WorldWideScience

Sample records for seismic base isolation

  1. Development and characterization of a magnetorheological elastomer based adaptive seismic isolator

    International Nuclear Information System (INIS)

    Li, Yancheng; Li, Jianchun; Samali, Bijan; Li, Weihua

    2013-01-01

    One of the main shortcomings in current base isolation design/practice is lack of adaptability. As a result, a base isolation system that is effective for one type earthquake may become ineffective or may have adverse effect for other earthquakes. The vulnerability of traditional base isolation systems can be exaggerated by two types of earthquakes, i.e. near-field earthquakes and far-field earthquakes. This paper addresses the challenge facing current base isolation design/practice by proposing a new type of seismic isolator for the base isolation system, namely an adaptive seismic isolator. The novel adaptive seismic isolator utilizes magnetorheological elastomer (MRE) for its field-sensitive material property. Traditional seismic isolator design with a unique laminated structure of steel and MRE layers has been adopted in the novel MRE seismic isolator. To evaluate and characterize the behavior of the MRE seismic isolator, experimental testing was conducted on a shake table facility under harmonic cycling loading. Experimental results show that the proposed adaptive seismic isolator can successfully alter the lateral stiffness and damping force in real time up to 37% and 45% respectively. Based on the successful development of the novel adaptive seismic isolator, a discussion is also extended to the impact and potential applications of such a device in structural control applications in civil engineering. (paper)

  2. Seismic testing of the base-isolated PWR spent-fuel storage rack

    International Nuclear Information System (INIS)

    Fujita, Katsuhisa; Tanaka, Mamoru; Nakamura, Masaaki; Tsujikura, Yonezo.

    1990-01-01

    The present paper aims to verify the seismic safety of the base-isolated spent-fuel storage rack. A series of seismic tests has been conducted using a three-dimensional shaking table. A sliding-type base-isolation system was employed for the prototype rack considering environmental conditions in an actual plant. A non linear seismic response analysis was also performed, and it is verified that the prototype of a base-isolated spent-fuel storage rack has a sufficient seismic safety margin for design seismic conditions from the viewpoint of seismic response. (author)

  3. Seismic response of base isolated auxiliary building with age related degradation

    International Nuclear Information System (INIS)

    Park, Jun Hee; Choun, Young Sun; Choi, In Kil

    2012-01-01

    The aging of an isolator affects not only the mechanical properties of the isolator but also the dynamic properties of the upper structure, such as the change in stiffness, deformation capacity, load bearing capacity, creep, and damping. Therefore, the seismic response of base isolated structures will change with time. The floor response in the base isolated nuclear power plants (NPPs) can be particularly changed because of the change in stiffness and damping for the isolator. The increased seismic response due to the aging of isolator can cause mechanical problems for many equipment located in the NPPs. Therefore, it is necessary to evaluate the seismic response of base isolated NPPs with age related degradation. In this study, the seismic responses for a base isolated auxiliary building of SHIN KORI 3 and 4 with age related degradation were investigated using a nonlinear time history analysis. Floor response spectrums (FRS) were presented with time for identifying the change in seismic demand under the aging of isolator

  4. Seismic isolation - efficient procedure for seismic response assessement

    International Nuclear Information System (INIS)

    Zamfir, M. A.; Androne, M.

    2016-01-01

    The aim of this analysis is to reduce the dynamic response of a structure. The seismic isolation solution must take into consideration the specific site ground motion. In this paper will be presented results obtained by applying the seismic isolation method. Based on the obtained results, important conclusions can be outlined: the seismic isolation device has the ability to reduce seismic acceleration of the seismic isolated structure to values that no longer present a danger to people and environment; the seismic isolation solution is limiting devices deformations to safety values for ensuring structural integrity and stability of the entire system; the effective seismic energy dissipation and with no side effects both for the seismic isolated building and for the devices used, and the return to the initial position before earthquake occurence are obtained with acceptable permanent displacement. (authors)

  5. Influence of various parameters on effectiveness of seismic base isolation of nuclear equipment

    International Nuclear Information System (INIS)

    Ebisawa, K.; Kameoka, H.; Takenouchi, I.; Kajiki, S.

    1995-01-01

    Authors developed a methodology and EBISA code for evaluating the applicability and the effectiveness of seismic base isolation of nuclear equipment. In order to investigate the influence of various parameters on the effectiveness of seismic base isolation, a sensitivity analysis was carried out for an emergency transformer with the base isolation devices. It was proved that seismic base isolation of equipment is very effective. This effectiveness can be influenced by the differences of the base isolation devices and the direction of the input seismic wave. (author). 7 refs., 3 figs., 3 tabs

  6. Studies on the Needs of Seismic Base Isolation Concept and its Standardization

    International Nuclear Information System (INIS)

    Lee, Min-Seok; Kim, Jong-Hae

    2015-01-01

    In the late 1970s, seismic resistance design was introduced as a new design concept through the construction of nuclear power plants. Before this, lateral forces other than wind loads, such as seismic forces, were not taken into consideration in the structural design process. However, in response to the building of increasingly large and heavy structures such as nuclear power plants, a consensus began to form in society regarding the importance of seismic resistance design to avoid a largescale calamity. Since then, Korea has reinforced the relevant regulations, and there has been some progress. At the same time, the seismic base isolation concept was introduced to encourage active research activities related to building safety issues. It has lately been applied for the purpose of reducing construction costs. In 1980s, seismic base isolation design was applied for 'Cruas' plant in France and 'Koeberg' plant in South Africa. Those two are the few cases in which the seismic base isolation design was applied; for the rest, seismic resistance design was applied in most nuclear power plants that are in operation and in construction in the world. Rather than welcoming innovative technology on a trial basis, nuclear power plant design makes use only of proven technologies, which explains the application of seismic resistance design. As seismic base isolation design has become more accepted for use in the building of domestic general bridges, which has, thereby, confirmed its safety, it has been accepted for nuclear power plant design and has even been actively applied. So far, most structures of nuclear facility have been constructed with seismic resistance design and engineering methods. However, seismic force prediction is not perfect in reality; nor is it financially beneficial to apply the system for gradually increasing seismic resistance design loads. Therefore, it is necessary to apply a seismic base isolation system as a way to help secure the

  7. Studies on the Needs of Seismic Base Isolation Concept and its Standardization

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Min-Seok; Kim, Jong-Hae [Korea Electric Association, Seoul (Korea, Republic of)

    2015-05-15

    In the late 1970s, seismic resistance design was introduced as a new design concept through the construction of nuclear power plants. Before this, lateral forces other than wind loads, such as seismic forces, were not taken into consideration in the structural design process. However, in response to the building of increasingly large and heavy structures such as nuclear power plants, a consensus began to form in society regarding the importance of seismic resistance design to avoid a largescale calamity. Since then, Korea has reinforced the relevant regulations, and there has been some progress. At the same time, the seismic base isolation concept was introduced to encourage active research activities related to building safety issues. It has lately been applied for the purpose of reducing construction costs. In 1980s, seismic base isolation design was applied for 'Cruas' plant in France and 'Koeberg' plant in South Africa. Those two are the few cases in which the seismic base isolation design was applied; for the rest, seismic resistance design was applied in most nuclear power plants that are in operation and in construction in the world. Rather than welcoming innovative technology on a trial basis, nuclear power plant design makes use only of proven technologies, which explains the application of seismic resistance design. As seismic base isolation design has become more accepted for use in the building of domestic general bridges, which has, thereby, confirmed its safety, it has been accepted for nuclear power plant design and has even been actively applied. So far, most structures of nuclear facility have been constructed with seismic resistance design and engineering methods. However, seismic force prediction is not perfect in reality; nor is it financially beneficial to apply the system for gradually increasing seismic resistance design loads. Therefore, it is necessary to apply a seismic base isolation system as a way to help secure the

  8. Seismic isolation of buildings using composite foundations based on metamaterials

    Science.gov (United States)

    Casablanca, O.; Ventura, G.; Garescı, F.; Azzerboni, B.; Chiaia, B.; Chiappini, M.; Finocchio, G.

    2018-05-01

    Metamaterials can be engineered to interact with waves in entirely new ways, finding application on the nanoscale in various fields such as optics and acoustics. In addition, acoustic metamaterials can be used in large-scale experiments for filtering and manipulating seismic waves (seismic metamaterials). Here, we propose seismic isolation based on a device that combines some properties of seismic metamaterials (e.g., periodic mass-in-mass systems) with that of a standard foundation positioned right below the building for isolation purposes. The concepts on which this solution is based are the local resonance and a dual-stiffness structure that preserves large (small) rigidity for compression (shear) effects. In other words, this paper introduces a different approach to seismic isolation by using certain principles of seismic metamaterials. The experimental demonstrator tested on the laboratory scale exhibits a spectral bandgap that begins at 4.5 Hz. Within the bandgap, it filters more than 50% of the seismic energy via an internal dissipation process. Our results open a path toward the seismic resilience of buildings and a critical infrastructure to shear seismic waves, achieving higher efficiency compared to traditional seismic insulators and passive energy-dissipation systems.

  9. A Survey study on design procedure of Seismic Base Isolation ...

    African Journals Online (AJOL)

    Michael Horsfall

    Base Isolation Systems that is flexible approach to decrease the potential damage. In this ... In addition, we analyze the seismic responses of isolated structures. The seismic ..... Equation 3.7, is examined; it is realized that the inequality ...

  10. Seismic performance assessment of base-isolated safety-related nuclear structures

    Science.gov (United States)

    Huang, Y.-N.; Whittaker, A.S.; Luco, N.

    2010-01-01

    Seismic or base isolation is a proven technology for reducing the effects of earthquake shaking on buildings, bridges and infrastructure. The benefit of base isolation has been presented in terms of reduced accelerations and drifts on superstructure components but never quantified in terms of either a percentage reduction in seismic loss (or percentage increase in safety) or the probability of an unacceptable performance. Herein, we quantify the benefits of base isolation in terms of increased safety (or smaller loss) by comparing the safety of a sample conventional and base-isolated nuclear power plant (NPP) located in the Eastern U.S. Scenario- and time-based assessments are performed using a new methodology. Three base isolation systems are considered, namely, (1) Friction Pendulum??? bearings, (2) lead-rubber bearings and (3) low-damping rubber bearings together with linear viscous dampers. Unacceptable performance is defined by the failure of key secondary systems because these systems represent much of the investment in a new build power plant and ensure the safe operation of the plant. For the scenario-based assessments, the probability of unacceptable performance is computed for an earthquake with a magnitude of 5.3 at a distance 7.5 km from the plant. For the time-based assessments, the annual frequency of unacceptable performance is computed considering all potential earthquakes that may occur. For both assessments, the implementation of base isolation reduces the probability of unacceptable performance by approximately four orders of magnitude for the same NPP superstructure and secondary systems. The increase in NPP construction cost associated with the installation of seismic isolators can be offset by substantially reducing the required seismic strength of secondary components and systems and potentially eliminating the need to seismically qualify many secondary components and systems. ?? 2010 John Wiley & Sons, Ltd.

  11. Seismic isolation in New Zealand

    International Nuclear Information System (INIS)

    Skinner, R.I.; Robinson, W.H.; McVerry, G.H.

    1989-01-01

    Bridges, buildings, and industrial equipment can be given increased protection from earthquake damage by limiting the earthquake attack through seismic isolation. A broad summary of the seismic responses of base-isolated structures is of considerable assistance for their preliminary design. Seismic isolation as already used in New Zealand consists of a flexible base or support combined with some form of energy-dissipating device, usually involving the hysteretic working of steel or lead. This paper presents examples of the New Zealand experience, where seismic isolation has been used for 42 bridges, 3 buildings, a tall chimney, and high-voltage capacitor banks. Additional seismic response factors, which may be important for nuclear power plants, are also discussed briefly

  12. Comparison of seismic response of ordinary and base-isolated structures

    International Nuclear Information System (INIS)

    Kuroda, T.; Kobatake, M.; Seidensticker, R.W.; Chang, Y.W.

    1992-01-01

    Seismic isolation is growing rapidly worldwide as a cost-effective and reliable design strategy for a wide range of critical and important facilities (e.g., hospitals, computer centers, etc.) Shimizu Corporation of Japan has a test facility at Tohoku University in Sendai, Japan. The test facility was constructed in 1986 and has two buildings: one is base isolated and the other is conventionally founded. The buildings are full-size, three-story reinforced concrete structures. The dimensions and construction of the superstructures are identical. For the past several years, Shimizu Corporation has installed a number of different isolation systems in the isolated building at the test facility to study the response of base isolation systems to actual earthquake motions. Argonne National Laboratory (ANL) has been deeply involved in the development of seismic isolation for use in nuclear facilities for the past decade. Using the funding and direction of the US Department of Energy (USDOE), ANL has been developing methodology needed to evaluate the usefulness and effectiveness of seismic isolation for advanced liquid metal-cooled reactors (LMRs). This paper compares the seismic responses of ordinary and base-isolated buildings. Earthquake records of significant importance from April 1989 to September 1991, after the installation of bearings have been analyzed. Numerical simulations of the building responses have been performed and correlated with earthquake observation data. It is hoped that the results of this study will provide guidelines for the future use of isolator bearings for mitigation of earthquake damages

  13. Seismic response of base-isolated buildings using a viscoelastic model

    International Nuclear Information System (INIS)

    Uras, R.A.

    1993-01-01

    Due to recent developments in elastomer technology,seismic isolation using elastomer bearings is rapidly gaining acceptance as a design tool to enhance structural seismic margins and to protect people and equipment from earthquake damage. With proper design of isolators, the fundamental frequency of the structure can be reduced to a value that is lower than the dominant frequencies of earthquake ground motions. The other feature of an isolation system is that it can provide a mechanism for energy dissipation. In the USA, the use of seismic base-isolation has become an alternate strategy for advanced Liquid Metal-cooled Reactors (LMRs). ANL has been deeply involved in the development and implementation of seismic isolation for use in both nuclear facilities and civil structures for the past decade. Shimizu Corporation of Japan has a test facility at Tohoku University in Sendai, Japan. The test facility has two buildings: one is base isolated and the other is conventionally founded. The buildings are full-size, three-story reinforced concrete structures. The dimensions and construction of the superstructures are identical. They were built side by side in a seismically active area. In 1988, the ANL/Shimizu Joint Program was established to study the differences in behavior of base-isolated and ordinarily founded structures when subjected to earthquake loading. A more comprehensive description of this joint program is presented in a companion paper (Wang et al. 1993). With the increased use of elastomeric polymers in industrial applications such as isolation bearings, the importance of constitutive modeling of viscoelastic materials is more and more pronounced. A realistic representation of material behavior is essential for computer simulations to replicate the response observed in experiments

  14. A Survey study on design procedure of Seismic Base Isolation ...

    African Journals Online (AJOL)

    Adding shear walls or braced frames can decrease the potential damage caused by earthquakes.We can isolate the structures from the ground using the Seismic Base Isolation Systems that is flexible approach to decrease the potential damage. In this research we present information on the design procedure of seismic ...

  15. Base Isolation for Seismic Retrofitting of a Multiple Building Structure: Design, Construction, and Assessment

    Directory of Open Access Journals (Sweden)

    Massimiliano Ferraioli

    2017-01-01

    Full Text Available The paper deals with the seismic retrofit of a multiple building structure belonging to the Hospital Centre of Avellino (Italy. At first, the paper presents the preliminary investigations, the in situ measurements and laboratory tests, and the seismic assessment of the existing fixed-base structures. Having studied different strategies, base isolation proved to be the more appropriate, also for the possibility offered by the geometry of the building to easily create an isolation interface at the ground level. The paper presents the design project, the construction process, and the details of the isolation intervention. Some specific issues of base isolation for seismic retrofitting of multiple building structures were lightened. Finally, the seismic assessment of the base-isolated building was carried out. The seismic response was evaluated through nonlinear time-history analysis, using the well-known Bouc-Wen model as the constitutive law of the isolation bearings. For reliable dynamic analyses, a suite of natural accelerograms compatible with acceleration spectra of Italian Code was first selected and then applied along both horizontal directions. The results were finally used to address some of the critical issues of the seismic response of the base-isolated multiple building structure: accidental torsional effects and potential poundings during strong earthquakes.

  16. Analysis of Bi-directional Effects on the Response of a Seismic Base Isolation System

    International Nuclear Information System (INIS)

    Park, Hyung-Kui; Kim, Jung-Han; Kim, Min Kyu; Choi, In-Kil

    2014-01-01

    The floor response spectrum depends on the height of the floor of the structure. Also FRS depends on the characteristics of the seismic base isolation system such as the natural frequency, damping ratio. In the previous study, the floor response spectrum of the base isolated structure was calculated for each axis without considering bi-directional effect. However, the shear behavior of the seismic base isolation system of two horizontal directions are correlated each other by the bi-directional effects. If the shear behavior of the seismic isolation system changes, it can influence the floor response spectrum and displacement response of isolators. In this study, the analysis of a bi-directional effect on the floor response spectrum was performed. In this study, the response of the seismic base isolation system based on the bi-directional effects was analyzed. By analyzing the time history result, while there is no alteration in the maximum shear force of seismic base isolation system, it is confirmed that the shear force is generally more decreased in a one-directional that in a two-directional in most parts. Due to the overall decreased shear force, the floor response spectrum is more reduced in a two-directional than in a one-directional

  17. Life-cycle cost assessment of seismically base-isolated structures in nuclear power plants

    International Nuclear Information System (INIS)

    Wang, Hao; Weng, Dagen; Lu, Xilin; Lu, Liang

    2013-01-01

    Highlights: • The life-cycle cost of seismic base-isolated nuclear power plants is modeled. • The change law of life-cycle cost with seismic fortification intensity is studied. • The initial cost of laminated lead rubber bearings can be expressed as the function of volume. • The initial cost of a damper can be expressed as the function of its maximum displacement and tonnage. • The use of base-isolation can greatly reduce the expected damage cost, which leads to the reduction of the life-cycle cost. -- Abstract: Evaluation of seismically base-isolated structural life-cycle cost is the key problem in performance based seismic design. A method is being introduced to address the life-cycle cost of base-isolated reinforced concrete structures in nuclear power plants. Each composition of life-cycle cost is analyzed including the initial construction cost, the isolators cost and the excepted damage cost over life-cycle of the structure. The concept of seismic intensity is being used to estimate the expected damage cost, greatly simplifying the calculation. Moreover, French Cruas nuclear power plant is employed as an example to assess its life-cycle cost, compared to the cost of non-isolated plant at the same time. The results show that the proposed method is efficient and the expected damage cost is enormously reduced because of the application of isolators, which leads to the reduction of the life-cycle cost of nuclear power plants

  18. FSI-based Overflow Assessment of the Seismically-Isolated SFP with Fuel Racks

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Gil Y.; Park, Hyun T.; Chang, Soo-Hyuk [Korea Maintenance Co., Seoul (Korea, Republic of); Lee, Sang-Hoon [KEPCO E-C, Yongin (Korea, Republic of)

    2014-10-15

    To date, effectiveness of the seismic isolation systems for reducing seismic force effectively has been well demonstrated. In this context, practical application of the technology in nuclear engineering fields has become an important issue more and more. This is because fluid motion can be rather amplified due to the increased relative displacement between the base and superstructures by a long-period shift. Therefore, overflow assessment and prediction of the seismically-isolated SFP have to be conducted in design phase. For performing sloshing-induced overflow of the seismically-isolated SFP, a fluid-structure interaction(FSI) approach making a two-way coupling process between structural and fluid solvers is herein employed. In this study, fuel racks inside the SFP are included in FSI modeling to investigate effect of fuel-cell assemblies on SFP overflow. Accordingly, three different assembly sets of fuel cells are assumed to be inserted in fuel racks. In addition, floor acceleration time-histories produced from three different amplitudes of peak ground acceleration (PGA) are applied to the SFP base to investigate load effect on liquid overflow. An approach for the liquid overflow assessment of the seismically-isolated nuclear SFP with fuel storage racks based on FSI analysis was addressed. From the results of the identified cases, the following conclusions are drawn: (i) FSI technique can be effectively used to assess the seismically-isolated SFP overflow, (ii) In a conservative way, the isolated SFP without fuel racks can be used to assess its sloshing-induced overflow under earthquake since effect of fuel-cell assemblies on the SFP overflow is not significant, (iii) for given same conditions (e.g., constant design free surface, same fuel-cell assembly) except seismic loading, the higher PGA is, the more liquid overflow increases.

  19. Technology transfer package on seismic base isolation - Volume II

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-14

    This Technology Transfer Package provides some detailed information for the U.S. Department of Energy (DOE) and its contractors about seismic base isolation. Intended users of this three-volume package are DOE Design and Safety Engineers as well as DOE Facility Managers who are responsible for reducing the effects of natural phenomena hazards (NPH), specifically earthquakes, on their facilities. The package was developed as part of DOE's efforts to study and implement techniques for protecting lives and property from the effects of natural phenomena and to support the International Decade for Natural Disaster Reduction. Volume II contains the proceedings for the Short Course on Seismic Base Isolation held in Berkeley, California, August 10-14, 1992.

  20. Seismic Risk of the Base Isolation System Protected by the Hard Stop

    International Nuclear Information System (INIS)

    Kim, Jung Han; Choi, In-Kil; Kim, Min Kyu

    2015-01-01

    The concept of base isolation is to permit the deformation of isolator for absorbing seismic input wave from the ground. In a nuclear power plant design, allowable shear deformation of isolators should be enough to absorb the displacement response by extended design basis (EDB) ground motions. However isolators cannot resist over its displacement capacity. So, the clearance of hard stop (CHS) needs to be set between the response of base isolation system excited by the EDB ground motion and the displacement capacity of isolators. The isolation system must survive with high confidence in any seismic accident because it is a non-redundant system. Therefore, the CHS should be determined carefully based on the failure risk of base isolation system considering the uncertainties of earthquake responses and isolator capacities. In this research, the fragility curve of isolation system and its failure risk were estimated. The procedure to calculate the acceleration based fragility curve of the isolation system was developed. The fragility curve and failure risk for example case was estimated and its result was compared with different isolator capacities

  1. Seismic Risk of the Base Isolation System Protected by the Hard Stop

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Han; Choi, In-Kil; Kim, Min Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The concept of base isolation is to permit the deformation of isolator for absorbing seismic input wave from the ground. In a nuclear power plant design, allowable shear deformation of isolators should be enough to absorb the displacement response by extended design basis (EDB) ground motions. However isolators cannot resist over its displacement capacity. So, the clearance of hard stop (CHS) needs to be set between the response of base isolation system excited by the EDB ground motion and the displacement capacity of isolators. The isolation system must survive with high confidence in any seismic accident because it is a non-redundant system. Therefore, the CHS should be determined carefully based on the failure risk of base isolation system considering the uncertainties of earthquake responses and isolator capacities. In this research, the fragility curve of isolation system and its failure risk were estimated. The procedure to calculate the acceleration based fragility curve of the isolation system was developed. The fragility curve and failure risk for example case was estimated and its result was compared with different isolator capacities.

  2. Technology transfer package on seismic base isolation - Volume I

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-14

    This Technology Transfer Package provides some detailed information for the U.S. Department of Energy (DOE) and its contractors about seismic base isolation. Intended users of this three-volume package are DOE Design and Safety Engineers as well as DOE Facility Managers who are responsible for reducing the effects of natural phenomena hazards (NPH), specifically earthquakes, on their facilities. The package was developed as part of DOE's efforts to study and implement techniques for protecting lives and property from the effects of natural phenomena and to support the International Decade for Natural Disaster Reduction. Volume I contains the proceedings of the Workshop on Seismic Base Isolation for Department of Energy Facilities held in Marina Del Rey, California, May 13-15, 1992.

  3. Effects of applying three-dimensional seismic isolation system on the seismic design of FBR

    International Nuclear Information System (INIS)

    Hirata, Kazuta; Yabana, Shuichi; Kanazawa, Kenji; Matsuda, Akihiro

    1997-01-01

    In this study conceptional three-dimensional seismic isolation system for fast breeder reactor (FBR) is proposed. Effects of applying three-dimensional seismic isolation system on the seismic design for the FBR equipment are evaluated quantitatively. From the evaluation, it is concluded following effects are expected by applying the three-dimensional seismic isolation system to the FBR and the effects are evaluated quantitatively. (1) Reduction of membrane thickness of the reactor vessel (2) Suppression of uplift of fuels by reducing vertical seismic response of the core (3) Reduction of the supports for the piping system (4) Three-dimensional base isolation system for the whole reactor building is advantageous to the combined isolation system of horizontal base isolation for the reactor building and vertical isolation for the equipment. (author)

  4. Use of a viscoelastic model for the seismic response of base-isolated buildings

    International Nuclear Information System (INIS)

    Uras, R.A.

    1994-01-01

    Due to recent developments in elastomer technology, seismic isolation using elastomer bearings is rapidly becoming an acceptable design tool to enhance structural seismic margins and to protect people and equipment from earthquake damage. With proper design of isolators, high-energy seismic input motions are transformed into low-frequency, low energy harmonic motions and the accelerations acting on the isolated building are significantly reduced. Several alternatives exist for the modeling of the isolators. This study is concerned with the use of a viscoelastic model to predict the seismic response of base-isolated buildings. The in-house finite element computer code has been modified to incorporate a viscoelastic spring element, and several simulations are performed. Then, the computed results have been compared with the corresponding observed data recorded at the test facility

  5. Proceedings of the first international seminar on seismic base isolation for nuclear power facilities

    International Nuclear Information System (INIS)

    1989-01-01

    The First International Seminar on Seismic Base Isolation of Nuclear Power Facilities was organized by the authors of this paper. It was held in San Francisco, California, USA, on August 21--22, 1989, in conjunction with the tenth International Conference on Structural Mechanics in Reactor Technology (SMiRT-10). The purpose of the seminar was to provide an international forum for discussion on the application of base isolation to nuclear power plants and of its effectiveness in reducing seismic loads and permitting standard plant designs. It also provided an opportunity for technical interchange between base isolation system designers, structural engineers, and nuclear power plant engineers. Seismic isolation is certainly one of the most significant earthquake engineering developments in recent years. This was clearly demonstrated by the very large attendance at this seminar and the various papers presented. Isolation system act as filters that reduce the seismic forces and increase the ability of isolated structures and their contents to withstand the damaging effects of earthquake motions. Each individual paper has been cataloged separately

  6. ADVANCED SEISMIC BASE ISOLATION METHODS FOR MODULAR REACTORS

    International Nuclear Information System (INIS)

    Blanford, E.; Keldrauk, E.; Laufer, M.; Mieler, M.; Wei, J.; Stojadinovic, B.; Peterson, P.F.

    2010-01-01

    Advanced technologies for structural design and construction have the potential for major impact not only on nuclear power plant construction time and cost, but also on the design process and on the safety, security and reliability of next generation of nuclear power plants. In future Generation IV (Gen IV) reactors, structural and seismic design should be much more closely integrated with the design of nuclear and industrial safety systems, physical security systems, and international safeguards systems. Overall reliability will be increased, through the use of replaceable and modular equipment, and through design to facilitate on-line monitoring, in-service inspection, maintenance, replacement, and decommissioning. Economics will also receive high design priority, through integrated engineering efforts to optimize building arrangements to minimize building heights and footprints. Finally, the licensing approach will be transformed by becoming increasingly performance based and technology neutral, using best-estimate simulation methods with uncertainty and margin quantification. In this context, two structural engineering technologies, seismic base isolation and modular steel-plate/concrete composite structural walls, are investigated. These technologies have major potential to (1) enable standardized reactor designs to be deployed across a wider range of sites, (2) reduce the impact of uncertainties related to site-specific seismic conditions, and (3) alleviate reactor equipment qualification requirements. For Gen IV reactors the potential for deliberate crashes of large aircraft must also be considered in design. This report concludes that base-isolated structures should be decoupled from the reactor external event exclusion system. As an example, a scoping analysis is performed for a rectangular, decoupled external event shell designed as a grillage. This report also reviews modular construction technology, particularly steel-plate/concrete construction using

  7. ADVANCED SEISMIC BASE ISOLATION METHODS FOR MODULAR REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    E. Blanford; E. Keldrauk; M. Laufer; M. Mieler; J. Wei; B. Stojadinovic; P.F. Peterson

    2010-09-20

    Advanced technologies for structural design and construction have the potential for major impact not only on nuclear power plant construction time and cost, but also on the design process and on the safety, security and reliability of next generation of nuclear power plants. In future Generation IV (Gen IV) reactors, structural and seismic design should be much more closely integrated with the design of nuclear and industrial safety systems, physical security systems, and international safeguards systems. Overall reliability will be increased, through the use of replaceable and modular equipment, and through design to facilitate on-line monitoring, in-service inspection, maintenance, replacement, and decommissioning. Economics will also receive high design priority, through integrated engineering efforts to optimize building arrangements to minimize building heights and footprints. Finally, the licensing approach will be transformed by becoming increasingly performance based and technology neutral, using best-estimate simulation methods with uncertainty and margin quantification. In this context, two structural engineering technologies, seismic base isolation and modular steel-plate/concrete composite structural walls, are investigated. These technologies have major potential to (1) enable standardized reactor designs to be deployed across a wider range of sites, (2) reduce the impact of uncertainties related to site-specific seismic conditions, and (3) alleviate reactor equipment qualification requirements. For Gen IV reactors the potential for deliberate crashes of large aircraft must also be considered in design. This report concludes that base-isolated structures should be decoupled from the reactor external event exclusion system. As an example, a scoping analysis is performed for a rectangular, decoupled external event shell designed as a grillage. This report also reviews modular construction technology, particularly steel-plate/concrete construction using

  8. Design experience on seismically isolated buildings

    International Nuclear Information System (INIS)

    Giuliani, G.C.

    1989-01-01

    This paper describes the practical problems associated with the structural design of a group of seismically isolated buildings now under construction in Ancona, Italy. These structures are the first seismically isolated buildings in Italy. Taking into account previous earthquakes, the structural design of these new buildings was performed according to an acceleration spectrum which was different from its Zone 2 seismic code and which provided protection for stronger ground motions. To minimize the cost of the structure, the buildings used ribbed plate decks, thus reducing the amount of material and the mass of the structures to be isolated. The design requirements, dynamic analysis performed, structural design, and practical engineering employed are reported in this paper. A comparison between the costs of a conventionally designed and a base-isolated structure is also reported. The tests undertaken for certifying the mechanical properties of the isolators for both static and dynamic loads are also described, as is the full-scale dynamic test which is scheduled for next year (1990) for one of the completed buildings. Lessons learned in this design effort are potentially applicable to seismic base isolation for nuclear power plants

  9. Recent results of seismic isolation study in CRIEPI: Tests on seismic isolation elements, vibration tests and observations

    International Nuclear Information System (INIS)

    Ishida, Katsuhiko; Shiojiri, Hiroo; Mazda, Taiji; Ohtori, Yasuki; Aoyagi, Sakae

    1992-01-01

    Seismic isolation is expected to be effective in raising reliability during earthquake, reducing cost, enlarging and promoting the design standardization of electric power facilities. In Japan, it has been applied to several buildings. However it is considered that more research is needed to verify the reliability and effectiveness of seismic isolation for fast breeder reactors. In the preliminary study of isolation concepts for FBRs the horizontal base isolation of buildings was investigated in detail. The laminated rubber bearings were considered to be most suitable isolation system. Tests on large scale models of rubber bearing and vibration test of base isolation system have been conducted as well as the earthquake response observation of isolated buildings were conducted

  10. Recent results of seismic isolation study in CRIEPI: Tests on seismic isolation elements, vibration tests and observations

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, Katsuhiko; Shiojiri, Hiroo; Mazda, Taiji; Ohtori, Yasuki [Abiko Research Laboratory, Central Research Institute of Electric Power Industry (Japan); Aoyagi, Sakae [Central Research Institute of Electric Power Industry (Japan)

    1992-07-01

    Seismic isolation is expected to be effective in raising reliability during earthquake, reducing cost, enlarging and promoting the design standardization of electric power facilities. In Japan, it has been applied to several buildings. However it is considered that more research is needed to verify the reliability and effectiveness of seismic isolation for fast breeder reactors. In the preliminary study of isolation concepts for FBRs the horizontal base isolation of buildings was investigated in detail. The laminated rubber bearings were considered to be most suitable isolation system. Tests on large scale models of rubber bearing and vibration test of base isolation system have been conducted as well as the earthquake response observation of isolated buildings were conducted.

  11. Fragility analysis of a seismically-isolated emergency diesel generator

    International Nuclear Information System (INIS)

    Choun, Young Sun; Choi, In Kil; Ohtori, Yasuki

    2005-01-01

    The seismic capacity of an Emergency Diesel Generator (EDG) in nuclear power plants influences the seismic safety of the plants significantly. A recent study showed that the increase of the seismic capacity of the EDG could reduce the core damage frequency (CDF) remarkably. It is known that the major failure mode of the EDG is a concrete coning failure due to the pulling out of the anchor bolts. The use of base isolators instead of anchor bolts can increase the seismic capacity of the EDG without any major problems. The fragility curves for a base-isolated EDG should be different from those for a conventional type because the major failure mode of the base-isolated EDG will not be a concrete coning one any more. The governing failure mode of the base-isolated EDG must be the damage of the isolators. This study introduces a fragility evaluation method for an isolated EDG, and evaluates the fragilities for the isolated EDG and compares them with those for the conventional one. Evaluation of the ground motion index is also carried out to determine the governing parameter suitable for representing the seismic responses of the base isolator

  12. Study on design method for seismically isolated FBR plants

    International Nuclear Information System (INIS)

    Hirata, Kazuta; Yabana, Shuichi; Ohtori, Yasuki; Ishida, Katsuhiko; Sawada, Yoshihiro; Shiojiri; Hiroo; Mazda, Taiji

    1998-01-01

    CRIEPI conducted 'Demonstration test on FBR seismic isolation system' from 1987 to 1996 under contract with Ministry of International Trade and Industry, Japan. In the demonstration test, base isolation technologies are prepared and demonstrated to apply to FBR and the design guidelines are proposed. In this report overall contents of the design guidelines entitled Design guidelines for seismically base isolated FBR plants' are included. The design guidelines, as a rule, are limited to apply to FBR plants where entire reactor building is isolated in the horizontal direction using laminated rubber bearings as isolators. The design guidelines and its concepts, however, will be useful for the development of similar guidelines for other isolation systems using different type of isolation methods and other nuclear facilities. The design guidelines consist of three parts and appendices. The first part is 'Policy for Safety Design of Base Isolated FBR Plants' specifying the principles and the requirements in the planning and the design for the safety of base isolated FBR plants. The second part is Policy for Seismic Design of Base Isolated FBR' describing the principles and the requirements in the seismic design and the evaluation of safety for base isolated FBR plants. The third part is 'Design Methods for Seismic Isolated FBR Plants' detailing the methods, procedures and parameters to be used in the design and the evaluation of safety fro base isolated FBR plants. In appendices examples of design procedures for base isolated reactor building and laminated rubber bearings as well as various test data on laminated rubber bearings, etc. are shown. (author)

  13. Seismic performance evaluation of an MR elastomer-based smart base isolation system using real-time hybrid simulation

    International Nuclear Information System (INIS)

    Eem, S H; Jung, H J; Koo, J H

    2013-01-01

    Recently, magneto-rheological (MR) elastomer-based base isolation systems have been actively studied as alternative smart base isolation systems because MR elastomers are capable of adjusting their modulus or stiffness depending on the magnitude of the applied magnetic field. By taking advantage of the MR elastomers’ stiffness-tuning ability, MR elastomer-based smart base isolation systems strive to alleviate limitations of existing smart base isolation systems as well as passive-type base isolators. Until now, research on MR elastomer-based base isolation systems primarily focused on characterization, design, and numerical evaluations of MR elastomer-based isolators, as well as experimental tests with simple structure models. However, their applicability to large civil structures has not been properly studied yet because it is quite challenging to numerically emulate the complex behavior of MR elastomer-based isolators and to conduct experiments with large-size structures. To address these difficulties, this study employs the real-time hybrid simulation technique, which combines physical testing and computational modeling. The primary goal of the current hybrid simulation study is to evaluate seismic performances of an MR elastomer-based smart base isolation system, particularly its adaptability to distinctly different seismic excitations. In the hybrid simulation, a single-story building structure (non-physical, computational model) is coupled with a physical testing setup for a smart base isolation system with associated components (such as laminated MR elastomers and electromagnets) installed on a shaking table. A series of hybrid simulations is carried out under two seismic excitations having different dominant frequencies. The results show that the proposed smart base isolation system outperforms the passive base isolation system in reducing the responses of the structure for the excitations considered in this study. (paper)

  14. Seismic response analysis of a piping system subjected to multiple support excitations in a base isolated NPP building

    International Nuclear Information System (INIS)

    Surh, Han-Bum; Ryu, Tae-Young; Park, Jin-Sung; Ahn, Eun-Woo; Choi, Chul-Sun; Koo, Ja Choon; Choi, Jae-Boong; Kim, Moon Ki

    2015-01-01

    Highlights: • Piping system in the APR 1400 NPP with a base isolation design is studied. • Seismic response of piping system in base isolated building are investigated. • Stress classification method is examined for piping subjected to seismic loading. • Primary stress of piping is reduced due to base isolation design. • Substantial secondary stress is observed in the main steam piping. - Abstract: In this study, the stress response of the piping system in the advanced power reactor 1400 (APR 1400) with a base isolation design subjected to seismic loading is addressed. The piping system located between the auxiliary building with base isolation and the turbine building with a fixed base is considered since it can be subjected to substantial relative support movement during seismic events. First, the support responses with respect to the base characteristic are investigated to perform seismic analysis for multiple support excitations. Finite element analyses are performed to predict the piping stress response through various analysis methods such as the response spectrum, seismic support movement and time history method. To separately evaluate the inertial effect and support movement effect on the piping stress, the stress is decomposed into a primary and secondary stress using the proposed method. Finally, influences of the base isolation design on the piping system in the APR 1400 are addressed. The primary stress based on the inertial loading is effectively reduced in a base isolation design, whereas a considerable amount of secondary stress is generated in the piping system connecting a base isolated building with a fixed base building. It is also confirmed that both the response spectrum analysis and seismic support movement analysis provide more conservative estimations of the piping stress compared to the time history analysis

  15. Non-linear seismic response of base-isolated liquid storage tanks to bi-directional excitation

    International Nuclear Information System (INIS)

    Shrimali, M.K.; Jangid, R.S.

    2002-01-01

    Seismic response of the liquid storage tanks isolated by lead-rubber bearings is investigated for bi-directional earthquake excitation (i.e. two horizontal components). The biaxial force-deformation behaviour of the bearings is considered as bi-linear modelled by coupled non-linear differential equations. The continuous liquid mass of the tank is modelled as lumped masses known as convective mass, impulsive mass and rigid mass. The corresponding stiffness associated with these lumped masses has been worked out depending upon the properties of the tank wall and liquid mass. Since the force-deformation behaviour of the bearings is non-linear, as a result, the seismic response is obtained by the Newmark's step-by-step method. The seismic responses of two types of the isolated tanks (i.e. slender and broad) are investigated under several recorded earthquake ground to study the effects of bi-directional interaction. Further, a parametric study is also carried out to study the effects of important system parameters on the effectiveness of seismic isolation for liquid storage tanks. The various important parameters considered are: (i) the period of isolation, (ii) the damping of isolation bearings and (iii) the yield strength level of the bearings. It has been observed that the seismic response of isolated tank is found to be insensitive to interaction effect of the bearing forces. Further, there exists an optimum value of isolation damping for which the base shear in the tank attains the minimum value. Therefore, increasing the bearing damping beyond a certain value may decrease the bearing and sloshing displacements but it may increase the base shear

  16. THK: CLB Crossed Linear Bearing Seismic Isolators

    International Nuclear Information System (INIS)

    Toniolo, Roberto

    2008-01-01

    This text highlights the new seismic isolation technology called CLB (Crossed Linear Bearing), which is made of linear guides with recirculating steel ball technology. It describes specifications and building characteristics, provides examples of seismic isolation and application functionalities and shows experimental data. Since 1994, the constant commitment by Japan to develop diversified anti-seismic systems based on the precise needs of the structures to protect and the areas where they were built has led to the creation of important synergy between the research institutions of leading Japanese companies and THK's Centre for Research and Development. Their goal has been to develop new technology and solutions to allow seismic isolation to be effective in the following cases:

  17. Comparison of seismic isolation concepts for FBR

    International Nuclear Information System (INIS)

    Shiojiri, H.; Mazda, T.; Kasai, H.; Kanda, J.N.; Kubo, T.; Madokoro, M.; Shimomura, T.; Nojima, O.

    1989-01-01

    This paper seeks to verify the reliability and effectiveness of seismic isolation for FBR. Some results of the preliminary study of the program are described. Seismic isolation concepts and corresponding seismic isolation devices were selected. Three kinds of seismically-isolated FBR plant concepts were developed by applying promising seismic isolation concepts to the non-isolated FBR plant, and by developing plant component layout plans and building structural designs. Each plant was subjected to seismic response analysis and reduction in the amount of material of components and buildings were estimated for each seismic isolation concepts. Research and development items were evaluated

  18. The numerical computation of seismic fragility of base-isolated Nuclear Power Plants buildings

    International Nuclear Information System (INIS)

    Perotti, Federico; Domaneschi, Marco; De Grandis, Silvia

    2013-01-01

    Highlights: • Seismic fragility of structural components in base isolated NPP is computed. • Dynamic integration, Response Surface, FORM and Monte Carlo Simulation are adopted. • Refined approach for modeling the non-linearities behavior of isolators is proposed. • Beyond-design conditions are addressed. • The preliminary design of the isolated IRIS is the application of the procedure. -- Abstract: The research work here described is devoted to the development of a numerical procedure for the computation of seismic fragilities for equipment and structural components in Nuclear Power Plants; in particular, reference is made, in the present paper, to the case of isolated buildings. The proposed procedure for fragility computation makes use of the Response Surface Methodology to model the influence of the random variables on the dynamic response. To account for stochastic loading, the latter is computed by means of a simulation procedure. Given the Response Surface, the Monte Carlo method is used to compute the failure probability. The procedure is here applied to the preliminary design of the Nuclear Power Plant reactor building within the International Reactor Innovative and Secure international project; the building is equipped with a base isolation system based on the introduction of High Damping Rubber Bearing elements showing a markedly non linear mechanical behavior. The fragility analysis is performed assuming that the isolation devices become the critical elements in terms of seismic risk and that, once base-isolation is introduced, the dynamic behavior of the building can be captured by low-dimensional numerical models

  19. Design experience on seismically isolated buildings

    International Nuclear Information System (INIS)

    Giuliani, G.C.

    1991-01-01

    This paper describes the practical problems associated with the structural design of seismically isolated buildings now under construction in Ancona, Italy. These structures are the first seismically isolated buildings in Italy. The Ancona region is in zone 2 of the Italian Seismic Code. It has a design acceleration of 0.07 g which corresponds to a ground surface acceleration of 0.25 g. The last significant earthquake was recorded on June 14, 1972, having a single shock-type wave with a peak acceleration of 0.53 g. Taking into account the aforesaid earthquake, the structural design of these new buildings was performed according to an acceleration spectrum which was different from the zone 2 seismic code and which provided protection for stronger ground motions. To minimize the cost of the structure, the buildings used ribbed plate decks, thus reducing the amount of material and the mass of the structures to be isolated. The design requirements, dynamic analysis performed, structural design, and practical engineering employed are reported in this paper. A comparison between the costs of a conventionally designed and a base-isolated structure is also reported. It shows a net savings of 7% for the base-isolated structure. The tests undertaken for certifying the mechanical properties of the isolators for both static and dynamic loads are also described, as is the full-scale dynamic test which is scheduled for next year (1990) for one of the completed buildings. (orig.)

  20. The benefits and problems of base seismic isolation for LMFBR reactor plants

    International Nuclear Information System (INIS)

    Seidensticker, R.W.

    1988-01-01

    The use of seismic isolation as an approach to aseismic design has gained increasing interest as a viable and efficient engineering solution to earthquake ground motion both within and outside of the nuclear field. Seismic isolation design is fundamentally different from conventional design practice. In the conventional approach, seismic loads are resisted by making the structures, equipment, piping, and associated supports strong enough to resist seismic loads and to provide high levels of ductility. The use of seismic isolation approaches the problem by decoupling the structure (and its contents) from the seismic input resulting from ground shaking. Because LMFBR systems operate at virtually atmospheric pressure, vessels, piping, and associated components tend to be quite thin-walled. The problem is that these thin-walled items have little inherent resistance to earthquake effects and are vulnerable to seismic load effects. As a result, earthquake loads have an even greater influence on LMR designs than they already are in LWR plants. The potential benefits of seismic isolation for an LMR plant are considerable, including minimization of high-cost commodities such as stainless steel, large reductions in internal equipment loads, increased margins of safety for beyond-design-basis loads, and enhancement of plant standardization design. There are, of course, a number of issues and concerns in the use of seismic isolation for a nuclear power plant. These issues cover a number of items such as the lack of experience in actual earthquakes, effects of long-period ground motion, effect of vertical loads, traveling waves, and other related concerns. This paper presents an evaluation of the benefits and problems in the use of seismic isolation in LMR plants. 12 refs, 7 figs

  1. Seismic Response Analysis and Design of Structure with Base Isolation

    International Nuclear Information System (INIS)

    Rosko, Peter

    2010-01-01

    The paper reports the study on seismic response and energy distribution of a multi-story civil structure. The nonlinear analysis used the 2003 Bam earthquake acceleration record as the excitation input to the structural model. The displacement response was analyzed in time domain and in frequency domain. The displacement and its derivatives result energy components. The energy distribution in each story provides useful information for the structural upgrade with help of added devices. The objective is the structural displacement response minimization. The application of the structural seismic response research is presented in base-isolation example.

  2. Seismic isolation design guidelines for KALIMER(Revision A)

    International Nuclear Information System (INIS)

    Yoo, B; Koo, Gyeong Hoi; Lee, J. H.

    2000-04-01

    The main purpose of this report is to develop the seismic isolation design guideline for KALIMER(Korea Advanced LIquid MEtal Reactor). The proposed design rules(revision A) are only applicable to the seismic isolation design with using the high damping laminated rubber bearings. When using other seismic isolation devices and applying to 3-dimensional isolation, the proposed guidelines shall be modified and added with proper research data. The rules described in this report are based on the research results performed up to now but needed to be upgraded and verified with more detail research works for the future

  3. Seismic isolation retrofitting of the Salt Lake City and County Building

    International Nuclear Information System (INIS)

    Bailey, J.; Allen, E.

    1989-01-01

    The City and County Building, a massive unreinforced masonry structure completed in 1894, has been seismically retrofitted using base isolation. The isolation system consists of 443 lead-rubber isolators installed underneath the building on top of existing spread footings. The building is isolated from the surrounding ground by a perimeter moat wall, permitting lateral movement to take place during an earthquake. It is believed that this is the first historic structure in the world to be retrofitted against possible seismic damage using base isolation. Lessons learned in this design effort are potentially applicable to seismic base isolation for nuclear power plants

  4. Seismic qualification of nuclear control board by using base isolation technique

    International Nuclear Information System (INIS)

    Koizumi, T.; Tsujiuchi, N.; Fujita, T.

    1987-01-01

    The purpose is to adopt base isolation technique as a new approach for seismic qualification of nuclear control board. Basic concept of base isolation technique is expressed. Two dimensional linear motion mechanism with pre-tensioned coil springs and some dampers are included in the isolation device. Control board is regarded as a lamped mass system with inertia moment. Fundamental movement of this device and control board is calculated as a non-linear response problems. Fundamental analysis and numerical estimation, experimental investigation has been undertaken using an actual size control board. Sufficient agreement was recognized between experimental results and numerical estimation. (orig./HP)

  5. Seismic isolation structure for pool-type LMFBR - isolation building with vertically isolated floor for NSSS

    International Nuclear Information System (INIS)

    Sakurai, A.; Shiojiri, H.; Aoyagi, S.; Matsuda, T.; Fujimoto, S.; Sasaki, Y.; Hirayama, H.

    1987-01-01

    The NSSS isolation floor vibration characteristics were made clear. Especially, the side support bearing (rubber bearing) is effective for horizontal floor motion restraint and rocking motion control. Seismic isolation effects for responses of the reactor components can be sufficiently expected, using the vertical seismic isolation floor. From the analytical and experimental studies, the following has been concluded: (1) Seismic isolation structure, which is suitable for large pool-type LMFBR, were proposed. (2) Seismic response characteristics of the seismic isolation structure were investigated. It was made clear that the proposed seismic isolation (Combination of the isolated building and the isolated NSSS floor) was effective. (orig./HP)

  6. Adapting standards to the site. Example of Seismic Base Isolation

    International Nuclear Information System (INIS)

    Viallet, Emmanuel

    2014-01-01

    Emmanuel Viallet, Civil Design Manager at EDF engineering center SEPTEN, concluded the morning's lectures with a presentation on how to adapt a standard design to site characteristics. He presented the example of the seismic isolation of the Cruas NPP for which the standard 900 MW design was indeed built on 'anti-seismic pads' to withstand local seismic load

  7. Seismic Isolation Studies and Applications for Nuclear Facilities

    International Nuclear Information System (INIS)

    Choun, Young Sun

    2005-01-01

    Seismic isolation, which is being used worldwide for buildings, is a well-known technology to protect structures from destructive earthquakes. In spite of the many potential advantages of a seismic isolation, however, the applications of a seismic isolation to nuclear facilities have been very limited because of a lack of sufficient knowledge about the isolation practices. The most important advantage of seismic isolation applications in nuclear power plants is that the safety and reliability of the plants can be remarkably improved through the standardization of the structures and equipment regardless of the seismic conditions of the sites. The standardization of structures and equipment will reduce the capital cost and design/construction schedule for future plants. Also, a seismic isolation can facilitate decoupling of the design and development for equipment, piping, and components due to the use of the generic in-structure response spectra associated with the standardized plant. Moreover, a seismic isolation will improve the plant safety margin against the design basis earthquake (DBE) as well as a beyond design basis seismic event due to its superior seismic performance. A number of seismic isolation systems have been developed and tested since 1970s, and some of them have been applied to conventional structures in several countries of high seismicity. In the nuclear field, there have been many studies on the applicability of such seismic isolation systems, but the application of a seismic isolation is very limited. Currently, there are some discussions on the application of seismic isolation systems to nuclear facilities between the nuclear industries and the regulatory agencies in the U.S.. In the future, a seismic isolation for nuclear facilities will be one of the important issues in the nuclear industry. This paper summarizes the past studies and applications of a seismic isolation in the nuclear industry

  8. Experimental studies of the seismic response of structures incorporating base isolation systems

    International Nuclear Information System (INIS)

    Kelly, J.M.; Aiken, I.D.

    1989-01-01

    Whereas the concept of base isolating structures from the damaging effects of earthquake motions is not new, implementation of the technique is a relatively new occurrence. This has mainly been due to the need for several important developments in materials science and experimental and analytical modeling before base isolation could evolve into a practical approach for seismic design. One of these developments has been the ability to test large-scale isolation systems using simulated seismic loads. These tests have not only proven the performance and reliability of the isolation systems and hardware, but have enabled correlation studies to be undertaken which have confirmed the accuracy of analytical methods and the acceptability of current design procedures. The Earthquake Engineering Research Center (EERC) at the University of California at Berkeley has been an active participant in this work, and this paper reviews some of the achievements of the Center in the last few years. Component tests on single isolators are described. Tests on plain and high damping natural rubber bearings, lead-rubber bearings, sliding bearings, and bearings incorporating uplift resistance mechanisms have been performed. High-shear strain tests on large (up to full scale) elastomeric bearings have been conducted to determine the stability characteristics and limit states of the isolators

  9. A Study on the Development of Prototype Seismic Isolation Device for NPP

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hongpyo; Cho, Myungsug; Kim, Sunyong; Lee, Yonghee; Kang Kyunghun [KHNP-CRI, Daejeon (Korea, Republic of)

    2014-05-15

    Korean nuclear power plants have been and still are based on seismic resistance design including all of the natural disasters. However, in regions of high seismic hazard, seismic isolation technology is needed to guarantee the seismic safety on nuclear power plants. To achieve this purpose, the research and development of seismic isolation system for the construction in high seismicity area is on-going in Korea. In this study, prototype seismic isolation devices as mentioned above are developed and tested to identify the basic shear and compressive characteristics of them. In this study, assessment performance of basic characteristics on the prototype LRB and EQS seismic isolation for nuclear power plant structures is employed to compare with design values. Based on the test results of compression and shear characteristics, it is judged that they meet the measuring efficiency range conditions which are presented in ISO 22762 and AASHOT guide specification. Therefore, prototype seismic isolation devices like LRB and EQS developed in this study can be expected to be used as reference data when designing a seismic isolation system for nuclear power plant structures in the future.

  10. Seismic response time history analyses for KALIMER building with a horizontal and vertical seismic isolation

    International Nuclear Information System (INIS)

    Lee, J. H.; Yoo, B.; Koo, K. H.

    2001-01-01

    The seismic response time history analyses for the lumped mass models of KALIMER reactor building with a horizontal and vertical seismic isolation are performed for Artificial Time History and Kobe earthquake. The vertical amplification by the horizontal isolation is reduced by a vertical isolation for both earthquakes. The 3% viscous damping and the vertical isolation frequency of 1.5Hz gives a reduced vertical response compared to the fixed base condition at reactor support, and the 9% viscous damping to Kobe earthquake is required to get an equivalent vertical response with a fixed base condition

  11. Seismic response time history analyses for KALIMER building with a horizontal and vertical seismic isolation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. H.; Yoo, B.; Koo, K. H. [KAERI, Taejon (Korea, Republic of)

    2001-05-01

    The seismic response time history analyses for the lumped mass models of KALIMER reactor building with a horizontal and vertical seismic isolation are performed for Artificial Time History and Kobe earthquake. The vertical amplification by the horizontal isolation is reduced by a vertical isolation for both earthquakes. The 3% viscous damping and the vertical isolation frequency of 1.5Hz gives a reduced vertical response compared to the fixed base condition at reactor support, and the 9% viscous damping to Kobe earthquake is required to get an equivalent vertical response with a fixed base condition.

  12. Utilities/industries joint study on seismic isolation systems for LWR: Part I. Experimental and analytical studies on seismic isolation systems

    International Nuclear Information System (INIS)

    Kato, Muneaki; Sato, Shoji; Shimomura, Issei

    1989-01-01

    This paper describes a joint study program on seismic isolation systems for light-water reactors (LWRs) performed by ten electric power companies, three manufacturers, and five construction companies. The fundamental response characteristics of base-isolated structures and base-isolation devices are described. Applications of a base-isolation system to LWR buildings are given. Finally, three-dimensional shaking table experiments are described

  13. 3-D seismic response of a base-isolated fast reactor

    International Nuclear Information System (INIS)

    Kitamura, S.; Morishita, M.; Iwata, K.

    1992-01-01

    This paper describes a 3-D response analysis methodology development and its application to a base-isolated fast breeder reactor (FBR) plant. At first, studies on application of a base-isolation system to an FBR plant were performed to identify a range of appropriate characteristics of the system. A response analysis method was developed based on mathematical models for the restoring force characteristics of several types of the systems. A series of shaking table tests using a small scale model was carried out to verify the analysis method. A good agreement was seen between the test and analysis results in terms of the horizontal and vertical responses. Parametric studies were then made to assess the effects of various factors which might be influential to the seismic response of the system. Moreover, the method was applied to evaluate three-dimensional response of the base-isolated FBR. (author)

  14. Sloshing of coolant in a seismically isolated reactor

    International Nuclear Information System (INIS)

    Wu, T.S.; Guildys, J.; Seidensticker, R.W.

    1988-01-01

    During a seismic event, the liquid coolant inside the reactor vessel has sloshing motion which is a low-frequency phenomenon. In a reactor system incorporated with seismic isolation, the isolation frequency usually is also very low. There is concern on the potential amplification of sloshing motion of the liquid coolant. This study investigates the effects of seismic isolation on the sloshing of liquid coolant inside the reactor vessel of a liquid metal cooled reactor. Based on a synthetic ground motion whose response spectra envelop those specified by the NRC Regulator Guide 1.60, it is found that the maximum sloshing wave height increases from 18 in. to almost 30 in. when the system is seismically isolated. Since higher sloshing wave may introduce severe impact forces and thermal shocks to the reactor closure and other components within the reactor vessel, adequate design considerations should be made either to suppress the wave height or to reduce the effects caused by high waves

  15. Earthquake Protection of Existing Structures with Limited Seismic Joint: Base Isolation with Supplemental Damping versus Rotational Inertia

    Directory of Open Access Journals (Sweden)

    Dario De Domenico

    2018-01-01

    Full Text Available Existing civil engineering structures having strategic importance, such as hospitals, fire stations, and power plants, often do not comply with seismic standards in force today, as they were designed and built based on past structural guidelines. On the other hand, due to their special importance, structural integrity of such buildings is of vital importance during and after earthquakes, which puts demands on strategies for their seismic protection. In this regard, seismic base isolation has been widely employed; however, the existing limited seismic joint between adjacent buildings may hamper this application because of the large displacements concentrated at the isolation floor. In this paper, we compare two possible remedies: the former is to provide supplemental damping in conventional base isolation systems and the latter consists in a combination of base isolation with supplemental rotational inertia. For the second strategy, a mechanical device, called inerter, is arranged in series with spring and dashpot elements to form the so-called tuned-mass-damper-inerter (TMDI directly connected to an isolation floor. Several advantages of this second system as compared to the first one are outlined, especially with regard to the limitation of floor accelerations and interstory drifts, which may be an issue for nonstructural elements and equipment, in addition to disturbing occupants. Once the optimal design of the TMDI is established, possible implementation of this system into existing structures is discussed.

  16. Design response spectra-compliant real and synthetic GMS for seismic analysis of seismically isolated nuclear reactor containment building

    Directory of Open Access Journals (Sweden)

    Ahmer Ali

    2017-06-01

    Full Text Available Due to the severe impacts of recent earthquakes, the use of seismic isolation is paramount for the safety of nuclear structures. The diversity observed in seismic events demands ongoing research to analyze the devastating attributes involved, and hence to enhance the sustainability of base-isolated nuclear power plants. This study reports the seismic performance of a seismically-isolated nuclear reactor containment building (NRCB under strong short-period ground motions (SPGMs and long-period ground motions (LPGMs. The United States Nuclear Regulatory Commission-based design response spectrum for the seismic design of nuclear power plants is stipulated as the reference spectrum for ground motion selection. Within the period range(s of interest, the spectral matching of selected records with the target spectrum is ensured using the spectral-compatibility approach. NRC-compliant SPGMs and LPGMs from the mega-thrust Tohoku earthquake are used to obtain the structural response of the base-isolated NRCB. To account for the lack of earthquakes in low-to-moderate seismicity zones and the gap in the artificial synthesis of long-period records, wavelet-decomposition based autoregressive moving average modeling for artificial generation of real ground motions is performed. Based on analysis results from real and simulated SPGMs versus LPGMs, the performance of NRCBs is discussed with suggestions for future research and seismic provisions.

  17. Design response spectra-compliant real and synthetic GMS for seismic analysis of seismically isolated nuclear reactor containment building

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Ahmer [ENVICO Consultants Co. Ltd., Seoul (Korea, Republic of); Abu-Hayah, Nadin; Kim, Doo Kie [Civil and Environmental Engineering, Kunsan National University, Gunsan (Korea, Republic of); Cho, Sung Gook [Innose Tech Co., Ltd., Incheon (Korea, Republic of)

    2017-06-15

    Due to the severe impacts of recent earthquakes, the use of seismic isolation is paramount for the safety of nuclear structures. The diversity observed in seismic events demands ongoing research to analyze the devastating attributes involved, and hence to enhance the sustainability of base-isolated nuclear power plants. This study reports the seismic performance of a seismically-isolated nuclear reactor containment building (NRCB) under strong short-period ground motions (SPGMs) and long-period ground motions (LPGMs). The United States Nuclear Regulatory Commission-based design response spectrum for the seismic design of nuclear power plants is stipulated as the reference spectrum for ground motion selection. Within the period range(s) of interest, the spectral matching of selected records with the target spectrum is ensured using the spectral-compatibility approach. NRC-compliant SPGMs and LPGMs from the mega-thrust Tohoku earthquake are used to obtain the structural response of the base-isolated NRCB. To account for the lack of earthquakes in low-to-moderate seismicity zones and the gap in the artificial synthesis of long-period records, wavelet-decomposition based autoregressive moving average modeling for artificial generation of real ground motions is performed. Based on analysis results from real and simulated SPGMs versus LPGMs, the performance of NRCBs is discussed with suggestions for future research and seismic provisions.

  18. A Seismic Isolation Application Using Rubber Bearings; Hangar Project in Turkey

    International Nuclear Information System (INIS)

    Sesigur, Haluk; Cili, Feridun

    2008-01-01

    Seismic isolation is an effective design strategy to mitigate the seismic hazard wherein the structure and its contents are protected from the damaging effects of an earthquake. This paper presents the Hangar Project in Sabiha Goekcen Airport which is located in Istanbul, Turkey. Seismic isolation system where the isolation layer arranged at the top of the columns is selected. The seismic hazard analysis, superstructure design, isolator design and testing were based on the Uniform Building Code (1997) and met all requirements of the Turkish Earthquake Code (2007). The substructure which has the steel vertical trusses on facades and RC H shaped columns in the middle axis of the building was designed with an R factor limited to 2.0 in accordance with Turkish Earthquake Code. In order to verify the effectiveness of the isolation system, nonlinear static and dynamic analyses are performed. The analysis revealed that isolated building has lower base shear (approximately 1/4) against the non-isolated structure

  19. Test on large-scale seismic isolation elements, 2

    International Nuclear Information System (INIS)

    Mazda, T.; Moteki, M.; Ishida, K.; Shiojiri, H.; Fujita, T.

    1991-01-01

    Seismic isolation test program of Central Research Inst. of Electric Power Industry (CRIEPI) to apply seismic isolation to Fast Breeder Reactor (FBR) plant was started in 1987. In this test program, demonstration test of seismic isolation elements was considered as one of the most important research items. Facilities for testing seismic isolation elements were built in Abiko Research Laboratory of CRIEPI. Various tests of large-scale seismic isolation elements were conducted up to this day. Many important test data to develop design technical guidelines was obtained. (author)

  20. Study on three dimensional seismic isolation system

    International Nuclear Information System (INIS)

    Morishita, Masaki; Kitamura, Seiji

    2003-01-01

    Japan Nuclear Cycle Development Institute (JNC) and Japan Atomic Power Company (JAPC) launched joint research programs on structural design and three-dimensional seismic isolation technologies, as part of the supporting R and D activities for the feasibility studies on commercialized fast breeder reactor cycle systems. A research project by JAPC under the auspices of the Ministry of Economy, Trade, and Industry (METI) with technical support by JNC is included in this joint study. This report contains the results of the research on the three-dimensional seismic isolation technologies, and the results of this year's study are summarized in the following five aspects. (1) Study on Earthquake Condition for Developing 3-dimensional Base Isolation System. The case study S2 is one of the maximum ground motions, of which the records were investigated up to this time. But a few observed near the fault exceed the case study S2 in the long period domain, depending on the fault length and conditions. Generally it is appropriate that the response spectra ratio (vertical/horizontal) is 0.6. (2) Performance Requirement for 3-dimensional Base Isolation System and Devices. Although the integrity map of main equipment/piping dominate the design criteria for the 3-dimensional base isolation system, the combined integrity map is the same as those of FY 2000, which are under fv=1Hz and over hv=20%. (3) Developing Targets and Schedule for 3-dimensional Isolation Technology. The target items for 3-dimensional base isolation system were rearranged into a table, and developing items to be examined concerning the device were also adjusted. A development plan until FY 2009 was made from the viewpoint of realization and establishment of a design guideline on 3-dimensional base isolation system. (4) Study on 3-dimensional Entire Building Base Isolation System. Three ideas among six ideas that had been proposed in FY2001, i.e., '3-dimensional base isolation system incorporating hydraulic

  1. PROBABILISTIC SEISMIC ASSESSMENT OF BASE-ISOLATED NPPS SUBJECTED TO STRONG GROUND MOTIONS OF TOHOKU EARTHQUAKE

    Directory of Open Access Journals (Sweden)

    AHMER ALI

    2014-10-01

    Full Text Available The probabilistic seismic performance of a standard Korean nuclear power plant (NPP with an idealized isolation is investigated in the present work. A probabilistic seismic hazard analysis (PSHA of the Wolsong site on the Korean peninsula is performed by considering peak ground acceleration (PGA as an earthquake intensity measure. A procedure is reported on the categorization and selection of two sets of ground motions of the Tohoku earthquake, i.e. long-period and common as Set A and Set B respectively, for the nonlinear time history response analysis of the base-isolated NPP. Limit state values as multiples of the displacement responses of the NPP base isolation are considered for the fragility estimation. The seismic risk of the NPP is further assessed by incorporation of the rate of frequency exceedance and conditional failure probability curves. Furthermore, this framework attempts to show the unacceptable performance of the isolated NPP in terms of the probabilistic distribution and annual probability of limit states. The comparative results for long and common ground motions are discussed to contribute to the future safety of nuclear facilities against drastic events like Tohoku.

  2. Probabilistic seismic assessment of base-isolated NPPs subjected to strong ground motions of Tohoku earthquake

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Ahmer; Hayah, Nadin Abu; Kim, Doo Kie [Dept. of Civil and Environmental Engineering, Kunsan National University, Kunsan (Korea, Republic of); Cho, Sung Gook [R and D Center, JACE KOREA Company, Gyeonggido (Korea, Republic of)

    2014-10-15

    The probabilistic seismic performance of a standard Korean nuclear power plant (NPP) with an idealized isolation is investigated in the present work. A probabilistic seismic hazard analysis (PSHA) of the Wolsong site on the Korean peninsula is performed by considering peak ground acceleration (PGA) as an earthquake intensity measure. A procedure is reported on the categorization and selection of two sets of ground motions of the Tohoku earthquake, i.e. long-period and common as Set A and Set B respectively, for the nonlinear time history response analysis of the base-isolated NPP. Limit state values as multiples of the displacement responses of the NPP base isolation are considered for the fragility estimation. The seismic risk of the NPP is further assessed by incorporation of the rate of frequency exceedance and conditional failure probability curves. Furthermore, this framework attempts to show the unacceptable performance of the isolated NPP in terms of the probabilistic distribution and annual probability of limit states. The comparative results for long and common ground motions are discussed to contribute to the future safety of nuclear facilities against drastic events like Tohoku.

  3. Seismic isolation of nuclear power plants using sliding isolation bearings

    Science.gov (United States)

    Kumar, Manish

    Nuclear power plants (NPP) are designed for earthquake shaking with very long return periods. Seismic isolation is a viable strategy to protect NPPs from extreme earthquake shaking because it filters a significant fraction of earthquake input energy. This study addresses the seismic isolation of NPPs using sliding bearings, with a focus on the single concave Friction Pendulum(TM) (FP) bearing. Friction at the sliding surface of an FP bearing changes continuously during an earthquake as a function of sliding velocity, axial pressure and temperature at the sliding surface. The temperature at the sliding surface, in turn, is a function of the histories of coefficient of friction, sliding velocity and axial pressure, and the travel path of the slider. A simple model to describe the complex interdependence of the coefficient of friction, axial pressure, sliding velocity and temperature at the sliding surface is proposed, and then verified and validated. Seismic hazard for a seismically isolated nuclear power plant is defined in the United States using a uniform hazard response spectrum (UHRS) at mean annual frequencies of exceedance (MAFE) of 10-4 and 10 -5. A key design parameter is the clearance to the hard stop (CHS), which is influenced substantially by the definition of the seismic hazard. Four alternate representations of seismic hazard are studied, which incorporate different variabilities and uncertainties. Response-history analyses performed on single FP-bearing isolation systems using ground motions consistent with the four representations at the two shaking levels indicate that the CHS is influenced primarily by whether the observed difference between the two horizontal components of ground motions in a given set is accounted for. The UHRS at the MAFE of 10-4 is increased by a design factor (≥ 1) for conventional (fixed base) nuclear structure to achieve a target annual frequency of unacceptable performance. Risk oriented calculations are performed for

  4. Seismic proving test of process computer systems with a seismic floor isolation system

    International Nuclear Information System (INIS)

    Fujimoto, S.; Niwa, H.; Kondo, H.

    1995-01-01

    The authors have carried out seismic proving tests for process computer systems as a Nuclear Power Engineering Corporation (NUPEC) project sponsored by the Ministry of International Trade and Industry (MITI). This paper presents the seismic test results for evaluating functional capabilities of process computer systems with a seismic floor isolation system. The seismic floor isolation system to isolate the horizontal motion was composed of a floor frame (13 m x 13 m), ball bearing units, and spring-damper units. A series of seismic excitation tests was carried out using a large-scale shaking table of NUPEC. From the test results, the functional capabilities during large earthquakes of computer systems with a seismic floor isolation system were verified

  5. The study and analysis of point-to-point vibration isolation and its utility to seismic base isolator

    International Nuclear Information System (INIS)

    Mehboob, M.; Qureshi, A.S.

    2001-01-01

    This paper presents systematic approach to regarding the piece wise vibration isolation generally termed as point-to-point vibration isolation system, and its broad spectrum-utilities to an economic seismic base isolation. Transfer of curves for coulomb damped i.e. softening damper flexible mountings are presented and the utility has been proved equally good for both rigidly and elastically coupled damping. It is clearly shown that the very closest solutions are easily obtainable for both slipping and sticking nature of phases of the motion. This eliminates the conventional and conceptual approximations based on the linearization of the damping. This new concept will not endanger-super-structure if mounted on such isolation systems. (author)

  6. Optimization Criteria In Design Of Seismic Isolated Building

    International Nuclear Information System (INIS)

    Clemente, Paolo; Buffarini, Giacomo

    2008-01-01

    Use of new anti-seismic techniques is certainly suitable for buildings of strategic importance and, in general, in the case of very high risk. For ordinary buildings, instead, the cost of base isolation system should be balanced by an equivalent saving in the structure. The comparison criteria have been first defined, then a large numerical investigation has been carried out to analyze the effectiveness and the economic suitability of seismic isolation in concrete buildings

  7. Base Isolation for Seismic Retrofitting of a Multiple Building Structure: Evaluation of Equivalent Linearization Method

    Directory of Open Access Journals (Sweden)

    Massimiliano Ferraioli

    2016-01-01

    Full Text Available Although the most commonly used isolation systems exhibit nonlinear inelastic behaviour, the equivalent linear elastic analysis is commonly used in the design and assessment of seismic-isolated structures. The paper investigates if the linear elastic model is suitable for the analysis of a seismically isolated multiple building structure. To this aim, its computed responses were compared with those calculated by nonlinear dynamic analysis. A common base isolation plane connects the isolation bearings supporting the adjacent structures. In this situation, the conventional equivalent linear elastic analysis may have some problems of accuracy because this method is calibrated on single base-isolated structures. Moreover, the torsional characteristics of the combined system are significantly different from those of separate isolated buildings. A number of numerical simulations and parametric studies under earthquake excitations were performed. The accuracy of the dynamic response obtained by the equivalent linear elastic model was calculated by the magnitude of the error with respect to the corresponding response considering the nonlinear behaviour of the isolation system. The maximum displacements at the isolation level, the maximum interstorey drifts, and the peak absolute acceleration were selected as the most important response measures. The influence of mass eccentricity, torsion, and high-modes effects was finally investigated.

  8. Application of Shape Memory Alloys in Seismic Isolation: A Review

    Directory of Open Access Journals (Sweden)

    Shaghayegh Alvandi

    2014-12-01

    Full Text Available In the last two decades, there has been an increasing interest in structural engineering control methods. Shape memory alloys and seismic isolation systems are examples of passive control systems that use of any one alone, effectively improve the seismic performance of the structure. Characteristics such as large strain range without any residual deformation, high damping capacity, excellent re-centering, high resistance to fatigue and corrosion and durability have made shape memory alloy an effective damping device or part of base isolators. A unique characteristic of shape memory alloys is in recovering residual deformations even after strong ground excitations. Seismic isolation is a device to lessen earthquake damage prospects. In the latest research studies, shape memory alloy is utilized in combination with seismic isolation system and their results indicate the effectiveness of the application of them to control the response of the structures. This paper reviews the findings of research studies on base isolation system implemented in the building and/or bridge structures by including the unique behavior of shape memory alloys. This study includes the primary information about the characteristic of the isolation system as well as the shape memory material. The efficiency and feasibility of the two mechanisms are also presented by few cases in point.

  9. Effects of Moat Wall Impact on the Seismic Response of Base Isolated Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kim, Min Kyu; Kim, Jung Han; Mosqueda, Gilberto; Sarebanhab, Alireza

    2015-01-01

    The objectives of this study are to examine the effects of impact on the response of seismically isolated NPPs and identify characteristics of the isolation hardware and hard stop that minimize these effects. Considering variable distances to the hard stop and properties of the moat wall, the amplification in response is reported for acceleration and floor spectral accelerations at different points along the height of a NPP containment structure. Base isolation can be an effective strategy to protect critical facilities such as Nuclear Power Plants (NPPs) from the damaging effects of horizontal earthquake ground shaking. To be effective in reducing accelerations and deformations of the structure above, the seismic isolation bearings can be subjected to large displacements. In the case of an extreme earthquake, bearing displacements need to be limited by a hard stop in order to prevent failure of the bearings. Impact to the hard stop, which is often the moat wall at the basement level, is also of significant concern due to the potential for increased transfer of forces and amplification in response of the structural system, piping and other contents. However, the consequences of impact or factors important to mitigate its effects are not very well understood. The main findings of this study are related to modeling of NPP with moat wall in OpenSees and LSDyna as well as observations resulting from the parametric study of the performance of the NPP under different intensity levels of seismic excitations for different properties of the moat wall and bearings. • Variation in the isolator properties should be considered when examining seismic pounding. For BDBE even, 58.5 % cases result to the impact for lower bound properties while this value was 5.5 % for upper bound properties. Since the impact results are dependent to the assumed bearing properties, a better range of properties can be obtained from experimental testing of the bearing under large shear strains.

  10. Seismic Response Analysis of Continuous Multispan Bridges with Partial Isolation

    Directory of Open Access Journals (Sweden)

    E. Tubaldi

    2015-01-01

    Full Text Available Partially isolated bridges are a particular class of bridges in which isolation bearings are placed only between the piers top and the deck whereas seismic stoppers restrain the transverse motion of the deck at the abutments. This paper proposes an analytical formulation for the seismic analysis of these bridges, modelled as beams with intermediate viscoelastic restraints whose properties describe the pier-isolator behaviour. Different techniques are developed for solving the seismic problem. The first technique employs the complex mode superposition method and provides an exact benchmark solution to the problem at hand. The two other simplified techniques are based on an approximation of the displacement field and are useful for preliminary assessment and design purposes. A realistic bridge is considered as case study and its seismic response under a set of ground motion records is analyzed. First, the complex mode superposition method is applied to study the characteristic features of the dynamic and seismic response of the system. A parametric analysis is carried out to evaluate the influence of support stiffness and damping on the seismic performance. Then, a comparison is made between the exact solution and the approximate solutions in order to evaluate the accuracy and suitability of the simplified analysis techniques for evaluating the seismic response of partially isolated bridges.

  11. IAEA specialists' meeting on seismic isolation technology. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-07-01

    The objective of the Meeting on Seismic Isolation Technology was to provide a forum for review and discussion of seismic isolation technology applicable to thermal and fast reactors. The meeting was conducted consistent with the recommendations of the IAEA Working Group Meeting on Fast Breeder Reactor-Block Antiseismic Design and Verification in October 1987, to augment a coordinated research program with specific recommendations and an assessment of technology in the area of seismic isolation. Seismic isolation has become an attractive means for mitigating the consequences of severe earthquakes. Although the general idea of seismic isolation has been considered since the turn of the century, real practical applications have evolved, at an accelerating pace, over the last fifteen years aided by several key developments: (1) recent advances in hardware developments in the form of reliable elastomer bearings, (2) development of reliable analytical methods for the prediction of dynamic responses of structures (3) construction of large bearing test machines and large shake tables to simulate earthquake effects on structures for validation analytical models and demonstration of performance characteristics, and (4) advances in seismological engineering. Although the applications and developments of seismic isolation technology have mainly benefited commercial facilities and structures, including office buildings, research laboratories, hospitals, museums, bridges, ship loaders, etc., several seismically isolated nuclear facilities were implemented: the four 900 MWe pressurized water reactor units of the Cruas plant in France, the two Framatome units in Koeberg, South Africa, a nuclear waste storage facility in France and a nuclear fuel reprocessing plant in England. The scope of this specialists' meeting was to review the state-of-the-art technology related to the performance of seismic isolator elements and systems, performance limits and margins, criteria for the

  12. IAEA specialists' meeting on seismic isolation technology. Proceedings

    International Nuclear Information System (INIS)

    1992-01-01

    The objective of the Meeting on Seismic Isolation Technology was to provide a forum for review and discussion of seismic isolation technology applicable to thermal and fast reactors. The meeting was conducted consistent with the recommendations of the IAEA Working Group Meeting on Fast Breeder Reactor-Block Antiseismic Design and Verification in October 1987, to augment a coordinated research program with specific recommendations and an assessment of technology in the area of seismic isolation. Seismic isolation has become an attractive means for mitigating the consequences of severe earthquakes. Although the general idea of seismic isolation has been considered since the turn of the century, real practical applications have evolved, at an accelerating pace, over the last fifteen years aided by several key developments: (1) recent advances in hardware developments in the form of reliable elastomer bearings, (2) development of reliable analytical methods for the prediction of dynamic responses of structures (3) construction of large bearing test machines and large shake tables to simulate earthquake effects on structures for validation analytical models and demonstration of performance characteristics, and (4) advances in seismological engineering. Although the applications and developments of seismic isolation technology have mainly benefited commercial facilities and structures, including office buildings, research laboratories, hospitals, museums, bridges, ship loaders, etc., several seismically isolated nuclear facilities were implemented: the four 900 MWe pressurized water reactor units of the Cruas plant in France, the two Framatome units in Koeberg, South Africa, a nuclear waste storage facility in France and a nuclear fuel reprocessing plant in England. The scope of this specialists' meeting was to review the state-of-the-art technology related to the performance of seismic isolator elements and systems, performance limits and margins, criteria for the

  13. Conceptual design by analysis of KALIMER seismic isolation

    International Nuclear Information System (INIS)

    You, Bong; Koo, Kyung Hoi; Lee, Jae Han

    1996-06-01

    The objectives of this report are to preliminarily evaluate the seismic isolation performance of KALIMER (Korea Advance LIquid MEtal Reactor) by seismic analyses, investigate the design feasibility, and find the critical points of KALIMER reactor structures. The work scopes performed in this study are 1) the establishment of seismic design basis, 2) the development of seismic analysis model of KALIMER, 3) the modal analysis, 4) seismic time history analysis, 5) the evaluations of seismic isolation performance and seismic design margins, and 6) the evaluation of seismic capability of KALIMER. The horizontal fundamental frequency of KALIMER reactor structure is 8 Hz, which is far remote from the seismic isolation frequency, 0.7 Hz. The vertical first and second natural frequencies are about 2 Hz and 8 Hz respectively. These vertical natural frequencies are in a dominant ground motion frequency bands, therefore these modes will result in large vertical response amplifications. From the results of seismic time history analyses, the horizontal isolation performance is great but the large vertical amplifications are occurred in reactor structures. The RV Liner has the smallest seismic design margin as 0.18. From the results of seismic design margins evaluation, the critical design change are needed in the support barrel, separation plate, and baffle plate points. The seismic capability of KALIMER is about 0.35g. This value can be increased by the design changes of the separation plate and etc.. 11 tabs., 29 figs., 7 refs. (Author) .new

  14. Technology transfer package on seismic base isolation - Volume III

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-14

    This Technology Transfer Package provides some detailed information for the U.S. Department of Energy (DOE) and its contractors about seismic base isolation. Intended users of this three-volume package are DOE Design and Safety Engineers as well as DOE Facility Managers who are responsible for reducing the effects of natural phenomena hazards (NPH), specifically earthquakes, on their facilities. The package was developed as part of DOE's efforts to study and implement techniques for protecting lives and property from the effects of natural phenomena and to support the International Decade for Natural Disaster Reduction. Volume III contains supporting materials not included in Volumes I and II.

  15. A seismic design of nuclear reactor building structures applying seismic isolation system in a seismicity region-a feasibility case study in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, Tetsuo [The University of Tokyo, Tokyo (Japan); Yamamoto, Tomofumi; Sato, Kunihiko [Mitsubishi Heavy Industries, Ltd., Kobe (Japan); Jimbo, Masakazu [Toshiba Corporation, Yokohama (Japan); Imaoka, Tetsuo [Hitachi-GE Nuclear Energy, Ltd., Hitachi (Japan); Umeki, Yoshito [Chubu Electric Power Co. Inc., Nagoya (Japan)

    2014-10-15

    A feasibility study on the seismic design of nuclear reactor buildings with application of a seismic isolation system is introduced. After the Hyogo-ken Nanbu earthquake in Japan of 1995, seismic isolation technologies have been widely employed for commercial buildings. Having become a mature technology, seismic isolation systems can be applied to NPP facilities in areas of high seismicity. Two reactor buildings are discussed, representing the PWR and BWR buildings in Japan, and the application of seismic isolation systems is discussed. The isolation system employing rubber bearings with a lead plug positioned (LRB) is examined. Through a series of seismic response analyses using the so-named standard design earthquake motions covering the design basis earthquake motions obtained for NPP sites in Japan, the responses of the seismic isolated reactor buildings are evaluated. It is revealed that for the building structures examined herein: (1) the responses of both isolated buildings and isolating LRBs fulfill the specified design criteria; (2) the responses obtained for the isolating LRBs first reach the ultimate condition when intensity of motion is 2.0 to 2.5 times as large as that of the design-basis; and (3) the responses of isolated reactor building fall below the range of the prescribed criteria.

  16. Test on large-scale seismic isolation elements

    International Nuclear Information System (INIS)

    Mazda, T.; Shiojiri, H.; Oka, Y.; Fujita, T.; Seki, M.

    1989-01-01

    Demonstration test of seismic isolation elements is considered as one of the most important items in the application of seismic isolation system to fast breeder reactor (FBR) plant. Facilities for testing seismic isolation elements have been built. This paper reports on tests for fullscale laminated rubber bearing and reduced scale models are conducted. From the result of the tests, the laminated rubber bearings turn out to satisfy the specification. Their basic characteristics are confirmed from the tests with fullscale and reduced scale models. The ultimate capacity of the bearings under the condition of ordinary temperature are evaluated

  17. Status report on activities on seismic isolation in Italy

    International Nuclear Information System (INIS)

    Martelli, A.; Bettinali, F.

    1992-01-01

    The development of seismic isolation and its application to structures other than bridges were started in Italy in 1988. Considerable efforts are being devoted to this technique, both because it can already be widely used in civil buildings (where it is particularly attractive for constructions that are critical for emergency and disaster planning), and due to the very promising perspectives for application to the industrial plants. In particular, ENEA is also quite interested in verifying the applicability of seismic isolation to the high risk plants, including the innovative nuclear reactors. The correct development of seismic isolation, for a future wide use in all the domains of interest - including high risk and other industrial plants - requires that a sufficient number of applications to civil buildings is -undertaken, so as to improve the knowledge on the design and behaviour of isolated structures. It also requires seismic monitoring of isolated constructions. This is the reason why all the ongoing studies in Italy - including those of ENEA and ENEL - are based at present on applications to civil buildings. To the aforesaid aims, R and D work is also needed: such a work, together with the experience acquired on actual isolated buildings, is essential to set up adequate design rules. On the other hand, development of design rules must be carried out in parallel, in order to determine the features of the necessary research activities. Until now, our development work has been focussed on the high damping steel-laminated rubber bearings, which have been adopted for most isolated buildings in Italy. It consists of: [a] the set-up of proposals for design rules and guidelines; [b] experiments on bearing materials, individual bearings, isolated structure mock-ups, and actual isolated buildings; [c] development and validation of simplified and detailed numerical models of bearings and structures. Furthermore, support is being provided to the designers of isolated

  18. Sensitivity Analysis on Elbow Piping Components in Seismically Isolated NPP under Seismic Loading

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Hee Kun; Hahm, Dae Gi; Kim, Min Kyu [KAERI, Daejeon (Korea, Republic of); Jeon, Bub Gyu; Kim, Nam Sik [Pusan National University, Busan (Korea, Republic of)

    2016-05-15

    In this study, the FE model is verified using specimen test results and simulation with parameter variations are conducted. Effective parameters will randomly sampled and used as input values for simulations to be applied to the fragility analysis. pipelines are representative of them because they could undergo larger displacements when they are supported on both isolated and non-isolated structures simultaneously. Especially elbows are critical components of pipes under severed loading conditions such as earthquake action because strain is accumulated on them during the repeated bending of the pipe. Therefore, seismic performance of pipe elbow components should be examined thoroughly based on the fragility analysis. Fragility assessment of interface pipe should take different sources of uncertainty into account. However, selection of important sources and repeated tests with many random input values are very time consuming and expensive, so numerical analysis is commonly used. In the present study, finite element (FE) model of elbow component will be validated using the dynamic test results of elbow components. Using the verified model, sensitivity analysis will be implemented as a preliminary process of seismic fragility of piping system. Several important input parameters are selected and how the uncertainty of them are apportioned to the uncertainty of the elbow response is to be studied. Piping elbows are critical components under cyclic loading conditions as they are subjected large displacement. In a seismically isolated NPP, seismic capacity of piping system should be evaluated with caution. Seismic fragility assessment preliminarily needs parameter sensitivity analysis about the output of interest with different input parameter values.

  19. Seismic isolation of small modular reactors using metamaterials

    Directory of Open Access Journals (Sweden)

    Witarto Witarto

    2018-04-01

    Full Text Available Adaptation of metamaterials at micro- to nanometer scales to metastructures at much larger scales offers a new alternative for seismic isolation systems. These new isolation systems, known as periodic foundations, function both as a structural foundation to support gravitational weight of the superstructure and also as a seismic isolator to isolate the superstructure from incoming seismic waves. Here we describe the application of periodic foundations for the seismic protection of nuclear power plants, in particular small modular reactors (SMR. For this purpose, a large-scale shake table test on a one-dimensional (1D periodic foundation supporting an SMR building model was conducted. The 1D periodic foundation was designed and fabricated using reinforced concrete and synthetic rubber (polyurethane materials. The 1D periodic foundation structural system was tested under various input waves, which include white noise, stepped sine and seismic waves in the horizontal and vertical directions as well as in the torsional mode. The shake table test results show that the 1D periodic foundation can reduce the acceleration response (transmissibility of the SMR building up to 90%. In addition, the periodic foundation-isolated structure also exhibited smaller displacement than the non-isolated SMR building. This study indicates that the challenge faced in developing metastructures can be overcome and the periodic foundations can be applied to isolating vibration response of engineering structures.

  20. Seismic isolation of small modular reactors using metamaterials

    Science.gov (United States)

    Witarto, Witarto; Wang, S. J.; Yang, C. Y.; Nie, Xin; Mo, Y. L.; Chang, K. C.; Tang, Yu; Kassawara, Robert

    2018-04-01

    Adaptation of metamaterials at micro- to nanometer scales to metastructures at much larger scales offers a new alternative for seismic isolation systems. These new isolation systems, known as periodic foundations, function both as a structural foundation to support gravitational weight of the superstructure and also as a seismic isolator to isolate the superstructure from incoming seismic waves. Here we describe the application of periodic foundations for the seismic protection of nuclear power plants, in particular small modular reactors (SMR). For this purpose, a large-scale shake table test on a one-dimensional (1D) periodic foundation supporting an SMR building model was conducted. The 1D periodic foundation was designed and fabricated using reinforced concrete and synthetic rubber (polyurethane) materials. The 1D periodic foundation structural system was tested under various input waves, which include white noise, stepped sine and seismic waves in the horizontal and vertical directions as well as in the torsional mode. The shake table test results show that the 1D periodic foundation can reduce the acceleration response (transmissibility) of the SMR building up to 90%. In addition, the periodic foundation-isolated structure also exhibited smaller displacement than the non-isolated SMR building. This study indicates that the challenge faced in developing metastructures can be overcome and the periodic foundations can be applied to isolating vibration response of engineering structures.

  1. A SEISMIC DESIGN OF NUCLEAR REACTOR BUILDING STRUCTURES APPLYING SEISMIC ISOLATION SYSTEM IN A HIGH SEISMICITY REGION –A FEASIBILITY CASE STUDY IN JAPAN-

    Directory of Open Access Journals (Sweden)

    TETSUO KUBO

    2014-10-01

    Full Text Available A feasibility study on the seismic design of nuclear reactor buildings with application of a seismic isolation system is introduced. After the Hyogo-ken Nanbu earthquake in Japan of 1995, seismic isolation technologies have been widely employed for commercial buildings. Having become a mature technology, seismic isolation systems can be applied to NPP facilities in areas of high seismicity. Two reactor buildings are discussed, representing the PWR and BWR buildings in Japan, and the application of seismic isolation systems is discussed. The isolation system employing rubber bearings with a lead plug positioned (LRB is examined. Through a series of seismic response analyses using the so-named standard design earthquake motions covering the design basis earthquake motions obtained for NPP sites in Japan, the responses of the seismic isolated reactor buildings are evaluated. It is revealed that for the building structures examined herein: (1 the responses of both isolated buildings and isolating LRBs fulfill the specified design criteria; (2 the responses obtained for the isolating LRBs first reach the ultimate condition when intensity of motion is 2.0 to 2.5 times as large as that of the design-basis; and (3 the responses of isolated reactor building fall below the range of the prescribed criteria.

  2. Utilities/industries joint study on seismic isolation systems for LWR: Part II. Observed behaviors of base-isolated general buildings under real earthquakes

    International Nuclear Information System (INIS)

    Matsumura, Takao; Sato, Shoji; Kato, Muneaki

    1989-01-01

    This paper describes the observed behavior of base-isolated buildings under real earthquake conditions. These buildings were constructed by five construction companies participating in the Joint Study on Seismic Isolation Systems for lightwater reactors. All the buildings are medium- or low-height buildings of reinforced-concrete structures with combinations of laminated rubber bearing or sliding bearings and various damping devices

  3. Development of analysis methods for seismically isolated nuclear structures

    International Nuclear Information System (INIS)

    Yoo, Bong; Lee, Jae-Han; Koo, Gyeng-Hoi

    2002-01-01

    KAERI's contributions to the project entitled Development of Analysis Methods for Seismically Isolated Nuclear Structures under IAEA CRP of the intercomparison of analysis methods for predicting the behaviour of seismically isolated nuclear structures during 1996-1999 in effort to develop the numerical analysis methods and to compare the analysis results with the benchmark test results of seismic isolation bearings and isolated nuclear structures provided by participating countries are briefly described. Certain progress in the analysis procedures for isolation bearings and isolated nuclear structures has been made throughout the IAEA CRPs and the analysis methods developed can be improved for future nuclear facility applications. (author)

  4. Experiments on seismic isolation in Italy

    International Nuclear Information System (INIS)

    Bonacina, G.; Bettinali, F.; Martelli, A.; Olivieri, M.

    1992-01-01

    Static and dynamic tests have been performed in Italy on high damping steel-laminated elastomer bearings in various scales, rubber specimens and structures isolated by means of such bearings, in the framework of studies in progress to support seismic isolation development. Tests on rubber specimens and bearings have already provided important data (vertical and horizontal stiffness, damping, creep, temperature, aging and scale effects, etc.), necessary for the development and validation of numerical models, comparison with the test results of isolated structure mockups and actual buildings, and improvement of design guidelines. Dynamic experiments of structures concerned both full-scale and scaled isolated structure mock-ups and actual isolated buildings (one of those forming the SIP Administration Center at Ancona, an isolated house at Squillace, Calabria). Both snap-back tests and forced excitation experiments were performed, to rather large displacements. The latter were both sinusoidal and (on a 1/4 scale mock-up) seismic, with one- and multidirectional simultaneous excitations. Test results have already demonstrated the adequacy of seismic isolation and have provided data useful for the comparison with single bearing test results and validation of numerical models for the analysis of isolated structures. This paper reports the main features and results of tests performed or in progress. Further tests planned have been mentioned in the Status Report. Numerical analysis of measured data and guidelines development have been discussed in separate technical papers. (author)

  5. DEMT experimental and analytical studies on seismic isolation

    International Nuclear Information System (INIS)

    Gantenbein, F.; Buland, P.

    1989-01-01

    Work on seismic isolation has been performed in France for many years, and the isolation device developed by SPIE-BATIGNOLLES in collaboration with Electricite de France (EDF) has been incorporated in the design of pressurized-water reactor (PWR) nuclear power plants. This paper reviews the experimental and theoretical studies performed at CEA/DEMT related to the overall behavior of isolated structures. The experimental work consists of the seismic shaking-table tests of a concrete cylinder isolated by neoprene sliding pads, and the vibrational tests on the reaction mass of the TAMARIS seismic facility. The analytical work consists of the development of procedures for dynamic calculation methods: for soil-structure interaction where pads are placed between an upper raft and pedestals, for time-history calculations where sliding plates are used, and for fluid-structure interaction where coupled fluid and structure motions and sloshing modes are important. Finally, this paper comments on the consequences of seismic isolation for the analysis of fast breeder reactor (FBR) vessels. The modes can no longer be considered independent (SRSS Method leads to important errors), and the sloshing increases

  6. Seismic isolation systems designed with distinct multiple frequencies

    International Nuclear Information System (INIS)

    Wu, Ting-shu; Seidensticker, R.W.

    1991-01-01

    Two systems for seismic base isolation are presented. The main feature of these system is that, instead of only one isolation frequency as in conventional isolation systems, they are designed to have two distinct isolation frequencies. When the responses during an earthquake exceed the design value(s), the system will automatically and passively shift to the secondly isolation frequency. Responses of these two systems to different ground motions including a harmonic motion with frequency same as the primary isolation frequency, show that no excessive amplification will occur. Adoption of these new systems certainly will greatly enhance the safety and reliability of an isolated superstructure against future strong earthquakes. 3 refs

  7. CRIEPI test program for seismic isolation of the FBR

    International Nuclear Information System (INIS)

    Shiojiri, Hiroo

    1989-01-01

    This paper describes the Central Research Institute of Electric Power Industry's (CRIEPIs) seismic isolation program. The test and research program on seismic isolation was started in 1987 by CRIEPI under contract with the Ministry of International Trade and Industry (MITI) of Japan. It was intended to establish a technical basis for the application of seismic isolation to fast breeder reactors (FBRs). In this paper, some details of the program and results of the preliminary study are described

  8. A development of three-dimensional seismic isolation for advanced reactor systems in Japan: Pt.2

    International Nuclear Information System (INIS)

    Kenji Takahashi; Kazuhiko Inoue; Asao Kato; Masaki Morishita; Takafumi Fujita

    2005-01-01

    Two types of three-dimensional seismic isolation systems were developed for the fast breeder reactor (FBR). One is the three-dimensional entire building base isolation system It was developed by collecting concepts Japanese companies from which a combination system with air springs and hydraulic rocking suppression devices was selected. The other is the vertically isolated system for main components with horizontally entire building base isolation, which was developed by adopting coned disk spring devices. In the study, seismic condition was assumed based on a strict reference ground motion. Design data of the building and components are referred to FBR being developed as the 'Commercialized Fast Reactor Cycle System'. Analysis based on these assumed conditions showed suitable combinations of natural frequencies and damping ratios for isolation. Devices were developed to satisfy the combinations. In five years research and development, several verification tests were performed including shake table tests with scaled models. Finally it is found that the two types of seismic isolation systems are available for FBR. The result is reflected in the preliminary design guideline for the three-dimensional isolation system. (authors)

  9. The development of base-isolated APWR plants

    International Nuclear Information System (INIS)

    Tanaka, T.; Nitta, T.

    2001-01-01

    The full text follows: The seismic design of nuclear power stations plays a critical role in the assurance of plant safety in Japan, and standardization of design is difficult to achieve because every site is subject to different seismic conditions. However, the introduction of seismic -isolation devices is one way to rationally achieve safety assurance and promote design standardization. Base-isolated APWR (advanced pressurized water reactor) plants were developed by applying seismic -isolation devices to APWR plants. The introduction of seismic -isolation devices, which are installed between the ground and buildings, largely decreases the effect of seismic force on buildings. Therefore, the limitation of building shape and eccentricity, which are undertaken in order to prevent the floating of buildings, could be eliminated. This permits the flexibility of building layouts, which result in a reduction of building volume. At the same time, the thickness of the buildings walls that are specific to nuclear power stations, can also be decreased except radiation shield. As for the base-isolated APWR equipment design, the rational design of support structures for equipment and pipings is possible, because the floor response acceleration is greatly reduced. For the cost reduction, it has been confirmed that the base-isolated APWR plants are more economical than traditional APWR plants even after the additionally required expenses for seismic-isolation devices are taken into account. This is primarily because of the rational design of the buildings and equipment which is possible as described above. Another advantage is that building standardization can be promoted because the seismic-isolation devices are able to control the seismic force transmitted to the buildings. This is accomplished by arranging the characteristics of the isolation devices according to the seismic conditions of each site. The introduction of these devices to nuclear power stations is nearly ready

  10. Seismic Isolation Working Meeting Gap Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Justin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sabharwall, Piyush [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    The ultimate goal in nuclear facility and nuclear power plant operations is operating safety during normal operations and maintaining core cooling capabilities during off-normal events including external hazards. Understanding the impact external hazards, such as flooding and earthquakes, have on nuclear facilities and NPPs is critical to deciding how to manage these hazards to expectable levels of risk. From a seismic risk perspective the goal is to manage seismic risk. Seismic risk is determined by convolving the seismic hazard with seismic fragilities (capacity of systems, structures, and components (SSCs)). There are large uncertainties associated with evolving nature of the seismic hazard curves. Additionally there are requirements within DOE and potential requirements within NRC to reconsider updated seismic hazard curves every 10 years. Therefore opportunity exists for engineered solutions to manage this seismic uncertainty. One engineered solution is seismic isolation. Current seismic isolation (SI) designs (used in commercial industry) reduce horizontal earthquake loads and protect critical infrastructure from the potentially destructive effects of large earthquakes. The benefit of SI application in the nuclear industry is being recognized and SI systems have been proposed, in the American Society of Civil Engineers (ASCE) 4 standard, to be released in 2014, for Light Water Reactors (LWR) facilities using commercially available technology. However, there is a lack of industry application to the nuclear industry and uncertainty with implementing the procedures outlined in ASCE-4. Opportunity exists to determine barriers associated with implementation of current ASCE-4 standard language.

  11. 3D seismic isolation for advanced N.P.P application. Hydraulic 3-Dimensional base-isolation system

    International Nuclear Information System (INIS)

    Shimada, Takahiro; Kashiwazaki, Akihiro; Fujiwaka, Tatsuya; Moro, Satoshi

    2003-01-01

    In Japan, a number of three-dimensional base isolation systems have been studied for application to new nuclear plant concepts such as the FBR, but these effects have not so far yielded practically applicable results. The impeding factor has been the difficulty of obtaining an adequate capacity on the vertical isolator for supporting the mass of an actual structure and for suppressing rocking motion. In this paper, we propose a new three-dimensional base isolation system that should solve the foregoing problem. The system is constituted of a set of hydraulic load-carrying cylinders connected to accumulator units containing a compressed gas, another set of rocking-suppression cylinders connected in series, and a laminated rubber bearing laid under each load-carrying cylinder. The present paper covers a basic examination for applying the proposed system to a commercialized FBR now under development in Japan, together with static and dynamic loading tests performed on a scale model to verify expected system performance. Response and analysis reflecting the test results has indicated the proposed system to be well applicable to the envisaged commercialized FBR. The study was undertaken as part of an R and D project sponsored by the government for realizing a three-dimensional seismic isolation system applicable to future FRB's. (author)

  12. A Study of Seismic Capacity of Nuclear Equipment with Seismic Isolation System

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Kyu; Choun, Young Sun; Choi, In Kil; Seo, Jeong Moon

    2004-05-15

    In this study, the base isolation systems for equipment are presented and the responses of each isolation system are investigated. As for the base isolation systems, a natural rubber bearing (NRB), a high damping rubber bearing (HDRB) and a friction pendulum system (FPS) are selected. The shaking table tests are carried out for three kinds of structural types. As input motions, artificial time histories enveloping the US NRC RG 1.60 spectrum and the probability-based scenario earthquake spectra developed for the Korean nuclear power plant site as well as a typical near-fault earthquake record are used. Uniaxial, biaxial, and triaxial excitations are conducted with PGAs of 0.05, 0.1, 0.2 and 0.25g. Acceleration responses are measured at the top of the equipment model and the floors using an accelerometer. The reduction of the seismic forces transmitted to the equipment models are determined for different isolation systems and input motions.

  13. A Study of Seismic Capacity of Nuclear Equipment with Seismic Isolation System

    International Nuclear Information System (INIS)

    Kim, Min Kyu; Choun, Young Sun; Choi, In Kil; Seo, Jeong Moon

    2004-05-01

    In this study, the base isolation systems for equipment are presented and the responses of each isolation system are investigated. As for the base isolation systems, a natural rubber bearing (NRB), a high damping rubber bearing (HDRB) and a friction pendulum system (FPS) are selected. The shaking table tests are carried out for three kinds of structural types. As input motions, artificial time histories enveloping the US NRC RG 1.60 spectrum and the probability-based scenario earthquake spectra developed for the Korean nuclear power plant site as well as a typical near-fault earthquake record are used. Uniaxial, biaxial, and triaxial excitations are conducted with PGAs of 0.05, 0.1, 0.2 and 0.25g. Acceleration responses are measured at the top of the equipment model and the floors using an accelerometer. The reduction of the seismic forces transmitted to the equipment models are determined for different isolation systems and input motions

  14. Seismic isolation of buildings on two dimensional phononic crystal foundation

    Science.gov (United States)

    Han, Lin; Li, Xiao-mei; Zhang, Yan

    2017-11-01

    In order to realize the seismic isolation of buildings, we establish the two dimensional phononic crystal (PC) foundation which has the cell with the size close to the regular concrete test specimens, and is composed of the concrete base, rubber coating and lead cylindrical core. We study the in-plane band gap (BG) characteristics in it, through the analysis of the frequency dispersion relation and frequency response result. To lower the start BG frequency to the seismic frequency range, we also study the influences of material parameters (the elastic modulus of coating and density of cylindrical core) and geometry parameters (the thickness of coating, radius of cylindrical core and lattice constant) on BG ranges. The study could help to design the PC foundation for seismic isolation of building.

  15. Response of Seismically Isolated Steel Frame Buildings with Sustainable Lead-Rubber Bearing (LRB Isolator Devices Subjected to Near-Fault (NF Ground Motions

    Directory of Open Access Journals (Sweden)

    Jong Wan Hu

    2014-12-01

    Full Text Available Base isolation has been used as one of the most wildly accepted seismic protection systems that should substantially dissociate a superstructure from its substructure resting on a shaking ground, thereby sustainably preserving entire structures against earthquake forces as well as inside non-structural integrities. Base isolation devices can operate very effectively against near-fault (NF ground motions with large velocity pulses and permanent ground displacements. In this study, comparative advantages for using lead-rubber bearing (LRB isolation systems are mainly investigated by performing nonlinear dynamic time-history analyses with NF ground motions. The seismic responses with respects to base shears and inter-story drifts are compared according to the installation of LRB isolation systems in the frame building. The main function of the base LRB isolator is to extend the period of structural vibration by increasing lateral flexibility in the frame structure, and thus ground accelerations transferred into the superstructure can dramatically decrease. Therefore, these base isolation systems are able to achieve notable mitigation in the base shear. In addition, they make a significant contribution to reducing inter-story drifts distributed over the upper floors. Finally, the fact that seismic performance can be improved by installing isolation devices in the frame structure is emphasized herein through the results of nonlinear dynamic analyses.

  16. Development of a 3-dimensional seismic isolation floor for computer systems

    International Nuclear Information System (INIS)

    Kurihara, M.; Shigeta, M.; Nino, T.; Matsuki, T.

    1991-01-01

    In this paper, we investigated the applicability of a seismic isolation floor as a method for protecting computer systems from strong earthquakes, such as computer systems in nuclear power plants. Assuming that the computer system is guaranteed for 250 cm/s 2 of input acceleration in the horizontal and vertical directions as the seismic performance, the basic design specification of the seismic isolation floor is considered as follows. Against S 1 level earthquakes, the maximum acceleration response of the seismic isolation floor in the horizontal and vertical directions is kept less than 250 cm/s 2 to maintain continuous computer operation. Against S 2 level earthquakes, the isolation floor allows large horizontal movement and large displacement of the isolation devices to reduce the acceleration response, although it is not guaranteed to be less than 250 cm/s 2 . By reducing the acceleration response, however, serious damage to the computer systems is reduced, so that they can be restarted after an earthquake. Usually, seismic isolation floor systems permit 2-dimensional (horizontal) isolation. However, in the case of just-under-seated earthquakes, which have large vertical components, the vertical acceleration response of this system is amplified by the lateral vibration of the frame of the isolation floor. Therefore, in this study a 3-dimensional seismic isolation floor, including vertical isolation, was developed. This paper describes 1) the experimental results of the response characteristics of the 3-dimensional seismic isolation floor built as a trial using a 3-dimensional shaking table, and 2) comparison of a 2-dimensional analytical model, for motion in one horizontal direction and the vertical direction, to experimental results. (J.P.N.)

  17. Final report of the cooperative study on seismic isolation design. The second stage

    Energy Technology Data Exchange (ETDEWEB)

    Uryu, Mitsuru; Terada, Syuji; Shioya, Tsutomu (and others)

    1999-05-01

    The applicability of the seismic isolation design onto the nuclear fuel facilities, which must clear severe criteria of integrity, has been examined. Following the first stage of the cooperative study, conducted from 1988 to 1991, the second stage included critical vibration testing, seismic observation of seismic isolation building and founded buildings of non-isolation, with the objectives of clarifying the policies on critical design of seismic isolation building. Integrity of the seismic isolation piping system was tested by means of static deformation test, with variable inner water pressure and relative deformation. (Yamamoto, A.)

  18. Development of Seismic Isolation Systems Using Periodic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Yiqun [Univ. of Houston, Houston, TX (United States); Mo, Yi-Lung [Univ. of Houston, Houston, TX (United States); Menq, Farn-Yuh [Univ. of Texas, Austin, TX (United States); Stokoe, II, Kenneth H. [Univ. of Texas, Austin, TX (United States); Perkins, Judy [Prairie View A & M University, Prairie View, TX (United States); Tang, Yu [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-12-10

    Advanced fast nuclear power plants and small modular fast reactors are composed of thin-walled structures such as pipes; as a result, they do not have sufficient inherent strength to resist seismic loads. Seismic isolation, therefore, is an effective solution for mitigating earthquake hazards for these types of structures. Base isolation, on which numerous studies have been conducted, is a well-defined structure protection system against earthquakes. In conventional isolators, such as high-damping rubber bearings, lead-rubber bearings, and friction pendulum bearings, large relative displacements occur between upper structures and foundations. Only isolation in a horizontal direction is provided; these features are not desirable for the piping systems. The concept of periodic materials, based on the theory of solid-state physics, can be applied to earthquake engineering. The periodic material is a material that possesses distinct characteristics that prevent waves with certain frequencies from being transmitted through it; therefore, this material can be used in structural foundations to block unwanted seismic waves with certain frequencies. The frequency band of periodic material that can filter out waves is called the band gap, and the structural foundation made of periodic material is referred to as the periodic foundation. The design of a nuclear power plant, therefore, can be unified around the desirable feature of a periodic foundation, while the continuous maintenance of the structure is not needed. In this research project, three different types of periodic foundations were studied: one-dimensional, two-dimensional, and three-dimensional. The basic theories of periodic foundations are introduced first to find the band gaps; then the finite element methods are used, to perform parametric analysis, and obtain attenuation zones; finally, experimental programs are conducted, and the test data are analyzed to verify the theory. This procedure shows that the

  19. Seismic Analysis of a Viscoelastic Damping Isolator

    Directory of Open Access Journals (Sweden)

    Bo-Wun Huang

    2015-01-01

    Full Text Available Seismic prevention issues are discussed much more seriously around the world after Fukushima earthquake, Japan, April 2011, especially for those countries which are near the earthquake zone. Approximately 1.8×1012 kilograms of explosive energy will be released from a magnitude 9 earthquake. It destroys most of the unprotected infrastructure within several tens of miles in diameter from the epicenter. People can feel the earthquake even if living hundreds of miles away. This study is a seismic simulation analysis for an innovated and improved design of viscoelastic damping isolator, which can be more effectively applied to earthquake prevention and damage reduction of high-rise buildings, roads, bridges, power generation facilities, and so forth, from earthquake disaster. Solidworks graphic software is used to draw the 3D geometric model of the viscoelastic isolator. The dynamic behavior of the viscoelastic isolator through shock impact of specific earthquake loading, recorded by a seismometer, is obtained via ANSYS finite element package. The amplitude of the isolator is quickly reduced by the viscoelastic material in the device and is shown in a time response diagram. The result of this analysis can be a crucial reference when improving the design of a seismic isolator.

  20. Study of seismic responses of Candu-3 reactor building using isolator bearings

    International Nuclear Information System (INIS)

    Biswas, J.K.

    1992-01-01

    Seismic isolator bearings are known to increase reliability, reduce cost and increase the potential sitings for nuclear power plants located in regions of high seismicity. High seismic activities in Canada occur mainly in the western coast, the Grand Banks and regions of Quebec along the St. Lawrence river. In Canada, nuclear power plants are located in Ontario, Quebec and New Brunswick where the seismicity levels are low to moderate. Consequently, seismic isolator bearings have not been used in the existing nuclear power plants in Canada. The present paper examines the effect of using seismic isolator bearings in the design for the new CANDU3 which would be suitable for regions having high seismicity. The CANDU3 Nuclear Power Plant is rated at 450 MW of net output power and is a smaller version of its predecessor CANDU6 successfully operating in Canada and abroad. The design of CANDU3 is being developed by AECL CANDU. Advanced technologies for design, construction and plant operation have been utilized. During the conceptual development of the CANDU3 design, various design options including the use of isolator bearings were considered. The present paper presents an overview of seismic isolation technology and summarizes the analytical work for predicting the seismic behavior of the CANDU3 reactor building. A lumped-parameter dynamic model for the reactor building is used for the analysis. The characteristics of the bearings are utilized in the analysis work. The time-history modal analysis has been used to compute the seismic responses. Seismic responses of the reactor building with and without isolator bearings are compared. The isolator bearings are found to reduce the accelerations of the reactor building. As a result, a lower level of seismic qualification for components and systems would be required. The use of these bearings however increases rigid body seismic displacements of the structure requiring special considerations in the layout and interfaces for

  1. Seismic isolation of Advanced LIGO: Review of strategy, instrumentation and performance

    International Nuclear Information System (INIS)

    Matichard, F; Mittleman, R; Mason, K; Biscans, S; Barnum, S; Evans, M; Foley, S; Lantz, B; Celerier, C; Clark, D; DeBra, D; Kissel, J; Allwine, E; Abbott, B; Abbott, R; Abbott, S; Coyne, D; McIver, J; Birch, J; DeRosa, R

    2015-01-01

    The new generation of gravitational waves detectors require unprecedented levels of isolation from seismic noise. This article reviews the seismic isolation strategy and instrumentation developed for the Advanced LIGO observatories. It summarizes over a decade of research on active inertial isolation and shows the performance recently achieved at the Advanced LIGO observatories. The paper emphasizes the scientific and technical challenges of this endeavor and how they have been addressed. An overview of the isolation strategy is given. It combines multiple layers of passive and active inertial isolation to provide suitable rejection of seismic noise at all frequencies. A detailed presentation of the three active platforms that have been developed is given. They are the hydraulic pre-isolator, the single-stage internal isolator and the two-stage internal isolator. The architecture, instrumentation, control scheme and isolation results are presented for each of the three systems. Results show that the seismic isolation sub-system meets Advanced LIGO’s stringent requirements and robustly supports the operation of the two detectors. (paper)

  2. Seismic isolation of nuclear power plants - EDF's philosophy

    International Nuclear Information System (INIS)

    Coladant, C.

    1989-01-01

    The elastomer bearing pads used since 1963 as supports for prestressed concrete pressure vessels (PCPVs) was quickly chosen by Electricite de France (ED) to improve the capability of nuclear power plants (NPPs) to withstand strong earthquakes and to reduce the seismic loads on structures and equipment. The standardized units for 900 and 1,300 MW(e) pressurized water reactor (PWR) plants have moderate seismic design loads of 0.2 and 0.15 g, respectively. These design loads were exceeded by the site dependent spectra of Cruas (France) and Koeberg (South Africa). To keep the plant design unchanged and to take the advantages of standardization, these units were put on laminated bearings with or without sliding plates. For the future French 1,500 MW(e) fast breeder reactors (FBRs), which are more sensitive to seismic loads, the base isolation is considered by EDF at the beginning of the design, even for low ground motions of 0.1 g. The buildings are placed on laminated bearings while the reactor block is supported by springs and dampers. The isolated plant has identical costs as a conventional design such as SPX1 at Creys-Malville

  3. UK contribution to CEGB-EPRI-CRIEPI program on seismic isolation

    International Nuclear Information System (INIS)

    Austin, N.M.; Hattori, S.; Rodwell, E.; Womack, G.J.

    1989-01-01

    Over the last decade the concept of seismic isolation applied to nuclear power plants has generated a great deal of interest worldwide and a number of comprehensive reviews on the topic have been published. Understandably, most of the design and research and development (R and D) effort on seismic isolation has come from countries where larger magnitude earthquakes are an ever-present problem; e.g., Japan, USA, etc. In some areas of these countries seismic isolation may in fact present the only feasible design solution for potential sites of Liquid-Metal-Cooled Reactors (LMR's). This paper summarizes the test results obtained from a small scale seismic isolation system consisting of a laminated steel/natural rubber bearing and a viscodamper. Dynamic characteristics of the system; e.g., stiffness and damping, were measured for a variety of loading conditions. The results are suitable for developing a mathematical model of the isolation system and providing data for use in the design of larger scale bearings and viscodampers

  4. Development of Probabilistic Performance Evaluation Procedure for Umbilical Lines of Seismically Isolated NPPs

    International Nuclear Information System (INIS)

    Hahm, Daegi; Park, Junhee; Choi, Inkil

    2013-01-01

    In this study, we proposed a procedure to perform the probabilistic performance evaluation of interface piping system for seismically isolated NPPs, and carried out the preliminary performance evaluation of the target example umbilical line. For EDB level earthquakes, the target performance goal cannot be fulfilled, but we also find out that the result can be changed with respect to the variation of the assumed values, i. e., the distribution of response, and the limit state of piping system. Recently, to design the nuclear power plants (NPPs) more efficiently and safely against the strong seismic load, many researchers focus on the seismic isolation system. For the adoption of seismic isolation system to the NPPs, the seismic performance of isolation devices, structures, and components should be guaranteed firstly. Hence, some researches were performed to determine the seismic performance of such items. For the interface piping system between isolated structure and non-isolated structure, the seismic capacity should be carefully estimated since that the required displacement absorption capacity will be increased significantly by the adoption of the seismic isolation system. Nowadays, in NUREG report, the probabilistic performance criteria for isolated NPP structures and components are proposed. Hence, in this study, we developed the probabilistic performance evaluation method and procedure for interface piping system, and applied the method to an example pipe. The detailed procedure and main results are summarized in next section. For the interface piping system, the seismic capacity should be carefully estimated since that the required displacement absorption capacity will be increased significantly by the adoption of the seismic isolation system

  5. Isolation systems influence in the seismic loading propagation analysis applied to an innovative near term reactor

    International Nuclear Information System (INIS)

    Lo Frano, R.; Forasassi, G.

    2010-01-01

    Integrity of a Nuclear Power Plant (NPP) must be ensured during the plant life in any design condition and, particularly, in the event of a severe earthquake. To investigate the seismic resistance capability of as-built structures systems and components, in the event of a Safe Shutdown Earthquake (SSE), and analyse its related effects on a near term deployment reactor and its internals, a deterministic methodological approach, based on the evaluation of the propagation of seismic waves along the structure, was applied considering, also, the use of innovative anti-seismic techniques. In this paper the attention is focused on the use and influence of seismic isolation technologies (e.g. isolators based on passive energy dissipation) that seem able to ensure the full integrity and operability of NPP structures, to enhance the seismic safety (improving the design of new NPPs and if possible, to retrofit existing facilities) and to attain a standardization plant design. To the purpose of this study a numerical assessment of dynamic response/behaviour of the structures was accomplished by means of the finite element approach and setting up, as accurately as possible, a representative three-dimensional model of mentioned NPP structures. The obtained results in terms of response spectra (carried out from both cases of isolated and not isolated seismic analyses) are herein presented and compared in order to highlight the isolation technique effectiveness.

  6. Vibration characteristics of the seismically isolated building supported by the elastomers and the elasto-plastic dampers

    International Nuclear Information System (INIS)

    Mazda, Taiji; Shiojiri, Hiroo; Aoyagi, Sakae; Sawada, Yoshihiro; Kawai, Nobuyasu; Harada, Osamu; Ohtsuka, Susume; Abe, Isamu.

    1989-01-01

    Recently, the seismic isolation has become one of the popular methods in the design of important structures or equipment against the earthquakes. However, the demonstration data on reliability of seismically isolated structures are not enough, therefore it is expected to accumulate such data. Based on the above recognition, the vibration tests of a base isolated building were carried out in Tsukuba Science City. After that, many earthquake records have been obtained at the building, and they made clear the dynamic characteristics of the structure. In order to make clear the dynamic behavior of the building, furthermore, seismic response analyses were executed by using Lumped Mass model, and the results of the analyses roughly agreed with the observed results. (author)

  7. Seismic isolation of nuclear power plants using elastomeric bearings

    Science.gov (United States)

    Kumar, Manish

    Seismic isolation using low damping rubber (LDR) and lead-rubber (LR) bearings is a viable strategy for mitigating the effects of extreme earthquake shaking on safety-related nuclear structures. Although seismic isolation has been deployed in nuclear structures in France and South Africa, it has not seen widespread use because of limited new build nuclear construction in the past 30 years and a lack of guidelines, codes and standards for the analysis, design and construction of isolation systems specific to nuclear structures. The nuclear accident at Fukushima Daiichi in March 2011 has led the nuclear community to consider seismic isolation for new large light water and small modular reactors to withstand the effects of extreme earthquakes. The mechanical properties of LDR and LR bearings are not expected to change substantially in design basis shaking. However, under shaking more intense than design basis, the properties of the lead cores in lead-rubber bearings may degrade due to heating associated with energy dissipation, some bearings in an isolation system may experience net tension, and the compression and tension stiffness may be affected by the horizontal displacement of the isolation system. The effects of intra-earthquake changes in mechanical properties on the response of base-isolated nuclear power plants (NPPs) were investigated using an advanced numerical model of a lead-rubber bearing that has been verified and validated, and implemented in OpenSees and ABAQUS. A series of experiments were conducted at University at Buffalo to characterize the behavior of elastomeric bearings in tension. The test data was used to validate a phenomenological model of an elastomeric bearing in tension. The value of three times the shear modulus of rubber in elastomeric bearing was found to be a reasonable estimate of the cavitation stress of a bearing. The sequence of loading did not change the behavior of an elastomeric bearing under cyclic tension, and there was no

  8. Seismic isolation floor and vibration control equipment for nuclear power plant

    International Nuclear Information System (INIS)

    Niwa, H.; Fujimoto, S.; Aida, Y.; Miyano, H.

    1996-01-01

    We have developed a seismic isolation floor to improve protection against earthquakes for process computer systems, and a magnetic dynamic damper to reduce the mechanical vibrations of piping systems and pumps in nuclear power plants. Seismic excitation tests of the seismic isolation floor, on which process computer systems were installed, were performed using large earthquake simulators. The test results proved that the seismic isolation floor significantly reduced seismic forces. To control mechanical vibrations, a magnetic dynamic damper was designed using permanent magnets. This magnetic dynamic damper does not require mechanical springs, dampers and supports in the floors and walls of the building. Vibration tests using a rotating machine model confirmed that the magnetic dynamic damper effectively controlled vibrations in such a rotating machine model. (author)

  9. Development of an evaluation method for seismic isolation systems of nuclear power facilities. Seismic design analysis methods for crossover piping system

    International Nuclear Information System (INIS)

    Tai, Koichi; Sasajima, Keisuke; Fukushima, Shunsuke; Takamura, Noriyuki; Onishi, Shigenobu

    2014-01-01

    This paper provides seismic design analysis methods suitable for crossover piping system, which connects between seismic isolated building and non-isolated building in the seismic isolated nuclear power plant. Through the numerical study focused on the main steam crossover piping system, seismic response spectrum analysis applying ISM (Independent Support Motion) method with SRSS combination or CCFS (Cross-oscillator, Cross-Floor response Spectrum) method has found to be quite effective for the seismic design of multiply supported crossover piping system. (author)

  10. ENEA activities on seismic isolation of nuclear and non-nuclear structures

    International Nuclear Information System (INIS)

    Martelli, A.; Masoni, P.; Forni, M.; Indirli, M.; Spadoni, B.; Di Pasquale, G.; Lucarelli, V.; Sano, T.; Bonacina, G.; Castoldi, A.

    1989-01-01

    Work on seismic isolation of nuclear and non-nuclear structures was started by ENEA in cooperation with ISMES in 1988. The first activity consisted of a proposal for guidelines for seismically isolated nuclear plants using high-damping, steel-laminated elastomer bearings. This is being performed in the framework of an agreement with General Electric Company. Furthermore, research and development work has been defined and recently initiated to support development of the seismic isolation guidelines as well as that of qualification procedures for seismic isolation systems in general. The present R and D work includes static and dynamic experiments on single bearings, shake table tests with multi-axial simultaneous excitations on reduced-scale mockups of isolated structures supported by multiple bearings, and dynamic tests on large-scale isolated structures with on-site test techniques. It also includes the development and validation of finite-element nonlinear models of the single bearings, as well as those of simplified design tools for the analysis of the isolated structures dynamic behavior. Extension of this work is foreseen in a wider national frame

  11. A broad review of the status of seismic isolation study in Japan

    International Nuclear Information System (INIS)

    Aoyagi, Sakae; Shibata, Heki

    1992-01-01

    In Japan, studies on seismic isolation technologies have been extensively, performed by a several organizations for the last decade, in order to apply them to fast reactors and thermal reactors. These programs have been managed by CRIEPl, JAPC, NUPEC, PNC the electric utilities and so on. Japanese major reactor manufacturers and construction companies have been participating in each program. Consequently, the base isolation technologies in Japan have been well-developed and are changing their stage from the basic studies to the integration for actual nuclear application. In this paper, the background, the current status and future perspective on the seismic isolation studies conducted by a several Japanese organizations are concisely described. (author)

  12. Application of seismic isolation technology to demonstration FBR

    International Nuclear Information System (INIS)

    Kato, Muneaki

    1994-01-01

    The Japanese demonstration FBR is loop type, the intermediate heat exchanger is installed between the reactor and the steam generator, and up to the intermediate heat exchanger is in the containment vessel, which is designed as a reinforced concrete vessel. In FBRs, the optimization in aseismatic design and high temperature structural design is important. The reactor building is buried in rock bed up to its center of gravity to minimize the amplifying earthquake response. If the seismic isolation structure for a reactor is realized, cost reduction can be expected by the rationalization of machinery and equipment and the standardization of buildings and facilities. The research on FBR seismic isolation design has been carried out by Central Research Institute of Electric Power Industry and Japan Atomic Power Co. The concept of FBR seismic isolation design, the basic condition for the design evaluation, the research on safety allowance and the conceptual design analysis are reported. (K.I.)

  13. Seismic isolation of lead-cooled reactors: The European project SILER

    International Nuclear Information System (INIS)

    Forni, Massimo; Poggianti, Alessandro; Scipinotti, Riccardo; Dusi, Alberto; Manzoni, Elena

    2014-01-01

    SILER (Seismic-Initiated event risk mitigation in LEad-cooled Reactors) is a Collaborative Project, partially funded by the European Commission in the 7th Framework Programme, aimed at studying the risk associated to seismic-initiated events in Generation IV Heavy Liquid Metal reactors, and developing adequate protection measures. The project started in October 2011, and will run for a duration of three years. The attention of SILER is focused on the evaluation of the effects of earthquakes, with particular regards to beyond-design seismic events, and to the identification of mitigation strategies, acting both on structures and components design. Special efforts are devoted to the development of seismic isolation devices and related interface components. Two reference designs, at the state of development available at the beginning of the project and coming from the 6th Programme, have been considered: ELSY (European Lead Fast Reactor) for the Lead Fast Reactors (LFR), and MYRRHA (Multi-purpose hYbrid Research Reactor for High-tech Applications) for the Accelerator-Driven Systems (ADS). This paper describes the main activities and results obtained so far, paying particular attention to the development of seismic isolators, and the interface components which must be installed between the isolated reactor building and the non-isolated parts of the plant, such as the pipe expansion joints and the joint-cover of the seismic gap.

  14. The new 'Angeli di San Giuliano' School: a significant example of seismic isolation

    International Nuclear Information System (INIS)

    Clemente, P.; Buffarini, G.; Dolce, M.; Parducci, A.

    2009-01-01

    The new school in San Giuliano di Puglia has been built with a seismic base isolation system ensuring a safety degree that otherwise could not be obtained with traditional techniques. Due to its complex and irregular shape, the building also gives rise to some considerations about the design in seismic areas. [it

  15. Vulnerability and floor spectra of seismically isolated structures

    International Nuclear Information System (INIS)

    Pham, K.H.

    2010-09-01

    This thesis was motivated by issues that arise regarding the use of the method of seismic isolation in the nuclear industry. Despite the research conducted during the last decades in the field of seismic isolation, many questions about the behavior of isolated structures remain. These questions concern, on the one hand, the vulnerability of these structures, due to an excursion (unexpected) in the post-linear domain, and on the other hand, phenomena that can lead to a significant excitation of none isolated modes. Furthermore, unlike previous work studying the seismic behavior of buildings, an important part of this thesis is devoted to the behavior of equipment through the study of floor spectra. Firstly, the probability of failure, in the case of nonlinear response of the superstructure, was studied with simple models, for different laws of nonlinear behavior and different types of support. Then, the effects of heavy damping were investigated and the mechanism of amplification of the response of non-isolated modes has been explained. To resolve the amplification problem of none isolated modes, the mixed isolated systems, combining passive isolation with semi-active devices, have been considered. The numerical analyses confirm the effectiveness of this approach. Finally, a series of shaking table tests on a simple model with two degrees of freedom was conducted. The model is equipped with a magneto-rheological damper which is controlled as a semi-active device. The comparison of the experimental results with those of numerical simulations shows that the models developed are able to represent satisfactorily the essential physical phenomena. (author)

  16. Experimental study on radiation resistant properties of seismic isolation elements

    International Nuclear Information System (INIS)

    Yoneda, G.; Nojima, O.; Aizawa, S.; Uchiyama, Y.; Ikenaga, M.; Yoshizawa, T.

    1991-01-01

    Recently, studies on the application of a seismic isolation system to a reactor building and or the equipment of a nuclear power plant has been carried out. This study aims at investigating the influence which is exerted upon the mechanical properties of the seismic isolation elements by radiation. The authors conducted irradiation tests, using γ rays, on natural rubber bearings (NRB), lead rubber bearings (LRB), high damping rubber bearings (HRB), and the viscous fluid used in viscous dampers. The maximum radiation intensity was 5 x 10 7 R (Roentgen). The comparison between the mechanical properties of each seismic isolation element before and after the irradiation test are reported in the following. (author)

  17. NSR&D Program Fiscal Year (FY) 2015 Call for Proposals Mitigation of Seismic Risk at Nuclear Facilities using Seismic Isolation

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Justin [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-02-01

    Seismic isolation (SI) has the potential to drastically reduce seismic response of structures, systems, or components (SSCs) and therefore the risk associated with large seismic events (large seismic event could be defined as the design basis earthquake (DBE) and/or the beyond design basis earthquake (BDBE) depending on the site location). This would correspond to a potential increase in nuclear safety by minimizing the structural response and thus minimizing the risk of material release during large seismic events that have uncertainty associated with their magnitude and frequency. The national consensus standard America Society of Civil Engineers (ASCE) Standard 4, Seismic Analysis of Safety Related Nuclear Structures recently incorporated language and commentary for seismically isolating a large light water reactor or similar large nuclear structure. Some potential benefits of SI are: 1) substantially decoupling the SSC from the earthquake hazard thus decreasing risk of material release during large earthquakes, 2) cost savings for the facility and/or equipment, and 3) applicability to both nuclear (current and next generation) and high hazard non-nuclear facilities. Issue: To date no one has evaluated how the benefit of seismic risk reduction reduces cost to construct a nuclear facility. Objective: Use seismic probabilistic risk assessment (SPRA) to evaluate the reduction in seismic risk and estimate potential cost savings of seismic isolation of a generic nuclear facility. This project would leverage ongoing Idaho National Laboratory (INL) activities that are developing advanced (SPRA) methods using Nonlinear Soil-Structure Interaction (NLSSI) analysis. Technical Approach: The proposed study is intended to obtain an estimate on the reduction in seismic risk and construction cost that might be achieved by seismically isolating a nuclear facility. The nuclear facility is a representative pressurized water reactor building nuclear power plant (NPP) structure

  18. Testing, licensing, and code requirements for seismic isolation systems (for nuclear power plants)

    International Nuclear Information System (INIS)

    Seidensticker, R.W.

    1987-01-01

    The use of seismic isolation as an earthquake hazard mitigation strategy for nuclear reactor power plants is rapidly receiving interest throughout the world. Seismic isolation has already been used on at least two French PWR plants, was to have been used for plants to be built in Iran, and is under serious consideration for advanced LMR plants (in the US, UK, France, and Japan). In addition, there is a growing use of seismic isolation throughout the world for other critical facilities such as hospitals, emergency facilities, buildings with very high-cost equipment (e.g., computers) and as a strategy to reduce loss of life and expensive equipment in earthquakes. Such a design approach is in complete contrast to the conventional seismic design strategy in which the structure and components are provided with sufficient strength and ductility to resist the earthquake forces and to prevent structural collapses or failure. The use of seismic isolation for nuclear plants can, therefore, be expected to be a significant licensing issue. For isolation, the licensing process must shift away in large measure from the superstructure and concentrate on the behavior of the seismic isolation system. This paper is not intended to promote the advantages of seismic isolation system, but to explore in some detail those technical issues which must be satisfactorily addressed to achieve full licensability of the use of seismic isolation as a viable, attractive and economical alternative to current traditional design approaches. Special problems and topics associated with testing and codes and standards development are addressed. A positive program for approach or strategy to secure licensing is presented

  19. Testing, licensing, and code requirements for seismic isolation systems (for nuclear power plants)

    Energy Technology Data Exchange (ETDEWEB)

    Seidensticker, R.W.

    1987-01-01

    The use of seismic isolation as an earthquake hazard mitigation strategy for nuclear reactor power plants is rapidly receiving interest throughout the world. Seismic isolation has already been used on at least two French PWR plants, was to have been used for plants to be built in Iran, and is under serious consideration for advanced LMR plants (in the US, UK, France, and Japan). In addition, there is a growing use of seismic isolation throughout the world for other critical facilities such as hospitals, emergency facilities, buildings with very high-cost equipment (e.g., computers) and as a strategy to reduce loss of life and expensive equipment in earthquakes. Such a design approach is in complete contrast to the conventional seismic design strategy in which the structure and components are provided with sufficient strength and ductility to resist the earthquake forces and to prevent structural collapses or failure. The use of seismic isolation for nuclear plants can, therefore, be expected to be a significant licensing issue. For isolation, the licensing process must shift away in large measure from the superstructure and concentrate on the behavior of the seismic isolation system. This paper is not intended to promote the advantages of seismic isolation system, but to explore in some detail those technical issues which must be satisfactorily addressed to achieve full licensability of the use of seismic isolation as a viable, attractive and economical alternative to current traditional design approaches. Special problems and topics associated with testing and codes and standards development are addressed. A positive program for approach or strategy to secure licensing is presented.

  20. Structural Concept and Analysis of a 17-Story Multifunctional Residential Complex with and without Seismic Isolation System

    International Nuclear Information System (INIS)

    Melkumyan, Mikayel; Gevorgyan, Emma

    2008-01-01

    In recent years seismic isolation technologies in Armenia were extensively applied in construction of multistory buildings. These are 10-17-story residential complexes with parking floors and with floors envisaged for offices, shopping centers, fitness clubs, etc. Also there is a 20-story business centre designed in 2006, which is currently under construction. All mentioned complexes are briefly described in the paper, which is, however, mainly dedicated to the 17-story residential complex designed in 2007. The structural concept, including the new approach on installation of seismic isolation rubber bearings in this building, is described and detailed results of the earthquake response analysis for two cases, i.e. when the building is base isolated and when it has a fixed base, are given. Several time histories were used in the analysis and for both cases the building was analyzed also according to the requirements of the Armenian Seismic Code. Comparison of the obtained results indicates the high effectiveness of the proposed structural concept of isolation system and the need for further improvement of Seismic Code provisions regarding the values of the reduction factors

  1. Investigation of base isolation for fast breeder reactor building

    International Nuclear Information System (INIS)

    Morishita, M.; Kobatake, M.; Ohta, K.; Okada, Y.

    1989-01-01

    Achievement of great rationalization for seismic-resistant design of equipment system is necessary and indispensable from the viewpoints of economical and structural validity for a fast breeder reactor to be made practical. The method of reducing seismic loads on the building and equipment by application of base isolation may be an effective method, but in application to nuclear facilities, it will become necessary to examine the feasibility to actual design considering the severe seismic design requirements in Japan. With these considerations as the background, the authors carried out analytical studies from various viewpoints such as restoring force characteristics of base isolation device, influence of input earthquake motion, soil-structure interaction in base- isolated structure, etc. in case of providing base isolation system for a fast breeder reactor building. Based on these analytical studies, vibration tests on a base-isolated structure using a triaxial shaking table and simulation analyses of the tests were performed attempting to verify the effectiveness of the base isolation system and appropriateness of the analysis method. Results are presented

  2. Characterizing the Benefits of Seismic Isolation for Nuclear Structures: A Framework for Risk-Based Decision Making

    Energy Technology Data Exchange (ETDEWEB)

    Bolisetti, Chandrakanth [Idaho National Lab. (INL), Idaho Falls, ID (United States); Yu, Chingching [Idaho National Lab. (INL), Idaho Falls, ID (United States); Coleman, Justin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Whittaker, Andrew [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kosbab, Ben [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-11-01

    This report provides a framework for assessing the benefits of seismic isolation and exercises the framework on a Generic Department of Energy Nuclear Facility (GDNF). These benefits are (1) reduction in the risk of unacceptable seismic performance and a dramatic reduction in the probability of unacceptable performance at beyond-design basis shaking, and (2) a reduction in capital cost at sites with moderate to high seismic hazard. The framework includes probabilistic risk assessment and estimates of overnight capital cost for the GDNF.

  3. Some progress on seismic isolation technology in building structure in China

    International Nuclear Information System (INIS)

    Lin Luan

    1992-01-01

    Seismic isolation technology has been considerably developed in China. Appropriate codes and design manuals have ben used. There is a plan of developing Fast reactor technology in China. The conceptual design for a fast experimental reactor was completed. Investigation of seismic isolation technology for fast reactor has started

  4. Seismic Response and Performance Evaluation of Self-Centering LRB Isolators Installed on the CBF Building under NF Ground Motions

    Directory of Open Access Journals (Sweden)

    Junwon Seo

    2016-01-01

    Full Text Available This paper mainly treats the seismic behavior of lead-rubber bearing (LRB isolation systems with superealstic shape memory alloy (SMA bending bars functioning as damper and self-centering devices. The conventional LRB isolators that are usually installed at the column bases supply extra flexibility to the centrically braced frame (CBF building with a view to elongate its vibration period, and thus make a contribution to mitigating seismic acceleration transferred from ground to structure. However, these base isolation systems are somehow susceptible to shear failure due to the lack of lateral resistance. In the construction site, they have been used to be integrated with displacement control dampers additionally withstanding lateral seismic forces. For this motivation, LRB isolation systems equipped with superelastic SMA bending bars, which possess not only excellent energy dissipation but also outstanding recentering capability, are proposed in this study. These reinforced and recentering LRB base isolators are modeled as nonlinear component springs, and then assigned into the bases of 2D frame models used for numerical simulation. Their seismic performance and capacity in the base-isolated frame building can be evaluated through nonlinear dynamic analyses conducted with historic ground motion data. After comparative study with analyses results, it is clearly shown that 2D frame models with proposed LRB isolators generally have smaller maximum displacements than those with conventional LRB isolators. Furthermore, the LRB isolation systems with superelastic SMA bending bars effectively reduce residual displacement as compared to those with steel bending bars because they provide more flexibility and recentering force to the entire building structure.

  5. Development of seismic isolation system in vertical direction

    International Nuclear Information System (INIS)

    Ohoka, Makoto; Horikiri, Morito

    1999-04-01

    A structure concept of vertical seismic isolation system which uses a common deck and a set of large dish springs was created in past studies. In this report, a series of dynamic tests on a small scale model of a common deck isolation structure were performed. The model was excited by random and seismic waves in the horizontal direction and 2-D excitation, horizontal and vertical, in order to identify the characteristics of isolation effect. The tests results are summarized as below. 1) This structure has three vibration mode. The second mode is rocking. 2) Rocking frequency depends on the excitation, for this structure has dish spring which contact with cylinders. Rocking damping varies from 2 to 8%, 3) Each mode's response peak frequency to 2-D(horizontal and vertical) excitation is almost the same the some to horizontal excitation. Vertical mode damping to 2-D excitation is about three times to horizontal excitation. 4) Isolation effect depends on a characteristics of frequency of input motion. The minimum response is to the Monju design seismic wave, soil shear wave:Vs=2000 m/sec, natural frequency of horizontal isolation in vertical direction:fv=20 Hz. A relative displacement is controlled. 5) A rocking angular displacement to 2-D excitation is about 2 times to 1-D excitation(vertical). However, it is about 1.2 E-4(rad), sufficiently small for a practical plant. (author)

  6. Characterization and performance evaluation of a vertical seismic isolator using link and crank mechanism

    International Nuclear Information System (INIS)

    Tsujiuchi, N; Ito, A; Sekiya, Y; Nan, C; Yasuda, M

    2016-01-01

    In recent years, various seismic isolators have been developed to prevent earthquake damage to valuable art and other rare objects. Many seismic isolators only defend against horizontal motions, which are the usual cause of falling objects. However, the development of a seismic isolator designed for vertical vibration is necessary since such great vertical vibration earthquakes as the 2004 Niigata Prefecture Chuetsu Earthquake have occurred, and their increased height characteristics are undesirable. In this study, we developed a vertical seismic isolator that can be installed at a lower height and can support loads using a horizontal spring without requiring a vertical spring. It has a mechanism that combines links and cranks. The dynamic model was proposed and the frequency characteristics were simulated when the sine waves were the input. Shaking tests were also performed. The experimental value of the natural frequency was 0.57 Hz, and the theoretical values of the frequency characteristics were close to the experimental values. In addition, we verified this vertical seismic isolator's performance through shaking tests and simulation for typical seismic waves in Japan. We verified the seismic isolation's performance from the experimental result because the average reduction rate of the acceleration was 0.21. (paper)

  7. 3-D pneumatic seismic isolation of nuclear power plants

    International Nuclear Information System (INIS)

    Beliaev, V.S.; Vinogradov, V.V.; Kostarev, V.V.; Kuzmitchev, V.P.; Privalov, S.A.; Siro, V.A.; Krylova, I.N.; Dolgaya, A.A.; Uzdin, A.M.; Vasiliev, A.V.

    2002-01-01

    This paper describes the work carried at the Russian Federation Research Center of Fundamental Engineering (RCFE), in development of innovative pneumatic multicomponent low-frequency seismic isolation bearings for advanced nuclear power plants.This device incorporates both supporting spherical elements, which provide displacements in the horizontal direction, and pneumatic dampers with rubber diaphragms for displacement in the vertical direction. To decrease the relative displacements of the isolated object the system uses viscoelastic dampers. Damping devices had been specially elaborated for the reactor building seismic isolation system as a result of substantial advances in the design and operation of the HD-type hydrodampers, created at the CKTI VIBROSEISM. The procedures developed have been used for comparison of the test and computer data on model isolated steel structure (MISS) and isolated rigid mass (IRM) isolators produced by ENEA and KAERI. Most recent work has concentrated on the development of mathematical models of isolators and isolated nuclear structures. Force-deformation characteristics of the HDRB model had been calculated on the basis of a special method of non-linear elastic theory using the continual transformations method. (author)

  8. Testing of seismic isolation bearings for advanced liquid metal reactor prism

    International Nuclear Information System (INIS)

    Tajirian, F.F.; Kelly, J.M.

    1988-01-01

    Seismic isolation can significantly mitigate earthquake loads on liquid metal reactors (LMR), thus reducing the impact of seismic loads on design. This improves plant safety margins for beyond-design basis seismic events and enhances adaptability of a standardized design to a variety of sites, with potential cost benefits. The PRISM (Power Reactor Inherently Safe Module) LMR incorporates a horizontal isolation system which consists of high damping steel laminated rubber bearings. The results of an experimental program to determine the mechanical properties of the rubber compound and the bearing performance under different loading conditions are presented. The test results demonstrate the excellent performance of the bearings and their suitability for isolating compact LMR plants

  9. Isolation of I and C cabinets against shocks, vibrations and seismic movements

    International Nuclear Information System (INIS)

    Ciocan, George; Zamfir, Madalina; Florea, Ioana; Androne, Marian; Serban, Viorel; Prisecaru, Ilie

    2007-01-01

    This paper presents SERB-CITON solution to isolate the I and C cabinets against shocks, vibrations and seismic movements. The seismic qualification is required because the I and C components installed inside the cabinets are generally sensitive to shocks, vibrations and seismic movements and many times, the manufacturer does not guarantee them for a level of shocks, vibrations and seismic movements higher and equal to the level corresponding to the location where they are installed. The document also presents the solution to isolate such I and C cabinets associated to the hydrogen sulfide compressors located in ROMAG-PROD Drobeta Turnu-Severin. (authors)

  10. The current status of seismic isolation technology in the United States

    International Nuclear Information System (INIS)

    Kelly, J.M.

    1992-01-01

    Seismic isolation is at the present time in a very active state of development. Many new types of isolation systems are being explored and elastomeric isolators, the system which has been employed on almost all isolation systems completed to date, continue to undergo improvements. At least one dozen large projects, either new or the retrofit of existing buildings, have been completed and design studies are underway for at least another one dozen large projects. A large experimental research project for isolators with nuclear reactor application has been carried out over the past few years at EERC. This program has involved shake table testing and the testing of full-scale and model isolators. A wide variety of isolators have been tested including low-shape factor, moderate-shape factor, and very high-shape factor elastomer bearings. The range of elastomers that have been tested include low-damping, high-damping, and very low-modulus compounds. Full-size and model isolators have been tested to failure in several failure modes and the safety margins for isolation systems have been established. The test results have shown that properly designed and manufactured isolators for nuclear reactor applications can sustain levels of loading beyond any possible seismic input and demonstrate that failure of an isolation system cannot occur before failure of the isolated structure. Thus, the use of isolation can only have beneficial contributions to the protection of nuclear facilities, internal piping, and equipment. The presentation will review the latest developments in the implementation of base isolation and describe the results of the test program for its application to nuclear facilities. (author)

  11. Large scale phononic metamaterials for seismic isolation

    International Nuclear Information System (INIS)

    Aravantinos-Zafiris, N.; Sigalas, M. M.

    2015-01-01

    In this work, we numerically examine structures that could be characterized as large scale phononic metamaterials. These novel structures could have band gaps in the frequency spectrum of seismic waves when their dimensions are chosen appropriately, thus raising the belief that they could be serious candidates for seismic isolation structures. Different and easy to fabricate structures were examined made from construction materials such as concrete and steel. The well-known finite difference time domain method is used in our calculations in order to calculate the band structures of the proposed metamaterials

  12. Earthquake response analysis of a base isolated building

    International Nuclear Information System (INIS)

    Mazda, T.; Shiojiri, H.; Sawada, Y.; Harada, O.; Kawai, N.; Ontsuka, S.

    1989-01-01

    Recently, the seismic isolation has become one of the popular methods in the design of important structures or equipments against the earthquakes. However, it is desired to accumulate the demonstration data on reliability of seismically isolated structures and to establish the analysis methods of those structures. Based on the above recognition, the vibration tests of a base isolated building were carried out in Tsukuba Science City. After that, many earthquake records have been obtained at the building. In order to examine the validity of numerical models, earthquake response analyses have been executed by using both lumped mass model, and finite element model

  13. Sensitivity of seismically isolated structures

    International Nuclear Information System (INIS)

    Politopoulos, I.; Hoan, Khac Pham

    2009-01-01

    In this paper we study the sensitivity of seismically isolated structures to a small variability of the earthquake excitation and of some structural properties with respect to the probability of failure and floor spectra. In particular, the influence of the nonlinear behaviour of the isolated superstructure on the vulnerability and on the floor spectra is investigated by means of a series of Monte Carlo simulations of simple two degrees-of-freedom systems. Several types of passive and active isolation systems are examined and three different idealized nonlinear constitutive laws are considered for the superstructure. It is found that, in general, the probability of failure does not depend on the specific cyclic behaviour of the assumed constitutive law and general trends regarding the impact of different isolation devices on vulnerability are established. As for the floor spectra, the influence of moderate nonlinear behaviour of isolated Superstructures, with the exception of the case of a non-dissipative elastic nonlinear law is negligible, contrary to the case of conventional Structures. (authors)

  14. Sensitivity of seismically isolated structures

    Energy Technology Data Exchange (ETDEWEB)

    Politopoulos, I. [CEA Saclay, DEN DANS DM2S, 91 - Gif sur Yvette (France); Hoan, Khac Pham

    2009-07-15

    In this paper we study the sensitivity of seismically isolated structures to a small variability of the earthquake excitation and of some structural properties with respect to the probability of failure and floor spectra. In particular, the influence of the nonlinear behaviour of the isolated superstructure on the vulnerability and on the floor spectra is investigated by means of a series of Monte Carlo simulations of simple two degrees-of-freedom systems. Several types of passive and active isolation systems are examined and three different idealized nonlinear constitutive laws are considered for the superstructure. It is found that, in general, the probability of failure does not depend on the specific cyclic behaviour of the assumed constitutive law and general trends regarding the impact of different isolation devices on vulnerability are established. As for the floor spectra, the influence of moderate nonlinear behaviour of isolated Superstructures, with the exception of the case of a non-dissipative elastic nonlinear law is negligible, contrary to the case of conventional Structures. (authors)

  15. Design considerations associated with the response of seismic isolators and real scale energy absorbers

    International Nuclear Information System (INIS)

    Benzoni, Gianmario

    2015-01-01

    Few observations obtained from extensive experimental programs for the characterization of anti-seismic devices are proposed hereafter. Specifically, few current code requirements, originally intended for the acquisition of fundamental characteristics of performance, proved difficult to be implemented and of questionable significance for the design phase of a seismic isolation application. In particular, for commonly used devices as elastomeric and friction-based isolators, the experimentally validated variation of performance parameters is often not addressed in existing codes and typically neglected in structural models, based on extreme simplification of the device behaviour. The goal of this paper is to suggest an update to specific codes but particularly to solicit the designer’s awareness against oversimplification in the modelling phase of the device performance [it

  16. Parametric Study on Ultimate Failure Criteria of Elbow Piping Components in Seismically Isolated NPP

    Energy Technology Data Exchange (ETDEWEB)

    Hahm, Dae Gi; Ki, Min Kyu [KAERI, Daejeon (Korea, Republic of); Jeon, Bub Gyu; Kim, Nam Sik [Pusan National University, Busan (Korea, Republic of)

    2016-05-15

    It is well known that the interface pipes between isolated and non-isolated structures will become the most critical in the seismically isolated NPPs. Therefore, seismic performance of such interface pipes should be evaluated comprehensively especially in terms of the seismic fragility capacity. To evaluate the seismic capacity of interface pipes in the isolated NPP, firstly, we should define the failure mode and failure criteria of critical pipe components. Hence, in this study, we performed the dynamic tests of elbow components which were installed in a seismically isolated NPP, and evaluated the ultimate failure mode and failure criteria by using the test results. To do this, we manufactured 25 critical elbow component specimens and performed cyclic loading tests under the internal pressure condition. The failure mode and failure criteria of a pipe component will be varied by the design parameters such as the internal pressure, pipe diameter, loading type, and loading amplitude. From the tests, we assessed the effects of the variation parameters onto the failure criteria. For the tests, we generated the seismic input protocol of relative displacement between the ends of elbow component. In this paper, elbow in piping system was defined as a fragile element and numerical model was updated by component test. Failure mode of piping component under seismic load was defined by the dynamic tests of ultimate pipe capacity. For the interface piping system, the seismic capacity should be carefully estimated since that the required displacement absorption capacity will be increased significantly by the adoption of the seismic isolation system. In this study, the dynamic tests were performed for the elbow components which were installed in an actual NPPs, and the ultimate failure mode and failure criteria were also evaluated by using the test results.

  17. Seismic Isolation of Liquefied Natural Gas Tanks: a Compartive Assessment

    OpenAIRE

    Marti Rodriguez, Joaquin; Crespo Álvarez, María José; Martinez Cutillas, Francisco J.

    2010-01-01

    In severe seismic environments, tanks for storage of liquefied natural gas may benefit from seismic isolation. As the design accelerations increase, the inner tank undergoes progressively greater demands and may suffer from corner uplift, elephant’s foot buckling, gross sliding, shell thickness requirements beyond what can be reliably welded and, eventually, global uplift. Some of these problems cause extra costs while others make the construction impossible. The seismic environments at which...

  18. Development of a structural model for the nonlinear shear deformation behavior of a seismic isolator

    International Nuclear Information System (INIS)

    Lee, Jae Han; Koo, Gyeong Hoi; Yoo, Bong

    2002-02-01

    The seismic excitation test results of an isolated test structure for artificial time history excitation are summarized for structure models of the isolated structure and isolation bearing. To simulate the response characteristic of isolated structure, shear hysteresis curves of isolators are analyzed. A simple analysis model is developed representing the actual dynamic behaviors of the test model, and the seismic responses using the simple model of the isolated structure and structure models, which are developed such as linear and bilinear models for isolators, are performed and compared with those of the seismic tests. The developed bilinear model is well applicable only to large shear strain area of LLRB

  19. Improved Simplified Methods for Effective Seismic Analysis and Design of Isolated and Damped Bridges in Western and Eastern North America

    Science.gov (United States)

    Koval, Viacheslav

    The seismic design provisions of the CSA-S6 Canadian Highway Bridge Design Code and the AASHTO LRFD Seismic Bridge Design Specifications have been developed primarily based on historical earthquake events that have occurred along the west coast of North America. For the design of seismic isolation systems, these codes include simplified analysis and design methods. The appropriateness and range of application of these methods are investigated through extensive parametric nonlinear time history analyses in this thesis. It was found that there is a need to adjust existing design guidelines to better capture the expected nonlinear response of isolated bridges. For isolated bridges located in eastern North America, new damping coefficients are proposed. The applicability limits of the code-based simplified methods have been redefined to ensure that the modified method will lead to conservative results and that a wider range of seismically isolated bridges can be covered by this method. The possibility of further improving current simplified code methods was also examined. By transforming the quantity of allocated energy into a displacement contribution, an idealized analytical solution is proposed as a new simplified design method. This method realistically reflects the effects of ground-motion and system design parameters, including the effects of a drifted oscillation center. The proposed method is therefore more appropriate than current existing simplified methods and can be applicable to isolation systems exhibiting a wider range of properties. A multi-level-hazard performance matrix has been adopted by different seismic provisions worldwide and will be incorporated into the new edition of the Canadian CSA-S6-14 Bridge Design code. However, the combined effect and optimal use of isolation and supplemental damping devices in bridges have not been fully exploited yet to achieve enhanced performance under different levels of seismic hazard. A novel Dual-Level Seismic

  20. Shaking table test and simulation analysis on failure characteristics of seismic isolation system

    International Nuclear Information System (INIS)

    Fukushima, Yasuaki; Iizuka, Maao; Satoh, Nobuhisa; Yoshikawa, Kazuhide; Katoh, Asao; Tanimoto, Eisuke

    2000-01-01

    Seismic safety and dynamic characteristics of the rubber bearing breaks of three types of base isolation system, natural rubber bearing + steel damper, lead rubber bearing and high damping rubber bearing, for nuclear power plant facilities were conducted by confirmed shaking table tests. The simulation analyses were conducted for the shaking table tests until the rubber broke. These results demonstrate that the dynamic behavior of base isolation system could be simulated closely until the rubber broke using simple analytical model based on static test. (author)

  1. Sequential Ground Motion Effects on the Behavior of a Base-Isolated RCC Building

    Directory of Open Access Journals (Sweden)

    Zhi Zheng

    2017-01-01

    Full Text Available The sequential ground motion effects on the dynamic responses of reinforced concrete containment (RCC buildings with typical isolators are studied in this paper. Although the base isolation technique is developed to guarantee the security and integrity of RCC buildings under single earthquakes, seismic behavior of base-isolated RCC buildings under sequential ground motions is deficient. Hence, an ensemble of as-recorded sequential ground motions is employed to study the effect of including aftershocks on the seismic evaluation of base-isolated RCC buildings. The results indicate that base isolation can significantly attenuate the earthquake shaking of the RCC building under not only single earthquakes but also seismic sequences. It is also found that the adverse aftershock effect on the RCC can be reduced due to the base isolation applied to the RCC. More importantly, the study indicates that disregarding aftershocks can induce significant underestimation of the isolator displacement for base-isolated RCC buildings.

  2. Three dimensional periodic foundations for base seismic isolation

    International Nuclear Information System (INIS)

    Yan, Y; Mo, Y L; Cheng, Z; Shi, Z; Menq, F; Tang, Y

    2015-01-01

    Based on the concept of phononic crystals, periodic foundations made of periodic materials are investigated in this paper. The periodic foundations can provide low frequency band gaps, which cover the main frequency ranges of seismic waves. Therefore, the periodic foundations are able to protect the upper structures during earthquake events. In this paper, the basic theory of three dimensional periodic foundations is studied and the finite element method was used to conduct the sensitivity study. A simplified three-dimensional periodic foundation with a superstructure was tested in the field and the feasibility of three dimensional periodic foundations was proved. The test results showed that the response of the upper structure with the three dimensional periodic foundation was reduced under excitation waves with the main frequency falling in the attenuation zones. The finite element analysis results are consistent with the experimental data, indicating that three dimensional periodic foundations are a feasible way of reducing seismic vibrations. (paper)

  3. Performance Based Failure Criteria of the Base Isolation System for Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kim, Jung Han; Kim, Min Kyu; Choi, In Kil

    2013-01-01

    The realistic approach to evaluate the failure state of the base isolation system is necessary. From this point of view, several concerns are reviewed and discussed in this study. This is the preliminary study for the performance based risk assessment of a base isolated nuclear power plant. The items to evaluate the capacity and response of an individual base isolator and a base isolation system were briefly outlined. However, the methodology to evaluate the realistic fragility of a base isolation system still needs to be specified. For the quantification of the seismic risk for a nuclear power plant structure, the failure probabilities of the structural component for the various seismic intensity levels need to be calculated. The failure probability is evaluated as the probability when the seismic response of a structure exceeds the failure criteria. Accordingly, the failure mode of the structural system caused by an earthquake vibration should be defined first. The type of a base isolator appropriate for a nuclear power plant structure is regarded as an elastometric rubber bearing with a lead core. The failure limit of the lead-rubber bearing (LRB) is not easy to be predicted because of its high nonlinearity and a complex loading condition by an earthquake excitation. Furthermore, the failure mode of the LRB system installed below the nuclear island cannot be simply determined because the basemat can be sufficiently supported if the number of damaged isolator is not much

  4. Research on 3-D base isolation system applied to new power reactor 3-D seismic isolation device with rolling seal type air spring: Pt.2

    International Nuclear Information System (INIS)

    Junji Suhara; Ryoichiro Matsumoto; Shinsuke Oguri; Yasuo Okada; Kazuhiko Inoue; Kenji Takahashi

    2005-01-01

    A three dimensional seismic base isolation device was developed for heavy structures and buildings such as nuclear power reactor buildings. The device realizes 3-D isolation by combining a LRB (laminated rubber bearing) for horizontal isolation with an air spring for vertical isolation in series. In this study, scale models of the 3-D base isolation device were made and were tested to examine the dynamic properties and ultimate strengths of the device. The performance of the device under earthquake excitation was examined through shaking table tests of 1/7 scale models. As the results, it was confirmed that the device worked smoothly under the horizontal and vertical excitations, and that the theoretical formulae of the orifice damping could explain the test results. The high-pressure air springs of trial production were forced to burst to find out which factor influenced ultimate strength. It was confirmed from results of the burst test that the strength of the air spring depended upon the diameter of rolling part of the bellows and the number of layers of the reinforcing fibers. Judging from the results of the shaking table test and the burst test, the developed 3-D base isolation device was applicable to a nuclear power plant building. (authors)

  5. Horizontal and vertical seismic isolation of a nuclear power plant

    International Nuclear Information System (INIS)

    Ikonomou, A.S.

    1983-01-01

    This paper presents a study for the horizontal and vertical seismic isolation of a nuclear power plant with a base isolation system, developed by the author, called the Alexisismon. This system -- which comprises different schemes for horizontal or vertical or both horizontal and vertical isolation -- is a linear system based on the principle of separation of functions. That is, horizontal and vertical isolation are realized through different components and act independently from each other. As far as horizontal isolation is concerned, the role of transmitting vertical loads is uncoupled from the role of inducing horizontal restoring forces so that both functions can be performed without instability. It is possible either to provide both horizontal and vertical isolation to the whole nuclear plant or to isolate the whole plant horizontally and to provide vertical isolation to sensitive and costly equipment only. When the fundamental period of the plant or equipment is 2 seconds and when the vertical displacements are of the order of + or - 20 inches, the structure or equipment are protected against earthquakes up to 1.10 and 1.30 g for actual and 0.60 and 1.50 g for artificial accelerograms. In both cases all the isolation elements behave elastically up to these acceleration limits as well as the superstructure and equipment

  6. D.E.M.T. Experimental and analytical studies on seismic isolation

    International Nuclear Information System (INIS)

    Gantenbein, F.; Buland, P.

    1989-01-01

    The various studies which have been performed in C.E.A./D.E.M.T. will be reviewed in the paper. They are experimental or theoretical and related to the overall behavior of isolated structures. Among the experimental work one can notice: - the seismic tests on a shaking table of a concrete cylinder isolated by sliding neoprene pads, - the vibrational tests on the reaction mass of TAMARIS seismic facility. The analytical work consists of dynamic calculation method development: - for the soil structure interaction in case of pads interposed between an upper raft and pedestals; - for the time history calculation of sliding structures; - for fluid structure interaction (coupling of fluid and structure motion or sloshing modes). Finally comments will be given on the seismic isolation consequencies for the analysis of F.B.R. vessels: the modes can no more be considered independent (SRSS method leads to important errors), the sloshing increases

  7. Equipment response spectra for base-isolated shear beam structures

    International Nuclear Information System (INIS)

    Ahmadi, G.; Su, L.

    1992-01-01

    Equipment response spectra in base-isolated structure under seismic ground excitations are studied. The equipment is treated as a single-degree-of-freedom system attached to a nonuniform elastic beam structural model. Several leading base isolation systems, including the laminated rubber bearing, the resilient-friction base isolator with and without a sliding upper plate, and the EDF system are considered. Deflection and acceleration response spectra for the equipment and the shear beam structure subject to a sinusoidal and the accelerogram of the N00W component of El Centro 1940 earthquake are evaluated. Primary-secondary interaction effects are included in the analysis. Several numerical parametric studies are carried out and the effectiveness of different base isolation systems in protecting the nonstructural components is studied. It is shown that use of properly designed base isolation systems provides considerable protection for secondary systems, as well as, the structure against severe seismic loadings. (orig.)

  8. Development of three dimensional seismic isolation device with laminated rubber bearing and rolling seal type air spring

    International Nuclear Information System (INIS)

    Okada, Yasuo; Suhara, Junji; Tamura, Tadashi; Ohta, Kazuya; Moro, Satoshi

    2003-01-01

    Three dimensional (3D) seismic isolation device has been developed to use for the base isolation system of the heavy building like a nuclear reactor building. The developed device is the 3D seismic isolation device that consists of the laminated rubber baring as a horizontal isolation device and the rolling seal type air spring as the vertical isolation device in series. In this research, the 3D seismic isolation device reduction model whose scale is 1/10 is made and the workability of the device by the horizontal and vertical dynamic load is examined. Two experiment parameters are considered. One is the case that the structure of the part that the horizontal load and the vertical load contact is pin condition and the other is the case of the roller condition. As a result of the examination, the workability of the vertical direction is confirmed when the horizontal load acts. The pressure resistant ability test for the air spring is performed by the monotonic pressurization. As the result, it is confirmed that pressure resistant ability improved by restricting the side deformation of the air spring and that the material of the existing air spring can withstand high pressure use sufficiently. As the result, it is confirmed that the developed 3D seismic isolation device is applicable to the actual plant. This study was performed under the sponsorship of the Ministry of Economy, Trade and Industry of Japan. (author)

  9. Seismic isolation development for the US advanced liquid-metal reactor program

    International Nuclear Information System (INIS)

    Gluekler, E.L.; Bigelow, C.C.; DeVita, V.; Kelly, J.M.; Seidensticker, R.W.; Tajirian, F.F.

    1991-01-01

    GE Nuclear Energy, in association with a US Industrial Team and support from the US National Laboratories and Universities, is developing a modular liquid-metal reactor concept for the US DOE. The objective of this development is to provide, by the turn of the century, a reactor with optimized passive safety features that is economically competitive with other domestic energy sources, licensable, and ready for commercial deployment. One of the unique features of the concept is the seismic isolation of the reactor modules which decouples the reactors and their safety systems from potentially damaging ground motions and significantly enhances the structural resistance to high energy, as well as long-duration earthquakes. Seismic isolation is accomplished with high-damping natural-rubber bearings. The reactors are located in individual silos below grade level and are supported by the isolator bearings at approximately their center of gravity. This application of seismic isolation is the first for a US nuclear power plant. A development program has been established to assure the full benefits from the utilization of this new approach and to provide adequate system characterization and qualification for licensing certification. The development program, which is supported by the US DOE, ANL, Energy Technology Engineering Center (ETEC), the University of California at Berkeley (UC-Berkeley), GE, and Bechtel National, Inc. (BNI), is described and selected results are presented. The initial testing indicated excellent performance of high-damping natural-rubber bearings. The development of seismic isolation guidelines is in progress as a joint activity between ENEA of Italy and the GE Team. (orig./HP)

  10. Realistic Features in Analysing the Effect of the Seismic Motion upon Localized Structures Considering Base Isolation Influence on Their Dynamic Behaviour

    Science.gov (United States)

    Apostol, Bogdan Felix; Florin Balan, Stefan; Ionescu, Constantin

    2017-12-01

    The effects of the earthquakes on buildings and the concept of seismic base isolation are investigated by using the model of the vibrating bar embedded at one end. The normal modes and the eigenfrequencies of the bar are highlighted and the amplification of the response due to the excitation of the normal modes (eigenmodes) is computed. The effect is much enhanced at resonance, for oscillating shocks which contain eigenfrequencies of the bar. Also, the response of two linearly joined bars with one end embedded is calculated. It is shown that for very different elastic properties the eigenfrequencies are due mainly to the “softer” bar. The effect of the base isolation in seismic structural engineering is assessed by formulating the model of coupled harmonic oscillators, as a simplified model for the structure building-foundation viewed as two coupled vibrating bars. The coupling decreases the lower eigenfrequencies of the structure and increases the higher ones. Similar amplification factors are derived for coupled oscillators at resonance with an oscillating shock.

  11. USE OF BOUNDING ANALYSES TO ESTIMATE THE PREFORMANCE OF A SEISMICALLY ISOLATED STRUCTURE

    Directory of Open Access Journals (Sweden)

    Gökhan ÖZDEMİR

    2017-03-01

    Full Text Available Current design approach for seismic isolated structures is to perform bounding analyses. These analyses provide an envelope for the response of the seismic isolated structure rather than focusing on the actual performance. In this study, the success of bounding analyses to estimate performance of a seismic isolated structure, in which the isolation is provided by means of lead rubber bearings (LRBs, is evaluated in a comparative manner. For this purpose, nonlinear response history analyses were performed under the effect of bidirectional ground motion excitations. In bounding analyses, non-deteriorating hysteretic representations were used to model the hysteretic behavior of LRBs. On the other hand, to estimate the actual performance of both the superstructure and isolator units, deteriorating hysteretic idealizations were employed. The deterioration in strength of LRBs was defined as a function of temperature rise in the lead core. The analyzed structure is an existing seismically isolated hospital building and analytically modeled in accordance with its reported design properties for both isolation units and superstructure. Results obtained from analyses where LRBs are idealized by both deteriorating and non-deteriorating hysteretic representations are used in the comparisons. The response quantities used in the comparisons are maximum isolator displacement, maximum isolator force, maximum absolute floor acceleration, and maximum relative story displacements. In an average sense, bounding analyses is found to provide conservative estimates for the selected response quantities and fulfills its intended purpose. However, it is revealed that there may be individual cases where bounding analyses fails to provide a safe envelope.

  12. Polynomial friction pendulum isolators (PFPIs) for seismic performance control of benchmark highway bridge

    Science.gov (United States)

    Saha, Arijit; Saha, Purnachandra; Patro, Sanjaya Kumar

    2017-10-01

    The seismic response of a benchmark highway bridge isolated with passive polynomial friction pendulum isolators (PFPIs) is investigated and subjected to six bidirectional ground motion records. The benchmark study is based on a lumped mass finite-element model of the 91/5 highway overcrossing located in Southern California. The PFPI system possesses two important parameters; one is horizontal flexibility and the other is energy absorbing capacity through friction. The evaluation criteria of the benchmark bridge are analyzed considering two parameters, time period of the isolator and coefficient of friction of the isolation surface. The results of the numerical study are compared with those obtained from the traditional friction pendulum system (FPS). Dual design performance of the PFPI system suppressed the displacement and acceleration response of the benchmark highway bridge. The dual design hysteresis loop of the PFPI system is the main advantage over the linear hysteresis loop of the FPS. The numerical result indicates that the seismic performance of the PFPI system is better than that of the traditional FPS isolated system. Further, it is observed that variations of the isolation time period and coefficient of friction of the FPS and PFPI systems have a significant effect on the peak responses of the benchmark highway bridge.

  13. Seismic isolation rubber bearings for nuclear facilities

    International Nuclear Information System (INIS)

    Fujita, Takafumi

    1991-01-01

    This paper describes results of biaxial breaking tests by compression and shear and by tension and shear for seismic isolation rubber bearings with bolted-type connections. The bearings used in the tests were low-damping rubber bearings, high-damping rubber bearings, and lead-rubber bearings. Three modes of failure of the bolted-type bearings were observed in the tests. They are the breaking failure by tension and shear; the breaking failure by compression and shear; and the buckling failure by compression and shear. The first and the second modes of failures are almost independent of the types and the sizes of the bearings. The breaking conditions of those failure modes are described in the axial-stress-shear-strain plane. This expression is useful for the evaluation of safety margins of the bearings. The paper outlines the basic design of the nuclear-grade bearings which were used for large-scale rubber bearing tests in a research project for seismic isolation of FBR plants. It also discusses the protection method against aging and the quality control which are important for implementation. (orig./HP)

  14. Seismic isolation rubber bearings for nuclear facilities

    International Nuclear Information System (INIS)

    Fujita, Takafumi

    1989-01-01

    This paper describes results of biaxial breaking tests by compression and shear and by tension and shear for seismic isolation rubber bearings with bolted-type connections. The bearings used in the tests were low-damping rubber bearings, high-damping rubber bearings, and lead-rubber bearings. Three modes of failure of the bolted-type bearings were observed in the tests. They are the breaking failure by tension and shear; the breaking failure by compression and shear; and the buckling failure by compression and shear. The first and the second modes of failures are almost independent of the types and the sizes of the bearings. The breaking conditions of those failure modes are described in the axial stress-shear strain plane. This expression is useful for the evaluation of safety margins of the bearings. The paper outlines the basic design of the nuclear-grade bearings which were used for large-scale rubber bearing tests in a research project for seismic isolation of fast breeder reactor (FBR) plants. The paper also discusses the protection method against aging and the quality control which are important for implementation

  15. Technical specifications for the successful fabrication of laminated seismic isolation bearings

    Energy Technology Data Exchange (ETDEWEB)

    Kulak, R F [Argonne National Laboratory, Argonne, IL (United States)

    1992-07-01

    High damping steel-laminated elastomeric seismic isolation bearings are becoming a preferred device for isolating large buildings and structures. In the United States, the current reference design for the Advanced Liquid Metal Reactor uses laminated bearings for seismic isolation. These bearings are constructed from alternating layers of rubber and steel plates. They are typically designed for shear strains between 50 to 100 percent and expected to sustain two to three times these levels for beyond design basis loading considerations. The technical specifications used to procure these bearings are an important factor in assuring thatthe bearings meet the performance requirements of the design. The key aspects of the current version of the Technical Specifications are discussed in this paper. (author)

  16. Floor Response Spectra of a Base Isolated Auxiliary Building in Different Temperature Environments

    International Nuclear Information System (INIS)

    Park, Junhee; Choun, Youngsun; Choi, Inkil

    2013-01-01

    It is necessary to investigate the aging effect of degradation factors and to evaluate the seismic response of base isolated NPPs with age-related degradation. In this study, the seismic responses for NPPs using high damping rubber bearing with age-related degradation in different temperature were investigated by performing a nonlinear time history analysis. The floor response spectrums (FRS) were presented with time in different temperature environments. The degradation of HRB is found to be particularly sensitive to the ambient temperature. The increase of HRB stiffness leads to the increase of FRS it was observed that the seismic demand for equipment located in the AUX was changed. Therefore it is required that the seismic evaluation for the isolation system (e. g. isolators, equipment located in isolated structure) is performed considering the temperature environments. From the seismic fragility analysis, the seismic capacity of cabinet was affected by the degradation of HRB. Therefore the isolators in the isolated buildings should be carefully designed and manufactured considering the degradation during the life time

  17. Technical specifications for the successful fabrication of laminated seismic isolation bearings

    International Nuclear Information System (INIS)

    Kulak, R.F.

    1992-01-01

    High damping steel-laminated elastomeric seismic isolation bearings are becoming a preferred device for isolating large buildings and structures. In the United States, the current reference design for the Advanced Liquid Metal Reactor uses laminated bearings for seismic isolation. These bearings are constructed from alternating layers of rubber and steel plates. They are typically designed for shear strains between 50 to 100 percent and expected to sustain two to three times these levels for beyond design basis loading considerations. The technical specifications used to procure these bearings are an important factor in assuring that the bearings meet the performance requirements of the design. The key aspects of the current version of the Technical Specifications are discussed in this paper. (author)

  18. Scope and status of Russian contribution for analysis methods for seismically isolated nuclear structure

    International Nuclear Information System (INIS)

    Beliayev, V.S.; Vinogradov, V.V.; Guskov, V.D.

    1993-01-01

    In the last few years, we can see in Russia the amplification of interest to problems of seismic isolation for potentially dangerous objects as the most effective way to alleviate the possible damage. This material comprises the data which characterize the level of theoretical design and experimental studying of seismic isolation systems of NPP components and structures. (author)

  19. Application of seismic isolation for seismic strengthening of buildings damaged by the earthquake of L’Aquila

    International Nuclear Information System (INIS)

    Corsetti, Daniele

    2015-01-01

    The earthquake of 6 April 2009 destroyed the social and economic network fabric of the town of 'L'Aquila'. Since then, many buildings have been restored and some designers have taken the opportunity of rebuilding the town applying innovative technologies. In this context, despite the inevitable bureaucratic hurdles and economic constraints, added to the death of Mr. Mancinelli in 2012 (GLIS Member), several projects were carried out on existing buildings with the idea of applying base seismic isolation. A decade after the first application of this solution on an existing building in Fabriano by Mr. Mancinelli, the experience has proved to be a success, both in terms of achieved results and ease of management. For L’Aquila earthquake the idea was to replicate the positive experience of the “Marche earthquake”, though the problems and obstacles to face often were substantially different. The experience outlined below is a summary of the issues faced and resolved in two projects, taking into account that any solution can be further improved and refined depending on the ability and sensitivity of the designer. We have come to the conclusion that the projects of a base seismic isolation of existing buildings are 'tailor-made' projects, and that the solutions have to be analysed a case by case, even if the main concepts are simple and applicable to a wide range of buildings [it

  20. Low cost friction seismic base-isolation of residential new masonry buildings in developing countries: A small masonry house case study

    Science.gov (United States)

    Habieb, A. B.; Milani, G.; Tavio, T.; Milani, F.

    2017-07-01

    A Finite element model was established to examine performance of a low-cost friction base-isolation system in reducing seismic vulnerability of rural buildings. This study adopts an experimental investigation of the isolation system which was conducted in India. Four friction isolation interfaces, namely, marble-marble, marble-high-density polyethylene, marble-rubber sheet, and marble-geosynthetic were involved. Those interfaces differ in static and dynamic friction coefficient obtained through previous research. The FE model was performed based on a macroscopic approach and the masonry wall is assumed as an isotropic element. In order to observe structural response of the masonry house, elastic and plastic parameters of the brick wall were studied. Concrete damage plasticity (CDP) model was adopted to determine non-linear behavior of the brick wall. The results of FE model shows that involving these friction isolation systems could much decrease response acceleration at roof level. It was found that systems with marble-marble and marble-geosynthetic interfaces reduce the roof acceleration up to 50% comparing to the system without isolation. Another interesting result is there was no damage appearing in systems with friction isolation during the test. Meanwhile a severe failure was clearly visible for a system without isolation.

  1. Numerical activities on seismic isolation in Italy

    International Nuclear Information System (INIS)

    Bettinali, F.; Martelli, A.; Bonacina, G.; Olivieri, M.

    1992-01-01

    The numerical activities which are in progress in Italy in the framework of the seismic isolation studies mainly concern the definition of models for bearings and isolated structures, and their use for test design and the analysis of experimental results. Simple bearing models have been set up, and the development of finite-element (f.e.) three-dimensional (3D) and 2D axisymmetric models is in progress. simple models have been based on the results of single bearing tests: models formed by a spring in parallel to a viscous damper, where both horizontal stiffness and viscous damping vary with displacements, have been developed by ENEA. Models based on hysteretic damping have also been developed by DISP and ISMES. Detailed bearing models include separate elements for the rubber and steel plates. A 3D model has been implemented by ENEA in the ABAQUS code. Linear elastic calculations have been performed with this model. The implementation of an elastic-plastic model for steel is also being completed, together with that of a hyper elastic model of the rubber, based on tests on specimens. Detailed models will be validated based on measured data. They will be used for bearing design and analysis of the effects of defects: some bearings with artificial defects have been fabricated to this purpose. As to the isolated structures, finite-difference programs were set up for the analysis of such structures in the case that they can be represented by sets of one-degree-of-freedom oscillators. The program ISOLA includes the aforementioned simple bearing model of ENEA, where both stiffness and damping depend on displacement and the effects of viscous creep are accounted for. A similar program has been based on the bearing model developed at ISMES. These models have been successfully used to analyse the experimental results concerning both isolated structure mock-ups and actual isolated buildings, based on the single bearing test data for both horizontal stiffness and damping (see a

  2. Seismic isolation development for the US advanced liquid-metal reactor program

    International Nuclear Information System (INIS)

    Gluekler, E.L.; Bigelow, C.C.; DeVita, V.; Kelly, J.M.; Seidensticker, R.W.; Tajirian, F.F.

    1989-01-01

    GE Nuclear Energy, in association with a US Industrial Team and support from the US National Laboratories and Universities, is developing a modular liquid-metal reactor concept for the US Department of Energy (DOE). The objective of this development is to provide, by the turn of the century, a reactor concept with optimized passive safety features that is economically competitive with other domestic energy sources, licensable, and ready for commercial deployment. One of the unique features of the concept is the seismic isolation of the reactor modules which decouples the reactor and their safety systems from potentially damaging ground motions and significantly enhances the structural resistance to high energy, as well as long duration earthquakes. Seismic isolation is accomplished with high damping natural rubber bearings. The reactors are located in individual silos below grade level and are supported by the isolator bearings at approximately their center of gravity. This application of seismic isolation is the first for a US nuclear power plant. A development program has been established to assure the full benefits from the utilization of this new approach and to provide adequate system characterization and qualification for licensing certification. The development program is described in this paper and selected results are presented. The initial testing indicated excellent performance of high damping natural rubber bearings

  3. SHAKING TABLE TEST AND EFFECTIVE STRESS ANALYSIS ON SEISMIC PERFORMANCE WITH SEISMIC ISOLATION RUBBER TO THE INTERMEDIATE PART OF PILE FOUNDATION IN LIQUEFACTION

    Science.gov (United States)

    Uno, Kunihiko; Otsuka, Hisanori; Mitou, Masaaki

    The pile foundation is heavily damaged at the boundary division of the ground types, liquefied ground and non-liquefied ground, during an earthquake and there is a possibility of the collapse of the piles. In this study, we conduct a shaking table test and effective stress analysis of the influence of soil liquefaction and the seismic inertial force exerted on the pile foundation. When the intermediate part of the pile, there is at the boundary division, is subjected to section force, this part increases in size as compared to the pile head in certain instances. Further, we develop a seismic resistance method for a pile foundation in liquefaction using seismic isolation rubber and it is shown the middle part seismic isolation system is very effective.

  4. Performance of Single Friction Pendulum bearing for isolated buildings subjected to seismic actions in Vietnam

    Science.gov (United States)

    Nguyen, N. V.; Nguyen, C. H.; Hoang, H. P.; Huong, K. T.

    2018-04-01

    Using structural control technology in earthquake resistant design of buildings in Vietnam is very limited. In this paper, a performance evaluation of using Single Friction Pendulum (SFP) bearing for seismically isolated buildings with earthquake conditions in Vietnam is presented. A two-dimensional (2-D) model of the 5-storey building subjected to earthquakes is analyzed in time domain. Accordingly, the model is analyzed for 2 cases: with and without SFP bearing. The ground acceleration data is selected and scaled to suit the design acceleration in Hanoi followed by the Standard TCVN 9386:2012. It is shown that the seismically isolated buildings gets the performance objectives while achieving an 91% reduction in the base shear, a significant decrease in the inter-story drift and absolute acceleration of each story.

  5. Mechanical property test of natural rubber bearing for the evaluation of uncertainty value of seismic isolation devices

    International Nuclear Information System (INIS)

    Kim, Min Kyu; Kim, Jung Han; Choi, In Kil

    2012-01-01

    Seismic safety of NPP is one of the most important issues in a nuclear field after great east Japan earthquake in 2011. For the improvement of seismic safety of nuclear power plant, seismic isolation is the easiest solution for increasing the seismic safety. Otherwise, the application of seismic isolation devices for nuclear power plants doesn't make the seismic risk of NPP increases always. The rubber bearing have many uncertainties of material properties and large displacement should absorb according to the application of isolation devices. In this study, for the evaluation of uncertainty of the material properties of rubber bearing, material tests for rubber and mechanical properties test for natural rubber bearing were performed. For the evaluation of effect of hardness of rubber, 4 kinds of rubber hardness for material property tests and 2 kinds of rubber hardness for mechanical property test were considered. As a result, the variation of material properties is higher than that of mechanical properties of natural rubber bearings

  6. Analysis and Design of Reinforced Concrete Structures With Spring Base Isolation

    International Nuclear Information System (INIS)

    Tun Myint Aung; Tin Tin Win, Nyan Myint Kyaw

    2008-06-01

    In the study, analysis and design of four storey reinforced concrete building and it's isolations which is located in seismic zone 4. Then comparison of analysis result between fixed base condition and isolated condition of the building due to multi direction earthquake motions such as horizontal and vertical earthquake. Firstaly, static analysis is used for fixed base condition due to gravity unfactored load to design the helical spring. Secondly spectrum analysis is only utilized for horizontal earthquake and time history analysis is used for both horizontal earthquake and vertical earthquake respectively. Finally, comparison of the analysis results as forces, displacements, drifts, accelerations and shear at various levels of building are presented. The static period of fixed base is 0.4 sec. According to the base isolated concept, base isolated period is lengthened to 0.8 sec, 1 sec and 1.2sec for design earthquake level. The results which are especially compared to base isolated (1.2 sec) and fixed base building show that the displacements of base isolated is more than fixed base building but other seismic response such as acceleration of base isolated is significantly reduced compared to fixed base as well as base isloated building has capacity for reducing of member force of the structure with fixed base building

  7. Effect of the foundation stiffness on the response of a seismically isolated tank under SSE conditions

    NARCIS (Netherlands)

    Esposito, G.; Courage, W.

    2003-01-01

    This paper presents the results of a feasibility study of a seismic isolated 120.000 m3 LNG tank. A simple model was used to evaluate the seismic response of the isolated tank under Safe Shutdown Earthquake conditions. The frequency dependent dynamic stiffness of the foundation was

  8. Intercomparison of analysis methods for seismically isolated nuclear structures. Papers and working materials presented at the 3. research coordination meeting

    International Nuclear Information System (INIS)

    1998-01-01

    The Coordinated research program on Intercomparison of analysis methods for seismically isolated nuclear structures involved participants from Italy, Japan, Republic of Korea, Russia, United Kingdom, USA, EC. The purpose of the meeting was to review the progress on the finite element prediction of the force-deformation behaviour of seismic isolators and to discuss the first set of analytical results for the prediction of the response of base-oscillated structures to earthquake inputs. The intercomparison of predictions of bearing behaviour has identified important unexpected issues requiring deeper investigation

  9. Retrofitting Heritage Buildings by Strengthening or Using Seismic Isolation

    International Nuclear Information System (INIS)

    Danieli, Moshe; Bloch, Jacob; Ribakov, Yuri

    2008-01-01

    Many heritage buildings in the Mediterranean area include stone domes as a structural and architectural element. Present stage of these buildings often requires strengthening or retrofitting in order to increase their seismic resistance. Strengthening is possible by casting above existing dome a thin reinforced concrete shell with a support ring. It yields reduction of stresses and strains in the dome. This paper deals with examples of actual restoration and strengthening of three structures in Georgia, two of them damaged by an earthquake in 1991, (a temple in Nikortzminda and a synagogue in Oni, built in 11 th and 19 r century, respectively) and a mosque in Akhaltzikhe, built in 18th century. Retrofitting of these structures was aimed at preservation of initial geometry and appearance by creating composite (stone--reinforced concrete, or stone--shotcrete) structures, which were partially or fully hidden. Further improving of seismic response may be achieved by using hybrid seismic isolation decreasing the seismic forces and adding damping. A brief description of the design procedure for such cases is presented

  10. Passive base isolation with superelastic nitinol SMA helical springs

    International Nuclear Information System (INIS)

    Huang, Bin; Zhang, Haiyang; Wang, Han; Song, Gangbing

    2014-01-01

    Seismic isolation of structures such as multi-story buildings, nuclear reactors, bridges, and liquid storage tanks should be designed to preserve structural integrity. By implementing seismic isolation technology, the deformation of superstructures can be dramatically reduced, consequently helping to protect their safety as well. In this paper, an innovative type of passive base isolation system, which is mainly composed of superelastic nitinol SMA helical springs, is developed. In order to verify the effectiveness of the proposed system, a two-story experimental steel frame model is constructed, and two superelastic SMA helical springs are thermo-mechanically built in the laboratory. To describe the nonlinear mechanical properties of the superelastic SMA helical springs under reciprocating load, a phenomenological model is presented in terms of a series of tensile tests. Afterwards, a numerical model of the two-story frame with the suggested isolation system is set up to simulate the response of the isolated frame subjected to an earthquake. Both the experimental and the numerical simulation results indicate that the proposed base isolation system can remarkably suppress structural vibrations and has improved isolation effects when compared with a steel spring isolation system. Due to the capabilities of energy dissipation as well as fully re-centering, it is very applicable to utilize the suggested isolation system in base isolated structures to resist earthquakes. (paper)

  11. Evaluation of seismic acceleration responses of base-isolated and nonisolated structures varying with mechanical characteristics of foundations

    Energy Technology Data Exchange (ETDEWEB)

    You, Bong; Lee, Jae Han; Ku, Kyung Hoi [Korea Atomic Energy Research Institute, Daeduk (Korea, Republic of)

    1996-05-01

    The evaluation of acceleration responses of isolated and nonisolated structures according to mechanical features of soils is important. The kinds of soils taken in analyses are soft, medium and hard rocks, and a fixed base condition is also taken for the comparison. The horizontal isolation frequency used is 0.5 Hz. The time history analyses of reference power plant using 1940 El Centro horizontal (NS) and vertical earthquakes are performed to investigate the seismic responses varying with soil characteristics for isolated and nonisolated structures. The horizontal acceleration responses of the horizontal isolated-structures show almost similar values irrespective of the various kinds of soils and are largely decreased in the frequency ranges above 2 hz. The vertical natural frequency, 21Hz of high damping rubber bearing does not affect the vertical acceleration responses in case of soft rock, but largely affects in hard rock condition. For nonisolated structures, the acceleration responses are decreased in both horizontal and vertical directions by taking into account the soils in the analysis model. The extent of reduction of acceleration responses is larger in vertical direction than in horizontal one, as the stiffness of rock becomes softer. 8 tabs., 21 figs., 8 refs. (Author) .new.

  12. Evaluation of seismic acceleration responses of base-isolated and nonisolated structures varying with mechanical characteristics of foundations

    International Nuclear Information System (INIS)

    You, Bong; Lee, Jae Han; Ku, Kyung Hoi

    1996-05-01

    The evaluation of acceleration responses of isolated and nonisolated structures according to mechanical features of soils is important. The kinds of soils taken in analyses are soft, medium and hard rocks, and a fixed base condition is also taken for the comparison. The horizontal isolation frequency used is 0.5 Hz. The time history analyses of reference power plant using 1940 El Centro horizontal (NS) and vertical earthquakes are performed to investigate the seismic responses varying with soil characteristics for isolated and nonisolated structures. The horizontal acceleration responses of the horizontal isolated-structures show almost similar values irrespective of the various kinds of soils and are largely decreased in the frequency ranges above 2 hz. The vertical natural frequency, 21Hz of high damping rubber bearing does not affect the vertical acceleration responses in case of soft rock, but largely affects in hard rock condition. For nonisolated structures, the acceleration responses are decreased in both horizontal and vertical directions by taking into account the soils in the analysis model. The extent of reduction of acceleration responses is larger in vertical direction than in horizontal one, as the stiffness of rock becomes softer. 8 tabs., 21 figs., 8 refs. (Author) .new

  13. The implementation of base isolation in the United States

    International Nuclear Information System (INIS)

    Kelly, J.M.

    1993-01-01

    The concept of base isolation as an innovative means of providing earthquake resistance to structural systems was met initially with a great deal of skepticism by the engineering community. Today, however, it is on the cutting edge of seismic-resistance engineering, as evidenced by the rapidly increasing number of buildings, both new construction and retrofit, using this earthquake-resistant technique. It is now generally accepted that a base-isolated building will perform better than a conventional fixed-base building in moderate or strong earthquakes. In the structures in which it has been used so far, the major benefit has been to reduce the effects of seismic forces on contents and internal equipment, more than justifying the increased cost of isolated construction. This review will mainly cover the development and application of base isolation to buildings in the US. The acceptance of this approach has been slow, but as a result of the 1989 Loma Prieta earthquake there is an increasing interest in its use for repair of buildings damaged in that earthquake and for the retrofit of historic buildings that are considered vulnerable to earthquake loading. Base isolation may play a major role in the future in projects as diverse as advanced nuclear reactors and public housing in developing countries

  14. Development of guidelines for seismic isolation in Italy

    International Nuclear Information System (INIS)

    Olivieri, M.; Martelli, A.; Bettinali, F.; Bonacina, G.

    1992-01-01

    The first activities on seismic isolation that were performed in Italy concerned the preparation of a proposal for design guidelines for nuclear power plants using the high damping steel-laminated elastomer bearings (HDLRBs). They were jointly initiated by ENEA-RIN and GE Nuclear Energy in 1988, with the co-operation of ISMES and the support of experts of ENEA-DISP and Bechtel National Inc. The features of the guidelines proposal were outlined at the First Post-SMiRT Conference Seminar on Seismic Base Isolation of Nuclear Power Facilities (San Francisco, 1989). The full text of the document was published in the Journal 'Energia Nucleare' in 1990, in a tentative form, to allow for a broad review. A summary of the main items - together with some first results of R and D studies performed in support to guidelines development - was also reported in a paper which was recently published by the Journal 'Nuclear Technology' (February 1992). A first revision of the document is being prepared and will be soon published: it accounts for both comments received - for instance, by the American Society of Civil Engineers (ASCE), ENEA-DISP and the Malaysian Rubber Producers' Association (MRPRA) - and the first results of R and D studies in progress in Italy and the USA. These activities have recently been extended - as part of a cooperation with the Italian Standard Authority (UNI) - to other antiseismic devices, for application to civil buildings and non-nuclear plants. A co-operation of ENEA, ENEL and ISMES has also been started with the National Seismic Service to help it in the assessment of national regulations. Furthermore, extension of the aforesaid guidelines document to nuclear reactors using bearings different from the HDLRB has been planned, under the sponsorship of the Commission of the European communities: this work will be performed by ENEA, with the cooperation of ALGA, ISMES, ANSALDO and the Nuclear Engineering Laboratory (LIN) of the Bologna University, and the

  15. Recent progress and application on seismic isolation energy dissipation and control for structures in China

    Science.gov (United States)

    Zhou, Fulin; Tan, Ping

    2018-01-01

    China is a country where 100% of the territory is located in a seismic zone. Most of the strong earthquakes are over prediction. Most fatalities are caused by structural collapse. Earthquakes not only cause severe damage to structures, but can also damage non-structural elements on and inside of facilities. This can halt city life, and disrupt hospitals, airports, bridges, power plants, and other infrastructure. Designers need to use new techniques to protect structures and facilities inside. Isolation, energy dissipation and, control systems are more and more widely used in recent years in China. Currently, there are nearly 6,500 structures with isolation and about 3,000 structures with passive energy dissipation or hybrid control in China. The mitigation techniques are applied to structures like residential buildings, large or complex structures, bridges, underwater tunnels, historical or cultural relic sites, and industrial facilities, and are used for retrofitting of existed structures. This paper introduces design rules and some new and innovative devices for seismic isolation, energy dissipation and hybrid control for civil and industrial structures. This paper also discusses the development trends for seismic resistance, seismic isolation, passive and active control techniques for the future in China and in the world.

  16. Effect of Nonlinear Hardening of Lead Rubber Bearing on Long Term Behavior of Base Isolated Containment Building

    International Nuclear Information System (INIS)

    Park, Junhee; Choun, Young-Sun; Kim, Min-Kyu

    2015-01-01

    The rubber material used in laminated rubber bearings is the hyper elastic material whose stress-strain relationship can be defined as nonlinearly elastic. From the previous research, it was presented that the rubber hardness and stiffness was increased by the aging of LRB. The mechanical properties of LRB changed by aging can directly affect a nonlinear hardening behavior. Therefore it is needed to consider the nonlinear hardening effect for exactly evaluating the seismic safety of base isolated structure during the life time. In this study, the seismic response analysis of base isolated containment building was performed by using the bilinear model and the hardening model to identify the effect of structural response on the nonlinear hardening behavior of isolator. Moreover the floor response spectrum of base isolated structure considering the aging was analyzed by according to the analysis model of LRB.. The hardening behavior of lead rubber bearing occurs at high strain. Therefore it is reasonable to assume that the hysteretic model of LRB is the nonlinear hardening model for exactly evaluating the seismic response of base isolated structure. The nonlinear analysis of base isolated containment was performed by using the nonlinear hardening variables which was resulted from the test results and finite element analysis. From the analysis results, it was represented that the FRS was higher about 40% with nonlinear hardening model than with the bilinear model. Therefore the seismic response of base isolated structure with bilinear model can be underestimated than the real response. It is desired that the nonlinear hardening model of LRB is applied for the seismic risk evaluation requiring the ultimate state of LRB

  17. Seismic isolation of plants at risk of a severe accident

    International Nuclear Information System (INIS)

    Forni, Massimo

    2015-01-01

    More and more devastating earthquakes struck every year our planet. Many of these, though occurring in areas considered at high risk of earthquakes, far exceed the levels required by law. The industrial plants subjected to risk of severe accident, in particular petrochemical and nuclear power plants, are particularly exposed to this risk because of the number and the complexity of the structures and critical components of which they are composed. For this type of structures, anti-seismic techniques able to provide complete protection, even in case of unforeseen events, are needed. Seismic isolation is certainly the most promising technology of modern antiseismic as it allows not only to significantly reduce the dynamic load acting on the structures in case of seismic attack, but to provide safety margins against violent earthquakes, exceeding the assumed maximum design limit. [it

  18. Financial aspects of a seismic base isolation system for a steel high-rack structure

    Directory of Open Access Journals (Sweden)

    Kilar, V.

    2013-12-01

    Full Text Available The paper deals with the effects and costs of implementing a base isolation system for the mitigation of the seismic risk of an existing steel rack structure. Different realistic distributions of the payload mass and occupancy levels, which form different plan asymmetric variants, have been analysed. The results obtained by the pushover analysis (N2 method are presented as top floor envelopes and as plastic hinge damage patterns. In the presented cost study, the cost of the implementation of the proposed base isolation system is compared with the estimated costs of structural repairs to the damaged structural members of the superstructure, as well as with estimated expenses of the downtime period. The results have shown that base isolation is, in general, not economically feasible for lower ground motion intensities, whereas it could be of great benefit in the case of moderate and high intensities, especially if the downtime period is taken into account.El presente artículo trata sobre los efectos y costes de implementación de un sistema de aislamiento en cimentación para la mitigación del riesgo sísmico de la estructura de un bastidor de acero en altura prexistente. Se han analizado diferentes distribuciones realistas de la masa contribuyente y de los niveles de ocupación, conformando diferentes variantes asimétricas en planta. Se presentan los resultados obtenidos mediante el método N2 (análisis estático incremental no lineal como envolventes de las plantas superiores y como patrones de deterioro en estado plástico. En el estudio de costos presentado, el coste de implementación del sistema de aislamiento propuesto se compara con los costes estimados de reparación de los elementos superestructurales y los costes derivados del período de desocupación. Los resultados muestran que, en general, el aislamiento en la base no resulta viable económicamente para movimientos de baja intensidad, pero puede ser muy beneficioso en el caso de

  19. Lessons learned from the 2016 Kumamoto earthquake: Building damages and behavior of seismically isolated buildings

    Science.gov (United States)

    Morita, Keiko; Takayama, Mineo

    2017-10-01

    Powerful earthquakes stuck Kumamoto and Oita Prefectures in Kyushu, Japan. It began with the Magnitude 6.5 foreshock at 21:26 JST 14 April, followed by the Magnitude 7.3 mainshock at 1:25 JST 16 April, 2016. The sequence earthquakes also involved more than 1700 perceptible earthquakes as of 13 June. The entire sequence was named the 2016 Kumamoto earthquake by the Japan Meteorological Agency. Thousands of buildings and many roads were damaged, and landslides occurred. The Japanese building standard law is revised in 1981. Structural damages were concentrated on buildings constructed prior to 1981. The area of Mashiki and Southern Aso were most badly affected, especially wooden houses extremely damaged. In Japan, Prof. Hideyuki Tada (title at the time) undertook research on laminated rubber bearings in 1978, and put it into practical use in 1981. The single family house at Yachiyodai, Chiba Prefecture is completed in 1983, it's the first seismically isolated building which is installed laminated rubber bearings in Japan. Afterward, this system is gradually adopted to mainly office buildings, like a research laboratory, a hospital, a computer center and other offices. In the 1994 Northridge earthquake, the 1995 Kobe earthquake and 2011 Tohoku earthquake, seismically isolated buildings improve these good performances, and recently number of the buildings have increased, mainly high risk area of earthquakes. Many people believed that Kumamoto was a low risk area. But there were 24 seismically isolated buildings in Kumamoto Prefecture at the time. The seismically isolated buildings indicated excellent performances during the earthquakes. They protected people, buildings and other important facilities from damages caused by the earthquake. The purpose of this paper is to discuss lessons learned from the 2016 Kumamoto earthquake and behavior of seismically isolated buildings in the earthquake.

  20. Study on comparison of special moment frame steel structure (SMF) and base isolation special moment frame steel structure (BI-SMF) in Indonesia

    Science.gov (United States)

    Setiawan, Jody; Nakazawa, Shoji

    2017-10-01

    This paper discusses about comparison of seismic response behaviors, seismic performance and seismic loss function of a conventional special moment frame steel structure (SMF) and a special moment frame steel structure with base isolation (BI-SMF). The validation of the proposed simplified estimation method of the maximum deformation of the base isolation system by using the equivalent linearization method and the validation of the design shear force of the superstructure are investigated from results of the nonlinear dynamic response analysis. In recent years, the constructions of steel office buildings with seismic isolation system are proceeding even in Indonesia where the risk of earthquakes is high. Although the design code for the seismic isolation structure has been proposed, there is no actual construction example for special moment frame steel structure with base isolation. Therefore, in this research, the SMF and BI-SMF buildings are designed by Indonesian Building Code which are assumed to be built at Padang City in Indonesia. The material of base isolation system is high damping rubber bearing. Dynamic eigenvalue analysis and nonlinear dynamic response analysis are carried out to show the dynamic characteristics and seismic performance. In addition, the seismic loss function is obtained from damage state probability and repair cost. For the response analysis, simulated ground accelerations, which have the phases of recorded seismic waves (El Centro NS, El Centro EW, Kobe NS and Kobe EW), adapted to the response spectrum prescribed by the Indonesian design code, that has, are used.

  1. Intercomparison of analysis methods for seismically isolated nuclear structures. Part 1: Advanced test data and numerical methods. Working material

    International Nuclear Information System (INIS)

    1993-01-01

    The purpose of the meeting was to review proposed contributions from CRP participating organizations to discuss in detail the experimental data on seismic isolators, to review the numerical methods for the analysis of the seismic isolators, and to perform a first comparison of the calculation results. The aim of the CRP was to validate the reliable numerical methods used for both detailed evaluation of dynamic behaviour of isolation devices and isolated nuclear structures of different nuclear power plant types. The full maturity of seismic isolation for nuclear applications was stressed, as well as the excellent behaviour of isolated structures during the recent earthquakes in Japan and the USA. Participants from Italy, USA, Japan, Russian federation, Republic of Korea, United Kingdom, India and European Commission have presented overview papers on the present programs and their status of contribution to the CRP

  2. Intercomparison of analysis methods for seismically isolated nuclear structures. Part 1: Advanced test data and numerical methods. Working material

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-07-01

    The purpose of the meeting was to review proposed contributions from CRP participating organizations to discuss in detail the experimental data on seismic isolators, to review the numerical methods for the analysis of the seismic isolators, and to perform a first comparison of the calculation results. The aim of the CRP was to validate the reliable numerical methods used for both detailed evaluation of dynamic behaviour of isolation devices and isolated nuclear structures of different nuclear power plant types. The full maturity of seismic isolation for nuclear applications was stressed, as well as the excellent behaviour of isolated structures during the recent earthquakes in Japan and the USA. Participants from Italy, USA, Japan, Russian federation, Republic of Korea, United Kingdom, India and European Commission have presented overview papers on the present programs and their status of contribution to the CRP.

  3. Delineation of seismic source zones based on seismicity parameters ...

    Indian Academy of Sciences (India)

    In the present study, an attempt has been made to delineate seismic source zones in the study area (south India) based on the seismicity parameters. Seismicity parameters and the maximum probable earthquake for these source zones were evaluated and were used in the hazard evaluation. The probabilistic evaluation of ...

  4. Development of an evaluation method for seismic isolation systems of nuclear power facilities. Development of crossover piping design method for seismic isolation systems

    International Nuclear Information System (INIS)

    Otoyo, Teruyoshi; Otani, Akihito; Otani, Akihito; Fukushima, Shunsuke; Jimbo, Masakazu; Yamamoto, Tomofumi; Sakakida, Takaaki; Onishi, Shigenobu

    2014-01-01

    In the conceptual design of seismic isolation systems of nuclear power facilities, there exist two types of installation. The first type is to isolate both the reactor and the turbine buildings, the other is to isolate only the reactor building. In the latter type, the crossover piping, which installed between the isolated and the non-isolated buildings, is excited and deformed by the different motions of those buildings. In this study, shaking tests of 1/10 scaled model of the main steam piping and FEM analyses under multiple support excitation conditions have been performed to investigate the vibration behavior of the crossover piping. It was confirmed that modal time-history analyses could be in good agreement with the shaking test results. Also, Numerous combination methods were investigated by comparing response spectrum analyses and modal time-history analyses. In conclusion, response spectrum analyses using SRSS combinations could correspond to time-history analyses. (author)

  5. Development of safety evaluation guidelines for base-isolated buildings in Japan

    International Nuclear Information System (INIS)

    Aoyama, Hiroyuki

    1989-01-01

    This paper describes the safety evaluation guidelines and the review process for non-nuclear base-isolated buildings proposed for construction in Japan. The paper discusses the guidelines application for two types of soil: hard soil and intermediate soil (soft soil was excluded.); safety evaluation items included in the level C design review; and safety margin of base isolation. Lessons learned through these design review efforts have potential applicability to design of seismic base isolation for nuclear power plants

  6. On the Need for Reliable Seismic Input Assessment for Optimized Design and Retrofit of Seismically Isolated Civil and Industrial Structures, Equipment, and Cultural Heritage

    Science.gov (United States)

    Martelli, Alessandro

    2011-01-01

    Based on the experience of recent violent earthquakes, the limits of the methods that are currently used for the definition of seismic hazard are becoming more and more evident to several seismic engineers. Considerable improvement is felt necessary not only for the seismic classification of the territory (for which the probabilistic seismic hazard assessment—PSHA—is generally adopted at present), but also for the evaluation of local amplification. With regard to the first item, among others, a better knowledge of fault extension and near-fault effects is judged essential. The aforesaid improvements are particularly important for the design of seismically isolated structures, which relies on displacement. Thus, such a design requires an accurate definition of the maximum value of displacement corresponding to the isolation period, and a reliable evaluation of the earthquake energy content at the low frequencies that are typical of the isolated structures, for the site and ground of interest. These evaluations shall include possible near-fault effects even in the vertical direction; for the construction of high-risk plants and components and retrofit of some cultural heritage, they shall be performed for earthquakes characterized by very long return periods. The design displacement shall not be underestimated, but neither be excessively overestimated, at least when using rubber bearings in the seismic isolation (SI) system. In fact, by decreasing transverse deformation of such SI systems below a certain value, their horizontal stiffness increases. Thus, should a structure (e.g. a civil defence centre, a masterpiece, etc.) protected in the aforesaid way be designed to withstand an unnecessarily too large earthquake, the behaviour of its SI system will be inadequate (i.e. it will be too stiff) during much more frequent events, which may really strike the structure during its life. Furthermore, since SI can be used only when the room available to the structure

  7. Seismic Response Prediction of Buildings with Base Isolation Using Advanced Soft Computing Approaches

    Directory of Open Access Journals (Sweden)

    Mosbeh R. Kaloop

    2017-01-01

    Full Text Available Modeling response of structures under seismic loads is an important factor in Civil Engineering as it crucially affects the design and management of structures, especially for the high-risk areas. In this study, novel applications of advanced soft computing techniques are utilized for predicting the behavior of centrically braced frame (CBF buildings with lead-rubber bearing (LRB isolation system under ground motion effects. These techniques include least square support vector machine (LSSVM, wavelet neural networks (WNN, and adaptive neurofuzzy inference system (ANFIS along with wavelet denoising. The simulation of a 2D frame model and eight ground motions are considered in this study to evaluate the prediction models. The comparison results indicate that the least square support vector machine is superior to other techniques in estimating the behavior of smart structures.

  8. Seismic analysis of a LNG storage tank isolated by a multiple friction pendulum system

    Science.gov (United States)

    Zhang, Ruifu; Weng, Dagen; Ren, Xiaosong

    2011-06-01

    The seismic response of an isolated vertical, cylindrical, extra-large liquefied natural gas (LNG) tank by a multiple friction pendulum system (MFPS) is analyzed. Most of the extra-large LNG tanks have a fundamental frequency which involves a range of resonance of most earthquake ground motions. It is an effective way to decrease the response of an isolation system used for extra-large LNG storage tanks under a strong earthquake. However, it is difficult to implement in practice with common isolation bearings due to issues such as low temperature, soft site and other severe environment factors. The extra-large LNG tank isolated by a MFPS is presented in this study to address these problems. A MFPS is appropriate for large displacements induced by earthquakes with long predominant periods. A simplified finite element model by Malhotra and Dunkerley is used to determine the usefulness of the isolation system. Data reported and statistically sorted include pile shear, wave height, impulsive acceleration, convective acceleration and outer tank acceleration. The results show that the isolation system has excellent adaptability for different liquid levels and is very effective in controlling the seismic response of extra-large LNG tanks.

  9. Contribution of the JRC Ispra to the intercomparison of analysis methods for seismically isolated nuclear structures

    International Nuclear Information System (INIS)

    Magonette, G.; Renda, V.

    2002-01-01

    Aim of the work done at JRC has been essentially to investigate the potentiality of the Pseudo-Dynamic (PsD) method to test structures incorporating anti-seismic protection devices based on materials with a strain-rate dependent behaviour. This is of relevant importance due to the interest to perform tests on large-scale mock-ups to assess the behaviour of realistic structure of civil engineering interest. Two specific typologies of protection have been analysed and tested at the European Laboratory for Structural Assessment (ELSA) of JRC Ispra. The first dealing with base isolation and the second with energy dissipation devices. In both cases the protection devices were based on high damping rubber material which is characterised by a moderate dependence from the strain rate of the application of the displacements. To validate a standard procedure to test base isolated structures by the PsD method, a collaboration was set up with the Italian Working Group on Seismic Isolation which includes the national research centre ENEA, the national electricity board ENEL, the industrial research centre ISMES and a manufacturer of isolators ALGA. In the framework of this collaboration it was decided to test at the ELSA laboratory a scaled 5-storey frame structure (provided by ENEL), isolated by means of high damping rubber bearings (HDRBs), which had been tested on the shaking table of ISMES. This experimental activity aimed to compare the results which can be obtained by means of the PsD testing technique with those which can be obtained by means of a truly-dynamic test on a shaking table. To validate a standard procedure to test structures incorporating energy dissipation devices, an international collaboration has been set up with Industries, Research Centres and Universities in the framework of a project partially funded by the European Commission through the General Directorate for Science and Technology. The obtained results show once more that the PsD method, when

  10. F.E. analysis of seismic isolators: comparison with experimental results

    International Nuclear Information System (INIS)

    Fuller, K.N.G.; Gough, J.; Ahmadi, H.R.

    1998-01-01

    Analysis of seismic isolators is performed by the ABAQUS code. The force deformation behaviour of a circular layer of rubber bonded to rigid surface was investigated. This model is chosen because of its simplicity and the relatively short processing time required. A 3-dimensional model was used for finite element calculations. Comparison of calculated values with experimental results is shown

  11. Seismic Base Isolators For A Silo Supporting Structure

    Directory of Open Access Journals (Sweden)

    Bîtcă Daniel

    2015-05-01

    Full Text Available A 3000 tones capacity silo, located in a seismic area with ground acceleration ag = 0,20g and TC =1,0s, was designed in a classical solution The supporting structure has an octagonal shape in planview, and columns with “Maltese cross sections”. The main lateral resisting system is made up of centric bracings with cross-section class I.

  12. Control of mixed seismic isolation systems

    International Nuclear Information System (INIS)

    Teodorescu, Catalin-Stefan

    2013-01-01

    Vibration attenuation control designs are proposed for reduced plant models consisting of n-degree-of-freedom base seismically-isolated structures (i.e., a specific type of earthquake-resistant design), modeled by uncertain nonlinear systems and subjected to one-dimensional horizontal ground acceleration (i.e. the earthquake signal), treated as unknown disturbance but assumed to be bounded. In control systems literature, this is a perturbation attenuation problem. The main result of this PhD is the development of a modified version of Leitmann and co-authors' classical result on the stabilization of uncertain nonlinear systems. The proposed theorem consists of a bounded nonlinear feedback control law that is capable of ensuring uniform boundedness and uniform ultimate boundedness in closed-loop. In particular, it can be applied to solving semi-active control design problems, which are currently dealt with in earthquake engineering. The control objective is to improve the behavior (i.e. response) of mixed base-isolated structures to external disturbance, namely earthquakes. What differentiates our problem from the majority to be found in the literature is that: (i) attention is being paid to the protection of equipment placed inside the structure an not only to the structure itself; (ii) instead of using regular performance indicators expressed in terms of relative base displacement versus floors accelerations, we use solely the pseudo-acceleration floor response spectra, as it was proposed in previous recent works by Politopoulos and Pham. Actually, this work is an attempt to explicitly use floor response spectra as performance criterion. Concerning the application procedure, some of the topics that were detailed are: (i) modeling of earthquake signals; (ii) tuning of control law parameters based on vibration theory; (iii) validation and testing of the closed-loop behavior using numerical simulations: for simplicity reasons, we take n=2. This procedure can be

  13. Effectiveness of Tuned Mass Dampers in Seismic Response Control of Isolated Bridges Including Soil-Structure Interaction

    Directory of Open Access Journals (Sweden)

    Said Elias

    Full Text Available Abstract The effect of soil-structure interaction (SSI on the dynamic responses of seismically isolated three-span continuous reinforced concrete (RC bridge is investigated. Also, tuned mass damper(s (TMD/s is/are installed to control undesirable bearing displacement, even under the SSI effect. The TMDs are placed at the mid-span of the bridge and each tuned with a modal frequency, while controlling up to first few modes as desirable. The soil surrounding the foundation of pier is modeled by frequency independent coefficients. Dynamic analysis is carried out in time domain using direct integration method. In order to specify the effects of the SSI, the responses of the non-isolated, isolated, and controlled isolated bridge are compared. It is observed that the soil surrounding the pier has significant effects on the bearing displacement of the isolated RC bridges. In addition, it is observed that the seismic responses of isolated RC bridge reduced significantly with installation of the TMDs.

  14. Proposed Activities to Address Regulatory Gaps and Challenges for Licensing Advanced Reactors Using Seismic Isolation

    International Nuclear Information System (INIS)

    Coleman, Justin Leigh; Kammerer, Annie M.; Whittaker, Andrew S.

    2016-01-01

    Over the last decade, particularly since implementation of the certified design regulatory approaches outlined in 10 CFR 52, 'Licenses, Certifications, and Approvals for Nuclear Power Plants,' interest has been increasing in the use of seismic isolation (SI) technology to support seismic safety in nuclear facilities. In 2009, the United States (U.S.) Nuclear Regulatory Commission (NRC) initiated research activities to develop new guidance targeted at isolated facilities because SI is being considered for nuclear power plants in the U.S. One product of that research, which was developed around a risk-informed regulatory approach, is a draft NRC NUREG series (NUREG/CR) report that investigates and discusses considerations for use of SI in otherwise traditionally founded large light water reactors (LWRs). A coordinated effort led to new provisions for SI of LWRs in the American Society of Civil Engineers standard ASCE/SEI 4-16, 'Seismic Analysis of Safety Related Nuclear Structures.' The risk-informed design philosophy that underpinned development of the technical basis for these documents led to a set of proposed performance objectives and acceptance criteria intended to serve as the foundation for future NRC guidance on the use of SI and related technology. Although the guidance provided in the draft SI NUREG/CR report and ASCE/SEI 4 16 provides a sound basis for further development of nuclear power plant designs incorporating SI, these initial documents were focused on surface-founded or near-surface-founded LWRs and were, necessarily, limited in scope. For example, there is limited information in both the draft NUREG/CR report and ASCE/SEI 4-16 related to nonlinear analysis of soil-structure systems for deeply-embedded reactors, the isolation of components, and the use of vertical isolation systems. Also not included in the draft SI NUREG/CR report are special considerations for licensing of isolated facilities using the certified design

  15. Proposed Activities to Address Regulatory Gaps and Challenges for Licensing Advanced Reactors Using Seismic Isolation

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Justin Leigh [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kammerer, Annie M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Whittaker, Andrew S. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-12-01

    Over the last decade, particularly since implementation of the certified design regulatory approaches outlined in 10 CFR 52, “Licenses, Certifications, and Approvals for Nuclear Power Plants,” interest has been increasing in the use of seismic isolation (SI) technology to support seismic safety in nuclear facilities. In 2009, the United States (U.S.) Nuclear Regulatory Commission (NRC) initiated research activities to develop new guidance targeted at isolated facilities because SI is being considered for nuclear power plants in the U.S. One product of that research, which was developed around a risk-informed regulatory approach, is a draft NRC NUREG series (NUREG/CR) report that investigates and discusses considerations for use of SI in otherwise traditionally founded large light water reactors (LWRs). A coordinated effort led to new provisions for SI of LWRs in the American Society of Civil Engineers standard ASCE/SEI 4-16, “Seismic Analysis of Safety Related Nuclear Structures.” The risk-informed design philosophy that underpinned development of the technical basis for these documents led to a set of proposed performance objectives and acceptance criteria intended to serve as the foundation for future NRC guidance on the use of SI and related technology. Although the guidance provided in the draft SI NUREG/CR report and ASCE/SEI 4 16 provides a sound basis for further development of nuclear power plant designs incorporating SI, these initial documents were focused on surface-founded or near-surface-founded LWRs and were, necessarily, limited in scope. For example, there is limited information in both the draft NUREG/CR report and ASCE/SEI 4-16 related to nonlinear analysis of soil-structure systems for deeply-embedded reactors, the isolation of components, and the use of vertical isolation systems. Also not included in the draft SI NUREG/CR report are special considerations for licensing of isolated facilities using the certified design approach in 10 CFR

  16. Survey of past base isolation applications in nuclear power plants and challenges to industry/regulatory acceptance

    International Nuclear Information System (INIS)

    Malushte, S.R.; Whittaker, A.S.

    2005-01-01

    Seismic base isolation provides many benefits that can facilitate the standardization of future nuclear power plant structures and equipment while reducing the initial/life-cycle cost and construction schedule. This paper presents a survey of past seismic base isolation applications and studies related to nuclear applications and provides a discussion of the challenges that need to be overcome to gain industry and regulatory acceptance for deployment in future US nuclear power plants. Issues related to design, codes/standards/regulations, procurement, and construction, have been identified. (authors)

  17. Experimental studies of the seismic response of structures incorporating base-isolation systems

    International Nuclear Information System (INIS)

    Kelly, J.M.; Aiken, I.D.

    1991-01-01

    This paper reviews some of the achievements of the Earthquake Engineering Research Center (EERC) at the University of California at Berkeley in the last few years. Component tests on single isolators are described. Tests on plain and high-damping natural-rubber bearings, lead-rubber bearings, sliding bearings, and bearings incorporating uplift resistance mechanisms have been performed. High-shear strain tests on large (up to full scale) elastomeric bearings have been conducted to determine the stability characteristics and limit states of the isolators. Performance evaluation studies using the earthquake simulator to test large-scale model isolated structures have been carried out for a variety of isolation systems and structures. Uplift studies of slender base-isolated buildings and investigation of the behavior of base-isolated skew bridge decks have been studied. This paper aims to highlight those areas where progress has been made. (orig./HP)

  18. Summary of experimental tests of elastomeric seismic isolation bearings for use in nuclear reactor plants

    International Nuclear Information System (INIS)

    Seidensticker, R.W.; Chang, Y.W.; Kulak, R.F.

    1992-01-01

    This paper describes an experimental test program for isolator bearings which was developed to help establish the viability of using laminated elastomer bearings for base isolation of nuclear reactor plants. The goal of the test program is to determine the performance characteristics of laminated seismic isolation bearings under a wide range of loadings. Tests were performed on scale-size laminated seismic isolators both within the design shear strain range to determine the response of the bearing under expected earthquake loading conditions, and beyond the design range to determine failure modes and to establish safety margins. Three types of bearings, each produced from a different manufacturer, have been tested: (1) high shape factor-high damping-high shear modulus bearings; (2) medium shape factor-high damping-high shear modulus bearings; and (3) medium shape factor-high damping-low shear modulus bearings. All of these tests described in this report were performed at the Earthquake Engineering Research Center at the University of California, Berkeley, with technical assistance from ANL. The tests performed on the three types of bearings have confirmed the high performance characteristics of the high damping-high and low shear modulus elastomeric bearings. The bearings have shown that they are capable of having extremely large shear strains before failure occurs. The most common failure mechanism was the debonding of the top steel plate from the isolators. This failure mechanism can be virtually eliminated by improved manufacturing quality control. The most important result of the failure test of the isolators is the fact that bearings can sustain large horizontal displacement, several times larger than the design value, with failure. Their performance in moderate and strong earthquakes will be far superior to conventional structures

  19. Seismic reflection data report: Waste Isolation Pilot Plant (WIPP) site, Southeastern New Mexico

    International Nuclear Information System (INIS)

    Hern, J.L.; Powers, D.W.; Barrows, L.J.

    1978-12-01

    Volume II contains uninterpreted processed lines and shotpoint maps from three seismic reflection surveys conducted from 1976 through 1978 by Sandia Laboratories to support investigations for the Waste Isolation Pilot Plant. Data interpretations will be the subject of subsequent reports

  20. Verification and improvement of analytical modeling of seismic isolation bearings and isolated structures

    International Nuclear Information System (INIS)

    Forni, M.; La Grotteria, M.; Martelli, A.; Bertola, S.; Bettinali, F.; Dusi, A.; Bergamo, G.; Bonacina, G.

    2002-01-01

    Due to the complexity of dynamic behaviour of seismic isolation (SI) devices, high cost of their tests and non-negligible number of devices having excellent potential for nuclear applications, several countries judged of great interest to extend validation of their numerical models of such devices to the analysis of experimental data obtained by others. Thus, a four-years Coordinated Research Program (CRP) on Intercomparison of Analysis Methods for Isolated Nuclear Structures, proposed by ENEA (1995), was endorsed by the IAEA in 1995. There, Italy was jointly represented by ENEA, ENEL and ISMES, and supplied test results concerning both High Damping Rubber Bearings (HDRBs) and the MISS (Model of Isolated Steel Structure) mock-up, which had been isolated using such bearings. Test data provided by Italy to the other countries were also re-analysed to improve mathematical models. Aim of this final report is to summarise, after a brief description of the devices and structures considered, the most important results and conclusions of the numerical analyses carried out by Italy. For more detailed information, especially as far as the execution of the tests and the implementation of the numerical models are concerned, please refer to the technical reports presented by Italy to the Research Coordination Meetings (RCMs). (author)

  1. Recent results of a seismically isolated optical table prototype designed for advanced LIGO

    International Nuclear Information System (INIS)

    Sannibale, V; Abbott, B; Boschi, V; Coyne, D; DeSalvo, R; Aso, Y; Marka, S; Ottaway, D; Stochino, A

    2008-01-01

    The Horizontal Access Module Seismic Attenuation System (HAM-SAS) is a mechanical device expressly designed to isolate a multipurpose optical table and fit in the tight space of the LIGO HAM Ultra-High-Vacuum chamber. Seismic attenuation in the detectors' sensitivity frequency band is achieved with state of the art passive mechanical attenuators. These devices should provide an attenuation factor of about 70dB above 10Hz at the suspension point of the Advanced LIGO triple pendulum suspension. Automatic control techniques are used to position the optical table and damp rigid body modes. Here, we report the main results obtained from the full scale prototype installed at the MIT LIGO Advanced System Test Interferometer (LASTI) facility. Seismic attenuation performance, control strategies, improvements and limitations are also discussed

  2. Seismic hazard estimation based on the distributed seismicity in northern China

    Science.gov (United States)

    Yang, Yong; Shi, Bao-Ping; Sun, Liang

    2008-03-01

    In this paper, we have proposed an alternative seismic hazard modeling by using distributed seismicites. The distributed seismicity model does not need delineation of seismic source zones, and simplify the methodology of probabilistic seismic hazard analysis. Based on the devastating earthquake catalogue, we established three seismicity model, derived the distribution of a-value in northern China by using Gaussian smoothing function, and calculated peak ground acceleration distributions for this area with 2%, 5% and 10% probability of exceedance in a 50-year period by using three attenuation models, respectively. In general, the peak ground motion distribution patterns are consistent with current seismic hazard map of China, but in some specific seismic zones which include Shanxi Province and Shijiazhuang areas, our results indicated a little bit higher peak ground motions and zonation characters which are in agreement with seismicity distribution patterns in these areas. The hazard curves have been developed for Beijing, Tianjin, Taiyuan, Tangshan, and Ji’nan, the metropolitan cities in the northern China. The results showed that Tangshan, Taiyuan, Beijing has a higher seismic hazard than that of other cities mentioned above.

  3. Sensitivity studies of a seismically isolated system to low frequency amplification

    International Nuclear Information System (INIS)

    Wu, T.S.; Seidensticker, R.W.

    1987-06-01

    Responses of a seismically isolated structure to earthquake motions will depend primarily on the input ground motion and the isolation system frequency. The isolation frequency generally is relatively low when isolating against horizontal ground motions. After installation, the isolation frequency could deviate from its designed value due to aging, manufacturing tolerance etc. In addition, under cettain soil conditions, the input motion could have high energy content at relatively low frequencies. This report covers the first of these two concerns by performing a sensitivity study of the variations in isolation frequency on the responses of a nuclear reactor module incorporated with an isolation system. Results from a number of ground motions have shown that, for most earthquake motions, a higher isolation frequency tends to yield higher maximum acceleration, higher transmitted shear force, and lower relative displacement between the isolated and unisolated parts of the structure. In one of the ground motions considered, a 7% increase in the isolation frequency from its original design value is observed to give over a 22% increase in the transmitted shear force. Other ground motions, especially those exhibiting sharp rise in spectral accelerations in the vicinity of the designed isolated frequency, yield responses following the same general trend

  4. Risk based seismic design criteria

    International Nuclear Information System (INIS)

    Kennedy, R.P.

    1999-01-01

    In order to develop a risk based seismic design criteria the following four issues must be addressed: (1) What target annual probability of seismic induced unacceptable performance is acceptable? (2) What minimum seismic margin is acceptable? (3) Given the decisions made under Issues 1 and 2, at what annual frequency of exceedance should the safe-shutdown-earthquake (SSE) ground motion be defined? (4) What seismic design criteria should be established to reasonably achieve the seismic margin defined under Issue 2? The first issue is purely a policy decision and is not addressed in this paper. Each of the other three issues are addressed. Issues 2 and 3 are integrally tied together so that a very large number of possible combinations of responses to these two issues can be used to achieve the target goal defined under Issue 1. Section 2 lays out a combined approach to these two issues and presents three potentially attractive combined resolutions of these two issues which reasonably achieves the target goal. The remainder of the paper discusses an approach which can be used to develop seismic design criteria aimed at achieving the desired seismic margin defined in resolution of Issue 2. Suggestions for revising existing seismic design criteria to more consistently achieve the desired seismic margin are presented. (orig.)

  5. A European collaboration research programme to study and test large scale base isolated structures

    International Nuclear Information System (INIS)

    Renda, V.; Verzeletti, G.; Papa, L.

    1995-01-01

    The improvement of the technology of innovative anti-seismic mechanisms, as those for base isolation and energy dissipation, needs of testing capability for large scale models of structures integrated with these mechanisms. These kind experimental tests are of primary importance for the validation of design rules and the setting up of an advanced earthquake engineering for civil constructions of relevant interest. The Joint Research Centre of the European Commission offers the European Laboratory for Structural Assessment located at Ispra - Italy, as a focal point for an international european collaboration research programme to test large scale models of structure making use of innovative anti-seismic mechanisms. A collaboration contract, opened to other future contributions, has been signed with the national italian working group on seismic isolation (Gruppo di Lavoro sull's Isolamento Sismico GLIS) which includes the national research centre ENEA, the national electricity board ENEL, the industrial research centre ISMES and producer of isolators ALGA. (author). 3 figs

  6. Research on performance-based seismic design criteria

    Institute of Scientific and Technical Information of China (English)

    谢礼立; 马玉宏

    2002-01-01

    The seismic design criterion adopted in the existing seismic design codes is reviewed. It is pointed out that the presently used seismic design criterion is not satisfied with the requirements of nowadays social and economic development. A new performance-based seismic design criterion that is composed of three components is presented in this paper. It can not only effectively control the economic losses and casualty, but also ensure the building(s function in proper operation during earthquakes. The three components are: classification of seismic design for buildings, determination of seismic design intensity and/or seismic design ground motion for controlling seismic economic losses and casualties, and determination of the importance factors in terms of service periods of buildings. For controlling the seismic human losses, the idea of socially acceptable casualty level is presented and the (Optimal Economic Decision Model( and (Optimal Safe Decision Model( are established. Finally, a new method is recommended for calculating the importance factors of structures by adjusting structures service period on the base of more important structure with longer service period than the conventional ones. Therefore, the more important structure with longer service periods will be designed for higher seismic loads, in case the exceedance probability of seismic hazard in different service period is same.

  7. Seismicity at Old Faithful Geyser: an isolated source of geothermal noise and possible analogue of volcanic seismicity

    Science.gov (United States)

    Kieffer, Susan Werner

    1984-09-01

    Old Faithful Geyser in Yellowstone National Park, U.S.A., is a relatively isolated source of seismic noise and exhibits seismic behavior similar to that observed at many volcanoes, including "bubblequakes" that resemble B-type "earthquakes", harmonic tremor before and during eruptions, and periods of seismic quiet prior to eruptions. Although Old Faithful differs from volcanoes in that the conduit is continuously open, that rock-fracturing is not a process responsible for seismicity, and that the erupting fluid is inviscid H 2O rather than viscous magma, there are also remarkable similarities in the problems of heat and mass recharge to the system, in the eruption dynamics, and in the seismicity. Water rises irregularly into the immediate reservoir of Old Faithful as recharge occurs, a fact that suggests that there are two enlarged storage regions: one between 18 and 22 m (the base of the immediate reservoir) and one between about 10 and 12 m depth. Transport of heat from hot water or steam entering at the base of the recharging water column into cooler overlying water occurs by migration of steam bubbles upward and their collapse in the cooler water, and by episodes of convective overturn. An eruption occurs when the temperature of the near-surface water exceeds the boiling point if the entire water column is sufficiently close to the boiling curve that the propagation of pressure-release waves (rarefactions) down the column can bring the liquid water onto the boiling curve. The process of conversion of the liquid water in the conduit at the onset of an eruption into a two-phase liquid-vapor mixture takes on the order of 30 s. The seismicity is directly related to the sequence of filling and heating during the recharge cycle, and to the fluid mechanics of the eruption. Short (0.2-0.3 s), monochromatic, high-frequency events (20-60 Hz) resembling unsustained harmonic tremor and, in some instances, B-type volcanic earthquakes, occur when exploding or imploding

  8. First-passage Probability Estimation of an Earthquake Response of Seismically Isolated Containment Buildings

    International Nuclear Information System (INIS)

    Hahm, Dae-Gi; Park, Kwan-Soon; Koh, Hyun-Moo

    2008-01-01

    The awareness of a seismic hazard and risk is being increased rapidly according to the frequent occurrences of the huge earthquakes such as the 2008 Sichuan earthquake which caused about 70,000 confirmed casualties and a 20 billion U.S. dollars economic loss. Since an earthquake load contains various uncertainties naturally, the safety of a structural system under an earthquake excitation has been assessed by probabilistic approaches. In many structural applications for a probabilistic safety assessment, it is often regarded that the failure of a system will occur when the response of the structure firstly crosses the limit barrier within a specified interval of time. The determination of such a failure probability is usually called the 'first-passage problem' and has been extensively studied during the last few decades. However, especially for the structures which show a significant nonlinear dynamic behavior, an effective and accurate method for the estimation of such a failure probability is not fully established yet. In this study, we presented a new approach to evaluate the first-passage probability of an earthquake response of seismically isolated structures. The proposed method is applied to the seismic isolation system for the containment buildings of a nuclear power plant. From the numerical example, we verified that the proposed method shows accurate results with more efficient computational efforts compared to the conventional approaches

  9. Optimal cost design of base-isolated pool structures for the storage of nuclear spent fuel

    International Nuclear Information System (INIS)

    Ko, H. M.; Park, K. S.; Song, J. H.

    1999-01-01

    A method of cost-effectiveness evaluation for seismic isolated pool structures is presented. Input ground motion is modeled as spectral density function compatible with response spectrum for combination of acceleration coefficient and site coefficient. Interaction effects between flexible walls and contained fluid are considered in the form of added mass matrix. Wall thickness and isolator stiffness are adopted as design variables for optimization. Transfer function vector of the structure-isolator system is derived from the equation of motion. Spectral analysis method based on random vibration theories is used for the calculation of failure probability. The exemplifying designs and analyses show that cost-effectiveness of isolated pool structure is relatively high in low-moderate seismic region and stiff soil condition. Sensitiveness of optimal design variables to assumed damage scales is relatively low in such region

  10. Development of seismic hazard analysis in Japan

    International Nuclear Information System (INIS)

    Itoh, T.; Ishii, K.; Ishikawa, Y.; Okumura, T.

    1987-01-01

    In recent years, seismic risk assessment of the nuclear power plant have been conducted increasingly in various countries, particularly in the United States to evaluate probabilistically the safety of existing plants under earthquake loading. The first step of the seismic risk assessment is the seismic hazard analysis, in which the relationship between the maximum earthquake ground motions at the plant site and their annual probability of exceedance, i.e. the seismic hazard curve, is estimated. In this paper, seismic hazard curves are evaluated and examined based on historical earthquake records model, in which seismic sources are modeled with area-sources, for several different sites in Japan. A new evaluation method is also proposed to compute the response spectra of the earthquake ground motions in connection with estimating the probabilistic structural response. Finally the numerical result of probabilistic risk assessment for a base-isolated three story RC structure, in which the frequency of seismic induced structural failure is evaluated combining the seismic hazard analysis, is described briefly

  11. Fragility estimation for seismically isolated nuclear structures by high confidence low probability of failure values and bi-linear regression

    International Nuclear Information System (INIS)

    Carausu, A.

    1996-01-01

    A method for the fragility estimation of seismically isolated nuclear power plant structure is proposed. The relationship between the ground motion intensity parameter (e.g. peak ground velocity or peak ground acceleration) and the response of isolated structures is expressed in terms of a bi-linear regression line, whose coefficients are estimated by the least-square method in terms of available data on seismic input and structural response. The notion of high confidence low probability of failure (HCLPF) value is also used for deriving compound fragility curves for coupled subsystems. (orig.)

  12. Technical specifications for the successful fabrication of laminated seismic isolation bearings

    International Nuclear Information System (INIS)

    Kulak, R.F.

    1992-01-01

    High damping laminated elastomeric bearings are becoming one of the preferred devices for isolating large buildings and structures. IN the United States, the current reference design for the Advanced Liquid Metal Reactor uses laminated bearings for seismic isolation. These bearing are constructed from alternating layers of rubber and steel plates. They are typically designed for shear strains between 50 to 100 percent and expected to sustain two to three times these levels for beyond design basis loading considerations. The technical specifications used to procure these bearings are an important factor in assuring that the bearings that are installed under nuclear structures meet the performance requirements of the design. The key aspects of the current version of the Technical Specifications are discussed in this paper

  13. Seismic Applications of Energy Dampers

    OpenAIRE

    Shambhu Sinha

    2004-01-01

    Damping devices based on the operating principle of high velocity fluid flow through orifices have found numerous applications in the shock and vibration isolation of aerospace and defence systems. The study aims to investigate the feasibility of using energy dissipating fluid viscous dampers in structures to protect against seismic loads and to prove analytically and  experimentally that fluid viscous dampers can improve the seismic capacity of a structure by reducing damage and displacement...

  14. Seismic investigations for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Barrows, L.J.

    1984-01-01

    Evaporite rocks in the Delaware Basin in southeastern New Mexico are being investigated as a possible site for nuclear waste disposal. Seismic studies have been conducted to establish seismic design criteria and to investigate relations between seismicity and geologic structures. In the initial phase of this study, historical and available seismic data were interpreted with respect to geology. Local instrumentation became available in 1974 when New Mexico Tech installed and began operating a seismic station in the area. Data and interpretation for 1974 through 1979 have been published. In 1980 seismic monitoring of the Northern Delaware Basin was extended to include a six station network of self-contained radio-telemetered seismometers. 9 references, 13 figures

  15. Specific issues and proposals in aseismic design technologies (seismic isolation technologies)

    International Nuclear Information System (INIS)

    Fujita, Satoshi

    2000-01-01

    It is examined among engineers to control vibration of buildings and constructions formed by earthquake, and at present various vibration control techniques are in actual use. A vibration isolating structure passing through earthquake, and vibration controlling due to wind are its typical ones, which have been recently and rapidly supplied to actual use through a chance that laminated rubber was researched and developed for a vibration isolation supporting materials capable of supplying to actual use about 15 years ago. However, the active addition mass type vibration controller is not adequate to large earthquake countermeasure from points of addition mass size, drive variation, and limit of control power. For a vibration controller suitable for this aim an energy absorber (damper) of a type set between layers of constructions at present is the most predominant, of which various types are earnestly under research and development. Here were explained on earthquake and its energy, seismic resistant design, vibration isolation structure, and so forth. (G.K.)

  16. Seismic component fragility data base for IPEEE

    International Nuclear Information System (INIS)

    Bandyopadhyay, K.; Hofmayer, C.

    1990-01-01

    Seismic probabilistic risk assessment or a seismic margin study will require a reliable data base of seismic fragility of various equipment classes. Brookhaven National Laboratory (BNL) has selected a group of equipment and generically evaluated the seismic fragility of each equipment class by use of existing test data. This paper briefly discusses the evaluation methodology and the fragility results. The fragility analysis results when used in the Individual Plant Examination for External Events (IPEEE) Program for nuclear power plants are expected to provide insights into seismic vulnerabilities of equipment for earthquakes beyond the design basis. 3 refs., 1 fig., 1 tab

  17. Seismic analysis for the ALMR

    International Nuclear Information System (INIS)

    Tajirian, F.F.

    1992-01-01

    The Advanced Liquid Metal Reactor (ALMR) design uses seismic isolation as a cost effective approach for simplifying seismic design of the reactor module, and for enhancing margins to handle beyond design basis earthquakes (BDBE). A comprehensive seismic analysis plan has been developed to confirm the adequacy of the design and to support regulatory licensing activities. In this plan state-of-the-art computer programs are used to evaluate the system response of the ALMR. Several factors that affect seismic response will be investigated. These include variability in the input earthquake mechanism, soil-structure interaction effects, and nonlinear response of the isolators. This paper reviews the type of analyses that are planned, and discuses the approach that will be used for validating the specific features of computer programs that are required in the analysis of isolated structures. To date, different linear and nonlinear seismic analyses have been completed. The results of recently completed linear analyses have been summarized elsewhere. The findings of three-dimensional seismic nonlinear analyses are presented in this paper. These analyses were performed to evaluate the effect of changes of isolator horizontal stiffness with horizontal displacement on overall response, to develop an approach for representing BDBE events with return periods exceeding 10,000 years, and to assess margins in the design for BDBEs. From the results of these analyses and bearing test data, it can be concluded that a properly designed and constructed seismic isolation system can accommodate displacements several times the design safe shutdown earthquake (SSE) for the ALMR. (author)

  18. Engineering Seismic Base Layer for Defining Design Earthquake Motion

    International Nuclear Information System (INIS)

    Yoshida, Nozomu

    2008-01-01

    Engineer's common sense that incident wave is common in a widespread area at the engineering seismic base layer is shown not to be correct. An exhibiting example is first shown, which indicates that earthquake motion at the ground surface evaluated by the analysis considering the ground from a seismic bedrock to a ground surface simultaneously (continuous analysis) is different from the one by the analysis in which the ground is separated at the engineering seismic base layer and analyzed separately (separate analysis). The reason is investigated by several approaches. Investigation based on eigen value problem indicates that the first predominant period in the continuous analysis cannot be found in the separate analysis, and predominant period at higher order does not match in the upper and lower ground in the separate analysis. The earthquake response analysis indicates that reflected wave at the engineering seismic base layer is not zero, which indicates that conventional engineering seismic base layer does not work as expected by the term ''base''. All these results indicate that wave that goes down to the deep depths after reflecting in the surface layer and again reflects at the seismic bedrock cannot be neglected in evaluating the response at the ground surface. In other words, interaction between the surface layer and/or layers between seismic bedrock and engineering seismic base layer cannot be neglected in evaluating the earthquake motion at the ground surface

  19. Analysis, Design, and Construction of a Base-Isolated Multiple Building Structure

    Directory of Open Access Journals (Sweden)

    Stefano Sorace

    2014-01-01

    Full Text Available The analysis and design of a multiple residential building, seismically protected by a base isolation system incorporating double friction pendulum sliders as protective devices, are presented in the paper. The building, situated in the suburban area of Florence, is composed of four independent reinforced concrete framed structures, mutually separated by three thermal expansion joints. The plan is L-shaped, with dimensions of about 75 m in the longitudinal direction and about 30 m along the longest side of the transversal direction. These characteristics identify the structure as the largest example of a base-isolated “artificial ground” ever built in Italy. The base isolation solution guarantees lower costs, a much greater performance, and a finer architectural look, as compared to a conventional fixed-base antiseismic design. The characteristics of the building and the isolators, the mechanical properties and the experimental characterization campaign and preliminary sizing carried out on the latter, and the nonlinear time-history design and performance assessment analyses developed on the base isolated building are reported in this paper, along with details about the installation of the isolators and the plants and highlights of the construction works.

  20. Seismic response analysis of floating nuclear power plant

    International Nuclear Information System (INIS)

    Hagiwara, Yutaka; Nakamura, Hideharu; Shiojiri, Hiroo

    1988-01-01

    Since Floating Nuclear Power Plants (FNPs) are considered to be isolated from horizontal seismic motion, it is anticipated to reduce seismic load for plant components and buildings on the barge. On the other hand, barge oscillation and sloshing in the closed basin might be excited by earthquakes, because natural periods of those motions correspond to relatively-long period component (between 2 and 20 seconds) of seismic motion. Therefore, it is necessary to evaluate seismic isolation effects and barge oscillation, for the rational design of FNPs. However, there do not exist any reasonable analytical tools which can evaluate seismic response of floating structures in closed basin. The purpose of the present report is to develop a seismic analysis method for FNPs. The proposed method is based on the finite element method, and the formulation includes fluid-structure interaction, water surface wave, buoyancy effect, and non-linear characteristics of mooring system. Response analysis can be executed in both time-domain and frequency-domain. Shaking table tests were conducted to validate the proposed method of analysis. The test results showed significant isolation effect of floating structure, and apparent interaction between the barge and the basin. And 2-D and 3-D frequency domain analyses and the 2-D linear and non-linear time-domain analyses were done and those analyses could simulate the test results well. (author)

  1. Identification of factors that influence the stiffness of high-damping elastomer seismic isolation bearings

    International Nuclear Information System (INIS)

    Kulak, R.F.; Hughes, T.H.

    1994-01-01

    During the past decade, high-damping elastomer, steel-laminated seismic isolation bearings have gained acceptance as a device for isolating large buildings and structures from earthquake damage. In the United States, architectural engineering firms custom design isolators for each project and ten have the isolators manufactured by one of less than a hand-full of manufactures. The stiffness of the bearing is the single most important design parameter that the molded bearing must meet because it determines the fundamental frequency of the isolation system. This paper reports on recent research that examined several factors that cause real and potential variations to the stiffness of the bearing. The resulting changes to the fundamental frequency of the isolated structure are quantified for each factor. The following were examined: (1) dimensional tolerances, (2) frequency effects, (3) temperature effects, (4) cyclical effects, and (5) aging effects. It was found that geometric variations barely affect the stiffness whereas temperature variations greatly affect the stiffness

  2. Status of Italian test data on seismic isolators and comparison with computer predictions

    International Nuclear Information System (INIS)

    Forni, M.; Martelli, A.; Dusi, A.; Bettinali, F.

    1993-01-01

    In this paper the reliability of finite element model (FEM) for simulating the behaviour of high damping rubber bearings (HDRBs) is presented. R and D work on seismic isolation development and application, with particular regard to the numerical modelling, is in progress in Italy and encouraging results have already been obtained. Recently, 'optimized' and 'further optimized' isolators were designed, manufactured and tested in the framework of a co-operation among Italian and European partners (ENEL et al., 1993). For all the devices, numerical investigations have been carried out up to very large strains and the response of the FEMs has been verified against experimental evidence. (author)

  3. Stationary levitation and vibration transmission characteristic in a superconducting seismic isolation device with a permanent magnet system and a copper plate

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, S., E-mail: s.sasaki@ecei.tohoku.ac.j [Electrical Engineering Department, Graduate School, Tohoku University, 6-6-05 Aoba Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Shimada, K.; Yagai, T.; Tsuda, M.; Hamajima, T. [Electrical Engineering Department, Graduate School, Tohoku University, 6-6-05 Aoba Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Kawai, N.; Yasui, K. [Okumura Corporation, 5-6-1 Shiba, Minato-ku, Tokyo 180-8381 (Japan)

    2010-11-01

    We have devised a magnetic levitation type superconducting seismic isolation device taking advantage of the specific characteristic of HTS bulk that the HTS bulk returns to its original position by restoring force against a horizontal displacement. The superconducting seismic isolation device is composed of HTS bulks and permanent magnets (PM rails). The PMs are fixed on an iron plate to realize the same polarities in the longitudinal direction and the different polarities in the transverse direction. The superconducting seismic isolation device can theoretically remove any horizontal vibrations completely. Therefore, the vibration transmissibility in the longitudinal direction of the PM rail becomes zero in theory. The zero vibration transmissibility and the stationary levitation, however, cannot be achieved in the real device because a uniform magnetic field distribution in the longitudinal direction of PM rail cannot be realized due to the individual difference of the PMs. Therefore, to achieve stationary levitation in the real device we adopted a PM-PM system that the different polarities are faced each other. The stationary levitation could be achieved by the magnetic interaction between the PMs in the PM-PM system, while the vibration transmitted to the seismic isolation object due to the magnetic interaction. We adopted a copper plate between the PMs to reduce the vibration transmissibility. The PM-PM system with the copper plate is very useful for realizing the stationary levitation and reducing the vibration transmissibility.

  4. Stationary levitation and vibration transmission characteristic in a superconducting seismic isolation device with a permanent magnet system and a copper plate

    International Nuclear Information System (INIS)

    Sasaki, S.; Shimada, K.; Yagai, T.; Tsuda, M.; Hamajima, T.; Kawai, N.; Yasui, K.

    2010-01-01

    We have devised a magnetic levitation type superconducting seismic isolation device taking advantage of the specific characteristic of HTS bulk that the HTS bulk returns to its original position by restoring force against a horizontal displacement. The superconducting seismic isolation device is composed of HTS bulks and permanent magnets (PM rails). The PMs are fixed on an iron plate to realize the same polarities in the longitudinal direction and the different polarities in the transverse direction. The superconducting seismic isolation device can theoretically remove any horizontal vibrations completely. Therefore, the vibration transmissibility in the longitudinal direction of the PM rail becomes zero in theory. The zero vibration transmissibility and the stationary levitation, however, cannot be achieved in the real device because a uniform magnetic field distribution in the longitudinal direction of PM rail cannot be realized due to the individual difference of the PMs. Therefore, to achieve stationary levitation in the real device we adopted a PM-PM system that the different polarities are faced each other. The stationary levitation could be achieved by the magnetic interaction between the PMs in the PM-PM system, while the vibration transmitted to the seismic isolation object due to the magnetic interaction. We adopted a copper plate between the PMs to reduce the vibration transmissibility. The PM-PM system with the copper plate is very useful for realizing the stationary levitation and reducing the vibration transmissibility.

  5. CONSIDERATIONS ON FLUID DYNAMICS INSIDE A HYDRAULIC SEISMIC ENERGY ABSORBER

    Directory of Open Access Journals (Sweden)

    ȘCHEAUA Fănel

    2013-06-01

    Full Text Available This study presents a method for obtaining a simplified model of a seismic energy dissipation device whose operating principle is based on viscous fluid as a solution for structural isolation against seismic actions. The device operation is based on the resistance force developed by the working fluid when the piston tends to move due to occurrence of a seismic motion. A 3D model achieved is introduced in CFD analysis for emphasize dynamic fluid flow inside the device dissipation cylinder.

  6. Hybrid Control System for Greater Resilience Using Multiple Isolation and Building Connection

    Directory of Open Access Journals (Sweden)

    Masaki Taniguchi

    2016-10-01

    Full Text Available An innovative hybrid control building system of multiple isolation and connection is proposed and investigated using both time-history and input energy responses for various types of ground motions together with transfer functions. It is concerned that the seismic displacement response at the base-isolation layer of the existing base-isolated buildings may extremely increase under long-period and long-duration ground motions which are getting great attention recently. In order to enhance the seismic performance of those base-isolated buildings, a novel hybrid system of multiple isolation and building-connection is proposed and compared with other structural systems such as an independent multiple isolation system, a hybrid system of base-isolation and building-connection. Furthermore, the robustness of seismic responses of the proposed hybrid system for various types of ground motion is discussed through the comparison of various structural systems including non-hybrid systems. Finally the optimal connection damper location is investigated using a sensitivity-type optimization approach.

  7. Qualification of high damping seismic isolation bearings for the ALMR

    International Nuclear Information System (INIS)

    Tajirian, F.F.; Gluekler, E.L.; Chen, W.P.; Kelly, J.M.

    1992-01-01

    The Advanced Liquid Metal Reactor (ALMR) seismic isolation system consists of high damping steel-laminated elastomeric bearings. This type of bearing is used worldwide to isolate buildings and large critical components. A comprehensive testing program has been developed to qualify the use of this system for the ALMR. The program includes material characterization tests, various scale bearing tests, full-size bearing tests, shake table tests, and long-term aging tests. The main tasks and objectives of this program are described in the paper. Additionally, a detailed assessment of completed ALMR bearing test results will be provided. This assessment will be mainly based on half-scale bearing tests performed at the Earthquake Engineering Research Center (EERC) of the University of California at Berkeley and at the Energy Technology Engineering Center (ETEC). These tests were funded by the U.S. Department of Energy (DOE). Both static and dynamic tests were performed. Bearings with two types of end connections were tested: dowelled and bolted. The parameters examined will include the vertical, horizontal stiffness and damping of the bearings under different loading conditions up to failure. This will determine the available margins in the bearings above the design vertical load and horizontal displacement. Additionally, the self-centering capability of the bearings after an earthquake will be addressed. On the basis of these findings, recommendations can be made if necessary, to improve current manufacturing procedures, quality control, and procurement specifications. (author)

  8. Study for the prediction of the long-term durability of seismic isolators

    International Nuclear Information System (INIS)

    Fujita, T.; Ishida, K.; Mazda, T.; Nishikawa, I.; Muramatsu, Y.; Hamanaka, T.; Yoshizawa, T.; Sueyasu, T.

    1994-01-01

    The application of seismic rubber isolators is considered as one of the steps in assuring the reliability and safe operation of the Fast Breeder Reactor Plant. In order to propose a precise test method for estimating the durability of seismic isolators, we examined the depth-dependent profiles of tensile properties in thick natural rubber blocks after thermal aging at 60-100 degrees C. The results of this study established the following conclusions: After thermal aging, the rubber blocks exhibited heterogeneous degradation behavior. These rubber blocks could be divided into two areas, the oxidative degraded area near the surface showing large changes in the properties, and the thermal degraded area in the interior showing small property changes. It was established that the depth of oxidation showed temperature dependence, with greater depth of oxidation at lower temperatures. There was also found to be a linear relationship between the logarithm of the depth of oxidation and the reciprocal of the absolute temperature. As a result, the depths of oxidation at normal temperature may be estimated to depths of 6-10 cm. Having calculated the activation energy at depths of 2 mm each from the surface in the oxidative degraded area, it was found that the activation energy held a fixed value independent of depth. 7 refs., 6 figs., 2 tabs

  9. Mechanical Systems based on Dry Friction Force used for Building Isolation against Seismic Actions

    Directory of Open Access Journals (Sweden)

    Fanel Dorel Şcheaua

    2017-11-01

    Full Text Available Today there are multiple solutions intended to avoid the earthquake damaging effects on building structures. There are methods based on the use of special mechanical systems attached directly to the structure's resistance frames, by means of which an improved building behavior is achieved during the earthquake. The systems used work on the principle of structure base isolation based on the dry friction force (Coulomb friction. Some constructive types of these isolation systems patterns are described in this paper

  10. Experimental Study on the Force-Bearing Performance of Masonry Structures with a Marble-Graphite Slide Seismic Isolator at the Foundation

    Directory of Open Access Journals (Sweden)

    Suizi Jia

    2016-11-01

    Full Text Available As part of the search for a seismic isolator for low-rise buildings, this paper proposes a marble-graphite slide seismic isolation system composed of marble-graphite slides, an upper foundation beam, the lower counterpart of the upper beam, and the corresponding stop blocks, with the stop blocks consisting of restrictive screws, positioning plates, nut connectors and stop holes linking the two foundation beams. To provide the desired isolation performance, plain mortar bars can be included at the beam interface to better control the initiating loads for foundation slippage. Tests of low-reversed cyclic loading were performed on four different masonry specimens: a recycled brick wall, a clay brick wall, an integrated recycled brick wall with flay ash blocks sandwiched between, and its clay brick counterpart. The four specimens were provided with marble-graphite slide isolators placed at the foundations. The isolator thickness was 20 mm, and the graphite and the marble served as a lubricant and a bearing, respectively. This paper then analyses all of the specimens in terms of the damage that occurred, the initiating load for slippage, the hysteretic performance, the bearing capacity and the performance of the stop blocks. The results indicate that mortar bars embedded in the marble-graphite slide isolator offer effective control of the initiating load, and the isolation system delivers good hysteretic performance. The stop blocks are capable of withstanding a large-magnitude earthquake and are a good choice for constraining the slippage displacement. Damage or failure of the specimens occurs only when the low-reversed cyclic loading continues after slippage takes place. The design is shown to be an outstanding and flexible seismic scheme for use in low-rise buildings.

  11. Seismic isolation of two dimensional periodic foundations

    International Nuclear Information System (INIS)

    Yan, Y.; Mo, Y. L.; Laskar, A.; Cheng, Z.; Shi, Z.; Menq, F.; Tang, Y.

    2014-01-01

    Phononic crystal is now used to control acoustic waves. When the crystal goes to a larger scale, it is called periodic structure. The band gaps of the periodic structure can be reduced to range from 0.5 Hz to 50 Hz. Therefore, the periodic structure has potential applications in seismic wave reflection. In civil engineering, the periodic structure can be served as the foundation of upper structure. This type of foundation consisting of periodic structure is called periodic foundation. When the frequency of seismic waves falls into the band gaps of the periodic foundation, the seismic wave can be blocked. Field experiments of a scaled two dimensional (2D) periodic foundation with an upper structure were conducted to verify the band gap effects. Test results showed the 2D periodic foundation can effectively reduce the response of the upper structure for excitations with frequencies within the frequency band gaps. When the experimental and the finite element analysis results are compared, they agree well with each other, indicating that 2D periodic foundation is a feasible way of reducing seismic vibrations.

  12. Peak-Broadening of Floor Response Spectra for Base Isolated Nuclear Structures

    International Nuclear Information System (INIS)

    Ju, Heekun; Choun, Young-Sun; Kim, Min-Kyu

    2015-01-01

    In this paper, uncertainties in developing FRS are explained first. Then FDRS of a fixed structure is computed using a conventional method as an example. Lastly FRS of a base-isolated structure is computed and suitability of current peak-broadening method is examined. Uncertainties in the material property of structure influence FRS of fixed structures significantly, but their effect on FRS of base-isolated structures is negligible. Nuclear structures should be designed to ensure the safety of equipment and components mounted on their floors. However, coupled analysis of a structure and components is complex, so equipment is separately analyzed using floor response spectra (FRS). FRS calculated from dynamic analysis of structural model should be modified to create floor design response spectra (FDRS), the input for seismic design of equipment. For nuclear structures, smoothing and broadening peaks of FRS is required to account for uncertainties owing to material properties of structures, soil, modeling techniques, and others. The peak broadening method proposed for fixed based structures may not be appropriate for base-isolated structures because of additional uncertainties in the property of isolation bearings. For base-isolated structures, mechanical property of isolator plays a dominant role on the change of FRS. As base-isolated nuclear plants should meet the ASCE provisions, uncertainty in the isolation system would be around 10%. For the base isolated 3-storied beam model with 2.5-sec isolation period, 6.9% of broadening ratio was enough for development of FDRS at the required variation condition. Also for the models with various isolation periods, less than 10% of broadening ratio was sufficient

  13. Coupled vertical-rocking response of base-isolated structures

    International Nuclear Information System (INIS)

    Pan, T.C.; Kelly, J.M.

    1984-01-01

    A base-isolated building can have a small horizontal eccentricity between the center of mass of the superstructure and the center of rigidity of the supporting bearings. The structure can be modeled as a rigid block with tributary masses supported on massless rubber bearings placed at a constant elevation below the center of mass. Perturbation methods are implemented to find the dynamic characteristics for both the detuned and the perfectly tuned cases. The Green's functions for the displacement response of the system are derived for the undamped and the damped conditions. The response spectrum modal superposition method is used in estimating the maximum acceleration. A simple method, accounting for the effect of closely spaced modes, is proposed for combining modal maxima and results in an approximate single-degree-of-freedom solution. This approximate solution may be used for thepreliminary design of a base-isolated structure. Numerical results for a base-isolated building subjected to the vertical component of the El Centro earthquake of 1940 were carried out for comparison with analytical results. It is shown that the effect of rocking coupling on the vertical seismic response of baseisolated structures can generally be neglected because of the combined effects of the time lag between the maximum translational and rotational responses and the influence of damping in the isolation system

  14. An academic program for experience-based seismic evaluation

    International Nuclear Information System (INIS)

    Nix, S.J.; Meyer, W.; Clemence, S.P.

    1990-01-01

    The authors have been involved in a project, sponsored by the Niagara Mohawk Power Corporation, to develop knowledge-based expert systems to aid in the implementation of the Seismic Qualification Utility Group (SQUG) approach for the seismic qualification of equipment in operating nuclear power plants. This approach, being founded on the use of engineering judgment in the application of prior earthquake experience data, requires comprehensive training. There seems to be general consensus that the experience-based approach is a more cost-effective means of qualifying nuclear power plant equipment when compared to the more traditional analytical methods. The experience-based approach has a number of potential applications in civil engineering, including bridge evaluation and design, seismic adequacy of general structures, foundation design, and water and wastewater treatment plant design and operation. The objective of this paper is to outline an academic curriculum, at the master's level, to educate structural engineers to use and further develop the experience-based approach for seismic evaluation. In the long term, this could lead to the development of academic programs in experience-based assessment and design for a wide range of applications in maintaining the nation's infrastructure

  15. Seismic Capacity Estimation of Steel Piping Elbow under Low-cycle Fatigue Loading

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Bub Gyu; Kim, Sung Wan; Choi, Hyoung Suk; Kim, Nam Sik [Pusan National University, Busan (Korea, Republic of); Hahm, Dae Gi [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In some cases, this large relative displacement can increase seismic risk of the isolated facility. Especially, a inelastic behavior of crossover piping system to connect base isolated building and fixed base building can caused by a large relative displacement. Therefore, seismic capacity estimation for isolated piping system is needed to increase safety of nuclear power plant under seismic condition. Dynamic behavior analysis of piping system under seismic condition using shake table tests was performed by Touboul et al in 1995. In accordance with their study, plastic behavior could be occurred at pipe elbow under seismic condition. Experimental researches for dynamic behavior of typical piping system in nuclear power plant have been performed for several years by JNES(Japan Nuclear Energy Safety Organization) and NUPEC(Nuclear Power Engineering Corporation). A low cycle ratcheting fatigue test was performed with scaled model of elbow which is a weakest component in piping system by Mizuno et al. In-plane cyclic loading tests under internal pressure condition were performed to evaluate the seismic capacity of the steel piping elbow. Leakage phenomenon occurred on and near the crown in piping elbow. Those cracks grew up in axial direction. The fatigue curve was estimated from test results. In the fatigue curve, loading amplitude exponentially decreased as the number of cycles increased. A FEM model of piping elbow was modified with test results. The relationships between displacement and force from tests and numerical analysis was well matched.

  16. Seismic fragility curves of bridge piers accounting for ground motions in Korea

    Science.gov (United States)

    Nguyen, Duy-Duan; Lee, Tae-Hyung

    2018-04-01

    Korea is located in a slight-to-moderate seismic zone. Nevertheless, several studies pointed that the peak earthquake magnitude in the region can be reached to approximately 6.5. Accordingly, a seismic vulnerability evaluation of the existing structures accounting for ground motions in Korea is momentous. The purpose of this paper is to develop seismic fragility curves for bridge piers of a steel box girder bridge equipped with and without base isolators based on a set of ground motions recorded in Korea. A finite element simulation platform, OpenSees, is utilized to perform nonlinear time history analyses of the bridges. A series of damage states is defined based on a damage index which is expressed in terms of the column displacement ductility ratio. The fragility curves based on Korean motions were thereafter compared with the fragility curves generated using worldwide earthquakes to assess the effect of the two ground motion groups on the seismic fragility curves of the bridge piers. The results reveal that both non- and base-isolated bridge piers are less vulnerable during the Korean ground motions than that under worldwide earthquakes.

  17. Comments on the seismic safety of nuclear power plants in Eastern Europe

    Energy Technology Data Exchange (ETDEWEB)

    Tarics, A G [29 Winward Road, Belvedere, CA 94920 (United States); Kelly, J M [Earthquake Engineering Research Center, University of California, Berkeley, CA (United States); Csorba, E M [Technical University Vienna, Vienna (Austria)

    2001-03-01

    After the break-up of the Soviet Union, ten countries in Eastern Europe inherited Soviet-designed nuclear power plants which were constructed without adequate provisions to resist earthquake-generated lateral forces. An earthquake at their locations could seriously damage these plants and could result in Chernobyl-like consequences on the environment. There is an ongoing program to reinforce these plants using conventional piecemeal methods. A newly developed seismic protection strategy called 'base isolation' or 'seismic isolation', widely used in the United States to retrofit existing buildings, is recommended as an economical, technically superior, and more effective solution - where applicable - to make these nuclear power plants capable of resisting seismic forces. (author)

  18. Comments on the seismic safety of nuclear power plants in Eastern Europe

    International Nuclear Information System (INIS)

    Tarics, A.G.; Kelly, J.M.; Csorba, E.M.

    2001-01-01

    After the break-up of the Soviet Union, ten countries in Eastern Europe inherited Soviet-designed nuclear power plants which were constructed without adequate provisions to resist earthquake-generated lateral forces. An earthquake at their locations could seriously damage these plants and could result in Chernobyl-like consequences on the environment. There is an ongoing program to reinforce these plants using conventional piecemeal methods. A newly developed seismic protection strategy called 'base isolation' or 'seismic isolation', widely used in the United States to retrofit existing buildings, is recommended as an economical, technically superior, and more effective solution - where applicable - to make these nuclear power plants capable of resisting seismic forces. (author)

  19. SIG-VISA: Signal-based Vertically Integrated Seismic Monitoring

    Science.gov (United States)

    Moore, D.; Mayeda, K. M.; Myers, S. C.; Russell, S.

    2013-12-01

    Traditional seismic monitoring systems rely on discrete detections produced by station processing software; however, while such detections may constitute a useful summary of station activity, they discard large amounts of information present in the original recorded signal. We present SIG-VISA (Signal-based Vertically Integrated Seismic Analysis), a system for seismic monitoring through Bayesian inference on seismic signals. By directly modeling the recorded signal, our approach incorporates additional information unavailable to detection-based methods, enabling higher sensitivity and more accurate localization using techniques such as waveform matching. SIG-VISA's Bayesian forward model of seismic signal envelopes includes physically-derived models of travel times and source characteristics as well as Gaussian process (kriging) statistical models of signal properties that combine interpolation of historical data with extrapolation of learned physical trends. Applying Bayesian inference, we evaluate the model on earthquakes as well as the 2009 DPRK test event, demonstrating a waveform matching effect as part of the probabilistic inference, along with results on event localization and sensitivity. In particular, we demonstrate increased sensitivity from signal-based modeling, in which the SIGVISA signal model finds statistical evidence for arrivals even at stations for which the IMS station processing failed to register any detection.

  20. Seismic attenuation system for the AEI 10 meter Prototype

    International Nuclear Information System (INIS)

    Wanner, A; Bergmann, G; Fricke, T; Lück, H; Mow-Lowry, C M; Strain, K A; Goßler, S; Danzmann, K; Bertolini, A

    2012-01-01

    Isolation from seismic motion is vital for vibration sensitive experiments. The seismic attenuation system (SAS) is a passive mechanical isolation system for optics suspensions. The low natural frequency of a SAS allows seismic isolation starting below 0.2 Hz. The desired isolation at frequencies above a few hertz is 70–80 dB in both horizontal and vertical degrees of freedom. An introduction to the SAS for the AEI 10 m Prototype, an overview of the mechanical design and a description of the major components are given. (paper)

  1. Shaking table test and dynamic response analysis of 3-D component base isolation system using multi-layer rubber bearings and coil springs

    Energy Technology Data Exchange (ETDEWEB)

    Tsutsumi, Hideaki; Yamada, Hiroyuki; Ebisawa, Katsumi; Shibata, Katsuyuki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Fujimoto, Shigeru [Toshiba Corp., Tokyo (Japan)

    2001-06-01

    Introduction of the base isolation technique into the seismic design of nuclear power plant components as well as buildings has been expected as one of the effective countermeasure to reduce the seismic force applied to components. A research program on the base isolation of nuclear components has been carried out at the Japan Atomic Energy Research Institute (JAERI) since 1991. A methodology and a computer code (EBISA: Equipment Base Isolation System Analysis) for evaluating the failure frequency of the nuclear component with the base isolation were developed. In addition, a test program, which is concerned with the above development, aiming at improvement of failure frequency analysis models in the code has been conducted since 1996 to investigate the dynamic behavior and to verify the effectiveness of component base isolation systems. Two base isolation test systems with different characteristics were fabricated and static and dynamic characteristics were measured by static loading and free vibration tests. One which consists of ball bearings and air springs was installed on the test bed to observe the dynamic response under natural earthquake motion. The effect of base isolation system has been observed under several earthquakes. Three-dimensional response and effect of base isolation of another system using multi-layer-rubber-bearings and coil springs has been investigated under various large earthquake motions by shaking table test. This report describes the results of the shaking table tests and dynamic response analysis. (author)

  2. Detection capability of the IMS seismic network based on ambient seismic noise measurements

    Science.gov (United States)

    Gaebler, Peter J.; Ceranna, Lars

    2016-04-01

    All nuclear explosions - on the Earth's surface, underground, underwater or in the atmosphere - are banned by the Comprehensive Nuclear-Test-Ban Treaty (CTBT). As part of this treaty, a verification regime was put into place to detect, locate and characterize nuclear explosion testings at any time, by anyone and everywhere on the Earth. The International Monitoring System (IMS) plays a key role in the verification regime of the CTBT. Out of the different monitoring techniques used in the IMS, the seismic waveform approach is the most effective technology for monitoring nuclear underground testing and to identify and characterize potential nuclear events. This study introduces a method of seismic threshold monitoring to assess an upper magnitude limit of a potential seismic event in a certain given geographical region. The method is based on ambient seismic background noise measurements at the individual IMS seismic stations as well as on global distance correction terms for body wave magnitudes, which are calculated using the seismic reflectivity method. From our investigations we conclude that a global detection threshold of around mb 4.0 can be achieved using only stations from the primary seismic network, a clear latitudinal dependence for the detection threshold can be observed between northern and southern hemisphere. Including the seismic stations being part of the auxiliary seismic IMS network results in a slight improvement of global detection capability. However, including wave arrivals from distances greater than 120 degrees, mainly PKP-wave arrivals, leads to a significant improvement in average global detection capability. In special this leads to an improvement of the detection threshold on the southern hemisphere. We further investigate the dependence of the detection capability on spatial (latitude and longitude) and temporal (time) parameters, as well as on parameters such as source type and percentage of operational IMS stations.

  3. Status of initial phase of site-specific seismic monitoring: Basalt Waste Isolation Project

    International Nuclear Information System (INIS)

    Rohay, A.C.

    1981-01-01

    This report presents the status of the initial phase of site-specific seismic monitoring work conducted under the Basalt Waste Isolation Project. This work is currently organized under two main elements: (1) a portable array; and (2) a baseline data collection array. Progress toward the development of each array is discussed along with an interpretation of preliminary data obtained from the test of a borehole seismometer at potential repository depths. The text is supplemented by nine figures and one table. 9 figs., 1 tab

  4. Verification of analysis methods for predicting the behaviour of seismically isolated nuclear structures. Final report of a co-ordinated research project 1996-1999

    International Nuclear Information System (INIS)

    2002-06-01

    This report is a summary of the work performed under a co-ordinated research project (CRP) entitled Verification of Analysis Methods for Predicting the Behaviour of Seismically isolated Nuclear Structures. The project was organized by the IAEA on the recommendation of the IAEA's Technical Working Group on Fast Reactors (TWGFR) and carried out from 1996 to 1999. One of the primary requirements for nuclear power plants and facilities is to ensure safety and the absence of damage under strong external dynamic loading from, for example, earthquakes. The designs of liquid metal cooled fast reactors (LMFRs) include systems which operate at low pressure and include components which are thin-walled and flexible. These systems and components could be considerably affected by earthquakes in seismic zones. Therefore, the IAEA through its advanced reactor technology development programme supports the activities of Member States to apply seismic isolation technology to LMFRs. The application of this technology to LMFRs and other nuclear plants and related facilities would offer the advantage that standard designs may be safely used in areas with a seismic risk. The technology may also provide a means of seismically upgrading nuclear facilities. Design analyses applied to such critical structures need to be firmly established, and the CRP provided a valuable tool in assessing their reliability. Ten organizations from India, Italy, Japan, the Republic of Korea, the Russian Federation, the United Kingdom, the United States of America and the European Commission co-operated in this CRP. This report documents the CRP activities, provides the main results and recommendations and includes the work carried out by the research groups at the participating institutes within the CRP on verification of their analysis methods for predicting the behaviour of seismically isolated nuclear structures

  5. Seismic response characteristics of full-size buildings with base isolation system

    International Nuclear Information System (INIS)

    Wang, C.Y.; Gvildys, J.

    1991-01-01

    This paper investigates the response characteristics of full-size reinforced concrete buildings via numerical simulations and actual observations. The test facility consists of two identical three-story buildings constructed side by side at Tohoku University in Sendai, Japan. Since the installation of high-damping isolation bearings in April 1989, data from over twenty earthquakes have been recorded. In this paper, three representative earthquake records, No. 2, No. 6, and No. 17 are used to study the detailed response characteristics. Numerical simulations are carried out with the system response program, SISEC. In general, good agreement has been found between numerical solutions and actual observations. The system is stiff enough to prevent the building displacement under minor earthquakes and wind loads, but is relatively soft for reducing the acceleration response during earthquakes with moderate and strong ground motion. Lessons learned in this effort are applicable to base isolation design of nuclear power plants. 7 refs., 16 figs., 3 tabs

  6. Performance-based methodology for assessing seismic vulnerability and capacity of buildings

    Science.gov (United States)

    Shibin, Lin; Lili, Xie; Maosheng, Gong; Ming, Li

    2010-06-01

    This paper presents a performance-based methodology for the assessment of seismic vulnerability and capacity of buildings. The vulnerability assessment methodology is based on the HAZUS methodology and the improved capacitydemand-diagram method. The spectral displacement ( S d ) of performance points on a capacity curve is used to estimate the damage level of a building. The relationship between S d and peak ground acceleration (PGA) is established, and then a new vulnerability function is expressed in terms of PGA. Furthermore, the expected value of the seismic capacity index (SCev) is provided to estimate the seismic capacity of buildings based on the probability distribution of damage levels and the corresponding seismic capacity index. The results indicate that the proposed vulnerability methodology is able to assess seismic damage of a large number of building stock directly and quickly following an earthquake. The SCev provides an effective index to measure the seismic capacity of buildings and illustrate the relationship between the seismic capacity of buildings and seismic action. The estimated result is compared with damage surveys of the cities of Dujiangyan and Jiangyou in the M8.0 Wenchuan earthquake, revealing that the methodology is acceptable for seismic risk assessment and decision making. The primary reasons for discrepancies between the estimated results and the damage surveys are discussed.

  7. Seismic Vulnerability Evaluation of a Three-Span Continuous Beam Railway Bridge

    Directory of Open Access Journals (Sweden)

    Chongwen Jiang

    2017-01-01

    Full Text Available In order to evaluate the seismic vulnerability of a railway bridge, a nonlinear finite element model of typical three-span continuous beam bridge on the Sichuan-Tibet railway in China was built. It further aimed at performing a probabilistic seismic demand analysis based on the seismic performance of the above-mentioned bridge. Firstly, the uncertainties of bridge parameters were analyzed while a set of finite element model samples were formulated with Latin hypercube sampling method. Secondly, under Wenchuan earthquake ground motions, an incremental dynamic method (IDA analysis was performed, and the seismic peak responses of bridge components were recorded. Thirdly, the probabilistic seismic demand model for the bridge principal components under the prerequisite of two different kinds of bearing, with and without seismic isolation, was generated. Finally, comparison was drawn to further ascertain the effect of two different kinds of bearings on the fragility components. Based on the reliability theory, results were presented concerning the seismic fragility curves.

  8. Mechanical tests for validation of seismic isolation elastomer constitutive models

    International Nuclear Information System (INIS)

    Kulak, R.F.; Hughes, T.H.

    1992-01-01

    High damping laminated elastomeric bearings are becoming the preferred device for seismic isolation of large buildings and structures, such as nuclear power plants. The key component of these bearings is a filled natural rubber elastomer. This material exhibits nonlinear behavior within the normal design range. The material damping cannot be classified as either viscous or hysteritic, but it seems to fall somewhere in between. This paper describes a series of tests that can be used to characterize the mechanical response of these elastomers. The tests are designed to determine the behavior of the elastomer in the time scale of the earthquake, which is typically from 30 to 60 seconds. The test results provide data for use in determining the material parameters associated with nonlinear constitutive models. 4 refs

  9. Response of base-isolated nuclear structures to extreme earthquake shaking

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Manish, E-mail: mkumar2@buffalo.edu; Whittaker, Andrew S.; Constantinou, Michael C.

    2015-12-15

    Highlights: • Response-history analysis of nuclear structures base-isolated using lead–rubber bearings is performed. • Advanced numerical model of lead–rubber bearing is used to capture behavior under extreme earthquake shaking. • Results of response-history analysis obtained using simplified and advanced model of lead–rubber bearings are compared. • Heating of the lead core and variation in buckling load and axial stiffness affect the response. - Abstract: Seismic isolation using low damping rubber and lead–rubber bearings is a viable strategy for mitigating the effects of extreme earthquake shaking on safety-related nuclear structures. The mechanical properties of these bearings are not expected to change substantially in design basis shaking. However, under shaking more intense than design basis, the properties of the lead cores in lead–rubber bearings may degrade due to heating associated with energy dissipation, some bearings in an isolation system may experience net tension, and the compression and tension stiffness may be affected by the lateral displacement of the isolation system. The effects of intra-earthquake changes in mechanical properties on the response of base-isolated nuclear power plants (NPPs) are investigated using an advanced numerical model of a lead–rubber bearing that has been verified and validated, and implemented in OpenSees. A macro-model is used for response-history analysis of base-isolated NPPs. Ground motions are selected and scaled to be consistent with response spectra for design basis and beyond design basis earthquake shaking at the site of the Diablo Canyon Nuclear Generating Station. Ten isolation systems of two periods and five characteristic strengths are analyzed. The responses obtained using simplified and advanced isolator models are compared. Strength degradation due to heating of lead cores and changes in buckling load most significantly affect the response of the base-isolated NPP.

  10. Response of base-isolated nuclear structures to extreme earthquake shaking

    International Nuclear Information System (INIS)

    Kumar, Manish; Whittaker, Andrew S.; Constantinou, Michael C.

    2015-01-01

    Highlights: • Response-history analysis of nuclear structures base-isolated using lead–rubber bearings is performed. • Advanced numerical model of lead–rubber bearing is used to capture behavior under extreme earthquake shaking. • Results of response-history analysis obtained using simplified and advanced model of lead–rubber bearings are compared. • Heating of the lead core and variation in buckling load and axial stiffness affect the response. - Abstract: Seismic isolation using low damping rubber and lead–rubber bearings is a viable strategy for mitigating the effects of extreme earthquake shaking on safety-related nuclear structures. The mechanical properties of these bearings are not expected to change substantially in design basis shaking. However, under shaking more intense than design basis, the properties of the lead cores in lead–rubber bearings may degrade due to heating associated with energy dissipation, some bearings in an isolation system may experience net tension, and the compression and tension stiffness may be affected by the lateral displacement of the isolation system. The effects of intra-earthquake changes in mechanical properties on the response of base-isolated nuclear power plants (NPPs) are investigated using an advanced numerical model of a lead–rubber bearing that has been verified and validated, and implemented in OpenSees. A macro-model is used for response-history analysis of base-isolated NPPs. Ground motions are selected and scaled to be consistent with response spectra for design basis and beyond design basis earthquake shaking at the site of the Diablo Canyon Nuclear Generating Station. Ten isolation systems of two periods and five characteristic strengths are analyzed. The responses obtained using simplified and advanced isolator models are compared. Strength degradation due to heating of lead cores and changes in buckling load most significantly affect the response of the base-isolated NPP.

  11. Analysis of a Frame-Shear Wall Concrete Structure by Using Base Isolation and Evaluation of Structure-Soil Interaction

    Directory of Open Access Journals (Sweden)

    H. I. Polat

    2017-12-01

    Full Text Available A base isolation system is a type of earthquake-resistant structure design approach based on the principle of reducing a structure’s earthquake response rather than increasing the structure’s earthquake resistance capacity. Seismic base isolated structures have the ability to make large displacements relative to the level of insulation elements. This means that a large structure performs very small displacements between floors during an earthquake and exhibits a rigid body behavior. At this point, the earthquake forces acting on the structure decrease along with the floors. In this article a school building composed of frame-shear wall is resolved primarily with the traditional fixed base structure system, mode shapes are found and periods are obtained. For earthquake response analysis, earthquake loads are distributed to the floors using the equivalent seismic load method and structural elements experiencing capacity problems are found. Then, using the earthquake record, larger failure of cross sections and capacity problems are obtained compared to the first method. In the second stage, the same structure is dissolved again by placing the lead core rubber base isolators between the base and the vertical structural members. The periods of structures under earthquake load have increased significantly by utilizing base isolation, as a result of that spectral accelerations decreased. Thus, large decreases in the shear forces acting to the structure are determined and failures of cross sections are removed.

  12. Seismic response of uplifting concrete gravity dams

    International Nuclear Information System (INIS)

    Leger, P.; Sauve, G.; Bhattacharjee, S.

    1992-01-01

    The foundation interaction effects on the seismic response of dam-foundation systems have generally been studied using the linear elastic finite element models. In reality, the foundation can not develop effective tensile stresses to a significant degree along the interface. A two-dimensional finite element model, in which nonlinear gap elements are used at the dam-foundation interface to determine the uplift response of concrete gravity dams subjected to seismic loads, is presented. Time domain analyses were performed for a wide range of modelling assumptions such as dam height, interface uplift pressure, interface mesh density, and earthquake input motions, that were systematically varied to find their influence on the seismic response. The nonlinear interface behavior generally reduces the seismic response of dam-foundation systems acting as a seismic isolation mechanism, and may increase the safety against sliding by reducing the base shear transmitted to the foundation. 4 refs., 5 figs., 6 tabs

  13. Displacement Based Seismic Design Criteria

    International Nuclear Information System (INIS)

    Costello, J.F.; Hofmayer, C.; Park, Y.J.

    1999-01-01

    The USNRC has initiated a project to determine if any of the likely revisions to traditional earthquake engineering practice are relevant to seismic design of the specialized structures, systems and components of nuclear power plants and of such significance to suggest that a change in design practice might be warranted. As part of the initial phase of this study, a literature survey was conducted on the recent changes in seismic design codes/standards, on-going activities of code-writing organizations/communities, and published documents on displacement-based design methods. This paper provides a summary of recent changes in building codes and on-going activities for future codes. It also discusses some technical issues for further consideration

  14. Study on seismic base isolation of LWR plants

    International Nuclear Information System (INIS)

    Nakazawa, Masaaki; Nagano, Tooru; Kato, Asao; Kobatake, Masuhiko; Ohta, Kazuya.

    1991-01-01

    In general, laminated rubber bearings, while required to possess functions as base isolation devices, are also required to demonstrate functions as supportive structural materials for building superstructures. Accordingly, laminated rubber bearings are required to be durable for numbers of years about the same degrees as the service lives of the superstructures, and further, need to maintain their original functions. In this study, therefore, durability tests using small reduced models were performed to ascertain the durability of laminated natural rubber bearings. In evaluating durability of laminated rubber bearings, it is important to confirm how the functions as laminated rubber bearings (spring constant, breaking characteristics) will change with the environment and use over a long period of time. Therefore, experiments to confirm the items below were conducted for evaluation of the durability of laminated rubber bearings. 1) Influence of temperature of the environment in which laminated rubber bearings are used on the mechanical characteristics of the bearings; confirmation tests for temperature-dependent characteristics. 2) Influence of aging of rubber resulting from long-term use on mechanical characteristics (including breaking characteristics) of laminated rubber bearings; confirmation tests of time-dependent aging characteristics of laminated rubber bearings, excessive displacement loading test (including breaking tests) of laminated rubber bearings subjected to time-dependent aging. (J.P.N.)

  15. Comparison of SISEC code simulations with earthquake data of ordinary and base-isolated buildings

    International Nuclear Information System (INIS)

    Wang, C.Y.; Gvildys, J.

    1991-01-01

    At Argonne National Laboratory (ANL), a 3-D computer program SISEC (Seismic Isolation System Evaluation Code) is being developed for simulating the system response of isolated and ordinary structures (Wang et al. 1991). This paper describes comparison of SISEC code simulations with building response data of actual earthquakes. To ensure the accuracy of analytical simulations, recorded data of full-size reinforced concrete structures located in Sendai, Japan are used in this benchmark comparison. The test structures consist of two three-story buildings, one base-isolated and the other one ordinary founded. They were constructed side by side to investigate the effect of base isolation on the acceleration response. Among 20 earthquakes observed since April 1989, complete records of three representative earthquakes, no.2, no.6, and no.17, are used for the code validation presented in this paper. Correlations of observed and calculated accelerations at all instrument locations are made. Also, relative response characteristics of ordinary and isolated building structures are investigated. (J.P.N.)

  16. Bayesian Inference for Signal-Based Seismic Monitoring

    Science.gov (United States)

    Moore, D.

    2015-12-01

    Traditional seismic monitoring systems rely on discrete detections produced by station processing software, discarding significant information present in the original recorded signal. SIG-VISA (Signal-based Vertically Integrated Seismic Analysis) is a system for global seismic monitoring through Bayesian inference on seismic signals. By modeling signals directly, our forward model is able to incorporate a rich representation of the physics underlying the signal generation process, including source mechanisms, wave propagation, and station response. This allows inference in the model to recover the qualitative behavior of recent geophysical methods including waveform matching and double-differencing, all as part of a unified Bayesian monitoring system that simultaneously detects and locates events from a global network of stations. We demonstrate recent progress in scaling up SIG-VISA to efficiently process the data stream of global signals recorded by the International Monitoring System (IMS), including comparisons against existing processing methods that show increased sensitivity from our signal-based model and in particular the ability to locate events (including aftershock sequences that can tax analyst processing) precisely from waveform correlation effects. We also provide a Bayesian analysis of an alleged low-magnitude event near the DPRK test site in May 2010 [1] [2], investigating whether such an event could plausibly be detected through automated processing in a signal-based monitoring system. [1] Zhang, Miao and Wen, Lianxing. "Seismological Evidence for a Low-Yield Nuclear Test on 12 May 2010 in North Korea". Seismological Research Letters, January/February 2015. [2] Richards, Paul. "A Seismic Event in North Korea on 12 May 2010". CTBTO SnT 2015 oral presentation, video at https://video-archive.ctbto.org/index.php/kmc/preview/partner_id/103/uiconf_id/4421629/entry_id/0_ymmtpps0/delivery/http

  17. EVOLUTION OF SOUTHERN AFRICAN CRATONS BASED ON SEISMIC IMAGING

    DEFF Research Database (Denmark)

    Thybo, Hans; Soliman, Mohammad Youssof Ahmad; Artemieva, Irina

    2014-01-01

    present a new seismic model for the structure of the crust and lithospheric mantle of the Kalahari Craton, constrained by seismic receiver functions and finite-frequency tomography based on the seismological data from the South Africa Seismic Experiment (SASE). The combination of these two methods...... since formation of the craton, and (3) seismically fast lithospheric keels are imaged in the Kaapvaal and Zimabwe cratons to depths of 300-350 km. Relatively low velocity anomalies are imaged beneath both the paleo-orogenic Limpopo Belt and the Bushveld Complex down to depths of ~250 km and ~150 km...

  18. Using Seismic Interferometry to Investigate Seismic Swarms

    Science.gov (United States)

    Matzel, E.; Morency, C.; Templeton, D. C.

    2017-12-01

    Seismicity provides a direct means of measuring the physical characteristics of active tectonic features such as fault zones. Hundreds of small earthquakes often occur along a fault during a seismic swarm. This seismicity helps define the tectonically active region. When processed using novel geophysical techniques, we can isolate the energy sensitive to the fault, itself. Here we focus on two methods of seismic interferometry, ambient noise correlation (ANC) and the virtual seismometer method (VSM). ANC is based on the observation that the Earth's background noise includes coherent energy, which can be recovered by observing over long time periods and allowing the incoherent energy to cancel out. The cross correlation of ambient noise between a pair of stations results in a waveform that is identical to the seismogram that would result if an impulsive source located at one of the stations was recorded at the other, the Green function (GF). The calculation of the GF is often stable after a few weeks of continuous data correlation, any perturbations to the GF after that point are directly related to changes in the subsurface and can be used for 4D monitoring.VSM is a style of seismic interferometry that provides fast, precise, high frequency estimates of the Green's function (GF) between earthquakes. VSM illuminates the subsurface precisely where the pressures are changing and has the potential to image the evolution of seismicity over time, including changes in the style of faulting. With hundreds of earthquakes, we can calculate thousands of waveforms. At the same time, VSM collapses the computational domain, often by 2-3 orders of magnitude. This allows us to do high frequency 3D modeling in the fault region. Using data from a swarm of earthquakes near the Salton Sea, we demonstrate the power of these techniques, illustrating our ability to scale from the far field, where sources are well separated, to the near field where their locations fall within each other

  19. Sensitivity of Base-Isolated Systems to Ground Motion Characteristics: A Stochastic Approach

    International Nuclear Information System (INIS)

    Kaya, Yavuz; Safak, Erdal

    2008-01-01

    Base isolators dissipate energy through their nonlinear behavior when subjected to earthquake-induced loads. A widely used base isolation system for structures involves installing lead-rubber bearings (LRB) at the foundation level. The force-deformation behavior of LRB isolators can be modeled by a bilinear hysteretic model. This paper investigates the effects of ground motion characteristics on the response of bilinear hysteretic oscillators by using a stochastic approach. Ground shaking is characterized by its power spectral density function (PSDF), which includes corner frequency, seismic moment, moment magnitude, and site effects as its parameters. The PSDF of the oscillator response is calculated by using the equivalent-linearization techniques of random vibration theory for hysteretic nonlinear systems. Knowing the PSDF of the response, we can calculate the mean square and the expected maximum response spectra for a range of natural periods and ductility values. The results show that moment magnitude is a critical factor determining the response. Site effects do not seem to have a significant influence

  20. Applicability of base-isolation R ampersand D in non-reactor facilities to a nuclear reactor plant

    International Nuclear Information System (INIS)

    Seidensticker, R.W.; Chang, Y.W.

    1990-01-01

    Seismic isolation is gaining increased attention worldwide for use in a wide spectrum of critical facilities, ranging from hospitals and computing centers to nuclear power plants. While the fundamental principles and technology are applicable to all of these facilities, the degree of assurance that the actual behavior of the isolation systems is as specified varies with the nature of the facility involved. Obviously, the level of effort to provide such assurance for a nuclear power plant will be much greater than that required for, say, a critical computer facility. The question, therefore, is to what extent can research and development (R ampersand D) for non-nuclear use be used to provide technological data needed for seismic isolation of a nuclear power plant. This question, of course is not unique to seismic isolation. Virtually every structural component, system, or piece of equipment used in nuclear power plants is also used in non- nuclear facilities. Experience shows that considerable effort is needed to adapt conventional technology into a nuclear power plant. Usually, more thorough analysis is required, material and fabrication quality-control requirements are more stringent as are controls on field installation. In addition, increased emphasis on maintainability and inservice inspection throughout the life of the plant is generally required to gain acceptance in nuclear power plant application. This paper reviews the R ampersand D programs ongoing for seismic isolation in non-nuclear facilities and related experience and makes a preliminary assessment of the extent to which such R ampersand D and experience can be used for nuclear power plant application. Ways are suggested to improve the usefulness of such non-nuclear R ampersand D in providing the high level of confidence required for the use of seismic isolation in a nuclear reactor plant. 2 refs

  1. Delineation of seismic source zones based on seismicity parameters ...

    Indian Academy of Sciences (India)

    these source zones were evaluated and were used in the hazard evaluation. ... seismic sources, linear and areal, were considered in the present study to model the seismic sources in the ..... taken as an authentic reference manual for iden-.

  2. The Effectiveness of Seismic Isolation System for Nuclear Equipment

    International Nuclear Information System (INIS)

    Kim, Min-Kyu; Choun, Young-Sun; Seo, Jeong-Moon

    2005-04-01

    In this study, the Emergency Diesel Generator and Off-site Transformer were selected for isolation. For the selection of the most suitable base isolation system, the literature review and the numerical analysis were performed. For the decision of the parameter of isolation system, the sensitivity analysis was performed. Finally the conceptual design of each equipment was performed. In case of EDG, the Coil Spring and Viscous Damper system was selected for isolation system and 45% isolation effect was determined. For the OST, the FPS was selected and 69% isolation effect was determined

  3. The Effectiveness of Seismic Isolation System for Nuclear Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min-Kyu; Choun, Young-Sun; Seo, Jeong-Moon

    2005-04-15

    In this study, the Emergency Diesel Generator and Off-site Transformer were selected for isolation. For the selection of the most suitable base isolation system, the literature review and the numerical analysis were performed. For the decision of the parameter of isolation system, the sensitivity analysis was performed. Finally the conceptual design of each equipment was performed. In case of EDG, the Coil Spring and Viscous Damper system was selected for isolation system and 45% isolation effect was determined. For the OST, the FPS was selected and 69% isolation effect was determined.

  4. A scenario-based procedure for seismic risk analysis

    International Nuclear Information System (INIS)

    Kluegel, J.-U.; Mualchin, L.; Panza, G.F.

    2006-12-01

    A new methodology for seismic risk analysis based on probabilistic interpretation of deterministic or scenario-based hazard analysis, in full compliance with the likelihood principle and therefore meeting the requirements of modern risk analysis, has been developed. The proposed methodology can easily be adjusted to deliver its output in a format required for safety analysts and civil engineers. The scenario-based approach allows the incorporation of all available information collected in a geological, seismotectonic and geotechnical database of the site of interest as well as advanced physical modelling techniques to provide a reliable and robust deterministic design basis for civil infrastructures. The robustness of this approach is of special importance for critical infrastructures. At the same time a scenario-based seismic hazard analysis allows the development of the required input for probabilistic risk assessment (PRA) as required by safety analysts and insurance companies. The scenario-based approach removes the ambiguity in the results of probabilistic seismic hazard analysis (PSHA) which relies on the projections of Gutenberg-Richter (G-R) equation. The problems in the validity of G-R projections, because of incomplete to total absence of data for making the projections, are still unresolved. Consequently, the information from G-R must not be used in decisions for design of critical structures or critical elements in a structure. The scenario-based methodology is strictly based on observable facts and data and complemented by physical modelling techniques, which can be submitted to a formalised validation process. By means of sensitivity analysis, knowledge gaps related to lack of data can be dealt with easily, due to the limited amount of scenarios to be investigated. The proposed seismic risk analysis can be used with confidence for planning, insurance and engineering applications. (author)

  5. Proposal and experimental validation of analytical models for seismic and vibration isolation devices in nuclear and non-nuclear facilities

    International Nuclear Information System (INIS)

    Serino, G.; Bonacina, G.; Bettinali, F.

    1993-01-01

    Two analytical-experimental models of HDLRBs having different levels of approximations are presented. Comparison with available experimental data shows that a non-linear hysteretic model, defined by three rubber parameters only, allows a very good complete simulation of the dynamic behavior of the isolation devices. A simpler equivalent linear viscous model reproduces less exactly the experimental behavior, but permits a good prediction of peak response values in the earthquake analysis of an isolated structure, if bearing stiffness and damping parameters are properly selected. The models have been used in preliminary design and subsequent check of the isolation system of two different types of Gas-Insulated Electric Substations (GIS), in view of possible future installation of isolated GISes in areas of high seismic risk. (author)

  6. Maturity of nearby faults influences seismic hazard from hydraulic fracturing

    Science.gov (United States)

    Kozłowska, Maria; Brudzinski, Michael R.; Friberg, Paul; Skoumal, Robert J.; Baxter, Nicholas D.; Currie, Brian S.

    2018-02-01

    Understanding the causes of human-induced earthquakes is paramount to reducing societal risk. We investigated five cases of seismicity associated with hydraulic fracturing (HF) in Ohio since 2013 that, because of their isolation from other injection activities, provide an ideal setting for studying the relations between high-pressure injection and earthquakes. Our analysis revealed two distinct groups: (i) deeper earthquakes in the Precambrian basement, with larger magnitudes (M > 2), b-values 1.5, and few post–shut-in earthquakes. Based on geologic history, laboratory experiments, and fault modeling, we interpret the deep seismicity as slip on more mature faults in older crystalline rocks and the shallow seismicity as slip on immature faults in younger sedimentary rocks. This suggests that HF inducing deeper seismicity may pose higher seismic hazards. Wells inducing deeper seismicity produced more water than wells with shallow seismicity, indicating more extensive hydrologic connections outside the target formation, consistent with pore pressure diffusion influencing seismicity. However, for both groups, the 2 to 3 h between onset of HF and seismicity is too short for typical fluid pressure diffusion rates across distances of ˜1 km and argues for poroelastic stress transfer also having a primary influence on seismicity.

  7. Maturity of nearby faults influences seismic hazard from hydraulic fracturing.

    Science.gov (United States)

    Kozłowska, Maria; Brudzinski, Michael R; Friberg, Paul; Skoumal, Robert J; Baxter, Nicholas D; Currie, Brian S

    2018-02-20

    Understanding the causes of human-induced earthquakes is paramount to reducing societal risk. We investigated five cases of seismicity associated with hydraulic fracturing (HF) in Ohio since 2013 that, because of their isolation from other injection activities, provide an ideal setting for studying the relations between high-pressure injection and earthquakes. Our analysis revealed two distinct groups: ( i ) deeper earthquakes in the Precambrian basement, with larger magnitudes (M > 2), b-values 1.5, and few post-shut-in earthquakes. Based on geologic history, laboratory experiments, and fault modeling, we interpret the deep seismicity as slip on more mature faults in older crystalline rocks and the shallow seismicity as slip on immature faults in younger sedimentary rocks. This suggests that HF inducing deeper seismicity may pose higher seismic hazards. Wells inducing deeper seismicity produced more water than wells with shallow seismicity, indicating more extensive hydrologic connections outside the target formation, consistent with pore pressure diffusion influencing seismicity. However, for both groups, the 2 to 3 h between onset of HF and seismicity is too short for typical fluid pressure diffusion rates across distances of ∼1 km and argues for poroelastic stress transfer also having a primary influence on seismicity.

  8. Study on structural seismic margin and probabilistic seismic risk. Development of a structural capacity-seismic risk diagram

    International Nuclear Information System (INIS)

    Nakajima, Masato; Ohtori, Yasuki; Hirata, Kazuta

    2010-01-01

    Seismic margin is extremely important index and information when we evaluate and account seismic safety of critical structures, systems and components quantitatively. Therefore, it is required that electric power companies evaluate the seismic margin of each plant in back-check of nuclear power plants in Japan. The seismic margin of structures is usually defined as a structural capacity margin corresponding to design earthquake ground motion. However, there is little agreement as to the definition of the seismic margin and we have no knowledge about a relationship between the seismic margin and seismic risk (annual failure probability) which is obtained in PSA (Probabilistic Safety Assessment). The purpose of this report is to discuss a definition of structural seismic margin and to develop a diagram which can identify a relation between seismic margin and seismic risk. The main results of this paper are described as follows: (1) We develop seismic margin which is defined based on the fact that intensity of earthquake ground motion is more appropriate than the conventional definition (i.e., the response-based seismic margin) for the following reasons: -seismic margin based on earthquake ground motion is invariant where different typed structures are considered, -stakeholders can understand the seismic margin based on the earthquake ground motion better than the response-based one. (2) The developed seismic margin-risk diagram facilitates us to judge easily whether we need to perform detailed probabilistic risk analysis or only deterministic analysis, given that the reference risk level although information on the uncertainty parameter beta is not obtained. (3) We have performed numerical simulations based on the developed method for four sites in Japan. The structural capacity-risk diagram differs depending on each location because the diagram is greatly influenced by seismic hazard information for a target site. Furthermore, the required structural capacity

  9. Vibration analysis and innovative technologies in the seismic preservation of cultural heritage

    International Nuclear Information System (INIS)

    Clemente, P.; Conti, C.; De Stefano, A.

    2015-01-01

    In order to preserve historical buildings and monuments against the effects of earthquakes a detailed analysis is needed to evaluate the characteristics of the seismic input and the dynamic behaviour of structures under seismic actions and to choose the most suitable seismic rehabilitation technique. In this paper the experimental analysis carried out on the Colosseum and the Lateran Obelisk are first shown. Then the application of seismic isolation in historical buildings is discussed and a new structure for the seismic isolation of existing building is presented.

  10. A procedure for the determination of scenario earthquakes for seismic design based on probabilistic seismic hazard analysis

    International Nuclear Information System (INIS)

    Hirose, Jiro; Muramatsu, Ken

    2002-03-01

    This report presents a study on the procedures for the determination of scenario earthquakes for seismic design of nuclear power plants (NPPs) based on probabilistic seismic hazard analysis (PSHA). In the recent years, the use of PSHA, which is a part of seismic probabilistic safety assessment (PSA), to determine the design basis earthquake motions for NPPs has been proposed. The identified earthquakes are called probability-based scenario earthquakes (PBSEs). The concept of PBSEs originates both from the study of US NRC and from Ishikawa and Kameda. The assessment of PBSEs is composed of seismic hazard analysis and identification of dominant earthquakes. The objectives of this study are to formulate the concept of PBSEs and to examine the procedures for determining the PBSEs for a domestic NPP site. This report consists of three parts, namely, procedures to compile analytical conditions for PBSEs, an assessment to identify PBSEs for a model site using the Ishikawa's concept and the examination of uncertainties involved in analytical conditions. The results obtained from the examination of PBSEs using Ishikawa's concept are as follows. (a) Since PBSEs are expressed by hazard-consistent magnitude and distance in terms of a prescribed reference probability, it is easy to obtain a concrete image of earthquakes that determine the ground response spectrum to be considered in the design of NPPs. (b) Source contribution factors provide the information on the importance of the earthquake source regions and/or active faults, and allows the selection of a couple of PBSEs based on their importance to the site. (c) Since analytical conditions involve uncertainty, sensitivity analyses on uncertainties that would affect seismic hazard curves and identification of PBSEs were performed on various aspects and provided useful insights for assessment of PBSEs. A result from this sensitivity analysis was that, although the difference in selection of attenuation equations led to a

  11. Applicability of base-isolation R and D in non-reactor facilities to a nuclear reactor plant

    International Nuclear Information System (INIS)

    Seidensticker, R.W.

    1989-01-01

    Seismic isolation is gaining increased attention worldwide for use in a wide spectrum of critical facilities, ranging from hospitals and computing centers to nuclear power plants. While the fundamental principles and technology are applicable to all of these facilities, the degree of assurance that the actual behavior of the isolation systems is as specified varies with the nature of the facility involved. Obviously, the level of effort to provide such assurance for a nuclear power plant will be much greater than that required for, say, a critical computer facility. This paper reviews the research and development (R and D) programs ongoing for seismic isolation in non-nuclear facilities and related experience and makes a preliminary assessment of the extent to which such R and D and experience can be used for nuclear power plant application. Ways are suggested to improve the usefulness of such non-nuclear R and D in providing the high level of confidence required for the use of seismic isolation in a nuclear reactor plant

  12. Time-Independent Annual Seismic Rates, Based on Faults and Smoothed Seismicity, Computed for Seismic Hazard Assessment in Italy

    Science.gov (United States)

    Murru, M.; Falcone, G.; Taroni, M.; Console, R.

    2017-12-01

    In 2015 the Italian Department of Civil Protection, started a project for upgrading the official Italian seismic hazard map (MPS04) inviting the Italian scientific community to participate in a joint effort for its realization. We participated providing spatially variable time-independent (Poisson) long-term annual occurrence rates of seismic events on the entire Italian territory, considering cells of 0.1°x0.1° from M4.5 up to M8.1 for magnitude bin of 0.1 units. Our final model was composed by two different models, merged in one ensemble model, each one with the same weight: the first one was realized by a smoothed seismicity approach, the second one using the seismogenic faults. The spatial smoothed seismicity was obtained using the smoothing method introduced by Frankel (1995) applied to the historical and instrumental seismicity. In this approach we adopted a tapered Gutenberg-Richter relation with a b-value fixed to 1 and a corner magnitude estimated with the bigger events in the catalogs. For each seismogenic fault provided by the Database of the Individual Seismogenic Sources (DISS), we computed the annual rate (for each cells of 0.1°x0.1°) for magnitude bin of 0.1 units, assuming that the seismic moments of the earthquakes generated by each fault are distributed according to the same tapered Gutenberg-Richter relation of the smoothed seismicity model. The annual rate for the final model was determined in the following way: if the cell falls within one of the seismic sources, we merge the respective value of rate determined by the seismic moments of the earthquakes generated by each fault and the value of the smoothed seismicity model with the same weight; if instead the cells fall outside of any seismic source we considered the rate obtained from the spatial smoothed seismicity. Here we present the final results of our study to be used for the new Italian seismic hazard map.

  13. Mobile seismic exploration

    Energy Technology Data Exchange (ETDEWEB)

    Dräbenstedt, A., E-mail: a.draebenstedt@polytec.de, E-mail: rembe@iei.tu-clausthal.de, E-mail: ulrich.polom@liag-hannover.de; Seyfried, V. [Research & Development, Polytec GmbH, Waldbronn (Germany); Cao, X.; Rembe, C., E-mail: a.draebenstedt@polytec.de, E-mail: rembe@iei.tu-clausthal.de, E-mail: ulrich.polom@liag-hannover.de [Institute of Electrical Information Technology, TU Clausthal, Clausthal-Zellerfeld (Germany); Polom, U., E-mail: a.draebenstedt@polytec.de, E-mail: rembe@iei.tu-clausthal.de, E-mail: ulrich.polom@liag-hannover.de [Leibniz Institute of Applied Geophysics, Hannover (Germany); Pätzold, F.; Hecker, P. [Institute of Flight Guidance, TU Braunschweig, Braunschweig (Germany); Zeller, T. [Clausthaler Umwelttechnik Institut CUTEC, Clausthal-Zellerfeld (Germany)

    2016-06-28

    Laser-Doppler-Vibrometry (LDV) is an established technique to measure vibrations in technical systems with picometer vibration-amplitude resolution. Especially good sensitivity and resolution can be achieved at an infrared wavelength of 1550 nm. High-resolution vibration measurements are possible over more than 100 m distance. This advancement of the LDV technique enables new applications. The detection of seismic waves is an application which has not been investigated so far because seismic waves outside laboratory scales are usually analyzed at low frequencies between approximately 1 Hz and 250 Hz and require velocity resolutions in the range below 1 nm/s/√Hz. Thermal displacements and air turbulence have critical influences to LDV measurements at this low-frequency range leading to noise levels of several 100 nm/√Hz. Commonly seismic waves are measured with highly sensitive inertial sensors (geophones or Micro Electro-Mechanical Sensors (MEMS)). Approaching a laser geophone based on LDV technique is the topic of this paper. We have assembled an actively vibration-isolated optical table in a minivan which provides a hole in its underbody. The laser-beam of an infrared LDV assembled on the optical table impinges the ground below the car through the hole. A reference geophone has detected remaining vibrations on the table. We present the results from the first successful experimental demonstration of contactless detection of seismic waves from a movable vehicle with a LDV as laser geophone.

  14. A GIS-based time-dependent seismic source modeling of Northern Iran

    Science.gov (United States)

    Hashemi, Mahdi; Alesheikh, Ali Asghar; Zolfaghari, Mohammad Reza

    2017-01-01

    The first step in any seismic hazard study is the definition of seismogenic sources and the estimation of magnitude-frequency relationships for each source. There is as yet no standard methodology for source modeling and many researchers have worked on this topic. This study is an effort to define linear and area seismic sources for Northern Iran. The linear or fault sources are developed based on tectonic features and characteristic earthquakes while the area sources are developed based on spatial distribution of small to moderate earthquakes. Time-dependent recurrence relationships are developed for fault sources using renewal approach while time-independent frequency-magnitude relationships are proposed for area sources based on Poisson process. GIS functionalities are used in this study to introduce and incorporate spatial-temporal and geostatistical indices in delineating area seismic sources. The proposed methodology is used to model seismic sources for an area of about 500 by 400 square kilometers around Tehran. Previous researches and reports are studied to compile an earthquake/fault catalog that is as complete as possible. All events are transformed to uniform magnitude scale; duplicate events and dependent shocks are removed. Completeness and time distribution of the compiled catalog is taken into account. The proposed area and linear seismic sources in conjunction with defined recurrence relationships can be used to develop time-dependent probabilistic seismic hazard analysis of Northern Iran.

  15. Simulation-based seismic loss estimation of seaport transportation system

    International Nuclear Information System (INIS)

    Ung Jin Na; Shinozuka, Masanobu

    2009-01-01

    Seaport transportation system is one of the major lifeline systems in modern society and its reliable operation is crucial for the well-being of the public. However, past experiences showed that earthquake damage to port components can severely disrupt terminal operation, and thus negatively impact on the regional economy. The main purpose of this study is to provide a methodology for estimating the effects of the earthquake on the performance of the operation system of a container terminal in seaports. To evaluate the economic loss of damaged system, an analytical framework is developed by integrating simulation models for terminal operation and fragility curves of port components in the context of seismic risk analysis. For this purpose, computerized simulation model is developed and verified with actual terminal operation records. Based on the analytical procedure to assess the seismic performance of the terminal, system fragility curves are also developed. This simulation-based loss estimation methodology can be used not only for estimating the seismically induced revenue loss but also serve as a decision-making tool to select specific seismic retrofit technique on the basis of benefit-cost analysis

  16. Shaking Table Tests of Curved Bridge considering Bearing Friction Sliding Isolation

    Directory of Open Access Journals (Sweden)

    Lei Yan

    2016-01-01

    Full Text Available Specific to severe damage to curved bridges in earthquakes caused by the excessive force of the fixed bearings and piers, a new seismic design method on curved bridges considering bearing friction sliding isolation is proposed in this paper. Seismic model bridge and isolation model bridge with similarity ratio of 1/20 were made and the shaking table comparison test was conducted. The experimental results show that the isolation model curved bridge suffered less seismic damage than the seismic model curved bridge. The fundamental frequencies of the seismic model bridge and isolation model bridge decreased and the damping ratio increased with the increase of seismic intensity. Compared with seismic curved bridge, the maximum reduction rates of peak acceleration along the radial and tangential directions on the top of pier of the isolation model curved bridge were 47.3% and 55.5%, respectively, and the maximum reduction rate of the peak strain on the bottom of pier of the isolation model curved bridge was 43.4%. For the isolation model curved bridge, the maximum reduction rate of peak acceleration on the top of pier was 24.6% compared with that on the bottom of pier. The study results can provide experimental basis for the seismic design of curved bridges.

  17. Seismic Fragility Assessment of an Isolated Multipylon Cable-Stayed Bridge Using Shaking Table Tests

    Directory of Open Access Journals (Sweden)

    Yutao Pang

    2017-01-01

    Full Text Available In recent decades, cable-stayed bridges have been widely built around the world due to the appealing aesthetics and efficient and fast mode of construction. Numerous studies have concluded that the cable-stayed bridges are sensitive to earthquakes because they possess low damping characteristics and high flexibility. Moreover, cable-stayed bridges need to warrant operability especially in the moderate-to-severe earthquakes. The provisions implemented in the seismic codes allow obtaining adequate seismic performance for the cable-stayed bridge components; nevertheless, they do not provide definite yet reliable rules to protect the bridge. To date, very few experimental tests have been carried out on the seismic fragility analysis of cable-stayed bridges which is the basis of performance-based analyses. The present paper is aimed at proposing a method to derive the seismic fragility curves of multipylon cable-stayed bridge through shake table tests. Toward this aim, a 1/20 scale three-dimensional model of a 22.5 m cable-stayed bridge in China is constructed and tested dynamically by using the shaking table facility of Tongji University. The cable-stayed bridge contains three pylons and one side pier. The outcomes of the comprehensive shaking table tests carried out on cable-stayed bridge have been utilized to derive fragility curves based on a systemic approach.

  18. A modeling study of dynamic characteristic analysis of isolated structure for seismic exciting tests

    International Nuclear Information System (INIS)

    Lee, Jae Han; Koo, G. H.; Yoo, Bong

    1998-04-01

    The fundamental frequency of the isolated superstructure for seismic exciting tests was calculated by 16 Hz with a initial modal analysis model. but the actual modal test resulted in 5 Hz. This large difference was resulted from some uncertainties in analysis modeling of several connection parts between column and upper beam, cross bars of each face of the isolated superstructure. When the stiffness of cross-bars are larger than certain level in all the analyses, the joint stiffness between main slab and columns does not effect to the fundamental frequency. So the fundamental frequency of the isolated superstructure was governed by the cross-bar's stiffness. In actual tests the first and second frequencies show a little difference regardless of the cross section characteristics (inertia moments) of four columns because the joint stiffness between column and main slab is less than 10 8 1b f in/radian. The mounting device of each column to main slab, and the bolting device of each column to upper beam are fabricated with lower stiffness compared to design value. The bolting of cross-bars and the fitness of bolt-hole to bolt were loosed during the modal tests. In the future the tight connecting and the precise assembling of isolated superstructure are required to reduce the difference of the fundamental frequencies obtained from the modal analysis and actual test. (author). 4 refs

  19. A seismic fault recognition method based on ant colony optimization

    Science.gov (United States)

    Chen, Lei; Xiao, Chuangbai; Li, Xueliang; Wang, Zhenli; Huo, Shoudong

    2018-05-01

    Fault recognition is an important section in seismic interpretation and there are many methods for this technology, but no one can recognize fault exactly enough. For this problem, we proposed a new fault recognition method based on ant colony optimization which can locate fault precisely and extract fault from the seismic section. Firstly, seismic horizons are extracted by the connected component labeling algorithm; secondly, the fault location are decided according to the horizontal endpoints of each horizon; thirdly, the whole seismic section is divided into several rectangular blocks and the top and bottom endpoints of each rectangular block are considered as the nest and food respectively for the ant colony optimization algorithm. Besides that, the positive section is taken as an actual three dimensional terrain by using the seismic amplitude as a height. After that, the optimal route from nest to food calculated by the ant colony in each block is judged as a fault. Finally, extensive comparative tests were performed on the real seismic data. Availability and advancement of the proposed method were validated by the experimental results.

  20. Design of the Caltrans Seismic Response Modification Device (SRMD) test facility

    International Nuclear Information System (INIS)

    Benzoni, G.; Seible, F.

    1998-01-01

    In the Seismic retrofit design of California's Toll Bridges, seismic isolation is used in several bridges to limit the seismic force input into the superstructure and to avoid costly superstructure retrofit measures which would require partial lane closures and traffic interruptions. Isolation bearings and dampers of the size required for these large span bridges have not been built or tested to date. This paper describes the design and construction of a full scale testing facility which will allow the real-time 6-DOF dynamic characterization of the seismic response modification devices designed for California's Toll Bridges. (author)

  1. Development of seismic technology and reliability based on vibration tests

    International Nuclear Information System (INIS)

    Sasaki, Youichi

    1997-01-01

    This paper deals with some of the vibration tests and investigations on the seismic safety of nuclear power plants (NPPs) in Japan. To ensure the reliability of the seismic safety of nuclear power plants, nuclear power plants in Japan have been designed according to the Technical Guidelines for Aseismic Design of Nuclear Power Plants. This guideline has been developed based on technical date base and findings which were obtained from many vibration tests and investigations. Besides the tests for the guideline, proving tests on seismic reliability of operating nuclear power plants equipment and systems have been carried out. In this paper some vibration tests and their evaluation results are presented. They have crucially contributed to develop the guideline. (J.P.N.)

  2. Development of seismic technology and reliability based on vibration tests

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Youichi [Nuclear Power Engineering Corp., Tokyo (Japan)

    1997-03-01

    This paper deals with some of the vibration tests and investigations on the seismic safety of nuclear power plants (NPPs) in Japan. To ensure the reliability of the seismic safety of nuclear power plants, nuclear power plants in Japan have been designed according to the Technical Guidelines for Aseismic Design of Nuclear Power Plants. This guideline has been developed based on technical date base and findings which were obtained from many vibration tests and investigations. Besides the tests for the guideline, proving tests on seismic reliability of operating nuclear power plants equipment and systems have been carried out. In this paper some vibration tests and their evaluation results are presented. They have crucially contributed to develop the guideline. (J.P.N.)

  3. Seismic ground motion modelling and damage earthquake scenarios: A bridge between seismologists and seismic engineers

    International Nuclear Information System (INIS)

    Panza, G.F.; Romanelli, F.; Vaccari. F.; . E-mails: Luis.Decanini@uniroma1.it; Fabrizio.Mollaioli@uniroma1.it)

    2002-07-01

    The input for the seismic risk analysis can be expressed with a description of 'roundshaking scenarios', or with probabilistic maps of perhaps relevant parameters. The probabilistic approach, unavoidably based upon rough assumptions and models (e.g. recurrence and attenuation laws), can be misleading, as it cannot take into account, with satisfactory accuracy, some of the most important aspects like rupture process, directivity and site effects. This is evidenced by the comparison of recent recordings with the values predicted by the probabilistic methods. We prefer a scenario-based, deterministic approach in view of the limited seismological data, of the local irregularity of the occurrence of strong earthquakes, and of the multiscale seismicity model, that is capable to reconcile two apparently conflicting ideas: the Characteristic Earthquake concept and the Self Organized Criticality paradigm. Where the numerical modeling is successfully compared with records, the synthetic seismograms permit the microzoning, based upon a set of possible scenario earthquakes. Where no recordings are available the synthetic signals can be used to estimate the ground motion without having to wait for a strong earthquake to occur (pre-disaster microzonation). In both cases the use of modeling is necessary since the so-called local site effects can be strongly dependent upon the properties of the seismic source and can be properly defined only by means of envelopes. The joint use of reliable synthetic signals and observations permits the computation of advanced hazard indicators (e.g. damaging potential) that take into account local soil properties. The envelope of synthetic elastic energy spectra reproduces the distribution of the energy demand in the most relevant frequency range for seismic engineering. The synthetic accelerograms can be fruitfully used for design and strengthening of structures, also when innovative techniques, like seismic isolation, are employed. For these

  4. Seismic design standardization of nuclear facilities

    International Nuclear Information System (INIS)

    Reddy, G.R.; Vaze, K.K.

    2011-01-01

    Full text: Structures, Systems and Components (SSCs) of Nuclear Facilities have to be designed for normal operating loads such as dead weight, pressure, temperature etc., and accidental loads such as earthquakes, floods, extreme, wind air craft impact, explosions etc. Man made accidents such as aircraft impact, explosions etc., some times may be considered as design basis event and some times taken care by providing administrative controls. This will not be possible in the case of natural events such as earthquakes, flooding, extreme winds etc. Among natural events earthquakes are considered as most devastating and need to be considered as design basis event. It is generally felt design of SSCs for earthquake loads is very time consuming and expensive. Conventional seismic design approaches demands for large number of supports for systems and components. This results in large space occupation and in turn creates difficulties for maintenance and in service inspection of systems and components. In addition, complete exercise of design need to be repeated for plants being located at different sites due to different seismic demands. However, advanced seismic response control methods will help to standardize the seismic design meeting the safety and economy. These methods adopt passive, semi active and active devices, and base isolators to control the seismic response. In nuclear industry, it is advisable to go for passive devices to control the seismic responses. Ideally speaking, these methods will make the designs made for normal loads can also satisfy the seismic demand without calling for change in material, geometry, layout etc. in the SSCs. This paper explain the basic ideas of seismic response control methods, demonstrate the effectiveness of control methods through case studies and eventually give the procedure to be adopted for seismic design standardization of nuclear facilities

  5. Pick- and waveform-based techniques for real-time detection of induced seismicity

    Science.gov (United States)

    Grigoli, Francesco; Scarabello, Luca; Böse, Maren; Weber, Bernd; Wiemer, Stefan; Clinton, John F.

    2018-05-01

    The monitoring of induced seismicity is a common operation in many industrial activities, such as conventional and non-conventional hydrocarbon production or mining and geothermal energy exploitation, to cite a few. During such operations, we generally collect very large and strongly noise-contaminated data sets that require robust and automated analysis procedures. Induced seismicity data sets are often characterized by sequences of multiple events with short interevent times or overlapping events; in these cases, pick-based location methods may struggle to correctly assign picks to phases and events, and errors can lead to missed detections and/or reduced location resolution and incorrect magnitudes, which can have significant consequences if real-time seismicity information are used for risk assessment frameworks. To overcome these issues, different waveform-based methods for the detection and location of microseismicity have been proposed. The main advantages of waveform-based methods is that they appear to perform better and can simultaneously detect and locate seismic events providing high-quality locations in a single step, while the main disadvantage is that they are computationally expensive. Although these methods have been applied to different induced seismicity data sets, an extensive comparison with sophisticated pick-based detection methods is still missing. In this work, we introduce our improved waveform-based detector and we compare its performance with two pick-based detectors implemented within the SeiscomP3 software suite. We test the performance of these three approaches with both synthetic and real data sets related to the induced seismicity sequence at the deep geothermal project in the vicinity of the city of St. Gallen, Switzerland.

  6. Correlation-based seismic velocity inversion

    NARCIS (Netherlands)

    Van Leeuwen, T.

    2010-01-01

    Most of our knowledge of the subsurface comes from the measurement of quantities that are indirectly related to the earth’s structure. Examples are seismic waves, gravity and electromagnetic waves. We consider the use of seismic waves for inference of structural information on an exploration scale.

  7. Control of pre-isolators for gravitational wave detection

    International Nuclear Information System (INIS)

    Lee, C Y; Zhao, C; Chin, E J; Jacob, J; Li, D; Blair, D G

    2004-01-01

    An ultra-low frequency pre-isolator (PI) has been built by ACIGA for micro-seismic noise isolation and reduction of suspension chain resonant mode amplitudes. A multidimensional control system, based on digital signal processing, has been developed for position control and normal mode damping of the PI. In this paper, we demonstrate the successful control of the suspension system

  8. Design approach of seismic interface for cryoline with Tokamak building for ITER

    International Nuclear Information System (INIS)

    Badgujar, S.; Sarkar, B.; Vaghela, H.; Shah, N.; Naik, H.B.

    2012-01-01

    ITER Tokamak building is designed with seismic isolation pads to protect the Tokamak components from seismic events. Two main cryolines, designated as cryolines between buildings (Mg and CP), runs from interconnection box in cryoplant building to the Tokamak building. The lines outside Tokamak building are supported by seismically non-isolated supports. The cryoline design at the interface between seismically isolated and non-isolated support systems needs to be studied to fulfill the functional requirements. One of the options for interface, universal expansion joint has been modeled in CATIA with actual thickness of each ply and inter-ply distance, analyzed in ANSYS using contact definition, as a part of the preliminary study. The bellows have been checked by design calculation as per EJMA standard for the specified movements. The paper will present approach for conceptual design of interface, problem definition and boundary conditions, methodology for analysis and preliminary results of stress pattern for expansion joints. (author)

  9. Concepts and Models Regarding the Behavior of Antiseismic Devices for the Base Isolation System

    Directory of Open Access Journals (Sweden)

    Polidor BRATU

    2013-07-01

    Full Text Available The paper presents the main antiseismic devices, as component elements of the base isolation systems, in such a manner that the functional and constructive parameters are correlated with the inertial and stiffness characteristics of the dynamic isolated building. Also, each device will be characterized through a rheological model, which conditions the eigenvalues and eigenvectors spectrum, as well as the dynamic response to an exterior excitation of a seismic nature. In this context, antiseismic devices defined and characterized by the European Standard EN 15129 will be presented. Based on the requirements formulated in the norm, the devices can be identified and their laws of evolution established and checked as follows: antiseismic devices with permanent rigid connection; antiseismic devices with rigid connections with respect to the instantaneous displacement and antiseismic devices dependent on the velocity and on the velocity variation in time.

  10. Linking ground motion measurements and macro-seismic observations in France: A case study based on the RAP (accelerometric) and BCSF (macro-seismic) databases

    International Nuclear Information System (INIS)

    Lesueur, Ch.

    2011-01-01

    Comparison between accelerometric and macro-seismic observations is made for three mw∼4.5 earthquakes of eastern France between 2003 and 2005. Scalar and spectral instrumental parameters are processed from the accelerometric data recorded by nine accelerometric stations located between 29 km and 180 km from the epicentres. Macro-seismic data are based on the French internet reports. In addition to the individual macro-seismic intensity, analysis of the internal correlation between the encoded answers highlights four predominant fields of questions, bearing different physical meanings: 1) 'vibratory motions of small objects', 2) 'displacement and fall of objects', 3) 'acoustic noise', and 4) 'personal feelings'. Best correlations between macro-seismic and instrumental observations are obtained when the macro-seismic parameters are averaged over 10 km radius circles around each station. macro-seismic intensities predicted by published pgv-intensity relationships quite agree with the observed intensities, contrary to those based on pga. The correlations between the macro-seismic and instrumental data, for intensities between ii and v (ems-98), show that pgv is the instrumental parameter presenting the best correlation with all macro-seismic parameters. The correlation with response spectra, exhibits clear frequency dependence over a limited frequency range [0.5-33 hz]. Horizontal and vertical components are significantly correlated with macro-seismic parameters between 1 and 10 hz, a range corresponding to both natural frequencies of most buildings and high energy content in the seismic ground motion. Between 10 and 25 hz, a clear lack of correlation between macro-seismic and instrumental data is observed, while beyond 25 hz the correlation coefficient increases, approaching that of the PGA correlation level. (author)

  11. Seismic hazard assessment based on the Unified Scaling Law for Earthquakes: the Greater Caucasus

    Science.gov (United States)

    Nekrasova, A.; Kossobokov, V. G.

    2015-12-01

    Losses from natural disasters continue to increase mainly due to poor understanding by majority of scientific community, decision makers and public, the three components of Risk, i.e., Hazard, Exposure, and Vulnerability. Contemporary Science is responsible for not coping with challenging changes of Exposures and their Vulnerability inflicted by growing population, its concentration, etc., which result in a steady increase of Losses from Natural Hazards. Scientists owe to Society for lack of knowledge, education, and communication. In fact, Contemporary Science can do a better job in disclosing Natural Hazards, assessing Risks, and delivering such knowledge in advance catastrophic events. We continue applying the general concept of seismic risk analysis in a number of seismic regions worldwide by constructing regional seismic hazard maps based on the Unified Scaling Law for Earthquakes (USLE), i.e. log N(M,L) = A - B•(M-6) + C•log L, where N(M,L) is the expected annual number of earthquakes of a certain magnitude M within an seismically prone area of linear dimension L. The parameters A, B, and C of USLE are used to estimate, first, the expected maximum magnitude in a time interval at a seismically prone cell of a uniform grid that cover the region of interest, and then the corresponding expected ground shaking parameters including macro-seismic intensity. After a rigorous testing against the available seismic evidences in the past (e.g., the historically reported macro-seismic intensity), such a seismic hazard map is used to generate maps of specific earthquake risks (e.g., those based on the density of exposed population). The methodology of seismic hazard and risks assessment based on USLE is illustrated by application to the seismic region of Greater Caucasus.

  12. Seismic Retrofit of a Multispan Prestressed Concrete Girder Bridge with Friction Pendulum Devices

    Directory of Open Access Journals (Sweden)

    Alberto Maria Avossa

    2018-01-01

    Full Text Available The paper deals with the proposal and application of a procedure for the seismic retrofit of an existing multispan prestressed concrete girder bridge defined explicitly for the use of friction pendulum devices as an isolation system placed between piers top and deck. First, the outcomes of the seismic risk assessment of the existing bridge, performed using an incremental noniterative Nonlinear Static Procedure, based on the Capacity Spectrum Method as well as the Inelastic Demand Response Spectra, are described and discussed. Then, a specific multilevel design process, based on a proper application of the hierarchy of strength considerations and the Direct Displacement-Based Design approach, is adopted to dimension the FPD devices. Furthermore, to assess the impact of the FPD nonlinear behaviour on the bridge seismic response, a device model that reproduces the variation of the normal force and friction coefficient, the bidirectional coupling, and the large deformation effects during nonlinear dynamic analyses was used. Finally, the paper examines the effects of the FPD modelling parameters on the behaviour of the retrofitted bridge and assesses its seismic response with the results pointing out the efficiency of the adopted seismic retrofit solution.

  13. Intensity Based Seismic Hazard Map of Republic of Macedonia

    Science.gov (United States)

    Dojcinovski, Dragi; Dimiskovska, Biserka; Stojmanovska, Marta

    2016-04-01

    The territory of the Republic of Macedonia and the border terrains are among the most seismically active parts of the Balkan Peninsula belonging to the Mediterranean-Trans-Asian seismic belt. The seismological data on the R. Macedonia from the past 16 centuries point to occurrence of very strong catastrophic earthquakes. The hypocenters of the occurred earthquakes are located above the Mohorovicic discontinuity, most frequently, at a depth of 10-20 km. Accurate short -term prognosis of earthquake occurrence, i.e., simultaneous prognosis of time, place and intensity of their occurrence is still not possible. The present methods of seismic zoning have advanced to such an extent that it is with a great probability that they enable efficient protection against earthquake effects. The seismic hazard maps of the Republic of Macedonia are the result of analysis and synthesis of data from seismological, seismotectonic and other corresponding investigations necessary for definition of the expected level of seismic hazard for certain time periods. These should be amended, from time to time, with new data and scientific knowledge. The elaboration of this map does not completely solve all issues related to earthquakes, but it provides basic empirical data necessary for updating the existing regulations for construction of engineering structures in seismically active areas regulated by legal regulations and technical norms whose constituent part is the seismic hazard map. The map has been elaborated based on complex seismological and geophysical investigations of the considered area and synthesis of the results from these investigations. There were two phases of elaboration of the map. In the first phase, the map of focal zones characterized by maximum magnitudes of possible earthquakes has been elaborated. In the second phase, the intensities of expected earthquakes have been computed according to the MCS scale. The map is prognostic, i.e., it provides assessment of the

  14. Korea-Japan Joint Research on Development of Seismic Capacity Evaluation and Enhancement Technology Considering Near-Fault Effect (Final Report)

    Energy Technology Data Exchange (ETDEWEB)

    Choun, Young Sun; Choi, In Kil; Kim, Min Kyu [KAERI, Daejeon (Korea, Republic of); Ohtori, Yasuki; Shiba, Yoshiaki; Nakajima, Masato [Central Research Institute of Electric Power Industry, Tokyo (Japan)

    2006-12-15

    We compiled the results of the source analysis obtained under the collaboration research. Recent construction scheme for source modeling adopted in Japan is described, and strong-motion prediction is performed assuming the scenario earthquakes occurring in the Ulsan fault system, Korea. Finally Qs values beneath the Korean inland crust are estimated using strong-motion records in Korea from the 2005 Off West Fukuoka earthquake (M7.0). Probabilistic seismic hazard for four NPP sites in Korea are evaluated, in which the site specific attenuation equations with Index SA developed for NPP sites are adopted. Furthermore, the uniform hazard spectra for the four NPP sites in Korea are obtained by conducting the PSHA by using the attenuation equations with the index of response spectra and seismic source model cases with maximum weights. The supporting tools for seismic response analysis, the evaluation tool for evaluating annual probability of failure, and system analysis program were developed for the collaboration. The tools were verified with theoretical results, the results written in the reference document of EQESRA, and so forth. The system analysis program was applied for the investigation of the effect of improving the seismic capacity of equipment. We evaluated the annual probability of failure of isolated and non-isolated EDG at Younggwang NPP site as the results of the collaboration. The input ground motion for generating the seismic fragility curve was determined based on the seismic hazard analysis. It was found that the annual probability of failure of isolated EDG is lower than that of non-isolated EDG.

  15. Model Solutions for Performance-Based Seismic Analysis of an Anchored Sheet Pile Quay Wall

    OpenAIRE

    C. J. W. Habets; D. J. Peters; J. G. de Gijt; A. V. Metrikine; S. N. Jonkman

    2016-01-01

    Conventional seismic designs of quay walls in ports are mostly based on pseudo-static analysis. A more advanced alternative is the Performance-Based Design (PBD) method, which evaluates permanent deformations and amounts of (repairable) damage under seismic loading. The aim of this study is to investigate the suitability of this method for anchored sheet pile quay walls that were not purposely designed for seismic loads. A research methodology is developed in which pseudo-static, permanent-di...

  16. Quantitative Prediction of Coalbed Gas Content Based on Seismic Multiple-Attribute Analyses

    Directory of Open Access Journals (Sweden)

    Renfang Pan

    2015-09-01

    Full Text Available Accurate prediction of gas planar distribution is crucial to selection and development of new CBM exploration areas. Based on seismic attributes, well logging and testing data we found that seismic absorption attenuation, after eliminating the effects of burial depth, shows an evident correlation with CBM gas content; (positive structure curvature has a negative correlation with gas content; and density has a negative correlation with gas content. It is feasible to use the hydrocarbon index (P*G and pseudo-Poisson ratio attributes for detection of gas enrichment zones. Based on seismic multiple-attribute analyses, a multiple linear regression equation was established between the seismic attributes and gas content at the drilling wells. Application of this equation to the seismic attributes at locations other than the drilling wells yielded a quantitative prediction of planar gas distribution. Prediction calculations were performed for two different models, one using pre-stack inversion and the other one disregarding pre-stack inversion. A comparison of the results indicates that both models predicted a similar trend for gas content distribution, except that the model using pre-stack inversion yielded a prediction result with considerably higher precision than the other model.

  17. Seismic capacity of a reinforced concrete frame structure without seismic detailing and limited ductility seismic design in moderate seismicity

    International Nuclear Information System (INIS)

    Kim, J. K.; Kim, I. H.

    1999-01-01

    A four-story reinforced concrete frame building model is designed for the gravity loads only. Static nonlinear pushover analyses are performed in two orthogonal horizontal directions. The overall capacity curves are converted into ADRS spectra and compared with demand spectra. At several points the deformed shape, moment and shear distribution are calculated. Based on these results limited ductility seismic design concept is proposed as an alternative seismic design approach in moderate seismicity resign

  18. Design and implementation of a unified certification management system based on seismic business

    Science.gov (United States)

    Tang, Hongliang

    2018-04-01

    Many business software for seismic systems are based on web pages, users can simply open a browser and enter their IP address. However, how to achieve unified management and security management of many IP addresses, this paper introduces the design concept based on seismic business and builds a unified authentication management system using ASP technology.

  19. LIFE-CYCLE COST MODEL AND DESIGN OPTIMIZATION OF BASE ISOLATED BUILDING STRUCTURES

    Directory of Open Access Journals (Sweden)

    Chara C. Mitropoulou

    2016-11-01

    Full Text Available Design of economic structures adequately resistant to withstand during their service life, without catastrophic failures, all possible loading conditions and to absorb the induced seismic energy in a controlled fashion, has been the subject of intensive research so far. Modern buildings usually contain extremely sensitive and costly equipment that are vital in business, commerce, education and/or health care. The building contents frequently are more valuable than the buildings them-selves. Furthermore, hospitals, communication and emergency centres, police and fire stations must be operational when needed most: immediately after an earthquake. Conventional con-struction can cause very high floor accelerations in stiff buildings and large interstorey drifts in flexible structures. These two factors cause difficulties in insuring the safety of both building and its contents. For this reason base-isolated structures are considered as an efficient alternative design practice to the conventional fixed-base one. In this study a systematic assessment of op-timized fixed and base-isolated reinforced concrete buildings is presented in terms of their initial and total cost taking into account the life-cycle cost of the structures.

  20. Centrifuge modeling of rocking-isolated inelastic RC bridge piers.

    Science.gov (United States)

    Loli, Marianna; Knappett, Jonathan A; Brown, Michael J; Anastasopoulos, Ioannis; Gazetas, George

    2014-12-01

    Experimental proof is provided of an unconventional seismic design concept, which is based on deliberately underdesigning shallow foundations to promote intense rocking oscillations and thereby to dramatically improve the seismic resilience of structures. Termed rocking isolation , this new seismic design philosophy is investigated through a series of dynamic centrifuge experiments on properly scaled models of a modern reinforced concrete (RC) bridge pier. The experimental method reproduces the nonlinear and inelastic response of both the soil-footing interface and the structure. To this end, a novel scale model RC (1:50 scale) that simulates reasonably well the elastic response and the failure of prototype RC elements is utilized, along with realistic representation of the soil behavior in a geotechnical centrifuge. A variety of seismic ground motions are considered as excitations. They result in consistent demonstrably beneficial performance of the rocking-isolated pier in comparison with the one designed conventionally. Seismic demand is reduced in terms of both inertial load and deck drift. Furthermore, foundation uplifting has a self-centering potential, whereas soil yielding is shown to provide a particularly effective energy dissipation mechanism, exhibiting significant resistance to cumulative damage. Thanks to such mechanisms, the rocking pier survived, with no signs of structural distress, a deleterious sequence of seismic motions that caused collapse of the conventionally designed pier. © 2014 The Authors Published by John Wiley & Sons Ltd.

  1. Constitutive law for seismicity rate based on rate and state friction: Dieterich 1994 revisited.

    Science.gov (United States)

    Heimisson, E. R.; Segall, P.

    2017-12-01

    Dieterich [1994] derived a constitutive law for seismicity rate based on rate and state friction, which has been applied widely to aftershocks, earthquake triggering, and induced seismicity in various geological settings. Here, this influential work is revisited, and re-derived in a more straightforward manner. By virtue of this new derivation the model is generalized to include changes in effective normal stress associated with background seismicity. Furthermore, the general case when seismicity rate is not constant under constant stressing rate is formulated. The new derivation provides directly practical integral expressions for the cumulative number of events and rate of seismicity for arbitrary stressing history. Arguably, the most prominent limitation of Dieterich's 1994 theory is the assumption that seismic sources do not interact. Here we derive a constitutive relationship that considers source interactions between sub-volumes of the crust, where the stress in each sub-volume is assumed constant. Interactions are considered both under constant stressing rate conditions and for arbitrary stressing history. This theory can be used to model seismicity rate due to stress changes or to estimate stress changes using observed seismicity from triggered earthquake swarms where earthquake interactions and magnitudes are take into account. We identify special conditions under which influence of interactions cancel and the predictions reduces to those of Dieterich 1994. This remarkable result may explain the apparent success of the model when applied to observations of triggered seismicity. This approach has application to understanding and modeling induced and triggered seismicity, and the quantitative interpretation of geodetic and seismic data. It enables simultaneous modeling of geodetic and seismic data in a self-consistent framework. To date physics-based modeling of seismicity with or without geodetic data has been found to give insight into various processes

  2. Effect of β on Seismic Vulnerability Curve for RC Bridge Based on Double Damage Criterion

    International Nuclear Information System (INIS)

    Feng Qinghai; Yuan Wancheng

    2010-01-01

    In the analysis of seismic vulnerability curve based on double damage criterion, the randomness of structural parameter and randomness of seismic should be considered. Firstly, the distribution characteristics of structure capability and seismic demand are obtained based on IDA and PUSHOVER, secondly, the vulnerability of the bridge is gained based on ANN and MC and a vulnerability curve according to this bridge and seismic is drawn. Finally, the analysis for a continuous bridge is displayed as an example, and parametric analysis for the effect of β is done, which reflects the bridge vulnerability overall from the point of total probability, and in order to reduce the discreteness, large value of β are suggested.

  3. Model Solutions for Performance-Based Seismic Analysis of an Anchored Sheet Pile Quay Wall

    NARCIS (Netherlands)

    Habets, C.J.W.; Peters, D.J.; de Gijt, J.G.; Metrikine, A.; Jonkman, S.N.

    2016-01-01

    Conventional seismic designs of quay walls in ports are mostly based on pseudo-static analysis. A more advanced alternative is the Performance-Based Design (PBD) method, which evaluates permanent deformations and amounts of (repairable) damage under seismic loading. The aim of this study is to

  4. Seismic margin assessment and earthquake experience based methods for WWER-440/213 type NPPs

    International Nuclear Information System (INIS)

    Masopust, R.

    1996-01-01

    This report covers the review of the already completed studies, namely, safe shutdown system identification and classification for Bohunice NPP and the comparative study of standards and criteria. It contains a report on currently ongoing studies concerning seismic margin assessment and earthquake experience based methods in application for seismic evaluation and verification of structures and equipment components of the operating WWER-440/213 type NPPs. This is based on experiences obtained from Paks NPP. The work plan for the remaining period of Benchmark CRP and the new proposals are included. These are concerned with seismic evaluation of selected safety related mechanical equipment and pipes of Paks NPP, and the actual seismic issues of the Temelin WWER-1000 type NPP

  5. Seismic response and rehabilitation of critical substation equipment

    Energy Technology Data Exchange (ETDEWEB)

    Saadeghvaziri, M.A.; Allaverdi, N.H. [New Jersey Inst. of Technology, Newark, NJ (United States); Ashrafi, A. [Columbia Univ., New York, NY (United States); Ersoy, S. [Greenman-Pedersen Inc., Babylon, NY (United States)

    2004-07-01

    Substations are one of the most important components of an electrical power system. They provide protection to transmission and distribution lines and transfer power between different voltage levels. Transformers and bushings within the substation are vulnerable to earthquake ground motion. It is extremely important that electric power systems remain functional following seismic damage. This study assessed the seismic response of critical substation equipment and described advanced technologies for rehabilitation measures such as the Friction Pendulum System (FPS). It presents the results of an extensive finite element analysis on response of transformers and bushings. The objective was to determine the seismic behaviour of transformers and bushings during an earthquake and to determine the probability of different failure modes. The response of an FPS isolated transformer to different earthquakes was also examined along with FPS radii, ground motion intensity and vertical excitations. A finite element model was developed for FPS. The study showed that seismic isolation is a viable mitigation strategy, but a modest increase in slack must be provided. 15 refs., 1 tab., 12 figs.

  6. High-resolution seismic reflection study, Vacherie Dome

    International Nuclear Information System (INIS)

    1984-06-01

    A high-resolution seismic reflection study, consisting of recording, processing, and interpreting four seismic reflection lines, was made at Vacherie Dome, Louisiana. The presumed shape of the dome, as pictured in the geologic area characterization report by Law Engineering Testing Company in 1982, was based largely on interpretation of gravity data, constrained by a few wells and exploration-type seismic profiles. The purpose of the study was to obtain refined profiles of the dome above -914 m (-3000 ft) elevation. Additional study had been recommended by Louisiana State University in 1967 and the Office of Nuclear Waste Isolation in 1981 because the interpreted size of Vacherie Dome was based on limited seismic and gravity data. Forty-eight traces of seismic data were recorded each time shots were made to generate energy. Twelve-fold, common-depth-point data were obtained using geophone stations spaced at 15-m (50-ft) intervals with shots at 30-m (100-ft) intervals. The time-sampling interval used was 1 ms. Processing intended to enhance resolution included iterative static corrections, deconvolution before stacking, and both time- and depth-migration. The locations of the steep dome sides were inferred primarily from terminations of strong reflections (migrated) from strata near the top of the upper and lower Cretaceous sections. This interpretation agrees closely with the presumed shape from the top of the dome to about -610 m (-2000 ft) elevation, but below this on three of the profiles, this interpretation indicates a steeper salt face than the presumed shape. The area reduction at -914 m (-3000 ft) elevation is estimated to be on the order of 20 percent. 10 references, 11 figures, 4 tables

  7. Seismic Monitoring of Bedload Transport in a Steep Mountain Catchment

    Science.gov (United States)

    Roth, D. L.; Finnegan, N. J.; Brodsky, E. E.; Turowski, J. M.; Wyss, C. R.; Badoux, A.

    2014-12-01

    Predicting river channel evolution relies on an understanding of when and at what rate coarse sediment moves in a channel. Unfortunately, our predictive abilities are limited by the logistical challenges and potential dangers inherent in current techniques for monitoring sediment transport during flood events, especially in steep, highly active landscapes. However, the use of seismic signals near rivers shows promise as a safe, low-cost method for studying sediment transport in these settings. Seismic signals near rivers are partially generated by both water turbulence and bedload sediment particles impacting the river bed during transport. Here, we attempt to isolate the seismic signatures of discharge and bedload transport in a steep mountain channel by examining high-frequency broadband seismic data from the well-studied Erlenbach stream (local slope of ~10%) in the Swiss Prealps. The extensive monitoring infrastructure and long history of sediment transport data at this field site allow us to independently constrain discharge, precipitation, and bedload transport during flood events over a two month field campaign. We perform a general linear least squares inversion of the seismic data, exploiting times with isolated rain or discharge events, to identify the spectral signals of water turbulence, rain, and bedload sediment transport. We find that the signal generated by rain exhibits a roughly broadband spectrum, while discharge and sediment transport exhibit power primarily in lower frequency bands. Our preliminary results indicate that with only precipitation and discharge data, it is possible to isolate the seismic signal of bedload transport in steep fluvial environments. Seismic studies may therefore have the potential to revolutionize our ability to monitor and understand these environments.

  8. Overcoming barriers to high performance seismic design using lessons learned from the green building industry

    Science.gov (United States)

    Glezil, Dorothy

    NEHRP's Provisions today currently governing conventional seismic resistant design. These provisions, though they ensure the life-safety of building occupants, extensive damage and economic losses may still occur in the structures. This minimum performance can be enhanced using the Performance-Based Earthquake Engineering methodology and passive control systems like base isolation and energy dissipation systems. Even though these technologies and the PBEE methodology are effective reducing economic losses and fatalities during earthquakes, getting them implemented into seismic resistant design has been challenging. One of the many barriers to their implementation has been their upfront costs. The green building community has faced some of the same challenges that the high performance seismic design community currently faces. The goal of this thesis is to draw on the success of the green building industry to provide recommendations that may be used overcome the barriers that high performance seismic design (HPSD) is currently facing.

  9. Study on highly efficient seismic data acquisition and processing methods based on sparsity constraint

    Science.gov (United States)

    Wang, H.; Chen, S.; Tao, C.; Qiu, L.

    2017-12-01

    High-density, high-fold and wide-azimuth seismic data acquisition methods are widely used to overcome the increasingly sophisticated exploration targets. The acquisition period is longer and longer and the acquisition cost is higher and higher. We carry out the study of highly efficient seismic data acquisition and processing methods based on sparse representation theory (or compressed sensing theory), and achieve some innovative results. The theoretical principles of highly efficient acquisition and processing is studied. We firstly reveal sparse representation theory based on wave equation. Then we study the highly efficient seismic sampling methods and present an optimized piecewise-random sampling method based on sparsity prior information. At last, a reconstruction strategy with the sparsity constraint is developed; A two-step recovery approach by combining sparsity-promoting method and hyperbolic Radon transform is also put forward. The above three aspects constitute the enhanced theory of highly efficient seismic data acquisition. The specific implementation strategies of highly efficient acquisition and processing are studied according to the highly efficient acquisition theory expounded in paragraph 2. Firstly, we propose the highly efficient acquisition network designing method by the help of optimized piecewise-random sampling method. Secondly, we propose two types of highly efficient seismic data acquisition methods based on (1) single sources and (2) blended (or simultaneous) sources. Thirdly, the reconstruction procedures corresponding to the above two types of highly efficient seismic data acquisition methods are proposed to obtain the seismic data on the regular acquisition network. A discussion of the impact on the imaging result of blended shooting is discussed. In the end, we implement the numerical tests based on Marmousi model. The achieved results show: (1) the theoretical framework of highly efficient seismic data acquisition and processing

  10. Seismic Noise Analysis and Reduction through Utilization of Collocated Seismic and Atmospheric Sensors at the GRO Chile Seismic Network

    Science.gov (United States)

    Farrell, M. E.; Russo, R. M.

    2013-12-01

    The installation of Earthscope Transportable Array-style geophysical observatories in Chile expands open data seismic recording capabilities in the southern hemisphere by nearly 30%, and has nearly tripled the number of seismic stations providing freely-available data in southern South America. Through the use of collocated seismic and atmospheric sensors at these stations we are able to analyze how local atmospheric conditions generate seismic noise, which can degrade data in seismic frequency bands at stations in the ';roaring forties' (S latitudes). Seismic vaults that are climate-controlled and insulated from the local environment are now employed throughout the world in an attempt to isolate seismometers from as many noise sources as possible. However, this is an expensive solution that is neither practical nor possible for all seismic deployments; and also, the increasing number and scope of temporary seismic deployments has resulted in the collection and archiving of terabytes of seismic data that is affected to some degree by natural seismic noise sources such as wind and atmospheric pressure changes. Changing air pressure can result in a depression and subsequent rebound of Earth's surface - which generates low frequency noise in seismic frequency bands - and even moderate winds can apply enough force to ground-coupled structures or to the surface above the seismometers themselves, resulting in significant noise. The 10 stations of the permanent Geophysical Reporting Observatories (GRO Chile), jointly installed during 2011-12 by IRIS and the Chilean Servicio Sismológico, include instrumentation in addition to the standard three seismic components. These stations, spaced approximately 300 km apart along the length of the country, continuously record a variety of atmospheric data including infrasound, air pressure, wind speed, and wind direction. The collocated seismic and atmospheric sensors at each station allow us to analyze both datasets together, to

  11. A generalized formulation for noise-based seismic velocity change measurements

    Science.gov (United States)

    Gómez-García, C.; Brenguier, F.; Boué, P.; Shapiro, N.; Droznin, D.; Droznina, S.; Senyukov, S.; Gordeev, E.

    2017-12-01

    The observation of continuous seismic velocity changes is a powerful tool for detecting seasonal variations in crustal structure, volcanic unrest, co- and post-seismic evolution of stress in fault areas or the effects of fluid injection. The standard approach for measuring such velocity changes relies on comparison of travel times in the coda of a set of seismic signals, usually noise-based cross-correlations retrieved at different dates, and a reference trace, usually a averaged function over dates. A good stability in both space and time of the noise sources is then the main assumption for reliable measurements. Unfortunately, these conditions are often not fulfilled, as it happens when ambient-noise sources are non-stationary, such as the emissions of low-frequency volcanic tremors.We propose a generalized formulation for retrieving continuous time series of noise-based seismic velocity changes without any arbitrary reference cross-correlation function. We set up a general framework for future applications of this technique performing synthetic tests. In particular, we study the reliability of the retrieved velocity changes in case of seasonal-type trends, transient effects (similar to those produced as a result of an earthquake or a volcanic eruption) and sudden velocity drops and recoveries as the effects of transient local source emissions. Finally, we apply this approach to a real dataset of noise cross-correlations. We choose the Klyuchevskoy volcanic group (Kamchatka) as a case study where the recorded wavefield is hampered by loss of data and dominated by strongly localized volcanic tremor sources. Despite the mentioned wavefield contaminations, we retrieve clear seismic velocity drops associated with the eruptions of the Klyuchevskoy an the Tolbachik volcanoes in 2010 and 2012, respectively.

  12. The role of natural rubber in seismic isolation - a perspective

    International Nuclear Information System (INIS)

    Coveney, V.A.

    1991-01-01

    The ''base-isolation'' technique for protecting buildings against earthquakes is based on the fundamental physics of systems in oscillation. It relies on lowering the natural frequency of the building/support system below that of the major frequencies present in the earthquake. Although simple in concept, many years of development have been required to convert it into a practical, reliable system. Seen fifteen years ago as an eccentric dream, base isolation is today recognized as the only feasible method of protecting some buildings and their contents, and as an attractive option for a widening range of other types. In most practical systems, natural rubber has an essential role. (orig.) [de

  13. Rupture Dynamics and Seismic Radiation on Rough Faults for Simulation-Based PSHA

    Science.gov (United States)

    Mai, P. M.; Galis, M.; Thingbaijam, K. K. S.; Vyas, J. C.; Dunham, E. M.

    2017-12-01

    Simulation-based ground-motion predictions may augment PSHA studies in data-poor regions or provide additional shaking estimations, incl. seismic waveforms, for critical facilities. Validation and calibration of such simulation approaches, based on observations and GMPE's, is important for engineering applications, while seismologists push to include the precise physics of the earthquake rupture process and seismic wave propagation in 3D heterogeneous Earth. Geological faults comprise both large-scale segmentation and small-scale roughness that determine the dynamics of the earthquake rupture process and its radiated seismic wavefield. We investigate how different parameterizations of fractal fault roughness affect the rupture evolution and resulting near-fault ground motions. Rupture incoherence induced by fault roughness generates realistic ω-2 decay for high-frequency displacement amplitude spectra. Waveform characteristics and GMPE-based comparisons corroborate that these rough-fault rupture simulations generate realistic synthetic seismogram for subsequent engineering application. Since dynamic rupture simulations are computationally expensive, we develop kinematic approximations that emulate the observed dynamics. Simplifying the rough-fault geometry, we find that perturbations in local moment tensor orientation are important, while perturbations in local source location are not. Thus, a planar fault can be assumed if the local strike, dip, and rake are maintained. The dynamic rake angle variations are anti-correlated with local dip angles. Based on a dynamically consistent Yoffe source-time function, we show that the seismic wavefield of the approximated kinematic rupture well reproduces the seismic radiation of the full dynamic source process. Our findings provide an innovative pseudo-dynamic source characterization that captures fault roughness effects on rupture dynamics. Including the correlations between kinematic source parameters, we present a new

  14. seismic-py: Reading seismic data with Python

    Directory of Open Access Journals (Sweden)

    2008-08-01

    Full Text Available The field of seismic exploration of the Earth has changed
    dramatically over the last half a century. The Society of Exploration
    Geophysicists (SEG has worked to create standards to store the vast
    amounts of seismic data in a way that will be portable across computer
    architectures. However, it has been impossible to predict the needs of the
    immense range of seismic data acquisition systems. As a result, vendors have
    had to bend the rules to accommodate the needs of new instruments and
    experiment types. For low level access to seismic data, there is need for a
    standard open source library to allow access to a wide range of vendor data
    files that can handle all of the variations. A new seismic software package,
    seismic-py, provides an infrastructure for creating and managing drivers for
    each particular format. Drivers can be derived from one of the known formats
    and altered to handle any slight variations. Alternatively drivers can be
    developed from scratch for formats that are very different from any previously
    defined format. Python has been the key to making driver development easy
    and efficient to implement. The goal of seismic-py is to be the base system
    that will power a wide range of experimentation with seismic data and at the
    same time provide clear documentation for the historical record of seismic
    data formats.

  15. France's seismic zoning

    International Nuclear Information System (INIS)

    Mohammadioun, B.

    1997-01-01

    In order to assess the seismic hazard in France in relation to nuclear plant siting, the CEA, EDF and the BRGM (Mine and Geology Bureau) have carried out a collaboration which resulted in a seismic-tectonic map of France and a data base on seismic history (SIRENE). These studies were completed with a seismic-tectonic zoning, taking into account a very long period of time, that enabled a probabilistic evaluation of the seismic hazard in France, and that may be related to adjacent country hazard maps

  16. A strategy for implementation of experience based seismic equipment qualification in IEEE and ASME industry standards

    International Nuclear Information System (INIS)

    Adams, T.M.

    1996-01-01

    In the past 20 years, extensive data on the performance of mechanical and electric equipment during actual strong motion earthquakes and seismic qualification tests has been accumulated. Recognizing that an experience based approach provides a technically sound and cost effective method for the seismic qualification of some or certain equipment, the IEEE Nuclear Power Engineering Committee and the ASME Committee on Qualification of Mechanical Equipment established a Special Working Group to investigate the incorporation of experienced based methods into the industry consensus codes and standards currently used in the seismic qualification of Seismic Category Nuclear Power Plant equipment. This paper presents the strategy (course of action) which was developed by the Special Working Group for meeting this objective of incorporation of experience based seismic qualification standards used in the design and seismic qualification of seismic category nuclear power plant equipment. This strategy was recommended to both chartering organizations, the IEEE Nuclear Power Engineering Committee and the ASME Committee on Qualification of Mechanical Equipment for their consideration and implementation. The status of the review and implementation of the Special Working Group's recommended strategy by the sponsoring organization is also discussed

  17. Design and implement of system for browsing remote seismic waveform based on B/S schema

    International Nuclear Information System (INIS)

    Zheng Xuefeng; Shen Junyi; Wang Zhihai; Sun Peng; Jin Ping; Yan Feng

    2006-01-01

    Browsing remote seismic waveform based on B/S schema is of significance in modern seismic research and data service, and the technology should be improved urgently. This paper describes the basic plan, architecture and implement of system for browsing remote seismic waveform based on B/S schema. The problem to access, browse and edit the waveform data on serve from client only using browser has been solved. On this basis, the system has been established and been in use. (authors)

  18. Seismic wavefield modeling based on time-domain symplectic and Fourier finite-difference method

    Science.gov (United States)

    Fang, Gang; Ba, Jing; Liu, Xin-xin; Zhu, Kun; Liu, Guo-Chang

    2017-06-01

    Seismic wavefield modeling is important for improving seismic data processing and interpretation. Calculations of wavefield propagation are sometimes not stable when forward modeling of seismic wave uses large time steps for long times. Based on the Hamiltonian expression of the acoustic wave equation, we propose a structure-preserving method for seismic wavefield modeling by applying the symplectic finite-difference method on time grids and the Fourier finite-difference method on space grids to solve the acoustic wave equation. The proposed method is called the symplectic Fourier finite-difference (symplectic FFD) method, and offers high computational accuracy and improves the computational stability. Using acoustic approximation, we extend the method to anisotropic media. We discuss the calculations in the symplectic FFD method for seismic wavefield modeling of isotropic and anisotropic media, and use the BP salt model and BP TTI model to test the proposed method. The numerical examples suggest that the proposed method can be used in seismic modeling of strongly variable velocities, offering high computational accuracy and low numerical dispersion. The symplectic FFD method overcomes the residual qSV wave of seismic modeling in anisotropic media and maintains the stability of the wavefield propagation for large time steps.

  19. Evaluation of induced seismicity forecast models in the Induced Seismicity Test Bench

    Science.gov (United States)

    Király, Eszter; Gischig, Valentin; Zechar, Jeremy; Doetsch, Joseph; Karvounis, Dimitrios; Wiemer, Stefan

    2016-04-01

    Induced earthquakes often accompany fluid injection, and the seismic hazard they pose threatens various underground engineering projects. Models to monitor and control induced seismic hazard with traffic light systems should be probabilistic, forward-looking, and updated as new data arrive. Here, we propose an Induced Seismicity Test Bench to test and rank such models. We apply the test bench to data from the Basel 2006 and Soultz-sous-Forêts 2004 geothermal stimulation projects, and we assess forecasts from two models that incorporate a different mix of physical understanding and stochastic representation of the induced sequences: Shapiro in Space (SiS) and Hydraulics and Seismics (HySei). SiS is based on three pillars: the seismicity rate is computed with help of the seismogenic index and a simple exponential decay of the seismicity; the magnitude distribution follows the Gutenberg-Richter relation; and seismicity is distributed in space based on smoothing seismicity during the learning period with 3D Gaussian kernels. The HySei model describes seismicity triggered by pressure diffusion with irreversible permeability enhancement. Our results show that neither model is fully superior to the other. HySei forecasts the seismicity rate well, but is only mediocre at forecasting the spatial distribution. On the other hand, SiS forecasts the spatial distribution well but not the seismicity rate. The shut-in phase is a difficult moment for both models in both reservoirs: the models tend to underpredict the seismicity rate around, and shortly after, shut-in. Ensemble models that combine HySei's rate forecast with SiS's spatial forecast outperform each individual model.

  20. Causality between expansion of seismic cloud and maximum magnitude of induced seismicity in geothermal field

    Science.gov (United States)

    Mukuhira, Yusuke; Asanuma, Hiroshi; Ito, Takatoshi; Häring, Markus

    2016-04-01

    Occurrence of induced seismicity with large magnitude is critical environmental issues associated with fluid injection for shale gas/oil extraction, waste water disposal, carbon capture and storage, and engineered geothermal systems (EGS). Studies for prediction of the hazardous seismicity and risk assessment of induced seismicity has been activated recently. Many of these studies are based on the seismological statistics and these models use the information of the occurrence time and event magnitude. We have originally developed physics based model named "possible seismic moment model" to evaluate seismic activity and assess seismic moment which can be ready to release. This model is totally based on microseismic information of occurrence time, hypocenter location and magnitude (seismic moment). This model assumes existence of representative parameter having physical meaning that release-able seismic moment per rock volume (seismic moment density) at given field. Seismic moment density is to be estimated from microseismic distribution and their seismic moment. In addition to this, stimulated rock volume is also inferred by progress of microseismic cloud at given time and this quantity can be interpreted as the rock volume which can release seismic energy due to weakening effect of normal stress by injected fluid. Product of these two parameters (equation (1)) provide possible seismic moment which can be released from current stimulated zone as a model output. Difference between output of this model and observed cumulative seismic moment corresponds the seismic moment which will be released in future, based on current stimulation conditions. This value can be translated into possible maximum magnitude of induced seismicity in future. As this way, possible seismic moment can be used to have feedback to hydraulic stimulation operation in real time as an index which can be interpreted easily and intuitively. Possible seismic moment is defined as equation (1), where D

  1. An innovative seismic bracing system based on a superelastic shape memory alloy ring

    International Nuclear Information System (INIS)

    Gao, Nan; Jeon, Jong-Su; DesRoches, Reginald; Hodgson, Darel E

    2016-01-01

    Shape memory alloys (SMAs) have great potential in seismic applications because of their remarkable superelasticity. Seismic bracing systems based on SMAs can mitigate the damage caused by earthquakes. The current study investigates a bracing system based on an SMA ring which is capable of both re-centering and energy dissipation. This lateral force resisting system is a cross-braced system consisting of an SMA ring and four tension-only cable assemblies, which can be applied to both new construction and seismic retrofit. The performance of this bracing system is examined through a quasi-static cyclic loading test and finite element (FE) analysis. This paper describes the experimental design in detail, discusses the experimental results, compares the performance with other bracing systems based on SMAs, and presents an Abaqus FE model calibrated on the basis of experimental results to simulate the superelastic behavior of the SMA ring. The experimental results indicate that the seismic performance of this system is promising in terms of damping and re-centering. The FE model can be used in the simulation of building structures using the proposed bracing system. (paper)

  2. Seismic Margin Assessment for Research Reactor using Fragility based Fault Tree Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kwag, Shinyoung; Oh, Jinho; Lee, Jong-Min; Ryu, Jeong-Soo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The research reactor has been often subjected to external hazards during the design lifetime. Especially, a seismic event can be one of significant threats to the failure of structure system of the research reactor. This failure is possibly extended to the direct core damage of the reactor. For this purpose, the fault tree for structural system failure leading to the core damage under an earthquake accident is developed. The failure probabilities of basic events are evaluated as fragility curves of log-normal distributions. Finally, the plant-level seismic margin is investigated by the fault tree analysis combining with fragility data and the critical path is identified. The plant-level probabilistic seismic margin assessment using the fragility based fault tree analysis was performed for quantifying the safety of research reactor to a seismic hazard. For this, the fault tree for structural system failure leading to the core damage of the reactor under a seismic accident was developed. The failure probabilities of basic events were evaluated as fragility curves of log-normal distributions.

  3. Seismic design and performance of nuclear safety related RC structures based on new seismic design principle

    International Nuclear Information System (INIS)

    Murugan, R.; Sivathanu Pillai, C.; Chattopadhyaya, S.; Sundaramurthy, C.

    2011-01-01

    Full text: Seismic design of safety related Reinforced Concrete (RC) structures of Nuclear power plants (NPP) in India as per the present AERB codal procedures tries to ensure predominantly elastic behaviour under OBE so that the features of Nuclear Power Plant (NPP) necessary for continued safe operation are designed to remain functional and prevent accident (collapse) of NPP under SSE for which certain Structures, Systems and Components (SSCs) those are necessary to ensure the capability to shut down the reactor safely, are designed to remain functional. While the seismic design principles of non safety related structures as per Indian code (IS 1893-2002) are ensuring elastic behaviour under DBE and inelastic behaviour under MCE by utilizing ductility and energy dissipation capacity of the structure effectively. The design principle of AERB code is ensuring elastic behaviour under OBE and is not enlightening much inference about the overall structural behaviour under SSE (only ensuring the capability of certain SSCs required for safe shutdown of reactor). Various buildings and structures of Indian Nuclear power plant are classified from the basis of associated safety functions in a descending order in according with their roles in preventions and mitigation of an accident or support functions for prevention. This paper covers a comprehensive seismic analysis and design methodology based on the AERB codal provisions followed for safety related RC structure taking Diesel Generator Building of PFBR as a case study and study and investigates its performance under OBE and SSE by carrying out Non-linear static Pushover analysis. Based on the analysis, observed variations, recommendations are given for getting the desired performance level so as to implement performance based design in the future NPP design

  4. Seismic qualification of piping systems based on strain criteria

    International Nuclear Information System (INIS)

    Peters, K.; Rangette, A.

    1988-01-01

    Typical LMFBR piping is characterized by elevated temperature and low pressure levels. Taking into account operational conditions only these characteristics demand for and allow flexible piping design. The overestimation of the damage potential of seismic loading by e.g. improper failure criteria usually contradicts operational needs producing the known result of excessive ''snubberism'' and reduction of operational margins. As a matter of fact, due to its transiency seismic loading is essentially secondary provoking the natural design requirement ductility instead of stiffness and rigidity - i.e. exclusion of failure by strain control instead of stress control - and thus avoiding the LMFBR typical competition between operational needs and seismic qualification. The design requirement ductility needs judgement mechanisms, i.e. suitable load descriptions, allowed strain levels and strain evaluation tools. A simplified method for strain range estimation and the underlying basic ideas are roughly outlined. The status of verification and experience gained so far is described. The results achieved suggest that the qualification of piping based on ductility requirement controlled by strain criteria is not out of reach. (author)

  5. Automatic Classification of volcano-seismic events based on Deep Neural Networks.

    Science.gov (United States)

    Titos Luzón, M.; Bueno Rodriguez, A.; Garcia Martinez, L.; Benitez, C.; Ibáñez, J. M.

    2017-12-01

    Seismic monitoring of active volcanoes is a popular remote sensing technique to detect seismic activity, often associated to energy exchanges between the volcano and the environment. As a result, seismographs register a wide range of volcano-seismic signals that reflect the nature and underlying physics of volcanic processes. Machine learning and signal processing techniques provide an appropriate framework to analyze such data. In this research, we propose a new classification framework for seismic events based on deep neural networks. Deep neural networks are composed by multiple processing layers, and can discover intrinsic patterns from the data itself. Internal parameters can be initialized using a greedy unsupervised pre-training stage, leading to an efficient training of fully connected architectures. We aim to determine the robustness of these architectures as classifiers of seven different types of seismic events recorded at "Volcán de Fuego" (Colima, Mexico). Two deep neural networks with different pre-training strategies are studied: stacked denoising autoencoder and deep belief networks. Results are compared to existing machine learning algorithms (SVM, Random Forest, Multilayer Perceptron). We used 5 LPC coefficients over three non-overlapping segments as training features in order to characterize temporal evolution, avoid redundancy and encode the signal, regardless of its duration. Experimental results show that deep architectures can classify seismic events with higher accuracy than classical algorithms, attaining up to 92% recognition accuracy. Pre-training initialization helps these models to detect events that occur simultaneously in time (such explosions and rockfalls), increase robustness against noisy inputs, and provide better generalization. These results demonstrate deep neural networks are robust classifiers, and can be deployed in real-environments to monitor the seismicity of restless volcanoes.

  6. Seismic functional qualification of active mechanical and electrical components based on shaking table testing

    International Nuclear Information System (INIS)

    Jurukovski, D.

    1999-01-01

    The seismic testing for qualification of one sample of the NPP Kozloduy Control Panel type YKTC was carried out under Research Contract no: 8008/Rl, entitled: 'Seismic Functional Qualification of Active Mechanical and Electrical Components Based on Shaking Table Testing'. The tested specimen was selected by the Kozloduy NPP staff, Section 'TIA-2' (Technical Instrumentation and Automatics), however the seismic input parameters were selected by the NPP Kozloduy staff, Section HTS and SC (Hydro-Technical Systems and Engineering Structures). The applied methodology was developed by the Institute of Earthquake Engineering and Engineering Seismology staff. This report presents all relevant items related to the selected specimen seismic testing for seismic qualification such as: description of the tested specimen, mounting conditions on the shaking table, selection of seismic input parameters and creation of seismic excitations, description of the testing equipment, explanation of the applied methodology, 'on line' and 'off line' monitoring of the tested specimen, functioning capabilities, discussion of the results and their presentation and finally conclusions and recommendations. In this partial project report, two items are presented. The first item presents a review of the existing and used regulations for performing of the seismic and vibratory withstand testing of electro-mechanical equipment. The selection is made based on MEA, IEEE, IEC and former Soviet Union regulations. The second item presents the abstracts of all the tests performed at the Institute of Earthquake Engineering and Engineering Seismology in Skopje. The selected regulations, the experience of the Institute that has been gathered for the last seventeen years and some theoretical and experimental research will be the basis for further investigations for development of a synthesised methodology for seismic qualification of differently categorized equipment for nuclear power plants

  7. Object Classification Based on Analysis of Spectral Characteristics of Seismic Signal Envelopes

    Science.gov (United States)

    Morozov, Yu. V.; Spektor, A. A.

    2017-11-01

    A method for classifying moving objects having a seismic effect on the ground surface is proposed which is based on statistical analysis of the envelopes of received signals. The values of the components of the amplitude spectrum of the envelopes obtained applying Hilbert and Fourier transforms are used as classification criteria. Examples illustrating the statistical properties of spectra and the operation of the seismic classifier are given for an ensemble of objects of four classes (person, group of people, large animal, vehicle). It is shown that the computational procedures for processing seismic signals are quite simple and can therefore be used in real-time systems with modest requirements for computational resources.

  8. Seismic hazard and seismic risk assessment based on the unified scaling law for earthquakes: Himalayas and adjacent regions

    Science.gov (United States)

    Nekrasova, A. K.; Kossobokov, V. G.; Parvez, I. A.

    2015-03-01

    magnitudes which, according to USLE, corresponded to the probability of exceedance 1% and 10% during 50 years or, if the reliable estimate is absent, the maximal magnitudes reported during the instrumental period. As a result, the seismic hazard maps for the Himalayas and the adjacent regions in terms of standard seismic zoning were constructed. Based on these calculations, in order to exemplify the method, we present a series of seismic risk maps taking into account the population density prone to seismic hazard and the dependence of the risk on the vulnerability as a function of population density.

  9. Application of thermodynamics-based rate-dependent constitutive models of concrete in the seismic analysis of concrete dams

    Directory of Open Access Journals (Sweden)

    Leng Fei

    2008-09-01

    Full Text Available This paper discusses the seismic analysis of concrete dams with consideration of material nonlinearity. Based on a consistent rate-dependent model and two thermodynamics-based models, two thermodynamics-based rate-dependent constitutive models were developed with consideration of the influence of the strain rate. They can describe the dynamic behavior of concrete and be applied to nonlinear seismic analysis of concrete dams taking into account the rate sensitivity of concrete. With the two models, a nonlinear analysis of the seismic response of the Koyna Gravity Dam and the Dagangshan Arch Dam was conducted. The results were compared with those of a linear elastic model and two rate-independent thermodynamics-based constitutive models, and the influences of constitutive models and strain rate on the seismic response of concrete dams were discussed. It can be concluded from the analysis that, during seismic response, the tensile stress is the control stress in the design and seismic safety evaluation of concrete dams. In different models, the plastic strain and plastic strain rate of concrete dams show a similar distribution. When the influence of the strain rate is considered, the maximum plastic strain and plastic strain rate decrease.

  10. Numerical Study on the Seismic Response of Structure with Consideration of the Behavior of Base Mat Uplift

    Directory of Open Access Journals (Sweden)

    Guo-Bo Wang

    2017-01-01

    Full Text Available The foundation might be separated from the supporting soil if the earthquake is big enough, which is known as base mat uplift. This paper proposed a simplified calculation model in which spring element is adopted to simulate the interaction between soil and structure. The load-deformation curve (F-D curve of the spring element can be designated to represent the base mat uplift, in which the pressure can be applied while tensile forces are not allowed. Key factors, such as seismic wave types, seismic wave excitation directions, seismic wave amplitudes, soil shear velocities, structure stiffness, and the ratio of structure height to width (H/B, were considered in the analysis. It is shown that (1 seismic wave type has significant influence on structure response due to different frequency components it contained; (2 the vertical input of seismic wave greatly affected structure response in vertical direction, while it has little impacts in horizontal direction; (3 base mat uplift is easier to take place in soil with higher shear velocity; (4 structure H/B value has complicated influence on base mat uplift. The outcome of this research is assumed to provide some references for the seismic design of the structure due to base mat uplift.

  11. Fault specific GIS based seismic hazard maps for the Attica region, Greece

    Science.gov (United States)

    Deligiannakis, G.; Papanikolaou, I. D.; Roberts, G.

    2018-04-01

    Traditional seismic hazard assessment methods are based on the historical seismic records for the calculation of an annual probability of exceedance for a particular ground motion level. A new fault-specific seismic hazard assessment method is presented, in order to address problems related to the incompleteness and the inhomogeneity of the historical records and to obtain higher spatial resolution of hazard. This method is applied to the region of Attica, which is the most densely populated area in Greece, as nearly half of the country's population lives in Athens and its surrounding suburbs, in the Greater Athens area. The methodology is based on a database of 24 active faults that could cause damage to Attica in case of seismic rupture. This database provides information about the faults slip rates, lengths and expected magnitudes. The final output of the method is four fault-specific seismic hazard maps, showing the recurrence of expected intensities for each locality. These maps offer a high spatial resolution, as they consider the surface geology. Despite the fact that almost half of the Attica region lies on the lowest seismic risk zone according to the official seismic hazard zonation of Greece, different localities have repeatedly experienced strong ground motions during the last 15 kyrs. Moreover, the maximum recurrence for each intensity occurs in different localities across Attica. Highest recurrence for intensity VII (151-156 times over 15 kyrs, or up to a 96 year return period) is observed in the central part of the Athens basin. The maximum intensity VIII recurrence (115 times over 15 kyrs, or up to a 130 year return period) is observed in the western part of Attica, while the maximum intensity IX (73-77/15 kyrs, or a 195 year return period) and X (25-29/15 kyrs, or a 517 year return period) recurrences are observed near the South Alkyonides fault system, which dominates the strong ground motions hazard in the western part of the Attica mainland.

  12. Long seismic activity in the Porto dos Gaúchos Seismic Zone(PGSZ) - Amazon Craton Brazil

    Science.gov (United States)

    Barros, L. V.; Bowen, B. M. D.; Schmidt, K.

    2017-12-01

    The largest earthquake ever observed in the stable continental interior of the South American plate occurred in Serra do Tombador (ST), Mato Grosso state - Brazil, on January 31, 1955 with magnitude 6.2 m b . Since then no other earthquake has been located near the 1955 epicenter. However, in Porto dos Gaúchos (PG), 100 km northeast of ST, a recurrent seismicity has been observed since 1959. Both ST and PG are located in the Phanerozoic Parecis basin whose sediments overlies the crystalline basement of Amazon craton. Two magnitude 5 earthquakes occurred in PG, in 1998 and 2005 with intensities up to VI and V, respectively. These two main shocks were followed by aftershock sequences, studied by local seismic networks, last up today, almost 30 years later, period in which it was detected more than seven thousand of seismic events. Both sequences occurred in the same WSW-ENE oriented fault zone with right-lateral strike-slip mechanisms. The epicentral zone is near the northern border of Parecis basin, where there are buried grabens, generally trending WNW-ESE, such as the deep Mesoproterozoic Caiabis graben which lies partly beneath the Parecis basin. The seismogenic fault is located in a basement high, which is probably related with the same seismogenic feature responsible for the earthquakes in PGSZ. The 1955 earthquake, despite the uncertainty in its epicenter, does not seem to be directly related to any buried graben either. The seismicity in the PGSZ, therefore, is not directly related to rifted crust.Not considering the possibility of miss location in the ST earthquake, its isolated occurrence - from the perspective of new studies on intraplate seismicity - lead us to think that the PGSZ was activated by stresses released by the earthquake of 1955 and that the seismogenic fault of ST would have closed a cycle of activity. This would explain its seismic quiescence. However, other studies are necessary to prove this hypothesis, such as the measurement of the

  13. Seismic isolation for existing masonry houses in Groningen/ NL combined with thermal upgrading

    NARCIS (Netherlands)

    Blok, Rijk; Teuffel, Patrick

    2015-01-01

    Induced earthquakes, caused by the winning of natural Gas in the North of the Netherlands (Groningen province), are causing significant damage to the existing, often relatively weak, masonry buildings. This seismic hazard and seismic rehabilitation problem in the Groningen area involves much more

  14. Automated seismic detection of landslides at regional scales: a Random Forest based detection algorithm

    Science.gov (United States)

    Hibert, C.; Michéa, D.; Provost, F.; Malet, J. P.; Geertsema, M.

    2017-12-01

    Detection of landslide occurrences and measurement of their dynamics properties during run-out is a high research priority but a logistical and technical challenge. Seismology has started to help in several important ways. Taking advantage of the densification of global, regional and local networks of broadband seismic stations, recent advances now permit the seismic detection and location of landslides in near-real-time. This seismic detection could potentially greatly increase the spatio-temporal resolution at which we study landslides triggering, which is critical to better understand the influence of external forcings such as rainfalls and earthquakes. However, detecting automatically seismic signals generated by landslides still represents a challenge, especially for events with small mass. The low signal-to-noise ratio classically observed for landslide-generated seismic signals and the difficulty to discriminate these signals from those generated by regional earthquakes or anthropogenic and natural noises are some of the obstacles that have to be circumvented. We present a new method for automatically constructing instrumental landslide catalogues from continuous seismic data. We developed a robust and versatile solution, which can be implemented in any context where a seismic detection of landslides or other mass movements is relevant. The method is based on a spectral detection of the seismic signals and the identification of the sources with a Random Forest machine learning algorithm. The spectral detection allows detecting signals with low signal-to-noise ratio, while the Random Forest algorithm achieve a high rate of positive identification of the seismic signals generated by landslides and other seismic sources. The processing chain is implemented to work in a High Performance Computers centre which permits to explore years of continuous seismic data rapidly. We present here the preliminary results of the application of this processing chain for years

  15. Internet-Based Solutions for a Secure and Efficient Seismic Network

    Science.gov (United States)

    Bhadha, R.; Black, M.; Bruton, C.; Hauksson, E.; Stubailo, I.; Watkins, M.; Alvarez, M.; Thomas, V.

    2017-12-01

    The Southern California Seismic Network (SCSN), operated by Caltech and USGS, leverages modern Internet-based computing technologies to provide timely earthquake early warning for damage reduction, event notification, ShakeMap, and other data products. Here we present recent and ongoing innovations in telemetry, security, cloud computing, virtualization, and data analysis that have allowed us to develop a network that runs securely and efficiently.Earthquake early warning systems must process seismic data within seconds of being recorded, and SCSN maintains a robust and resilient network of more than 350 digital strong motion and broadband seismic stations to achieve this goal. We have continued to improve the path diversity and fault tolerance within our network, and have also developed new tools for latency monitoring and archiving.Cyberattacks are in the news almost daily, and with most of our seismic data streams running over the Internet, it is only a matter of time before SCSN is targeted. To ensure system integrity and availability across our network, we have implemented strong security, including encryption and Virtual Private Networks (VPNs).SCSN operates its own data center at Caltech, but we have also installed real-time servers on Amazon Web Services (AWS), to provide an additional level of redundancy, and eventually to allow full off-site operations continuity for our network. Our AWS systems receive data from Caltech-based import servers and directly from field locations, and are able to process the seismic data, calculate earthquake locations and magnitudes, and distribute earthquake alerts, directly from the cloud.We have also begun a virtualization project at our Caltech data center, allowing us to serve data from Virtual Machines (VMs), making efficient use of high-performance hardware and increasing flexibility and scalability of our data processing systems.Finally, we have developed new monitoring of station average noise levels at most stations

  16. Establishing seismic design criteria to achieve an acceptable seismic margin

    International Nuclear Information System (INIS)

    Kennedy, R.P.

    1997-01-01

    In order to develop a risk based seismic design criteria the following four issues must be addressed: (1) What target annual probability of seismic induced unacceptable performance is acceptable? (2). What minimum seismic margin is acceptable? (3) Given the decisions made under Issues 1 and 2, at what annual frequency of exceedance should the Safe Shutdown Earthquake ground motion be defined? (4) What seismic design criteria should be established to reasonably achieve the seismic margin defined under Issue 2? The first issue is purely a policy decision and is not addressed in this paper. Each of the other three issues are addressed. Issues 2 and 3 are integrally tied together so that a very large number of possible combinations of responses to these two issues can be used to achieve the target goal defined under Issue 1. Section 2 lays out a combined approach to these two issues and presents three potentially attractive combined resolutions of these two issues which reasonably achieves the target goal. The remainder of the paper discusses an approach which can be used to develop seismic design criteria aimed at achieving the desired seismic margin defined in resolution of Issue 2. Suggestions for revising existing seismic design criteria to more consistently achieve the desired seismic margin are presented

  17. Supports for shock, vibration and seismic isolation for tube networks

    International Nuclear Information System (INIS)

    Prisecaru, Ilie; Serban, Viorel; Sandrea Madalina

    2005-01-01

    The paper presents a solution for diminishing the shocks, vibrations and seismic movements in pipe networks, with a simultaneous reduction in the general stress conditions in piping and supports. Total removal or reduction of vibrations is a hard problem which was not yet tackled either theoretically, in the sense of an analytical procedure for the analysis of occurrence and development of shocks and vibrations in complex systems, or practically, since the current supports and dampers cannot provide enough damping within all the frequency ranges met in the technical domain. Stiffness of classical supports do not allow always satisfactory source isolation to prevent propagation from environment of shocks and vibrations, Considering the actual condition met in the nuclear power plants, power plants and thermal power plants, etc. this paper represents a major practical aid because it provides new solutions for diminishing shocks, vibrations and seismic movements. Aiming at diminishing the effects of vibrations in pipe networks, this paper presents the results obtained in the design, construction and testing of new types of supports that include sandwich type components made up of elastic blade packages with controlled distortion provided by the central and peripheral stiff parts called SERB. With the new type of supports, the control of the distortion at static and dynamic loads and the thermal displacements is achieved by the relative movement among the sandwich structure subassemblies and by the sandwich structure distortion controlled by the central and peripheral distorting parts that generate a non - linear geometric response which has an easily controllable stiffness and damping, due to their non - linear geometric behavior. The supports of the new type are adjustable to the load and distortion level without overstressing the component material, due to a non - linear geometric behavior while the contact pressure among the blades is limited to pre-set values. Due

  18. Earthquakes: Isolation, energy dissipation and control of vibrations of structures for nuclear and industrial facilities and buildings. Overview of lectures and papers of a seminar organized jointly with the Italian Working Group on Seismic Isolation (GLIS) and held in Capri, Italy, 23-25 August 1993

    International Nuclear Information System (INIS)

    1995-09-01

    This report summarizes the contributions to the seminar together with the main technical issues and conclusions. Particular attention is paid to contributions which provided new or updated information with respect to that given at the IAEA Specialists Meeting on Seismic Isolation Technology, held at San Jose (California, USA), 18-20 March 1992. Attention is also paid to the development and implementation of more recent but very promising innovative techniques for the reduction of seismic and other dynamic loads. 64 refs, 1 tab

  19. Earthquakes: Isolation, energy dissipation and control of vibrations of structures for nuclear and industrial facilities and buildings. Overview of lectures and papers of a seminar organized jointly with the Italian Working Group on Seismic Isolation (GLIS) and held in Capri, Italy, 23-25 August 1993

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This report summarizes the contributions to the seminar together with the main technical issues and conclusions. Particular attention is paid to contributions which provided new or updated information with respect to that given at the IAEA Specialists Meeting on Seismic Isolation Technology, held at San Jose (California, USA), 18-20 March 1992. Attention is also paid to the development and implementation of more recent but very promising innovative techniques for the reduction of seismic and other dynamic loads. 64 refs, 1 tab.

  20. Performance-based seismic assessment of vulnerability of dam using time history analysis

    Directory of Open Access Journals (Sweden)

    Elmrabet Oumnia

    2018-01-01

    Full Text Available The current performance-based seismic assessment procedure can be computationally intensive as it requires many time history analyses (THA each requiring time intensive post-processing of results. Time history analysis is a part of structural analysis and is the calculation of the response of a structure to any earthquake. It is one of the main processes of structural design in regions where earthquakes are prevalent. The objective of this study is to evaluate the seismic performance of embankment dam located on the Oued RHISS in the Province of AL HOCEIMA using the THA method. To monitor structural behavior, the seismic vulnerability of structure is evaluated under real earthquake records with considering the soil-structure-fluide interaction. In this study, a simple assistant program is developed for implementing earthquake analyses of structure with ANSYS, ground acceleration–time history data are used for seismic analysis and dynamic numerical simulations were conducted to study and identify the total response of the soil-structure system.

  1. Generalized Fragility Relationships with Local Site Conditions for Probabilistic Performance-based Seismic Risk Assessment of Bridge Inventories

    Directory of Open Access Journals (Sweden)

    Sivathayalan S.

    2012-01-01

    Full Text Available The current practice of detailed seismic risk assessment cannot be easily applied to all the bridges in a large transportation networks due to limited resources. This paper presents a new approach for seismic risk assessment of large bridge inventories in a city or national bridge network based on the framework of probabilistic performance based seismic risk assessment. To account for the influences of local site effects, a procedure to generate site-specific hazard curves that includes seismic hazard microzonation information has been developed for seismic risk assessment of bridge inventories. Simulated ground motions compatible with the site specific seismic hazard are used as input excitations in nonlinear time history analysis of representative bridges for calibration. A normalizing procedure to obtain generalized fragility relationships in terms of structural characteristic parameters of bridge span and size and longitudinal and transverse reinforcement ratios is presented. The seismic risk of bridges in a large inventory can then be easily evaluated using the normalized fragility relationships without the requirement of carrying out detailed nonlinear time history analysis.

  2. Seismic fragility analysis of a nuclear building based on probabilistic seismic hazard assessment and soil-structure interaction analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, R.; Ni, S.; Chen, R.; Han, X.M. [CANDU Energy Inc, Mississauga, Ontario (Canada); Mullin, D. [New Brunswick Power, Point Lepreau, New Brunswick (Canada)

    2016-09-15

    Seismic fragility analyses are conducted as part of seismic probabilistic safety assessment (SPSA) for nuclear facilities. Probabilistic seismic hazard assessment (PSHA) has been undertaken for a nuclear power plant in eastern Canada. Uniform Hazard Spectra (UHS), obtained from the PSHA, is characterized by high frequency content which differs from the original plant design basis earthquake spectral shape. Seismic fragility calculations for the service building of a CANDU 6 nuclear power plant suggests that the high frequency effects of the UHS can be mitigated through site response analysis with site specific geological conditions and state-of-the-art soil-structure interaction analysis. In this paper, it is shown that by performing a detailed seismic analysis using the latest technology, the conservatism embedded in the original seismic design can be quantified and the seismic capacity of the building in terms of High Confidence of Low Probability of Failure (HCLPF) can be improved. (author)

  3. Seismic network based detection, classification and location of volcanic tremors

    Science.gov (United States)

    Nikolai, S.; Soubestre, J.; Seydoux, L.; de Rosny, J.; Droznin, D.; Droznina, S.; Senyukov, S.; Gordeev, E.

    2017-12-01

    Volcanic tremors constitute an important attribute of volcanic unrest in many volcanoes, and their detection and characterization is a challenging issue of volcano monitoring. The main goal of the present work is to develop a network-based method to automatically classify volcanic tremors, to locate their sources and to estimate the associated wave speed. The method is applied to four and a half years of seismic data continuously recorded by 19 permanent seismic stations in the vicinity of the Klyuchevskoy volcanic group (KVG) in Kamchatka (Russia), where five volcanoes were erupting during the considered time period. The method is based on the analysis of eigenvalues and eigenvectors of the daily array covariance matrix. As a first step, following Seydoux et al. (2016), most coherent signals corresponding to dominating tremor sources are detected based on the width of the covariance matrix eigenvalues distribution. With this approach, the volcanic tremors of the two volcanoes known as most active during the considered period, Klyuchevskoy and Tolbachik, are efficiently detected. As a next step, we consider the array covariance matrix's first eigenvectors computed every day. The main hypothesis of our analysis is that these eigenvectors represent the principal component of the daily seismic wavefield and, for days with tremor activity, characterize the dominant tremor sources. Those first eigenvectors can therefore be used as network-based fingerprints of tremor sources. A clustering process is developed to analyze this collection of first eigenvectors, using correlation coefficient as a measure of their similarity. Then, we locate tremor sources based on cross-correlations amplitudes. We characterize seven tremor sources associated with different periods of activity of four volcanoes: Tolbachik, Klyuchevskoy, Shiveluch, and Kizimen. The developed method does not require a priori knowledge, is fully automatic and the database of network-based tremor fingerprints

  4. Proceedings of third Indo-German workshop and theme meeting on seismic safety of structures, risk assessment and disaster mitigation

    International Nuclear Information System (INIS)

    Reddy, G.R.; Parulekar, Y.M.

    2007-01-01

    This Indo-German workshop focuses and emphasises the current research and development activities in both the countries. Themes of this meeting are Earthquake Hazard and Vulnerability Assessment, Risk Assessment Techniques, Seismic Risk to Mega Cities, Testing and Evaluation of Structures and Components, Base Isolation and other Control Techniques, Seismic Strengthening of Structures, Design Practices and Specifications, Remote Sensing and GIS Applications, Structural Materials and Composites, Containment and Other Special Structures. Papers relevant to INIS are indexed separately

  5. Lateral-torsional response of base-isolated buildings with curved surface sliding system subjected to near-fault earthquakes

    Science.gov (United States)

    Mazza, Fabio

    2017-08-01

    The curved surface sliding (CSS) system is one of the most in-demand techniques for the seismic isolation of buildings; yet there are still important aspects of its behaviour that need further attention. The CSS system presents variation of friction coefficient, depending on the sliding velocity of the CSS bearings, while friction force and lateral stiffness during the sliding phase are proportional to the axial load. Lateral-torsional response needs to be better understood for base-isolated structures located in near-fault areas, where fling-step and forward-directivity effects can produce long-period (horizontal) velocity pulses. To analyse these aspects, a six-storey reinforced concrete (r.c.) office framed building, with an L-shaped plan and setbacks in elevation, is designed assuming three values of the radius of curvature for the CSS system. Seven in-plan distributions of dynamic-fast friction coefficient for the CSS bearings, ranging from a constant value for all isolators to a different value for each, are considered in the case of low- and medium-type friction properties. The seismic analysis of the test structures is carried out considering an elastic-linear behaviour of the superstructure, while a nonlinear force-displacement law of the CSS bearings is considered in the horizontal direction, depending on sliding velocity and axial load. Given the lack of knowledge of the horizontal direction at which near-fault ground motions occur, the maximum torsional effects and residual displacements are evaluated with reference to different incidence angles, while the orientation of the strongest observed pulses is considered to obtain average values.

  6. Seismic failure modes and seismic safety of Hardfill dam

    Directory of Open Access Journals (Sweden)

    Kun Xiong

    2013-04-01

    Full Text Available Based on microscopic damage theory and the finite element method, and using the Weibull distribution to characterize the random distribution of the mechanical properties of materials, the seismic response of a typical Hardfill dam was analyzed through numerical simulation during the earthquakes with intensities of 8 degrees and even greater. The seismic failure modes and failure mechanism of the dam were explored as well. Numerical results show that the Hardfill dam remains at a low stress level and undamaged or slightly damaged during an earthquake with an intensity of 8 degrees. During overload earthquakes, tensile cracks occur at the dam surfaces and extend to inside the dam body, and the upstream dam body experiences more serious damage than the downstream dam body. Therefore, under the seismic conditions, the failure pattern of the Hardfill dam is the tensile fracture of the upstream regions and the dam toe. Compared with traditional gravity dams, Hardfill dams have better seismic performance and greater seismic safety.

  7. Urban MEMS based seismic network for post-earthquakes rapid disaster assessment

    Science.gov (United States)

    D'Alessandro, Antonino; Luzio, Dario; D'Anna, Giuseppe

    2014-05-01

    worship. The waveforms recorded could be promptly used to determine ground-shaking parameters, like peak ground acceleration/velocity/displacement, Arias and Housner intensity, that could be all used to create, few seconds after a strong earthquakes, shaking maps at urban scale. These shaking maps could allow to quickly identify areas of the town center that have had the greatest earthquake resentment. When a strong seismic event occur, the beginning of the ground motion observed at the site could be used to predict the ensuing ground motion at the same site and so to realize a short term earthquake early warning system. The data acquired after a moderate magnitude earthquake, would provide valuable information for the detail seismic microzonation of the area based on direct earthquake shaking observations rather than from a model-based or indirect methods. In this work, we evaluate the feasibility and effectiveness of such seismic network taking in to account both technological, scientific and economic issues. For this purpose, we have simulated the creation of a MEMS based urban seismic network in a medium size city. For the selected town, taking into account the instrumental specifics, the array geometry and the environmental noise, we investigated the ability of the planned network to detect and measure earthquakes of different magnitude generated from realistic near seismogentic sources.

  8. Correlations between Energy and Displacement Demands for Performance-Based Seismic Engineering

    Science.gov (United States)

    Mollaioli, Fabrizio; Bruno, Silvia; Decanini, Luis; Saragoni, Rodolfo

    2011-01-01

    The development of a scientific framework for performance-based seismic engineering requires, among other steps, the evaluation of ground motion intensity measures at a site and the characterization of their relationship with suitable engineering demand parameters (EDPs) which describe the performance of a structure. In order to be able to predict the damage resulting from earthquake ground motions in a structural system, it is first necessary to properly identify ground motion parameters that are well correlated with structural response and, in turn, with damage. Since structural damage during an earthquake ground motion may be due to excessive deformation or to cumulative cyclic damage, reliable methods for estimating displacement demands on structures are needed. Even though the seismic performance is directly related to the global and local deformations of the structure, energy-based methodologies appear more helpful in concept, as they permit a rational assessment of the energy absorption and dissipation mechanisms that can be effectively accomplished to balance the energy imparted to the structure. Moreover, energy-based parameters are directly related to cycles of response of the structure and, therefore, they can implicitly capture the effect of ground motion duration, which is ignored by conventional spectral parameters. Therefore, the identification of reliable relationships between energy and displacement demands represents a fundamental issue in both the development of more reliable seismic code provisions and the evaluation of seismic vulnerability aimed at the upgrading of existing hazardous facilities. As these two aspects could become consistently integrated within a performance-based seismic design methodology, understanding how input and dissipated energy are correlated with displacement demands emerges as a decisive prerequisite. The aim of the present study is the establishment of functional relationships between input and dissipated energy

  9. Geomechanics-Based Stochastic Analysis of Injection- Induced Seismicity

    Energy Technology Data Exchange (ETDEWEB)

    Ghassemi, Ahmad [Univ. of Oklahoma, Norman, OK (United States)

    2017-08-21

    The production of geothermal energy from dry and low permeability reservoirs is achieved by water circulation in natural and/or man-made fractures, and is referred to as enhanced or engineered geothermal systems (EGS). Often, the permeable zones have to be created by stimulation, a process which involves fracture initiation and/or activation of discontinuities such as faults and joints due to pore pressure and the in-situ stress perturbations. The stimulation of a rock mass is often accompanied by multiple microseismic events. Micro-seismic events associated with rock failure in shear, and shear slip on new or pre-existing fracture planes and possibly their propagations. The microseismic signals contain information about the sources of energy that can be used for understanding the hydraulic fracturing process and the created reservoir properties. Detection and interpretation of microseismic events is useful for estimating the stimulated zone, created reservoir permeability and fracture growth, and geometry of the geological structures and the in-situ stress state. The process commonly is referred to as seismicity-based reservoir characterization (SBRC). Although, progress has been made by scientific & geothermal communities for quantitative and qualitative analysis of reservoir stimulation using SBRC several key questions remain unresolved in the analysis of micro-seismicity namely, variation of seismic activity with injection rate, delayed micro-seismicity, and the relation of stimulated zone to the injected volume and its rate, and the resulting reservoir permeability. In addition, the current approach to SBRC does not consider the full range of relevant poroelastic and thermoelastic phenomena and neglects the uncertainty in rock properties and in-situ stress in the data inversion process. The objective of this research and technology developments was to develop a 3D SBRC model that addresses these shortcomings by taking into account hydro

  10. Analysis of Seismic Sloshing of Coolant in the ELSY-LFR

    International Nuclear Information System (INIS)

    Barrera, G.; Dinoi, P.; Cercos, J.; Gonzalez, L.; Guerrero, A.; Beltran, F.; Moreno, A.

    2013-01-01

    The seismically induced sloshing in the ELSY-LFR reactor vessel with and without seismic isolators at the base of the reactor building are studied. The approach is to compare the results given by three different methodologies. In the first method, a detailed model has been developed using the commercial code FLUENT. The methodology is CFD (Computational Fluid Dynamics). The goal is to obtain the evolution of the free surfaces of molten lead in the complex 3D geometry of the vessel with internals. No fluid-structure interaction is considered during the seismic shaking. The second approach is based on the commercial code ABAQUS, using the ALE methodology (Arbitrary Lagrangian Eulerian). The purpose is to obtain the same results as with FLUENT. However, ABAQUS allows the study of the fluid structure interaction within the same computational model. In the third approach, the same simulation has been performed using the SPH (Smoothed Particle Hydrodynamics) method, a non-classical particle based Lagrangian numerical procedure which allows extremely large displacements at the fluid surfaces. A comparative study of the three different solutions has been carried out, in order to assess the capabilities and limitations of each method. The work has been carried out within the SILER project, a EU funded R and D project included in the 7th Framework Programme.

  11. Analysis of Seismic Sloshing of Coolant in the ELSY-LFR

    Energy Technology Data Exchange (ETDEWEB)

    Barrera, G.; Dinoi, P.; Cercos, J.; Gonzalez, L.; Guerrero, A.; Beltran, F.; Moreno, A.

    2013-07-01

    The seismically induced sloshing in the ELSY-LFR reactor vessel with and without seismic isolators at the base of the reactor building are studied. The approach is to compare the results given by three different methodologies. In the first method, a detailed model has been developed using the commercial code FLUENT. The methodology is CFD (Computational Fluid Dynamics). The goal is to obtain the evolution of the free surfaces of molten lead in the complex 3D geometry of the vessel with internals. No fluid-structure interaction is considered during the seismic shaking. The second approach is based on the commercial code ABAQUS, using the ALE methodology (Arbitrary Lagrangian Eulerian). The purpose is to obtain the same results as with FLUENT. However, ABAQUS allows the study of the fluid structure interaction within the same computational model. In the third approach, the same simulation has been performed using the SPH (Smoothed Particle Hydrodynamics) method, a non-classical particle based Lagrangian numerical procedure which allows extremely large displacements at the fluid surfaces. A comparative study of the three different solutions has been carried out, in order to assess the capabilities and limitations of each method. The work has been carried out within the SILER project, a EU funded R and D project included in the 7th Framework Programme.

  12. Review of Seismic Evaluation Methodologies for Nuclear Power Plants Based on a Benchmark Exercise

    International Nuclear Information System (INIS)

    2013-11-01

    Niigataken-chuetsu-oki (NCO) earthquake (Mw = 6.6) occurred on 16 July 2007 and affected the Kashiwazaki-Kariwa (K-K) NPP in Japan. Although there was significant loss of main shock data due to transmission problems, a significant number of instruments were still able to measure the acceleration at different locations in soil (boreholes) and in structures at the K-K NPP during the main shock and the aftershocks. The availability of all these instrumental data provided an excellent background for initiating a benchmarking exercise known as the KAshiwazaki-Kariwa Research Initiative for Seismic Margin Assessment (KARISMA). The main objective of the KARISMA benchmark exercise is to study a comparison between analytical seismic response versus real response of selected structure, system and components (SSCs) of K-K NPP Unit 7. The KARISMA benchmark exercise includes benchmarking the analytical tools and numerical simulation techniques used for predicting seismic response of NPP structures (in linear and non-linear ranges), site response, soil-structure interaction phenomena, seismic response of piping systems, 'sloshing' in the spent fuel pool and buckling of tanks. The benchmark is primarily based on data provided by Tokyo Electric Power Company (TEPCO). It is not linked to the seismic re-evaluation of K-K NPP carried out by TEPCO. Twenty-one organizations, comprising researchers, operating organizations, regulatory authorities, vendors and technical support organizations from 14 countries, participated in the benchmarking exercises. This publication, including a CD-ROM, summarizes the analyses of the main results of the benchmarking exercise for the K-K NPP reactor building (including static and modal analyses of the fixed base model, soil column analyses, analyses of the soil-structure models and margin assessment of the K-K NPP reactor building), the analyses of the main results of the benchmarking exercise for the residual heat removal piping system (including

  13. The new Central American seismic hazard zonation: Mutual consensus based on up to day seismotectonic framework

    Science.gov (United States)

    Alvarado, Guillermo E.; Benito, Belén; Staller, Alejandra; Climent, Álvaro; Camacho, Eduardo; Rojas, Wilfredo; Marroquín, Griselda; Molina, Enrique; Talavera, J. Emilio; Martínez-Cuevas, Sandra; Lindholm, Conrad

    2017-11-01

    Central America is one of the most active seismic zones in the World, due to the interaction of five tectonic plates (North America, Caribbean, Coco, Nazca and South America), and its internal deformation, which generates almost one destructive earthquakes (5.4 ≤ Mw ≤ 8.1) every year. A new seismological zonation for Central America is proposed based on seismotectonic framework, a geological context (tectonic and geological maps), geophysical and geodetic evidence (gravimetric maps, magnetometric, GPS observations), and previous works. As a main source of data a depurated earthquake catalog was collected covering the period from 1522 to 2015. This catalog was homogenized to a moment magnitude scale (Mw). After a careful analysis of all the integrated geological and seismological information, the seismogenic zones were established into seismic areas defined by similar patterns of faulting, seismicity, and rupture mechanism. The tectonic environment has required considering seismic zones in two particular seismological regimes: a) crustal faulting (including local faults, major fracture zones of plate boundary limits, and thrust fault of deformed belts) and b) subduction, taking into account the change in the subduction angle along the trench, and the type and location of the rupture. The seismicity in the subduction zone is divided into interplate and intraplate inslab seismicity. The regional seismic zonation proposed for the whole of Central America, include local seismic zonations, avoiding discontinuities at the national boundaries, because of a consensus between the 7 countries, based on the cooperative work of specialists on Central American seismotectonics and related topics.

  14. Robust seismicity forecasting based on Bayesian parameter estimation for epidemiological spatio-temporal aftershock clustering models.

    Science.gov (United States)

    Ebrahimian, Hossein; Jalayer, Fatemeh

    2017-08-29

    In the immediate aftermath of a strong earthquake and in the presence of an ongoing aftershock sequence, scientific advisories in terms of seismicity forecasts play quite a crucial role in emergency decision-making and risk mitigation. Epidemic Type Aftershock Sequence (ETAS) models are frequently used for forecasting the spatio-temporal evolution of seismicity in the short-term. We propose robust forecasting of seismicity based on ETAS model, by exploiting the link between Bayesian inference and Markov Chain Monte Carlo Simulation. The methodology considers the uncertainty not only in the model parameters, conditioned on the available catalogue of events occurred before the forecasting interval, but also the uncertainty in the sequence of events that are going to happen during the forecasting interval. We demonstrate the methodology by retrospective early forecasting of seismicity associated with the 2016 Amatrice seismic sequence activities in central Italy. We provide robust spatio-temporal short-term seismicity forecasts with various time intervals in the first few days elapsed after each of the three main events within the sequence, which can predict the seismicity within plus/minus two standard deviations from the mean estimate within the few hours elapsed after the main event.

  15. Seismic fragility analyses of nuclear power plant structures based on the recorded earthquake data in Korea

    International Nuclear Information System (INIS)

    Joe, Yang Hee; Cho, Sung Gook

    2003-01-01

    This paper briefly introduces an improved method for evaluating seismic fragilities of components of nuclear power plants in Korea. Engineering characteristics of small magnitude earthquake spectra recorded in the Korean peninsula during the last several years are also discussed in this paper. For the purpose of evaluating the effects of the recorded earthquake on the seismic fragilities of Korean nuclear power plant structures, several cases of comparative studies have been performed. The study results show that seismic fragility analysis based on the Newmark's spectra in Korea might over-estimate the seismic capacities of Korean facilities. (author)

  16. Seismic texture classification. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Vinther, R.

    1997-12-31

    The seismic texture classification method, is a seismic attribute that can both recognize the general reflectivity styles and locate variations from these. The seismic texture classification performs a statistic analysis for the seismic section (or volume) aiming at describing the reflectivity. Based on a set of reference reflectivities the seismic textures are classified. The result of the seismic texture classification is a display of seismic texture categories showing both the styles of reflectivity from the reference set and interpolations and extrapolations from these. The display is interpreted as statistical variations in the seismic data. The seismic texture classification is applied to seismic sections and volumes from the Danish North Sea representing both horizontal stratifications and salt diapers. The attribute succeeded in recognizing both general structure of successions and variations from these. Also, the seismic texture classification is not only able to display variations in prospective areas (1-7 sec. TWT) but can also be applied to deep seismic sections. The seismic texture classification is tested on a deep reflection seismic section (13-18 sec. TWT) from the Baltic Sea. Applied to this section the seismic texture classification succeeded in locating the Moho, which could not be located using conventional interpretation tools. The seismic texture classification is a seismic attribute which can display general reflectivity styles and deviations from these and enhance variations not found by conventional interpretation tools. (LN)

  17. Geo-Proxy-Based Site Classification for Regional Zonation of Seismic Site Effects in South Korea

    Directory of Open Access Journals (Sweden)

    Chang-Guk Sun

    2018-02-01

    Full Text Available Seismic site effects and topographic effects related to ground motion occur during an earthquake due to site-specific geotechnical or geological characteristics, including the geological or geographical structure and the characteristics of near-surface sub-soil layers. Site-specific site effects due to geological conditions have been confirmed in recent earthquake events. Earthquake-induced damage has mainly occurred at accumulated soft soil layers under basins or along coasts and rivers. An alternative method has recently been proposed for evaluating regional seismic site effects and amplification factors using digital elevation models (DEM. High-quality DEMs at high resolutions may be employed to resolve finer-scale variations in topographic gradients and consequently, correlated site response parameters. Because there are many regions in South Korea lacking borehole datasets, which are insufficient for site classification only using borehole datasets, a DEM-based proxy for seismic zonation can be effective. Thus, in this study, geo-proxy-based site classification was proposed based on empirical correlations with site response parameters and conducted for regional zonation of seismic site effects to identify the amplification of characteristics in the western metropolitan areas of South Korea, depending on the site-specific geo-spatial conditions.

  18. Anatomy of the TAMA SAS seismic attenuation system

    International Nuclear Information System (INIS)

    Marka, Szabolcs; Takamori, Akiteru; Ando, Masaki; Bertolini, Alessandro; Cella, Giancarlo; DeSalvo, Riccardo; Fukushima, Mitsuhiro; Iida, Yukiyoshi; Jacquier, Florian; Kawamura, Seiji; Nishi, Yuhiko; Numata, Kenji; Sannibale, Virginio; Somiya, Kentaro; Takahashi, Ryutaro; Tariq, Hareem; Tsubono, Kimio; Ugas, Jose; Viboud, Nicolas; Wang Chenyang; Yamamoto, Hiroaki; Yoda, Tatsuo

    2002-01-01

    The TAMA SAS seismic attenuation system was developed to provide the extremely high level of seismic isolation required by the next generation of interferometric gravitational wave detectors to achieve the desired sensitivity at low frequencies. Our aim was to provide good performance at frequencies above ∼10 Hz, while utilizing only passive subsystems in the sensitive frequency band of the TAMA interferometric gravitational wave detectors. The only active feedback is relegated below 6 Hz and it is used to damp the rigid body resonances of the attenuation chain. Simulations, based on subsystem performance characterizations, indicate that the system can achieve rms mirror residual motion measured in a few tens of nanometres. We will give a brief overview of the subsystems and point out some of the characterization results, supporting our claims of achieved performance. SAS is a passive, UHV compatible and low cost system. It is likely that extremely sensitive experiments in other fields will also profit from our study

  19. Overview of seismic margin insights gained from seismic PRA results

    International Nuclear Information System (INIS)

    Kennedy, R.P.; Sues, R.H.; Campbell, R.D.

    1986-01-01

    This paper presents the findings of a study conducted under NRC and EPRI sponsorship in which published seismic PRAs were reviewed in order to gain insight to the seismic margins inherent in existing nuclear plants. The approach taken was to examine the fragilities of those components which have been found to be dominant contributors to seismic risk at plants in low-to-moderate seismic regions (SSE levels between 0.12g and 0.25g). It is concluded that there is significant margin inherent in the capacity of most critical components above the plant design basis. For ground motions less than about 0.3g, the predominant sources of seismic risk are loss of offsite power coupled with random failure of the emergency diesels, non-recoverable circuit breaker trip due to relay chatter, unanchored equipment, unreinforced non-load bearing block walls, vertical water storage tanks, systems interactions and possibly soil liquefaction. Recommendations as to which components should be reviewed in seismic margin studies for margin earthquakes less than 0.3g, between 0.3g and 0.5g, and greater than 0.5g, developed by the NRC expert panel on the quantification of seismic margins (based on the review of past PRA data, earthquake experience data, and their own personal experience) are presented

  20. Burar seismic station: evaluation of seismic performance

    International Nuclear Information System (INIS)

    Ghica, Daniela; Popa, Mihaela

    2005-01-01

    A new seismic monitoring system, the Bucovina Seismic Array (BURAR), has been established since July 2002, in the Northern part of Romania, in a joint effort of the Air Force Technical Applications Center, USA, and the National Institute for Earth Physics (NIEP), Romania. The small-aperture array consists of 10 seismic sensors (9 vertical short-period and one three-component broad band) located in boreholes and distributed in a 5 x 5 km 2 area. At present, the seismic data are continuously recorded by the BURAR and transmitted in real-time to the Romanian National Data Center in Bucharest and National Data Center of the USA, in Florida. Based on the BURAR seismic information gathered at the National Data Center, NIEP (ROM N DC), in the August 2002 - December 2004 time interval, analysis and statistical assessments were performed. Following the preliminary processing of the data, several observations on the global performance of the BURAR system were emphasized. Data investigation showed an excellent efficiency of the BURAR system particularly in detecting teleseismic and regional events. Also, a statistical analysis for the BURAR detection capability of the local Vrancea events was performed in terms of depth and magnitude for the year 2004. The high signal detection capability of the BURAR resulted, generally, in improving the location solutions for the Vrancea seismic events. The location solution accuracy is enhanced when adding BURAR recordings, especially in the case of low magnitude events (recorded by few stations). The location accuracy is increased, both in terms of constraining hypocenter depth and epicentral coordinates. Our analysis certifies the importance of the BURAR system in NIEP efforts to elaborate seismic bulletins. Furthermore, the specific procedures for array data processing (beam forming, f-k analysis) increase significantly the signal-to-noise ratio by summing up the coherent signals from the array components, and ensure a better accuracy

  1. New Version of SeismicHandler (SHX) based on ObsPy

    Science.gov (United States)

    Stammler, Klaus; Walther, Marcus

    2016-04-01

    The command line version of SeismicHandler (SH), a scientific analysis tool for seismic waveform data developed around 1990, has been redesigned in the recent years, based on a project funded by the Deutsche Forschungsgemeinschaft (DFG). The aim was to address new data access techniques, simplified metadata handling and a modularized software design. As a result the program was rewritten in Python in its main parts, taking advantage of simplicity of this script language and its variety of well developed software libraries, including ObsPy. SHX provides an easy access to waveforms and metadata via arclink and FDSN webservice protocols, also access to event catalogs is implemented. With single commands whole networks or stations within a certain area may be read in, the metadata are retrieved from the servers and stored in a local database. For data processing the large set of SH commands is available, as well as the SH scripting language. Via this SH language scripts or additional Python modules the command set of SHX is easily extendable. The program is open source, tested on Linux operating systems, documentation and download is found at URL "https://www.seismic-handler.org/".

  2. Experimental Investigation of a Base Isolation System Incorporating MR Dampers with the High-Order Single Step Control Algorithm

    Directory of Open Access Journals (Sweden)

    Weiqing Fu

    2017-03-01

    Full Text Available The conventional isolation structure with rubber bearings exhibits large deformation characteristics when subjected to infrequent earthquakes, which may lead to failure of the isolation layer. Although passive dampers can be used to reduce the layer displacement, the layer deformation and superstructure acceleration responses will increase in cases of fortification earthquakes or frequently occurring earthquakes. In addition to secondary damages and loss of life, such excessive displacement results in damages to the facilities in the structure. In order to overcome these shortcomings, this paper presents a structural vibration control system where the base isolation system is composed of rubber bearings with magnetorheological (MR damper and are regulated using the innovative control strategy. The high-order single-step algorithm with continuity and switch control strategies are applied to the control system. Shaking table test results under various earthquake conditions indicate that the proposed isolation method, compared with passive isolation technique, can effectively suppress earthquake responses for acceleration of superstructure and deformation within the isolation layer. As a result, this structural control method exhibits excellent performance, such as fast computation, generic real-time control, acceleration reduction and high seismic energy dissipation etc. The relative merits of the continuity and switch control strategies are also compared and discussed.

  3. Seismic fragility analyses

    International Nuclear Information System (INIS)

    Kostov, Marin

    2000-01-01

    In the last two decades there is increasing number of probabilistic seismic risk assessments performed. The basic ideas of the procedure for performing a Probabilistic Safety Analysis (PSA) of critical structures (NUREG/CR-2300, 1983) could be used also for normal industrial and residential buildings, dams or other structures. The general formulation of the risk assessment procedure applied in this investigation is presented in Franzini, et al., 1984. The probability of failure of a structure for an expected lifetime (for example 50 years) can be obtained from the annual frequency of failure, β E determined by the relation: β E ∫[d[β(x)]/dx]P(flx)dx. β(x) is the annual frequency of exceedance of load level x (for example, the variable x may be peak ground acceleration), P(fI x) is the conditional probability of structure failure at a given seismic load level x. The problem leads to the assessment of the seismic hazard β(x) and the fragility P(fl x). The seismic hazard curves are obtained by the probabilistic seismic hazard analysis. The fragility curves are obtained after the response of the structure is defined as probabilistic and its capacity and the associated uncertainties are assessed. Finally the fragility curves are combined with the seismic loading to estimate the frequency of failure for each critical scenario. The frequency of failure due to seismic event is presented by the scenario with the highest frequency. The tools usually applied for probabilistic safety analyses of critical structures could relatively easily be adopted to ordinary structures. The key problems are the seismic hazard definitions and the fragility analyses. The fragility could be derived either based on scaling procedures or on the base of generation. Both approaches have been presented in the paper. After the seismic risk (in terms of failure probability) is assessed there are several approaches for risk reduction. Generally the methods could be classified in two groups. The

  4. Short-Period Surface Wave Based Seismic Event Relocation

    Science.gov (United States)

    White-Gaynor, A.; Cleveland, M.; Nyblade, A.; Kintner, J. A.; Homman, K.; Ammon, C. J.

    2017-12-01

    Accurate and precise seismic event locations are essential for a broad range of geophysical investigations. Superior location accuracy generally requires calibration with ground truth information, but superb relative location precision is often achievable independently. In explosion seismology, low-yield explosion monitoring relies on near-source observations, which results in a limited number of observations that challenges our ability to estimate any locations. Incorporating more distant observations means relying on data with lower signal-to-noise ratios. For small, shallow events, the short-period (roughly 1/2 to 8 s period) fundamental-mode and higher-mode Rayleigh waves (including Rg) are often the most stable and visible portion of the waveform at local distances. Cleveland and Ammon [2013] have shown that teleseismic surface waves are valuable observations for constructing precise, relative event relocations. We extend the teleseismic surface wave relocation method, and apply them to near-source distances using Rg observations from the Bighorn Arche Seismic Experiment (BASE) and the Earth Scope USArray Transportable Array (TA) seismic stations. Specifically, we present relocation results using short-period fundamental- and higher-mode Rayleigh waves (Rg) in a double-difference relative event relocation for 45 delay-fired mine blasts and 21 borehole chemical explosions. Our preliminary efforts are to explore the sensitivity of the short-period surface waves to local geologic structure, source depth, explosion magnitude (yield), and explosion characteristics (single-shot vs. distributed source, etc.). Our results show that Rg and the first few higher-mode Rayleigh wave observations can be used to constrain the relative locations of shallow low-yield events.

  5. Seismic fragility analyses of nuclear power plant structures based on the recorded earthquake data in Korea

    International Nuclear Information System (INIS)

    Cho, Sung Gook; Joe, Yang Hee

    2005-01-01

    By nature, the seismic fragility analysis results will be considerably affected by the statistical data of design information and site-dependent ground motions. The engineering characteristics of small magnitude earthquake spectra recorded in the Korean peninsula during the last several years are analyzed in this paper. An improved method of seismic fragility analysis is evaluated by comparative analyses to verify its efficiency for practical application to nuclear power plant structures. The effects of the recorded earthquake on the seismic fragilities of Korean nuclear power plant structures are also evaluated from the comparative studies. Observing the obtained results, the proposed method is more efficient for the multi-modes structures. The case study results show that seismic fragility analysis based on the Newmark's spectra in Korea might over-estimate the seismic capacities of Korean facilities

  6. Seismic fragility analyses of nuclear power plant structures based on the recorded earthquake data in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sung Gook [Department of Civil and Environmental System Engineering, University of Incheon, 177 Dohwa-dong, Nam-gu, Incheon 402-749 (Korea, Republic of)]. E-mail: sgcho@incheon.ac.kr; Joe, Yang Hee [Department of Civil and Environmental System Engineering, University of Incheon, 177 Dohwa-dong, Nam-gu, Incheon 402-749 (Korea, Republic of)

    2005-08-01

    By nature, the seismic fragility analysis results will be considerably affected by the statistical data of design information and site-dependent ground motions. The engineering characteristics of small magnitude earthquake spectra recorded in the Korean peninsula during the last several years are analyzed in this paper. An improved method of seismic fragility analysis is evaluated by comparative analyses to verify its efficiency for practical application to nuclear power plant structures. The effects of the recorded earthquake on the seismic fragilities of Korean nuclear power plant structures are also evaluated from the comparative studies. Observing the obtained results, the proposed method is more efficient for the multi-modes structures. The case study results show that seismic fragility analysis based on the Newmark's spectra in Korea might over-estimate the seismic capacities of Korean facilities.

  7. Angola Seismicity MAP

    Science.gov (United States)

    Neto, F. A. P.; Franca, G.

    2014-12-01

    The purpose of this job was to study and document the Angola natural seismicity, establishment of the first database seismic data to facilitate consultation and search for information on seismic activity in the country. The study was conducted based on query reports produced by National Institute of Meteorology and Geophysics (INAMET) 1968 to 2014 with emphasis to the work presented by Moreira (1968), that defined six seismogenic zones from macro seismic data, with highlighting is Zone of Sá da Bandeira (Lubango)-Chibemba-Oncócua-Iona. This is the most important of Angola seismic zone, covering the epicentral Quihita and Iona regions, geologically characterized by transcontinental structure tectono-magmatic activation of the Mesozoic with the installation of a wide variety of intrusive rocks of ultrabasic-alkaline composition, basic and alkaline, kimberlites and carbonatites, strongly marked by intense tectonism, presenting with several faults and fractures (locally called corredor de Lucapa). The earthquake of May 9, 1948 reached intensity VI on the Mercalli-Sieberg scale (MCS) in the locality of Quihita, and seismic active of Iona January 15, 1964, the main shock hit the grade VI-VII. Although not having significant seismicity rate can not be neglected, the other five zone are: Cassongue-Ganda-Massano de Amorim; Lola-Quilengues-Caluquembe; Gago Coutinho-zone; Cuima-Cachingues-Cambândua; The Upper Zambezi zone. We also analyzed technical reports on the seismicity of the middle Kwanza produced by Hidroproekt (GAMEK) region as well as international seismic bulletins of the International Seismological Centre (ISC), United States Geological Survey (USGS), and these data served for instrumental location of the epicenters. All compiled information made possible the creation of the First datbase of seismic data for Angola, preparing the map of seismicity with the reconfirmation of the main seismic zones defined by Moreira (1968) and the identification of a new seismic

  8. Optimization of the seismic pit of the Tokamak building of ITER

    International Nuclear Information System (INIS)

    Beltran, F.; Combescure, D.; Hanna, G.; Ezeberry, J.

    2010-01-01

    The Tokamak Complex of ITER is the structure housing the Tokamak machine, the Tritium building and the Diagnostic building. This structure, with a plan of about 120 x 80 m, will be built with a base isolation system formed with over 500 steel reinforced neoprene pads. The pads will be mounted on top of short columns or plinths, supported by a bottom basemat resting directly on rock. Foundation level is about 20 m below grade level. Consequently, a ground supporting system, such as retaining walls, is required to protect the structure. The walls, together with the basemat, form the seismic pit of the Tokamak Complex. After the initial design of the seismic pit walls and basemat was closed, a new report on the water table levels to be expected for different return periods was issued. The report introduced a substantial reduction of ground water levels with respect to the previous design basis. Following this reduction, a new design for the seismic pit walls and basemat was developed. The goal was to introduce the new optimized design as an alternative in the Call for Tenders related to the construction of the seismic pit. The design of the seismic pit is governed by the seismic action, even though the whole pit is embedded in a limestone rock of medium to good quality. For optimizing the design, a review of geotechnical parameters has been carried out first, using the huge body of information generated after more than 20 years of site investigation. Afterwards, seismic thrusts on the walls have been computed using different procedures, from conventional rock wedged equilibrium analyses to more sophisticated techniques based on the interaction of discrete blocks configuring the rock massif. In addition, internal forces and moments have been determined at the basemat from the ground deformation parameters, using finite element models. Finally, steel reinforcement has been obtained for the several sections of the retaining walls and the basemat, complying with the

  9. A novel selection method of seismic attributes based on gray relational degree and support vector machine.

    Directory of Open Access Journals (Sweden)

    Yaping Huang

    Full Text Available The selection of seismic attributes is a key process in reservoir prediction because the prediction accuracy relies on the reliability and credibility of the seismic attributes. However, effective selection method for useful seismic attributes is still a challenge. This paper presents a novel selection method of seismic attributes for reservoir prediction based on the gray relational degree (GRD and support vector machine (SVM. The proposed method has a two-hierarchical structure. In the first hierarchy, the primary selection of seismic attributes is achieved by calculating the GRD between seismic attributes and reservoir parameters, and the GRD between the seismic attributes. The principle of the primary selection is that these seismic attributes with higher GRD to the reservoir parameters will have smaller GRD between themselves as compared to those with lower GRD to the reservoir parameters. Then the SVM is employed in the second hierarchy to perform an interactive error verification using training samples for the purpose of determining the final seismic attributes. A real-world case study was conducted to evaluate the proposed GRD-SVM method. Reliable seismic attributes were selected to predict the coalbed methane (CBM content in southern Qinshui basin, China. In the analysis, the instantaneous amplitude, instantaneous bandwidth, instantaneous frequency, and minimum negative curvature were selected, and the predicted CBM content was fundamentally consistent with the measured CBM content. This real-world case study demonstrates that the proposed method is able to effectively select seismic attributes, and improve the prediction accuracy. Thus, the proposed GRD-SVM method can be used for the selection of seismic attributes in practice.

  10. Use of raster-based data layers to model spatial variation of seismotectonic data in probabilistic seismic hazard assessment

    Science.gov (United States)

    Zolfaghari, Mohammad R.

    2009-07-01

    Recent achievements in computer and information technology have provided the necessary tools to extend the application of probabilistic seismic hazard mapping from its traditional engineering use to many other applications. Examples for such applications are risk mitigation, disaster management, post disaster recovery planning and catastrophe loss estimation and risk management. Due to the lack of proper knowledge with regard to factors controlling seismic hazards, there are always uncertainties associated with all steps involved in developing and using seismic hazard models. While some of these uncertainties can be controlled by more accurate and reliable input data, the majority of the data and assumptions used in seismic hazard studies remain with high uncertainties that contribute to the uncertainty of the final results. In this paper a new methodology for the assessment of seismic hazard is described. The proposed approach provides practical facility for better capture of spatial variations of seismological and tectonic characteristics, which allows better treatment of their uncertainties. In the proposed approach, GIS raster-based data models are used in order to model geographical features in a cell-based system. The cell-based source model proposed in this paper provides a framework for implementing many geographically referenced seismotectonic factors into seismic hazard modelling. Examples for such components are seismic source boundaries, rupture geometry, seismic activity rate, focal depth and the choice of attenuation functions. The proposed methodology provides improvements in several aspects of the standard analytical tools currently being used for assessment and mapping of regional seismic hazard. The proposed methodology makes the best use of the recent advancements in computer technology in both software and hardware. The proposed approach is well structured to be implemented using conventional GIS tools.

  11. Hysteresis behavior of seismic isolators in earthquakes near a fault ...

    African Journals Online (AJOL)

    Seismic performance and appropriate design of structures located near the faults has always been a major concern of design engineers. Because during an earthquake; the effects of plasticity will make differences in characteristics of near field records. These pulsed movements at the beginning of records will increase the ...

  12. Seismic demand evaluation based on actual earthquake records

    International Nuclear Information System (INIS)

    Jhaveri, D.P.; Czarnecki, R.M.; Kassawara, R.P.; Singh, A.

    1990-01-01

    Seismic input in the form of floor response spectra (FRS) are needed in seismic design and evaluation of equipment in nuclear power plants (NPPs). These are typically determined by analytical procedures using mathematical models of NPP structures and are known to be very conservative. Recorded earthquake data, in the form of acceleration response spectra computed from the recorded acceleration time histories, have been collected from NPP structures located in seismically active areas. Statistics of the ratios, or amplification factors, between the FRS at typical floors and the acceleration response spectra at the basemat or in the freefield, are obtained for typical NPP structures. These amplification factors are typically in terms of the peak spectral and zero period values, as well as a function of frequency. The average + 1σ values of these ratios, for those cases where enough data are available, are proposed to be used as limits to analytically calculated FRS, or for construction of simplified FRS for determining seismic input or demand in equipment qualification. (orig.)

  13. Multicomponent ensemble models to forecast induced seismicity

    Science.gov (United States)

    Király-Proag, E.; Gischig, V.; Zechar, J. D.; Wiemer, S.

    2018-01-01

    In recent years, human-induced seismicity has become a more and more relevant topic due to its economic and social implications. Several models and approaches have been developed to explain underlying physical processes or forecast induced seismicity. They range from simple statistical models to coupled numerical models incorporating complex physics. We advocate the need for forecast testing as currently the best method for ascertaining if models are capable to reasonably accounting for key physical governing processes—or not. Moreover, operational forecast models are of great interest to help on-site decision-making in projects entailing induced earthquakes. We previously introduced a standardized framework following the guidelines of the Collaboratory for the Study of Earthquake Predictability, the Induced Seismicity Test Bench, to test, validate, and rank induced seismicity models. In this study, we describe how to construct multicomponent ensemble models based on Bayesian weightings that deliver more accurate forecasts than individual models in the case of Basel 2006 and Soultz-sous-Forêts 2004 enhanced geothermal stimulation projects. For this, we examine five calibrated variants of two significantly different model groups: (1) Shapiro and Smoothed Seismicity based on the seismogenic index, simple modified Omori-law-type seismicity decay, and temporally weighted smoothed seismicity; (2) Hydraulics and Seismicity based on numerically modelled pore pressure evolution that triggers seismicity using the Mohr-Coulomb failure criterion. We also demonstrate how the individual and ensemble models would perform as part of an operational Adaptive Traffic Light System. Investigating seismicity forecasts based on a range of potential injection scenarios, we use forecast periods of different durations to compute the occurrence probabilities of seismic events M ≥ 3. We show that in the case of the Basel 2006 geothermal stimulation the models forecast hazardous levels

  14. Seismic design and evaluation criteria based on target performance goals

    International Nuclear Information System (INIS)

    Murray, R.C.; Nelson, T.A.; Kennedy, R.P.; Short, S.A.

    1994-04-01

    The Department of Energy utilizes deterministic seismic design/evaluation criteria developed to achieve probabilistic performance goals. These seismic design and evaluation criteria are intended to apply equally to the design of new facilities and to the evaluation of existing facilities. In addition, the criteria are intended to cover design and evaluation of buildings, equipment, piping, and other structures. Four separate sets of seismic design/evaluation criteria have been presented each with a different performance goal. In all these criteria, earthquake loading is selected from seismic hazard curves on a probabilistic basis but seismic response evaluation methods and acceptable behavior limits are deterministic approaches with which design engineers are familiar. For analytical evaluations, conservatism has been introduced through the use of conservative inelastic demand-capacity ratios combined with ductile detailing requirements, through the use of minimum specified material strengths and conservative code capacity equations, and through the use of a seismic scale factor. For evaluation by testing or by experience data, conservatism has been introduced through the use of an increase scale factor which is applied to the prescribed design/evaluation input motion

  15. Extreme earthquake response of nuclear power plants isolated using sliding bearings

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Manish, E-mail: mkumar@iitgn.ac.in [Department of Civil Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar 382355 (India); Whittaker, Andrew S.; Constantinou, Michael C. [Department of Civil, Structural and Environmental Engineering, University at Buffalo, Buffalo, NY 14260 (United States)

    2017-05-15

    Highlights: • Response-history analysis of a nuclear power plant (NPP) isolated using sliding bearings. • Two models of the NPP, five friction models and four seismic hazard levels considered. • Isolation system displacement can be obtained using a macro NPP model subjected to only horizontal ground motions. • Temperature dependence of friction should be considered in isolation-system displacement calculations. • The effect of friction model on floor spectral ordinates is rather small, especially near the basemat. - Abstract: Horizontal seismic isolation is a viable approach to mitigate risk to structures, systems and components (SSCs) in nuclear power plants (NPPs) under extreme ground shaking. This paper presents a study on an NPP seismically isolated using single concave Friction Pendulum™ (FP) bearings subjected to ground motions representing seismic hazard at two US sites: Diablo Canyon and Vogtle. Two models of the NPP, five models to describe friction at the sliding surface of the FP bearings, and four levels of ground shaking are considered for response-history analysis, which provide insight into the influence of 1) the required level of detail of an NPP model, 2) the vertical component of ground motion on response of isolated NPPs, and 3) the pressure-, temperature- and/or velocity-dependencies of the coefficient of friction, on the response of an isolated NPP. The isolation-system displacement of an NPP can be estimated using a macro model subjected to only the two orthogonal horizontal components of ground motion. The variation of the coefficient of friction with temperature at the sliding surface during earthquake shaking should be accounted for in the calculation of isolation-system displacements, particularly when the shaking intensity is high; pressure and velocity dependencies are not important. In-structure floor spectra should be computed using a detailed three-dimensional model of an isolated NPP subjected to all three components of

  16. Seismic metamaterials based on isochronous mechanical oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Finocchio, G., E-mail: gfinocchio@unime.it; Garescì, F.; Azzerboni, B. [Department of Electronic Engineering, Industrial Chemistry and Engineering, University of Messina, C.da di Dio, I-98166 Messina (Italy); Casablanca, O.; Chiappini, M. [Istituto Nazionale di Geofisica e Vulcanologia (INGV), Via Vigna Murata 605, 00143 Roma (Italy); Ricciardi, G. [Department of Civil, Informatic, Architectural, and Environmental Engineering and Applied Mathematics, C.da di Dio, I-98166 Messina (Italy); Alibrandi, U. [Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576 (Singapore)

    2014-05-12

    This Letter introduces a seismic metamaterial (SM) composed by a chain of mass-in-mass system able to filter the S-waves of an earthquake. We included the effect of the SM into the mono dimensional model for the soil response analysis. The SM modifies the soil behavior and in presence of an internal damping the amplitude of the soil amplification function is reduced also in a region near the resonance frequency. This SM can be realized by a continuous structure with inside a 3d-matrix of isochronous oscillators based on a sphere rolling over a cycloidal trajectory.

  17. Seismic active control by a heuristic-based algorithm

    International Nuclear Information System (INIS)

    Tang, Yu.

    1996-01-01

    A heuristic-based algorithm for seismic active control is generalized to permit consideration of the effects of control-structure interaction and actuator dynamics. Control force is computed at onetime step ahead before being applied to the structure. Therefore, the proposed control algorithm is free from the problem of time delay. A numerical example is presented to show the effectiveness of the proposed control algorithm. Also, two indices are introduced in the paper to assess the effectiveness and efficiency of control laws

  18. Dynamic evaluation of seismic hazard and risks based on the Unified Scaling Law for Earthquakes

    Science.gov (United States)

    Kossobokov, V. G.; Nekrasova, A.

    2016-12-01

    We continue applying the general concept of seismic risk analysis in a number of seismic regions worldwide by constructing seismic hazard maps based on the Unified Scaling Law for Earthquakes (USLE), i.e. log N(M,L) = A + B•(6 - M) + C•log L, where N(M,L) is the expected annual number of earthquakes of a certain magnitude M within an seismically prone area of linear dimension L, A characterizes the average annual rate of strong (M = 6) earthquakes, B determines the balance between magnitude ranges, and C estimates the fractal dimension of seismic locus in projection to the Earth surface. The parameters A, B, and C of USLE are used to assess, first, the expected maximum magnitude in a time interval at a seismically prone cell of a uniform grid that cover the region of interest, and then the corresponding expected ground shaking parameters. After a rigorous testing against the available seismic evidences in the past (e.g., the historically reported macro-seismic intensity or paleo data), such a seismic hazard map is used to generate maps of specific earthquake risks for population, cities, and infrastructures. The hazard maps for a given territory change dramatically, when the methodology is applied to a certain size moving time window, e.g. about a decade long for an intermediate-term regional assessment or exponentially increasing intervals for a daily local strong aftershock forecasting. The of dynamical seismic hazard and risks assessment is illustrated by applications to the territory of Greater Caucasus and Crimea and the two-year series of aftershocks of the 11 October 2008 Kurchaloy, Chechnya earthquake which case-history appears to be encouraging for further systematic testing as potential short-term forecasting tool.

  19. Seismic Level 2 PSA

    International Nuclear Information System (INIS)

    Dirksen, Gerben; Pellissetti, Manuel; Duncan-Whiteman, Paul

    2014-01-01

    For most external events, the calculation of the core damage frequency (CDF) in Level 1 PSA is sufficient to be able to show that the contribution of the event to the plant risk is negligible. However, it is not sufficient to compare the CDF due to the external event to the total plant CDF; instead the Level 1 PSA result for the event should be compared to the large early release frequency (LERF), or alternatively arguments should be given why the CDF from the external event will not contribute mostly to LERF. For seismic events in particular, it can often not be easily excluded that sequences leading to core damage would not also result in LERF. Since the confinement function is one of the most essential functions for Level 2 PSA, special care must be taken of the containment penetrations. For example systems with containment penetrations that are normally closed during operation or are designed to withstand more than the maximum containment pressure are normally screened out in the Level 2 PSA for the containment isolation function, however the possibility of LOCA in such systems due to an earthquake may nevertheless lead to containment bypass. Additionally, the functionality of passive features may be compromised in case of a beyond design earthquake. In the present paper, we present crucial ingredients of a methodology for a Level 2 seismic PSA. This methodology consists of the following steps: Extension of the seismic equipment list (SEL) to include Level 2 PSA relevant systems (e.g. containment isolation system, features for core melt stabilization, hydrogen mitigation systems), Determination of the systems within the existing SEL with increased demands in case of severe accidents, Determination of essential components for which a dedicated fragility analysis needs to be performed. (author)

  20. Seismic analysis of the frame structure reformed by cutting off column and jacking based on stiffness ratio

    Science.gov (United States)

    Zhao, J. K.; Xu, X. S.

    2017-11-01

    The cutting off column and jacking technology is a method for increasing story height, which has been widely used and paid much attention in engineering. The stiffness will be changed after the process of cutting off column and jacking, which directly affects the overall seismic performance. It is usually necessary to take seismic strengthening measures to enhance the stiffness. A five story frame structure jacking project in Jinan High-tech Zone was taken as an example, and three finite element models were established which contains the frame model before lifting, after lifting and after strengthening. Based on the stiffness, the dynamic time-history analysis was carried out to research its seismic performance under the EL-Centro seismic wave, the Taft seismic wave and the Tianjin artificial seismic wave. The research can provide some guidance for the design and construction of the entire jack lifting structure.

  1. Statistical analysis of laser-interferometric detector Dylkin-1 data and data on seismic activity

    International Nuclear Information System (INIS)

    Kirillov, R S; Bochkarev, V V; Dulkyn, Academy of Sciences of the Republic of Tatarstan (Russian Federation))" data-affiliation=" (Scientific Center of Gravitational-Wave Research Dulkyn, Academy of Sciences of the Republic of Tatarstan (Russian Federation))" >Skochilov, A F

    2014-01-01

    This work presents statistical analysis of data collected from laser interferometric detector ''Dylkin-1'' and nearby seismic stations. The final goal of Dylkin project consists in creating detector of theoretically predicted gravitational waves produced by binary relativistic astrophysical objects. Currently, works are underway to improve sensitivity of detector by 2-3 orders. The goals of this research were to test isolation of detector from noise caused by seismic waves and to find out whether it is sensitive to variations in the gradient of gravitational potential (acceleration of free fall) caused by free Earth oscillations. Noise isolation has been tested by comparing energy of signals during significant seismic events. Sensitivity to variations in acceleration of free fall has been tested by means of cross-spectral analysis

  2. Seismic and tsunami safety margin assessment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    Nuclear Regulation Authority is going to establish new seismic and tsunami safety guidelines to increase the safety of NPPs. The main purpose of this research is testing structures/components important to safety and tsunami resistant structures/components, and evaluating the capacity of them against earthquake and tsunami. Those capacity data will be utilized for the seismic and tsunami back-fit review based on the new seismic and tsunami safety guidelines. The summary of the program in 2012 is as follows. 1. Component seismic capacity test and quantitative seismic capacity evaluation. PWR emergency diesel generator partial-model seismic capacity tests have been conducted and quantitative seismic capacities have been evaluated. 2. Seismic capacity evaluation of switching-station electric equipment. Existing seismic test data investigation, specification survey and seismic response analyses have been conducted. 3. Tsunami capacity evaluation of anti-inundation measure facilities. Tsunami pressure test have been conducted utilizing a small breakwater model and evaluated basic characteristics of tsunami pressure against seawall structure. (author)

  3. Seismic and tsunami safety margin assessment

    International Nuclear Information System (INIS)

    2013-01-01

    Nuclear Regulation Authority is going to establish new seismic and tsunami safety guidelines to increase the safety of NPPs. The main purpose of this research is testing structures/components important to safety and tsunami resistant structures/components, and evaluating the capacity of them against earthquake and tsunami. Those capacity data will be utilized for the seismic and tsunami back-fit review based on the new seismic and tsunami safety guidelines. The summary of the program in 2012 is as follows. 1. Component seismic capacity test and quantitative seismic capacity evaluation. PWR emergency diesel generator partial-model seismic capacity tests have been conducted and quantitative seismic capacities have been evaluated. 2. Seismic capacity evaluation of switching-station electric equipment. Existing seismic test data investigation, specification survey and seismic response analyses have been conducted. 3. Tsunami capacity evaluation of anti-inundation measure facilities. Tsunami pressure test have been conducted utilizing a small breakwater model and evaluated basic characteristics of tsunami pressure against seawall structure. (author)

  4. SEISMIC ANALYSIS FOR PRECLOSURE SAFETY

    Energy Technology Data Exchange (ETDEWEB)

    E.N. Lindner

    2004-12-03

    The purpose of this seismic preclosure safety analysis is to identify the potential seismically-initiated event sequences associated with preclosure operations of the repository at Yucca Mountain and assign appropriate design bases to provide assurance of achieving the performance objectives specified in the Code of Federal Regulations (CFR) 10 CFR Part 63 for radiological consequences. This seismic preclosure safety analysis is performed in support of the License Application for the Yucca Mountain Project. In more detail, this analysis identifies the systems, structures, and components (SSCs) that are subject to seismic design bases. This analysis assigns one of two design basis ground motion (DBGM) levels, DBGM-1 or DBGM-2, to SSCs important to safety (ITS) that are credited in the prevention or mitigation of seismically-initiated event sequences. An application of seismic margins approach is also demonstrated for SSCs assigned to DBGM-2 by showing a high confidence of a low probability of failure at a higher ground acceleration value, termed a beyond-design basis ground motion (BDBGM) level. The objective of this analysis is to meet the performance requirements of 10 CFR 63.111(a) and 10 CFR 63.111(b) for offsite and worker doses. The results of this calculation are used as inputs to the following: (1) A classification analysis of SSCs ITS by identifying potential seismically-initiated failures (loss of safety function) that could lead to undesired consequences; (2) An assignment of either DBGM-1 or DBGM-2 to each SSC ITS credited in the prevention or mitigation of a seismically-initiated event sequence; and (3) A nuclear safety design basis report that will state the seismic design requirements that are credited in this analysis. The present analysis reflects the design information available as of October 2004 and is considered preliminary. The evolving design of the repository will be re-evaluated periodically to ensure that seismic hazards are properly

  5. SEISMIC ANALYSIS FOR PRECLOSURE SAFETY

    International Nuclear Information System (INIS)

    E.N. Lindner

    2004-01-01

    The purpose of this seismic preclosure safety analysis is to identify the potential seismically-initiated event sequences associated with preclosure operations of the repository at Yucca Mountain and assign appropriate design bases to provide assurance of achieving the performance objectives specified in the Code of Federal Regulations (CFR) 10 CFR Part 63 for radiological consequences. This seismic preclosure safety analysis is performed in support of the License Application for the Yucca Mountain Project. In more detail, this analysis identifies the systems, structures, and components (SSCs) that are subject to seismic design bases. This analysis assigns one of two design basis ground motion (DBGM) levels, DBGM-1 or DBGM-2, to SSCs important to safety (ITS) that are credited in the prevention or mitigation of seismically-initiated event sequences. An application of seismic margins approach is also demonstrated for SSCs assigned to DBGM-2 by showing a high confidence of a low probability of failure at a higher ground acceleration value, termed a beyond-design basis ground motion (BDBGM) level. The objective of this analysis is to meet the performance requirements of 10 CFR 63.111(a) and 10 CFR 63.111(b) for offsite and worker doses. The results of this calculation are used as inputs to the following: (1) A classification analysis of SSCs ITS by identifying potential seismically-initiated failures (loss of safety function) that could lead to undesired consequences; (2) An assignment of either DBGM-1 or DBGM-2 to each SSC ITS credited in the prevention or mitigation of a seismically-initiated event sequence; and (3) A nuclear safety design basis report that will state the seismic design requirements that are credited in this analysis. The present analysis reflects the design information available as of October 2004 and is considered preliminary. The evolving design of the repository will be re-evaluated periodically to ensure that seismic hazards are properly

  6. Rock-physics and seismic-inversion based reservoir characterization of the Haynesville Shale

    International Nuclear Information System (INIS)

    Jiang, Meijuan; Spikes, Kyle T

    2016-01-01

    Seismic reservoir characterization of unconventional gas shales is challenging due to their heterogeneity and anisotropy. Rock properties of unconventional gas shales such as porosity, pore-shape distribution, and composition are important for interpreting seismic data amplitude variations in order to locate optimal drilling locations. The presented seismic reservoir characterization procedure applied a grid-search algorithm to estimate the composition, pore-shape distribution, and porosity at the seismic scale from the seismically inverted impedances and a rock-physics model, using the Haynesville Shale as a case study. All the proposed rock properties affected the seismic velocities, and the combined effects of these rock properties on the seismic amplitude were investigated simultaneously. The P- and S-impedances correlated negatively with porosity, and the V _P/V _S correlated positively with clay fraction and negatively with the pore-shape distribution and quartz fraction. The reliability of these estimated rock properties at the seismic scale was verified through comparisons between two sets of elastic properties: one coming from inverted impedances, which were obtained from simultaneous inversion of prestack seismic data, and one derived from these estimated rock properties. The differences between the two sets of elastic properties were less than a few percent, verifying the feasibility of the presented seismic reservoir characterization. (paper)

  7. Intermediate disconnection of structures to improve the dynamic and the seismic response

    International Nuclear Information System (INIS)

    Fabrizio, Cristiano; De Leo, Andrea M.; Di Egidio, Angelo

    2016-01-01

    In the last years some studies have started to investigate the opportunity to improve the seismic behavior of conventional structures by disconnecting one or more upper stories. An archetype model, constituted by a simple two-degree of freedom system, has been taken as representative of structures where a base isolation or a tuned mass damper scheme is used. The system has a constant total mass, while stiffness and mass ratios are taken as variable parameters. An extensive parametric analysis has been performed to characterize the system. Two different types of behavior maps, one referring to the base isolation and the other to the tuned mass damper, have been obtained. In these maps the regions where a base isolation or a tuned mass damper system works properly are well recognizable and it is also possible to point out some other regions of the parameters space where both systems work well. Some numerical simulations, performed on shear-type systems, have been performed to confirm the results provided by the archetype model.

  8. Scenario based seismic hazard assessment and its application to the seismic verification of relevant buildings

    Science.gov (United States)

    Romanelli, Fabio; Vaccari, Franco; Altin, Giorgio; Panza, Giuliano

    2016-04-01

    The procedure we developed, and applied to a few relevant cases, leads to the seismic verification of a building by: a) use of a scenario based neodeterministic approach (NDSHA) for the calculation of the seismic input, and b) control of the numerical modeling of an existing building, using free vibration measurements of the real structure. The key point of this approach is the strict collaboration, from the seismic input definition to the monitoring of the response of the building in the calculation phase, of the seismologist and the civil engineer. The vibrometry study allows the engineer to adjust the computational model in the direction suggested by the experimental result of a physical measurement. Once the model has been calibrated by vibrometric analysis, one can select in the design spectrum the proper range of periods of interest for the structure. Then, the realistic values of spectral acceleration, which include the appropriate amplification obtained through the modeling of a "scenario" input to be applied to the final model, can be selected. Generally, but not necessarily, the "scenario" spectra lead to higher accelerations than those deduced by taking the spectra from the national codes (i.e. NTC 2008, for Italy). The task of the verifier engineer is to act so that the solution of the verification is conservative and realistic. We show some examples of the application of the procedure to some relevant (e.g. schools) buildings of the Trieste Province. The adoption of the scenario input has given in most of the cases an increase of critical elements that have to be taken into account in the design of reinforcements. However, the higher cost associated with the increase of elements to reinforce is reasonable, especially considering the important reduction of the risk level.

  9. Synchrosqueezing-based Transform and its Application in Seismic Data Analysis

    Directory of Open Access Journals (Sweden)

    Saman Gholtashi

    2015-10-01

    Full Text Available Seismic waves are non-stationary due to its propagation through the earth. Time-frequency transforms are suitable tools for analyzing non-stationary seismic signals. Spectral decomposition can reveal the non-stationary characteristics which cannot be easily observed in the time or frequency representation alone. Various types of spectral decomposition methods have been introduced by some researchers. Conventional spectral decompositions have some restrictions such as Heisenberg uncertainty principle and cross-terms which limit their applications in signal analysis. In this paper, synchrosqueezingbased transforms were used to overcome the mentioned restrictions; also, as an application of this new high resolution time-frequency analysis method, it was applied to random noise removal and the detection of low-frequency shadows in seismic data. The efficiency of this method is evaluated by applying it to both synthetic and real seismic data. The results show that the mentioned transform is a proper tool for seismic data processing and interpretation.

  10. An under-designed RC frame: Seismic assessment through displacement based approach and possible refurbishment with FRP strips and RC jacketing

    Science.gov (United States)

    Valente, Marco; Milani, Gabriele

    2017-07-01

    Many existing reinforced concrete buildings in Southern Europe were built (and hence designed) before the introduction of displacement based design in national seismic codes. They are obviously highly vulnerable to seismic actions. In such a situation, simplified methodologies for the seismic assessment and retrofitting of existing structures are required. In this study, a displacement based procedure using non-linear static analyses is applied to a four-story existing RC frame. The aim is to obtain an estimation of its overall structural inadequacy as well as the effectiveness of a specific retrofitting intervention by means of GFRP laminates and RC jacketing. Accurate numerical models are developed within a displacement based approach to reproduce the seismic response of the RC frame in the original configuration and after strengthening.

  11. Non-linear transient behavior during soil liquefaction based on re-evaluation of seismic records

    OpenAIRE

    Kamagata, S.; Takewaki, Izuru

    2015-01-01

    Focusing on soil liquefaction, the seismic records during the Niigata-ken earthquake in 1964, the southern Hyogo prefecture earthquake in 1995 and the 2011 off the Pacific coast of Tohoku earthquake are analyzed by the non-stationary Fourier spectra. The shift of dominant frequency in the seismic record of Kawagishi-cho during the Niigata-ken earthquake is evaluated based on the time-variant property of dominant frequencies. The reduction ratio of the soil stiffness is evaluated from the shif...

  12. Experimental study and modeling of a novel magnetorheological elastomer isolator

    International Nuclear Information System (INIS)

    Yang, Jian; Li, Weihua; Sun, Shuaishuai; Du, Haiping; Li, Yancheng; Li, Jianchun; Deng, H X

    2013-01-01

    This paper reports an experimental setup aiming at evaluating the performance of a newly designed magnetorheological elastomer (MRE) seismic isolator. As a further effort to explore the field-dependent stiffness/damping properties of the MRE isolator, a series of experimental testing were conducted. Based upon the analysis of the experimental responses and the characteristics of the MRE isolator, a new model that is capable of reproducing the unique MRE isolator dynamics behaviors is proposed. The validation results verify the model’s effectiveness to portray the MRE isolator. A study on the field-dependent parameters is then provided to make the model valid with fluctuating magnetic fields. To fully explore the mechanism of the proposed model, an investigation relating the dependence of the proposed model on every parameter is carried out. (technical note)

  13. Uso de aisladores de base en puentes de concreto simplemente apoyados

    Directory of Open Access Journals (Sweden)

    Leocadio Rico Pradilla

    2012-12-01

    Full Text Available The aim of this paper is to present a comparison of the seismic behavior of simply supported concrete bridges by using three types of base isolators, namely high damping rubber bearing (HDRB, lead rubber bearing (LRB and friction pendulum system (FPS. “La Flora” viaduct is taken as case study; the geometry and the corresponding modeling of such viaduct are defined in sap2000. Additionally, the mechanical properties of three insulators are defined using a bilinear model. An analysis of histories in time was made for the model of the viaduct, considering the non-linearity in the insulators and using frontal fault earthquakes caused by the Frontal and Bucaramanga-Santa Marta fault; this is applied at a surface-level scale. The results from the model without seismic isolation are compared with the three systems of seismic isolation and the findings suggest that the different systems of seismic isolation significantly reduce both the demands of the displacements and the cutting forces in the piles of the bridge, which may induce probable earthquakes.

  14. 3D seismic denoising based on a low-redundancy curvelet transform

    International Nuclear Information System (INIS)

    Cao, Jingjie; Zhao, Jingtao; Hu, Zhiying

    2015-01-01

    Contamination of seismic signal with noise is one of the main challenges during seismic data processing. Several methods exist for eliminating different types of noises, but optimal random noise attenuation remains difficult. Based on multi-scale, multi-directional locality of curvelet transform, the curvelet thresholding method is a relatively new method for random noise elimination. However, the high redundancy of a 3D curvelet transform makes its computational time and memory for massive data processing costly. To improve the efficiency of the curvelet thresholding denoising, a low-redundancy curvelet transform was introduced. The redundancy of the low-redundancy curvelet transform is approximately one-quarter of the original transform and the tightness of the original transform is also kept, thus the low-redundancy curvelet transform calls for less memory and computational resource compared with the original one. Numerical results on 3D synthetic and field data demonstrate that the low-redundancy curvelet denoising consumes one-quarter of the CPU time compared with the original curvelet transform using iterative thresholding denoising when comparable results are obtained. Thus, the low-redundancy curvelet transform is a good candidate for massive seismic denoising. (paper)

  15. An overview of the U.S. Department of Energy's program for liquid metal reactor seismic technology

    International Nuclear Information System (INIS)

    Jetter, R.I.; Seidensticker, R.W.

    1988-01-01

    During the past decade, the U.S. Department of Energy (DOE) has sponsored the development of seismic design technology in support of Liquid Metal Reactors (LMR's). This has been accomplished through 1) major projects such as the Fast Flux Test Facility (FFTF) and the Clinch River Breeder Reactor (CRBR), 2) base technology programs and 3) support to the design development of innovative LMR's, SAFR and PRISM. These developments have come in the areas of ground motion definition, soil-structure interaction, seismic isolation, fluid-structure interaction and structural analysis methods and criteria for equipment and components such as piping, reactor core and vessels. The initial developments in seismic design technology by DOE and others were directed toward ensuring that the plant, equipment and components had sufficient seismic resistance to ensure availability after an Operations Basis Earthquake (OBE) and to survive a Safe Shutdown Earthquake (SSE). During this period, the emphasis on conservative design had significant cost impacts. The current focus is directed toward a better understanding of seismic design margins and the development of methods to reduce seismic loads on plant and equipment and to enhance siting flexibility. From this perspective, the DOE is currently reassessing the needs and priorities for future seismic technology development. Coordination with University research programs and ongoing seismic technology development sponsored by other governmental agencies and institutions is an integral part of this planning process. The purpose of this paper is to highlight the current status of DOE's seismic technology program for LMR's and to provide an overview of future areas of interest. (author). 7 refs

  16. Urban seismic risk assessment: statistical repair cost data and probable structural losses based on damage scenario—correlation analysis

    Science.gov (United States)

    Eleftheriadou, Anastasia K.; Baltzopoulou, Aikaterini D.; Karabinis, Athanasios I.

    2016-06-01

    The current seismic risk assessment is based on two discrete approaches, actual and probable, validating afterwards the produced results. In the first part of this research, the seismic risk is evaluated from the available data regarding the mean statistical repair/strengthening or replacement cost for the total number of damaged structures (180,427 buildings) after the 7/9/1999 Parnitha (Athens) earthquake. The actual evaluated seismic risk is afterwards compared to the estimated probable structural losses, which is presented in the second part of the paper, based on a damage scenario in the referring earthquake. The applied damage scenario is based on recently developed damage probability matrices (DPMs) from Athens (Greece) damage database. The seismic risk estimation refers to 750,085 buildings situated in the extended urban region of Athens. The building exposure is categorized in five typical structural types and represents 18.80 % of the entire building stock in Greece. The last information is provided by the National Statistics Service of Greece (NSSG) according to the 2000-2001 census. The seismic input is characterized by the ratio, a g/ a o, where a g is the regional peak ground acceleration (PGA) which is evaluated from the earlier estimated research macroseismic intensities, and a o is the PGA according to the hazard map of the 2003 Greek Seismic Code. Finally, the collected investigated financial data derived from different National Services responsible for the post-earthquake crisis management concerning the repair/strengthening or replacement costs or other categories of costs for the rehabilitation of earthquake victims (construction and function of settlements for earthquake homeless, rent supports, demolitions, shorings) are used to determine the final total seismic risk factor.

  17. Enhancement of seismic resistance of buildings

    Directory of Open Access Journals (Sweden)

    Claudiu-Sorin Dragomir

    2014-03-01

    Full Text Available The objectives of the paper are both seismic instrumentation for damage assessment and enhancing of seismic resistance of buildings. In according with seismic design codes in force the buildings are designed to resist at seismic actions. Due to the time evolution of these design provisions, there are buildings that were designed decades ago, under the less stringent provisions. The conceptual conformation is nowadays provided in all Codes of seismic design. According to the Code of seismic design P100-1:2006 the asymmetric structures do not have an appropriate seismic configuration; they have disadvantageous distribution of volumes, mass and stiffness. Using results of temporary seismic instrumentation the safety condition of the building may be assessed in different phases of work. Based on this method, the strengthening solutions may be identified and the need of seismic joints may be emphasised. All the aforementioned ideas are illustrated through a case study. Therefore it will be analysed the dynamic parameter evolution of an educational building obtained in different periods. Also, structural intervention scenarios to enhance seismic resistance will be presented.

  18. Seismic Performance Evaluation of Reinforced Concrete Frames Subjected to Seismic Loads

    Science.gov (United States)

    Zameeruddin, Mohd.; Sangle, Keshav K.

    2017-06-01

    Ten storied-3 bays reinforced concrete bare frame designed for gravity loads following the guidelines of IS 456 and IS 13920 for ductility is subjected to seismic loads. The seismic demands on this building were calculated by following IS 1893 for response spectra of 5% damping (for hard soil type). Plastic hinges were assigned to the beam and column at both ends to represent the failure mode, when member yields. Non-linear static (pushover) analysis was performed to evaluate the performance of the building in reference to first (ATC 40), second (FEMA 356) and next-generation (FEMA 440) performance based seismic design procedures. Base shear against top displacement curve of structure, known as pushover curve was obtained for two actions of plastic hinge behavior, force-controlled (brittle) and deformation-controlled (ductile) actions. Lateral deformation corresponding to performance point proves the building capability to sustain a certain level of seismic loads. The failure is represented by a sequence of formation of plastic hinges. Deformation-controlled action of hinges showed that building behaves like strong-column-weak-beam mechanism, whereas force-controlled action showed formation of hinges in the column. The study aims to understand the first, second and next generation performance based design procedure in prediction of actual building responses and their conservatism into the acceptance criteria.

  19. WILBER and PyWEED: Event-based Seismic Data Request Tools

    Science.gov (United States)

    Falco, N.; Clark, A.; Trabant, C. M.

    2017-12-01

    WILBER and PyWEED are two user-friendly tools for requesting event-oriented seismic data. Both tools provide interactive maps and other controls for browsing and filtering event and station catalogs, and downloading data for selected event/station combinations, where the data window for each event/station pair may be defined relative to the arrival time of seismic waves from the event to that particular station. Both tools allow data to be previewed visually, and can download data in standard miniSEED, SAC, and other formats, complete with relevant metadata for performing instrument correction. WILBER is a web application requiring only a modern web browser. Once the user has selected an event, WILBER identifies all data available for that time period, and allows the user to select stations based on criteria such as the station's distance and orientation relative to the event. When the user has finalized their request, the data is collected and packaged on the IRIS server, and when it is ready the user is sent a link to download. PyWEED is a downloadable, cross-platform (Macintosh / Windows / Linux) application written in Python. PyWEED allows a user to select multiple events and stations, and will download data for each event/station combination selected. PyWEED is built around the ObsPy seismic toolkit, and allows direct interaction and control of the application through a Python interactive console.

  20. Seismic Design of a Single Bored Tunnel: Longitudinal Deformations and Seismic Joints

    Science.gov (United States)

    Oh, J.; Moon, T.

    2018-03-01

    The large diameter bored tunnel passing through rock and alluvial deposits subjected to seismic loading is analyzed for estimating longitudinal deformations and member forces on the segmental tunnel liners. The project site has challenges including high hydrostatic pressure, variable ground profile and high seismic loading. To ensure the safety of segmental tunnel liner from the seismic demands, the performance-based two-level design earthquake approach, Functional Evaluation Earthquake and Safety Evaluation Earthquake, has been adopted. The longitudinal tunnel and ground response seismic analyses are performed using a three-dimensional quasi-static linear elastic and nonlinear elastic discrete beam-spring elements to represent segmental liner and ground spring, respectively. Three components (longitudinal, transverse and vertical) of free-field ground displacement-time histories evaluated from site response analyses considering wave passage effects have been applied at the end support of the strain-compatible ground springs. The result of the longitudinal seismic analyses suggests that seismic joint for the mitigation measure requiring the design deflection capacity of 5-7.5 cm is to be furnished at the transition zone between hard and soft ground condition where the maximum member forces on the segmental liner (i.e., axial, shear forces and bending moments) are induced. The paper illustrates how detailed numerical analyses can be practically applied to evaluate the axial and curvature deformations along the tunnel alignment under difficult ground conditions and to provide the seismic joints at proper locations to effectively reduce the seismic demands below the allowable levels.

  1. Characterization of tsunamigenic earthquake in Java region based on seismic wave calculation

    Energy Technology Data Exchange (ETDEWEB)

    Pribadi, Sugeng, E-mail: sugengpribadimsc@gmail.com [Badan Meteorologi Klimatologi Geofisika, Jl Angkasa I No. 2 Jakarta (Indonesia); Afnimar,; Puspito, Nanang T.; Ibrahim, Gunawan [Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia)

    2014-03-24

    This study is to characterize the source mechanism of tsunamigenic earthquake based on seismic wave calculation. The source parameter used are the ratio (Θ) between the radiated seismic energy (E) and seismic moment (M{sub o}), moment magnitude (M{sub W}), rupture duration (T{sub o}) and focal mechanism. These determine the types of tsunamigenic earthquake and tsunami earthquake. We calculate the formula using the teleseismic wave signal processing with the initial phase of P wave with bandpass filter 0.001 Hz to 5 Hz. The amount of station is 84 broadband seismometer with far distance of 30° to 90°. The 2 June 1994 Banyuwangi earthquake with M{sub W}=7.8 and the 17 July 2006 Pangandaran earthquake with M{sub W}=7.7 include the criteria as a tsunami earthquake which distributed about ratio Θ=−6.1, long rupture duration To>100 s and high tsunami H>7 m. The 2 September 2009 Tasikmalaya earthquake with M{sub W}=7.2, Θ=−5.1 and To=27 s which characterized as a small tsunamigenic earthquake.

  2. Characterization of tsunamigenic earthquake in Java region based on seismic wave calculation

    International Nuclear Information System (INIS)

    Pribadi, Sugeng; Afnimar,; Puspito, Nanang T.; Ibrahim, Gunawan

    2014-01-01

    This study is to characterize the source mechanism of tsunamigenic earthquake based on seismic wave calculation. The source parameter used are the ratio (Θ) between the radiated seismic energy (E) and seismic moment (M o ), moment magnitude (M W ), rupture duration (T o ) and focal mechanism. These determine the types of tsunamigenic earthquake and tsunami earthquake. We calculate the formula using the teleseismic wave signal processing with the initial phase of P wave with bandpass filter 0.001 Hz to 5 Hz. The amount of station is 84 broadband seismometer with far distance of 30° to 90°. The 2 June 1994 Banyuwangi earthquake with M W =7.8 and the 17 July 2006 Pangandaran earthquake with M W =7.7 include the criteria as a tsunami earthquake which distributed about ratio Θ=−6.1, long rupture duration To>100 s and high tsunami H>7 m. The 2 September 2009 Tasikmalaya earthquake with M W =7.2, Θ=−5.1 and To=27 s which characterized as a small tsunamigenic earthquake

  3. Moment magnitude determination of local seismic events recorded at selected Polish seismic stations

    Science.gov (United States)

    Wiejacz, Paweł; Wiszniowski, Jan

    2006-03-01

    The paper presents the method of local magnitude determination used at Polish seismic stations to report events originating in one of the four regions of induced seismicity in Poland or its immediate vicinity. The method is based on recalculation of the seismic moment into magnitude, whereas the seismic moment is obtained from spectral analysis. The method has been introduced at Polish seismic stations in the late 1990s but as of yet had not been described in full because magnitude discrepancies have been found between the results of the individual stations. The authors have performed statistics of these differences, provide their explanation and calculate station corrections for each station and each event source region. The limitations of the method are also discussed. The method is found to be a good and reliable method of local magnitude determination provided the limitations are observed and station correction applied.

  4. Views on seismic design standardization of structures, systems and components of nuclear facilities

    International Nuclear Information System (INIS)

    Reddy, G.R.

    2011-01-01

    Structures, Systems and Components (SSCs) of nuclear facilities have to be designed for normal operating loads such as dead weight, pressure, temperature etc., and accidental loads such as earthquakes, floods, extreme, wind air craft impact, explosions etc. Manmade accidents such as aircraft impact, explosions etc., sometimes may be considered as design basis event and sometimes taken care by providing administrative controls. This will not be possible in the case of natural events such as earthquakes, flooding, extreme winds etc. Among natural events earthquakes are considered as most devastating and need to be considered as design basis event which has certain annual frequency specified in design codes. For example nuclear power plants are designed for a seismic event has 10000 year return period. It is generally felt that design of SSCs for earthquake loads is very time consuming and expensive. Conventional seismic design approaches demands for large number of supports for systems and components. This results in large space occupation and in turn creates difficulties for maintenance and in service inspection of systems and components. In addition, complete exercise of design need to be repeated for plants being located at different sites due to different seismic demands. However, advanced seismic response control methods will help to standardize the seismic design meeting the safety and economy. These methods adopt passive, semi active and active devices, and base isolators to control the seismic response. In nuclear industry, it is advisable to go for passive devices to control the seismic responses. Ideally speaking, these methods will make the designs made for normal loads can also satisfy the seismic demand without calling for change in material, geometry, layout etc. in the SSCs. This paper explain the basic ideas of seismic response control methods, demonstrate the effectiveness of control methods through case studies and eventually give the procedure to

  5. Seismic hazard assessment of Iran

    Directory of Open Access Journals (Sweden)

    M. Ghafory-Ashtiany

    1999-06-01

    Full Text Available The development of the new seismic hazard map of Iran is based on probabilistic seismic hazard computation using the historical earthquakes data, geology, tectonics, fault activity and seismic source models in Iran. These maps have been prepared to indicate the earthquake hazard of Iran in the form of iso-acceleration contour lines, and seismic hazard zoning, by using current probabilistic procedures. They display the probabilistic estimates of Peak Ground Acceleration (PGA for the return periods of 75 and 475 years. The maps have been divided into intervals of 0.25 degrees in both latitudinal and longitudinal directions to calculate the peak ground acceleration values at each grid point and draw the seismic hazard curves. The results presented in this study will provide the basis for the preparation of seismic risk maps, the estimation of earthquake insurance premiums, and the preliminary site evaluation of critical facilities.

  6. Mitigation of seismic action on engineering structure by innovative SERB - CITON Solution

    International Nuclear Information System (INIS)

    Serban, V.; Panait, A.; Androne, M.; Ciocan, G. A.

    2009-01-01

    The paper presents the advantage of the SERB-CITON innovative solution for increasing the seismic resistance of engineering structures as compared with other solutions for seismic protection of buildings. SERB devices (telescopic and isolation) used in an innovative solution to control, limit and damp the seismic building movement, have a capsulated structure and are capable to overtake large compression and tension loads with controlled deflection and large damping. The great difference in the building behavior during an earthquake results from the fact that a building (along with its foundation ground) make-up an oscillating system which represents a built-up of kinetic and potential energy of repeated seismic movement oscillations. The oscillating system may or not overtake and built-up the seismic energy from each soil oscillation, as a function of the location of the important Eigen vibration periods of the building within the spectral component of the seismic action. The main problem that needs to be solved by the seismic design of buildings consists in the transfer of a minimum amount of seismic energy from the ground to the building and in doing so for the transferred energy should not build-up in the building-ground oscillating system. The paper presents the classical, modern and innovative solution for mitigation of seismic actions. (authors)

  7. Review of nuclear piping seismic design requirements

    International Nuclear Information System (INIS)

    Slagis, G.C.; Moore, S.E.

    1994-01-01

    Modern-day nuclear plant piping systems are designed with a large number of seismic supports and snubbers that may be detrimental to plant reliability. Experimental tests have demonstrated the inherent ruggedness of ductile steel piping for seismic loading. Present methods to predict seismic loads on piping are based on linear-elastic analysis methods with low damping. These methods overpredict the seismic response of ductile steel pipe. Section III of the ASME Boiler and Pressure Vessel Code stresses limits for piping systems that are based on considerations of static loads and hence are overly conservative. Appropriate stress limits for seismic loads on piping should be incorporated into the code to allow more flexible piping designs. The existing requirements and methods for seismic design of piping systems, including inherent conservations, are explained to provide a technical foundation for modifications to those requirements. 30 refs., 5 figs., 3 tabs

  8. GIS-based seismic shaking slope vulnerability map of Sicily (Central Mediterranean)

    Science.gov (United States)

    Nigro, Fabrizio; Arisco, Giuseppe; Perricone, Marcella; Renda, Pietro; Favara, Rocco

    2010-05-01

    Earthquakes often represent very dangerouses natural events in terms of human life and economic losses and their damage effects are amplified by the synchronous occurrence of seismically-induced ground-shaking failures in wide regions around the seismogenic source. In fact, the shaking associated with big earthquakes triggers extensive landsliding, sometimes at distances of more than 100 km from the epicenter. The active tectonics and the geomorphic/morphodinamic pattern of the regions affected by earthquakes contribute to the slopes instability tendency. In fact, earthquake-induced groun-motion loading determines inertial forces activation within slopes that, combined with the intrinsic pre-existing static forces, reduces the slope stability towards its failure. Basically, under zero-shear stress reversals conditions, a catastrophic failure will take place if the earthquake-induced shear displacement exceeds the critical level of undrained shear strength to a value equal to the gravitational shear stress. However, seismic stability analyses carried out for various infinite slopes by using the existing Newmark-like methods reveal that estimated permanent displacements smaller than the critical value should also be regarded as dangerous for the post-earthquake slope safety, in terms of human activities use. Earthquake-induced (often high-speed) landslides are among the most destructive phenomena related to slopes failure during earthquakes. In fact, damage from earthquake-induced landslides (and other ground-failures), sometimes exceeds the buildings/infrastructures damage directly related to ground-shaking for fault breaking. For this matter, several hearthquakes-related slope failures methods have been developed, for the evaluation of the combined hazard types represented by seismically ground-motion landslides. The methodologies of analysis of the engineering seismic risk related to the slopes instability processes is often achieved through the evaluation of the

  9. Seismic hazard assessment: Issues and alternatives

    Science.gov (United States)

    Wang, Z.

    2011-01-01

    Seismic hazard and risk are two very important concepts in engineering design and other policy considerations. Although seismic hazard and risk have often been used inter-changeably, they are fundamentally different. Furthermore, seismic risk is more important in engineering design and other policy considerations. Seismic hazard assessment is an effort by earth scientists to quantify seismic hazard and its associated uncertainty in time and space and to provide seismic hazard estimates for seismic risk assessment and other applications. Although seismic hazard assessment is more a scientific issue, it deserves special attention because of its significant implication to society. Two approaches, probabilistic seismic hazard analysis (PSHA) and deterministic seismic hazard analysis (DSHA), are commonly used for seismic hazard assessment. Although PSHA has been pro-claimed as the best approach for seismic hazard assessment, it is scientifically flawed (i.e., the physics and mathematics that PSHA is based on are not valid). Use of PSHA could lead to either unsafe or overly conservative engineering design or public policy, each of which has dire consequences to society. On the other hand, DSHA is a viable approach for seismic hazard assessment even though it has been labeled as unreliable. The biggest drawback of DSHA is that the temporal characteristics (i.e., earthquake frequency of occurrence and the associated uncertainty) are often neglected. An alternative, seismic hazard analysis (SHA), utilizes earthquake science and statistics directly and provides a seismic hazard estimate that can be readily used for seismic risk assessment and other applications. ?? 2010 Springer Basel AG.

  10. An automated multi-scale network-based scheme for detection and location of seismic sources

    Science.gov (United States)

    Poiata, N.; Aden-Antoniow, F.; Satriano, C.; Bernard, P.; Vilotte, J. P.; Obara, K.

    2017-12-01

    We present a recently developed method - BackTrackBB (Poiata et al. 2016) - allowing to image energy radiation from different seismic sources (e.g., earthquakes, LFEs, tremors) in different tectonic environments using continuous seismic records. The method exploits multi-scale frequency-selective coherence in the wave field, recorded by regional seismic networks or local arrays. The detection and location scheme is based on space-time reconstruction of the seismic sources through an imaging function built from the sum of station-pair time-delay likelihood functions, projected onto theoretical 3D time-delay grids. This imaging function is interpreted as the location likelihood of the seismic source. A signal pre-processing step constructs a multi-band statistical representation of the non stationary signal, i.e. time series, by means of higher-order statistics or energy envelope characteristic functions. Such signal-processing is designed to detect in time signal transients - of different scales and a priori unknown predominant frequency - potentially associated with a variety of sources (e.g., earthquakes, LFE, tremors), and to improve the performance and the robustness of the detection-and-location location step. The initial detection-location, based on a single phase analysis with the P- or S-phase only, can then be improved recursively in a station selection scheme. This scheme - exploiting the 3-component records - makes use of P- and S-phase characteristic functions, extracted after a polarization analysis of the event waveforms, and combines the single phase imaging functions with the S-P differential imaging functions. The performance of the method is demonstrated here in different tectonic environments: (1) analysis of the one year long precursory phase of 2014 Iquique earthquake in Chile; (2) detection and location of tectonic tremor sources and low-frequency earthquakes during the multiple episodes of tectonic tremor activity in southwestern Japan.

  11. Data base and seismicity studies for Fagaras, Romania crustal earthquakes

    International Nuclear Information System (INIS)

    Moldovan, I.-A.; Enescu, B. D.; Pantea, A.; Constantin, A.; Bazacliu, O.; Malita, Z.; Moldoveanu, T.

    2002-01-01

    Besides the major impact of the Vrancea seismic region, one of the most important intermediate earthquake sources of Europe, the Romanian crustal earthquake sources, from Fagaras, Banat, Crisana, Bucovina or Dobrogea regions, have to be taken into consideration for seismicity studies or seismic hazard assessment. To determine the characteristics of the seismicity for Fagaras seismogenic region, a revised and updated catalogue of the Romanian earthquakes, recently compiled by Oncescu et al. (1999) is used. The catalogue contains 471 tectonic earthquakes and 338 induced earthquakes and is homogenous starting with 1471 for I>VIII and for I>VII starting with 1801. The catalogue is complete for magnitudes larger than 3 starting with 1982. In the studied zone only normal earthquakes occur, related to intracrustal fractures situated from 5 to 30 km depth. Most of them are of low energy, but once in a century a large destructive event occurs with epicentral intensity larger than VIII. The maximum expected magnitude is M GR = 6.5 and the epicenter distribution outlines significant clustering in the zones and on the lines mentioned in the tectonic studies. Taking into account the date of the last major earthquake (1916) and the return periods of severe damaging shocks of over 85 years it is to be expected very soon a large shock in the area. That's why a seismicity and hazard study for this zone is necessary. In the paper there are studied the b parameter variation (the mean value is 0.69), the activity value, the return periods, and seismicity maps and different histograms are plotted. At the same time there are excluded from the catalogue the explosions due to Campulung quarry. Because the catalogue contains the aftershocks for the 1916 earthquake for the seismicity studies we have excluded these shocks. (authors)

  12. Integrated system for seismic evaluations

    International Nuclear Information System (INIS)

    Xu, J.; Philippacopoulos, A.J.; Miller, C.A.; Costantino, C.J.; Graves, H.

    1989-01-01

    This paper describes the various features of the seismic module of the CARES system (computer analysis for rapid evaluation of structures). This system was developed to perform rapid evaluations of structural behavior and capability of nuclear power plant facilities. The CARES is structural in a modular format. Each module performs a specific type of analysis i.e., static or dynamic, linear or nonlinear, etc. This paper describes the features of the seismic module in particular. The development of the seismic modules of the CARES system is based on an approach which incorporates major aspects of seismic analysis currently employed by the industry into an integrated system that allows for carrying out interactively computations of structural response to seismic motions. The code operates on a PC computer system and has multi-graphics capabilities

  13. Seismic modelling of shallow coalfields

    Energy Technology Data Exchange (ETDEWEB)

    Lawton, D.C. (University of Calgary, Calgary, Alberta (Canada). Dept. of Geology and Geophysics.)

    1987-01-01

    This study was undertaken in order to determine whether reflection seismic surveys can be used to map stratigraphic and structural detail of shallow Plains-type coal deposits. Two coalfields in central Alberta were used to examine and determine optimum acquisition parameters for reflection seismic surveys in such settings. The study was based on 1-D and 2-D numerical seismic modelling using sonic and density well logs to formulate a layered earth model. Additional objectives were to interpret the reflection seismic data in terms of geologic features in the study area, and to investigate the relationship between vertical resolution and field acquisition geometry. 27 refs., 41 figs.

  14. Performance-based seismic design of steel frames utilizing colliding bodies algorithm.

    Science.gov (United States)

    Veladi, H

    2014-01-01

    A pushover analysis method based on semirigid connection concept is developed and the colliding bodies optimization algorithm is employed to find optimum seismic design of frame structures. Two numerical examples from the literature are studied. The results of the new algorithm are compared to the conventional design methods to show the power or weakness of the algorithm.

  15. Proposal of new seismic assessment and retrofit technology for existing buildings; Hyogoken nanbu jishin higai wo kyokun to shita kison kozobutsu no taishin shindan system

    Energy Technology Data Exchange (ETDEWEB)

    Yoshioka, K.; Takahashi, Y.; Seki, M.; Tanida, M.; Akiyama, T.; Hashimoto, Y. [Obayashi Corp., Tokyo (Japan)

    1995-08-10

    A devastating earthquake measuring 7.2 on the JMA (Japan Meteorological Agency) magnitude hit the southern Hyogo Prefecture on January 17, 1995. This earthquake, the worst in Japan since the Great Kanto Earthquake in 1923, brought great disaster and destruction to the Hanshin area and Awajishima Island. Most of the damage to concrete and steel structures occurred in buildings designed according to former building codes. Fewer collapses occurred in buildings designed under current building code that have more severe seismic requirements. Existing buildings should be assessed by their seismic potentiality, and retrofitted to escape damage in severe earthquakes such as the Great Hanshin Earthquake. New technology for assessing and retrofitting existing buildings was developed to improve resisting performance in response to severe earthquakes. Earthquake Load or motion exceeding current requirements can be supplied to assess and retrofit existing buildings if a client wants their buildings to exhibit much stronger seismic resistance. The retrofit technologies, such as a base isolation system for whole building, vibration control bracing system with steel damper, and base isolation floor system for computer equipments, can be applied to existing buildings. 11 refs., 9 figs., 8 tabs.

  16. Seismotectonic significance of the 2008–2010 Walloon Brabant seismic swarm in the Brabant Massif, Belgium

    Science.gov (United States)

    Van Noten, Koen; Lecocq, Thomas; Shah, Anjana K.; Camelbeeck, Thierry

    2015-01-01

    Between 12 July 2008 and 18 January 2010 a seismic swarm occurred close to the town of Court-Saint-Etienne, 20 km SE of Brussels (Belgium). The Belgian network and a temporary seismic network covering the epicentral area established a seismic catalogue in which magnitude varies between ML -0.7 and ML 3.2. Based on waveform cross-correlation of co-located earthquakes, the spatial distribution of the hypocentre locations was improved considerably and shows a dense cluster displaying a 200 m-wide, 1.5-km long, NW-SE oriented fault structure at a depth range between 5 and 7 km, located in the Cambrian basement rocks of the Lower Palaeozoic Anglo-Brabant Massif. Waveform comparison of the largest events of the 2008–2010 swarm with an ML 4.0 event that occurred during swarm activity between 1953 and 1957 in the same region shows similar P- and S-wave arrivals at the Belgian Uccle seismic station. The geometry depicted by the hypocentral distribution is consistent with a nearly vertical, left-lateral strike-slip fault taking place in a current local WNW–ESE oriented local maximum horizontal stress field. To determine a relevant tectonic structure, a systematic matched filtering approach of aeromagnetic data, which can approximately locate isolated anomalies associated with hypocentral depths, has been applied. Matched filtering shows that the 2008–2010 seismic swarm occurred along a limited-sized fault which is situated in slaty, low-magnetic rocks of the Mousty Formation. The fault is bordered at both ends with obliquely oriented magnetic gradients. Whereas the NW end of the fault is structurally controlled, its SE end is controlled by a magnetic gradient representing an early-orogenic detachment fault separating the low-magnetic slaty Mousty Formation from the high-magnetic Tubize Formation. The seismic swarm is therefore interpreted as a sinistral reactivation of an inherited NW–SE oriented isolated fault in a weakened crust within the Cambrian core of

  17. Applications of seismic spatial wavefield gradient and rotation data in exploration seismology

    Science.gov (United States)

    Schmelzbach, C.; Van Renterghem, C.; Sollberger, D.; Häusler, M.; Robertsson, J. O. A.

    2017-12-01

    Seismic spatial wavefield gradient and rotation data have the potential to open up new ways to address long-standing problems in land-seismic exploration such as identifying and separating P-, S-, and surface waves. Gradient-based acquisition and processing techniques could enable replacing large arrays of densely spaced receivers by sparse spatially-compact receiver layouts or even one single multicomponent station with dedicated instruments (e.g., rotational seismometers). Such approaches to maximize the information content of single-station recordings are also of significant interest for seismic measurements at sites with limited access such as boreholes, the sea bottom, and extraterrestrial seismology. Arrays of conventional three-component (3C) geophones enable measuring not only the particle velocity in three dimensions but also estimating their spatial gradients. Because the free-surface condition allows to express vertical derivatives in terms of horizontal derivatives, the full gradient tensor and, hence, curl and divergence of the wavefield can be computed. In total, three particle velocity components, three rotational components, and divergence, result seven-component (7C) seismic data. Combined particle velocity and gradient data can be used to isolate the incident P- or S-waves at the land surface or the sea bottom using filtering techniques based on the elastodynamic representation theorem. Alternatively, as only S-waves exhibit rotational motion, rotational measurements can directly be used to identify S-waves. We discuss the derivations of the gradient-based filters as well as their application to synthetic and field data, demonstrating that rotational data can be of particular interest to S-wave reflection and P-to-S-wave conversion imaging. The concept of array-derived gradient estimation can be extended to source arrays as well. Therefore, source arrays allow us to emulate rotational (curl) and dilatational (divergence) sources. Combined with 7C

  18. Seismic testing

    International Nuclear Information System (INIS)

    Sollogoub, Pierre

    2001-01-01

    This lecture deals with: qualification methods for seismic testing; objectives of seismic testing; seismic testing standards including examples; main content of standard; testing means; and some important elements of seismic testing

  19. Contribution of Italy to the activities on intercomparison of analysis methods for seismically isolated nuclear structures: Finite element analysis of lead rubber bearings

    International Nuclear Information System (INIS)

    Dusi, A.; Forni, M.; Martelli, A.

    1998-01-01

    This paper presents a summary of the results of nonlinear Finite Element (FE) analyses carried out by ENEL-Ricerca, Hydraulic and Structural Centre and ENEA-ERG-SIEC-SISM, on Lead Rubber Bearings (LRBs). Activities were carried out in the framework of the four years' Coordinated Research Programme (CRP) of the International Atomic Energy Agency (IAEA) on I ntercomparison of Analysis Methods for Seismically Isolated Nuclear Structures . The bearing Finite Element Models (FEMs) are validated through comparisons of the numerical results with experimental test data. The reliability of FEMs for simulating the behaviour of rubber bearings is presented and discussed. (author)

  20. Seismic Structure of Southern African Cratons

    DEFF Research Database (Denmark)

    Soliman, Mohammad Youssof Ahmad; Artemieva, Irina; Levander, Alan

    2014-01-01

    functions and finite-frequency tomography based on data from the South Africa Seismic Experiment (SASE). Combining the two methods provides high vertical and lateral resolution. The main results obtained are (1) the presence of a highly heterogeneous crustal structure, in terms of thickness, composition (as......Cratons are extremely stable continental crustal areas above thick depleted lithosphere. These regions have remained largely unchanged for more than 2.5 Ga. This study presents a new seismic model of the seismic structure of the crust and lithospheric mantle constrained by seismic receiver...

  1. Seismic test facilities at the ENEA Casaccia Research Center; Prove sismiche con le tavole vibranti al centro ricerche Enea Casaccia

    Energy Technology Data Exchange (ETDEWEB)

    De Canio, G. [ENEA, Divisione Servizi Tecnologici, Centro Ricerche Casaccia, Rome (Italy)

    2000-07-01

    The main experimental facilities for seismic tests at the ENEA C.R. Casaccia laboratories consist of two high performance shake table for three axial seismic tests of structures up to 10 ton mass and 3g acceleration applied at the Center of Gravity at 1m from the base table. The activities are principally devoted to the dynamic characterization and vibration tests for mechanical and aero spatial structures, and the experimental analysis of innovative systems for the seismic isolation and retrofitting of civil, industrial, and historical buildings; together with the seismic tests of sub-structures and scaled mock-ups, in order to evaluate the isolation/dissipation performance of the anti-seismic devices, and the failure modes of the structural parts of the building. [Italian] Le principali attrezzature per le prove sismiche presso i laboratori del C.R. Casaccia consistono di due tavole vibranti triassali per prove su strutture fino a 10t di peso con una accelerazione di 3g applicata al centro di gravita' posto ad 1 m di altezza dal piano della tavola. Le principali attivita' riguardano: (a) test di caratterizzazione dinamica e prove di vibrazioni per strutture meccaniche ed aerospaziali; (b) l'analisi sperimentale di sistemi innovativi per l'isolamento sismico ed il consolidamento di strutture civili, industriali e storico monumentali, e le prove sismiche di elementi strutturali e di modelli in scala per la valutazione della capacita' di dissipazione dei dispositivi antisismici e le modalita' di formazione delle fratture.

  2. Proceedings of the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marvin A. [Editor; Benson, Jody [Editor; Patterson, Eileen F. [Editor

    2005-09-20

    These proceedings contain papers prepared for the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 20-22 September, 2005 in Rancho Mirage, California. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  3. Proceedings of the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    International Nuclear Information System (INIS)

    Wetovsky, Marvin A.; Benson, Jody; Patterson, Eileen F.

    2005-01-01

    These proceedings contain papers prepared for the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 20-22 September, 2005 in Rancho Mirage, California. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  4. Proceedings of the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marvin A. [Editor; Benson, Jody [Editor; Patterson, Eileen F. [Editor

    2006-09-19

    These proceedings contain papers prepared for the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 19-21 September, 2006 in Orlando, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  5. Proceedings of the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    International Nuclear Information System (INIS)

    Wetovsky, Marvin A.; Benson, Jody; Patterson, Eileen F.

    2006-01-01

    These proceedings contain papers prepared for the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 19-21 September, 2006 in Orlando, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  6. Method for inverting reflection trace data from 3-D and 4-D seismic surveys and identifying subsurface fluid and pathways in and among hydrocarbon reservoirs based on impedance models

    Science.gov (United States)

    He, W.; Anderson, R.N.

    1998-08-25

    A method is disclosed for inverting 3-D seismic reflection data obtained from seismic surveys to derive impedance models for a subsurface region, and for inversion of multiple 3-D seismic surveys (i.e., 4-D seismic surveys) of the same subsurface volume, separated in time to allow for dynamic fluid migration, such that small scale structure and regions of fluid and dynamic fluid flow within the subsurface volume being studied can be identified. The method allows for the mapping and quantification of available hydrocarbons within a reservoir and is thus useful for hydrocarbon prospecting and reservoir management. An iterative seismic inversion scheme constrained by actual well log data which uses a time/depth dependent seismic source function is employed to derive impedance models from 3-D and 4-D seismic datasets. The impedance values can be region grown to better isolate the low impedance hydrocarbon bearing regions. Impedance data derived from multiple 3-D seismic surveys of the same volume can be compared to identify regions of dynamic evolution and bypassed pay. Effective Oil Saturation or net oil thickness can also be derived from the impedance data and used for quantitative assessment of prospective drilling targets and reservoir management. 20 figs.

  7. Shaking table test of a base isolated model in main control room of nuclear power plant using LRB (lead rubber bearing)

    International Nuclear Information System (INIS)

    Ham, K. W.; Lee, K. J.; Suh, Y. P.

    2005-01-01

    LRB(Lead Rubber Bearing) is a widely used isolation system which is installed between equipment and foundation to reduce seismic vibration from ground. LRB is consist of bearings which are resistant to lateral motion and torsion and has a high vertical stiffness. For that reason, several studies are conducted to apply LRB to the nuclear power plant. In this study, we designed two types of main control floor systems (type I, type II) and a number of shaking table tests with and without isolation system were conducted to evaluate floor isolation effectiveness of LRB

  8. Seismic Symphonies

    Science.gov (United States)

    Strinna, Elisa; Ferrari, Graziano

    2015-04-01

    The project started in 2008 as a sound installation, a collaboration between an artist, a barrel organ builder and a seismologist. The work differs from other attempts of sound transposition of seismic records. In this case seismic frequencies are not converted automatically into the "sound of the earthquake." However, it has been studied a musical translation system that, based on the organ tonal scale, generates a totally unexpected sequence of sounds which is intended to evoke the emotions aroused by the earthquake. The symphonies proposed in the project have somewhat peculiar origins: they in fact come to life from the translation of graphic tracks into a sound track. The graphic tracks in question are made up by copies of seismograms recorded during some earthquakes that have taken place around the world. Seismograms are translated into music by a sculpture-instrument, half a seismograph and half a barrel organ. The organ plays through holes practiced on paper. Adapting the documents to the instrument score, holes have been drilled on the waves' peaks. The organ covers about three tonal scales, starting from heavy and deep sounds it reaches up to high and jarring notes. The translation of the seismic records is based on a criterion that does match the highest sounds to larger amplitudes with lower ones to minors. Translating the seismogram in the organ score, the larger the amplitude of recorded waves, the more the seismogram covers the full tonal scale played by the barrel organ and the notes arouse an intense emotional response in the listener. Elisa Strinna's Seismic Symphonies installation becomes an unprecedented tool for emotional involvement, through which can be revived the memory of the greatest disasters of over a century of seismic history of the Earth. A bridge between art and science. Seismic Symphonies is also a symbolic inversion: the instrument of the organ is most commonly used in churches, and its sounds are derived from the heavens and

  9. A performance goal-based seismic design philosophy for waste repository facilities

    International Nuclear Information System (INIS)

    Hossain, Q.A.

    1994-02-01

    A performance goal-based seismic design philosophy, compatible with DOE's present natural phenomena hazards mitigation and ''graded approach'' philosophy, has been proposed for high level nuclear waste repository facilities. The rationale, evolution, and the desirable features of this method have been described. Why and how the method should and can be applied to the design of a repository facility are also discussed

  10. Seismic considerations in sealing a potential high-level radioactive waste repository

    International Nuclear Information System (INIS)

    Fernandez, J.A.; Richardson, A.M.; Lin, Ming

    1992-01-01

    The potential repository system is intended to isolate high-level radioactive waste at Yucca Mountain. One subsystem that may contribute to achieving this objective is the sealing subsystem. This subsystem is comprised of sealing components in the shafts, ramps, underground network of drifts, and the exploratory boreholes. Sealing components can be rigid, as in the case of a shaft seal, or can be more compressible, as in the case of drift fill comprised of mined rockfill. This paper presents the preliminary seismic response of discrete sealing components in welded and nonwelded tuff. Special consideration is given to evaluating the stress in the seal, and the behavior of the interface between the seal and the rock. The seismic responses are computed using both static and dynamic analyses. Also presented is an evaluation of the maximum seismic response encountered by a drift seal with respect to the angle of incidence of the seismic wave. Mitigation strategies and seismic design considerations are proposed which can potentially enhance the overall response of the sealing component and subsequently, the performance of the overall repository system

  11. Designing in seismic areas in the third millennium: modern technologies

    International Nuclear Information System (INIS)

    Martelli, Alessandro

    2015-01-01

    The World Conference on Seismic Isolation, Energy Dissipation and Active Vibrations Control of Structures, which took place in Sendai (Japan) on September 24-26, 2013. Other papers presented at this conference deal with the use of the traditional approach. More updated information on the application of the AS systems became available at the ASSISi 14. World Conference, held in San Diego (California, USA) on September 7-11, 2015. Most SI systems rely on the use of rubber bearings (RBs), such as the High Damping natural Rubber Bearings (HDRBs), Neoprene Bearings (NBs), Lead Rubber Bearings (LRBs), or (especially in Japan) Low Damping Rubber Bearings (LDRBs) in parallel with dampers; in buildings, some plane surfaces steel-Teflon (PTFE) Sliding Devices (SDs) are frequently added to the RBs to support their light parts without unnecessarily stiffening the SI system (which would make it less effective) and (if they are significantly asymmetric in the horizontal plane) to minimize the torsion effects (the effects of the vertical asymmetries are drastically reduced by the quasi 'rigid body motion' of the seismically isolated superstructure). Another type of isolators, which has been used in Italy after the 2009 Abruzzo earthquake, is the so-called Curved Surface Slider (CSS), which derived from the US Friction Pendulum (FPS) and the subsequent German Seismic Isolation Pendulum (SIP). Finally, rolling isolators (in particular Ball Bearings, BBs, and Sphere Bearings) are also applied: they are very effective and find numerous applications (more than 200 in 2013) to protect buildings in Japan, but not in Italy, because there they have been judged to be too expensive (however, they have already been used, even in Italy, to protect precious masterpieces and other contents of museums, as well as costly equipment, including that of operating-rooms in hospitals). It shall be stressed that, to the knowledge of the author, all structures protected by RBs that were located

  12. CyberShake: A Physics-Based Seismic Hazard Model for Southern California

    Science.gov (United States)

    Graves, R.; Jordan, T.H.; Callaghan, S.; Deelman, E.; Field, E.; Juve, G.; Kesselman, C.; Maechling, P.; Mehta, G.; Milner, K.; Okaya, D.; Small, P.; Vahi, K.

    2011-01-01

    CyberShake, as part of the Southern California Earthquake Center's (SCEC) Community Modeling Environment, is developing a methodology that explicitly incorporates deterministic source and wave propagation effects within seismic hazard calculations through the use of physics-based 3D ground motion simulations. To calculate a waveform-based seismic hazard estimate for a site of interest, we begin with Uniform California Earthquake Rupture Forecast, Version 2.0 (UCERF2.0) and identify all ruptures within 200 km of the site of interest. We convert the UCERF2.0 rupture definition into multiple rupture variations with differing hypocenter locations and slip distributions, resulting in about 415,000 rupture variations per site. Strain Green Tensors are calculated for the site of interest using the SCEC Community Velocity Model, Version 4 (CVM4), and then, using reciprocity, we calculate synthetic seismograms for each rupture variation. Peak intensity measures are then extracted from these synthetics and combined with the original rupture probabilities to produce probabilistic seismic hazard curves for the site. Being explicitly site-based, CyberShake directly samples the ground motion variability at that site over many earthquake cycles (i. e., rupture scenarios) and alleviates the need for the ergodic assumption that is implicitly included in traditional empirically based calculations. Thus far, we have simulated ruptures at over 200 sites in the Los Angeles region for ground shaking periods of 2 s and longer, providing the basis for the first generation CyberShake hazard maps. Our results indicate that the combination of rupture directivity and basin response effects can lead to an increase in the hazard level for some sites, relative to that given by a conventional Ground Motion Prediction Equation (GMPE). Additionally, and perhaps more importantly, we find that the physics-based hazard results are much more sensitive to the assumed magnitude-area relations and

  13. Seismic sequences in the Sombrero Seismic Zone

    Science.gov (United States)

    Pulliam, J.; Huerfano, V. A.; ten Brink, U.; von Hillebrandt, C.

    2007-05-01

    The northeastern Caribbean, in the vicinity of Puerto Rico and the Virgin Islands, has a long and well-documented history of devastating earthquakes and tsunamis, including major events in 1670, 1787, 1867, 1916, 1918, and 1943. Recently, seismicity has been concentrated to the north and west of the British Virgin Islands, in the region referred to as the Sombrero Seismic Zone by the Puerto Rico Seismic Network (PRSN). In the combined seismicity catalog maintained by the PRSN, several hundred small to moderate magnitude events can be found in this region prior to 2006. However, beginning in 2006 and continuing to the present, the rate of seismicity in the Sombrero suddenly increased, and a new locus of activity developed to the east of the previous location. Accurate estimates of seismic hazard, and the tsunamigenic potential of seismic events, depend on an accurate and comprehensive understanding of how strain is being accommodated in this corner region. Are faults locked and accumulating strain for release in a major event? Or is strain being released via slip over a diffuse system of faults? A careful analysis of seismicity patterns in the Sombrero region has the potential to both identify faults and modes of failure, provided the aggregation scheme is tuned to properly identify related events. To this end, we experimented with a scheme to identify seismic sequences based on physical and temporal proximity, under the assumptions that (a) events occur on related fault systems as stress is refocused by immediately previous events and (b) such 'stress waves' die out with time, so that two events that occur on the same system within a relatively short time window can be said to have a similar 'trigger' in ways that two nearby events that occurred years apart cannot. Patterns that emerge from the identification, temporal sequence, and refined locations of such sequences of events carry information about stress accommodation that is obscured by large clouds of

  14. Seismic Characterization and Continuity Analysis of Gas Hydrate Horizons Near the Mallik Research Wells, Mackenzie Delta, Canada

    Science.gov (United States)

    Bellefleur, G.; Riedel, M.; Brent, T.

    2005-12-01

    Gas hydrate deposits in arctic environment generally lack the BSR signature diagnostic of their presence in marine seismic data. The absence of the BSR signature complicates the estimation of the resources within or below the permafrost and the determination of their potential impact on future energy supplies, geohazard and climate change. We present results from a detailed seismic characterization of three gas hydrate horizons (A, B and C) intersected below the permafrost in five wells of the Mallik gas hydrate field located in the Mackenzie delta (Northwest Territories, Canada). The detailed seismic characterization included attribute analyses, synthetic modeling and acoustic impedance inversion and allowed estimation of the lateral continuity of the three horizons in the vicinity of the wells. Vertical Seismic Profiling (VSP) data, 3D and 2D industry seismic data and the 5L/2L-38 geophysical logs (density, P-wave sonic velocity) were used for this study. Synthetic modeling using the sonic and density logs reveals that the base of the lower gas hydrate horizons B and C can be identified on the industry 3D and 2D seismic sections as prominent isolated reflections. The uppermost gas hydrate occurrence (horizon A) and potentially other additional smaller-scale layers are identified only on the higher-resolution VSP data. The 3D industry seismic data set processed to preserve the relative true-amplitudes was used for attribute calculations and acoustic impedance inversion. The attribute maps defined areas of continuous reflectivity for horizons B and C and structural features disrupting them. Results from impedance inversion indicate that such continuous reflectivity around the wells is most likely attributable to gas hydrates. The middle gas hydrate occurrence (horizon B) covers an area of approximately 25 000m2. Horizon C, which marks the base of gas hydrate occurrence zone, extends over a larger area of approximately 120 000m2.

  15. From Geodetic Imaging of Seismic and Aseismic Fault Slip to Dynamic Modeling of the Seismic Cycle

    Science.gov (United States)

    Avouac, Jean-Philippe

    2015-05-01

    Understanding the partitioning of seismic and aseismic fault slip is central to seismotectonics as it ultimately determines the seismic potential of faults. Thanks to advances in tectonic geodesy, it is now possible to develop kinematic models of the spatiotemporal evolution of slip over the seismic cycle and to determine the budget of seismic and aseismic slip. Studies of subduction zones and continental faults have shown that aseismic creep is common and sometimes prevalent within the seismogenic depth range. Interseismic coupling is generally observed to be spatially heterogeneous, defining locked patches of stress accumulation, to be released in future earthquakes or aseismic transients, surrounded by creeping areas. Clay-rich tectonites, high temperature, and elevated pore-fluid pressure seem to be key factors promoting aseismic creep. The generally logarithmic time evolution of afterslip is a distinctive feature of creeping faults that suggests a logarithmic dependency of fault friction on slip rate, as observed in laboratory friction experiments. Most faults can be considered to be paved with interlaced patches where the friction law is either rate-strengthening, inhibiting seismic rupture propagation, or rate-weakening, allowing for earthquake nucleation. The rate-weakening patches act as asperities on which stress builds up in the interseismic period; they might rupture collectively in a variety of ways. The pattern of interseismic coupling can help constrain the return period of the maximum- magnitude earthquake based on the requirement that seismic and aseismic slip sum to match long-term slip. Dynamic models of the seismic cycle based on this conceptual model can be tuned to reproduce geodetic and seismological observations. The promise and pitfalls of using such models to assess seismic hazard are discussed.

  16. Fast principal component analysis for stacking seismic data

    Science.gov (United States)

    Wu, Juan; Bai, Min

    2018-04-01

    Stacking seismic data plays an indispensable role in many steps of the seismic data processing and imaging workflow. Optimal stacking of seismic data can help mitigate seismic noise and enhance the principal components to a great extent. Traditional average-based seismic stacking methods cannot obtain optimal performance when the ambient noise is extremely strong. We propose a principal component analysis (PCA) algorithm for stacking seismic data without being sensitive to noise level. Considering the computational bottleneck of the classic PCA algorithm in processing massive seismic data, we propose an efficient PCA algorithm to make the proposed method readily applicable for industrial applications. Two numerically designed examples and one real seismic data are used to demonstrate the performance of the presented method.

  17. Full base isolation for earthquake protection by helical springs and viscodampers

    International Nuclear Information System (INIS)

    Hueffmann, G.K.

    1985-01-01

    GERB, a company specializing in vibration isolation has developed a new system for the three dimensional earthquake protection of whole structures, based on helical springs with definite linear flexibility of similar order in all three dimensions and velocity proportional viscodampers, also highly effective in all degrees of freedom. This system has already been successfully used for the installation of big diesel- and turbo-generators in seismic zones for quite a long time, where earthquake protection has been combined with conventional vibration control concepts. Tests on the shaking table of the Earthquake Research Institute at Skopje/Yugoslavia with a model of a 5-story-steel-frame-building comparing a fixed base and spring viscodamper supported installation have shown high stress relief in the structure at limited amplitudes. This system will give not only more protection for buildings and the people inside, but the extra cost equals the savings in the structure. Some unique advantages of this system are: no creep, deterioration or fatigue with time, easy inspection, simple replacement of elements if necessary and also simple modification of the system for example in case of load changes, static uncoupling from the subfoundation (independence of settlements) and low influence of travelling wave effects. (orig.)

  18. Seismic structural fragility investigation for the Zion Nuclear Power Plant. Seismic safety margins research program (phase 1)

    International Nuclear Information System (INIS)

    Wesley, D.A.; Hashimoto, P.S.

    1981-10-01

    An evaluation of the seismic capacity of the essential structures for the Zion Nuclear Power Plant in Zion, Illinois, was conducted as part of the Seismic Safety Margins Research Program (SSMRP). The structures included the reactor containment building, the turbine/auxiliary building, and the crib house (intake structure). The evaluation was devoted to seismically induced failures rather than those resulting from combined Loss of Coolant Accident (LOCA) or other extreme load combinations. The seismic loads used in the investigation were based on elastic analyses. The loads for the reactor containment and turbine/auxiliary buildings were developed by Lawrence Livermore Laboratory using time history analyses. The loads used for the crib house were the original seismic design loads developed by Sargent and Lundy. No non-linear seismic analyses were conducted. The seismic capacity of the structures accounted for the actual concrete and steel material properties including the aging of the concrete. Median centered properties were used throughout the evaluation including levels of damping considered appropriate for structures close to collapse as compared to the more conservative values used for design. The inelastic effects were accounted for using ductility modified response spectrum techniques based on system ductility ratios expected for structures near collapse. Sources of both inherent randomness and uncertainties resulting from lack of knowledge or approximations in analytical modelling were considered in developing the dispersion of the structural dynamic characteristics. Coefficients of variation were developed assuming lognormal distributions for all variables. The earthquake levels for many of the seismically induced failure modes are so high as to be considered physically incredible. (author)

  19. Multivariate Formation Pressure Prediction with Seismic-derived Petrophysical Properties from Prestack AVO inversion and Poststack Seismic Motion Inversion

    Science.gov (United States)

    Yu, H.; Gu, H.

    2017-12-01

    A novel multivariate seismic formation pressure prediction methodology is presented, which incorporates high-resolution seismic velocity data from prestack AVO inversion, and petrophysical data (porosity and shale volume) derived from poststack seismic motion inversion. In contrast to traditional seismic formation prediction methods, the proposed methodology is based on a multivariate pressure prediction model and utilizes a trace-by-trace multivariate regression analysis on seismic-derived petrophysical properties to calibrate model parameters in order to make accurate predictions with higher resolution in both vertical and lateral directions. With prestack time migration velocity as initial velocity model, an AVO inversion was first applied to prestack dataset to obtain high-resolution seismic velocity with higher frequency that is to be used as the velocity input for seismic pressure prediction, and the density dataset to calculate accurate Overburden Pressure (OBP). Seismic Motion Inversion (SMI) is an inversion technique based on Markov Chain Monte Carlo simulation. Both structural variability and similarity of seismic waveform are used to incorporate well log data to characterize the variability of the property to be obtained. In this research, porosity and shale volume are first interpreted on well logs, and then combined with poststack seismic data using SMI to build porosity and shale volume datasets for seismic pressure prediction. A multivariate effective stress model is used to convert velocity, porosity and shale volume datasets to effective stress. After a thorough study of the regional stratigraphic and sedimentary characteristics, a regional normally compacted interval model is built, and then the coefficients in the multivariate prediction model are determined in a trace-by-trace multivariate regression analysis on the petrophysical data. The coefficients are used to convert velocity, porosity and shale volume datasets to effective stress and then

  20. Seismic design technology for Breeder Reactor structures. Volume 3: special topics in reactor structures

    International Nuclear Information System (INIS)

    Reddy, D.P.

    1983-04-01

    This volume is divided into six chapters: analysis techniques, equivalent damping values, probabilistic design factors, design verifications, equivalent response cycles for fatigue analysis, and seismic isolation

  1. Seismic acceleration map expected for Japanese central region

    International Nuclear Information System (INIS)

    Sugiyama, Takeshi; Maeda, Kouji; Ishii, Kiyoshi; Suzuki, Makoto.

    1990-01-01

    Since electric generating and supplying facilities scatter in large areas, the seismic acceleration map, which defines the anticipated earthquake ground motions in a broad region, is very useful information for the design of those facilities against large earthquakes. This paper describes the development of a seismic acceleration map for the Central Japanese Region by incorporating the analytical results based on historical earthquake records and active fault data using probability and statistics. In the region, there have occurred several destructive earthquakes; Anseitokai (1854, M = 8.4) and Tohnankai (1944, M = 7.9) earthquakes along the Nankai trough; Nohbi (1891, M = 8.0) and Fukui (1948, M = 7.1) earthquakes in inland ares. Some of the historical earthquake data were obtained by instrument last one hundred years, whereas others by literary descriptions for nearly 1,000 years. The active fault data, have been collected mainly from the surveys of fault topography and geology, and are considered to indicate the average seismic activity for the past million years. A proposed seismic acceleration map for the return period of 75 years, calculated on the free surface of base stratum, was estimated by the following way. The analytical result based on the historical earthquake records was adopted mainly, because the Japanese seismic design criteria have been developed based on them. The proposed seismic acceleration map was revised by including the result based on the active fault data for the areas, where historical earthquake records lack, and the result was smoothed to evaluate the final seismic acceleration map. (author)

  2. A performance goal-based seismic design philosophy for waste repository facilities

    International Nuclear Information System (INIS)

    Hossain, Q.A.

    1994-01-01

    A performance goal-based seismic design philosophy, compatible with DOE's present natural phenomena hazards mitigation and open-quotes graded approachclose quotes philosophy, has been proposed for high level nuclear waste repository facilities. The rationale, evolution, and the desirable features of this method have been described. Why and how the method should and can be applied to the design of a repository facility are also discussed

  3. Adaptive endpoint detection of seismic signal based on auto-correlated function

    International Nuclear Information System (INIS)

    Fan Wanchun; Shi Ren

    2001-01-01

    Based on the analysis of auto-correlation function, the notion of the distance between auto-correlation function was quoted, and the characterization of the noise and the signal with noise were discussed by using the distance. Then, the method of auto- adaptable endpoint detection of seismic signal based on auto-correlated similarity was summed up. The steps of implementation and determining of the thresholds were presented in detail. The experimental results that were compared with the methods based on artificial detecting show that this method has higher sensitivity even in a low signal with noise ratio circumstance

  4. Outline of the report on the seismic safety examination of nuclear facilities based on the 1995 Hyogoken-Nanbu earthquake (tentative translation) - September 1995

    International Nuclear Information System (INIS)

    2003-01-01

    From the standpoint of thoroughly confirming the seismic safety of nuclear facilities, Nuclear Safety Commission established an Examination Committee on the Seismic Safety of Nuclear Power Reactor Facilities (hereinafter called Seismic Safety Examination Committee) based on the 1995 Hyogoken-Nanbu Earthquake on January 19, 1995, two days after the occurrence of the earthquake, in order to examine the validity of related guidelines on the seismic design to be used for the safety examination. This report outlines the results of the examinations by the Seismic Safety Examination Committee: basic principle of examinations at the seismic safety examination committee, overview on the related guidelines of the seismic design, information and knowledge obtained on the 1995 Hyogoken-Nanbu earthquake, examination of validity of the guidelines based on various information of the Hyogoken-Nanbu earthquake. The Seismic Design Examination Committee surveyed the related guidelines on seismic design, selected the items to be examined, and examined on those items based on the knowledge obtained from the Hyogoken-Nanbu Earthquake. As a result, the Committee confirmed that the validity of the guidelines regulating the seismic design of nuclear facilities is not impaired even though on the basis of the Hyogoken-Nanbu Earthquake. However, the people related to the nuclear facilities may not be content with the above result, but continuously put efforts in doing the following matters to improve furthermore the reliability of seismic design of nuclear facilities by always reflecting the latest knowledge on the seismic design. 1) - The people related to nuclear facilities must seriously accept the fact that valuable knowledge could be obtained from the Hyogoken-Nanbu Earthquake, try to study and analyze the obtained data, and reflect the results of investigations, studies, and examinations conducted appropriately to the seismic design of nuclear facilities referring to the investigations

  5. Unsupervised seismic facies analysis with spatial constraints using regularized fuzzy c-means

    Science.gov (United States)

    Song, Chengyun; Liu, Zhining; Cai, Hanpeng; Wang, Yaojun; Li, Xingming; Hu, Guangmin

    2017-12-01

    Seismic facies analysis techniques combine classification algorithms and seismic attributes to generate a map that describes main reservoir heterogeneities. However, most of the current classification algorithms only view the seismic attributes as isolated data regardless of their spatial locations, and the resulting map is generally sensitive to noise. In this paper, a regularized fuzzy c-means (RegFCM) algorithm is used for unsupervised seismic facies analysis. Due to the regularized term of the RegFCM algorithm, the data whose adjacent locations belong to same classification will play a more important role in the iterative process than other data. Therefore, this method can reduce the effect of seismic data noise presented in discontinuous regions. The synthetic data with different signal/noise values are used to demonstrate the noise tolerance ability of the RegFCM algorithm. Meanwhile, the fuzzy factor, the neighbour window size and the regularized weight are tested using various values, to provide a reference of how to set these parameters. The new approach is also applied to a real seismic data set from the F3 block of the Netherlands. The results show improved spatial continuity, with clear facies boundaries and channel morphology, which reveals that the method is an effective seismic facies analysis tool.

  6. Seismic Ecology

    Science.gov (United States)

    Seleznev, V. S.; Soloviev, V. M.; Emanov, A. F.

    The paper is devoted to researches of influence of seismic actions for industrial and civil buildings and people. The seismic actions bring influence directly on the people (vibration actions, force shocks at earthquakes) or indirectly through various build- ings and the constructions and can be strong (be felt by people) and weak (be fixed by sensing devices). The great number of work is devoted to influence of violent seismic actions (first of all of earthquakes) on people and various constructions. This work is devoted to study weak, but long seismic actions on various buildings and people. There is a need to take into account seismic oscillations, acting on the territory, at construction of various buildings on urbanized territories. Essential influence, except for violent earthquakes, man-caused seismic actions: the explosions, seismic noise, emitted by plant facilities and moving transport, radiation from high-rise buildings and constructions under action of a wind, etc. can exert. Materials on increase of man- caused seismicity in a number of regions in Russia, which earlier were not seismic, are presented in the paper. Along with maps of seismic microzoning maps to be built indicating a variation of amplitude spectra of seismic noise within day, months, years. The presence of an information about amplitudes and frequencies of oscillations from possible earthquakes and man-caused oscillations in concrete regions allows carry- ing out soundly designing and construction of industrial and civil housing projects. The construction of buildings even in not seismically dangerous regions, which have one from resonance frequencies coincident on magnitude to frequency of oscillations, emitted in this place by man-caused objects, can end in failure of these buildings and heaviest consequences for the people. The practical examples of detail of engineering- seismological investigation of large industrial and civil housing projects of Siberia territory (hydro power

  7. EVALUATION ON THE SEISMIC RESPONSE CHARACTERISTICS OF A ROAD EMBANKMENT BASED ON THE MODERATE EARTHQUAKE OBSERVATION AND THE MICROTREMOR MEASUREMENT

    Science.gov (United States)

    Hata, Yoshiya; Ichii, Koji; Yamada, Masayuki; Tokida, Ken-Ichi; Takezawa, Koichiro; Shibao, Susumu; Mitsushita, Junji; Murata, Akira; Furukawa, Aiko; Koizumi, Keigo

    Accurate evaluation on the seismic response characteristics of a road embankment is very important for the rational seismic assessment. However, in a lot of previous studies, the seismic response characteristics of an embankment were evaluated based on the results of shaking table test, centrifuge model test and dynamic FEM analysis. In this study, the transfer function and the shear wave velocity of a road embankment were evaluated based on the in-situ records of moderate earthquake observation and microtremor measurement. Test results show the possibility that the shear wave velocity of an embankment can be estimated by the earthquake observation or the microtremor measurement and the dynamic linear FEM analysis.

  8. A new approach on seismic mortality estimations based on average population density

    Science.gov (United States)

    Zhu, Xiaoxin; Sun, Baiqing; Jin, Zhanyong

    2016-12-01

    This study examines a new methodology to predict the final seismic mortality from earthquakes in China. Most studies established the association between mortality estimation and seismic intensity without considering the population density. In China, however, the data are not always available, especially when it comes to the very urgent relief situation in the disaster. And the population density varies greatly from region to region. This motivates the development of empirical models that use historical death data to provide the path to analyze the death tolls for earthquakes. The present paper employs the average population density to predict the final death tolls in earthquakes using a case-based reasoning model from realistic perspective. To validate the forecasting results, historical data from 18 large-scale earthquakes occurred in China are used to estimate the seismic morality of each case. And a typical earthquake case occurred in the northwest of Sichuan Province is employed to demonstrate the estimation of final death toll. The strength of this paper is that it provides scientific methods with overall forecast errors lower than 20 %, and opens the door for conducting final death forecasts with a qualitative and quantitative approach. Limitations and future research are also analyzed and discussed in the conclusion.

  9. Improving fault image by determination of optimum seismic survey parameters using ray-based modeling

    Science.gov (United States)

    Saffarzadeh, Sadegh; Javaherian, Abdolrahim; Hasani, Hossein; Talebi, Mohammad Ali

    2018-06-01

    In complex structures such as faults, salt domes and reefs, specifying the survey parameters is more challenging and critical owing to the complicated wave field behavior involved in such structures. In the petroleum industry, detecting faults has become crucial for reservoir potential where faults can act as traps for hydrocarbon. In this regard, seismic survey modeling is employed to construct a model close to the real structure, and obtain very realistic synthetic seismic data. Seismic modeling software, the velocity model and parameters pre-determined by conventional methods enable a seismic survey designer to run a shot-by-shot virtual survey operation. A reliable velocity model of structures can be constructed by integrating the 2D seismic data, geological reports and the well information. The effects of various survey designs can be investigated by the analysis of illumination maps and flower plots. Also, seismic processing of the synthetic data output can describe the target image using different survey parameters. Therefore, seismic modeling is one of the most economical ways to establish and test the optimum acquisition parameters to obtain the best image when dealing with complex geological structures. The primary objective of this study is to design a proper 3D seismic survey orientation to achieve fault zone structures through ray-tracing seismic modeling. The results prove that a seismic survey designer can enhance the image of fault planes in a seismic section by utilizing the proposed modeling and processing approach.

  10. Comparison between seismic and domestic risk in moderate seismic hazard prone region: the Grenoble City (France test site

    Directory of Open Access Journals (Sweden)

    F. Dunand

    2012-02-01

    Full Text Available France has a moderate level of seismic activity, characterized by diffuse seismicity, sometimes experiencing earthquakes of a magnitude of more than 5 in the most active zones. In this seismicity context, Grenoble is a city of major economic and social importance. However, earthquakes being rare, public authorities and the decision makers are only vaguely committed to reducing seismic risk: return periods are long and local policy makers do not have much information available. Over the past 25 yr, a large number of studies have been conducted to improve our knowledge of seismic hazard in this region. One of the decision-making concerns of Grenoble's public authorities, as managers of a large number of public buildings, is to know not only the seismic-prone regions, the variability of seismic hazard due to site effects and the city's overall vulnerability, but also the level of seismic risk and exposure for the entire city, also compared to other natural or/and domestic hazards. Our seismic risk analysis uses a probabilistic approach for regional and local hazards and the vulnerability assessment of buildings. Its applicability to Grenoble offers the advantage of being based on knowledge acquired by previous projects conducted over the years. This paper aims to compare the level of seismic risk with that of other risks and to introduce the notion of risk acceptability in order to offer guidance in the management of seismic risk. This notion of acceptability, which is now part of seismic risk consideration for existing buildings in Switzerland, is relevant in moderately seismic-prone countries like France.

  11. Detection of Natural Fractures from Observed Surface Seismic Data Based on a Linear-Slip Model

    Science.gov (United States)

    Chen, Huaizhen; Zhang, Guangzhi

    2018-03-01

    Natural fractures play an important role in migration of hydrocarbon fluids. Based on a rock physics effective model, the linear-slip model, which defines fracture parameters (fracture compliances) for quantitatively characterizing the effects of fractures on rock total compliance, we propose a method to detect natural fractures from observed seismic data via inversion for the fracture compliances. We first derive an approximate PP-wave reflection coefficient in terms of fracture compliances. Using the approximate reflection coefficient, we derive azimuthal elastic impedance as a function of fracture compliances. An inversion method to estimate fracture compliances from seismic data is presented based on a Bayesian framework and azimuthal elastic impedance, which is implemented in a two-step procedure: a least-squares inversion for azimuthal elastic impedance and an iterative inversion for fracture compliances. We apply the inversion method to synthetic and real data to verify its stability and reasonability. Synthetic tests confirm that the method can make a stable estimation of fracture compliances in the case of seismic data containing a moderate signal-to-noise ratio for Gaussian noise, and the test on real data reveals that reasonable fracture compliances are obtained using the proposed method.

  12. Proceedings of the 25th Seismic Research Review -- Nuclear Explosion Monitoring: Building the Knowledge Base

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, Francesca C. [Editor; Mendius, E. Louise [Editor

    2003-09-23

    These proceedings contain papers prepared for the 25th Seismic Research Review -- Nuclear Explosion Monitoring: Building the Knowledge Base, held 23-25 September, 2003 in Tucson, Arizona. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  13. Proceedings of the 25th Seismic Research Review -- Nuclear Explosion Monitoring: Building the Knowledge Base

    International Nuclear Information System (INIS)

    Chavez, Francesca C.; Mendius, E. Louise

    2003-01-01

    These proceedings contain papers prepared for the 25th Seismic Research Review -- Nuclear Explosion Monitoring: Building the Knowledge Base, held 23-25 September, 2003 in Tucson, Arizona. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  14. A New Seismic Hazard Model for Mainland China

    Science.gov (United States)

    Rong, Y.; Xu, X.; Chen, G.; Cheng, J.; Magistrale, H.; Shen, Z. K.

    2017-12-01

    We are developing a new seismic hazard model for Mainland China by integrating historical earthquake catalogs, geological faults, geodetic GPS data, and geology maps. To build the model, we construct an Mw-based homogeneous historical earthquake catalog spanning from 780 B.C. to present, create fault models from active fault data, and derive a strain rate model based on the most complete GPS measurements and a new strain derivation algorithm. We divide China and the surrounding regions into about 20 large seismic source zones. For each zone, a tapered Gutenberg-Richter (TGR) magnitude-frequency distribution is used to model the seismic activity rates. The a- and b-values of the TGR distribution are calculated using observed earthquake data, while the corner magnitude is constrained independently using the seismic moment rate inferred from the geodetically-based strain rate model. Small and medium sized earthquakes are distributed within the source zones following the location and magnitude patterns of historical earthquakes. Some of the larger earthquakes are distributed onto active faults, based on their geological characteristics such as slip rate, fault length, down-dip width, and various paleoseismic data. The remaining larger earthquakes are then placed into the background. A new set of magnitude-rupture scaling relationships is developed based on earthquake data from China and vicinity. We evaluate and select appropriate ground motion prediction equations by comparing them with observed ground motion data and performing residual analysis. To implement the modeling workflow, we develop a tool that builds upon the functionalities of GEM's Hazard Modeler's Toolkit. The GEM OpenQuake software is used to calculate seismic hazard at various ground motion periods and various return periods. To account for site amplification, we construct a site condition map based on geology. The resulting new seismic hazard maps can be used for seismic risk analysis and management.

  15. Semi-active control of magnetorheological elastomer base isolation system utilising learning-based inverse model

    Science.gov (United States)

    Gu, Xiaoyu; Yu, Yang; Li, Jianchun; Li, Yancheng

    2017-10-01

    Magnetorheological elastomer (MRE) base isolations have attracted considerable attention over the last two decades thanks to its self-adaptability and high-authority controllability in semi-active control realm. Due to the inherent nonlinearity and hysteresis of the devices, it is challenging to obtain a reasonably complicated mathematical model to describe the inverse dynamics of MRE base isolators and hence to realise control synthesis of the MRE base isolation system. Two aims have been achieved in this paper: i) development of an inverse model for MRE base isolator based on optimal general regression neural network (GRNN); ii) numerical and experimental validation of a real-time semi-active controlled MRE base isolation system utilising LQR controller and GRNN inverse model. The superiority of GRNN inverse model lays in fewer input variables requirement, faster training process and prompt calculation response, which makes it suitable for online training and real-time control. The control system is integrated with a three-storey shear building model and control performance of the MRE base isolation system is compared with bare building, passive-on isolation system and passive-off isolation system. Testing results show that the proposed GRNN inverse model is able to reproduce desired control force accurately and the MRE base isolation system can effectively suppress the structural responses when compared to the passive isolation system.

  16. the Preliminary Research Based on Seismic Signals Generated by Hutubi Transmitting Seismic Station with One Large-volume Airgun Array

    Science.gov (United States)

    Wang, Q.; Su, J.; Wei, Y.; Zhang, W.; Wang, H.; Wang, B.; Ji, Z.

    2017-12-01

    For studying the subsurface structure and its subtle changes, we built the Hutubi transmitting seismic station with one large-volume airgun array at one artificial water pool in the northern segment of Tianshan mountain, where earthquakes occurred frequently. The airgun array consists of six airguns with every airgun capacity of 2000in3, and the artificial water pool with the top diameter of 100m, bottom diameter of 20m and the depth of 18m.We started the regular excitation experiment with the large-volume airgun source every week since June, 2013. Using seismic signals geneated by the Hutubi airgun source, we made the preliminary research on the airgun source, waveform characteristics and the subsurface velocity changes in the northern Tiansh mountain. The results are as follows: The seismic signal exited by the airgun source is characteristic of low-frequency ,and the dominant frequency is in the range of 2 6Hz. The Hutubi transmitting seismic station can continuously generate long-distance detectable and highly repeatable signals, and the correlation coefficient of sigals is greater than 0.95; and the longest propagation distance arrives to 380km, in addition, the 5000-shot stacked sigal using the phase weighted stack technique can be identified in the station, which is about 1300km from the Hutubi transmitting seismic station. Hutubi large-volume airgun source is fitted to detect and monitor the regional-scale subsurface stress state. Applying correlation test method, we measured weak subsurface velocity changes in the northern Tianshan mountain, and found that the several stations, which are within 150km from the the Hutubi transmitting seismic station, appeared 0.1 0.2% relative velocity changes before the Hutubi MS6.2 earthquake on Dec.8, 2016.

  17. Seismic refraction survey of the ANS preferred site

    Energy Technology Data Exchange (ETDEWEB)

    Davis, R.K. (Automated Sciences Group, Inc., Oak Ridge, TN (United States)); Hopkins, R.A. (Marrich, Inc., Knoxville, TN (United States)); Doll, W.E. (Oak Ridge National Lab., TN (United States))

    1992-02-01

    Between September 19, 1991 and October 8, 1991 personnel from Martin Marietta Energy Systems, Inc. (Energy Systems), Automated Sciences Group, Inc., and Marrich, Inc. performed a seismic refraction survey at the Advanced Neutron Source (ANS) preferred site. The purpose of this survey was to provide estimates of top-of-rock topography, based on seismic velocities, and to delineate variations in rock and soil velocities. Forty-four seismic refraction spreads were shot to determine top-of-rock depths at 42 locations. Nine of the seismic spreads were shot with long offsets to provide 216 top-of-rock depths for 4 seismic refraction profiles. The refraction spread locations were based on the grid for the ANS Phase I drilling program. Interpretation of the seismic refraction data supports the assumption that the top-of-rock surface generally follows the local topography. The shallow top-of-rock interface interpreted from the seismic refraction data is also supported by limited drill information at the site. Some zones of anomalous data are present that could be the result of locally variable weathering, a localized variation in shale content, or depth to top-of-rock greater than the site norm.

  18. Seismic-Scale Rock Physics of Methane Hydrate

    Energy Technology Data Exchange (ETDEWEB)

    Amos Nur

    2009-01-08

    We quantify natural methane hydrate reservoirs by generating synthetic seismic traces and comparing them to real seismic data: if the synthetic matches the observed data, then the reservoir properties and conditions used in synthetic modeling might be the same as the actual, in-situ reservoir conditions. This approach is model-based: it uses rock physics equations that link the porosity and mineralogy of the host sediment, pressure, and hydrate saturation, and the resulting elastic-wave velocity and density. One result of such seismic forward modeling is a catalogue of seismic reflections of methane hydrate which can serve as a field guide to hydrate identification from real seismic data. We verify this approach using field data from known hydrate deposits.

  19. A new seismic station in Romania the Bucovina seismic array

    International Nuclear Information System (INIS)

    Grigore, Adrian; Grecu, Bogdan; Ionescu, Constantin; Ghica, Daniela; Popa, Mihaela; Rizescu, Mihaela

    2002-01-01

    Recently, a new seismic monitoring station, the Bucovina Seismic Array, has been established in the northern part of Romania, in a joint effort of the Air Force Technical Applications Center, USA, and the National Institute for Earth Physics, Romania. The array consists of 10 seismic sensors (9 short-period and one broad band) located in boreholes and distributed in a 5 x 5 km area. On July 24, 2002 the official Opening Ceremony of Bucovina Seismic Array took place in the area near the city of Campulung Moldovenesc in the presence of Romanian Prime Minister, Adrian Nastase. Starting with this date, the new seismic monitoring system became fully operational by continuous recording and transmitting data in real-time to the National Data Center of Romania, in Bucharest and to the National Data Center of USA, in Florida. Bucovina Seismic Array, added to the present Seismic Network, will provide much better seismic monitoring coverage of Romania's territory, on-scale recording for weak-to-strong events, and will contribute to advanced seismological studies on seismic hazard and risk, local effects and microzonation, seismic source physics, Earth structure. (authors)

  20. Seismic considerations in sealing a potential high-level radioactive waste repository

    International Nuclear Information System (INIS)

    Fernandez, J.A.; Richardson, A.M.; Lin, Ming

    1993-01-01

    The potential repository system is intended to isolate high-level radioactive waste at Yucca Mountain according the performance objective--10 CFR 60.112. One subsystem that may contribute to achieving this objective is the sealing subsystem. This subsystem is comprised of sealing components in the shafts, ramps, underground network of drifts, and the exploratory boreholes. Sealing components can be rigid, as in the case of a shaft seal, or can be more compressible, as in the case of drift fill comprised of mined rockfill. This paper presents the preliminary seismic response of discrete sealing components in welded and nonwelded tuff. Special consideration is given to evaluating the stress in the seal, and the behavior of the interface between the seal and the rock. The seismic responses are computed using both static and dynamic analyses. Also presented is an evaluation of the maximum seismic response encountered by a drift seal with respect to the angle of incidence of the seismic wave. Mitigation strategies and seismic design considerations are proposed which can potentially enhance the overall response of the sealing component and subsequently, the performance of the overall repository system

  1. Indication to distinguish the burst region of coal gas from seismic data

    Energy Technology Data Exchange (ETDEWEB)

    Jian-yuan Cheng; Hong-wei Tang; Lin Xu; Yan-fang Li [China Coal Research Institute, Xi' an (China). Xi' an Research Institute

    2009-09-15

    The velocity of an over-burst coal seam is about 1/3 compared to a normal coal seam based on laboratory test results. This can be considered as a basis to confirm the area of coal and gas burst by seismic exploration technique. Similarly, the simulation result of the theoretical seismic model shows that there is obvious distinction between over-burst coal and normal coal based on the coal reflection's travel-time, energy and frequency. The results from the actual seismic data acquired in the coal and gas over-burst cases is consistent with that of the laboratory and seismic modeling; that is, in the coal and gas burst region, seismic reflection travel time is delayed, seismic amplitude is weakened and seismic frequency is reduced. Therefore, it can be concluded that seismic exploration technique is promising for use in distinguishing coal and gas over-burst regions based on the variation of seismic reflection travel time, amplitude and frequency. 7 refs., 6 figs.

  2. Evaluation of seismic characteristics and structural integrity for the cabinet of HANARO seismic monitoring analysis system

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Jeong Soo; Yoon, Doo Byung

    2003-06-01

    The HANARO SMAS(Seismic Monitoring Analysis System) is classified as Non-Nuclear Safety(NNS), seismic category I, and quality class T. It is required that this system can perform required functions, which are to preserve its structural integrity during and after an OBE or SSE. In this work, the structural integrity and seismic characteristics of the cabinet of the newly developed SMAS have been estimated. The most parts of the cabinet are identically designed with those of Yonggwhang and Gori Nuclear Power Plants(NPPs), unit 1 that successfully completed the required seismic qualification tests. The structure of the cabinet of the SMAS is manufactured by the manufacturer of the cabinet of Yonggwhang and Gori NPPs. To evaluate the seismic characteristics of the SMAS, the RRS(Required Response Spectra) of the newly developed cabinet are compared with those of Yonggwhang and Gori NPPs, unit 1. In addition, natural frequencies of the cabinet of HANARO, Yonggwhang, and Gori NPPs were measured for the comparison of the seismic characteristics of the installed cabinets. In case of HANARO, the bottom of the cabinet is welded to the base plate. The base plate is fixed to the concrete foundation by using anchor bolts. For the evaluation of the structural integrity of the welding parts and the anchor bolts, the maximum stresses and forces of the welding parts and the anchor bolts due to seismic loading are estimated. The analysis results show that maximum stresses and forces are less than the allowable limits. This new SMAS is operating at HANARO instrument room to acquire and analyze the signal of earthquake.

  3. Integrated system for seismic evaluations

    International Nuclear Information System (INIS)

    Xu, J.; Philippacopoulos, A.J.; Miller, C.A.; Costantino, C.J.; Graves, H.

    1989-01-01

    This paper describes the various features of the Seismic Module of the CARES system (Computer Analysis for Rapid Evaluation of Structures). This system was developed by Brookhaven National Laboratory (BNL) for the US Nuclear Regulatory Commission to perform rapid evaluations of structural behavior and capability of nuclear power plant facilities. The CARES is structured in a modular format. Each module performs a specific type of analysis i.e., static or dynamic, linear or nonlinear, etc. This paper describes the features of the Seismic Module in particular. The development of the Seismic Module of the CARES system is based on an approach which incorporates all major aspects of seismic analysis currently employed by the industry into an integrated system that allows for carrying out interactively computations of structural response to seismic motions. The code operates on a PC computer system and has multi-graphics capabilities. It has been designed with user friendly features and it allows for interactive manipulation of various analysis phases during the seismic design process. The capabilities of the seismic module include (a) generation of artificial time histories compatible with given design ground response spectra, (b) development of Power Spectral Density (PSD) functions associated with the seismic input, (c) deconvolution analysis using vertically propagating shear waves through a given soil profile, and (d) development of in-structure response spectra or corresponding PSD's. It should be pointed out that these types of analyses can also be performed individually by using available computer codes such as FLUSH, SAP, etc. The uniqueness of the CARES, however, lies on its ability to perform all required phases of the seismic analysis in an integrated manner. 5 refs., 6 figs

  4. Study of seismic design bases and site conditions for nuclear power plants

    International Nuclear Information System (INIS)

    1980-04-01

    This report presents the results of an investigation of four topics pertinent to the seismic design of nuclear power plants: Design accelerations by regions of the continental United States; review and compilation of design-basis seismic levels and soil conditions for existing nuclear power plants; regional distribution of shear wave velocity of foundation materials at nuclear power plant sites; and technical review of surface-founded seismic analysis versus embedded approaches

  5. Study of seismic design bases and site conditions for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    1980-04-01

    This report presents the results of an investigation of four topics pertinent to the seismic design of nuclear power plants: Design accelerations by regions of the continental United States; review and compilation of design-basis seismic levels and soil conditions for existing nuclear power plants; regional distribution of shear wave velocity of foundation materials at nuclear power plant sites; and technical review of surface-founded seismic analysis versus embedded approaches.

  6. Shear-wave velocity-based probabilistic and deterministic assessment of seismic soil liquefaction potential

    Science.gov (United States)

    Kayen, R.; Moss, R.E.S.; Thompson, E.M.; Seed, R.B.; Cetin, K.O.; Der Kiureghian, A.; Tanaka, Y.; Tokimatsu, K.

    2013-01-01

    Shear-wave velocity (Vs) offers a means to determine the seismic resistance of soil to liquefaction by a fundamental soil property. This paper presents the results of an 11-year international project to gather new Vs site data and develop probabilistic correlations for seismic soil liquefaction occurrence. Toward that objective, shear-wave velocity test sites were identified, and measurements made for 301 new liquefaction field case histories in China, Japan, Taiwan, Greece, and the United States over a decade. The majority of these new case histories reoccupy those previously investigated by penetration testing. These new data are combined with previously published case histories to build a global catalog of 422 case histories of Vs liquefaction performance. Bayesian regression and structural reliability methods facilitate a probabilistic treatment of the Vs catalog for performance-based engineering applications. Where possible, uncertainties of the variables comprising both the seismic demand and the soil capacity were estimated and included in the analysis, resulting in greatly reduced overall model uncertainty relative to previous studies. The presented data set and probabilistic analysis also help resolve the ancillary issues of adjustment for soil fines content and magnitude scaling factors.

  7. Seismic hazard analysis of Sinop province, Turkey using ...

    Indian Academy of Sciences (India)

    1997-01-11

    Jan 11, 1997 ... 2008 in the Sinop province of Turkey this study presents a seismic hazard analysis based on ... Considering the development and improvement ... It is one of the most populated cities in the coun- ... done as reliably as the seismic hazard of region per- .... Seismic safety work of underground networks was.

  8. Input for seismic hazard assessment using Vrancea seismic source region

    International Nuclear Information System (INIS)

    Ivan, Iren-Adelina; Enescu, B.D.; Pantea, A.

    1998-01-01

    We use an extended and combined data base including historical and modern, qualitative and quantitative data, i.e., more than 25 events during the period 1790 - 1990 with epicentral/maximum intensities ranging from X to V degree (MSK scale), the variation interval of isoseismal curves ranging from IX th to III rd degree. The data set was analysed using both the sum phasor techniques of Ridelek and Sacks (1984) for different magnitudes and depth intervals and the Stepp's method. For the assessment of seismic hazard we need a pattern of seismic source regions including an estimation for the maximum expected magnitude and the return period for the studied regions. Another necessary step in seismic hazard assessment is to develop attenuation relationships specific to a seismogenic zone, particularly to sub-crustal earthquakes of Vrancea region. The conceptual frame involves the use of appropriate decay models and consideration of the randomness in the attenuation, taking into account the azimuthal variation of the isoseist shapes. (authors)

  9. The Virtual Seismic Atlas Project: sharing the interpretation of seismic data

    Science.gov (United States)

    Butler, R.; Mortimer, E.; McCaffrey, B.; Stuart, G.; Sizer, M.; Clayton, S.

    2007-12-01

    Through the activities of academic research programs, national institutions and corporations, especially oil and gas companies, there is a substantial volume of seismic reflection data. Although the majority is proprietary and confidential, there are significant volumes of data that are potentially within the public domain and available for research. Yet the community is poorly connected to these data and consequently geological and other research using seismic reflection data is limited to very few groups of researchers. This is about to change. The Virtual Seismic Atlas (VSA) is generating an independent, free-to-use, community based internet resource that captures and shares the geological interpretation of seismic data globally. Images and associated documents are explicitly indexed using not only existing survey and geographical data but also on the geology they portray. By using "Guided Navigation" to search, discover and retrieve images, users are exposed to arrays of geological analogues that provide novel insights and opportunities for research and education. The VSA goes live, with evolving content and functionality, through 2008. There are opportunities for designed integration with other global data programs in the earth sciences.

  10. GUI program to compute probabilistic seismic hazard analysis

    International Nuclear Information System (INIS)

    Shin, Jin Soo; Chi, H. C.; Cho, J. C.; Park, J. H.; Kim, K. G.; Im, I. S.

    2006-12-01

    The development of program to compute probabilistic seismic hazard is completed based on Graphic User Interface(GUI). The main program consists of three part - the data input processes, probabilistic seismic hazard analysis and result output processes. The probabilistic seismic hazard analysis needs various input data which represent attenuation formulae, seismic zoning map, and earthquake event catalog. The input procedure of previous programs based on text interface take a much time to prepare the data. The data cannot be checked directly on screen to prevent input erroneously in existing methods. The new program simplifies the input process and enable to check the data graphically in order to minimize the artificial error within limits of the possibility

  11. Seismic resistance of WWER equipment (systematization and generalization)

    International Nuclear Information System (INIS)

    Kaznovski, S.; Chechenov, H.

    1999-01-01

    Within the scope of the contract with IAEA, calculational and experimental investigations of equipment seismic resistance were carried out. Systematic seismic inspection was conducted for 21 WWER type reactors in Armenia, Bulgaria, Russia, Slovakia and Ukraine. On the base of generalisation of extensive real data accumulated during inspection of equipment seismic resistance at different WWER-type NPPs the classification of seismic instability reasons and working out of generalised recommendations were carried out. It gives the possibility to specialists in many cases to expose the seismic insufficiency of equipment and to choose the suitable measures without laborious experimental investigations, tests, and calculations

  12. The Seismic Analyzer: Interpreting and Illustrating 2D Seismic Data

    OpenAIRE

    Patel, Daniel; Giertsen, Christopher; Thurmond, John; Gjelberg, John; Gröller, Eduard

    2008-01-01

    We present a toolbox for quickly interpreting and illustrating 2D slices of seismic volumetric reflection data. Searching for oil and gas involves creating a structural overview of seismic reflection data to identify hydrocarbon reservoirs. We improve the search of seismic structures by precalculating the horizon structures of the seismic data prior to interpretation. We improve the annotation of seismic structures by applying novel illustrative rendering algorithms tailored to seism...

  13. Seismic risk evaluation within the technology neutral framework

    International Nuclear Information System (INIS)

    Johnson, B.C.; Apostolakis, G.E.

    2012-01-01

    Highlights: ► We examine seismic risk within the Technology Neutral Framework (TNF). ► We find that the risk goals in the TNF to be stringent compared with current goals. ► We note that the current fleet reactors would not meet the TNF goals. ► We recommend that an initiating frequency cutoff of 10 −5 per year be use in evaluating seismic risk. - Abstract: The NRC Office of Nuclear Regulatory Research has proposed a risk-informed and performance-based licensing process that is referred to as the technology neutral framework (TNF). In the TNF, licensing basis events (LBEs), determined using probabilistic risk assessment methods, take the place of design basis accidents. These LBEs are constructed by grouping together accident sequences with similar phenomenology. All event sequences with a mean frequency greater than 10 −7 per reactor year are to be considered as part of the licensing basis. Imposing such a limit would require that earthquakes with a mean return period of ten million years be considered as part of the licensing basis. It is difficult to get seismic hazards (i.e., ground accelerations) from expert seismologists at such low frequencies. This is because it is difficult or impossible to confidently say what the seismic hazard might be at these extremely low frequencies. A linear extrapolation in log-log space of hazard curves at the Clinton site down to 10 −7 per year leads to a peak ground acceleration of about 4.5 g. A Weibull distribution is also used to fit the curve leading to a peak ground acceleration of about 2.6 g. These extrapolations demonstrate the extreme nature of rare earthquakes. Even when seismic isolation is implemented, the TNF goal is not met. The problem appears to be that there is no limit on initiating event frequency in the TNF. Demonstrating that a design meets the goals of the TNF would be nearly impossible. A frequency limit for earthquakes could be imposed at a frequency of about 10 −5 per year to focus on

  14. Promoting Diversity in Undergraduate Research in Robotics-Based Seismic

    Science.gov (United States)

    Gifford, C. M.; Arthur, C. L.; Carmichael, B. L.; Webber, G. K.; Agah, A.

    2006-12-01

    The motivation for this research was to investigate forming evenly-spaced grid patterns with a team of mobile robots for future use in seismic imaging in polar environments. A team of robots was incrementally designed and simulated by incorporating sensors and altering each robot's controller. Challenges, design issues, and efficiency were also addressed. This research project incorporated the efforts of two undergraduate REU students from Elizabeth City State University (ECSU) in North Carolina, and the research staff at the Center for Remote Sensing of Ice Sheets (CReSIS) at the University of Kansas. ECSU is a historically black university. Mentoring these two minority students in scientific research, seismic, robotics, and simulation will hopefully encourage them to pursue graduate degrees in science-related or engineering fields. The goals for this 10-week internship during summer 2006 were to educate the students in the fields of seismology, robotics, and virtual prototyping and simulation. Incrementally designing a robot platform for future enhancement and evaluation was central to this research, and involved simulation of several robots working together to change seismic grid shape and spacing. This process gave these undergraduate students experience and knowledge in an actual research project for a real-world application. The two undergraduate students gained valuable research experience and advanced their knowledge of seismic imaging, robotics, sensors, and simulation. They learned that seismic sensors can be used in an array to gather 2D and 3D images of the subsurface. They also learned that robotics can support dangerous or difficult human activities, such as those in a harsh polar environment, by increasing automation, robustness, and precision. Simulating robot designs also gave them experience in programming behaviors for mobile robots. Thus far, one academic paper has resulted from their research. This paper received third place at the 2006

  15. Recent progress on the R and D program of the seismic attenuation system (SAS) proposed for the advanced gravitational wave detector, LIGO II

    International Nuclear Information System (INIS)

    Bertolini, A.; Cella, G.; Chenyang, W.; Salvo, R. de; Kovalik, J.; Marka, S.; Sannibale, V.; Takamori, A.; Tariq, H.; Viboud, N.

    2001-01-01

    High-performance Seismic Isolation Systems in gravitational wave interferometers are needed not only to increase the sensitivity of the detectors but also to guarantee long periods of stable operation. SAS is essentially a system which produces the required in-band seismic isolation by use of passive mechanical filters and actively reduces the out of band seismic noise using inertial damping. The passive isolation is achieved for all the 6 degrees of freedom, with an Inverted Pendulum and a chain of single wire pendula whose masses are the Geometrical Anti-Spring Filters (GASF). The active control is applied to reduce mainly the noise below 4 Hz and to damp the resonances of the chain acting from the inverted pendulum table. Here we present a brief overview of SAS and recent results achieved from the full scale SAS prototype

  16. Towards Improved Considerations of Risk in Seismic Design (Plinius Medal Lecture)

    Science.gov (United States)

    Sullivan, T. J.

    2012-04-01

    The aftermath of recent earthquakes is a reminder that seismic risk is a very relevant issue for our communities. Implicit within the seismic design standards currently in place around the world is that minimum acceptable levels of seismic risk will be ensured through design in accordance with the codes. All the same, none of the design standards specify what the minimum acceptable level of seismic risk actually is. Instead, a series of deterministic limit states are set which engineers then demonstrate are satisfied for their structure, typically through the use of elastic dynamic analyses adjusted to account for non-linear response using a set of empirical correction factors. From the early nineties the seismic engineering community has begun to recognise numerous fundamental shortcomings with such seismic design procedures in modern codes. Deficiencies include the use of elastic dynamic analysis for the prediction of inelastic force distributions, the assignment of uniform behaviour factors for structural typologies irrespective of the structural proportions and expected deformation demands, and the assumption that hysteretic properties of a structure do not affect the seismic displacement demands, amongst other things. In light of this a number of possibilities have emerged for improved control of risk through seismic design, with several innovative displacement-based seismic design methods now well developed. For a specific seismic design intensity, such methods provide a more rational means of controlling the response of a structure to satisfy performance limit states. While the development of such methodologies does mark a significant step forward for the control of seismic risk, they do not, on their own, identify the seismic risk of a newly designed structure. In the U.S. a rather elaborate performance-based earthquake engineering (PBEE) framework is under development, with the aim of providing seismic loss estimates for new buildings. The PBEE framework

  17. A frozen Gaussian approximation-based multi-level particle swarm optimization for seismic inversion

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jinglai, E-mail: jinglaili@sjtu.edu.cn [Institute of Natural Sciences, Department of Mathematics, and MOE Key Laboratory of Scientific and Engineering Computing, Shanghai Jiao Tong University, Shanghai 200240 (China); Lin, Guang, E-mail: lin491@purdue.edu [Department of Mathematics, School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907 (United States); Computational Sciences and Mathematics Division, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Yang, Xu, E-mail: xuyang@math.ucsb.edu [Department of Mathematics, University of California, Santa Barbara, CA 93106 (United States)

    2015-09-01

    In this paper, we propose a frozen Gaussian approximation (FGA)-based multi-level particle swarm optimization (MLPSO) method for seismic inversion of high-frequency wave data. The method addresses two challenges in it: First, the optimization problem is highly non-convex, which makes hard for gradient-based methods to reach global minima. This is tackled by MLPSO which can escape from undesired local minima. Second, the character of high-frequency of seismic waves requires a large number of grid points in direct computational methods, and thus renders an extremely high computational demand on the simulation of each sample in MLPSO. We overcome this difficulty by three steps: First, we use FGA to compute high-frequency wave propagation based on asymptotic analysis on phase plane; Then we design a constrained full waveform inversion problem to prevent the optimization search getting into regions of velocity where FGA is not accurate; Last, we solve the constrained optimization problem by MLPSO that employs FGA solvers with different fidelity. The performance of the proposed method is demonstrated by a two-dimensional full-waveform inversion example of the smoothed Marmousi model.

  18. PARAMETERS OF KAMCHATKA SEISMICITY IN 2008

    Directory of Open Access Journals (Sweden)

    Vadim A. Saltykov

    2010-01-01

    Full Text Available The paper describes seismicity of Kamchatka for the period of 2008 and presents 2D distribution of background seismicity parameters calculated from data published in the Regional Catalogue of Kamchatka Earthquakes. Parameters under study are total released seismic energy, seismic activity A10, slope of recurrence graph γ, parameters of RTL, ΔS and Z-function methods, and clustering of earthquakes. Estimations of seismicity are obtained for a region bordered by latitude 50.5–56.5N, longitude 156E–167E, with depths to 300 km. Earthquakes of energy classes not less than 8.5 as per the Fedotov’s classification are considered. The total seismic energy released in 2008 is estimated. According to a function of annual seismic energy distribution, an amount of seismic energy released in 2008 was close to the median level (Fig. 1. Over 2/3 of the total amount of seismic energy released in 2008 resulted from three largest earthquakes (МW ≥ 5.9. About 5 percent of the total number of seismic events are comprised of grouped earthquakes, i.e. aftershocks and swarms. A schematic map of the largest earthquakes (МW ≥ 5.9 and grouped seismic events which occurred in 2008 is given in Fig. 2; their parameters are listed in Table 1. Grouped earthquakes are excluded from the catalogue. A map showing epicenters of independent earthquakes is given in Fig. 3. The slope of recurrence graph γ and seismic activity A10 is based on the Gutenberg-Richter law stating the fundamental property of seismic process. The recurrence graph slope is calculated from continuous exponential distribution of earthquakes by energy classes. Using γ is conditioned by observations that in some cases the slope of the recurrence graph decreases prior to a large earthquake. Activity A10 is calculated from the number of earthquakes N and recurrence graph slope γ. Average slopes of recurrence graph γ and seismic activity A10 for the area under study in 2008 are calculated; our

  19. Horizontal Acoustic Barriers for Protection from Seismic Waves

    Directory of Open Access Journals (Sweden)

    Sergey V. Kuznetsov

    2011-01-01

    Full Text Available The basic idea of a seismic barrier is to protect an area occupied by a building or a group of buildings from seismic waves. Depending on nature of seismic waves that are most probable in a specific region, different kinds of seismic barriers can be suggested. Herein, we consider a kind of a seismic barrier that represents a relatively thin surface layer that prevents surface seismic waves from propagating. The ideas for these barriers are based on one Chadwick's result concerning nonpropagation condition for Rayleigh waves in a clamped half-space, and Love's theorem that describes condition of nonexistence for Love waves. The numerical simulations reveal that to be effective the length of the horizontal barriers should be comparable to the typical wavelength.

  20. Seismic behavior of a low-rise horizontal cylindrical tank

    Science.gov (United States)

    Fiore, Alessandra; Rago, Carlo; Vanzi, Ivo; Greco, Rita; Briseghella, Bruno

    2018-05-01

    Cylindrical storage tanks are widely used for various types of liquids, including hazardous contents, thus requiring suitable and careful design for seismic actions. The study herein presented deals with the dynamic analysis of a ground-based horizontal cylindrical tank containing butane and with its safety verification. The analyses are based on a detailed finite element (FE) model; a simplified one-degree-of-freedom idealization is also set up and used for verification of the FE results. Particular attention is paid to sloshing and asynchronous seismic input effects. Sloshing effects are investigated according to the current literature state of the art. An efficient methodology based on an "impulsive-convective" decomposition of the container-fluid motion is adopted for the calculation of the seismic force. The effects of asynchronous ground motion are studied by suitable pseudo-static analyses. Comparison between seismic action effects, obtained with and without consideration of sloshing and asynchronous seismic input, shows a rather important influence of these conditions on the final results.

  1. Improving Station Performance by Building Isolation Walls in the Tunnel

    Science.gov (United States)

    Jia, Yan; Horn, Nikolaus; Leohardt, Roman

    2014-05-01

    Conrad Observatory is situated far away from roads and industrial areas on the Trafelberg in Lower Austria. At the end of the seismic tunnel, the main seismic instrument of the Observatory with a station code CONA is located. This station is one of the most important seismic stations in the Austrian Seismic Network (network code OE). The seismic observatory consists of a 145m long gallery and an underground laboratory building with several working areas. About 25 meters away from the station CONA, six temporary seismic stations were implemented for research purposes. Two of them were installed with the same equipment as CONA, while the remaining four stations were set up with digitizers having lower noise and higher resolution (Q330HR) and sensors with the same type (STS-2). In order to prevent possible disturbances by air pressure and temperature fluctuation, three walls were built inside of the tunnel. The first wall is located ca 63 meters from the tunnel entrance, while a set of double walls with a distance of 1.5 meters is placed about 53 meters from the first isolation wall but between the station CONA and the six temporary stations. To assess impact of the isolation walls on noise reduction and detection performance, investigations are conducted in two steps. The first study is carried out by comparing the noise level and detection performance between the station CONA behind the double walls and the stations in front of the double walls for verifying the noise isolation by the double walls. To evaluate the effect of the single wall, station noise level and detection performance were studied by comparing the results before and after the installation of the wall. Results and discussions will be presented. Additional experiment is conducted by filling insulation material inside of the aluminium boxes of the sensors (above and around the sensors). This should help us to determine an optimal insulation of the sensors with respect to pressure and temperature

  2. Nonlinear seismic analysis of a large sodium pump

    International Nuclear Information System (INIS)

    Huang, S.N.

    1985-01-01

    The bearings and seismic bumpers used in a large sodium pump of a typical breeder reactor plant may need to be characterized by nonlinear springs and gaps. Then, nonlinear seismic analysis utilizing the time-history method is an effective way to predict the pump behaviors during seismic events, especially at those bearing and seismic bumper areas. In this study, synthesized time histories were developed based on specified seismic response spectra. A nonlinear seismic analysis was then conducted and results were compared with those obtained by linear seismic analysis using the response spectrum method. In contrast to some previous nonlinear analysis trends, the bearing impact forces predicted by nonlinear analysis were higher than those obtained by the response spectrum method. This might be due to the larger gaps and stiffer bearing supports used in this specific pump. However, at locations distant from the impact source, the nonlinear seismic analysis has predicted slightly less responses than those obtained by linear seismic analysis. The seismically induced bearing impact forces were used to study the friction induced thermal stresses on the hydrostatic bearing and to predict the coastdown time of the pump. Results and discussions are presented

  3. Nonlinear seismic analysis of a large sodium pump

    International Nuclear Information System (INIS)

    Huang, S.N.

    1985-01-01

    The bearings and seismic bumpers used in a large sodium pump of a typical breeder reactor plant may need to be characterized by nonlinear springs and gaps. Then, nonlinear seismic analysis utilizing the time-history method is an effective way to predict the pump behaviors during seismic events - especially at those bearing and seismic bumper areas. In this study, synthesized time histories were developed based on specified seismic response spectra. A nonlinear seismic analysis was then conducted and results were compared with those obtained by linear seismic analysis using the response spectrum method. In contrast to some previous nonlinear analysis trends, the bearing impact forces predicted by nonlinear analysis were higher than those obtained by the response spectrum method. This might be due to the larger gaps and stiffer bearing supports used in this specific pump. However, at locations distant from the impact source, the nonlinear seismic analysis has predicted slightly less responses than those obtained by linear seismic analysis. The seismically induced bearing impact forces were used to study the friction induced thermal stresses on the hydrostatic bearing and to predict the coastdown time of the pump. Results and discussions are presented

  4. Criteria for the PNE seismic network

    International Nuclear Information System (INIS)

    Pruvost, N.L.

    1978-01-01

    A 1976 treaty between the United States and the Soviet Union permits a local seismic network to be deployed at the site of a peaceful nuclear explosion to monitor the event. Criteria for the design and selection of the data-acquisition equipment for such a network are provided. Constraints imposed by the protocol of the treaty, the environment, and the expected properties of seismic signals (based on experiences at the Nevada Test Site) are discussed. Conclusions are drawn about the desired operating mode. Criteria for a general seismic instrumentation system are described

  5. Seismic Microzonation for Refinement of Seismic Load Parameters

    Energy Technology Data Exchange (ETDEWEB)

    Savich, A. I.; Bugaevskii, A. G., E-mail: office@geodyn.ru, E-mail: bugaevskiy@geodyn.ru [Center of the Office of Geodynamic Observations in the Power Sector, an affiliate of JSC “Institut Gidroproekt” (Russian Federation)

    2016-05-15

    Functional dependencies are established for the characteristics of seismic transients recorded at various points of a studied site, which are used to propose a new approach to seismic microzonation (SMZ) that enables the creation of new SMZ maps of strong seismic motion, with due regard for dynamic parameters of recorded transients during weak earthquakes.

  6. The seismic analyzer: interpreting and illustrating 2D seismic data.

    Science.gov (United States)

    Patel, Daniel; Giertsen, Christopher; Thurmond, John; Gjelberg, John; Gröller, M Eduard

    2008-01-01

    We present a toolbox for quickly interpreting and illustrating 2D slices of seismic volumetric reflection data. Searching for oil and gas involves creating a structural overview of seismic reflection data to identify hydrocarbon reservoirs. We improve the search of seismic structures by precalculating the horizon structures of the seismic data prior to interpretation. We improve the annotation of seismic structures by applying novel illustrative rendering algorithms tailored to seismic data, such as deformed texturing and line and texture transfer functions. The illustrative rendering results in multi-attribute and scale invariant visualizations where features are represented clearly in both highly zoomed in and zoomed out views. Thumbnail views in combination with interactive appearance control allows for a quick overview of the data before detailed interpretation takes place. These techniques help reduce the work of seismic illustrators and interpreters.

  7. Spots of Seismic Danger Extracted by Properties of Low-Frequency Seismic Noise

    Science.gov (United States)

    Lyubushin, Alexey

    2013-04-01

    A new method of seismic danger estimate is presented which is based on using properties of low-frequency seismic noise from broadband networks. Two statistics of noise waveforms are considered: multi-fractal singularity spectrum support width D and minimum normalized entropy En of squared orthogonal wavelet coefficients. The maps of D and En are plotted in the moving time window. Let us call the regions extracted by low values of D and high values of En as "spots of seismic danger" - SSD. Mean values of D and En are strongly anti-correlated - that is why statistics D and En extract the same SSD. Nevertheless their mutual considering is expedient because these parameters are based on different approaches. The physical mechanism which underlies the method is consolidation of small blocks of the Earth's crust into the large one before the strong earthquake. This effect has a consequence that seismic noise does not include spikes which are connected with mutual movements of small blocks. The absence of irregular spikes in the noise follows the decreasing of D and increasing of entropy En. The stability in space and size of the SSD provides estimates of the place and energy of the probable future earthquake. The increasing or decreasing of SSD size and minimum or maximum values of D and En within SSD allows estimate the trend of seismic danger. The method is illustrating by the analysis of seismic noise from broadband seismic network F-net in Japan [1-5]. Statistically significant decreasing of D allowed a hypothesis about approaching Japan to a future seismic catastrophe to be formulated at the middle of 2008. The peculiarities of correlation coefficient estimate within 1 year time window between median values of D and generalized Hurst exponent allowed to make a decision that starting from July of 2010 Japan come to the state of waiting strong earthquake [3]. The method extracted a huge SSD near Japan which includes the region of future Tohoku mega-earthquake and the

  8. Seismic reliability assessment methodology for CANDU concrete containment structures-phase 11

    International Nuclear Information System (INIS)

    Hong, H.P.

    1996-07-01

    This study was undertaken to verify a set of load factors for reliability-based seismic evaluation of CANDU containment structures in Eastern Canada. Here, the new, site-specific, results of probabilistic seismic hazard assessment (response spectral velocity) were applied. It was found that the previously recommended load factors are relatively insensitive to the new seismic hazard information, and are adequate for a reliability-based seismic evaluation process. (author). 4 refs., 5 tabs., 9 figs

  9. The Apollo passive seismic experiment

    Science.gov (United States)

    Latham, G. V.; Dorman, H. J.; Horvath, P.; Ibrahim, A. K.; Koyama, J.; Nakamura, Y.

    1979-01-01

    The completed data set obtained from the 4-station Apollo seismic network includes signals from approximately 11,800 events of various types. Four data sets for use by other investigators, through the NSSDC, are in preparation. Some refinement of the lunar model based on seismic data can be expected, but its gross features remain as presented two years ago. The existence of a small, molten core remains dependent upon the analysis of signals from a single, far-side impact. Analysis of secondary arrivals from other sources may eventually resolve this issue, as well as continued refinement of the magnetic field measurements. Evidence of considerable lateral heterogeneity within the moon continues to build. The mystery of the much meteoroid flux estimate derived from lunar seismic measurements, as compared with earth-based estimates, remains; although, significant correlations between terrestrial and lunar observations are beginning to emerge.

  10. Seismicity and seismic monitoring in the Asse salt mine

    International Nuclear Information System (INIS)

    Flach, D.; Gommlich, G.; Hente, B.

    1987-01-01

    Seismicity analyses are made in order to assess the safety of candidate sites for ultimate disposal of hazardous wastes. The report in hand reviews the seismicity history of the Asse salt mine and presents recent results of a measuring campaign made in the area. The monitoring network installed at the site supplies data and information on the regional seismicity, on seismic amplitudes under ground and above ground, and on microseismic activities. (DG) [de

  11. Seismic fragility of a reinforced concrete structure

    Energy Technology Data Exchange (ETDEWEB)

    Kurmann, Davide [Axpo Power AG, Baden (Switzerland); Proske, Dirk [Axpo Power AG, Doettingen (Switzerland); Cervenka, Jan [Cervenka Consulting, Prague (Czech Republic)

    2013-05-15

    Structures can be exposed to seismic loading. For structures of major importance, extreme seismic loadings have to be considered. The proof of safety for such loadings requires sophisticated analysis. This paper introduces an analysis method which of course still includes simplifications, but yields to a far more realistic estimation of the seismic load bearing capacity of reinforced concrete structures compared to common methods. It is based on the development of pushover curves and the application of time-histories for the dynamic model to a representative harmonic oscillator. Dynamic parameters of the oscillator, such as modal mass and damping are computed using a soil-structure-interaction analysis. Based on the pushover-curve nonlinear force-deformation-capacities are applied to the oscillator including hysteresis behaviour characteristics. The oscillator is then exposed to time-histories of several earthquakes. Based on this computation the ductility is computed. The ductility can be scaled based upon the scaling of the time-histories. Since both, the uncertainty of the earthquake by using different timehistories and the uncertainty of the structure by using characteristic and mean material values, are considered, the uncertainty of the structure under seismic loading can be explicitly represented by a fragility. (orig.)

  12. Seismic reflection data report: Waste Isolation Pilot Plant (WIPP) site, Southeastern New Mexico

    International Nuclear Information System (INIS)

    Hern, J.L.; Powers, D.W.; Barrows, L.J.

    1978-12-01

    Three seismic reflection (Vibroseis) surveys conducted from 1976 through 1978 by Sandia Laboratories to support investigations for the Waste Isolation Pilot Plant (WIPP) are described. Volume I describes the purpose, field parameters, and data processing parameters. Volume II contains uninterpreted processed lines and shotpoint maps. Data interpretations will be the subject of the subsequent reports. The data collected during these three surveys total 77 line miles; 72 line miles of this are on or very near the WIPP site. The first of the surveys (1976 SAN) covered 25 line miles and was conducted similarly to previous petroleum industry surveys in the area. 1976 SAN supplemented existing petroleum industry data. The two subsequent surveys (1977 X and 1978 Y) used shorter geophone spacings (110'), higher signal frequencies (up to 100 Hz), and higher data sampling rates (2 ms.) to better define the shallow zone (less than 4000') of primary interest. 1977 X contained 47 line miles on or near the WIPP site and over several structural features northwest of the site. 1978 Y contains 5 line miles over a one square mile area near the center of the WIPP site. These data show increasing discrimination of shallow reflectors as data collection parameters were modified. Data tables of recording and processing parameters are included. A fourth Vibroseis survey was conducted at the WIPP site in 1978 by Grant Geophysical Company for Bechtel; the data are not in final form and are not included. Petroleum industry data and an inconclusive weight-drop survey, conducted in 1976, are also not included in this report

  13. Density-based reflectivity in seismic exploration for coal in Alberta, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Lawton, D.C.; Lyatsky, H.V. (University of Calgary, AB (Canada). Dept. of Geology and Geophysics)

    1991-01-01

    At a coal field in central Alberta, Canada, the acoustic reflectivity of shallow coal seams was found to be dominated by the density contrast between coal and host bentonitic sediments. Sonic logs and a check-shot survey showed that the compressional-wave velocity is almost constant through the coal zone and the overlying sediments, and ranges in value between 2000 m/s and 2350 m/s over different parts of the coal field. The average coal density is 1400 kg/m{sup 3}, whereas the density of the sediments is about 2200 kg/m{sup 3}. Results are illustrated using logs from a typical drillhole in the coal field. At this location, the time reflectivity sequence based on both the density and sonic logs is very similar to that obtained when the density log only is used, with a constant velocity assumed through the coal zone. At another drillhole location in the coal field, where reflection seismic data had been acquired, a synthetic seismogram generated from the density log closely matches the stacked seismic section. 6 refs., 4 figs.

  14. Seismic assessment of Technical Area V (TA-V).

    Energy Technology Data Exchange (ETDEWEB)

    Medrano, Carlos S.

    2014-03-01

    The Technical Area V (TA-V) Seismic Assessment Report was commissioned as part of Sandia National Laboratories (SNL) Self Assessment Requirement per DOE O 414.1, Quality Assurance, for seismic impact on existing facilities at Technical Area-V (TA-V). SNL TA-V facilities are located on an existing Uniform Building Code (UBC) Seismic Zone IIB Site within the physical boundary of the Kirtland Air Force Base (KAFB). The document delineates a summary of the existing facilities with their safety-significant structure, system and components, identifies DOE Guidance, conceptual framework, past assessments and the present Geological and Seismic conditions. Building upon the past information and the evolution of the new seismic design criteria, the document discusses the potential impact of the new standards and provides recommendations based upon the current International Building Code (IBC) per DOE O 420.1B, Facility Safety and DOE G 420.1-2, Guide for the Mitigation of Natural Phenomena Hazards for DOE Nuclear Facilities and Non-Nuclear Facilities.

  15. Visualization of volumetric seismic data

    Science.gov (United States)

    Spickermann, Dela; Böttinger, Michael; Ashfaq Ahmed, Khawar; Gajewski, Dirk

    2015-04-01

    Mostly driven by demands of high quality subsurface imaging, highly specialized tools and methods have been developed to support the processing, visualization and interpretation of seismic data. 3D seismic data acquisition and 4D time-lapse seismic monitoring are well-established techniques in academia and industry, producing large amounts of data to be processed, visualized and interpreted. In this context, interactive 3D visualization methods proved to be valuable for the analysis of 3D seismic data cubes - especially for sedimentary environments with continuous horizons. In crystalline and hard rock environments, where hydraulic stimulation techniques may be applied to produce geothermal energy, interpretation of the seismic data is a more challenging problem. Instead of continuous reflection horizons, the imaging targets are often steep dipping faults, causing a lot of diffractions. Without further preprocessing these geological structures are often hidden behind the noise in the data. In this PICO presentation we will present a workflow consisting of data processing steps, which enhance the signal-to-noise ratio, followed by a visualization step based on the use the commercially available general purpose 3D visualization system Avizo. Specifically, we have used Avizo Earth, an extension to Avizo, which supports the import of seismic data in SEG-Y format and offers easy access to state-of-the-art 3D visualization methods at interactive frame rates, even for large seismic data cubes. In seismic interpretation using visualization, interactivity is a key requirement for understanding complex 3D structures. In order to enable an easy communication of the insights gained during the interactive visualization process, animations of the visualized data were created which support the spatial understanding of the data.

  16. German seismic regulations

    International Nuclear Information System (INIS)

    Danisch, Ruediger

    2002-01-01

    Rules and regulations for seismic design in Germany cover the following: seismic design of conventional buildings; and seismic design of nuclear facilities. Safety criteria for NPPs, accident guidelines, and guidelines for PWRs as well as safety standards are cited. Safety standards concerned with NPPs seismic design include basic principles, soil analysis, design of building structures, design of mechanical and electrical components, seismic instrumentation, and measures to be undertaken after the earthquake

  17. Seismic facies; Facies sismicas

    Energy Technology Data Exchange (ETDEWEB)

    Johann, Paulo Roberto Schroeder [PETROBRAS, Rio de Janeiro, RJ (Brazil). Exploracao e Producao Corporativo. Gerencia de Reservas e Reservatorios]. E-mail: johann@petrobras.com.br

    2004-11-01

    The method presented herein describes the seismic facies as representations of curves and vertical matrixes of the lithotypes proportions. The seismic facies are greatly interested in capturing the spatial distributions (3D) of regionalized variables, as for example, lithotypes, sedimentary facies groups and/ or porosity and/or other properties of the reservoirs and integrate them into the 3D geological modeling (Johann, 1997). Thus when interpreted as curves or vertical matrixes of proportions, seismic facies allow us to build a very important tool for structural analysis of regionalized variables. The matrixes have an important application in geostatistical modeling. In addition, this approach provides results about the depth and scale of the wells profiles, that is, seismic data is integrated to the characterization of reservoirs in depth maps and in high resolution maps. The link between the different necessary technical phases involved in the classification of the segments of seismic traces is described herein in groups of predefined traces of two approaches: a) not supervised and b) supervised by the geological knowledge available on the studied reservoir. The multivariate statistical methods used to obtain the maps of the seismic facies units are interesting tools to be used to provide a lithostratigraphic and petrophysical understanding of a petroleum reservoir. In the case studied these seismic facies units are interpreted as representative of the depositional system as a part of the Namorado Turbiditic System, Namorado Field, Campos Basin.Within the scope of PRAVAP 19 (Programa Estrategico de Recuperacao Avancada de Petroleo - Strategic Program of Advanced Petroleum Recovery) some research work on algorithms is underway to select new optimized attributes to apply seismic facies. One example is the extraction of attributes based on the wavelet transformation and on the time-frequency analysis methodology. PRAVAP is also carrying out research work on an

  18. Development of design method of thick rubber bearings for three-dimensional base isolation

    International Nuclear Information System (INIS)

    Yabana, Shuichi; Matuda, Akihiro

    2000-01-01

    Thick rubber bearings as 3-dimensional base isolators have been developed to reduce both horizontal and vertical seismic loads especially for equipment in Fast Breeder Reactors. In this report, a design method of thick rubber bearings is presented. To consider nonlinearity of vertical stiffness affected by vertical stress in the design of thick rubber bearings, Lindley's evaluation method of vertical stiffness is modified as an explicit form of vertical stress. We confirm that the presented method is efficient for design of the thick rubber bearings from comparing between test results and predicted values. Furthermore, rubber bearing tests are conducted with 1/3 scale models to evaluate mechanical properties of thick rubber bearings including ultimate limits. In the tests, horizontal and vertical characteristics of 1/3 scale model are compared with those of 1/6 scale model to discuss scale effect of test specimen. Ultimate limits such as failure shear strain of thick rubber bearings are obtained under various loading conditions. From the test results, we confirm that full scale thick rubber bearing to satisfy requirements is feasible. (author)

  19. Evaluation of stress and saturation effects on seismic velocity and electrical resistivity - laboratory testing of rock samples

    Science.gov (United States)

    Vilhelm, Jan; Jirků, Jaroslav; Slavík, Lubomír; Bárta, Jaroslav

    2016-04-01

    Repository, located in a deep geological formation, is today considered the most suitable solution for disposal of spent nuclear fuel and high-level waste. The geological formations, in combination with an engineered barrier system, should ensure isolation of the waste from the environment for thousands of years. For long-term monitoring of such underground excavations special monitoring systems are developed. In our research we developed and tested monitoring system based on repeated ultrasonic time of flight measurement and electrical resistivity tomography (ERT). As a test site Bedřichov gallery in the northern Bohemia was selected. This underground gallery in granitic rock was excavated using Tunnel Boring Machine (TBM). The seismic high-frequency measurements are performed by pulse-transmission technique directly on the rock wall using one seismic source and three receivers in the distances of 1, 2 and 3 m. The ERT measurement is performed also on the rock wall using 48 electrodes. The spacing between electrodes is 20 centimeters. An analysis of relation of seismic velocity and electrical resistivity on water saturation and stress state of the granitic rock is necessary for the interpretation of both seismic monitoring and ERT. Laboratory seismic and resistivity measurements were performed. One series of experiments was based on uniaxial loading of dry and saturated granitic samples. The relation between stress state and ultrasonic wave velocities was tested separately for dry and saturated rock samples. Other experiments were focused on the relation between electrical resistivity of the rock sample and its saturation level. Rock samples with different porosities were tested. Acknowledgments: This work was partially supported by the Technology Agency of the Czech Republic, project No. TA 0302408

  20. A development of an evaluation flow chart for seismic stability of rock slopes based on relations between safety factor and sliding failure

    International Nuclear Information System (INIS)

    Kawai, Tadashi; Ishimaru, Makoto

    2010-01-01

    Recently, it is necessary to assess quantitatively seismic safety of critical facilities against the earthquake- induced rock slope failure from the viewpoint of seismic PSA. Under these circumstances, it is needed to evaluate the seismic stability of surrounding slopes against extremely strong ground motions. In order to evaluate the seismic stability of surrounding slopes, the most conventional method is to compare safety factors on an expected sliding surface, which is calculated from the stability analysis based on the limit equilibrium concept, to a critical value which judges stability or instability. The method is very effective to examine whether or not the sliding surface is safe. However, it does not mean that the sliding surface falls whenever the safety factor becomes smaller than the critical value during an earthquake. Therefore the authors develop a new evaluation flow chart for the seismic stability of rock slopes based on relations between safety factor and sliding failure. Furthermore, the developed flow chart was validated by comparing two kinds of safety factors calculated from a centrifuge test result concerned with a rock slope. (author)