WorldWideScience

Sample records for segmented fault system

  1. Methods for recognition and segmentation of active fault

    International Nuclear Information System (INIS)

    Hyun, Chang Hun; Noh, Myung Hyun; Lee, Kieh Hwa; Chang, Tae Woo; Kyung, Jai Bok; Kim, Ki Young

    2000-03-01

    In order to identify and segment the active faults, the literatures of structural geology, paleoseismology, and geophysical explorations were investigated. The existing structural geological criteria for segmenting active faults were examined. These are mostly based on normal fault systems, thus, the additional criteria are demanded for application to different types of fault systems. Definition of the seismogenic fault, characteristics of fault activity, criteria and study results of fault segmentation, relationship between segmented fault length and maximum displacement, and estimation of seismic risk of segmented faults were examined in paleoseismic study. The history of earthquake such as dynamic pattern of faults, return period, and magnitude of the maximum earthquake originated by fault activity can be revealed by the study. It is confirmed through various case studies that numerous geophysical explorations including electrical resistivity, land seismic, marine seismic, ground-penetrating radar, magnetic, and gravity surveys have been efficiently applied to the recognition and segmentation of active faults

  2. Effects of Strike-Slip Fault Segmentation on Earthquake Energy and Seismic Hazard

    Science.gov (United States)

    Madden, E. H.; Cooke, M. L.; Savage, H. M.; McBeck, J.

    2014-12-01

    Many major strike-slip faults are segmented along strike, including those along plate boundaries in California and Turkey. Failure of distinct fault segments at depth may be the source of multiple pulses of seismic radiation observed for single earthquakes. However, how and when segmentation affects fault behavior and energy release is the basis of many outstanding questions related to the physics of faulting and seismic hazard. These include the probability for a single earthquake to rupture multiple fault segments and the effects of segmentation on earthquake magnitude, radiated seismic energy, and ground motions. Using numerical models, we quantify components of the earthquake energy budget, including the tectonic work acting externally on the system, the energy of internal rock strain, the energy required to overcome fault strength and initiate slip, the energy required to overcome frictional resistance during slip, and the radiated seismic energy. We compare the energy budgets of systems of two en echelon fault segments with various spacing that include both releasing and restraining steps. First, we allow the fault segments to fail simultaneously and capture the effects of segmentation geometry on the earthquake energy budget and on the efficiency with which applied displacement is accommodated. Assuming that higher efficiency correlates with higher probability for a single, larger earthquake, this approach has utility for assessing the seismic hazard of segmented faults. Second, we nucleate slip along a weak portion of one fault segment and let the quasi-static rupture propagate across the system. Allowing fractures to form near faults in these models shows that damage develops within releasing steps and promotes slip along the second fault, while damage develops outside of restraining steps and can prohibit slip along the second fault. Work is consumed in both the propagation of and frictional slip along these new fractures, impacting the energy available

  3. Methods of evaluating segmentation characteristics and segmentation of major faults

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kie Hwa; Chang, Tae Woo; Kyung, Jai Bok [Seoul National Univ., Seoul (Korea, Republic of)] (and others)

    2000-03-15

    Seismological, geological, and geophysical studies were made for reasonable segmentation of the Ulsan fault and the results are as follows. One- and two- dimensional electrical surveys revealed clearly the fault fracture zone enlarges systematically northward and southward from the vicinity of Mohwa-ri, indicating Mohwa-ri is at the seismic segment boundary. Field Geological survey and microscope observation of fault gouge indicates that the Quaternary faults in the area are reactivated products of the preexisting faults. Trench survey of the Chonbuk fault Galgok-ri revealed thrust faults and cumulative vertical displacement due to faulting during the late Quaternary with about 1.1-1.9 m displacement per event; the latest event occurred from 14000 to 25000 yrs. BP. The seismic survey showed the basement surface os cut by numerous reverse faults and indicated the possibility that the boundary between Kyeongsangbukdo and Kyeongsannamdo may be segment boundary.

  4. Methods of evaluating segmentation characteristics and segmentation of major faults

    International Nuclear Information System (INIS)

    Lee, Kie Hwa; Chang, Tae Woo; Kyung, Jai Bok

    2000-03-01

    Seismological, geological, and geophysical studies were made for reasonable segmentation of the Ulsan fault and the results are as follows. One- and two- dimensional electrical surveys revealed clearly the fault fracture zone enlarges systematically northward and southward from the vicinity of Mohwa-ri, indicating Mohwa-ri is at the seismic segment boundary. Field Geological survey and microscope observation of fault gouge indicates that the Quaternary faults in the area are reactivated products of the preexisting faults. Trench survey of the Chonbuk fault Galgok-ri revealed thrust faults and cumulative vertical displacement due to faulting during the late Quaternary with about 1.1-1.9 m displacement per event; the latest event occurred from 14000 to 25000 yrs. BP. The seismic survey showed the basement surface os cut by numerous reverse faults and indicated the possibility that the boundary between Kyeongsangbukdo and Kyeongsannamdo may be segment boundary

  5. Fault segmentation: New concepts from the Wasatch Fault Zone, Utah, USA

    Science.gov (United States)

    Duross, Christopher; Personius, Stephen F.; Crone, Anthony J.; Olig, Susan S.; Hylland, Michael D.; Lund, William R.; Schwartz, David P.

    2016-01-01

    The question of whether structural segment boundaries along multisegment normal faults such as the Wasatch fault zone (WFZ) act as persistent barriers to rupture is critical to seismic hazard analyses. We synthesized late Holocene paleoseismic data from 20 trench sites along the central WFZ to evaluate earthquake rupture length and fault segmentation. For the youngest (segment boundaries, especially for the most recent earthquakes on the north-central WFZ, are consistent with segment-controlled ruptures. However, broadly constrained earthquake times, dissimilar event times along the segments, the presence of smaller-scale (subsegment) boundaries, and areas of complex faulting permit partial-segment and multisegment (e.g., spillover) ruptures that are shorter (~20–40 km) or longer (~60–100 km) than the primary segment lengths (35–59 km). We report a segmented WFZ model that includes 24 earthquakes since ~7 ka and yields mean estimates of recurrence (1.1–1.3 kyr) and vertical slip rate (1.3–2.0 mm/yr) for the segments. However, additional rupture scenarios that include segment boundary spatial uncertainties, floating earthquakes, and multisegment ruptures are necessary to fully address epistemic uncertainties in rupture length. We compare the central WFZ to paleoseismic and historical surface ruptures in the Basin and Range Province and central Italian Apennines and conclude that displacement profiles have limited value for assessing the persistence of segment boundaries but can aid in interpreting prehistoric spillover ruptures. Our comparison also suggests that the probabilities of shorter and longer ruptures on the WFZ need to be investigated.

  6. Sawtooth segmentation and deformation processes on the southern San Andreas fault, California

    Science.gov (United States)

    Bilham, R.; Williams, P.

    1985-01-01

    Five contiguous 12-13 km fault segments form a sawtooth geometry on the southernmost San Andreas fault. The kinematic and morphologic properties of each segment depend on fault strike, despite differences of strike between segments of as little as 3 degrees. Oblique slip (transpression) of fault segments within the Indio Hills, Mecca Hills and Durmid Hill results from an inferred 8:1 ratio of dextral slip to convergence across the fault zone. Triggered slip and creep are confined almost entirely to transpressive segments of the fault. Durmid Hill has been formed in the last 28 + or - 6 ka by uplift at an average rate of 3 + or - 1 mm/a.

  7. Segmentation pattern and structural complexities in seismogenic extensional settings: The North Matese Fault System (Central Italy)

    Science.gov (United States)

    Ferrarini, Federica; Boncio, Paolo; de Nardis, Rita; Pappone, Gerardo; Cesarano, Massimo; Aucelli, Pietro P. C.; Lavecchia, Giusy

    2017-02-01

    We investigated the northern slope of the Matese Mts. (Molise, Central Italy) with the aim of characterizing the N- to NE-dipping active normal fault system in the Bojano basin, a sector of primary importance from a seismic hazard perspective. We collected field data to define the geometry and segmentation pattern of two sub-systems (Patalecchia-Colle di Mezzo and Bojano-Campochiaro). New evidence of late Quaternary faulting was obtained by exploiting well log interpretations. Kinematic analysis revealed the interaction of pre-Quaternary inherited (mainly E-W-striking) and newly formed (NW-SE-striking) normal faults. Slip accommodation through linkage was clearly noted in the case of the Patalecchia-Colle di Mezzo sub-system. Detailed topographic profiles across the active fault segments provided post-LGM (15 ± 3 kyr) slip rates up to ∼2 mm/yr which agree with the high deformation rates based on different approaches in the literature. Finally, the instrumental seismicity analysis constrained the bottom of the seismogenic layer to depths of 13-14 km, and the gathered information allowed us to reconstruct the North Matese seismogenic source. Its 3D geometry and dimensions agree with both the dimension-magnitude relationships and macroseismic information available for the 1805 earthquake (Mw 6.6), the main historical earthquake to have struck the Bojano basin.

  8. Scaling Relations for the Thermal Structure of Segmented Oceanic Transform Faults

    Science.gov (United States)

    Wolfson-Schwehr, M.; Boettcher, M. S.; Behn, M. D.

    2015-12-01

    Mid-ocean ridge-transform faults (RTFs) are a natural laboratory for studying strike-slip earthquake behavior due to their relatively simple geometry, well-constrained slip rates, and quasi-periodic seismic cycles. However, deficiencies in our understanding of the limited size of the largest RTF earthquakes are due, in part, to not considering the effect of short intra-transform spreading centers (ITSCs) on fault thermal structure. We use COMSOL Multiphysics to run a series of 3D finite element simulations of segmented RTFs with visco-plastic rheology. The models test a range of RTF segment lengths (L = 10-150 km), ITSC offset lengths (O = 1-30 km), and spreading rates (V = 2-14 cm/yr). The lithosphere and upper mantle are approximated as steady-state, incompressible flow. Coulomb failure incorporates brittle processes in the lithosphere, and a temperature-dependent flow law for dislocation creep of olivine activates ductile deformation in the mantle. ITSC offsets as small as 2 km affect the thermal structure underlying many segmented RTFs, reducing the area above the 600˚C isotherm, A600, and thus the size of the largest expected earthquakes, Mc. We develop a scaling relation for the critical ITSC offset length, OC, which significantly reduces the thermal affect of adjacent fault segments of length L1 and L2. OC is defined as the ITSC offset that results in an area loss ratio of R = (Aunbroken - Acombined)/Aunbroken - Adecoupled) = 63%, where Aunbroken = C600(L1+L2)1.5V-0.6 is A600 for an RTF of length L1 + L2; Adecoupled = C600(L11.5+L21.5)V-0.6 is the combined A600 of RTFs of lengths L1 and L2, respectively; and Acombined = Aunbroken exp(-O/ OC) + Adecoupled (1-exp(-O/ OC)). C600 is a constant. We use OC and kinematic fault parameters (L1, L2, O, and V) to develop a scaling relation for the approximate seismogenic area, Aseg, for each segment of a RTF system composed of two fault segments. Finally, we estimate the size of Mc on a fault segment based on Aseg. We

  9. Interseismic Strain Accumulation of the Gazikoy-Saros segment (Ganos fault) of the North Anatolian Fault Zone

    Science.gov (United States)

    Havazli, E.; Wdowinski, S.; Amelung, F.

    2017-12-01

    The North Anatolian Fault Zone (NAFZ) is one of the most active continental transform faults in the world. A westward migrating earthquake sequence has started in 1939 in Erzincan and the last two events of this sequence occurred in 1999 in Izmit and Duzce manifesting the importance of NAFZ on the seismic hazard potential of the region. NAFZ exhibits slip rates ranging from 14-30 mm/yr along its 1500 km length with a right lateral strike slip characteristic. In the East of the Marmara Sea, the NAFZ splits into two branches. The Gazikoy-Saros segment (Ganos Fault) is the westernmost and onshore segment of the northern branch. The ENE-WSW oriented Ganos Fault is seismically active. It produced a Ms 7.2 earthquake in 1912, which was followed by several large aftershocks, including Ms 6.3 and Ms 6.9 events. Since 1912, the Ganos Fault did not produce any significant earthquakes (> M 5), in contrast to its adjacent segments, which produced 20 M>5 earthquakes, including a M 6.7 event, offshore in Gulf of Saros. Interseismic strain accumulation along the Ganos Fault was assessed from sparse GPS measurements along a single transect located perpendicular to the fault zone, suggesting strain accumulation rate of 20-25 mm/yr. Insofar, InSAR studies, based on C-band data, didn't produce conclusive results due to low coherence over the fault zone area, which is highly vegetated. In this study, we present a detailed interseismic velocity map of the Ganos Fault zone derived from L-band InSAR observations. We use 21 ALOS PALSAR scenes acquired over a 5-year period, from 2007 to 2011. We processed the ALOS data using the PySAR software, which is the University of Miami version of the Small Baseline (SB) method. The L-band observations enabled us to overcome the coherence issue in the study area. Our initial results indicate a maximum velocity of 15 mm/yr across the fault zone. The high spatial resolution of the InSAR-based interseismic velocity map will enable us to better to

  10. Fault strength in Marmara region inferred from the geometry of the principle stress axes and fault orientations: A case study for the Prince's Islands fault segment

    Science.gov (United States)

    Pinar, Ali; Coskun, Zeynep; Mert, Aydin; Kalafat, Dogan

    2015-04-01

    The general consensus based on historical earthquake data point out that the last major moment release on the Prince's islands fault was in 1766 which in turn signals an increased seismic risk for Istanbul Metropolitan area considering the fact that most of the 20 mm/yr GPS derived slip rate for the region is accommodated mostly by that fault segment. The orientation of the Prince's islands fault segment overlaps with the NW-SE direction of the maximum principle stress axis derived from the focal mechanism solutions of the large and moderate sized earthquakes occurred in the Marmara region. As such, the NW-SE trending fault segment translates the motion between the two E-W trending branches of the North Anatolian fault zone; one extending from the Gulf of Izmit towards Çınarcık basin and the other extending between offshore Bakırköy and Silivri. The basic relation between the orientation of the maximum and minimum principal stress axes, the shear and normal stresses, and the orientation of a fault provides clue on the strength of a fault, i.e., its frictional coefficient. Here, the angle between the fault normal and maximum compressive stress axis is a key parameter where fault normal and fault parallel maximum compressive stress might be a necessary and sufficient condition for a creeping event. That relation also implies that when the trend of the sigma-1 axis is close to the strike of the fault the shear stress acting on the fault plane approaches zero. On the other hand, the ratio between the shear and normal stresses acting on a fault plane is proportional to the coefficient of frictional coefficient of the fault. Accordingly, the geometry between the Prince's islands fault segment and a maximum principal stress axis matches a weak fault model. In the frame of the presentation we analyze seismological data acquired in Marmara region and interpret the results in conjuction with the above mentioned weak fault model.

  11. Bookshelf faulting and transform motion between rift segments of the Northern Volcanic Zone, Iceland

    Science.gov (United States)

    Green, R. G.; White, R. S.; Greenfield, T. S.

    2013-12-01

    Plate spreading is segmented on length scales from 10 - 1,000 kilometres. Where spreading segments are offset, extensional motion has to transfer from one segment to another. In classical plate tectonics, mid-ocean ridge spreading centres are offset by transform faults, but smaller 'non-transform' offsets exist between slightly overlapping spreading centres which accommodate shear by a variety of geometries. In Iceland the mid-Atlantic Ridge is raised above sea level by the Iceland mantle plume, and is divided into a series of segments 20-150 km long. Using microseismicity recorded by a temporary array of 26 three-component seismometers during 2009-2012 we map bookshelf faulting between the offset Askja and Kverkfjöll rift segments in north Iceland. The micro-earthquakes delineate a series of sub-parallel strike-slip faults. Well constrained fault plane solutions show consistent left-lateral motion on fault planes aligned closely with epicentral trends. The shear couple across the transform zone causes left-lateral slip on the series of strike-slip faults sub-parallel to the rift fabric, causing clockwise rotations about a vertical axis of the intervening rigid crustal blocks. This accommodates the overall right-lateral transform motion in the relay zone between the two overlapping volcanic rift segments. The faults probably reactivated crustal weaknesses along the dyke intrusion fabric (parallel to the rift axis) and have since rotated ˜15° clockwise into their present orientation. The reactivation of pre-existing rift-parallel weaknesses is in contrast with mid-ocean ridge transform faults, and is an important illustration of a 'non-transform' offset accommodating shear between overlapping spreading segments.

  12. Color Segmentation Approach of Infrared Thermography Camera Image for Automatic Fault Diagnosis

    International Nuclear Information System (INIS)

    Djoko Hari Nugroho; Ari Satmoko; Budhi Cynthia Dewi

    2007-01-01

    Predictive maintenance based on fault diagnosis becomes very important in current days to assure the availability and reliability of a system. The main purpose of this research is to configure a computer software for automatic fault diagnosis based on image model acquired from infrared thermography camera using color segmentation approach. This technique detects hot spots in equipment of the plants. Image acquired from camera is first converted to RGB (Red, Green, Blue) image model and then converted to CMYK (Cyan, Magenta, Yellow, Key for Black) image model. Assume that the yellow color in the image represented the hot spot in the equipment, the CMYK image model is then diagnosed using color segmentation model to estimate the fault. The software is configured utilizing Borland Delphi 7.0 computer programming language. The performance is then tested for 10 input infrared thermography images. The experimental result shows that the software capable to detect the faulty automatically with performance value of 80 % from 10 sheets of image input. (author)

  13. Is the Marmara Sea segment of the North Anatolian Fault Creeping or loading ?

    Science.gov (United States)

    Klein, Emilie; Masson, Frédéric; Duputel, Zacharie; Yavasoglu, Hakan

    2016-04-01

    During the last century, the North Anatolian Fault has experienced a migrating Mw>7 earthquakes sequence that ruptured about 1000 km of the fault westward. The last major earthquakes occurred in 1999 in Izmit (Mw7.4) and Duzce (Mw7.2). Only the segments located directly offshore of Istanbul, in the Marmara Sea, remain unbroken in this series of events. This region represents a major issue in terms of seismic hazard with more than 13 millions inhabitants in the city of Istanbul. However, a strong controversy remains over whether the central segment of the Main Marmara Fault is locked and likely to experience a major earthquake, or not. Recent studies based on geodetic data suggest indeed that, contrary to the Prince's Island segment which is fully locked, the central segment is accommodating the strain by aseismic fault creep. So it has not the potential to generate a Mw ~7 event. These results, mostly based on relatively simple strain accumulation models over infinitely long faults, is contested by a recent seismic data study, which suggests on the contrary that this fault segment is fully locked and mature to generate such a great earthquake. In this study, we revisit the available geodetic data considering a 3D geometry of the fault, allowing to take into account the lateral variations of behavior along the fault. In particular, we evaluate if current geodetic datasets are sufficient to constrain strain accumulation and thus to conclude about the seismic hazard in the region.

  14. The Morelia-Acambay Fault System

    Science.gov (United States)

    Velázquez Bucio, M.; Soria-Caballero, D.; Garduño-Monroy, V.; Mennella, L.

    2013-05-01

    The Trans-Mexican Volcanic Belt (TMVB) is one of the most actives and representative zones of Mexico geologically speaking. Research carried out in this area gives stratigraphic, seismologic and historical evidence of its recent activity during the quaternary (Martinez and Nieto, 1990). Specifically the Morelia-Acambay faults system (MAFS) consist in a series of normal faults of dominant direction E - W, ENE - WSW y NE - SW which is cut in center west of the Trans-Mexican Volcanic Belt. This fault system appeared during the early Miocene although the north-south oriented structures are older and have been related to the activity of the tectonism inherited from the "Basin and Range" system, but that were reactivated by the east- west faults. It is believed that the activity of these faults has contributed to the creation and evolution of the longed lacustrine depressions such as: Chapala, Zacapu, Cuitzeo, Maravatio y Acambay also the location of monogenetic volcanoes that conformed the Michoacan-Guanajuato volcanic field (MGVF) and tend to align in the direction of the SFMA dominant effort. In a historical time different segments of the MAFS have been the epicenter of earthquakes from moderated to strong magnitude like the events of 1858 in Patzcuaro, Acambay in 1912, 1979 in Maravatio and 2007 in Morelia, among others. Several detailed analysis and semi-detailed analysis through a GIS platform based in the vectorial archives and thematic charts 1:50 000 scaled from the data base of the INEGI which has allowed to remark the influence of the MAFS segments about the morphology of the landscape and the identification of other structures related to the movement of the existent faults like fractures, alignments, collapses and others from the zone comprehended by the northwest of Morelia in Michoacán to the East of Acambay, Estado de México. Such analysis suggests that the fault segments possess a normal displacement plus a left component. In addition it can be

  15. The 2016-2017 central Italy coseismic surface ruptures and their meaning with respect to foreseen active fault systems segmentation

    Science.gov (United States)

    De Martini, P. M.; Pucci, S.; Villani, F.; Civico, R.; Del Rio, L.; Cinti, F. R.; Pantosti, D.

    2017-12-01

    In 2016-2017 a series of moderate to large normal faulting earthquakes struck central Italy producing severe damage in many towns including Amatrice, Norcia and Visso and resulting in 299 casualties and >20,000 homeless. The complex seismic sequence depicts a multiple activation of the Mt. Vettore-Mt. Bove (VBFS) and the Laga Mts. fault systems, which were considered in literature as independent segments characterizing a recent seismic gap in the region comprised between two modern seismic sequences: the 1997-1998 Colfiorito and the 2009 L'Aquila. We mapped in detail the coseismic surface ruptures following three mainshocks (Mw 6.0 on 24th August, Mw 5.9 and Mw 6.5 on 26th and 30th October, 2016, respectively). Primary surface ruptures were observed and recorded for a total length of 5.2 km, ≅10 km and ≅25 km, respectively, along closely-spaced, parallel or subparallel, overlapping or step-like synthetic and antithetic fault splays of the activated fault systems, in some cases rupturing repeatedly the same location. Some coseismic ruptures were mapped also along the Norcia Fault System, paralleling the VBFS about 10 km westward. We recorded geometric and kinematic characteristics of the normal faulting ruptures with an unprecedented detail thanks to almost 11,000 oblique photographs taken from helicopter flights soon after the mainshocks, verified and integrated with field data (more than 7000 measurements). We analyze the along-strike coseismic slip and slip vectors distribution to be observed in the context of the geomorphic expression of the disrupted slopes and their depositional and erosive processes. Moreover, we constructed 1:10.000 scale geologic cross-sections based on updated maps, and we reconstructed the net offset distribution of the activated fault system to be compared with the morphologic throws and to test a cause-effect relationship between faulting and first-order landforms. We provide a reconstruction of the 2016 coseismic rupture pattern as

  16. Structural setting and kinematics of Nubian fault system, SE Western Desert, Egypt: An example of multi-reactivated intraplate strike-slip faults

    Science.gov (United States)

    Sakran, Shawky; Said, Said Mohamed

    2018-02-01

    Detailed surface geological mapping and subsurface seismic interpretation have been integrated to unravel the structural style and kinematic history of the Nubian Fault System (NFS). The NFS consists of several E-W Principal Deformation Zones (PDZs) (e.g. Kalabsha fault). Each PDZ is defined by spectacular E-W, WNW and ENE dextral strike-slip faults, NNE sinistral strike-slip faults, NE to ENE folds, and NNW normal faults. Each fault zone has typical self-similar strike-slip architecture comprising multi-scale fault segments. Several multi-scale uplifts and basins were developed at the step-over zones between parallel strike-slip fault segments as a result of local extension or contraction. The NNE faults consist of right-stepping sinistral strike-slip fault segments (e.g. Sin El Kiddab fault). The NNE sinistral faults extend for long distances ranging from 30 to 100 kms and cut one or two E-W PDZs. Two nearly perpendicular strike-slip tectonic regimes are recognized in the NFS; an inactive E-W Late Cretaceous - Early Cenozoic dextral transpression and an active NNE sinistral shear.

  17. Fault morphology of the lyo Fault, the Median Tectonic Line Active Fault System

    OpenAIRE

    後藤, 秀昭

    1996-01-01

    In this paper, we investigated the various fault features of the lyo fault and depicted fault lines or detailed topographic map. The results of this paper are summarized as follows; 1) Distinct evidence of the right-lateral movement is continuously discernible along the lyo fault. 2) Active fault traces are remarkably linear suggesting that the angle of fault plane is high. 3) The lyo fault can be divided into four segments by jogs between left-stepping traces. 4) The mean slip rate is 1.3 ~ ...

  18. Soil radon profile of the Alhama de Murcia Fault: implications in tectonic segmentation

    Science.gov (United States)

    Bejar-Pizarro, M.; Perez Lopez, R.; Fernández Cortés, A.; Martínez-Díaz, J. J.; Staller, A.; Sánchez-Malo, A.; Sanz, E.; Cuezva, S.; Sánchez-Moral, S.

    2017-12-01

    Soil radon exhalation in active faults has been reported in several cases. Mobilization of radon gas in tectonic areas is related to CO2emission, acting as gas carrier from deeper fractured zones. Fluctuation of radon values can be correlated with earthquake occurrence. We have used the soil radon emission for characterizing different tectonic segment of the Alhama de Murcia Fault (FAM), one of the most active on-shore tectonic faults in Spain. The FAM is a NE-SW trending strike-slip fault with reverse component, 90 km long and it is capable to trigger M7 earthquakes, as far as several paleoseismic studies shown. The last destructive earthquake took place in 2011 and killed 9 people. Tectonic segmentation of this fault has been proposed, with a tectonic slip-rate close to 0.1 mm/yr from geomorphic evidence, whereas 0.5 mm/yr has been suggested from GPS geodetic measurements. We have developed a perpendicular profile for measuring the soil radon exhalation, in relationship with three principal segments of FAM from west to east: (1) Goñar-Lorca segment, (2) Lorca Totana segment and (3) Alhama segment. We have introduced radon passive detectors equipped with LR115 films in colluvium detritic deposits and at 0.8 m depth. Using detritic deposits affected by Quaternary fault movement we assure equal permeability conditions for radon transport. We used passive closed housings type DRF, with a filter that avoid thoron disturbance. Results show the largest values of radon emission close to the Quaternary surface ruptures (ca 3-5.5 kBq/m3). Furthermore, the Goñar segment exhibits the highest value (6 kBq/m3) although the Lorca segment shows an isotopic signal of 13dCO2 (-7.24‰) which indicates this is a mantle-rootled CO2, i.e. non-soil derived CO2 flux, likely related to CO2 produced by thermal decarbonation of underlying sedimentary rocks containing more marine carbonate minerals. These results are part of the combined Spanish projects GEIs-SUB (CGL2016- 78318-C2-1-R

  19. Coulomb Stress Accumulation along the San Andreas Fault System

    Science.gov (United States)

    Smith, Bridget; Sandwell, David

    2003-01-01

    Stress accumulation rates along the primary segments of the San Andreas Fault system are computed using a three-dimensional (3-D) elastic half-space model with realistic fault geometry. The model is developed in the Fourier domain by solving for the response of an elastic half-space due to a point vector body force and analytically integrating the force from a locking depth to infinite depth. This approach is then applied to the San Andreas Fault system using published slip rates along 18 major fault strands of the fault zone. GPS-derived horizontal velocity measurements spanning the entire 1700 x 200 km region are then used to solve for apparent locking depth along each primary fault segment. This simple model fits remarkably well (2.43 mm/yr RMS misfit), although some discrepancies occur in the Eastern California Shear Zone. The model also predicts vertical uplift and subsidence rates that are in agreement with independent geologic and geodetic estimates. In addition, shear and normal stresses along the major fault strands are used to compute Coulomb stress accumulation rate. As a result, we find earthquake recurrence intervals along the San Andreas Fault system to be inversely proportional to Coulomb stress accumulation rate, in agreement with typical coseismic stress drops of 1 - 10 MPa. This 3-D deformation model can ultimately be extended to include both time-dependent forcing and viscoelastic response.

  20. Paleoseismology of the Xorxol Segment of the Central Altyn Tagh Fault, Xinjiang, China

    Directory of Open Access Journals (Sweden)

    Z. Y. Qiao

    2003-06-01

    Full Text Available Although the Altyn Tagh Fault (ATF is thought to play a key role in accommodating India-Eurasian convergence, little is known about its earthquake history. Studies of this strike-slip fault are important for interpretation of the role of faulting versus distributed deformation in the accommodation of the India- Eurasia collision. In addition, the > 1200 km long fault represents one of the most important and exemplary intracontinental strike-slip faults in the world. We mapped fault trace geometry and interpreted paleoseismic trench exposures to characterize the seismogenic behavior of the ATF. We identified 2 geometric segment boundaries in a 270 km long reach of the central ATF. These boundaries define the westernmost Wuzhunxiao, the Central Pingding, and the easternmost Xorxol (also written as Suekuli or Suo erkuli segments. In this paper, we present the results from the Camel paleoseismic site along the Xorxol Segment at 91.759°E, 38.919°N. There evidence for the last two earthquakes is clear and 14C dates from layers exposed in the excavation bracket their ages. The most recent earthquake occurred between 1456 and 1775 cal A.D. and the penultimate event was between 60 and 980 cal A.D. Combining the Camel interpretations with our published results for the central ATF, we conclude that multiple earthquakes with shorter rupture lengths (?? 50 km rather than complete rupture of the Xorxol Segment better explain the paleoseismic data. We found 2-3 earthquakes in the last 2-3 kyr. When coupled with typical amounts of slip per event (5-10 m, the recurrence times are tentatively consistent with 1-2 cm/yr slip rates. This result favors models that consider the broader distribution of collisional deformation, rather than those with northward motion of India into Asia absorbed along a few faults bounding rigid blocks.

  1. Which Fault Segments Ruptured in the 2008 Wenchuan Earthquake and Which Did Not? New Evidence from Near‐Fault 3D Surface Displacements Derived from SAR Image Offsets

    KAUST Repository

    Feng, Guangcai

    2017-03-15

    The 2008 Mw 7.9 Wenchuan earthquake ruptured a complex thrust‐faulting system at the eastern edge of the Tibetan plateau and west of Sichuan basin. Though the earthquake has been extensively studied, several details about the earthquake, such as which fault segments were activated in the earthquake, are still not clear. This is in part due to difficult field access to the fault zone and in part due to limited near‐fault observations in Interferometric Synthetic Aperture Radar (InSAR) observations because of decorrelation. In this study, we address this problem by estimating SAR image offsets that provide near‐fault ground displacement information and exhibit clear displacement discontinuities across activated fault segments. We begin by reanalyzing the coseismic InSAR observations of the earthquake and then mostly eliminate the strong ionospheric signals that were plaguing previous studies by using additional postevent images. We also estimate the SAR image offsets and use their results to retrieve the full 3D coseismic surface displacement field. The coseismic deformation from the InSAR and image‐offset measurements are compared with both Global Positioning System and field observations. The results indicate that our observations provide significantly better information than previous InSAR studies that were affected by ionospheric disturbances. We use the results to present details of the surface‐faulting offsets along the Beichuan fault from the southwest to the northeast and find that there is an obvious right‐lateral strike‐slip component (as well as thrust faulting) along the southern Beichuan fault (in Yingxiu County), which was strongly underestimated in earlier studies. Based on the results, we provide new evidence to show that the Qingchuan fault was not ruptured in the 2008 Wenchuan earthquake, a topic debated in field observation studies, but show instead that surface faulting occurred on a northward extension of the Beichuan fault during

  2. Which Fault Segments Ruptured in the 2008 Wenchuan Earthquake and Which Did Not? New Evidence from Near‐Fault 3D Surface Displacements Derived from SAR Image Offsets

    KAUST Repository

    Feng, Guangcai; Jonsson, Sigurjon; Klinger, Yann

    2017-01-01

    The 2008 Mw 7.9 Wenchuan earthquake ruptured a complex thrust‐faulting system at the eastern edge of the Tibetan plateau and west of Sichuan basin. Though the earthquake has been extensively studied, several details about the earthquake, such as which fault segments were activated in the earthquake, are still not clear. This is in part due to difficult field access to the fault zone and in part due to limited near‐fault observations in Interferometric Synthetic Aperture Radar (InSAR) observations because of decorrelation. In this study, we address this problem by estimating SAR image offsets that provide near‐fault ground displacement information and exhibit clear displacement discontinuities across activated fault segments. We begin by reanalyzing the coseismic InSAR observations of the earthquake and then mostly eliminate the strong ionospheric signals that were plaguing previous studies by using additional postevent images. We also estimate the SAR image offsets and use their results to retrieve the full 3D coseismic surface displacement field. The coseismic deformation from the InSAR and image‐offset measurements are compared with both Global Positioning System and field observations. The results indicate that our observations provide significantly better information than previous InSAR studies that were affected by ionospheric disturbances. We use the results to present details of the surface‐faulting offsets along the Beichuan fault from the southwest to the northeast and find that there is an obvious right‐lateral strike‐slip component (as well as thrust faulting) along the southern Beichuan fault (in Yingxiu County), which was strongly underestimated in earlier studies. Based on the results, we provide new evidence to show that the Qingchuan fault was not ruptured in the 2008 Wenchuan earthquake, a topic debated in field observation studies, but show instead that surface faulting occurred on a northward extension of the Beichuan fault during

  3. Long term fault system reorganization of convergent and strike-slip systems

    Science.gov (United States)

    Cooke, M. L.; McBeck, J.; Hatem, A. E.; Toeneboehn, K.; Beyer, J. L.

    2017-12-01

    Laboratory and numerical experiments representing deformation over many earthquake cycles demonstrate that fault evolution includes episodes of fault reorganization that optimize work on the fault system. Consequently, the mechanical and kinematic efficiencies of fault systems do not increase monotonically through their evolution. New fault configurations can optimize the external work required to accommodate deformation, suggesting that changes in system efficiency can drive fault reorganization. Laboratory evidence and numerical results show that fault reorganization within accretion, strike-slip and oblique convergent systems is associated with increasing efficiency due to increased fault slip (frictional work and seismic energy) and commensurate decreased off-fault deformation (internal work and work against gravity). Between episodes of fault reorganization, fault systems may become less efficient as they produce increasing off fault deformation. For example, laboratory and numerical experiments show that the interference and interaction between different fault segments may increase local internal work or that increasing convergence can increase work against gravity produced by a fault system. This accumulation of work triggers fault reorganization as stored work provides the energy required to grow new faults that reorganize the system to a more efficient configuration. The results of laboratory and numerical experiments reveal that we should expect crustal fault systems to reorganize following periods of increasing inefficiency, even in the absence of changes to the tectonic regime. In other words, fault reorganization doesn't require a change in tectonic loading. The time frame of fault reorganization depends on fault system configuration, strain rate and processes that relax stresses within the crust. For example, stress relaxation may keep pace with stress accumulation, which would limit the increase in the internal work and gravitational work so that

  4. Shallow high-resolution geophysical investigation along the western segment of the Victoria Lines Fault (island of Malta)

    Science.gov (United States)

    Villani, Fabio; D'Amico, Sebastiano; Panzera, Francesco; Vassallo, Maurizio; Bozionelos, George; Farrugia, Daniela; Galea, Pauline

    2018-01-01

    The Victoria Lines Fault (island of Malta) is a >15 km-long and N260°-striking segmented normal fault-system, which is probably inactive since the late Pliocene. In the westernmost part, the Fomm Ir-Rih segment displays comparable geologic throw and escarpment height ( 150-170 m), moreover its hangingwall hosts thin patches of Middle Pleistocene clastic continental deposits (red beds), which are poorly preserved elsewhere. We acquired two seismic transects, by collecting ambient vibration recordings, processed by using horizontal-to-vertical spectral ratios, complemented by one high-resolution 2-D refraction tomography survey crossing this fault where it is locally covered by red beds and recent colluvial deposits. We found a resonance peak at 1.0 Hz in the hangingwall block, whereas clear peaks in the range 5.0-10.0 Hz appear when approaching the subsurface fault, and we relate them to the fractured bedrock within the fault zone. The best-fit tomographic model shows a relatively high-Vp shallow body (Vp 2200-2400 m/s) that we relate to the weathered top of the Miocene Upper Coralline Limestone Fm., bounded on both sides by low-Vp regions (230 m/s above the weathered top-bedrock. Our results depict a clear seismic signature of the Victoria Lines Fault, characterized by low seismic velocity and high amplification of ground motion. We hypothesize that, during the Middle Pleistocene, faulting may have affected the basal part of the red beds, so that this part of the investigated complex fault-system may be considered inactive since 0.6 Myr ago.

  5. An L-band interferometric synthetic aperture radar study on the Ganos section of the north Anatolian fault zone between 2007 and 2011: Evidence for along strike segmentation and creep in a shallow fault patch.

    Science.gov (United States)

    de Michele, Marcello; Ergintav, Semih; Aochi, Hideo; Raucoules, Daniel

    2017-01-01

    We utilize L-band interferometric synthetic aperture radar (InSAR) data in this study to retrieve a ground velocity map for the near field of the Ganos section of the north Anatolian fault (NAF) zone. The segmentation and creep distribution of this section, which last ruptured in 1912 to generate a moment magnitude (Mw)7.3 earthquake, remains incompletely understood. Because InSAR processing removes the mean orbital plane, we do not investigate large scale displacements due to regional tectonics in this study as these can be determined using global positioning system (GPS) data, instead concentrating on the close-to-the-fault displacement field. Our aim is to determine whether, or not, it is possible to retrieve robust near field velocity maps from stacking L-band interferograms, combining both single and dual polarization SAR data. In addition, we discuss whether a crustal velocity map can be used to complement GPS observations in an attempt to discriminate the present-day surface displacement of the Ganos fault (GF) across multiple segments. Finally, we characterize the spatial distribution of creep on shallow patches along multiple along-strike segments at shallow depths. Our results suggest the presence of fault segmentation along strike as well as creep on the shallow part of the fault (i.e. the existence of a shallow creeping patch) or the presence of a smoother section on the fault plane. Data imply a heterogeneous fault plane with more complex mechanics than previously thought. Because this study improves our knowledge of the mechanisms underlying the GF, our results have implications for local seismic hazard assessment.

  6. Calculation and Analysis of Permanent Magnet Eddy Current Loss Fault with Magnet Segmentation

    Directory of Open Access Journals (Sweden)

    Bing Li

    2016-01-01

    Full Text Available This paper investigates the problem of calculating and analyzing the effect of the permanent magnet eddy current loss fault due to magnet segmentation. Taking an interior permanent magnet synchronous motor with inverter supplied as an example, the rated power of motor was 2.2 kW. Three-dimensional finite-element model was firstly established based on finite-element software. Then, the model mesh and boundary conditions were handled specially; permanent magnet eddy current loss fault was calculated and analyzed theoretically with magnet segmentation from space harmonic and time harmonic, respectively. Finally, calculation results were compared and explained. A useful conclusion for permanent magnet synchronous motor design has been obtained.

  7. Estimation of vertical slip rate in an active fault-propagation fold from the analysis of a progressive unconformity at the NE segment of the Carrascoy Fault (SE Iberia)

    Science.gov (United States)

    Martin-Banda, Raquel; Insua-Arevalo, Juan Miguel; Garcia-Mayordomo, Julian

    2017-04-01

    Many studies have dealt with the calculation of fault-propagation fold growth rates considering a variety of kinematics models, from limb rotation to hinge migration models. In most cases, the different geometrical and numeric growth models are based on horizontal pre-growth strata architecture and a constant known slip rate. Here, we present the estimation of the vertical slip rate of the NE Segment of the Carrascoy Fault (SE Iberian Peninsula) from the geometrical modeling of a progressive unconformity developed on alluvial fan sediments with a high depositional slope. The NE Segment of the Carrascoy Fault is a left-lateral strike slip fault with reverse component belonging to the Eastern Betic Shear Zone, a major structure that accommodates most of the convergence between Iberian and Nubian tectonics plates in Southern Spain. The proximity of this major fault to the city of Murcia encourages the importance of carrying out paleosismological studies in order to determinate the Quaternary slip rate of the fault, a key geological parameter for seismic hazard calculations. This segment is formed by a narrow fault zone that articulates abruptly the northern edge of the Carrascoy Range with the Guadalentin Depression through high slope, short alluvial fans Upper-Middle Pleistocene in age. An outcrop in a quarry at the foot of this front reveals a progressive unconformity developed on these alluvial fan deposits, showing the important reverse component of the fault. The architecture of this unconformity is marked by well-developed calcretes on the top some of the alluvial deposits. We have determined the age of several of these calcretes by the Uranium-series disequilibrium dating method. The results obtained are consistent with recent published studies on the SW segment of the Carrascoy Fault that together with offset canals observed at a few locations suggest a net slip rate close to 1 m/ka.

  8. Resistivity structure of Sumatran Fault (Aceh segment) derived from 1-D magnetotelluric modeling

    Science.gov (United States)

    Nurhasan, Sutarno, D.; Bachtiar, H.; Sugiyanto, D.; Ogawa, Y.; Kimata, F.; Fitriani, D.

    2012-06-01

    Sumatran Fault Zone is the most active fault in Indonesia as a result of strike-slip component of Indo-Australian oblique convergence. With the length of 1900 km, Sumatran fault was divided into 20 segments starting from the southernmost Sumatra Island having small slip rate and increasing to the north end of Sumatra Island. There are several geophysical methods to analyze fault structure depending on physical parameter used in these methods, such as seismology, geodesy and electromagnetic. Magnetotelluric method which is one of geophysical methods has been widely used in mapping and sounding resistivity distribution because it does not only has the ability for detecting contras resistivity but also has a penetration range up to hundreds of kilometers. Magnetotelluric survey was carried out in Aceh region with the 12 total sites crossing Sumatran Fault on Aceh and Seulimeum segments. Two components of electric and magnetic fields were recorded during 10 hours in average with the frequency range from 320 Hz to 0,01 Hz. Analysis of the pseudosection of phase and apparent resistivity exhibit vertical low phase flanked on the west and east by high phase describing the existence of resistivity contras in this region. Having rotated the data to N45°E direction, interpretation of the result has been performed using three different methods of 1D MT modeling i.e. Bostick inversion, 1D MT inversion of TM data, and 1D MT inversion of the impedance determinant. By comparison, we concluded that the use of TM data only and the impedance determinant in 1D inversion yield the more reliable resistivity structure of the fault compare to other methods. Based on this result, it has been shown clearly that Sumatra Fault is characterized by vertical contras resistivity indicating the existence of Aceh and Seulimeum faults which has a good agreement with the geological data.

  9. Timing of initiation and fault rates of the Yushu-Xianshuihe-Xiaojiang fault system around the eastern Himalayan syntaxis.

    Science.gov (United States)

    Hervé Leloup, Philippe; Replumaz, Anne; Chevalier, Marie-Luce; Zhang, Yuan-Ze; Paquette, Jean-Louis; Wang, Guo-Can; Bernet, Matthias; van der Beek, Peter; Pan, Jiawei; Metois, Marianne; Li, Haibing

    2017-04-01

    In eastern Tibet, the left-lateral strike-slip Yushu-Xianshuihe-Xiaojiang fault system (YXX-FS) is 1400 km long, veering from N100° to N175° broadly following a small circle whose pole is located in the eastern Himalayan syntaxis. Several competing models are proposed to explain the geological evolution of eastern Tibet, and in particular of the YXX-FS: fault following slip-lines in a plastic media, book-shelf fault in a large right-lateral shear zone, or fault bounding a lower channel flow veering around the syntaxis. In this contribution we document the timing of onset of the YXX-FS, its propagation through time, its rate at various time-scales; and discuss how these relate to the deformation models. The YXX-FS comprises four segments from east (Tibetan Plateau) to west (Yunnan): Yushu-Ganzi, Xianshuihe, Anninghe, and Zemuhe-Xiaojiang. It is one of the most tectonically active intra-continental fault system in China along which more than 20 M>6.5 earthquakes occurred since 1700. Slip-rates of 3.5 to 30 mm/yr along the YXX-FS have been suggested by matching geological offsets of 60-100 km with initiation ages of 2 to 17 Ma. Late Quaternary rates deduced from morphological offsets, InSAR, paleoseismology and GPS also show a large range: between 3 and 20 mm/yr. The timing of initiation of the Yushu-Ganzi segment has been constrained at 12.6±1 Ma and its total offset to 76 - 90 km (Wang et al., 2009) yielding a rate of 6.6+0.8-0.7 mm/yr. By measuring the offsets of moraine crests and fan edges across the fault using LiDAR and kinematic GPS, and dating their surfaces using 10Be, we determined slip-rates of 7+1.1-1.0 mm/yr, 3 - 11.2 mm/yr and 8.5+0.8-0.7 mm/yr at three different sites. This suggests a constant rate of 6-8 mm/yr along the fault segment since 13Ma. The timing of initiation of the Xianshuihe segment was thought to be prior to 12.8±1.4 Ma (Roger et al., 1995), but new field studies and geochronological ages suggest that the fault initiated later. Using

  10. The Ionian and Alfeo-Etna fault zones : New segments of an evolving plate boundary in the central Mediterranean Sea?

    NARCIS (Netherlands)

    Polonia, A.; Torelli, L.; Artoni, A.; Carlini, M.; Faccenna, C.; Ferranti, L.; Gasperini, L.; Govers, R.|info:eu-repo/dai/nl/108173836; Klaeschen, D.; Monaco, C.; Neri, G.; Nijholt, N.|info:eu-repo/dai/nl/413306674; Orecchio, B.; Wortel, R.|info:eu-repo/dai/nl/068439202

    2016-01-01

    The Calabrian Arc is a narrow subduction-rollback system resulting from Africa/Eurasia plate convergence. While crustal shortening is taken up in the accretionary wedge, transtensive deformation accounts for margin segmentation along transverse lithospheric faults. One of these structures is the

  11. Earthquake cycle modeling of multi-segmented faults: dynamic rupture and ground motion simulation of the 1992 Mw 7.3 Landers earthquake.

    Science.gov (United States)

    Petukhin, A.; Galvez, P.; Somerville, P.; Ampuero, J. P.

    2017-12-01

    We perform earthquake cycle simulations to study the characteristics of source scaling relations and strong ground motions and in multi-segmented fault ruptures. For earthquake cycle modeling, a quasi-dynamic solver (QDYN, Luo et al, 2016) is used to nucleate events and the fully dynamic solver (SPECFEM3D, Galvez et al., 2014, 2016) is used to simulate earthquake ruptures. The Mw 7.3 Landers earthquake has been chosen as a target earthquake to validate our methodology. The SCEC fault geometry for the three-segmented Landers rupture is included and extended at both ends to a total length of 200 km. We followed the 2-D spatial correlated Dc distributions based on Hillers et. al. (2007) that associates Dc distribution with different degrees of fault maturity. The fault maturity is related to the variability of Dc on a microscopic scale. Large variations of Dc represents immature faults and lower variations of Dc represents mature faults. Moreover we impose a taper (a-b) at the fault edges and limit the fault depth to 15 km. Using these settings, earthquake cycle simulations are performed to nucleate seismic events on different sections of the fault, and dynamic rupture modeling is used to propagate the ruptures. The fault segmentation brings complexity into the rupture process. For instance, the change of strike between fault segments enhances strong variations of stress. In fact, Oglesby and Mai (2012) show the normal stress varies from positive (clamping) to negative (unclamping) between fault segments, which leads to favorable or unfavorable conditions for rupture growth. To replicate these complexities and the effect of fault segmentation in the rupture process, we perform earthquake cycles with dynamic rupture modeling and generate events similar to the Mw 7.3 Landers earthquake. We extract the asperities of these events and analyze the scaling relations between rupture area, average slip and combined area of asperities versus moment magnitude. Finally, the

  12. Self-constrained inversion of microgravity data along a segment of the Irpinia fault

    Science.gov (United States)

    Lo Re, Davide; Florio, Giovanni; Ferranti, Luigi; Ialongo, Simone; Castiello, Gabriella

    2016-01-01

    A microgravity survey was completed to precisely locate and better characterize the near-surface geometry of a recent fault with small throw in a mountainous area in the Southern Apennines (Italy). The site is on a segment of the Irpinia fault, which is the source of the M6.9 1980 earthquake. This fault cuts a few meter of Mesozoic carbonate bedrock and its younger, mostly Holocene continental deposits cover. The amplitude of the complete Bouguer anomaly along two profiles across the fault is about 50 μGal. The data were analyzed and interpreted according to a self-constrained strategy, where some rapid estimation of source parameters was later used as constraint for the inversion. The fault has been clearly identified and localized in its horizontal position and depth. Interesting features in the overburden have been identified and their interpretation has allowed us to estimate the fault slip-rate, which is consistent with independent geological estimates.

  13. The 2009 MW MW 6.1 L'Aquila fault system imaged by 64k earthquake locations

    International Nuclear Information System (INIS)

    Valoroso, Luisa

    2016-01-01

    On April 6 2009, a MW 6.1 normal-faulting earthquake struck the axial area of the Abruzzo region in central Italy. We investigate the complex architecture and mechanics of the activated fault system by using 64k high-resolution foreshock and aftershock locations. The fault system is composed by two major SW dipping segments forming an en-echelon NW trending system about 50 km long: the high-angle L’Aquila fault and the listric Campotosto fault, located in the first 10 km depth. From the beginning of 2009, fore shocks activated the deepest portion of the main shock fault. A week before the MW 6.1 event, the largest (MW 4.0) foreshock triggered seismicity migration along a minor off-fault segment. Seismicity jumped back to the main plane a few hours before the main shock. High-precision locations allowed to peer into the fault zone showing complex geological structures from the metre to the kilometre scale, analogous to those observed by field studies and seismic profiles. Also, we were able to investigate important aspects of earthquakes nucleation and propagation through the upper crust in carbonate-bearing rocks such as: the role of fluids in normal-faulting earthquakes; how crustal faults terminate at depths; the key role of fault zone structure in the earthquake rupture evolution processes.

  14. A summary of the active fault investigation in the extension sea area of Kikugawa fault and the Nishiyama fault , N-S direction fault in south west Japan

    Science.gov (United States)

    Abe, S.

    2010-12-01

    In this study, we carried out two sets of active fault investigation by the request from Ministry of Education, Culture, Sports, Science and Technology in the sea area of the extension of Kikugawa fault and the Nishiyama fault. We want to clarify the five following matters about both active faults based on those results. (1)Fault continuity of the land and the sea. (2) The length of the active fault. (3) The division of the segment. (4) Activity characteristics. In this investigation, we carried out a digital single channel seismic reflection survey in the whole area of both active faults. In addition, a high-resolution multichannel seismic reflection survey was carried out to recognize the detailed structure of a shallow stratum. Furthermore, the sampling with the vibrocoring to get information of the sedimentation age was carried out. The reflection profile of both active faults was extremely clear. The characteristics of the lateral fault such as flower structure, the dispersion of the active fault were recognized. In addition, from analysis of the age of the stratum, it was recognized that the thickness of the sediment was extremely thin in Holocene epoch on the continental shelf in this sea area. It was confirmed that the Kikugawa fault extended to the offing than the existing results of research by a result of this investigation. In addition, the width of the active fault seems to become wide toward the offing while dispersing. At present, we think that we can divide Kikugawa fault into some segments based on the distribution form of the segment. About the Nishiyama fault, reflection profiles to show the existence of the active fault was acquired in the sea between Ooshima and Kyushu. From this result and topographical existing results of research in Ooshima, it is thought that Nishiyama fault and the Ooshima offing active fault are a series of structure. As for Ooshima offing active fault, the upheaval side changes, and a direction changes too. Therefore, we

  15. Fault kinematics and tectonic stress in the seismically active Manyara Dodoma Rift segment in Central Tanzania Implications for the East African Rift

    Science.gov (United States)

    Macheyeki, Athanas S.; Delvaux, Damien; De Batist, Marc; Mruma, Abdulkarim

    2008-07-01

    The Eastern Branch of the East African Rift System is well known in Ethiopia (Main Ethiopian Rift) and Kenya (Kenya or Gregory Rift) and is usually considered to fade away southwards in the North Tanzanian Divergence, where it splits into the Eyasi, Manyara and Pangani segments. Further towards the south, rift structures are more weakly expressed and this area has not attracted much attention since the mapping and exploratory works of the 1950s. In November 4, 2002, an earthquake of magnitude Mb = 5.5 struck Dodoma, the capital city of Tanzania. Analysis of modern digital relief, seismological and geological data reveals that ongoing tectonic deformation is presently affecting a broad N-S trending belt, extending southward from the North Tanzanian Divergence to the region of Dodoma, forming the proposed "Manyara-Dodoma Rift segment". North of Arusha-Ngorongoro line, the rift is confined to a narrow belt (Natron graben in Tanzania) and south of it, it broadens into a wide deformation zone which includes both the Eyasi and Manyara grabens. The two-stage rifting model proposed for Kenya and North Tanzania also applies to the Manyara-Dodoma Rift segment. In a first stage, large, well-expressed topographic and volcanogenic structures were initiated in the Natron, Eyasi and Manyara grabens during the Late Miocene to Pliocene. From the Middle Pleistocene onwards, deformations related to the second rifting stage propagated southwards to the Dodoma region. These young structures have still limited morphological expressions compared to the structures formed during the first stage. However, they appear to be tectonically active as shown by the high concentration of moderate earthquakes into earthquake swarms, the distribution of He-bearing thermal springs, the morphological freshness of the fault scarps, and the presence of open surface fractures. Fault kinematic and paleostress analysis of geological fault data in basement rocks along the active fault lines show that recent

  16. Faulting at Mormon Point, Death Valley, California: A low-angle normal fault cut by high-angle faults

    Science.gov (United States)

    Keener, Charles; Serpa, Laura; Pavlis, Terry L.

    1993-04-01

    New geophysical and fault kinematic studies indicate that late Cenozoic basin development in the Mormon Point area of Death Valley, California, was accommodated by fault rotations. Three of six fault segments recognized at Mormon Point are now inactive and have been rotated to low dips during extension. The remaining three segments are now active and moderately to steeply dipping. From the geophysical data, one active segment appears to offset the low-angle faults in the subsurface of Death Valley.

  17. Paleoseismic analysis of the San Vicente segment of the El Salvador Fault Zone, El Salvador, Central America

    OpenAIRE

    Canora Catalán, Carolina; Villamor Pérez, María Pilar; Martínez Díaz, José J.; Berryman, K.R.; Álvarez Gómez, José Antonio; Capote del Villar, Ramón; Hernández, Walter

    2012-01-01

    The El Salvador earthquake of February 13th 2001 (Mw 6.6) was associated with the tectonic rupture of the El Salvador Fault Zone. Paleoseismic studies of the El Salvador Fault Zone undertaken after this earthquake provide a basis for examining the longer history of surface rupturing earthquakes on the fault. Trenching at five sites along the San Vicente segment, a 21km-long and up to 2km-wide central section of the El Salvador Fault Zone, shows that surface fault rupture has occurred at least...

  18. Extension parallel to the rift zone during segmented fault growth: application to the evolution of the NE Atlantic

    Directory of Open Access Journals (Sweden)

    A. Bubeck

    2017-11-01

    Full Text Available The mechanical interaction of propagating normal faults is known to influence the linkage geometry of first-order faults, and the development of second-order faults and fractures, which transfer displacement within relay zones. Here we use natural examples of growth faults from two active volcanic rift zones (Koa`e, island of Hawai`i, and Krafla, northern Iceland to illustrate the importance of horizontal-plane extension (heave gradients, and associated vertical axis rotations, in evolving continental rift systems. Second-order extension and extensional-shear faults within the relay zones variably resolve components of regional extension, and components of extension and/or shortening parallel to the rift zone, to accommodate the inherently three-dimensional (3-D strains associated with relay zone development and rotation. Such a configuration involves volume increase, which is accommodated at the surface by open fractures; in the subsurface this may be accommodated by veins or dikes oriented obliquely and normal to the rift axis. To consider the scalability of the effects of relay zone rotations, we compare the geometry and kinematics of fault and fracture sets in the Koa`e and Krafla rift zones with data from exhumed contemporaneous fault and dike systems developed within a > 5×104 km2 relay system that developed during formation of the NE Atlantic margins. Based on the findings presented here we propose a new conceptual model for the evolution of segmented continental rift basins on the NE Atlantic margins.

  19. Impulsive radon emanation on a creeping segment of the San Andreas fault, California

    International Nuclear Information System (INIS)

    King, C.-Y.

    1984-01-01

    Radon emanation was continuously monitored for several months at two locations along a creeping segment of the San Andreas fault in central California. The recorded emanations showed several impulsive increases that lasted as much as five hours with amplitudes considerably larger than meteorologically induced diurnal variations. Some of the radon increases were accompanied or followed by earthquakes or fault-creep events. They were possibly the result of some sudden outbursts of relatively radon-rich ground gas, sometimes triggered by crustal deformation or vibration. (Auth.)

  20. Variations in strength and slip rate along the san andreas fault system.

    Science.gov (United States)

    Jones, C H; Wesnousky, S G

    1992-04-03

    Convergence across the San Andreas fault (SAF) system is partitioned between strike-slip motion on the vertical SAF and oblique-slip motion on parallel dip-slip faults, as illustrated by the recent magnitude M(s) = 6.0 Palm Springs, M(s) = 6.7 Coalinga, and M(s) = 7.1 Loma Prieta earthquakes. If the partitioning of slip minimizes the work done against friction, the direction of slip during these recent earthquakes depends primarily on fault dip and indicates that the normal stress coefficient and frictional coefficient (micro) vary among the faults. Additionally, accounting for the active dip-slip faults reduces estimates of fault slip rates along the vertical trace of the SAF by about 50 percent in the Loma Prieta and 100 percent in the North Palm Springs segments.

  1. Holocene Paleoearthquake History on the Qingchuan Fault in the Northeastern Segment of the Longmenshan Thrust Zone and Its Implications

    Science.gov (United States)

    Sun, H.; He, H.; Ikeda, Y.; Kano, K.; Shi, F.; Gao, W.; Echigo, T.; Okada, S.

    2017-12-01

    Although much work has been performed for faults with high slip-rates, little attention has been paid to low slip-rate faults, such as the Longmenshan Thrust Zone (LTZ). The LTZ is a long and matured fault that evolved during the Mesozoic as a structural boundary, but its Quaternary activity had been considered insignificant. The Wenchuan earthquake and the following Lushan earthquake on the central and southwestern segments of the LTZ not only demonstrate its capability for strong earthquakes but also illustrate the necessity of assessing the regional seismic potential around its northeastern extension. The sparse seismicity along the northeastern segment of the LTZ relative to the very seismically active Minshan Uplift seems to have suggested that the slip on the central LTZ transfers northeastward to the Minshan Uplift, so that its northeastern segment is inactive. However, the Wenchuan earthquake surface rupture and aftershocks extended beyond the Minshan Uplift, and revealed that the break both at and below the ground surface may have reached the northeastern segment of the LTZ raising a question that whether or not this fault segment is active. Although several studies had been carried out on the northeastern segment of the LTZ, little is known about its activity and seismic potential. To solve these problems, we conducted paleoseismological trench excavations on the Qingchuan fault (QF) in the northeastern LTZ and identified one (and the latest) event occurred in the Holocene. Based on radiocarbon dating, the event is constrained to occur between 4115-3820 B.C., and a long recurrence interval is thus estimated. Judging from the matured fault structure of the QF, the latest event was likely to have ruptured the full length of the QF, and was estimated to be Mw 7.6-7.9 according to empirical scaling laws. Using the slip rate and the elapsed time since the last event, it is estimated an accumulated seismic moment equivalent to Mw 7.5 on the QF. Considering the

  2. From fault classification to fault tolerance for multi-agent systems

    CERN Document Server

    Potiron, Katia; Taillibert, Patrick

    2013-01-01

    Faults are a concern for Multi-Agent Systems (MAS) designers, especially if the MAS are built for industrial or military use because there must be some guarantee of dependability. Some fault classification exists for classical systems, and is used to define faults. When dependability is at stake, such fault classification may be used from the beginning of the system's conception to define fault classes and specify which types of faults are expected. Thus, one may want to use fault classification for MAS; however, From Fault Classification to Fault Tolerance for Multi-Agent Systems argues that

  3. How is tectonic slip partitioned from the Alpine Fault to the Marlborough Fault System? : results from the Hope Fault

    International Nuclear Information System (INIS)

    Langridge, R.M.

    2004-01-01

    This report contains data from research undertaken by the author on the Hope Fault from 2000-2004. This report provides an opportunity to include data that was additional to or newer than work that was published in other places. New results from studies along the Hurunui section of the Hope Fault, additional to that published in Langridge and Berryman (2005) are presented here. This data includes tabulated data of fault location and description measurements, a graphical representation of this data in diagrammatic form along the length of the fault and new radiocarbon dates from the current EQC funded project. The new data show that the Hurunui section of the Hope Fault has the capability to yield further data on fault slip rate, earthquake displacements, and paleoseismicity. New results from studies at the Greenburn Stream paleoseismic site additional to that published in Langridge et al. (2003) are presented here. This includes a new log of the deepened west wall of Trench 2, a log of the west wall of Trench 1, and new radiocarbon dates from the second phase of dating undertaken at the Greenburn Stream site. The new data show that this site has the capability to yield further data on the paleoseismicity of the Conway segment of the Hope Fault. Through a detailed analysis of all three logged walls at the site and the new radiocarbon dates, it may, in combination with data from the nearby Clarence Reserve site of Pope (1994), be possible to develop a good record of the last 5 events on the Conway segment. (author). 12 refs., 12 figs

  4. Kinematics and strain analyses of the eastern segment of the Pernicana Fault (Mt. Etna, Italy derived from geodetic techniques (1997-2005

    Directory of Open Access Journals (Sweden)

    M. Mattia

    2006-06-01

    Full Text Available This paper analyses the ground deformations occurring on the eastern part of the Pernicana Fault from 1997 to 2005. This segment of the fault was monitored with three local networks based on GPS and EDM techniques. More than seventy GPS and EDM surveys were carried out during the considered period, in order to achieve a higher temporal detail of ground deformation affecting the structure. We report the comparisons among GPS and EDM surveys in terms of absolute horizontal displacements of each GPS benchmark and in terms of strain parameters for each GPS and EDM network. Ground deformation measurements detected a continuous left-lateral movement of the Pernicana Fault. We conclude that, on the easternmost part of the Pernicana Fault, where it branches out into two segments, the deformation is transferred entirely SE-wards by a splay fault.

  5. Analysis of different power grid segmentation and transmission schemes for power system security improvement

    International Nuclear Information System (INIS)

    Shami, U.T.; Chaudhary, M.S.

    2015-01-01

    This paper explores the power grid segmentation concept for power system stability improvement in detail. First, the firewall property of grid segmentation is investigated for a two area network. Then two HVDC technologies, LCC and VSC, are compared for the same network. A two area VSC-AC segmented network is then compared with two area VSC segmented network. Suitable segmentation topology and suitable number of VSC segmented areas are then investigated. Simulation results show that grid segmentation offers network stability during fault conditions and VSC is the most suitable choice for segmentation over LCC. Results further show that having large number of DC segmented areas and using the radial segmentation topology improves the stability of the overall system. All the simulations were carried out in PSS at the rate E software provided by SIEMENS discussed. Section IV discusses the test systems under study in this research. Section V compares and analyzes the simulation results. Section VI contains the conclusion. (author)

  6. Preliminary Results on Earthquake Recurrence Intervals, Rupture Segmentation, and Potential Earthquake Moment Magnitudes along the Tahoe-Sierra Frontal Fault Zone, Lake Tahoe, California

    Science.gov (United States)

    Howle, J.; Bawden, G. W.; Schweickert, R. A.; Hunter, L. E.; Rose, R.

    2012-12-01

    Utilizing high-resolution bare-earth LiDAR topography, field observations, and earlier results of Howle et al. (2012), we estimate latest Pleistocene/Holocene earthquake-recurrence intervals, propose scenarios for earthquake-rupture segmentation, and estimate potential earthquake moment magnitudes for the Tahoe-Sierra frontal fault zone (TSFFZ), west of Lake Tahoe, California. We have developed a new technique to estimate the vertical separation for the most recent and the previous ground-rupturing earthquakes at five sites along the Echo Peak and Mt. Tallac segments of the TSFFZ. At these sites are fault scarps with two bevels separated by an inflection point (compound fault scarps), indicating that the cumulative vertical separation (VS) across the scarp resulted from two events. This technique, modified from the modeling methods of Howle et al. (2012), uses the far-field plunge of the best-fit footwall vector and the fault-scarp morphology from high-resolution LiDAR profiles to estimate the per-event VS. From this data, we conclude that the adjacent and overlapping Echo Peak and Mt. Tallac segments have ruptured coseismically twice during the Holocene. The right-stepping, en echelon range-front segments of the TSFFZ show progressively greater VS rates and shorter earthquake-recurrence intervals from southeast to northwest. Our preliminary estimates suggest latest Pleistocene/ Holocene earthquake-recurrence intervals of 4.8±0.9x103 years for a coseismic rupture of the Echo Peak and Mt. Tallac segments, located at the southeastern end of the TSFFZ. For the Rubicon Peak segment, northwest of the Echo Peak and Mt. Tallac segments, our preliminary estimate of the maximum earthquake-recurrence interval is 2.8±1.0x103 years, based on data from two sites. The correspondence between high VS rates and short recurrence intervals suggests that earthquake sequences along the TSFFZ may initiate in the northwest part of the zone and then occur to the southeast with a lower

  7. How does the architecture of a fault system controls magma upward migration through the crust?

    Science.gov (United States)

    Iturrieta, P. C.; Cembrano, J. M.; Stanton-Yonge, A.; Hurtado, D.

    2017-12-01

    The orientation and relative disposition of adjacent faults locally disrupt the regional stress field, thus enhancing magma flow through previous or newly created favorable conduits. Moreover, the brittle-plastic transition (BPT), due to its stronger rheology, governs the average state of stress of shallower portions of the fault system. Furthermore, the BPT may coincide with the location of transient magma reservoirs, from which dikes can propagate upwards into the upper crust, shaping the inner structure of the volcanic arc. In this work, we examine the stress distribution in strike-slip duplexes with variable geometry, along with the critical fluid overpressure ratio (CFOP), which is the minimum value required for individual faults to fracture in tension. We also determine the stress state disruption of the fault system when a dike is emplaced, to answer open questions such as: what is the nature of favorable pathways for magma to migrate? what is the architecture influence on the feedback between fault system kinematics and magma injection? To this end, we present a 3D coupled hydro-mechanical finite element model of the continental lithosphere, where faults are represented as continuum volumes with an elastic-plastic rheology. Magma flow upon fracturing is modeled through non-linear Stoke's flow, coupling solid and fluid equilibrium. A non-linear sensitivity analysis is performed in function of tectonic, rheology and geometry inputs, to assess which are the first-order factors that governs the nature of dike emplacement. Results show that the CFOP is heterogeneously distributed in the fault system, and within individual fault segments. Minimum values are displayed near fault intersections, where local kinematics superimpose on regional tectonic loading. Furthermore, when magma is transported through a fault segment, the CFOP is now minimized in faults with non-favorable orientations. This suggests that these faults act as transient pathways for magma to

  8. Fault detection and isolation in systems with parametric faults

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, Hans Henrik

    1999-01-01

    The problem of fault detection and isolation of parametric faults is considered in this paper. A fault detection problem based on parametric faults are associated with internal parameter variations in the dynamical system. A fault detection and isolation method for parametric faults is formulated...

  9. Fault-tolerant computing systems

    International Nuclear Information System (INIS)

    Dal Cin, M.; Hohl, W.

    1991-01-01

    Tests, Diagnosis and Fault Treatment were chosen as the guiding themes of the conference. However, the scope of the conference included reliability, availability, safety and security issues in software and hardware systems as well. The sessions were organized for the conference which was completed by an industrial presentation: Keynote Address, Reconfiguration and Recover, System Level Diagnosis, Voting and Agreement, Testing, Fault-Tolerant Circuits, Array Testing, Modelling, Applied Fault Tolerance, Fault-Tolerant Arrays and Systems, Interconnection Networks, Fault-Tolerant Software. One paper has been indexed separately in the database. (orig./HP)

  10. 3D Constraints On Fault Architecture and Strain Distribution of the Newport-Inglewood Rose Canyon and San Onofre Trend Fault Systems

    Science.gov (United States)

    Holmes, J. J.; Driscoll, N. W.; Kent, G. M.

    2017-12-01

    The Inner California Borderlands (ICB) is situated off the coast of southern California and northern Baja. The structural and geomorphic characteristics of the area record a middle Oligocene transition from subduction to microplate capture along the California coast. Marine stratigraphic evidence shows large-scale extension and rotation overprinted by modern strike-slip deformation. Geodetic and geologic observations indicate that approximately 6-8 mm/yr of Pacific-North American relative plate motion is accommodated by offshore strike-slip faulting in the ICB. The farthest inshore fault system, the Newport-Inglewood Rose Canyon (NIRC) Fault is a dextral strike-slip system that is primarily offshore for approximately 120 km from San Diego to the San Joaquin Hills near Newport Beach, California. Based on trenching and well data, the NIRC Fault Holocene slip rate is 1.5-2.0 mm/yr to the south and 0.5-1.0 mm/yr along its northern extent. An earthquake rupturing the entire length of the system could produce an Mw 7.0 earthquake or larger. West of the main segments of the NIRC Fault is the San Onofre Trend (SOT) along the continental slope. Previous work concluded that this is part of a strike-slip system that eventually merges with the NIRC Fault. Others have interpreted this system as deformation associated with the Oceanside Blind Thrust Fault purported to underlie most of the region. In late 2013, we acquired the first high-resolution 3D Parallel Cable (P-Cable) seismic surveys of the NIRC and SOT faults as part of the Southern California Regional Fault Mapping project. Analysis of stratigraphy and 3D mapping of this new data has yielded a new kinematic fault model of the area that provides new insight on deformation caused by interactions in both compressional and extensional regimes. For the first time, we can reconstruct fault interaction and investigate how strain is distributed through time along a typical strike-slip margin using 3D constraints on fault

  11. Structural character of the northern segment of the Paintbrush Canyon fault, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Dickerson, R.P.; Spengler, R.W.

    1994-01-01

    Detailed mapping of exposed features along the northern part of the Paintbrush Canyon fault was initiated to aid in construction of the computer-assisted three-dimensional lithostratigraphic model of Yucca Mountain, to contribute to kinematic reconstruction of the tectonic history of the Paintbrush Canyon fault, and to assist in the interpretation of geophysical data from Midway Valley. Yucca Mountain is segmented into relatively intact blocks of east-dipping Miocene volcanic strata, bounded by north-striking, west-dipping high-angle normal faults. The Paintbrush Canyon fault, representing the easternmost block-bounding normal fault, separates Fran Ridge from Midway Valley and continues northward across Yucca Wash to at least the southern margin of the Timber Mountain Caldera complex. South of Yucca Wash, the Paintbrush Canyon Fault is largely concealed beneath thick Quaternary deposits. Bedrock exposures to the north reveal a complex fault, zone, displaying local north- and west-trending grabens, and rhombic pull-apart features. The fault scarp, discontinuously exposed along a mapped length of 8 km north of Yucca Wash, dips westward by 41 degrees to 74 degrees. Maximum vertical offset of the Rhyolite of Comb Peak along the fault measures about 210 m in Paintbrush Canyon and, on the basis of drill hole information, vertical offset of the Topopoah Spring Tuff is about 360 m near the northern part of Fran Ridge. Observed displacement along the fault in Paintbrush Canyon is down to the west with a component of left-lateral oblique slip. Unlike previously proposed tectonic models, strata adjacent to the fault dip to the east. Quaternary deposits do not appear displaced along the fault scarp north of Yucca Wash, but are displaced in trenches south of Yucca Wash

  12. Geomorphological and structural characterization of the southern Weihe Graben, central China: Implications for fault segmentation

    Science.gov (United States)

    Cheng, Yali; He, Chuanqi; Rao, Gang; Yan, Bing; Lin, Aiming; Hu, Jianmin; Yu, Yangli; Yao, Qi

    2018-01-01

    The Cenozoic graben systems around the tectonically stable Ordos Block, central China, have been considered as ideal places for investigating active deformation within continental rifts, such as the Weihe Graben at the southern margin with high historical seismicity (e.g., 1556 M 8.5 Huaxian great earthquake). However, previous investigations have mostly focused on the active structures in the eastern and northern parts of this graben. By contrast, in the southwest, tectonic activity along the northern margin of the Qinling Mountains has not been systematically investigated yet. In this study, based on digital elevation models (DEMs), we carried out geomorphological analysis to evaluate the relative tectonic activity along the whole South Border Fault (SBF). On the basis of field observations, high resolution DEMs acquired by small unmanned aerial vehicles (sUVA) using structure-for-motion techniques, radiocarbon (14C) age dating, we demonstrate that: 1) Tectonic activity along the SBF changes along strike, being higher in the eastern sector. 2) Seven major segment boundaries have been assigned, where the fault changes its strike and has lower tectonic activity. 3) The fault segment between the cities of Huaxian and Huayin characterized by almost pure normal slip has been active during the Holocene. We suggest that these findings would provide a basis for further investigating on the seismic risk in densely-populated Weihe Graben. Table S2. The values and classification of geomorphic indices obtained in this study. Fig. S1. Morphological features of the stream long profiles (Nos. 1-75) and corresponding SLK values. Fig. S2. Comparison of geomorphological parameters acquired from different DEMs (90-m SRTM and 30-m ASTER GDEM): (a) HI values; (b) HI linear regression; (c) mean slope of drainage basin; (d) mean slope linear regression.

  13. Active Fault Isolation in MIMO Systems

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2014-01-01

    isolation is based directly on the input/output s ignals applied for the fault detection. It is guaranteed that the fault group includes the fault that had occurred in the system. The second step is individual fault isolation in the fault group . Both types of isolation are obtained by applying dedicated......Active fault isolation of parametric faults in closed-loop MIMO system s are considered in this paper. The fault isolation consists of two steps. T he first step is group- wise fault isolation. Here, a group of faults is isolated from other pos sible faults in the system. The group-wise fault...

  14. Dynamic Models of Earthquake Rupture along branch faults of the Eastern San Gorgonio Pass Region in CA using Complex Fault Structure

    Science.gov (United States)

    Douilly, R.; Oglesby, D. D.; Cooke, M. L.; Beyer, J. L.

    2017-12-01

    Compilation of geomorphic and paleoseismic data have illustrated that the right-lateral Coachella segment of the southern San Andreas Fault is past its average recurrence time period. On its western edge, this fault segment is split into two branches: the Mission Creek strand, and the Banning fault strand, of the San Andreas. Depending on how rupture propagates through this region, there is the possibility of a through-going rupture that could lead to the channeling of damaging seismic energy into the Los Angeles Basin. The fault structures and rupture scenarios on these two strands are potentially very different, so it is important to determine which strand is a more likely rupture path, and under which circumstances rupture will take either one. In this study, we focus on the effect of different assumptions about fault geometry and stress pattern on the rupture process to test those scenarios and thus investigate the most likely path of a rupture that starts on the Coachella segment. We consider two types of fault geometry based on the SCEC Community Fault Model and create a 3D finite element mesh. These two meshes are then incorporated into the finite element method code FaultMod to compute a physical model for the rupture dynamics. We use the slip-weakening friction law, and we consider different assumptions of background stress such as constant tractions, regional stress regimes of different orientations, heterogeneous off-fault stresses and the results of long-term stressing rates from quasi-static crustal deformation models that consider time since last event on each fault segment. Both the constant and regional stress distribution show that it is more likely for the rupture to branch from the Coachella segment to the Mission Creek compared to the Banning fault segment. For the regional stress distribution, we encounter cases of super-shear rupture for one type of fault geometry and sub-shear rupture for the other one. The fault connectivity at this branch

  15. Searching for geodetic transient slip signals along the Parkfield segment of the San Andreas Fault

    Science.gov (United States)

    Rousset, B.; Burgmann, R.

    2017-12-01

    The Parkfield section of the San Andreas fault is at the transition between a segment locked since the 1857 Mw 7.9 Fort Tejon earthquake to its south and a creeping segment to the north. It is particularly well instrumented since it is the many previous studies have focused on studying the coseismic and postseismic phases of the two most recent earthquake cycles, the interseismic phase is exhibiting interesting dynamics at the down-dip edge of the seismogenic zone, characterized by a very large number of low frequency earthquakes (LFE) with different behaviors depending on location. Interseismic fault creep rates appear to vary over a wide range of spatial and temporal scales, from the Earth's surface to the base of crust. In this study, we take advantage of the dense Global Positioning System (GPS) network, with 77 continuous stations located within a circle of radius 80 km centered on Parkfield. We correct these time series for the co- and postseismic signals of the 2003 Mw 6.3 San Simeon and 2004 Mw 6.0 Parkfield earthquakes. We then cross-correlate the residual time series with synthetic slow-slip templates following the approach of Rousset et al. (2017). Synthetic tests with transient events contained in GPS time series with realistic noise show the limit of detection of the method. In the application with real GPS time series, the highest correlation amplitudes are compared with micro-seismicity rates, as well as tremor and LFE observations.

  16. Solar system fault detection

    Science.gov (United States)

    Farrington, R.B.; Pruett, J.C. Jr.

    1984-05-14

    A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.

  17. Fault tolerant control for uncertain systems with parametric faults

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2006-01-01

    A fault tolerant control (FTC) architecture based on active fault diagnosis (AFD) and the YJBK (Youla, Jarb, Bongiorno and Kucera)parameterization is applied in this paper. Based on the FTC architecture, fault tolerant control of uncertain systems with slowly varying parametric faults...... is investigated. Conditions are given for closed-loop stability in case of false alarms or missing fault detection/isolation....

  18. Fault-Related Controls on Upward Hydrothermal Flow: An Integrated Geological Study of the Têt Fault System, Eastern Pyrénées (France

    Directory of Open Access Journals (Sweden)

    Audrey Taillefer

    2017-01-01

    Full Text Available The way faults control upward fluid flow in nonmagmatic hydrothermal systems in extensional context is still unclear. In the Eastern Pyrénées, an alignment of twenty-nine hot springs (29°C to 73°C, along the normal Têt fault, offers the opportunity to study this process. Using an integrated multiscale geological approach including mapping, remote sensing, and macro- and microscopic analyses of fault zones, we show that emergence is always located in crystalline rocks at gneiss-metasediments contacts, mostly in the Têt fault footwall. The hot springs distribution is related to high topographic reliefs, which are associated with fault throw and segmentation. In more detail, emergence localizes either (1 in brittle fault damage zones at the intersection between the Têt fault and subsidiary faults or (2 in ductile faults where dissolution cavities are observed along foliations, allowing juxtaposition of metasediments. Using these observations and 2D simple numerical simulation, we propose a hydrogeological model of upward hydrothermal flow. Meteoric fluids, infiltrated at high elevation in the fault footwall relief, get warmer at depth because of the geothermal gradient. Topography-related hydraulic gradient and buoyancy forces cause hot fluid rise along permeability anisotropies associated with lithological juxtapositions, fracture, and fault zone compositions.

  19. Fault tolerant computing systems

    International Nuclear Information System (INIS)

    Randell, B.

    1981-01-01

    Fault tolerance involves the provision of strategies for error detection damage assessment, fault treatment and error recovery. A survey is given of the different sorts of strategies used in highly reliable computing systems, together with an outline of recent research on the problems of providing fault tolerance in parallel and distributed computing systems. (orig.)

  20. Architecting Fault-Tolerant Software Systems

    NARCIS (Netherlands)

    Sözer, Hasan

    2009-01-01

    The increasing size and complexity of software systems makes it hard to prevent or remove all possible faults. Faults that remain in the system can eventually lead to a system failure. Fault tolerance techniques are introduced for enabling systems to recover and continue operation when they are

  1. New Geologic Data on the Seismic Risks of the Most Dangerous Fault on Shore in Central Japan, the Itoigawa-Shizuoka Tectonic Line Active Fault System

    Science.gov (United States)

    Okumura, K.; Kondo, H.; Toda, S.; Takada, K.; Kinoshita, H.

    2006-12-01

    Ten years have past since the first official assessment of the long-term seismic risks of the Itoigawa-Shizuoka tectonic line active fault system (ISTL) in 1996. The disaster caused by the1995 Kobe (Hyogo-ken-Nanbu) earthquake urged the Japanese government to initiated a national project to assess the long-term seismic risks of on-shore active faults using geologic information. ISTL was the first target of the 98 significant faults and the probability of a M7 to M8 event turned out to be the highest among them. After the 10 years of continued efforts to understand the ISTL, now it is getting ready to revise the assessment. Fault mapping and segmentation: The most active segment of the Gofukuji fault (~1 cm/yr left-lateral strike slip, R=500~800 yrs.) had been maped only for less than 10 km. Adjacent segments were much less active. This large slip on such a short segment was contradictory. However, detailed topographic study including Lidar survey revealed the length of the Gofukuji fault to be 25 km or more. High slip rate with frequent earthquakes may be restricted to the Gofukuji fault while the 1996 assessment modeled frequent >100 km rupture scenario. The geometry of the fault is controversial especially on the left-lateral strike-slip section of the ISTL. There are two models of high-angle Middel ISTL and low-angle Middle ISTL with slip partitioning. However, all geomorphic and shallow geologic data supports high-angle almost pure strike slip on the faults in the Middle ISTL. CRIEPI's 3- dimensional trenching in several sites as well as the previous results clearly demonstrated repeated pure strike-slip offset during past a few events. In Middle ISTL, there is no evidence of recent activity of pre-existing low-angle thrust faults that are inferred to be active from shallow seismic survey. Separation of high (~3000 m) mountain ranges and low (lack of reliable time constraints on past earthquakes. In order to solve this problem, we have carried out intensive

  2. Stafford fault system: 120 million year fault movement history of northern Virginia

    Science.gov (United States)

    Powars, David S.; Catchings, Rufus D.; Horton, J. Wright; Schindler, J. Stephen; Pavich, Milan J.

    2015-01-01

    The Stafford fault system, located in the mid-Atlantic coastal plain of the eastern United States, provides the most complete record of fault movement during the past ~120 m.y. across the Virginia, Washington, District of Columbia (D.C.), and Maryland region, including displacement of Pleistocene terrace gravels. The Stafford fault system is close to and aligned with the Piedmont Spotsylvania and Long Branch fault zones. The dominant southwest-northeast trend of strong shaking from the 23 August 2011, moment magnitude Mw 5.8 Mineral, Virginia, earthquake is consistent with the connectivity of these faults, as seismic energy appears to have traveled along the documented and proposed extensions of the Stafford fault system into the Washington, D.C., area. Some other faults documented in the nearby coastal plain are clearly rooted in crystalline basement faults, especially along terrane boundaries. These coastal plain faults are commonly assumed to have undergone relatively uniform movement through time, with average slip rates from 0.3 to 1.5 m/m.y. However, there were higher rates during the Paleocene–early Eocene and the Pliocene (4.4–27.4 m/m.y), suggesting that slip occurred primarily during large earthquakes. Further investigation of the Stafford fault system is needed to understand potential earthquake hazards for the Virginia, Maryland, and Washington, D.C., area. The combined Stafford fault system and aligned Piedmont faults are ~180 km long, so if the combined fault system ruptured in a single event, it would result in a significantly larger magnitude earthquake than the Mineral earthquake. Many structures most strongly affected during the Mineral earthquake are along or near the Stafford fault system and its proposed northeastward extension.

  3. Evolution of the Puente Hills Thrust Fault

    Science.gov (United States)

    Bergen, K. J.; Shaw, J. H.; Dolan, J. F.

    2013-12-01

    This study aims to assess the evolution of the blind Puente Hills thrust fault system (PHT) by determining its age of initiation, lateral propagation history, and changes in slip rate over time. The PHT presents one of the largest seismic hazards in the United States, given its location beneath downtown Los Angeles. The PHT is comprised of three fault segments: the Los Angeles (LA), Santa Fe Springs (SFS), and Coyote Hills (CH). The LA and SFS segments are characterized by growth stratigraphy where folds formed by uplift on the fault segments have been continually buried by sediment from the Los Angeles and San Gabriel rivers. The CH segment has developed topography and is characterized by onlapping growth stratigraphy. This depositional setting gives us the unique opportunity to measure uplift on the LA and SFS fault segments, and minimum uplift on the CH fault segment, as the difference in sediment thicknesses across the buried folds. We utilize depth converted oil industry seismic reflection data to image the fold geometries. Identifying time-correlative stratigraphic markers for slip rate determination in the basin has been a problem for researchers in the past, however, as the faunal assemblages observed in wells are time-transgressive by nature. To overcome this, we utilize the sequence stratigraphic model and well picks of Ponti et al. (2007) as a basis for mapping time-correlative sequence boundaries throughout our industry seismic reflection data from the present to the Pleistocene. From the Pleistocene to Miocene we identify additional sequence boundaries in our seismic reflection data from imaged sequence geometries and by correlating industry well formation tops. The sequence and formation top picks are then used to build 3-dimensional surfaces in the modeling program Gocad. From these surfaces we measure the change in thicknesses across the folds to obtain uplift rates between each sequence boundary. Our results show three distinct phases of

  4. Case-Based Fault Diagnostic System

    International Nuclear Information System (INIS)

    Mohamed, A.H.

    2014-01-01

    Nowadays, case-based fault diagnostic (CBFD) systems have become important and widely applied problem solving technologies. They are based on the assumption that “similar faults have similar diagnosis”. On the other hand, CBFD systems still suffer from some limitations. Common ones of them are: (1) failure of CBFD to have the needed diagnosis for the new faults that have no similar cases in the case library. (2) Limited memorization when increasing the number of stored cases in the library. The proposed research introduces incorporating the neural network into the case based system to enable the system to diagnose all the faults. Neural networks have proved their success in the classification and diagnosis problems. The suggested system uses the neural network to diagnose the new faults (cases) that cannot be diagnosed by the traditional CBR diagnostic system. Besides, the proposed system can use the another neural network to control adding and deleting the cases in the library to manage the size of the cases in the case library. However, the suggested system has improved the performance of the case based fault diagnostic system when applied for the motor rolling bearing as a case of study

  5. Quaternay faulting along the southern Lemhi fault near the Idaho National Engineering Laboratory Southeastern Idaho

    International Nuclear Information System (INIS)

    Hemphill-Haley, M.A.; Sawyer, T.L.; Wong, I.G.; Kneupfer, P.L.K.; Forman, S.L.; Smith, R.P.

    1991-01-01

    Four exploratory trenches excavated across the Howe and Fallen Springs segments of the southern Lemhi fault in southeastern Idaho provide data to characterize these potential seismic sources. Evidence for up to three surface faulting events is exposed in each trench. Thermoluminescence (TL) and radiocarbon analyses were performed to provide estimates of the timing of each faulting event. The most recent event (MRE) occurred at: (1) about 15,000 to 19,000 years B.P. at the East Canyon trench (southern Howe segment); (2) approximately 17,000 to 24,000 years. B.P. at the Black Canyon site (northern Howe segment); and (3) about 19,000 to 24,000 years B.P. at the Camp Creek trench (southern Fallen Springs segment). A Holocene event is estimated for the Coyote Springs trench (central Fallert Springs segment) based on degree of soil development and correlation of faulted and unfaulted deposits. The oldest Black Canyon event is constrained by a buried soil (Av) horizons with a TL age of 24,700 +/- 3,100 years B.P. Possibly three events occurred at this site between about 17,000 and 24,000 years ago followed by quiescence. Stratigraphic and soil relationships, and TL and 14 C dates are consistent with the following preliminary interpretations: (1) the MRE's for the southern segments are older than those for the central Lemhi fault; (2) the Black Canyon site may share rupture events with sites to the north and south as a result of a open-quotes leakyclose quotes segment boundary; (3) temporal clustering of seismic events separated by a long period of quiescence may be evident along the southern Lemhi fault; and (4) Holocene surface rupture is evident along the central part of the Fallert Springs segment but not at its southern end; and (5) the present segmentation model may need to be revised

  6. Fault geometry, rupture dynamics and ground motion from potential earthquakes on the North Anatolian Fault under the Sea of Marmara

    KAUST Repository

    Oglesby, David D.

    2012-03-01

    Using the 3-D finite-element method, we develop dynamic spontaneous rupture models of earthquakes on the North Anatolian Fault system in the Sea of Marmara, Turkey, considering the geometrical complexity of the fault system in this region. We find that the earthquake size, rupture propagation pattern and ground motion all strongly depend on the interplay between the initial (static) regional pre-stress field and the dynamic stress field radiated by the propagating rupture. By testing several nucleation locations, we observe that those far from an oblique normal fault stepover segment (near Istanbul) lead to large through-going rupture on the entire fault system, whereas nucleation locations closer to the stepover segment tend to produce ruptures that die out in the stepover. However, this pattern can change drastically with only a 10° rotation of the regional stress field. Our simulations also reveal that while dynamic unclamping near fault bends can produce a new mode of supershear rupture propagation, this unclamping has a much smaller effect on the speed of the peak in slip velocity along the fault. Finally, we find that the complex fault geometry leads to a very complex and asymmetric pattern of near-fault ground motion, including greatly amplified ground motion on the insides of fault bends. The ground-motion pattern can change significantly with different hypocentres, even beyond the typical effects of directivity. The results of this study may have implications for seismic hazard in this region, for the dynamics and ground motion of geometrically complex faults, and for the interpretation of kinematic inverse rupture models.

  7. Fault geometry, rupture dynamics and ground motion from potential earthquakes on the North Anatolian Fault under the Sea of Marmara

    KAUST Repository

    Oglesby, David D.; Mai, Paul Martin

    2012-01-01

    Using the 3-D finite-element method, we develop dynamic spontaneous rupture models of earthquakes on the North Anatolian Fault system in the Sea of Marmara, Turkey, considering the geometrical complexity of the fault system in this region. We find that the earthquake size, rupture propagation pattern and ground motion all strongly depend on the interplay between the initial (static) regional pre-stress field and the dynamic stress field radiated by the propagating rupture. By testing several nucleation locations, we observe that those far from an oblique normal fault stepover segment (near Istanbul) lead to large through-going rupture on the entire fault system, whereas nucleation locations closer to the stepover segment tend to produce ruptures that die out in the stepover. However, this pattern can change drastically with only a 10° rotation of the regional stress field. Our simulations also reveal that while dynamic unclamping near fault bends can produce a new mode of supershear rupture propagation, this unclamping has a much smaller effect on the speed of the peak in slip velocity along the fault. Finally, we find that the complex fault geometry leads to a very complex and asymmetric pattern of near-fault ground motion, including greatly amplified ground motion on the insides of fault bends. The ground-motion pattern can change significantly with different hypocentres, even beyond the typical effects of directivity. The results of this study may have implications for seismic hazard in this region, for the dynamics and ground motion of geometrically complex faults, and for the interpretation of kinematic inverse rupture models.

  8. Guaranteed Cost Fault-Tolerant Control for Networked Control Systems with Sensor Faults

    Directory of Open Access Journals (Sweden)

    Qixin Zhu

    2015-01-01

    Full Text Available For the large scale and complicated structure of networked control systems, time-varying sensor faults could inevitably occur when the system works in a poor environment. Guaranteed cost fault-tolerant controller for the new networked control systems with time-varying sensor faults is designed in this paper. Based on time delay of the network transmission environment, the networked control systems with sensor faults are modeled as a discrete-time system with uncertain parameters. And the model of networked control systems is related to the boundary values of the sensor faults. Moreover, using Lyapunov stability theory and linear matrix inequalities (LMI approach, the guaranteed cost fault-tolerant controller is verified to render such networked control systems asymptotically stable. Finally, simulations are included to demonstrate the theoretical results.

  9. Robust Fault Diagnosis Design for Linear Multiagent Systems with Incipient Faults

    Directory of Open Access Journals (Sweden)

    Jingping Xia

    2015-01-01

    Full Text Available The design of a robust fault estimation observer is studied for linear multiagent systems subject to incipient faults. By considering the fact that incipient faults are in low-frequency domain, the fault estimation of such faults is proposed for discrete-time multiagent systems based on finite-frequency technique. Moreover, using the decomposition design, an equivalent conclusion is given. Simulation results of a numerical example are presented to demonstrate the effectiveness of the proposed techniques.

  10. Relaxation on the Ismetpasa segment of the North Anatolian Fault after the Golcuk Mw = 7.4 and Duzce Mw = 7.2 shocks

    Directory of Open Access Journals (Sweden)

    E. Koksal

    2010-12-01

    Full Text Available The Ismetpasa segment of the North Anatolian Fault (NAF is a rare place where aseismic fault slip (creep has been observed. Its creep behaviour has been monitored using different observation methods since the 1950s. The findings obtained from the studies until 1990s showed that the creep rate exponentially decreased before the major shocks in 1999, Golcuk (Mw = 7.4 and Duzce (Mw = 7.2. After these shocks, three GPS periods observation in 2002, 2007 and 2008 were carried out on the geodetic network established around the segment. The evaluations of these observations showed that the creep behaviour relaxed after the major earthquakes. This result demonstrates that the creep behaviour of the Ismetpasa segment might be a warning before future major earthquakes.

  11. Need for denser geodetic network to get real constrain on the fault behavior along the Main Marmara Sea segments of the NAF, toward an optimized GPS network.

    Science.gov (United States)

    Klein, E.; Masson, F.; Duputel, Z.; Yavasoglu, H.; Agram, P. S.

    2016-12-01

    Over the last two decades, the densification of GPS networks and the development of new radar satellites offered an unprecedented opportunity to study crustal deformation due to faulting. Yet, submarine strike slip fault segments remain a major issue, especially when the landscape appears unfavorable to the use of SAR measurements. It is the case of the North Anatolian fault segments located in the Main Marmara Sea, that remain unbroken ever since the Mw7.4 earthquake of Izmit in 1999, which ended a eastward migrating seismic sequence of Mw > 7 earthquakes. Located directly offshore Istanbul, evaluation of seismic hazard appears capital. But a strong controversy remains over whether these segments are accumulating strain and are likely to experience a major earthquake, or are creeping, resulting both from the simplicity of current geodetic models and the scarcity of geodetic data. We indeed show that 2D infinite fault models cannot account for the complexity of the Marmara fault segments. But current geodetic data in the western region of Istanbul are also insufficient to invert for the coupling using a 3D geometry of the fault. Therefore, we implement a global optimization procedure aiming at identifying the most favorable distribution of GPS stations to explore the strain accumulation. We present here the results of this procedure that allows to determine both the optimal number and location of the new stations. We show that a denser terrestrial survey network can indeed locally improve the resolution on the shallower part of the fault, even more efficiently with permanent stations. But data closer from the fault, only possible by submarine measurements, remain necessary to properly constrain the fault behavior and its potential along strike coupling variations.

  12. Coseismic Slip Deficit of the 2017 Mw 6.5 Ormoc Earthquake That Occurred Along a Creeping Segment and Geothermal Field of the Philippine Fault

    Science.gov (United States)

    Yang, Ying-Hui; Tsai, Min-Chien; Hu, Jyr-Ching; Aurelio, Mario A.; Hashimoto, Manabu; Escudero, John Agustin P.; Su, Zhe; Chen, Qiang

    2018-03-01

    Coseismic surface deformation imaged through interferometric synthetic aperture radar (InSAR) measurements was used to estimate the fault geometry and slip distribution of the 2017 Mw 6.5 Ormoc earthquake along a creeping segment of the Philippine Fault on Leyte Island. Our best fitting faulting model suggests that the coseismic rupture occurred on a fault plane with high dip angle of 78.5° and strike angle of 325.8°, and the estimated maximum fault slip of 2.3 m is located at 6.5 km east-northeast of the town of Kananga. The recognized insignificant slip in the Tongonan geothermal field zone implies that the plastic behavior caused by high geothermal gradient underneath the Tongonan geothermal field could prevent the coseismic failure in heated rock mass in this zone. The predicted Coulomb failure stress change shows that a significant positive Coulomb failure stress change occurred along the SE segment of central Philippine Fault with insignificant coseismic slip and infrequent aftershocks, which suggests an increasing risk for future seismic hazard.

  13. Geology and structure of the North Boqueron Bay-Punta Montalva Fault System

    Science.gov (United States)

    Roig Silva, Coral Marie

    The North Boqueron Bay-Punta Montalva Fault Zone is an active fault system that cuts across the Lajas Valley in southwestern Puerto Rico. The fault zone has been recognized and mapped based upon detailed analysis of geophysical data, satellite images and field mapping. The fault zone consists of a series of Cretaceous bedrock faults that reactivated and deformed Miocene limestone and Quaternary alluvial fan sediments. The fault zone is seismically active (ML < 5.0) with numerous locally felt earthquakes. Focal mechanism solutions and structural field data suggest strain partitioning with predominantly east-west left-lateral displacements with small normal faults oriented mostly toward the northeast. Evidence for recent displacement consists of fractures and small normal faults oriented mostly northeast found in intermittent streams that cut through the Quaternary alluvial fan deposits along the southern margin of the Lajas Valley, Areas of preferred erosion, within the alluvial fan, trend toward the west-northwest parallel to the on-land projection of the North Boqueron Bay Fault. Beyond the faulted alluvial fan and southeast of the Lajas Valley, the Northern Boqueron Bay Fault joins with the Punta Montalva Fault. The Punta Montalva Fault is defined by a strong topographic WNW lineament along which stream channels are displaced left laterally 200 meters and Miocene strata are steeply tilted to the south. Along the western end of the fault zone in northern Boqueron Bay, the older strata are only tilted 3° south and are covered by flat lying Holocene sediments. Focal mechanisms solutions along the western end suggest NW-SE shortening, which is inconsistent with left lateral strain partitioning along the fault zone. The limited deformation of older strata and inconsistent strain partitioning may be explained by a westerly propagation of the fault system from the southwest end. The limited geomorphic structural expression along the North Boqueron Bay Fault segment

  14. Fuzzy fault diagnosis system of MCFC

    Institute of Scientific and Technical Information of China (English)

    Wang Zhenlei; Qian Feng; Cao Guangyi

    2005-01-01

    A kind of fault diagnosis system of molten carbonate fuel cell (MCFC) stack is proposed in this paper. It is composed of a fuzzy neural network (FNN) and a fault diagnosis element. FNN is able to deal with the information of the expert knowledge and the experiment data efficiently. It also has the ability to approximate any smooth system. FNN is used to identify the fault diagnosis model of MCFC stack. The fuzzy fault decision element can diagnose the state of the MCFC generating system, normal or fault, and can decide the type of the fault based on the outputs of FNN model and the MCFC system. Some simulation experiment results are demonstrated in this paper.

  15. 4D stress evolution models of the San Andreas Fault System: Investigating time- and depth-dependent stress thresholds over multiple earthquake cycles

    Science.gov (United States)

    Burkhard, L. M.; Smith-Konter, B. R.

    2017-12-01

    4D simulations of stress evolution provide a rare insight into earthquake cycle crustal stress variations at seismogenic depths where earthquake ruptures nucleate. Paleoseismic estimates of earthquake offset and chronology, spanning multiple earthquakes cycles, are available for many well-studied segments of the San Andreas Fault System (SAFS). Here we construct new 4D earthquake cycle time-series simulations to further study the temporally and spatially varying stress threshold conditions of the SAFS throughout the paleoseismic record. Interseismic strain accumulation, co-seismic stress drop, and postseismic viscoelastic relaxation processes are evaluated as a function of variable slip and locking depths along 42 major fault segments. Paleoseismic earthquake rupture histories provide a slip chronology dating back over 1000 years. Using GAGE Facility GPS and new Sentinel-1A InSAR data, we tune model locking depths and slip rates to compute the 4D stress accumulation within the seismogenic crust. Revised estimates of stress accumulation rate are most significant along the Imperial (2.8 MPa/100yr) and Coachella (1.2 MPa/100yr) faults, with a maximum change in stress rate along some segments of 11-17% in comparison with our previous estimates. Revised estimates of earthquake cycle stress accumulation are most significant along the Imperial (2.25 MPa), Coachella (2.9 MPa), and Carrizo (3.2 MPa) segments, with a 15-29% decrease in stress due to locking depth and slip rate updates, and also postseismic relaxation from the El Mayor-Cucapah earthquake. Because stress drops of major strike-slip earthquakes rarely exceed 10 MPa, these models may provide a lower bound on estimates of stress evolution throughout the historical era, and perhaps an upper bound on the expected recurrence interval of a particular fault segment. Furthermore, time-series stress models reveal temporally varying stress concentrations at 5-10 km depths, due to the interaction of neighboring fault

  16. Fault trees for diagnosis of system fault conditions

    International Nuclear Information System (INIS)

    Lambert, H.E.; Yadigaroglu, G.

    1977-01-01

    Methods for generating repair checklists on the basis of fault tree logic and probabilistic importance are presented. A one-step-ahead optimization procedure, based on the concept of component criticality, minimizing the expected time to diagnose system failure is outlined. Options available to the operator of a nuclear power plant when system fault conditions occur are addressed. A low-pressure emergency core cooling injection system, a standby safeguard system of a pressurized water reactor power plant, is chosen as an example illustrating the methods presented

  17. Data-driven design of fault diagnosis and fault-tolerant control systems

    CERN Document Server

    Ding, Steven X

    2014-01-01

    Data-driven Design of Fault Diagnosis and Fault-tolerant Control Systems presents basic statistical process monitoring, fault diagnosis, and control methods, and introduces advanced data-driven schemes for the design of fault diagnosis and fault-tolerant control systems catering to the needs of dynamic industrial processes. With ever increasing demands for reliability, availability and safety in technical processes and assets, process monitoring and fault-tolerance have become important issues surrounding the design of automatic control systems. This text shows the reader how, thanks to the rapid development of information technology, key techniques of data-driven and statistical process monitoring and control can now become widely used in industrial practice to address these issues. To allow for self-contained study and facilitate implementation in real applications, important mathematical and control theoretical knowledge and tools are included in this book. Major schemes are presented in algorithm form and...

  18. Data-based fault-tolerant control for affine nonlinear systems with actuator faults.

    Science.gov (United States)

    Xie, Chun-Hua; Yang, Guang-Hong

    2016-09-01

    This paper investigates the fault-tolerant control (FTC) problem for unknown nonlinear systems with actuator faults including stuck, outage, bias and loss of effectiveness. The upper bounds of stuck faults, bias faults and loss of effectiveness faults are unknown. A new data-based FTC scheme is proposed. It consists of the online estimations of the bounds and a state-dependent function. The estimations are adjusted online to compensate automatically the actuator faults. The state-dependent function solved by using real system data helps to stabilize the system. Furthermore, all signals in the resulting closed-loop system are uniformly bounded and the states converge asymptotically to zero. Compared with the existing results, the proposed approach is data-based. Finally, two simulation examples are provided to show the effectiveness of the proposed approach. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Active strike-slip faulting in El Salvador, Central America

    Science.gov (United States)

    Corti, Giacomo; Carminati, Eugenio; Mazzarini, Francesco; Oziel Garcia, Marvyn

    2005-12-01

    Several major earthquakes have affected El Salvador, Central America, during the Past 100 yr as a consequence of oblique subduction of the Cocos plate under the Caribbean plate, which is partitioned between trench-orthogonal compression and strike-slip deformation parallel to the volcanic arc. Focal mechanisms and the distribution of the most destructive earthquakes, together with geomorphologic evidence, suggest that this transcurrent component of motion may be accommodated by a major strike-slip fault (El Salvador fault zone). We present field geological, structural, and geomorphological data collected in central El Salvador that allow the constraint of the kinematics and the Quaternary activity of this major seismogenic strike-slip fault system. Data suggest that the El Salvador fault zone consists of at least two main ˜E-W fault segments (San Vicente and Berlin segments), with associated secondary synthetic (WNW-ESE) and antithetic (NNW-SSE) Riedel shears and NW-SE tensional structures. The two main fault segments overlap in a dextral en echelon style with the formation of an intervening pull-apart basin. Our original geological and geomorphologic data suggest a late Pleistocene Holocene slip rate of ˜11 mm/yr along the Berlin segment, in contrast with low historical seismicity. The kinematics and rates of deformation suggested by our new data are consistent with models involving slip partitioning during oblique subduction, and support the notion that a trench-parallel component of motion between the Caribbean and Cocos plates is concentrated along E-W dextral strike-slip faults parallel to the volcanic arc.

  20. Fault-tolerant cooperative output regulation for multi-vehicle systems with sensor faults

    Science.gov (United States)

    Qin, Liguo; He, Xiao; Zhou, D. H.

    2017-10-01

    This paper presents a unified framework of fault diagnosis and fault-tolerant cooperative output regulation (FTCOR) for a linear discrete-time multi-vehicle system with sensor faults. The FTCOR control law is designed through three steps. A cooperative output regulation (COR) controller is designed based on the internal mode principle when there are no sensor faults. A sufficient condition on the existence of the COR controller is given based on the discrete-time algebraic Riccati equation (DARE). Then, a decentralised fault diagnosis scheme is designed to cope with sensor faults occurring in followers. A residual generator is developed to detect sensor faults of each follower, and a bank of fault-matching estimators are proposed to isolate and estimate sensor faults of each follower. Unlike the current distributed fault diagnosis for multi-vehicle systems, the presented decentralised fault diagnosis scheme in each vehicle reduces the communication and computation load by only using the information of the vehicle. By combing the sensor fault estimation and the COR control law, an FTCOR controller is proposed. Finally, the simulation results demonstrate the effectiveness of the FTCOR controller.

  1. Quaternary Activity of the Monastir and Grombalia Fault Systems in the North‒Eastern Tunisia (Seismotectonic Implication)

    Science.gov (United States)

    Ghribi, R.; Zaatra, D.; Bouaziz, S.

    2018-01-01

    The Monastir and Grombalia fault systems consist of three strands that the northern segment corresponds to Hammamet and Grombalia faults. The southern strand represents Monastir Fault also referred to as the Skanes-Khnis Fault. These NW-trends are observed continuously in the major outcropping features of north-eastern Tunisia including both the Cap Bon peninsula and the Sahel domain. Along the Hammamet Fault, the north-eastern strand of Grombalia fault system, left lateral drainage offset of amount 220 m is found in Fawara valley. To the South, the left lateral movement is occurred along the Monastir Fault based on 180 m of Tyrrhenian terrace displacement. Field observations supported by satellite images suggest that the Monastir and Grombalia fault systems appear to slip mostly laterally with components of normal dip slip. Assuming the development of the stream networks during the Riss-Würm interglacial (115000-125000 years) and the age of the Tyrrhenian terrace (121 ± 10 ka), the strike slip rates of the Hammamet and Monastir faults are calculated in the range of 1.5-1.8 mm/yr. There vertical slip rates are estimated to be 0.06 and 0.26 mm/yr, respectively. These data are consistent with the displacement rate in the Pelagian shelf (1-2 mm/yr) but they are below the convergence rate of African-Eurasian plates (8 mm/yr). Our seismotectonics study reveals that a maximum earthquake of Mw = 6.5 could occur every 470 years in the Hammamet fault zone and Mw = 6-every 263 years in the Monastir fault zone.

  2. Distributed Fault-Tolerant Control of Networked Uncertain Euler-Lagrange Systems Under Actuator Faults.

    Science.gov (United States)

    Chen, Gang; Song, Yongduan; Lewis, Frank L

    2016-05-03

    This paper investigates the distributed fault-tolerant control problem of networked Euler-Lagrange systems with actuator and communication link faults. An adaptive fault-tolerant cooperative control scheme is proposed to achieve the coordinated tracking control of networked uncertain Lagrange systems on a general directed communication topology, which contains a spanning tree with the root node being the active target system. The proposed algorithm is capable of compensating for the actuator bias fault, the partial loss of effectiveness actuation fault, the communication link fault, the model uncertainty, and the external disturbance simultaneously. The control scheme does not use any fault detection and isolation mechanism to detect, separate, and identify the actuator faults online, which largely reduces the online computation and expedites the responsiveness of the controller. To validate the effectiveness of the proposed method, a test-bed of multiple robot-arm cooperative control system is developed for real-time verification. Experiments on the networked robot-arms are conduced and the results confirm the benefits and the effectiveness of the proposed distributed fault-tolerant control algorithms.

  3. Determining on-fault magnitude distributions for a connected, multi-fault system

    Science.gov (United States)

    Geist, E. L.; Parsons, T.

    2017-12-01

    A new method is developed to determine on-fault magnitude distributions within a complex and connected multi-fault system. A binary integer programming (BIP) method is used to distribute earthquakes from a 10 kyr synthetic regional catalog, with a minimum magnitude threshold of 6.0 and Gutenberg-Richter (G-R) parameters (a- and b-values) estimated from historical data. Each earthquake in the synthetic catalog can occur on any fault and at any location. In the multi-fault system, earthquake ruptures are allowed to branch or jump from one fault to another. The objective is to minimize the slip-rate misfit relative to target slip rates for each of the faults in the system. Maximum and minimum slip-rate estimates around the target slip rate are used as explicit constraints. An implicit constraint is that an earthquake can only be located on a fault (or series of connected faults) if it is long enough to contain that earthquake. The method is demonstrated in the San Francisco Bay area, using UCERF3 faults and slip-rates. We also invoke the same assumptions regarding background seismicity, coupling, and fault connectivity as in UCERF3. Using the preferred regional G-R a-value, which may be suppressed by the 1906 earthquake, the BIP problem is deemed infeasible when faults are not connected. Using connected faults, however, a solution is found in which there is a surprising diversity of magnitude distributions among faults. In particular, the optimal magnitude distribution for earthquakes that participate along the Peninsula section of the San Andreas fault indicates a deficit of magnitudes in the M6.0- 7.0 range. For the Rodgers Creek-Hayward fault combination, there is a deficit in the M6.0- 6.6 range. Rather than solving this as an optimization problem, we can set the objective function to zero and solve this as a constraint problem. Among the solutions to the constraint problem is one that admits many more earthquakes in the deficit magnitude ranges for both faults

  4. Integrated system fault diagnostics utilising digraph and fault tree-based approaches

    International Nuclear Information System (INIS)

    Bartlett, L.M.; Hurdle, E.E.; Kelly, E.M.

    2009-01-01

    With the growing intolerance to failures within systems, the issue of fault diagnosis has become ever prevalent. Information concerning these possible failures can help to minimise the disruption to the functionality of the system by allowing quick rectification. Traditional approaches to fault diagnosis within engineering systems have focused on sequential testing procedures and real-time mechanisms. Both methods have been predominantly limited to single fault causes. Latest approaches also consider the issue of multiple faults in reflection to the characteristics of modern day systems designed for high reliability. In addition, a diagnostic capability is required in real time and for changeable system functionality. This paper focuses on two approaches which have been developed to cater for the demands of diagnosis within current engineering systems, namely application of the fault tree analysis technique and the method of digraphs. Both use a comparative approach to consider differences between actual system behaviour and that expected. The procedural guidelines are discussed for each method, with an experimental aircraft fuel system used to test and demonstrate the features of the techniques. The effectiveness of the approaches is compared and their future potential highlighted

  5. Synthesis of Fault-Tolerant Embedded Systems

    DEFF Research Database (Denmark)

    Eles, Petru; Izosimov, Viacheslav; Pop, Paul

    2008-01-01

    This work addresses the issue of design optimization for fault- tolerant hard real-time systems. In particular, our focus is on the handling of transient faults using both checkpointing with rollback recovery and active replication. Fault tolerant schedules are generated based on a conditional...... process graph representation. The formulated system synthesis approaches decide the assignment of fault-tolerance policies to processes, the optimal placement of checkpoints and the mapping of processes to processors, such that multiple transient faults are tolerated, transparency requirements...

  6. Study on seismic hazard assessment of large active fault systems. Evolution of fault systems and associated geomorphic structures: fault model test and field survey

    International Nuclear Information System (INIS)

    Ueta, Keichi; Inoue, Daiei; Miyakoshi, Katsuyoshi; Miyagawa, Kimio; Miura, Daisuke

    2003-01-01

    Sandbox experiments and field surveys were performed to investigate fault system evolution and fault-related deformation of ground surface, the Quaternary deposits and rocks. The summary of the results is shown below. 1) In the case of strike-slip faulting, the basic fault sequence runs from early en echelon faults and pressure ridges through linear trough. The fault systems associated with the 2000 western Tottori earthquake are shown as en echelon pattern that characterize the early stage of wrench tectonics, therefore no thoroughgoing surface faulting was found above the rupture as defined by the main shock and aftershocks. 2) Low-angle and high-angle reverse faults commonly migrate basinward with time, respectively. With increasing normal fault displacement in bedrock, normal fault develops within range after reverse fault has formed along range front. 3) Horizontal distance of surface rupture from the bedrock fault normalized by the height of the Quaternary deposits agrees well with those of model tests. 4) Upward-widening damage zone, where secondary fractures develop, forms in the handing wall side of high-angle reverse fault at the Kamioka mine. (author)

  7. High-Intensity Radiated Field Fault-Injection Experiment for a Fault-Tolerant Distributed Communication System

    Science.gov (United States)

    Yates, Amy M.; Torres-Pomales, Wilfredo; Malekpour, Mahyar R.; Gonzalez, Oscar R.; Gray, W. Steven

    2010-01-01

    Safety-critical distributed flight control systems require robustness in the presence of faults. In general, these systems consist of a number of input/output (I/O) and computation nodes interacting through a fault-tolerant data communication system. The communication system transfers sensor data and control commands and can handle most faults under typical operating conditions. However, the performance of the closed-loop system can be adversely affected as a result of operating in harsh environments. In particular, High-Intensity Radiated Field (HIRF) environments have the potential to cause random fault manifestations in individual avionic components and to generate simultaneous system-wide communication faults that overwhelm existing fault management mechanisms. This paper presents the design of an experiment conducted at the NASA Langley Research Center's HIRF Laboratory to statistically characterize the faults that a HIRF environment can trigger on a single node of a distributed flight control system.

  8. Evidence for chaotic fault interactions in the seismicity of the San Andreas fault and Nankai trough

    Science.gov (United States)

    Huang, Jie; Turcotte, D. L.

    1990-01-01

    The dynamical behavior introduced by fault interactions is examined here using a simple spring-loaded, slider-block model with velocity-weakening friction. The model consists of two slider blocks coupled to each other and to a constant-velocity driver by elastic springs. For an asymmetric system in which the frictional forces on the two blocks are not equal, the solutions exhibit chaotic behavior. The system's behavior over a range of parameter values seems to be generally analogous to that of weakly coupled segments of an active fault. Similarities between the model simulations and observed patterns of seismicity on the south central San Andreas fault in California and in the Nankai trough along the coast of southwestern Japan.

  9. Subaru FATS (fault tracking system)

    Science.gov (United States)

    Winegar, Tom W.; Noumaru, Junichi

    2000-07-01

    The Subaru Telescope requires a fault tracking system to record the problems and questions that staff experience during their work, and the solutions provided by technical experts to these problems and questions. The system records each fault and routes it to a pre-selected 'solution-provider' for each type of fault. The solution provider analyzes the fault and writes a solution that is routed back to the fault reporter and recorded in a 'knowledge-base' for future reference. The specifications of our fault tracking system were unique. (1) Dual language capacity -- Our staff speak both English and Japanese. Our contractors speak Japanese. (2) Heterogeneous computers -- Our computer workstations are a mixture of SPARCstations, Macintosh and Windows computers. (3) Integration with prime contractors -- Mitsubishi and Fujitsu are primary contractors in the construction of the telescope. In many cases, our 'experts' are our contractors. (4) Operator scheduling -- Our operators spend 50% of their work-month operating the telescope, the other 50% is spent working day shift at the base facility in Hilo, or day shift at the summit. We plan for 8 operators, with a frequent rotation. We need to keep all operators informed on the current status of all faults, no matter the operator's location.

  10. Earthquake Activities Along the Strike-Slip Fault System on the Thailand-Myanmar Border

    Directory of Open Access Journals (Sweden)

    Santi Pailoplee

    2014-01-01

    Full Text Available This study investigates the present-day seismicity along the strike-slip fault system on the Thailand-Myanmar border. Using the earthquake catalogue the earthquake parameters representing seismic activities were evaluated in terms of the possible maximum magnitude, return period and earthquake occurrence probabilities. Three different hazardous areas could be distinguished from the obtained results. The most seismic-prone area was located along the northern segment of the fault system and can generate earthquakes of magnitude 5.0, 5.8, and 6.8 mb in the next 5, 10, and 50 years, respectively. The second most-prone area was the southern segment where earthquakes of magnitude 5.0, 6.0, and 7.0 mb might be generated every 18, 60, and 300 years, respectively. For the central segment, there was less than 30 and 10% probability that 6.0- and 7.0-mb earthquakes will be generated in the next 50 years. With regards to the significant infrastructures (dams in the vicinity, the operational Wachiralongkorn dam is situated in a low seismic hazard area with a return period of around 30 - 3000 years for a 5.0 - 7.0 mb earthquake. In contrast, the Hut Gyi, Srinakarin and Tha Thung Na dams are seismically at risk for earthquakes of mb 6.4 - 6.5 being generated in the next 50 years. Plans for a seismic-retrofit should therefore be completed and implemented while seismic monitoring in this region is indispensable.

  11. Active intra-basin faulting in the Northern Basin of Lake Malawi from seismic reflection data

    Science.gov (United States)

    Shillington, D. J.; Chindandali, P. R. N.; Scholz, C. A.; Ebinger, C. J.; Onyango, E. A.; Peterson, K.; Gaherty, J. B.; Nyblade, A.; Accardo, N. J.; McCartney, T.; Oliva, S. J.; Kamihanda, G.; Ferdinand, R.; Salima, J.; Mruma, A. H.

    2016-12-01

    Many questions remain about the development and evolution of fault systems in weakly extended rifts, including the relative roles of border faults and intra-basin faults, and segmentation at various scales. The northern Lake Malawi (Nyasa) rift in the East African Rift System is an early stage rift exhibiting pronounced tectonic segmentation, which is defined by 100-km-long border faults. The basins also contain a series of intrabasinal faults and associated synrift sediments. The occurrence of the 2009 Karonga Earthquake Sequence on one of these intrabasinal faults indicates that some of them are active. Here we present new multichannel seismic reflection data from the Northern Basin of the Malawi Rift collected in 2015 as a part of the SEGMeNT (Study of Extension and maGmatism in Malawi aNd Tanzania) project. This rift basin is bound on its east side by the west-dipping Livingstone border fault. Over 650 km of seismic reflection profiles were acquired in the Northern Basin using a 500 to 1540 cu in air gun array and a 1200- to 1500-m seismic streamer. Dip lines image a series of north-south oriented west-dipping intra-basin faults and basement reflections up to 5 s twtt near the border fault. Cumulative offsets on intra-basin faults decrease to the west. The largest intra-basin fault has a vertical displacement of >2 s two-way travel time, indicating that it has accommodated significant total extension. Some of these intra-basin faults offset the lake bottom and the youngest sediments by up to 50 s twtt ( 37 m), demonstrating they are still active. The two largest intra-basin faults exhibit the largest offsets of young sediments and also correspond to the area of highest seismicity based on analysis of seismic data from the 89-station SEGMeNT onshore/offshore network (see Peterson et al, this session). Fault patterns in MCS profiles vary along the basin, suggesting a smaller scale of segmentation of faults within the basin; these variations in fault patterns

  12. Fault-weighted quantification method of fault detection coverage through fault mode and effect analysis in digital I&C systems

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jaehyun; Lee, Seung Jun, E-mail: sjlee420@unist.ac.kr; Jung, Wondea

    2017-05-15

    Highlights: • We developed the fault-weighted quantification method of fault detection coverage. • The method has been applied to specific digital reactor protection system. • The unavailability of the module had 20-times difference with the traditional method. • Several experimental tests will be effectively prioritized using this method. - Abstract: The one of the most outstanding features of a digital I&C system is the use of a fault-tolerant technique. With an awareness regarding the importance of thequantification of fault detection coverage of fault-tolerant techniques, several researches related to the fault injection method were developed and employed to quantify a fault detection coverage. In the fault injection method, each injected fault has a different importance because the frequency of realization of every injected fault is different. However, there have been no previous studies addressing the importance and weighting factor of each injected fault. In this work, a new method for allocating the weighting to each injected fault using the failure mode and effect analysis data was proposed. For application, the fault-weighted quantification method has also been applied to specific digital reactor protection system to quantify the fault detection coverage. One of the major findings in an application was that we may estimate the unavailability of the specific module in digital I&C systems about 20-times smaller than real value when we use a traditional method. The other finding was that we can also classify the importance of the experimental case. Therefore, this method is expected to not only suggest an accurate quantification procedure of fault-detection coverage by weighting the injected faults, but to also contribute to an effective fault injection experiment by sorting the importance of the failure categories.

  13. Fault diagnostics of dynamic system operation using a fault tree based method

    International Nuclear Information System (INIS)

    Hurdle, E.E.; Bartlett, L.M.; Andrews, J.D.

    2009-01-01

    For conventional systems, their availability can be considerably improved by reducing the time taken to restore the system to the working state when faults occur. Fault identification can be a significant proportion of the time taken in the repair process. Having diagnosed the problem the restoration of the system back to its fully functioning condition can then take place. This paper expands the capability of previous approaches to fault detection and identification using fault trees for application to dynamically changing systems. The technique has two phases. The first phase is modelling and preparation carried out offline. This gathers information on the effects that sub-system failure will have on the system performance. Causes of the sub-system failures are developed in the form of fault trees. The second phase is application. Sensors are installed on the system to provide information about current system performance from which the potential causes can be deduced. A simple system example is used to demonstrate the features of the method. To illustrate the potential for the method to deal with additional system complexity and redundancy, a section from an aircraft fuel system is used. A discussion of the results is provided.

  14. Fault-controlled development of shallow hydrothermal systems: Structural and mineralogical insights from the Southern Andes

    Science.gov (United States)

    Roquer, T.; Arancibia, G.; Rowland, J. V.; Iturrieta, P. C.; Morata, D.; Cembrano, J. M.

    2017-12-01

    Paleofluid-transporting systems can be recognized as meshes of fracture-filled veins in eroded zones of extinct hydrothermal systems. Here we conducted meso-microstructural analysis and mechanical modeling from two exhumed exposures of the faults governing regional tectonics of the Southern Andes: the Liquiñe-Ofqui Fault System (LOFS) and the Andean Transverse Faults (ATF). A total of 107 fractures in both exposures were analyzed. The ATF specific segment shows two tectonic solutions that can be modeled as Andersonian and non-Andersonian tectonic regimes: (1) shear (mode II/III) failure occurs at differential stresses > 28 MPa and fluid pressures 85-98% lithostatic in the non-Andersonian regime. Additionally, the LOFS exposure cyclically fails in extension (mode I) or extension + shear (modes I + II/III) in the Andersonian regime, at differential stresses 40-80% lithostatic. In areas of spatial interaction between ATF and LOFS, these conditions might favor: (1) the storage of overpressured fluids in hydrothermal systems associated with the ATF faults, and (2) continuous fluid flow through vertical conduits in the LOFS faults. These observations suggest that such intersections are highly probable locations for concentrated hydrothermal activity, which must be taken into consideration for further geothermal exploration. ACKNOWLEDGEMENTS. PhD CONICYT grants, Centro de Excelencia en Geotermia de los Andes (CEGA-FONDAP/CONICYT Project #15090013), FONDECYT Project #1130030 and Project CONICYT REDES #140036.

  15. Synthetic seismicity for the San Andreas fault

    Directory of Open Access Journals (Sweden)

    S. N. Ward

    1994-06-01

    Full Text Available Because historical catalogs generally span only a few repetition intervals of major earthquakes, they do not provide much constraint on how regularly earthquakes recur. In order to obtain better recurrence statistics and long-term probability estimates for events M ? 6 on the San Andreas fault, we apply a seismicity model to this fault. The model is based on the concept of fault segmentation and the physics of static dislocations which allow for stress transfer between segments. Constraints are provided by geological and seismological observations of segment lengths, characteristic magnitudes and long-term slip rates. Segment parameters slightly modified from the Working Group on California Earthquake Probabilities allow us to reproduce observed seismicity over four orders of magnitude. The model yields quite irregular earthquake recurrence patterns. Only the largest events (M ? 7.5 are quasi-periodic; small events cluster. Both the average recurrence time and the aperiodicity are also a function of position along the fault. The model results are consistent with paleoseismic data for the San Andreas fault as well as a global set of historical and paleoseismic recurrence data. Thus irregular earthquake recurrence resulting from segment interaction is consistent with a large range of observations.

  16. Fault zone processes in mechanically layered mudrock and chalk

    Science.gov (United States)

    Ferrill, David A.; Evans, Mark A.; McGinnis, Ronald N.; Morris, Alan P.; Smart, Kevin J.; Wigginton, Sarah S.; Gulliver, Kirk D. H.; Lehrmann, Daniel; de Zoeten, Erich; Sickmann, Zach

    2017-04-01

    A 1.5 km long natural cliff outcrop of nearly horizontal Eagle Ford Formation in south Texas exposes northwest and southeast dipping normal faults with displacements of 0.01-7 m cutting mudrock, chalk, limestone, and volcanic ash. These faults provide analogs for both natural and hydraulically-induced deformation in the productive Eagle Ford Formation - a major unconventional oil and gas reservoir in south Texas, U.S.A. - and other mechanically layered hydrocarbon reservoirs. Fault dips are steep to vertical through chalk and limestone beds, and moderate through mudrock and clay-rich ash, resulting in refracted fault profiles. Steeply dipping fault segments contain rhombohedral calcite veins that cross the fault zone obliquely, parallel to shear segments in mudrock. The vertical dimensions of the calcite veins correspond to the thickness of offset competent beds with which they are contiguous, and the slip parallel dimension is proportional to fault displacement. Failure surface characteristics, including mixed tensile and shear segments, indicate hybrid failure in chalk and limestone, whereas shear failure predominates in mudrock and ash beds - these changes in failure mode contribute to variation in fault dip. Slip on the shear segments caused dilation of the steeper hybrid segments. Tabular sheets of calcite grew by repeated fault slip, dilation, and cementation. Fluid inclusion and stable isotope geochemistry analyses of fault zone cements indicate episodic reactivation at 1.4-4.2 km depths. The results of these analyses document a dramatic bed-scale lithologic control on fault zone architecture that is directly relevant to the development of porosity and permeability anisotropy along faults.

  17. Late Quaternary faulting in the Vallo di Diano basin (southern Apennines, Italy)

    Science.gov (United States)

    Villani, F.; Pierdominici, S.; Cinti, F. R.

    2009-12-01

    The Vallo di Diano is the largest Quaternary extensional basin in the southern Apennines thrust-belt axis (Italy). This portion of the chain is highly seismic and is currently subject to NE-extension, which triggers large (M> 6) normal-faulting earthquakes along NW-trending faults. The eastern edge of the Vallo di Diano basin is bounded by an extensional fault system featuring three main NW-trending, SW-dipping, right-stepping, ~15-17 km long segments (from north to south: Polla, Atena Lucana-Sala Consilina and Padula faults). Holocene activity has been documented so far only for the Polla segment. We have therefore focused our geomorphological and paleoseismological study on the southern portion of the system, particularly along the ~ 4 km long Atena Lucana-Sala Consilina and Padula faults overlap zone. The latter is characterized by a complex system of coalescent alluvial fans, Middle Pleistocene to Holocene in age. Here we recognized a > 4 km long and 0.5-1.4 km wide set of scarps (ranging in height between 1 m and 2.5 m) affecting Late Pleistocene - Holocene alluvial fans. In the same area, two Late Pleistocene volcanoclastic layers at the top of an alluvial fan exposed in a quarry are affected by ~ 1 m normal displacements. Moreover, a trench excavated across a 2 m high scarp affecting a Holocene fan revealed warping of Late Holocene debris flow deposits, with a total vertical throw of about 0.3 m. We therefore infer the overlap zone of the Atena Lucana-Sala Consilina and Padula faults is a breached relay ramp, generated by hard-linkage of the two fault segments since Late Pleistocene. This ~ 32 km long fault system is active and is capable of generating Mw ≥6.5 earthquakes.

  18. On abrupt transpression to transtension transition in the South Baikal rift system (Tunka - South Baikal segment)

    Science.gov (United States)

    Sankov, Vladimir; Parfeevets, Anna; Lukhnev, Andrey; Miroshnitchenko, Andrey; Ashurkov, Sergey; Sankov, Alexey; Usynin, Leonid; Eskin, Alexander; Bryzhak, Evgeny

    2013-04-01

    This work addresses to relation of transpression and extension stress-strain conditions in intracontinental rift system. In our investigation we use a new structural, shallow geophysics, GPS geodetic data and paleostress reconstructions. The surroundings of southern tip of Siberian platform is the region of three Late Cenozoic structures conjugation: sublatitudinal Obruchev fault (OF) controlling the northern boundary of the South Baikal basin, NW trending Main Sayan fault (MSF) as the strike-slip boundary between Siberian platform and East Sayan block and WNW trending eastern segment of Tunka fault (TF) as part of the Tunka basins system northern boundary. A new evidences of superposition of compression and extension fault structures were revealed near the southern extremity of Baikal lake. We've find a very close vicinity of Late Pleistocene - Holocene strike-slip, thrust and normal faulting in the MSF and OF junction zone. The on-land Holocene normal faulting can be considered as secondary fault paragenesis within the main strike-slip zone (Sankov et al., 2009). Active strike-slip, thrust and reverse faulting characterize the MSF and TF junction zone. The transpression conditions are replaced very sharply by transtension and extension ones in eastern direction from zone of structures conjugation - the active normal faulting is dominated within the South Baikal basin. The Bystraya rift basin located in the west shows the tectonic inversion since Middle Pleistocene as a result of the strike-slip movements partitioning between TF and MSF and inset of edition compression stress. The active strike-slip and intrabasin extension conditions are dominated father to the west in Tunka basin. The results of our GPS measurements show the present day convergence and east movements of Khamar-Daban block and eastern Tunka basins relative to Siberian platform along MSF and TF with NE-SW shortening domination. The clear NW-SE divergence across Baikal basin is documented. Holocene

  19. Fault tolerant control design for hybrid systems

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hao; Jiang, Bin [Nanjing University of Aeronautics and Astronautics, Nanjing (China); Cocquempot, Vincent [Universite des Sciences et Technologies de Lille, Villeneuve d' Ascq (France)

    2010-07-01

    This book intends to provide the readers a good understanding on how to achieve Fault Tolerant Control goal of Hybrid Systems. The book can be used as a reference for the academic research on Fault Tolerant Control and Hybrid Systems or used in Ph.D. study of control theory and engineering. The knowledge background for this monograph would be some undergraduate and graduate courses on Fault Diagnosis and Fault Tolerant Control theory, linear system theory, nonlinear system theory, Hybrid Systems theory and Discrete Event System theory. (orig.)

  20. Coulomb stress transfer and tectonic loading preceding the 2002 Denali fault earthquake

    Science.gov (United States)

    Bufe, Charles G.

    2006-01-01

    Pre-2002 tectonic loading and Coulomb stress transfer are modeled along the rupture zone of the M 7.9 Denali fault earthquake (DFE) and on adjacent segments of the right-lateral Denali–Totschunda fault system in central Alaska, using a three-dimensional boundary-element program. The segments modeled closely follow, for about 95°, the arc of a circle of radius 375 km centered on an inferred asperity near the northeastern end of the intersection of the Patton Bay fault with the Alaskan megathrust under Prince William Sound. The loading model includes slip of 6 mm/yr below 12 km along the fault system, consistent with rotation of the Wrangell block about the asperity at a rate of about 1°/m.y. as well as slip of the Pacific plate at 5 cm/yr at depth along the Fairweather–Queen Charlotte transform fault system and on the Alaska megathrust. The model is consistent with most available pre-2002 Global Positioning System (GPS) displacement rate data. Coulomb stresses induced on the Denali–Totschunda fault system (locked above 12 km) by slip at depth and by transfer from the M 9.2 Prince William Sound earthquake of 1964 dominated the changing Coulomb stress distribution along the fault. The combination of loading (∼70–85%) and coseismic stress transfer from the great 1964 earthquake (∼15–30%) were the principal post-1900 stress factors building toward strike-slip failure of the northern Denali and Totschunda segments in the M 7.9 earthquake of November 2002. Postseismic stresses transferred from the 1964 earthquake may also have been a significant factor. The M 7.2–7.4 Delta River earthquake of 1912 (Carver et al., 2004) may have delayed or advanced the timing of the DFE, depending on the details and location of its rupture. The initial subevent of the 2002 DFE earthquake was on the 40-km Susitna Glacier thrust fault at the western end of the Denali fault rupture. The Coulomb stress transferred from the 1964 earthquake moved the Susitna Glacier thrust

  1. Active fault diagnosis in closed-loop systems

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2005-01-01

    Active fault diagnosis (AFD) of parametric faults is considered in connection with closed loop feedback systems. AFD involves auxiliary signals applied on the closed loop system. A fault signature matrix is introduced in connection with AFD and it is shown that if a limited number of faults can...

  2. Study of fault diagnosis software design for complex system based on fault tree

    International Nuclear Information System (INIS)

    Yuan Run; Li Yazhou; Wang Jianye; Hu Liqin; Wang Jiaqun; Wu Yican

    2012-01-01

    Complex systems always have high-level reliability and safety requirements, and same does their diagnosis work. As a great deal of fault tree models have been acquired during the design and operation phases, a fault diagnosis method which combines fault tree analysis with knowledge-based technology has been proposed. The prototype of fault diagnosis software has been realized and applied to mobile LIDAR system. (authors)

  3. Fault Diagnosis of Power Systems Using Intelligent Systems

    Science.gov (United States)

    Momoh, James A.; Oliver, Walter E. , Jr.

    1996-01-01

    The power system operator's need for a reliable power delivery system calls for a real-time or near-real-time Al-based fault diagnosis tool. Such a tool will allow NASA ground controllers to re-establish a normal or near-normal degraded operating state of the EPS (a DC power system) for Space Station Alpha by isolating the faulted branches and loads of the system. And after isolation, re-energizing those branches and loads that have been found not to have any faults in them. A proposed solution involves using the Fault Diagnosis Intelligent System (FDIS) to perform near-real time fault diagnosis of Alpha's EPS by downloading power transient telemetry at fault-time from onboard data loggers. The FDIS uses an ANN clustering algorithm augmented with a wavelet transform feature extractor. This combination enables this system to perform pattern recognition of the power transient signatures to diagnose the fault type and its location down to the orbital replaceable unit. FDIS has been tested using a simulation of the LeRC Testbed Space Station Freedom configuration including the topology from the DDCU's to the electrical loads attached to the TPDU's. FDIS will work in conjunction with the Power Management Load Scheduler to determine what the state of the system was at the time of the fault condition. This information is used to activate the appropriate diagnostic section, and to refine if necessary the solution obtained. In the latter case, if the FDIS reports back that it is equally likely that the faulty device as 'start tracker #1' and 'time generation unit,' then based on a priori knowledge of the system's state, the refined solution would be 'star tracker #1' located in cabinet ITAS2. It is concluded from the present studies that artificial intelligence diagnostic abilities are improved with the addition of the wavelet transform, and that when such a system such as FDIS is coupled to the Power Management Load Scheduler, a faulty device can be located and isolated

  4. Active fault detection in MIMO systems

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2014-01-01

    The focus in this paper is on active fault detection (AFD) for MIMO systems with parametric faults. The problem of design of auxiliary inputs with respect to detection of parametric faults is investigated. An analysis of the design of auxiliary inputs is given based on analytic transfer functions...... from auxiliary input to residual outputs. The analysis is based on a singular value decomposition of these transfer functions Based on this analysis, it is possible to design auxiliary input as well as design of the associated residual vector with respect to every single parametric fault in the system...... such that it is possible to detect these faults....

  5. Fault Diagnosis and Fault-tolerant Control of Modular Multi-level Converter High-voltage DC System

    DEFF Research Database (Denmark)

    Liu, Hui; Ma, Ke; Wang, Chao

    2016-01-01

    of failures and lower the reliability of the MMC-HVDC system. Therefore, research on the fault diagnosis and fault-tolerant control of MMC-HVDC system is of great significance in order to enhance the reliability of the system. This paper provides a comprehensive review of fault diagnosis and fault handling...

  6. Undulator Hall Air Temperature Fault Scenarios

    International Nuclear Information System (INIS)

    Sevilla, J.

    2010-01-01

    Recent experience indicates that the LCLS undulator segments must not, at any time following tuning, be allowed to change temperature by more than about ±2.5 C or the magnetic center will irreversibly shift outside of acceptable tolerances. This vulnerability raises a concern that under fault conditions the ambient temperature in the Undulator Hall might go outside of the safe range and potentially could require removal and retuning of all the segments. In this note we estimate changes that can be expected in the Undulator Hall air temperature for three fault scenarios: (1) System-wide power failure; (2) Heating Ventilation and Air Conditioning (HVAC) system shutdown; and (3) HVAC system temperature regulation fault. We find that for either a system-wide power failure or an HVAC system shutdown (with the technical equipment left on), the short-term temperature changes of the air would be modest due to the ability of the walls and floor to act as a heat ballast. No action would be needed to protect the undulator system in the event of a system-wide power failure. Some action to adjust the heat balance, in the case of the HVAC power failure with the equipment left on, might be desirable but is not required. On the other hand, a temperature regulation failure of the HVAC system can quickly cause large excursions in air temperature and prompt action would be required to avoid damage to the undulator system.

  7. Stress Interactions Between the 1976 Magnitude 7.8 Tangshan Earthquake and Adjacent Fault Systems in Northern China

    Science.gov (United States)

    Zhang, Z.; Lin, J.; Chen, Y. J.

    2004-12-01

    The 28 July 1976 ML = 7.8 Tangshan earthquake struck a highly populated metropolitan center in northern China and was one of the most devastating earthquakes in modern history. Its occurrence has significantly changed the Coulomb stresses on a complex network of strike-slip, normal, and thrust faults in the region, potentially heightened the odds of future earthquakes on some of these fault segments. We have conducted a detailed analysis of the 3D stress effects of the Tangshan earthquake on its neighboring faults, the relationship between stress transfer and aftershock locations, and the implications for future seismic hazard in the region. Available seismic and geodetic data, although limited, indicate that the Tangshan main shock sequence is composed of complex rupture on 2-3 fault segments. The dominant rupture mode is right-lateral strike-slip on two adjoining sub-segments that strike N5¡aE and N35¡aE, respectively. We calculated that the Tangshan main shock sequence has increased the Coulomb failure stress by more than 1 bar in the vicinity of the Lunanxian district to the east, where the largest aftershock (ML = 7.1) occurred 15 hours after the Tangshan main event. The second largest aftershock (ML = 6.8) occurred on the Ninghe fault to the southwest of the main rupture, in a transitional region between the calculated Coulomb stress increase and decrease. The majority of the ML > 5.0 aftershocks also occurred in areas of calculated Coulomb stress increase. Our analyses further indicate that the Coulomb stress on portions of other fault segments, including the Leting and Lulong fault to the east and Yejito fault to the north, may also have been increased. Thus it is critical to obtain estimates of earthquake repeat times on these and other tectonic faults and to acquire continuous GPS and space geodetic measurements. Investigation of stress interaction and earthquake triggering in northern China is not only highly societal relevant but also important for

  8. Statistical fault detection in photovoltaic systems

    KAUST Repository

    Garoudja, Elyes

    2017-05-08

    Faults in photovoltaic (PV) systems, which can result in energy loss, system shutdown or even serious safety breaches, are often difficult to avoid. Fault detection in such systems is imperative to improve their reliability, productivity, safety and efficiency. Here, an innovative model-based fault-detection approach for early detection of shading of PV modules and faults on the direct current (DC) side of PV systems is proposed. This approach combines the flexibility, and simplicity of a one-diode model with the extended capacity of an exponentially weighted moving average (EWMA) control chart to detect incipient changes in a PV system. The one-diode model, which is easily calibrated due to its limited calibration parameters, is used to predict the healthy PV array\\'s maximum power coordinates of current, voltage and power using measured temperatures and irradiances. Residuals, which capture the difference between the measurements and the predictions of the one-diode model, are generated and used as fault indicators. Then, the EWMA monitoring chart is applied on the uncorrelated residuals obtained from the one-diode model to detect and identify the type of fault. Actual data from the grid-connected PV system installed at the Renewable Energy Development Center, Algeria, are used to assess the performance of the proposed approach. Results show that the proposed approach successfully monitors the DC side of PV systems and detects temporary shading.

  9. Energy-efficient fault-tolerant systems

    CERN Document Server

    Mathew, Jimson; Pradhan, Dhiraj K

    2013-01-01

    This book describes the state-of-the-art in energy efficient, fault-tolerant embedded systems. It covers the entire product lifecycle of electronic systems design, analysis and testing and includes discussion of both circuit and system-level approaches. Readers will be enabled to meet the conflicting design objectives of energy efficiency and fault-tolerance for reliability, given the up-to-date techniques presented.

  10. Managing Space System Faults: Coalescing NASA's Views

    Science.gov (United States)

    Muirhead, Brian; Fesq, Lorraine

    2012-01-01

    Managing faults and their resultant failures is a fundamental and critical part of developing and operating aerospace systems. Yet, recent studies have shown that the engineering "discipline" required to manage faults is not widely recognized nor evenly practiced within the NASA community. Attempts to simply name this discipline in recent years has been fraught with controversy among members of the Integrated Systems Health Management (ISHM), Fault Management (FM), Fault Protection (FP), Hazard Analysis (HA), and Aborts communities. Approaches to managing space system faults typically are unique to each organization, with little commonality in the architectures, processes and practices across the industry.

  11. Newport-Inglewood-Carlsbad-Coronado Bank Fault System Nearshore Southern California: Testing models for Quaternary deformation

    Science.gov (United States)

    Bennett, J. T.; Sorlien, C. C.; Cormier, M.; Bauer, R. L.

    2011-12-01

    The San Andreas fault system is distributed across hundreds of kilometers in southern California. This transform system includes offshore faults along the shelf, slope and basin- comprising part of the Inner California Continental Borderland. Previously, offshore faults have been interpreted as being discontinuous and striking parallel to the coast between Long Beach and San Diego. Our recent work, based on several thousand kilometers of deep-penetration industry multi-channel seismic reflection data (MCS) as well as high resolution U.S. Geological Survey MCS, indicates that many of the offshore faults are more geometrically continuous than previously reported. Stratigraphic interpretations of MCS profiles included the ca. 1.8 Ma Top Lower Pico, which was correlated from wells located offshore Long Beach (Sorlien et. al. 2010). Based on this age constraint, four younger (Late) Quaternary unconformities are interpreted through the slope and basin. The right-lateral Newport-Inglewood fault continues offshore near Newport Beach. We map a single fault for 25 kilometers that continues to the southeast along the base of the slope. There, the Newport-Inglewood fault splits into the San Mateo-Carlsbad fault, which is mapped for 55 kilometers along the base of the slope to a sharp bend. This bend is the northern end of a right step-over of 10 kilometers to the Descanso fault and about 17 km to the Coronado Bank fault. We map these faults for 50 kilometers as they continue over the Mexican border. Both the San Mateo - Carlsbad with the Newport-Inglewood fault and the Coronado Bank with the Descanso fault are paired faults that form flower structures (positive and negative, respectively) in cross section. Preliminary kinematic models indicate ~1km of right-lateral slip since ~1.8 Ma at the north end of the step-over. We are modeling the slip on the southern segment to test our hypothesis for a kinematically continuous right-lateral fault system. We are correlating four

  12. The Evergreen basin and the role of the Silver Creek fault in the San Andreas fault system, San Francisco Bay region, California

    Science.gov (United States)

    Jachens, Robert C.; Wentworth, Carl M.; Graymer, Russell W.; Williams, Robert; Ponce, David A.; Mankinen, Edward A.; Stephenson, William J.; Langenheim, Victoria

    2017-01-01

    The Evergreen basin is a 40-km-long, 8-km-wide Cenozoic sedimentary basin that lies mostly concealed beneath the northeastern margin of the Santa Clara Valley near the south end of San Francisco Bay (California, USA). The basin is bounded on the northeast by the strike-slip Hayward fault and an approximately parallel subsurface fault that is structurally overlain by a set of west-verging reverse-oblique faults which form the present-day southeastward extension of the Hayward fault. It is bounded on the southwest by the Silver Creek fault, a largely dormant or abandoned fault that splays from the active southern Calaveras fault. We propose that the Evergreen basin formed as a strike-slip pull-apart basin in the right step from the Silver Creek fault to the Hayward fault during a time when the Silver Creek fault served as a segment of the main route by which slip was transferred from the central California San Andreas fault to the Hayward and other East Bay faults. The dimensions and shape of the Evergreen basin, together with palinspastic reconstructions of geologic and geophysical features surrounding it, suggest that during its lifetime, the Silver Creek fault transferred a significant portion of the ∼100 km of total offset accommodated by the Hayward fault, and of the 175 km of total San Andreas system offset thought to have been accommodated by the entire East Bay fault system. As shown previously, at ca. 1.5–2.5 Ma the Hayward-Calaveras connection changed from a right-step, releasing regime to a left-step, restraining regime, with the consequent effective abandonment of the Silver Creek fault. This reorganization was, perhaps, preceded by development of the previously proposed basin-bisecting Mount Misery fault, a fault that directly linked the southern end of the Hayward fault with the southern Calaveras fault during extinction of pull-apart activity. Historic seismicity indicates that slip below a depth of 5 km is mostly transferred from the Calaveras

  13. FAULT-TOLERANT DESIGN FOR ADVANCED DIVERSE PROTECTION SYSTEM

    Directory of Open Access Journals (Sweden)

    YANG GYUN OH

    2013-11-01

    Full Text Available For the improvement of APR1400 Diverse Protection System (DPS design, the Advanced DPS (ADPS has recently been developed to enhance the fault tolerance capability of the system. Major fault masking features of the ADPS compared with the APR1400 DPS are the changes to the channel configuration and reactor trip actuation equipment. To minimize the fault occurrences within the ADPS, and to mitigate the consequences of common-cause failures (CCF within the safety I&C systems, several fault avoidance design features have been applied in the ADPS. The fault avoidance design features include the changes to the system software classification, communication methods, equipment platform, MMI equipment, etc. In addition, the fault detection, location, containment, and recovery processes have been incorporated in the ADPS design. Therefore, it is expected that the ADPS can provide an enhanced fault tolerance capability against the possible faults within the system and its input/output equipment, and the CCF of safety systems.

  14. Motion in the north Iceland volcanic rift zone accommodated by bookshelf faulting

    Science.gov (United States)

    Green, Robert G.; White, Robert S.; Greenfield, Tim

    2014-01-01

    Along mid-ocean ridges the extending crust is segmented on length scales of 10-1,000km. Where rift segments are offset from one another, motion between segments is accommodated by transform faults that are oriented orthogonally to the main rift axis. Where segments overlap, non-transform offsets with a variety of geometries accommodate shear motions. Here we use micro-seismic data to analyse the geometries of faults at two overlapping rift segments exposed on land in north Iceland. Between the rift segments, we identify a series of faults that are aligned sub-parallel to the orientation of the main rift. These faults slip through left-lateral strike-slip motion. Yet, movement between the overlapping rift segments is through right-lateral motion. Together, these motions induce a clockwise rotation of the faults and intervening crustal blocks in a motion that is consistent with a bookshelf-faulting mechanism, named after its resemblance to a tilting row of books on a shelf. The faults probably reactivated existing crustal weaknesses, such as dyke intrusions, that were originally oriented parallel to the main rift and have since rotated about 15° clockwise. Reactivation of pre-existing, rift-parallel weaknesses contrasts with typical mid-ocean ridge transform faults and is an important illustration of a non-transform offset accommodating shear motion between overlapping rift segments.

  15. Abstractions for Fault-Tolerant Distributed System Verification

    Science.gov (United States)

    Pike, Lee S.; Maddalon, Jeffrey M.; Miner, Paul S.; Geser, Alfons

    2004-01-01

    Four kinds of abstraction for the design and analysis of fault tolerant distributed systems are discussed. These abstractions concern system messages, faults, fault masking voting, and communication. The abstractions are formalized in higher order logic, and are intended to facilitate specifying and verifying such systems in higher order theorem provers.

  16. Software fault tolerance in computer operating systems

    Science.gov (United States)

    Iyer, Ravishankar K.; Lee, Inhwan

    1994-01-01

    This chapter provides data and analysis of the dependability and fault tolerance for three operating systems: the Tandem/GUARDIAN fault-tolerant system, the VAX/VMS distributed system, and the IBM/MVS system. Based on measurements from these systems, basic software error characteristics are investigated. Fault tolerance in operating systems resulting from the use of process pairs and recovery routines is evaluated. Two levels of models are developed to analyze error and recovery processes inside an operating system and interactions among multiple instances of an operating system running in a distributed environment. The measurements show that the use of process pairs in Tandem systems, which was originally intended for tolerating hardware faults, allows the system to tolerate about 70% of defects in system software that result in processor failures. The loose coupling between processors which results in the backup execution (the processor state and the sequence of events occurring) being different from the original execution is a major reason for the measured software fault tolerance. The IBM/MVS system fault tolerance almost doubles when recovery routines are provided, in comparison to the case in which no recovery routines are available. However, even when recovery routines are provided, there is almost a 50% chance of system failure when critical system jobs are involved.

  17. Glacially induced faulting along the NW segment of the Sorgenfrei-Tornquist Zone, northern Denmark: Implications for neotectonics and Lateglacial fault-bound basin formation

    Science.gov (United States)

    Brandes, Christian; Steffen, Holger; Sandersen, Peter B. E.; Wu, Patrick; Winsemann, Jutta

    2018-06-01

    The Sorgenfrei-Tornquist Zone (STZ) is the northwestern segment of the Tornquist Zone and extends from Bornholm across the Baltic Sea and northern Denmark into the North Sea. It represents a major lithospheric structure with a significant increase in lithosphere thickness from south to north. A series of meter-scale normal faults and soft-sediment deformation structures (SSDS) are developed in Lateglacial marine and lacustrine sediments, which are exposed along the Lønstrup Klint cliff at the North Sea coast of northern Denmark. These deformed deposits occur in the local Nørre Lyngby basin that forms part of the STZ. Most of the SSDS are postdepositional, implying major tectonic activity between the Allerød and Younger Dryas (∼14 ka to 12 ka). The occurrence of some syn- and metadepositional SSDS point to an onset of tectonic activity at around 14.5 ka. The formation of normal faults is probably the effect of neotectonic movements along the Børglum fault, which represents the northern boundary fault of the STZ in the study area. The narrow and elongated Nørre Lyngby basin can be interpreted as a strike-slip basin that developed due to right-lateral movements at the Børglum fault. As indicated by the SSDS, these movements were most likely accompanied by earthquake(s). Based on the association of SSDS these earthquake(s) had magnitudes of at least Ms ≥ 4.2 or even up to magnitude ∼ 7 as indicated by a fault with 3 m displacement. The outcrop data are supported by a topographic analysis of the terrain that points to a strong impact from the fault activity on the topography, characterized by a highly regular erosional pattern, the evolution of fault-parallel sag ponds and a potential fault scarp with a height of 1-2 m. With finite-element simulations, we test the impact of Late Pleistocene (Weichselian) glaciation-induced Coulomb stress change on the reactivation potential of the Børglum fault. The numerical simulations of deglaciation-related lithospheric

  18. Active fault diagnosis in closed-loop uncertain systems

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik

    2006-01-01

    Fault diagnosis of parametric faults in closed-loop uncertain systems by using an auxiliary input vector is considered in this paper, i.e. active fault diagnosis (AFD). The active fault diagnosis is based directly on the socalled fault signature matrix, related to the YJBK (Youla, Jabr, Bongiorno...... and Kucera) parameterization. Conditions are given for exact detection and isolation of parametric faults in closed-loop uncertain systems....

  19. Interseismic Coupling on the Quito Fault System in Ecuador Using New GPS and InSAR Data and Its Implication on Seismic Hazard Assessment.

    Science.gov (United States)

    Mariniere, J.; Champenois, J.; Nocquet, J. M.; Beauval, C. M.; Audin, L.; Baize, S.; Alvarado, A. P.; Yepes, H. A.; Jomard, H.

    2017-12-01

    Quito, the capital of Ecuador hosting two million inhabitants lies on an active reverse fault system within the Andes. Regular moderate size earthquakes (M 5) occur on these faults, widely felt within the city and its surrounding. Despite a relatively small magnitude of Mw 5.1, the 2014 August 12 earthquake triggered landslides that killed 4 people, cut off one of the main highways for several weeks and caused the temporary shutdown of the airport. Quantifying the seismic potential of the Quito fault system is therefore crucial for a better preparation and mitigation to seismic risk. Previous work using a limited GPS data set found that the Quito fault accommodates 4 mm/yr of EW shortening (Alvarado et al., 2014) at shallow locking depths (3-7 km). We combine GPS and new InSAR data to extend the previous analysis and better quantify the spatial distribution of locking of the Quito fault. GPS dataset includes new continuous sites operating since 2013. 18 ERS SAR scenes, spanning the 1993-2000 time period and covering an area of 85 km by 30 km, were processed using a Permanent Scatter strategy. We perform a joint inversion of both data set (GPS and InSAR) to infer a new and better-constrained kinematic model of the fault to determine both the slip rate and the locking distribution at depth. We find a highly variable level of locking which changes along strike. At some segments, sharp displacement gradients observed both for GPS and InSAR suggest that the fault is creeping up to the surface, while shallow locking is found for other segments. Previous Probabilistic Seismic Hazard Assessment studies have shown that the Quito fault fully controls the hazard in Quito city (Beauval et al. 2014). The results will be used to improve the forecast of earthquakes on the Quito fault system for PSHA studies.

  20. Lateral Offset Quality Rating along Low Slip Rate Faults: Application to the Alhama de Murcia Fault (SE Iberian Peninsula

    Directory of Open Access Journals (Sweden)

    Marta Ferrater

    2015-11-01

    Full Text Available Seismic hazard assessment of strike-slip faults is based partly on the identification and mapping of landforms laterally offset due to fault activity. The characterization of these features affected by slow-moving faults is challenging relative to studies emphasizing rapidly slipping faults. We propose a methodology for scoring fault offsets based on subjective and objective qualities. We apply this methodology to the Alhama de Murcia fault (SE Iberian Peninsula where we identify 138 offset features that we mapped on a high-resolution (0.5 × 0.5 m pixel size Digital Elevation Model (DEM. The amount of offset, the uncertainty of the measurement, the subjective and objective qualities, and the parameters that affect objective quality are independent variables, suggesting that our methodological scoring approach is good. Based on the offset measurements and qualifications we calculate the Cumulative Offset Probability Density (COPD for the entire fault and for each fault segment. The COPD for the segments differ from each other. Tentative interpretation of the COPDs implies that the slip rate varies from one segment to the other (we assume that channels with the same amount of offset were incised synchronously. We compare the COPD with climate proxy curves (aligning using the very limited age control to test if entrenchment events are coincident with climatic changes. Channel incision along one of the traces in Lorca-Totana segment may be related to transitions from glacial to interglacial periods.

  1. Radon concentration distributions in shallow and deep groundwater around the Tachikawa fault zone.

    Science.gov (United States)

    Tsunomori, Fumiaki; Shimodate, Tomoya; Ide, Tomoki; Tanaka, Hidemi

    2017-06-01

    Groundwater radon concentrations around the Tachikawa fault zone were surveyed. The radon concentrations in shallow groundwater samples around the Tachikawa fault segment are comparable to previous studies. The characteristics of the radon concentrations on both sides of the segment are considered to have changed in response to the decrease in groundwater recharge caused by urbanization on the eastern side of the segment. The radon concentrations in deep groundwater samples collected around the Naguri and the Tachikawa fault segments are the same as those of shallow groundwater samples. However, the radon concentrations in deep groundwater samples collected from the bedrock beside the Naguri and Tachikawa fault segments are markedly higher than the radon concentrations expected from the geology on the Kanto plane. This disparity can be explained by the development of fracture zones spreading on both sides of the two segments. The radon concentration distribution for deep groundwater samples from the Naguri and the Tachikawa fault segments suggests that a fault exists even at the southern part of the Tachikawa fault line. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Active Fault Diagnosis in Sampled-data Systems

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2015-01-01

    The focus in this paper is on active fault diagnosis (AFD) in closed-loop sampleddata systems. Applying the same AFD architecture as for continuous-time systems does not directly result in the same set of closed-loop matrix transfer functions. For continuous-time systems, the LFT (linear fractional...... transformation) structure in the connection between the parametric faults and the matrix transfer function (also known as the fault signature matrix) applied for AFD is not directly preserved for sampled-data system. As a consequence of this, the AFD methods cannot directly be applied for sampled-data systems....... Two methods are considered in this paper to handle the fault signature matrix for sampled-data systems such that standard AFD methods can be applied. The first method is based on a discretization of the system such that the LFT structure is preserved resulting in the same LFT structure in the fault...

  3. Seismic evidence for arc segmentation, active magmatic intrusions and syn-rift fault system in the northern Ryukyu volcanic arc

    Science.gov (United States)

    Arai, Ryuta; Kodaira, Shuichi; Takahashi, Tsutomu; Miura, Seiichi; Kaneda, Yoshiyuki

    2018-04-01

    Tectonic and volcanic structures of the northern Ryukyu arc are investigated on the basis of multichannel seismic (MCS) reflection data. The study area forms an active volcanic front in parallel to the non-volcanic island chain in the eastern margin of the Eurasian plate and has been undergoing regional extension on its back-arc side. We carried out a MCS reflection experiment along two across-arc lines, and one of the profiles was laid out across the Tokara Channel, a linear bathymetric depression which demarcates the northern and central Ryukyu arcs. The reflection image reveals that beneath this topographic valley there exists a 3-km-deep sedimentary basin atop the arc crust, suggesting that the arc segment boundary was formed by rapid and focused subsidence of the arc crust driven by the arc-parallel extension. Around the volcanic front, magmatic conduits represented by tubular transparent bodies in the reflection images are well developed within the shallow sediments and some of them are accompanied by small fragments of dipping seismic reflectors indicating intruded sills at their bottoms. The spatial distribution of the conduits may suggest that the arc volcanism has multiple active outlets on the seafloor which bifurcate at crustal depths and/or that the location of the volcanic front has been migrating trenchward over time. Further distant from the volcanic front toward the back-arc (> 30 km away), these volcanic features vanish, and alternatively wide rift basins become predominant where rapid transitions from normal-fault-dominant regions to strike-slip-fault-dominant regions occur. This spatial variation in faulting patterns indicates complex stress regimes associated with arc/back-arc rifting in the northern Okinawa Trough.[Figure not available: see fulltext.

  4. Active tectonic deformation of the western Indian plate boundary: A case study from the Chaman Fault System

    Science.gov (United States)

    Crupa, Wanda E.; Khan, Shuhab D.; Huang, Jingqiu; Khan, Abdul S.; Kasi, Aimal

    2017-10-01

    Collision of the Eurasian and Indian plates has resulted in two spatially offset subduction zones, the Makran subduction zone to the south and the Himalayan convergent margin to the north. These zones are linked by a system of left-lateral strike-slip faults known as the Chaman Fault System, ∼1200 km, which spans along western Pakistan. Although this is one of the greatest strike-slip faults, yet temporal and spatial variation in displacement has not been adequately defined along this fault system. This study conducted geomorphic and geodetic investigations along the Chaman Fault in a search for evidence of spatial variations in motion. Four study areas were selected over the span of the Chaman Fault: (1) Tarnak-Rud area over the Tarnak-Rud valley, (2) Spinatizha area over the Spinatizha Mountain Range, (3) Nushki area over the Nushki basin, and (4) Kharan area over the northern tip of the Central Makran Mountains. Remote sensing data allowed for in depth mapping of different components and faults within the Kohjak group. Wind and water gap pairs along with offset rivers were identified using high-resolution imagery and digital-elevation models to show displacement for the four study areas. The mountain-front-sinuosity ratio, valley height-to-width-ratio, and the stream-length-gradient index were calculated and used to determine the relative tectonic activity of each area. These geomorphic indices suggest that the Kharan area is the most active and the Tarnak-Rud area is the least active. GPS data were processed into a stable Indian plate reference frame and analyzed. Fault parallel velocity versus fault normal distance yielded a ∼8-10 mm/yr displacement rate along the Chaman Fault just north of the Spinatizha area. InSAR data were also integrated to assess displacement rates along the fault system. Geodetic data support that ultra-slow earthquakes similar to those that strike along other major strike-slip faults, such as the San Andreas Fault System, are

  5. Fault geometry and earthquake mechanics

    Directory of Open Access Journals (Sweden)

    D. J. Andrews

    1994-06-01

    Full Text Available Earthquake mechanics may be determined by the geometry of a fault system. Slip on a fractal branching fault surface can explain: 1 regeneration of stress irregularities in an earthquake; 2 the concentration of stress drop in an earthquake into asperities; 3 starting and stopping of earthquake slip at fault junctions, and 4 self-similar scaling of earthquakes. Slip at fault junctions provides a natural realization of barrier and asperity models without appealing to variations of fault strength. Fault systems are observed to have a branching fractal structure, and slip may occur at many fault junctions in an earthquake. Consider the mechanics of slip at one fault junction. In order to avoid a stress singularity of order 1/r, an intersection of faults must be a triple junction and the Burgers vectors on the three fault segments at the junction must sum to zero. In other words, to lowest order the deformation consists of rigid block displacement, which ensures that the local stress due to the dislocations is zero. The elastic dislocation solution, however, ignores the fact that the configuration of the blocks changes at the scale of the displacement. A volume change occurs at the junction; either a void opens or intense local deformation is required to avoid material overlap. The volume change is proportional to the product of the slip increment and the total slip since the formation of the junction. Energy absorbed at the junction, equal to confining pressure times the volume change, is not large enongh to prevent slip at a new junction. The ratio of energy absorbed at a new junction to elastic energy released in an earthquake is no larger than P/µ where P is confining pressure and µ is the shear modulus. At a depth of 10 km this dimensionless ratio has th value P/µ= 0.01. As slip accumulates at a fault junction in a number of earthquakes, the fault segments are displaced such that they no longer meet at a single point. For this reason the

  6. Fault prediction for nonlinear stochastic system with incipient faults based on particle filter and nonlinear regression.

    Science.gov (United States)

    Ding, Bo; Fang, Huajing

    2017-05-01

    This paper is concerned with the fault prediction for the nonlinear stochastic system with incipient faults. Based on the particle filter and the reasonable assumption about the incipient faults, the modified fault estimation algorithm is proposed, and the system state is estimated simultaneously. According to the modified fault estimation, an intuitive fault detection strategy is introduced. Once each of the incipient fault is detected, the parameters of which are identified by a nonlinear regression method. Then, based on the estimated parameters, the future fault signal can be predicted. Finally, the effectiveness of the proposed method is verified by the simulations of the Three-tank system. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Industrial Cost-Benefit Assessment for Fault-tolerant Control Systems

    DEFF Research Database (Denmark)

    Thybo, Claus; Blanke, Mogens

    1998-01-01

    Economic aspects are decisive for industrial acceptance of research concepts including the promising ideas in fault tolerant control. Fault tolerance is the ability of a system to detect, isolate and accommodate a fault, such that simple faults in a sub-system do not develop into failures...... at a system level. In a design phase for an industrial system, possibilities span from fail safe design where any single point failure is accommodated by hardware, over fault-tolerant design where selected faults are handled without extra hardware, to fault-ignorant design where no extra precaution is taken...

  8. SENSORS FAULT DIAGNOSIS ALGORITHM DESIGN OF A HYDRAULIC SYSTEM

    Directory of Open Access Journals (Sweden)

    Matej ORAVEC

    2017-06-01

    Full Text Available This article presents the sensors fault diagnosis system design for the hydraulic system, which is based on the group of the three fault estimation filters. These filters are used for estimation of the system states and sensors fault magnitude. Also, this article briefly stated the hydraulic system state control design with integrator, which is important assumption for the fault diagnosis system design. The sensors fault diagnosis system is implemented into the Matlab/Simulink environment and it is verified using the controlled hydraulic system simulation model. Verification of the designed fault diagnosis system is realized by series of experiments, which simulates sensors faults. The results of the experiments are briefly presented in the last part of this article.

  9. Quantitative evaluation of fault coverage for digitalized systems in NPPs using simulated fault injection method

    International Nuclear Information System (INIS)

    Kim, Suk Joon

    2004-02-01

    Even though digital systems have numerous advantages such as precise processing of data, enhanced calculation capability over the conventional analog systems, there is a strong restriction on the application of digital systems to the safety systems in nuclear power plants (NPPs). This is because we do not fully understand the reliability of digital systems, and therefore we cannot guarantee the safety of digital systems. But, as the need for introduction of digital systems to safety systems in NPPs increasing, the need for the quantitative analysis on the safety of digital systems is also increasing. NPPs, which are quite conservative in terms of safety, require proving the reliability of digital systems when applied them to the NPPs. Moreover, digital systems which are applied to the NPPs are required to increase the overall safety of NPPs. however, it is very difficult to evaluate the reliability of digital systems because they include the complex fault processing mechanisms at various levels of the systems. Software is another obstacle in reliability assessment of the systems that requires ultra-high reliability. In this work, the fault detection coverage for the digital system is evaluated using simulated fault injection method. The target system is the Local Coincidence Logic (LCL) processor in Digital Plant Protection System (DPPS). However, as the LCL processor is difficult to design equally for evaluating the fault detection coverage, the LCL system has to be simplified. The simulations for evaluating the fault detection coverage of components are performed by dividing into two cases and the failure rates of components are evaluated using MIL-HDBK-217F. Using these results, the fault detection coverage of simplified LCL system is evaluated. In the experiments, heartbeat signals were just emitted at regular interval after executing logic without self-checking algorithm. When faults are injected into the simplified system, fault occurrence can be detected by

  10. Geophysical Characterization of the Hilton Creek Fault System

    Science.gov (United States)

    Lacy, A. K.; Macy, K. P.; De Cristofaro, J. L.; Polet, J.

    2016-12-01

    The Long Valley Caldera straddles the eastern edge of the Sierra Nevada Batholith and the western edge of the Basin and Range Province, and represents one of the largest caldera complexes on Earth. The caldera is intersected by numerous fault systems, including the Hartley Springs Fault System, the Round Valley Fault System, the Long Valley Ring Fault System, and the Hilton Creek Fault System, which is our main region of interest. The Hilton Creek Fault System appears as a single NW-striking fault, dipping to the NE, from Davis Lake in the south to the southern rim of the Long Valley Caldera. Inside the caldera, it splays into numerous parallel faults that extend toward the resurgent dome. Seismicity in the area increased significantly in May 1980, following a series of large earthquakes in the vicinity of the caldera and a subsequent large earthquake swarm which has been suggested to be the result of magma migration. A large portion of the earthquake swarms in the Long Valley Caldera occurs on or around the Hilton Creek Fault splays. We are conducting an interdisciplinary geophysical study of the Hilton Creek Fault System from just south of the onset of splay faulting, to its extension into the dome of the caldera. Our investigation includes ground-based magnetic field measurements, high-resolution total station elevation profiles, Structure-From-Motion derived topography and an analysis of earthquake focal mechanisms and statistics. Preliminary analysis of topographic profiles, of approximately 1 km in length, reveals the presence of at least three distinct fault splays within the caldera with vertical offsets of 0.5 to 1.0 meters. More detailed topographic mapping is expected to highlight smaller structures. We are also generating maps of the variation in b-value along different portions of the Hilton Creek system to determine whether we can detect any transition to more swarm-like behavior towards the North. We will show maps of magnetic anomalies, topography

  11. Paleoearthquake rupture behavior and recurrence of great earthquakes along the Haiyuan fault, northwestern China

    Institute of Scientific and Technical Information of China (English)

    ZHANG Peizhen; MIN Wei; DENG Qidong; MAO Fengying

    2005-01-01

    The Haiyuan fault is a major seismogenic fault in north-central China where the1920 Haiyuan earthquake of magnitude 8.5 occurred, resulting in more than 220000 deaths. The fault zone can be divided into three segments based on their geometric patterns and associated geomorphology. To study paleoseismology and recurrent history of devastating earthquakes along the fault, we dug 17 trenches along different segments of the fault zone. Although only 10of them allow the paleoearthquake event to be dated, together with the 8 trenches dug previously they still provide adequate information that enables us to capture major paleoearthquakes occurring along the fault during the past geological time. We discovered 3 events along the eastern segment during the past 14000 a, 7 events along the middle segment during the past 9000 a, and 6 events along the western segment during the past 10000 a. These events clearly depict two temporal clusters. The first cluster occurs from 4600 to 6400 a, and the second occurs from 1000to 2800 a, approximately. Each cluster lasts about 2000 a. Time period between these two clusters is also about 2000 a. Based on fault geometry, segmentation pattern, and paleoearthquake events along the Haiyuan fault we can identify three scales of earthquake rupture: rupture of one segment, cascade rupture of two segments, and cascade rupture of entire fault (three segments).Interactions of slip patches on the surface of the fault may cause rupture on one patch or ruptures of more than two to three patchs to form the complex patterns of cascade rupture events.

  12. Fault management and systems knowledge

    Science.gov (United States)

    2016-12-01

    Pilots are asked to manage faults during flight operations. This leads to the training question of the type and depth of system knowledge required to respond to these faults. Based on discussions with multiple airline operators, there is agreement th...

  13. Fault Injection and Monitoring Capability for a Fault-Tolerant Distributed Computation System

    Science.gov (United States)

    Torres-Pomales, Wilfredo; Yates, Amy M.; Malekpour, Mahyar R.

    2010-01-01

    The Configurable Fault-Injection and Monitoring System (CFIMS) is intended for the experimental characterization of effects caused by a variety of adverse conditions on a distributed computation system running flight control applications. A product of research collaboration between NASA Langley Research Center and Old Dominion University, the CFIMS is the main research tool for generating actual fault response data with which to develop and validate analytical performance models and design methodologies for the mitigation of fault effects in distributed flight control systems. Rather than a fixed design solution, the CFIMS is a flexible system that enables the systematic exploration of the problem space and can be adapted to meet the evolving needs of the research. The CFIMS has the capabilities of system-under-test (SUT) functional stimulus generation, fault injection and state monitoring, all of which are supported by a configuration capability for setting up the system as desired for a particular experiment. This report summarizes the work accomplished so far in the development of the CFIMS concept and documents the first design realization.

  14. Modeling and Fault Simulation of Propellant Filling System

    International Nuclear Information System (INIS)

    Jiang Yunchun; Liu Weidong; Hou Xiaobo

    2012-01-01

    Propellant filling system is one of the key ground plants in launching site of rocket that use liquid propellant. There is an urgent demand for ensuring and improving its reliability and safety, and there is no doubt that Failure Mode Effect Analysis (FMEA) is a good approach to meet it. Driven by the request to get more fault information for FMEA, and because of the high expense of propellant filling, in this paper, the working process of the propellant filling system in fault condition was studied by simulating based on AMESim. Firstly, based on analyzing its structure and function, the filling system was modular decomposed, and the mathematic models of every module were given, based on which the whole filling system was modeled in AMESim. Secondly, a general method of fault injecting into dynamic system was proposed, and as an example, two typical faults - leakage and blockage - were injected into the model of filling system, based on which one can get two fault models in AMESim. After that, fault simulation was processed and the dynamic characteristics of several key parameters were analyzed under fault conditions. The results show that the model can simulate effectively the two faults, and can be used to provide guidance for the filling system maintain and amelioration.

  15. Paleoseismic evidence in the segment of fault Sopetran or San Jeronimo Network 5

    International Nuclear Information System (INIS)

    Lalinde, Claudia; Gonzalez, Adriana; Caballero, Humberto

    2009-01-01

    The area Metropolitana did a seismic Hazard study of Barbosa, Girardota, Copacabana, Sabaneta, La Estrella, Caldas y Envigado towns additional to Studies did in years 1999 and 2002. Solingral, Integral, Inteinsa, Universidad Nacional y Universidad Eafit, did the study for Area Metropolitana. This work present the paleoseismic evidence found in the road Conexion Vial Aburra Cauca in the south side of the pike site in the west side of the tunnel. This evidence is associated with the Sopetran Fault or Segment 5 San Jeronimo Fault, which has 25km length. The paleoseismic interpretation identifies two seismic events in the last 10.000 years. The oldest is an event of Mw 6.4 magnitude that displaced the last volcanic ash layer between 10.000 and 5.000 years considering that the last volcanic ash layer fallow 10.000 year ago, they appear reworking, it is width and is covered by paleosoil. The most recent event is an event of Mw 6.7 magnitude and displaced the paleosoil which was dated by 1830±40BP C14 so the last event occurs in the last 1800 years.

  16. Loading of the San Andreas fault by flood-induced rupture of faults beneath the Salton Sea

    Science.gov (United States)

    Brothers, Daniel; Kilb, Debi; Luttrell, Karen; Driscoll, Neal W.; Kent, Graham

    2011-01-01

    The southern San Andreas fault has not experienced a large earthquake for approximately 300 years, yet the previous five earthquakes occurred at ~180-year intervals. Large strike-slip faults are often segmented by lateral stepover zones. Movement on smaller faults within a stepover zone could perturb the main fault segments and potentially trigger a large earthquake. The southern San Andreas fault terminates in an extensional stepover zone beneath the Salton Sea—a lake that has experienced periodic flooding and desiccation since the late Holocene. Here we reconstruct the magnitude and timing of fault activity beneath the Salton Sea over several earthquake cycles. We observe coincident timing between flooding events, stepover fault displacement and ruptures on the San Andreas fault. Using Coulomb stress models, we show that the combined effect of lake loading, stepover fault movement and increased pore pressure could increase stress on the southern San Andreas fault to levels sufficient to induce failure. We conclude that rupture of the stepover faults, caused by periodic flooding of the palaeo-Salton Sea and by tectonic forcing, had the potential to trigger earthquake rupture on the southern San Andreas fault. Extensional stepover zones are highly susceptible to rapid stress loading and thus the Salton Sea may be a nucleation point for large ruptures on the southern San Andreas fault.

  17. Use of controlled dynamic impacts on hierarchically structured seismically hazardous faults for seismically safe relaxation of shear stresses

    Science.gov (United States)

    Ruzhich, Valery V.; Psakhie, Sergey G.; Levina, Elena A.; Shilko, Evgeny V.; Grigoriev, Alexandr S.

    2017-12-01

    In the paper we briefly outline the experience in forecasting catastrophic earthquakes and the general problems in ensuring seismic safety. The purpose of our long-term research is the development and improvement of the methods of man-caused impacts on large-scale fault segments to safely reduce the negative effect of seismodynamic failure. Various laboratory and large-scale field experiments were carried out in the segments of tectonic faults in Baikal rift zone and in main cracks in block-structured ice cove of Lake Baikal using the developed measuring systems and special software for identification and treatment of deformation response of faulty segments to man-caused impacts. The results of the study let us to ground the necessity of development of servo-controlled technologies, which are able to provide changing the shear resistance and deformation regime of fault zone segments by applying vibrational and pulse triggering impacts. We suppose that the use of triggering impacts in highly stressed segments of active faults will promote transferring the geodynamic state of these segments from a metastable to a more stable and safe state.

  18. Style of the surface deformation by the 1999 Chichi earthquake at the central segment of Chelungpu fault, Taiwan, with special reference to the presence of the main and subsidiary faults and their progressive deformation in the Tsauton area

    Science.gov (United States)

    Ota, Y.; Watanabe, M.; Suzuki, Y.; Yanagida, M.; Miyawaki, A.; Sawa, H.

    2007-11-01

    We describe the style of surface deformation in the 1999 Chichi earthquake in the central segment of the Chelungpu Fault. The study covers the Kung-fu village, north of Han River, to the south of Tsauton area. A characteristic style of the surface deformation is a convex scarp in profile and sinuous plan view, due to the low angle thrust fault. Two subparallel faults, including the west facing Tsauton West fault, and the east facing Tsauton East fault, limit the western and eastern margin of the Tsauton terraced area. The Tsauton West fault is the continuation of the main Chelungpu fault and the Tsauton East fault is located about 2 km apart. Both faults record larger amounts of vertical displacement on the older terraces. The 1999 surface rupture occurred exactly on a pre-existing fault scarp of the Tsauton West and East faults. Thus, repeated activities of these two faults during the Holocene, possibly since the late Quaternary, are confirmed. The amount of vertical offset of the Tsauton East fault is smaller, and about 40-50% of that of the Tsauton West fault for the pre-existing fault. This indicates that the Tsauton East fault is a subsidiary fault and moved together with the main fault, but accommodated less amount.

  19. Observer-based Fault Detection and Isolation for Nonlinear Systems

    DEFF Research Database (Denmark)

    Lootsma, T.F.

    With the rise in automation the increase in fault detectionand isolation & reconfiguration is inevitable. Interest in fault detection and isolation (FDI) for nonlinear systems has grown significantly in recent years. The design of FDI is motivated by the need for knowledge about occurring faults...... in fault-tolerant control systems (FTC systems). The idea of FTC systems is to detect, isolate, and handle faults in such a way that the systems can still perform in a required manner. One prefers reduced performance after occurrence of a fault to the shut down of (sub-) systems. Hence, the idea of fault......-output decoupling is described. It is a new idea based on the solution of the input-output decoupling problem. The idea is to include FDI considerations already during the control design....

  20. Observer-Based Fault Estimation and Accomodation for Dynamic Systems

    CERN Document Server

    Zhang, Ke; Shi, Peng

    2013-01-01

    Due to the increasing security and reliability demand of actual industrial process control systems, the study on fault diagnosis and fault tolerant control of dynamic systems has received considerable attention. Fault accommodation (FA) is one of effective methods that can be used to enhance system stability and reliability, so it has been widely and in-depth investigated and become a hot topic in recent years. Fault detection is used to monitor whether a fault occurs, which is the first step in FA. On the basis of fault detection, fault estimation (FE) is utilized to determine online the magnitude of the fault, which is a very important step because the additional controller is designed using the fault estimate. Compared with fault detection, the design difficulties of FE would increase a lot, so research on FE and accommodation is very challenging. Although there have been advancements reported on FE and accommodation for dynamic systems, the common methods at the present stage have design difficulties, whi...

  1. Dynamic rupture simulation of the 2017 Mw 7.8 Kaikoura (New Zealand) earthquake: Is spontaneous multi-fault rupture expected?

    Science.gov (United States)

    Ando, R.; Kaneko, Y.

    2017-12-01

    The coseismic rupture of the 2016 Kaikoura earthquake propagated over the distance of 150 km along the NE-SW striking fault system in the northern South Island of New Zealand. The analysis of In-SAR, GPS and field observations (Hamling et al., 2017) revealed that the most of the rupture occurred along the previously mapped active faults, involving more than seven major fault segments. These fault segments, mostly dipping to northwest, are distributed in a quite complex manner, manifested by fault branching and step-over structures. Back-projection rupture imaging shows that the rupture appears to jump between three sub-parallel fault segments in sequence from the south to north (Kaiser et al., 2017). The rupture seems to be terminated on the Needles fault in Cook Strait. One of the main questions is whether this multi-fault rupture can be naturally explained with the physical basis. In order to understand the conditions responsible for the complex rupture process, we conduct fully dynamic rupture simulations that account for 3-D non-planar fault geometry embedded in an elastic half-space. The fault geometry is constrained by previous In-SAR observations and geological inferences. The regional stress field is constrained by the result of stress tensor inversion based on focal mechanisms (Balfour et al., 2005). The fault is governed by a relatively simple, slip-weakening friction law. For simplicity, the frictional parameters are uniformly distributed as there is no direct estimate of them except for a shallow portion of the Kekerengu fault (Kaneko et al., 2017). Our simulations show that the rupture can indeed propagate through the complex fault system once it is nucleated at the southernmost segment. The simulated slip distribution is quite heterogeneous, reflecting the nature of non-planar fault geometry, fault branching and step-over structures. We find that optimally oriented faults exhibit larger slip, which is consistent with the slip model of Hamling et al

  2. Late quaternary faulting along the Death Valley-Furnace Creek fault system, California and Nevada

    International Nuclear Information System (INIS)

    Brogan, G.E.; Kellogg, K.S.; Terhune, C.L.; Slemmons, D.B.

    1991-01-01

    The Death Valley-Furnace Creek fault system, in California and Nevada, has a variety of impressive late Quaternary neotectonic features that record a long history of recurrent earthquake-induced faulting. Although no neotectonic features of unequivocal historical age are known, paleoseismic features from multiple late Quaternary events of surface faulting are well developed throughout the length of the system. Comparison of scarp heights to amount of horizontal offset of stream channels and the relationships of both scarps and channels to the ages of different geomorphic surfaces demonstrate that Quaternary faulting along the northwest-trending Furnace Creek fault zone is predominantly right lateral, whereas that along the north-trending Death Valley fault zone is predominantly normal. These observations are compatible with tectonic models of Death Valley as a northwest- trending pull-apart basin

  3. From tomographic images to fault heterogeneities

    Directory of Open Access Journals (Sweden)

    A. Amato

    1994-06-01

    Full Text Available Local Earthquake Tomography (LET is a useful tool for imaging lateral heterogeneities in the upper crust. The pattern of P- and S-wave velocity anomalies, in relation to the seismicity distribution along active fault zones. can shed light on the existence of discrete seismogenic patches. Recent tomographic studies in well monitored seismic areas have shown that the regions with large seismic moment release generally correspond to high velocity zones (HVZ's. In this paper, we discuss the relationship between the seismogenic behavior of faults and the velocity structure of fault zones as inferred from seismic tomography. First, we review some recent tomographic studies in active strike-slip faults. We show examples from different segments of the San Andreas fault system (Parkfield, Loma Prieta, where detailed studies have been carried out in recent years. We also show two applications of LET to thrust faults (Coalinga, Friuli. Then, we focus on the Irpinia normal fault zone (South-Central Italy, where a Ms = 6.9 earthquake occurred in 1980 and many thousands of attershock travel time data are available. We find that earthquake hypocenters concentrate in HVZ's, whereas low velocity zones (LVZ’ s appear to be relatively aseismic. The main HVZ's along which the mainshock rupture bas propagated may correspond to velocity weakening fault regions, whereas the LVZ's are probably related to weak materials undergoing stable slip (velocity strengthening. A correlation exists between this HVZ and the area with larger coseismic slip along the fault, according to both surface evidence (a fault scarp as high as 1 m and strong ground motion waveform modeling. Smaller wave-length, low-velocity anomalies detected along the fault may be the expression of velocity strengthening sections, where aseismic slip occurs. According to our results, the rupture at the nucleation depth (~ 10-12 km is continuous for the whole fault lenoth (~ 30 km, whereas at shallow depth

  4. Differential Extension, Displacement Transfer, and the South to North Decrease in Displacement on the Furnace Creek - Fish Lake Valley Fault System, Western Great Basin.

    Science.gov (United States)

    Katopody, D. T.; Oldow, J. S.

    2015-12-01

    The northwest-striking Furnace Creek - Fish Lake Valley (FC-FLV) fault system stretches for >250 km from southeastern California to western Nevada, forms the eastern boundary of the northern segment of the Eastern California Shear Zone, and has contemporary displacement. The FC-FLV fault system initiated in the mid-Miocene (10-12 Ma) and shows a south to north decrease in displacement from a maximum of 75-100 km to less than 10 km. Coeval elongation by extension on north-northeast striking faults within the adjoining blocks to the FC-FLV fault both supply and remove cumulative displacement measured at the northern end of the transcurrent fault system. Elongation and displacement transfer in the eastern block, constituting the southern Walker Lane of western Nevada, exceeds that of the western block and results in the net south to north decrease in displacement on the FC-FLV fault system. Elongation in the eastern block is accommodated by late Miocene to Pliocene detachment faulting followed by extension on superposed, east-northeast striking, high-angle structures. Displacement transfer from the FC-FLV fault system to the northwest-trending faults of the central Walker Lane to the north is accomplished by motion on a series of west-northwest striking transcurrent faults, named the Oriental Wash, Sylvania Mountain, and Palmetto Mountain fault systems. The west-northwest striking transcurrent faults cross-cut earlier detachment structures and are kinematically linked to east-northeast high-angle extensional faults. The transcurrent faults are mapped along strike for 60 km to the east, where they merge with north-northwest faults forming the eastern boundary of the southern Walker Lane. The west-northwest trending transcurrent faults have 30-35 km of cumulative left-lateral displacement and are a major contributor to the decrease in right-lateral displacement on the FC-FLV fault system.

  5. Smart intimation and location of faults in distribution system

    Science.gov (United States)

    Hari Krishna, K.; Srinivasa Rao, B.

    2018-04-01

    Location of faults in the distribution system is one of the most complicated problems that we are facing today. Identification of fault location and severity of fault within a short time is required to provide continuous power supply but fault identification and information transfer to the operator is the biggest challenge in the distribution network. This paper proposes a fault location method in the distribution system based on Arduino nano and GSM module with flame sensor. The main idea is to locate the fault in the distribution transformer by sensing the arc coming out from the fuse element. The biggest challenge in the distribution network is to identify the location and the severity of faults under different conditions. Well operated transmission and distribution systems will play a key role for uninterrupted power supply. Whenever fault occurs in the distribution system the time taken to locate and eliminate the fault has to be reduced. The proposed design was achieved with flame sensor and GSM module. Under faulty condition, the system will automatically send an alert message to the operator in the distribution system, about the abnormal conditions near the transformer, site code and its exact location for possible power restoration.

  6. Geometric-kinematic characteristics of the main faults in the W-SW of the Lut Block (SE Iran)

    Science.gov (United States)

    Rashidi Boshrabadi, Ahmad; Khatib, Mohamad Mahdi; Raeesi, Mohamad; Mousavi, Seyed Morteza; Djamour, Yahya

    2018-03-01

    The area to the W-SW of the Lut Block in Iran has experienced numerous historical and recent destructive earthquakes. We examined a number of faults in this area that have high potential for generating destructive earthquakes. In this study a number of faults are introduced and named for the first time. These new faults are Takdar, Dehno, Suru, Hojat Abad, North Faryab, North Kahnoj, Heydarabad, Khatun Abad and South Faryab. For a group of previously known faults, their mechanism and geological offsets are investigated for the first time. This group of faults include East Nayband, West Nayband, Sardueiyeh, Dalfard, Khordum, South Jabal-e-Barez, and North Jabal-e-Barez. The N-S fault systems of Sabzevaran, Gowk, and Nayband induce slip on the E-W, NE-SW and NW-SE fault systems. The faulting patterns appear to preserve different stages of fault development. We investigated the distribution of active faults and the role that they play in accommodating tectonic strain in the SW-Lut. In the study area, the fault systems with en-echelon arrangement create structures such as restraining and releasing stepover, fault bend and pullapart basin. The main mechanism for fault growth in the region seems to be 'segment linkage of preexisting weaknesses' and also for a limited area through 'process zone'. Estimations are made for the likely magnitudes of separate or combined failure of the fault segments. Such magnitudes are used in hazard analysis of the region.

  7. Postglacial seismic activity along the Isovaara-Riikonkumpu fault complex

    Science.gov (United States)

    Ojala, Antti E. K.; Mattila, Jussi; Ruskeeniemi, Timo; Palmu, Jukka-Pekka; Lindberg, Antero; Hänninen, Pekka; Sutinen, Raimo

    2017-10-01

    Analysis of airborne LiDAR-based digital elevation models (DEMs), trenching of Quaternary deposits, and diamond drilling through faulted bedrock was conducted to characterize the geological structure and full slip profiles of the Isovaara-Riikonkumpu postglacial fault (PGF) complex in northern Finland. The PGF systems are recognized from LiDAR DEMs as a complex of surface ruptures striking SW-NE, cutting through late-Weichselian till, and associated with several postglacial landslides within 10 km. Evidence from the terrain rupture characteristics, the deformed and folded structure of late-Weichselian till, and the 14C age of 11,300 cal BP from buried organic matter underneath the Sotka landslide indicates a postglacial origin of the Riikonkumpu fault (PGF). The fracture frequency and lithology of drill cores and fault geometry in the trench log indicate that the Riikonkumpu PGF dips to WNW with a dip angle of 40-45° at the Riikonkumpu site and close to 60° at the Riikonvaara site. A fault length of 19 km and the mean and maximum cumulative vertical displacement of 1.3 m and 4.1 m, respectively, of the Riikonkumpu PGF system indicate that the fault potentially hosted an earthquake with a moment magnitude MW ≈ 6.7-7.3 assuming that slip was accumulated in one seismic event. Our interpretation further suggests that the Riikonkumpu PGF system is linked to the Isovaara PGF system and that, together, they form a larger Isovaara-Riikonkumpu fault complex. Relationships between the 38-km-long rupture of the Isovaara-Riikonkumpu complex and the fault offset parameters, with cumulative displacement of 1.5 and 8.3 m, respectively, indicate that the earthquake(s) contributing to the PGF complex potentially had a moment magnitude of MW ≈ 6.9-7.5. In order to adequately sample the uncertainty space, the moment magnitude was also estimated for each major segment within the Isovaara-Riikonkumpu PGF complex. These estimates vary roughly between MW ≈ 5-8 for the individual

  8. Frictional strengths of fault gouge from a creeping segment of the Bartlett Springs Fault, northern California

    Science.gov (United States)

    Swiatlowski, J. L.; Moore, D. E.; Lockner, D. A.

    2017-12-01

    The Bartlett Springs Fault (BSF) is a right-lateral strike-slip fault that is part of the San Andreas Fault System in Northern California with an estimated slip rate of 7 mm/yr. An exposure of the BSF near Lake Pillsbury, which creeps at a rate of 3.4 mm/yr, reveals a 1.5 m-wide zone of serpentinite-bearing gouge that has risen buoyantly to the surface in a manner similar to that documented for the San Andreas creeping section at SAFOD. The gouge is a heterogeneous mixture of the high-temperature serpentine mineral antigorite and the greenschist facies alteration assemblage talc + chlorite + tremolite, all of which are stable at temperatures >250°C, indicating that the gouge was tectonically entrained in the fault from depths near the base of the seismogenic zone. Antigorite has been shown to promote fault creep when sheared between crustal rocks at hydrothermal conditions. However, the effect of thorough metasomatism of antigorite on sliding stability are unknown. We conducted velocity-stepping strength experiments to explore the effect on frictional behavior if the serpentinite is completely replaced by the talc-chlorite-tremolite assemblage. The experiments were conducted at 290°C, 140 MPa effective normal stress, and 90 MPa fluid pressure to simulate conditions at 9 km depth. We tested mixtures of the three minerals in varying proportions (ternary mixing-law). The end-member samples show a four-fold variation in frictional strength: talc is the weakest (µ 0.12), tremolite the strongest (µ 0.55), and chlorite intermediate (µ 0.30). Talc and chlorite are velocity strengthening (a-b > 0) and tremolite velocity weakening (a-b 50% talc have coefficients of friction <0.2 with (a-b) ≥ 0. Talc would thus need to be concentrated in the sheared gouge matrix to promote creep in thoroughly altered serpentinite at depth.

  9. Structural Mapping Along the Central San Andreas Fault-zone Using Airborne Electromagnetics

    Science.gov (United States)

    Zamudio, K. D.; Bedrosian, P.; Ball, L. B.

    2017-12-01

    Investigations of active fault zones typically focus on either surface expressions or the associated seismogenic zones. However, the largely aseismic upper kilometer can hold significant insight into fault-zone architecture, strain partitioning, and fault-zone permeability. Geophysical imaging of the first kilometer provides a link between surface fault mapping and seismically-defined fault zones and is particularly important in geologically complex regions with limited surface exposure. Additionally, near surface imaging can provide insight into the impact of faulting on the hydrogeology of the critical zone. Airborne electromagnetic (AEM) methods offer a unique opportunity to collect a spatially-large, detailed dataset in a matter of days, and are used to constrain subsurface resistivity to depths of 500 meters or more. We present initial results from an AEM survey flown over a 60 kilometer long segment of the central San Andreas Fault (SAF). The survey is centered near Parkfield, California, the site of the SAFOD drillhole, which marks the transition between a creeping fault segment to the north and a locked zone to the south. Cross sections with a depth of investigation up to approximately 500 meters highlight the complex Tertiary and Mesozoic geology that is dismembered by the SAF system. Numerous fault-parallel structures are imaged across a more than 10 kilometer wide zone centered on the surface trace. Many of these features can be related to faults and folds within Plio-Miocene sedimentary rocks found on both sides of the fault. Northeast of the fault, rocks of the Mesozoic Franciscan and Great Valley complexes are extremely heterogeneous, with highly resistive volcanic rocks within a more conductive background. The upper 300 meters of a prominent fault-zone conductor, previously imaged to 1-3 kilometers depth by magnetotellurics, is restricted to a 20 kilometer long segment of the fault, but is up to 4 kilometers wide in places. Elevated fault

  10. Results of an electrical power system fault study (CDDF)

    Science.gov (United States)

    Dugal-Whitehead, N. R.; Johnson, Y. B.

    1993-01-01

    This report gives the results of an electrical power system fault study which has been conducted over the last 2 and one-half years. First, the results of the literature search into electrical power system faults in space and terrestrial power system applications are reported. A description of the intended implementations of the power system faults into the Large Autonomous Spacecraft Electrical Power System (LASEPS) breadboard is then presented. Then, the actual implementation of the faults into the breadboard is discussed along with a discussion describing the LASEPS breadboard. Finally, the results of the injected faults and breadboard failures are discussed.

  11. Fault Detection for Shipboard Monitoring and Decision Support Systems

    DEFF Research Database (Denmark)

    Lajic, Zoran; Nielsen, Ulrik Dam

    2009-01-01

    In this paper a basic idea of a fault-tolerant monitoring and decision support system will be explained. Fault detection is an important part of the fault-tolerant design for in-service monitoring and decision support systems for ships. In the paper, a virtual example of fault detection...... will be presented for a containership with a real decision support system onboard. All possible faults can be simulated and detected using residuals and the generalized likelihood ratio (GLR) algorithm....

  12. Paleoseismology of the Nephi Segment of the Wasatch Fault Zone, Juab County, Utah - Preliminary Results From Two Large Exploratory Trenches at Willow Creek

    Science.gov (United States)

    Machette, Michael N.; Crone, Anthony J.; Personius, Stephen F.; Mahan, Shannon; Dart, Richard L.; Lidke, David J.; Olig, Susan S.

    2007-01-01

    In 2004, we identified a small parcel of U.S. Forest Service land at the mouth of Willow Creek (about 5 km west of Mona, Utah) that was suitable for trenching. At the Willow Creek site, which is near the middle of the southern strand of the Nephi segment, the WFZ has vertically displaced alluvial-fan deposits >6-7 m, forming large, steep, multiple-event scarps. In May 2005, we dug two 4- to 5-m-deep backhoe trenches at the Willow Creek site, identified three colluvial wedges in each trench, and collected samples of charcoal and A-horizon organic material for AMS (acceleration mass spectrometry) radiocarbon dating, and sampled fine-grained eolian and colluvial sediment for luminescence dating. The trenches yielded a stratigraphic assemblage composed of moderately coarse-grained fluvial and debris-flow deposits and discrete colluvial wedges associated with three faulting events (P1, P2, and P3). About one-half of the net vertical displacement is accommodated by monoclinal tilting of fan deposits on the hanging-wall block, possibly related to massive ductile landslide deposits that are present beneath the Willow Creek fan. The timing of the three surface-faulting events is bracketed by radiocarbon dates and results in a much different fault chronology and higher slip rates than previously considered for this segment of the Wasatch fault zone.

  13. Fault detection and fault-tolerant control for nonlinear systems

    CERN Document Server

    Li, Linlin

    2016-01-01

    Linlin Li addresses the analysis and design issues of observer-based FD and FTC for nonlinear systems. The author analyses the existence conditions for the nonlinear observer-based FD systems to gain a deeper insight into the construction of FD systems. Aided by the T-S fuzzy technique, she recommends different design schemes, among them the L_inf/L_2 type of FD systems. The derived FD and FTC approaches are verified by two benchmark processes. Contents Overview of FD and FTC Technology Configuration of Nonlinear Observer-Based FD Systems Design of L2 nonlinear Observer-Based FD Systems Design of Weighted Fuzzy Observer-Based FD Systems FTC Configurations for Nonlinear Systems< Application to Benchmark Processes Target Groups Researchers and students in the field of engineering with a focus on fault diagnosis and fault-tolerant control fields The Author Dr. Linlin Li completed her dissertation under the supervision of Prof. Steven X. Ding at the Faculty of Engineering, University of Duisburg-Essen, Germany...

  14. Computer aided fault tree construction for electrical systems

    International Nuclear Information System (INIS)

    Fussell, J.B.

    1975-01-01

    A technique is presented for automated construction of the Boolean failure logic diagram, called the fault tree, for electrical systems. The method is a technique for synthesizing a fault tree from system-independent component characteristics. Terminology is defined and heuristic examples are given for all phases of the model. The computer constructed fault trees are in conventional format, use conventional symbols, and are deductively constructed from the main failure of interest to the individual component failures. The synthesis technique is generally applicable to automated fault tree construction for other types of systems

  15. Sedimentary evidence of historical and prehistorical earthquakes along the Venta de Bravo Fault System, Acambay Graben (Central Mexico)

    Science.gov (United States)

    Lacan, Pierre; Ortuño, María; Audin, Laurence; Perea, Hector; Baize, Stephane; Aguirre-Díaz, Gerardo; Zúñiga, F. Ramón

    2018-03-01

    The Venta de Bravo normal fault is one of the longest structures in the intra-arc fault system of the Trans-Mexican Volcanic Belt. It defines, together with the Pastores Fault, the 80 km long southern margin of the Acambay Graben. We focus on the westernmost segment of the Venta de Bravo Fault and provide new paleoseismological information, evaluate its earthquake history, and assess the related seismic hazard. We analyzed five trenches, distributed at three different sites, in which Holocene surface faulting offsets interbedded volcanoclastic, fluvio-lacustrine and colluvial deposits. Despite the lack of known historical destructive earthquakes along this fault, we found evidence of at least eight earthquakes during the late Quaternary. Our results indicate that this is one of the major seismic sources of the Acambay Graben, capable of producing by itself earthquakes with magnitudes (MW) up to 6.9, with a slip rate of 0.22-0.24 mm yr- 1 and a recurrence interval between 1940 and 2390 years. In addition, a possible multi-fault rupture of the Venta de Bravo Fault together with other faults of the Acambay Graben could result in a MW > 7 earthquake. These new slip rates, earthquake recurrence rates, and estimation of slips per event help advance our understanding of the seismic hazard posed by the Venta de Bravo Fault and provide new parameters for further hazard assessment.

  16. Posbist fault tree analysis of coherent systems

    International Nuclear Information System (INIS)

    Huang, H.-Z.; Tong Xin; Zuo, Ming J.

    2004-01-01

    When the failure probability of a system is extremely small or necessary statistical data from the system is scarce, it is very difficult or impossible to evaluate its reliability and safety with conventional fault tree analysis (FTA) techniques. New techniques are needed to predict and diagnose such a system's failures and evaluate its reliability and safety. In this paper, we first provide a concise overview of FTA. Then, based on the posbist reliability theory, event failure behavior is characterized in the context of possibility measures and the structure function of the posbist fault tree of a coherent system is defined. In addition, we define the AND operator and the OR operator based on the minimal cut of a posbist fault tree. Finally, a model of posbist fault tree analysis (posbist FTA) of coherent systems is presented. The use of the model for quantitative analysis is demonstrated with a real-life safety system

  17. GPS measurements along the North Anatolian fault zone ont he Mid-Anatolia segment

    Science.gov (United States)

    Yavasoglu, H.; Team

    2003-04-01

    The North Anatolian Fault (NAF) is the most important tectonic feature in Turkey producing lots of earthquakes that cause deaths, wounds and loss of property in large scale. So, there are a lot of seismic, geodetic, geologic and geophysical researches through NAF. A new project, "Determination of Kinematics along the North Anatolian Fault Branch between Ladik and Ilgaz with GPS Measurements", founded by The Scientific and Technical Research Council of Turkey (TUBITAK) and Istanbul Technical University (ITU) Research Fund is also started. The aim of the project is to determine the magnitude and direction of the block movements in the region by using GPS. Having the knowledge about the neotectonics of the region with the contributions of geology and seismology after the GPS campaigns will provide further information on the assessment of the earthquake potential. In this work, the planning stage of the network is examined. Also pre-results from the first and second surveying campaigns are presented. 1. INTRODUCTION The tectonic framework of the Eastern Mediterranean is dominated by the collision of the Arabian and African plates with the Eurasia. This collision created wide variety of tectonic processes such as folds and thrust belts, major continental strike-slip faults, opening of pull-apart basins etc. All these tectonic caused long-term destructive earthquakes in Anatolia Last earthquakes occurred at the end of the 20th Century, in 17th of August and 12 of November 1999, Golcuk and Duzce earthquakes, also focused the attention of international science community over the tectonics and kinematics of the NAF. A westward migrating earthquakes series starting from 1939 Erzincan earthquake, produced more than 1000 kilometers of ruptures between Erzincan and Sea of Marmara 2. GEOLOGICAL FEATURES OF NAF The North Anatolian Fault (NAF) is one of the longest active strike slip systems. Slip rate of the NAF was estimated from the GPS data as 24±1mm/yr. One of the important

  18. H infinity Integrated Fault Estimation and Fault Tolerant Control of Discrete-time Piecewise Linear Systems

    DEFF Research Database (Denmark)

    Tabatabaeipour, Seyed Mojtaba; Bak, Thomas

    2012-01-01

    In this paper we consider the problem of fault estimation and accommodation for discrete time piecewise linear systems. A robust fault estimator is designed to estimate the fault such that the estimation error converges to zero and H∞ performance of the fault estimation is minimized. Then, the es...

  19. Static stress changes associated with normal faulting earthquakes in South Balkan area

    Science.gov (United States)

    Papadimitriou, E.; Karakostas, V.; Tranos, M.; Ranguelov, B.; Gospodinov, D.

    2007-10-01

    Activation of major faults in Bulgaria and northern Greece presents significant seismic hazard because of their proximity to populated centers. The long recurrence intervals, of the order of several hundred years as suggested by previous investigations, imply that the twentieth century activation along the southern boundary of the sub-Balkan graben system, is probably associated with stress transfer among neighbouring faults or fault segments. Fault interaction is investigated through elastic stress transfer among strong main shocks ( M ≥ 6.0), and in three cases their foreshocks, which ruptured distinct or adjacent normal fault segments. We compute stress perturbations caused by earthquake dislocations in a homogeneous half-space. The stress change calculations were performed for faults of strike, dip, and rake appropriate to the strong events. We explore the interaction between normal faults in the study area by resolving changes of Coulomb failure function ( ΔCFF) since 1904 and hence the evolution of the stress field in the area during the last 100 years. Coulomb stress changes were calculated assuming that earthquakes can be modeled as static dislocations in an elastic half-space, and taking into account both the coseismic slip in strong earthquakes and the slow tectonic stress buildup associated with major fault segments. We evaluate if these stress changes brought a given strong earthquake closer to, or sent it farther from, failure. Our modeling results show that the generation of each strong event enhanced the Coulomb stress on along-strike neighbors and reduced the stress on parallel normal faults. We extend the stress calculations up to present and provide an assessment for future seismic hazard by identifying possible sites of impending strong earthquakes.

  20. Fault displacement along the Naruto-South fault, the Median Tectonic Line active fault system in the eastern part of Shikoku, southwestern Japan

    OpenAIRE

    高田, 圭太; 中田, 高; 後藤, 秀昭; 岡田, 篤正; 原口, 強; 松木, 宏彰

    1998-01-01

    The Naruto-South fault is situated of about 1000m south of the Naruto fault, the Median Tectonic Line active fault system in the eastern part of Shikoku. We investigated fault topography and subsurface geology of this fault by interpretation of large scale aerial photographs, collecting borehole data and Geo-Slicer survey. The results obtained are as follows; 1) The Naruto-South fault runs on the Yoshino River deltaic plain at least 2.5 km long with fault scarplet. the Naruto-South fault is o...

  1. Passive Fault-tolerant Control of Discrete-time Piecewise Affine Systems against Actuator Faults

    DEFF Research Database (Denmark)

    Tabatabaeipour, Seyed Mojtaba; Izadi-Zamanabadi, Roozbeh; Bak, Thomas

    2012-01-01

    In this paper, we propose a new method for passive fault-tolerant control of discrete time piecewise affine systems. Actuator faults are considered. A reliable piecewise linear quadratic regulator (LQR) state feedback is designed such that it can tolerate actuator faults. A sufficient condition f...... is illustrated on a numerical example and a two degree of freedom helicopter....

  2. The Trans-Rocky Mountain Fault System - A Fundamental Precambrian Strike-Slip System

    Science.gov (United States)

    Sims, P.K.

    2009-01-01

    Recognition of a major Precambrian continental-scale, two-stage conjugate strike-slip fault system - here designated as the Trans-Rocky Mountain fault system - provides new insights into the architecture of the North American continent. The fault system consists chiefly of steep linear to curvilinear, en echelon, braided and branching ductile-brittle shears and faults, and local coeval en echelon folds of northwest strike, that cut indiscriminately across both Proterozoic and Archean cratonic elements. The fault system formed during late stages of two distinct tectonic episodes: Neoarchean and Paleoproterozoic orogenies at about 2.70 and 1.70 billion years (Ga). In the Archean Superior province, the fault system formed (about 2.70-2.65 Ga) during a late stage of the main deformation that involved oblique shortening (dextral transpression) across the region and progressed from crystal-plastic to ductile-brittle deformation. In Paleoproterozoic terranes, the fault system formed about 1.70 Ga, shortly following amalgamation of Paleoproterozoic and Archean terranes and the main Paleoproterozoic plastic-fabric-producing events in the protocontinent, chiefly during sinistral transpression. The postulated driving force for the fault system is subcontinental mantle deformation, the bottom-driven deformation of previous investigators. This model, based on seismic anisotropy, invokes mechanical coupling and subsequent shear between the lithosphere and the asthenosphere such that a major driving force for plate motion is deep-mantle flow.

  3. The role of bed-parallel slip in the development of complex normal fault zones

    Science.gov (United States)

    Delogkos, Efstratios; Childs, Conrad; Manzocchi, Tom; Walsh, John J.; Pavlides, Spyros

    2017-04-01

    Normal faults exposed in Kardia lignite mine, Ptolemais Basin, NW Greece formed at the same time as bed-parallel slip-surfaces, so that while the normal faults grew they were intermittently offset by bed-parallel slip. Following offset by a bed-parallel slip-surface, further fault growth is accommodated by reactivation on one or both of the offset fault segments. Where one fault is reactivated the site of bed-parallel slip is a bypassed asperity. Where both faults are reactivated, they propagate past each other to form a volume between overlapping fault segments that displays many of the characteristics of relay zones, including elevated strains and transfer of displacement between segments. Unlike conventional relay zones, however, these structures contain either a repeated or a missing section of stratigraphy which has a thickness equal to the throw of the fault at the time of the bed-parallel slip event, and the displacement profiles along the relay-bounding fault segments have discrete steps at their intersections with bed-parallel slip-surfaces. With further increase in displacement, the overlapping fault segments connect to form a fault-bound lens. Conventional relay zones form during initial fault propagation, but with coeval bed-parallel slip, relay-like structures can form later in the growth of a fault. Geometrical restoration of cross-sections through selected faults shows that repeated bed-parallel slip events during fault growth can lead to complex internal fault zone structure that masks its origin. Bed-parallel slip, in this case, is attributed to flexural-slip arising from hanging-wall rollover associated with a basin-bounding fault outside the study area.

  4. Frictional Properties of Shionohira Fault Gouge (Part 2) -A Comparison with Kuruma Fault Gouge at the Southern Extension of Shionohira Fault-

    Science.gov (United States)

    Seshimo, K.; Kazuhiro, A.; Yukumo, T.; Masakazu, N.; Shimamoto, T.; Ma, S.; Yao, L.; Kametaka, M.

    2016-12-01

    The April 11, 2011 Fukushima-ken Hamadori Earthquake (the largest aftershock of the 2011 off the Pacific coast of Tohoku Earthquake) formed co-seismic surface ruptures in NNW-SSE direction in Iwaki City, Fukushima Prefecture, Japan, named Shionohira Fault (hereafter called "active segment"). A N-S trending geological fault with lineaments (Kuruma Fault) along the southern extension of Shionohira Fault showed no surface ruptures (hereafter called "non-active segment"). The current report discusses differences of active and non-active segments by conducting low to high-velocity friction experiments on the gouge from shallow borehole cores. All experiments used a rotary-shear low to high-velocity frictional testing apparatus at the State Key Laboratory of Earthquake Dynamics, Institute of Geology, China Earthquake Administration. The apparatus can produce slip rates of 0.2 microns/s to 2.1 mm/s under dry and wet conditions at room temperature and at normal stresses of mostly 1.38MPa. Experiments were performed under drained condition using gouges sealed by teflon sleeves. Non-active segment samples were taken from shallow borehole cores at depths 20.90 20.95m of Minakami-kita outcrop, and those for active segment at depths 12.82 12.87m of Shionohira outcrop and 5.96 6.00m of Betto outcrop. Three slip behaviors were recognized based on velocity dependence of steady-state friction coefficient: almost no velocity dependence for low velocity-regime of below 10 to 100 microns/s; clear velocity strengthening for intermediate velocity-regime of 100 microns/s to 1 mm/s; and significant velocity weakening for high velocity-regime of above 1 to 10 mm/s. Steady-state friction coefficients of dry gouges were 0.6 to 1.0 at low to intermediate slip velocity, and about 0.1 at high slip velocity. Wet gouges, however, of both Betto and Shionohira outcrop samples and Betto borehole core sample measured below 0.2 at low slip velocity although core samples of Shionohira and Minakami

  5. EKF-based fault detection for guided missiles flight control system

    Science.gov (United States)

    Feng, Gang; Yang, Zhiyong; Liu, Yongjin

    2017-03-01

    The guided missiles flight control system is essential for guidance accuracy and kill probability. It is complicated and fragile. Since actuator faults and sensor faults could seriously affect the security and reliability of the system, fault detection for missiles flight control system is of great significance. This paper deals with the problem of fault detection for the closed-loop nonlinear model of the guided missiles flight control system in the presence of disturbance. First, set up the fault model of flight control system, and then design the residual generation based on the extended Kalman filter (EKF) for the Eulerian-discrete fault model. After that, the Chi-square test was selected for the residual evaluation and the fault detention task for guided missiles closed-loop system was accomplished. Finally, simulation results are provided to illustrate the effectiveness of the approach proposed in the case of elevator fault separately.

  6. Bond graph model-based fault diagnosis of hybrid systems

    CERN Document Server

    Borutzky, Wolfgang

    2015-01-01

    This book presents a bond graph model-based approach to fault diagnosis in mechatronic systems appropriately represented by a hybrid model. The book begins by giving a survey of the fundamentals of fault diagnosis and failure prognosis, then recalls state-of-art developments referring to latest publications, and goes on to discuss various bond graph representations of hybrid system models, equations formulation for switched systems, and simulation of their dynamic behavior. The structured text: • focuses on bond graph model-based fault detection and isolation in hybrid systems; • addresses isolation of multiple parametric faults in hybrid systems; • considers system mode identification; • provides a number of elaborated case studies that consider fault scenarios for switched power electronic systems commonly used in a variety of applications; and • indicates that bond graph modelling can also be used for failure prognosis. In order to facilitate the understanding of fault diagnosis and the presented...

  7. A fault-tolerant software strategy for digital systems

    Science.gov (United States)

    Hitt, E. F.; Webb, J. J.

    1984-01-01

    Techniques developed for producing fault-tolerant software are described. Tolerance is required because of the impossibility of defining fault-free software. Faults are caused by humans and can appear anywhere in the software life cycle. Tolerance is effected through error detection, damage assessment, recovery, and fault treatment, followed by return of the system to service. Multiversion software comprises two or more versions of the software yielding solutions which are examined by a decision algorithm. Errors can also be detected by extrapolation from previous results or by the acceptability of results. Violations of timing specifications can reveal errors, or the system can roll back to an error-free state when a defect is detected. The software, when used in flight control systems, must not impinge on time-critical responses. Efforts are still needed to reduce the costs of developing the fault-tolerant systems.

  8. Secondary Fault Activity of the North Anatolian Fault near Avcilar, Southwest of Istanbul: Evidence from SAR Interferometry Observations

    Directory of Open Access Journals (Sweden)

    Faqi Diao

    2016-10-01

    Full Text Available Strike-slip faults may be traced along thousands of kilometers, e.g., the San Andreas Fault (USA or the North Anatolian Fault (Turkey. A closer look at such continental-scale strike faults reveals localized complexities in fault geometry, associated with fault segmentation, secondary faults and a change of related hazards. The North Anatolian Fault displays such complexities nearby the mega city Istanbul, which is a place where earthquake risks are high, but secondary processes are not well understood. In this paper, long-term persistent scatterer interferometry (PSI analysis of synthetic aperture radar (SAR data time series was used to precisely identify the surface deformation pattern associated with the faulting complexity at the prominent bend of the North Anatolian Fault near Istanbul city. We elaborate the relevance of local faulting activity and estimate the fault status (slip rate and locking depth for the first time using satellite SAR interferometry (InSAR technology. The studied NW-SE-oriented fault on land is subject to strike-slip movement at a mean slip rate of ~5.0 mm/year and a shallow locking depth of <1.0 km and thought to be directly interacting with the main fault branch, with important implications for tectonic coupling. Our results provide the first geodetic evidence on the segmentation of a major crustal fault with a structural complexity and associated multi-hazards near the inhabited regions of Istanbul, with similarities also to other major strike-slip faults that display changes in fault traces and mechanisms.

  9. A microstructural study of fault rocks from the SAFOD: Implications for the deformation mechanisms and strength of the creeping segment of the San Andreas Fault

    Science.gov (United States)

    Hadizadeh, Jafar; Mittempergher, Silvia; Gratier, Jean-Pierre; Renard, Francois; Di Toro, Giulio; Richard, Julie; Babaie, Hassan A.

    2012-09-01

    The San Andreas Fault zone in central California accommodates tectonic strain by stable slip and microseismic activity. We study microstructural controls of strength and deformation in the fault using core samples provided by the San Andreas Fault Observatory at Depth (SAFOD) including gouge corresponding to presently active shearing intervals in the main borehole. The methods of study include high-resolution optical and electron microscopy, X-ray fluorescence mapping, X-ray powder diffraction, energy dispersive X-ray spectroscopy, white light interferometry, and image processing. The fault zone at the SAFOD site consists of a strongly deformed and foliated core zone that includes 2-3 m thick active shear zones, surrounded by less deformed rocks. Results suggest deformation and foliation of the core zone outside the active shear zones by alternating cataclasis and pressure solution mechanisms. The active shear zones, considered zones of large-scale shear localization, appear to be associated with an abundance of weak phases including smectite clays, serpentinite alteration products, and amorphous material. We suggest that deformation along the active shear zones is by a granular-type flow mechanism that involves frictional sliding of microlithons along phyllosilicate-rich Riedel shear surfaces as well as stress-driven diffusive mass transfer. The microstructural data may be interpreted to suggest that deformation in the active shear zones is strongly displacement-weakening. The fault creeps because the velocity strengthening weak gouge in the active shear zones is being sheared without strong restrengthening mechanisms such as cementation or fracture sealing. Possible mechanisms for the observed microseismicity in the creeping segment of the SAF include local high fluid pressure build-ups, hard asperity development by fracture-and-seal cycles, and stress build-up due to slip zone undulations.

  10. Faults and Diagnosis Systems in Power Converters

    DEFF Research Database (Denmark)

    Lee, Kyo-Beum; Choi, Uimin

    2014-01-01

    A power converter is needed in almost all kinds of renewable energy systems and drive systems. It is used both for controlling the renewable source and for interfacing with the load, which can be grid-connected or working in standalone mode. Further, it drives the motors efficiently. Increasing...... efforts have been put into making these systems better in terms of reliability in order to achieve high power source availability, reduce the cost of energy and also increase the reliability of overall systems. Among the components used in power converters, a power device and a capacitor fault occurs most...... frequently. Therefore, it is important to monitor the power device and capacitor fault to increase the reliability of power electronics. In this chapter, the diagnosis methods for power device fault will be discussed by dividing into open- and short-circuit faults. Then, the condition monitoring methods...

  11. Fault tolerant controllers for sampled-data systems

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Stoustrup, Jakob

    2004-01-01

    A general compensator architecture for fault tolerant control (FTC) for sampled-data systems is proposed. The architecture is based on the YJBK parameterization of all stabilizing controllers, and uses the dual YJBK parameterization to quantify the performance of the fault tolerant system. The FTC...

  12. Fault-tolerant Control of a Cyber-physical System

    Science.gov (United States)

    Roxana, Rusu-Both; Eva-Henrietta, Dulf

    2017-10-01

    Cyber-physical systems represent a new emerging field in automatic control. The fault system is a key component, because modern, large scale processes must meet high standards of performance, reliability and safety. Fault propagation in large scale chemical processes can lead to loss of production, energy, raw materials and even environmental hazard. The present paper develops a multi-agent fault-tolerant control architecture using robust fractional order controllers for a (13C) cryogenic separation column cascade. The JADE (Java Agent DEvelopment Framework) platform was used to implement the multi-agent fault tolerant control system while the operational model of the process was implemented in Matlab/SIMULINK environment. MACSimJX (Multiagent Control Using Simulink with Jade Extension) toolbox was used to link the control system and the process model. In order to verify the performance and to prove the feasibility of the proposed control architecture several fault simulation scenarios were performed.

  13. Statistical fault detection in photovoltaic systems

    KAUST Repository

    Garoudja, Elyes; Harrou, Fouzi; Sun, Ying; Kara, Kamel; Chouder, Aissa; Silvestre, Santiago

    2017-01-01

    and efficiency. Here, an innovative model-based fault-detection approach for early detection of shading of PV modules and faults on the direct current (DC) side of PV systems is proposed. This approach combines the flexibility, and simplicity of a one-diode model

  14. Estimation of Faults in DC Electrical Power System

    Science.gov (United States)

    Gorinevsky, Dimitry; Boyd, Stephen; Poll, Scott

    2009-01-01

    This paper demonstrates a novel optimization-based approach to estimating fault states in a DC power system. Potential faults changing the circuit topology are included along with faulty measurements. Our approach can be considered as a relaxation of the mixed estimation problem. We develop a linear model of the circuit and pose a convex problem for estimating the faults and other hidden states. A sparse fault vector solution is computed by using 11 regularization. The solution is computed reliably and efficiently, and gives accurate diagnostics on the faults. We demonstrate a real-time implementation of the approach for an instrumented electrical power system testbed, the ADAPT testbed at NASA ARC. The estimates are computed in milliseconds on a PC. The approach performs well despite unmodeled transients and other modeling uncertainties present in the system.

  15. Spatial and Temporal Variations in Earthquake Stress Drop on Gofar Transform Fault, East Pacific Rise: Implications for Fault Strength

    Science.gov (United States)

    Moyer, P. A.; Boettcher, M. S.; McGuire, J. J.; Collins, J. A.

    2017-12-01

    During the last five seismic cycles on Gofar transform fault on the East Pacific Rise, the largest earthquakes (6.0 ≤ Mw ≤ 6.2) have repeatedly ruptured the same fault segment (rupture asperity), while intervening fault segments host swarms of microearthquakes. Previous studies on Gofar have shown that these segments of low (≤10%) seismic coupling contain diffuse zones of seismicity and P-wave velocity reduction compared with the rupture asperity; suggesting heterogeneous fault properties control earthquake behavior. We investigate the role systematic differences in material properties have on earthquake rupture along Gofar using waveforms from ocean bottom seismometers that recorded the end of the 2008 Mw 6.0 seismic cycle.We determine stress drop for 117 earthquakes (2.4 ≤ Mw ≤ 4.2) that occurred in and between rupture asperities from corner frequency derived using an empirical Green's function spectral ratio method and seismic moment obtained by fitting the omega-square source model to the low frequency amplitude of earthquake spectra. We find stress drops from 0.03 to 2.7 MPa with significant spatial variation, including 2 times higher average stress drop in the rupture asperity compared to fault segments with low seismic coupling. We interpret an inverse correlation between stress drop and P-wave velocity reduction as the effect of damage on earthquake rupture. Earthquakes with higher stress drops occur in more intact crust of the rupture asperity, while earthquakes with lower stress drops occur in regions of low seismic coupling and reflect lower strength, highly fractured fault zone material. We also observe a temporal control on stress drop consistent with log-time healing following the Mw 6.0 mainshock, suggesting a decrease in stress drop as a result of fault zone damage caused by the large earthquake.

  16. Comparing Different Fault Identification Algorithms in Distributed Power System

    Science.gov (United States)

    Alkaabi, Salim

    A power system is a huge complex system that delivers the electrical power from the generation units to the consumers. As the demand for electrical power increases, distributed power generation was introduced to the power system. Faults may occur in the power system at any time in different locations. These faults cause a huge damage to the system as they might lead to full failure of the power system. Using distributed generation in the power system made it even harder to identify the location of the faults in the system. The main objective of this work is to test the different fault location identification algorithms while tested on a power system with the different amount of power injected using distributed generators. As faults may lead the system to full failure, this is an important area for research. In this thesis different fault location identification algorithms have been tested and compared while the different amount of power is injected from distributed generators. The algorithms were tested on IEEE 34 node test feeder using MATLAB and the results were compared to find when these algorithms might fail and the reliability of these methods.

  17. Distributed Fault Detection for a Class of Nonlinear Stochastic Systems

    Directory of Open Access Journals (Sweden)

    Bingyong Yan

    2014-01-01

    Full Text Available A novel distributed fault detection strategy for a class of nonlinear stochastic systems is presented. Different from the existing design procedures for fault detection, a novel fault detection observer, which consists of a nonlinear fault detection filter and a consensus filter, is proposed to detect the nonlinear stochastic systems faults. Firstly, the outputs of the nonlinear stochastic systems act as inputs of a consensus filter. Secondly, a nonlinear fault detection filter is constructed to provide estimation of unmeasurable system states and residual signals using outputs of the consensus filter. Stability analysis of the consensus filter is rigorously investigated. Meanwhile, the design procedures of the nonlinear fault detection filter are given in terms of linear matrix inequalities (LMIs. Taking the influence of the system stochastic noises into consideration, an outstanding feature of the proposed scheme is that false alarms can be reduced dramatically. Finally, simulation results are provided to show the feasibility and effectiveness of the proposed fault detection approach.

  18. The Relationships of Subparallel Synthetic Faults and Pre-existing Structures in the Central Malawi Rift

    Science.gov (United States)

    Johnson, S.; Mendez, K.; Beresh, S. C. M.; Mynatt, W. G.; Elifritz, E. A.; Laó-Dávila, D. A.; Atekwana, E. A.; Abdelsalam, M. G.; Chindandali, P. R. N.; Chisenga, C.; Gondwe, S.; Mkumbura, M.; Kalaguluka, D.; Kalindekafe, L.; Salima, J.

    2017-12-01

    The objective of our research is to explore the evolution of synthetic fault systems in continental rifts. It has been suggested that during the rifting process border faults may become locked and strain is then accommodated within the hanging wall. The Malawi Rift provides an opportunity to study the evolution of these faults within a young (8 Ma), active and magma-poor continental rift. Two faults in central Malawi may show the transference of strain into the hanging wall. These faults are the older Chirobwe-Ntcheu with a length of 115 km and a scarp height of 300-1000 m and the younger Bilila-Mtakataka with a length of 130 km and a scarp height of 4-320 m. We used high-resolution aeromagnetic data and 30m resolution Shuttle Radar Topography Mission (SRTM) digital elevation models (DEM) to provide a 3D spatial characterization of the fault system. Additionally 10cm resolution DEMs were created using unmanned aerial system (UAS) derived aerial photography and Structure from Motion to document the regional Precambrian foliation and joint patterns. Moreover, displacement profiles where extracted from the SRTM-DEM data to compare the segmentation and linkage of the outer and inner faults. Our preliminary results show that the strike of each fault is approximately NW-SE which follows the strike of the Precambrian fabric. The magnetic fabric has a strike of NW-SE in the south changing to NE-SW in the north suggesting that the faults are controlled in part by an inherited Precambrian fabric. The displacement profile of the inner Bilila-Mtakataka fault is asymmetric and displays five fault segments supporting the interpretation that this is a relatively young fault. The expected results of this study are information about segmentation and displacement of each fault and their relationship to one another. The results from the aeromagnetic data utilizing Source Parameter Imaging to produce an approximate depth to basement which will support the displacement profiles derived

  19. Chaos Synchronization Based Novel Real-Time Intelligent Fault Diagnosis for Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Chin-Tsung Hsieh

    2014-01-01

    Full Text Available The traditional solar photovoltaic fault diagnosis system needs two to three sets of sensing elements to capture fault signals as fault features and many fault diagnosis methods cannot be applied with real time. The fault diagnosis method proposed in this study needs only one set of sensing elements to intercept the fault features of the system, which can be real-time-diagnosed by creating the fault data of only one set of sensors. The aforesaid two points reduce the cost and fault diagnosis time. It can improve the construction of the huge database. This study used Matlab to simulate the faults in the solar photovoltaic system. The maximum power point tracker (MPPT is used to keep a stable power supply to the system when the system has faults. The characteristic signal of system fault voltage is captured and recorded, and the dynamic error of the fault voltage signal is extracted by chaos synchronization. Then, the extension engineering is used to implement the fault diagnosis. Finally, the overall fault diagnosis system only needs to capture the voltage signal of the solar photovoltaic system, and the fault type can be diagnosed instantly.

  20. Fault rocks from the SAFOD core samples : implications for weakening at shallow depths along the San Andreas Fault, California

    NARCIS (Netherlands)

    Holdsworth, R.E.; van Diggelen, E.W.E.; Spiers, C.J.; Bresser, J.H.P. de; Walker, R.J.; Bown, L.

    2011-01-01

    The drilling of a deep borehole across the actively creeping Parkfield segment of the San Andreas Fault Zone (SAFZ), California, and collection of core materials permit direct geological study of fault zone processes at 2–3 km depth. The three drill cores sample both host and fault rocks and pass

  1. Neuroadaptive Fault-Tolerant Control of Nonlinear Systems Under Output Constraints and Actuation Faults.

    Science.gov (United States)

    Zhao, Kai; Song, Yongduan; Shen, Zhixi

    2018-02-01

    In this paper, a neuroadaptive fault-tolerant tracking control method is proposed for a class of time-delay pure-feedback systems in the presence of external disturbances and actuation faults. The proposed controller can achieve prescribed transient and steady-state performance, despite uncertain time delays and output constraints as well as actuation faults. By combining a tangent barrier Lyapunov-Krasovskii function with the dynamic surface control technique, the neural network unit in the developed control scheme is able to take its action from the very beginning and play its learning/approximating role safely during the entire system operational envelope, leading to enhanced control performance without the danger of violating compact set precondition. Furthermore, prescribed transient performance and output constraints are strictly ensured in the presence of nonaffine uncertainties, external disturbances, and undetectable actuation faults. The control strategy is also validated by numerical simulation.

  2. Fault detection and fault tolerant control of a smart base isolation system with magneto-rheological damper

    International Nuclear Information System (INIS)

    Wang, Han; Song, Gangbing

    2011-01-01

    Fault detection and isolation (FDI) in real-time systems can provide early warnings for faulty sensors and actuator signals to prevent events that lead to catastrophic failures. The main objective of this paper is to develop FDI and fault tolerant control techniques for base isolation systems with magneto-rheological (MR) dampers. Thus, this paper presents a fixed-order FDI filter design procedure based on linear matrix inequalities (LMI). The necessary and sufficient conditions for the existence of a solution for detecting and isolating faults using the H ∞ formulation is provided in the proposed filter design. Furthermore, an FDI-filter-based fuzzy fault tolerant controller (FFTC) for a base isolation structure model was designed to preserve the pre-specified performance of the system in the presence of various unknown faults. Simulation and experimental results demonstrated that the designed filter can successfully detect and isolate faults from displacement sensors and accelerometers while maintaining excellent performance of the base isolation technology under faulty conditions

  3. Why the 2002 Denali fault rupture propagated onto the Totschunda fault: implications for fault branching and seismic hazards

    Science.gov (United States)

    Schwartz, David P.; Haeussler, Peter J.; Seitz, Gordon G.; Dawson, Timothy E.

    2012-01-01

    The propagation of the rupture of the Mw7.9 Denali fault earthquake from the central Denali fault onto the Totschunda fault has provided a basis for dynamic models of fault branching in which the angle of the regional or local prestress relative to the orientation of the main fault and branch plays a principal role in determining which fault branch is taken. GeoEarthScope LiDAR and paleoseismic data allow us to map the structure of the Denali-Totschunda fault intersection and evaluate controls of fault branching from a geological perspective. LiDAR data reveal the Denali-Totschunda fault intersection is structurally simple with the two faults directly connected. At the branch point, 227.2 km east of the 2002 epicenter, the 2002 rupture diverges southeast to become the Totschunda fault. We use paleoseismic data to propose that differences in the accumulated strain on each fault segment, which express differences in the elapsed time since the most recent event, was one important control of the branching direction. We suggest that data on event history, slip rate, paleo offsets, fault geometry and structure, and connectivity, especially on high slip rate-short recurrence interval faults, can be used to assess the likelihood of branching and its direction. Analysis of the Denali-Totschunda fault intersection has implications for evaluating the potential for a rupture to propagate across other types of fault intersections and for characterizing sources of future large earthquakes.

  4. Simultaneous Sensor and Process Fault Diagnostics for Propellant Feed System

    Science.gov (United States)

    Cao, J.; Kwan, C.; Figueroa, F.; Xu, R.

    2006-01-01

    The main objective of this research is to extract fault features from sensor faults and process faults by using advanced fault detection and isolation (FDI) algorithms. A tank system that has some common characteristics to a NASA testbed at Stennis Space Center was used to verify our proposed algorithms. First, a generic tank system was modeled. Second, a mathematical model suitable for FDI has been derived for the tank system. Third, a new and general FDI procedure has been designed to distinguish process faults and sensor faults. Extensive simulations clearly demonstrated the advantages of the new design.

  5. Fault Analysis of ITER Coil Power Supply System

    International Nuclear Information System (INIS)

    Song, In Ho; Jun, Tao; Benfatto, Ivone

    2009-01-01

    The ITER magnet coils are all designed using superconductors with high current carrying capability. The Toroidal Field (TF) coils operate in a steadystate mode with a current of 68 kA and discharge the stored energy in case of quench with using 9 interleaved Fast Discharge Units (FDUs). The Central Solenoid (CS) coils and Poloidal Field (PF) coils operate in a pulse mode with currents of up to 45 kA and require fast variation of currents inducing more than 10 kV during normal operation on the coil terminals using Switching Network (SN) systems (CSs, PF1 and 6) and Booster and VS converters (PF2 to 5), which are series connected to Main converters. SN and FDU systems comprise high current DC circuit breakers and resistors for generating high voltage (SN) and to dissipate magnetic energy (FDUs). High transient voltages can arise due to the switching operation of SN and FD and the characteristics of resistors and stray components of DC distribution systems. Also, faults in power supply control such as shorts or grounding faults can produce higher voltages between terminals and between terminal and ground. Therefore, the design of the coil insulation, coil terminal regions, feeders, feed throughs, pipe breaks and instrumentation must take account of these high voltages during normal and abnormal conditions. Voltage insulation level can be defined and it is necessary to test the coils at higher voltages, to be sure of reliable performance during the lifetime of operation. This paper describes the fault analysis of the TF, CS and PF coil power supply systems, taking account of the stray parameter of the power supply and switching systems and inductively coupled superconducting coil models. Resistor grounding systems are included in the simulation model and all fault conditions such as converter hardware and software faults, switching system hardware and software faults, DC short circuits and single grounding faults are simulated. The occurrence of two successive faults

  6. Identifying Fault Connections of the Southern Pacific-North American Plate Boundary Using Triggered Slip and Crustal Velocities

    Science.gov (United States)

    Donnellan, A.; Grant Ludwig, L.; Rundle, J. B.; Parker, J. W.; Granat, R.; Heflin, M. B.; Pierce, M. E.; Wang, J.; Gunson, M.; Lyzenga, G. A.

    2017-12-01

    The 2010 M7.2 El Mayor - Cucapah earthquake caused extensive triggering of slip on faults proximal to the Salton Trough in southern California. Triggered slip and postseismic motions that have continued for over five years following the earthquake highlight connections between the El Mayor - Cucapah rupture and the network of faults that branch out along the southern Pacific - North American Plate Boundary. Coseismic triggering follows a network of conjugate faults from the northern end of the rupture to the Coachella segment of the southernmost San Andreas fault. Larger aftershocks and postseismic motions favor connections to the San Jacinto and Elsinore faults further west. The 2012 Brawley Swarm can be considered part of the branching on the Imperial Valley or east side of the plate boundary. Cluster analysis of long-term GPS velocities using Lloyds Algorithm, identifies bifurcation of the Pacific - North American plate boundary; The San Jacinto fault joins with the southern San Andreas fault, and the Salton Trough and Coachella segment of the San Andreas fault join with the Eastern California Shear Zone. The clustering analysis does not identify throughgoing deformation connecting the Coachella segment of the San Andreas fault with the rest of the San Andreas fault system through the San Gorgonio Pass. This observation is consistent with triggered slip from both the 1992 Landers and 2010 El Mayor - Cucapah earthquakes that follows the plate boundary bifurcation and with paleoseismic evidence of smaller earthquakes in the San Gorgonio Pass.

  7. Fault tolerance of the NIF power conditioning system

    International Nuclear Information System (INIS)

    Larson, D.W.; Anderson, R.; Boyes, J.

    1995-01-01

    The tolerance of the circuit topology proposed for the National Ignition Facility (NIF) power conditioning system to specific fault conditions is investigated. A new pulsed power circuit is proposed for the NIF which is simpler and less expensive than previous ICF systems. The inherent fault modes of the new circuit are different from the conventional approach, and must be understood to ensure adequate NIF system reliability. A test-bed which simulates the NIF capacitor module design was constructed to study the circuit design. Measurements from test-bed experiments with induced faults are compared with results from a detailed circuit model. The model is validated by the measurements and used to predict the behavior of the actual NIF module during faults. The model can be used to optimize fault tolerance of the NIF module through an appropriate distribution of circuit inductance and resistance. The experimental and modeling results are presented, and fault performance is compared with the ratings of pulsed power components. Areas are identified which require additional investigation

  8. Fault-tolerant Actuator System for Electrical Steering of Vehicles

    DEFF Research Database (Denmark)

    Sørensen, Jesper Sandberg; Blanke, Mogens

    2006-01-01

    is needed that meets this requirement. This paper studies the fault-tolerance properties of an electrical steering system. It presents a fault-tolerant architecture where a dedicated AC motor design used in conjunction with cheap voltage measurements can ensure detection of all relevant faults......Being critical to the safety of vehicles, the steering system is required to maintain the vehicles ability to steer until it is brought to halt, should a fault occur. With electrical steering becoming a cost-effective candidate for electrical powered vehicles, a fault-tolerant architecture...

  9. Industrial Cost-Benefit Assessment for Fault-tolerant Control Systems

    DEFF Research Database (Denmark)

    Thybo, C.; Blanke, M.

    1998-01-01

    Economic aspects are decisive for industrial acceptance of research concepts including the promising ideas in fault tolerant control. Fault tolerance is the ability of a system to detect, isolate and accommodate a fault, such that simple faults in a sub-system do not develop into failures....... The objective of this paper is to help, in the early product development state, to find the economical most suitable scheme. A salient result is that with increased customer awareness of total cost of ownership, new products can benefit significantly from applying fault tolerant control principles....

  10. Late Holocene earthquake history of the Brigham City segment of the Wasatch fault zone at the Hansen Canyon, Kotter Canyon, and Pearsons Canyon trench sites, Box Elder County, Utah

    Science.gov (United States)

    DuRoss, Christopher B.; Personius, Stephen F.; Crone, Anthony J.; McDonald, Greg N.; Briggs, Richard W.

    2012-01-01

    Of the five central segments of the Wasatch fault zone (WFZ) having evidence of recurrent Holocene surface-faulting earthquakes, the Brigham City segment (BCS) has the longest elapsed time since its most recent surface-faulting event (~2.1 kyr) compared to its mean recurrence time between events (~1.3 kyr). Thus, the BCS has the highest time-dependent earthquake probability of the central WFZ. We excavated trenches at three sites––the Kotter Canyon and Hansen Canyon sites on the north-central BCS and Pearsons Canyon site on the southern BCS––to determine whether a surface-faulting earthquake younger than 2.1 ka occurred on the BCS. Paleoseismic data for Hansen Canyon and Kotter Canyon confirm that the youngest earthquake on the north-central BCS occurred before 2 ka, consistent with previous north-central BCS investigations at Bowden Canyon and Box Elder Canyon. At Hansen Canyon, the most recent earthquake is constrained to 2.1–4.2 ka and had 0.6–2.5 m of vertical displacement. At Kotter Canyon, we found evidence for two events at 2.5 ± 0.3 ka and 3.5 ± 0.3 ka, with an average displacement per event of 1.9–2.3 m. Paleoseismic data from Pearsons Canyon, on the previously unstudied southern BCS, indicate that a post-2 ka earthquake ruptured this part of the segment. The Pearsons Canyon earthquake occurred at 1.2 ± 0.04 ka and had 0.1–0.8 m of vertical displacement, consistent with our observation of continuous, youthful scarps on the southern 9 km of the BCS having 1–2 m of late Holocene(?) surface offset. The 1.2-ka earthquake on the southern BCS likely represents rupture across the Weber–Brigham City segment boundary from the penultimate Weber-segment earthquake at about 1.1 ka. The Pearsons Canyon data result in a revised length of the BCS that has not ruptured since 2 ka (with time-dependent probability implications), and provide compelling evidence of at least one segment-boundary failure and multi-segment rupture on the central WFZ. Our

  11. Identifying Conventionally Sub-Seismic Faults in Polygonal Fault Systems

    Science.gov (United States)

    Fry, C.; Dix, J.

    2017-12-01

    Polygonal Fault Systems (PFS) are prevalent in hydrocarbon basins globally and represent potential fluid pathways. However the characterization of these pathways is subject to the limitations of conventional 3D seismic imaging; only capable of resolving features on a decametre scale horizontally and metres scale vertically. While outcrop and core examples can identify smaller features, they are limited by the extent of the exposures. The disparity between these scales can allow for smaller faults to be lost in a resolution gap which could mean potential pathways are left unseen. Here the focus is upon PFS from within the London Clay, a common bedrock that is tunnelled into and bears construction foundations for much of London. It is a continuation of the Ieper Clay where PFS were first identified and is found to approach the seafloor within the Outer Thames Estuary. This allows for the direct analysis of PFS surface expressions, via the use of high resolution 1m bathymetric imaging in combination with high resolution seismic imaging. Through use of these datasets surface expressions of over 1500 faults within the London Clay have been identified, with the smallest fault measuring 12m and the largest at 612m in length. The displacements over these faults established from both bathymetric and seismic imaging ranges from 30cm to a couple of metres, scales that would typically be sub-seismic for conventional basin seismic imaging. The orientations and dimensions of the faults within this network have been directly compared to 3D seismic data of the Ieper Clay from the offshore Dutch sector where it exists approximately 1km below the seafloor. These have typical PFS attributes with lengths of hundreds of metres to kilometres and throws of tens of metres, a magnitude larger than those identified in the Outer Thames Estuary. The similar orientations and polygonal patterns within both locations indicates that the smaller faults exist within typical PFS structure but are

  12. Algorithmic fault tree construction by component-based system modeling

    International Nuclear Information System (INIS)

    Majdara, Aref; Wakabayashi, Toshio

    2008-01-01

    Computer-aided fault tree generation can be easier, faster and less vulnerable to errors than the conventional manual fault tree construction. In this paper, a new approach for algorithmic fault tree generation is presented. The method mainly consists of a component-based system modeling procedure an a trace-back algorithm for fault tree synthesis. Components, as the building blocks of systems, are modeled using function tables and state transition tables. The proposed method can be used for a wide range of systems with various kinds of components, if an inclusive component database is developed. (author)

  13. Is lithostatic loading important for the slip behavior and evolution of normal faults in the Earth's crust?

    International Nuclear Information System (INIS)

    Kattenhorn, Simon A.; Pollard, David D.

    1999-01-01

    Normal faults growing in the Earth's crust are subject to the effects of an increasing frictional resistance to slip caused by the increasing lithostatic load with depth. We use three-dimensional (3-D) boundary element method numerical models to evaluate these effects on planar normal faults with variable elliptical tip line shapes in an elastic solid. As a result of increasing friction with depth, normal fault slip maxima for a single slip event are skewed away from the fault center toward the upper fault tip. There is a correspondingly greater propagation tendency at the upper tip. However, the tall faults that would result from such a propagation tendency are generally not observed in nature. We show how mechanical interaction between laterally stepping fault segments significantly competes with the lithostatic loading effect in the evolution of a normal fault system, promoting lateral propagation and possibly segment linkage. Resultant composite faults are wider than they are tall, resembling both 3-D seismic data interpretations and previously documented characteristics of normal fault systems. However, this effect may be greatly complemented by the influence of a heterogeneous stratigraphy, which can control fault nucleation depth and inhibit fault propagation across the mechanical layering. Our models demonstrate that although lithostatic loading may be an important control on fault evolution in relatively homogeneous rocks, the contribution of lithologic influences and mechanical interaction between closely spaced, laterally stepping faults may predominate in determining the slip behavior and propagation tendency of normal faults in the Earth's crust. (c) 1999 American Geophysical Union

  14. Transient fault tolerant control for vehicle brake-by-wire systems

    International Nuclear Information System (INIS)

    Huang, Shuang; Zhou, Chunjie; Yang, Lili; Qin, Yuanqing; Huang, Xiongfeng; Hu, Bowen

    2016-01-01

    Brake-by-wire (BBW) systems that have no mechanical linkage between the brake pedal and the brake mechanism are expected to improve vehicle safety through better braking capability. However, transient faults in BBW systems can cause dangerous driving situations. Most existing research in this area focuses on the brake control mechanism, but very few studies try to solve the problem associated with transient fault propagation and evolution in the brake control system hierarchy. In this paper, a hierarchical transient fault tolerant scheme with embedded intelligence and resilient coordination for BBW system is proposed based on the analysis of transient fault propagation characteristics. In this scheme, most transient faults are tackled rapidly by a signature-based detection method at the node level, and the remaining transient faults, which cannot be detected directly at the node level and could degrade the system performance through fault propagation and evolution, are detected and recovered through function and structure models at the system level. To jointly accommodate these BBW transient faults at the system level, a sliding mode control algorithm and a task reallocation strategy are designed. A simulation platform based on Architecture Analysis and Design Language (AADL) is established to evaluate the task reallocation strategy, and a hardware-in-the-loop simulation is carried out to validate the proposed scheme systematically. Experimental results show the effectiveness of this new approach to BBW systems. - Highlights: • We propose a hierarchical transient fault tolerant scheme for BBW systems. • A sliding mode algorithm and a task strategy are designed to tackle transient fault. • The effectiveness of the scheme is verified in both simulation and HIL environments.

  15. Fault diagnosis for dynamic power system

    International Nuclear Information System (INIS)

    Thabet, A.; Abdelkrim, M.N.; Boutayeb, M.; Didier, G.; Chniba, S.

    2011-01-01

    The fault diagnosis problem for dynamic power systems is treated, the nonlinear dynamic model based on a differential algebraic equations is transformed with reduced index to a simple dynamic model. Two nonlinear observers are used for generating the fault signals for comparison purposes, one of them being an extended Kalman estimator and the other a new extended kalman filter with moving horizon with a study of convergence based on the choice of matrix of covariance of the noises of system and measurements. The paper illustrates a simulation study applied on IEEE 3 buses test system.

  16. The mechanics of fault-bend folding and tear-fault systems in the Niger Delta

    Science.gov (United States)

    Benesh, Nathan Philip

    This dissertation investigates the mechanics of fault-bend folding using the discrete element method (DEM) and explores the nature of tear-fault systems in the deep-water Niger Delta fold-and-thrust belt. In Chapter 1, we employ the DEM to investigate the development of growth structures in anticlinal fault-bend folds. This work was inspired by observations that growth strata in active folds show a pronounced upward decrease in bed dip, in contrast to traditional kinematic fault-bend fold models. Our analysis shows that the modeled folds grow largely by parallel folding as specified by the kinematic theory; however, the process of folding over a broad axial surface zone yields a component of fold growth by limb rotation that is consistent with the patterns observed in natural folds. This result has important implications for how growth structures can he used to constrain slip and paleo-earthquake ages on active blind-thrust faults. In Chapter 2, we expand our DEM study to investigate the development of a wider range of fault-bend folds. We examine the influence of mechanical stratigraphy and quantitatively compare our models with the relationships between fold and fault shape prescribed by the kinematic theory. While the synclinal fault-bend models closely match the kinematic theory, the modeled anticlinal fault-bend folds show robust behavior that is distinct from the kinematic theory. Specifically, we observe that modeled structures maintain a linear relationship between fold shape (gamma) and fault-horizon cutoff angle (theta), rather than expressing the non-linear relationship with two distinct modes of anticlinal folding that is prescribed by the kinematic theory. These observations lead to a revised quantitative relationship for fault-bend folds that can serve as a useful interpretation tool. Finally, in Chapter 3, we examine the 3D relationships of tear- and thrust-fault systems in the western, deep-water Niger Delta. Using 3D seismic reflection data and new

  17. Event-Triggered Fault Detection of Nonlinear Networked Systems.

    Science.gov (United States)

    Li, Hongyi; Chen, Ziran; Wu, Ligang; Lam, Hak-Keung; Du, Haiping

    2017-04-01

    This paper investigates the problem of fault detection for nonlinear discrete-time networked systems under an event-triggered scheme. A polynomial fuzzy fault detection filter is designed to generate a residual signal and detect faults in the system. A novel polynomial event-triggered scheme is proposed to determine the transmission of the signal. A fault detection filter is designed to guarantee that the residual system is asymptotically stable and satisfies the desired performance. Polynomial approximated membership functions obtained by Taylor series are employed for filtering analysis. Furthermore, sufficient conditions are represented in terms of sum of squares (SOSs) and can be solved by SOS tools in MATLAB environment. A numerical example is provided to demonstrate the effectiveness of the proposed results.

  18. Geodetic exploration of strain along the El Pilar Fault in northeastern Venezuela

    Science.gov (United States)

    Reinoza, C.; Jouanne, F.; Audemard, F. A.; Schmitz, M.; Beck, C.

    2015-03-01

    We use Global Navigation Satellite Systems observations in northeastern Venezuela to constrain the El Pilar Fault (EPF) kinematics and to explore the effects of the variable elastic properties of the surrounding medium and of the fault geometry on inferred slip rates and locking depth. The velocity field exhibits an asymmetric velocity gradient on either side of the EPF. We use five different approaches to explore possible models to explain this asymmetry. First, we infer a 1.6 km locking depth using a classic elastic half-space dislocation model. Second, we infer a 1.5 km locking depth and a 0.33 asymmetry coefficient using a heterogeneous asymmetric model, including contrasting material properties on either side of a vertical fault, suggesting that the igneous-metamorphic terranes on the northern side are ~2 times more rigid than the sedimentary southern side. Third, we use a three-dimensional elastostatic model to evaluate the presence of a compliant zone, suggesting a 30% reduction of rigidity in the upper 3 km at the depth of a 1 to 5 km wide fault zone. Fourth, we evaluate the distribution of fault slip, revealing a widespread partial creep pattern in the eastern upper segment, while the upper western segment exhibits a partially locked area, which coincides with the rupture surface of the 1797 and 1929 earthquakes. To supplement these models, we upgrade the previously published displacement simulation method using nonvertical dislocations with data acquired between 2003 and 2013. The localized aseismic displacement pattern associated with creeping or partially creeping fault segments could explain the low level of historic seismicity.

  19. Spreading rate dependence of gravity anomalies along oceanic transform faults.

    Science.gov (United States)

    Gregg, Patricia M; Lin, Jian; Behn, Mark D; Montési, Laurent G J

    2007-07-12

    Mid-ocean ridge morphology and crustal accretion are known to depend on the spreading rate of the ridge. Slow-spreading mid-ocean-ridge segments exhibit significant crustal thinning towards transform and non-transform offsets, which is thought to arise from a three-dimensional process of buoyant mantle upwelling and melt migration focused beneath the centres of ridge segments. In contrast, fast-spreading mid-ocean ridges are characterized by smaller, segment-scale variations in crustal thickness, which reflect more uniform mantle upwelling beneath the ridge axis. Here we present a systematic study of the residual mantle Bouguer gravity anomaly of 19 oceanic transform faults that reveals a strong correlation between gravity signature and spreading rate. Previous studies have shown that slow-slipping transform faults are marked by more positive gravity anomalies than their adjacent ridge segments, but our analysis reveals that intermediate and fast-slipping transform faults exhibit more negative gravity anomalies than their adjacent ridge segments. This finding indicates that there is a mass deficit at intermediate- and fast-slipping transform faults, which could reflect increased rock porosity, serpentinization of mantle peridotite, and/or crustal thickening. The most negative anomalies correspond to topographic highs flanking the transform faults, rather than to transform troughs (where deformation is probably focused and porosity and alteration are expected to be greatest), indicating that crustal thickening could be an important contributor to the negative gravity anomalies observed. This finding in turn suggests that three-dimensional magma accretion may occur near intermediate- and fast-slipping transform faults.

  20. Late Cenozoic thrusting of major faults along the central segment of Longmen Shan, eastern Tibet: Evidence from low-temperature thermochronology

    Science.gov (United States)

    Tan, Xi-Bin; Xu, Xi-Wei; Lee, Yuan-Hsi; Lu, Ren-Qi; Liu, Yiduo; Xu, Chong; Li, Kang; Yu, Gui-Hua; Kang, Wen-Jun

    2017-08-01

    The Cenozoic orogenic process of the Longmen Shan (LMS) and the kinematics of major faults along the LMS are crucial for understanding the growth history and mechanism of the eastern Tibetan Plateau. Three major faults, from west to east, are present in the central segment of the LMS: the Wenchuan-Maoxian Fault (WMF), the Beichuan-Yingxiu Fault (BYF), and the Jiangyou-Guanxian Fault (JGF). Previous researchers have placed great impetus on the Pengguan Massif, between the WMF and BYF. However, limited low-temperature thermochronology data coverage in other areas prevents us from fully delineating the tectonic history of the LMS. In this study, we collect 22 samples from vertical profiles in the Xuelongbao Massif and the range frontal area located at the hanging walls of the WMF and JGF respectively, and conduct apatite and zircon fission track analyses. New fission track data reveal that the Xuelongbao Massif has been undergoing rapid exhumation with an average rate of 0.7-0.9 mm/yr since 11 Ma, and the range frontal area began rapid exhumation at 7.5 Ma with total exhumation of 2.5-4.5 km. The exhumation histories indicate that the three major faults (WMF, BYF and JGF) in the central LMS are all reverse faults, and show a basinward in-sequence propagation from middle Miocene to present-day. Such a pattern further implies that upper crustal shortening is the primary driver for the LMS' uplift during the Late Cenozoic. Nevertheless, middle-lower crustal deformation is difficult to be constrained by the exhumation histories, and its contribution to LMS' uplift cannot be ruled out.

  1. Mesoscopic Structural Observations of Cores from the Chelungpu Fault System, Taiwan Chelungpu-Fault Drilling Project Hole-A, Taiwan

    Directory of Open Access Journals (Sweden)

    Hiroki Sone

    2007-01-01

    Full Text Available Structural characteristics of fault rocks distributed within major fault zones provide basic information in understanding the physical aspects of faulting. Mesoscopic structural observations of the drilledcores from Taiwan Chelungpu-fault Drilling Project Hole-A are reported in this article to describe and reveal the distribution of fault rocks within the Chelungpu Fault System.

  2. Fault detection in finite frequency domain for Takagi-Sugeno fuzzy systems with sensor faults.

    Science.gov (United States)

    Li, Xiao-Jian; Yang, Guang-Hong

    2014-08-01

    This paper is concerned with the fault detection (FD) problem in finite frequency domain for continuous-time Takagi-Sugeno fuzzy systems with sensor faults. Some finite-frequency performance indices are initially introduced to measure the fault/reference input sensitivity and disturbance robustness. Based on these performance indices, an effective FD scheme is then presented such that the generated residual is designed to be sensitive to both fault and reference input for faulty cases, while robust against the reference input for fault-free case. As the additional reference input sensitivity for faulty cases is considered, it is shown that the proposed method improves the existing FD techniques and achieves a better FD performance. The theory is supported by simulation results related to the detection of sensor faults in a tunnel-diode circuit.

  3. Fault detection for discrete-time switched systems with sensor stuck faults and servo inputs.

    Science.gov (United States)

    Zhong, Guang-Xin; Yang, Guang-Hong

    2015-09-01

    This paper addresses the fault detection problem of switched systems with servo inputs and sensor stuck faults. The attention is focused on designing a switching law and its associated fault detection filters (FDFs). The proposed switching law uses only the current states of FDFs, which guarantees the residuals are sensitive to the servo inputs with known frequency ranges in faulty cases and robust against them in fault-free case. Thus, the arbitrarily small sensor stuck faults, including outage faults can be detected in finite-frequency domain. The levels of sensitivity and robustness are measured in terms of the finite-frequency H- index and l2-gain. Finally, the switching law and FDFs are obtained by the solution of a convex optimization problem. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Reconfigurability of Piecewise Affine Systems Against Actuator Faults

    DEFF Research Database (Denmark)

    Tabatabaeipour, Seyed Mojtaba; Gholami, Mehdi; Bak, Thomas

    2011-01-01

    In this paper, we consider the problem of recongurability of peicewise ane (PWA) systems. Actuator faults are considered. A system subject to a fault is considered as recongurable if it can be stabilized by a state feedback controller and the optimal cost of the performance of the systems...

  5. Spatial distribution correlation of soil-gas radon (222Rn) and mercury with leveling deformation in northern margin fault zone of West Qinling, China.

    Science.gov (United States)

    Li, Chenhua; Zhang, Hui; Su, Hejun; Zhou, Huiling; Wang, Yanhong

    2017-11-01

    This study concerns measurement of 222 Rn and mercury concentrations in soil-gas in the northern margin fault zone of West Qinling, Tibet (China). Based on profiles crossing perpendicularly the different segments of the fault at six different locations, the relations between the gas measurements, fault deformation, and seismic activity in each segment of the studied fault were analyzed, determining seismic risks in the fault zone. Soil-gas data are heterogeneous, but appear relatively organized along the three segments of the fault. The detailed multidisciplinary analysis reveals complex interactions between the structural setting, uprising fluids, leveling and seismic activity in different fault segments. The results for both fault soil gas and deformation indicated relatively stronger fault activity in the Wushan segment in the middle-eastern segment of the northern margin fault zone of West Qinling and lower activity in the Zhangxian segment, whereas the fault in the Tianshui segment was relatively locked. Additionally, in the Wushan strike-slip pull-apart area, the active influence of fluid activities facilitated the occurrence of small to medium-sized seismic events, which prevented the occurrence of larger events; in contrast, in the Tianshui segment, the west Zhangxian segment, the weak fluid activities and the corresponding strain rate will probably lead to strong earthquake buildup. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Expert systems for real-time monitoring and fault diagnosis

    Science.gov (United States)

    Edwards, S. J.; Caglayan, A. K.

    1989-01-01

    Methods for building real-time onboard expert systems were investigated, and the use of expert systems technology was demonstrated in improving the performance of current real-time onboard monitoring and fault diagnosis applications. The potential applications of the proposed research include an expert system environment allowing the integration of expert systems into conventional time-critical application solutions, a grammar for describing the discrete event behavior of monitoring and fault diagnosis systems, and their applications to new real-time hardware fault diagnosis and monitoring systems for aircraft.

  7. Robust Parametric Fault Estimation in a Hopper System

    DEFF Research Database (Denmark)

    Soltani, Mohsen; Izadi-Zamanabadi, Roozbeh; Wisniewski, Rafal

    2012-01-01

    The ability of diagnosis of the possible faults is a necessity for satellite launch vehicles during their mission. In this paper, a structural analysis method is employed to divide the complex propulsion system into simpler subsystems for fault diagnosis filter design. A robust fault diagnosis me...

  8. A master system for power system fault phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Myung Ho; Jang, Sang Ho; Hong, Joon Hee; Min, Wan Ki; Yoo, Chang Hwan [Korea Electric Power Corp. (KEPCO), Taejon (Korea, Republic of). Research Center

    1995-12-31

    This report includes as follows - Real time digital simulator - Remote measuring, analyzing and reproducing system of power system fault data -Power system reduction method program using EMTP -Test system for protection device. (author). 22 refs., 38 figs.

  9. Communication-based fault handling scheme for ungrounded distribution systems

    International Nuclear Information System (INIS)

    Yang, X.; Lim, S.I.; Lee, S.J.; Choi, M.S.

    2006-01-01

    The requirement for high quality and highly reliable power supplies has been increasing as a result of increasing demand for power. At the time of a fault occurrence in a distribution system, some protection method would be dedicated to fault section isolation and service restoration. However, if there are many outage areas when the protection method is performed, it is an inconvenience to the customer. A conventional method to determine a fault section in ungrounded systems requires many successive outage invocations. This paper proposed an efficient fault section isolation method and service restoration method for single line-to-ground fault in an ungrounded distribution system that was faster than the conventional one using the information exchange between connected feeders. The proposed algorithm could be performed without any power supply interruption and could decrease the number of switching operations, so that customers would not experience outages very frequently. The method involved the use of an intelligent communication method and a sequential switching control scheme. The proposed algorithm was also applied in both a single-tie and multi-tie distribution system. This proposed algorithm has been verified through fault simulations in a simple model of ungrounded multi-tie distribution system. The method proposed in this paper was proven to offer more efficient fault identification and much less outage time than the conventional method. The proposed method could contribute to a system design since it is valid in multi-tie systems. 5 refs., 2 tabs., 8 figs

  10. Subsurface structures of the active reverse fault zones in Japan inferred from gravity anomalies.

    Science.gov (United States)

    Matsumoto, N.; Sawada, A.; Hiramatsu, Y.; Okada, S.; Tanaka, T.; Honda, R.

    2016-12-01

    The object of our study is to examine subsurface features such as continuity, segmentation and faulting type, of the active reverse fault zones. We use the gravity data published by the Gravity Research Group in Southwest Japan (2001), the Geographical Survey Institute (2006), Yamamoto et al. (2011), Honda et al. (2012), and the Geological Survey of Japan, AIST (2013) in this study. We obtained the Bouguer anomalies through terrain corrections with 10 m DEM (Sawada et al. 2015) under the assumed density of 2670 kg/m3, a band-pass filtering, and removal of linear trend. Several derivatives and structural parameters calculated from a gravity gradient tensor are applied to highlight the features, such as a first horizontal derivatives (HD), a first vertical derivatives (VD), a normalized total horizontal derivative (TDX), a dip angle (β), and a dimensionality index (Di). We analyzed 43 reverse fault zones in northeast Japan and the northern part of southwest Japan among major active fault zones selected by Headquarters for Earthquake Research Promotion. As the results, the subsurface structural boundaries clearly appear along the faults at 21 faults zones. The weak correlations appear at 13 fault zones, and no correlations are recognized at 9 fault zones. For example, in the Itoigawa-Shizuoka tectonic line, the subsurface structure boundary seems to extend further north than the surface trace. Also, a left stepping structure of the fault around Hakuba is more clearly observed with HD. The subsurface structures, which detected as the higher values of HD, are distributed on the east side of the surface rupture in the north segments and on the west side in the south segments, indicating a change of the dip direction, the east dipping to the west dipping, from north to south. In the Yokote basin fault zone, the subsurface structural boundary are clearly detected with HD, VD and TDX along the fault zone in the north segment, but less clearly in the south segment. Also, Di

  11. Dynamic rupture simulations of the 2016 Mw7.8 Kaikōura earthquake: a cascading multi-fault event

    Science.gov (United States)

    Ulrich, T.; Gabriel, A. A.; Ampuero, J. P.; Xu, W.; Feng, G.

    2017-12-01

    The Mw7.8 Kaikōura earthquake struck the Northern part of New Zealand's South Island roughly one year ago. It ruptured multiple segments of the contractional North Canterbury fault zone and of the Marlborough fault system. Field observations combined with satellite data suggest a rupture path involving partly unmapped faults separated by large stepover distances larger than 5 km, the maximum distance usually considered by the latest seismic hazard assessment methods. This might imply distant rupture transfer mechanisms generally not considered in seismic hazard assessment. We present high-resolution 3D dynamic rupture simulations of the Kaikōura earthquake under physically self-consistent initial stress and strength conditions. Our simulations are based on recent finite-fault slip inversions that constrain fault system geometry and final slip distribution from remote sensing, surface rupture and geodetic data (Xu et al., 2017). We assume a uniform background stress field, without lateral fault stress or strength heterogeneity. We use the open-source software SeisSol (www.seissol.org) which is based on an arbitrary high-order accurate DERivative Discontinuous Galerkin method (ADER-DG). Our method can account for complex fault geometries, high resolution topography and bathymetry, 3D subsurface structure, off-fault plasticity and modern friction laws. It enables the simulation of seismic wave propagation with high-order accuracy in space and time in complex media. We show that a cascading rupture driven by dynamic triggering can break all fault segments that were involved in this earthquake without mechanically requiring an underlying thrust fault. Our prefered fault geometry connects most fault segments: it does not features stepover larger than 2 km. The best scenario matches the main macroscopic characteristics of the earthquake, including its apparently slow rupture propagation caused by zigzag cascading, the moment magnitude and the overall inferred slip

  12. Index for simultaneous rupture assessment of active faults. Part 3. Subsurface structure deduced from geophysical research

    International Nuclear Information System (INIS)

    Aoyagi, Yasuhira

    2012-01-01

    Tomographic inversion was carried out in the northern source region of the 1891 Nobi earthquake, the largest inland earthquake (M8.0) in Japan to detect subsurface structure to control simultaneous rupture of active fault system. In the step-over between the two ruptured fault segments in 1891, a remarkable low velocity zone is found between the Nukumi and Ibigawa faults at the depth shallower than 3-5 km. The low velocity zone forms a prism-like body narrowing down in the deeper. Hypocenters below the low velocity zone connecting the two ruptured segments indicate the possibility of their convergence in the seismogenic zone. Northern tip of the Neodani fault locates in the low velocity zone. The results show that fault rupture is easy to propagate in the low velocity zone between two parallel faults. In contrast an E-W cross-structure is found in the seismogenic depth between the Nobi earthquake and the 1948 Fukui earthquake (M7.1) source regions. It runs parallel to the Hida gaien belt, a major geologic structure in the district. P-wave velocity is lower and the hypocenter depths are obviously shallower in north of the cross-structure. Since a few faults lie in E-W direction just above it, a cross-structure zone including the Hida gaien belt might terminate the fault rupture. The results indicate fault rupture is difficult to propagate beyond major cross-structure. The length ratio of cross-structure to fault segment (PL/FL) is proposed to use for simultaneous rupture assessment. Some examples show that fault ruptures perhaps (PL/FL>3-4), maybe (∼1), and probably (<1) cut through such cross-structures. (author)

  13. Transient pattern analysis for fault detection and diagnosis of HVAC systems

    International Nuclear Information System (INIS)

    Cho, Sung-Hwan; Yang, Hoon-Cheol; Zaheer-uddin, M.; Ahn, Byung-Cheon

    2005-01-01

    Modern building HVAC systems are complex and consist of a large number of interconnected sub-systems and components. In the event of a fault, it becomes very difficult for the operator to locate and isolate the faulty component in such large systems using conventional fault detection methods. In this study, transient pattern analysis is explored as a tool for fault detection and diagnosis of an HVAC system. Several tests involving different fault replications were conducted in an environmental chamber test facility. The results show that the evolution of fault residuals forms clear and distinct patterns that can be used to isolate faults. It was found that the time needed to reach steady state for a typical building HVAC system is at least 50-60 min. This means incorrect diagnosis of faults can happen during online monitoring if the transient pattern responses are not considered in the fault detection and diagnosis analysis

  14. Method and system for environmentally adaptive fault tolerant computing

    Science.gov (United States)

    Copenhaver, Jason L. (Inventor); Jeremy, Ramos (Inventor); Wolfe, Jeffrey M. (Inventor); Brenner, Dean (Inventor)

    2010-01-01

    A method and system for adapting fault tolerant computing. The method includes the steps of measuring an environmental condition representative of an environment. An on-board processing system's sensitivity to the measured environmental condition is measured. It is determined whether to reconfigure a fault tolerance of the on-board processing system based in part on the measured environmental condition. The fault tolerance of the on-board processing system may be reconfigured based in part on the measured environmental condition.

  15. Statistical Feature Extraction for Fault Locations in Nonintrusive Fault Detection of Low Voltage Distribution Systems

    Directory of Open Access Journals (Sweden)

    Hsueh-Hsien Chang

    2017-04-01

    Full Text Available This paper proposes statistical feature extraction methods combined with artificial intelligence (AI approaches for fault locations in non-intrusive single-line-to-ground fault (SLGF detection of low voltage distribution systems. The input features of the AI algorithms are extracted using statistical moment transformation for reducing the dimensions of the power signature inputs measured by using non-intrusive fault monitoring (NIFM techniques. The data required to develop the network are generated by simulating SLGF using the Electromagnetic Transient Program (EMTP in a test system. To enhance the identification accuracy, these features after normalization are given to AI algorithms for presenting and evaluating in this paper. Different AI techniques are then utilized to compare which identification algorithms are suitable to diagnose the SLGF for various power signatures in a NIFM system. The simulation results show that the proposed method is effective and can identify the fault locations by using non-intrusive monitoring techniques for low voltage distribution systems.

  16. Fault Ride Through Capability Enhancement of a Large-Scale PMSG Wind System with Bridge Type Fault Current Limiters

    Directory of Open Access Journals (Sweden)

    ALAM, M. S.

    2018-02-01

    Full Text Available In this paper, bridge type fault current limiter (BFCL is proposed as a potential solution to the fault problems of permanent magnet synchronous generator (PMSG based large-scale wind energy system. As PMSG wind system is more vulnerable to disturbances, it is essential to guarantee the stability during severe disturbances by enhancing the fault ride through capability. BFCL controller has been designed to insert resistance and inductance during the inception of system disturbances in order to limit fault current. Constant capacitor voltage has been maintained by the grid voltage source converter (GVSC controller while current extraction or injection has been achieved by machine VSC (MVSC controller. Symmetrical and unsymmetrical faults have been applied in the system to show the effectiveness of the proposed BFCL solution. PMSG wind system, BFCL and their controllers have been implemented by real time hardware in loop (RTHIL setup with real time digital simulator (RTDS and dSPACE. Another significant feature of this work is that the performance of the proposed BFCL is compared with that of series dynamic braking resistor (SDBR. Comparative RTHIL implementation results show that the proposed BFCL is very efficient in improving system fault ride through capability by limiting the fault current and outperforms SDBR.

  17. Meteoric water in normal fault systems: Oxygen and hydrogen isotopic measurements on authigenic phases in brittle fault rocks

    Science.gov (United States)

    Haines, S. H.; Anderson, R.; Mulch, A.; Solum, J. G.; Valley, J. W.; van der Pluijm, B. A.

    2009-12-01

    The nature of fluid circulation systems in normal fault systems is fundamental to understanding the nature of fluid movement within the upper crust, and has important implications for the on-going controversy about the strength of faults. Authigenic phases in clay gouges and fault breccias record the isotopic signature of the fluids they formed in equilibrium with, and can be used to understand the ‘plumbing system’ of brittle fault environments. We obtained paired oxygen and hydrogen isotopic measurements on authigenic illite and/or smectite in clay gouge from normal faults in two geologic environments, 1.) low-angle normal faults (Ruby Mountains detachment, NV; Badwater Turtleback, CA; Panamint range-front detachment; CA; Amargosa detachment; CA; Waterman Hills detachment, CA), and 2.) An intracratonic high-angle normal fault (Moab Fault, UT). All authigenic phases in these clay gouges are moderately light isotopically with respect to oxygen (illite δ18O -2.0 - + 11.5 ‰ SMOW, smectite δ18O +3.6 and 17.9 ‰) and very light isotopically with respect to hydrogen (illite δD -148 to -98 ‰ SMOW, smectite δD -147 to -92 ‰). Fluid compositions calculated from the authigenic clays at temperatures of 50 - 130 ○C (as indicated by clay mineralogy) indicate that both illite and smectite in normal fault clay gouge formed in the presence of near-pristine to moderately-evolved meteoric fluids and that igneous or metamorphic fluids are not involved in clay gouge formation in these normal fault settings. We also obtained paired oxygen and hydrogen isotopic measurements on chlorites derived from footwall chlorite breccias in 4 low-angle normal fault detachment systems (Badwater and Mormon Point Turtlebacks, CA, the Chemehuevi detachment, CA, and the Buckskin-Rawhide detachment, AZ). All chlorites are isotopically light to moderately light with respect to oxygen (δ18O +0.29 to +8.1 ‰ SMOW) and very light with respect to hydrogen (δD -97 to -113 ‰) and indicate

  18. Elemental Geochemistry of Samples From Fault Segments of the San Andreas Fault Observatory at Depth (SAFOD) Drill Hole

    Science.gov (United States)

    Tourscher, S. N.; Schleicher, A. M.; van der Pluijm, B. A.; Warr, L. N.

    2006-12-01

    Elemental geochemistry of mudrock samples from phase 2 drilling of the San Andreas Fault Observatory at Depth (SAFOD) is presented from bore hole depths of 3066 m to 3169 m and from 3292 m to 3368 m, which contain a creeping section and main trace of the fault, respectively. In addition to preparation and analysis of whole rock sample, fault grains with neomineralized, polished surfaces were hand picked from well-washed whole rock samples, minimizing the potential contamination from drilling mud and steel shavings. The separated fractions were washed in deionized water, powdered using a mortar and pestle, and analyzed using an Inductively Coupled Plasma- Optical Emission Spectrometer for major and minor elements. Based on oxide data results, systematic differences in element concentrations are observed between the whole rock and fault rock. Two groupings of data points are distinguishable in the regions containing the main trace of the fault, a shallow part (3292- 3316 m) and a deeper section (3320-3368 m). Applying the isocon method, assuming Zr and Ti to be immobile elements in these samples, indicates a volume loss of more than 30 percent in the shallow part and about 23 percent in the deep part of the main trace. These changes are minimum estimates of fault-related volume loss, because the whole rock from drilling samples contains variable amount of fault rock as well. Minimum estimates for volume loss in the creeping section of the fault are more than 50 percent when using the isocon method, comparing whole rock to plucked fault rock. The majority of the volume loss in the fault rocks is due to the dissolution and loss of silica, potassium, aluminum, sodium and calcium, whereas (based on oxide data) the mineralized surfaces of fractures appear to be enriched in Fe and Mg. The large amount of element mobility within these fault traces suggests extensive circulation of hydrous fluids along fractures that was responsible for progressive dissolution and leaching

  19. Mapping of the surface rupture induced by the M 7.3 Kumamoto Earthquake along the Eastern segment of Futagawa fault using image correlation techniques

    Science.gov (United States)

    Ekhtari, N.; Glennie, C. L.; Fielding, E. J.; Liang, C.

    2016-12-01

    Near field surface deformation is vital to understanding the shallow fault physics of earthquakes but near-field deformation measurements are often sparse or not reliable. In this study, we use the Co-seismic Image Correlation (COSI-Corr) technique to map the near-field surface deformation caused by the M 7.3 April 16, 2016 Kumamoto Earthquake, Kyushu, Japan. The surface rupture around the Eastern segment of Futagawa fault is mapped using a pair of panchromatic 1.5 meter resolution SPOT 7 images. These images were acquired on January 16 and April 29, 2016 (3 months before and 13 days after the earthquake respectively) with close to nadir (less than 1.5 degree off nadir) viewing angle. The two images are ortho-rectified using SRTM Digital Elevation Model and further co-registered using tie points far away from the rupture field. Then the COSI-Corr technique is utilized to produce an estimated surface displacement map, and a horizontal displacement vector field is calculated which supplies a seamless estimate of near field displacement measurements along the Eastern segment of the Futagawa fault. The COSI-Corr estimated displacements are then compared to other existing displacement observations from InSAR, GPS and field observations.

  20. Model-based fault detection algorithm for photovoltaic system monitoring

    KAUST Repository

    Harrou, Fouzi

    2018-02-12

    Reliable detection of faults in PV systems plays an important role in improving their reliability, productivity, and safety. This paper addresses the detection of faults in the direct current (DC) side of photovoltaic (PV) systems using a statistical approach. Specifically, a simulation model that mimics the theoretical performances of the inspected PV system is designed. Residuals, which are the difference between the measured and estimated output data, are used as a fault indicator. Indeed, residuals are used as the input for the Multivariate CUmulative SUM (MCUSUM) algorithm to detect potential faults. We evaluated the proposed method by using data from an actual 20 MWp grid-connected PV system located in the province of Adrar, Algeria.

  1. Fault Correspondence Analysis in Complex Electric Power Systems

    Directory of Open Access Journals (Sweden)

    WANG, C.

    2015-02-01

    Full Text Available Wide area measurement system (WAMS mainly serves for the requirement of time synchronization in complex electric power systems. The analysis and control of power system mostly depends on the measurement of state variables, and WAMS provides the basis for dynamic monitoring of power system by these measurements, which can also satisfy the demands of observable, controllable, real-time analysis and decision, self-adaptive etc. requested by smart grid. In this paper, based on the principles of fault correspondence analysis, by calculating row characteristic which represents nodal electrical information and column characteristic which represents acquisition time information, we will conduct intensive research on fault detection. The research results indicate that the fault location is determined by the first dimensional variable, and the occurrence time of fault is determined by the second dimensional variable. The research in this paper will contribute to the development of future smart grid.

  2. Hanging-wall deformation above a normal fault: sequential limit analyses

    Science.gov (United States)

    Yuan, Xiaoping; Leroy, Yves M.; Maillot, Bertrand

    2015-04-01

    The deformation in the hanging wall above a segmented normal fault is analysed with the sequential limit analysis (SLA). The method combines some predictions on the dip and position of the active fault and axial surface, with geometrical evolution à la Suppe (Groshong, 1989). Two problems are considered. The first followed the prototype proposed by Patton (2005) with a pre-defined convex, segmented fault. The orientation of the upper segment of the normal fault is an unknown in the second problem. The loading in both problems consists of the retreat of the back wall and the sedimentation. This sedimentation starts from the lowest point of the topography and acts at the rate rs relative to the wall retreat rate. For the first problem, the normal fault either has a zero friction or a friction value set to 25o or 30o to fit the experimental results (Patton, 2005). In the zero friction case, a hanging wall anticline develops much like in the experiments. In the 25o friction case, slip on the upper segment is accompanied by rotation of the axial plane producing a broad shear zone rooted at the fault bend. The same observation is made in the 30o case, but without slip on the upper segment. Experimental outcomes show a behaviour in between these two latter cases. For the second problem, mechanics predicts a concave fault bend with an upper segment dip decreasing during extension. The axial surface rooting at the normal fault bend sees its dips increasing during extension resulting in a curved roll-over. Softening on the normal fault leads to a stepwise rotation responsible for strain partitioning into small blocks in the hanging wall. The rotation is due to the subsidence of the topography above the hanging wall. Sedimentation in the lowest region thus reduces the rotations. Note that these rotations predicted by mechanics are not accounted for in most geometrical approaches (Xiao and Suppe, 1992) and are observed in sand box experiments (Egholm et al., 2007, referring

  3. Transpressive mantle uplift at large offset oceanic transform faults

    Science.gov (United States)

    Maia, M.; Briais, A.; Brunelli, D.; Ligi, M.; Sichel, S. E.; Campos, T.

    2017-12-01

    Large-offset transform faults deform due to changes in plate motions and local processes. At the St. Paul transform, in the Equatorial Atlantic, a large body of ultramafic rocks composed of variably serpentinized and mylonitized peridotites is presently being tectonically uplifted. We recently discovered that the origin of the regional mantle uplift is linked to long-standing compressive stresses along the transform fault (1). A positive flower structure, mainly made of mylonitized mantle rocks, can be recognized on the 200 km large push-up ridge. Compressive earthquakes mechanisms reveal seismically active thrust faults on the southern flank of the ridge . The regional transpressive stress field affects a large portion of the ridge segment south of the transform, as revealed by the presence of faults and dykes striking obliquely to the direction of the central ridge axis. A smaller thrust, affecting recent sediments, was mapped south of this segment, suggesting a regional active compressive stress field. The transpressive stress field is interpreted to derive from the propagation of the Mid-Atlantic Ridge (MAR) segment into the transform domain as a response to the enhanced melt supply at the ridge axis. The propagation forced the migration and segmentation of the transform fault southward and the formation of restraining step-overs. The process started after a counterclockwise change in plate motion at 11 Ma initially resulting in extensive stress of the transform domain. A flexural transverse ridge formed in response. Shortly after plate reorganization, the MAR segment started to propagate southwards due to the interaction of the ridge and the Sierra Leone thermal anomaly. 1- Maia et al., 2016. Extreme mantle uplift and exhumation along a transpressive transform fault Nat. Geo. doi:10.1038/ngeo2759

  4. Fault Severity Evaluation and Improvement Design for Mechanical Systems Using the Fault Injection Technique and Gini Concordance Measure

    Directory of Open Access Journals (Sweden)

    Jianing Wu

    2014-01-01

    Full Text Available A new fault injection and Gini concordance based method has been developed for fault severity analysis for multibody mechanical systems concerning their dynamic properties. The fault tree analysis (FTA is employed to roughly identify the faults needed to be considered. According to constitution of the mechanical system, the dynamic properties can be achieved by solving the equations that include many types of faults which are injected by using the fault injection technique. Then, the Gini concordance is used to measure the correspondence between the performance with faults and under normal operation thereby providing useful hints of severity ranking in subsystems for reliability design. One numerical example and a series of experiments are provided to illustrate the application of the new method. The results indicate that the proposed method can accurately model the faults and receive the correct information of fault severity. Some strategies are also proposed for reliability improvement of the spacecraft solar array.

  5. Modeling earthquake sequences along the Manila subduction zone: Effects of three-dimensional fault geometry

    Science.gov (United States)

    Yu, Hongyu; Liu, Yajing; Yang, Hongfeng; Ning, Jieyuan

    2018-05-01

    To assess the potential of catastrophic megathrust earthquakes (MW > 8) along the Manila Trench, the eastern boundary of the South China Sea, we incorporate a 3D non-planar fault geometry in the framework of rate-state friction to simulate earthquake rupture sequences along the fault segment between 15°N-19°N of northern Luzon. Our simulation results demonstrate that the first-order fault geometry heterogeneity, the transitional-segment (possibly related to the subducting Scarborough seamount chain) connecting the steeper south segment and the flatter north segment, controls earthquake rupture behaviors. The strong along-strike curvature at the transitional-segment typically leads to partial ruptures of MW 8.3 and MW 7.8 along the southern and northern segments respectively. The entire fault occasionally ruptures in MW 8.8 events when the cumulative stress in the transitional-segment is sufficiently high to overcome the geometrical inhibition. Fault shear stress evolution, represented by the S-ratio, is clearly modulated by the width of seismogenic zone (W). At a constant plate convergence rate, a larger W indicates on average lower interseismic stress loading rate and longer rupture recurrence period, and could slow down or sometimes stop ruptures that initiated from a narrower portion. Moreover, the modeled interseismic slip rate before whole-fault rupture events is comparable with the coupling state that was inferred from the interplate seismicity distribution, suggesting the Manila trench could potentially rupture in a M8+ earthquake.

  6. Soft-Fault Detection Technologies Developed for Electrical Power Systems

    Science.gov (United States)

    Button, Robert M.

    2004-01-01

    The NASA Glenn Research Center, partner universities, and defense contractors are working to develop intelligent power management and distribution (PMAD) technologies for future spacecraft and launch vehicles. The goals are to provide higher performance (efficiency, transient response, and stability), higher fault tolerance, and higher reliability through the application of digital control and communication technologies. It is also expected that these technologies will eventually reduce the design, development, manufacturing, and integration costs for large, electrical power systems for space vehicles. The main focus of this research has been to incorporate digital control, communications, and intelligent algorithms into power electronic devices such as direct-current to direct-current (dc-dc) converters and protective switchgear. These technologies, in turn, will enable revolutionary changes in the way electrical power systems are designed, developed, configured, and integrated in aerospace vehicles and satellites. Initial successes in integrating modern, digital controllers have proven that transient response performance can be improved using advanced nonlinear control algorithms. One technology being developed includes the detection of "soft faults," those not typically covered by current systems in use today. Soft faults include arcing faults, corona discharge faults, and undetected leakage currents. Using digital control and advanced signal analysis algorithms, we have shown that it is possible to reliably detect arcing faults in high-voltage dc power distribution systems (see the preceding photograph). Another research effort has shown that low-level leakage faults and cable degradation can be detected by analyzing power system parameters over time. This additional fault detection capability will result in higher reliability for long-lived power systems such as reusable launch vehicles and space exploration missions.

  7. Structure of the 1906 near-surface rupture zone of the San Andreas Fault, San Francisco Peninsula segment, near Woodside, California

    Science.gov (United States)

    Rosa, C.M.; Catchings, R.D.; Rymer, M.J.; Grove, Karen; Goldman, M.R.

    2016-07-08

    nearby sites. Multiple fault strands in the area of the 1906 surface rupture may account for variations in geologic slip rates calculated from several paleoseismic sites along the Peninsula segment of the San Andreas Fault.t.

  8. Energy-efficient fault tolerance in multiprocessor real-time systems

    Science.gov (United States)

    Guo, Yifeng

    The recent progress in the multiprocessor/multicore systems has important implications for real-time system design and operation. From vehicle navigation to space applications as well as industrial control systems, the trend is to deploy multiple processors in real-time systems: systems with 4 -- 8 processors are common, and it is expected that many-core systems with dozens of processing cores will be available in near future. For such systems, in addition to general temporal requirement common for all real-time systems, two additional operational objectives are seen as critical: energy efficiency and fault tolerance. An intriguing dimension of the problem is that energy efficiency and fault tolerance are typically conflicting objectives, due to the fact that tolerating faults (e.g., permanent/transient) often requires extra resources with high energy consumption potential. In this dissertation, various techniques for energy-efficient fault tolerance in multiprocessor real-time systems have been investigated. First, the Reliability-Aware Power Management (RAPM) framework, which can preserve the system reliability with respect to transient faults when Dynamic Voltage Scaling (DVS) is applied for energy savings, is extended to support parallel real-time applications with precedence constraints. Next, the traditional Standby-Sparing (SS) technique for dual processor systems, which takes both transient and permanent faults into consideration while saving energy, is generalized to support multiprocessor systems with arbitrary number of identical processors. Observing the inefficient usage of slack time in the SS technique, a Preference-Oriented Scheduling Framework is designed to address the problem where tasks are given preferences for being executed as soon as possible (ASAP) or as late as possible (ALAP). A preference-oriented earliest deadline (POED) scheduler is proposed and its application in multiprocessor systems for energy-efficient fault tolerance is

  9. Orion GN&C Fault Management System Verification: Scope And Methodology

    Science.gov (United States)

    Brown, Denise; Weiler, David; Flanary, Ronald

    2016-01-01

    In order to ensure long-term ability to meet mission goals and to provide for the safety of the public, ground personnel, and any crew members, nearly all spacecraft include a fault management (FM) system. For a manned vehicle such as Orion, the safety of the crew is of paramount importance. The goal of the Orion Guidance, Navigation and Control (GN&C) fault management system is to detect, isolate, and respond to faults before they can result in harm to the human crew or loss of the spacecraft. Verification of fault management/fault protection capability is challenging due to the large number of possible faults in a complex spacecraft, the inherent unpredictability of faults, the complexity of interactions among the various spacecraft components, and the inability to easily quantify human reactions to failure scenarios. The Orion GN&C Fault Detection, Isolation, and Recovery (FDIR) team has developed a methodology for bounding the scope of FM system verification while ensuring sufficient coverage of the failure space and providing high confidence that the fault management system meets all safety requirements. The methodology utilizes a swarm search algorithm to identify failure cases that can result in catastrophic loss of the crew or the vehicle and rare event sequential Monte Carlo to verify safety and FDIR performance requirements.

  10. On fault propagation in deterioration of multi-component systems

    International Nuclear Information System (INIS)

    Liang, Zhenglin; Parlikad, Ajith Kumar; Srinivasan, Rengarajan; Rasmekomen, Nipat

    2017-01-01

    In extant literature, deterioration dependence among components can be modelled as inherent dependence and induced dependence. We find that the two types of dependence may co-exist and interact with each other in one multi-component system. We refer to this phenomenon as fault propagation. In practice, a fault induced by the malfunction of a non-critical component may further propagate through the dependence amongst critical components. Such fault propagation scenario happens in industrial assets or systems (bridge deck, and heat exchanging system). In this paper, a multi-layered vector-valued continuous-time Markov chain is developed to capture the characteristics of fault propagation. To obtain the mathematical tractability, we derive a partitioning rule to aggregate states with the same characteristics while keeping the overall aging behaviour of the multi-component system. Although the detailed information of components is masked by aggregated states, lumpability is attainable with the partitioning rule. It means that the aggregated process is stochastically equivalent to the original one and retains the Markov property. We apply this model on a heat exchanging system in oil refinery company. The results show that fault propagation has a more significant impact on the system's lifetime comparing with inherent dependence and induced dependence. - Highlights: • We develop a vector value continuous-time Markov chain to model the meta-dependent characteristic of fault propagation. • A partitioning rule is derived to reduce the state space and attain lumpability. • The model is applied on analysing the impact of fault propagation in a heat exchanging system.

  11. Diagnosis and Fault-Tolerant Control for Thruster-Assisted Position Mooring System

    DEFF Research Database (Denmark)

    Nguyen, Trong Dong; Blanke, Mogens; Sørensen, Asgeir

    2007-01-01

    Development of fault-tolerant control systems is crucial to maintain safe operation of o®shore installations. The objective of this paper is to develop a fault- tolerant control for thruster-assisted position mooring (PM) system with faults occurring in the mooring lines. Faults in line......'s pretension or line breaks will degrade the performance of the positioning of the vessel. Faults will be detected and isolated through a fault diagnosis procedure. When faults are detected, they can be accommodated through the control action in which only parameter of the controlled plant has to be updated...... to cope with the faulty condition. Simulations will be carried out to verify the advantages of the fault-tolerant control strategy for the PM system....

  12. Stress Transfer Processes during Great Plate Boundary Thrusting Events: A Study from the Andaman and Nicobar Segments

    Science.gov (United States)

    Andrade, V.; Rajendran, K.

    2010-12-01

    The response of subduction zones to large earthquakes varies along their strike, both during the interseismic and post-seismic periods. The December 26, 2004 earthquake nucleated at 3° N latitude and its rupture propagated northward, along the Andaman-Sumatra subduction zone, terminating at 15°N. Rupture speed was estimated at about 2.0 km per second in the northern part under the Andaman region and 2.5 - 2.7 km per second under southern Nicobar and North Sumatra. We have examined the pre and post-2004 seismicity to understand the stress transfer processes within the subducting plate, in the Andaman (10° - 15° N ) and Nicobar (5° - 10° N) segments. The seismicity pattern in these segments shows distinctive characteristics associated with the outer rise, accretionary prism and the spreading ridge, all of which are relatively better developed in the Andaman segment. The Ninety East ridge and the Sumatra Fault System are significant tectonic features in the Nicobar segment. The pre-2004 seismicity in both these segments conform to the steady-state conditions wherein large earthquakes are fewer and compressive stresses dominate along the plate interface. Among the pre-2004 great earthquakes are the 1881 Nicobar and 1941 Andaman events. The former is considered to be a shallow thrust event that generated a small tsunami. Studies in other subduction zones suggest that large outer-rise tensional events follow great plate boundary breaking earthquakes due to the the up-dip transfer of stresses within the subducting plate. The seismicity of the Andaman segment (1977-2004) concurs with the steady-state stress conditions where earthquakes occur dominantly by thrust faulting. The post-2004 seismicity shows up-dip migration along the plate interface, with dominance of shallow normal faulting, including a few outer rise events and some deeper (> 100 km) strike-slip faulting events within the subducting plate. The September 13, 2002, Mw 6.5 thrust faulting earthquake at

  13. Spatial and temporal patterns of fault creep across an active salt system, Canyonlands National Park, Utah

    Science.gov (United States)

    Kravitz, K.; Mueller, K. J.; Furuya, M.; Tiampo, K. F.

    2017-12-01

    First order conditions that control creeping behavior on faults include the strength of faulted materials, fault maturity and stress changes associated with seismic cycles. We present mapping of surface strain from differential interferometric synthetic aperture radar (DInSAR) of actively creeping faults in Eastern Utah that form by reactivation of older joints and faults. A nine-year record of displacement across the region using descending ERS scenes from 1992-2001 suggests maximum slip rates of 1 mm/yr. Time series analysis shows near steady rates across the region consistent with the proposed ultra-weak nature of these faults as suggested by their dilating nature, based on observations of sinkholes, pit chains and recently opened fissures along their lengths. Slip rates along the faults in the main part of the array are systematically faster with closer proximity to the Colorado River Canyon, consistent with mechanical modeling of the boundary conditions that control the overall salt system. Deeply incised side tributaries coincide with and control the edges of the region with higher strain rates. Comparison of D:L scaling at decadal scales in fault bounded grabens (as defined by InSAR) with previous measurements of total slip (D) to length (L) is interpreted to suggest that faults reached nearly their current lengths relatively quickly (i.e. displaying low displacement to length scaling). We argue this may then have been followed by along strike slip distributions where the centers of the grabens slip more rapidly than their endpoints, resulting in a higher D:L ratio over time. InSAR mapping also points to an increase in creep rates in overlap zones where two faults became hard-linked at breached relay ramps. Additionally, we see evidence for soft-linkage, where displacement profiles along a graben coincide with obvious fault segments. While an endmember case (ultra-weak faults sliding above a plastic substrate), structures in this region highlight mechanical

  14. Fault Diagnosis for Actuators in a Class of Nonlinear Systems Based on an Adaptive Fault Detection Observer

    Directory of Open Access Journals (Sweden)

    Runxia Guo

    2016-01-01

    Full Text Available The problem of actuators’ fault diagnosis is pursued for a class of nonlinear control systems that are affected by bounded measurement noise and external disturbances. A novel fault diagnosis algorithm has been proposed by combining the idea of adaptive control theory and the approach of fault detection observer. The asymptotical stability of the fault detection observer is guaranteed by setting the adaptive adjusting law of the unknown fault vector. A theoretically rigorous proof of asymptotical stability has been given. Under the condition that random measurement noise generated by the sensors of control systems and external disturbances exist simultaneously, the designed fault diagnosis algorithm is able to successfully give specific estimated values of state variables and failures rather than just giving a simple fault warning. Moreover, the proposed algorithm is very simple and concise and is easy to be applied to practical engineering. Numerical experiments are carried out to evaluate the performance of the fault diagnosis algorithm. Experimental results show that the proposed diagnostic strategy has a satisfactory estimation effect.

  15. PCA Fault Feature Extraction in Complex Electric Power Systems

    Directory of Open Access Journals (Sweden)

    ZHANG, J.

    2010-08-01

    Full Text Available Electric power system is one of the most complex artificial systems in the world. The complexity is determined by its characteristics about constitution, configuration, operation, organization, etc. The fault in electric power system cannot be completely avoided. When electric power system operates from normal state to failure or abnormal, its electric quantities (current, voltage and angles, etc. may change significantly. Our researches indicate that the variable with the biggest coefficient in principal component usually corresponds to the fault. Therefore, utilizing real-time measurements of phasor measurement unit, based on principal components analysis technology, we have extracted successfully the distinct features of fault component. Of course, because of the complexity of different types of faults in electric power system, there still exists enormous problems need a close and intensive study.

  16. Deformation around basin scale normal faults

    International Nuclear Information System (INIS)

    Spahic, D.

    2010-01-01

    in the central Vienna Basin from commercial 3D seismic data. In addition to detailed conventional fault analysis (displacement and fault shape), syn-and anticlinal structures of sedimentary horizons occurring both in hanging wall and footwall are assessed. Reverse drag geometries of variable magnitudes are found to correlate with local displacement maxima along the fault. In contrast, normal drag is observed along segment boundaries and relay zones. Thus, the detailed documentation of the distribution, type and magnitude of fault drag provides additional information on the fault evolution, as initial fault segments as well as linkage or relay zones can be identified. (author) [de

  17. Measurement and analysis of operating system fault tolerance

    Science.gov (United States)

    Lee, I.; Tang, D.; Iyer, R. K.

    1992-01-01

    This paper demonstrates a methodology to model and evaluate the fault tolerance characteristics of operational software. The methodology is illustrated through case studies on three different operating systems: the Tandem GUARDIAN fault-tolerant system, the VAX/VMS distributed system, and the IBM/MVS system. Measurements are made on these systems for substantial periods to collect software error and recovery data. In addition to investigating basic dependability characteristics such as major software problems and error distributions, we develop two levels of models to describe error and recovery processes inside an operating system and on multiple instances of an operating system running in a distributed environment. Based on the models, reward analysis is conducted to evaluate the loss of service due to software errors and the effect of the fault-tolerance techniques implemented in the systems. Software error correlation in multicomputer systems is also investigated.

  18. Discrete Wavelet Transform for Fault Locations in Underground Distribution System

    Science.gov (United States)

    Apisit, C.; Ngaopitakkul, A.

    2010-10-01

    In this paper, a technique for detecting faults in underground distribution system is presented. Discrete Wavelet Transform (DWT) based on traveling wave is employed in order to detect the high frequency components and to identify fault locations in the underground distribution system. The first peak time obtained from the faulty bus is employed for calculating the distance of fault from sending end. The validity of the proposed technique is tested with various fault inception angles, fault locations and faulty phases. The result is found that the proposed technique provides satisfactory result and will be very useful in the development of power systems protection scheme.

  19. Rule - based Fault Diagnosis Expert System for Wind Turbine

    Directory of Open Access Journals (Sweden)

    Deng Xiao-Wen

    2017-01-01

    Full Text Available Under the trend of increasing installed capacity of wind power, the intelligent fault diagnosis of wind turbine is of great significance to the safe and efficient operation of wind farms. Based on the knowledge of fault diagnosis of wind turbines, this paper builds expert system diagnostic knowledge base by using confidence production rules and expert system self-learning method. In Visual Studio 2013 platform, C # language is selected and ADO.NET technology is used to access the database. Development of Fault Diagnosis Expert System for Wind Turbine. The purpose of this paper is to realize on-line diagnosis of wind turbine fault through human-computer interaction, and to improve the diagnostic capability of the system through the continuous improvement of the knowledge base.

  20. Luminescence dating of paleoseismic events associated with the Muzaffarnagar fault in the Western Gangetic Plain

    International Nuclear Information System (INIS)

    Bhosle, Balaji; Parkash, B.; Awasthi, A.K.

    2006-01-01

    Using remote sensing and GIS techniques of satellite data processing, Muzaffarnagar fault is identified in western Gangetic Plain. Activity along the fault has resulted in deposition of colluvial deposits (alluvial fans) on the downthrown block. Luminescence dating of colluvial deposits suggests that the fault is segmented. The last activity which took place along the eastern segment was at 3.5 ka and middle and western segment were active during 2.5-2.8 ka. (author)

  1. Designing Fault-Injection Experiments for the Reliability of Embedded Systems

    Science.gov (United States)

    White, Allan L.

    2012-01-01

    This paper considers the long-standing problem of conducting fault-injections experiments to establish the ultra-reliability of embedded systems. There have been extensive efforts in fault injection, and this paper offers a partial summary of the efforts, but these previous efforts have focused on realism and efficiency. Fault injections have been used to examine diagnostics and to test algorithms, but the literature does not contain any framework that says how to conduct fault-injection experiments to establish ultra-reliability. A solution to this problem integrates field-data, arguments-from-design, and fault-injection into a seamless whole. The solution in this paper is to derive a model reduction theorem for a class of semi-Markov models suitable for describing ultra-reliable embedded systems. The derivation shows that a tight upper bound on the probability of system failure can be obtained using only the means of system-recovery times, thus reducing the experimental effort to estimating a reasonable number of easily-observed parameters. The paper includes an example of a system subject to both permanent and transient faults. There is a discussion of integrating fault-injection with field-data and arguments-from-design.

  2. Guideliness for system modeling: fault tree [analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yoon Hwan; Yang, Joon Eon; Kang, Dae Il; Hwang, Mee Jeong

    2004-07-01

    This document, the guidelines for system modeling related to Fault Tree Analysis(FTA), is intended to provide the guidelines with the analyzer to construct the fault trees in the level of the capability category II of ASME PRA standard. Especially, they are to provide the essential and basic guidelines and the related contents to be used in support of revising the Ulchin 3 and 4 PSA model for risk monitor within the capability category II of ASME PRA standard. Normally the main objective of system analysis is to assess the reliability of system modeled by Event Tree Analysis (ETA). A variety of analytical techniques can be used for the system analysis, however, FTA method is used in this procedures guide. FTA is the method used for representing the failure logic of plant systems deductively using AND, OR or NOT gates. The fault tree should reflect all possible failure modes that may contribute to the system unavailability. This should include contributions due to the mechanical failures of the components, Common Cause Failures (CCFs), human errors and outages for testing and maintenance. This document identifies and describes the definitions and the general procedures of FTA and the essential and basic guidelines for reving the fault trees. Accordingly, the guidelines for FTA will be capable to guide the FTA to the level of the capability category II of ASME PRA standard.

  3. Guideliness for system modeling: fault tree [analysis

    International Nuclear Information System (INIS)

    Lee, Yoon Hwan; Yang, Joon Eon; Kang, Dae Il; Hwang, Mee Jeong

    2004-07-01

    This document, the guidelines for system modeling related to Fault Tree Analysis(FTA), is intended to provide the guidelines with the analyzer to construct the fault trees in the level of the capability category II of ASME PRA standard. Especially, they are to provide the essential and basic guidelines and the related contents to be used in support of revising the Ulchin 3 and 4 PSA model for risk monitor within the capability category II of ASME PRA standard. Normally the main objective of system analysis is to assess the reliability of system modeled by Event Tree Analysis (ETA). A variety of analytical techniques can be used for the system analysis, however, FTA method is used in this procedures guide. FTA is the method used for representing the failure logic of plant systems deductively using AND, OR or NOT gates. The fault tree should reflect all possible failure modes that may contribute to the system unavailability. This should include contributions due to the mechanical failures of the components, Common Cause Failures (CCFs), human errors and outages for testing and maintenance. This document identifies and describes the definitions and the general procedures of FTA and the essential and basic guidelines for reving the fault trees. Accordingly, the guidelines for FTA will be capable to guide the FTA to the level of the capability category II of ASME PRA standard

  4. Adaptive Observer-Based Fault-Tolerant Control Design for Uncertain Systems

    Directory of Open Access Journals (Sweden)

    Huaming Qian

    2015-01-01

    Full Text Available This study focuses on the design of the robust fault-tolerant control (FTC system based on adaptive observer for uncertain linear time invariant (LTI systems. In order to improve robustness, rapidity, and accuracy of traditional fault estimation algorithm, an adaptive fault estimation algorithm (AFEA using an augmented observer is presented. By utilizing a new fault estimator model, an improved AFEA based on linear matrix inequality (LMI technique is proposed to increase the performance. Furthermore, an observer-based state feedback fault-tolerant control strategy is designed, which guarantees the stability and performance of the faulty system. Moreover, the adaptive observer and the fault-tolerant controller are designed separately, whose performance can be considered, respectively. Finally, simulation results of an aircraft application are presented to illustrate the effectiveness of the proposed design methods.

  5. A fault tolerant system by using distributed RTOS

    International Nuclear Information System (INIS)

    Ge Yingan; Liu Songqiang; Wang Yanfang

    1999-01-01

    The author describes the design and implementation of a prototypal distributed fault tolerant system, which is developed under QNX RTOS by networking two standard PCs. By using a watchdog timer for error detection, the system can be tolerant for fail silent and transient fault of a single node

  6. Late Pleistocene-Holocene Activity of the Strike-slip Xianshuihe Fault Zone, Tibetan Plateau, Inferred from Tectonic Landforms

    Science.gov (United States)

    Lin, A.; Yan, B.

    2017-12-01

    Knowledges on the activity of the strike-slip fault zones on the Tibetan Plateau have been promoted greatly by the interpretation of remote sensing images (Molnar and Tapponnier, 1975; Tapponnier and Molnar, 1977). The active strike-slip Xianshuihe-Xiaojiang Fault System (XXFS), with the geometry of an arc projecting northeastwards, plays an important role in the crustal deformation of the Tibetan Plateau caused by the continental collision between the Indian and Eurasian plates. The Xianshuihe Fault Zone (XFZ) is located in the central segment of the XXFS and extends for 370 km, with a maximum sinistral offset of 60 km since 13‒5 Ma. In this study, we investigated the tectonic landforms and slip rate along the central segment of the left-lateral strike-slip XFZ. Field investigations and analysis of ttectonic landforms show that horizontal offset has been accumulated on the topographical markers of different scales that developed since the Last Glacial Maximum (LGM). The central segment of the XFZ is composed of three major faults: Yalahe, Selaha, and Zheduotang faults showing a right-stepping echelon pattern, that is characterized by systematical offset of drainages, alluvial fans and terrace risers with typical scissoring structures, indicating a structural feature of left-lateral strike-slip fault. Based on the offset glacial morphology and radiocarbon dating ages, we estimate the Late Pleistocene-Holocene slip rate to be 10 mm/yr for the central segment of the XFZ, which is consistent with that estimated from the GPS observations and geological evidence as reported previously. Across the central segment of the XFZ, the major Selaha and Zheduotang faults participate a slip rate of 5.8 mm/yr and 3.4 mm/yr, respectively. Detailed investigations of tectonic landforms are essential for the understanding the activity of active faults. Our findings suggest that the left-lateral slipping of the XFZ partitions the deformation of eastward extrusion and northeastward

  7. Fault isolability conditions for linear systems with additive faults

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Stoustrup, Jakob

    2006-01-01

    In this paper, we shall show that an unlimited number of additive single faults can be isolated under mild conditions if a general isolation scheme is applied. Multiple faults are also covered. The approach is algebraic and is based on a set representation of faults, where all faults within a set...

  8. A new digital ground-fault protection system for generator-transformer unit

    Energy Technology Data Exchange (ETDEWEB)

    Zielichowski, Mieczyslaw; Szlezak, Tomasz [Institute of Electrical Power Engineering, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50370 Wroclaw (Poland)

    2007-08-15

    Ground faults are one of most often reasons of damages in stator windings of large generators. Under certain conditions, as a result of ground-fault protection systems maloperation, ground faults convert into high-current faults, causing severe failures in power system. Numerous publications in renowned journals and magazines testify about ground-fault matter importance and problems reported by exploitators confirm opinions, that some issues concerning ground-fault protection of large generators have not been solved yet or have been solved insufficiently. In this paper a new conception of a digital ground-fault protection system for stator winding of large generator was proposed. The process of intermittent arc ground fault in stator winding has been briefly discussed and actual ground-fault voltage waveforms were presented. A new relaying algorithm, based on third harmonic voltage measurement was also drawn and the methods of its implementation and testing were described. (author)

  9. Model-based fault diagnosis in PEM fuel cell systems

    Energy Technology Data Exchange (ETDEWEB)

    Escobet, T; de Lira, S; Puig, V; Quevedo, J [Automatic Control Department (ESAII), Universitat Politecnica de Catalunya (UPC), Rambla Sant Nebridi 10, 08222 Terrassa (Spain); Feroldi, D; Riera, J; Serra, M [Institut de Robotica i Informatica Industrial (IRI), Consejo Superior de Investigaciones Cientificas (CSIC), Universitat Politecnica de Catalunya (UPC) Parc Tecnologic de Barcelona, Edifici U, Carrer Llorens i Artigas, 4-6, Planta 2, 08028 Barcelona (Spain)

    2009-07-01

    In this work, a model-based fault diagnosis methodology for PEM fuel cell systems is presented. The methodology is based on computing residuals, indicators that are obtained comparing measured inputs and outputs with analytical relationships, which are obtained by system modelling. The innovation of this methodology is based on the characterization of the relative residual fault sensitivity. To illustrate the results, a non-linear fuel cell simulator proposed in the literature is used, with modifications, to include a set of fault scenarios proposed in this work. Finally, it is presented the diagnosis results corresponding to these fault scenarios. It is remarkable that with this methodology it is possible to diagnose and isolate all the faults in the proposed set in contrast with other well known methodologies which use the binary signature matrix of analytical residuals and faults. (author)

  10. Active fault tolerance control of a wind turbine system using an unknown input observer with an actuator fault

    Directory of Open Access Journals (Sweden)

    Li Shanzhi

    2018-03-01

    Full Text Available This paper proposes a fault tolerant control scheme based on an unknown input observer for a wind turbine system subject to an actuator fault and disturbance. Firstly, an unknown input observer for state estimation and fault detection using a linear parameter varying model is developed. By solving linear matrix inequalities (LMIs and linear matrix equalities (LMEs, the gains of the unknown input observer are obtained. The convergence of the unknown input observer is also analysed with Lyapunov theory. Secondly, using fault estimation, an active fault tolerant controller is applied to a wind turbine system. Finally, a simulation of a wind turbine benchmark with an actuator fault is tested for the proposed method. The simulation results indicate that the proposed FTC scheme is efficient.

  11. Application of ENN-1 for Fault Diagnosis of Wind Power Systems

    Directory of Open Access Journals (Sweden)

    Meng-Hui Wang

    2012-01-01

    Full Text Available Maintaining a wind turbine and ensuring secure is not easy because of long-term exposure to the environment and high installation locations. Wind turbines need fully functional condition-monitoring and fault diagnosis systems that prevent accidents and reduce maintenance costs. This paper presents a simulator design for fault diagnosis of wind power systems and further proposes some fault diagnosis technologies such as signal analysis, feature selecting, and diagnosis methods. First, this paper uses a wind power simulator to produce fault conditions and features from the monitoring sensors. Then an extension neural network type-1- (ENN-1- based method is proposed to develop the core of the fault diagnosis system. The proposed system will benefit the development of real fault diagnosis systems with testing models that demonstrate satisfactory results.

  12. Results of an electrical power system fault study

    Science.gov (United States)

    Dugal-Whitehead, Norma R.; Johnson, Yvette B.

    1992-01-01

    NASA-Marshall conducted a study of electrical power system faults with a view to the development of AI control systems for a spacecraft power system breadboard. The results of this study have been applied to a multichannel high voltage dc spacecraft power system, the Large Autonomous Spacecraft Electrical Power System (LASEPS) breadboard. Some of the faults encountered in testing LASEPS included the shorting of a bus an a falloff in battery cell capacity.

  13. Changes in state of stress on the southern san andreas fault resulting from the california earthquake sequence of april to june 1992.

    Science.gov (United States)

    Jaumé, S C; Sykes, L R

    1992-11-20

    The April to June 1992 Landers earthquake sequence in southern California modified the state of stress along nearby segments of the San Andreas fault, causing a 50-kilometer segment of the fault to move significantly closer to failure where it passes through a compressional bend near San Gorgonio Pass. The decrease in compressive normal stress may also have reduced fluid pressures along that fault segment. As pressures are reequilibrated by diffusion, that fault segment should move closer to failure with time. That fault segment and another to the southeast probably have not ruptured in a great earthquake in about 300 years.

  14. CRISP. Fault detection, analysis and diagnostics in high-DG distribution systems

    International Nuclear Information System (INIS)

    Fontela, M.; Bacha, S.; Hadsjaid, N.; Andrieu, C.; Raison, B.; Penkov, D.

    2004-04-01

    The fault in the electrotechnical meaning is defined in the document. The main part of faults in overhead lines are non permanent faults, what entails the network operator to maintain the existing techniques to clear as fast as possible these faults. When a permanent fault occurs the operator has to detect and to limit the risks as soon as possible. Different axes are followed: limitation of the fault current, clearing the faulted feeder, locating the fault by test and try under possible fault condition. So the fault detection, fault clearing and fault localization are important functions of an EPS (electric power systems) to allow secure and safe operation of the system. The function may be improved by means of a better use of ICT components in the future sharing conveniently the intelligence needed near the distributed devices and a defined centralized intelligence. This improvement becomes necessary in distribution EPS with a high introduction of DR (distributed resources). The transmission and sub-transmission protection systems are already installed in order to manage power flow in all directions, so the DR issue is less critical for this part of the power system in term of fault clearing and diagnosis. Nevertheless the massive introduction of RES involves another constraints to the transmission system which are the bottlenecks caused by important local and fast installed production as wind power plants. Dealing with the distribution power system, and facing a permanent fault, two main actions must be achieved: identify the faulted elementary EPS area quickly and allow the field crew to locate and to repair the fault as soon as possible. The introduction of DR in distribution EPS involves some changes in fault location methods or equipment. The different existing neutral grounding systems make it difficult the achievement of a general method relevant for any distribution EPS in Europe. Some solutions are studied in the CRISP project in order to improve the

  15. Developing a Procedure for Segmenting Meshed Heat Networks of Heat Supply Systems without Outflows

    Science.gov (United States)

    Tokarev, V. V.

    2018-06-01

    The heat supply systems of cities have, as a rule, a ring structure with the possibility of redistributing the flows. Despite the fact that a ring structure is more reliable than a radial one, the operators of heat networks prefer to use them in normal modes according to the scheme without overflows of the heat carrier between the heat mains. With such a scheme, it is easier to adjust the networks and to detect and locate faults in them. The article proposes a formulation of the heat network segmenting problem. The problem is set in terms of optimization with the heat supply system's excessive hydraulic power used as the optimization criterion. The heat supply system computer model has a hierarchically interconnected multilevel structure. Since iterative calculations are only carried out for the level of trunk heat networks, decomposing the entire system into levels allows the dimensionality of the solved subproblems to be reduced by an order of magnitude. An attempt to solve the problem by fully enumerating possible segmentation versions does not seem to be feasible for systems of really existing sizes. The article suggests a procedure for searching rational segmentation of heat supply networks with limiting the search to versions of dividing the system into segments near the flow convergence nodes with subsequent refining of the solution. The refinement is performed in two stages according to the total excess hydraulic power criterion. At the first stage, the loads are redistributed among the sources. After that, the heat networks are divided into independent fragments, and the possibility of increasing the excess hydraulic power in the obtained fragments is checked by shifting the division places inside a fragment. The proposed procedure has been approbated taking as an example a municipal heat supply system involving six heat mains fed from a common source, 24 loops within the feeding mains plane, and more than 5000 consumers. Application of the proposed

  16. Fault trees for decision making in systems analysis

    International Nuclear Information System (INIS)

    Lambert, H.E.

    1975-01-01

    The application of fault tree analysis (FTA) to system safety and reliability is presented within the framework of system safety analysis. The concepts and techniques involved in manual and automated fault tree construction are described and their differences noted. The theory of mathematical reliability pertinent to FTA is presented with emphasis on engineering applications. An outline of the quantitative reliability techniques of the Reactor Safety Study is given. Concepts of probabilistic importance are presented within the fault tree framework and applied to the areas of system design, diagnosis and simulation. The computer code IMPORTANCE ranks basic events and cut sets according to a sensitivity analysis. A useful feature of the IMPORTANCE code is that it can accept relative failure data as input. The output of the IMPORTANCE code can assist an analyst in finding weaknesses in system design and operation, suggest the most optimal course of system upgrade, and determine the optimal location of sensors within a system. A general simulation model of system failure in terms of fault tree logic is described. The model is intended for efficient diagnosis of the causes of system failure in the event of a system breakdown. It can also be used to assist an operator in making decisions under a time constraint regarding the future course of operations. The model is well suited for computer implementation. New results incorporated in the simulation model include an algorithm to generate repair checklists on the basis of fault tree logic and a one-step-ahead optimization procedure that minimizes the expected time to diagnose system failure. (80 figures, 20 tables)

  17. A Game-Theoretic approach to Fault Diagnosis of Hybrid Systems

    Directory of Open Access Journals (Sweden)

    Davide Bresolin

    2011-06-01

    Full Text Available Physical systems can fail. For this reason the problem of identifying and reacting to faults has received a large attention in the control and computer science communities. In this paper we study the fault diagnosis problem for hybrid systems from a game-theoretical point of view. A hybrid system is a system mixing continuous and discrete behaviours that cannot be faithfully modeled neither by using a formalism with continuous dynamics only nor by a formalism including only discrete dynamics. We use the well known framework of hybrid automata for modeling hybrid systems, and we define a Fault Diagnosis Game on them, using two players: the environment and the diagnoser. The environment controls the evolution of the system and chooses whether and when a fault occurs. The diagnoser observes the external behaviour of the system and announces whether a fault has occurred or not. Existence of a winning strategy for the diagnoser implies that faults can be detected correctly, while computing such a winning strategy corresponds to implement a diagnoser for the system. We will show how to determine the existence of a winning strategy, and how to compute it, for some decidable classes of hybrid automata like o-minimal hybrid automata.

  18. Paleoseismology of Sinistral-Slip Fault System, Focusing on the Mae Chan Fault, on the Shan Plateau, SE Asia.

    Science.gov (United States)

    Curtiss, E. R.; Weldon, R. J.; Wiwegwin, W.; Weldon, E. M.

    2017-12-01

    The Shan Plateau, which includes portions of Myanmar, China, Thailand, Laos, and Vietnam lies between the dextral NS-trending Sagaing and SE-trending Red River faults and contains 14 active E-W sinistral-slip faults, including the Mae Chan Fault (MCF) in northern Thailand. The last ground-rupturing earthquake to occur on the broader sinistral fault system was the M6.8 Tarlay earthquake in Myanmar in March 2011 on the Nam Ma fault immediately north of the MCF the last earthquake to occur on the MCF was a M4.0 in the 5th century that destroyed the entire city of Wiang Yonok (Morley et al., 2011). We report on a trenching study of the MCF, which is part of a broader study to create a regional seismic hazard map of the entire Shan Plateau. By studying the MCF, which appears to be representative of the sinistral faults, and easy to work on, we hope to characterize both it and the other unstudied faults in the system. As part of a paleoseismology training course we dug two trenches at the Pa Tueng site on the MCF, within an offset river channel and the trenches exposed young sediment with abundant charcoal (in process of dating), cultural artifacts, and evidence for the last two (or three) ground-rupturing earthquakes on the fault. We hope to use the data from this site to narrow the recurrence interval, which is currently to be 2,000-4,000 years and the slip rate of 1-2 mm/year, being developed at other sites on the fault. By extrapolating the data of the MCF to the other faults we will have a better understanding of the whole fault system. Once we have characterized the MCF, we plan to use geomorphic offsets and strain rates from regional GPS to relatively estimate the activity of the other faults in this sinistral system.

  19. Fault Tolerant Control Systems

    DEFF Research Database (Denmark)

    Bøgh, S. A.

    This thesis considered the development of fault tolerant control systems. The focus was on the category of automated processes that do not necessarily comprise a high number of identical sensors and actuators to maintain safe operation, but still have a potential for improving immunity to component...

  20. Mine-hoist active fault tolerant control system and strategy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z.; Wang, Y.; Meng, J.; Zhao, P.; Chang, Y. [China University of Mining and Technology, Xuzhou (China)] wzjsdstu@163.com

    2005-06-01

    Based on fault diagnosis and fault tolerant technologies, the mine-hoist active fault-tolerant control system (MAFCS) is presented with corresponding strategies, which includes the fault diagnosis module (FDM), the dynamic library (DL) and the fault-tolerant control model (FCM). When a fault is judged from some sensor by the FDM, FCM reconfigures the state of the MAFCS by calling the parameters from all sub libraries in DL, in order to ensure the reliability and safety of the mine hoist. The simulating result shows that MAFCS is of certain intelligence, which can adopt the corresponding control strategies according to different fault modes, even when there is quite a difference between the real data and the prior fault modes. 7 refs., 5 figs., 1 tab.

  1. GONAF - A Deep Geophysical Observatory at the North Anatolian Fault

    International Nuclear Information System (INIS)

    Bohnhoff, Marco

    2014-01-01

    An outline was given of the GONAF (Deep Geophysical Observatory at the North Anatolian Fault Zone) project operating at the Marmara seismic gap of the North Anatolian Fault Zone. The Princes Island Segment is a part of the North Anatolian Fault Zone in Marmara seismic gap. This segment is a remaining part of the recent rupture of the North Anatolian Fault. Further, the rupture of this part is predicted to occur in the near future. The primary objectives of the project are to collect seismograms of small earthquakes with magnitudes less than zero using borehole observations with low noise, to gain new insight into the physical states of critically stressed fault segments during and after large earthquakes, and to monitor progressive damage evolution at fault asperities. There were explanations about the seismic network in the region, the recent micro-earthquake observation, and the project's PIRES (Princes Islands Real time Permanent Seismic Network). For the GONAF project, a network of eight borehole arrays with five-level seismometers, including a ground surface of 300-m boreholes, is planned. Horizontal arrays on the surface of an island in the Marmara Sea have also been deployed. In addition, deployment of a permanent ocean bottom seismometer is planned as part of the GONAF+ plan in 2014. (author)

  2. Model-based fault detection algorithm for photovoltaic system monitoring

    KAUST Repository

    Harrou, Fouzi; Sun, Ying; Saidi, Ahmed

    2018-01-01

    Reliable detection of faults in PV systems plays an important role in improving their reliability, productivity, and safety. This paper addresses the detection of faults in the direct current (DC) side of photovoltaic (PV) systems using a

  3. Analysis and optimization of fault-tolerant embedded systems with hardened processors

    DEFF Research Database (Denmark)

    Izosimov, Viacheslav; Polian, Ilia; Pop, Paul

    2009-01-01

    In this paper we propose an approach to the design optimization of fault-tolerant hard real-time embedded systems, which combines hardware and software fault tolerance techniques. We trade-off between selective hardening in hardware and process reexecution in software to provide the required levels...... of fault tolerance against transient faults with the lowest-possible system costs. We propose a system failure probability (SFP) analysis that connects the hardening level with the maximum number of reexecutions in software. We present design optimization heuristics, to select the fault......-tolerant architecture and decide process mapping such that the system cost is minimized, deadlines are satisfied, and the reliability requirements are fulfilled....

  4. Detector design for active fault diagnosis in closed-loop systems

    DEFF Research Database (Denmark)

    Sekunda, André Krabdrup; Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2018-01-01

    Fault diagnosis of closed-loop systems is extremely relevant for high-precision equipment and safety critical systems. Fault diagnosis is usually divided into 2 schemes: active and passive fault diagnosis. Recent studies have highlighted some advantages of active fault diagnosis based on dual Youla......-Jabr-Bongiorno-Kucera parameters. In this paper, a method for closed-loop active fault diagnosis based on statistical detectors is given using dual Youla-Jabr-Bongiorno-Kucera parameters. The goal of this paper is 2-fold. First, the authors introduce a method for measuring a residual signal subject to white noise. Second...

  5. Application Research of Fault Tree Analysis in Grid Communication System Corrective Maintenance

    Science.gov (United States)

    Wang, Jian; Yang, Zhenwei; Kang, Mei

    2018-01-01

    This paper attempts to apply the fault tree analysis method to the corrective maintenance field of grid communication system. Through the establishment of the fault tree model of typical system and the engineering experience, the fault tree analysis theory is used to analyze the fault tree model, which contains the field of structural function, probability importance and so on. The results show that the fault tree analysis can realize fast positioning and well repairing of the system. Meanwhile, it finds that the analysis method of fault tree has some guiding significance to the reliability researching and upgrading f the system.

  6. All-to-all sequenced fault detection system

    Science.gov (United States)

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2010-11-02

    An apparatus, program product and method enable nodal fault detection by sequencing communications between all system nodes. A master node may coordinate communications between two slave nodes before sequencing to and initiating communications between a new pair of slave nodes. The communications may be analyzed to determine the nodal fault.

  7. Fault diagnosis of air conditioning systems based on qualitative bond graph

    International Nuclear Information System (INIS)

    Ghiaus, C.

    1999-01-01

    The bond graph method represents a unified approach for modeling engineering systems. The main idea is that power transfer bonds the components of a system. The bond graph model is the same for both quantitative representation, in which parameters have numerical values, and qualitative approach, in which they are classified qualitatively. To infer the cause of faults using a qualitative method, a system of qualitative equations must be solved. However, the characteristics of qualitative operators require specific methods for solving systems of equations having qualitative variables. This paper proposes both a method for recursively solving the qualitative system of equations derived from bond graph, and a bond graph model of a direct-expansion, mechanical vapor-compression air conditioning system. Results from diagnosing two faults in a real air conditioning system are presented and discussed. Occasionally, more than one fault candidate is inferred for the same set of qualitative values derived from measurements. In these cases, additional information is required to localize the fault. Fault diagnosis is initiated by a fault detection mechanism which also classifies the quantitative measurements into qualitative values; the fault detection is not presented here. (author)

  8. Development Ground Fault Detecting System for D.C Voltage Line

    Energy Technology Data Exchange (ETDEWEB)

    Kim Taek Soo; Song Ung Il; Gwon, Young Dong; Lee Hyoung Kee [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    1996-12-31

    It is necessary to keep the security of reliability and to maximize the efficiency of maintenance by prompt detection of a D.C feeder ground fault point at the built ed or a building power plants. At present, the most of the power plants are set up the ground fault indicator lamp in the monitor room. If a ground fault occurs on DC voltage feeder, a current through the ground fault relay is adjusted and the lamps have brightened while the current flows the relay coil. In order to develop such a system, it is analyzed a D.C feeder ground circuit theoretically and studied a principles which can determine ground fault point or a polarity discrimination and a phase discrimination of the line. So, the developed system through this principles can compute a resistance ground fault current and a capacitive ground fault current. It shows that the system can defect a ground fault point or a bad insulated line by measuring a power plant D.C feeder insulation resistance at the un interruptible power status, and therefore the power plant could protect an unexpected service interruption . (author). 18 refs., figs.

  9. Effect Analysis of Faults in Digital I and C Systems of Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Jun; Jung, Won Dea [KAERI, Dajeon (Korea, Republic of); Kim, Man Cheol [Chung-Ang University, Seoul (Korea, Republic of)

    2014-08-15

    A reliability analysis of digital instrumentation and control (I and C) systems in nuclear power plants has been introduced as one of the important elements of a probabilistic safety assessment because of the unique characteristics of digital I and C systems. Digital I and C systems have various features distinguishable from those of analog I and C systems such as software and fault-tolerant techniques. In this work, the faults in a digital I and C system were analyzed and a model for representing the effects of the faults was developed. First, the effects of the faults in a system were analyzed using fault injection experiments. A software-implemented fault injection technique in which faults can be injected into the memory was used based on the assumption that all faults in a system are reflected in the faults in the memory. In the experiments, the effect of a fault on the system output was observed. In addition, the success or failure in detecting the fault by fault-tolerant functions included in the system was identified. Second, a fault tree model for representing that a fault is propagated to the system output was developed. With the model, it can be identified how a fault is propagated to the output or why a fault is not detected by fault-tolerant techniques. Based on the analysis results of the proposed method, it is possible to not only evaluate the system reliability but also identify weak points of fault-tolerant techniques by identifying undetected faults. The results can be reflected in the designs to improve the capability of fault-tolerant techniques.

  10. Effect analysis of faults in digital I and C systems of nuclear power plants

    International Nuclear Information System (INIS)

    Lee, Seung Jun

    2014-01-01

    A reliability analysis of digital instrumentation and control (I and C) systems in nuclear power plants has been introduced as one of the important elements of a probabilistic safety assessment because of the unique characteristics of digital I and C systems. Digital I and C systems have various features distinguishable from those of analog I and C systems such as software and fault-tolerant techniques. In this work, the faults in a digital I and C system were analyzed and a model for representing the effects of the faults was developed. First, the effects of the faults in a system were analyzed using fault injection experiments. A software-implemented fault injection technique in which faults can be injected into the memory was used based on the assumption that all faults in a system are reflected in the faults in the memory. In the experiments, the effect of a fault on the system output was observed. In addition, the success or failure in detecting the fault by fault-tolerant functions included in the system was identified. Second, a fault tree model for representing that a fault is propagated to the system output was developed. With the model, it can be identified how a fault is propagated to the output or why a fault is not detected by fault-tolerant techniques. Based on the analysis results of the proposed method, it is possible to not only evaluate the system reliability but also identify weak points of fault-tolerant techniques by identifying undetected faults. The results can be reflected in the designs to improve the capability of fault-tolerant techniques. (author)

  11. GOTRES: an expert system for fault detection and analysis

    International Nuclear Information System (INIS)

    Chung, D.T.; Modarres, M.

    1989-01-01

    This paper describes a deep-knowledge expert system shell for diagnosing faults in process operations. The expert program shell is called GOTRES (GOal TRee Expert System) and uses a goal tree-success tree deep-knowledge structure to model its knowledge-base. To demonstrate GOTRES, we have built an on-line fault diagnosis expert system for an experimental nuclear reactor facility using this shell. The expert system is capable of diagnosing fault conditions using system goal tree as well as utilizing accumulated operating knowledge to predict plant causal and temporal behaviours. The GOTRES shell has also been used for root-cause detection and analysis in a nuclear plant. (author)

  12. Estimating Rates of Fault Insertion and Test Effectiveness in Software Systems

    Science.gov (United States)

    Nikora, A.; Munson, J.

    1998-01-01

    In developing a software system, we would like to estimate the total number of faults inserted into a software system, the residual fault content of that system at any given time, and the efficacy of the testing activity in executing the code containing the newly inserted faults.

  13. Seismic Hazard Analysis on a Complex, Interconnected Fault Network

    Science.gov (United States)

    Page, M. T.; Field, E. H.; Milner, K. R.

    2017-12-01

    In California, seismic hazard models have evolved from simple, segmented prescriptive models to much more complex representations of multi-fault and multi-segment earthquakes on an interconnected fault network. During the development of the 3rd Uniform California Earthquake Rupture Forecast (UCERF3), the prevalence of multi-fault ruptures in the modeling was controversial. Yet recent earthquakes, for example, the Kaikora earthquake - as well as new research on the potential of multi-fault ruptures (e.g., Nissen et al., 2016; Sahakian et al. 2017) - have validated this approach. For large crustal earthquakes, multi-fault ruptures may be the norm rather than the exception. As datasets improve and we can view the rupture process at a finer scale, the interconnected, fractal nature of faults is revealed even by individual earthquakes. What is the proper way to model earthquakes on a fractal fault network? We show multiple lines of evidence that connectivity even in modern models such as UCERF3 may be underestimated, although clustering in UCERF3 mitigates some modeling simplifications. We need a methodology that can be applied equally well where the fault network is well-mapped and where it is not - an extendable methodology that allows us to "fill in" gaps in the fault network and in our knowledge.

  14. Holocene paleoearthquakes on the strike-slip Porters Pass Fault, Canterbury, New Zealand

    International Nuclear Information System (INIS)

    Howard, M.; Nicol, A.; Campbell, J.; Pettinga, J.R.

    2005-01-01

    The Porters Pass Fault comprises a series of discontinuous Holocene active traces which extend for c. 40 km between the Rakaia and Waimakariri Rivers in the foothills of the Southern Alps. There have been no historical earthquakes on the Porters Pass Fault (i.e., within the last 150 yr), and the purpose of this paper is to establish the timing and magnitudes of displacements on the fault at the ground surface during Holocene paleoearthquakes. Displaced geomorphic features (e.g., relict streams, stream channels, and ridge crests), measured using either tape measure (n = 20) or surveying equipment (n = 5), range from 5.5 to 33 m right lateral strike slip and are consistent with six earthquakes characterised by slip per event of c. 5-7 m. The timing of these earthquakes is constrained by radiocarbon dates from four trenches excavated across the fault and two auger sites from within swamps produced by ponding of drainage along the fault scarp. These data indicate markedly different Holocene earthquake histories along the fault length separated by a behavioural segment boundary near Lake Coleridge. On the eastern segment at least six Holocene earthquakes were identified at 8400-9000, 5700-6700, 4500-6000, 2300-2500, 800-1100, and 500-600 yr BP, producing an average recurrence interval of c. 1500 yr. On the western segment of the fault in the Rakaia River valley, a single surface-rupturing earthquake displaced Acheron Advance glacial deposits (c.10,000-14,000 yr in age) and may represent the southward continuation of the 2300-2500 yr event identified on the eastern segment. These data suggest Holocene slip rates of 3.2-4.1 mm/yr and 0.3-0.9 mm/yr on the eastern and western sections of the fault, respectively. Displacement and timing data suggest that earthquakes ruptured the western segment of the fault in no more than one-sixth of cases and that for a sample period of 10,000 yr the recurrence intervals were not characteristic. (auth). 45 refs., 10 figs., 3 tabs

  15. Methods for Fault Diagnosability Analysis of a Class of Affine Nonlinear Systems

    Directory of Open Access Journals (Sweden)

    Xiafu Peng

    2015-01-01

    Full Text Available The fault diagnosability analysis for a given model, before developing a diagnosis algorithm, can be used to answer questions like “can the fault fi be detected by observed states?” and “can it separate fault fi from fault fj by observed states?” If not, we should redesign the sensor placement. This paper deals with the problem of the evaluation of detectability and separability for the diagnosability analysis of affine nonlinear system. First, we used differential geometry theory to analyze the nonlinear system and proposed new detectability criterion and separability criterion. Second, the related matrix between the faults and outputs of the system and the fault separable matrix are designed for quantitative fault diagnosability calculation and fault separability calculation, respectively. Finally, we illustrate our approach to exemplify how to analyze diagnosability by a certain nonlinear system example, and the experiment results indicate the effectiveness of the fault evaluation methods.

  16. Scorpion image segmentation system

    Science.gov (United States)

    Joseph, E.; Aibinu, A. M.; Sadiq, B. A.; Bello Salau, H.; Salami, M. J. E.

    2013-12-01

    Death as a result of scorpion sting has been a major public health problem in developing countries. Despite the high rate of death as a result of scorpion sting, little report exists in literature of intelligent device and system for automatic detection of scorpion. This paper proposed a digital image processing approach based on the floresencing characteristics of Scorpion under Ultra-violet (UV) light for automatic detection and identification of scorpion. The acquired UV-based images undergo pre-processing to equalize uneven illumination and colour space channel separation. The extracted channels are then segmented into two non-overlapping classes. It has been observed that simple thresholding of the green channel of the acquired RGB UV-based image is sufficient for segmenting Scorpion from other background components in the acquired image. Two approaches to image segmentation have also been proposed in this work, namely, the simple average segmentation technique and K-means image segmentation. The proposed algorithm has been tested on over 40 UV scorpion images obtained from different part of the world and results obtained show an average accuracy of 97.7% in correctly classifying the pixel into two non-overlapping clusters. The proposed 1system will eliminate the problem associated with some of the existing manual approaches presently in use for scorpion detection.

  17. Influence of fault steps on rupture termination of strike-slip earthquake faults

    Science.gov (United States)

    Li, Zhengfang; Zhou, Bengang

    2018-03-01

    A statistical analysis was completed on the rupture data of 29 historical strike-slip earthquakes across the world. The purpose of this study is to examine the effects of fault steps on the rupture termination of these events. The results show good correlations between the type and length of steps with the seismic rupture and a poor correlation between the step number and seismic rupture. For different magnitude intervals, the smallest widths of the fault steps (Lt) that can terminate the rupture propagation are variable: Lt = 3 km for Ms 6.5 6.9, Lt = 4 km for Ms 7.0 7.5, Lt = 6 km for Ms 7.5 8.0, and Lt = 8 km for Ms 8.0 8.5. The dilational fault step is easier to rupture through than the compression fault step. The smallest widths of the fault step for the rupture arrest can be used as an indicator to judge the scale of the rupture termination of seismic faults. This is helpful for research on fault segmentation, as well as estimating the magnitude of potential earthquakes, and is thus of significance for the assessment of seismic risks.

  18. Identification of active fault using analysis of derivatives with vertical second based on gravity anomaly data (Case study: Seulimeum fault in Sumatera fault system)

    Science.gov (United States)

    Hududillah, Teuku Hafid; Simanjuntak, Andrean V. H.; Husni, Muhammad

    2017-07-01

    Gravity is a non-destructive geophysical technique that has numerous application in engineering and environmental field like locating a fault zone. The purpose of this study is to spot the Seulimeum fault system in Iejue, Aceh Besar (Indonesia) by using a gravity technique and correlate the result with geologic map and conjointly to grasp a trend pattern of fault system. An estimation of subsurface geological structure of Seulimeum fault has been done by using gravity field anomaly data. Gravity anomaly data which used in this study is from Topex that is processed up to Free Air Correction. The step in the Next data processing is applying Bouger correction and Terrin Correction to obtain complete Bouger anomaly that is topographically dependent. Subsurface modeling is done using the Gav2DC for windows software. The result showed a low residual gravity value at a north half compared to south a part of study space that indicated a pattern of fault zone. Gravity residual was successfully correlate with the geologic map that show the existence of the Seulimeum fault in this study space. The study of earthquake records can be used for differentiating the active and non active fault elements, this gives an indication that the delineated fault elements are active.

  19. Fault Ride-through Capability Enhancement of Voltage Source Converter-High Voltage Direct Current Systems with Bridge Type Fault Current Limiters

    Directory of Open Access Journals (Sweden)

    Md Shafiul Alam

    2017-11-01

    Full Text Available This paper proposes the use of bridge type fault current limiters (BFCLs as a potential solution to reduce the impact of fault disturbance on voltage source converter-based high voltage DC (VSC-HVDC systems. Since VSC-HVDC systems are vulnerable to faults, it is essential to enhance the fault ride-through (FRT capability with auxiliary control devices like BFCLs. BFCL controllers have been developed to limit the fault current during the inception of system disturbances. Real and reactive power controllers for the VSC-HVDC have been developed based on current control mode. DC link voltage control has been achieved by a feedback mechanism such that net power exchange with DC link capacitor is zero. A grid-connected VSC-HVDC system and a wind farm integrated VSC-HVDC system along with the proposed BFCL and associated controllers have been implemented in a real time digital simulator (RTDS. Symmetrical three phase as well as different types of unsymmetrical faults have been applied in the systems in order to show the effectiveness of the proposed BFCL solution. DC link voltage fluctuation, machine speed and active power oscillation have been greatly suppressed with the proposed BFCL. Another significant feature of this work is that the performance of the proposed BFCL in VSC-HVDC systems is compared to that of series dynamic braking resistor (SDBR. Comparative results show that the proposed BFCL is superior over SDBR in limiting fault current as well as improving system fault ride through (FRT capability.

  20. Fault slip and earthquake recurrence along strike-slip faults — Contributions of high-resolution geomorphic data

    KAUST Repository

    Zielke, Olaf

    2015-01-01

    Understanding earthquake (EQ) recurrence relies on information about the timing and size of past EQ ruptures along a given fault. Knowledge of a fault\\'s rupture history provides valuable information on its potential future behavior, enabling seismic hazard estimates and loss mitigation. Stratigraphic and geomorphic evidence of faulting is used to constrain the recurrence of surface rupturing EQs. Analysis of the latter data sets culminated during the mid-1980s in the formulation of now classical EQ recurrence models, now routinely used to assess seismic hazard. Within the last decade, Light Detection and Ranging (lidar) surveying technology and other high-resolution data sets became increasingly available to tectono-geomorphic studies, promising to contribute to better-informed models of EQ recurrence and slip-accumulation patterns. After reviewing motivation and background, we outline requirements to successfully reconstruct a fault\\'s offset accumulation pattern from geomorphic evidence. We address sources of uncertainty affecting offset measurement and advocate approaches to minimize them. A number of recent studies focus on single-EQ slip distributions and along-fault slip accumulation patterns. We put them in context with paleoseismic studies along the respective faults by comparing coefficients of variation CV for EQ inter-event time and slip-per-event and find that a) single-event offsets vary over a wide range of length-scales and the sources for offset variability differ with length-scale, b) at fault-segment length-scales, single-event offsets are essentially constant, c) along-fault offset accumulation as resolved in the geomorphic record is dominated by essentially same-size, large offset increments, and d) there is generally no one-to-one correlation between the offset accumulation pattern constrained in the geomorphic record and EQ occurrence as identified in the stratigraphic record, revealing the higher resolution and preservation potential of

  1. A Fault Diagnosis Approach for the Hydraulic System by Artificial Neural Networks

    OpenAIRE

    Xiangyu He; Shanghong He

    2014-01-01

    Based on artificial neural networks, a fault diagnosis approach for the hydraulic system was proposed in this paper. Normal state samples were used as the training data to develop a dynamic general regression neural network (DGRNN) model. The trained DGRNN model then served as the fault determinant to diagnose test faults and the work condition of the hydraulic system was identified. Several typical faults of the hydraulic system were used to verify the fault diagnosis approach. Experiment re...

  2. Active Fault Tolerant Control of Livestock Stable Ventilation System

    DEFF Research Database (Denmark)

    Gholami, Mehdi

    2011-01-01

    Modern stables and greenhouses are equipped with different components for providing a comfortable climate for animals and plant. A component malfunction may result in loss of production. Therefore, it is desirable to design a control system, which is stable, and is able to provide an acceptable d...... are not included, while due to the physical limitation, the input signal can not have any value. In continuing, a passive fault tolerant controller (PFTC) based on state feedback is proposed to track a reference signal while the control inputs are bounded....... of fault. Designing a fault tolerant control scheme for the climate control system. In the first step, a conceptual multi-zone model for climate control of a live-stock building is derived. The model is a nonlinear hybrid model. Hybrid systems contain both discrete and continuous components. The parameters...... affine (PWA) components such as dead-zones, saturation, etc or contain piecewise nonlinear models which is the case for the climate control systems of the stables. Fault tolerant controller (FTC) is based on a switching scheme between a set of predefined passive fault tolerant controller (PFTC...

  3. Fault Tolerant Emergency Control to Preserve Power System Stability

    DEFF Research Database (Denmark)

    Pedersen, Andreas Søndergaard; Richter, Jan H.; Tabatabaeipour, Mojtaba

    2016-01-01

    This paper introduces a method for fault-masking and system reconfiguration in power transmission systems. The paper demonstrates how faults are handled by reconfiguring remaining controls through utilisation of wide-area measurement in real time. It is shown how reconfiguration can be obtained u...

  4. Comparison of γ-ray intensity distribution around Hira fault with spatial pattern of major and/or sub fault system

    International Nuclear Information System (INIS)

    Nakanishi, Tatsuya; Mino, Kazuo; Ogasawara, Hiroshi; Katsura, Ikuo

    1999-01-01

    Major active faults generally consist of systems of a number of fractures with various dimensions, and contain a lot of ground water. Rn gas, moving with underground water, tends to accumulate along faults and emit γ-ray while it decays down to Pb through Bi. Therefore, it has been shown by a number of works that γ-ray intensity is generally high near the core of the major active fault and the γ-ray survey is one of the effective methods to look for the core of the major active fault. However, around the area near the tips of faults, a number of complicated sub-fault systems and the corresponding complicated geological structures are often seen and it has not been investigated well about what can be the relationship between the intensity distribution of γ-ray and the fault systems. In order to investigate the relationship in an area near the tips of major faults well, therefore, we carried out the γ-ray survey at about 1,100 sites in an area of about 2 km x 2 km that has the tips of the two major right lateral faults with significant thrusting components. We also investigated the lineaments by using the topographic map published in 1895 when artificial construction was seldom seen in the area and we can easily see the natural topography. In addition, we carried out the γ-ray survey in an area far from the fault tip to compare with the results in the area with the fault tips. Then: (1) we reconfirmed that in the case of the middle of the major active fault, γ-ray intensity is high in the limited area just adjacent to the core of the fault. (2) However, we found that in the case of the tip of the major active fault, high γ-ray intensity is seen in much wider area with clear lineaments that is inferred to be developed associated with the movement of the major faults. (author)

  5. SIFT - Design and analysis of a fault-tolerant computer for aircraft control. [Software Implemented Fault Tolerant systems

    Science.gov (United States)

    Wensley, J. H.; Lamport, L.; Goldberg, J.; Green, M. W.; Levitt, K. N.; Melliar-Smith, P. M.; Shostak, R. E.; Weinstock, C. B.

    1978-01-01

    SIFT (Software Implemented Fault Tolerance) is an ultrareliable computer for critical aircraft control applications that achieves fault tolerance by the replication of tasks among processing units. The main processing units are off-the-shelf minicomputers, with standard microcomputers serving as the interface to the I/O system. Fault isolation is achieved by using a specially designed redundant bus system to interconnect the processing units. Error detection and analysis and system reconfiguration are performed by software. Iterative tasks are redundantly executed, and the results of each iteration are voted upon before being used. Thus, any single failure in a processing unit or bus can be tolerated with triplication of tasks, and subsequent failures can be tolerated after reconfiguration. Independent execution by separate processors means that the processors need only be loosely synchronized, and a novel fault-tolerant synchronization method is described.

  6. Faulting and hydration of the Juan de Fuca plate system

    Science.gov (United States)

    Nedimović, Mladen R.; Bohnenstiehl, DelWayne R.; Carbotte, Suzanne M.; Pablo Canales, J.; Dziak, Robert P.

    2009-06-01

    Multichannel seismic observations provide the first direct images of crustal scale normal faults within the Juan de Fuca plate system and indicate that brittle deformation extends up to ~ 200 km seaward of the Cascadia trench. Within the sedimentary layering steeply dipping faults are identified by stratigraphic offsets, with maximum throws of 110 ± 10 m found near the trench. Fault throws diminish both upsection and seaward from the trench. Long-term throw rates are estimated to be 13 ± 2 mm/kyr. Faulted offsets within the sedimentary layering are typically linked to larger offset scarps in the basement topography, suggesting reactivation of the normal fault systems formed at the spreading center. Imaged reflections within the gabbroic igneous crust indicate swallowing fault dips at depth. These reflections require local alteration to produce an impedance contrast, indicating that the imaged fault structures provide pathways for fluid transport and hydration. As the depth extent of imaged faulting within this young and sediment insulated oceanic plate is primarily limited to approximately Moho depths, fault-controlled hydration appears to be largely restricted to crustal levels. If dehydration embrittlement is an important mechanism for triggering intermediate-depth earthquakes within the subducting slab, then the limited occurrence rate and magnitude of intraslab seismicity at the Cascadia margin may in part be explained by the limited amount of water imbedded into the uppermost oceanic mantle prior to subduction. The distribution of submarine earthquakes within the Juan de Fuca plate system indicates that propagator wake areas are likely to be more faulted and therefore more hydrated than other parts of this plate system. However, being largely restricted to crustal levels, this localized increase in hydration generally does not appear to have a measurable effect on the intraslab seismicity along most of the subducted propagator wakes at the Cascadia margin.

  7. A Review Of Fault Tolerant Scheduling In Multicore Systems

    Directory of Open Access Journals (Sweden)

    Shefali Malhotra

    2015-05-01

    Full Text Available Abstract In this paper we have discussed about various fault tolerant task scheduling algorithm for multi core system based on hardware and software. Hardware based algorithm which is blend of Triple Modulo Redundancy and Double Modulo Redundancy in which Agricultural Vulnerability Factor is considered while deciding the scheduling other than EDF and LLF scheduling algorithms. In most of the real time system the dominant part is shared memory.Low overhead software based fault tolerance approach can be implemented at user-space level so that it does not require any changes at application level. Here redundant multi-threaded processes are used. Using those processes we can detect soft errors and recover from them. This method gives low overhead fast error detection and recovery mechanism. The overhead incurred by this method ranges from 0 to 18 for selected benchmarks. Hybrid Scheduling Method is another scheduling approach for real time systems. Dynamic fault tolerant scheduling gives high feasibility rate whereas task criticality is used to select the type of fault recovery method in order to tolerate the maximum number of faults.

  8. In-flight Fault Detection and Isolation in Aircraft Flight Control Systems

    Science.gov (United States)

    Azam, Mohammad; Pattipati, Krishna; Allanach, Jeffrey; Poll, Scott; Patterson-Hine, Ann

    2005-01-01

    In this paper we consider the problem of test design for real-time fault detection and isolation (FDI) in the flight control system of fixed-wing aircraft. We focus on the faults that are manifested in the control surface elements (e.g., aileron, elevator, rudder and stabilizer) of an aircraft. For demonstration purposes, we restrict our focus on the faults belonging to nine basic fault classes. The diagnostic tests are performed on the features extracted from fifty monitored system parameters. The proposed tests are able to uniquely isolate each of the faults at almost all severity levels. A neural network-based flight control simulator, FLTZ(Registered TradeMark), is used for the simulation of various faults in fixed-wing aircraft flight control systems for the purpose of FDI.

  9. Fault kinematics and localised inversion within the Troms-Finnmark Fault Complex, SW Barents Sea

    Science.gov (United States)

    Zervas, I.; Omosanya, K. O.; Lippard, S. J.; Johansen, S. E.

    2018-04-01

    The areas bounding the Troms-Finnmark Fault Complex are affected by complex tectonic evolution. In this work, the history of fault growth, reactivation, and inversion of major faults in the Troms-Finnmark Fault Complex and the Ringvassøy Loppa Fault Complex is interpreted from three-dimensional seismic data, structural maps and fault displacement plots. Our results reveal eight normal faults bounding rotated fault blocks in the Troms-Finnmark Fault Complex. Both the throw-depth and displacement-distance plots show that the faults exhibit complex configurations of lateral and vertical segmentation with varied profiles. Some of the faults were reactivated by dip-linkages during the Late Jurassic and exhibit polycyclic fault growth, including radial, syn-sedimentary, and hybrid propagation. Localised positive inversion is the main mechanism of fault reactivation occurring at the Troms-Finnmark Fault Complex. The observed structural styles include folds associated with extensional faults, folded growth wedges and inverted depocentres. Localised inversion was intermittent with rifting during the Middle Jurassic-Early Cretaceous at the boundaries of the Troms-Finnmark Fault Complex to the Finnmark Platform. Additionally, tectonic inversion was more intense at the boundaries of the two fault complexes, affecting Middle Triassic to Early Cretaceous strata. Our study shows that localised folding is either a product of compressional forces or of lateral movements in the Troms-Finnmark Fault Complex. Regional stresses due to the uplift in the Loppa High and halokinesis in the Tromsø Basin are likely additional causes of inversion in the Troms-Finnmark Fault Complex.

  10. Data-driven design of fault diagnosis systems nonlinear multimode processes

    CERN Document Server

    Haghani Abandan Sari, Adel

    2014-01-01

    In many industrial applications early detection and diagnosis of abnormal behavior of the plant is of great importance. During the last decades, the complexity of process plants has been drastically increased, which imposes great challenges in development of model-based monitoring approaches and it sometimes becomes unrealistic for modern large-scale processes. The main objective of Adel Haghani Abandan Sari is to study efficient fault diagnosis techniques for complex industrial systems using process historical data and considering the nonlinear behavior of the process. To this end, different methods are presented to solve the fault diagnosis problem based on the overall behavior of the process and its dynamics. Moreover, a novel technique is proposed for fault isolation and determination of the root-cause of the faults in the system, based on the fault impacts on the process measurements. Contents Process monitoring Fault diagnosis and fault-tolerant control Data-driven approaches and decision making Target...

  11. Slip-accumulation patterns and earthquake recurrences along the Talas-Fergana Fault - Contributions of high-resolution geomorphic offsets.

    Science.gov (United States)

    Rizza, M.; Dubois, C.; Fleury, J.; Abdrakhmatov, K.; Pousse, L.; Baikulov, S.; Vezinet, A.

    2017-12-01

    In the western Tien-Shan Range, the largest intracontinental strike-slip fault is the Karatau-Talas Fergana Fault system. This dextral fault system is subdivided into two main segments: the Karatau fault to the north and the Talas-Fergana fault (TFF) to the south. Kinematics and rates of deformation for the TFF during the Quaternary period are still debated and are poorly constrained. Only a few paleoseismological investigations are availabe along the TFF (Burtman et al., 1996; Korjenkov et al., 2010) and no systematic quantifications of the dextral displacements along the TFF has been undertaken. As such, the appraisal of the TFF behavior demands new tectonic information. In this study, we present the first detailed analysis of the morphology and the segmentation of the TFF and an offset inventory of morphological markers along the TFF. To discuss temporal and spatial recurrence patterns of slip accumulated over multiple seismic events, our study focused on a 60 km-long section of the TFF (Chatkal segment). Using tri-stereo Pleiades satellite images, high-resolution DEMs (1*1 m pixel size) have been generated in order to (i) analyze the fine-scale fault geometry and (ii) thoroughly measure geomorphic offsets. Photogrammetry data obtained from our drone survey on high interest sites, provide higher-resolution DEMs of 0.5 * 0.5 m pixel size.Our remote sensing mapping allows an unprecedented subdivision - into five distinct segments - of the study area. About 215 geomorphic markers have been measured and offsets range from 4.5m to 180 m. More than 80% of these offsets are smaller than 60 m, suggesting landscape reset during glacial maximum. Calculations of Cumulative Offset Probability Density (COPD) for the whole 60 km-long section as well as for each segments support distinct behavior from a segment to another and thus variability in slip-accumulation patterns. Our data argue for uniform slip model behavior along this section of the TFF. Moreover, we excavated a

  12. Deformation associated with continental normal faults

    Science.gov (United States)

    Resor, Phillip G.

    Deformation associated with normal fault earthquakes and geologic structures provide insights into the seismic cycle as it unfolds over time scales from seconds to millions of years. Improved understanding of normal faulting will lead to more accurate seismic hazard assessments and prediction of associated structures. High-precision aftershock locations for the 1995 Kozani-Grevena earthquake (Mw 6.5), Greece image a segmented master fault and antithetic faults. This three-dimensional fault geometry is typical of normal fault systems mapped from outcrop or interpreted from reflection seismic data and illustrates the importance of incorporating three-dimensional fault geometry in mechanical models. Subsurface fault slip associated with the Kozani-Grevena and 1999 Hector Mine (Mw 7.1) earthquakes is modeled using a new method for slip inversion on three-dimensional fault surfaces. Incorporation of three-dimensional fault geometry improves the fit to the geodetic data while honoring aftershock distributions and surface ruptures. GPS Surveying of deformed bedding surfaces associated with normal faulting in the western Grand Canyon reveals patterns of deformation that are similar to those observed by interferometric satellite radar interferometry (InSAR) for the Kozani Grevena earthquake with a prominent down-warp in the hanging wall and a lesser up-warp in the footwall. However, deformation associated with the Kozani-Grevena earthquake extends ˜20 km from the fault surface trace, while the folds in the western Grand Canyon only extend 500 m into the footwall and 1500 m into the hanging wall. A comparison of mechanical and kinematic models illustrates advantages of mechanical models in exploring normal faulting processes including incorporation of both deformation and causative forces, and the opportunity to incorporate more complex fault geometry and constitutive properties. Elastic models with antithetic or synthetic faults or joints in association with a master

  13. The activity of the Ulsan fault system based on marine terrace age study at the southeastern part of Korean peninsula

    International Nuclear Information System (INIS)

    Inoue, Daiei; Weon-Hack, Choi

    2006-01-01

    The activity evaluation of the Ulsan fault system (UFS) based on marine terrace age study in the southeastern part of Korean peninsula has been carried out. (1) The marine terrace distribution map along the southeastern coast of Korean peninsula has been distributed three wide terraces and several sub-terraces. The age of the above three terraces was determined by the discovery of wide tephras to be MIS5e, 7 and 9 from the lowest, respectively. (2) The active fault map along UFS was constructed. There will be the possibility that the UFS will be divided into three segments by the feature of lineaments. (3) The fault bounds between mountain at the eastern side, and plain at the western side in the most part of fault. It is interpreted that the UFS builds up the eastern mountain as a reverse movement fault. The latest activity of this fault system was clarified at the two localities by outcrop and trench investigation. The latest activity at Galgok-ri located in the northern part of the fault was occurred between 2,840 and 1,440 yBP. It was found to be between 7,470 and 2,990 yBP at Gaegok-ri, located in the central part of the fault. The latest activity at the Wangsan, which is between Galgok-ri and Gaegok-ri, was older than 7,000 yBP. The latest activity of the UFS differs between studied points. (4) The vertical slip rate of the UFS was calculated from the amount of vertical deformation and the age of terraces. Its range was between several cm to 20 cm in the 1000 years. This value corresponds to lower B and C class activity defined in Japan. (author)

  14. Fault Detection and Isolation for Wind Turbine Electric Pitch System

    DEFF Research Database (Denmark)

    Zhu, Jiangsheng; Ma, Kuichao; Hajizadeh, Amin

    2017-01-01

    This paper presents a model-based fault detection and isolation scheme applied on electric pitch system of wind turbines. Pitch system is one of the most critical components due to its effect on the operational safety and the dynamics of wind turbines. Faults in this system should be precisely...... detected to prevent failures and decrease downtime. To detect faults of electric pitch actuators and sensors, an extended kalman filter (EKF) based multiple model adaptive estimation (MMAE) designed to estimate the states of the system. The proposed method is demonstrated in case studies. The simulation...

  15. Spatial radon anomalies on active faults in California

    International Nuclear Information System (INIS)

    King, C.-Y.; King, B.-S.; Evans, W.C.; Wei Zhang

    1996-01-01

    Radon emanation has been observed to be anomalously high along active faults in many parts of the world. We tested this relationship by conducting and repeating soil-air radon surveys with a portable radon meter across several faults in California. The results confirm the existence of fault-associated radon anomalies, which show characteristic features that may be related to fault structures but vary in time due to other environmental changes, such as rainfall. Across two creeping faults in San Juan Bautista and Hollister, the radon anomalies showed prominent double peaks straddling the fault-gouge zone during dry summers, but the peak-to-background ratios diminished after significant rain fall during winter. Across a locked segment of the San Andreas fault near Olema, the anomaly has a single peak located several meters southwest of the slip zone associated with the 1906 San Francisco earthquake. Across two fault segments that ruptured during the magnitude 7.5 Landers earthquake in 1992, anomalously high radon concentration was found in the fractures three weeks after the earthquake. We attribute the fault-related anomalies to a slow vertical gas flow in or near the fault zones. Radon generated locally in subsurface soil has a concentration profile that increases three orders of magnitude from the surface to a depth of several meters; thus an upward flow that brings up deeper and radon-richer soil air to the detection level can cause a significantly higher concentration reading. This explanation is consistent with concentrations of carbon dioxide and oxygen, measured in soil-air samples collected during one of the surveys. (Author)

  16. Fault Adaptive Control of Overactuated Systems Using Prognostic Estimation

    Data.gov (United States)

    National Aeronautics and Space Administration — Most fault adaptive control research addresses the preservation of system stability or functionality in the presence of a specific failure (fault). This paper...

  17. Evidence of a tectonic transient within the Idrija fault system in Western Slovenia

    Science.gov (United States)

    Vičič, Blaž; Costa, Giovanni; Aoudia, Abdelkrim

    2017-04-01

    Western Slovenia and North-eastern Italy are areas of medium rate seismicity with rare historic earthquakes of higher magnitudes. From mainly reverse component faulting in north-western part of the region where 1976 Friuli earthquakes took place, tectonic regime changes to mostly strike-slip faulting in the Dinaric region, continuing towards southeast. In the northern part of the Idrija fault system, which represent the broader Dinaric strike-slip system there were two strong earthquakes in the recent times - Mw=5.6 1998 and Mw=5.2 2004 earthquakes. Further to the south, along the Idrija fault system, Idrija fault is the causative fault of 1511 Mw=6.8 earthquake. The southeastern most part of the Idrija fault system produced a Mw=5.2 earthquake in 1926 and few historic Mw>4 earthquakes. Since 2004 Mw=5.2 earthquake, no stronger earthquakes were recorded in the region covered by dense seismic network. Seismicity is mostly concentrated in Friuli region and north-western part of Idrija fault system - mostly on the Ravne fault which is the causative fault for the 1998 and 2004 earthquakes. In the central part of the fault system no strong or moderate earthquakes were recorded, except of an earthquake along the Idrija fault in 2014 of magnitude 3.4. Low magnitude background seismicity is burst like with no apparent temporal or spatial distribution. Seismicity of the southern part of Idrija fault system is again a bit higher than in the central part of the fault system with earthquakes up to Mw=4.4 that happened in 2014. In this study, detailed analysis of the seismicity is performed with manual relocation of the seismicity in the period between 2006 and 2016. With manual inspection of the waveform data, slight temporal clustering of seismicity is observed. We use a template algorithm method to increase the detection rate of the seismicity. Templates of seismicity in the north-western and south-eastern part of Idrija fault system are created. The continuous waveform data

  18. Fault tree analysis for reactor systems

    International Nuclear Information System (INIS)

    Crosetti, P.A.

    1971-01-01

    Reliability analysis is playing an increasingly important role in quantitative assessment of system performance for assuring nuclear safety, improving plant performance and plant life, and reducing plant operating costs. The complexity of today's nuclear plants warrant the use of techniques which will provide a comprehensive evaluation of systems in their total context. In particular, fault tree analysis with probability evaluation can play a key role in assuring nuclear safety, in improving plant performance and plant life, and in reducing plant operating costs. The technique provides an all inclusive, versatile mathematical tool for analyzing complex systems. Its application can include a complete plant as well as any of the systems and subsystems. Fault tree analysis provides an objective basis for analyzing system design, performing trade-off studies, analyzing common mode failures, demonstrating compliance with AEC requirements, and justifying system changes or additions. The logic of the approach makes it readily understandable and, therefore, it serves as an effective visibility tool for both engineering and management. (U.S.)

  19. The continuation of the Kazerun fault system across the Sanandaj-Sirjan zone (Iran)

    Science.gov (United States)

    Safaei, Homayon

    2009-08-01

    The Kazerun (or Kazerun-Qatar) fault system is a north-trending dextral strike-slip fault zone in the Zagros mountain belt of Iran. It probably originated as a structure in the Panafrican basement. This fault system played an important role in the sedimentation and deformation of the Phanerozoic cover sequence and is still seismically active. No previous studies have reported the continuation of this important and ancient fault system northward across the Sanandaj-Sirjan zone. The Isfahan fault system is a north-trending dextral strike-slip fault across the Sanandaj-Sirjan zone that passes west of Isfahan city and is here recognized for the first time. This important fault system is about 220 km long and is seismically active in the basement as well as the sedimentary cover sequence. This fault system terminates to the south near the Main Zagros Thrust and to the north at the southern boundary of the Urumieh-Dokhtar zone. The Isfahan fault system is the boundary between the northern and southern parts of Sanandaj-Sirjan zone, which have fundamentally different stratigraphy, petrology, geomorphology, and geodynamic histories. Similarities in the orientations, kinematics, and geologic histories of the Isfahan and Kazerun faults and the way they affect the magnetic basement suggest that they are related. In fact, the Isfahan fault is a continuation of the Kazerun fault across the Sanandaj-Sirjan zone that has been offset by about 50 km of dextral strike-slip displacement along the Main Zagros Thrust.

  20. Study on Unified Chaotic System-Based Wind Turbine Blade Fault Diagnostic System

    Science.gov (United States)

    Kuo, Ying-Che; Hsieh, Chin-Tsung; Yau, Her-Terng; Li, Yu-Chung

    At present, vibration signals are processed and analyzed mostly in the frequency domain. The spectrum clearly shows the signal structure and the specific characteristic frequency band is analyzed, but the number of calculations required is huge, resulting in delays. Therefore, this study uses the characteristics of a nonlinear system to load the complete vibration signal to the unified chaotic system, applying the dynamic error to analyze the wind turbine vibration signal, and adopting extenics theory for artificial intelligent fault diagnosis of the analysis signal. Hence, a fault diagnostor has been developed for wind turbine rotating blades. This study simulates three wind turbine blade states, namely stress rupture, screw loosening and blade loss, and validates the methods. The experimental results prove that the unified chaotic system used in this paper has a significant effect on vibration signal analysis. Thus, the operating conditions of wind turbines can be quickly known from this fault diagnostic system, and the maintenance schedule can be arranged before the faults worsen, making the management and implementation of wind turbines smoother, so as to reduce many unnecessary costs.

  1. Structural Design of Systems with Safe Behavior under Single and Multiple Faults

    DEFF Research Database (Denmark)

    Blanke, Mogens; Staroswiecki, Marcel

    2006-01-01

    Handling of multiple simultaneous faults is a complex issue in fault-tolerant control. The design task is particularly made difficult by to the numerous different cases that need be analyzed. Aiming at safe fault-handling, this paper shows how structural analysis can be applied to find...... to structural analysis to disclose which faults could be isolated from a structural point of view using active fault isolation. Results from application on a marine control system illustrate the concepts....... the analytical redundancy relations for all relevant combinations of faults, and can cope with the complexity and size of a real system. Being essential for fault-tolerant control schemes that shall handle particular cases of faults/failures, fault isolation is addressed. The paper introduces an extension...

  2. Component-based modeling of systems for automated fault tree generation

    International Nuclear Information System (INIS)

    Majdara, Aref; Wakabayashi, Toshio

    2009-01-01

    One of the challenges in the field of automated fault tree construction is to find an efficient modeling approach that can support modeling of different types of systems without ignoring any necessary details. In this paper, we are going to represent a new system of modeling approach for computer-aided fault tree generation. In this method, every system model is composed of some components and different types of flows propagating through them. Each component has a function table that describes its input-output relations. For the components having different operational states, there is also a state transition table. Each component can communicate with other components in the system only through its inputs and outputs. A trace-back algorithm is proposed that can be applied to the system model to generate the required fault trees. The system modeling approach and the fault tree construction algorithm are applied to a fire sprinkler system and the results are presented

  3. Fault Detection and Isolation for a Supermarket Refrigeration System - Part One

    DEFF Research Database (Denmark)

    Yang, Zhenyu; Rasmussen, Karsten B.; Kieu, Anh T.

    2011-01-01

    Fault Detection and Isolation (FDI) using the Kalman Filter (KF) technique for a supermarket refrigeration system is explored. Four types of sensor fault scenarios, namely drift, offset, freeze and hard-over, are considered for two temperature sensors, and one type of parametric fault scenario, n....... The test results show that the EKF-based FDI method generally performances better and faster than the KF-based method does. However, both methods can not handle the isolation between sensor faults and parametric fault.......Fault Detection and Isolation (FDI) using the Kalman Filter (KF) technique for a supermarket refrigeration system is explored. Four types of sensor fault scenarios, namely drift, offset, freeze and hard-over, are considered for two temperature sensors, and one type of parametric fault scenario...... isolation purpose, a bank of KFs arranged by splitting measurements is constructed for sensor fault isolation, while the Multi-Model Adaptive Estimation (MMAE) method is employed to handle parametric fault isolation. All these approaches are extended and checked by using Extended KF technique afterwards...

  4. Dead sea transform fault system reviews

    CERN Document Server

    Garfunkel, Zvi; Kagan, Elisa

    2014-01-01

    The Dead Sea transform is an active plate boundary connecting the Red Sea seafloor spreading system to the Arabian-Eurasian continental collision zone. Its geology and geophysics provide a natural laboratory for investigation of the surficial, crustal and mantle processes occurring along transtensional and transpressional transform fault domains on a lithospheric scale and related to continental breakup. There have been many detailed and disciplinary studies of the Dead Sea transform fault zone during the last?20 years and this book brings them together.This book is an updated comprehensive coverage of the knowledge, based on recent studies of the tectonics, structure, geophysics, volcanism, active tectonics, sedimentology and paleo and modern climate of the Dead Sea transform fault zone. It puts together all this new information and knowledge in a coherent fashion.

  5. Evaluation of digital fault-tolerant architectures for nuclear power plant control systems

    International Nuclear Information System (INIS)

    Battle, R.E.

    1990-01-01

    Four fault tolerant architectures were evaluated for their potential reliability in service as control systems of nuclear power plants. The reliability analyses showed that human- and software-related common cause failures and single points of failure in the output modules are dominant contributors to system unreliability. The four architectures are triple-modular-redundant (TMR), both synchronous and asynchronous, and also dual synchronous and asynchronous. The evaluation includes a review of design features, an analysis of the importance of coverage, and reliability analyses of fault tolerant systems. An advantage of fault-tolerant controllers over those not fault tolerant, is that fault-tolerant controllers continue to function after the occurrence of most single hardware faults. However, most fault-tolerant controllers have single hardware components that will cause system failure, almost all controllers have single points of failure in software, and all are subject to common cause failures. Reliability analyses based on data from several industries that have fault-tolerant controllers were used to estimate the mean-time-between-failures of fault-tolerant controllers and to predict those failures modes that may be important in nuclear power plants. 7 refs., 4 tabs

  6. Fault tolerant control of systems with saturations

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik

    2013-01-01

    This paper presents framework for fault tolerant controllers (FTC) that includes input saturation. The controller architecture known from FTC is based on the Youla-Jabr-Bongiorno-Kucera (YJBK) parameterization is extended to handle input saturation. Applying this controller architecture in connec......This paper presents framework for fault tolerant controllers (FTC) that includes input saturation. The controller architecture known from FTC is based on the Youla-Jabr-Bongiorno-Kucera (YJBK) parameterization is extended to handle input saturation. Applying this controller architecture...... in connection with faulty systems including input saturation gives an additional YJBK transfer function related to the input saturation. In the fault free case, this additional YJBK transfer function can be applied directly for optimizing the feedback loop around the input saturation. In the faulty case......, the design problem is a mixed design problem involved both parametric faults and input saturation....

  7. Geochemistry, geochronology, and tectonic setting of Early Cretaceous volcanic rocks in the northern segment of the Tan-Lu Fault region, northeast China

    Science.gov (United States)

    Ling, Yi-Yun; Zhang, Jin-Jiang; Liu, Kai; Ge, Mao-Hui; Wang, Meng; Wang, Jia-Min

    2017-08-01

    We present new geochemical and geochronological data for volcanic and related rocks in the regions of the Jia-Yi and Dun-Mi faults, in order to constrain the late Mesozoic tectonic evolution of the northern segment of the Tan-Lu Fault. Zircon U-Pb dating shows that rhyolite and intermediate-mafic rocks along the southern part of the Jia-Yi Fault formed at 124 and 113 Ma, respectively, whereas the volcanic rocks along the northern parts of the Jia-Yi and Dun-Mi faults formed at 100 Ma. The rhyolite has an A-type granitoid affinity, with high alkalis, low MgO, Ti, and P contents, high rare earth element (REE) contents and Ga/Al ratios, enrichments in large-ion lithophile (LILEs; e.g., Rb, Th, and U) and high-field-strength element (HFSEs; e.g., Nb, Ta, Zr, and Y), and marked negative Eu anomalies. These features indicate that the rhyolites were derived from partial melting of crustal material in an extensional environment. The basaltic rocks are enriched in light REEs and LILEs (e.g., Rb, K, Th, and U), and depleted in heavy REEs, HFSEs (e.g., Nb, Ta, Ti, and P), and Sr. These geochemical characteristics indicate that these rocks are calc-alkaline basalts that formed in an intraplate extensional tectonic setting. The dacite is a medium- to high-K, calc-alkaline, I-type granite that was derived from a mixed source involving both crustal and mantle components in a magmatic arc. Therefore, the volcanic rocks along the Jia-Yi and Dun-Mi faults were formed in an extensional regime at 124-100 Ma (Early Cretaceous), and these faults were extensional strike-slip faults at this time.

  8. Heterogeneous slip and rupture models of the San Andreas fault zone based upon three-dimensional earthquake tomography

    Energy Technology Data Exchange (ETDEWEB)

    Foxall, William [Univ. of California, Berkeley, CA (United States)

    1992-11-01

    Crystal fault zones exhibit spatially heterogeneous slip behavior at all scales, slip being partitioned between stable frictional sliding, or fault creep, and unstable earthquake rupture. An understanding the mechanisms underlying slip segmentation is fundamental to research into fault dynamics and the physics of earthquake generation. This thesis investigates the influence that large-scale along-strike heterogeneity in fault zone lithology has on slip segmentation. Large-scale transitions from the stable block sliding of the Central 4D Creeping Section of the San Andreas, fault to the locked 1906 and 1857 earthquake segments takes place along the Loma Prieta and Parkfield sections of the fault, respectively, the transitions being accomplished in part by the generation of earthquakes in the magnitude range 6 (Parkfield) to 7 (Loma Prieta). Information on sub-surface lithology interpreted from the Loma Prieta and Parkfield three-dimensional crustal velocity models computed by Michelini (1991) is integrated with information on slip behavior provided by the distributions of earthquakes located using, the three-dimensional models and by surface creep data to study the relationships between large-scale lithological heterogeneity and slip segmentation along these two sections of the fault zone.

  9. Fault diagnosis and fault-tolerant control based on adaptive control approach

    CERN Document Server

    Shen, Qikun; Shi, Peng

    2017-01-01

    This book provides recent theoretical developments in and practical applications of fault diagnosis and fault tolerant control for complex dynamical systems, including uncertain systems, linear and nonlinear systems. Combining adaptive control technique with other control methodologies, it investigates the problems of fault diagnosis and fault tolerant control for uncertain dynamic systems with or without time delay. As such, the book provides readers a solid understanding of fault diagnosis and fault tolerant control based on adaptive control technology. Given its depth and breadth, it is well suited for undergraduate and graduate courses on linear system theory, nonlinear system theory, fault diagnosis and fault tolerant control techniques. Further, it can be used as a reference source for academic research on fault diagnosis and fault tolerant control, and for postgraduates in the field of control theory and engineering. .

  10. 'Extra-regional' strike-slip fault systems in Chile and Alaska: the North Pacific Rim orogenic Stream vs. Beck's Buttress

    Science.gov (United States)

    Redfield, T. F.; Scholl, D. W.; Fitzgerald, P. G.

    2010-12-01

    us to speculate towards the role of obliquity of plate tectonic convergence for the along-strike evolution of extra-regional strike-slip systems. Highly-oblique initiation of the DFS encourages detachment of fault-bounded terranes and provides a driver that encourages a westward-fanning pattern of extrusion towards the free face of the Beringian margin. Plausibly, its less-oblique central segment promotes vertical pathway exhumation observed at (for example) Denali itself. A more orthogonal regime drives the entire LOFZ, precluding slivering at its initiation and promoting upstream buttressing (Beck et al., 1993). The convergent plate boundary setting opens a window through time and space on the evolution of large-magnitude fault-systems. Escape, or not to escape ~ what best answers the question ? Citations Redfield, T. F., Scholl, D. W., Fitzgerald, P. G., and Beck, M. E., & 2007. Escape tectonics and the extrusion of Alaska: past, present, and future. Geology. 35, 11, 1039-1042 Beck, M.E., Rojas, C. and Cembrano, J. (1993). “On the nature of buttressing in margin-parallel strike-fault systems.” Geology, Vol. 21, pp. 755-758.

  11. Modeling of the fault-controlled hydrothermal ore-forming systems

    International Nuclear Information System (INIS)

    Pek, A.A.; Malkovsky, V.I.

    1993-07-01

    A necessary precondition for the formation of hydrothermal ore deposits is a strong focusing of hydrothermal flow as fluids move from the fluid source to the site of ore deposition. The spatial distribution of hydrothermal deposits favors the concept that such fluid flow focusing is controlled, for the most part, by regional faults which provide a low resistance path for hydrothermal solutions. Results of electric analog simulations, analytical solutions, and computer simulations of the fluid flow, in a fault-controlled single-pass advective system, confirm this concept. The influence of the fluid flow focusing on the heat and mass transfer in a single-pass advective system was investigated for a simplified version of the metamorphic model for the genesis of greenstone-hosted gold deposits. The spatial distribution of ore mineralization, predicted by computer simulation, is in reasonable agreement with geological observations. Computer simulations of the fault-controlled thermoconvective system revealed a complex pattern of mixing hydrothermal solutions in the model, which also simulates the development of the modern hydrothermal systems on the ocean floor. The specific feature of the model considered, is the development under certain conditions of an intra-fault convective cell that operates essentially independently of the large scale circulation. These and other results obtained during the study indicate that modeling of natural fault-controlled hydrothermal systems is instructive for the analysis of transport processes in man-made hydrothermal systems that could develop in geologic high-level nuclear waste repositories

  12. Design of fault tolerant control system for steam generator using

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myung Ki; Seo, Mi Ro [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    A controller and sensor fault tolerant system for a steam generator is designed with fuzzy logic. A structure of the proposed fault tolerant redundant system is composed of a supervisor and two fuzzy weighting modulators. A supervisor alternatively checks a controller and a sensor induced performances to identify which part, a controller or a sensor, is faulty. In order to analyze controller induced performance both an error and a change in error of the system output are chosen as fuzzy variables. The fuzzy logic for a sensor induced performance uses two variables : a deviation between two sensor outputs and its frequency. Fuzzy weighting modulator generates an output signal compensated for faulty input signal. Simulations show that the proposed fault tolerant control scheme for a steam generator regulates well water level by suppressing fault effect of either controllers or sensors. Therefore through duplicating sensors and controllers with the proposed fault tolerant scheme, both a reliability of a steam generator control and sensor system and that of a power plant increase even more. 2 refs., 9 figs., 1 tab. (Author)

  13. Novel fault tolerant modular system architecture for I and C applications

    International Nuclear Information System (INIS)

    Kumar, Ankit; Venkatesan, A.; Madhusoodanan, K.

    2013-01-01

    Novel fault tolerant 3U modular system architecture has been developed for safety related and safety critical I and C systems of the reactor. Design innovatively utilizes simplest multi-drop serial bus called Inter-Integrated Circuits (I 2 C) Bus for system operation with simplicity, fault tolerance and online maintainability (hot swap). I 2 C bus failure modes analysis was done and system design was hardened for possible failure modes. System backplane uses only passive components, dual redundant I 2 C buses, data consistency checks and geographical addressing scheme to tackle bus lock ups/stuck buses and bit flips in data transactions. Dual CPU active/standby redundancy architecture with hot swap implements tolerance for CPU software stuck up conditions and hardware faults. System cards implement hot swap for online maintainability, power supply fault containment, communication buses fault containment and I/O channel to channel isolation and independency. Typical applications for pure hardwired (without real time software) Core Temperature Monitoring System for FBRs, as a Universal Signal Conditioning System for safety related I and C systems and as a complete control system for non nuclear safety systems have also been discussed. (author)

  14. Development of expert system for fault diagnosis and restoration at substations

    Energy Technology Data Exchange (ETDEWEB)

    Choo, Jin Boo; Kwon, Tae Won; Yoon, Yong Beum; Park, Sung Taek [Korea Electric Power Corp. (KEPCO), Taejon (Korea, Republic of). Research Center; Park, Young Moon; Lee, Heung Jae [Electrical Engineering and Science Research Institute (Korea, Republic of)

    1996-12-31

    When a fault occurs in power systems, the operators have to make precise judgements on the situation and take appropriate actions rapidly to protect the system and minimize the black-out area. However, the larger and the more complex the power systems become, the more difficult it becomes to expect the effective actions of human operators. Therefore, it is a very important issue to support the operators of the local power systems in the case of various faults. We develop an expert system for fault diagnosis and reconfiguration of local power system. The expert system has a capability of identifying the location and the type of faults, the black-out area, and an appropriate reconfiguration procedure for re-energizing or minimizing the service interruption (author). 35 refs., 45 figs.

  15. Development of expert system for fault diagnosis and restoration at substations

    Energy Technology Data Exchange (ETDEWEB)

    Choo, Jin Boo; Kwon, Tae Won; Yoon, Yong Beum; Park, Sung Taek [Korea Electric Power Corp. (KEPCO), Taejon (Korea, Republic of). Research Center; Park, Young Moon; Lee, Heung Jae [Electrical Engineering and Science Research Institute (Korea, Republic of)

    1995-12-31

    When a fault occurs in power systems, the operators have to make precise judgements on the situation and take appropriate actions rapidly to protect the system and minimize the black-out area. However, the larger and the more complex the power systems become, the more difficult it becomes to expect the effective actions of human operators. Therefore, it is a very important issue to support the operators of the local power systems in the case of various faults. We develop an expert system for fault diagnosis and reconfiguration of local power system. The expert system has a capability of identifying the location and the type of faults, the black-out area, and an appropriate reconfiguration procedure for re-energizing or minimizing the service interruption (author). 35 refs., 45 figs.

  16. Analytical Model-based Fault Detection and Isolation in Control Systems

    DEFF Research Database (Denmark)

    Vukic, Z.; Ozbolt, H.; Blanke, M.

    1998-01-01

    The paper gives an introduction and an overview of the field of fault detection and isolation for control systems. The summary of analytical (quantitative model-based) methodds and their implementation are presented. The focus is given to mthe analytical model-based fault-detection and fault...

  17. Isotopic evidence for the infiltration of mantle and metamorphic CO2-H2O fluids from below in faulted rocks from the San Andreas Fault System

    Energy Technology Data Exchange (ETDEWEB)

    Pili, E.; Kennedy, B.M.; Conrad, M.E.; Gratier, J.-P.

    2010-12-15

    To characterize the origin of the fluids involved in the San Andreas Fault (SAF) system, we carried out an isotope study of exhumed faulted rocks from deformation zones, vein fillings and their hosts and the fluid inclusions associated with these materials. Samples were collected from segments along the SAF system selected to provide a depth profile from upper to lower crust. In all, 75 samples from various structures and lithologies from 13 localities were analyzed for noble gas, carbon, and oxygen isotope compositions. Fluid inclusions exhibit helium isotope ratios ({sup 3}He/{sup 4}He) of 0.1-2.5 times the ratio in air, indicating that past fluids percolating through the SAF system contained mantle helium contributions of at least 35%, similar to what has been measured in present-day ground waters associated with the fault (Kennedy et al., 1997). Calcite is the predominant vein mineral and is a common accessory mineral in deformation zones. A systematic variation of C- and O-isotope compositions of carbonates from veins, deformation zones and their hosts suggests percolation by external fluids of similar compositions and origin with the amount of fluid infiltration increasing from host rocks to vein to deformation zones. The isotopic trend observed for carbonates in veins and deformation zones follows that shown by carbonates in host limestones, marbles, and other host rocks, increasing with increasing contribution of deep metamorphic crustal volatiles. At each crustal level, the composition of the infiltrating fluids is thus buffered by deeper metamorphic sources. A negative correlation between calcite {delta}{sup 13}C and fluid inclusion {sup 3}He/{sup 4}He is consistent with a mantle origin for a fraction of the infiltrating CO{sub 2}. Noble gas and stable isotope systematics show consistent evidence for the involvement of mantle-derived fluids combined with infiltration of deep metamorphic H{sub 2}O and CO{sub 2} in faulting, supporting the involvement of

  18. Static stress transfer during the 2002 Nenana Mountain-Denali Fault, Alaska, earthquake sequence

    Science.gov (United States)

    Anderson, G.; Ji, C.

    2003-01-01

    On 23 October 2002, the Mw 6.7 Nenana Mountain earthquake occurred in central Alaska. It was followed on 3 November 2002 by the Mw 7.9 Denali Fault mainshock, the largest strike-slip earthquake to occur in North America during the past 150 years. We have modeled static Coulomb stress transfer effects during this sequence. We find that the Nenana Mountain foreshock transferred 30-50 kPa of Coulomb stress to the hypocentral region of the Denali Fault mainshock, encouraging its occurrence. We also find that the two main earthquakes together transferred more than 400 kPa of Coulomb stress to the Cross Creek segment of the Totschunda fault system and to the Denali fault southeast of the mainshock rupture, and up to 80 kPa to the Denali fault west of the Nenana Mountain rupture. Other major faults in the region experienced much smaller static Coulomb stress changes.

  19. Characterizing the recent behavior and earthquake potential of the blind western San Cayetano and Ventura fault systems

    Science.gov (United States)

    McAuliffe, L. J.; Dolan, J. F.; Hubbard, J.; Shaw, J. H.

    2011-12-01

    The recent occurrence of several destructive thrust fault earthquakes highlights the risks posed by such events to major urban centers around the world. In order to determine the earthquake potential of such faults in the western Transverse Ranges of southern California, we are studying the activity and paleoearthquake history of the blind Ventura and western San Cayetano faults through a multidisciplinary analysis of strata that have been folded above the fault tiplines. These two thrust faults form the middle section of a >200-km-long, east-west belt of large, interconnected reverse faults that extends across southern California. Although each of these faults represents a major seismic source in its own right, we are exploring the possibility of even larger-magnitude, multi-segment ruptures that may link these faults to other major faults to the east and west in the Transverse Ranges system. The proximity of this large reverse-fault system to several major population centers, including the metropolitan Los Angeles region, and the potential for tsunami generation during offshore ruptures of the western parts of the system, emphasizes the importance of understanding the behavior of these faults for seismic hazard assessment. During the summer of 2010 we used a mini-vibrator source to acquire four, one- to three-km-long, high-resolution seismic reflection profiles. The profiles were collected along the locus of active folding above the blind, western San Cayetano and Ventura faults - specifically, across prominent fold scarps that have developed in response to recent slip on the underlying thrust ramps. These high-resolution data overlap with the uppermost parts of petroleum-industry seismic reflection data, and provide a near-continuous image of recent folding from several km depth to within 50-100 m of the surface. Our initial efforts to document the earthquake history and slip-rate of this large, multi-fault reverse fault system focus on a site above the blind

  20. Use of Fuzzy Logic Systems for Assessment of Primary Faults

    Science.gov (United States)

    Petrović, Ivica; Jozsa, Lajos; Baus, Zoran

    2015-09-01

    In electric power systems, grid elements are often subjected to very complex and demanding disturbances or dangerous operating conditions. Determining initial fault or cause of those states is a difficult task. When fault occurs, often it is an imperative to disconnect affected grid element from the grid. This paper contains an overview of possibilities for using fuzzy logic in an assessment of primary faults in the transmission grid. The tool for this task is SCADA system, which is based on information of currents, voltages, events of protection devices and status of circuit breakers in the grid. The function model described with the membership function and fuzzy logic systems will be presented in the paper. For input data, diagnostics system uses information of protection devices tripping, states of circuit breakers and measurements of currents and voltages before and after faults.

  1. Automated fault tree analysis: the GRAFTER system

    International Nuclear Information System (INIS)

    Sancaktar, S.; Sharp, D.R.

    1985-01-01

    An inherent part of probabilistic risk assessment (PRA) is the construction and analysis of detailed fault trees. For this purpose, a fault tree computer graphics code named GRAFTER has been developed. The code system centers around the GRAFTER code. This code is used interactively to construct, store, update and print fault trees of small or large sizes. The SIMON code is used to provide data for the basic event probabilities. ENCODE is used to process the GRAFTER files to prepare input for the WAMCUT code. WAMCUT is used to quantify the top event probability and to identify the cutsets. This code system has been extensively used in various PRA projects. It has resulted in reduced manpower costs, increased QA capability, ease of documentation and it has simplified sensitivity analyses. Because of its automated nature, it is also suitable for LIVING PRA Studies which require updating and modifications during the lifetime of the plant. Brief descriptions and capabilities of the GRAFTER, SIMON and ENCODE codes are provided; an application of the GRAFTER system is outlined; and conclusions and comments on the code system are given

  2. Characterization of the San Andreas Fault near Parkfield, California by fault-zone trapped waves

    Science.gov (United States)

    Li, Y.; Vidale, J.; Cochran, E.

    2003-04-01

    In October, 2002, coordinated by the Pre-EarthScope/SAFOD, we conducted an extensive seismic experiment at the San Andreas fault (SAF), Parkfield to record fault-zone trapped waves generated by explosions and microearthquakes using dense linear seismic arrays of 52 PASSCAL 3-channel REFTEKs deployed across and along the fault zone. We detonated 3 explosions within and out of the fault zone during the experiment, and also recorded other 13 shots of PASO experiment of UWM/RPI (Thurber and Roecker) detonated around the SAFOD drilling site at the same time. We observed prominent fault-zone trapped waves with large amplitudes and long duration following S waves at stations close to the main fault trace for sources located within and close to the fault zone. Dominant frequencies of trapped waves are 2-3 Hz for near-surface explosions and 4-5 Hz for microearthquakes. Fault-zone trapped waves are relatively weak on the north strand of SAF for same sources. In contrast, seismograms registered for both the stations and shots far away from the fault zone show a brief S wave and lack of trapped waves. These observations are consistent with previous findings of fault-zone trapped waves at the SAF [Li et al., 1990; 1997], indicating the existence of a well-developed low-velocity waveguide along the main fault strand (principal slip plan) of the SAF. The data from denser arrays and 3-D finite-difference simulations of fault-zone trapped waves allowed us to delineate the internal structure, segmentation and physical properties of the SAF with higher resolution. The trapped-wave inferred waveguide on the SAF Parkfield segment is ~150 m wide at surface and tapers to ~100 m at seismogenic depth, in which Q is 20-50 and S velocities are reduced by 30-40% from wall-rock velocities, with the greater velocity reduction at the shallow depth and to southeast of the 1966 M6 epicenter. We interpret this low-velocity waveguide on the SAF main strand as being the remnant of damage zone caused

  3. Summary: beyond fault trees to fault graphs

    International Nuclear Information System (INIS)

    Alesso, H.P.; Prassinos, P.; Smith, C.F.

    1984-09-01

    Fault Graphs are the natural evolutionary step over a traditional fault-tree model. A Fault Graph is a failure-oriented directed graph with logic connectives that allows cycles. We intentionally construct the Fault Graph to trace the piping and instrumentation drawing (P and ID) of the system, but with logical AND and OR conditions added. Then we evaluate the Fault Graph with computer codes based on graph-theoretic methods. Fault Graph computer codes are based on graph concepts, such as path set (a set of nodes traveled on a path from one node to another) and reachability (the complete set of all possible paths between any two nodes). These codes are used to find the cut-sets (any minimal set of component failures that will fail the system) and to evaluate the system reliability

  4. Hardwired interlock system with fault latchability and annunciation panel for electron accelerators

    International Nuclear Information System (INIS)

    Mukesh Kumar; Roychoudhury, P.; Nimje, V.T.

    2011-01-01

    A hard-wired interlock system is designed, developed, installed and tested to ensure healthy status for interlock signals, coming from the various sub-systems of electron accelerators as digital inputs. Each electron accelerator has approximately ninety-six interlock signals. Hardwired Interlock system consists of twelve-channel 19 inches rack mountable hard-wired interlock module of 4U height. Digital inputs are fed to the hard-wired interlock module in the form of 24V dc for logic 'TRUE' and 0V for logic 'FALSE'. These signals are flow signals to ensure cooling of the various sub-systems, signals from the klystron modulator system in RF Linac to ensure its healthy state to start, signals from high voltage system of DC accelerator, vacuum signals from vacuum system to ensure proper vacuum in the electron accelerator, door interlock signals, air flow signals, and area search and secure signals. This hard-wired interlock system ensures the safe start-up, fault annunciation and alarm, fault latchablity, and fail-safe operation of the electron accelerators. Safe start-up feature ensures that beam generation system can be made ON only when cooling of all the electron accelerator sub-systems are confirmed, all the fault signals of high voltage generation system are attended, proper vacuum is achieved inside the beam transport system, all the doors are closed and various areas have been searched and secured manually. Fault annunciation and alarm feature ensures that during the start up and operation of the electron accelerators, if any fault is there, that fault signal window keeps on flashing with red colour and alarm is sounded till the operator acknowledges the fault. Once acknowledged, flashing and alarm stops but display of the window in red colour remains till the operator clears the fault. Fault latchability feature ensures that if any fault has happened, accelerator cannot be started again till the operator resets that interlock signal. Fail-safe feature ensures

  5. Incipient fault detection and identification in process systems using accelerating neural network learning

    International Nuclear Information System (INIS)

    Parlos, A.G.; Muthusami, J.; Atiya, A.F.

    1994-01-01

    The objective of this paper is to present the development and numerical testing of a robust fault detection and identification (FDI) system using artificial neural networks (ANNs), for incipient (slowly developing) faults occurring in process systems. The challenge in using ANNs in FDI systems arises because of one's desire to detect faults of varying severity, faults from noisy sensors, and multiple simultaneous faults. To address these issues, it becomes essential to have a learning algorithm that ensures quick convergence to a high level of accuracy. A recently developed accelerated learning algorithm, namely a form of an adaptive back propagation (ABP) algorithm, is used for this purpose. The ABP algorithm is used for the development of an FDI system for a process composed of a direct current motor, a centrifugal pump, and the associated piping system. Simulation studies indicate that the FDI system has significantly high sensitivity to incipient fault severity, while exhibiting insensitivity to sensor noise. For multiple simultaneous faults, the FDI system detects the fault with the predominant signature. The major limitation of the developed FDI system is encountered when it is subjected to simultaneous faults with similar signatures. During such faults, the inherent limitation of pattern-recognition-based FDI methods becomes apparent. Thus, alternate, more sophisticated FDI methods become necessary to address such problems. Even though the effectiveness of pattern-recognition-based FDI methods using ANNs has been demonstrated, further testing using real-world data is necessary

  6. Design of a fault diagnosis system for next generation nuclear power plants

    International Nuclear Information System (INIS)

    Zhao, K.; Upadhyaya, B.R.; Wood, R.T.

    2004-01-01

    A new design approach for fault diagnosis is developed for next generation nuclear power plants. In the nuclear reactor design phase, data reconciliation is used as an efficient tool to determine the measurement requirements to achieve the specified goal of fault diagnosis. In the reactor operation phase, the plant measurements are collected to estimate uncertain model parameters so that a high fidelity model can be obtained for fault diagnosis. The proposed algorithm of fault detection and isolation is able to combine the strength of first principle model based fault diagnosis and the historical data based fault diagnosis. Principal component analysis on the reconciled data is used to develop a statistical model for fault detection. The updating of the principal component model based on the most recent reconciled data is a locally linearized model around the current plant measurements, so that it is applicable to any generic nonlinear systems. The sensor fault diagnosis and process fault diagnosis are decoupled through considering the process fault diagnosis as a parameter estimation problem. The developed approach has been applied to the IRIS helical coil steam generator system to monitor the operational performance of individual steam generators. This approach is general enough to design fault diagnosis systems for the next generation nuclear power plants. (authors)

  7. Fault Identification Algorithm Based on Zone-Division Wide Area Protection System

    Directory of Open Access Journals (Sweden)

    Xiaojun Liu

    2014-04-01

    Full Text Available As the power grid becomes more magnified and complicated, wide-area protection system in the practical engineering application is more and more restricted by the communication level. Based on the concept of limitedness of wide-area protection system, the grid with complex structure is divided orderly in this paper, and fault identification and protection action are executed in each divided zone to reduce the pressure of the communication system. In protection zone, a new wide-area protection algorithm based on positive sequence fault components directional comparison principle is proposed. The special associated intelligent electronic devices (IEDs zones which contain buses and transmission lines are created according to the installation location of the IEDs. When a fault occurs, with the help of the fault information collecting and sharing from associated zones with the fault discrimination principle defined in this paper, the IEDs can identify the fault location and remove the fault according to the predetermined action strategy. The algorithm will not be impacted by the load changes and transition resistance and also has good adaptability in open phase running power system. It can be used as a main protection, and it also can be taken into account for the back-up protection function. The results of cases study show that, the division method of the wide-area protection system and the proposed algorithm are effective.

  8. Automated Generation of Fault Management Artifacts from a Simple System Model

    Science.gov (United States)

    Kennedy, Andrew K.; Day, John C.

    2013-01-01

    Our understanding of off-nominal behavior - failure modes and fault propagation - in complex systems is often based purely on engineering intuition; specific cases are assessed in an ad hoc fashion as a (fallible) fault management engineer sees fit. This work is an attempt to provide a more rigorous approach to this understanding and assessment by automating the creation of a fault management artifact, the Failure Modes and Effects Analysis (FMEA) through querying a representation of the system in a SysML model. This work builds off the previous development of an off-nominal behavior model for the upcoming Soil Moisture Active-Passive (SMAP) mission at the Jet Propulsion Laboratory. We further developed the previous system model to more fully incorporate the ideas of State Analysis, and it was restructured in an organizational hierarchy that models the system as layers of control systems while also incorporating the concept of "design authority". We present software that was developed to traverse the elements and relationships in this model to automatically construct an FMEA spreadsheet. We further discuss extending this model to automatically generate other typical fault management artifacts, such as Fault Trees, to efficiently portray system behavior, and depend less on the intuition of fault management engineers to ensure complete examination of off-nominal behavior.

  9. Active tectonics of the Seattle fault and central Puget sound, Washington - Implications for earthquake hazards

    Science.gov (United States)

    Johnson, S.Y.; Dadisman, S.V.; Childs, J. R.; Stanley, W.D.

    1999-01-01

    We use an extensive network of marine high-resolution and conventional industry seismic-reflection data to constrain the location, shallow structure, and displacement rates of the Seattle fault zone and crosscutting high-angle faults in the Puget Lowland of western Washington. Analysis of seismic profiles extending 50 km across the Puget Lowland from Lake Washington to Hood Canal indicates that the west-trending Seattle fault comprises a broad (4-6 km) zone of three or more south-dipping reverse faults. Quaternary sediment has been folded and faulted along all faults in the zone but is clearly most pronounced along fault A, the northernmost fault, which forms the boundary between the Seattle uplift and Seattle basin. Analysis of growth strata deposited across fault A indicate minimum Quaternary slip rates of about 0.6 mm/yr. Slip rates across the entire zone are estimated to be 0.7-1.1 mm/yr. The Seattle fault is cut into two main segments by an active, north-trending, high-angle, strike-slip fault zone with cumulative dextral displacement of about 2.4 km. Faults in this zone truncate and warp reflections in Tertiary and Quaternary strata and locally coincide with bathymetric lineaments. Cumulative slip rates on these faults may exceed 0.2 mm/yr. Assuming no other crosscutting faults, this north-trending fault zone divides the Seattle fault into 30-40-km-long western and eastern segments. Although this geometry could limit the area ruptured in some Seattle fault earthquakes, a large event ca. A.D. 900 appears to have involved both segments. Regional seismic-hazard assessments must (1) incorporate new information on fault length, geometry, and displacement rates on the Seattle fault, and (2) consider the hazard presented by the previously unrecognized, north-trending fault zone.

  10. Design of a real-time fault diagnosis expert system for the EAST cryoplant

    International Nuclear Information System (INIS)

    Zhou Zhiwei; Zhuang Ming; Lu Xiaofei; Hu Liangbing; Xia Genhai

    2012-01-01

    Highlights: ► An expert system of real-time fault diagnosis for EAST cryoplant is designed. ► Knowledge base is built via fault tree analysis based on our fault experience. ► It can make up the deficiency of safety monitoring in cryogenic DCS. ► It can help operators to find the fault causes and give operation suggestion. ► It plays a role of operators training in certain degree. - Abstract: The EAST cryoplant consists of a 2 kW/4 K helium refrigerator and a helium distribution system. It is a complex process system which involves many process variables and cryogenic equipments. Each potential fault or abnormal event may influence stability and safety of the cryogenic system, thereby disturbing the fusion experiment. The cryogenic control system can monitor the process data and detect process alarms, but it is difficult to effectively diagnose the fault causes and provide operation suggestions to operators when anomalies occur. Therefore, a real-time fault diagnosis expert system is essential for a safe and steady operation of EAST cryogenic system. After a brief description of the EAST cryoplant and its control system, the structure design of the cryogenic fault diagnosis expert system is proposed. Based on the empirical knowledge, the fault diagnosis model is built adopting fault tree analysis method which considers the uncertainty. The knowledge base and the inference machine are presented in detail. A cross-platform integrated development environment Qt Creator and MySQL database have been used to develop the system. The proposed expert system has a fine graphic user interface for monitoring and operation. Preliminary test was conducted and the results found to be satisfactory.

  11. Towards fault-tolerant decision support systems for ship operator guidance

    DEFF Research Database (Denmark)

    Nielsen, Ulrik Dam; Lajic, Zoran; Jensen, Jørgen Juncher

    2012-01-01

    Fault detection and isolation are very important elements in the design of fault-tolerant decision support systems for ship operator guidance. This study outlines remedies that can be applied for fault diagnosis, when the ship responses are assumed to be linear in the wave excitation. A novel num...

  12. Development of an accurate transmission line fault locator using the global positioning system satellites

    Science.gov (United States)

    Lee, Harry

    1994-01-01

    A highly accurate transmission line fault locator based on the traveling-wave principle was developed and successfully operated within B.C. Hydro. A transmission line fault produces a fast-risetime traveling wave at the fault point which propagates along the transmission line. This fault locator system consists of traveling wave detectors located at key substations which detect and time tag the leading edge of the fault-generated traveling wave as if passes through. A master station gathers the time-tagged information from the remote detectors and determines the location of the fault. Precise time is a key element to the success of this system. This fault locator system derives its timing from the Global Positioning System (GPS) satellites. System tests confirmed the accuracy of locating faults to within the design objective of +/-300 meters.

  13. Tearing, segmentation, and backstepping of subduction in the Aegean: New insights from seismicity

    Science.gov (United States)

    Bocchini, G. M.; Brüstle, A.; Becker, D.; Meier, T.; van Keken, P. E.; Ruscic, M.; Papadopoulos, G. A.; Rische, M.; Friederich, W.

    2018-06-01

    This study revisits subduction processes at the Hellenic Subduction Zone (HSZ) including tearing, segmentation, and backstepping, by refining the geometry of the Nubian slab down to 150-180 km depth using well-located hypocentres from global and local seismicity catalogues. At the western termination of the HSZ, the Kefalonia Transform Fault marks the transition between oceanic and continental lithosphere subducting to the south and to the north of it, respectively. A discontinuity is suggested to exist between the two slabs at shallow depths. The Kefalonia Transform Fault is interpreted as an active Subduction-Transform-Edge-Propagator-fault formed as consequence of faster trench retreat induced by the subduction of oceanic lithosphere to the south of it. A model reconstructing the evolution of the subduction system in the area of Peloponnese since 34 Ma, involving the backstepping of the subduction to the back-side of Adria, provides seismological evidence that supports the single-slab model for the HSZ and suggests the correlation between the downdip limit of the seismicity to the amount of subducted oceanic lithosphere. In the area of Rhodes, earthquake hypocentres indicate the presence of a NW dipping subducting slab that rules out the presence of a NE-SW striking Subduction-Transform-Edge-Propagator-fault in the Pliny-Strabo trenches region. Earthquake hypocentres also allow refining the slab tear beneath southwestern Anatolia down to 150-180 km depth. Furthermore, the distribution of microseismicity shows a first-order slab segmentation in the region between Crete and Karpathos, with a less steep and laterally wider slab segment to the west and a steeper and narrower slab segment to the east. Thermal models indicate the presence of a colder slab beneath the southeastern Aegean that leads to deepening of the intermediate-depth seismicity. Slab segmentation affects the upper plate deformation that is stronger above the eastern slab segment and the seismicity

  14. New Pleomagnetic Evidence for Counter Clockwise Rotation of the Dofan Magmatic Segment Linked to Variation in Fault Slip Directions Along the Different Fault Systems, Main Ethiopian Rift.

    Science.gov (United States)

    Birke, T. K.; Nugsse, K.

    2017-12-01

    Twenty-six paleomagnetic sites were sampled from basalt, trachyte and ignimbrite flows of the Dofan magmatic segment, Southern Afar Depression. The samples were then cut in to 200 standard and their Natural Remanent Magnetization (NRM) directions were measured using the JR6A Spinner Magnetometer, of Addis Ababa University. Twin specimens from same sample were subjected to stepwise alternative field (AF) and thermal (TH) demagnetizations respectively with the corresponding directional measurements done at each step. Directional analysis of individual specimens revealed either one or two components of NRM; the first is isolated below a temperature of 300°C or AF field below 20mT; the second is isolated above those steps and defined straight lines directed towards the origin, which were interpreted as the Characteristic Remanent Magnetization (ChRM) acquired during cooling. Rock magnetic experiments on representative specimens indicated that the dominant magnetic minerals are titanium poor titanomagnetite with few cases of titanohematites. The overall mean directions calculated for the 24 stable polarity sites of Dofan is Dec=351.8°, Inc=11.5° (N=24, K=21.4, α95=6.5°). When these values are compared with the 1.5 Ma mean expected geomagnetic dipole reference field directions Dec=1.0°, Inc=16.4° (N=32, K=105.6, α95=2.3°) obtained from African Apparent Polar Wander Path Curve (Besse & Courtillot, 1991, 2003); a difference in declination DD=-9.2°± 5.6° and inclination DI=4.9°±5.5° are determined. This declination difference is interpreted as counterclockwise rotation of the Dofan segment about vertical axis and it is consistent with previous paleomagnetic reports in Fentale area (Kidane et al., 2009) and also with the recent analogue models of RE-Orientation of extension directions and pure extensional faulting at the oblique rift margins of the Main Ethiopian Rift (MER) (Corti et al., 2013).

  15. Active Fault Detection and Isolation for Hybrid Systems

    DEFF Research Database (Denmark)

    Gholami, Mehdi; Schiøler, Henrik; Bak, Thomas

    2009-01-01

    An algorithm for active fault detection and isolation is proposed. In order to observe the failure hidden due to the normal operation of the controllers or the systems, an optimization problem based on minimization of test signal is used. The optimization based method imposes the normal and faulty...... models predicted outputs such that their discrepancies are observable by passive fault diagnosis technique. Isolation of different faults is done by implementation a bank of Extended Kalman Filter (EKF) where the convergence criterion for EKF is confirmed by Genetic Algorithm (GA). The method is applied...

  16. Doubly Fed Induction Generator Wind Turbine Systems Subject to Recurring Symmetrical Grid Faults

    DEFF Research Database (Denmark)

    Chen, Wenjie; Blaabjerg, Frede; Zhu, Nan

    2016-01-01

    New grid codes demand the wind turbine systems to ride through recurring grid faults. In this paper, the performance of the doubly Ffed induction generator (DFIG) wind turbine system under recurring symmetrical grid faults is analyzed. The mathematical model of the DFIG under recurring symmetrical...... grid faults is established. The analysis is based on the DFIG wind turbine system with the typical low-voltage ride-through strategy-with rotor-side crowbar. The stator natural flux produced by the voltage recovery after the first grid fault may be superposed on the stator natural flux produced...... by the second grid fault, so that the transient rotor and stator current and torque fluctuations under the second grid fault may be influenced by the characteristic of the first grid fault, including the voltage dips level and the grid fault angle, as well as the duration between two faults. The mathematical...

  17. Robust filtering and fault detection of switched delay systems

    CERN Document Server

    Wang, Dong; Wang, Wei

    2013-01-01

    Switched delay systems appear in a wide field of applications including networked control systems, power systems, memristive systems. Though the large amount of ideas with respect to such systems have generated, until now, it still lacks a framework to focus on filter design and fault detection issues which are relevant to life safety and property loss. Beginning with the comprehensive coverage of the new developments in the analysis and control synthesis for switched delay systems, the monograph not only provides a systematic approach to designing the filter and detecting the fault of switched delay systems, but it also covers the model reduction issues. Specific topics covered include: (1) Arbitrary switching signal where delay-independent and delay-dependent conditions are presented by proposing a linearization technique. (2) Average dwell time where a weighted Lyapunov function is come up with dealing with filter design and fault detection issues beside taking model reduction problems. The monograph is in...

  18. Analysis of the growth of strike-slip faults using effective medium theory

    Energy Technology Data Exchange (ETDEWEB)

    Aydin, A.; Berryman, J.G.

    2009-10-15

    Increases in the dimensions of strike-slip faults including fault length, thickness of fault rock and the surrounding damage zone collectively provide quantitative definition of fault growth and are commonly measured in terms of the maximum fault slip. The field observations indicate that a common mechanism for fault growth in the brittle upper crust is fault lengthening by linkage and coalescence of neighboring fault segments or strands, and fault rock-zone widening into highly fractured inner damage zone via cataclastic deformation. The most important underlying mechanical reason in both cases is prior weakening of the rocks surrounding a fault's core and between neighboring fault segments by faulting-related fractures. In this paper, using field observations together with effective medium models, we analyze the reduction in the effective elastic properties of rock in terms of density of the fault-related brittle fractures and fracture intersection angles controlled primarily by the splay angles. Fracture densities or equivalent fracture spacing values corresponding to the vanishing Young's, shear, and quasi-pure shear moduli were obtained by extrapolation from the calculated range of these parameters. The fracture densities or the equivalent spacing values obtained using this method compare well with the field data measured along scan lines across the faults in the study area. These findings should be helpful for a better understanding of the fracture density/spacing distribution around faults and the transition from discrete fracturing to cataclastic deformation associated with fault growth and the related instabilities.

  19. Finite element simulation of earthquake cycle dynamics for continental listric fault system

    Science.gov (United States)

    Wei, T.; Shen, Z. K.

    2017-12-01

    We simulate stress/strain evolution through earthquake cycles for a continental listric fault system using the finite element method. A 2-D lithosphere model is developed, with the upper crust composed of plasto-elastic materials and the lower crust/upper mantle composed of visco-elastic materials respectively. The media is sliced by a listric fault, which is soled into the visco-elastic lower crust at its downdip end. The system is driven laterally by constant tectonic loading. Slip on fault is controlled by rate-state friction. We start with a simple static/dynamic friction law, and drive the system through multiple earthquake cycles. Our preliminary results show that: (a) periodicity of the earthquake cycles is strongly modulated by the static/dynamic friction, with longer period correlated with higher static friction and lower dynamic friction; (b) periodicity of earthquake is a function of fault depth, with less frequent events of greater magnitudes occurring at shallower depth; and (c) rupture on fault cannot release all the tectonic stress in the system, residual stress is accumulated in the hanging wall block at shallow depth close to the fault, which has to be released either by conjugate faulting or inelastic folding. We are in a process of exploring different rheologic structure and friction laws and examining their effects on earthquake behavior and deformation pattern. The results will be applied to specific earthquakes and fault zones such as the 2008 great Wenchuan earthquake on the Longmen Shan fault system.

  20. Fault isolatability conditions for linear systems

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, Henrik

    2006-01-01

    In this paper, we shall show that an unlimited number of additive single faults can be isolated under mild conditions if a general isolation scheme is applied. Multiple faults are also covered. The approach is algebraic and is based on a set representation of faults, where all faults within a set...... the faults have occurred. The last step is a fault isolation (FI) of the faults occurring in a specific fault set, i.e. equivalent with the standard FI step. A simple example demonstrates how to turn the algebraic necessary and sufficient conditions into explicit algorithms for designing filter banks, which...

  1. Evaluation of fault coverage for digitalized system in nuclear power plants using VHDL

    International Nuclear Information System (INIS)

    Kim, Suk Joon; Lee, Jun Suk; Seong, Poong Hyun

    2003-01-01

    Fault coverage of digital systems is found to be one of the most important factors in the safety analysis of nuclear power plants. Several axiomatic models for the estimation of fault coverage of digital systems have been proposed, but to apply those axiomatic models to real digital systems, parameters that the axiomatic models require should be approximated using analytic methods, empirical methods or expert opinions. In this paper, we apply the fault injection method to VHDL computer simulation model of a real digital system which provides the protection function to nuclear power plants, for the approximation of fault detection coverage of the digital system. As a result, the fault detection coverage of the digital system could be obtained

  2. Fore-arc Deformation in the Paola Basin Segment (Offshore Western Calabria) of the Tyrrhenian-Ionian Subduction System

    Science.gov (United States)

    Pepe, F.; Corradino, M.; Nicolich, R.; Barreca, G.; Bertotti, G.; Ferranti, L.; Monaco, C.

    2017-12-01

    The 3D stratigraphic architecture and Late Neogene to Recent tectonic evolution of the Paola Basin (offshore western Calabria), a segment in the fore-arc of the Tyrrhenian-Ionian subduction system, is reconstructed by using a grid of high-penetration reflection seismics. Oligocene to Messinian deposits are interpreted all along the profile. They tend to fossilize preexisting topography and reach the largest thicknesses between (fault controlled) basement highs. Plio-Quaternary deposits are found over the entire area and display variations in thickness and tectonic style. They are thicken up to 4.5 km in the depocenter of the basin, and decrease both in the east and west termination of the lines. The Paola Basin can be partitioned into two sectors with different tectonic deformation, separated by a NNW-SSE elongated area that coincides with the basin depocenter. Tectonic features associated with strike-slip restraining and releasing bends are widely spread over the western sector of the basin. Overall, they form an approximately NS-trending and geomorphically prominent ridge separating the Paola Basin from the Marsili abyssal plain. A high-angle, NNE-trending, normal fault system develops on the south-west tip of the basin, where the faults offset the Messinian horizon of ca. 500 m. Data suggest that limited vertical slip occurs along reverse faults detected at the border and inside the sedimentary infilling of the Paola Basin, reaching thickness of more than 3.8s two way travel time. The reflection sequence pattern can be interpreted as a result of the infilling of the thrust-top basin related to a prograding system, located between a growth ramp-anticline to the west and a culmination of basement-thrust sheets to the East. We propose that the Paola Basin developed near the northern edge of the Ionian slab where tearing of the lithosphere is expected. Also, the strike-slip fault system is a kinematic consequence of obliquely convergent subduction settings, where

  3. Fault tolerant control based on active fault diagnosis

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik

    2005-01-01

    An active fault diagnosis (AFD) method will be considered in this paper in connection with a Fault Tolerant Control (FTC) architecture based on the YJBK parameterization of all stabilizing controllers. The architecture consists of a fault diagnosis (FD) part and a controller reconfiguration (CR......) part. The FTC architecture can be applied for additive faults, parametric faults, and for system structural changes. Only parametric faults will be considered in this paper. The main focus in this paper is on the use of the new approach of active fault diagnosis in connection with FTC. The active fault...... diagnosis approach is based on including an auxiliary input in the system. A fault signature matrix is introduced in connection with AFD, given as the transfer function from the auxiliary input to the residual output. This can be considered as a generalization of the passive fault diagnosis case, where...

  4. Delineation of fault systems on Langeland, Denmark based on AEM data and boreholes

    DEFF Research Database (Denmark)

    Andersen, Theis Raaschou; Westergaard, Joakim Hollenbo; Pytlich, Anders

    in the fault systems can be observed in the AEM data as a low resistivity layer that clearly distinguish from the underlying and surrounding high resistivity fresh water saturated limestone (footwall block) and the overlying glacial clay till. Soil descriptions from a borehole confirm that the low resistivity...... with boreholes, three fault systems in the northern part of the island of Langeland, Denmark are mapped. Two of the fault systems were unknown prior to the mapping campaign. The two unknown fault systems are interpreted as a normal fault and graben structures, respectively. The presence of the hanging-wall block...

  5. Optimal Robust Fault Detection for Linear Discrete Time Systems

    Directory of Open Access Journals (Sweden)

    Nike Liu

    2008-01-01

    Full Text Available This paper considers robust fault-detection problems for linear discrete time systems. It is shown that the optimal robust detection filters for several well-recognized robust fault-detection problems, such as ℋ−/ℋ∞, ℋ2/ℋ∞, and ℋ∞/ℋ∞ problems, are the same and can be obtained by solving a standard algebraic Riccati equation. Optimal filters are also derived for many other optimization criteria and it is shown that some well-studied and seeming-sensible optimization criteria for fault-detection filter design could lead to (optimal but useless fault-detection filters.

  6. Design of a real-time fault diagnosis expert system for the EAST cryoplant

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Zhiwei, E-mail: zzw@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China); Zhuang Ming, E-mail: zhm@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China); Lu Xiaofei, E-mail: luxf1212@mail.ustc.edu.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China); Hu Liangbing, E-mail: huliangbing@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China); Xia Genhai, E-mail: xgh@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer An expert system of real-time fault diagnosis for EAST cryoplant is designed. Black-Right-Pointing-Pointer Knowledge base is built via fault tree analysis based on our fault experience. Black-Right-Pointing-Pointer It can make up the deficiency of safety monitoring in cryogenic DCS. Black-Right-Pointing-Pointer It can help operators to find the fault causes and give operation suggestion. Black-Right-Pointing-Pointer It plays a role of operators training in certain degree. - Abstract: The EAST cryoplant consists of a 2 kW/4 K helium refrigerator and a helium distribution system. It is a complex process system which involves many process variables and cryogenic equipments. Each potential fault or abnormal event may influence stability and safety of the cryogenic system, thereby disturbing the fusion experiment. The cryogenic control system can monitor the process data and detect process alarms, but it is difficult to effectively diagnose the fault causes and provide operation suggestions to operators when anomalies occur. Therefore, a real-time fault diagnosis expert system is essential for a safe and steady operation of EAST cryogenic system. After a brief description of the EAST cryoplant and its control system, the structure design of the cryogenic fault diagnosis expert system is proposed. Based on the empirical knowledge, the fault diagnosis model is built adopting fault tree analysis method which considers the uncertainty. The knowledge base and the inference machine are presented in detail. A cross-platform integrated development environment Qt Creator and MySQL database have been used to develop the system. The proposed expert system has a fine graphic user interface for monitoring and operation. Preliminary test was conducted and the results found to be satisfactory.

  7. ISHM-oriented adaptive fault diagnostics for avionics based on a distributed intelligent agent system

    Science.gov (United States)

    Xu, Jiuping; Zhong, Zhengqiang; Xu, Lei

    2015-10-01

    In this paper, an integrated system health management-oriented adaptive fault diagnostics and model for avionics is proposed. With avionics becoming increasingly complicated, precise and comprehensive avionics fault diagnostics has become an extremely complicated task. For the proposed fault diagnostic system, specific approaches, such as the artificial immune system, the intelligent agents system and the Dempster-Shafer evidence theory, are used to conduct deep fault avionics diagnostics. Through this proposed fault diagnostic system, efficient and accurate diagnostics can be achieved. A numerical example is conducted to apply the proposed hybrid diagnostics to a set of radar transmitters on an avionics system and to illustrate that the proposed system and model have the ability to achieve efficient and accurate fault diagnostics. By analyzing the diagnostic system's feasibility and pragmatics, the advantages of this system are demonstrated.

  8. System assessment using modular logic fault tree methodology

    International Nuclear Information System (INIS)

    Troncoso Fleitas, M.

    1996-01-01

    In the process of a Probabilistic Safety analysis (PSA) study a large number of fault trees are generated by different specialist. Modular Logic Fault Tree Methodology pave the way the way to systematize the procedures and to unify the criteria in the process of systems modulation. An example of of the application of this methodology is shown

  9. DC Fault Analysis and Clearance Solutions of MMC-HVDC Systems

    Directory of Open Access Journals (Sweden)

    Zheng Xu

    2018-04-01

    Full Text Available In this paper, the DC short-circuit fault and corresponding clearance solutions of modular multilevel converter-based high-voltage direct current (MMC-HVDC systems are analyzed in detail. Firstly, the analytical expressions of DC fault currents before and after blocking the MMC are derived based on the operation circuits. Before blocking the MMC, the sub-module (SM capacitor discharge current is the dominant component of the DC fault current. It will reach the blocking threshold value in several milliseconds. After blocking the MMC, the SM capacitor is no longer discharged. Therefore, the fault current from the AC system becomes the dominant component. Meanwhile, three DC fault clearance solutions and the corresponding characteristics are discussed in detail, including tripping AC circuit breaker, adopting the full-bridge MMC and employing the DC circuit breaker. A simulation model of the MMC-HVDC is realized in PSCAD/EMTDC and the results of the proposed analytical expressions are compared with those of the simulation. The results show that the analytical DC fault currents coincide well with the simulation results.

  10. Faults detection approach using PCA and SOM algorithm in PMSG-WT system

    Directory of Open Access Journals (Sweden)

    Mohamed Lamine FADDA

    2016-07-01

    Full Text Available In this paper, a new approach for faults detection in observable data system wind turbine - permanent magnet synchronous generator (WT-PMSG, the studying objective, illustrate the combination (SOM-PCA to build Multi-local-PCA models faults detection in system (WT-PMSG, the performance of the method suggested to faults detection in system data, finding good results in simulation experiment.

  11. Computer Simulation of Complex Power System Faults under various Operating Conditions

    International Nuclear Information System (INIS)

    Khandelwal, Tanuj; Bowman, Mark

    2015-01-01

    A power system is normally treated as a balanced symmetrical three-phase network. When a fault occurs, the symmetry is normally upset, resulting in unbalanced currents and voltages appearing in the network. For the correct application of protection equipment, it is essential to know the fault current distribution throughout the system and the voltages in different parts of the system due to the fault. There may be situations where protection engineers have to analyze faults that are more complex than simple shunt faults. One type of complex fault is an open phase condition that can result from a fallen conductor or failure of a breaker pole. In the former case, the condition is often accompanied by a fault detectable with normal relaying. In the latter case, the condition may be undetected by standard line relaying. The effect on a generator is dependent on the location of the open phase and the load level. If an open phase occurs between the generator terminals and the high-voltage side of the GSU in the switchyard, and the generator is at full load, damaging negative sequence current can be generated. However, for the same operating condition, an open conductor at the incoming transmission lines located in the switchyard can result in minimal negative sequence current. In 2012, a nuclear power generating station (NPGS) suffered series or open phase fault due to insulator mechanical failure in the 345 kV switchyard. This resulted in both reactor units tripping offline in two separate incidents. Series fault on one of the phases resulted in voltage imbalance that was not detected by the degraded voltage relays. These under-voltage relays did not initiate a start signal to the emergency diesel generators (EDG) because they sensed adequate voltage on the remaining phases exposing a design vulnerability. This paper is intended to help protection engineers calculate complex circuit faults like open phase condition using computer program. The impact of this type of

  12. An Ontology for Identifying Cyber Intrusion Induced Faults in Process Control Systems

    Science.gov (United States)

    Hieb, Jeffrey; Graham, James; Guan, Jian

    This paper presents an ontological framework that permits formal representations of process control systems, including elements of the process being controlled and the control system itself. A fault diagnosis algorithm based on the ontological model is also presented. The algorithm can identify traditional process elements as well as control system elements (e.g., IP network and SCADA protocol) as fault sources. When these elements are identified as a likely fault source, the possibility exists that the process fault is induced by a cyber intrusion. A laboratory-scale distillation column is used to illustrate the model and the algorithm. Coupled with a well-defined statistical process model, this fault diagnosis approach provides cyber security enhanced fault diagnosis information to plant operators and can help identify that a cyber attack is underway before a major process failure is experienced.

  13. The Study of Fault Location for Front-End Electronics System

    International Nuclear Information System (INIS)

    Zhang Fan; Wang Dong; Huang Guangming; Zhou Daicui

    2009-01-01

    Since some devices on the latest developed 250 ALICE/PHOS Front-end electronics (FEE) system cards had been partly or completely damaged during lead-free soldering. To alleviate the influence on the performance of FEE system and to locate fault related FPGA accurately, we should find a method for locating fault of FEE system based on the deep study of FPGA configuration scheme. It emphasized on the problems such as JTAG configuration of multi-devices, PS configuration based on EPC series configuration devices and auto re-configuration of FPGA. The result of the massive FEE system cards testing and repairing show that that location method can accurately and quickly target the fault point related FPGA on FEE system cards. (authors)

  14. Earthquake Rupture at Focal Depth, Part I: Structure and Rupture of the Pretorius Fault, TauTona Mine, South Africa

    Science.gov (United States)

    Heesakkers, V.; Murphy, S.; Reches, Z.

    2011-12-01

    We analyze the structure of the Archaean Pretorius fault in TauTona mine, South Africa, as well as the rupture-zone that recently reactivated it. The analysis is part of the Natural Earthquake Laboratory in South African Mines (NELSAM) project that utilizes the access to 3.6 km depth provided by the mining operations. The Pretorius fault is a ~10 km long, oblique-strike-slip fault with displacement of up to 200 m that crosscuts fine to very coarse grain quartzitic rocks in TauTona mine. We identify here three structural zones within the fault-zone: (1) an outer damage zone, ~100 m wide, of brittle deformation manifested by multiple, widely spaced fractures and faults with slip up to 3 m; (2) an inner damage zone, 25-30 m wide, with high density of anastomosing conjugate sets of fault segments and fractures, many of which carry cataclasite zones; and (3) a dominant segment, with a cataclasite zone up to 50 cm thick that accommodated most of the Archaean slip of the Pretorius fault, and is regarded as the `principal slip zone' (PSZ). This fault-zone structure indicates that during its Archaean activity, the Pretorius fault entered the mature fault stage in which many slip events were localized along a single, PSZ. The mining operations continuously induce earthquakes, including the 2004, M2.2 event that rejuvenated the Pretorius fault in the NELSAM project area. Our analysis of the M2.2 rupture-zone shows that (1) slip occurred exclusively along four, pre-existing large, quasi-planer segments of the ancient fault-zone; (2) the slipping segments contain brittle cataclasite zones up to 0.5 m thick; (3) these segments are not parallel to each other; (4) gouge zones, 1-5 mm thick, composed of white `rock-flour' formed almost exclusively along the cataclasite-host rock contacts of the slipping segments; (5) locally, new, fresh fractures branched from the slipping segments and propagated in mixed shear-tensile mode; (6) the maximum observed shear displacement is 25 mm in

  15. SLG(Single-Line-to-Ground Fault Location in NUGS(Neutral Un-effectively Grounded System

    Directory of Open Access Journals (Sweden)

    Zhang Wenhai

    2018-01-01

    Full Text Available This paper reviews the SLG(Single-Line-to-Ground fault location methods in NUGS(Neutral Un-effectively Grounded System, including ungrounded system, resonant grounded system and high-resistance grounded system which are widely used in Northern Europe and China. This type of fault is hard to detect and location because fault current is the sum of capacitance current of the system which is always small(about tens of amperes. The characteristics of SLG fault in NUGS and the fault location methods are introduced in the paper.

  16. Fault-tolerant distributed measurement systems

    Energy Technology Data Exchange (ETDEWEB)

    Gater, C.

    1987-01-01

    A 100 kbit/s battery-powered fault-tolerant communications network was developed for use in industrial distributed measurement systems, where a loop controller supervises up to 64 addressable field devices with a network polling period of 250ms. Safety and reliability were optimized using fibre-optic data links and low-power circuitry throughout. Based on a highly redundant loop topology of two receiver/two transmitter communications nodes, the network can tolerate any double node or any quadruple linked failure. Each node circuit is designed to operate continuously for five years using a standard D-type lithium cell, and consists essentially of a CMOS single-chip microcomputer, a specially designed CMOS communications interface chip, some analogue circuity for the optical receivers and transmitters, and interfaces for a sensor/actuator and roving hand-held terminal. The communications interface was implement on a 2436-cell CMOS gate array and feature a self-test facility which provides over 86% fault coverage using only three test vectors. The chip can also be used in the loop controller. Control procedures developed to detect, locate, and reconfigure around faults that occur in the communications network.

  17. Crustal structure across Tancheng-Lujiang fault belt in East China

    Science.gov (United States)

    Zhang, Zhongjie; Xu, Tao; Tian, Xiaobo; Teng, Jiwen; Bai, Zhiming

    2013-04-01

    Tancheng-Lujiang (T-L) fault extends more than 3,000km in the eastern China continent. T-L fault is closely related to strong earthquake occurrences such as Ms 7.8 Tangshan earthquake in 1976, basin development with rich oil/gas reserves and mineral resource concentration. The mechanism to form this fault is still in dispute. The proposed models include: post-collisional offset model (Okay and Sengor, 1992); indenter model (Yin and Nie, 1994); thrust model (Li, 1994); North China Craton penetration into South China model (Yokoyama et al., 2001) and Scissor collision model (Zhang et al., 2002, 2006). T-L fault is characterized with its segmentation, while the south segment is favored to understand the deep continental subduction and ultra-high pressure rocks extrusion from the collision between the convergence between Yangtze and North China Craton. In order to provide constraints on the evaluation of the proposed tectonic models, we carried out a 400-km-long wide-angle seismic profiling across the southern segment of the T-L fault. Here we present seismic P-wave data and the interpretation results. Seismic events of reflection and refraction from Moho discontinuity and other intracrustal reflections are remarkably observed with high signal/noise ratio. Crustal P-wave velocity model was reconstructed with forward modelling inversion, and T-L fault penetrates the whole crust, with gentle penetration angle in the upper crust, but very steep angle in the lower crust, which are probably seismic indicators of two phases of lateral escaping to accommodate the collision and extrusion of continental crust of the Yangtze block.

  18. Fault-Tolerant Consensus of Multi-Agent System With Distributed Adaptive Protocol.

    Science.gov (United States)

    Chen, Shun; Ho, Daniel W C; Li, Lulu; Liu, Ming

    2015-10-01

    In this paper, fault-tolerant consensus in multi-agent system using distributed adaptive protocol is investigated. Firstly, distributed adaptive online updating strategies for some parameters are proposed based on local information of the network structure. Then, under the online updating parameters, a distributed adaptive protocol is developed to compensate the fault effects and the uncertainty effects in the leaderless multi-agent system. Based on the local state information of neighboring agents, a distributed updating protocol gain is developed which leads to a fully distributed continuous adaptive fault-tolerant consensus protocol design for the leaderless multi-agent system. Furthermore, a distributed fault-tolerant leader-follower consensus protocol for multi-agent system is constructed by the proposed adaptive method. Finally, a simulation example is given to illustrate the effectiveness of the theoretical analysis.

  19. Flow meter fault isolation in building central chilling systems using wavelet analysis

    International Nuclear Information System (INIS)

    Chen Youming; Hao Xiaoli; Zhang Guoqiang; Wang Shengwei

    2006-01-01

    This paper presents an approach to isolate flow meter faults in building central chilling systems. It mathematically explains the fault collinearity among the flow meters in central chilling systems and points out that the sensor validation index (SVI) used in principal component analysis (PCA) is incapable of isolating flow meter faults due to the fault collinearity. The wavelet transform is used to isolate the flow meter faults as a substitute for the SVI of PCA. This approach can identify various variations in measuring signals, such as ramp, step, discontinuity etc., due to the good property of the wavelet in local time-frequency. Some examples are given to demonstrate its ability of fault isolation for the flow meters

  20. Adaptive robust fault-tolerant control for linear MIMO systems with unmatched uncertainties

    Science.gov (United States)

    Zhang, Kangkang; Jiang, Bin; Yan, Xing-Gang; Mao, Zehui

    2017-10-01

    In this paper, two novel fault-tolerant control design approaches are proposed for linear MIMO systems with actuator additive faults, multiplicative faults and unmatched uncertainties. For time-varying multiplicative and additive faults, new adaptive laws and additive compensation functions are proposed. A set of conditions is developed such that the unmatched uncertainties are compensated by actuators in control. On the other hand, for unmatched uncertainties with their projection in unmatched space being not zero, based on a (vector) relative degree condition, additive functions are designed to compensate for the uncertainties from output channels in the presence of actuator faults. The developed fault-tolerant control schemes are applied to two aircraft systems to demonstrate the efficiency of the proposed approaches.

  1. Fault diagnosis for agitator driving system in a high temperature reduction reactor

    Energy Technology Data Exchange (ETDEWEB)

    Park, Gee Young; Hong, Dong Hee; Jung, Jae Hoo; Kim, Young Hwan; Jin, Jae Hyun; Yoon, Ji Sup [KAERI, Taejon (Korea, Republic of)

    2003-10-01

    In this paper, a preliminary study for development of a fault diagnosis is presented for monitoring and diagnosing faults in the agitator driving system of a high temperature reduction reactor. In order to identify a fault occurrence and classify the fault cause, vibration signals measured by accelerometers on the outer shroud of the agitator driving system are firstly decomposed by Wavelet Transform (WT) and the features corresponding to each fault type are extracted. For the diagnosis, the fuzzy ARTMAP is employed and thereby, based on the features extracted from the WT, the robust fault classifier can be implemented with a very short training time - a single training epoch and a single learning iteration is sufficient for training the fault classifier. The test results demonstrate satisfactory classification for the faults pre-categorized from considerations of possible occurrence during experiments on a small-scale reduction reactor.

  2. Artificial neural network application for space station power system fault diagnosis

    Science.gov (United States)

    Momoh, James A.; Oliver, Walter E.; Dias, Lakshman G.

    1995-01-01

    This study presents a methodology for fault diagnosis using a Two-Stage Artificial Neural Network Clustering Algorithm. Previously, SPICE models of a 5-bus DC power distribution system with assumed constant output power during contingencies from the DDCU were used to evaluate the ANN's fault diagnosis capabilities. This on-going study uses EMTP models of the components (distribution lines, SPDU, TPDU, loads) and power sources (DDCU) of Space Station Alpha's electrical Power Distribution System as a basis for the ANN fault diagnostic tool. The results from the two studies are contrasted. In the event of a major fault, ground controllers need the ability to identify the type of fault, isolate the fault to the orbital replaceable unit level and provide the necessary information for the power management expert system to optimally determine a degraded-mode load schedule. To accomplish these goals, the electrical power distribution system's architecture can be subdivided into three major classes: DC-DC converter to loads, DC Switching Unit (DCSU) to Main bus Switching Unit (MBSU), and Power Sources to DCSU. Each class which has its own electrical characteristics and operations, requires a unique fault analysis philosophy. This study identifies these philosophies as Riddles 1, 2 and 3 respectively. The results of the on-going study addresses Riddle-1. It is concluded in this study that the combination of the EMTP models of the DDCU, distribution cables and electrical loads yields a more accurate model of the behavior and in addition yielded more accurate fault diagnosis using ANN versus the results obtained with the SPICE models.

  3. New constraints on slip rates and locking depths of the San Andreas Fault System from Sentinel-1A InSAR and GAGE GPS observations

    Science.gov (United States)

    Ward, L. A.; Smith-Konter, B. R.; Higa, J. T.; Xu, X.; Tong, X.; Sandwell, D. T.

    2017-12-01

    After over a decade of operation, the EarthScope (GAGE) Facility has now accumulated a wealth of GPS and InSAR data, that when successfully integrated, make it possible to image the entire San Andreas Fault System (SAFS) with unprecedented spatial coverage and resolution. Resulting surface velocity and deformation time series products provide critical boundary conditions needed for improving our understanding of how faults are loaded across a broad range of temporal and spatial scales. Moreover, our understanding of how earthquake cycle deformation is influenced by fault zone strength and crust/mantle rheology is still developing. To further study these processes, we construct a new 4D earthquake cycle model of the SAFS representing the time-dependent 3D velocity field associated with interseismic strain accumulation, co-seismic slip, and postseismic viscoelastic relaxation. This high-resolution California statewide model, spanning the Cerro Prieto fault to the south to the Maacama fault to the north, is constructed on a 500 m spaced grid and comprises variable slip and locking depths along 42 major fault segments. Secular deep slip is prescribed from the base of the locked zone to the base of the elastic plate while episodic shallow slip is prescribed from the historical earthquake record and geologic recurrence intervals. Locking depths and slip rates for all 42 fault segments are constrained by the newest GAGE Facility geodetic observations; 3169 horizontal GPS velocity measurements, combined with over 53,000 line-of-sight (LOS) InSAR velocity observations from Sentinel-1A, are used in a weighted least-squares inversion. To assess slip rate and locking depth sensitivity of a heterogeneous rheology model, we also implement variations in crustal rigidity throughout the plate boundary, assuming a coarse representation of shear modulus variability ranging from 20-40 GPa throughout the (low rigidity) Salton Trough and Basin and Range and the (high rigidity) Central

  4. Robust Fault Detection for Switched Fuzzy Systems With Unknown Input.

    Science.gov (United States)

    Han, Jian; Zhang, Huaguang; Wang, Yingchun; Sun, Xun

    2017-10-03

    This paper investigates the fault detection problem for a class of switched nonlinear systems in the T-S fuzzy framework. The unknown input is considered in the systems. A novel fault detection unknown input observer design method is proposed. Based on the proposed observer, the unknown input can be removed from the fault detection residual. The weighted H∞ performance level is considered to ensure the robustness. In addition, the weighted H₋ performance level is introduced, which can increase the sensibility of the proposed detection method. To verify the proposed scheme, a numerical simulation example and an electromechanical system simulation example are provided at the end of this paper.

  5. A fault diagnosis and operation advising cooperative expert system based on multi-agent technology

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, W.; Bai, X.; Ding, J.; Fang, Z.; Li, Z. [China Electric Power Research Inst., Haidian District, Beijing (China)

    2006-07-01

    Power systems are becoming more and more complex. In addition, the amount of real-time alarm messages from the supervisory control and data acquisition, energy management systems and wide area measurement systems about switchgear and protection are also increasing to a point far beyond the operator's capacity to digest the information. Research and development of a fault diagnosis system is necessary for the timely identification of fault or malfunctioning devices and for realizing the automation functions of dynamic supervisory control system. The prevailing fault diagnosis approaches in power systems include the expert system, artificial neural network, and fault diagnosis based on optimal theory. This paper discussed the advantages and disadvantages of each of these approaches for diagnosing faults. The paper also proposed a new fault diagnosis and operational processing approach based on a cooperative expert system combined with a multi-agent architecture. For solving complex and correlative faults, the cooperative expert system can overcome the deficiency of a single expert system. It can be used not only for diagnosing complex faults in real time but also in providing timely operational advice. The proposed system has been used successfully in a district power grid in China's Shangdong province for a year. 9 refs., 4 figs.

  6. Fuzzy Concurrent Object Oriented Expert System for Fault Diagnosis in 8085 Microprocessor Based System Board

    OpenAIRE

    Mr.D. V. Kodavade; Dr. Mrs.S.D.Apte

    2014-01-01

    With the acceptance of artificial intelligence paradigm, a number of successful artificial intelligence systems were created. Fault diagnosis in microprocessor based boards needs lot of empirical knowledge and expertise and is a true artificial intelligence problem. Research on fault diagnosis in microprocessor based system boards using new fuzzy-object oriented approach is presented in this paper. There are many uncertain situations observed during fault diagnosis. These uncertain situations...

  7. Fault Diagnosis of Nonlinear Systems Using Structured Augmented State Models

    Institute of Scientific and Technical Information of China (English)

    Jochen Aβfalg; Frank Allg(o)wer

    2007-01-01

    This paper presents an internal model approach for modeling and diagnostic functionality design for nonlinear systems operating subject to single- and multiple-faults. We therefore provide the framework of structured augmented state models. Fault characteristics are considered to be generated by dynamical exosystems that are switched via equality constraints to overcome the augmented state observability limiting the number of diagnosable faults. Based on the proposed model, the fault diagnosis problem is specified as an optimal hybrid augmented state estimation problem. Sub-optimal solutions are motivated and exemplified for the fault diagnosis of the well-known three-tank benchmark. As the considered class of fault diagnosis problems is large, the suggested approach is not only of theoretical interest but also of high practical relevance.

  8. Fault diagnosis

    Science.gov (United States)

    Abbott, Kathy

    1990-01-01

    The objective of the research in this area of fault management is to develop and implement a decision aiding concept for diagnosing faults, especially faults which are difficult for pilots to identify, and to develop methods for presenting the diagnosis information to the flight crew in a timely and comprehensible manner. The requirements for the diagnosis concept were identified by interviewing pilots, analyzing actual incident and accident cases, and examining psychology literature on how humans perform diagnosis. The diagnosis decision aiding concept developed based on those requirements takes abnormal sensor readings as input, as identified by a fault monitor. Based on these abnormal sensor readings, the diagnosis concept identifies the cause or source of the fault and all components affected by the fault. This concept was implemented for diagnosis of aircraft propulsion and hydraulic subsystems in a computer program called Draphys (Diagnostic Reasoning About Physical Systems). Draphys is unique in two important ways. First, it uses models of both functional and physical relationships in the subsystems. Using both models enables the diagnostic reasoning to identify the fault propagation as the faulted system continues to operate, and to diagnose physical damage. Draphys also reasons about behavior of the faulted system over time, to eliminate possibilities as more information becomes available, and to update the system status as more components are affected by the fault. The crew interface research is examining display issues associated with presenting diagnosis information to the flight crew. One study examined issues for presenting system status information. One lesson learned from that study was that pilots found fault situations to be more complex if they involved multiple subsystems. Another was pilots could identify the faulted systems more quickly if the system status was presented in pictorial or text format. Another study is currently under way to

  9. Fault tolerant digital control systems for boiling water reactors

    International Nuclear Information System (INIS)

    Chakraborty, S.; Cash, N.R.

    1986-01-01

    In a Boiling Water Reactor nuclear power plant, the power generation control function is divided into several systems, each system controlling only a part of the total plant. Presently, each system is controlled by conventional analog or digital logic circuits with little interaction for coordinated control. The advent of microprocessors has allowed the development of distributed fault-tolerant digital controls. The objective is to replace these conventional controls with fault-tolerant digital controls connected together with digital communication links to form a fully integrated nuclear power plant control system

  10. Fault Detection Coverage Quantification of Automatic Test Functions of Digital I and C System in NPPs

    International Nuclear Information System (INIS)

    Choi, Jong Gyun; Lee, Seung Jun; Hur, Seop; Lee, Young Jun; Jang, Seung Cheol

    2011-01-01

    Recently, analog instrument and control (I and C) systems in nuclear power plants (NPPs) have been replaced with digital systems for safer and more efficient operations. Digital I and C systems have adopted various fault-tolerant techniques that help the system correctly and safely perform the specific required functions in spite of the presence of faults. Each fault-tolerant technique has a different inspection period from real-time monitoring to monthly testing. The range covered by each fault-tolerant technique is also different. The digital I and C system, therefore, adopts multiple barriers consisting of various fault-tolerant techniques to increase total fault detection coverage. Even though these fault-tolerant techniques are adopted to ensure and improve the safety of a system, their effects have not been properly considered yet in most PSA models. Therefore, it is necessary to develop an evaluation method that can describe these features of a digital I and C system. Several issues must be considered in the fault coverage estimation of a digital I and C system, and two of them were handled in this work. The first is to quantify the fault coverage of each fault-tolerant technique implemented in the system, and the second is to exclude the duplicated effect of fault-tolerant techniques implemented simultaneously at each level of the system's hierarchy, as a fault occurring in a system might be detected by one or more fault-tolerant techniques. For this work, fault injection experiment was used to obtain the exact relations between faults and multiple barriers of fault-tolerant techniques. This experiment was applied to a bistable processor (BP) of a reactor protection system

  11. Which Fault Orientations Occur during Oblique Rifting? Combining Analog and Numerical 3d Models with Observations from the Gulf of Aden

    Science.gov (United States)

    Autin, J.; Brune, S.

    2013-12-01

    Oblique rift systems like the Gulf of Aden are intrinsically three-dimensional. In order to understand the evolution of these systems, one has to decode the fundamental mechanical similarities of oblique rifts. One way to accomplish this, is to strip away the complexity that is generated by inherited fault structures. In doing so, we assume a laterally homogeneous segment of Earth's lithosphere and ask how many different fault populations are generated during oblique extension inbetween initial deformation and final break-up. We combine results of an analog and a numerical model that feature a 3D segment of a layered lithosphere. In both cases, rift evolution is recorded quantitatively in terms of crustal fault geometries. For the numerical model, we adopt a novel post-processing method that allows to infer small-scale crustal fault orientation from the surface stress tensor. Both models involve an angle of 40 degrees between the rift normal and the extensional direction which allows comparison to the Gulf of Aden rift system. The resulting spatio-temporal fault pattern of our models shows three normal fault orientations: rift-parallel, extension-orthogonal, and intermediate, i.e. with a direction inbetween the two previous orientations. The rift evolution involves three distinct phases: (i) During the initial rift phase, wide-spread faulting with intermediate orientation occurs. (ii) Advanced lithospheric necking enables rift-parallel normal faulting at the rift flanks, while strike-slip faulting in the central part of the rift system indicates strain partitioning. (iii) During continental break-up, displacement-orthogonal as well as intermediate faults occur. We compare our results to the structural evolution of the Eastern Gulf of Aden. External parts of the rift exhibit intermediate and displacement-orthogonal faults while rift-parallel faults are present at the rift borders. The ocean-continent transition mainly features intermediate and displacement

  12. Robust Fault Detection for a Class of Uncertain Nonlinear Systems Based on Multiobjective Optimization

    Directory of Open Access Journals (Sweden)

    Bingyong Yan

    2015-01-01

    Full Text Available A robust fault detection scheme for a class of nonlinear systems with uncertainty is proposed. The proposed approach utilizes robust control theory and parameter optimization algorithm to design the gain matrix of fault tracking approximator (FTA for fault detection. The gain matrix of FTA is designed to minimize the effects of system uncertainty on residual signals while maximizing the effects of system faults on residual signals. The design of the gain matrix of FTA takes into account the robustness of residual signals to system uncertainty and sensitivity of residual signals to system faults simultaneously, which leads to a multiobjective optimization problem. Then, the detectability of system faults is rigorously analyzed by investigating the threshold of residual signals. Finally, simulation results are provided to show the validity and applicability of the proposed approach.

  13. Sensor and Actuator Fault-Hiding Reconfigurable Control Design for a Four-Tank System Benchmark

    DEFF Research Database (Denmark)

    Hameed, Ibrahim; El-Madbouly, Esam I; Abdo, Mohamed I

    2015-01-01

    Invariant (LTI) system where virtual sensors and virtual actuators are used to correct faulty performance through the use of a pre-fault performance. Simulation results showed that the developed approach can handle different types of faults and able to completely and instantly recover the original system......Fault detection and compensation plays a key role to fulfill high demands for performance and security in today's technological systems. In this paper, a fault-hiding (i.e., tolerant) control scheme that detects and compensates for actuator and sensor faults in a four-tank system benchmark...

  14. A Diagnostic System for Speed-Varying Motor Rotary Faults

    Directory of Open Access Journals (Sweden)

    Chwan-Lu Tseng

    2014-01-01

    Full Text Available This study proposed an intelligent rotary fault diagnostic system for motors. A sensorless rotational speed detection method and an improved dynamic structural neural network are used. Moreover, to increase the convergence speed of training, a terminal attractor method and a hybrid discriminant analysis are also adopted. The proposed method can be employed to detect the rotary frequencies of motors with varying speeds and can enhance the discrimination of motor faults. To conduct the experiments, this study used wireless sensor nodes to transmit vibration data and employed MATLAB to write codes for functional modules, including the signal processing, sensorless rotational speed estimation, neural network, and stochastic process control chart. Additionally, Visual Basic software was used to create an integrated human-machine interface. The experimental results regarding the test of equipment faults indicated that the proposed novel diagnostic system can effectively estimate rotational speeds and provide superior ability of motor fault discrimination with fast training convergence.

  15. Spatial analysis of hypocenter to fault relationships for determining fault process zone width in Japan

    International Nuclear Information System (INIS)

    Arnold, Bill Walter; Roberts, Barry L.; McKenna, Sean Andrew; Coburn, Timothy C.

    2004-01-01

    Preliminary investigation areas (PIA) for a potential repository of high-level radioactive waste must be evaluated by NUMO with regard to a number of qualifying factors. One of these factors is related to earthquakes and fault activity. This study develops a spatial statistical assessment method that can be applied to the active faults in Japan to perform such screening evaluations. This analysis uses the distribution of seismicity near faults to define the width of the associated process zone. This concept is based on previous observations of aftershock earthquakes clustered near active faults and on the assumption that such seismic activity is indicative of fracturing and associated impacts on bedrock integrity. Preliminary analyses of aggregate data for all of Japan confirmed that the frequency of earthquakes is higher near active faults. Data used in the analysis were obtained from NUMO and consist of three primary sources: (1) active fault attributes compiled in a spreadsheet, (2) earthquake hypocenter data, and (3) active fault locations. Examination of these data revealed several limitations with regard to the ability to associate fault attributes from the spreadsheet to locations of individual fault trace segments. In particular, there was no direct link between attributes of the active faults in the spreadsheet and the active fault locations in the GIS database. In addition, the hypocenter location resolution in the pre-1983 data was less accurate than for later data. These pre-1983 hypocenters were eliminated from further analysis

  16. Spatial analysis of hypocenter to fault relationships for determining fault process zone width in Japan.

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, Bill Walter; Roberts, Barry L.; McKenna, Sean Andrew; Coburn, Timothy C. (Abilene Christian University, Abilene, TX)

    2004-09-01

    Preliminary investigation areas (PIA) for a potential repository of high-level radioactive waste must be evaluated by NUMO with regard to a number of qualifying factors. One of these factors is related to earthquakes and fault activity. This study develops a spatial statistical assessment method that can be applied to the active faults in Japan to perform such screening evaluations. This analysis uses the distribution of seismicity near faults to define the width of the associated process zone. This concept is based on previous observations of aftershock earthquakes clustered near active faults and on the assumption that such seismic activity is indicative of fracturing and associated impacts on bedrock integrity. Preliminary analyses of aggregate data for all of Japan confirmed that the frequency of earthquakes is higher near active faults. Data used in the analysis were obtained from NUMO and consist of three primary sources: (1) active fault attributes compiled in a spreadsheet, (2) earthquake hypocenter data, and (3) active fault locations. Examination of these data revealed several limitations with regard to the ability to associate fault attributes from the spreadsheet to locations of individual fault trace segments. In particular, there was no direct link between attributes of the active faults in the spreadsheet and the active fault locations in the GIS database. In addition, the hypocenter location resolution in the pre-1983 data was less accurate than for later data. These pre-1983 hypocenters were eliminated from further analysis.

  17. A review on fault classification methodologies in power transmission systems: Part-II

    Directory of Open Access Journals (Sweden)

    Avagaddi Prasad

    2018-05-01

    Full Text Available The countless extent of power systems and applications requires the improvement in suitable techniques for the fault classification in power transmission systems, to increase the efficiency of the systems and to avoid major damages. For this purpose, the technical literature proposes a large number of methods. The paper analyzes the technical literature, summarizing the most important methods that can be applied to fault classification methodologies in power transmission systems.The part 2 of the article is named “A review on fault classification methodologies in power transmission systems”. In this part 2 we discussed the advanced technologies developed by various researchers for fault classification in power transmission systems. Keywords: Transmission line protection, Protective relaying, Soft computing techniques

  18. Qualitative Fault Isolation of Hybrid Systems: A Structural Model Decomposition-Based Approach

    Science.gov (United States)

    Bregon, Anibal; Daigle, Matthew; Roychoudhury, Indranil

    2016-01-01

    Quick and robust fault diagnosis is critical to ensuring safe operation of complex engineering systems. A large number of techniques are available to provide fault diagnosis in systems with continuous dynamics. However, many systems in aerospace and industrial environments are best represented as hybrid systems that consist of discrete behavioral modes, each with its own continuous dynamics. These hybrid dynamics make the on-line fault diagnosis task computationally more complex due to the large number of possible system modes and the existence of autonomous mode transitions. This paper presents a qualitative fault isolation framework for hybrid systems based on structural model decomposition. The fault isolation is performed by analyzing the qualitative information of the residual deviations. However, in hybrid systems this process becomes complex due to possible existence of observation delays, which can cause observed deviations to be inconsistent with the expected deviations for the current mode in the system. The great advantage of structural model decomposition is that (i) it allows to design residuals that respond to only a subset of the faults, and (ii) every time a mode change occurs, only a subset of the residuals will need to be reconfigured, thus reducing the complexity of the reasoning process for isolation purposes. To demonstrate and test the validity of our approach, we use an electric circuit simulation as the case study.

  19. Fault tolerance of artificial neural networks with applications in critical systems

    Science.gov (United States)

    Protzel, Peter W.; Palumbo, Daniel L.; Arras, Michael K.

    1992-01-01

    This paper investigates the fault tolerance characteristics of time continuous recurrent artificial neural networks (ANN) that can be used to solve optimization problems. The principle of operations and performance of these networks are first illustrated by using well-known model problems like the traveling salesman problem and the assignment problem. The ANNs are then subjected to 13 simultaneous 'stuck at 1' or 'stuck at 0' faults for network sizes of up to 900 'neurons'. The effects of these faults is demonstrated and the cause for the observed fault tolerance is discussed. An application is presented in which a network performs a critical task for a real-time distributed processing system by generating new task allocations during the reconfiguration of the system. The performance degradation of the ANN under the presence of faults is investigated by large-scale simulations, and the potential benefits of delegating a critical task to a fault tolerant network are discussed.

  20. Data-driven simultaneous fault diagnosis for solid oxide fuel cell system using multi-label pattern identification

    Science.gov (United States)

    Li, Shuanghong; Cao, Hongliang; Yang, Yupu

    2018-02-01

    Fault diagnosis is a key process for the reliability and safety of solid oxide fuel cell (SOFC) systems. However, it is difficult to rapidly and accurately identify faults for complicated SOFC systems, especially when simultaneous faults appear. In this research, a data-driven Multi-Label (ML) pattern identification approach is proposed to address the simultaneous fault diagnosis of SOFC systems. The framework of the simultaneous-fault diagnosis primarily includes two components: feature extraction and ML-SVM classifier. The simultaneous-fault diagnosis approach can be trained to diagnose simultaneous SOFC faults, such as fuel leakage, air leakage in different positions in the SOFC system, by just using simple training data sets consisting only single fault and not demanding simultaneous faults data. The experimental result shows the proposed framework can diagnose the simultaneous SOFC system faults with high accuracy requiring small number training data and low computational burden. In addition, Fault Inference Tree Analysis (FITA) is employed to identify the correlations among possible faults and their corresponding symptoms at the system component level.

  1. A System for Fault Management and Fault Consequences Analysis for NASA's Deep Space Habitat

    Science.gov (United States)

    Colombano, Silvano; Spirkovska, Liljana; Baskaran, Vijaykumar; Aaseng, Gordon; McCann, Robert S.; Ossenfort, John; Smith, Irene; Iverson, David L.; Schwabacher, Mark

    2013-01-01

    NASA's exploration program envisions the utilization of a Deep Space Habitat (DSH) for human exploration of the space environment in the vicinity of Mars and/or asteroids. Communication latencies with ground control of as long as 20+ minutes make it imperative that DSH operations be highly autonomous, as any telemetry-based detection of a systems problem on Earth could well occur too late to assist the crew with the problem. A DSH-based development program has been initiated to develop and test the automation technologies necessary to support highly autonomous DSH operations. One such technology is a fault management tool to support performance monitoring of vehicle systems operations and to assist with real-time decision making in connection with operational anomalies and failures. Toward that end, we are developing Advanced Caution and Warning System (ACAWS), a tool that combines dynamic and interactive graphical representations of spacecraft systems, systems modeling, automated diagnostic analysis and root cause identification, system and mission impact assessment, and mitigation procedure identification to help spacecraft operators (both flight controllers and crew) understand and respond to anomalies more effectively. In this paper, we describe four major architecture elements of ACAWS: Anomaly Detection, Fault Isolation, System Effects Analysis, and Graphic User Interface (GUI), and how these elements work in concert with each other and with other tools to provide fault management support to both the controllers and crew. We then describe recent evaluations and tests of ACAWS on the DSH testbed. The results of these tests support the feasibility and strength of our approach to failure management automation and enhanced operational autonomy

  2. Kinematics and Seismotectonics of the Montello Thrust Fault (Southeastern Alps, Italy) Revealed by Local GPS and Seismic Networks

    Science.gov (United States)

    Serpelloni, E.; Anderlini, L.; Cavaliere, A.; Danesi, S.; Pondrelli, S.; Salimbeni, S.; Danecek, P.; Massa, M.; Lovati, S.

    2014-12-01

    The southern Alps fold-and-thrust belt (FTB) in northern Italy is a tectonically active area accommodating large part of the ~N-S Adria-Eurasia plate convergence, that in the southeastern Alps ranges from 1.5 to 2.5 mm/yr, as constrained by a geodetically defined rotation pole. Because of the high seismic hazard of northeastern Italy, the area is well monitored at a regional scale by seismic and GPS networks. However, more localized seismotectonic and kinematic features, at the scale of the fault segments, are not yet resolved, limiting our knowledge about the seismic potential of the different fault segments belonging to the southeastern Alps FTB. Here we present the results obtained from the analysis of data collected during local seismic and geodetic experiments conducted installing denser geophysical networks across the Montello-Bassano-Belluno system, a segment of the FTB that is presently characterized by a lower sismicity rate with respect to the surrounding domains. The Montello anticline, which is the southernmost tectonic features of the southeastern Alps FTB (located ~15 km south of the mountain front), is a nice example of growing anticline associated with a blind thrust fault. However, how the Adria-Alps convergence is partitioned across the FTB and the seismic potential of the Montello thrust (the area has been struck by a Mw~6.5 in 1695 but the causative fault is still largely debated) remained still unresolved. The new, denser, GPS data show that this area is undergoing among the highest geodetic deformation rates of the entire south Alpine chain, with a steep velocity gradient across the Montello anticline. The earthquakes recorded during the experiment, precisely relocated with double difference methods, and the new earthquake focal mechanisms well correlate with available information about sub-surface geological structures and highlight the seismotectonic activity of the Montello thrust fault. We model the GPS velocities using elastic

  3. Study of expert system of fault diagnosis for nuclear power plant

    International Nuclear Information System (INIS)

    Chen Zhihui; Xia Hong; Liu Miao

    2005-01-01

    Based on the fault features of Nuclear Power Plant, the ES (expert system) of fault diagnosis has been programmed. The knowledge in the ES adopts the production systems, which can express the certain and uncertain knowledge. For certain knowledge, the simple reasoning mechanism of prepositional logic is adopted. For the uncertain knowledge, CF (certain factor) is used to express the uncertain, thus to set up the reasoning mechanism. In order to solve the 'bottleneck' problem for knowledge acquisition, rough set theory is incorporated into the fault diagnose system and the reduction algorithm based on the discernibility matrix is improved. In the improved algorithm, the measure of attribute importance first calculate the attribute which have the same value in the same decision-sort, then calculate the degrees of attribute in the discernibility matrix. Several different faults have been diagnosed on some emulator with this expert system. (authors)

  4. Sparsity guided empirical wavelet transform for fault diagnosis of rolling element bearings

    Science.gov (United States)

    Wang, Dong; Zhao, Yang; Yi, Cai; Tsui, Kwok-Leung; Lin, Jianhui

    2018-02-01

    Rolling element bearings are widely used in various industrial machines, such as electric motors, generators, pumps, gearboxes, railway axles, turbines, and helicopter transmissions. Fault diagnosis of rolling element bearings is beneficial to preventing any unexpected accident and reducing economic loss. In the past years, many bearing fault detection methods have been developed. Recently, a new adaptive signal processing method called empirical wavelet transform attracts much attention from readers and engineers and its applications to bearing fault diagnosis have been reported. The main problem of empirical wavelet transform is that Fourier segments required in empirical wavelet transform are strongly dependent on the local maxima of the amplitudes of the Fourier spectrum of a signal, which connotes that Fourier segments are not always reliable and effective if the Fourier spectrum of the signal is complicated and overwhelmed by heavy noises and other strong vibration components. In this paper, sparsity guided empirical wavelet transform is proposed to automatically establish Fourier segments required in empirical wavelet transform for fault diagnosis of rolling element bearings. Industrial bearing fault signals caused by single and multiple railway axle bearing defects are used to verify the effectiveness of the proposed sparsity guided empirical wavelet transform. Results show that the proposed method can automatically discover Fourier segments required in empirical wavelet transform and reveal single and multiple railway axle bearing defects. Besides, some comparisons with three popular signal processing methods including ensemble empirical mode decomposition, the fast kurtogram and the fast spectral correlation are conducted to highlight the superiority of the proposed method.

  5. Meso-Cenozoic tectonic evolution of the SE Brazilian continental margin: Petrographic, kinematic and dynamic analysis of the onshore Araruama Lagoon Fault System

    Science.gov (United States)

    Souza, Pricilla Camões Martins de; Schmitt, Renata da Silva; Stanton, Natasha

    2017-09-01

    The Ararauama Lagoon Fault System composes one of the most prominent set of lineaments of the SE Brazilian continental margin. It is located onshore in a key tectonic domain, where the basement inheritance rule is not followed. This fault system is characterized by ENE-WSW silicified tectonic breccias and cataclasites showing evidences of recurrent tectonic reactivations. Based on field work, microtectonic, kinematic and dynamic analysis, we reconstructed the paleostresses in the region and propose a sequence of three brittle deformational phases accountable for these reactivations: 1) NE-SW dextral transcurrence; 2) NNW-SSE dextral oblique extension that evolved to NNW-SSE "pure" extension; 3) ENE-WSW dextral oblique extension. These phases are reasonably correlated with the tectonic events responsible for the onset and evolution of the SE onshore rift basins, between the Neocretaceous and Holocene. However, based on petrographic studies and supported by regional geological correlations, we assume that the origin of this fault system is older, related to the Early Cretaceous South Atlantic rifting. This study provides significant information about one of the main structural trends of the SE Brazilian continental margin and the tectonic events that controlled its segmentation, since the Gondwana rifting, and compartmentalization of its onshore sedimentary deposits during the Cenozoic.

  6. Earthquake rupture process recreated from a natural fault surface

    Science.gov (United States)

    Parsons, Thomas E.; Minasian, Diane L.

    2015-01-01

    What exactly happens on the rupture surface as an earthquake nucleates, spreads, and stops? We cannot observe this directly, and models depend on assumptions about physical conditions and geometry at depth. We thus measure a natural fault surface and use its 3D coordinates to construct a replica at 0.1 m resolution to obviate geometry uncertainty. We can recreate stick-slip behavior on the resulting finite element model that depends solely on observed fault geometry. We clamp the fault together and apply steady state tectonic stress until seismic slip initiates and terminates. Our recreated M~1 earthquake initiates at contact points where there are steep surface gradients because infinitesimal lateral displacements reduce clamping stress most efficiently there. Unclamping enables accelerating slip to spread across the surface, but the fault soon jams up because its uneven, anisotropic shape begins to juxtapose new high-relief sticking points. These contacts would ultimately need to be sheared off or strongly deformed before another similar earthquake could occur. Our model shows that an important role is played by fault-wall geometry, though we do not include effects of varying fluid pressure or exotic rheologies on the fault surfaces. We extrapolate our results to large fault systems using observed self-similarity properties, and suggest that larger ruptures might begin and end in a similar way, though the scale of geometrical variation in fault shape that can arrest a rupture necessarily scales with magnitude. In other words, fault segmentation may be a magnitude dependent phenomenon and could vary with each subsequent rupture.

  7. Radon emanation on San Andreas Fault

    International Nuclear Information System (INIS)

    King, C.-Y.

    1978-01-01

    It is stated that subsurface radon emanation monitored in shallow dry holes along an active segment of the San Andreas fault in central California shows spatially coherent large temporal variations that seem to be correlated with local seismicity. (author)

  8. Application of Joint Parameter Identification and State Estimation to a Fault-Tolerant Robot System

    DEFF Research Database (Denmark)

    Sun, Zhen; Yang, Zhenyu

    2011-01-01

    The joint parameter identification and state estimation technique is applied to develop a fault-tolerant space robot system. The potential faults in the considered system are abrupt parametric faults, which indicate that some system parameters will immediately deviate from their nominal values...

  9. Crimea-Kopet Dagh zone of concentrated orogenic deformations as a transregional late collisional right-lateral strike-slip fault

    Science.gov (United States)

    Patina, I. S.; Leonov, Yu. G.; Volozh, Yu. A.; Kopp, M. L.; Antipov, M. P.

    2017-07-01

    It is shown that the Crimea, Caucasus, and Kopet Dagh fold systems make up a single whole unified by a lithospheric strike-slip fault zone of concentrated dislocations. The strike-slip fault that dissects the sedimentary cover and consolidated crust is rooted in subcrustal layers of the mantle. The notions about strike-slip dislocations in the structure of the Crimea-Kopet Dagh System are considered. Comparative analysis of structure, age, and amplitude of strike-slip fault segments is carried out. The effect of strike-slip faulting on the deep-seated and near-surface structure of the Earth's crust is considered. Based on estimation of strike-slip offsets, the paleogeography of Paleogene basins is refined; their initial contours, which have been disturbed and fragmented by slipping motion strike-slip displacement, have been reconstructed.

  10. Robust fault detection of wind energy conversion systems based on dynamic neural networks.

    Science.gov (United States)

    Talebi, Nasser; Sadrnia, Mohammad Ali; Darabi, Ahmad

    2014-01-01

    Occurrence of faults in wind energy conversion systems (WECSs) is inevitable. In order to detect the occurred faults at the appropriate time, avoid heavy economic losses, ensure safe system operation, prevent damage to adjacent relevant systems, and facilitate timely repair of failed components; a fault detection system (FDS) is required. Recurrent neural networks (RNNs) have gained a noticeable position in FDSs and they have been widely used for modeling of complex dynamical systems. One method for designing an FDS is to prepare a dynamic neural model emulating the normal system behavior. By comparing the outputs of the real system and neural model, incidence of the faults can be identified. In this paper, by utilizing a comprehensive dynamic model which contains both mechanical and electrical components of the WECS, an FDS is suggested using dynamic RNNs. The presented FDS detects faults of the generator's angular velocity sensor, pitch angle sensors, and pitch actuators. Robustness of the FDS is achieved by employing an adaptive threshold. Simulation results show that the proposed scheme is capable to detect the faults shortly and it has very low false and missed alarms rate.

  11. Design of on-board Bluetooth wireless network system based on fault-tolerant technology

    Science.gov (United States)

    You, Zheng; Zhang, Xiangqi; Yu, Shijie; Tian, Hexiang

    2007-11-01

    In this paper, the Bluetooth wireless data transmission technology is applied in on-board computer system, to realize wireless data transmission between peripherals of the micro-satellite integrating electronic system, and in view of the high demand of reliability of a micro-satellite, a design of Bluetooth wireless network based on fault-tolerant technology is introduced. The reliability of two fault-tolerant systems is estimated firstly using Markov model, then the structural design of this fault-tolerant system is introduced; several protocols are established to make the system operate correctly, some related problems are listed and analyzed, with emphasis on Fault Auto-diagnosis System, Active-standby switch design and Data-Integrity process.

  12. Managing systems faults on the commercial flight deck: Analysis of pilots' organization and prioritization of fault management information

    Science.gov (United States)

    Rogers, William H.

    1993-01-01

    In rare instances, flight crews of commercial aircraft must manage complex systems faults in addition to all their normal flight tasks. Pilot errors in fault management have been attributed, at least in part, to an incomplete or inaccurate awareness of the fault situation. The current study is part of a program aimed at assuring that the types of information potentially available from an intelligent fault management aiding concept developed at NASA Langley called 'Faultfinde' (see Abbott, Schutte, Palmer, and Ricks, 1987) are an asset rather than a liability: additional information should improve pilot performance and aircraft safety, but it should not confuse, distract, overload, mislead, or generally exacerbate already difficult circumstances.

  13. Seismicity preliminary results in a geothermal and volcano activity area: study case Liquiñe-Ofqui fault system in Southern Andes, Chile

    Science.gov (United States)

    Estay, N. P.; Yáñez Morroni, G.; Crempien, J. G. F.; Roquer, T.

    2017-12-01

    Fluid transport through the crust takes place in domains with high permeability. For this reason, fault damage zones are a main feature where fluids may circulate unimpeded, since they have much larger permeability than normal country rocks. With the location of earthquakes, it is possible to infer fault geometry and stress field of the crust, therefore we can determine potential places where fluid circualtion is taking place. With that purpose, we installed a seismic network in an active volcanic-geothermal system, the Liquiñe-Ofqui Fault System (LOFS), located in Puyuhuapi, Southern Andes (44°-45°S). This allowed to link epicentral seismicity, focal mechanisms and surface expression of fluid circulation (hot-springs and volcanos). The LOFS is composed by two NS-striking dextral master faults, and several secondary NE-striking dextral and normal faults. Surface manifestation of fluid circulation in Puyuhuapi area are: 1) six hot-springs, most of them spatially associated with different mapped faults; 2) seven minor eruptive centers aligned over a 10-km-along one of the master NS-striking fault, and; 3) the Melimouyu strato-volcano without any spatial relationship with mapped faults. The network consists of 6 short period seismometers (S31f-2.0a sensor of IESE, with natural frequency of 2Hz), that were installed between July 2016 and August 2017; also 4 permanent broad-band seismometers (Guralp 6TD/ CD 24 sensor) which belong to the Volcano Observatory of Southern Andes (OVDAS). Preliminary results show a correlation between seismicity and surface manifestation of fluid circulation. Seismicity has a heterogeneous distribution: most of the earthquake are concentrated is the master NS-striking fault with fluid circulation manifestations; however along the segments without surface manifestation of fluids do not have seismicity. These results suggest that fluid circulation mostly occur in areas with high seismicity, and thus, the increment in fluid pressure enhances

  14. Active fault and other geological studies for seismic assessment: present state and problems

    International Nuclear Information System (INIS)

    Kakimi, Toshihiro

    1997-01-01

    Evaluation system of earthquakes from an active fault is, in Japan, based on the characteristic earthquake model of a wide sense that postulates essentially the same (nearly the maximum) magnitude and recurrence interval during the recent geological times. Earthquake magnitude M is estimated by empirical relations among M, surface rupture length L, and surface fault displacement D per event of the earthquake faults on land in Japan. Recurrence interval R of faulting/earthquake is calculated from D and the long-term slip rate S of a fault as R=D/S. Grouping or segmentation of complicatedly distributed faults is an important, but difficult problem in order to distinguish a seismogenic fault unit corresponding to an individual characteristic earthquake. If the time t of the latest event is obtained, the 'cautiousness' of a fault can be judged from R-t or t/R. According to this idea, several faults whose t/R exceed 0.5 have been designated as the 'precaution faults' having higher probability of earthquake occurrence than the others. A part of above evaluation has been introduced at first into the seismic-safety examination system of NPPs in 1978. According to the progress of research on active faults, the weight of interest in respect to the seismic hazard assessment shifted gradually from the historic data to the fault data. Most of recent seismic hazard maps have been prepared in consideration with active faults on land in Japan. Since the occurrence of the 1995 Hyogoken-Nanbu earthquake, social attention has been concentrated upon the seismic hazard due to active faults, because this event was generated from a well-known active fault zone that had been warned as a 'precaution fault'. In this paper, a few recent topics on other geological and geotechnical researches aiming at improving the seismic safety of NPPs in Japan were also introduced. (J.P.N.)

  15. Active fault and other geological studies for seismic assessment: present state and problems

    Energy Technology Data Exchange (ETDEWEB)

    Kakimi, Toshihiro [Nuclear Power Engineering Corp., Tokyo (Japan)

    1997-03-01

    Evaluation system of earthquakes from an active fault is, in Japan, based on the characteristic earthquake model of a wide sense that postulates essentially the same (nearly the maximum) magnitude and recurrence interval during the recent geological times. Earthquake magnitude M is estimated by empirical relations among M, surface rupture length L, and surface fault displacement D per event of the earthquake faults on land in Japan. Recurrence interval R of faulting/earthquake is calculated from D and the long-term slip rate S of a fault as R=D/S. Grouping or segmentation of complicatedly distributed faults is an important, but difficult problem in order to distinguish a seismogenic fault unit corresponding to an individual characteristic earthquake. If the time t of the latest event is obtained, the `cautiousness` of a fault can be judged from R-t or t/R. According to this idea, several faults whose t/R exceed 0.5 have been designated as the `precaution faults` having higher probability of earthquake occurrence than the others. A part of above evaluation has been introduced at first into the seismic-safety examination system of NPPs in 1978. According to the progress of research on active faults, the weight of interest in respect to the seismic hazard assessment shifted gradually from the historic data to the fault data. Most of recent seismic hazard maps have been prepared in consideration with active faults on land in Japan. Since the occurrence of the 1995 Hyogoken-Nanbu earthquake, social attention has been concentrated upon the seismic hazard due to active faults, because this event was generated from a well-known active fault zone that had been warned as a `precaution fault`. In this paper, a few recent topics on other geological and geotechnical researches aiming at improving the seismic safety of NPPs in Japan were also introduced. (J.P.N.)

  16. Advanced cloud fault tolerance system

    Science.gov (United States)

    Sumangali, K.; Benny, Niketa

    2017-11-01

    Cloud computing has become a prevalent on-demand service on the internet to store, manage and process data. A pitfall that accompanies cloud computing is the failures that can be encountered in the cloud. To overcome these failures, we require a fault tolerance mechanism to abstract faults from users. We have proposed a fault tolerant architecture, which is a combination of proactive and reactive fault tolerance. This architecture essentially increases the reliability and the availability of the cloud. In the future, we would like to compare evaluations of our proposed architecture with existing architectures and further improve it.

  17. Application of a Fault Detection and Isolation System on a Rotary Machine

    Directory of Open Access Journals (Sweden)

    Silvia M. Zanoli

    2013-01-01

    Full Text Available The paper illustrates the design and the implementation of a Fault Detection and Isolation (FDI system to a rotary machine like a multishaft centrifugal compressor. A model-free approach, that is, the Principal Component Analysis (PCA, has been employed to solve the fault detection issue. For the fault isolation purpose structured residuals have been adopted while an adaptive threshold has been designed in order to detect and to isolate the faults. To prove the goodness of the proposed FDI system, historical data of a nitrogen centrifugal compressor employed in a refinery plant are considered. Tests results show that detection and isolation of single as well as multiple faults are successfully achieved.

  18. Fault detection for piecewise affine systems with application to ship propulsion systems.

    Science.gov (United States)

    Yang, Ying; Linlin, Li; Ding, Steven X; Qiu, Jianbin; Peng, Kaixiang

    2017-09-09

    In this paper, the design approach of non-synchronized diagnostic observer-based fault detection (FD) systems is investigated for piecewise affine processes via continuous piecewise Lyapunov functions. Considering that the dynamics of piecewise affine systems in different regions can be considerably different, the weighting matrices are used to weight the residual of each region, so as to optimize the fault detectability. A numerical example and a case study on a ship propulsion system are presented in the end to demonstrate the effectiveness of the proposed results. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  19. The Hanford Site's Gable Mountain structure: A comparison of the recurrence of design earthquakes based on fault slip rates and a probabilistic exposure model

    International Nuclear Information System (INIS)

    Rohay, A.C.

    1991-01-01

    Gable Mountain is a segment of the Umtanum Ridge-Gable Mountain structural trend, an east-west trending series of anticlines, one of the major geologic structures on the Hanford Site. A probabilistic seismic exposure model indicates that Gable Mountain and two adjacent segments contribute significantly to the seismic hazard at the Hanford Site. Geologic measurements of the uplift of initially horizontal (11-12 Ma) basalt flows indicate that a broad, continuous, primary anticline grew at an average rate of 0.009-0.011 mm/a, and narrow, segmented, secondary anticlines grew at rates of 0.009 mm/a at Gable Butte and 0.018 mm/a at Gable Mountain. The buried Southeast Anticline appears to have a different geometry, consisting of a single, intermediate-width anticline with an estimated growth rate of 0.007 mm/a. The recurrence rate and maximum magnitude of earthquakes for the fault models were used to estimate the fault slip rate for each of the fault models and to determine the implied structural growth rate of the segments. The current model for Gable Mountain-Gable Butte predicts 0.004 mm/a of vertical uplift due to primary faulting and 0.008 mm/a due to secondary faulting. These rates are roughly half the structurally estimated rates for Gable Mountain, but the model does not account for the smaller secondary fold at Gable Butte. The model predicted an uplift rate for the Southeast Anticline of 0.006 mm/a, caused by the low open-quotes fault capabilityclose quotes weighting rather than a different fault geometry. The effects of previous modifications to the fault models are examined and potential future modifications are suggested. For example, the earthquake recurrence relationship used in the current exposure model has a b-value of 1.15, compared to a previous value of 0.85. This increases the implied deformation rates due to secondary fault models, and therefore supports the use of this regionally determined b-value to this fault/fold system

  20. Comparative study of superconducting fault current limiter both for LCC-HVDC and VSC-HVDC systems

    Science.gov (United States)

    Lee, Jong-Geon; Khan, Umer Amir; Lim, Sung-Woo; Shin, Woo-ju; Seo, In-Jin; Lee, Bang-Wook

    2015-11-01

    High Voltage Direct Current (HVDC) system has been evaluated as the optimum solution for the renewable energy transmission and long-distance power grid connections. In spite of the various advantages of HVDC system, it still has been regarded as an unreliable system compared to AC system due to its vulnerable characteristics on the power system fault. Furthermore, unlike AC system, optimum protection and switching device has not been fully developed yet. Therefore, in order to enhance the reliability of the HVDC systems mitigation of power system fault and reliable fault current limiting and switching devices should be developed. In this paper, in order to mitigate HVDC fault, both for Line Commutated Converter HVDC (LCC-HVDC) and Voltage Source Converter HVDC (VSC-HVDC) system, an application of resistive superconducting fault current limiter which has been known as optimum solution to cope with the power system fault was considered. Firstly, simulation models for two types of LCC-HVDC and VSC-HVDC system which has point to point connection model were developed. From the designed model, fault current characteristics of faulty condition were analyzed. Second, application of SFCL on each types of HVDC system and comparative study of modified fault current characteristics were analyzed. Consequently, it was deduced that an application of AC-SFCL on LCC-HVDC system with point to point connection was desirable solution to mitigate the fault current stresses and to prevent commutation failure in HVDC electric power system interconnected with AC grid.

  1. Study on fault diagnostic system using modularized knowledge; Mojuru gata chishiki wo mochiita ijo shindan system ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Y.; Sayama, H.; Suzuki, K. [Okayama Univ. (Japan). Dept. of Industrial and Mechanical Engineering

    1997-08-15

    Recently, a fault diagnostic expert system was prosperously developed as an objective of chemical plants and nuclear power plants. In this paper, a fault diagnostic method using modularized knowledge was proposed, a fault diagnostic system was constructed for an experimental plant, and the effectiveness of this method was clarified by carrying out a fault diagnostic experiment. The characteristics of the proposed fault diagnostic system were as follows: The necessary knowledge for diagnosing faults was made into each process element. Based on this method, the revision and addition of a knowledge base could be carried out in each element, and the design change of a plant could be flexibly corresponded by only changing the related part of the process flow graph. The estimated results were stored into the working memory, not only faults of an element in which faults resulted could be estimated, but also the fault propagating path could be clarified. 8 refs., 6 figs., 3 tabs.

  2. Novel neural networks-based fault tolerant control scheme with fault alarm.

    Science.gov (United States)

    Shen, Qikun; Jiang, Bin; Shi, Peng; Lim, Cheng-Chew

    2014-11-01

    In this paper, the problem of adaptive active fault-tolerant control for a class of nonlinear systems with unknown actuator fault is investigated. The actuator fault is assumed to have no traditional affine appearance of the system state variables and control input. The useful property of the basis function of the radial basis function neural network (NN), which will be used in the design of the fault tolerant controller, is explored. Based on the analysis of the design of normal and passive fault tolerant controllers, by using the implicit function theorem, a novel NN-based active fault-tolerant control scheme with fault alarm is proposed. Comparing with results in the literature, the fault-tolerant control scheme can minimize the time delay between fault occurrence and accommodation that is called the time delay due to fault diagnosis, and reduce the adverse effect on system performance. In addition, the FTC scheme has the advantages of a passive fault-tolerant control scheme as well as the traditional active fault-tolerant control scheme's properties. Furthermore, the fault-tolerant control scheme requires no additional fault detection and isolation model which is necessary in the traditional active fault-tolerant control scheme. Finally, simulation results are presented to demonstrate the efficiency of the developed techniques.

  3. Exploring the structural controls on helium, nitrogen and carbon isotope signatures in hydrothermal fluids along an intra-arc fault system

    Science.gov (United States)

    Tardani, Daniele; Reich, Martin; Roulleau, Emilie; Takahata, Naoto; Sano, Yuji; Pérez-Flores, Pamela; Sánchez-Alfaro, Pablo; Cembrano, José; Arancibia, Gloria

    2016-07-01

    There is a general agreement that fault-fracture meshes exert a primary control on fluid flow in both volcanic/magmatic and geothermal/hydrothermal systems. For example, in geothermal systems and epithermal gold deposits, optimally oriented faults and fractures play a key role in promoting fluid flow through high vertical permeability pathways. In the Southern Volcanic Zone (SVZ) of the Chilean Andes, both volcanism and hydrothermal activity are strongly controlled by the Liquiñe-Ofqui Fault System (LOFS), an intra-arc, strike-slip fault, and by the Arc-oblique Long-lived Basement Fault System (ALFS), a set of transpressive NW-striking faults. However, the role that principal and subsidiary fault systems exert on magma degassing, hydrothermal fluid flow and fluid compositions remains poorly constrained. In this study we report new helium, carbon and nitrogen isotope data (3He/4He, δ13C-CO2 and δ15N) of a suite of fumarole and hot spring gas samples from 23 volcanic/geothermal localities that are spatially associated with either the LOFS or the ALFS in the central part of the SVZ. The dataset is characterized by a wide range of 3He/4He ratios (3.39 Ra to 7.53 Ra, where Ra = (3He/4He)air), δ13C-CO2 values (-7.44‰ to -49.41‰) and δ15N values (0.02‰ to 4.93‰). The regional variations in 3He/4He, δ13C-CO2 and δ15N values are remarkably consistent with those reported for 87Sr/86Sr in lavas along the studied segment, which are strongly controlled by the regional spatial distribution of faults. Two fumaroles gas samples associated with the northern ;horsetail; transtensional termination of the LOFS are the only datapoints showing uncontaminated MORB-like 3He/4He signatures. In contrast, the dominant mechanism controlling helium isotope ratios of hydrothermal systems towards the south appears to be the mixing between mantle-derived helium and a radiogenic component derived from, e.g., magmatic assimilation of 4He-rich country rocks or contamination during the

  4. Reliability Evaluation Methodologies of Fault Tolerant Techniques of Digital I and C Systems in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kim, Bo Gyung; Kang, Hyun Gook; Seong, Poong Hyun; Lee, Seung Jun

    2011-01-01

    Since the reactor protection system was replaced from analog to digital, digital reactor protection system has 4 redundant channels and each channel has several modules. It is necessary for various fault tolerant techniques to improve availability and reliability due to using complex components in DPPS. To use the digital system, it is necessary to improve the reliability and availability of a system through fault-tolerant techniques. Several researches make an effort to effects of fault tolerant techniques. However, the effects of fault tolerant techniques have not been properly considered yet in most fault tree models. Various fault-tolerant techniques, which used in digital system in NPPs, should reflect in fault tree analysis for getting lower system unavailability and more reliable PSA. When fault-tolerant techniques are modeled in fault tree, categorizing the module to detect by each fault tolerant techniques, fault coverage, detection period and the fault recovery should be considered. Further work will concentrate on various aspects for fault tree modeling. We will find other important factors, and found a new theory to construct the fault tree model

  5. Stress state and movement potential of the Kar-e-Bas fault zone, Fars, Iran

    Science.gov (United States)

    Sarkarinejad, Khalil; Zafarmand, Bahareh

    2017-08-01

    The Kar-e-Bas or Mengharak basement-inverted fault is comprised of six segments in the Zagros foreland folded belt of Iran. In the Fars region, this fault zone associated with the Kazerun, Sabz-Pushan and Sarvestan faults serves as a lateral transfer zone that accommodates the change in shortening direction from the western central to the eastern Zagros. This study evaluates the recent tectonic stress regime of the Kar-e-Bas fault zone based on inversion of earthquake focal mechanism data, and quantifies the fault movement potential of this zone based on the relationship between fault geometric characteristics and recent tectonic stress regimes. The trend and plunge of σ 1 and σ 3 are S25°W/04°-N31°E/05° and S65°E/04°-N60°W/10°, respectively, with a stress ratio of Φ = 0.83. These results are consistent with the collision direction of the Afro-Arabian continent and the Iranian microcontinent. The near horizontal plunge of maximum and minimum principle stresses and the value of stress ratio Φ indicate that the state of stress is nearly strike-slip dominated with little relative difference between the value of two principal stresses, σ 1 and σ 2. The obliquity of the maximum compressional stress into the fault trend reveals a typical stress partitioning of thrust and strike-slip motion in the Kar-e-Bas fault zone. Analysis of the movement potential of this fault zone shows that its northern segment has a higher potential of fault activity (0.99). The negligible difference between the fault-plane dips of the segments indicates that their strike is a controlling factor in the changes in movement potential.

  6. Structure of the San Andreas Fault Zone in the Salton Trough Region of Southern California: A Comparison with San Andreas Fault Structure in the Loma Prieta Area of Central California

    Science.gov (United States)

    Fuis, G. S.; Catchings, R.; Scheirer, D. S.; Goldman, M.; Zhang, E.; Bauer, K.

    2016-12-01

    The San Andreas fault (SAF) in the northern Salton Trough, or Coachella Valley, in southern California, appears non-vertical and non-planar. In cross section, it consists of a steeply dipping segment (75 deg dip NE) from the surface to 6- to 9-km depth, and a moderately dipping segment below 6- to 9-km depth (50-55 deg dip NE). It also appears to branch upward into a flower-like structure beginning below about 10-km depth. Images of the SAF zone in the Coachella Valley have been obtained from analysis of steep reflections, earthquakes, modeling of potential-field data, and P-wave tomography. Review of seismological and geodetic research on the 1989 M 6.9 Loma Prieta earthquake, in central California (e.g., U.S. Geological Survey Professional Paper 1550), shows several features of SAF zone structure similar to those seen in the northern Salton Trough. Aftershocks in the Loma Prieta epicentral area form two chief clusters, a tabular zone extending from 18- to 9-km depth and a complex cluster above 5-km depth. The deeper cluster has been interpreted to surround the chief rupture plane, which dips 65-70 deg SW. When double-difference earthquake locations are plotted, the shallower cluster contains tabular subclusters that appear to connect the main rupture with the surface traces of the Sargent and Berrocal faults. In addition, a diffuse cluster may surround a steep to vertical fault connecting the main rupture to the surface trace of the SAF. These interpreted fault connections from the main rupture to surface fault traces appear to define a flower-like structure, not unlike that seen above the moderately dipping segment of the SAF in the Coachella Valley. But importantly, the SAF, interpreted here to include the main rupture plane, appears segmented, as in the Coachella Valley, with a moderately dipping segment below 9-km depth and a steep to vertical segment above that depth. We hope to clarify fault-zone structure in the Loma Prieta area by reanalyzing active

  7. A Systematic Methodology for Gearbox Health Assessment and Fault Classification

    Directory of Open Access Journals (Sweden)

    Jay Lee

    2011-01-01

    Full Text Available A systematic methodology for gearbox health assessment and fault classification is developed and evaluated for 560 data sets of gearbox vibration data provided by the Prognostics and Health Management Society for the 2009 data challenge competition. A comprehensive set of signal processing and feature extraction methods are used to extract over 200 features, including features extracted from the raw time signal, time synchronous signal, wavelet decomposition signal, frequency domain spectrum, envelope spectrum, among others. A regime segmentation approach using the tachometer signal, a spectrum similarity metric, and gear mesh frequency peak information are used to segment the data by gear type, input shaft speed, and braking torque load. A health assessment method that finds the minimum feature vector sum in each regime is used to classify and find the 80 baseline healthy data sets. A fault diagnosis method based on a distance calculation from normal along with specific features correlated to different fault signatures is used to diagnosis specific faults. The fault diagnosis method is evaluated for the diagnosis of a gear tooth breakage, input shaft imbalance, bent shaft, bearing inner race defect, and bad key, and the method could be further extended for other faults as long as a set of features can be correlated with a known fault signature. Future work looks to further refine the distance calculation algorithm for fault diagnosis, as well as further evaluate other signal processing method such as the empirical mode decomposition to see if an improved set of features can be used to improve the fault diagnosis accuracy.

  8. Simultaneous Event-Triggered Fault Detection and Estimation for Stochastic Systems Subject to Deception Attacks.

    Science.gov (United States)

    Li, Yunji; Wu, QingE; Peng, Li

    2018-01-23

    In this paper, a synthesized design of fault-detection filter and fault estimator is considered for a class of discrete-time stochastic systems in the framework of event-triggered transmission scheme subject to unknown disturbances and deception attacks. A random variable obeying the Bernoulli distribution is employed to characterize the phenomena of the randomly occurring deception attacks. To achieve a fault-detection residual is only sensitive to faults while robust to disturbances, a coordinate transformation approach is exploited. This approach can transform the considered system into two subsystems and the unknown disturbances are removed from one of the subsystems. The gain of fault-detection filter is derived by minimizing an upper bound of filter error covariance. Meanwhile, system faults can be reconstructed by the remote fault estimator. An recursive approach is developed to obtain fault estimator gains as well as guarantee the fault estimator performance. Furthermore, the corresponding event-triggered sensor data transmission scheme is also presented for improving working-life of the wireless sensor node when measurement information are aperiodically transmitted. Finally, a scaled version of an industrial system consisting of local PC, remote estimator and wireless sensor node is used to experimentally evaluate the proposed theoretical results. In particular, a novel fault-alarming strategy is proposed so that the real-time capacity of fault-detection is guaranteed when the event condition is triggered.

  9. A statistical-based approach for fault detection and diagnosis in a photovoltaic system

    KAUST Repository

    Garoudja, Elyes

    2017-07-10

    This paper reports a development of a statistical approach for fault detection and diagnosis in a PV system. Specifically, the overarching goal of this work is to early detect and identify faults on the DC side of a PV system (e.g., short-circuit faults; open-circuit faults; and partial shading faults). Towards this end, we apply exponentially-weighted moving average (EWMA) control chart on the residuals obtained from the one-diode model. Such a choice is motivated by the greater sensitivity of EWMA chart to incipient faults and its low-computational cost making it easy to implement in real time. Practical data from a 3.2 KWp photovoltaic plant located within an Algerian research center is used to validate the proposed approach. Results show clearly the efficiency of the developed method in monitoring PV system status.

  10. Active fault tolerant control of piecewise affine systems with reference tracking and input constraints

    DEFF Research Database (Denmark)

    Gholami, M.; Cocquempot, V.; Schiøler, H.

    2014-01-01

    An active fault tolerant control (AFTC) method is proposed for discrete-time piecewise affine (PWA) systems. Only actuator faults are considered. The AFTC framework contains a supervisory scheme, which selects a suitable controller in a set of controllers such that the stability and an acceptable...... performance of the faulty system are held. The design of the supervisory scheme is not considered here. The set of controllers is composed of a normal controller for the fault-free case, an active fault detection and isolation controller for isolation and identification of the faults, and a set of passive...... fault tolerant controllers (PFTCs) modules designed to be robust against a set of actuator faults. In this research, the piecewise nonlinear model is approximated by a PWA system. The PFTCs are state feedback laws. Each one is robust against a fixed set of actuator faults and is able to track...

  11. Reliability modeling of digital component in plant protection system with various fault-tolerant techniques

    International Nuclear Information System (INIS)

    Kim, Bo Gyung; Kang, Hyun Gook; Kim, Hee Eun; Lee, Seung Jun; Seong, Poong Hyun

    2013-01-01

    Highlights: • Integrated fault coverage is introduced for reflecting characteristics of fault-tolerant techniques in the reliability model of digital protection system in NPPs. • The integrated fault coverage considers the process of fault-tolerant techniques from detection to fail-safe generation process. • With integrated fault coverage, the unavailability of repairable component of DPS can be estimated. • The new developed reliability model can reveal the effects of fault-tolerant techniques explicitly for risk analysis. • The reliability model makes it possible to confirm changes of unavailability according to variation of diverse factors. - Abstract: With the improvement of digital technologies, digital protection system (DPS) has more multiple sophisticated fault-tolerant techniques (FTTs), in order to increase fault detection and to help the system safely perform the required functions in spite of the possible presence of faults. Fault detection coverage is vital factor of FTT in reliability. However, the fault detection coverage is insufficient to reflect the effects of various FTTs in reliability model. To reflect characteristics of FTTs in the reliability model, integrated fault coverage is introduced. The integrated fault coverage considers the process of FTT from detection to fail-safe generation process. A model has been developed to estimate the unavailability of repairable component of DPS using the integrated fault coverage. The new developed model can quantify unavailability according to a diversity of conditions. Sensitivity studies are performed to ascertain important variables which affect the integrated fault coverage and unavailability

  12. Fault tree handbook

    International Nuclear Information System (INIS)

    Haasl, D.F.; Roberts, N.H.; Vesely, W.E.; Goldberg, F.F.

    1981-01-01

    This handbook describes a methodology for reliability analysis of complex systems such as those which comprise the engineered safety features of nuclear power generating stations. After an initial overview of the available system analysis approaches, the handbook focuses on a description of the deductive method known as fault tree analysis. The following aspects of fault tree analysis are covered: basic concepts for fault tree analysis; basic elements of a fault tree; fault tree construction; probability, statistics, and Boolean algebra for the fault tree analyst; qualitative and quantitative fault tree evaluation techniques; and computer codes for fault tree evaluation. Also discussed are several example problems illustrating the basic concepts of fault tree construction and evaluation

  13. Cooperative Fault Tolerant Tracking Control for Multiagent Systems: An Intermediate Estimator-Based Approach.

    Science.gov (United States)

    Zhu, Jun-Wei; Yang, Guang-Hong; Zhang, Wen-An; Yu, Li

    2017-10-17

    This paper studies the observer based fault tolerant tracking control problem for linear multiagent systems with multiple faults and mismatched disturbances. A novel distributed intermediate estimator based fault tolerant tracking protocol is presented. The leader's input is nonzero and unavailable to the followers. By applying a projection technique, the mismatched disturbances are separated into matched and unmatched components. For each node, a tracking error system is established, for which an intermediate estimator driven by the relative output measurements is constructed to estimate the sensor faults and a combined signal of the leader's input, process faults, and matched disturbance component. Based on the estimation, a fault tolerant tracking protocol is designed to eliminate the effects of the combined signal. Besides, the effect of unmatched disturbance component can be attenuated by directly adjusting some specified parameters. Finally, a simulation example of aircraft demonstrates the effectiveness of the designed tracking protocol.This paper studies the observer based fault tolerant tracking control problem for linear multiagent systems with multiple faults and mismatched disturbances. A novel distributed intermediate estimator based fault tolerant tracking protocol is presented. The leader's input is nonzero and unavailable to the followers. By applying a projection technique, the mismatched disturbances are separated into matched and unmatched components. For each node, a tracking error system is established, for which an intermediate estimator driven by the relative output measurements is constructed to estimate the sensor faults and a combined signal of the leader's input, process faults, and matched disturbance component. Based on the estimation, a fault tolerant tracking protocol is designed to eliminate the effects of the combined signal. Besides, the effect of unmatched disturbance component can be attenuated by directly adjusting some

  14. LAMPF first-fault identifier for fast transient faults

    International Nuclear Information System (INIS)

    Swanson, A.R.; Hill, R.E.

    1979-01-01

    The LAMPF accelerator is presently producing 800-MeV proton beams at 0.5 mA average current. Machine protection for such a high-intensity accelerator requires a fast shutdown mechanism, which can turn off the beam within a few microseconds of the occurrence of a machine fault. The resulting beam unloading transients cause the rf systems to exceed control loop tolerances and consequently generate multiple fault indications for identification by the control computer. The problem is to isolate the primary fault or cause of beam shutdown while disregarding as many as 50 secondary fault indications that occur as a result of beam shutdown. The LAMPF First-Fault Identifier (FFI) for fast transient faults is operational and has proven capable of first-fault identification. The FFI design utilized features of the Fast Protection System that were previously implemented for beam chopping and rf power conservation. No software changes were required

  15. Fault diagnosis and refrigerant leak detection in vapour compression refrigeration systems

    Energy Technology Data Exchange (ETDEWEB)

    Tassou, S.A.; Grace, I.N. [Brunel University, Uxbridge (United Kingdom). Department of Mechanical Engineering

    2005-08-01

    The environmental impact of refrigeration systems can be reduced by operation at higher efficiency and reduction of refrigerant leakage. Refrigerant loss contributes both directly and indirectly to global warming through inefficient system operation, increased power consumption and greenhouse gas emissions and higher maintenance costs. Existing sensor-based leak detection methods are limited by the inability to detect gradual leakage and the need for careful sensor location. There is a requirement for a real-time performance monitoring approach to leak detection and fault diagnosis which overcomes these disadvantages. This paper reports on the development of a fault diagnosis and refrigerant leak detection system based on artificial intelligence and real-time performance monitoring. The system has been used successfully to distinguish between faulty and fault free operation, steady-state and transient operation, leakage and over charge conditions. Work currently underway is aimed at testing additional fault conditions and establishing further rules to distinguish between these patterns. (author)

  16. Active Complementary Control for Affine Nonlinear Control Systems With Actuator Faults.

    Science.gov (United States)

    Fan, Quan-Yong; Yang, Guang-Hong

    2017-11-01

    This paper is concerned with the problem of active complementary control design for affine nonlinear control systems with actuator faults. The outage and loss of effectiveness fault cases are considered. In order to achieve the performance enhancement of the faulty control system, the complementary control scheme is designed in two steps. Firstly, a novel fault estimation scheme is developed. Then, by using the fault estimations to reconstruct the faulty system dynamics and introducing a cost function as the optimization objective, a nearly optimal complementary control is obtained online based on the adaptive dynamic programming (ADP) method. Unlike most of the previous ADP methods with the addition of a probing signal, new adaptive weight update laws are derived to guarantee the convergence of neural network weights and the stability of the closed-loop system, which strongly supports the online implementation of the ADP method. Finally, two simulation examples are given to illustrate the performance and effectiveness of the proposed method.

  17. UIO-based Fault Diagnosis for Hydraulic Automatic Gauge Control System of Magnesium Sheet Mill

    Directory of Open Access Journals (Sweden)

    Li-Ping FAN

    2014-02-01

    Full Text Available Hydraulic automatic gauge control system of magnesium sheet mill is a complex integrated control system, which including mechanical, hydraulic and electrical comprehensive information. The failure rate of AGC system always is high, and its fault reasons are always complex. Based on analyzing the fault of main components of the automatic gauge control system, unknown input observer is used to realize fault diagnosis and isolation. Simulation results show that the fault diagnosis method based on the unknown input observer for the hydraulic automatic gauge control system of magnesium sheet mill is effective.

  18. A comparative study of sensor fault diagnosis methods based on observer for ECAS system

    Science.gov (United States)

    Xu, Xing; Wang, Wei; Zou, Nannan; Chen, Long; Cui, Xiaoli

    2017-03-01

    The performance and practicality of electronically controlled air suspension (ECAS) system are highly dependent on the state information supplied by kinds of sensors, but faults of sensors occur frequently. Based on a non-linearized 3-DOF 1/4 vehicle model, different methods of fault detection and isolation (FDI) are used to diagnose the sensor faults for ECAS system. The considered approaches include an extended Kalman filter (EKF) with concise algorithm, a strong tracking filter (STF) with robust tracking ability, and the cubature Kalman filter (CKF) with numerical precision. We propose three filters of EKF, STF, and CKF to design a state observer of ECAS system under typical sensor faults and noise. Results show that three approaches can successfully detect and isolate faults respectively despite of the existence of environmental noise, FDI time delay and fault sensitivity of different algorithms are different, meanwhile, compared with EKF and STF, CKF method has best performing FDI of sensor faults for ECAS system.

  19. Fault diagnosis system of electromagnetic valve using neural network filter

    International Nuclear Information System (INIS)

    Hayashi, Shoji; Odaka, Tomohiro; Kuroiwa, Jousuke; Ogura, Hisakazu

    2008-01-01

    This paper is concerned with the gas leakage fault detection of electromagnetic valve using a neural network filter. In modern plants, the ability to detect and identify gas leakage faults is becoming increasingly important. The main difficulty in detecting gas leakage faults by sound signals lies in the fact that the practical plants are usually very noisy. To solve this difficulty, a neural network filter is used to eliminate background noise and raise the signal noise ratio of the sound signal. The background noise is assumed as a dynamic system, and an accurate mathematical model of the dynamic system can be established using a neural network filter. The predicted error between predicted values and practical ones constitutes the output of the filter. If the predicted error is zero, then there is no leakage. If the predicted error is greater than a certain value, then there is a leakage fault. Through application to practical pneumatic systems, it is verified that the neural network filter was effective in gas leakage detection. (author)

  20. Stabiliser Fault Emergency Control using Reconfiguration to Preserve Power System Stability

    DEFF Research Database (Denmark)

    Pedersen, Andreas Søndergaard; Richter, Jan H.; Tabatabaeipour, Mojtaba

    2014-01-01

    Stabiliser faults in multi-machine power systems are examined in this paper where fault-masking and system reconguration of the nonlinear system is obtained using a virtual actuator approach. Phasor Measurement Units, which can be integrated in wide-area transmission grids to improve the performa...

  1. Synthesis of Fault-Tolerant Embedded Systems with Checkpointing and Replication

    DEFF Research Database (Denmark)

    Izosimov, Viacheslav; Pop, Paul; Eles, Petru

    2006-01-01

    We present an approach to the synthesis of fault-tolerant hard real-time systems for safety-critical applications. We use checkpointing with rollback recovery and active replication for tolerating transient faults. Processes are statically scheduled and communications are performed using the time...

  2. System and method for bearing fault detection using stator current noise cancellation

    Science.gov (United States)

    Zhou, Wei; Lu, Bin; Habetler, Thomas G.; Harley, Ronald G.; Theisen, Peter J.

    2010-08-17

    A system and method for detecting incipient mechanical motor faults by way of current noise cancellation is disclosed. The system includes a controller configured to detect indicia of incipient mechanical motor faults. The controller further includes a processor programmed to receive a baseline set of current data from an operating motor and define a noise component in the baseline set of current data. The processor is also programmed to repeatedly receive real-time operating current data from the operating motor and remove the noise component from the operating current data in real-time to isolate any fault components present in the operating current data. The processor is then programmed to generate a fault index for the operating current data based on any isolated fault components.

  3. Influences of braking system faults on the vehicle dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Straky, H.; Kochem, M.; Schmitt, J.; Hild, R.; Isermann, R. [Technische Univ., Darmstadt (Germany). Inst. of Automatic Control

    2001-07-01

    From a safety point of view the braking system is, besides the driver, one of the key subsystems in a car. The driver, as an adaptive control system, might not notice small faults in the hydraulic part of the braking system and sooner or later critical braking situations, e.g. due to a brake-circuit failure, may occur. Most of the drivers are not capable to deal with such critical situations. Therefore this paper investigates the influence of faults in the braking system on the dynamic vehicle behavior and the steering inputs of the driver to keep the vehicle on the desired course. (orig.)

  4. Along strike variation of active fault arrays and their effect on landscape morphology of the northwestern Himalaya

    Science.gov (United States)

    Nennewitz, Markus; Thiede, Rasmus; Bookhagen, Bodo

    2017-04-01

    The location and magnitude of the active deformation of the Himalaya has been debated for decades, but several aspects remain unknown. For instance, the spatial distribution of the deformation and the shortening that ultimately sustains Himalayan topography and the activity of major fault zones are not well constrained neither for the present day and nor for Holocene and Quarternary timescales. Because of these weakly constrained factors, many previous studies have assumed that the structural setting and the fault geometry of the Himalaya is continuous along strike and similar to fault geometries of central Nepal. Thus, the sub-surface structural information from central Nepal have been projected along strike, but have not been verified at other locations. In this study we use digital topographic analysis of the NW Himalaya. We obtained catchment-averaged, normalized steepness indexes of longitudinal river profiles with drainage basins ranging between 5 and 250km2 and analyzed the relative change in their spatial distribution both along and across strike. More specific, we analyzed the relative changes of basins located in the footwall and in the hanging wall of major fault zones. Under the assumption that along strike changes in the normalized steepness index are primarily controlled by the activity of thrust segments, we revealed new insights in the tectonic deformation and uplift pattern. Our results show three different segments along the northwest Himalaya, which are located, from east to west, in Garwhal, Chamba and Kashmir Himalaya. These have formed independent orogenic segments characterized by significant changes in their structural architecture and fault geometry. Moreover, their topographic changes indicate strong variations on fault displacement rates across first-order fault zones. With the help of along- and across-strike profiles, we were able to identify fault segments of pronounced fault activity across MFT, MBT, and the PT2 and identify the

  5. Arc fault detection system

    Science.gov (United States)

    Jha, Kamal N.

    1999-01-01

    An arc fault detection system for use on ungrounded or high-resistance-grounded power distribution systems is provided which can be retrofitted outside electrical switchboard circuits having limited space constraints. The system includes a differential current relay that senses a current differential between current flowing from secondary windings located in a current transformer coupled to a power supply side of a switchboard, and a total current induced in secondary windings coupled to a load side of the switchboard. When such a current differential is experienced, a current travels through a operating coil of the differential current relay, which in turn opens an upstream circuit breaker located between the switchboard and a power supply to remove the supply of power to the switchboard.

  6. Arc fault detection system

    Science.gov (United States)

    Jha, K.N.

    1999-05-18

    An arc fault detection system for use on ungrounded or high-resistance-grounded power distribution systems is provided which can be retrofitted outside electrical switchboard circuits having limited space constraints. The system includes a differential current relay that senses a current differential between current flowing from secondary windings located in a current transformer coupled to a power supply side of a switchboard, and a total current induced in secondary windings coupled to a load side of the switchboard. When such a current differential is experienced, a current travels through a operating coil of the differential current relay, which in turn opens an upstream circuit breaker located between the switchboard and a power supply to remove the supply of power to the switchboard. 1 fig.

  7. A Grid Voltage Measurement Method for Wind Power Systems during Grid Fault Conditions

    Directory of Open Access Journals (Sweden)

    Cheol-Hee Yoo

    2014-11-01

    Full Text Available Grid codes in many countries require low-voltage ride-through (LVRT capability to maintain power system stability and reliability during grid fault conditions. To meet the LVRT requirement, wind power systems must stay connected to the grid and also supply reactive currents to the grid to support the recovery from fault voltages. This paper presents a new fault detection method and inverter control scheme to improve the LVRT capability for full-scale permanent magnet synchronous generator (PMSG wind power systems. Fast fault detection can help the wind power systems maintain the DC-link voltage in a safe region. The proposed fault detection method is based on on-line adaptive parameter estimation. The performance of the proposed method is verified in comparison to the conventional voltage measurement method defined in the IEC 61400-21 standard.

  8. Reconfigurable fault tolerant avionics system

    Science.gov (United States)

    Ibrahim, M. M.; Asami, K.; Cho, Mengu

    This paper presents the design of a reconfigurable avionics system based on modern Static Random Access Memory (SRAM)-based Field Programmable Gate Array (FPGA) to be used in future generations of nano satellites. A major concern in satellite systems and especially nano satellites is to build robust systems with low-power consumption profiles. The system is designed to be flexible by providing the capability of reconfiguring itself based on its orbital position. As Single Event Upsets (SEU) do not have the same severity and intensity in all orbital locations, having the maximum at the South Atlantic Anomaly (SAA) and the polar cusps, the system does not have to be fully protected all the time in its orbit. An acceptable level of protection against high-energy cosmic rays and charged particles roaming in space is provided within the majority of the orbit through software fault tolerance. Check pointing and roll back, besides control flow assertions, is used for that level of protection. In the minority part of the orbit where severe SEUs are expected to exist, a reconfiguration for the system FPGA is initiated where the processor systems are triplicated and protection through Triple Modular Redundancy (TMR) with feedback is provided. This technique of reconfiguring the system as per the level of the threat expected from SEU-induced faults helps in reducing the average dynamic power consumption of the system to one-third of its maximum. This technique can be viewed as a smart protection through system reconfiguration. The system is built on the commercial version of the (XC5VLX50) Xilinx Virtex5 FPGA on bulk silicon with 324 IO. Simulations of orbit SEU rates were carried out using the SPENVIS web-based software package.

  9. Summary: Experimental validation of real-time fault-tolerant systems

    Science.gov (United States)

    Iyer, R. K.; Choi, G. S.

    1992-01-01

    Testing and validation of real-time systems is always difficult to perform since neither the error generation process nor the fault propagation problem is easy to comprehend. There is no better substitute to results based on actual measurements and experimentation. Such results are essential for developing a rational basis for evaluation and validation of real-time systems. However, with physical experimentation, controllability and observability are limited to external instrumentation that can be hooked-up to the system under test. And this process is quite a difficult, if not impossible, task for a complex system. Also, to set up such experiments for measurements, physical hardware must exist. On the other hand, a simulation approach allows flexibility that is unequaled by any other existing method for system evaluation. A simulation methodology for system evaluation was successfully developed and implemented and the environment was demonstrated using existing real-time avionic systems. The research was oriented toward evaluating the impact of permanent and transient faults in aircraft control computers. Results were obtained for the Bendix BDX 930 system and Hamilton Standard EEC131 jet engine controller. The studies showed that simulated fault injection is valuable, in the design stage, to evaluate the susceptibility of computing sytems to different types of failures.

  10. A Piecewise Affine Hybrid Systems Approach to Fault Tolerant Satellite Formation Control

    DEFF Research Database (Denmark)

    Grunnet, Jacob Deleuran; Larsen, Jesper Abildgaard; Bak, Thomas

    2008-01-01

    In this paper a procedure for modelling satellite formations   including failure dynamics as a piecewise-affine hybrid system is   shown. The formulation enables recently developed methods and tools   for control and analysis of piecewise-affine systems to be applied   leading to synthesis of fault...... tolerant controllers and analysis of   the system behaviour given possible faults.  The method is   illustrated using a simple example involving two satellites trying   to reach a specific formation despite of actuator faults occurring....

  11. Geometry and Kinematics of the Lopukangri Fault System: Implications for Internal Deformation of the Tibetan Plateau

    Science.gov (United States)

    Murphy, M. A.; Taylor, M. H.

    2006-12-01

    We present geologic mapping and structural data from the Lopukangri fault system in south-central Tibet that sheds light on the geometry, kinematics and spatial characteristics of deformation in western Tibet and the western Himalaya. The Lopukangri fault system strikes N09E and extends 150 km from the Lhasa terrane into the Tethyan fold-thrust belt at 84.5° N. Geologic mapping shows that the deformation is accommodated by a northwest dipping oblique fault system, which accommodates both right-lateral and normal dip-slip movement, consistent with right-lateral separations of Quaternary surficial deposits. The fault system juxtaposes amphibolite-grade rocks in its footwall against greenschist-grade rocks in its hanging wall. Deformation is distributed over a 4 km wide zone that predominately records right-lateral normal slip in ductile and brittle shear fabrics. The fault system right-laterally separates the Gangdese batholith, Kailas conglomerate, Great Counter thrust, and the Tethyan fold-thrust belt for 15 km. Age estimates of the Kailas conglomerate in the Kailas region implies that the Lopukangri fault system initiated after the Early Miocene( 23Ma). The observation that the Lopukangri fault system cuts the Indus-Yaly suture zone, rules out active strike-slip faulting along it at this locality. To assess the role of the Lopukangri fault system in accommodating strain within western Tibet, we compare our results with fault-slip data and structural geometries from the Karakoram and Dangardzong (Thakkhola graben) fault systems. The Dangardzong fault shares similar kinematics with the Lopukangri fault system, both display a significant component of right-slip. Although the two faults do not strike into one another, they may be linked via a transfer zone. The Karakoram fault accommodates right-lateral slip in which a portion of the total slip extends from the Tibetan plateau into the Himalayan thrust belt via right-stepover structures. Fault slip data from the

  12. Structural characteristics and implication on tectonic evolution of the Daerbute strike-slip fault in West Junggar area, NW China

    Science.gov (United States)

    Wu, Kongyou; Pei, Yangwen; Li, Tianran; Wang, Xulong; Liu, Yin; Liu, Bo; Ma, Chao; Hong, Mei

    2018-03-01

    The Daerbute fault zone, located in the northwestern margin of the Junggar basin, in the Central Asian Orogenic Belt, is a regional strike-slip fault with a length of 400 km. The NE-SW trending Daerbute fault zone presents a distinct linear trend in plain view, cutting through both the Zair Mountain and the Hala'alate Mountain. Because of the intense contraction and shearing, the rocks within the fault zone experienced high degree of cataclasis, schistosity, and mylonization, resulting in rocks that are easily eroded to form a valley with a width of 300-500 m and a depth of 50-100 m after weathering and erosion. The well-exposed outcrops along the Daerbute fault zone present sub-horizontal striations and sub-vertical fault steps, indicating sub-horizontal shearing along the observed fault planes. Flower structures and horizontal drag folds are also observed in both the well-exposed outcrops and high-resolution satellite images. The distribution of accommodating strike-slip splay faults, e.g., the 973-pluton fault and the Great Jurassic Trough fault, are in accordance with the Riedel model of simple shear. The seismic and time-frequency electromagnetic (TFEM) sections also demonstrate the typical strike-slip characteristics of the Daerbute fault zone. Based on detailed field observations of well-exposed outcrops and seismic sections, the Daerbute fault can be subdivided into two segments: the western segment presents multiple fault cores and damage zones, whereas the eastern segment only presents a single fault core, in which the rocks experienced a higher degree of rock cataclasis, schistosity, and mylonization. In the central overlapping portion between the two segments, the sediments within the fault zone are primarily reddish sandstones, conglomerates, and some mudstones, of which the palynological tests suggest middle Permian as the timing of deposition. The deformation timing of the Daerbute fault was estimated by integrating the depocenters' basinward

  13. Incipient multiple fault diagnosis in real time with applications to large-scale systems

    International Nuclear Information System (INIS)

    Chung, H.Y.; Bien, Z.; Park, J.H.; Seon, P.H.

    1994-01-01

    By using a modified signed directed graph (SDG) together with the distributed artificial neutral networks and a knowledge-based system, a method of incipient multi-fault diagnosis is presented for large-scale physical systems with complex pipes and instrumentations such as valves, actuators, sensors, and controllers. The proposed method is designed so as to (1) make a real-time incipient fault diagnosis possible for large-scale systems, (2) perform the fault diagnosis not only in the steady-state case but also in the transient case as well by using a concept of fault propagation time, which is newly adopted in the SDG model, (3) provide with highly reliable diagnosis results and explanation capability of faults diagnosed as in an expert system, and (4) diagnose the pipe damage such as leaking, break, or throttling. This method is applied for diagnosis of a pressurizer in the Kori Nuclear Power Plant (NPP) unit 2 in Korea under a transient condition, and its result is reported to show satisfactory performance of the method for the incipient multi-fault diagnosis of such a large-scale system in a real-time manner

  14. A system view of the No Fault Found (NFF) phenomenon

    International Nuclear Information System (INIS)

    Soederholm, Peter

    2007-01-01

    When a unit is tested outside a technical system, it has normally been removed due to a fault. However, in some cases the external test may not discover any fault and a No Fault Found (NFF) event may occur. The NFF phenomenon is a major problem when dealing with complex technical systems, and its consequences may be manifested in decreased safety and dependability and increased life cycle costs. There are multiple interacting causes of NFF, demanding tough requirements for successful solutions. The purpose of this paper is to describe the phenomenon of NFF and to highlight possible improvements for the prevention of causes of NFF and the reduction of its consequences. The study was performed as an explorative literature study, and the analysis was based on a holistic system view. The identified causes and solutions are related to life cycle stages, availability performance factors, and system stakeholders

  15. Nonlinear, Adaptive and Fault-tolerant Control for Electro-hydraulic Servo Systems

    DEFF Research Database (Denmark)

    Choux, Martin

    is designed and implemented on the test bed that successfully diagnoses internal or external leakages, friction variations in the actuator or fault related to pressure sensors. The presented algorithm uses the position and pressure measurements to detect and isolate faults, avoiding missed detection and false...... numerous attractive properties, hydraulic systems are always subject to potential leakages in their components, friction variation in their hydraulic actuators and deciency in their sensors. These violations of normal behaviour reduce the system performances and can lead to system failure...... if they are not detected early and handled. Moreover, the task of controlling electro hydraulic systems for high performance operations is challenging due to the highly nonlinear behaviour of such systems and the large amount of uncertainties present in their models. This thesis focuses on nonlinear adaptive fault...

  16. 14 CFR Special Federal Aviation... - Fuel Tank System Fault Tolerance Evaluation Requirements

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel Tank System Fault Tolerance Evaluation..., SFAR No. 88 Special Federal Aviation Regulation No. 88—Fuel Tank System Fault Tolerance Evaluation... certificates that may affect the airplane fuel tank system, for turbine-powered transport category airplanes...

  17. Low strength of deep San Andreas fault gouge from SAFOD core.

    Science.gov (United States)

    Lockner, David A; Morrow, Carolyn; Moore, Diane; Hickman, Stephen

    2011-04-07

    The San Andreas fault accommodates 28-34 mm yr(-1) of right lateral motion of the Pacific crustal plate northwestward past the North American plate. In California, the fault is composed of two distinct locked segments that have produced great earthquakes in historical times, separated by a 150-km-long creeping zone. The San Andreas Fault Observatory at Depth (SAFOD) is a scientific borehole located northwest of Parkfield, California, near the southern end of the creeping zone. Core was recovered from across the actively deforming San Andreas fault at a vertical depth of 2.7 km (ref. 1). Here we report laboratory strength measurements of these fault core materials at in situ conditions, demonstrating that at this locality and this depth the San Andreas fault is profoundly weak (coefficient of friction, 0.15) owing to the presence of the smectite clay mineral saponite, which is one of the weakest phyllosilicates known. This Mg-rich clay is the low-temperature product of metasomatic reactions between the quartzofeldspathic wall rocks and serpentinite blocks in the fault. These findings provide strong evidence that deformation of the mechanically unusual creeping portions of the San Andreas fault system is controlled by the presence of weak minerals rather than by high fluid pressure or other proposed mechanisms. The combination of these measurements of fault core strength with borehole observations yields a self-consistent picture of the stress state of the San Andreas fault at the SAFOD site, in which the fault is intrinsically weak in an otherwise strong crust. ©2011 Macmillan Publishers Limited. All rights reserved

  18. Software fault detection and recovery in critical real-time systems: An approach based on loose coupling

    International Nuclear Information System (INIS)

    Alho, Pekka; Mattila, Jouni

    2014-01-01

    Highlights: •We analyze fault tolerance in mission-critical real-time systems. •Decoupled architectural model can be used to implement fault tolerance. •Prototype implementation for remote handling control system and service manager. •Recovery from transient faults by restarting services. -- Abstract: Remote handling (RH) systems are used to inspect, make changes to, and maintain components in the ITER machine and as such are an example of mission-critical system. Failure in a critical system may cause damage, significant financial losses and loss of experiment runtime, making dependability one of their most important properties. However, even if the software for RH control systems has been developed using best practices, the system might still fail due to undetected faults (bugs), hardware failures, etc. Critical systems therefore need capability to tolerate faults and resume operation after their occurrence. However, design of effective fault detection and recovery mechanisms poses a challenge due to timeliness requirements, growth in scale, and complex interactions. In this paper we evaluate effectiveness of service-oriented architectural approach to fault tolerance in mission-critical real-time systems. We use a prototype implementation for service management with an experimental RH control system and industrial manipulator. The fault tolerance is based on using the high level of decoupling between services to recover from transient faults by service restarts. In case the recovery process is not successful, the system can still be used if the fault was not in a critical software module

  19. Software fault detection and recovery in critical real-time systems: An approach based on loose coupling

    Energy Technology Data Exchange (ETDEWEB)

    Alho, Pekka, E-mail: pekka.alho@tut.fi; Mattila, Jouni

    2014-10-15

    Highlights: •We analyze fault tolerance in mission-critical real-time systems. •Decoupled architectural model can be used to implement fault tolerance. •Prototype implementation for remote handling control system and service manager. •Recovery from transient faults by restarting services. -- Abstract: Remote handling (RH) systems are used to inspect, make changes to, and maintain components in the ITER machine and as such are an example of mission-critical system. Failure in a critical system may cause damage, significant financial losses and loss of experiment runtime, making dependability one of their most important properties. However, even if the software for RH control systems has been developed using best practices, the system might still fail due to undetected faults (bugs), hardware failures, etc. Critical systems therefore need capability to tolerate faults and resume operation after their occurrence. However, design of effective fault detection and recovery mechanisms poses a challenge due to timeliness requirements, growth in scale, and complex interactions. In this paper we evaluate effectiveness of service-oriented architectural approach to fault tolerance in mission-critical real-time systems. We use a prototype implementation for service management with an experimental RH control system and industrial manipulator. The fault tolerance is based on using the high level of decoupling between services to recover from transient faults by service restarts. In case the recovery process is not successful, the system can still be used if the fault was not in a critical software module.

  20. Robust fault-sensitive synchronization of a class of nonlinear systems

    International Nuclear Information System (INIS)

    Xu Shi-Yun; Tang Yong; Sun Hua-Dong; Yang Ying; Liu Xian

    2011-01-01

    Aiming at enhancing the quality as well as the reliability of synchronization, this paper is concerned with the fault detection issue within the synchronization process for a class of nonlinear systems in the existence of external disturbances. To handle such problems, the concept of robust fault-sensitive (RFS) synchronization is proposed, and a method of determining such a kind of synchronization is developed. Under the framework of RFS synchronization, the master and the slave systems are robustly synchronized, and at the same time, sensitive to possible faults based on a mixed H − /H ∞ performance. The design of desired output feedback controller is realized by solving a linear matrix inequality, and the fault sensitivity H − index can be optimized via a convex optimization algorithm. A master-slave configuration composed of identical Chua's circuits is adopted as a numerical example to demonstrate the effectiveness and applicability of the analytical results. (general)

  1. Transcurrencia a lo largo de la Falla Sierra de Varas (Sistema de fallas de la Cordillera de Domeyko, norte de Chile Strike-slip along the Sierra de Varas Fault (Cordillera de Domeyko Fault-System, northern Chile

    Directory of Open Access Journals (Sweden)

    Hans Niemeyer

    2009-01-01

    Aguada del Hornito-Aguada del Cerro Alto de Varas segment. Upper Paleozoic granitoids of the same composition, internal structure and age were cut and displaced by the fault. A sinistral horizontal separation of 15.6±1 kmwitha vertical componentof 4.9±0.1 km, suggests a sinistral-reverse net displacement of 16.4±1 km. Thisis consistent with the local stratigraphic section that was eroded from the eastern block. A kinematic and dynamic analysis of mesofaults spatially related to the SVF displacements was conducted to identify the different fault populations and to obtain the stress tensor. Two structural systems were identified: an early reverse-strike-slip system and a late dextral superposed system. The first one ocurred during late middle Eocene, and the second is post-Miocene with an horizontal displacement of 0.6 km. The presence of coeval strike-slip displacements along the Sierra de Varas Fault and reverse displacements in a 'reverse flower' in the studied segment show that the structural evolution of the Sierra de Varas was dominated by a bulk transpression during the late middle Eocene. The left-lateral displacement here demonstrated for the Sierra de Varas Fault and its inflection to the SE, south of the Aguada del Cerro Alto de Varas are compatible with the westward vergence of the folds and reverse faults in the El Profeta fault-and-thrust belt, which should be also the result of the transpression.

  2. Reliable fault detection and diagnosis of photovoltaic systems based on statistical monitoring approaches

    KAUST Repository

    Harrou, Fouzi

    2017-09-18

    This study reports the development of an innovative fault detection and diagnosis scheme to monitor the direct current (DC) side of photovoltaic (PV) systems. Towards this end, we propose a statistical approach that exploits the advantages of one-diode model and those of the univariate and multivariate exponentially weighted moving average (EWMA) charts to better detect faults. Specifically, we generate array\\'s residuals of current, voltage and power using measured temperature and irradiance. These residuals capture the difference between the measurements and the predictions MPP for the current, voltage and power from the one-diode model, and use them as fault indicators. Then, we apply the multivariate EWMA (MEWMA) monitoring chart to the residuals to detect faults. However, a MEWMA scheme cannot identify the type of fault. Once a fault is detected in MEWMA chart, the univariate EWMA chart based on current and voltage indicators is used to identify the type of fault (e.g., short-circuit, open-circuit and shading faults). We applied this strategy to real data from the grid-connected PV system installed at the Renewable Energy Development Center, Algeria. Results show the capacity of the proposed strategy to monitors the DC side of PV systems and detects partial shading.

  3. Development of a component centered fault monitoring and diagnosis knowledge based system for space power system

    Science.gov (United States)

    Lee, S. C.; Lollar, Louis F.

    1988-01-01

    The overall approach currently being taken in the development of AMPERES (Autonomously Managed Power System Extendable Real-time Expert System), a knowledge-based expert system for fault monitoring and diagnosis of space power systems, is discussed. The system architecture, knowledge representation, and fault monitoring and diagnosis strategy are examined. A 'component-centered' approach developed in this project is described. Critical issues requiring further study are identified.

  4. Simultaneous-Fault Diagnosis of Gas Turbine Generator Systems Using a Pairwise-Coupled Probabilistic Classifier

    Directory of Open Access Journals (Sweden)

    Zhixin Yang

    2013-01-01

    Full Text Available A reliable fault diagnostic system for gas turbine generator system (GTGS, which is complicated and inherent with many types of component faults, is essential to avoid the interruption of electricity supply. However, the GTGS diagnosis faces challenges in terms of the existence of simultaneous-fault diagnosis and high cost in acquiring the exponentially increased simultaneous-fault vibration signals for constructing the diagnostic system. This research proposes a new diagnostic framework combining feature extraction, pairwise-coupled probabilistic classifier, and decision threshold optimization. The feature extraction module adopts wavelet packet transform and time-domain statistical features to extract vibration signal features. Kernel principal component analysis is then applied to further reduce the redundant features. The features of single faults in a simultaneous-fault pattern are extracted and then detected using a probabilistic classifier, namely, pairwise-coupled relevance vector machine, which is trained with single-fault patterns only. Therefore, the training dataset of simultaneous-fault patterns is unnecessary. To optimize the decision threshold, this research proposes to use grid search method which can ensure a global solution as compared with traditional computational intelligence techniques. Experimental results show that the proposed framework performs well for both single-fault and simultaneous-fault diagnosis and is superior to the frameworks without feature extraction and pairwise coupling.

  5. Systems analysis approach to probabilistic modeling of fault trees

    International Nuclear Information System (INIS)

    Bartholomew, R.J.; Qualls, C.R.

    1985-01-01

    A method of probabilistic modeling of fault tree logic combined with stochastic process theory (Markov modeling) has been developed. Systems are then quantitatively analyzed probabilistically in terms of their failure mechanisms including common cause/common mode effects and time dependent failure and/or repair rate effects that include synergistic and propagational mechanisms. The modeling procedure results in a state vector set of first order, linear, inhomogeneous, differential equations describing the time dependent probabilities of failure described by the fault tree. The solutions of this Failure Mode State Variable (FMSV) model are cumulative probability distribution functions of the system. A method of appropriate synthesis of subsystems to form larger systems is developed and applied to practical nuclear power safety systems

  6. A Design Method for Fault Reconfiguration and Fault-Tolerant Control of a Servo Motor

    Directory of Open Access Journals (Sweden)

    Jing He

    2013-01-01

    Full Text Available A design scheme that integrates fault reconfiguration and fault-tolerant position control is proposed for a nonlinear servo system with friction. Analysis of the non-linear friction torque and fault in the system is used to guide design of a sliding mode position controller. A sliding mode observer is designed to achieve fault reconfiguration based on the equivalence principle. Thus, active fault-tolerant position control of the system can be realized. A real-time simulation experiment is performed on a hardware-in-loop simulation platform. The results show that the system reconfigures well for both incipient and abrupt faults. Under the fault-tolerant control mechanism, the output signal for the system position can rapidly track given values without being influenced by faults.

  7. Reliable, fault tolerant control systems for nuclear generating stations

    International Nuclear Information System (INIS)

    McNeil, T.O.; Olmstead, R.A.; Schafer, S.

    1990-01-01

    Two operational features of CANDU Nuclear Power Stations provide for high plant availability. First, the plant re-fuels on-line, thereby eliminating the need for periodic and lengthy refuelling 'outages'. Second, the all plants are controlled by real-time computer systems. Later plants are also protected using real-time com