surveys may not be possible to perform. The applied processing method was successful in detecting the reflectors. Most significant steps were the refraction and residual statics, and deconvolution. Some distinct reflectors can be seen at times 20-200 ms (vertical depths 50-500 m). The signal gets noisier below 200 ms. Reflectors are best visible as coherent phase between the adjacent traces, but do not raise much above the surrounding noise level. Higher amount of traces to be stacked would emphasis the reflections and their continuity more. Reflectors picked on crossing lines match well to borehole observations (KR4, KR7, KR24 and KR38) of fracture zones, and get

  20. Seismic monitoring of small alpine rockfalls – validity, precision and limitations

    Directory of Open Access Journals (Sweden)

    M. Dietze

    2017-10-01

    Full Text Available Rockfall in deglaciated mountain valleys is perhaps the most important post-glacial geomorphic process for determining the rates and patterns of valley wall erosion. Furthermore, rockfall poses a significant hazard to inhabitants and motivates monitoring efforts in populated areas. Traditional rockfall detection methods, such as aerial photography and terrestrial laser scanning (TLS data evaluation, provide constraints on the location and released volume of rock but have limitations due to significant time lags or integration times between surveys, and deliver limited information on rockfall triggering mechanisms and the dynamics of individual events. Environmental seismology, the study of seismic signals emitted by processes at the Earth's surface, provides a complementary solution to these shortcomings. However, this approach is predominantly limited by the strength of the signals emitted by a source and their transformation and attenuation towards receivers. To test the ability of seismic methods to identify and locate small rockfalls, and to characterise their dynamics, we surveyed a 2.16 km2 large, near-vertical cliff section of the Lauterbrunnen Valley in the Swiss Alps with a TLS device and six broadband seismometers. During 37 days in autumn 2014, 10 TLS-detected rockfalls with volumes ranging from 0.053 ± 0.004 to 2.338 ± 0.085 m3 were independently detected and located by the seismic approach, with a deviation of 81−29+59 m (about 7 % of the average inter-station distance of the seismometer network. Further potential rockfalls were detected outside the TLS-surveyed cliff area. The onset of individual events can be determined within a few milliseconds, and their dynamics can be resolved into distinct phases, such as detachment, free fall, intermittent impact, fragmentation, arrival at the talus slope and subsequent slope activity. The small rockfall volumes in this area require significant supervision during data