WorldWideScience

Sample records for segmental concrete bridge

  1. Construction of precast high performance concrete segmental bridges.

    OpenAIRE

    Ruiz Ripoll, Lidia

    2016-01-01

    The construction of both medium and long span precast concrete segmental bridges is widely spread throughout Spain. Usually, the segments have multiple-keyed epoxy joints, and are assembled by internal prestressing. Yet, there is a more recent type of bridge with dry joints and external prestressing. In these last ones, shear is transferred through physical support between keys and friction between faces of the compressed joint. This shear force is evaluated using friction coefficients from t...

  2. Revised Rules for Concrete Bridges

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle; Jensen, F. M.; Middleton, C.

    This paper is based on research performed for the Highway Agency, London, UK under the project DPU/9/44 "Revision of Bridge Assessment Rules Based on Whole Life Performance: Concrete Bridges" It contains details of a methodology which can be used to generate Whole Life (WL) reliability profiles....... These WL reliability profiles may be used to establish revised rules for Concrete Bridges....

  3. Concrete-Filled Steel Tube Arch Bridges in China

    Directory of Open Access Journals (Sweden)

    Jielian Zheng

    2018-02-01

    Full Text Available In the past 20 years, great progress has been achieved in China in the construction of concrete-filled steel tube (CFST arch bridges and concrete arch bridges with a CFST skeleton. The span of these bridges has been increasing rapidly, which is rare in the history of bridge development. The large-scale construction of expressways and high-speed railways demands the development of long-span arch bridges, and advances in design and construction techniques have made it possible to construct such bridges. In the present study, the current status, development, and major innovative technologies of CFST arch bridges and concrete arch bridges with a CFST skeleton in China are elaborated. This paper covers the key construction technologies of CFST arch bridges, such as the design, manufacture, and installation of steel tube arch trusses, the preparation and pouring of in-tube concrete, and the construction of the world’s longest CFST arch bridge—the First Hejiang Yangtze River Bridge. The main construction technologies of reinforced concrete arch bridges are also presented, which include cable-stayed fastening-hanging cantilever assembly, adjusting the load by means of stay cables, surrounding the concrete for arch rib pouring, and so forth. In addition, the construction of two CFST skeleton concrete arch bridges—the Guangxi Yongning Yong River Bridge and the Yunnan–Guangxi Railway Nanpan River Bridge—is discussed. CFST arch bridges in China have already gained a world-leading position; with the continuous innovation of key technologies, China will become the new leader in promoting the development of arch bridges. Keywords: Concrete-filled steel tube (CFST arch bridge, Steel-reinforced concrete arch bridge, Cable-stayed fastening-hanging cantilever assembly, Vacuum-assisted pouring in-tube concrete, Adjusting load by stay cables

  4. Re-Assessment of Concrete Bridges

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    In this paper two aspects of re-assessment of the reliability of concrete bridges are discussed namely modelling of the corrosion of reinforcement and updating of uncertain variables. The main reason for deterioration of concrete bridges is corrosion of the reinforcement. Therefore, modelling...

  5. Reliability Assessment of Concrete Bridges

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle; Middleton, C. R.

    This paper is partly based on research performed for the Highways Agency, London, UK under the project DPU/9/44 "Revision of Bridge Assessment Rules Based on Whole Life Performance: concrete bridges". It contains the details of a methodology which can be used to generate Whole Life (WL) reliability...... profiles. These WL reliability profiles may be used to establish revised rules for concrete bridges. This paper is to some extend based on Thoft-Christensen et. al. [1996], Thoft-Christensen [1996] et. al. and Thoft-Christensen [1996]....

  6. Reinforced concrete bridges: effects due to corrosion and concrete young modulus variation

    Directory of Open Access Journals (Sweden)

    P. T. C. Mendes

    Full Text Available Most of the Brazilian bridges of federal road network are made of reinforced concrete and are more than 30 years old, with little information about the mechanical properties of their constitutive materials. Along the service life of these bridges much modification occurred on vehicles load and geometry and in design standard. Many of them show signs of concrete and steel deterioration and their stability conditions are unknown. With the aim of contributing to the structural evaluation of reinforced concrete bridges it was decided to analyze the stresses in reinforced concrete bridge sections to verify the effects due to reinforcement corrosion and variation of the concrete Young modulus on the stress distribution regarding several load patterns and cracking effects in a representative bridge of the Brazilian road network with different longitudinal reinforcement taxes and two concrete Young modulus, Ec and 0.5Ec, and with different percentage of reinforcement corrosion. The analysis considered two finite element models: frame and shell elements as well as solid elements. The results indicate that these variation effects are more significant in reinforcement bars than in concrete.

  7. A review on the suitability of rubberized concrete for concrete bridge decks

    Science.gov (United States)

    Syamir Senin, Mohamad; Shahidan, Shahiron; Radziah Abdullah, Siti; Anting Guntor, Nickholas; Syazani Leman, Alif

    2017-11-01

    Road authorities manage a large population of ageing bridges, a substantial number of which fail to meet the current requirements either due to deterioration and other structural deficiencies or as a result of the escalating demands imposed by increased traffic. This problem is related to the dynamic load from vehicles. This problem can be solved by producing a type of concrete that can reduce the amplitude of oscillation or vibration such as rubberized concrete. Green construction has been a very important aspect in concrete production field in the last decade. One of the most problematic waste materials is scrap tires. The use of scrap tires in civil engineering is increasing by producing rubberized concrete. Rubberized concrete is a type of concrete that is mixed with rubber. The purpose of this review is to justify the suitability of rubberized concrete for concrete bridge decks. Several parameters named physical, chemical and mechanical properties were measured to ensure the suitability of rubberized concrete for concrete bridge decks. Rubberized concrete has similar workability to normal concrete. The rubber reduced the density and compressive strength of the concrete while increased the flexural strength, water absorption and damping ratio. The used of rubber in concrete beyond 20% is not recommended due to decreasing in compressive strength. Rubberized concrete recommended to be used in circumstances where vibration damping was required such as in bridge construction as shock-wave absorber.

  8. Monolithic Concrete vs Precast Concrete for the Construction of Bridge by Th Cantilever Method

    Directory of Open Access Journals (Sweden)

    Morlova Dumitru Daniel

    2015-07-01

    Full Text Available In the article "Monolithic Concrete vs Precast Concrete for the Construction of Bridges by the Cantilever Method", there are approached a number of issues that come out in the design and execution of prestressed concrete bridge structures using the cantilever method.

  9. Estimation of the Service Lifetime of Concrete Bridges

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    In this paper estimation of the service lifetime of concrete bridges is discussed. The main reason for deterioration of concrete bridges is corrosion of the reinforcement. Therefore, modelling of the corrosion process is an important aspect of the estimation of the service lifetime. In this paper...

  10. Assessment of the Reliability of Concrete Bridges

    DEFF Research Database (Denmark)

    Middleton, C. R.; Thoft-Christensen, Palle

    Although there has been a considerable amount of research into different aspects of concrete bridge reliability, it has still not been widely adopted in professional practice other than in the development and calibration of codes. This situation appears to be changing as there has been a signific......Although there has been a considerable amount of research into different aspects of concrete bridge reliability, it has still not been widely adopted in professional practice other than in the development and calibration of codes. This situation appears to be changing as there has been...... adopted to assist in achieving this goal. Rather than review the specific research on this subject this paper examines a number of key issues related to the practical application of reliability analysis to the assessment of concrete bridges....

  11. Inspection Strategies for Concrete Bridges

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Thoft-Christensen, Palle

    1989-01-01

    In this paper an optimal inspection strategy for concrete bridges based on periodic routine and detailed inspections is presented. The failure mode considered is corrosion of the reinforcement due to chlorides. A simple modelling of the corrosion and of the inspection strategy is presented....... The optimal inspection strategy is determined from an optimization problem, where the design variables are time intervals between detailed inspections and the concrete cover. The strategy is illustrated on a simple structure, namely a reinforced concrete beam....

  12. Aesthetic coatings for concrete bridge components

    Science.gov (United States)

    Kriha, Brent R.

    This thesis evaluated the durability and aesthetic performance of coating systems for utilization in concrete bridge applications. The principle objectives of this thesis were: 1) Identify aesthetic coating systems appropriate for concrete bridge applications; 2) Evaluate the performance of the selected systems through a laboratory testing regimen; 3) Develop guidelines for coating selection, surface preparation, and application. A series of site visits to various bridges throughout the State of Wisconsin provided insight into the performance of common coating systems and allowed problematic structural details to be identified. To aid in the selection of appropriate coating systems, questionnaires were distributed to coating manufacturers, bridge contractors, and various DOT offices to identify high performing coating systems and best practices for surface preparation and application. These efforts supplemented a literature review investigating recent publications related to formulation, selection, surface preparation, application, and performance evaluation of coating materials.

  13. Evaluation of bridge deck with shrinkage-compensating concrete.

    Science.gov (United States)

    2016-04-01

    Concrete bridge decks are susceptible to premature cracking and to corrosion of reinforcing steel. Low-permeability : concrete does not always ensure durability if the concrete has excessive cracks that facilitate the intrusion of aggressive solution...

  14. Dynamic behaviour of prestressed concrete bridges

    International Nuclear Information System (INIS)

    Javor, T.

    1982-01-01

    The paper presents the results of experimental research of dynamic effects on prestressed concrete bridges in dynamic load tests using testing vehicles. The bridges were passed over in both directions at various speeds also running over an artificial unevenness to produce impact loads. From investigated bridges are shown the dynamic quantities such as dynamic coefficients, natural frequency, logarithmical decrement of damping, etc. (orig.) [de

  15. 0-6722 : spread prestressed concrete slab beam bridges.

    Science.gov (United States)

    2014-08-01

    The Texas Department of Transportation uses : precast prestressed concrete slab beam bridges for : shorter-span bridges of approximately 3050 ft in : length. Conventional slab beam bridges have slab : beams placed immediately adjacent to one anoth...

  16. Lifetime Reliability Assessment of Concrete Slab Bridges

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    A procedure for lifetime assesment of the reliability of short concrete slab bridges is presented in the paper. Corrosion of the reinforcement is the deterioration mechanism used for estimating the reliability profiles for such bridges. The importance of using sensitivity measures is stressed....... Finally the produce is illustrated on 6 existing UK bridges....

  17. Assessment of concrete bridge decks with alkali silica reactions

    DEFF Research Database (Denmark)

    Eriksen, Kirsten; Jansson, Jacob; Geiker, Mette Rica

    2008-01-01

    Based on investigations of concrete from an approximately 40 years old bridge a procedure to support the management of maintenance and repair of alkali silica damaged bridges is proposed. Combined petrography and accelerated expansion testing were undertaken on cores from the Bridge at Skovdiget......, Bagsværd, Denmark to provide information on the damage condition as well as the residual reactivity of the concrete. The Danish Road Directory’s guidelines for inspection and assessment of alkali silica damaged bridges will be briefly presented, and proposed modifications will be describe...

  18. Hysteretic behavior of prestressed concrete bridge pier with fiber model.

    Science.gov (United States)

    Wang, Hui-li; Feng, Guang-qi; Qin, Si-feng

    2014-01-01

    The hysteretic behavior and seismic characteristics of the prestressed concrete bridge pier were researched. The effects of the prestressed tendon ratio, the longitudinal reinforcement ratio, and the stirrup reinforcement ratio on the hysteretic behavior and seismic characteristics of the prestressed concrete bridge pier have been obtained with the fiber model analysis method. The analysis show some results about the prestressed concrete bridge pier. Firstly, greater prestressed tendon ratio and more longitudinal reinforcement can lead to more obvious pier's hysteresis loop "pinching effect," smaller residual displacement, and lower energy dissipation capacity. Secondly, the greater the stirrup reinforcement ratio is, the greater the hysteresis loop area is. That also means that bridge piers will have better ductility and stronger shear capacity. The results of the research will provide a theoretical basis for the hysteretic behavior analysis of the prestressed concrete pier.

  19. Hybrid Bridge Structures Made of Frp Composite and Concrete

    Science.gov (United States)

    Rajchel, Mateusz; Siwowski, Tomasz

    2017-09-01

    Despite many advantages over the conventional construction materials, the contemporary development of FRP composites in bridge engineering is limited due to high initial cost, low stiffness (in case of glass fibers) and sudden composite failure mode. In order to reduce the given limitations, mixed (hybrid) solutions connecting the FRP composites and conventional construction materials, including concrete, have been tested in many countries for 20 years. Shaping the hybrid structures based on the attributes of particular materials, aims to increase stiffness and reduce cost without losing the carrying capacity, lightness and easiness of bridges that includes such hybrid girders, and to avoid the sudden dangerous failure mode. In the following article, the authors described examples of hybrid road bridges made of FRP composite and concrete within the time of 20 years and presented the first Polish hybrid FRP-concrete road bridge. Also, the directions of further research, necessary to spread these innovative, advanced and sustainable bridge structures were indicated.

  20. Assessing the need for intermediate diaphragms in prestressed concrete bridges.

    Science.gov (United States)

    2008-03-01

    Reinforced concrete intermediate diaphragms (IDs) are currently being used in prestressed concrete (PC) girder bridges in Louisiana. Some of the advantages of providing IDs are disputed in the bridge community; the use of IDs increases the cost and t...

  1. Algorithms for highway-speed acoustic impact-echo evaluation of concrete bridge decks

    Science.gov (United States)

    Mazzeo, Brian A.; Guthrie, W. Spencer

    2018-04-01

    A new acoustic impact-echo testing device has been developed for detecting and mapping delaminations in concrete bridge decks at highway speeds. The apparatus produces nearly continuous acoustic excitation of concrete bridge decks through rolling mats of chains that are placed around six wheels mounted to a hinged trailer. The wheels approximately span the width of a traffic lane, and the ability to remotely lower and raise the apparatus using a winch system allows continuous data collection without stationary traffic control or exposure of personnel to traffic. Microphones near the wheels are used to record the acoustic response of the bridge deck during testing. In conjunction with the development of this new apparatus, advances in the algorithms required for data analysis were needed. This paper describes the general framework of the algorithms developed for converting differential global positioning system data and multi-channel audio data into maps that can be used in support of engineering decisions about bridge deck maintenance, rehabilitation, and replacement (MR&R). Acquisition of position and audio data is coordinated on a laptop computer through a custom graphical user interface. All of the streams of data are synchronized with the universal computer time so that audio data can be associated with interpolated position information through data post-processing. The audio segments are individually processed according to particular detection algorithms that can adapt to variations in microphone sensitivity or particular chain excitations. Features that are greater than a predetermined threshold, which is held constant throughout the analysis, are then subjected to further analysis and included in a map that shows the results of the testing. Maps of data collected on a bridge deck using the new acoustic impact-echo testing device at different speeds ranging from approximately 10 km/h to 55 km/h indicate that the collected data are reasonably repeatable. Use

  2. Hybrid FRP-concrete bridge deck system final report II : long term performance of hybrid FRP-concrete bridge deck system.

    Science.gov (United States)

    2009-06-01

    This report describes the investigation of the long term structural performance of a : hybrid FRP-concrete (HFRPC) bridge deck on steel girders. The study aimed at : assessing three long term aspects pertaining to the HFRPC bridge deck: (1) creep : c...

  3. Self-Consolidating Concrete for Prestressed Bridge Girders : Research Brief

    Science.gov (United States)

    2017-08-01

    Self-consolidating concrete (SCC) is commonly used as an alternative to conventional concrete (CC) in precast, prestressed concrete (PSC) bridge girders. The high strength, highly workable mixture can flow through dense reinforcement to fill formwork...

  4. Causes of Early Age Cracking on Concrete Bridge Deck Expansion Joint Repair Sections

    Directory of Open Access Journals (Sweden)

    Jared R. Wright

    2014-01-01

    Full Text Available Cracking of newly placed binary Portland cement-slag concrete adjacent to bridge deck expansion dam replacements has been observed on several newly rehabilitated sections of bridge decks. This paper investigates the causes of cracking by assessing the concrete mixtures specified for bridge deck rehabilitation projects, as well as reviewing the structural design of decks and the construction and curing methods implemented by the contractors. The work consists of (1 a comprehensive literature review of the causes of cracking on bridge decks, (2 a review of previous bridge deck rehabilitation projects that experienced early-age cracking along with construction observations of active deck rehabilitation projects, and (3 an experimental evaluation of the two most commonly used bridge deck concrete mixtures. Based on the literature review, the causes of concrete bridge deck cracking can be classified into three categories: concrete material properties, construction practices, and structural design factors. The most likely causes of the observed early-age cracking were found to be inadequate curing and failure to properly eliminate the risk of plastic shrinkage cracking. These results underscore the significance of proper moist curing methods for concrete bridge decks, including repair sections. This document also provides a blueprint for future researchers to investigate early-age cracking of concrete structures.

  5. Evaluation of concrete bridge mix designs for control of cracking, phase I.

    Science.gov (United States)

    2014-11-01

    Cracking of concrete is a common problem with concrete structures such as bridge decks, pavements and bridge : rail. The Agency of Transportation (VTrans) has recently invested in higher performing concrete mixes that are : more impervious and has hi...

  6. CF60 Concrete Composition Design and Application on Fudiankou Xijiang Super Large Bridge

    Science.gov (United States)

    Qiu, Yi Mei; Wen, Sen Yuan; Chen, Jun Xiang

    2018-06-01

    Guangxi Wuzhou City Ring Road Fudiankou Xijiang super large bridge CF60 concrete is a new multi-phase composite high-performance concrete, this paper for the Fudiankou Xijiang bridge structure and characteristics of the project, in accordance with the principle of local materials and technical specification requirements, combined with the site conditions of CF60 engineering high performance concrete component materials, proportion and the technical performance, quantify the main physical and mechanical performance index. Analysis main influencing factors of the technical indicators, reasonable adjustment of concrete mix design parameters, and the use of technical means of admixture and multi-function composite admixture of concrete, obtain the optimal proportion of good work, process, mechanical properties stability and durability of engineering properties, recommend and verification of concrete mix; to explore the CF60 high performance concrete Soil in the Fudiankou Xijiang bridge application technology, detection and tracking the quality of concrete construction, concrete structure during the construction of the key technology and control points is proposed, evaluation of CF60 high performance concrete in the actual engineering application effect and benefit to ensure engineering quality of bridge structure and service life, and super long span bridge engineering construction to provide basis and reference.

  7. Evaluation of a highway bridge constructed using high strength lightweight concrete bridge girders.

    Science.gov (United States)

    2011-04-01

    The use of high performance concretes to provide longer bridge spans has been limited due to the capacity of existing infrastructure to handle the load of the girders during transportation. The use of High Strength Lightweight Concrete (HSLW) can pro...

  8. An Expert System for Concrete Bridge Management

    DEFF Research Database (Denmark)

    Brito, J. de; Branco, F. A.; Thoft-Christensen, Palle

    1997-01-01

    The importance of bridge repair versus new bridge construction has risen in recent decades due to high deterioration rates that have been observed in these structures. Budgets both for building new bridges and keeping the existing ones are always limited. To help rational decision-making, bridge...... management systems are presently being implemented by bridge authorities in several countries. The prototype of an expert system for concrete bridge management is presented in this paper, with its functionality relying on two modules. The inspection module relies on a periodic acquisition of field...... information complemented by a knowledge-based interactive system, BRIDGE-1. To optimize management strategies at the headquarters, the BRIDGE-2 module was implemented, including three submodules: inspection strategy, maintenance and repair....

  9. Study on Construction Technology of Municipal Road and Bridge Concrete

    Science.gov (United States)

    Tang, Fuyong

    2018-03-01

    With the continuous development of social economy and the accelerating process of urbanization, municipal road and bridge projects have also shown a trend of rapid development. Municipal road and bridge work can fully reflect the economic and cultural development level of cities and is also an important symbol of urban development. As a basic material of construction, concrete is widely used in engineering construction. This article will analyze the municipal road and bridge concrete construction technology, put forward corresponding measures.

  10. Synthesis of concrete bridge piles prestressed with CFRP systems.

    Science.gov (United States)

    2017-06-01

    The Texas Department of Transportation frequently constructs prestressed concrete piles for use in bridge : foundations. Such prestressed concrete piles are typically built with steel strands that are highly susceptible to : environmental degradation...

  11. Acoustic emission techniques applied to conventionally reinforced concrete bridge girders.

    Science.gov (United States)

    2008-09-01

    Reinforced concrete (RC) bridges generally operate at service-level loads except during discrete overload events that can reduce the integrity of the structure by initiating concrete cracks, widening or extending of existing concrete cracks, as well ...

  12. Application of super workable concrete to main tower of cable-stayed prestressed concrete bridge. ; Kiba park grand bridge. PC shachokyo no shuto eno tekiyo. ; Kiba koen ohashi

    Energy Technology Data Exchange (ETDEWEB)

    Matsuoka, Y.; Shindo, T.; Sakamoto, A. (Taisei Corp., Tokyo (Japan))

    1993-08-01

    The Kiba Park Grand Bridge is a cable-stayed prestressed concrete (PC) bridge with a length of 186m. The main tower of this PC cable-stayed bridge consists of a pair of vertical columns with height of 60m and a beam connecting the columns. For the purpose of the advanced efficiency of construction without formwork and removal work and the improvement of durability, the precast buried formwork made of polymer impregnated concrete formwork was adopted. Approximate 650 cubic meter of super workable concrete was placed for the upper part ranging from 7th to 17th blocks of vertical columns and the beam. Blast furnace cement B and fly ash were used as binder. Naphthalenesulfonic acid type high performance water reducing agent and lignosulfonic acid type AE (air-entraining) water reducing agent were used as admixtures. Super workable concrete was mixed using forced double-axle mixers in the ready-mixed concrete plant. Satisfactory quality of the fresh concrete and strength of the hardened concrete were obtained. 2 refs., 11 figs., 3 tabs.

  13. On Reliability Based Optimal Design of Concrete Bridges

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    In recent years important progress has been made in assessment of the lifetime behaviour of concrete bridges. Due to the large uncertainties related to the loading and the deterioration of such bridges, an assessment based on stochastic modelling of the significant parameters seems to be only...

  14. Earthquake Resilient Bridge Columns Utilizing Damage Resistant Hybrid Fiber Reinforced Concrete

    OpenAIRE

    Trono, William Dean

    2014-01-01

    Modern reinforced concrete bridges are designed to avoid collapse and to prevent loss of life during earthquakes. To meet these objectives, bridge columns are typically detailed to form ductile plastic hinges when large displacements occur. California seismic design criteria acknowledges that damage such as concrete cover spalling and reinforcing bar yielding may occur in columns during a design-level earthquake. The seismic resilience of bridge columns can be improved through the use of a da...

  15. Assessment of the Reliability of Concrete Slab Bridges

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle; Jensen, F. M.; Middleton, C. R.

    This paper is based on research performed for the Highways Agency, London, UK under the project DPU/9/44 "Revision of Bridge Assessment Rules Based on Whole Life Performance: Concrete Bridges". It contains details of a methodology which can be used to generate Whole Life (WL) reliability profiles....

  16. Analysis of prestressed concrete wall segments

    International Nuclear Information System (INIS)

    Koziak, B.D.P.; Murray, D.W.

    1979-06-01

    An iterative numerical technique for analysing the biaxial response of reinforced and prestressed concrete wall segments subject to combinations of prestressing, creep, temperature and live loads is presented. Two concrete constitutive relations are available for this analysis. The first is a uniaxially bilinear model with a tension cut-off. The second is a nonlinear biaxial relation incorporating equivalent uniaxial strains to remove the Poissons's ratio effect under biaxial loading. Predictions from both the bilinear and nonlinear model are compared with observations from experimental wall segments tested in tension. The nonlinear model results are shown to be close to those of the test segments, while the bilinear results are good up to cracking. Further comparisons are made between the nonlinear analysis using constant membrane force-moment ratios, constant membrane force-curvature ratios, and a nonlinear finite difference analysis of a test containment structure. Neither nonlinear analysis could predict the reponse of every wall segment within the structure, but the constant membrane force-moment analysis provided lower bound results. (author)

  17. Shear capacity of in service prestressed concrete bridge girders.

    Science.gov (United States)

    2010-05-17

    The design of prestressed concrete bridge girders has changed significantly over the past several : decades. Specifically, the design procedure to calculate the shear capacity of bridge girders that : was used forty years ago is very different than t...

  18. Vertical impedance measurements on concrete bridge decks for assessing susceptibility of reinforcing steel to corrosion

    Science.gov (United States)

    Bartholomew, Paul D.; Guthrie, W. Spencer; Mazzeo, Brian A.

    2012-08-01

    Corrosion is a pressing problem for aging concrete infrastructure, especially bridge decks. Because of its sensitivity to factors that affect corrosion of reinforcing steel in concrete, resistivity is an important structural health indicator for reinforced concrete structures. In this research, an instrument was developed to measure vertical impedance on concrete bridge decks. Measurements of vertical impedance on slabs prepared in the laboratory, on slabs removed from decommissioned bridge decks, and on an in-service bridge deck in the field demonstrate the utility of the new apparatus.

  19. Recent design methods for prestressed concrete cable stayed bridge; PC shachokyo no sekkei gijutsu no genjo

    Energy Technology Data Exchange (ETDEWEB)

    Otsuka, K. [Kajima Corp., Tokyo (Japan)

    1995-02-01

    The number of constructed prestressed concrete cable stayed bridges reached nearly 100 in Japan, and the technique has greatly developed. In this article, the current status of design techniques for prestressed concrete cable stayed bridges were introduced along with the examples of constructed bridges for the analysis method and the design method for each structure part while introducing the current examples of constructed bridges. Also, this kind of extra-dosed prestressed concrete bridge and prestressed concrete bridge with prestressed concrete stays were reported. Standards have been prepared including a chapter for the prestressed concrete cable stayed bridges in the Road Bridge Guideline document in February 1990. Load to be noticed as the characteristics peculiar to the prestressed concrete cable stayed bridges includes the shock due to live load, temperature change, and execution error of a tower. For example, 1/1000 of the total tower height is generally considered as the execution error of the tower. A diagonal member is manufactured at factories and in fields and has both advantages and disadvantages. The linear analysis of plane framework is general. Damping of and earthquakeproof designs against the wind and earthquake of the diagonal member were also provided. 11 refs., 17 figs., 2 tabs.

  20. 77 FR 54652 - Draft Program Comment for Common Post-1945 Concrete and Steel Bridges

    Science.gov (United States)

    2012-09-05

    ... constructed by State transportation agencies after 1945, using reinforced concrete or steel beams and designs... proposed Program Comment: Program Comment for Common Post-1945 Concrete and Steel Bridges I. Introduction... reinforced concrete or steel beams and designs that quickly became standardized. These common bridge types...

  1. Effect of soil–structure interaction on the reliability of reinforced concrete bridges

    OpenAIRE

    Kamel Bezih; Alaa Chateauneuf; Mahdi Kalla; Claude Bacconnet

    2015-01-01

    In the design of reinforced concrete (RC) bridges, the random and nonlinear behavior of soil may lead to insufficient reliability levels. For this reason, it is necessary to take into account the variability of soil properties which can significantly affect the bridge behavior regarding ultimate and serviceability limit states. This study investigates the failure probability for existing reinforced concrete bridges due to the effects of interaction between the soil and the structure. In this ...

  2. Flexural and Shear Behavior of FRP Strengthened AASHTO Type Concrete Bridge Girders

    Directory of Open Access Journals (Sweden)

    Nur Yazdani

    2016-01-01

    Full Text Available Fiber-reinforced polymers (FRP are being increasingly used for the repair and strengthening of deteriorated or unsafe concrete structures, including structurally deficient concrete highway bridges. The behavior of FRP strengthened concrete bridge girders, including failure modes, failure loads, and deflections, can be determined using an analytical finite element modeling approach, as outlined in this paper. The differences in flexural versus shear FRP strengthening and comparison with available design guidelines are also beneficial to design professionals. In this paper, a common AASHTO type prestressed concrete bridge girder with FRP wrapping was analyzed using the ANSYS FEM software and the ACI analytical approach. Both flexural and shear FRP applications, including vertical and inclined shear strengthening, were examined. Results showed that FRP wrapping can significantly benefit concrete bridge girders in terms of flexure/shear capacity increase, deflection reduction, and crack control. The FRP strength was underutilized in the section selected herein, which could be addressed through decrease of the amount of FRP and prestressing steel used, thereby increasing the section ductility. The ACI approach produced comparable results to the FEM and can be effectively and conveniently used in design.

  3. Self-Consolidating Concrete for Prestressed Bridge Girders

    Science.gov (United States)

    2017-07-01

    This document reports the findings of a research project designed to better understand material and structural performance of prestressed bridge girders made with Self-Consolidating Concrete (SCC) from Wisconsin. SCC has high potential to be used for...

  4. Ældre betonbroers bæreevne (Load bearing capacity of old concrete bridges)

    DEFF Research Database (Denmark)

    Nielsen, Anders

    1999-01-01

    Two old bridges have been analysed in connection with their demolition. The first one is a pedestrian bridge, the Gefion bridge, from 1894. This is the first bridge of reinforced concrete in Denmark. Here the creep in the concrete severely have changed the way in which the load on the bridge was ...... was carried. - The other is a motor way bridge from 1939, which were reinforced 1991 with external steel plates on the areas of shear on the beams. Four beams were carried to our laboratory and load tested. The steel plates have doubled the load bearing capacity of the beams....

  5. Multimedia package for LRFD concrete bridge design.

    Science.gov (United States)

    2009-02-01

    This Project developed a Load and Resistance Factor Design (LRFD) multimedia package to provide a practical introduction and an in-depth understanding of the technological advances in the design of concrete bridges. This package can be used to train ...

  6. Abrasion-resistant concrete mix designs for precast bridge deck panels.

    Science.gov (United States)

    2010-08-01

    The report documents laboratory investigations undertaken to develop high performance concrete (HPC) for precast and pre-stressed bridge deck components that would reduce the life-cycle cost of bridges by improving the studded tire wear (abrasion) re...

  7. Determination of in-situ strength on selected bridge element concrete girder and slab of Nagtahan bridge using rebound hammer test

    International Nuclear Information System (INIS)

    Uy, Bernadette Betsy B.; Banaga, Renato T.

    2013-01-01

    This study examined the extent of the damage due to fire on the affected areas of the bridge structure. The need to assess the damage of the Nagtahan Bridge is very useful to provide appropriate measures in the repair or in the reinforcement of the bridge, hence will ensure its strength and integrity. The study included two (2) spans of the bridge deck/slab with specific locations of the bridge that were subjected for testing. The Rebound Hammer was used as a preliminary test in evaluating the bridge condition. Its capability is to assess the in-place uniformity of concrete, to delineate regions in a structure of poor quality or deteriorated concrete, and to estimate the in-place strength; and ultimately, for relative comparison between the different structures of the bridge. With the use of the NDT Rebound Hammer Test, the researchers were able to determine whether or not the in-situ strength of the bridge's concrete has been weakened due to fire. The DPW-Standard Specification is the government acceptable manual, containing the acceptance criteria, used as the basis for standard construction procedures in the department.(author)

  8. Acoustic emission techniques applied to conventionally reinforced concrete bridge girders : final report.

    Science.gov (United States)

    2008-09-01

    Reinforced concrete (RC) bridges generally operate at service-level loads except during discrete overload events that can reduce the integrity of the structure by initiating concrete cracks, widening or extending of existing concrete cracks, as well ...

  9. STRENGTHENING OF A REINFORCED CONCRETE BRIDGE WITH PRESTRESSED STEEL WIRE ROPES

    Directory of Open Access Journals (Sweden)

    Kexin Zhang

    2017-10-01

    Full Text Available This paper describes prestressed steel wire ropes as a way to strengthen a 20-year-old RC T-beam bridge. High strength, low relaxation steel wire ropes with minor radius, high tensile strain and good corrosion resistance were used in this reinforcement. The construction process for strengthening with prestressed steel wire ropes—including wire rope measuring, extruding anchor heads making, anchorage installing, tensioning steel wire ropes and pouring mortar was described. Ultimate bearing capacity of the bridge after strengthening was discussed based on the concrete structure theory. The flexural strength of RC T-beam bridges strengthened with prestressed steel wire ropes was governed by the failure of concrete crushing. To investigate effectiveness of the strengthening method, fielding-load tests were carried out before and after strengthening. The results of concrete strain and deflection show that the flexural strength and stiffness of the strengthened beam are improved. The crack width measurement also indicates that this technique could increase the durability of the bridge. Thus, this strengthened way with prestressed steel wire rope is feasible and effective.

  10. Continuity diaphragm for skewed continuous span precast prestressed concrete girder bridges : technical summary report.

    Science.gov (United States)

    2004-03-01

    Most highway bridges are built as cast-in-place : reinforced concrete slabs and prestressed concrete : girders. The shear connectors on the top of the girders : assure composite action between the slabs and : girders. The design guidelines for bridge...

  11. Recommendations for Longitudinal Post-Tensioning in Full-Depth Precast Concrete Bridge Deck Panels

    OpenAIRE

    Bowers, Susan Elizabeth

    2007-01-01

    Full-depth precast concrete panels offer an efficient alternative to traditional cast-in-place concrete for replacement or new construction of bridge decks. Research has shown that longitudinal post-tensioning helps keep the precast bridge deck in compression and avoid problems such as leaking, cracking, spalling, and subsequent rusting on the beams at the transverse panel joints. Current design recommendations suggest levels of initial compression for precast concrete decks in a very limit...

  12. Severe ASR damaged concrete bridges

    DEFF Research Database (Denmark)

    Antonio Barbosa, Ricardo; Gustenhoff Hansen, Søren

    2015-01-01

    Technical University of Denmark (DTU) and University of Southern Denmark (SDU) have conducted several full-scale experiments with severe ASR deteriorated bridges. This paper presents few and preliminary results from both the shear tests and the measuring of the material properties. The shear test...... show that the shear capacity is almost unaffected of ASR despite significant reduction in compressive concrete strength. Furthermore, measurements show a significant tensile reinforcement strain developed due to ASR expansion....

  13. APPLICATION OF ULTRA-HIGH PERFORMANCE CONCRETE TO PEDESTRIAN CABLE-STAYED BRIDGES

    Directory of Open Access Journals (Sweden)

    CHI-DONG LEE

    2013-06-01

    Full Text Available The use of ultra-high performance concrete (UHPC, which enables reducing the cross sectional dimension of the structures due to its high strength, is expected in the construction of the super-long span bridges. Unlike conventional concrete, UHPC experiences less variation of material properties such as creep and drying shrinkage and can reduce uncertainties in predicting time-dependent behavior over the long term. This study describes UHPC’s material characteristics and benefits when applied to super-long span bridges. A UHPC girder pedestrian cable-stayed bridge was designed and successfully constructed. The UHPC reduced the deflections in both the short and long term. The cost analysis demonstrates a highly competitive price for UHPC. This study indicates that UHPC has a strong potential for application in the super-long span bridges.

  14. Latex-modified fiber-reinforced concrete bridge deck overlay : construction/interim report.

    Science.gov (United States)

    1993-06-01

    Latex-modified concrete (LMC) is Portland cement concrete (PCC) with an admixture of latex. LMC is considered to be nearly impermeable to chlorides and is extensively used to construct bridge deck overlays. Unfortunately, some of these overlays have ...

  15. Experimental Investigation of a Self-Sensing Hybrid GFRP-Concrete Bridge Superstructure with Embedded FBG Sensors

    OpenAIRE

    Wang, Yanlei; Li, Yunyu; Ran, Jianghua; Cao, Mingmin

    2012-01-01

    A self-sensing hybrid GFRP-concrete bridge superstructure, which consists of two bridge decks and each bridge deck is comprised of four GFRP box sections combined with a thin layer of concrete in the compression zone, was developed by using eight embedded FBG sensors in the top and bottom flanges of the four GFRP box sections at midspan section of one bridge deck along longitudinal direction, respectively. The proposed self-sensing hybrid bridge superstructure was tested in 4-point loading to...

  16. The influence of carbonation process on concrete bridges and durability in Estonian practice

    Science.gov (United States)

    Liisma, E.; Sein, S.; Järvpõld, M.

    2017-10-01

    Concrete as one of the most widely used construction material in building industry, has considerable implementing in bridge engineering due to its extensive number of effective technical characteristics. However, according to exploitation environment, there are substantial factors such as aggressive liquids (e.g. deiced salts, sulfates, etc), rapid temperature alterations and the increasing rate of CO2 to take into account predicting actual retained service life of concrete structure and the need of repairmen to increase the lifespan of the bridge. According to several measuring, concentration of atmospheric CO2 is reported linearly increasing and is modeled to appear as exponential increase in the next decade. This environmental influence leads to accelerated carbonation process of concrete and brings up the importance of its potential untimely degradation mechanism. Hence, the main aim of this research is to give an analyzed overview of the carbonation depths of selection of 11 concrete bridges in Estonia built in the period of 1976-2007 and their relation with compressive strength of concrete. In addition to in situ tests, laboratory research was performed to understand natural carbonation rate and compressive strength relations of concrete.

  17. Bridge deck concrete volume change : final contract report.

    Science.gov (United States)

    2010-02-01

    Concrete structures such as bridge decks, with large surface area relative to volume, shrink and crack, thus reducing service life performance and increasing operation costs. The project evaluated the early, first 24 hours, and long-term, 180 days, s...

  18. Investigation of early timber–concrete composite bridges in the United States

    Science.gov (United States)

    James P. Wacker; Alfredo Dias; Travis K. Hosteng

    2017-01-01

    The use of timber–concrete composite (TCC) bridges in the United States dates back to circa 1925. Two different TCC systems were constructed during this early period. The first system included a longitudinal nail-laminated deck composite with a concrete deck top layer. The second system included sawn timber stringers supporting a concrete deck top layer. Records...

  19. Plans for crash-tested wood bridge railings for concrete decks

    Science.gov (United States)

    Michael A. Ritter; Ronald K. Faller; Barry T. Rosson; Paula D. Hilbrich Lee; Sheila Rimal. Duwadi

    1998-01-01

    As part of a continuing cooperative research between the Midwest Roadside Safety Facility (MwRSF); the USDA Forest Service, Forest Products Laboratory (FPL); and the Federal Highway Administration (FHWA), several crashworthy wood bridge railings and approach railing transitions have been adapted for use on concrete bridge decks. These railings meet testing and...

  20. Assessment of the Reliability Profiles for Concrete Bridges

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    In this paper calculation of reliability profiles is discussed. ULS as well as SLS limit states are formulated. Corrosion due to chloride penetration is the considered deterioration mechanism. Three models for corrosion are formulated. A definition of service lifetime for concrete bridges...

  1. Concrete Image Segmentation Based on Multiscale Mathematic Morphology Operators and Otsu Method

    Directory of Open Access Journals (Sweden)

    Sheng-Bo Zhou

    2015-01-01

    Full Text Available The aim of the current study lies in the development of a reformative technique of image segmentation for Computed Tomography (CT concrete images with the strength grades of C30 and C40. The results, through the comparison of the traditional threshold algorithms, indicate that three threshold algorithms and five edge detectors fail to meet the demand of segmentation for Computed Tomography concrete images. The paper proposes a new segmentation method, by combining multiscale noise suppression morphology edge detector with Otsu method, which is more appropriate for the segmentation of Computed Tomography concrete images with low contrast. This method cannot only locate the boundaries between objects and background with high accuracy, but also obtain a complete edge and eliminate noise.

  2. Nondestructive Evaluation of Concrete Bridge Decks with Automated Acoustic Scanning System and Ground Penetrating Radar.

    Science.gov (United States)

    Sun, Hongbin; Pashoutani, Sepehr; Zhu, Jinying

    2018-06-16

    Delamanintions and reinforcement corrosion are two common problems in concrete bridge decks. No single nondestructive testing method (NDT) is able to provide comprehensive characterization of these defects. In this work, two NDT methods, acoustic scanning and Ground Penetrating Radar (GPR), were used to image a straight concrete bridge deck and a curved intersection ramp bridge. An acoustic scanning system has been developed for rapid delamination mapping. The system consists of metal-ball excitation sources, air-coupled sensors, and a GPS positioning system. The acoustic scanning results are presented as a two-dimensional image that is based on the energy map in the frequency range of 0.5⁻5 kHz. The GPR scanning results are expressed as the GPR signal attenuation map to characterize concrete deterioration and reinforcement corrosion. Signal processing algorithms for both methods are discussed. Delamination maps from the acoustic scanning are compared with deterioration maps from the GPR scanning on both bridges. The results demonstrate that combining the acoustic and GPR scanning results will provide a complementary and comprehensive evaluation of concrete bridge decks.

  3. Development and validation of deterioration models for concrete bridge decks - phase 1 : artificial intelligence models and bridge management system.

    Science.gov (United States)

    2013-06-01

    This research documents the development and evaluation of artificial neural network (ANN) models to predict the condition ratings of concrete highway bridge decks in Michigan. Historical condition assessments chronicled in the national bridge invento...

  4. Simplified method for the transverse bending analysis of twin celled concrete box girder bridges

    Science.gov (United States)

    Chithra, J.; Nagarajan, Praveen; S, Sajith A.

    2018-03-01

    Box girder bridges are one of the best options for bridges with span more than 25 m. For the study of these bridges, three-dimensional finite element analysis is the best suited method. However, performing three-dimensional analysis for routine design is difficult as well as time consuming. Also, software used for the three-dimensional analysis are very expensive. Hence designers resort to simplified analysis for predicting longitudinal and transverse bending moments. Among the many analytical methods used to find the transverse bending moments, SFA is the simplest and widely used in design offices. Results from simplified frame analysis can be used for the preliminary analysis of the concrete box girder bridges.From the review of literatures, it is found that majority of the work done using SFA is restricted to the analysis of single cell box girder bridges. Not much work has been done on the analysis multi-cell concrete box girder bridges. In this present study, a double cell concrete box girder bridge is chosen. The bridge is modelled using three- dimensional finite element software and the results are then compared with the simplified frame analysis. The study mainly focuses on establishing correction factors for transverse bending moment values obtained from SFA.

  5. CRASH TEST AND EVALUATION OF RESTRAINED SAFETY-SHAPE CONCRETE BARRIERS ON CONCRETE BRIDGE DECK

    Science.gov (United States)

    2018-01-01

    This research designed and tested a new portable concrete barrier that meets the performance of MASH TL-4 and can be used in temporary and permanent applications on bridge decks. Additionally, this new barrier system will minimize deflection, allowin...

  6. PS buildings : reinforced concrete structure for shielding "bridge" pillar

    CERN Multimedia

    CERN PhotoLab

    1956-01-01

    The PS ring traverses the region between the experimental halls South and North (buildings Nos 150 and 151) under massive bridge-shaped concrete beams. This pillar stands at the S-W end of the structure.

  7. Ground penetrating radar utilization in exploring inadequate concrete covers in a new bridge deck

    Directory of Open Access Journals (Sweden)

    Md. Istiaque Hasan

    2014-01-01

    Full Text Available The reinforced concrete cast in place four span deck of a concrete bridge near Roanoke, Texas, was recently completed. Due to possible construction errors, it was suspected that the concrete covers in the deck did not conform to drawings and specifications. A full scale non-destructive evaluation of the concrete covers was carried out using ground penetrating radar (GPR equipment. Cover values were determined from the radargram generated from the scan. The estimated covers were plotted on contour maps. Migration data can substitute the drilling based ground truth data without compromising the concrete cover estimations, except for areas with very high cover values. Areas with high water content may result in inaccurate concrete dielectric constants. Based on the results, significant retrofitting of the bridge deck, such as additional overlay, was recommended.

  8. Structural behavior of concrete box bridge using embedded FBG sensors

    Science.gov (United States)

    Chung, Wonseok; Kang, Donghoon

    2012-04-01

    For the structural monitoring of railway bridges, electromagnetic interference (EMI) is a significant problem as modern railway lines are powered by high-voltage electric power feeding systems. Fiber optic sensing systems are free from EMI and have been successfully applied in civil engineering fields. This study presents the application of fiber Bragg grating (FBG)-based sensing systems to precast concrete box railway bridges. A 20 m long full-scale precast concrete box railway girder was fabricated and tested in order to identify its static performance. The experimental program involved the measurement of the nonlinear static behavior until failure. Multiplexed FBG strain sensors were embedded along the length of steel rebar and a strain-induced wavelength shift was measured in order to monitor internal strains. The measured values from the FBG-based sensors are compared with the results using electric signal-based sensors. The results show that the FBG sensing system is promising and can improve the efficiency of structural monitoring for modern railway bridges.

  9. INVESTIGATION ON THE RESPONSE OF SEGMENTED CONCRETE TARGETS TO PROJECTILE IMPACTS

    Energy Technology Data Exchange (ETDEWEB)

    Booker, Paul M.; Cargile, James D.; Kistler, Bruce L.; La Saponara, Valeria

    2009-07-19

    The study of penetrator performance without free-surface effects can require prohibitively large monolithic targets. One alternative to monolithic targets is to use segmented targets made by stacking multiple concrete slabs in series. This paper presents an experimental investigation on the performance of segmented concrete targets. Six experiments were carried out on available small scale segmented and monolithic targets using instrumented projectiles. In all but one experiment using stacked slabs, the gap between slabs remained open. In the final experiment design, grout was inserted between the slabs, and this modification produced a target response that more closely represents that of the monolithic target. The results from this study suggest that further research on segmented targets is justified, to explore in more detail the response of segmented targets and the results of large scale tests when using segmented targets versus monolithic targets.

  10. Prestressed concrete bridge beams with microsilica admixture : final report.

    Science.gov (United States)

    1998-01-01

    Microsilica fume admixture in concrete beams was used in two coastal bridges to reduce chloride permeability. Cylinders were cast from the beam mixture for strength and permeability tests. : The fabricator found no problems with making these beams, e...

  11. Shear in high strength concrete bridge girders : technical report.

    Science.gov (United States)

    2013-04-01

    Prestressed Concrete (PC) I-girders are used extensively as the primary superstructure components in Texas highway bridges. : A simple semi-empirical equation was developed at the University of Houston (UH) to predict the shear strength of PC I-girde...

  12. Service Life and Maintenance Modelling of Reinforced Concrete Bridge Decks

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    Recent research in the area of assessment and maintenance of reinforced concrete bridge decks is presented in this paper. Three definitions of service lifetime are introduced and the difficult problem of assessing the service life is discussed. A stochastic modelling of corrosion and corrosion...... cracking is introduced and the site dependency of corrosion is stressed. Finally, a recently developed optimal repair strategy for bridges is briefly explained....

  13. Seismic evaluation and retrofit of deteriorated concrete bridge components.

    Science.gov (United States)

    2013-06-01

    Corrosion of steel bars in reinforced concrete structures is a major durability problem for bridges constructed in the New York State : (NYS). The heavy use of deicing salt compounds this problem. Corrosion of steel bars results in loss of steel cros...

  14. Strength of tensed and compressed concrete segments in crack spacing under short-term dynamic load

    Directory of Open Access Journals (Sweden)

    Galyautdinov Zaur

    2018-01-01

    Full Text Available Formation of model describing dynamic straining of reinforced concrete requires taking into account the basic aspects influencing the stress-strain state of structures. Strength of concrete segments in crack spacing is one of the crucial aspects that affect general strain behavior of reinforced concrete. Experimental results demonstrate significant change in strength of tensed and compressed concrete segments in crack spacing both under static and under dynamic loading. In this case, strength depends on tensile strain level and the slope angle of rebars towards the cracks direction. Existing theoretical and experimental studies estimate strength of concrete segments in crack spacing under static loading. The present work presents results of experimental and theoretical studies of dynamic strength of plates between cracks subjected to compression-tension. Experimental data was analyzed statistically; the dependences were suggested to describe dynamic strength of concrete segments depending on tensile strain level and slope angle of rebars to cracks direction.

  15. Managing concrete bridges: Methods for reducing costs and user inconveniences

    DEFF Research Database (Denmark)

    Goltermann, Per

    2005-01-01

    The paper presents experiences from modern bridge maintenance management, which has been forced to develop new and cost-efficient approaches in order to cope with the increase in overall deterioration of the aging bridge stock, the growing requirements to accessibility and the decreasing budgets...... situations often postpone or reduce the repair and rehabilitation activities required in critical parts of the structure. The paper will present some cases, where these approaches have been used on existing concrete bridges and explain how these experiences can be applied on other types of structures...

  16. Prestressed concrete. Composite material perfectly utilizing the merits of steel and concrete; Puresutoresu concrete. Ko to concreteto no tokucho wo kanzen ni ikashita fukugo sozai

    Energy Technology Data Exchange (ETDEWEB)

    Sugawara, M. [Kyokuto Kogen Concrete Shinko Co. Ltd., Tokyo (Japan)

    1996-10-15

    Since the early stage of the development of the prestressed concrete (PC) manufacturing techniques, it has been said that forming a single PC structure by uniting precast segments with PC steel material into one is a construction method making the most of the feature of PC. This paper roughly describes the history of the development of PC and concrete examples of PC, centering on the construction techniques effectively utilizing the principle of PC and its materials. Especially, a PC bridge is superior to a steel bridge with respect to noise and vibration, so that the construction works of replacing railway steel bridges and railway elevated bridges by PC bridges have come to be seen in many places recently. In order to increase the span of a PC bridge, the reduction of the weight is a major factor. Therefore, an outer cable system has come to be used so as to reduce the thickness is cross section of the web of a PC beam as much as possible. The changes of the maximum span of cable stayed bridge are listed in a table in comparison of PC bridges with steel bridges. 29 refs., 9 figs., 1 tab.

  17. Non-destructive testing (NDT) of a segmental concrete bridge scheduled for demolition, with a focus on condition assessment and corrosion detection of internal tendons.

    Science.gov (United States)

    2017-05-01

    The service life and durability of prestressed concrete in bridges are vulnerable to corrosion damages due to many factors such as construction, material, and environment. To ensure public safety, it is important to inspect these structures and to de...

  18. A new solution of measuring thermal response of prestressed concrete bridge girders for structural health monitoring

    International Nuclear Information System (INIS)

    Jiao, Pengcheng; Borchani, Wassim; Hasni, Hassene; Lajnef, Nizar

    2017-01-01

    This study develops a novel buckling-based mechanism to measure the thermal response of prestressed concrete bridge girders under continuous temperature changes for structural health monitoring. The measuring device consists of a bilaterally constrained beam and a piezoelectric polyvinylidene fluoride transducer that is attached to the beam. Under thermally induced displacement, the slender beam is buckled. The post-buckling events are deployed to convert the low-rate and low-frequency excitations into localized high-rate motions and, therefore, the attached piezoelectric transducer is triggered to generate electrical signals. Attaching the measuring device to concrete bridge girders, the electrical signals are used to detect the thermal response of concrete bridges. Finite element simulations are conducted to obtain the displacement of prestressed concrete girders under thermal loads. Using the thermal-induced displacement as input, experiments are carried out on a 3D printed measuring device to investigate the buckling response and corresponding electrical signals. A theoretical model is developed based on the nonlinear Euler–Bernoulli beam theory and large deformation assumptions to predict the buckling mode transitions of the beam. Based on the presented theoretical model, the geometry properties of the measuring device can be designed such that its buckling response is effectively controlled. Consequently, the thermally induced displacement can be designed as limit states to detect excessive thermal loads on concrete bridge girders. The proposed solution sufficiently measures the thermal response of concrete bridges. (paper)

  19. A new solution of measuring thermal response of prestressed concrete bridge girders for structural health monitoring

    Science.gov (United States)

    Jiao, Pengcheng; Borchani, Wassim; Hasni, Hassene; Lajnef, Nizar

    2017-08-01

    This study develops a novel buckling-based mechanism to measure the thermal response of prestressed concrete bridge girders under continuous temperature changes for structural health monitoring. The measuring device consists of a bilaterally constrained beam and a piezoelectric polyvinylidene fluoride transducer that is attached to the beam. Under thermally induced displacement, the slender beam is buckled. The post-buckling events are deployed to convert the low-rate and low-frequency excitations into localized high-rate motions and, therefore, the attached piezoelectric transducer is triggered to generate electrical signals. Attaching the measuring device to concrete bridge girders, the electrical signals are used to detect the thermal response of concrete bridges. Finite element simulations are conducted to obtain the displacement of prestressed concrete girders under thermal loads. Using the thermal-induced displacement as input, experiments are carried out on a 3D printed measuring device to investigate the buckling response and corresponding electrical signals. A theoretical model is developed based on the nonlinear Euler-Bernoulli beam theory and large deformation assumptions to predict the buckling mode transitions of the beam. Based on the presented theoretical model, the geometry properties of the measuring device can be designed such that its buckling response is effectively controlled. Consequently, the thermally induced displacement can be designed as limit states to detect excessive thermal loads on concrete bridge girders. The proposed solution sufficiently measures the thermal response of concrete bridges.

  20. Positioning of supporting-cable ducts in a prestressed concrete bridge

    International Nuclear Information System (INIS)

    Roetzer, H.

    1981-01-01

    Before inserting the supporting cables positioning of cable ducts in prestressed concrete bridges can be performed with the aid of radiation sources hauled through the ducts and localized by means of radiation monitors

  1. Critical traffic loading for the design of prestressed concrete bridge

    International Nuclear Information System (INIS)

    Hassan, M.I.U.

    2009-01-01

    A study has been carried out to determine critical traffic loadings for the design of bridge superstructures. The prestressed concrete girder bridge already constructed in Lahore is selected for the analysis as an example. Standard traffic loadings according to AASHTO (American Association of State Highway and Transportation Officials) and Pakistan Highway Standards are used for this purpose. These include (1) HL-93 Truck, (2) Lane and (3) Tandem Loadings in addition to (4) Military tank loading, (5) Class-A, (6) Class-B and (7) Class-AA loading, (8) NLC (National Logistic Cell) and (9) Volvo truck loadings. Bridge superstructure including transom beam is analyzed Using ASD and LRFD (Load and Resistance Factor Design) provisions of AASHTO specifications. For the analysis, two longer and shorter spans are selected. This includes the analysis of bridge deck; interior and exterior girder; a typical transom beam and a pier. Dead and live loading determination is carried out using both computer aided and manual calculations. Evaluation of traffic loadings is done for all the bridge components to find out the critical loading. HL-93 loading comes out to be the most critical loading and where this loading is not critical in case of bridge decks; a factor of 1.15 is introduced to make it equivalent with HL-93 -Ioading. SAP-2000 (Structural Engineering Services of Pakistan) and MS-Excel is employed for analysis of bridge superstructure subjected to this loading. Internal forces are obtained for the structural elements of the bridge for all traffic loadings mentioned. It is concluded that HL-93 loading can be used for the design of prestressed concrete girder bridge. Bridge design authorities like NHA (National Highway Authority) and different cities development authorities are using different standard traffic loadings. A number of suggestions are made from the results of the research work related to traffic loadings and method of design. These recommendations may be

  2. A technical report on structural evaluation of the Meade County reinforced concrete bridge : research [summary].

    Science.gov (United States)

    2009-01-01

    Meade County Bridge is a two-lane highway reinforced concrete bridge with two girders each with 20 continuous spans. The bridge was built in 1965. It has been reported that in early years of the bridge service period, a considerable amount of cracks ...

  3. Phase I development of an aesthetic, precast concrete bridge rail.

    Science.gov (United States)

    2012-02-01

    Precast concrete bridge rail systems offer several advantages over traditional cast-in-place rail designs, including reduced construction : time and costs, installation in a wide range of environmental conditions, easier maintenance and repair, impro...

  4. The economy of preventive maintenance of concrete bridges : final report.

    Science.gov (United States)

    2016-03-01

    The most economical approach to maintain existing concrete bridges is by adopting an active preventive maintenance : approach. An in-depth investigation of the combined deterioration effects of various deterioration mechanisms is needed : to establis...

  5. Effect of soil–structure interaction on the reliability of reinforced concrete bridges

    Directory of Open Access Journals (Sweden)

    Kamel Bezih

    2015-09-01

    Full Text Available In the design of reinforced concrete (RC bridges, the random and nonlinear behavior of soil may lead to insufficient reliability levels. For this reason, it is necessary to take into account the variability of soil properties which can significantly affect the bridge behavior regarding ultimate and serviceability limit states. This study investigates the failure probability for existing reinforced concrete bridges due to the effects of interaction between the soil and the structure. In this paper, a coupled reliability–mechanical approach is developed to study the effect of soil–structure interaction for RC bridges. The modeling of this interaction is incorporated into the mechanical model of RC continuous beams, by considering nonlinear elastic soil stiffness. The reliability analysis highlights the large importance of soil–structure interaction and shows that the structural safety is highly sensitive to the variability of soil properties, especially when the nonlinear behavior of soil is considered.

  6. Determining the Environmental Benefits of Ultra High Performance Concrete as a Bridge Construction Material

    Science.gov (United States)

    Lande Larsen, Ingrid; Granseth Aasbakken, Ida; O'Born, Reyn; Vertes, Katalin; Terje Thorstensen, Rein

    2017-10-01

    Ultra High Performance Concrete (UHPC) is a material that is attracting attention in the construction industry due to the high mechanical strength and durability, leading to structures having low maintenance requirements. The production of UHPC, however, has generally higher environmental impact than normal strength concrete due to the increased demand of cement required in the concrete mix. What is still not sufficiently investigated, is if the longer lifetime, slimmer construction and lower maintenance requirements lead to a net environmental benefit compared to standard concrete bridge design. This study utilizes life cycle assessment (LCA) to determine the lifetime impacts of two comparable highway crossing footbridges spanning 40 meters, designed respectively with UHPC and normal strength concrete. The results of the study show that UHPC is an effective material for reducing lifetime emissions from construction and maintenance of long lasting infrastructure, as the UHPC design outperforms the normal strength concrete bridge in most impact categories.

  7. Two-course bonded concrete bridge deck construction : condition and performance after six years.

    Science.gov (United States)

    1981-01-01

    This report presents the findings from a six-year study of two-course bonded concrete bridge decks constructed in Virginia. Each of three special portland cement concretes was applied as an overlay, or wearing course, on two experimental spans. The o...

  8. THE PROBLEM OF ESTIMATING THE DURABILITY OF THE REINFORCED CONCRETE BRIDGES

    Directory of Open Access Journals (Sweden)

    O. I. Lantukh-Liashchenko

    2007-10-01

    Full Text Available This paper presents an assessment and prediction of service life for reinforced concrete bridges. The deterministic and probabilistic approach prediction models of durability are proposed.

  9. Characterization and mediation of microbial deterioration of concrete bridge structures.

    Science.gov (United States)

    2013-04-01

    Samples obtained from deteriorated bridge structures in Texas were cultured in growth medium containing thiosulfate as an energy source and investigated for acid production, type of acid produced by microbes and the bio-deterioration of concrete cyli...

  10. The Impact of Traffic-Induced Bridge Vibration on Rapid Repairing High-Performance Concrete for Bridge Deck Pavement Repairs

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2014-01-01

    Full Text Available Based on forced vibration tests for high-performance concrete (HPC, the influence of bridge vibration induced by traveling vehicle on compressive strength and durability of HPC has been studied. It is concluded that 1 d and 2 d compressive strength of HPC decreased significantly, and the maximum reduction rate is 9.1%, while 28 d compressive strength of HPC had a slight lower with a 3% maximal drop under the action of two simple harmonic vibrations with 2 Hz, 3 mm amplitude, and 4 Hz, 3 mm amplitude. Moreover, the vibration had a slight effect on the compressive strength of HPC when the simple harmonic vibration had 4 Hz and 1 mm amplitude; it is indicated that the amplitude exerts a more prominent influence on the earlier compressive strength with the comparison of the frequency. In addition, the impact of simple harmonic vibration on durability of HPC can be ignored; this shows the self-healing function of concrete resulting from later hydration reaction. Thus, the research achievements mentioned above can contribute to learning the laws by which bridge vibration affects the properties of concrete and provide technical support for the design and construction of the bridge deck pavement maintenance.

  11. Hybrid FRP-concrete bridge deck system final report I : development and system performance validation.

    Science.gov (United States)

    2009-10-01

    In this study, the concept of the hybrid FRP-concrete structural systems was applied to both bridge : superstructure and deck systems. Results from the both experimental and computational analysis for : both the hybrid bridge superstructure and deck ...

  12. Smart photonic coating for civil engineering field: for a future inspection technology on concrete bridge

    Science.gov (United States)

    Fudouzi, Hiroshi; Tsuchiya, Koichi; Todoroki, Shin-ichi; Hyakutake, Tsuyoshi; Nitta, Hiroyuki; Nishizaki, Itaru; Tanaka, Yoshikazu; Ohya, Takao

    2017-04-01

    Here we will propose the conceptual new idea of the inspection of concrete bridge using smart materials and mobile IoT system. We apply opal photonic crystal film to detect cracks on concrete infrastructures. High quality opal photonic crystal films were coated on black color PET sheet over 1000 cm2 area. The opal film sheet was cut and adhered to concrete or mortar test pieces by epoxy resin. In the tensile test, the structural color of the opal sheet was changed when the crack was formed. As a demonstration, we have installated the opal film sheet on the wall of the concrete bridge. Our final purpose is the color change will be recorded by portable CCD devices, and send to expert via IoT network.

  13. Experimental study of cathodic protection of concrete from a 30 year old bridge

    NARCIS (Netherlands)

    Polder, R.B.; Nerland, O.C.

    1998-01-01

    An experimental study of cathodic protection (CP) was carried out with a conductive primer anode applied to specimens from a concrete bridge. The bridge was demolished after 30 years of service due to severe delaminations and reinforcement corrosion. Four specimens of approximately 1 m2 each were

  14. Increased of the capacity integral bridge with reinforced concrete beams for single span

    Science.gov (United States)

    Setiati, N. Retno

    2017-11-01

    Sinapeul Bridge that was built in 2012 in Sumedang is a bridge type using a full integral system. The prototype of integral bridge with reinforced concrete girder and single span 20 meters until this year had decreased capacity. The bridge was conducted monitoring of strain that occurs in the abutment in 2014. Monitoring results show that based on the data recorded, the maximum strain occurs at the abutment on the location of the integration of the girder of 10.59 x 10-6 tensile stress of 0.25 MPa (smaller than 150 x 10-6) with 3 MPa tensile stress as limit the occurrence of cracks in concrete. Sinapeul bridge abutment with integral system is still in the intact condition. Deflection of the bridge at the time of load test is 1.31 mm. But this time the bridge has decreased exceeded permission deflection (deflection occurred by 40 mm). Besides that, the slab also suffered destruction. One cause of the destruction of the bridge slab is the load factor. It is necessary for required effort to increase the capacity of the integral bridge with retrofitting. Retrofitting method also aims to restore the capacity of the bridge structure due to deterioration. Retrofitting can be done by shortening of the span or using Fibre Reinforced Polymer (FRC). Based on the results obtained by analysis of that method of retrofitting with Fibre Reinforced Polymer (FRC) is more simple and effective. Retrofitting with FRP can increase the capacity of the shear and bending moment becomes 41% of the existing bridge. Retrofitting with FRP method does not change the integral system on the bridge Sinapeul become conventional bridges.

  15. Non-destructive inspection protocol for reinforced concrete barriers and bridge railings

    Energy Technology Data Exchange (ETDEWEB)

    Chintakunta, Satish R. [Engineering and Software Consultants, Inc., 14123 Robert Paris Ct., Chantilly, VA 20151 (United States); Boone, Shane D. [Federal Highway Administration, Turner Fairbank Highway Research Center, 6300 Georgetown Pike, McLean, VA 22101 (United States)

    2014-02-18

    Reinforced concrete highway barriers and bridge railings serve to prevent errant vehicles from departing the travel way at grade separations. Despite the important role that they play in maintaining safety and their ubiquitous nature, barrier inspection rarely moves beyond visual inspection. In August 2008, a tractor-trailer fatally departed William Preston Lane, Jr. Memorial Bridge after it dislodged a section of the bridge barrier. Investigations following the accident identified significant corrosion of the anchor bolts attaching the bridge railing to the bridge deck. As a result of the information gathered during its investigation of the accident, the National Transportation Safety Board (NTSB) made recommendations to the Federal Highway Administration concerning Non-Destructive Evaluation (NDE) of concrete bridge railings. The Center for nondestructive evaluation (NDE) at Turner Fairbank Highway Research Center in McLean, VA is currently evaluating feasibility of using four technologies - ground penetrating radar (GPR), ultrasonic pulse-echo, digital radiography and infrared thermal imaging methods to develop bridge inspection methods that augment visual inspections, offer reliable measurement techniques, and are practical, both in terms of time and cost, for field inspection work. Controlled samples containing predefined corrosion levels in reinforcing steel were embedded at barrier connection points for laboratory testing. All four NDE techniques were used in the initial phase I testing. An inspection protocol for detecting and measuring the corrosion of reinforced steel embedded in the anchorage system will be developed as part of phase II research. The identified technologies shall be further developed for field testing utilizing a structure with a barrier in good condition and a structure with a barrier in poor condition.

  16. Non-destructive inspection protocol for reinforced concrete barriers and bridge railings

    Science.gov (United States)

    Chintakunta, Satish R.; Boone, Shane D.

    2014-02-01

    Reinforced concrete highway barriers and bridge railings serve to prevent errant vehicles from departing the travel way at grade separations. Despite the important role that they play in maintaining safety and their ubiquitous nature, barrier inspection rarely moves beyond visual inspection. In August 2008, a tractor-trailer fatally departed William Preston Lane, Jr. Memorial Bridge after it dislodged a section of the bridge barrier. Investigations following the accident identified significant corrosion of the anchor bolts attaching the bridge railing to the bridge deck. As a result of the information gathered during its investigation of the accident, the National Transportation Safety Board (NTSB) made recommendations to the Federal Highway Administration concerning Non-Destructive Evaluation (NDE) of concrete bridge railings. The Center for nondestructive evaluation (NDE) at Turner Fairbank Highway Research Center in McLean, VA is currently evaluating feasibility of using four technologies - ground penetrating radar (GPR), ultrasonic pulse-echo, digital radiography and infrared thermal imaging methods to develop bridge inspection methods that augment visual inspections, offer reliable measurement techniques, and are practical, both in terms of time and cost, for field inspection work. Controlled samples containing predefined corrosion levels in reinforcing steel were embedded at barrier connection points for laboratory testing. All four NDE techniques were used in the initial phase I testing. An inspection protocol for detecting and measuring the corrosion of reinforced steel embedded in the anchorage system will be developed as part of phase II research. The identified technologies shall be further developed for field testing utilizing a structure with a barrier in good condition and a structure with a barrier in poor condition.

  17. Study on seismic behaviour of integral concrete bridges with different skew angles through fragility curves

    Directory of Open Access Journals (Sweden)

    Mahmoud Reza ُُShiravand

    2017-12-01

    Full Text Available Bridges are key elements in urban transportation system and should be designed to sustain earthquake induced damages to be utilized after earthquake. Extensive damages during last earthquakes highlighted the importance of seismic assessment and damage estimation of bridges. Skewness is one of the primary parameters effects on seismic behavior of bridges. Skew bridges are defined as bridges with skew angle piers and abutments. In these bridges, the piers have some degrees of skewness due to construction restrictions, such as those caused by crossing a waterway, railway line or road. This paper aims to investigate seismic behavior of skew concrete bridges using damage criteria and estimate probability of piers damage with fragility curves. To this end, three types of concrete bridges with two, three and four spans and varying skew angles of 00 ,100, 200 and 300 are modeled with finite element software. Seismic responses of bridge piers under 10 earthquake ground motion records are calculated using incremental dynamic analysis. Following, damage criteria proposed by Mackie and Stojadinovic are used to define damage limits of bridge piers in four damage states of slight, moderate, extensive and complete and bridge fragility curves are developed. The results show that increasing skew angles increases the probability of damage occurrence, particularly in extensive and complete damage states.

  18. Estimation of Curvature Changes for Steel-Concrete Composite Bridge Using Fiber Bragg Grating Sensors

    OpenAIRE

    Kang, Donghoon; Chung, Wonseok

    2013-01-01

    This study is focused on the verification of the key idea of a newly developed steel-concrete composite bridge. The key idea of the proposed bridge is to reduce the design moment by applying vertical prestressing force to steel girders, so that a moment distribution of a continuous span bridge is formed in a simple span bridge. For the verification of the key technology, curvature changes of the bridge should be monitored sequentially at every construction stage. A pair of multiplexed FBG sen...

  19. Carbon paint anode for reinforced concrete bridges in coastal environments

    Energy Technology Data Exchange (ETDEWEB)

    Cramer, Stephen D.; Bullard, Sophie J.; Covino, Bernard S., Jr.; Holcomb, Gordon R.; Russell, James H.; Cryer, C.B. (ODOT); Laylor, H.M. (ODOT)

    2002-01-01

    Solvent-based acrylic carbon paint anodes were installed on the north approach spans of the Yaquina Bay Bridge (Newport OR) in 1985. The anodes continue to perform satisfactorily after more than 15 years service. The anodes were inexpensive to apply and field repairs are easily made. Depolarization potentials are consistently above 100 mV with long-term current densities around 2 mA/m 2. Bond strength remains adequate, averaging 0.50 MPa (73 psi). Some deterioration of the anode-concrete interface has occurred in the form of cracks and about 4% of the bond strength measurements indicated low or no bond. Carbon anode consumption appears low. The dominant long-term anode reaction appears to be chlorine evolution, which results in limited further acidification of the anode-concrete interface. Chloride profiles were depressed compared to some other coastal bridges suggesting chloride extraction by the CP system. Further evidence of outward chloride migration was a flat chloride profile between the anode and the outer rebar.

  20. Influence of fly ash, slag cement and specimen curing on shrinkage of bridge deck concrete.

    Science.gov (United States)

    2014-12-01

    Cracks occur in bridge decks due to restrained shrinkage of concrete materials. Concrete materials shrink as : cementitious materials hydrate and as water that is not chemically bonded to cementitious materials : migrates from the high humid environm...

  1. Numerical simulations and experimental measurements of steel and ice impacts on concrete for acoustic interrogation of delaminations in bridge decks

    Energy Technology Data Exchange (ETDEWEB)

    Mazzeo, Brian A.; Patil, Anjali N.; Klis, Jeffrey M. [Brigham Young University, Department of Electrical and Computer Engineering, Provo, Utah, 84602 (United States); Hurd, Randy C.; Truscott, Tadd T. [Brigham Young University, Department of Mechanical Engineering, Provo, Utah, 84602 (United States); Guthrie, W. Spencer [Brigham Young University, Department of Civil and Environmental Engineering, Provo, Utah, 84602 (United States)

    2014-02-18

    Delaminations in bridge decks typically result from corrosion of the top mat of reinforcing steel, which leads to a localized separation of the concrete cover from the underlying concrete. Because delaminations cannot be detected using visual inspection, rapid, large-area interrogation methods are desired to characterize bridge decks without disruption to traffic, without the subjectivity inherent in existing methods, and with increased inspector safety. To this end, disposable impactors such as water droplets or ice chips can be dropped using automatic dispensers onto concrete surfaces to excite mechanical vibrations while acoustic responses can be recorded using air-coupled microphones. In this work, numerical simulations are used to characterize the flexural response of a model concrete bridge deck subject to both steel and ice impactors, and the results are compared with similar experiments performed in the laboratory on a partially delaminated concrete bridge deck slab. The simulations offer greater understanding of the kinetics of impacts and the responses of materials.

  2. Modal Identification and Damage Detection on a Concrete Highway Bridge by Frequency Domain Decomposition

    DEFF Research Database (Denmark)

    Brincker, Rune; Andersen, P.; Zhang, L.

    2002-01-01

    As a part of a research project co-founded by the European Community, a series of 15 damage tests were performed on a prestressed concrete highway bridge in Switzerland. The ambient response of the bridge was recorded for each damage case. A dense array of instruments allowed the identification...

  3. Modal Identification and Damage Detection on a Concrete Highway Bridge by Frequency Domain Decomposition

    DEFF Research Database (Denmark)

    Brincker, Rune; Andersen, Palle; Zhang, Lingmi

    2007-01-01

    As a part of a research project co-founded by the European Community, a series of 15 damage tests were performed on a prestressed concrete highway bridge in Switzerland. The ambient response of the bridge was recorded for each damage case. A dense array of instruments allowed the identification...

  4. Magnetic-based NDE of steel in prestressed and post-tensioned concrete bridges

    Science.gov (United States)

    Ghorbanpoor, Al

    1998-03-01

    This paper addresses a study, funded by the Federal Highway Administration (FHWA), the U.S. Department of Transportation (DOT), that is currently underway at the University of Wisconsin-Milwaukee. The objective of the study is to develop an automated non-destructive testing system based on the magnetic flux leakage principle that would allow assessment of the condition of reinforcing and prestressing steels in concrete bridge components. Corrosion or cracking of steel within concrete members will be detected and evaluated. The system will be used as a self clamping and moving sensing device that can be installed on a concrete girder. Data from the sensing device is transmitted via a wireless communication system to data recording/analysis equipment on the ground. The sensing device may also be operated manually to allow inspection of local areas such as the end bearing or cable anchorage locations in cable bridges. Through performing a correlation analysis of recorded data, an assessment of the condition of the member under test is made. Reference data base for the correlation analysis is established through laboratory and field testing with known conditions.

  5. Prestressed concrete cable-stayed bridge; PC shachokyo `Tajiri sky bridge` no seko

    Energy Technology Data Exchange (ETDEWEB)

    Kaida, Y.; Tsujino, F. [Osaka Prefectural Government Office, Osaka (Japan); Yamamoto, T.; Hishiki, Y.; Saito, K.

    1995-01-30

    The outline on the execution of PC cable-stayed bridge `Tajiri Sky Bridge` which was built at the opposite coast of Kansai International Airport was reported. This bridge is a double-sided suspension PC cable-stayed bridge with a tower height of 93.6 m having a main beam which is 26.3 m wide, featuring H-type main tower with one side beam, a smooth main beam structure, the leg top part with a large section, etc. A large-capacity factory manufacturing type non-grout cable with a pull strength of 1,900 ton class was adopted for the diagonal bracing. The leg top part is in a massive concrete structure so that, for avoiding the crack of cement due to temperature, a low heat build-up furnace cement was adopted, the water reducing agent was used, pre-cooling and side-clamping PC steel material were adopted and moderate pre-stress was introduced. In the execution of the connection part of the main beam, for preventing the deflection fluctuation due to the change of the main beam/main tower/diagonal bracing due to temperature and vibration due to wind, the earth anchor was used to tentatively fix the extended part. During execution, the wind velocity was strong reaching 25 m/s, which did not produce any problems. 1 ref., 24 figs., 3 tabs.

  6. Evaluating seismic reliability of Reinforced Concrete Bridge in view of their rehabilitation

    Directory of Open Access Journals (Sweden)

    Boubel Hasnae

    2018-01-01

    Full Text Available Considering in this work, a simplified methodology was proposed in order to evaluate seismic vulnerability of Reinforced Concrete Bridge. Reliability assessment of stress limits state and the applied loading which are assumed to be random variables. It is assumed that only their means and standard deviations are known while no information is available about their densities of probabilities. First Order Reliability Method is applied to a response surface representation of the stress limit state obtained through quadratic polynomial regression of finite element results. Then a parametric study is performed regarding the influence of the distributions of probabilities chosen to model the problem uncertainties for Reinforced Concrete Bridge. It is shown that the probability of failure depends largely on the chosen densities of probabilities, mainly in the useful domain of small failure probabilities.

  7. THE SIMULATION DIAGNOSTIC METHODS AND REGENERATION WAYS OF REINFORCED - CONCRETE CONSTRUCTIONS OF BRIDGES IN PROVIDING THEIR OPERATING RELIABILITY AND LONGEVITY

    OpenAIRE

    B. V. Savchinskiy

    2010-01-01

    On the basis of analysis of existing diagnostic methods and regeneration ways of reinforced-concrete constructions of bridges the recommendations on introduction of new modern technologies of renewal of reinforced-concrete constructions of bridges in providing their operating reliability and longevity are offered.

  8. Improving resistance of high strength concrete (HSC) bridge beams to frost and defrosting salt attack by application of hydrophobic agent

    Science.gov (United States)

    Kolisko, Jiri; Balík, Lukáš; Kostelecka, Michaela; Pokorný, Petr

    2017-09-01

    HSC (High Strength Concrete) is increasingly used for bearing bridge structures nowadays. Bridge structures in the Czech Republic are exposed to severe conditions in winter time and durability of the concrete is therefore a crucial requirement. The high strength and low water absorption of HSC suggests that the material will have high durability. However, the situation may not be so straightforward. We carried out a study of the very poor durability of HSC concrete C70/85 used to produce prestresed beams 37.1 m in length to build a 6-span highway bridge. After the beams were cast, a production control test indicated some problems with the durability of the concrete. There was a danger that 42 of the beams would not be suitable for use. All participants in the bridge project finally decided, after extensive discussions, to attempt to improve the durability of the concrete by applying a hydrophobic agent. Paper will present the results of comparative tests of four hydrophobic agents in order to choose one for real application and describes this application on construction site.

  9. Novel shear capacity testing of ASR damaged full scale concrete bridge

    DEFF Research Database (Denmark)

    Schmidt, Jacob Wittrup; Hansen, Søren Gustenhoff; Barbosa, Ricardo Antonio

    2014-01-01

    A large number of concrete bridges in Denmark have to undergo wide-ranging maintenance work to prevent deterioration due to aggressive Alkali Silica Reaction (ASR). This destructive mechanism results in extensive cracking which is believed to affect the load carrying capacity of the structure...

  10. Rapid multichannel impact-echo scanning of concrete bridge decks from a continuously moving platform

    Science.gov (United States)

    Mazzeo, Brian A.; Larsen, Jacob; McElderry, Joseph; Guthrie, W. Spencer

    2017-02-01

    Impact-echo testing is a non-destructive evaluation technique for determining the presence of defects in reinforced concrete bridge decks based on the acoustic response of the bridge deck when struck by an impactor. In this work, we build on our prior research with a single-channel impactor to demonstrate a seven-channel impact-echo scanning system with independent control of the impactors. This system is towed by a vehicle and integrated with distance measurement for registering the locations of the impacts along a bridge deck. The entire impact and recording system is computer-controlled. Because of a winch system and hinged frame construction of the apparatus, setup, measurement, and take-down of the apparatus can be achieved in a matter of minutes. Signal processing of the impact responses is performed on site and can produce a map of delaminations immediately after data acquisition. This map can then be used to guide other testing and/or can be referenced with the results of other testing techniques to facilitate comprehensive condition assessments of concrete bridge decks. This work demonstrates how impact-echo testing can be performed in a manner that makes complete bridge deck scanning for delaminations rapid and practical.

  11. Strength and durability of near-surface mounted CFRP bars for shear strengthening reinforced concrete bridge girders.

    Science.gov (United States)

    2012-03-01

    During the interstate expansion of the 1950s, many conventionally reinforced concrete deck girder bridges were built throughout the country. These aging bridges commonly exhibit diagonal cracking and rate inadequately for shear, thus they are candida...

  12. THE SIMULATION DIAGNOSTIC METHODS AND REGENERATION WAYS OF REINFORCED - CONCRETE CONSTRUCTIONS OF BRIDGES IN PROVIDING THEIR OPERATING RELIABILITY AND LONGEVITY

    Directory of Open Access Journals (Sweden)

    B. V. Savchinskiy

    2010-03-01

    Full Text Available On the basis of analysis of existing diagnostic methods and regeneration ways of reinforced-concrete constructions of bridges the recommendations on introduction of new modern technologies of renewal of reinforced-concrete constructions of bridges in providing their operating reliability and longevity are offered.

  13. The effect of alkali-aggregate reaction on concrete bridge structures

    Directory of Open Access Journals (Sweden)

    Grković Slobodan

    2016-01-01

    Full Text Available This paper shows contemporary issues related to unfavorable effects of concrete alkali-aggregate reaction (AAR on concrete bridge structures (CBS. Although AAR unfavorable effects on CBS were identified in 1930s, it was much later that AAR was acknowledged as one of the most pronounced deterioration processes in concrete that results in damages to concrete structures. There are two basic forms of AAR: alkali-silica reaction (ASR and alkali-carbonate reaction (ACR. Compared to ACR, ASR is more prominent, especially in certain geographic parts of the world. Damages to concrete caused by the ASR have negative effect primarily on usability and durability of CBS, what is followed by the decrease in load bearing capacity of structural components and reliability of the whole structure, shortening of service life (SL and costly repairs. For CBS, simultaneous occurrence of ASR and other degradation processes in concrete, such as those caused by the presence of moisture, water, temperature variations and use of deicing salt during winter, are especially damaging. Based on review of the most relevant literature, this paper is focused on mechanisms and mechanisms factors of the ASR, related contemporary research and reliability design guidelines for CBS that are based on prevention of the initiation and development of ASR.

  14. Bridge Management Systems

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    In this paper bridge management systems are discussed with special emphasis on management systems for reinforced concrete bridges. Management systems for prestressed concrete bridges, steel bridges, or composite bridges can be developed in a similar way....

  15. Wireless Smart Sensor Network System Using SmartBridge Sensor Nodes for Structural Health Monitoring of Existing Concrete Bridges

    Science.gov (United States)

    Gaviña, J. R.; Uy, F. A.; Carreon, J. D.

    2017-06-01

    There are over 8000 bridges in the Philippines today according to the Department of Public Works and Highways (DPWH). Currently, visual inspection is the most common practice in monitoring the structural integrity of bridges. However, visual inspections have proven to be insufficient in determining the actual health or condition of a bridge. Structural Health Monitoring (SHM) aims to give, in real-time, a diagnosis of the actual condition of the bridge. In this study, SmartBridge Sensor Nodes were installed on an existing concrete bridge with American Association of State Highway and Transportation Officials (AASHTO) Type IV Girders to gather vibration of the elements of the bridge. Also, standards on the effective installation of SmartBridge Sensor Nodes, such as location and orientation was determined. Acceleration readings from the sensor were then uploaded to a server, wherein they are monitored against certain thresholds, from which, the health of the bridge will be derived. Final output will be a portal or webpage wherein the information, health, and acceleration readings of the bridge will be available for viewing. With levels of access set for different types of users, the main users will have access to download data and reports. Data transmission and webpage access are available online, making the SHM system wireless.

  16. Markov Chain-Based Stochastic Modeling of Chloride Ion Transport in Concrete Bridges

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2018-03-01

    Full Text Available Over the last decade, there has been an increasing interest in models for the evaluation and prediction of the condition of bridges in Canada due to their large number in an advanced state of deterioration. The models are used to develop optimal maintenance and replacement strategies to extend service life and optimally allocate financial and technical resources. The main process of deterioration of concrete bridges in Canada is corrosion of the reinforcing steel due to the widespread use of de-icing salts. In this article, numerical models of the diffusion process and chemical reactions of chloride ions in concrete are used to estimate the time to initiation of corrosion and for the progression of corrosion. The analyses are performed for a range of typical concrete properties, exposure and climatic conditions. The results from these simulations are used to develop parametric surrogate Markov chain models of increasing states of deterioration. The surrogate models are more efficient than physical models for the portfolio analysis of a large number of structures. The procedure provides an alternative to Markov models derived from condition ratings when historical inspection data is limited.

  17. Modern techniques in prestressed concrete cable-stayed bridges. Puresutoresuto concrete shachokyo ni okeru atarashii gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, A. (Kobe Univ. (Japan). Faculty of Engineering)

    1994-03-31

    Because the prestressed concrete (PC) cable-stayed bridges combine the distinctive features such as a rationality of the structure or a structural beauty, it will not stay on a development of the technologies to make them longer and larger, and a rationalization of the execution, an investigation from various aspects such as the scenery design, material selection, pursuit of new structure and so forth will become necessary. In a main meeting, 15 volumes of paper on the most advanced technologies of PC cable-stayed bridges were presented. The presentations from Japan were 11 volumes, and occupied about 70%, and therefore a high interest to the PC cable-stayed bridges in Japan was inferred. In the presentation from Japan, there were many relevancies of the important study themes which would become a foundation for a development of PC cable-stayed bridges in the future, like ones that an improvement effect of dynamic behavior such as the aseismatic property, wind endurance and so forth was made as an objective, ones that a safety evaluation at an ultimate state as the oblique member anchoring part, main tower or entire structure was related, ones that a construction of the various control systems when the cable-stayed bridges were executed was concerned and so forth. 23 figs., 1 tab.

  18. Assessment of exposure pathways connected with construction and operation of concrete bridge reinforced with very low level radioactive steel

    International Nuclear Information System (INIS)

    Panik, M.; Necas, V.

    2012-01-01

    Large amount of low level radioactive material arises during decommissioning of nuclear power plants. Material mostly comprises metal scrap and concrete ruble. Paper deals with recycling and reuse of metal scrap and its utilization as part of reinforcement of concrete bridges under the conditional release concept. Radiation exposure originating in very low level reinforcement steel consists of several exposure pathways. Short-term radiation impact is represented mostly by external exposure pathway and it is relevant to the construction workers and users of the bridge. Long-term radiation impacts on inhabitants living near finished bridge and it is divided into inhalation and ingestion of radionuclides-internal exposure pathways. Radiation impact caused by utilization of very low level radioactive waste was calculated using simulation software VISIPLAN 3D ALARA and GOLDSIM. Results of calculations provide fair summary of possibilities of utilization of conditionally released steel as reinforcement of concrete bridges. (Authors)

  19. STRENGTHENING CONCRETE HOLLOW SECTION GIRDER BRIDGE USING POLYURETHANE-CEMENT MATERIAL (PART B

    Directory of Open Access Journals (Sweden)

    Haleem K. Hussain

    2018-01-01

    Full Text Available This paper presents experimental study to retrofitted reinforced concrete Hollow Section Bridge. The study was carried out on the White River Bridge structure (Bai xi da Qiao / China. The effect of retrofitting on stress and strain of beams at the critical section was studied. Evaluating the bridges girder after strengthening using new material called PolyurethaneCement material (PUC as an external material .This study present the strain and deflection before and after strengthening the bridge girders. The results has shown that the overall state of the bridge structural strengthening is in good condition. The enhancement was significant in stiffness of the bridge structure. Regarding to the results of static load test, the experimental values strain and deflection are less than theoretical values, indicating that the stiffness of the structure, overall deformation and integrity satisfy the designed and standard requirements and the working performance are in good condition, and flexure capacity has a certain surplus.

  20. Evaluating the performance of skewed prestressed concrete bridge after strengthening

    Science.gov (United States)

    Naser, Ali Fadhil; Zonglin, Wang

    2013-06-01

    The objectives of this paper are to explain the application of repairing and strengthening methods on the damaged members of the bridge structure, to analyze the static and dynamic structural response under static and dynamic loads after strengthening, and to evaluate the structural performance after application of strengthening method. The repairing and strengthening methods which are used in this study include treatment of the cracks, thickening the web of box girder along the bridge length and adding internal pre-stressing tendons in the thickening web, and construct reinforced concrete cross beams (diaphragms) between two box girders. The results of theoretical analysis of static and dynamic structural responses after strengthening show that the tensile stresses are decreased and become less than the allowable limit values in the codes. The values of vertical deflection are decreased after strengthening. The values of natural frequencies after strengthening are increased, indicating that the strengthening method is effective to reduce the vibration of the bridge structure. Therefore, the strengthening methods are effective to improve the bearing capacity and elastic working state of the bridge structure and to increase the service life of the bridge structure.

  1. Integrated Monitoring System for Durability Assessment of Concrete Bridges

    Directory of Open Access Journals (Sweden)

    Cristian-Claudiu Comisu

    2005-01-01

    Full Text Available An ageing and deteriorating bridge stock presents the bridge owners with the growing challenge of maintaining the structures at a satisfactory level of safety, performance and aesthetic appearance within the allocated budgets. This task calls for optimized bridge management based on efficient methods of selecting technical and economical optimal maintenance and rehabilitation strategies. One of the crucial points in the assessment of the current condition and future development and performance. Selecting the optimal maintenance and rehabilitation strategy within the actual budget is a key point in bridge management for which an accurate assessment of performance and deterioration rate is necessary. For this assessment, the use of integrated monitoring system has several advantages compared to the traditional approach of scattered visual inspections combined with occasional on site testing with portable equipment and laboratory testing of collected samples. For this reason, attention is more focusing on the development of permanent integrated monitoring system for durability assessment of concrete bridges. It is estimated that with the implementation of such integrated monitoring systems, it should be possible to reduce the operating costs of inspections and maintenance by 25% and the operator of the structures will be able to take protective actions before damaging processes start. This paper indentifies the main bridge owner requirements to integrated monitoring systems and outlines how monitoring systems may be used for performance and deterioration rate assessment to establish a better basis for selecting the optimal maintenance and rehabilitation strategy.

  2. Construction Simulation Analysis of 60m-span Concrete Filled Steel Tube arch bridge

    Science.gov (United States)

    Shi, Jing Xian; Ding, Qing Hua

    2018-06-01

    The construction process of the CFST arch bridge is complicated. The construction process not only affects the structural stress in the installation, but also determines the form a bridge and internal force of the bridge. In this paper, a 60m span concrete filled steel tube tied arch bridge is taken as the background, and a three-dimensional finite element simulation model is established by using the MIDAS/Civil bridge structure analysis software. The elevation of the main arch ring, the beam stress, the forces in hanger rods and the modal frequency of the main arch during the construction stage are calculated, and the construction process is simulated and analyzed. Effectively and reasonably guide the construction and ensure that the line and force conditions of the completed bridge meet the design requirements and provides a reliable technical guarantee for the safe construction of the bridge.

  3. Structural design guidelines for concrete bridge decks reinforced with corrosion-resistant reinforcing bars.

    Science.gov (United States)

    2014-10-01

    This research program develops and validates structural design guidelines and details for concrete bridge decks with : corrosion-resistant reinforcing (CRR) bars. A two-phase experimental program was conducted where a control test set consistent : wi...

  4. Strength and durability of near-surface mounted CFRP bars for shear strengthening reinforced concrete bridge girders : appendices.

    Science.gov (United States)

    2012-01-01

    During the interstate expansion of the 1950s, many conventionally reinforced concrete deck girder bridges were built throughout the country. These aging bridges commonly exhibit diagonal cracking and rate inadequately for shear, thus they are candida...

  5. Environmental Impact Optimization of Reinforced Concrete Slab Frame Bridges

    DEFF Research Database (Denmark)

    Yavari, Majid Solat; Du, Guangli; Pacoste, Costin

    2017-01-01

    The main objective of this research is to integrate environmental impact optimization in the structural design of reinforced concrete slab frame bridges in order to determine the most environmental-friendly design. The case study bridge used in this work was also investigated in a previous paper...... focusing on the optimization of the investment cost, while the present study focuses on environmental impact optimization and comparing the results of both of these studies. Optimization technique based on the pattern search method was implemented. Moreover, a comprehensive Life Cycle Assessment (LCA......) methodology of ReCiPe and two monetary weighting systems were used to convert environmental impacts into monetary costs. The analysis showed that both monetary weighting systems led to the same results. Furthermore, optimization based on environmental impact generated models with thinner construction elements...

  6. Use of Just in Time Maintenance of Reinforced Concrete Bridge Structures based on Real Historical Data Deterioration Models

    Directory of Open Access Journals (Sweden)

    Abu-Tair A.

    2016-01-01

    Full Text Available Concrete is the backbone of any developed economy. Concrete can suffer from a large number of deleterious effects including physical, chemical and biological causes. Large owning bridge structures organizations are facing very serious questions when asking for maintenance budgets. The questions range from needing to justify the need for the work, its urgency, to also have to predict or show the consequences of delayed rehabilitation of a particular structure. There is therefore a need for a probabilistic model that can estimate the range of service lives of bridge populations and also the likelihood of level of deteriorations it can reached for every incremental time interval. A model was developed for such estimation based on statistical data from actual inspection records of a large reinforced concrete bridge portfolio. The method used both deterministic and stochastic methods to predict the service life of a bridge, using these service lives in combination with the just in time (JIT principle of management would enable maintenance managers to justify the need for action and the budgets needed, to intervene at the optimum time in the life of the structure and that of the deterioration. The paper will report on the model which is based on a large database of deterioration records of concrete bridges covering a period of over 60 years and include data from over 400 bridge structures. The paper will also illustrate how the service life model was developed and how these service lives combined with the JIT can be used to effectively allocate resources and use them to keep a major infrastructure asset moving with little disruption to the transport system and its users.

  7. A Novel Concrete-Based Sensor for Detection of Ice and Water on Roads and Bridges.

    Science.gov (United States)

    Tabatabai, Habib; Aljuboori, Mohammed

    2017-12-14

    Hundreds of people are killed or injured annually in the United States in accidents related to ice formation on roadways and bridge decks. In this paper, a novel embedded sensor system is proposed for the detection of black ice as well as wet, dry, and frozen pavement conditions on roads, runways, and bridges. The proposed sensor works by detecting changes in electrical resistance between two sets of stainless steel poles embedded in the concrete sensor to assess surface and near-surface conditions. A preliminary decision algorithm is developed that utilizes sensor outputs indicating resistance changes and surface temperature. The sensor consists of a 102-mm-diameter, 38-mm-high, concrete cylinder. Laboratory results indicate that the proposed sensor can effectively detect surface ice and wet conditions even in the presence of deicing chlorides and rubber residue. This sensor can further distinguish black ice from ice that may exist within concrete pores.

  8. Design and evaluation of a single-span bridge using ultra-high performance concrete.

    Science.gov (United States)

    2009-09-01

    "Research presented herein describes an application of a newly developed material called Ultra-High Performance Concrete (UHPC) to a : single-span bridge. The two primary objectives of this research were to develop a shear design procedure for possib...

  9. Dynamic Impact Analysis and Test of Concrete Overpack Segment Models

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Hoon; Kim, Ki Young; Jeon, Je Eon; Seo, Ki Seog [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-10-15

    Concrete cask is an option for spent nuclear fuel interim storage which is used mainly in US. The concrete overpack of the cask provides radiation shielding as well as physical protection for inner canister against external mechanical shock. When the overpack undergoes a severe missile impact which might be caused by tornado or aircraft crash, it should sustain minimal level of structural integrity so that the radiation shielding and the retrievability of canister are maintained. Empirical formulas have been developed for the evaluation of concrete damage but those formulas can be used only for local damage evaluation and not for global damage evaluation. In this research, a series of numerical simulations and tests have been performed to evaluate the damage of two types of concrete overpack segment models under high speed missile impact. It is shown that appropriate modeling of material failure is crucial in this kind of analyses and finding the correct failure parameters may not be straightforward

  10. Estimation of Curvature Changes for Steel-Concrete Composite Bridge Using Fiber Bragg Grating Sensors

    Directory of Open Access Journals (Sweden)

    Donghoon Kang

    2013-01-01

    Full Text Available This study is focused on the verification of the key idea of a newly developed steel-concrete composite bridge. The key idea of the proposed bridge is to reduce the design moment by applying vertical prestressing force to steel girders, so that a moment distribution of a continuous span bridge is formed in a simple span bridge. For the verification of the key technology, curvature changes of the bridge should be monitored sequentially at every construction stage. A pair of multiplexed FBG sensor arrays is proposed in order to measure curvature changes in this study. They are embedded in a full-scale test bridge and measured local strains, which are finally converted to curvatures. From the result of curvature changes, it is successfully ensured that the key idea of the proposed bridge, expected theoretically, is viable.

  11. A technical report on structural evaluation of the Meade County reinforced concrete bridge.

    Science.gov (United States)

    2009-01-01

    This is a technical report on the first phase of the evaluation of the Meade County reinforced concrete bridge. : The first three chapters introduce the main problem and provide a general review of the existing evaluation : methods and the procedures...

  12. Concrete Hinges

    DEFF Research Database (Denmark)

    Halding, Philip Skov; Hertz, Kristian Dahl; Schmidt, Jacob Wittrup

    2014-01-01

    In the first part of the 20th century concrete hinges developed by Freyssinet and Mesnager were widely tested and implemented in concrete structures. The concrete hinges were used a great deal in closed-spandrel arch bridges. Since such a bridge type has not been competitive for the past 40 years......, the research in concrete hinges has not evolved significantly in that period. But introducing a new state-of-the-art concrete arch bridge solution (Pearl-Chain arches invented at the Technical University of Denmark) creates a necessity of a concrete hinge research based on modern standards. Back when research...... in concrete hinges was more common different designs were proposed for the geometry and reinforcement. Previous research focused on fatigue, multi-axial stresses around the hinge throat, and the relation between rotation- and moment. But many different test-setups were proposed by different researchers...

  13. Strength and durability of near-surface mounted CFRP bars for shear strengthening reinforced concrete bridge girders : final report.

    Science.gov (United States)

    2012-03-01

    During the interstate expansion of the 1950s, many conventionally reinforced concrete deck girder bridges were built throughout the country. These aging bridges commonly exhibit diagonal cracking and rate inadequately for shear, thus they are candida...

  14. A Novel Concrete-Based Sensor for Detection of Ice and Water on Roads and Bridges

    Directory of Open Access Journals (Sweden)

    Habib Tabatabai

    2017-12-01

    Full Text Available Hundreds of people are killed or injured annually in the United States in accidents related to ice formation on roadways and bridge decks. In this paper, a novel embedded sensor system is proposed for the detection of black ice as well as wet, dry, and frozen pavement conditions on roads, runways, and bridges. The proposed sensor works by detecting changes in electrical resistance between two sets of stainless steel poles embedded in the concrete sensor to assess surface and near-surface conditions. A preliminary decision algorithm is developed that utilizes sensor outputs indicating resistance changes and surface temperature. The sensor consists of a 102-mm-diameter, 38-mm-high, concrete cylinder. Laboratory results indicate that the proposed sensor can effectively detect surface ice and wet conditions even in the presence of deicing chlorides and rubber residue. This sensor can further distinguish black ice from ice that may exist within concrete pores.

  15. Pervious concrete fill in Pearl-Chain Bridges: Using small-scale results in full-scale implementation

    DEFF Research Database (Denmark)

    Lund, Mia Schou Møller; Hansen, Kurt Kielsgaard; Truelsen, R.

    2016-01-01

    distribution and strength properties is determined for 800 mm high blocks cast in different numbers of layers, and (2) full-scale implementation in a 26 m long Pearl-Chain Bridge. With a layer thickness of 27 cm, the small-scale tests indicated homogenous results; however, for the full-scale implementation......Pearl-Chain Bridge technology is a new prefabricated arch solution for highway bridges. This study investigates the feasibility of pervious concrete as a filling material in Pearl-Chain Bridges. The study is divided into two steps: (1) small-scale tests where the variation in vertical void...

  16. Economic impact of multi-span, prestressed concrete girder bridges designed as simple span versus continuous span : final report.

    Science.gov (United States)

    2016-10-01

    The objective of this study was to determine the economic impact of designing pre-tensioned prestressed concrete beam (PPCB) : bridges utilizing the continuity developed in the bridge deck as opposed to the current Iowa Department of Transportation (...

  17. Arch-Axis Coefficient Optimization of Long-Span Deck-Type Concrete-Filled Steel Tubular Arch Bridge

    Science.gov (United States)

    Liu, Q. J.; Wan, S.; Liu, H. C.

    2017-11-01

    This paper is based on Nanpuxi super major bridge which is under construction and starts from Wencheng Zhejiang province to Taishun highway. A finite element model of the whole bridge is constructed using Midas Civil finite element software. The most adverse load combination in the specification is taken into consideration to determine the method of calculating the arch-axis coefficient of long-span deck-type concrete-filled steel tubular arch bridge. By doing this, this paper aims at providing references for similar engineering projects.

  18. Analysis and modelling composite timber-concrete systems: Design of bridge structure according to EN

    Directory of Open Access Journals (Sweden)

    Manojlović Dragan

    2016-01-01

    Full Text Available Timber-concrete composite structures are already applied more than 80 years in engineering practice, went trought the intuitive problem solution to the fully prefabricated hybride assemblies for dry building. The development path of timber-concrete composites was always followed by extensive theoretical and experimental research, whose results were successfully implemented in practice, i.e. on the market, but till presence didn't result in modern designer's code. In expectation of new European codes for timber-concrete composites, the objective of the paper is to provide a comprehensive review of available standards provisions and recent conclusions from literature. The key issues for practical design are highlighted and ilustrated on the example of glulam composite arch bridge structure with concrete deck, according the Eurocodes.

  19. Durability of lightweight concrete : Phase I : concrete temperature study.

    Science.gov (United States)

    1968-08-01

    This report describes a study conducted to determine the temperature gradient throughout the depth of a six inch concrete bridge deck. The bridge deck selected for study was constructed using lightweight concrete for the center spans and sand and gra...

  20. Strength and durability of near-surface mounted CFRP bars for shear strengthening reinforced concrete bridge girders : final report appendices.

    Science.gov (United States)

    2012-03-01

    During the interstate expansion of the 1950s, many conventionally reinforced concrete deck girder bridges were built throughout the country. These aging bridges commonly exhibit diagonal cracking and rate inadequately for shear, thus they are candida...

  1. Economic impact of multi-span, prestressed concrete girder bridges designed as simple span versus continuous span : tech transfer summary.

    Science.gov (United States)

    2016-10-01

    The objective of this study was to determine the economic impact of : designing pre-tensioned prestressed concrete beam (PPCB) bridges : utilizing the continuity developed in the bridge deck as opposed to the : current Iowa Department of Transportati...

  2. Design and construction of superstructure in prestressed concrete cable-stayed bridge. ; Aomori Bay Bridge. PC shachokyo jobuko no sekkei to seko. ; Aomori Bay Bridge

    Energy Technology Data Exchange (ETDEWEB)

    Ishibashi, T.; Fujimori, S.; Oba, M.; Tsuyoshi, T. (East Japan Railway Co., Tokyo (Japan))

    1991-12-01

    Aomori Bay Bridge is a 1,219m long elevated bridge, a part of No.2 Bay Highway of 1,993m in total length crossing over Aomori railway station which was planned in ordecr to integrate the port facilities of Aomori Harbor and expedite cargo traffic smoothly. Of this Bay Bridge, its main bridge portion crossing over Aomori railway station and the sea area was planned as a continuous prestressed concrete cable-stayed bridge of 498m in total length and consisting of three portions including the central portion in which the main span between the central bridge piers was 240m. It is scheduled to open in the summer of 1992. With regard to the design of this bridge, special care for the view of the bridge has been taken covering from the structure style to the accessories. For this bridge, a large scale underground continuous wall solid base with a box-shaped section consisting of 6 chambers was adopted for the base of a main tower. It has the cantilever suspension structure of the wide girder with the inverted Y-shaped pylons. For its stav cable, was adopted a large capacity stay cable with standard tensile strength of 1,942 fabricated on the site and for its covering tube, a FRP tube was adopted. In this article, the construction of the main girder and stay cables, and the construction control during their installation by projection are reported. 7 refs., 14 figs., 9 tabs.

  3. Flexible concrete link slabs used as expansion joints in bridge decks

    DEFF Research Database (Denmark)

    Lárusson, Lárus Helgi; Fischer, Gregor

    2011-01-01

    of water through the expansion joint and subsequent corrosion of girders and girder bearings. Investigations on joint-less superstructures using conventional steel reinforcement in so-called concrete link slabs indicate improved performance and economic feasibility. However, this concept requires...... relatively large amounts of steel reinforcement for crack control purposes and consequently provides a relatively large flexural stiffness and negative moment capacity at the joint between the spans. These contradicting requirements and effects in existing replacement concepts for damaged mechanical bridge...... joints are currently unresolved. In the proposed system described in this paper, a ductile cement-based composite section reinforced with Glass Fiber Reinforced Polymers (GFRP) replaces the damaged expansion joint. The combination of this ductile concrete together with corrosion resistant GFRP...

  4. DYNAMIC BEHAVIOR OF TWO-SPAN CONTINUOUS CONCRETE BRIDGES UNDER MOVING OF HIGH-SPEED TRAINS

    Directory of Open Access Journals (Sweden)

    O. H. Marinichenko

    2017-10-01

    Full Text Available Purpose. The scientific work provides a comparison of the results of the movement of a high-speed passenger train across the bridge, obtained as a result of finite element modeling in the SAP2000 software package, and real tests of a double-span concrete railway bridge. Analysis of the rigid characteristics of flying structures. Methodology.The numerical method presented in this study shows valid results concerning the dynamic analysis of the behavior of bridges in conditions of high-speed train traffic. The factors influencing the dynamic behavior of bridges under moving loads, the influence of design parameters and rolling stock, as well as the interaction of the train and spans are determined. The system was used in the form of moving concentrated forces simulating the axes of the train. Findings. Maximum movements and accelerations were obtained as a result of the dynamic calculation for different speeds of the train and compared with practical tests. The correctness of the model of a span structure with regard to continuous ferroconcrete spans was verified. Originality. Within the framework of the work, the latest test results were used, including those with speeds calculated on the prospect of rail passenger traffic. For these tests, a model of a span structure was developed. Practical value. The results of the research can be used to plan the introduction of high-speed train traffic on existing and planned flying structures of reinforced concrete bridges. An approach to the design of span structures that will be effective when passing high-speed passenger trains is implemented.

  5. Prestressing of reinforcing bars in concrete slabs due to concrete expansion induced by Alkali-Silica Reaction

    DEFF Research Database (Denmark)

    Gustenhoff Hansen, Søren; Antonio Barbosa, Ricardo; Hoang, Linh Cao

    2017-01-01

    Alkali-silica reactions (ASR) in concrete bridges have been a major concern worldwide for many decades. In Denmark, several bridges are severely damaged due to ASR and over 600 bridges have the potential to develop ASR in the future. The majority of these bridges are slab-bridges. Despite the many...... cases, experimental research on structural safety and residual load carrying capacity of ASR-damaged bridges is limited. As ASR causes severe cracks in the concrete, which may affect the concrete compressive and tensile strength, concerns have been directed towards the residual shear capacity. Yet...

  6. Comparison and calibration of numerical models from monitoring data of a reinforced concrete highway bridge

    Directory of Open Access Journals (Sweden)

    R. G. M. de Andrade

    Full Text Available The last four decades were important for the Brazilian highway system. Financial investments were made so it could expand and many structural solutions for bridges and viaducts were developed. In parallel, there was a significant raise of pathologies in these structures, due to lack of maintenance procedures. Thus, this paper main purpose is to create a short-term monitoring plan in order to check the structural behavior of a curved highway concrete bridge in current use. A bridge was chosen as a case study. A hierarchy of six numerical models is shown, so it can validate the bridge's structural behaviour. The acquired data from the monitoring was compared with the finest models so a calibration could be made.

  7. Long-term behaviour of a steel-concrete composite railway bridge deck

    OpenAIRE

    STAQUET, S; TAILHAN, JL; ESPION, B

    2005-01-01

    A prefabricated, composite and prestressed railway bridge deck has been instrumented in June 2000 with strain gages and vibrating wire extensometers. The purpose of this paper is to report on the comparison between strains recorded in situ up to four years with values computed within the framework of an original time-dependent analysis base on the evolution of the degree of hydration and the internal relative humidity in concrete. These fundamental parameters used in the proposed model to com...

  8. Study on load test of 100m cross-reinforced deck type concrete box arch bridge

    Science.gov (United States)

    Shi, Jing Xian; Cheng, Ying Jie

    2018-06-01

    Found in the routine quality inspection of highway bridge that many vertical fractures on the main beam (10mT beam) of the steel reinforced concrete arch bridge near the hydropower station. In order to grasp the bearing capacity of this bridge under working conditions with cracks, the static load and dynamic load test of box arch bridge are carried out. The Midas civil theory is calculated by using the special plate trailer - 300 as the calculation load, and the deflection and stress of the critical section are tested by the equivalent cloth load in the test vehicle. The pulsation test, obstacles and no obstacle driving test were carried out. Experimental results show that the bridge under the condition of the test loads is in safe condition, main bearing component of the strength and stiffness meet the design requirements, the crack width does not increase, in the process of loading bridge overall work performance is good.

  9. Deflection control system for prestressed concrete bridges by CCD camera. CCD camera ni yoru prestressed concrete kyo no tawami kanri system

    Energy Technology Data Exchange (ETDEWEB)

    Noda, Y.; Nakayama, Y.; Arai, T. (Kawada Construction Co. Ltd., Tokyo (Japan))

    1994-03-15

    For the long-span prestressed concrete bridge (continuous box girder and cable stayed bridge), the design and construction control becomes increasingly complicated as construction proceeds because of its cyclic works. This paper describes the method and operation of an automatic levelling module using CCD camera and the experimental results by this system. For this automatic levelling system, the altitude can be automatically measured by measuring the center location of gravity of the target on the bridge surface using CCD camera. The present deflection control system developed compares the measured value by the automatic levelling system with the design value obtained by the design calculation system, and manages them. From the real-time continuous measurement for the long term, in which the CCD camera was set on the bridge surface, it was found that the stable measurement accuracy can be obtained. Successful application of this system demonstrates that the system is an effective and efficient construction aid. 11 refs., 19 figs., 1 tab.

  10. Railway bridge monitoring during construction and sliding

    Science.gov (United States)

    Inaudi, Daniele; Casanova, Nicoletta; Kronenberg, Pascal; Vurpillot, Samuel

    1997-05-01

    The Moesa railway bridge is a composite steel concrete bridge on three spans of 30 m each. The 50 cm thick concrete deck is supported on the lower flanges of two continuous, 2.7 m high I-beams. The bridge has been constructed alongside an old metallic bridge. After demolishing this one, the new bridge has been slid for 5 m by 4 hydraulic jacks and positioned on the refurbished piles of the old bridge. About 30 fiber optic, low-coherence sensors were imbedded in the concrete deck to monitor its deformations during concrete setting and shrinkage, as well as during the bridge sliding phase. In the days following concrete pour it was possible to follow its thermal expansion due to the exothermic setting reaction and the following thermal and during shrinkage. The deformations induced by the additional load produced by the successive concreting phases were also observed. During the bridge push, which extended over six hours, the embedded and surface mounted sensors allowed the monitoring of the curvature variations in the horizontal plane due to the slightly uneven progression of the jacks. Excessive curvature and the resulting cracking of concrete could be ruled out by these measurements. It was also possible to observe the bridge elongation under the heating action of the sun.

  11. Optimum design of large span concrete filled steel tubular arch bridge based on static, stability and modal analysis

    Institute of Scientific and Technical Information of China (English)

    赵长军; 胡隽; 徐兴

    2002-01-01

    A three-dimensional finite element model was established for a large span concrete filled steel tubular (CFST) arch bridge which is currently under construction. The arch rib, the spandrel columns, the prestressed concrete box-beam, the cast-in-situ concrete plate of bridge deck, the steel box-beam and the crossbeams connecting the two pieces of arch ribs, were modeled by three-dimensional Timoshenko beam elements (3DTBE). The suspenders were modeled by three-dimensional cable elements (3DCE). Both geometric nonlinearity and prestress effect could be included in each kind of element. At the same time a second finite element model with the same geometric and material properties excepted for the sectional dimension of arch rib was set up. Static dynamic analyses were performed to determine the corresponding characteristics of the structure. The results showed that the arch rib's axial rigidity could be determined by static analysis. The stability and vibration of this system could be separated into in-plane modes, out-of-plane modes and coupled modes. The in-plane stability and dynamic characteristics are determined by the arch rib's vertical stiffness and that of out-of-plane is determined by the crossbeams' stiffness and arch rib's lateral stiffness mainly. The in-plane stiffness is much greater than that of out-of-plane for this kind of bridge . The effect of geometric nonlinearity and prestress effect on bridge behavior is insignificant.

  12. Finite-Element Investigation of the Structural Behavior of Basalt Fiber Reinforced Polymer (BFRP- Reinforced Self-Compacting Concrete (SCC Decks Slabs in Thompson Bridge

    Directory of Open Access Journals (Sweden)

    Lingzhu Zhou

    2018-06-01

    Full Text Available The need for a sustainable development and improved whole life performance of concrete infrastructure has led to the requirement of more durable and sustainable concrete bridges alongside accurate predictive analysis tools. Using the combination of Self-Compacting Concrete (SCC with industrial by-products and fiber-reinforced polymer (FRP, reinforcement is anticipated to address the concerns of high carbon footprint and corrosion in traditional steel-reinforced concrete structures. This paper presents a numerical investigation of the structural behavior of basalt fiber-reinforced polymer (BFRP-reinforced SCC deck slabs in a real bridge, named Thompson Bridge, constructed in Northern Ireland, U.K. A non-linear finite element (FE model is proposed by using ABAQUS 6.10 in this study, which is aimed at extending the previous investigation of the field test in Thompson Bridge. The results of this field test were used to validate the accuracy of the proposed finite element model. The results showed good agreement between the test results and the numerical results; more importantly, the compressive membrane action (CMA inside the slabs could be well demonstrated by this FE model. Subsequently, a series of parametric studies was conducted to investigate the influence of different parameters on the structural performance of the deck slabs in Thompson Bridge. The results of the analyses are discussed, and conclusions on the behavior of the SCC deck slabs reinforced by BFRP bars are presented.

  13. Concept project of joining segment, connecting two folding bridge structures MS-54 and widened DMS-65

    Directory of Open Access Journals (Sweden)

    Jan Marszałek

    2015-09-01

    Full Text Available The article includes the concept project of truss segment enabling the constructions of MS-54 and DMS-65 bridges to joint. At the beginning, the basic technical and exploitative characteristics of joined constructions are introduced. On the basis of this data, geometrical analysis of the component is carried out. As a result, the concept project of fitting, enabling the crossing from two types of foldable constructions to be built, is developed. Sequentially, the computer calculations of the bridge including the part of the designed fitting are carried out.The article contains the fragments of M.A. dissertation awarded by the rector of Military University of Technology as the best from the Faculty of Civil Engineering in 2014. The article is summarized with the conclusions.[b]Keywords[/b]: construction, folding bridges, truss segment

  14. Synthesis and evaluation of lightweight concrete research relevant to the AASHTO LRFD bridge design specifications : potential revisions for definition and mechanical properties.

    Science.gov (United States)

    2012-11-01

    Much of the fundamental basis for the current lightweight concrete provisions in the AASHTO LRFD Bridge : Design Specifications is based on research of lightweight concrete (LWC) from the 1960s. The LWC that was : part of this research used tradition...

  15. Vibration based structural assessment of the rehabilitation intervention in r.c. segmental bridge

    OpenAIRE

    Franchetti Paolo; Frizzarin Michele; Leonardi Andrea; Zeni Fabio

    2015-01-01

    A vibration based structural assessment campaign was carried out on a r.c. segmental bridge in North East Italy. The bridge has a cantilever static scheme, fixed at the top of the piers and with a hinge at the centre of the span. The particular configuration of the hinge consists in a couple of steel elements, each one composed by a tongue and groove joint. Since the year 1960, the hinge was subjected to consumption and degradation, that caused a malfunctioning of the device. An intervention ...

  16. Students design composite bridges

    NARCIS (Netherlands)

    Stark, J.W.B.; Galjaard, J.C.; Brekelmans, J.W.P.M.

    1999-01-01

    The paper gives an overview of recent research on steel-concrete composite bridge design by students of Delft University of Technology doing their master's thesis. Primary objective of this research was to find possibilities for application of steel-concrete composite bridges in the Netherlands,

  17. Structural Health Monitoring and Time-Dependent Effects Analysis of Self-Anchored Suspension Bridge with Extra-Wide Concrete Girder

    Directory of Open Access Journals (Sweden)

    Guangpan Zhou

    2018-01-01

    Full Text Available The present work is aimed at studying the structural health status of Hunan Road Bridge, which is currently the widest concrete self-anchored suspension bridge in China. The monitoring data included the structural deformations, internal forces, and vibration characteristics from April 2015 to April 2016 were analyzed to evaluate the structural changes and safety. The influences brought by the ambient temperature changes and the dual effects composed of concrete shrinkage & creep (S&C and seasonal temperature changes were analyzed based on the measured data. The long-time effects of concrete S&C were predicted using the CEB-FIP 90 model and the age-adjusted effective modulus method based on the ANSYS beam finite element model. The measured data showed that the transverse displacements of towers were more significant than the longitudinal ones. The spatial effect of the extra-wide girder is significant, which performs as the longitudinal stresses change unevenly along the transverse direction. The seasonal ambient warming caused overall increases in girder compressive stresses, and the cooling resulted in decreases along with significant temperature gradient effects. The prediction results show that the cable anchoring positions at girder ends and tower tops will move towards the mid-span affected by concrete S&C. In terms of the middle region of mid-span girder, significant increases in longitudinal stresses of top plate and decreases in the ones of bottom plate will be caused by the significant deflection. Comprehensively, the increases in the girder compressive stresses of side-span bottom plate and mid-span top plate are worthy of attention when confronted with extreme high temperature during the bridge service life cycle.

  18. Seismic Retrofit of a Multispan Prestressed Concrete Girder Bridge with Friction Pendulum Devices

    Directory of Open Access Journals (Sweden)

    Alberto Maria Avossa

    2018-01-01

    Full Text Available The paper deals with the proposal and application of a procedure for the seismic retrofit of an existing multispan prestressed concrete girder bridge defined explicitly for the use of friction pendulum devices as an isolation system placed between piers top and deck. First, the outcomes of the seismic risk assessment of the existing bridge, performed using an incremental noniterative Nonlinear Static Procedure, based on the Capacity Spectrum Method as well as the Inelastic Demand Response Spectra, are described and discussed. Then, a specific multilevel design process, based on a proper application of the hierarchy of strength considerations and the Direct Displacement-Based Design approach, is adopted to dimension the FPD devices. Furthermore, to assess the impact of the FPD nonlinear behaviour on the bridge seismic response, a device model that reproduces the variation of the normal force and friction coefficient, the bidirectional coupling, and the large deformation effects during nonlinear dynamic analyses was used. Finally, the paper examines the effects of the FPD modelling parameters on the behaviour of the retrofitted bridge and assesses its seismic response with the results pointing out the efficiency of the adopted seismic retrofit solution.

  19. Field dynamic testing on a Cyprus concrete highway bridge using Wireless Sensor Network (WSN)

    Science.gov (United States)

    Votsis, Renos A.; Kyriakides, Nicholas; Tantele, Elia A.; Chrysostomou, Christis Z.; Onoufriou, Toula

    2014-08-01

    The aims of the bridge management authorities are to ensure that bridges fulfil their purpose and functionality during their design life. So, it is important to identify and quantify the deterioration of the structural condition early so that a timely application of an intervention will avoid more serious problems and increased costs at a later stage. A measure to enhance the effectiveness of the existing structural evaluation by visual inspection is instrumental monitoring using sensors. The activities performed in this process belong to the field of Structural Health Monitoring (SHM). The SHM offers opportunities for continuous or periodic monitoring on bridges and technological advances allow nowadays the employment of wireless sensors networks (WSN) for this task. A SHM application using WSN was implemented on a multi-span reinforced concrete (RC) highway bridge in Limassol with the objective to study its dynamic characteristics and performance. Part of the specific bridge will be replaced and this offered a unique opportunity for measurements before and after construction so that apparent changes in the dynamic characteristics of the bridge will be identified after the repairing work. The measurements provided indications on the frequencies and mode shapes of the bridge and the response amplitude during the passing of traffic. The latter enabled the investigation of the dependency of the bridge's structural damping to the amplitude of vibration induced by the passing of traffic. The results showed that as the excitation increases the magnitude of modal damping increases as well.

  20. A Study of the Bolt Connection System for a Concrete Barrier of a Modular Bridge

    Directory of Open Access Journals (Sweden)

    Doo-Yong Cho

    2018-04-01

    Full Text Available Modular technology has been recently studied to reduce the construction periods in the field of bridge construction. However, this method is restricted to the pier, girder, and deck, which are the main members of a bridge, and incidental facilities such as concrete barriers have been rarely studied. Thus, in this study, the connection system of a concrete barrier for modular bridges was developed, and a static loading experiment was performed to verify the structural capacity of the proposed system. The variables of the experiment were the vertical and horizontal bolt connections and the construction method. The barrier and plate were fabricated using match casting methods in which nuts were first inserted into the plates rather than anchor bolts using the conservative method. Moreover, a comparison with the conventional in situ barrier was also performed. The experiments were conducted according to the AASHTO LRFD standard. Consequently, the specimen using the vertical bolt connection had a structural capacity that was equal to 85% of that of the conventional specimen and exhibited similar crack patterns compared with the conventional specimen. In the case of the horizontal bolt connection, the separation in the connection area occurred with the application of the initial load and this specimen exhibited a poor performance because of the increase in the separation distance with the application of the maximum load.

  1. Embodied Energy Optimization of Prestressed Concrete Slab Bridge Decks

    Directory of Open Access Journals (Sweden)

    Julián Alcalá

    2018-04-01

    Full Text Available This paper presents one approach to the analysis and design of post-tensioned cast-in-place concrete slab bridge decks. A Simulated Annealing algorithm is applied to two objective functions: (i the economic cost; and (ii the embodied energy at different stages of production materials, transport, and construction. The problem involved 33 discrete design variables: five geometrical ones dealing with the thickness of the slab, the inner and exterior web width, and two flange thicknesses; concrete type; prestressing cables, and 26 variables for the reinforcement set-up. The comparison of the results obtained shows two different optimum families, which indicates that the traditional criteria of economic optimization leads to inefficient designs considering the embodied energy. The results indicate that the objectives are not competing functions, and that optimum energy designs are close to the optimum cost designs. The analysis also showed that the savings of each kW h of energy consumed carries an extra cost of 0.49€. The best cost solution presents 5.3% more embodied energy. The best energy solution is 9.7% more expensive than that of minor cost. In addition, the results have showed that the best cost solutions are not the best energy solutions.

  2. 77 FR 53251 - Annual Materials Report on New Bridge Construction and Bridge Rehabilitation

    Science.gov (United States)

    2012-08-31

    ... INFORMATION CONTACT: Ms. Ann Shemaka, Office of Bridge Technology, (202) 366-1575, or via email at [email protected] or Mr. Thomas Everett, Office of Bridge Technology, (202) 366-4675, or via email at thomas... the NBI: steel, concrete, pre-stressed concrete, and other. The category ``other'' includes wood...

  3. Cohesive fracture model for functionally graded fiber reinforced concrete

    International Nuclear Information System (INIS)

    Park, Kyoungsoo; Paulino, Glaucio H.; Roesler, Jeffery

    2010-01-01

    A simple, effective, and practical constitutive model for cohesive fracture of fiber reinforced concrete is proposed by differentiating the aggregate bridging zone and the fiber bridging zone. The aggregate bridging zone is related to the total fracture energy of plain concrete, while the fiber bridging zone is associated with the difference between the total fracture energy of fiber reinforced concrete and the total fracture energy of plain concrete. The cohesive fracture model is defined by experimental fracture parameters, which are obtained through three-point bending and split tensile tests. As expected, the model describes fracture behavior of plain concrete beams. In addition, it predicts the fracture behavior of either fiber reinforced concrete beams or a combination of plain and fiber reinforced concrete functionally layered in a single beam specimen. The validated model is also applied to investigate continuously, functionally graded fiber reinforced concrete composites.

  4. Dynamic assessment of bridge deck performance considering realistic bridge-traffic interaction

    Science.gov (United States)

    2017-09-01

    Concrete bridge decks are directly exposed to daily traffic loads and may experience some surface cracking caused by excessive stress or fatigue accumulation, which requires repair or replacement. Among typical bridges in North America, bridge decks ...

  5. Ultra-high performance fiber-reinforced concrete (UHPFRC) for infrastructure rehabilitation Volume II : behavior of ultra-high strength concrete bridge deck panels compared to conventional stay-in-place deck panels

    Science.gov (United States)

    2017-08-01

    The remarkable features of ultra-high performance concrete (UHPC) have been reported. Its application in bridge construction has been an active research area in recent years, attributed to its higher compressive strength, higher ductility and reduced...

  6. Applicability of Clearance Automatic Laser Inspection System to Clearance Measurement of Concrete Segments

    International Nuclear Information System (INIS)

    Sasaki, M.; Ogino, H.; Hattori, T.

    2009-01-01

    In the decommissioning of a nuclear power plant, large amounts of metal scrap and concrete segments require disposal when dismantling the nuclear reactor and surrounding facilities. When their activity level is negligible or sufficiently small, they can be regarded as general industrial waste. To distinguish between radioactive and nonradioactive materials, the clearance level for each radionuclide has been determined in units of activity concentration. These clearance levels are indicated in the International Atomic Energy Agency (IAEA) Safety Standards Series No. RS-G-1.7. The Japanese regulatory authority decided in 2005 to adopt the values given in RS-G-1.7 as clearance levels in legislation. Recently, a Clearance Automatic Laser Inspection System (CLALIS) has been developed utilizing gamma-ray measurement, automatic laser shape measurement and Monte Carlo calculation. CLALIS comprises four laser scanners and eight large plastic scintillation detectors surrounded by a 5-cm-thick lead shield. Using three-dimensional (3D) laser scanning, a measurement target, which is placed on the measuring tray, is represented as a dot image. The dot image is converted into voxels after noise removal, and is written in MCNP (A General Monte Carlo N-Particle Transport Code System) input files. When the gamma-ray measurement is carried out, the MCNP calculations are also carried out to obtain the calibration factor and background (BG) correction factors. For the clearance measurement of concrete segments, the effect of gamma-rays from natural radionuclides in the measurement target, such as K-40 and the radioactive decay products of Th-232 and U-238, should be taken into account to ensure adequate waste management. Since NE102A plastic scintillation detectors are used for gamma-ray measurement in CLALIS, it is impossible to distinguish between the count rates of natural radionuclides and contaminants on the basis of gamma-ray energy information. To overcome this problem, the

  7. A numerical study on seismic response of self-centring precast segmental columns at different post-tensioning forces

    Directory of Open Access Journals (Sweden)

    Ehsan Nikbakht

    Full Text Available Precast bridge columns have shown increasing demand over the past few years due to the advantages of such columns when compared against conventional bridge columns, particularly due to the fact that precast bridge columns can be constructed off site and erected in a short period of time. The present study analytically investigates the behaviour of self-centring precast segmental bridge columns under nonlinear-static and pseudo-dynamic loading at different prestressing strand levels. Self-centring segmental columns are composed of prefabricated reinforced concrete segments which are connected by central post-tensioning (PT strands. The present study develops a three dimensional (3D nonlinear finite element model for hybrid post-tensioned precast segmental bridge columns. The model is subjected to constant axial loading and lateral reverse cyclic loading. The lateral force displacement results of the analysed columns show good agreement with the experimental response of the columns. Bonded post-tensioned segmental columns at 25%, 40% and 70% prestressing strand stress levels are analysed and compared with an emulative monolithic conventional column. The columns with a higher initial prestressing strand levels show greater initial stiffness and strength but show higher stiffness reduction at large drifts. In the time-history analysis, the column samples are subjected to different earthquake records to investigate the effect post-tensioning force levels on their lateral seismic response in low and higher seismicity zones. The results indicate that, for low seismicity zones, post-tensioned segmental columns with a higher initial stress level deflect lower lateral peak displacement. However, in higher seismicity zones, applying a high initial stress level should be avoided for precast segmental self-centring columns with low energy dissipation capacity.

  8. Structural Behavior of a Long-Span Partially Earth-Anchored Cable-Stayed Bridge during Installation of a Key Segment by Thermal Prestressing

    Directory of Open Access Journals (Sweden)

    Sang-Hyo Kim

    2016-08-01

    Full Text Available This study investigated structural behavior of long-span partially earth-anchored cable-stayed bridges with a main span length of 810 m that use a new key segment closing method based on a thermal prestressing technique. A detailed construction sequence analysis matched with the free cantilever method (FCM was performed using a three-dimensional finite element (FE model of a partially earth-anchored cable-stayed bridge. The new method offers an effective way of connecting key segments by avoiding large movements resulting from the removal of the longitudinal restraint owing to the asymmetry of axial forces in the girders near the pylons. The new method develops new member forces through the process of heating the cantilever system before installing the key segment and cooling the system continuously after installing key segments. The resulting forces developed by the thermal process enhance the structural behavior of partially earth-anchored cable-stayed bridges owing to decreased axial forces in the girders.

  9. Dowel Behavior of Rebars in Small Concrete Block for Sliding Slab Track on Railway Bridges

    Directory of Open Access Journals (Sweden)

    Seong-Cheol Lee

    2018-01-01

    Full Text Available In recent years, several studies have investigated the sliding slab track for railway bridges. In the design of sliding slab tracks, one of the most important considerations is to evaluate the shear capacity of the lateral supporting concrete blocks in which dowel rebars are embedded. The predictions of the dowel behavior of rebars by existing models are considerably different. Therefore, in this study, the actual dowel behavior of the rebars embedded in a small concrete block was extensively investigated through experiments. Test variables were concrete compressive strength, dowel rebar diameter and yield strength, specimen thickness, and dowel rebar spacing. Existing model predictions were considerably different from test results. The maximum dowel force increased as concrete compressive strength and dowel rebar diameter increased, while it did not increase considerably with other test variables. Unlike in existing models, the shear slip at the maximum dowel force decreased as the dowel rebar diameter increased. Existing models significantly underestimated the maximum dowel force of the dowel rebars with small diameters and overestimated it for the dowel rebars with large diameters. This work can be useful for developing a more rational model to represent the actual dowel behavior of the rebars embedded in small concrete blocks.

  10. Finite element model updating of a prestressed concrete box girder bridge using subproblem approximation

    Science.gov (United States)

    Chen, G. W.; Omenzetter, P.

    2016-04-01

    This paper presents the implementation of an updating procedure for the finite element model (FEM) of a prestressed concrete continuous box-girder highway off-ramp bridge. Ambient vibration testing was conducted to excite the bridge, assisted by linear chirp sweepings induced by two small electrodynamic shakes deployed to enhance the excitation levels, since the bridge was closed to traffic. The data-driven stochastic subspace identification method was executed to recover the modal properties from measurement data. An initial FEM was developed and correlation between the experimental modal results and their analytical counterparts was studied. Modelling of the pier and abutment bearings was carefully adjusted to reflect the real operational conditions of the bridge. The subproblem approximation method was subsequently utilized to automatically update the FEM. For this purpose, the influences of bearing stiffness, and mass density and Young's modulus of materials were examined as uncertain parameters using sensitivity analysis. The updating objective function was defined based on a summation of squared values of relative errors of natural frequencies between the FEM and experimentation. All the identified modes were used as the target responses with the purpose of putting more constrains for the optimization process and decreasing the number of potentially feasible combinations for parameter changes. The updated FEM of the bridge was able to produce sufficient improvements in natural frequencies in most modes of interest, and can serve for a more precise dynamic response prediction or future investigation of the bridge health.

  11. Development of bridge girder movement criteria for accelerated bridge construction.

    Science.gov (United States)

    2014-06-01

    End diaphragms connect multiple girders to form a bridge superstructure system for effective resistance to earthquake loads. Concrete : girder bridges that include end diaphragms consistently proved to perform well during previous earthquake events. ...

  12. Deterioration of Concrete Structures

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    Chloride ingress is a common cause of deterioration of reinforced concrete bridges. Concrete may be exposed to chloride by seawater or de-icing salts. The chloride initiates corrosion of the reinforcement, which through expansion disrupts the concrete. In addition, the corrosion reduces the cross...

  13. Spread prestressed concrete slab beam bridges.

    Science.gov (United States)

    2015-04-01

    TxDOT uses prestressed slab beam bridges for short-span bridges ranging from approximately 3050 ft in : length. These bridges have precast, pretensioned slab beams placed immediately adjacent to one another : with a cast-in-place slab made composi...

  14. [Segmental cut-off bridge and local floating technology for the treatment of ossification of ligamentum flavum in thoracic spine].

    Science.gov (United States)

    Liang, Wei-dong; Zhang, Jian; Sheng, Wei-bin

    2013-10-08

    To explore the efficacy and safety of segmental cut-off bridge and local floating technology for the treatment of ossification of ligamentum flavum (OLF) in thoracic spine. Retrospective study was performed in 98 patients with thoracic OLF who under went operation. There was 56 males and 42 females with an average age of 45.8 (35-73) years. The average duration of onset was 17 (3-51) months. The main clinical symptoms were numbness and paraesthesia (n = 90), lower limb weakness and walking trouble (n = 46), positive pyramidal tract signs (n = 33) and sphincter function obstacle (n = 9). OLF was screened and diagnosed by radiology, magnetic resonance imaging (MRI), computed tomography (CT) or CT myelography (CTM). A total of 142 OLF nidus were spotted. The lesions involved single segment (n = 32), double segments (n = 56), three segments (n = 6) and ≥ four segments (n = 4). And the locations were at upper thoracic segment (T1-4) (n = 34), middle thoracic segment (T5-8) (n = 23) and lower thoracic segment (T9-12) (n = 42). The OLF nidus were removed by local floating technology oft windowing at cephalic and caudal ends and a cut-off bridge at both sides of involved segments. Pre- and post-operative Japanese Orthopedic Association (JOA) scores and Epstein grades were recorded to evaluate the outcomes. The mean loss volume of blood was 320 ml and operative duration 155 min. All cases recovered independent activities. The mean follow-up period was 28 (13-48) months. The mean preoperative JOA score was 4.3 (1-8) points and the mean postoperative JOA score 9.7 (5-11) points. The recovery rate was 78.8%. According to Epstein grade, the excellent and good rate was 86.7%. As a common cause of thoracic spinal cord compression, OLF should be operated as early as possible. Based upon clinical and imaging findings, the application of segmental cut-off bridge and local floating technology is both safe and efficacious in the treatment of OLF in thoracic spine.

  15. Vibration based structural assessment of the rehabilitation intervention in r.c. segmental bridge

    Directory of Open Access Journals (Sweden)

    Franchetti Paolo

    2015-01-01

    Full Text Available A vibration based structural assessment campaign was carried out on a r.c. segmental bridge in North East Italy. The bridge has a cantilever static scheme, fixed at the top of the piers and with a hinge at the centre of the span. The particular configuration of the hinge consists in a couple of steel elements, each one composed by a tongue and groove joint. Since the year 1960, the hinge was subjected to consumption and degradation, that caused a malfunctioning of the device. An intervention of rehabilitation of the bridge led to a reinforcement of the existing hinges with the coupling of new metallic devices: new tongue and groove hinges were applied, that by one side allow the horizontal displacements and rotation, by the other side strongly reduce the relative vertical displacements of the two parts of the bridge. A dynamic test campaign was set up in order to assess the effectiveness of the intervention. The principal dynamic parameters were calculated and analysed with respect to the intervention that was realized. The tests clearly showed the effectiveness of the intervention, and helped the designer to have a better understanding of the structural behaviour of the bridge.

  16. Design and construction of Chiburiko Bridge (stress ribbon bridge). Chiburiko bashi (tsurishoban kyo) no sekkei to seko

    Energy Technology Data Exchange (ETDEWEB)

    Kamisakoda, K; Tokuyama, S; Sano, K; Onuma, K [Kashima Corp., Tokyo (Japan)

    1992-07-30

    Chiburiko Bridge lies across Chiburiko which is a lake for agricultural water, and is used by people, carts and cars for administration. It is a stressed-ribbon bridge with the road surface made with concrete covered bands of cables stretched between abutments, and is the first highway bridge in Japan. A report is made on the plan and construction of the bridge. Integration of the precast slab with the cast-in-place concrete as well as mutual integration of the precast slabs are validated by the use of a reproduced model of a part of the bridge. Floor slabs are suspended by cables, and can be constructed with no form nor support by integrating cast-in-place concrete with the precast slabs on mutually joined precast slabs. It has been said that the stressed-ribbon bridge has a structure suitable for long span bridges because it has a simple structure. Studies, however, seems to be necessary on the impact caused by running of vehicles and on the wind resisting stability. 3 refs., 17 figs., 2 tabs.

  17. GFRP seismic strengthening and structural heath monitoring of Portage Creek Bridge concrete columns

    International Nuclear Information System (INIS)

    Huffman, S.; Bagchi, A.; Mufti, A.; Neale, K.; Sargent, D.; Rivera, E.

    2006-01-01

    Located in Victoria British Columbia (BC), Canada, the Portage Creek Bridge is a 124m long, three-span structure with a reinforced concrete piers and abutments on H piles. The bridge was designed prior to the introduction of current bridge seismic design codes and construction practices. Therefore it was not designed to resist the earthquake forces as required by today's standards. The bridge is on a route classified as a Municipal Disaster Route scheduled to be retrofitted to prevent collapse during a design seismic event, with a return period of 475 years (i.e., an event with 105 probability of exceedance in 50 years). Conventional materials and methods were used to retrofit most of the bridge. The dynamic analysis of the bridge predicted the two tall columns of Pier No. 1 will form plastic hinges under an earthquake resulting an additional shear to the short columns of Pier No. 2. A non-liner static pushover analysis indicated the short columns will not be able to form plastic hinges prior to failure in shear. The innovative solution of Fiber Reinforced Polymer wraps (FRPs) was chosen to strengthen the short columns for shear without increasing the moment capacity. The FRP wraps and the bridge were instrumented as one of 36 demonstration projects across Canada sponsored by ISIS (Intelligent Sensing for Innovative Structure) Canada, federally funded Network of Centers of Excellence, to access the performance of FRP and the use of FOS (Fiber Optic Sensors) for Structural Health Monitoring (SHM). The two columns of the bridge pier were strengthened with GFRP (Glass Fiber Reinforced Polymer) wraps with eight bi-directional rosette type strain gauges and four long gauge fiber optic sensors attached to the outer layer of the wraps. In addition, two 3-D Crossbow accelerometers are installed on the pier cap above the columns and a traffic web-cam mounted above the deck at the pier location. The data is collected through high sped internet line to an interactive web page

  18. Analysis of a damaged and repaired pre-stressed concrete bridge girder by vehicle impact and effectiveness of repair procedure

    OpenAIRE

    Domínguez Mayans, Félix

    2014-01-01

    This thesis aims to study the structural consequences of the damages produced by vehicle impact in a pres-stressed concrete bridge girder and the repair procedure in a real case-study damaged after the bridge was opened to service. From the analysis of the situation of the beam and its damage state, a study of the repair actions carried out on this beam has been analyzed in order to determine the efficiency of the repair and if other alternatives are possible or more efficient. A stat...

  19. Estimation of Structure-Borne Noise Reduction Effect of Steel Railway Bridge Equipped with Floating Ladder Track and Floating Reinforced-Concrete Deck

    Science.gov (United States)

    Watanabe, Tsutomu; Sogabe, Masamichi; Asanuma, Kiyoshi; Wakui, Hajime

    A number of steel railway bridges have been constructed in Japan. Thin steel members used for the bridges easily tend to vibrate and generate structure-borne noise. Accordingly, the number of constructions of steel railway bridges tends to decrease in the urban areas from a viewpoint of environmental preservation. Then, as a countermeasure against structure-borne noise generated from steel railway bridges, we have developed a new type of the steel railway bridge equipped with a floating-ladder track and a floating reinforced-concrete (RC) deck. As a result of train-running experiment, it became apparent that the new steel railway bridge installed by double floating system has reduced a vibration velocity level by 10.5 dB(A) at main girder web as compared with a steel railway bridge installed by directly fastened track. This reduction effect was achieved by the ladder track and RC deck supported by resilient materials.

  20. Precast concrete elements for accelerated bridge construction : laboratory testing, field testing, evaluation of a precast concrete bridge, Madison County bridge.

    Science.gov (United States)

    2009-01-01

    The importance of rapid construction technologies has been recognized by the Federal Highway Administration (FHWA) and the Iowa : DOT Office of Bridges and Structures. Recognizing this a two-lane single-span precast box girder bridge was constructed ...

  1. Measurements of bridges' vibration characteristics using a mobile phone

    Directory of Open Access Journals (Sweden)

    Z. M. C. Pravia

    Full Text Available ABSTRACTThis research presents an alternative way to perform a bridge inspection, which considers the dynamics parameters from the structure. It shows an experimental phase with use of a mobile phone to extract the accelerations answers from two concrete bridges, from those records is feasible to obtain natural frequencies using the Fast Fourier Transform (FFT.Numerical models with uses finite element model (FEM allow to determine the natural frequencies from the two concrete bridges and compare with the experimental phase of each one. The final results shows it's possible to use mobiles phones to extract vibration answers from concrete bridges and define the structural behavior of bridges from natural frequencies, this procedure could be used to evaluate bridges with lower costs.

  2. Bridge monitoring by interferometric deformation sensors

    Science.gov (United States)

    Inaudi, Daniele; Vurpillot, Samuel; Casanova, Nicoletta

    1996-09-01

    In many concrete bridges, the deformations are the most relevant parameter to be monitored in both short and long- terms. Strain monitoring gives only local information about the material behavior and too many such sensors would therefore be necessary to gain a complete understanding of the bridge behavior. We have found that fiber optic deformation sensors, with measurement bases of the order of one to a few meters, can give useful information both during the first days after concrete pouring and in the long term. In a first phase it is possible to monitor the thermal expansion due to the exothermic setting reaction and successively the thermal and drying shrinkages. Thanks to the long sensor basis, the detection of a crack traverse to the measurement region becomes probable and the evolution of cracks can therefore be followed with a reduced number of sensors. In the long-term it is possible to measure the geometric deformations and therefore the creeping of the bridge under static loads, especially under its own weight. In the past two years, our laboratory has installed hundreds of fiber optic deformation sensors in more than five concrete, composite steel-concrete, refurbished and enlarged bridges (road, highway and railway bridges). The measuring technique relies on low-coherence interferometry and offers a resolution down to a few microns even for long-term measurements. This contribution briefly discusses the measurement technique and then focuses on the development of a reliable sensor for direct concrete embedding and on the experimental results obtained on these bridges.

  3. Betonreparationers holdbarhed (Durability of Concrete Repairs)

    DEFF Research Database (Denmark)

    Brimnes, Eydbjørn; Dali, Bogi í; Larsen, Erik Stoklund

    1999-01-01

    Concrete repairs on 11 pillars on bridges built in the sixties and repaired 8 to 9 years ago have been examined. Especially the chloride penetration in the repair concrete have been measured. Chloride penetration in the repair concrete is much lower than in the original concrete....

  4. Effect of Ground Motion Characteristics on the Seismic Response of a Monumental Concrete Arch Bridge

    Science.gov (United States)

    Caglayan, B. Ozden; Ozakgul, Kadir; Tezer, Ovunc

    2008-07-01

    Railway network in Turkey dates back to more than a hundred years ago and according to official records, there are approximately 18,000 railway bridges with spans varying between 50 cm up to 150 meters. One of them is a monumental concrete arch bridge with a total length of 210 meters having three major spans of 30 meters and a height of 65 meters, located in an earthquake-prone region in southern part of the country. Three-dimensional finite element model of the bridge was generated using a commercially available general finite element analysis software and based on the outcomes of a series of in-depth acceleration measurements that were conducted on-site, the model was refined. Types of ground motion records were used to investigate the seismic response and vulnerability of this massive structure in order to provide information regarding (i) damage-susceptible regions of the structure for monitoring purposes, and, (ii) seismic loads to be taken into account during evaluation and possible strengthening phases for this type of structures.

  5. Effect of Ground Motion Characteristics on the Seismic Response of a Monumental Concrete Arch Bridge

    International Nuclear Information System (INIS)

    Caglayan, B. Ozden; Ozakgul, Kadir; Tezer, Ovunc

    2008-01-01

    Railway network in Turkey dates back to more than a hundred years ago and according to official records, there are approximately 18,000 railway bridges with spans varying between 50 cm up to 150 meters. One of them is a monumental concrete arch bridge with a total length of 210 meters having three major spans of 30 meters and a height of 65 meters, located in an earthquake-prone region in southern part of the country. Three-dimensional finite element model of the bridge was generated using a commercially available general finite element analysis software and based on the outcomes of a series of in-depth acceleration measurements that were conducted on-site, the model was refined. Types of ground motion records were used to investigate the seismic response and vulnerability of this massive structure in order to provide information regarding (i) damage-susceptible regions of the structure for monitoring purposes, and, (ii) seismic loads to be taken into account during evaluation and possible strengthening phases for this type of structures

  6. Dynamic Response of a Long-Span Concrete-Filled Steel Tube Tied Arch Bridge and the Riding Comfort of Monorail Trains

    Directory of Open Access Journals (Sweden)

    Hongye Gou

    2018-04-01

    Full Text Available In this study, a dynamic response analysis procedure is proposed and applied to investigate the dynamic responses of a straddle-type concrete-filled steel tube tied arch bridge under train and truck loadings. A numerical model of the coupled monorail train–bridge system is established to investigate the dynamic behaviors of the bridge under moving trains. A refined three-dimensional finite element model is built for the bridge and a 15 degrees-of-freedom vehicle model is presented for the train. The numerical model is validated using in-situ test results and then used to analyze the dynamic displacement and acceleration of the bridge and the trains on the bridge. Based on the simulation results, the impact factor of the bridge is investigated and the riding comfort of the trains is evaluated. The investigation results show that the impact factor of vehicle loads reaches the maximum value when the resonance of the bridge is induced by the moving vehicles. The effect of train braking predominates the longitudinal vibration of the bridge but is negligible in the transverse and vertical directions. The vehicle speed is the dominating factor for the riding comfort of the train.

  7. Precast Pearl-Chain concrete arch bridges

    DEFF Research Database (Denmark)

    Halding, Philip Skov; Hertz, Kristian Dahl; Schmidt, Jacob Wittrup

    2015-01-01

    A Pearl-Chain Bridge is a closed-spandrel arch bridge consisting of a number of straight pre-fabricated so called Super-Light Deck elements put together in an arch shape by post-tensioning cables. Several Pearl-Chain arches can be positioned adjacent to each other by a crane to achieve a bridge...... of a desired width. On top of the arch is a filling material to level out the surface of the above road. The filling only transfers vertical loads to the arch. The geometry and material properties of Super-Light Decks are presented, and we refer to several fullscale tests of Pearl-Chain arches where...... the technology was used. We also study other important components and details in the Pearl-Chain Bridge concept and review the effects of different types of loads. A theoretical case study of a circular 30 m span Pearl-Chain Bridge is presented showing the influence of a number of parameters: The number of post...

  8. Aerodynamic stability study of a long-span prestressed concrete cable-stayed bridge. Aerodynamic behavior of edge box girder under uniform flow; Chodai PC shachokyo no taifu anteisei ni kansuru kenkyu. Ichiyoryuchu ni okeru edge girder keishiki no kuriki tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Nomura, T. [Obayashi Corp., Tokyo (Japan)

    1999-01-10

    In recent years, the construction of long-span bridges is on the increase. Prestressed concrete cable-stayed bridges are dynamically very efficient structures of relatively low cost that blend in well with the landscape. Maintenance is also easy. Consequently, the adoption of edge box girders for cable-stayed bridges is increasing worldwide, but problems related to the aerodynamic stability of the structure have emerged. The aerodynamic stability of edge box girders for a prestressed concrete cable-stayed bridge was investigated under uniform flow conditions by conducting several wind tunnel experiments. As a result, the section of the bridge deck was optimized to prevent torsional flutter within an angle of attack varying from -5 to +5 degrees. It is therefore possible to guarantee the aerodynamic stability of long-span prestressed concrete cable-stayed bridges. (author)

  9. Analysis, prediction, and case studies of early-age cracking in bridge decks

    Science.gov (United States)

    ElSafty, Adel; Graeff, Matthew K.; El-Gharib, Georges; Abdel-Mohti, Ahmed; Mike Jackson, N.

    2016-06-01

    Early-age cracking can adversely affect strength, serviceability, and durability of concrete bridge decks. Early age is defined as the period after final setting, during which concrete properties change rapidly. Many factors can cause early-age bridge deck cracking including temperature change, hydration, plastic shrinkage, autogenous shrinkage, and drying shrinkage. The cracking may also increase the effect of freeze and thaw cycles and may lead to corrosion of reinforcement. This research paper presents an analysis of causes and factors affecting early-age cracking. It also provides a tool developed to predict the likelihood and initiation of early-age cracking of concrete bridge decks. Understanding the concrete properties is essential so that the developed tool can accurately model the mechanisms contributing to the cracking of concrete bridge decks. The user interface of the implemented computer Excel program enables the user to input the properties of the concrete being monitored. The research study and the developed spreadsheet were used to comprehensively investigate the issue of concrete deck cracking. The spreadsheet is designed to be a user-friendly calculation tool for concrete mixture proportioning, temperature prediction, thermal analysis, and tensile cracking prediction. The study also provides review and makes recommendations on the deck cracking based mainly on the Florida Department of Transportation specifications and Structures Design Guidelines, and Bridge Design Manuals of other states. The results were also compared with that of other commercially available software programs that predict early-age cracking in concrete slabs, concrete pavement, and reinforced concrete bridge decks. The outcome of this study can identify a set of recommendations to limit the deck cracking problem and maintain a longer service life of bridges.

  10. New technique of railway bridges in Hokuriku Shinkansen; Hokuriku Shinkansen tetsudokyo no gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Miyabayashi, H. [Japan Railway Construction Public Corp., Tokyo (Japan)

    1996-09-01

    This paper presents new technologies of the railway bridges in Hokuriku Shinkansen. Hokuriku Shinkansen of 117km between Takasaki and Nagano is a part of Shinkansen connecting Tokyo with Nagano by nearly 1.5 hours. Its construction is in promotion under severe financial condition, and cost reduction is an essential target. Among the concrete bridges in this section, Kirizumigawa bridge, a prestressed concrete strutted 3-span continuous beam bridge, adopted a lowering erection method for its slant pier. In this method featured by high safety and profitability, the rib component of a concrete arch bridge is vertically erected on a arch support, and installed by swinging it toward the central span. In addition, a cantilever method was adopted to keep the scenery of a national park. Daini Chikumagawa bridge with the longest span of 133.9m among concrete railway bridges is the first cable-stayed prestressed concrete bridge in Shinkansen. Yashiro Minami and Kita bridges of 105m and 90m in central span are the extradosed bridges which were adopted as optimum structure for lowering the beam height of meddle-sized railway bridges. 3 refs., 12 figs., 2 tabs.

  11. Improved concretes for corrosion resistance

    Science.gov (United States)

    1997-07-01

    The deterioration of various reinforced concrete bridge components containing conventional black steel reinforcement is the most important problem facing U.S. highway agencies. A major cause of this concrete deterioration (cracking, delamination, and...

  12. An overheight vehicle bridge collision monitoring system using piezoelectric transducers

    Science.gov (United States)

    Song, G.; Olmi, C.; Gu, H.

    2007-04-01

    With increasing traffic volume follows an increase in the number of overheight truck collisions with highway bridges. The detection of collision impact and evaluation of the impact level is a critical issue in the maintenance of a concrete bridge. In this paper, an overheight collision detection and evaluation system is developed for concrete bridge girders using piezoelectric transducers. An electric circuit is designed to detect the impact and to activate a digital camera to take photos of the offending truck. Impact tests and a health monitoring test were conducted on a model concrete bridge girder by using three piezoelectric transducers embedded before casting. From the experimental data of the impact test, it can be seen that there is a linear relation between the output of sensor energy and the impact energy. The health monitoring results show that the proposed damage index indicates the level of damage inside the model concrete bridge girder. The proposed overheight truck-bridge collision detection and evaluation system has the potential to be applied to the safety monitoring of highway bridges.

  13. Durability of Materials in Pearl-Chain Bridges

    DEFF Research Database (Denmark)

    Lund, Mia Schou Møller

    . The construction of the Pearl-Chain arch is simple. The arch is assembled on its side, next to the road that the bridge will span, by placing a number of plane prefabricated Super-Light Decks that consist of lightweight aggregate concrete and conventional concrete, in the desired arch shape. Mortar joints are cast...... is stabilized by casting a fill material between the spandrel walls of the arch. Finally, the road surface is cast on top of the fill material. New bridges are designed for a service lifetime of at least 100 years. Hence, the specifications of the materials used in Pearl-Chain Bridges are high. This PhD study...... and pervious concrete were also investigated. The most suitable fill material for Pearl-Chain Bridges depends on the particular bridge design; the results obtained and presented in the present PhD study provide guidance on how to decide which fill material is most suitable regarding strength, permeability...

  14. Human Errors and Bridge Management Systems

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle; Nowak, A. S.

    on basis of reliability profiles for bridges without human errors are extended to include bridges with human errors. The first rehabilitation distributions for bridges without and with human errors are combined into a joint first rehabilitation distribution. The methodology presented is illustrated...... for reinforced concrete bridges....

  15. Dynamic assessment of bridge deck performance considering realistic bridge-traffic interaction : research brief

    Science.gov (United States)

    2017-09-01

    This study is to develop simulation methodology to conduct the dynamic assessment of bridge deck performance subjected to traffic. Concrete bridge decks are exposed to daily traffic loads and may experience some surface cracking caused by excessive s...

  16. Modeling reinforced concrete durability : [summary].

    Science.gov (United States)

    2014-06-01

    Many Florida bridges are built of steel-reinforced concrete. Floridas humid and marine : environments subject steel in these structures : to corrosion once water and salt penetrate the : concrete and contact the steel. Corroded steel : takes up mo...

  17. A 2.5-dimensional method for the prediction of structure-borne low-frequency noise from concrete rail transit bridges.

    Science.gov (United States)

    Li, Qi; Song, Xiaodong; Wu, Dingjun

    2014-05-01

    Predicting structure-borne noise from bridges subjected to moving trains using the three-dimensional (3D) boundary element method (BEM) is a time consuming process. This paper presents a two-and-a-half dimensional (2.5D) BEM-based procedure for simulating bridge-borne low-frequency noise with higher efficiency, yet no loss of accuracy. The two-dimensional (2D) BEM of a bridge with a constant cross section along the track direction is adopted to calculate the spatial modal acoustic transfer vectors (MATVs) of the bridge using the space-wave number transforms of its 3D modal shapes. The MATVs calculated using the 2.5D method are then validated by those computed using the 3D BEM. The bridge-borne noise is finally obtained through the MATVs and modal coordinate responses of the bridge, considering time-varying vehicle-track-bridge dynamic interaction. The presented procedure is applied to predict the sound pressure radiating from a U-shaped concrete bridge, and the computed results are compared with those obtained from field tests on Shanghai rail transit line 8. The numerical results match well with the measured results in both time and frequency domains at near-field points. Nevertheless, the computed results are smaller than the measured ones for far-field points, mainly due to the sound radiation from adjacent spans neglected in the current model.

  18. Modeling damage in concrete pavements and bridges.

    Science.gov (United States)

    2010-09-01

    This project focused on micromechanical modeling of damage in concrete under general, multi-axial loading. A : continuum-level, three-dimensional constitutive model based on micromechanics was developed. The model : accounts for damage in concrete by...

  19. Progress of admixtures and quality of concrete. 2. ; Approaches to ultra-high-strength concrete. Konwa zairyo no shinpo to concrete no hinshitsu. 2. ; Chokokyodo concrete eno approach

    Energy Technology Data Exchange (ETDEWEB)

    Kawai, T. (Shimizu Construction Co. Ltd., Tokyo (Japan)); Abe, M. (Building Research Institute, Tsukuba (Japan))

    1994-02-15

    Ultra-high-strength concrete of 600 kgf/cm[sup 2] or more is reviewed. MDF (macro defect free) cement, spheroidal cement and mechanically stabilized cement have been developed for ultra-high-strength concrete, however, in general, DSP (densified system containing homogeneously arranged ultra-fine particles) technique is now usual in which a water-cement ratio is reduced by use of advanced air entraining and water reducing agents and cured concrete is densified by use of ultra-fine particles as admixture. Four kinds of substances such as naphthalene system and polycarboxylic acid system are used as air entraining and water reducing agents, and silica fume is used as ultra-fine particle admixture which can be effectively replaced with blast furnace slag or fly ash. Various use examples of ultra-high-strength concrete such as an ocean platform are found in the world, however, only some examples such as a PC truss bridge and the main tower of a PC cable stayed bridge in Japan. 22 refs., 10 figs., 2 tabs.

  20. Principles of Bridge Reliability

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle; Nowak, Andrzej S.

    The paper gives a brief introduction to the basic principles of structural reliability theory and its application to bridge engineering. Fundamental concepts like failure probability and reliability index are introduced. Ultimate as well as serviceability limit states for bridges are formulated......, and as an example the reliability profile and a sensitivity analyses for a corroded reinforced concrete bridge is shown....

  1. Investigation of Concrete Electrical Resistivity As a Performance Based Test

    OpenAIRE

    Malakooti, Amir

    2017-01-01

    The purpose of this research project was to identify the extent that concrete resistivity measurements (bulk and/or surface) can be used as a performance based lab test to improve the quality of concrete in Utah bridge decks. By allowing UDOT to specify a required resistivity, concrete bridge deck quality will increase and future maintenance costs will decrease. This research consisted of two phases: the field phase and the lab phase. In the field phase, concrete samples were gathered from...

  2. PARAMETRIC STUDY OF SKEW ANGLE ON BOX GIRDER BRIDGE DECK

    OpenAIRE

    Shrikant D. Bobade *, Dr. Valsson Varghese

    2016-01-01

    Box girder bridge deck, is the most common type of bridges in world and India, it consists of several Slab or girders. The span in the direction of the roadway and connected across their tops and bottoms by a thin continuous structural stab, the longitudinal box girders can be made of steel or concrete. The Simple supported single span concrete bridge deck is presented in present study. Skewed bridges are suitable in highway design when the geometry of straight bridges is not possible. The sk...

  3. Linear Cracking in Bridge Decks

    Science.gov (United States)

    2018-03-01

    Concrete cracking in bridge decks remains an important issue relative to deck durability. Cracks can allow increased penetration of chlorides, which can result in premature corrosion of the reinforcing steel and subsequent spalling of the concrete de...

  4. Bridge-in-a-backpack(TM) task 3.3 : investigate soil-structure interaction-modeling and experimental results of concrete filled FRP tube arches.

    Science.gov (United States)

    2015-12-01

    This report includes fulfillment of Task 3.3 of a multi-task contract to further enhance concrete filled FRP tubes, or : the Bridge in a Backpack. Task 3 is an investigation of soil-structure interaction for the FRP tubes. Task 3.3 is the : modeling ...

  5. Design aids of NU I-girders bridges.

    Science.gov (United States)

    2010-05-01

    Precast prestressed concrete I-Girder bridges have become the most dominant bridge system in the United States. In the early design : stages, preliminary design becomes a vital first step in designing an economical bridge. Within the state of Nebrask...

  6. Improving Fatigue Strength of polymer concrete using nanomaterials.

    Science.gov (United States)

    2016-11-30

    Polymer concrete (PC) is that type of concrete where the cement binder is replaced with polymer. PC is often used to improve friction and protect structural substrates in reinforced concrete and orthotropic steel bridges. However, its low fatigue per...

  7. Delamination detection in reinforced concrete using thermal inertia

    International Nuclear Information System (INIS)

    Del Grande, N K; Durbin, P F.

    1998-01-01

    We investigated the feasibility of thermal inertia mapping for bridge deck inspections. Using pulsed thermal imaging, we heat-stimulated surrogate delaminations in reinforced concrete and asphalt-concrete slabs. Using a dual-band infrared camera system, we measured thermal inertia responses of Styrofoam implants under 5 cm of asphalt, 5 cm of concrete, and 10 cm of asphalt and concrete. We compared thermal maps from solar-heated concrete and asphalt-concrete slabs with thermal inertia maps from flash-heated concrete and asphalt-concrete slabs. Thermal inertia mapping is a tool for visualizing and quantifying subsurface defects. Physically, thermal inertia is a measure of the resistance of the bridge deck to temperature change. Experimentally, it is determined from the inverse slope of the surface temperature versus the inverse square root of time. Mathematically, thermal inertia is the square root of the product of thermal conductivity, density, and heat capacity. Thermal inertia mapping distinguishes delaminated decks which have below-average thermal inertias from normal or shaded decks. Key Words: Pulsed Thermal Imaging, Thermal Inertia, Detection Of Concrete Bridgedeck Delaminations

  8. Performance evaluation of corrosion-affected reinforced concrete ...

    Indian Academy of Sciences (India)

    M B Anoop

    Abstract. A methodology for performance evaluation of reinforced concrete bridge girders in corrosive ... concrete (RC) members of infrastructural systems, espe- ... bility will be useful for making engineering decisions for ...... Water-cement ratio.

  9. 75 FR 62181 - Annual Materials Report on New Bridge Construction and Bridge Rehabilitation

    Science.gov (United States)

    2010-10-07

    ... INFORMATION CONTACT: Ms. Ann Shemaka, Office of Bridge Technology, HIBT-30, (202) 366-1575, or Mr. Thomas Everett, Office of Bridge Technology, HIBT-30, (202) 366-4675, Federal Highway Administration, 1200 New... is categorized by the following material types, which are identified in the NBI: steel, concrete, pre...

  10. 76 FR 55160 - Annual Materials Report on New Bridge Construction and Bridge Rehabilitation

    Science.gov (United States)

    2011-09-06

    ... INFORMATION CONTACT: Ms. Ann Shemaka, Office of Bridge Technology, HIBT-30, (202) 366-1575, or Mr. Thomas Everett, Office of Bridge Technology, HIBT-30, (202) 366-4675, Federal Highway Administration, 1200 New... is categorized by the following material types, which are identified in the NBI: steel, concrete, pre...

  11. Evaluation of several types of curing and protective materials for concrete : final report on part II : installation report and initial condition survey of bridge decks.

    Science.gov (United States)

    1970-01-01

    Thirty-nine test panels were installed on three interstate bridges to evaluate several combinations of curing and protective treatments for concrete. Panels were cured with white pigmented liquid membrane and white polyethylene, both with and without...

  12. Live-Load Testing Application Using a Wireless Sensor System and Finite-Element Model Analysis of an Integral Abutment Concrete Girder Bridge

    Directory of Open Access Journals (Sweden)

    Robert W. Fausett

    2014-01-01

    Full Text Available As part of an investigation on the performance of integral abutment bridges, a single-span, integral abutment, prestressed concrete girder bridge near Perry, Utah was instrumented for live-load testing. The live-load test included driving trucks at 2.24 m/s (5 mph along predetermined load paths and measuring the corresponding strain and deflection. The measured data was used to validate a finite-element model (FEM of the bridge. The model showed that the integral abutments were behaving as 94% of a fixed-fixed support. Live-load distribution factors were obtained using this validated model and compared to those calculated in accordance to recommended procedures provided in the AASHTO LRFD Bridge Design Specifications (2010. The results indicated that if the bridge was considered simply supported, the AASHTO LRFD Specification distribution factors were conservative (in comparison to the FEM results. These conservative distribution factors, along with the initial simply supported design assumption resulted in a very conservative bridge design. In addition, a parametric study was conducted by modifying various bridge properties of the validated bridge model, one at a time, in order to investigate the influence that individual changes in span length, deck thickness, edge distance, skew, and fixity had on live-load distribution. The results showed that the bridge properties with the largest influence on bridge live-load distribution were fixity, skew, and changes in edge distance.

  13. Laboratory Testing of Precast Bridge Beck Panel Transverse Connections for Use in Accelerated Bridge Construction

    OpenAIRE

    Porter, Scott D.

    2009-01-01

    Precast concrete bridge deck panels have been used for decades to accelerate bridge construction. Cracking of the transverse connection between panels is a common problem that can damage deck overlays and cause connection leaking leading to corrosion of lower bridge elements. To better understand the behavior of bridge deck transverse female-to-female connections, shear and moment lab testing were performed at Utah State University for the Utah Department of Transportation. Two existing UDOT ...

  14. Bridges analysis, design, structural health monitoring, and rehabilitation

    CERN Document Server

    Bakht, Baidar

    2015-01-01

    This book offers a valuable guide for practicing bridge engineers and graduate students in structural engineering; its main purpose is to present the latest concepts in bridge engineering in fairly easy-to-follow terms. The book provides details of easy-to-use computer programs for: ·      Analysing slab-on-girder bridges for live load distribution. ·      Analysing slab and other solid bridge components for live load distribution. ·      Analysing and designing concrete deck slab overhangs of girder bridges under vehicular loads. ·      Determining the failure loads of concrete deck slabs of girder bridges under concentrated wheel loads. In addition, the book includes extensive chapters dealing with the design of wood bridges and soil-steel bridges. Further, a unique chapter on structural health monitoring (SHM) will help bridge engineers determine the actual load carrying capacities of bridges, as opposed to their perceived analytical capacities. The chapter addressing structures...

  15. Exodermic bridge deck performance evaluation.

    Science.gov (United States)

    2010-07-01

    In 1998, the Wisconsin DOT completed a two"leaf bascule bridge in Green Bay with an exodermic deck system. The exodermic deck consisted of 4.5"in thick cast"in"place reinforced concrete supported by a 5.19"in tall unfilled steel grid. The concrete an...

  16. Assessment of structural condition of Libeň Bridge

    Directory of Open Access Journals (Sweden)

    Kněž Petr

    2017-01-01

    Full Text Available The paper presents diagnostic and load tests of the Inundation bridge which is part of a group of bridges called The Libeň bridge group in Prague. The Libeň bridge group consists of two arched and several framed bridges spanning the Vltava river. One of the vaulted bridges consists of 5 arches and the other vaulted bridge (called Inundation bridge consists of only one arch. Arched bridges are extraordinary structures with both technical and historical value. Since the inundation bridge has the largest arch of whole group, it was selected for testing purposes. The bridge is assembled with three-hinged arch made of concrete. The hinges are made of reinforced concrete and lead contact slabs. Detailed measurements of geometry and material properties were made on the bridge. Based on these measurements a computer model was created to verify the behavior of the structure. Both static and dynamic calculations were performed. Measurements of dynamic characteristics were made during normal operation and with hydraulic vibration exciter. This article will focus on comparing the results of dynamic calculation of the modeled structure and properties measured on real structure excited by hydraulic vibration exciter.

  17. Fatigue testing of wood-concrete composite beams.

    Science.gov (United States)

    2013-05-01

    Currently, wood-concrete composite structural members are usually applied in building structures. There are a relatively small number (in the low 100s) of known bridge applications involving wood-concrete composites. A problem with using these novel ...

  18. The effect of span length and girder type on bridge costs

    Directory of Open Access Journals (Sweden)

    Batikha Mustafa

    2017-01-01

    Full Text Available Bridges have an important role in impacting the civilization, growth and economy of cities from ancient time until these days due to their function in reducing transportation cost and time. Therefore, development of bridges has been a knowledge domain in civil engineering studies in terms of their types and construction materials to confirm a reliable, safe, economic design and construction. Girder-bridge of concrete deck and I-beam girder has been used widely for short and medium span bridges because of ease and low-cost of fabrication. However, many theoretical and practical investigations are still undertaken regarding the type of beam girder; i.e steel composite or prestressed concrete. This paper evaluates the effect of bridge span and the type of girder on the capital cost and life cycle costs of bridges. Three types of girders were investigated in this research: steel composite, pre-tensioned pre-stressed concrete and post-tensioned pre-stressed concrete. The structural design was analyzed for 5 span lengths: 20, 25, 30, 35 and 40m. Then, the capital construction cost was accounted for 15 bridges according to each span and construction materials. Moreover, the maintenance required for 50 years of bridge life was evaluated and built up as whole life costs for each bridge. As a result of this study, the influence of both span length and type of girder on initial construction cost and maintenance whole life costs were assessed to support the decision makers and designers in the selection process for the optimum solution of girder bridges.

  19. Surface Chloride Levels in Colorado Structural Concrete

    Science.gov (United States)

    2018-01-01

    This project focused on the chloride-induced corrosion of reinforcing steel in structural concrete. The primary goal of this project is to analyze the surface chloride concentration level of the concrete bridge decks throughout Colorado. The study in...

  20. Concrete with supplementary cementitious materials

    OpenAIRE

    Jensen, Ole M; Kovler, Konstantin; De Belie, Nele

    2016-01-01

    This volume contains the proceedings of the MSSCE 2016 conference segment on “Concrete with Supplementary Cementitious Materials” (SCM). The conference segment is organized by the RILEM technical committee TC 238-SCM: Hydration and microstructure of concrete with supplementary cementitious materials. TC 238-SCM started activities in 2011 and has about 50 members from all over the world. The main objective of the committee is to support the increasing utilisation of hydraulic...

  1. Expected damages of retrofitted bridges with RC jacketing

    Science.gov (United States)

    Montes, O.; Jara, J. M.; Jara, M.; Olmos, B. A.

    2015-07-01

    The bridge infrastructure in many countries of the world consists of medium span length structures built several decades ago and designed for very low seismic forces. Many of them are reinforced concrete structures that according to the current code regulations have to be rehabilitated to increase their seismic capacity. One way to reduce the vulnerability of the bridges is by using retrofitting techniques that increase the strength of the structure or by incorporating devices to reduce the seismic demand. One of the most common retrofit techniques of the bridges substructures is the use of RC jacketing; this research assesses the expected damages of seismically deficient medium length highway bridges retrofitted with reinforced concrete jacketing, by conducting a parametric study. We select a suite of twenty accelerograms of subduction earthquakes recorded close to the Pacific Coast in Mexico. The original structures consist of five 30 m span simple supported bridges with five pier heights of 5 m, 10 m, 15 m 20 and 25 m and the analyses include three different jacket thickness and three steel ratios. The bridges were subjected to the seismic records and non-linear time history analyses were carried out by using the OpenSEEs Plataform. Results allow selecting the reinforced concrete jacketing that better improves the expected seismic behavior of the bridge models.

  2. Expected damages of retrofitted bridges with RC jacketing

    International Nuclear Information System (INIS)

    Montes, O; Jara, J M; Jara, M; Olmos, B A

    2015-01-01

    The bridge infrastructure in many countries of the world consists of medium span length structures built several decades ago and designed for very low seismic forces. Many of them are reinforced concrete structures that according to the current code regulations have to be rehabilitated to increase their seismic capacity. One way to reduce the vulnerability of the bridges is by using retrofitting techniques that increase the strength of the structure or by incorporating devices to reduce the seismic demand. One of the most common retrofit techniques of the bridges substructures is the use of RC jacketing; this research assesses the expected damages of seismically deficient medium length highway bridges retrofitted with reinforced concrete jacketing, by conducting a parametric study. We select a suite of twenty accelerograms of subduction earthquakes recorded close to the Pacific Coast in Mexico. The original structures consist of five 30 m span simple supported bridges with five pier heights of 5 m, 10 m, 15 m 20 and 25 m and the analyses include three different jacket thickness and three steel ratios. The bridges were subjected to the seismic records and non-linear time history analyses were carried out by using the OpenSEEs Plataform. Results allow selecting the reinforced concrete jacketing that better improves the expected seismic behavior of the bridge models. (paper)

  3. Long Span Bridges in Scandinavia

    DEFF Research Database (Denmark)

    Gimsing, Niels Jørgen

    1998-01-01

    The first Scandinavian bridge with a span of more than 500 m was the Lillebælt Suspension Bridge opened to traffic in 1970.Art the end of the 20th century the longest span of any European bridge is found in the Storebælt East Bridge with a main span of 1624 m. Also the third longest span in Europe...... is found in Scandinavia - the 1210 m span of the Höga Kusten Bridge in Sweden.The Kvarnsund Bridge in Norway was at the completion in 1991 the longest cable-stayed bridge in the world, and the span of 530 m is still thge longest for cable-stayed bridges in concrete. The Øresund Bridge with its sapn of 490...

  4. Assessment of Replacement Bridge using Proof Load Test

    Science.gov (United States)

    Sundru, Saibabu

    2017-11-01

    This work begins with an overview of the condition assessment of old bridge and explained reasons for demolishing of the bridge. Briefly presented flexural analysis of two stage post-tensioned prestressed concrete girder, which will be replace the old (new bridge). Construction of I-girder and composite girder at first stage and second stage prestressing respectively is explained with figures. Assessment of the load-caring capacity of the one span of the replacement bridge with simple supports using proof load test is presented which is mandatory according to Indian standards. Weighted sand bags were used to load the bridge up to a predetermined service load with impact factor. Deflections of the I-girders of the bridge were measured at selected locations along and across the bridge span and compared with computed values. Linear response was observed during loading and unloading. Considering the load test results, theoretical estimation and criteria as stipulated in codes of practice, it can be inferred that prestressed concrete I-girder bridge span has adequate capacity to carry the loads and hence, deemed to have passed the test.

  5. Long-Term Effects of Super Heavy-Weight Vehicles on Bridges

    OpenAIRE

    Wood, Scott M.; Akinci, Necip Onder; Liu, Judy; Bowman, Mark D

    2007-01-01

    A permit truck which exceeds the predefined limit of 108 kips is defined as a superload in Indiana. This study was conducted to examine the long-term effects of superload trucks on the performance of typical slab-on-girder bridges and to assess the likelihood of causing immediate damage. Typical steel and prestressed concrete slab-on-girder type bridges were analyzed using both beam line analysis and detailed finite element models. Furthermore, one prestressed concrete bridge and one steel br...

  6. Numerical investigation of the bearing capacity of transversely prestressed concrete deck slabs

    NARCIS (Netherlands)

    Amir, S.; Van der Veen, C.; Walraven, J.C.; De Boer, A.

    2014-01-01

    The research subject of this paper is the bearing capacity of transversely prestressed concrete bridge decks between concrete girders under concentrated loads. Experiments on a 1:2 scale model of this bridge were carried out in the laboratory and a 3D nonlinear finite element model was developed in

  7. Covered Bridge Security Manual

    Science.gov (United States)

    Brett Phares; Terry Wipf; Ryan Sievers; Travis Hosteng

    2013-01-01

    The design, construction, and use of covered timber bridges is all but a lost art in these days of pre-stressed concrete, high-performance steel, and the significant growth both in the volume and size of vehicles. Furthermore, many of the existing covered timber bridges are preserved only because of their status on the National Registry of Historic Places or the...

  8. The Non-Destructive Test of Steel Corrosion in Reinforced Concrete Bridges Using a Micro-Magnetic Sensor

    Directory of Open Access Journals (Sweden)

    Hong Zhang

    2016-09-01

    Full Text Available This paper presents a non-destructive test method for steel corrosion in reinforced concrete bridges by using a 3-dimensional digital micro-magnetic sensor to detect and analyze the self-magnetic field leakage from corroded reinforced concrete. The setup of the magnetic scanning device and the measurement mode of the micro-magnetic sensor are introduced. The numerical analysis model is also built based on the linear magnetic charge theory. Compared to the self-magnetic field leakage data obtained from magnetic sensor-based measurement and numerical calculation, it is shown that the curves of tangential magnetic field at different lift-off height all intersect near the edge of the steel corrosion zone. The result indicates that the intersection of magnetic field curves can be used to detect and evaluate the range of the inner steel corrosion in engineering structures. The findings of this work propose a new and effective non-destructive test method for steel corrosion, and therefore enlarge the application of the micro-magnetic sensor.

  9. Implementing statistical analysis in multi-channel acoustic impact-echo testing of concrete bridge decks: Determining thresholds for delamination detection

    Science.gov (United States)

    Hendricks, Lorin; Spencer Guthrie, W.; Mazzeo, Brian

    2018-04-01

    An automated acoustic impact-echo testing device with seven channels has been developed for faster surveying of bridge decks. Due to potential variations in bridge deck overlay thickness, varying conditions between testing passes, and occasional imprecise equipment calibrations, a method that can account for variations in deck properties and testing conditions was necessary to correctly interpret the acoustic data. A new methodology involving statistical analyses was therefore developed. After acoustic impact-echo data are collected and analyzed, the results are normalized by the median for each channel, a Gaussian distribution is fit to the histogram of the data, and the Kullback-Leibler divergence test or Otsu's method is then used to determine the optimum threshold for differentiating between intact and delaminated concrete. The new methodology was successfully applied to individual channels of previously unusable acoustic impact-echo data obtained from a three-lane interstate bridge deck surfaced with a polymer overlay, and the resulting delamination map compared very favorably with the results of a manual deck sounding survey.

  10. A device for displaying defects in concrete

    International Nuclear Information System (INIS)

    Zouboff, Vadim; Darnault, Claude; Leloup, J.-C.

    1973-01-01

    The device comprises a common gamma source, located on one side of the concrete block to be examined on the opposite side, a detecting unit comprising a collimator and a photo-multiplier detector connected to a display unit and moving along rails parallel to the concrete block face. That device is used for displaying concrete defects in particular injection deficiencies in the pre-stress sheaths of concrete used for the building of bridges or tunnels [fr

  11. Structural response of full-scale concrete bridges subjected to high load magnitudes

    DEFF Research Database (Denmark)

    Halding, Philip Skov; Schmidt, Jacob Wittrup; Jensen, Thomas Westergaard

    -shaped concrete elements. The test method is outlined in the paper, which includes a description of a novel test-rig used to apply a high magnitude loading. It was shown that the test rig could perform controlled testing in only one day, which is an important aspect, since available time (due to traffic...... disturbance) often is an issue when testing on site. Also, different types of measuring equipment such as lasers, LVDT’s and DIC-cameras was investigated, in order to evaluate the deformations during loading of one of the OT-beam bridges. The monitoring equipment was studied to verify if such equipment...... efficiently could be used for in-situ measurements. The load was applied semi-deformation controlled by a combination of dead load and hydraulic jacks. The novel high magnitude loading-rig worked well. It was also possible to achieve good readings from the monitoring equipment in combination with the applied...

  12. Leakage tests of wall segments of reactor containments

    International Nuclear Information System (INIS)

    Rizkalla, S.H.; Simmonds, S.H.; MacGregor, J.G.

    1979-10-01

    Two prestressed concrete wall segments simulating portions of containment walls were loaded by axial tensile forces to cause cracking of the concrete. At each load increment air pressure was applied in steps up to 21 psi to one side of the segment and the rate of leakage of air through the cracked concrete section was measured. A theoretical equation for the flow of air through concrete cracks is developed and the results from one leakage test are used to determine the dimensionless constant required for this equation. (author)

  13. Evaluation of external exposure during building and operation of concrete bridges constructions that reuse the conditionally released steels - 59120

    International Nuclear Information System (INIS)

    Panik, Michal; Necas, Vladimir

    2012-01-01

    This paper presents ongoing results of the project presented at ICEM'10 [1] related to the topics of reusing the conditionally released materials from decommissioning. The subject of the reuse of conditionally released materials in this case is modeling of bridge constructions which reuse the conditionally released steel in the form of reinforcement bars for the concrete bridges. A general approach for the project was presented at ICEM'10. The activities of the project continue in evaluating the individual effective doses from the external exposure based on reused conditionally released steels separately for public and for professionals (the internal exposure will be evaluated in next stages of the project). Evaluated scenarios are related to critical groups of professionals constructing the bridges (worker's scenarios). The computer code VISIPLAN 3D ALARA 4.0 planning tool was used for the calculation of the individual effective dose for professionals. Various limits of the annual individual effective dose are used for the evaluation of calculation results. The aim of the ongoing modeling is to develop a set of data of maximal radioactivity concentration for individual radionuclides in the conditionally released steel used in the bridges model constructions in order not to exceed the limits for the individual effective dose. (authors)

  14. Nondestructive testing for bridge diagnosis

    International Nuclear Information System (INIS)

    Oshima, Toshiyuki; Mikami, Shuichi; Yamazaki, Tomoyuki

    1997-01-01

    There are many motivations for bridge diagnosis using Nondestructive testing (NDT) to monitor its integrity. The measured frequency and damping on real bridge are compared in one figure as a function of span length and general aspects are explained. These date were measured in every construction of bridges and applied to design new bridges. Ultrasonic testing is also well used for concrete and steel members mainly to detect internal damages or delaminations. Detail analysis on reflected waves gives us more accurate information about the defect. Experimental results are shown as examples in this paper.

  15. Rational and Safe Design of Concrete Transportation Structures for Size Effect and Multi-Decade Sustainability

    Science.gov (United States)

    2012-10-01

    The overall goal of this project was to improve the safety and sustainability in the design of large : prestressed concrete bridges and other transportation structures. The safety of large concrete : structures, including bridges, has been insufficie...

  16. Final Environmental Assessment, Horse Creek Bridge Replacement

    Science.gov (United States)

    2010-10-01

    existing bridge pipes that have failed and replace the failed structure with a new, prefabricated pedestrian bridge within the original bridge footprint...vehicles, nor designed for support of standard passenger vehicle loads. The bridge would be a single prefabricated unit consisting of a steel grate...placed on new concrete abutments built on the existing foundations on the creek banks, and put in place by a crane operating from the vehicle parking

  17. comparative evaluation of the flexural strength of concrete and colcrete

    African Journals Online (AJOL)

    concrete and polymer concrete, from continuous researches being carried out on. 13 ... COMPARATIVE EVALUATION OF THE FLEXURAL STRENGTH OF CONCRETE AND COLCRETE advantage of being able to use larger sizes of ... and low permeability, colcrete has found applications in tunnel linings, dams, bridges.

  18. Seismic retrofit of spliced sleeve connections for precast bridge piers.

    Science.gov (United States)

    2017-03-01

    Grouted Splice Sleeve (GSS) connectors are being considered for connecting bridge columns, footings, and pier caps in Accelerated Bridge Construction (ABC). A repair technique for precast reinforced concrete bridge column-to-footing and column-to-pie...

  19. Modeling reinforced concrete durability.

    Science.gov (United States)

    2014-06-01

    This project developed a next-generation modeling approach for projecting the extent of : reinforced concrete corrosion-related damage, customized for new and existing Florida Department of : Transportation bridges and suitable for adapting to broade...

  20. Mössbauer characterization of the corrossion products of steels in civil works: Suspension bridge and reinforced concrete

    Science.gov (United States)

    Kounde, B.; Raharinaivo, A.; Olowe, A. A.; Rezel, D.; Bauer, Ph.; Génin, J. M. R.

    1989-03-01

    The rusting condition of the cables of suspension bridges is usually evaluated by self-induction measurements. This method assumes that rusts of same chemical composition have always the same magnetic properties. Unfortunately in some cases, this assumption has shown to be questionable and this study has demonstrated that Mössbauer spectroscopy supplies additional information on the nature of some detected defects. In the case of reinforced concrete, it has been empirically pointed out that the content of agressive element, e.g. Cl- ions, should be under a trigger. Mössbauer studies have demonstrated the physical meaning of this practical rule.

  1. Prestressing Concrete with CFRP Composites for Sustainability and Corrosion-Free Applications

    Directory of Open Access Journals (Sweden)

    Belarbi A.

    2018-01-01

    Full Text Available Advancement in material science has enabled the engineers to enhance the strength and long-term behavior of concrete structures. The conventional approach is to use steel for prestressed bridge girders. Despite having good ductility and strength, beams prestressed with steel are susceptible to corrosion when subjected to environmental exposure. The corrosion of the prestressing steel reduces load carrying capacity of the prestressed member and result in catastrophic failures. In the last decades, more durable composite materials such as Aramid Fiber Reinforced Polymer (AFRP, Glass Fiber Reinforced Polymer (GFRP and Carbon Fiber Reinforced Polymer (CFRP have been implemented in concrete structures as a solution to this problem. Among these materials, CFRP stands out as a primary prestressing reinforcement, which has the potential to replace steel and provide corrosion free prestressed bridge girders. Despite its promise, prestressing CFRP has not frequently been used for bridge construction worldwide. The major contributing factor to the lack of advancement of this promising technology in the United States (U.S. is the lack of comprehensive design specifications. Apart from a limited number of guides, manuals, and commentaries, there is currently no standard or comprehensive design guideline available to bridge engineers in the U.S. for the design of concrete structures prestressed with CFRP systems. The main goal is to develop design guidelines in AASHTO-LRFD format for concrete bridge girders with prestressing CFRP materials. The guidelines are intended to address the limitation in current AASHTO-LRFD Bridge Design Specifications which is applicable for prestressed bridge girders with steel strands. To accomplish this goal, some of the critical parameters that affect the design and long-term behavior of prestressed concrete bridge girders with prestressing CFRP systems are identified and included in the research work. This paper presents

  2. Evaluation and Comparison of Freeze-Thaw Tests and Air Void Analysis of Pervious Concrete

    DEFF Research Database (Denmark)

    Lund, Mia Schou Møller; Hansen, Kurt Kielsgaard; Kevern, John T.

    2016-01-01

    Pearl-Chain Bridge technology is an innovative precast arch bridge solution which uses pervious concrete as fill material. To ensure longevity of the bridge superstructure it is necessary that the per-vious concrete fill is designed to be freeze-thaw durable; however, no standards exist on how...... to eval-uate the freeze-thaw resistance of fresh or hardened pervious concrete and correspondingly what constitutes acceptable freeze-thaw durability. A greater understanding of the correlation between the freeze-thaw performance and the air void structure of pervious concrete is needed. In the present...... study six pervious concrete mixes were exposed to freeze-thaw testing, and their air void structure was analyzed using an automated linear-traverse method. It was found that there is a miscorrelation between these two test methods in their assumption of whether or not the large interconnected voids...

  3. Seismic performance evaluation of an historical concrete deck arch bridge using survey and drawing of the damages, in situ tests, dynamic identification and pushover analysis

    Science.gov (United States)

    Bergamo, Otello; Russo, Eleonora; Lodolo, Fabio

    2017-07-01

    The paper describes the performance evaluation of a retrofit historical multi-span (RC) deck arch bridge analyzed with in situ tests, dynamic identification and FEM analysis. The peculiarity of this case study lies in the structural typology of "San Felice" bridge, an historical concrete arch bridge built in the early 20th century, a quite uncommon feature in Italy. The preservation and retrofit of historic cultural heritage and infrastructures has been carefully analyzed in the international codes governing seismic response. A complete survey of the bridge was carried out prior to sketching a drawing of the existing bridge. Subsequently, the study consists in four steps: material investigation and dynamic vibration tests, FEM analysis and calibration, retrofit assessment, pushover analysis. The aim is to define an innovative approach to calibrate the FEM analysis through modern experimental investigations capable of taking structural deterioration into account, and to offer an appropriate and cost-effective retrofitting strategy.

  4. Numerical simulation of CFRP-repaired reinforced concrete columns.

    Science.gov (United States)

    2014-07-01

    The overarching goal of this study was to investigate the influence of repair to individual reinforced concrete bridge columns on the : post-repair seismic performance of the bridge system. A method was developed to rapidly repair an earthquake-damag...

  5. Post-tensioning and splicing of precast/prestressed bridge beams to extend spans

    Science.gov (United States)

    Collett, Brandon S.; Saliba, Joseph E.

    2002-06-01

    This paper explores the status and techniques of post-tensioning and splicing precast concrete I-beams in bridge applications. It will look at the current practices that have been used in the United States and comment on the advantages of these techniques. Representative projects are presented to demonstrate the application and success of specific methods used. To demonstrate the benefits of using post-tensioning and splicing to extend spans, multiple analysis of simple span post-tensioned I-beams were performed varying such characteristics as beam spacing, beam sections, beam depth and concrete strength. Tables were then developed to compare the maximum span length of a prestressed I-beam versus a one segment or a spliced three segment post-tensioned I-beam. The lateral stability of the beam during fabrication, transportation and erection is also examined and discussed. These tables are intended to aid designers and owners in preliminary project studies to determine if post-tensioning can be beneficial to their situation. AASHTO Standard Specifications(2) will be used as basic guidelines and specifications. In many cases, post-tensioning was found to extend the maximum span length of a typical 72-inch precast I-beam more than 40 feet over conventional prestress.

  6. Modification of Displacement Coefficient Method in Estimation of Target Displacement for Regular Concrete Bridges Based on ASCE 41-06 Standard

    Directory of Open Access Journals (Sweden)

    Seyed Bahram Beheshti-Aval

    2015-06-01

    Full Text Available Displacement Coefficient Method (DCM stipulated in the ASCE 41-06 standard is becoming the preferred method for seismic rehabilitation of buildings in many high-seismic-hazard countries. Applications of the method for non-building constructions such as bridges are beyond the scope of this standard. Thus its application to this kind of structure should be approached with care. Target displacement has reasonable accuracy for buildings with strong columns and weak beams, where there is the development of plastic hinges. Due to high stiffness and strength of the deck relative to the piers in most bridges, this mechanism does not occur, and it is necessary to evaluate the accuracy of DCM for such structures. In this research, an attempt is made to evaluate the credibility of DCM in the ASCE/SEI 41-06 standard for estimating target drifts in concrete regular bridges under strong ground motions. To apply the extension of the method to bridge structures, the definition of new correction factor CB, which should be multiplied to previous coefficients, is required. This novel coefficient can improve the accuracy of the mentioned method in accessing seismic displacement demands. The coefficient is presented for soil types A to D based on NEHRP soil classification. The validity of the modified DCM is examined for several bridges with use of nonlinear dynamic analysis. Good correlation is found between both procedures.

  7. INVESTIGATION OF LAUNCHING PROCESS FOR STEEL REINFORCED CONCRETE FRAMEWORK OF LARGE BRIDGES

    Directory of Open Access Journals (Sweden)

    V. A. Grechukhin

    2017-01-01

    Full Text Available Bridges are considered as the most complicated, labour-consuming and expensive components in roadway network of the Republic of Belarus. So their construction and operation are to be carried out at high technological level. One of the modern industrial methods is a cyclic longitudinal launching of large frameworks which provide the possibility to reject usage of expensive auxiliary facilities and reduce a construction period. There are several variants of longitudinal launching according to shipping conditions and span length: without launching girder, with launching girder, with top strut-framed beam in the form of cable-stayed system, with strut-framed beam located under span. While using method for the cyclic longitudinal launching manufacturing process of span is concentrated on the shore. The main task of the investigations is to select economic, quick and technologically simple type of the cyclic longitudinal launching with minimum resource- and labour inputs. Span launching has been comparatively analyzed with temporary supports being specially constructed within the span and according to capital supports with the help of launching girder. Conclusions made on the basis of calculations for constructive elements of span according to bearing ability of element sections during launching and also during the process of reinforced concrete plate grouting and at the stage of operation have shown that span assembly with application of temporary supports does not reduce steel spread in comparison with the variant excluding them. Results of the conducted investigations have been approbated in cooperation with state enterprise “Belgiprodor” while designing a bridge across river Sozh.

  8. Precast concrete elements for accelerated bridge construction : laboratory testing, field testing, and evaluation of a precast concrete bridge, Black Hawk County.

    Science.gov (United States)

    2009-01-01

    The importance of rapid construction technologies has been recognized by the Federal Highway Administration (FHWA) and the Iowa : DOT Office of Bridges and Structures. Black Hawk County (BHC) has developed a precast modified beam-in-slab bridge (PMBI...

  9. Analysis of vibration characteristics of a prestressed concrete cable-stayed bridge using strong motion observation data. Jishin kansoku ni motozuku PC shachokyo no shindo tokusei no kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Inatomi, T. (Port and Harbour Research Institute, Kanagawa (Japan)); Takeda, T.; Obi, N.; Yamanobe, S. (Kajima Corp., Tokyo (Japan))

    1994-05-31

    Records of seismic observation were analyzed for the purpose of proving the validity of antiseismic design for a prestressed concrete (PC) cable-stayed bridge. This bridge is a three span continuous PC cable-stayed bridge of 498 m in bridge length, and is constructed on alluvial soft ground. The seismometer used is a servo type accelerometer. The observed frequency and mode of seismic vibration are in good agreement with those in the analysis and hence the validity of modelling of the structure in designing was confirmed. It was also confirmed that the bending vibration and torsional vibration of the main girder are separated as designed. However, some points such as a large difference in the observed vibration and analysed vibration in the mode accompanying rotation of the base are listed as problems to be solved in antiseismic design. In order to investigate the attenuation constant of the upper structure, a seismic wave response analysis was performed and its results were compared with observed ones. When the attenuation constant is assumed to be 2%, agreement of data between analysis and observation is good, and it is considered that the attenuation constant of the upper structure only without the effects of attenuation of energy escape from the base and crack generation in concrete was about 2% in the observed earthquake (maximum acceleration on the ground: 51 Gal). 8 refs., 9 figs., 2 tabs.

  10. Analysis and assessment of microbial biofilm-mediated concrete deterioration.

    Science.gov (United States)

    2008-10-01

    Inspections of bridge substructures in Texas identified surface deterioration of reinforced concrete columns on : bridges continuously exposed water. Initial hypothesis were that the surface deterioration was a result of the : acidity of the water in...

  11. Impact of Underwater Explosions on Concrete Bridge Foundations

    Science.gov (United States)

    2016-06-01

    structural component. Because of the curved structure, arch bridges have a high bending force resistance. When the bridge is loaded, a horizontal force...V. Kedrinskii, “ Rarefaction waves and bubbly cavitation in real liquid,” presented at the Fourth International Symposium on Cavitation, Pasadena

  12. Creep and drying shrinkage of high performance concrete for the skyway structures of the new San Francisco-Oakland Bay Bridge and cement paste

    Science.gov (United States)

    2011-03-01

    The objective of this study was to determine the influence of admixtures on long term drying shrinkage and creep of high : strength concrete (HSC). Creep and shrinkage of the mix utilized in segments of the Skyway Structure of the San : Francisco-Oak...

  13. Structural strength deterioration of coastal bridge piers considering non-uniform corrosion in marine environments

    Science.gov (United States)

    Guo, Anxin; Yuan, Wenting; Li, Haitao; Li, Hui

    2018-04-01

    In the aggressive marine environment over a long-term service period, coastal bridges inevitably sustain corrosion-induced damage due to high sea salt and humidity. This paper investigates the strength reduction of coastal bridges, especially focusing on the effects of non-uniform corrosion along the height of bridge piers. First, the corrosion initiation time and the degradation of reinforcement and concrete are analyzed for bridge piers in marine environments. To investigate the various damage modes of the concrete cover, a discretization method with fiber cells is used for calculating time-dependent interaction diagrams of cross-sections of the bridge piers at the atmospheric zone and the splash and tidal zone under a combination of axial force and bending moment. Second, the shear strength of these aging structures is analyzed. Numerical simulation indicates that the strength of a concrete pier experiences dramatic reduction from corrosion initiation to the spalling of the concrete cover. Strength loss in the splash and tidal zone is more significant than in the atmospheric zone when structures' service time is assumed to be the same.

  14. Durability performance of submerged concrete structures - phase 2 : [summary].

    Science.gov (United States)

    2015-10-01

    Thousands of Florida bridges have steel-reinforced concrete piling foundations standing : in salt water. Over time, chloride ions in the water can migrate through the concrete to : attack the steel inside. The Florida Department of Transportation (FD...

  15. Myocardial Bridging

    Directory of Open Access Journals (Sweden)

    Shi-Min Yuan

    2016-02-01

    Full Text Available Abstract Myocardial bridging is rare. Myocardial bridges are most commonly localized in the middle segment of the left anterior descending coronary artery. The anatomic features of the bridges vary significantly. Alterations of the endothelial morphology and the vasoactive agents impact on the progression of atherosclerosis of myocardial bridging. Patients may present with chest pain, myocardial infarction, arrhythmia and even sudden death. Patients who respond poorly to the medical treatment with β-blockers warrant a surgical intervention. Myotomy is a preferred surgical procedure for the symptomatic patients. Coronary stent deployment has been in limited use due to the unsatisfactory long-term results.

  16. Development of guidelines for transportation of prestressed concrete girders.

    Science.gov (United States)

    2011-11-01

    "Prestressed concrete girders are an economical superstructure system for bridges. With the : advent of higher strength concretes and more effi cient cross sections, the use of long span (>100 : ft.) prestressed girders are now specifi ed. Such long ...

  17. Overview of the National Timber Bridge Inspection Study

    Science.gov (United States)

    James P. Wacker; Brian K. Brashaw; Frank Jalinoos

    2013-01-01

    As many engineers begin to implement life cycle cost analyses within the preliminary bridge design phase, there is a significant need for more reliable data on the expected service life of highway bridges. Many claims are being made about the expected longevity of concrete and steel bridges, but few are based on actual performance data. Because engineers are least...

  18. Comparison Between PCI and Box Girder in BridgesPrestressed Concrete Design

    Science.gov (United States)

    Rahmawati, Cut; Zainuddin, Z.; Is, Syafridal; Rahim, Robbi

    2018-04-01

    This research is done by comparing PCI and Box Girder types of prestressed concrete design. The method used is load balance. Previous studies have just discussed the differences in terms of effectiveness and economics. In this study, the researchers want to know the design process by comparing the working forces, the resulting moment, and the losses of the prestressed. As the case in this study, the researchers used the bridge with the span of 31 meters. The tendon pulling system was conducted with post-tensioning system The analysis result showed that prestressed of the Girder box type sustained the greatest moment due to the combination of its own weight, additional dead load, lane load, and wind load of 44,029 kNm, while the biggest moment of PCI Girder was 7,556.75 KNm The Girder beam box experiences greater moment and shear force than PCI Girder. This is the effect of the weight of its own Girderboxwaslarger than PCI Girder. The losses ofprestressed style of Girderboxand PCI Girder type were 24.85% and 26.32%, respectively.Moreover, it showed that the type of Girder box is cheaper, easier, and more efficient than PCI Girder.

  19. Practical assessment of magnetic methods for corrosion detection in an adjacent precast, prestressed concrete box-beam bridge

    Science.gov (United States)

    Fernandes, Bertrand; Titus, Michael; Nims, Douglas Karl; Ghorbanpoor, Al; Devabhaktuni, Vijay Kumar

    2013-06-01

    Magnetic methods are progressing in the detection of corrosion in prestressing strands in adjacent precast, prestressed concrete box-beam bridges. This study is the first field trial of magnetic strand defect detection systems on an adjacent box-beam bridge. A bridge in Fayette County, Ohio, which was scheduled for demolition, was inspected. Damage to prestressed box-beams is often due to corrosion of the prestressing strands. The corroded strands show discontinuities and a reduced cross-sectional area. These changes, due to corrosion, are reflected in the magnetic signatures of the prestressing steel. Corrosion in the prestressing steel was detected using two magnetic methods, namely the 'magnetic flux leakage' (MFL) and the 'induced magnetic field'. The purpose of these tests was to demonstrate the ability of the magnetic methods to detect hidden corrosion in box-beams in the field and tackle the logistic problem of inspecting box-beams from the bottom. The inspections were validated by dissecting the bottom of the box-beams after the inspections. The results showed that the MFL method can detect hidden corrosion and strand breaks. Both magnetic field methods were also able to estimate corrosion by detecting the effective cross-sectional area of the strand in sections of the beams. Thus, it was shown that the magnetic methods can be used to predict hidden corrosion in prestressing strands of box-beams.

  20. Predicting camber, deflection, and prestress losses in prestressed concrete members.

    Science.gov (United States)

    2011-07-01

    Accurate predictions of camber and prestress losses for prestressed concrete bridge girders are essential to minimizing the frequency and cost of construction problems. The time-dependent nature of prestress losses, variable concrete properties, and ...

  1. Life cycle uses of concrete for more sustainable construction

    Energy Technology Data Exchange (ETDEWEB)

    Horvath, A. [Univ. of California, Berkeley, CA (United States). Dept. of Civil and Environmental Engineering

    2001-07-01

    This paper examined ways in which the environmental burdens of construction in general and concrete production in particular can be reduced. Aggregates for concrete production include sand, gravel and stone. They account for most (80 per cent) of the materials used in the United States. This paper argued that given the fact that environmental concerns are an important social issue, the issue of natural resource conservation should be addressed. Some of the life-cycle assessments and comparative design issues associated with concrete construction were summarized. The author presented the example that often the initial cost of a new pavement application may indicate a lower environmental impact than an equivalent design when asphalt is used over reinforced concrete. However, annualized impacts may result in comparable environmental assessments. The same is true for bridge girders, reinforced concrete also seems to be a better environmental choice than steel. This paper also described end-of-life options that involve the use of waste products and recycled products in concrete and other materials to reduce the overall environmental impacts of a product or facility. This paper was divided into several sections entitled: life cycle assessments; life cycle inventory assessment of concretes and asphalt pavements; and, life cycle inventory assessment of concrete and steel bridge girders. 16 refs., 4 tabs.

  2. Fatigue Performance of Fiber Reinforced Concrete

    DEFF Research Database (Denmark)

    Jun, Zhang; Stang, Henrik

    1996-01-01

    The objective of the present study is to obtain basic data of fibre reinforced concrete under fatigue load and to set up a theoretical model based on micromechanics. In this study, the bridging stress in fiber reinforced concrete under cyclic tensile load was investigted in details. The damage...... mechanism of the interface between fiber and matrix was proposed and a rational model given. Finally, the response of a steel fiber reinforced concrete beam under fatigue loading was predicted based on this model and compared with experimental results....

  3. Cable-stayed PC bridge with inclined main tower. Hachinohe port island bridge; Keisha shuto to yusuru 2 keikan renzoku PC shachokyo. Hachinoheko port island renrakykyo (kasho)

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, A. [Hachinohe Institute of Technology, Aomori (Japan)

    1994-09-15

    The design and construction of the inclined main bridge, which is being constructed at the mouth of the Hachinohe Harbor (in Japan), are outlined in this paper. This connecting bridge has an overall length of 265.56 m, and consists of the main bridge member of asymmetric 2 cable-stayed PC bridge and the 3 cable-stayed PC box member bridge. An asymmetric design was employed for the main bridge frame to ensure the access space for small ships passing between bridge girders, easy maintenance and service, improved economy, and excellent view. The main tower is a single-pillar reinforced concrete structure with an inclination of 15{degree} and 47 m in height. Forty-eight diagonal cables are arranged so that 12 cable trains are connected to the main tower on the right and left sides respectively, and the back-stay cable structure is used for each upper 3 cable trains to improve safety against the earthquake. The main beam is made by a prestressed concrete structure with inverse trapezoidal 3-chamber frame section. This structure is superior in increasing the safety against wind. Steel tube sheet-pile well is selected for the bridge pier base, and debris layer is selected as a support layer for the base. For the construction of the lower bridge section, sand conversion through predrilling of rubble-mound and debris layer was executed. The underwater non-separative concrete and embedded type frame are used around the bridge piers and its surrounding. For the construction of the upper bridge section, steel frames are used inside the main tower to ensure the construction precision. 7 figs.

  4. Ultra thin continuously reinforced concrete pavement research in south Africa

    CSIR Research Space (South Africa)

    Perrie, BD

    2007-08-01

    Full Text Available Ultra thin continuously reinforced concrete pavements (UTCRCP), in literature also referred to as Ultra Thin Reinforced High Performance Concrete (UTHRHPC), have been used in Europe successfully as a rehabilitation measure on steel bridge decks...

  5. 3 long bridges of dream were realized Opening of West Seto Motorway; Yume no 3 kakyo ga jitsugen/nishiseto jidoshado haitsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-06-10

    Onomichi-Imabari route/Setouchi Simanami Thruway, which adorned the finish of Honshu-Shikoku projects was completed on 1st, May. With this completion, 3 long bridges of dream were completely realized, following to Kojima-Sakaide (1988) and Kobe-Naruto (1998). This time, 5 bridges of this Motorway, the world's longest cable stayed bridge Tatara Long Bridge, world's first 3 continuous suspension bridge Kurushima Strait No.1{approx}No.3 bridge and New Onomichi Long Bridge, were opened. 10 bridges including 5 bridges (In-noshima Long Bridge, Ikeguchi Bridge, Omishima Bridge, Hakata/Oshima Long Bridge and Oshima Long Bridge) already under service connect 9 islands between Onomichi, Hiroshima Prefecture and Imabari, Ehime Prefecture, with a route 59 km long. Characteristic design was adopted for each bridge to demonstrate world's highest bridge erection technology of Japan. In a series of concrete construction to support superstructure of these bridges, underwater non-segregation type concrete with low hydration heat cement mainly for foundation and substructure, and high fluidity concrete for dense reinforcement layout were adopted. (translated by NEDO)

  6. Hydrophobic treatment of concrete

    NARCIS (Netherlands)

    Vries, J. de; Polder, R.B.

    1996-01-01

    As part of the maintenance policy of the Dutch Ministry of Transport, Civil Engineering Division, hydrophobic treatment of concrete was considered as an additional protective measure against penetration of aggressive substances, for instance deicing salts in bridge decks. A set of tests was designed

  7. A Polish approach to FRP bridges

    Science.gov (United States)

    Siwowski, Tomasz; Rajchel, Mateusz

    2017-12-01

    The paper presents initial results of a new approach to FRP composite bridge construction that is presently being developed and tested in Poland. The concept combines lightweight concrete with FRP composites to create a durable highly optimised structure. The paper describes the bridge system itself and presents the research results on its development. The basic design is presented together with research results on its development: FEM analysis and a range of static test results of full-scale bridge beam experiments. The paper finishes with some test results of a full scale bridge that was constructed near Rzeszow in December 2015.

  8. Creep and shrinkage effects on integral abutment bridges

    Science.gov (United States)

    Munuswamy, Sivakumar

    Integral abutment bridges provide bridge engineers an economical design alternative to traditional bridges with expansion joints owing to the benefits, arising from elimination of expensive joints installation and reduced maintenance cost. The superstructure for integral abutment bridges is cast integrally with abutments. Time-dependent effects of creep, shrinkage of concrete, relaxation of prestressing steel, temperature gradient, restraints provided by abutment foundation and backfill and statical indeterminacy of the structure introduce time-dependent variations in the redundant forces. An analytical model and numerical procedure to predict instantaneous linear behavior and non-linear time dependent long-term behavior of continuous composite superstructure are developed in which the redundant forces in the integral abutment bridges are derived considering the time-dependent effects. The redistributions of moments due to time-dependent effects have been considered in the analysis. The analysis includes nonlinearity due to cracking of the concrete, as well as the time-dependent deformations. American Concrete Institute (ACI) and American Association of State Highway and Transportation Officials (AASHTO) models for creep and shrinkage are considered in modeling the time dependent material behavior. The variations in the material property of the cross-section corresponding to the constituent materials are incorporated and age-adjusted effective modulus method with relaxation procedure is followed to include the creep behavior of concrete. The partial restraint provided by the abutment-pile-soil system is modeled using discrete spring stiffness as translational and rotational degrees of freedom. Numerical simulation of the behavior is carried out on continuous composite integral abutment bridges and the deformations and stresses due to time-dependent effects due to typical sustained loads are computed. The results from the analytical model are compared with the

  9. A calculation model for the noise from steel railway bridges

    NARCIS (Netherlands)

    Janssens, M.H.A.; Thompson, D.J.

    1996-01-01

    The sound level of a train crossing a steel railway bridge is usually about 10 dB higher than on plain track. In the Netherlands there are many such bridges which, for practical reasons, cannot be replaced by more intrinsically quiet concrete bridges. A computational model is described for the

  10. Construction of a composite cable stayed bridge. Karnali river bridge in Nepal. Gosei shachokyo no kensetsu. Karnali kawa kyoryo

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, M.; Nakamura, K.; Shimodoi, H.; Amako, M.; Miyoshi, S.; Haruta, M.; Okada, S.; Kuroki, S. (Kawasaki Heavy Industries, Ltd., Tokyo (Japan))

    1994-07-20

    The present report reports the construction of Karnali River Bridge in Nepal by Kawasaki Heavy Industries, Ltd. The present bridge is a composite cable stayed bridge, two-spanned with a main span length of 325m and side span length of 175m. Having an about 125m-high single tower, it is 11.3m in breadth and 3m in main truss height. The main truss is supported by both faces of 30 cables per face, i.e., 60 cables. (Each of both main and side spans has 15 cables per face.) The design and construction are described with the following their itemization: design (bending moment properties in the erected system, composite structure of main truss and stress analysis at the time of erection). Wind resisting measures (measures for the wind resistant stability at the time of erection of both tower and main truss cantilever). Fabrication and transportation of steel structural members. Fabrication of precast floor plates (concrete mixing, and fabrication and curing of floor plates). Construction of tower foundation (tremie concrete and air concrete). Erection of upper structures (erection of tower, both main and side spans, and accuracy management). 14 figs., 4 tabs.

  11. Seismic Material Properties of Reinforced Concrete and Steel Casing Composite Concrete in Elevated Pile-Group Foundation

    Directory of Open Access Journals (Sweden)

    Zhou Mi

    2015-09-01

    Full Text Available The paper focuses on the material mechanics properties of reinforced concrete and steel casing composite concrete under pseudo-static loads and their application in structure. Although elevated pile-group foundation is widely used in bridge, port and ocean engineering, the seismic performance of this type of foundation still need further study. Four scale-specimens of the elevated pile-group foundation were manufactured by these two kinds of concrete and seismic performance characteristic of each specimen were compared. Meanwhile, the special soil box was designed and built to consider soil-pile-superstructure interaction. According to the test result, the peak strength of strengthening specimens is about 1.77 times of the others and the ultimate displacement is 1.66 times of the RC specimens. Additionally, the dissipated hysteric energy capability of strengthening specimens is more than 2.15 times of the others as the equivalent viscous damping ratio is reduced by 50%. The pinching effect of first two specimens is more obvious than latter two specimens and the hysteretic loops of reinforced specimens are more plumpness. The pseudo-static tests also provided the data to quantitatively assessment the positive effect of steel casing composite concrete in aseismatic design of bridge.

  12. Cost and Ecological Feasibility of using UHPC in Highway Bridges

    Science.gov (United States)

    2017-11-15

    There is a growing interest in expanding the use of Ultra-high performance concrete (UHPC) from bridge deck joints for accelerated bridge construction to complex architectural and advanced structural applications. The high costs currently associated ...

  13. Morphological aspects of myocardial bridges.

    Science.gov (United States)

    Lujinović, Almira; Kulenović, Amela; Kapur, Eldan; Gojak, Refet

    2013-11-01

    Although some myocardial bridges can be asymptomatic, their presence often causes coronary disease either through direct compression of the "tunnel" segment or through stimulation and accelerated development of atherosclerosis in the segment proximally to the myocardial bridge. The studied material contained 30 human hearts received from the Department of Anatomy. The hearts were preserved 3 to 5 days in 10% formalin solution. Thereafter, the fatty tissue was removed and arterial blood vessels prepared by careful dissection with special reference to the presence of the myocardial bridges. Length and thickness of the bridges were measured by the precise electronic caliper. The angle between the myocardial bridge fibre axis and other axis of the crossed blood vessel was measured by a goniometer. The presence of the bridges was confirmed in 53.33% of the researched material, most frequently (43.33%) above the anterior interventricular branch. The mean length of the bridges was 14.64 ± 9.03 mm and the mean thickness was 1.23 ± 1.32 mm. Myocardial bridge fibres pass over the descending blood vessel at the angle of 10-90 degrees. The results obtained on a limited sample suggest that the muscular index of myocardial bridge is the highest for bridges located on RIA, but that the difference is not significant in relation to bridges located on other branches. The results obtained suggest that bridges located on other branches, not only those on RIA, could have a great contractive power and, consequently, a great compressive force, which would be exerted on the wall of a crossed blood vessel.

  14. Feasibility analysis of ultra high performance concrete for prestressed concrete bridge applications.

    Science.gov (United States)

    2010-07-01

    UHPC is an emerging material technology in which concrete develops very high : compressive strengths and exhibits improved tensile strength and toughness. A : comprehensive literature and historical application review was completed to determine the :...

  15. Research notes : listening to bridges.

    Science.gov (United States)

    2008-09-01

    The Federal Highway Administration requires owners of structurally deficient bridges to repair, replace, restrict truck loads, or conduct analysis and testing to maintain a safe highway system. Past experiments on reinforced concrete beams showed aco...

  16. Load Distribution Factors for Composite Multicell Box Girder Bridges

    Science.gov (United States)

    Tiwari, Sanjay; Bhargava, Pradeep

    2017-12-01

    Cellular steel section composite with a concrete deck is one of the most suitable superstructures in resisting torsional and warping effects induced by highway loading. This type of structure has inherently created new design problems for engineers in estimating its load distribution when subjected to moving vehicles. Indian Codes of Practice does not provide any specific guidelines for the design of straight composite concrete deck-steel multi-cell bridges. To meet the practical requirements arising during the design process, a simple design method is needed for straight composite multi-cell bridges in the form of load distribution factors for moment and shear. This work presents load distribution characteristics of straight composite multi-cell box girder bridges under IRC trains of loads.

  17. Semiempirical Methodology for Estimating the Service Life of Concrete Deck Panels Strengthened with Fiber-Reinforced Polymer

    Directory of Open Access Journals (Sweden)

    Eon-Kyoung Kim

    2014-01-01

    Full Text Available Deterioration of concrete bridge decks affects their durability, safety, and function. It is therefore necessary to conduct structural rehabilitation of damaged concrete decks by strengthening them with fiber-reinforced polymer. Of the recent studies on the strengthened structures, most have focused on static behavior; only a few studies have investigated fatigue behavior. Accurate analysis of fatigue in concrete deck performance requires a more realistic simulated moving load. This study developed a theoretical live-load model to reflect the effect of moving vehicle loads, based on a statistical approach to the measurement of real traffic loads over various time periods in Korea. It assessed the fatigue life and strengthening effect of bridge decks strengthened with either carbon fiber sheets or grid carbon fiber polymer plastic using probabilistic and reliability analyses. It used extrapolations and simulations to derive maximum load effects for time periods ranging from 1 day to 75 years. Limited fatigue tests were conducted and probabilistic and reliability analyses were carried out on the strengthened concrete bridge deck specimens to predict the extended fatigue life. Analysis results indicated that strengthened concrete decks provide sufficient resistance against increasing truck loads during the service life of a bridge.

  18. Structure-borne noise of railway composite bridge: Numerical simulation and experimental validation

    Science.gov (United States)

    Li, Xiaozhen; Liu, Quanmin; Pei, Shiling; Song, Lizhong; Zhang, Xun

    2015-09-01

    In order to investigate the characteristics of the noise from steel-concrete composite bridges under high-speed train loading, a model used to predict the bridge-borne noise is established and validated through a field experiment. The numerical model for noise prediction is developed based on the combination of spatial train-track-bridge coupled vibration theory and Statistical Energy Analysis (SEA). Firstly, train-track-bridge coupled vibration is adopted to obtain the velocity time history of the bridge deck vibration. Then, the velocity time history is transferred into frequency domain through FFT to serve as the vibratory energy of SEA deck subsystems. Finally, the transmission of the vibratory energy is obtained by solving the energy balance equations of SEA, and the sound radiation is computed using the vibro-acoustic theory. The numerically computed noise level is verified by a field measurement. It is determined that the dominant frequency of steel-concrete composite bridge-borne noise is 20-1000 Hz. The noise from the bottom flange of steel longitudinal girder is less than other components in the whole frequency bands, while the noise from web of steel longitudinal girder is dominant in high frequency range above 315 Hz. The noise from concrete deck dominates in low-frequency domain ranges from 80 Hz to 160 Hz.

  19. Rating precast prestressed concrete bridges for shear

    Science.gov (United States)

    2008-12-01

    Shear capacity of real-world prestressed concrete girders designed in the 1960s and 1970s is a concern because : AASHTO Standard Specifications (AASHTO-STD) employed the quarter-point rule for shear design, which is less : conservative for shea...

  20. Study on Repaired Earthquake-Damaged Bridge Piers under Seismic Load

    Directory of Open Access Journals (Sweden)

    Jun Deng

    2015-01-01

    Full Text Available The concrete bridge pier damaged during earthquakes need be repaired to meet the design standards. Steel tube as a traditional material or FRP as a novel material has become popular to repair the damaged reinforced concrete (RC bridge piers. In this paper, experimental and finite element (FE studies are employed to analyze the confinement effectiveness of the different repair materials. The FE method was used to calculate the hysteretic behavior of three predamaged circle RC bridge piers repaired with steel tube, basalt fiber reinforced polymer (BFRP, and carbon fiber reinforced polymer (CFRP, respectively. Meanwhile, the repaired predamaged circle concrete bridge piers were tested by pseudo-static cyclic loading to study the seismic behavior and evaluate the confinement effectiveness of the different repair materials and techniques. The FE analysis and experimental results showed that the repaired piers had similar hysteretic curves with the original specimens and all the three repair techniques can restore the seismic performance of the earthquake-damaged piers. Steel tube jacketing can significantly improve the lateral stiffness and peak load of the damaged pier, while the BFRP and CFRP sheets cannot improve these properties due to their thin thickness.

  1. Performance of Hydrophobisation Techniques in Case of Reinforced Concrete Structures

    Science.gov (United States)

    Błaszczyński, Tomasz; Osesek, Mateusz; Gwozdowski, Błażej; Ilski, Mirosław

    2017-10-01

    Concrete is, unchangeably, one of the most frequently applied building materials, also in the case of bridges, overpasses or viaducts. Along with the aging of such structures, the degradation of concrete, which may accelerate the corrosion of reinforcing steel and drastically decrease the load-bearing capacity of the structure, becomes an important issue. The paper analyzes the possibilities of using deep hydrophobisation in repairing reinforced concrete engineering structures. The benefits of properly securing reinforced concrete structures from the damaging effects of UV radiation, the influence of harmful gases, or progression of chlorine induced corrosion have been presented, especially in regards to bridge structures. The need to calculate the costs of carrying out investments along with the expected costs of maintaining such structures, as well as the high share of costs connected with logistics, has also been indicated in the total costs of repair works.

  2. Electrically conductive Portland cement concrete.

    Science.gov (United States)

    1986-01-01

    There is a need for an effective, simple-to-install secondary anode system for use in the cathodic protection of reinforced concrete bridge decks. In pursuit of such a system, carbon fibers and carbon black were incorporated in portland cement concre...

  3. Application of self-consolidating concrete in bridge structures : final report.

    Science.gov (United States)

    2011-05-01

    The objectives of this research were to evaluate the feasibility and performance of self-consolidating concrete (SCC) made with local aggregates for use in cast-in-place and precast concrete applications and to develop draft specifications, acceptanc...

  4. Tremie Concrete for Bridge Piers and Other Massive Underwater Placements

    Science.gov (United States)

    1981-09-01

    This study reviewed the placement of mass concrete under water using a tremie. Areas investigated included (a) Mixture design of tremie concrete including the use of pozzolanic replacement of portions of the cement; (b) Flow patterns and flow related...

  5. Environmental life cycle assessment of railway bridge materials using UHPFRC

    Science.gov (United States)

    Bizjak, Karmen Fifer; Šajna, Aljoša; Slanc, Katja; Knez, Friderik

    2016-10-01

    The railway infrastructure is a very important component of the world's total transportation network. Investment in its construction and maintenance is significant on a global scale. Previously published life cycle assessment (LCA) studies performed on road and rail systems very seldom included infrastructures in detail, mainly choosing to focus on vehicle manufacturing and fuel consumption. This article presents results from an environmental study for railway steel bridge materials for the demonstration case of the Buna Bridge in Croatia. The goal of these analyses was to compare two different types of remediation works for railway bridges with different materials and construction types. In the first part, the environmental impact of the classical concrete bridge construction was calculated, whereas in the second one, an alternative new solution, namely, the strengthening of the old steel bridge with ultra-high-performance fibre-reinforced concrete (UHPFRC) deck, was studied. The results of the LCA show that the new solution with UHPFRC deck gives much better environmental performance. Up to now, results of LCA of railway open lines, railway bridges and tunnels have been published, but detailed analyses of the new solution with UHPFRC deck above the old bridge have not previously been performed.

  6. MASH Test 3-11 on the T131RC Bridge Rail

    Science.gov (United States)

    2012-10-01

    Texas Department of Transportation (TxDOT) currently uses the TxDOT Type T101RC Bridge Rail, : a steel post and beam bridge rail anchored to the top of concrete curbs. The T101RC Bridge Rail is : 27 inches in height and can be anchored to the top of ...

  7. Evaluation of Radiation Exposure during Construction and Operation of Concrete Bridge Reinforced with Very Low Level Radioactive Steel

    International Nuclear Information System (INIS)

    Panik, M.; Necas, V.

    2012-01-01

    A lot of nuclear power plants are approaching the end of their lifetime and they will be phased out. Decommissioning of these nuclear power plants involve complete dismantling of technologies and demolition of buildings. During this process it is produced plenty of waste material of different categories. Significant portion of decommissioning materials comprise radionuclides what is caused by contamination and activation processes mostly from the operational period of nuclear power plant. Attention in this paper is paid to waste steel from the decommissioning of nuclear power plants with the specific activity just slightly exceeding legislation limits for the unconditional release into the environment. From the traditional point of view this material should be treated, conditioned and disposed on the radioactive waste repository. Second possibility is to release this material conditionally and reuse it in chosen industrial application. Very low level radioactive steel scrap should be melted and melting products should be processed into products that can be applied in industry. First option requires considerable financial investment, human resources and repository capacity. Second option saves some financial funds and it enables to reuse and save potentially valuable material for the future. Paper comprises evaluation of external and internal exposure during construction and operation of concrete bridges that utilize very low level radioactive steel as part of their reinforcement. Two models of representative concrete bridges were created. External gamma exposure and exposure from inhalation and ingestion of radionuclides were calculated using suitable computational tools. VISIPLAN 3D ALARA planning tool was chosen for the calculation of external gamma exposure. Software GOLDSIM enables to calculate transport of radionuclides initially contained in conditionally released reinforcement steel through subsoil and sequential exposure of people caused by inhalation of

  8. Corrosion of steel in locally deficient concrete.

    Science.gov (United States)

    2009-02-28

    This investigation confirmed prior noted trends of extensive preferential chloride intrusion at preexisitng cracks in a majority of cases of substructure members in Florida bridges built with low permeability conventional concrete.

  9. Fatigue analysis and life prediction of composite highway bridge decks under traffic loading

    Directory of Open Access Journals (Sweden)

    Fernando N. Leitão

    Full Text Available Steel and composite (steel-concrete highway bridges are currently subjected to dynamic actions of variable magnitude due to convoy of vehicles crossing on the deck pavement. These dynamic actions can generate the nucleation of fractures or even their propagation on the bridge deck structure. Proper consideration of all of the aspects mentioned pointed our team to develop an analysis methodology with emphasis to evaluate the stresses through a dynamic analysis of highway bridge decks including the action of vehicles. The design codes recommend the application of the curves S-N associated to the Miner's damage rule to evaluate the fatigue and service life of steel and composite (steel-concrete bridges. In this work, the developed computational model adopted the usual mesh refinement techniques present in finite element method simulations implemented in the ANSYS program. The investigated highway bridge is constituted by four longitudinal composite girders and a concrete deck, spanning 40.0m by 13.5m. The analysis methodology and procedures presented in the design codes were applied to evaluate the fatigue of the bridge determining the service life of the structure. The main conclusions of this investigation focused on alerting structural engineers to the possible distortions, associated to the steel and composite bridge's service life when subjected to vehicle's dynamic actions.

  10. Basic principles of concrete structures

    CERN Document Server

    Gu, Xianglin; Zhou, Yong

    2016-01-01

    Based on the latest version of designing codes both for buildings and bridges (GB50010-2010 and JTG D62-2004), this book starts from steel and concrete materials, whose properties are very important to the mechanical behavior of concrete structural members. Step by step, analysis of reinforced and prestressed concrete members under basic loading types (tension, compression, flexure, shearing and torsion) and environmental actions are introduced. The characteristic of the book that distinguishes it from other textbooks on concrete structures is that more emphasis has been laid on the basic theories of reinforced concrete and the application of the basic theories in design of new structures and analysis of existing structures. Examples and problems in each chapter are carefully designed to cover every important knowledge point. As a basic course for undergraduates majoring in civil engineering, this course is different from either the previously learnt mechanics courses or the design courses to be learnt. Compa...

  11. Probabilistic and sensitivity analysis of Botlek Bridge structures

    Directory of Open Access Journals (Sweden)

    Králik Juraj

    2017-01-01

    Full Text Available This paper deals with the probabilistic and sensitivity analysis of the largest movable lift bridge of the world. The bridge system consists of six reinforced concrete pylons and two steel decks 4000 tons weight each connected through ropes with counterweights. The paper focuses the probabilistic and sensitivity analysis as the base of dynamic study in design process of the bridge. The results had a high importance for practical application and design of the bridge. The model and resistance uncertainties were taken into account in LHS simulation method.

  12. Hybrid structure in civil engineering construction. Composite types of steel and concrete; Doboku bun`ya ni okeru fukugo kozo. Kozai to concrete no ittai keishiki

    Energy Technology Data Exchange (ETDEWEB)

    Sato, T. [JR Railway Technical Research Inst. Tokyo (Japan)

    1995-03-30

    In connection with hybrid structures in civil engineering construction, classification and application of composite types of steel and concrete are discussed. H steel embedded beam is a composite beam in which the H shape steel of the main beam is connected to rolled or welded H shape steel using cross beams. Composite structure columns are grouped into the composite column and the steel pipe concrete column. SRC piers are often adopted from the viewpoints of constraints for execution of works and vibration proof. Steel and concrete hybrid structure is a kind of structural system in which various kinds of materials such as steel, RC, or PC members are connected. The cable stayed bridge utilizes characteristics of steel and concrete effectively. For the piers of municipal expressway viaducts, there are executed cases of mixed structures which have RC, SRC columns for T shape piers and S structure for the bridges. SRC structure and composite columns are adopted often for structures of subway stations. 7 refs., 7 figs.

  13. Electrical pulses protect concrete

    NARCIS (Netherlands)

    Koleva, D.; Fraaij, A.; Van Kasteren, J.

    2006-01-01

    Even concrete is not as hard as it looks. Sea water, salt on icy roads, and indirectly even carbon dioxide from the air can corrode the steel of the reinforcing bars and so threaten the strength and integrity of a bridge pier, jetty, or viaduct. Dessi Koleva, a chemical engineer from Bulgaria, spent

  14. Bridge technology report

    CERN Document Server

    2013-01-01

    Please note this is a Short Discount publication. As LANs have proliferated, new technologies and system concepts have come to the fore. One of the key issues is how to interconnect networks. One means of interconnection is to use a 'bridge'. Other competing technologies are repeaters, routers, and gateways. Bridges permit traffic isolation, connect network segments together and operate at the MAC layer. Further, because they operate at the MAC layer, they can handle a variety of protocols such as TCP/IP, SNA, and X.25. This report focuses on the specific technology of bridging two netw

  15. On the Cutting Performance of Segmented Diamond Blades when Dry-Cutting Concrete.

    Science.gov (United States)

    Sánchez Egea, A J; Martynenko, V; Martínez Krahmer, D; López de Lacalle, L N; Benítez, A; Genovese, G

    2018-02-09

    The objective of the present study is to analyze and compare the cutting performance of segmented diamond blades when dry-cutting concrete. A cutting criteria is proposed to characterize the wear of the blades by measuring the variation of the external diameter and the weight loss of the blade. The results exhibit the cutting blade SB-A, which has twice the density of diamonds and large contact area, exhibits less wear even though the material removal rate is higher compared with the other two cutting blades. Additionally, the surface topography of the different blades is evaluated to examine the impact of wear depending on the surface profile and the distribution of the diamonds in the blade's matrix. Large number of diamonds pull-out are found in blades type SB-C, which additionally shows the worst wear resistant capability. As a conclusion, the cutting efficiency of the blade is found to be related to the density of embedded diamonds and the type of the surface profile of the cutting blade after reaching the stop criteria.

  16. Condition Assessment of PCI Bridge Girder a Result of The Reduction Prestressing Force

    Directory of Open Access Journals (Sweden)

    Suangga Made

    2014-03-01

    Full Text Available PCI bridge girders is known and widely used for many construction e.g.: bridge, wharf, flyover, and other application. PC Bridge girders have two types: Pre - tensioned girders and post - tensioned girders. In pre tensioned girders, prestressing in carried out first then after that the fresh concrete poured. The prestressing process in only carried off after the concrete has sufficient strength. In this study, analysis was conducted for PCI bridge girder with span is 40 meters. Based on the data geometry bridge dimension girder, material girder, and material strands cable, it will be analyzed to calculate the natural frequencies and moment capacity using finite element program (Midas/Civil program. So it can be estimated how much the percentage reduction prestress force on the bridge until PCI bridge structure collapses. From the calculation, it found that the pattern comparison between reduction prestressing force and natural frequency are linear. These results are also similar for natural frequency versus moment capacity.PCI bridge will collapse when the reduction prestreesing force of 45 % to 50 % from the total loss of prestressing.

  17. effect of uncertainty on the fatigue reliability of reinforced concrete ...

    African Journals Online (AJOL)

    In this paper, a reliability time-variant fatigue analysis and uncertainty effect on the serviceability of reinforced concrete bridge deck was carried out. A simply supported 15m bridge deck was specifically used for the investigation. Mathematical models were developed and the uncertainties in structural resistance, applied ...

  18. Biodecontamination of concrete

    International Nuclear Information System (INIS)

    Hamilton, M.A.; Rogers, R.D.; Benson, J.

    1996-01-01

    A novel technology for biologically decontaminating concrete is being jointly developed by scientists at the Idaho National Engineering Laboratory (INEL) and British Nuclear Fuels plc (BNFL). The technology exploits a naturally occurring phenomenon referred to as microbially influenced degradation (MID) in which bacteria produce acids that dissolve the cement matrix of concrete. Most radionuclide contamination of concrete is fixed in the outer few mm of the concrete surface. By capturing and controlling this natural process, a biological method of removing the surface of concrete to depths up to several mm is being developed. Three types of bacteria are known to be important in MID of concrete: nitrifying bacteria that produce nitric acid, sulfur oxidizing bacteria that produce sulfuric acid, and certain heterotrophic bacteria that produce organic acids. An investigation of natural environments demonstrated with scanning electron microscopy the presence of bacteria on concrete surfaces of a variety of structures, such as bridges and dams, where corrosion is evident. Enumeration of sulfur oxidizing and nitrifying bacteria revealed their presence and activity on structures to varying degrees in different environments. Under ideal conditions, Thiobacillus thiooxidans, a sulfur oxidizing bacteria, attached to and colonized the surface of concrete specimens. Over 1mm depth of material from a 10 cm x 10 cm square surface was removed in 68 days in the Thiobacillus treated specimen compared to a sterile control. Laboratory and field demonstrations are currently being conducted using experimental chambers designed to be mounted directly to concrete surfaces where radionuclide contamination exists. Data is being obtained in order to determine actual rates of surface removal and limitations to the system. This information will be used to develop a full scale decontamination technology

  19. Bridge-in-a-Backpack(TM) task 5: guidelines for quality assurance.

    Science.gov (United States)

    2016-03-01

    This report includes fulfillment of Task 5 of a multi-task contract to further enhance concrete filled FRP tubes, or : the Bridge in a Backpack. Task 6 provides guidelines for quality assurance. : The Bridge-in-a-Backpack or hybrid composite arch ...

  20. Design and construction of the Soegawa viaduct; Soegawa kokakyo no sekkei to seko

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, M.; Sueoka, M. [Japan Highway Public Corporation, Tokyo (Japan); Takahashi, M.; Ito, K. [Kajima Corp., Tokyo (Japan)

    1997-09-30

    This paper describes the precast segment construction of double-span continuous prestressed concrete (PC) box girder with a length of 93 m in the Soegawa Viaduct in Akita Prefecture. The match cast surface of the newly constructed segment is occasionally deformed into arch due to the temperature gradient generated by the hardening heat. To avoid this phenomenon, the minimum segment length more than one-sixth of the segment width of 11.2 m was determined. Compatible type internal/external cable method was adopted for the configuration of PC steel members in the main direction. In this method, steel members for PC were placed outside of concrete as well as inside of concrete. The yard for fabricating segments was made in the back area of abutment of the bridge. Segments fabricated using steel frames were brought in the yard using a crane and stocked. After the support construction, segments were constructed from No.1 segment in order. Since placing accuracy of the whole segments was affected by the placing of the standard segment, the accuracy was improved by the three-dimensional control using surveying equipment. After the construction of segments and tension of PC, the bridge is to be completed in September, 1997. 3 refs., 21 figs., 4 tabs.

  1. Environmental life cycle assessment of railway bridge materials using UHPFRC

    Directory of Open Access Journals (Sweden)

    Bizjak Karmen Fifer

    2016-10-01

    Full Text Available The railway infrastructure is a very important component of the world’s total transportation network. Investment in its construction and maintenance is significant on a global scale. Previously published life cycle assessment (LCA studies performed on road and rail systems very seldom included infrastructures in detail, mainly choosing to focus on vehicle manufacturing and fuel consumption. This article presents results from an environmental study for railway steel bridge materials for the demonstration case of the Buna Bridge in Croatia. The goal of these analyses was to compare two different types of remediation works for railway bridges with different materials and construction types. In the first part, the environmental impact of the classical concrete bridge construction was calculated, whereas in the second one, an alternative new solution, namely, the strengthening of the old steel bridge with ultra-high-performance fibre-reinforced concrete (UHPFRC deck, was studied. The results of the LCA show that the new solution with UHPFRC deck gives much better environmental performance. Up to now, results of LCA of railway open lines, railway bridges and tunnels have been published, but detailed analyses of the new solution with UHPFRC deck above the old bridge have not previously been performed.

  2. Application of Composite Structures in Bridge Engineering. Problems of Construction Process and Strength Analysis

    Science.gov (United States)

    Flaga, Kazimierz; Furtak, Kazimierz

    2015-03-01

    Steel-concrete composite structures have been used in bridge engineering from decades. This is due to rational utilisation of the strength properties of the two materials. At the same time, the reinforced concrete (or prestressed) deck slab is more favourable than the orthotropic steel plate used in steel bridges (higher mass, better vibration damping, longer life). The most commonly found in practice are composite girder bridges, particularly in highway bridges of small and medium spans, but the spans may reach over 200 m. In larger spans steel truss girders are applied. Bridge composite structures are also employed in cable-stayed bridge decks of the main girder spans of the order of 600, 800 m. The aim of the article is to present the cionstruction process and strength analysis problems concerning of this type of structures. Much attention is paid to the design and calculation of the shear connectors characteristic for the discussed objects. The authors focused mainly on the issues of single composite structures. The effect of assembly states on the stresses and strains in composite members are highlighted. A separate part of problems is devoted to the influence of rheological factors, i.e. concrete shrinkage and creep, as well as thermal factors on the stresses and strains and redistribution of internal forces.

  3. Improved bridge joint materials and design details.

    Science.gov (United States)

    2017-06-01

    Expansion joints accommodate bridge movements that result from factors such as thermal expansion and contraction, concrete shrinkage, creep effects, live loading, settlement of the foundation and substructure, and environmental stressors. Expansion j...

  4. Evaluating the life cycle environmental impact of short span bridges

    DEFF Research Database (Denmark)

    Du, Guangli; Pettersson, Lars; Karoumi, Raid

    2016-01-01

    impact of the construction sector. Life cycle assessment (LCA) is a systematic method for assessing the environmental impact of products and systems, but its application in bridges is scarce. In Swede, most of the bridges are short spans and the type of concrete slab-frame bridge (CFB) accounts...... for a large share. Soil steel composite bridge (SSCB) is a functional equivalent solution for CFB. In order to mitigate the environmental burdens of short span bridges, this paper performed a comparative LCA study between these two types of bridge. The results indicate that the initial material consumption...

  5. Dynamic and Static Behavior of Hollow-Core FRP-Concrete-Steel and Reinforced Concrete Bridge Columns under Vehicle Collision

    Directory of Open Access Journals (Sweden)

    Omar I. Abdelkarim

    2016-12-01

    Full Text Available This paper presents the difference in behavior between hollow-core fiber reinforced polymer-concrete-steel (HC-FCS columns and conventional reinforced concrete (RC columns under vehicle collision in terms of dynamic and static forces. The HC-FCS column consisted of an outer FRP tube, an inner steel tube, and a concrete shell sandwiched between the two tubes. The steel tube was hollow inside and embedded into the concrete footing with a length of 1.5 times the tube diameter while the FRP tube stopped at the top of footing. The RC column had a solid cross-section. The study was conducted through extensive finite element impact analyses using LS-DYNA software. Nine parameters were studied including the concrete material model, unconfined concrete compressive strength, material strain rate, column height-to-diameter ratio, column diameter, column top boundary condition, axial load level, vehicle velocity, and vehicle mass. Generally, the HC-FCS columns had lower dynamic forces and higher static forces than the RC columns when changing the values of the different parameters. During vehicle collision with either the RC or the HC-FCS columns, the imposed dynamic forces and their equivalent static forces were affected mainly by the vehicle velocity and vehicle mass.

  6. End region detailing of pretensioned concrete bridge girders.

    Science.gov (United States)

    2013-03-01

    End region detailing has significant effect on the serviceability, behavior, and capacity of pretensioned concrete girders. : In this project, experimental and analytical research programs were conducted to evaluate and quantify the effects of : diff...

  7. Numerical Analysis on Variation of Dynamic Response of Girder Bridges with Torsional Reinforcement Panels

    Directory of Open Access Journals (Sweden)

    Kang Jae-Yoon

    2015-01-01

    Full Text Available The dynamic flexural behaviour of the railway bridge is influenced by its torsional behaviour. Especially, in the case of girder railway bridges, the dynamic response tends to amplify when the natural frequency in flexure (1st vibration mode is close to that in torsion (2nd vibration mode. In order to prevent such situation, it is necessary to adopt a flexural-to-torsional natural frequency ratio larger than 120%. This study proposes a solution shifting the natural frequency in torsion to high frequency range and restraining torsion by installing concrete panels on the bottom flange of the girder so as to prevent the superposition of the responses in the girder bridge. The applicability of this solution is examined by finite element analysis of the shift of the torsional natural frequency and change in the dynamic response according to the installation of the concrete panels. The analytical results for a 30 m-span girder railway bridge indicate that installing the concrete panels increases the natural frequency in torsion by restraining the torsional behaviour and reduces also the overall dynamic response. It is seen that the installation of 100 mm-thick concrete panels along a section of 4 m at both extremities of the girder can reduce the dynamic response by more than 30%.

  8. Ultrasonic assessment of service life of concrete structures subject to reinforcing steel corrosion

    Science.gov (United States)

    Udegbunam, Ogechukwu Christian

    Over half of the bridges in the United States were built before 1970. Such bridges and the network of roads that they carry include the Inter State system, which was built as part of the great public works program, following the end of the Second World War. During that era, the emphasis was on strength design and economical construction of new structures, and not much premium was placed on durability and maintainability concerns. Since the end of this construction boom in the early 1970s, the concern for the durability of transportation infrastructure has steadily gained prominence among those agencies that must secure, program and administer funds for maintaining highway networks. The objective of this research was to develop a nondestructive method of assessing the durability of concrete bridge decks susceptible to damage from corrosion of embedded reinforcing steel. This was accomplished by formulating a holistic approach that accounts for the major factors that influence corrosion based deterioration of reinforced concrete. In this approach, the assessment of the durability of concrete bridge decks is based on a model that estimates the time it takes for the cover concrete to fail a result of stresses caused by expansion of reinforcing steel bars, due to corrosion activities. This time to failure is comprised of two distinct periods that must be evaluated before the problem can be solved. The research consisted of an experimental program and an analytical study. In the experimental program concrete specimens were cast and tested to determine their diffusivity and mechanical properties. The diffusivity was used to evaluate the period it takes for corrosion of the reinforcing bars to commence. In the analytical study, the resistance of the concrete structure against the internal forces caused by corrosion was evaluated with the finite element techniques. This resistance was used to evaluate the period defining the failure of the cover concrete. These two periods

  9. Predictive market segmentation model: An application of logistic regression model and CHAID procedure

    Directory of Open Access Journals (Sweden)

    Soldić-Aleksić Jasna

    2009-01-01

    Full Text Available Market segmentation presents one of the key concepts of the modern marketing. The main goal of market segmentation is focused on creating groups (segments of customers that have similar characteristics, needs, wishes and/or similar behavior regarding the purchase of concrete product/service. Companies can create specific marketing plan for each of these segments and therefore gain short or long term competitive advantage on the market. Depending on the concrete marketing goal, different segmentation schemes and techniques may be applied. This paper presents a predictive market segmentation model based on the application of logistic regression model and CHAID analysis. The logistic regression model was used for the purpose of variables selection (from the initial pool of eleven variables which are statistically significant for explaining the dependent variable. Selected variables were afterwards included in the CHAID procedure that generated the predictive market segmentation model. The model results are presented on the concrete empirical example in the following form: summary model results, CHAID tree, Gain chart, Index chart, risk and classification tables.

  10. Corrosion resistant alloys for reinforced concrete [2007

    Science.gov (United States)

    2007-07-01

    Deterioration of concrete bridges because of reinforcing steel corrosion has been recognized for 4-plus decades as a major technical and economic challenge for the United States. As an option for addressing this problem, renewed interest has focused ...

  11. Corrosion resistant alloys for reinforced concrete [2009

    Science.gov (United States)

    2009-04-01

    Deterioration of concrete bridges because of reinforcing steel corrosion has been recognized for four-plus decades as a major technical and economic challenge for the United States. As an option for addressing this problem, renewed interest has focus...

  12. Experimental testing of post-tensioned concrete girders instrumented with optical fibre gratings

    Science.gov (United States)

    Matthys, S.; Taerwe, L.

    2005-05-01

    The integration of optical fibre strain sensors in concrete structures in order to measure deformations has proven to be successful in several applications. Examples of monitored structures by the Magnel Laboratory for Concrete Research are a concrete girder bridge over the Ring Canal by Ghent, a Quay wall at the Ring Canal and a trough girder containing a railway track of a bridge [1,2]. Based on a joint research project the feasibility of integrating Bragg grating sensors in concrete in order to statically and dynamically monitor 17.6 m long prestressed concrete girders has been investigated. During the project 3 post-tensioned concrete girders were tested, submitting them to static and dynamic loading conditions and monitoring the structural behavior with several types of measuring devices, including accelerometers, Bragg gratings, Fabry-Perot gratings, deformeters, crack microscopes, etc. The obtained test results demonstrate the feasibility of optical strain sensors for both static and dynamic measurements. Though it was demonstrated, in the case of dynamic monitoring, that optical strain measurements can be used to directly measure the modal strains, the project also demonstrated that for prestressed concrete the variation in dynamic parameters was insufficient for adequate dynamic monitoring and related damage diagnostics.

  13. Independent mono-pillar cable-stayed bridge with 75[degree] inclination connecting Hachinohe and Port Island. 75[degree] no keisha wo motta dokuritsu ipponchu no shachokyo. ; Hachinohe port island renrakukyo

    Energy Technology Data Exchange (ETDEWEB)

    Ogoshi, K.

    1993-10-01

    The durability enhancement work and the spectacle were described of the independent mono-pillar cable-stayed bridge with 75[degree] inclination connecting Hachinohe and Port Island. For the bridge pier execution, the underwater non-separation concrete was applied, because it had to be done under seawater. The investment frame made of precast concrete was employed for preventing the penetration of salt water into the joint part between the underwater placement concrete and the atmosphere placement concrete as well as for preventing the freezing and thawing action from taking place in the body concrete. The fabrication of investment frame was done in the following ways: The reinforcing steel was coated with epoxy resin in the reinforced concrete; the water-cement ratio was 45 percent; the targeted porosity of concrete was 6 percent; and the water spray with sheet was applied instead of steam aging right after the placement of concrete. The spectacle was made by employing the design of main tower with 75[degree] inclination and the placement of decorative concrete using the foamed polystyrene frame on the bridge pier. Thus the passengers on ships sailing under the bridge can enjoy the beautiful spectacle of the bridge. 4 figs., 1 tab.

  14. High strength reinforcing steel bars : concrete shear friction interface : final report : Part A.

    Science.gov (United States)

    2017-03-01

    High-strength steel (HSS) reinforcement, specifically ASTM A706 Grade 80 (550), is now permitted by the AASHTO LRFD Bridge Design Specifications for use in reinforced concrete bridge components in non-seismic regions. Using Grade 80 (550) steel reinf...

  15. Injection technologies for the repair of damaged concrete structures

    CERN Document Server

    Panasyuk, V V; Sylovanyuk, V P

    2014-01-01

    This book analyzes the most important achievements in science and engineering practice concerning operational factors that cause damage to concrete and reinforced concrete structures. It includes methods for assessing their strength and service life, especially those that are based on modern concepts of the fracture mechanics of materials. It also includes basic approaches to the prediction of the remaining service life for long-term operational structures. Much attention is paid to injection technologies for restoring the serviceability of damaged concrete and reinforced concrete structures. In particular, technologies for remedying holes, cracks, corrosion damages etc. The books contains sample cases in which the above technologies have been used to restore structural integrity and extend the reliable service life of concrete and reinforced concrete constructions, especially NPPs, underground railways, bridges, seaports and historical relics.

  16. Irradiated Concrete in Nuclear Power Plants: Bridging the Gap in Operational Experience

    International Nuclear Information System (INIS)

    Hohmann, Brian P.; Esselman, Thomas C.; Wall, James J.

    2012-01-01

    The world's fleet of operating nuclear power plants (NPP) has been in-service for more than 20 years. In order to support the increasing demand for inexpensive power, many plants will be required to operate beyond 40 years, which was the original licensing period for existing NPPs. Improved knowledge of the performance of irradiated concrete is required to form a technical basis for long term operation (operation to 80+ years) of nuclear plants around the world. To date, operating experience (OE) of concrete subjected to irradiation has been acceptable, but there is an absence of data on this topic for extended periods of operation. The lack of empirical data has contributed to the difficulty of quantifying the long term behavior of concrete that is experiencing irradiation. Programs are in place that address other degradation mechanisms of concrete, but a clear and focused program is required on the effects of radiation. This paper presents a review of the available literature on the topic of the long-term irradiation effects on the mechanical properties of concrete, and provides a proposed methodology for the characterization of irradiated concrete removed from shut down or decommissioned commercial plants. (author)

  17. Durability performance of submerged concrete structures - phase 2.

    Science.gov (United States)

    2015-09-01

    This project determined that severe corrosion of steel can occur in the submerged : portions of reinforced concrete structures in marine environments. Field studies of decommissioned : pilings from Florida bridges revealed multiple instances of stron...

  18. Residual strength evaluation of concrete structural components ...

    Indian Academy of Sciences (India)

    This paper presents methodologies for residual strength evaluation of concrete structural components using linear elastic and nonlinear fracture mechanics principles. The effect of cohesive forces due to aggregate bridging has been represented mathematically by employing tension softening models. Various tension ...

  19. Chichibu park bridge, a Japan's longest PC cable suspension bridge that attaches importance to scenery. Keikan wo jushishita Nippon saidai no PC shachokyo 'Chichibu koenkyo'

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    This paper introduces the feature of Chichibu Park Bridge, a Japan's longest PC cable suspension bridge that attaches importance to scenery. The maximum effective span of Chichibu Park Bridge which is a two-span continuous PC cable suspension bridge measures 195 m, that means the center span length is equivalent to about 400 m if converted to a three-span structure. With respect to the design that values the scenic effect, the main tower has relief engravings of stone carving tone using Chichibu Night Festival as a motif disposed around it; lighting up is applied to the main tower to highlight it so that it can be viewed from far away places; and a balcony is built on the center of the bridge. Chichibu Park Bridge has the bridge axial direction stagger with the river flow direction at 45[degree] to reduce water resistance. The tensile force generated at the corbel section according to the main tower reactive force is dealt with reinforced concrete rather than with prestressed concrete. The main tower adopts a two-chamber girder structure as its cross section shape from the view points of rigidity assurance and scenic effect. For construction control, micro computers are used to correct growing change in bend of the main girder due to temperature change and cable tension change. 6 figs., 4 tabs.

  20. Structural condition assessment of the bridge in Ostrava

    Directory of Open Access Journals (Sweden)

    Čech Jindřich

    2017-01-01

    Full Text Available This paper deals with the comparison of results of dynamic test and numerical modelling of a road bridge across the Dr. Kudela street in the street Rudná in Ostrava. The bridge is a reinforced concrete structure, made of post-tensioned KA-beams. On the bridge were verified material properties. Calculation model to validate the static and dynamic behavior of structures was created. On the bridge were measured dynamic properties (frequency, mode shapes and attenuation during excitation construction by hydraulic vibration exciter. Article will focus on comparing the results of the calculation of dynamic structures and properties measured on real structure upon excitation.

  1. TECHNOLOGY AND EFFICIENCY OF PEAT ASH USAGE IN CEMENT CONCRETE

    Directory of Open Access Journals (Sweden)

    G. D. Liakhevich

    2015-01-01

    Full Text Available One of the main ways to improve physical and mechanical properties of cement concrete is an introduction of ash obtained due to burning of fossil fuels into concrete mix. The concrete mixes with ash are characterized by high cohesion, less water gain and disintegration. At the same time the concrete has high strength, density, water resistance, resistance to sulfate corrosion. The aim of this paper is to explore the possibility to use peat ash and slag of peat enterprises of the Republic of Belarus in the concrete for improvement of its physical and mechanical properties and characteristics of peat ash, slag, micro-silica, cement, superplasticizing agent. Compositions and technology for preparation of concrete mixes have been developed and concrete samples have been have been fabricated and tested in the paper. It has been shown that the concrete containing ash, slag obtained due to burning of peat in the industrial installations of the Usiazhsky and Lidsky Peat Briquette Plants and also MK-85-grade micro-silica NSPKSAUsF-1-grade superplasticizing agent have concrete tensile strength within 78–134 MPa under axial compression and 53 MPa – for the control composition. This index is 1.5–2.5 times more than for the sample containing no additives.The usage of peat ash, slag together with MK-85-grade micro-silica and NSPKSAUsF-1-grade superplasticizing agent for fabrication of concrete and reinforced bridge and tunnel structures will provide the following advantages: reduction of cross-sectional area of structures while maintaining their bearing capacity due to higher value of tensile strength in case of axial compression; higher density, waterand gas tightness due to low water cement ratio; high resistance to aggressive environment due to lower content of capillary pores that ensures bridge structure longevity; achievement of environmental and social impacts.

  2. Geometric nonlinear analysis of self-anchored cable-stayed suspension bridges.

    Science.gov (United States)

    Hui-Li, Wang; Yan-Bin, Tan; Si-Feng, Qin; Zhe, Zhang

    2013-01-01

    Geometric nonlinearity of self-anchored cable-stayed suspension bridges is studied in this paper. The repercussion of shrinkage and creep of concrete, rise-to-span ratio, and girder camber on the system is discussed. A self-anchored cable-stayed suspension bridge with a main span of 800 m is analyzed with linear theory, second-order theory, and nonlinear theory, respectively. In the condition of various rise-to-span ratios and girder cambers, the moments and displacements of both the girder and the pylon under live load are acquired. Based on the results it is derived that the second-order theory can be adopted to analyze a self-anchored cable-stayed suspension bridge with a main span of 800 m, and the error is less than 6%. The shrinkage and creep of concrete impose a conspicuous impact on the structure. And it outmatches suspension bridges for system stiffness. As the rise-to-span ratio increases, the axial forces of the main cable and the girder decline. The system stiffness rises with the girder camber being employed.

  3. Geometric Nonlinear Analysis of Self-Anchored Cable-Stayed Suspension Bridges

    Directory of Open Access Journals (Sweden)

    Wang Hui-Li

    2013-01-01

    Full Text Available Geometric nonlinearity of self-anchored cable-stayed suspension bridges is studied in this paper. The repercussion of shrinkage and creep of concrete, rise-to-span ratio, and girder camber on the system is discussed. A self-anchored cable-stayed suspension bridge with a main span of 800 m is analyzed with linear theory, second-order theory, and nonlinear theory, respectively. In the condition of various rise-to-span ratios and girder cambers, the moments and displacements of both the girder and the pylon under live load are acquired. Based on the results it is derived that the second-order theory can be adopted to analyze a self-anchored cable-stayed suspension bridge with a main span of 800 m, and the error is less than 6%. The shrinkage and creep of concrete impose a conspicuous impact on the structure. And it outmatches suspension bridges for system stiffness. As the rise-to-span ratio increases, the axial forces of the main cable and the girder decline. The system stiffness rises with the girder camber being employed.

  4. INVESTIGATION OF SEISMIC PERFORMANCE AND DESIGN OF TYPICAL CURVED AND SKEWED BRIDGES IN COLORADO

    Science.gov (United States)

    2018-01-15

    This report summarizes the analytical studies on the seismic performance of typical Colorado concrete bridges, particularly those with curved and skewed configurations. A set of bridge models with different geometric configurations derived from a pro...

  5. Shear strength of match cast dry joints of precast concrete segmental bridges: proposal for Eurocode 2

    Directory of Open Access Journals (Sweden)

    Aparicio, J. A.

    2006-06-01

    Full Text Available This paper discusses a study on the performance of concretesegmental bridges with shear keys, focusing on theshear behaviour of castellated dry joints under ultimatelimit state conditions. The widely varying formulationused to evaluate joint shear strength were compiled,along with the experimental results published in the literatureon the subject. The various approaches were evaluatedby comparing their predictions of ultimate jointstrength to published empirical findings. The formulagiving the best prediction was adapted to the safety factorprovisions set out in Eurocode 2.Este trabajo presenta un estudio sobre el comportamientode puentes de dovelas de hormigon con llaves de cortante,centrado en el comportamiento a cortante de lasjuntas secas conjugadas en Estado Limite Ultimo. Se harealizado una exhaustiva recopilacion de la dispar formulacionexistente para evaluar la resistencia a cortante delas juntas. Se ha realizado, asimismo, una investigacionbibliografica de los resultados experimentales disponiblessobre este particular en la literatura. Los resultados recogidosen la bibliografia han sido comparados con la variadaformulacion existente para predecir la resistencia ultimade las juntas. La formula que mejor predice laresistencia ha sido identificada. Esta ha sido adaptada alformato de seguridad presente en el Eurocodigo 2.

  6. Shrinkage and durability study of bridge deck concrete.

    Science.gov (United States)

    2010-12-01

    The Mississippi Department of Transportation is incorporating changes to material : specifications and construction procedures for bridge decks in an effort to reduce shrinkage : cracking. These changes are currently being implemented into a limited ...

  7. Bond-Slip Behavior of Basalt Fiber Reinforced Polymer Bar in Concrete Subjected to Simulated Marine Environment: Effects of BFRP Bar Size, Corrosion Age, and Concrete Strength

    Directory of Open Access Journals (Sweden)

    Yongmin Yang

    2017-01-01

    Full Text Available Basalt Fiber Reinforced Polymer (BFRP bars have bright potential application in concrete structures subjected to marine environment due to their superior corrosion resistance. Available literatures mainly focused on the mechanical properties of BFRP concrete structures, while the bond-slip behavior of BFRP bars, which is a key factor influencing the safety and service life of ocean concrete structures, has not been clarified yet. In this paper, effects of BFRP bars size, corrosion age, and concrete strength on the bond-slip behavior of BFRP bars in concrete cured in artificial seawater were investigated, and then an improved Bertero, Popov, and Eligehausen (BPE model was employed to describe the bond-slip behavior of BFRP bars in concrete. The results indicated that the maximum bond stress and corresponding slip decreased gradually with the increase of corrosion age and size of BFRP bars, and ultimate slip also decreased sharply. The ascending segment of bond-slip curve tends to be more rigid and the descending segment tends to be softer after corrosion. A horizontal end in bond-slip curve indicates that the friction between BFRP bars and concrete decreased sharply.

  8. Investigation of the Reliability of Bridge Elements Reinforced with Basalt Plastic Fibers

    Science.gov (United States)

    Koval', T. I.

    2017-09-01

    The poorly studied problem on the reliability and durability of basalt-fiber-reinforced concrete bridge elements is considered. A method of laboratory research into the work of specimens of the concrete under a manyfold cyclic dynamic load is proposed. The first results of such experiments are presented.

  9. Recessed floating pier caps for highway bridges.

    Science.gov (United States)

    1973-01-01

    Presented are alternate designs for two existing bridges in Virginia - one with steel beams and the other with prestressed concrete beams - whereby the pier caps are recessed within the depth of the longitudinal beams. The purpose of this recession i...

  10. Statistical variations in chloride diffusion in concrete bridges

    Czech Academy of Sciences Publication Activity Database

    Tikalsky, P.; Pustka, D.; Marek, Pavel

    2005-01-01

    Roč. 102, č. 3 (2005), s. 481-486 ISSN 0889-3241 Institutional research plan: CEZ:AV0Z20710524 Keywords : bridge deck * corrosion * durability Subject RIV: JM - Building Engineering Impact factor: 0.544, year: 2005

  11. An effective uniaxial tensile stress-strain relationship for prestressed concrete

    International Nuclear Information System (INIS)

    Chitnuyanondh, L.; Rizkalla, S.; Murray, D.W.; MacGregor, J.G.

    1979-02-01

    This report evaluates the direct tensile strength and an equivalent uniaxial tensile stress-strain relationship for prestressed concrete using data from specimens tested at the University of Alberta which represent segments from the wall of a containment vessel. The stress-strain relationship, when used in conjunction with the BOSOR5 program, enables prediction of the response of prestressed concrete under any biaxial combination of compressive and/or tensile stresses. Comparisons between the experimental and analytical (BOSOR5) load-strain response of the wall segments are also presented. It is concluded that the BOSOR5 program is able to predict satisfactorily the response of the wall segments and multi-layered shell structures. (author)

  12. Field tests on total gap of modular expansion joints to avoid bridge pounding

    Directory of Open Access Journals (Sweden)

    Bo eLi

    2016-03-01

    Full Text Available Modular expansion joints (MEJs are used for accommodating large relative displacements of adjacent bridge segments and for completely eliminating pounding. However, the minimum total gap that an MEJ needs to avoid pounding is not well investigated. To provide guidance for the seismic gap of MEJs, the maximum relative displacement of adjacent bridge segments subject to strong earthquakes was studied experimentally. To date, no experimental investigation of excitation spatial variation effect on bridge on natural soil has been reported. This research addressed a bridge with three identical segments of 100 m. A 1:22 scale bridge model founded on compacted beach sand was tested using electro-magnetic inertial exciters. Different ground motions were applied to the model to simulate the effect of spatially varying ground motions. Soil-structure interaction (SSI was studied by comparing the minimum total gaps with those obtained from the fixed-based experiments in the laboratory. The spatially varying ground motions were simulated based on the New Zealand design spectra for soft soil, shallow soil and strong rock conditions using an empirical coherency loss function. SSI was found to reduce the minimum total gap of an MEJ needed to avoid pounding between adjacent segments. Under spatially varying ground motions designing adjacent bridge segments with identical or similar fundamental frequencies is still recommended even if it does not necessarily preclude an out-of-phase movement of adjacent structures.

  13. Knowledge-Based Systems for the Assessment and Management of Bridge Structures

    DEFF Research Database (Denmark)

    Miyamoto, A.; Thoft-Christensen, Palle; Yan, B.

    2004-01-01

    . The aim of this paper is to summarize the finding of up-to-date research articles concerning the application of knowledge-based systems to assessment and management of structures and to illustrate the potential of such systems in the structural engineering. Two modern bridge management systems (BMS......It is becoming an important social problem to make maintenance and rehabilitation of existing infrastructures such as bridges, buildings, etc. The kernel of such structure management is to develop a method of safety assessment on items which include remaining life and load carrying capacity......'s) are presented in the paper. The first is a BMS to assess the performance and derive optimal strategies for inspection and maintenance of concrete structures using reliability based and knowledge based systems. The second is the concrete bridge rating expert system (BREX) to evaluate the performance of existing...

  14. Study on Performance of Steel Fiber Concrete Bridge Pier Specimens under Horizontal Cyclic Loading

    Directory of Open Access Journals (Sweden)

    Baiben Chen

    2017-01-01

    Full Text Available Because of that steel fiber can effectively prevent the extension and development of small cracks in the concrete, steel fiber reinforced concrete has good toughness and tensile strength. In the application of building materials, steel fiber reinforced concrete is an ideal elastic-plastic material. For the seismic performance, it has advantages. In order to analyze the seismic performance of steel fiber reinforced concrete, 4 piers of the scale model test under horizontal cyclic loading were done. The results showed that failure mode of steel fiber reinforced concrete is better than that of ordinary concrete, and has a large yield moment under the external loads.

  15. FEATURES OF DESIGN OF TIED-ARCH BRIDGES WITH FLEXIBLE INCLINED SUSPENSION HANGERS

    Directory of Open Access Journals (Sweden)

    V. O. Samosvat

    2017-10-01

    Full Text Available Purpose. Investigation and analysis of the hanger arrangement and the structural stability of a Network arch bridge – a tied-arch bridge with inclined hangers that cross each other at least twice. It is also necessary to make a comparative analysis with other types of hanger arrangements. Methodology. The authors in their research investigated a large number of parameters to determine their influence in the force distribution in the arch. Eventually they determined optimal values for all parameters. These optimal values allowed developing a design guide that leads to optimal arch design. When solving this problem, the authors used three-dimensional finite element models and the objective was to determine the most suitable solution for a road bridge, with a span of 100 meters, consisting of two inclined steel arches, located on a road with two traffic lanes, subjected to medium traffic. The virtual prototype of the model is performed by finite element simulator Midas Civil. Findings. In this study, for the bridge deck, a concrete tie appears to be the best solution considering the structural behavior of network arches, but economic advantages caused by easier erection may lead to steel or a composite bridge deck as better alternatives. Design requirements and local conditions of each particular bridge project will decide the most economic deck design.Originality. To ensure passenger comfort and the stability and continuity of the track, deformations of bridges are constricted. A network arch is a stiff structure with small deflections and therefore suitable to comply with such demands even for high speed railway traffic.
A network arch bridge with a concrete tie usually saves more than half the steel required for tied arches with vertical hangers and concrete ties. Practical value. Following the study design advice given in this article leads to savings of about 60 % of structural steel compared with conventional tied arch bridges with

  16. Structural health monitoring of a concrete bridge in Sweden

    Science.gov (United States)

    Enochsson, Ola; Täljsten, Björn; Olofsson, Thomas

    2006-03-01

    Over the past decade the interests in upgrading, assessment and maintenance of our ageing infrastructure has grown avalanche-like. The main reason is economical aspects but also reasons due to accessibility environmental consideration play a vital role. Recently the Swedish and Norwegian Railway Association decided to upgrade the Iron Ore Line "Malmbanan", a railway line for transportation of iron from northern Sweden to the coasts of Norway and Sweden. Here the owner wanted to increase the axle loads from 25 to 30 tons to reduce the transportation costs. In one of the cases, the Luossajokk Bridge, a recalculation according to design codes showed that the increased axle loads would exceed the yield limit in the reinforcement. Before any decision was taken regarding strengthening or replacing the bridge an assessment with probabilistic methods was used. It appeared that the bridge could carry the higher load with a safety index β >= 4.7 for reasonable assumptions of the load distributions. A measurement system was installed to check the real worst placement of the new iron ore locomotive (IORE), and the actually level of strains in the reinforcement for the worst load case1. It was shown that the strain level was far from critical and that the evaluated worst placement of the locomotive was almost correct. To assure a reliable transportation a long term monitoring program was arranged to check the development of strains with time. Examples from the probabilistic evaluation and the monitoring of the bridge are given and discussed.

  17. Impact of Plastic Hinge Properties on Capacity Curve of Reinforced Concrete Bridges

    Directory of Open Access Journals (Sweden)

    Nasim Shatarat

    2017-01-01

    Full Text Available Pushover analysis is becoming recently the most practical tool for nonlinear analysis of regular and irregular highway bridges. The nonlinear behaviour of structural elements in this type of analysis can be modeled through automated-hinge or user-defined hinge models. The nonlinear properties of the user-defined hinge model for existing highway bridges can be determined in accordance with the recommendations of the Seismic Retrofit Manual by the Federal Highway Administration (FHWA-SRM. Finite element software such as the software SAP2000 offers a simpler and easier approach to determine the nonlinear hinge properties through the automated-hinge model which are determined automatically from the member material and cross section properties. However, the uncertainties in using the automated-hinge model in place of user-defined hinge model have never been addressed, especially for existing and widened bridges. In response to this need, pushover analysis was carried out for four old highway bridges, of which two were widened using the same superstructure but with more attention to seismic detailing requirements. The results of the analyses showed noticeable differences in the capacity curves obtained utilizing the user-defined and automated-hinge models. The study recommends that bridge design manuals clearly ask bridge designers to evaluate the deformation capacities of existing bridges and widened bridges using user-defined hinge model that is determined in accordance with the provisions of the FHWA-SRM.

  18. X-ray-induced acoustic computed tomography of concrete infrastructure

    Science.gov (United States)

    Tang, Shanshan; Ramseyer, Chris; Samant, Pratik; Xiang, Liangzhong

    2018-02-01

    X-ray-induced Acoustic Computed Tomography (XACT) takes advantage of both X-ray absorption contrast and high ultrasonic resolution in a single imaging modality by making use of the thermoacoustic effect. In XACT, X-ray absorption by defects and other structures in concrete create thermally induced pressure jumps that launch ultrasonic waves, which are then received by acoustic detectors to form images. In this research, XACT imaging was used to non-destructively test and identify defects in concrete. For concrete structures, we conclude that XACT imaging allows multiscale imaging at depths ranging from centimeters to meters, with spatial resolutions from sub-millimeter to centimeters. XACT imaging also holds promise for single-side testing of concrete infrastructure and provides an optimal solution for nondestructive inspection of existing bridges, pavement, nuclear power plants, and other concrete infrastructure.

  19. Rotation capacity of self-compacting steel fiber reinforced concrete

    NARCIS (Netherlands)

    Schumacher, P.

    2006-01-01

    Steel fiber reinforced concrete (SFRC) has been used in segmental tunnel linings in the past years. In order to investigate the effect of steel fibers on the rotation capacity of plastic hinges in self-compacting concrete (SCC) the effect of the addition of fibers to SCC in compression, tension and

  20. Continuity diaphragm for skewed continuous span precast prestressed concrete girder bridges.

    Science.gov (United States)

    2004-10-01

    Continuity diaphragms used on skewed bents in prestressed girder bridges cause difficulties in detailing and : construction. Details for bridges with large diaphragm skew angles (>30) have not been a problem for LA DOTD. : However, as the skew angl...

  1. Recycled concrete aggregate : field implementation at the Stan Musial Veterans Memorial Bridge.

    Science.gov (United States)

    2014-08-01

    The main objective of this research is to evaluate the feasibility of using RCA for concrete production in rigid pavement applications. : The experimental program was undertaken to investigate the performance of different concrete made with different...

  2. Measurement of bridge deck layout prior to concrete placement : final report.

    Science.gov (United States)

    2017-01-01

    The main objective of this research was to develop a method of measuring and : producing as built bridge drawings. This was the first step in the feasibility : assessment for automated bridge deck paving. The research goes to show the : standard meth...

  3. Preliminary study of life cycle cost of preventive measures and repair options for corrosion in concrete infrastructurecorrosion in concrete infrastructure

    NARCIS (Netherlands)

    Polder, R.B.; Pan, Yifan; Courage, Wim; Peelen, Willy H A

    2016-01-01

    Maintenance costs of reinforced concrete infrastructure (bridges, tunnels, harbours, parking structures) are increasing due to aging of structures under aggressive exposure. Corrosion of reinforcement due to chloride ingress is the main problem for existing structures in marine and de-icing salt

  4. Study of monolithic prestressed reinforced concrete overhead road.

    Directory of Open Access Journals (Sweden)

    Ya.I. Kovalchyk

    2011-12-01

    Full Text Available Results of inspection and testing of monolithic prestressed reinforced concrete road trestle built in Kyiv are considered. The analysis of the gained results has shown that parametres correspond to the requirements of current standards on design of bridges.

  5. Modeling and assessment of concrete and the energy infrastructure

    International Nuclear Information System (INIS)

    Guthrie, G.; Carey, J.

    1998-01-01

    This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Concrete is an essential component of the energy infrastructure. The characteristics of concrete that determine its effectiveness in any application--be it construction (e.g., roads, bridges, dams) or waste isolation--result from the chemical and structural evolution of the particular concrete structure. Geochemical and mineralogical factors are among the most important, yet most overlooked, controls of this evolutionary process. This project is geared at using a combination of advanced geochemical and mineralogical experimentation, characterization, and modeling (much of which was developed to understand geological systems such as Yucca Mountain) to understand the evolution of concrete in a mechanistic way. The goal was to develop a systematic approach to problems ranging from premature degradation of concrete to the design of next-generation concretes

  6. Can superabsorent polymers mitigate autogenous shrinkage of internally cured concrete without compromising the strength?

    DEFF Research Database (Denmark)

    Hasholt, Marianne Tange; Jensen, Ole Mejlhede; Kovler, Konstantin

    2012-01-01

    The paper “Super absorbing polymers as an internal curing agent for mitigation of early-age cracking of high-performance concrete bridge decks” deals with different aspects of using superabsorbent polymers (SAP) in concrete to mitigate self-desiccation. The paper concludes that “Addition of SAP...... by overestimation of SAP water absorption. This results in an increase in water/cement ratio (w/c) for concrete with SAP. It is misleading to conclude on how SAP influences concrete properties, based on comparison of concrete mixes with SAP and reference concrete without SAP, if SAP mixes have higher w/c than...

  7. Vibration analysis of concrete bridges during a train pass-by using various models

    International Nuclear Information System (INIS)

    Li, Qi; Wang, Ke; Cheng, Shili; Li, Wuqian; Song, Xiaodong

    2016-01-01

    The vibration of a bridge must be determined in order to predict the bridge noise during a train pass-by. It can be generally solved with different models either in the time domain or the frequency domain. The computation cost and accuracy of these models vary a lot in a wide frequency band. This study aims to compare the results obtained from various models for recommending the most suitable model in further noise prediction. First, train-track-bridge models in the time domain are developed by using the finite element method and mode superposition method. The rails are modeled by Timoshenko beam elements and the bridge is respectively modeled by shell elements and volume elements. Second, power flow models for the coupled system are established in the frequency domain. The rails are modelled by infinite Timoshenko beams and the bridge is respectively represented by three finite element models, an infinite Kirchhoff plate, and an infinite Mindlin plate model. The vibration at given locations of the bridge and the power input to the bridges through the rail fasteners are calculated using these models. The results show that the shear deformation of the bridge deck has significant influences on the bridge vibration at medium-to-high frequencies. The Mindlin plate model can be used to represent the U-shaped girder to obtain the power input to the bridge with high accuracy and efficiency. (paper)

  8. Health monitoring of precast bridge deck panels reinforced with glass fiber reinforced polymer (GFRP) bars.

    Science.gov (United States)

    2012-03-01

    The present research project investigates monitoring concrete precast panels for bridge decks that are reinforced with Glass Fiber Reinforced Polymer (GFRP) bars. Due to the lack of long term research on concrete members reinforced with GFRP bars, lo...

  9. End region detailing of pretensioned concrete bridge girders : [summary].

    Science.gov (United States)

    2013-03-01

    Introduction of the Florida-I Beam (FIB) in 2009 renewed interest in prestressed concrete beam design, especially end region details. In this study, University of Florida researchers examined construction detailing at the FIB end region.

  10. Ultra-high performance concrete : a state-of-the-art report for the bridge community.

    Science.gov (United States)

    2013-06-01

    "The term Ultra-High Performance Concrete (UHPC) refers to a relatively new class of advanced cementitious : composite materials whose mechanical and durability properties far surpass those of conventional concrete. This : class of concrete has been ...

  11. The Vibration Based Fatigue Damage Assessment of Steel and Steel Fiber Reinforced Concrete (SFRC Composite Girder

    Directory of Open Access Journals (Sweden)

    Xu Chen

    2015-01-01

    Full Text Available The steel-concrete composite girder has been usually applied in the bridge and building structures, mostly consisting of concrete slab, steel girder, and shear connector. The current fatigue damage assessment for the composite girder is largely based on the strain values and concrete crack features, which is time consuming and not stable. Hence the vibration-based fatigue damage assessment has been considered in this study. In detail, a steel-steel fiber reinforced concrete (SFRC composite girder was tested. The steel fiber reinforced concrete is usually considered for dealing with the concrete cracks in engineering practice. The composite girder was 3.3m long and 0.45m high. The fatigue load and impact excitation were applied on the specimen sequentially. According to the test results, the concrete crack development and global stiffness degradation during the fatigue test were relatively slow due to the favourable performance of SFRC in tension. But on the other hand, the vibration features varied significantly during the fatigue damage development. Generally, it confirmed the feasibility of executing fatigue damage assessment of composite bridge based on vibration method.

  12. Evaluating the time-dependent and bond characteristics of lightweight concrete mixes for Kansas prestressed concrete bridges : technical summary.

    Science.gov (United States)

    2011-07-01

    The majority of the bridges in Kansas are in rural areas. Many of these are : becoming structurally deficient, and are in need of replacement. Due to the location of : these bridges, cost of transporting prestressed girders to these areas often makes...

  13. Analysis of the state of the art of precast concrete bridge substructure systems.

    Science.gov (United States)

    2013-10-01

    Precasting of bridge substructure components holds potential for accelerating the construction of bridges,reducing : impacts to the traveling public on routes adjacent to construction sites, improving bridge durability and hence service : life, and r...

  14. Bridge Deterioration Prediction Model Based On Hybrid Markov-System Dynamic

    Directory of Open Access Journals (Sweden)

    Widodo Soetjipto Jojok

    2017-01-01

    Full Text Available Instantaneous bridge failure tends to increase in Indonesia. To mitigate this condition, Indonesia’s Bridge Management System (I-BMS has been applied to continuously monitor the condition of bridges. However, I-BMS only implements visual inspection for maintenance priority of the bridge structure component instead of bridge structure system. This paper proposes a new bridge failure prediction model based on hybrid Markov-System Dynamic (MSD. System dynamic is used to represent the correlation among bridge structure components while Markov chain is used to calculate temporal probability of the bridge failure. Around 235 data of bridges in Indonesia were collected from Directorate of Bridge the Ministry of Public Works and Housing for calculating transition probability of the model. To validate the model, a medium span concrete bridge was used as a case study. The result shows that the proposed model can accurately predict the bridge condition. Besides predicting the probability of the bridge failure, this model can also be used as an early warning system for bridge monitoring activity.

  15. Repair of cracked prestressed concrete girders, I-565, Huntsville, Alabama.

    Science.gov (United States)

    2011-07-01

    Wide cracks were discovered in prestressed concrete bridge girders shortly after their construction in Huntsville, Alabama. Previous investigations of these continuous-for-live-load girders revealed that the cracking resulted from restrained thermal ...

  16. Evaluation of corrosion resistance of various concrete reinforcing materials.

    Science.gov (United States)

    2013-06-01

    The Vermont Agency of Transportation undertook a simple experiment to determine the corrosion : resistance ability of various reinforcing steels (rebar) that may be used in bridges and other concrete : structures. Eight types of rebar were used in th...

  17. Repair of Impact-Damaged Prestressed Bridge Girders Using Strand Splices and Fabric Reinforced Cementitious Matrix

    OpenAIRE

    Jones, Mark Stevens

    2017-01-01

    This thesis investigates the repair of impact-damaged prestressed concrete bridge girders with strand splices and fabric-reinforced cementitious matrix systems, specifically for repair of structural damage to the underside of an overpass bridge girder due to an overheight vehicle collision. Collision damage to bridges can range from minor to catastrophic, potentially requiring repair or replacement of a bridge girder. This thesis investigates the performance of two different types of repair...

  18. Concrete road barriers subjected to impact loads: An overview

    Directory of Open Access Journals (Sweden)

    Muhammad Fauzi Bin Mohd. Zain

    Full Text Available Abstract Concrete barriers prevent vehicles from entering the opposite lane and going off the road. An important factor in the design of concrete barriers is impact load, which a vehicle exerts upon collision with a concrete barrier. This study suggests that a height of 813 mm, a base width of 600 mm, and a top width of 240 mm are optimum dimensions for a concrete barrier. These dimensions ensure the stability of concrete barriers during vehicle collisions. An analytical and experimental model is used to analyze the concrete barrier design. The LS-DYNA software is utilized to create the analytical models because it can effectively simulate vehicle impact on concrete barriers. Field tests are conducted with a vehicle, whereas laboratory tests are conducted with machines that simulate collisions. Full-scale tests allow the actual simulation of vehicle collisions with concrete barriers. In the vehicle tests, a collision angle of 25°, collision speeds of 100 km per hour, and a vehicle weighing more than 2 t are considered in the reviewed studies. Laboratory tests are performed to test bridge concrete barriers in static condition.

  19. Monitoring of prestress losses using long-gauge fiber optic sensors

    Science.gov (United States)

    Abdel-Jaber, Hiba; Glisic, Branko

    2017-04-01

    Prestressed concrete has been increasingly used in the construction of bridges due to its superiority as a building material. This has necessitated better assessment of its on-site performance. One of the most important indicators of structural integrity and performance of prestressed concrete structures is the spatial distribution of prestress forces over time, i.e. prestress losses along the structure. Time-dependent prestress losses occur due to dimensional changes in the concrete caused by creep and shrinkage, in addition to strand relaxation. Maintaining certain force levels in the strands, and thus the concrete cross-sections, is essential to ensuring stresses in the concrete do not exceed design stresses, which could cause malfunction or failure of the structure. This paper presents a novel method for monitoring prestress losses based on long-gauge fiber optic sensors embedded in the concrete during construction. The method includes the treatment of varying environmental factors such as temperature to ensure accuracy of results in on-site applications. The method is presented as applied to a segment of a post-tensioned pedestrian bridge on the Princeton University campus, Streicker Bridge. The segment is a three-span continuous girder supported on steel columns, with sensors embedded at key locations along the structure during construction in October 2009. Temperature and strain measurements have been recorded intermittently since construction. The prestress loss results are compared to estimates from design documents.

  20. In-service performance evaluation and monitoring of a hybrid composite beam bridge system : final report.

    Science.gov (United States)

    2017-10-01

    The hybrid composite beam (HCB) technology has been presented as a system for short and medium span beam bridges as an alternative to traditional materials such as concrete and steel. An HCB consists of a concrete tied arch encased in a fiber reinfor...

  1. FLEXURAL TOUGHNESS OF STEEL FIBER REINFORCED CONCRETE

    Directory of Open Access Journals (Sweden)

    Fehmi ÇİVİCİ

    2006-02-01

    Full Text Available Fiber concrete is a composite material which has mechanical and physical characteristics unlike plain concrete. One of the important mechanical characteristics of fiber concrete is its energy absorbing capability. This characteristics which is also called toughness, is defined as the total area under the load-deflection curve. A number of composite characteristics such as crack resistance, ductility and impact resistance are related to the energy absorbtion capacity. According to ASTM C 1018 and JSCE SF-4 the calculation of toughness is determined by uniaxial flexural testing. Fiber concrete is often used in plates such as bridge decks, airport pavements, parking areas, subjected to cavitation and erosion. In this paper, toughness has been determined according to ASTM C 1018 and JSCE SF-4 methods by testing beam specimens. Energy absorbing capacities of plain and steel fiber reinforced concrete has been compared by evaluating the results of two methods. Also plain and steel fiber reinforced plate specimens behaviors subjected to biaxial flexure are compared by the loaddeflection curves of each specimen.

  2. Proposal and study of a long-span composite cable-stayed bridge with new hybrid girder; Atarashii gosei kozo shuketa wo mochiita chodai fukugo shachokyo no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, K.; Hishiki, Y.; Furuichi, K. [Kajima Corp., Tokyo (Japan)

    1999-09-30

    A hybrid or mixed structure (composite structures) are a matter of increasing concern which takes in each advantage of steel and concrete. A field of bridges is no exception, with the plan and construction carried out for the new type of composite bridge, such as a composite cable-stayed bridge and a composite extra dose bridge as a long span bridge, and a composite truss bridge and a corrugated steel plate web bridge as a medium-span bridge, with technological development becoming active in this field. In such a technological trend, a hybrid two-girder structure was devised, a structure consisting of a concrete filled steel pipe for a girder and a precast (PC) floor plate for a floor board, as the girder structure of a long-span cable-stayed bridge in the subject research; also, applicability was examined using, as an example, the composite cable-stayed bridge with hybrid girders employed for the span. This paper reports the result of the analysis of the entire system, the analysis made for the purpose of examining the characteristic and the feasibility of this hybrid girder. The analysis revealed the structural feasibility of the long-span composite cable-stayed bridge using two hybrid girders of concrete-filled steel pipes thus devised. (NEDO)

  3. Development of guidelines for transportation of long prestressed concrete girders.

    Science.gov (United States)

    2016-12-01

    This research study investigates the behavior of two long prestressed concrete girders during lifting and : transportation from the precast yard to the bridge site, with a particular focus on cracking concerns : during transport. Different response m...

  4. Evaluation of size effect on shear strength of reinforced concrete ...

    Indian Academy of Sciences (India)

    of the longitudinal and the web reinforcement, shear span-to-depth ratio and the ... A simple equation for predicting the shear strength of reinforced concrete deep ..... AASHTO 2007 LRFD Bridge Design Specifications, American Association of ...

  5. Effective way to reconstruct arch bridges using concrete walls and transverse strands

    Science.gov (United States)

    Klusáček, Ladislav; Pěkník, Robin; Nečas, Radim

    2017-09-01

    There are more than 500 masonry arch bridges in the Czech Road system and about 2500 in the Czech Railway system. Many of them are cracked in the longitudinal (span) direction. The barrel vaults are separated by the cracks into partial masonry arches without load bearing connection in transverse direction. These constructions are about 150 years old and they are also too narrow for the current road system. This paper presents a strengthening method for masonry arch bridges using transverse post-tensioning. This method is very useful not only for strengthening in the transverse direction, but widening of masonry arches can be taken as secondary effect especially in case of road bridges. Several bridges were successfully repaired with the use of this system which seems to be effective and reliable.

  6. Strength monitoring of bridge constructions and features of its application. Part 2. Continuous monitoring of bridge construction status

    Directory of Open Access Journals (Sweden)

    Ovchinnikov Igor Georgievich

    2014-06-01

    Full Text Available The article describes a system of continuous monitoring of bridge constructions — a system of observation over the operating conditions and behavior of the bridge structure, which is aimed at ensuring the preservation of its functional application properties within the specified limits, realized on the continuous, long-term basis with the use of instrumentation and ensures on-line presentation of information on the status of structure. To illustrate, one may consider the existing systems of continuous monitoring for a number of bridge constructions in the United States, Japan, Europe, South Korea, Greece and Russia. The article suggests to examine the systems of continuous monitoring of «Commodore John Barry» truss bridge, «Akashi-Kaikyo» suspension bridge, «Siggenthal» reinforced-concrete arch bridge, «Nimhe» suspension bridge, «Jindo»cable-stayed bridge, «Yandzhon» suspension bridge, «Banghwa» bridge, «Seohae» bridge and «Rio-Antirrio» bridge. In addition one may consider monitoring of the longitudinal launching of the bridge superstructures over the Volga River near the village Pristannoye in Saratov region. Finally, it was drawn the conclusion that monitoring of bridge constructions from the standpoint of their consumers is aimed at solving such important problems as preservation of bridge structures, increase in service life of bridge structures through timely detection of faults and their elimination, as well as preservation of bridge structure carrying capacity by controlling their behavior during the operation and improving the efficiency of expenditure of monetary resources for repair activities by correct determination of time and type of the necessary repair.

  7. Model-based segmentation and classification of trajectories (Extended abstract)

    NARCIS (Netherlands)

    Alewijnse, S.P.A.; Buchin, K.; Buchin, M.; Sijben, S.; Westenberg, M.A.

    2014-01-01

    We present efficient algorithms for segmenting and classifying a trajectory based on a parameterized movement model like the Brownian bridge movement model. Segmentation is the problem of subdividing a trajectory into parts such that each art is homogeneous in its movement characteristics. We

  8. Performance evaluation of concrete bridge decks reinforced with MMFX and SSC rebars.

    Science.gov (United States)

    2006-01-01

    This report investigates the performance of bridge decks reinforced with stainless steel clad (SSC) and micro-composite multistructural formable steel (MMFX) rebars. The two-span Galloway Road Bridge on route CR5218 over North Elkhorn Creek in Scott ...

  9. Development of concrete mix proportions for minimizing/eliminating shrinkage cracks in slabs and high performance grouts : final report.

    Science.gov (United States)

    2017-02-01

    The two focus areas of this research address longstanding problems of (1) cracking of concrete slabs due to creep and shrinkage and (2) high performance compositions for grouting and joining precast concrete structural elements. Cracking of bridge de...

  10. Natural Corrosion Inhibitors for Steel Reinforcement in Concrete — a Review

    Science.gov (United States)

    Raja, Pandian Bothi; Ghoreishiamiri, Seyedmojtaba; Ismail, Mohammad

    2015-04-01

    Reinforced concrete is one of the widely used construction materials for bridges, buildings, platforms and tunnels. Though reinforced concrete is capable of withstanding a large range of severe environments including marine, industrial and alpine conditions, there are still a large number of failures in concrete structures for many reasons. Either carbonation or chloride attack is the main culprit which is due to depassivation of reinforced steel and subsequently leads to rapid steel corrosion. Among many corrosion prevention measures, application of corrosion inhibitors play a vital role in metal protection. Numerous range of corrosion inhibitors were reported for concrete protection that were also used commercially in industries. This review summarizes the application of natural products as corrosion inhibitors for concrete protection and also scrutinizes various factors influencing its applicability.

  11. Implementation and field evaluation of pretensioned concrete girder end crack control.

    Science.gov (United States)

    2016-05-01

    Wisconsin bulb tee pretensioned concrete girders are currently used for bridge construction. Their efficiency in load resistance has made them particularly desirable. To provide that efficiency, these girders are heavily prestressed. Cracking is evid...

  12. Longitudinal Seismic Behavior of a Single-Tower Cable-Stayed Bridge Subjected to Near-Field Earthquakes

    Directory of Open Access Journals (Sweden)

    J. Yi

    2017-01-01

    Full Text Available Cable-stayed bridges are quite sensitive to large amplitude oscillations from earthquakes and seismic damage was observed for Shipshaw Bridge and Chi-Lu Bridge during past earthquakes. In order to investigate seismic damage of cable-stayed bridges, a 1 : 20 scale model of a single-tower cable-stayed bridge with A-shaped tower was designed, constructed, and tested on shake tables at Tongji University, China. One typical near-field ground motion was used to excite the model from low to high intensity. Test result showed that severe structural damage occurred at the tower of the model including parallel concrete cracks from bottom to nearly half height of the tower, concrete spalling, and exposed bars at top tower 0.2 m above the section where two skewed legs intersect. Posttest analysis was conducted and compared with test results. It is revealed that the numerical model was able to simulate the seismic damage of the test model by modeling nonlinearity of different components for cable-stayed bridges, namely, the tower, bents, superstructure, cables, and bearings. Numerical analysis also revealed that cable relaxation, which was detected during the test, had limited influence on the overall seismic response of the bridge with maximum error of 12%.

  13. Construction of the Usui bridge. Chodai PC shachokyo no kensetsu (Joshin'etsu jidoshado Usuikyo)

    Energy Technology Data Exchange (ETDEWEB)

    Otani, S.; Ogata, T. (Japan Highway Public Corp., Tokyo (Japan))

    1993-10-01

    The Usui Bridge is a long bridge located at the Usui mountain pass on the Joshinetsu Expressway, completed in March 1993. This paper reports from its planning to the design, construction work, and construction management. The bridge is a first two-span continuous prestressed concrete cable-stayed bridge (with a length of 222 m) with one central cable plane ever constructed as a highway bridge in Japan. Its bridge construction features are represented by the main girder consisted of three-chamber type box girder, and the main tower of reversed Y-letter concrete structure. For the fan-shaped stay cable (9-step double cable), a large capacity cable of non-grouting type fabricated at a factory (with a tensile strength of 1500 tf class) was used to simplify the installation work at the site. The one-plane structure utilizing the center belt as a stay cable fixing portion was adopted because of its economic performance superior to a two-plane structure, easiness in consolidating construction works, and assurance of more open space for car traffic. After the completion, the bridge construction has been awarded with the Tanaka Prize of Japan Society of Civil Engineers and the PC Technology Association prize. 26 figs., 4 tabs.

  14. Myocardial bridging causing ischemia and recurrent chest pain: a case report

    Directory of Open Access Journals (Sweden)

    Abdou Mohamed

    2011-07-01

    Full Text Available Abstract Background Myocardial bridging is present when a segment of a major epicardial coronary artery runs intramurally through the myocardium. It usually has a benign prognosis, but in some cases myocardial ischemia, infarction and sudden cardiac death have been reported. We are here reporting a case of myocardial bridging which was complicated with recurrent chest pain and transient ST-segment elevation during exercise treadmill test. Case presentation A 40 year-old-man presented with recurrent retrosternal chest pain of 2 months duration. He had history of smoking and was obese, otherwise no physical abnormalities were detected by examination. Electrocardiogram and blood tests were normal apart from impaired glucose tolerance with elevated triglycerides and decreased level of high density lipoprotein cholesterol. While doing exercise treadmill test, the patient developed chest pain and significant ST-segment elevation in almost all precordial leads that persisted for about 15 minutes through recovery. We decided to admit the patient to the coronary care unit for further management and to perform coronary angiogram. Myocardial bridging was observed in the mid segment of the left anterior descending coronary artery. Medical treatment was decided. At one year follow up, our patient was healthy and had no cardiac complaints. In conclusion, myocardial bridging may predispose to coronary vasospasm that may leads to ischemic complications.

  15. Multiscale probabilistic modeling of a crack bridge in glass fiber reinforced concrete

    Directory of Open Access Journals (Sweden)

    Rypla R.

    2017-06-01

    Full Text Available The present paper introduces a probabilistic approach to simulating the crack bridging effects of chopped glass strands in cement-based matrices and compares it to a discrete rigid body spring network model with semi-discrete representation of the chopped strands. The glass strands exhibit random features at various scales, which are taken into account by both models. Fiber strength and interface stress are considered as random variables at the scale of a single fiber bundle while the orientation and position of individual bundles with respect to a crack plane are considered as random variables at the crack bridge scale. At the scale of the whole composite domain, the distribution of fibers and the resulting number of crack-bridging fibers is considered. All the above random effects contribute to the variability of the crack bridge performance and result in size-dependent behavior of a multiply cracked composite.

  16. Evaluation of corrosion of prestressing steel in concrete using non-destructive techniques

    International Nuclear Information System (INIS)

    Ali, M.G.; Maddocks, A.R.

    2003-01-01

    Use of high strength steel in pre-stressed concrete structures has been in use in Australia for many decades. Highway bridges, among other structures, have extensively used pre-stress-ing and post-tensioning techniques. Although prestressing offers many competitive edges to it's traditional rival reinforced concrete, the consequence of damage to prestressing tendons could be catastrophic. Periodic visual inspections of prestressed concrete bridges throughout the world have demonstrated the growing problem of deterioration of prestressing steel as a result of corrosion. Early detection of damage to prestressing steel therefore is of paramount importance. Unfortunately no reliable and practical non-destructive evaluation technique has been available for assessing the condition of prestressing steel within concrete although a number of techniques appear promising. The following inspection methods have been highlighted in recent literature for their use as non-destructive inspection methods for prestressed concrete structures. In addition to the techniques discussed, a number of destructive, or invasive techniques also exist for determination of the corrosion status of prestressing tendons in prestressed structures. The following non-destructive techniques are discussed in some detail: Radiography; Computed Tomography; Surface Penetrating Radar; Impact Echo; Acoustic Emission Monitoring; Magnetic Field Disturbance Technique; Remnant Magnetism Method; Linear Polarisation Method; Electrical Resistance and Surface Potential Survey. The portability, limitations and use in Australia of these techniques are summarised in a table

  17. Consideration on extradosed prestressed concrete road bridge; Dorokyo ni okeru daihenshin PC keburu kyo

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, A.; Honma, A. [Japan Highway Public Corp., Tokyo (Japan)

    1997-03-31

    The details of the investigation on the Odawara Blue Way Bridge for which extradosed type is employed are provided, and a report is made about the situation of the study on the future construction of the 2nd Tomei-Meishin Expressway. The extradosed PC bridge is considered to have intermediate structural characteristics of those of the conventional beam bridge and PC cable stayed bridge, and is expected to be applied to bridges having approximately from 100 to 200m span. The features of the extradosed PC bridge is outlined. Approximately 1/35 beam height on the intermediate support and 1/10 main tower height against the center span are considered to be proper. PC steel products can be used efficiently because stress fluctuation of diagonals and the load sharing rate of the diagonal member are less than those of the PC cable stayed bridge and safety factor similar to that of general internal cable can be adopted. Construction works for the main tower and the diagonal member are easy due to low height of the main tower, and the bridge is advantageous also in the maintenance control because no beam is required. 5 refs., 8 figs., 2 tabs.

  18. Monitoring system for assessment of prestressed railway bridges in the new Lehrter Bahnhof in Berlin

    Science.gov (United States)

    Habel, Wolfgang R.; Kohlhoff, H.; Knapp, J.; Helmerich, R.

    2003-03-01

    A new central railway station - Lehrter Bahnhof - is being built in Berlin. Because of construction activities in immediate vicinity and because of difficult soil conditions, vertical displacements will be expected. In order to avoid damage to the bridges and to a widely spanned glass roof which will be supported by two concrete bridges these two bridges have to be monitored right from the beginning of construction until commissioning as well as later on for several years. For this purpose, a long-term monitoring concept has been developed. Sensors with excellent long-term stabilty have been chosen to carry out the concept. This paper describes the measuring concept as well as components of the system. Especially techniques to monitor settlements and heaves and to measure strain and inclination of the prestressed concrete bridges are described. All measures are redundantly monitored. Measurements on-site are referenced by measurements on two large-scale beam models well-defined loaded under laboratory and field conditions.

  19. Application of Crushed Concrete in Geotechnical Engineering - Selected Issues

    Science.gov (United States)

    Kawalec, Jacek; Kwiecien, Slawomir; Pilipenko, Anton; Rybak, Jarosław

    2017-12-01

    The reuse of building materials becomes an important issue in sustainable engineering. As the technical requirements for civil engineering structures changes with time and the life time is limited, the need of building new objects meets the necessity of recycling of the existing ones. In the case of steel structures, the possibility of recycling is obvious, also in the case of wooden constructions, the possibility of “burning” solves the problem. The concrete waste is generated mainly as a result of the demolition and reconstruction of residential and industrial buildings. These types of waste are basically made from crushed rocks and cement minerals and contain non-hydrated cement particles in its composition. Concrete poses a lot of problems mainly for two reasons. It is difficult to crush, heavy and hard to transport and demanding in reuse. Different fractions (particle sizes) may be used for different purposes. Starting from very fine particles which can be used in concrete production, through regular 16-300 mm fractions used to form new fills and fill the mats, up to very irregular mixtures used to form stone columns by means of Impulse Compaction or in Dynamic Replacement. The presented study juxtaposes authors experience with crushed concrete used in civil engineering, mainly in geotechnical projects. Authors’ experiences comprise the application of crushed concrete in the new concrete production in Russia, changing pulverized bridge into the fill of mesh sacks, or mattresses used as an effective way to protect the shoreline and the New Orleans East land bridge after Katrina storm (forming a new shoreline better able to withstand wave actions), and finally the use of very irregular concrete fractions to form stone columns in week soils on the example of railway and road projects in Poland. Selected case studies are presented and summarized with regard to social, technical and economic issues including energy consumption needed for proposed technologies

  20. Cathodic Protection Field Trials on Prestressed Concrete Components, Final Report

    Science.gov (United States)

    1998-01-01

    This is the final report in a study to demonstrate the feasibility of using cathodic protection (CP) on concrete bridge structures containing prestressed steel. The interim report, FHWA-RD-95-032, has more details on the installation of selected CP s...

  1. Identification of concrete deteriorating minerals by polarizing and scanning electron microscopy

    International Nuclear Information System (INIS)

    Gregerova, Miroslava; Vsiansky, Dalibor

    2009-01-01

    The deterioration of concrete represents one of the most serious problems of civil engineering worldwide. Besides other processes, deterioration of concrete consists of sulfate attack and carbonation. Sulfate attack results in the formation of gypsum, ettringite and thaumasite in hardened concrete. Products of sulfate attack may cause a loss of material strength and a risk of collapse of the concrete constructions. The authors focused especially on the microscopical research of sulfate attack. Concrete samples were taken from the Charles Bridge in Prague, Czech Republic. A succession of degrading mineral formation was suggested. Microscope methods represent a new approach to solving the deterioration problems. They enable evaluation of the state of concrete constructions and in cooperation with hydro-geochemistry, mathematics and statistics permit prediction of the durability of a structure. Considering the number of concrete constructions and their age, research of concrete deterioration has an increasing importance. The results obtained can also be useful for future construction, because they identify the risk factors associated with formation of minerals known to degrade structures.

  2. Evaluating the time-dependent and bond characteristics of lightweight concrete mixes for Kansas prestressed concrete bridges.

    Science.gov (United States)

    2011-07-01

    This report details results from testing that was conducted to determine the bond and time-dependent : characteristics of two lightweight concrete mixes. The lightweight mixes were evaluated to possibly : provide a more cost-effective solution to rep...

  3. Experimental Study on Voided Reinforced Concrete Beams with Polythene Balls

    Science.gov (United States)

    Sivaneshan, P.; Harishankar, S.

    2017-07-01

    The primary component in any structure is concrete, that exist in buildings and bridges. In present situation, a serious problems faced by construction industry is exhaustive use of raw materials. Recent times, various methods are being adopted to limit the use of concrete. In structural elements like beams, polythene balls can be induced to reduce the usage of concrete. A simply supported reinforced concrete beam has two zones, one above neutral axis and other below neutral axis. The region below neutral axis is in tension and above neutral axis is in compression. As concrete is weak in tension, steel reinforcements are provided in tension zone. The concrete below the neutral axis acts as a stress transfer medium between the compression zone and tension zone. The concrete above the neutral axis takes minimum stress so that we could partially replace the concrete above neutral axis by creating air voids using recycled polythene balls. Polythene balls of varying diameters of 75 mm, 65 mm and 35 mm were partially replaced in compression zone. Hence the usage of concrete in beams and self-weight of the beams got reduced considerably. The Load carrying capacity, Deflection of beams and crack patterns were studied and compared with conventional reinforced concrete beams.

  4. Design and construction of the Daini-Chikumagawa bridge; Dai ni Chikumagawa kyoryo no sekkei to seko

    Energy Technology Data Exchange (ETDEWEB)

    Inaba, N.; Takasusuki, K.; Hirasawa, T.; Kanamori, M.

    1996-01-30

    The Daini-Chikumagawa bridge, having spans of 134m {times} 2 which is the largest in Japan as the concrete railroad, is a prestressed concrete (PC) oblique cable-stayed bridge building on the Hokuriku Shinkansen express line which is constructing towards Nagano Olympic (Feb.1998). Regarding adoption of the oblique cable-stayed bridge for the railroad bridge, there are very few examples on a global scale and in Japan besides this bridge there is only one example (Omoto bridge (Iwate pref.), span = 85m). One H type tower (H = 65m from the surface of bridge) is erected at the center of the Chikuma river and then main girders are built at the front and rear of this tower. These main girders, being separated into 5m {times} 24 blocks per one side excepting surroundings of the tower, are fabricated as a three room box type PC block (total width 12.8m; height 3.0m) each on the river beach near the spot. These blocks are jointed from the tower side by the overhanging work using the constructing vehicles and are fixed with oblique materials (cables; two face hanging system) at intervals of 10m. 4 refs., 16 figs., 5 tabs.

  5. Seismic response computations for a long span bridge

    International Nuclear Information System (INIS)

    McCallen, D.B.

    1994-01-01

    The authors are performing large-scale numerical computations to simulate the earthquake response of a major long-span bridge that crosses the San Francisco Bay. The overall objective of the study is to estimate the response of the bridge to potential large-magnitude earthquakes generated on the nearby San Andreas and Hayward earthquake faults. Generation of a realistic model of the bridge system is complicated by the existence of large pile group foundations that extend deep into soft, saturated clay soils, and by the numerous expansion joints that segment the overall bridge structure. In the current study, advanced, nonlinear, finite element technology is being applied to rigorously model the detailed behavior of the bridge system and to shed light on the influence of the foundations and joints of the bridge

  6. Identification and Level 1 Damage Detection of the Z24 Highway Bridge by Frequency Domain Decomposition

    DEFF Research Database (Denmark)

    Brincker, Rune; Andersen, P.; Cantieni, R.

    2001-01-01

    A series of 15 progressive damage tests were performed on a prestressed concrete highway bridge in Switzerland. The ambient response of the bridge was recorded for each damage case with a relatively large number of sensors. Changes in frequencies, damping ratios and MAC values were determined...

  7. Study on the selection of steel or prestressed concrete cable stayed bridge by using diaggregate behavioral model; Hishukei rojitto model wo mochiita koshachokyo to PC shachokyo no kyoshiki sentaku ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Araki, Y.; Furuta, H.; Maeda, E.; Furukawa, K. [Yamaguchi University, Yamaguchi (Japan). Faculty of Engineering

    1994-09-15

    A discussion was given to make clear the selection factors in selecting bridge types (steel cable stayed bridge and prestressed concrete cable stayed bridge). The discussion is intended to consider the future development of both bridges. Quoting a cable stayed bridge with a span length of 250 m that can be selected from either bridge, an evaluation was made by using calculations that uses the disaggregate behavioral model theory based on questionnaire responses from engineers. The analysis uses the following procedure: utility function values of the two term behavioral model (having two choices) are specified and the characteristics variables are selected; the data are prepared according to the specifications, which are used to estimate parameters by a maximum likelihood estimation method; and estimation amount is estimated by using the covariance matrix, which is given a `t` value verification. The conclusions: what gives the large effect to the selection is the engineering capacity and sociality; the result contains vocational consciousness; the economy is measured by the large weight of construction cost for the upper part structures and cost required for large repairs; materials affect largely the reliability, and so does the technological level the constructibility; the comprehensive technical capability, freedom in design and the experience attained by Japan have great effects in terms of technological capability. 10 refs., 10 figs., 11 tabs.

  8. Improved technology for spun-cast concrete poles

    Energy Technology Data Exchange (ETDEWEB)

    Dilger, W H; Ghali, A

    1984-07-01

    Different types of concrete were investigated with the goal of developing concrete suitable for the production of spun-cast concrete poles. A total of 65 different concrete mixes were investigated, with the suitability criteria defined as: compactability, no segregation of the mix components during the spinning operation, no shrinkage cracking, high strength, and durability. High strength normal weight concretes and semi-lightweight concretes, both with and without fly ash and/or silica fume and with different types of admixtures were used to produce spun-cast concrete pole segments. Of the 35 lightweight concretes only 3 were considered successful, as in all other specimens the inner layer of coarse aggregate was not well embedded in the mortar, and many mixes could not be compacted properly because they were too stiff, too wet, or started to set before spinning commenced. The three successful specimens contained fly ash and one contained silica fume, and had low water/cement ratios (0.26 to 0.29). Of the 23 normal weight concretes tested, only 5 were considered suitable, and all these had a sand/coarse aggregate ratio of 0.25 or smaller and a cement content between 350 and 400 kg/m{sup 3}. A theoretical study of the stresses in the end zones of pretensioned poles is presented. 10 refs., 53 figs., 14 tabs.

  9. Thermo-mechanical simulations of early-age concrete cracking with durability predictions

    Science.gov (United States)

    Havlásek, Petr; Šmilauer, Vít; Hájková, Karolina; Baquerizo, Luis

    2017-09-01

    Concrete performance is strongly affected by mix design, thermal boundary conditions, its evolving mechanical properties, and internal/external restraints with consequences to possible cracking with impaired durability. Thermo-mechanical simulations are able to capture those relevant phenomena and boundary conditions for predicting temperature, strains, stresses or cracking in reinforced concrete structures. In this paper, we propose a weakly coupled thermo-mechanical model for early age concrete with an affinity-based hydration model for thermal part, taking into account concrete mix design, cement type and thermal boundary conditions. The mechanical part uses B3/B4 model for concrete creep and shrinkage with isotropic damage model for cracking, able to predict a crack width. All models have been implemented in an open-source OOFEM software package. Validations of thermo-mechanical simulations will be presented on several massive concrete structures, showing excellent temperature predictions. Likewise, strain validation demonstrates good predictions on a restrained reinforced concrete wall and concrete beam. Durability predictions stem from induction time of reinforcement corrosion, caused by carbonation and/or chloride ingress influenced by crack width. Reinforcement corrosion in concrete struts of a bridge will serve for validation.

  10. Strengthening of a railway bridge with NSMR and CFRP tubes

    DEFF Research Database (Denmark)

    Täljsten, Björn; Bennitz, Anders; Danielsson, Georg

    2008-01-01

    Strengthening of structures with CFRP is today considered an accepted method to upgrade concrete structures. In this paper two different CFRP strengthening systems are combined to give extended service life to a Swedish double-trough-double-track railway bridge, constructed in concrete with a 10 ....... Sensors on bars and tubes display proofs of utilization of the CFRP while displacement sensors and strain gauges on the steel reinforcement due to the small loads in the service limit state show minor effect....

  11. Influence of alkali-silica reaction on the physical, mechanical, and structural behaviour of reinforced concrete

    DEFF Research Database (Denmark)

    Barbosa, Ricardo Antonio

    Alkali-silica reaction (ASR) is one of the major concrete deterioration mechanisms in the world. Cracking in concrete structures due to ASR has been observed worldwide. In Denmark numerous concrete structures have been built with a critical amount of ASR-reactive aggregate, mostly as porous opaline...... and porous calcareous opaline flint in the fine aggregate fraction. During the last few decades, an increasing number of bridges in Denmark have been severely damaged due to ASR. In the most severe cases, the ASR-damaged bridges have been demolished and reconstructed due to uncertainty about their residual...... following features in common: (a) significant amount of ASR cracks were observed on and inside the slabs, (b) the ASR cracks were oriented parallel to the plane of the slabs, and (c) ASR occurred in the fine aggregate fraction. In this PhD study, both the compressive strength and tensile strength of drilled...

  12. Investigation of long-term prestress losses in pretensioned high performance concrete girders.

    Science.gov (United States)

    2005-01-01

    Effective determination of long-term prestress losses is important in the design of prestressed concrete bridges. Over-predicting prestress losses results in an overly conservative design for service load stresses, and under-predicting prestress loss...

  13. Investigation on the performance of bridge approach slab

    Directory of Open Access Journals (Sweden)

    Abdelrahman Amr

    2018-01-01

    Full Text Available In Egypt, where highway bridges are to be constructed on soft cohesive soils, the bridge abutments are usually founded on rigid piles, whereas the earth embankments for the bridge approaches are directly founded on the natural soft ground. Consequently, excessive differential settlement frequently occurs between the bridge deck and the bridge approaches resulting in a “bump” at both ends of the bridge deck. Such a bump not only creates a rough and uncomfortable ride but also represents a hazardous condition to traffic. One effective technique to cope with the bump problem is to use a reinforced concrete approach slab to provide a smooth grade transition between the bridge deck and the approach pavement. Investigating the geotechnical and structural performance of approach slabs and revealing the fundamental affecting factors have become mandatory. In this paper, a 2-D finite element model is employed to investigate the performance of approach slabs. Moreover, an extensive parametric study is carried out to appraise the relatively optimum geometries of approach slab, i.e. slab length, thickness, embedded depth and slope, that can yield permissible bumps. Different geo-mechanical conditions of the cohesive foundation soil and the fill material of the bridge embankment are examined.

  14. Numerical Simulation of Early Age Cracking of Reinforced Concrete Bridge Decks with a Full-3D Multiscale and Multi-Chemo-Physical Integrated Analysis

    Directory of Open Access Journals (Sweden)

    Tetsuya Ishida

    2018-03-01

    Full Text Available In November 2011, the Japanese government resolved to build “Revival Roads” in the Tohoku region to accelerate the recovery from the Great East Japan Earthquake of March 2011. Because the Tohoku region experiences such cold and snowy weather in winter, complex degradation from a combination of frost damage, chloride attack from de-icing agents, alkali–silica reaction, cracking and fatigue is anticipated. Thus, to enhance the durability performance of road structures, particularly reinforced concrete (RC bridge decks, multiple countermeasures are proposed: a low water-to-cement ratio in the mix, mineral admixtures such as ground granulated blast furnace slag and/or fly ash to mitigate the risks of chloride attack and alkali–silica reaction, anticorrosion rebar and 6% entrained air for frost damage. It should be noted here that such high durability specifications may conversely increase the risk of early age cracking caused by temperature and shrinkage due to the large amounts of cement and the use of mineral admixtures. Against this background, this paper presents a numerical simulation of early age deformation and cracking of RC bridge decks with full 3D multiscale and multi-chemo-physical integrated analysis. First, a multiscale constitutive model of solidifying cementitious materials is briefly introduced based on systematic knowledge coupling microscopic thermodynamic phenomena and microscopic structural mechanics. With the aim to assess the early age thermal and shrinkage-induced cracks on real bridge deck, the study began with extensive model validations by applying the multiscale and multi-physical integrated analysis system to small specimens and mock-up RC bridge deck specimens. Then, through the application of the current computational system, factors that affect the generation and propagation of early age thermal and shrinkage-induced cracks are identified via experimental validation and full-scale numerical simulation on real

  15. Deformation Characteristics of Ultrahigh-Strength Concrete under Unrestrained and Restrained States

    Directory of Open Access Journals (Sweden)

    Joo-Ha Lee

    2017-01-01

    Full Text Available As structures like skyscrapers and long-span bridges become larger, the demand for higher strength of concrete is increasing. However, research on ultrahigh-strength concrete (UHSC is still in its infancy. In particular, UHSC is known to have a considerably higher level of autogenous shrinkage than normal strength concrete (NSC, and the possibility of cracking at an early age is very high. Therefore, in this study, shrinkage and cracking behavior of high-strength concrete (HSC, very-high-strength concrete (VHSC, and UHSC were evaluated through unrestrained shrinkage test and restrained shrinkage test (ring test. The primary experimental variables are the compressive strength level according to the water-to-binder ratio (W/B, fly ash content, and concrete specimen thickness. The experimental results demonstrated that the drying shrinkage decreased as the W/B ratio and the fly ash replacement ratio increased, and the restraint cracks appeared to be the earliest and most brittle in the UHSC with the smallest W/B. Increased concrete thickness and incorporation of fly ash were observed to inhibit crack initiation effectively.

  16. Encoding of Physics Concepts: Concreteness and Presentation Modality Reflected by Human Brain Dynamics

    OpenAIRE

    Lai, Kevin; She, Hsiao-Ching; Chen, Sheng-Chang; Chou, Wen-Chi; Huang, Li-Yu; Jung, Tzyy-Ping; Gramann, Klaus

    2012-01-01

    Previous research into working memory has focused on activations in different brain areas accompanying either different presentation modalities (verbal vs. non-verbal) or concreteness (abstract vs. concrete) of non-science concepts. Less research has been conducted investigating how scientific concepts are learned and further processed in working memory. To bridge this gap, the present study investigated human brain dynamics associated with encoding of physics concepts, taking both presentati...

  17. The use of acoustic monitoring to manage concrete structures in the nuclear industry

    International Nuclear Information System (INIS)

    Paulson, P.O.; Tozser, O.; Wit, M. de

    2003-01-01

    Concrete and steel are widely used in containment vessels within the nuclear industry. Both are excellent acoustic transmitters. In many structures tensioned wire elements are used within containment structures. However, tensioned wire can be vulnerable to corrosion. To reduce the probability of corrosion sophisticated protection systems are used. To confirm that the design strength is available through time, extensive inspection and maintenance regimes are implemented. These regimes include tests to confirm the condition of the post-tensioning, and pressure tests (leak tests) to verify the performance of vessel. This paper presents an acoustic monitoring technology which uses widely distributed sensors to detect and locate wire failures using the energy released at failure. The technology has been used on a range of structures including post-tensioned concrete bridges, suspension bridges, buildings, pre-cast concrete cylinder pipelines (PCCP) and prestressed concrete containment vessels (PCCV), where it has increased confidence in structures and reduced maintenance costs. Where the level of ambient noise is low then SoundPrint acoustic monitoring can detect concrete cracking. This has been shown in PCCP pipelines, on laboratory test structures and also in nuclear structures. The programme has shown that distributed sensors can locate internal cracking well before there is any external evidence. Several projects have been completed on nuclear vessels. The first has been completed on an Electricite de France (EDF) concrete test pressure vessel at Civaux in France. The second at the Sandia PCCV Test Vessel in Albuquerque, New Mexico, USA, which involved the testing of a steel lined concrete vessel. The third was on a PCCV in Maryland, USA. Acoustic monitoring is also able to monitor the deterioration of post-tensioned concrete structures as a result of seismic activity. Summary details of a case history are presented. (author)

  18. Monitoring of Concrete Structures Using Ofdr Technique

    Science.gov (United States)

    Henault, J. M.; Salin, J.; Moreau, G.; Delepine-Lesoille, S.; Bertand, J.; Taillade, F.; Quiertant, M.; Benzarti, K.

    2011-06-01

    Structural health monitoring is a key factor in life cycle management of infrastructures. Truly distributed fiber optic sensors are able to provide relevant information on large structures, such as bridges, dikes, nuclear power plants or nuclear waste disposal facilities. The sensing chain includes an optoelectronic unit and a sensing cable made of one or more optical fibers. A new instrument based on Optical Frequency Domain Reflectometry (OFDR), enables to perform temperature and strain measurements with a centimeter scale spatial resolution over hundred of meters and with a level of precision equal to 1 μstrain and 0.1 °C. Several sensing cables are designed with different materials targeting to last for decades in a concrete aggressive environment and to ensure an optimal transfer of temperature and strain from the concrete matrix to the optical fiber. Tests were carried out by embedding various sensing cables into plain concrete specimens and representative-scale reinforced concrete structural elements. Measurements were performed with an OFDR instrument; meanwhile, mechanical solicitations were imposed to the concrete element. Preliminary experiments are very promising since measurements performed with distributed sensing system are comparable to values obtained with conventional sensors used in civil engineering and with the Strength of Materials Modelling. Moreover, the distributed sensing system makes it possible to detect and localize cracks appearing in concrete during the mechanical loading.

  19. Quality control chart for crushed granite concrete

    Directory of Open Access Journals (Sweden)

    Ewa E. DESMOND

    2016-07-01

    Full Text Available A chart for assessing in-situ grade (strength of concrete, has been developed in this study. Four grades of concrete after the Nigerian General Specification for Roads and bridges (NGSRB-C20, C25, C30 and C35, is studied at different water-cement ratios for medium and high slump range. The concrete mixes are made from crushed granite rock as coarse aggregate with river sand as fine aggregate. Compression test on specimens are conducted at curing age of 1, 3, 7, 14, 21, 28 and 56 days. Results on concrete workability from slump values, and water-cement ratios revealed that specimens with lower water-cement ratio were less workable but had higher strength, compared to mixes with higher water cement ratio. A simple algorithm using nonlinear regression analysis performed on each experimental data set produced Strength-Age (S-A curves which were used to establish a quality control chart. The accuracy of these curves were evaluated by computing average absolute error (AAS, the error of estimate (EoE and the average absolute error of estimate (Abs EoE for each concrete mix. These were done based on the actual average experimental strengths to measure how close the predicted values are to the experimental data set. The absolute average error of estimate (Abs. EoE recorded was less than ±10% tolerance zone for concrete works.

  20. Life-Cycle Monitoring of Long-Span PSC Box Girder Bridges through Distributed Sensor Network: Strategies, Methods, and Applications

    OpenAIRE

    Chen, Zheheng; Guo, Tong; Yan, Shengyou

    2015-01-01

    Structural health monitoring (SHM) has attracted much attention in recent years, which enables early warnings of structural failure, condition assessments, and rational maintenance/repair strategies. In the context of bridges, many long-span steel bridges in China have been installed with the SHM systems; however, the applications of the SHM in prestressed concrete (PSC) bridges are still rather limited. On the other hand, the PSC box girder bridges are extensively used in highway and railway...

  1. Alkali aggregate reactivity in concrete structures in western Canada

    International Nuclear Information System (INIS)

    Morgan, D.R.; Empey, D.

    1989-01-01

    In several regions of Canada, particularly parts of Ontario, Quebec and the Maritime Provinces, research, testing and evaluation of aged concrete structures in the field has shown that alkali aggregate reactivity can give rise to pronounced concrete deterioration, particularly in hydraulic structures subjected to saturation or alternate wetting and drying such as locks, dams, canals, etc. Concrete deterioration is mainly caused by alkali-silica reactions and alkali-carbonate reactions, but a third type of deterioration involves slow/late expanding alkali-silicate/silica reactivity. The alkalies NaOH and KOH in the concrete pore solutions are mainly responsible for attack on expansive rocks and minerals in concrete. Methods for evaluating alkali-aggregate reaction potential in aggregates, and field and laboratory methods for detecting deterioration are discussed. Examples of alkali-aggregate reactions in structures is western Canada are detailed, including a water reservoir at Canadian Forces Base Chilliwack in British Columbia, the Oldman River diversion and flume, the Lundbreck Falls Bridge, and the St Mary's Reservoir spillway, all in southern Alberta. Mitigative measures include avoidance of use of suspect aggregates, but if this cannot be avoided it is recommended to keep the total alkalies in the concrete as low as possible and minimize opportunities for saturation of concrete by moisture. 16 refs., 19 figs., 1 tab

  2. Fatigue life prediction of fiber reinforced concrete under flexural load

    DEFF Research Database (Denmark)

    Zhang, Jun; Stang, Henrik; Li, Victor

    1999-01-01

    This paper presents a semi-analytical method to predict fatigue behavior in flexure of fiber reinforced concrete (FRC) based on the equilibrium of force in the critical cracked section. The model relies on the cyclic bridging law, the so-called stress-crack width relationship under cyclic tensile...

  3. Increasing the Capacity of Existing Bridges by Using Unbonded Prestressing Technology: A Case Study

    Directory of Open Access Journals (Sweden)

    Antonino Recupero

    2014-01-01

    Full Text Available External posttensioning or unbonded prestressing was found to be a powerful tool for retrofitting and for increasing the life extension of existing structures. Since the 1950s, this technique of reinforcement was applied with success to bridge structures in many countries, and was found to provide an efficient and economic solution for a wide range of bridge types and conditions. Unbonded prestressing is defined as a system in which the post-tensioning tendons or bars are located outside the concrete cross-section and the prestressing forces are transmitted to the girder through the end anchorages, deviators, or saddles. In response to the demand for a faster and more efficient transportation system, there was a steady increase in the weight and volume of traffic throughout the world. Besides increases in legal vehicle loads, the overloading of vehicles is a common problem and it must also be considered when designing or assessing bridges. As a result, many bridges are now required to carry loads significantly greater than their original design loads; and their deck results still deteriorated by cracking of concrete, corrosion of rebars, snapping of tendons, and so forth. In the following, a case study about a railway bridge retrofitted by external posttensioning technique will be illustrated.

  4. Alternative materials for the reinforcement and prestressing of concrete

    National Research Council Canada - National Science Library

    Clarke, John L

    1993-01-01

    ... and bridges subjected to de-icing salts. Many approaches are being tried to inhibit the corrosion mechanism in aggressive environments. Most involve protective systems of some sort, applied either to the reinforcement directly or to the exposed concrete surface. One alternative approach being developed worldwide at an increasing pace is the replacement of...

  5. Ambient Modal Testing of the Vestvej Bridge using Random Decrement

    DEFF Research Database (Denmark)

    Asmussen, J. C.; Brincker, Rune; Rytter, A.

    This paper presents an ambient vibration study of the Vestvej Bridge. The bridge is a typically Danish two-span concrete bridge which crosses a highway. The purpose of the study is to perform a pre-investigation of the dynamic behavior to obtain information for the design of a demonstration project...... concerning application of vibration based inspection of bridges. The data analysis process of ambient vribration testing of bridges has traditionally been based on auto and cross spectral densities estimated using an FFT algorithm. In the pre-analysis state the spectral densities are all averaged to obtain...... measurements might have a low signal to noise ratio. Thus, it might be difficult clearly to identify physical modes from the spectral densities. The Random Decrement (RD) technique is another method to perform the data analysis process in the time domain only. It is basically a very simple and very easily...

  6. Ambient Modal Testing of the Vestvej Bridge using Random Decrement

    DEFF Research Database (Denmark)

    Asmussen, J. C.; Brincker, Rune; Rytter, A.

    1998-01-01

    This paper presents an ambient vibration study of the Vestvej Bridge. The bridge is a typically Danish two-span concrete bridge which crosses a highway. The purpose of the study is to perform a pre-investigation of the dynamic behavior to obtain information for the design of a demonstration project...... concerning application of vibration based inspection of bridges. The data analysis process of ambient vribration testing of bridges has traditionally been based on auto and cross spectral densities estimated using an FFT algorithm. In the pre-analysis state the spectral densities are all averaged to obtain...... measurements might have a low signal to noise ratio. Thus, it might be difficult clearly to identify physical modes from the spectral densities. The Random Decrement (RD) technique is another method to perform the data analysis process in the time domain only. It is basically a very simple and very easily...

  7. Investigation regarding bridge expansion joints deterioration in pakistan and its remedial measures

    International Nuclear Information System (INIS)

    Ajwad, A.

    2014-01-01

    The Concrete bridges are a vital part of highway infrastructure in Pakistan. The main problem that exists is the deterioration of most of them over the past 20 years or so. The main reason for this is the deviation from specified construction procedures and the negligence of the maintenance departments due to several reasons. At the moment National Highway Authority (NHA) owns about 5000 bridges in number across the country and according to a survey, about 30 percent of them are either not up to the mark or are out of service. The fund that NHA reserves every year for the maintenance purposes ranges from PKR 500 to 600 million which is very limited when it comes across the scope of the work. It means that expensive testing and retrofitting techniques that need to be implemented can never be achieved practically. This research is focused on case studies involving deterioration of bridge expansion joints only. All the deficiencies with their root causes and remedial measures are discussed in detail. The research is based upon wide experience of authors and will prove to be a cherished standard and beneficial reference article for working engineers engaged in fresh construction as well as renovation and repairs of concrete highway bridges. (author)

  8. Self-sensing of carbon nanofiber concrete columns subjected to reversed cyclic loading

    Science.gov (United States)

    Howser, R. N.; Dhonde, H. B.; Mo, Y. L.

    2011-08-01

    Civil infrastructures are generally a country's most expensive investment, and concrete is the most widely used material in the construction of civil infrastructures. During a structure's service life, concrete ages and deteriorates, leading to substantial loss of structural integrity and potentially resulting in catastrophic disasters such as highway bridge collapses. A solution for preventing such occurrences is the use of structural health monitoring (SHM) technology for concrete structures containing carbon nanofibers (CNF). CNF concrete has many structural benefits. CNF restricts the growth of nanocracks in addition to yielding higher strength and ductility. Additionally, test results indicate a relationship between electrical resistance and concrete strain, which can be well utilized for SHM. A series of reinforced concrete (RC) columns were built and tested under a reversed cyclic loading using CNF as a SHM device. The SHM device detected and assessed the level of damage in the RC columns, providing a real-time health monitoring system for the structure's overall integrity.

  9. Self-sensing of carbon nanofiber concrete columns subjected to reversed cyclic loading

    International Nuclear Information System (INIS)

    Howser, R N; Dhonde, H B; Mo, Y L

    2011-01-01

    Civil infrastructures are generally a country's most expensive investment, and concrete is the most widely used material in the construction of civil infrastructures. During a structure's service life, concrete ages and deteriorates, leading to substantial loss of structural integrity and potentially resulting in catastrophic disasters such as highway bridge collapses. A solution for preventing such occurrences is the use of structural health monitoring (SHM) technology for concrete structures containing carbon nanofibers (CNF). CNF concrete has many structural benefits. CNF restricts the growth of nanocracks in addition to yielding higher strength and ductility. Additionally, test results indicate a relationship between electrical resistance and concrete strain, which can be well utilized for SHM. A series of reinforced concrete (RC) columns were built and tested under a reversed cyclic loading using CNF as a SHM device. The SHM device detected and assessed the level of damage in the RC columns, providing a real-time health monitoring system for the structure's overall integrity

  10. Life cycle assessment based environmental impact estimation model for pre-stressed concrete beam bridge in the early design phase

    International Nuclear Information System (INIS)

    Kim, Kyong Ju; Yun, Won Gun; Cho, Namho; Ha, Jikwang

    2017-01-01

    The late rise in global concern for environmental issues such as global warming and air pollution is accentuating the need for environmental assessments in the construction industry. Promptly evaluating the environmental loads of the various design alternatives during the early stages of a construction project and adopting the most environmentally sustainable candidate is therefore of large importance. Yet, research on the early evaluation of a construction project's environmental load in order to aid the decision making process is hitherto lacking. In light of this dilemma, this study proposes a model for estimating the environmental load by employing only the most basic information accessible during the early design phases of a project for the pre-stressed concrete (PSC) beam bridge, the most common bridge structure. Firstly, a life cycle assessment (LCA) was conducted on the data from 99 bridges by integrating the bills of quantities (BOQ) with a life cycle inventory (LCI) database. The processed data was then utilized to construct a case based reasoning (CBR) model for estimating the environmental load. The accuracy of the estimation model was then validated using five test cases; the model's mean absolute error rates (MAER) for the total environmental load was calculated as 7.09%. Such test results were shown to be superior compared to those obtained from a multiple-regression based model and a slab area base-unit analysis model. Henceforth application of this model during the early stages of a project is expected to highly complement environmentally friendly designs and construction by facilitating the swift evaluation of the environmental load from multiple standpoints. - Highlights: • This study is to develop the model of assessing the environmental impacts on LCA. • Bills of quantity from completed designs of PSC Beam were linked with the LCI DB. • Previous cases were used to estimate the environmental load of new case by CBR model. • CBR

  11. Life cycle assessment based environmental impact estimation model for pre-stressed concrete beam bridge in the early design phase

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyong Ju, E-mail: kjkim@cau.ac.kr; Yun, Won Gun, E-mail: ogun78@naver.com; Cho, Namho, E-mail: nhc51@cau.ac.kr; Ha, Jikwang, E-mail: wlrhkd29@gmail.com

    2017-05-15

    The late rise in global concern for environmental issues such as global warming and air pollution is accentuating the need for environmental assessments in the construction industry. Promptly evaluating the environmental loads of the various design alternatives during the early stages of a construction project and adopting the most environmentally sustainable candidate is therefore of large importance. Yet, research on the early evaluation of a construction project's environmental load in order to aid the decision making process is hitherto lacking. In light of this dilemma, this study proposes a model for estimating the environmental load by employing only the most basic information accessible during the early design phases of a project for the pre-stressed concrete (PSC) beam bridge, the most common bridge structure. Firstly, a life cycle assessment (LCA) was conducted on the data from 99 bridges by integrating the bills of quantities (BOQ) with a life cycle inventory (LCI) database. The processed data was then utilized to construct a case based reasoning (CBR) model for estimating the environmental load. The accuracy of the estimation model was then validated using five test cases; the model's mean absolute error rates (MAER) for the total environmental load was calculated as 7.09%. Such test results were shown to be superior compared to those obtained from a multiple-regression based model and a slab area base-unit analysis model. Henceforth application of this model during the early stages of a project is expected to highly complement environmentally friendly designs and construction by facilitating the swift evaluation of the environmental load from multiple standpoints. - Highlights: • This study is to develop the model of assessing the environmental impacts on LCA. • Bills of quantity from completed designs of PSC Beam were linked with the LCI DB. • Previous cases were used to estimate the environmental load of new case by CBR model. • CBR

  12. Durability Evolution of RC Bridge under Coupling Action of Chloride Corrosion and Carbonization Based on DLA Model

    Directory of Open Access Journals (Sweden)

    Haoxiang He

    2015-01-01

    Full Text Available Chloride attack and carbonization are the main factors which affect the durability of concrete structures, and the respective theoretical models are systematically established. However, the quantitative analysis and models about the coupling effect of chloride attack and carbonization are less, so the precision and level of durability analysis of reinforced concrete are restricted. Diffusion-limited aggregation (DLA model can finely simulate the process of gas diffusion and condensation with randomness and fractal characteristics, which is suitable for revealing the durability evolution process of the chloride attack, carbonization, and the coupling action in concrete. Based on the principle of DLA, considering the factors such as diffusion depth, concrete properties, and exposure conditions which influence the characteristics of chloride diffusion and carbonization, as well as the coupling effect, an integrated DLA model is established. The concentration of carbon dioxide and chloride at any time and any location can be obtained and dynamically displayed based on the DLA model. The performance predict method for concrete and steel bars considering fatigue effect is presented based on DLA, according to the demand for bridge durability analysis. Numerical examples show that the method can dynamically and intensively simulate the durability evolution process of reinforced concrete bridge.

  13. Bridge Collapse Revealed By Multi-Temporal SAR Interferometry

    Science.gov (United States)

    Sousa, Joaquim; Bastos, Luisa

    2013-12-01

    On the night of March 4, 2001, the Hintze Ribeiro centennial Bridge, made of steel and concrete, collapsed in Entre-os-Rios (Northern Portugal), killing 59 people, including those in a bus and three cars that were attempting to reach the other side of the Douro River. It still remains the most serious road accident in the Portuguese history. In this work we do not intend to corroborate or contradict the official version of the accident causes, but only demonstrate the potential of Multi-Temporal Interferometric (MTI-InSAR) techniques for detection and monitoring of deformations in structures such as bridges, helping to prevent new catastrophic events. Based on the analysis of 57 ERS-1/2 covering the period from December 1992 to the fatality occurrence, we were able to detect significant movements (up to 20 mm/yr) in the section of the bridge that fell in the Douro River, obvious signs of the bridge instability.

  14. Modified Hydrotalcites as Smart Additives for Improved Corrosion Protection of Reinforced Concrete

    NARCIS (Netherlands)

    Yang, Z.

    2015-01-01

    Corrosion of reinforcing steel is a major culprit to durability and serviceability of concrete structures. This problem is highly relevant for civil engineering structures in the transport sector, such as bridges, tunnels, harbour quays and parking structures. The dominant aggressive external

  15. Investigation and development of an effective, economical and efficient concrete pile splice.

    Science.gov (United States)

    2015-06-01

    Structures such as bridges or tall buildings often require deep foundations in order to reach soil or rock strata capable of resisting the associated high loads. In Florida, concrete elements such as driven piles, drilled shafts or other cast-in-plac...

  16. Application of grey system theory to construction control for prestressed concrete continuous bridge

    NARCIS (Netherlands)

    Yu, Q.; Lu, Zhean; Wang, Juanjuan

    2006-01-01

    Text in Chinese. - This paper discussed the application of the grey system theory for the construction control of bridges on the background of the construction of Fuhe Bridge in Huangpi county, Hubei province. The GM( 1,1) model was the most representative and widely applied grey prognosticate model

  17. Precast concrete elements for accelerated bridge construction : laboratory testing of precast substructure components, Boone County bridge.

    Science.gov (United States)

    2009-01-01

    Vol. 1-1: In July 2006, construction began on an accelerated bridge project in Boone County, Iowa that was composed of precast substructure : elements and an innovative, precast deck panel system. The superstructure system consisted of full-depth dec...

  18. Bridge deck cracking : effects on in-service performance, prevention, and remediation.

    Science.gov (United States)

    2015-08-01

    The main objectives of this project were: (a) to identify the causes of early-age cracking in concrete bridge decks, (b) to provide : recommendations for effective mitigation of early-age cracking, (c) to assess the effect of cracks on the long-term ...

  19. Precast, Prestressed Concrete Bent Caps : Volume 1, Preliminary Design Considerations and Experimental Test Program

    Science.gov (United States)

    2018-04-01

    Precast prestressed concrete bent caps may provide significant benefits by enabling accelerated construction of bridge substructures and improve longevity by reducing the propensity for cracking. The Texas Department of Transportation enables the use...

  20. Stress Regression Analysis of Asphalt Concrete Deck Pavement Based on Orthogonal Experimental Design and Interlayer Contact

    Science.gov (United States)

    Wang, Xuntao; Feng, Jianhu; Wang, Hu; Hong, Shidi; Zheng, Supei

    2018-03-01

    A three-dimensional finite element box girder bridge and its asphalt concrete deck pavement were established by ANSYS software, and the interlayer bonding condition of asphalt concrete deck pavement was assumed to be contact bonding condition. Orthogonal experimental design is used to arrange the testing plans of material parameters, and an evaluation of the effect of different material parameters in the mechanical response of asphalt concrete surface layer was conducted by multiple linear regression model and using the results from the finite element analysis. Results indicated that stress regression equations can well predict the stress of the asphalt concrete surface layer, and elastic modulus of waterproof layer has a significant influence on stress values of asphalt concrete surface layer.

  1. Sensing sheet: the response of full-bridge strain sensors to thermal variations for detecting and characterizing cracks

    Science.gov (United States)

    Tung, S.-T.; Glisic, B.

    2016-12-01

    Sensing sheets based on large-area electronics consist of a dense array of unit strain sensors. This new technology has potential for becoming an effective and affordable monitoring tool that can identify, localize and quantify surface damage in structures. This research contributes to their development by investigating the response of full-bridge unit strain sensors to thermal variations. Overall, this investigation quantifies the effects of temperature on thin-film full-bridge strain sensors monitoring uncracked and cracked concrete. Additionally, an empirical formula is developed to estimate crack width given an observed strain change and a measured temperature change. This research led to the understanding of the behavior of full-bridge strain sensors installed on cracked concrete and exposed to temperature variations. It proves the concept of the sensing sheet and its suitability for application in environments with variable temperature.

  2. Computation of shrinkage stresses in prestressed concrete containments

    International Nuclear Information System (INIS)

    Wu, R.F.; Ouyang, H.

    1989-01-01

    According to a survey, surface cracking on PCRVs and PCCs under the investigations is confined to drying shrinkage and thermal strain effects and no instances of structurally significant cracking was been found. In this paper, the authors use FEM to compute humidity distribution in drying concrete and shrinkage stresses by internal restraint. Since PCC is built segment by segment in several years, a computational model taking into account construction sequence is presented and shrinkage stresses by external restraints are calculated with the model

  3. Evaluation of the reinforcing steel corrosion in concrete mixes that will be used for constructing mid activity disposal repositories

    International Nuclear Information System (INIS)

    Moreno, Manuel; Alvarez, Marta G.; Duffo, Gustavo S.

    2000-01-01

    This study presents an evaluation of the reinforcing steel bars (rebars) corrosion behavior embedded in high performance concrete's prepared with three different cement types (normal Portland, Sulfate resistant and with furnace slag). The results of the study will provide the basis to select the materials used for constructing the mid activity radioactive disposals containers. The effect of aggressive ions such as chlorides and sulfates, as well as concrete carbonation, on the rebar corrosion process is evaluated using concrete specimens containing rebar segments. The electrochemical parameters that characterize the rebar corrosion process (corrosion potential (E corr ), polarization resistance (Rp) and electrical resistivity of concrete (ρ)) where periodically monitored after a conditioning period of 100 days. The results show that under all exposure conditions evaluated the rebar segments in contact with the three concrete mixes achieve a passive state of corrosion. Due to the continuos curing process of concrete the values of ρ present an increasing trend within time, even in the specimens exposed to the immersed conditions. (author)

  4. Structural condition assessment and service load performance of deteriorated prestressed concrete deck beam bridges

    Science.gov (United States)

    Fuentes, Juan Bolivar

    Precast pretensioned deck beam bridges are a generic bridge type widely used by IDOT for new construction through the end of the 1970's and still widely used on county roads throughout Illinois. While these bridges were economical to build, IDOT discontinued their use because reflective cracks developed along the length of the longitudinal joints between beams. Three 30 years old deteriorated beams were removed from an existing bridge over Spoon River in Fulton County, IL and delivered to Newmark Civil Engineering Laboratory. The program consisted of a series of comprehensive, destructive and non-destructive, tests and evaluations of the three beams with emphasis on three major areas; (1) The Condition Assessment of the as-delivered beams. (2) The service load performance of the bridge sub-assemblage constructed from those beams. After a comprehensive inspection of the beams was completed, the beams were integrated together into a bridge subassembly that simulated a bridge lane. (3) Following the service load tests, the three beams were separated and tested individually to failure. The critical signs to be observed in existing structures that will lead the inspectors to conclude that a deck beam is being overloaded were are also studied. Several conclusions were found. Cracking of the longitudinal joint has little effect on the stiffness of the bridge if the transverse rod is snug. The presence of a snug transverse tie rod increases the strength of the longitudinal joint. After a longitudinal joint has fractured, reincorporating a snug transverse rod can significantly reestablish the stiffness of the longitudinal joint and reduce overloading of a deteriorated beam. Participation factors must be based on relative bending moments of one beam with respect to the total amount of bending moment produced by the applied load and not to the amount of total vertical displacement. The participation factors will vary along the span of the bridge deck and will depend on the

  5. The optimization of concrete mixtures for use in highway applications

    Science.gov (United States)

    Moini, Mohamadreza

    Portland cement concrete is most used commodity in the world after water. Major part of civil and transportation infrastructure including bridges, roadway pavements, dams, and buildings is made of concrete. In addition to this, concrete durability is often of major concerns. In 2013 American Society of Civil Engineers (ASCE) estimated that an annual investment of 170 billion on roads and 20.5 billion for bridges is needed on an annual basis to substantially improve the condition of infrastructure. Same article reports that one-third of America's major roads are in poor or mediocre condition [1]. However, portland cement production is recognized with approximately one cubic meter of carbon dioxide emission. Indeed, the proper and systematic design of concrete mixtures for highway applications is essential as concrete pavements represent up to 60% of interstate highway systems with heavier traffic loads. Combined principles of material science and engineering can provide adequate methods and tools to facilitate the concrete design and improve the existing specifications. In the same manner, the durability must be addressed in the design and enhancement of long-term performance. Concrete used for highway pavement applications has low cement content and can be placed at low slump. However, further reduction of cement content (e.g., versus current specifications of Wisconsin Department of Transportation to 315-338 kg/m 3 (530-570 lb/yd3) for mainstream concrete pavements and 335 kg/m3 (565 lb/yd3) for bridge substructure and superstructures) requires delicate design of the mixture to maintain the expected workability, overall performance, and long-term durability in the field. The design includes, but not limited to optimization of aggregates, supplementary cementitious materials (SCMs), chemical and air-entraining admixtures. This research investigated various theoretical and experimental methods of aggregate optimization applicable for the reduction of cement content

  6. Response and Damage Assessment of Reinforced Concrete Frames subject to Earthquakes

    DEFF Research Database (Denmark)

    Skjærbæk, Poul

    When civil engineering structures made of reinforced concrete (RC) such as some types of apartment buildings, hospitals, office buildings, bridges etc. are subjected to sufficiently high dynamic loads it is well known that some kind of damage will occur in the structure. The damage introduced in ...

  7. Study on the structural characteristics of extradosed concrete bridges; Ekusutoradozudo kyo no kozo tokusei ni kansuru ichikosatsu

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Y. [Japan Highway Public Corp., Tokyo (Japan); Kasuga, A. [Sumitomo Construction Co. Ltd., Tokyo (Japan); Yamazaki, J. [Nihon Univ., Tokyo (Japan). Coll. of Science and Engineering

    1997-03-31

    Parameters are analyzed to provide data for deciding, in the planning and designing stages, whether a cable stayed bridge or an extradosed bridge should be adopted. Comparative investigation of the vibration properties of both types of bridges is also referred to. The result of the study on the structural properties of the cable stayed road bridge and the extradosed road bridge is introduced. Based on the concept of the extradosed bridge, designers are now able to select without restraint the after load sharing rate of the diagonal members. Parameter analysis of a diagonal member reinforced 3-span continuous beam is performed. By introducing indices showing the load sharing rate of the diagonal member, the cable stayed bridge can be distinguished logically from the extradosed bridge in designing. It is found important that the height of the main tower is set to approximately 10% the length of the center span for the construction of the extradosed bridge. The vibration properties of the cable stayed bridge and the extradosed bridge of the same scale are compared. 7 refs., 18 figs., 6 tabs.

  8. Study of displacements of a bridge abutment using FEM

    Science.gov (United States)

    Wymysłowski, Michał; Kurałowicz, Zygmunt

    2016-06-01

    Steel sheet piles are often used to support excavations for bridge foundations. When they are left in place in the permanent works, they have the potential to increase foundation bearing capacity and reduce displacements; but their presence is not usually taken into account in foundation design. In this article, the results of finite element analysis of a typical abutment foundation, with and without cover of sheet piles, are presented to demonstrate these effects. The structure described is located over the Więceminka river in the town of Kołobrzeg, Poland. It is a single-span road bridge with reinforced concrete slab.

  9. Quantifying reinforced concrete bridge deck deterioration using ground penetrating radar

    Science.gov (United States)

    Martino, Nicole Marie

    Bridge decks are deteriorating at an alarming rate due to corrosion of the reinforcing steel, requiring billions of dollars to repair and replace them. Furthermore, the techniques used to assess the decks don't provide enough quantitative information. In recent years, ground penetrating radar (GPR) has been used to quantify deterioration by comparing the rebar reflection amplitudes to technologies serving as ground truth, because there is not an available amplitude threshold to distinguish healthy from corroded areas using only GPR. The goal of this research is to understand the relationship between GPR and deck deterioration, and develop a model to determine deterioration quantities with GPR alone. The beginning of this research determines that not only is the relationship between GPR and rebar corrosion stronger than the relationship between GPR and delaminations, but that the two are exceptionally correlated (90.2% and 86.6%). Next, multiple bridge decks were assessed with GPR and half-cell potential (HCP). Statistical parameters like the mean and skewness were computed for the GPR amplitudes of each deck, and coupled with actual corrosion quantities based on the HCP measurements to form a future bridge deck model that can be used to assess any deck with GPR alone. Finally, in order to understand exactly which component of rebar corrosion (rust, cracking or chloride) attenuates the GPR data, computational modeling was carried out to isolate each variable. The results indicate that chloride is the major contributor to the rebar reflection attenuation, and that computational modeling can be used to accurately simulate GPR attenuation due to chloride.

  10. Evaluation of microbially-influenced degradation of massive concrete structures

    International Nuclear Information System (INIS)

    Hamilton, M.A.; Rogers, R.D.; Zolynski, M.; Veeh, R.

    1996-01-01

    Many low level waste disposal vaults, both above and below ground, are constructed of concrete. One potential contributing agent to the destruction of concrete structures is microbially-influenced degradation (MID). Three groups of bacteria are known to create conditions that are conducive to destroying concrete integrity. They are sulfur oxidizing bacteria, nitrifying bacteria, and heterotrophic bacteria. Research is being conducted at the Idaho National Engineering Laboratory to assess the extent of naturally occurring microbially influenced degradation (MID) and its contribution to the deterioration of massive concrete structures. The preliminary steps to understanding the extent of MID, require assessing the microbial communities present on degrading concrete surfaces. Ultimately such information can be used to develop guidelines for preventive or corrective treatments for MID and aid in formulation of new materials to resist corrosion. An environmental study was conducted to determine the presence and activity of potential MID bacteria on degrading concrete surfaces of massive concrete structures. Scanning electron microscopy detected bacteria on the surfaces of concrete structures such as bridges and dams, where corrosion was evident. Enumeration of sulfur oxidizing thiobacilli and nitrogen oxidizing Nitrosomonas sp. and Nitrobacter sp. from surface samples was conducted. Bacterial community composition varied between sampling locations, and generally the presence of either sulfur oxidizers or nitrifiers dominated, although instances of both types of bacteria occurring together were encountered. No clear correlation between bacterial numbers and degree of degradation was exhibited

  11. Modeling Main Body of Overcrossing Bridge Based on Vehicle-Borne Laser Scanning Data

    Science.gov (United States)

    Chen, X.; Chen, M.; Wei, Z.; Zhong, R.

    2017-09-01

    Vehicle-borne laser scanning (VBLS) is widely used to collect urban data for various mapping and modelling systems. This paper proposes a strategy of feature extraction and 3d model reconstruction for main body of overcrossing bridges based on VBLS point clouds. As the bridges usually have a large span, and the clouds data is often affected by obstacles, we have to use round-trip cloud data to avoid missing part. To begin with, pick out the cloud of the bridge body by an interactive clip-box, and group points by scan-line, then sort the points by scanning angle on each scan line. Since the position under the vehicle have a fixed scan-angle, a virtual path can be obtained. Secondly, extract horizontal line segments perpendicular to the virtual path along adjacent scan-lines, and then cluster line segments into long line-strings, which represent the top and bottom edge. Finally, regularize the line-strings and build 3d surface model of the bridge body. Experimental studies have demonstrated its efficiency and accuracy in case of building bridge model. Modelling the stairs at the both end of the bridge will be the direction of the next step.

  12. Myocardial bridging as evaluated by 16 row MDCT

    International Nuclear Information System (INIS)

    Canyigit, Murat; Hazirolan, Tuncay; Karcaaltincaba, Musturay; Dagoglu, Merve Gulbiz; Akata, Deniz; Aytemir, Kudret; Oto, Ali; Balkanci, Ferhun; Akpinar, Erhan; Besim, Aytekin

    2009-01-01

    Purpose: The purpose of this study is to find out the prevalence, appearance and clinical symptoms of myocardial bridging (MB) by MDCT coronary angiography (CTA). Materials and methods: A total of 280 (50 females) consecutive patients followed with coronary artery disease or postoperative stent and bypass control, underwent CTA performed by 16-MDCT scanner between January 2006 and April 2006. Short axis multiplanar reformatted images were evaluated. MBs were classified as complete and incomplete bridges with respect to continuity of the myocardium over the tunneled segment of left anterior descending artery (LAD) in interventricular groove and the cut-off value is 1.3 mm. Patients diagnosed with MB on CTA who had prior catheter angiography studies were re-evaluated for the presence of MB. Results: One hundred and twenty MBs [98 (81.6%) on LAD, 2 (1.6%) on diagonal branch, 11 (9.1%) on obtuse marginal, 4 (3.3%) on right coronary artery, 5 (4.1%) on ramus intermedius artery] were detected in 108 (38.5%) patients. Eighty-five (70.8%) of bridged segments in 79 (28.2%) patients were complete and the rest [35 (29.2%) in 34 (12.1%) patients] were incomplete. In 12 patients two MBs (either on different arteries or on the same artery) were detected. The length of bridged segments in patients with complete and incomplete MBs varied between 4-50.9 mm (mean 18 mm) and 4-37.3 mm (mean 13.6 mm), respectively, and the depth of myocardium over the artery ranged between 1-6.4 mm (mean 2.3 mm) and 1-1.2 mm (mean 1 mm), respectively. Thirty (27.7%) out of 108 patients, in whom MB was detected on CTA, were found to have correlative catheter angiography studies, retrospectively and MB was detected only in 4 (13.3%) out of 30 patients. Conclusion: MDCT coronary angiography is a non-invasive, efficient method in the diagnosis of MB avoiding the procedural risks that catheter angiography carries. MDCT coronary angiography allows direct visualization of the bridge itself and may thus give

  13. Evaluating and optimizing recycled concrete fines in PCC mixtures containing supplementary cementitious materials.

    Science.gov (United States)

    2010-08-01

    Portland cement concrete (PCC) is used throughout transportation infrastructure, for roads as well as bridges : and other structures. One of the most effective ways of making PCC more green is to replace a portion of the : portland cement (the ...

  14. Analysis of structural diseases in widened structure due to the shrinkage and creep difference of new bridge

    Science.gov (United States)

    Wu, Wenqing; Zhang, Hui

    2018-03-01

    In order to investigate the possible structural diseases brought to the top flange of existing prestressed concrete box girder bridge due to the shrinkage and creep difference between new and old bridge, the stress state of the existing box girder before and after widening and the mechanisms of potential structural diseases were analyzed using finite element method in this paper. Results showed that the inner flange of the old box girder were generally in the state of large tensile stress, the main reason for which was the shrinkage and creep effect difference of the new and old bridge. And the tensile stress was larger than tensile strength of C50 concrete, which would most likely cause crack in the deck plate of box girder. Hence, reinforcement measures are needed to be designed carefully. Meanwhile, the transverse deformation of widened structure had exceeded the distance between the anti-seismic block and the web of box girder at the end cross section, which would squeeze anti-seismic block severely. Therefore, it is necessary to limit the length of continuous bridge in need of widening.

  15. Influence of Glass Fiber on Fresh and Hardened Properties of Self Compacting Concrete

    Science.gov (United States)

    Bharathi Murugan, R.; Haridharan, M. K.; Natarajan, C.; Jayasankar, R.

    2017-07-01

    The practical need of self-compacting concrete (SCC) is increasing due to increase in the infrastructure competence all over the world. The effective way of increasing the strength of concrete and enhance the behaviour under extreme loading (fire) is the keen interest. Glass fibers were added for five different of volume fractions (0%, 0.1%, 0.3%, 0.5% and 0.6%) to determine the optimum percentage of glass fiber without compensating the fresh properties and enhanced hardened properties of SCC concrete. The fresh state of concrete is characterized by slump flow, T-50cm slump flow, and V-funnel and L- box tests. The results obtained in fresh state are compared with the acceptance criteria of EFNARC specification. Concrete specimens were casted to evaluate the hardened properties such as compressive strength, split tensile strength, flexural strength and modulus of elasticity. Incorporation the glass fiber into SCC reduces the workability but within the standard specification. The hardened properties of SCC glass fiber reinforced concrete were enhanced, due to bridging the pre-existing micro cracks in concrete by glass fiber addition.

  16. Early age damage quantification of actively restrained concrete using inverse analysis

    Science.gov (United States)

    Albanna, Ali

    Early-age cracking can be a significant problem in concrete pavements, floors, and bridge decks. Cracking occurs when the volumetric changes associated with drying, hydration, and temperature reduction are prevented. Good knowledge about the characteristics of early age concrete is necessary to achieve reliable crack control. Volumetric changes due to shrinkage depend on the type of concrete and its components. It has been found that light weight aggregates can work as internal reservoir to supply the concrete matrix with water that is needed during the early age; this process is called internal curing. Also fibers can give more ductility to the concrete and produce less shrinkage. There is a need to better understand the effects of early age uniaxial restraint on long term concrete mechanical performance. In this study, two types of concrete were studied (high performance fiber reinforced concrete and ordinary concrete) under actively restrained loading conditions to assess the effect on the long term fracture toughness and energy. Single edge notched specimens having dimensions of 250 mm x 150 mm x 75 mm and a notch to depth ratio of 0.33 were caste and used in both direct tension and three point bending. The direct tension tests were carried out on a direct tension loading frame constructed in house that was supplied with two mechanical jacks and load cell.

  17. Nonlinear seismic analysis of continuous RC bridge

    Directory of Open Access Journals (Sweden)

    Čokić Miloš M.

    2017-01-01

    Full Text Available Nonlinear static analysis, known as a pushover method (NSPA is oftenly used to study the behaviour of a bridge structure under the seismic action. It is shown that the Equivalent Linearization Method - ELM, recommended in FEMA 440, is appropriate for the response analysis of the bridge columns, with different geometric characteristics, quantity and distribution of steel reinforcement. The subject of analysis is a bridge structure with a carriageway plate - a continuous beam with three spans, with the 24 + 40 + 24 m range. Main girder is made of prestressed concrete and it has a box cross section of a constant height. It is important to study the behaviour, not only in the transverse, but also in the longitudinal direction of the bridge axis, when analysing the bridge columns exposed to horizontal seismic actions. The columns were designed according to EN1992, parts 1 and 2. Seismic action analysis is conducted according to EN 1998: 2004 standard. Response spectrum type 1, for the ground type B, was applied and the analysis also includes 20% of traffic load. The analysis includes the values of columns displacement and ductility. To describe the behaviour of elements under the earthquake action in both - longitudinal and transverse direction, pushover curves were formed.

  18. Cassette pontoon bridge of high mobility

    Directory of Open Access Journals (Sweden)

    Krzysztof KOSIUCZENKO

    2011-01-01

    Full Text Available Looking through the known and used buoyant systems, it can be remarked that the single buoyant segments are the stiff objects made of steel or plastic with variable dimensions and a complex construction. The ready to use buoyant segments, that assure the proper displacement, must have the factory leak-tightness. They take up a big transportation volume and need the assurance of the suitably abundant means of transport. Usually the heavy wheeled vehicles are needed because of high own mass of buoyant segment and large gauges. The exploitation of such constructions is very expensive. A cassette pontoon bridge, presented in this paper, is the proposition of the increase of the mobility of construction. The decrease of the single buoyant segment dimensions with the assurance of the capacity leads that more segments fit into in the same dimensions of the loading compartment of the vehicle and storage accommodation. The application of standardized joints assures the assembly efficiency with not numerous crew.

  19. Assessment of the environmental effects associated with wooden bridges preserved with creosote, pentachlorophenol, or chromated copper arsenate

    Science.gov (United States)

    Kenneth M. Brooks

    Timber bridges provide an economical alternative to concrete and steel structures, particularly in rural areas with light to moderate vehicle traffic. Wooden components of these bridges are treated with chromated copper arsenate type C (CCA), pentachlorophenol, or creosote to prolong the life of the structure from a few years to many decades. This results in reduced...

  20. An Experimental Study of High Strength-High Volume Fly Ash Concrete for Sustainable Construction Industry

    Science.gov (United States)

    Kate, Gunavant K.; Thakare, Sunil B., Dr.

    2017-08-01

    Concrete is the most widely used building material in the construction of infrastructures such as buildings, bridges, highways, dams, and many other facilities. This paper reports the development, the basic idea, the main properties of high strength-high volume fly ash with application in concrete associated with the development and implementation of Sustainable Properties of High Volume Fly Ash Concrete (HVFAC) Mixtures and Early Age Shrinkage and mechanical properties of concrete for 7,28,56 and 90days. Another alternative to make environment-friendly concrete is the development of high strength-high-volume fly ash concrete which is an synthesized from materials of geological origin or by-product materials such as fly ash which is rich in silicon and aluminum. In this paper 6 concrete mixtures were produced to evaluate the effect of key parameters on the mechanical properties of concrete and its behavior. The study key parameters are; binder material content, cement replacement ratios, and the steel fibers used to High Volume Fly Ash mixtures for increasing performance of concrete.

  1. Inelastic analysis of prestressed concrete secondary containments

    International Nuclear Information System (INIS)

    Murray, D.W.; Chitnuyanondh, L.; Wong, C.; Rijub-Agha, K.Y.

    1978-07-01

    An elastic-plastic constitutive model for the simulation of stress-strain response of concrete under any biaxial combination of compressive and/or tensile stresses is developed. An effective tensile stress-strain curve is obtained indirectly from experimental results of a test on a large scale prestressed concrete wall segment. These concrete properties are then utilized in predicting the response of a second test and the results compared with the experiment. Modificications to the BOSOR5 program, in order to incorporate the new constitutive relation into it, are described. Techniques of modelling structures in order to perform inelastic analysis of thin shell axisymmetric prestressed concrete secondary containments are investigated. The results of inelastic BOSOR5 analyses of two different models of the University of Alberta Test Structure are presented. The predicted deterioration of the structure and the limit states associated with its behaviour are determined and discussed. It is concluded that the technique is a practical one which can be used for the inelastic analysis of Gentilly-type containment structures. (author)

  2. Experimental Investigation of Aerodynamic Instability of Iced Bridge Cable Sections

    DEFF Research Database (Denmark)

    Koss, Holger; Lund, Mia Schou Møller

    2013-01-01

    The accretion of ice on structural bridge cables changes the aerodynamic conditions of the surface and influences hence the acting wind load process. Full-scale monitoring indicates that light precipitation at moderate low temperatures between zero and -5°C may lead to large amplitude vibrations...... of bridge cables under wind action. This paper describes the experimental simulation of ice accretion on a real bridge cable sheet HDPE tube segment (diameter 160mm) and its effect on the aerodynamic load. Furthermore, aerodynamic instability will be estimated with quasi-steady theory using the determined...

  3. Characterization of basin concrete in support of structural integrity demonstration for extended storage

    International Nuclear Information System (INIS)

    Duncan, A.

    2014-01-01

    Concrete core samples from C basin were characterized through material testing and analysis to verify the design inputs for structural analysis of the L Basin and to evaluate the type and extent of changes in the material condition of the concrete under extended service for fuel storage. To avoid the impact on operations, core samples were not collected from L area, but rather, several concrete core samples were taken from the C Basin prior to its closure. C basin was selected due to its similar environmental exposure and service history compared to L Basin. The microstructure and chemical composition of the concrete exposed to the water was profiled from the water surface into the wall to evaluate the impact and extent of exposure. No significant leaching of concrete components was observed. Ingress of carbonation or deleterious species was determined to be insignificant. No evidence of alkali-silica reactions (ASR) was observed. Ettringite was observed to form throughout the structure (in air voids or pores); however, the sulfur content was measured to be consistent with the initial concrete that was used to construct the facility. Similar ettringite trends were observed in the interior segments of the core samples. The compressive strength of the concrete at the mid-wall of the basin was measured, and similar microstructural analysis was conducted on these materials post compression testing. The microstructure was determined to be similar to near-surface segments of the core samples. The average strength was 4148 psi, which is well-above the design strength of 2500 psi. The analyses showed that phase alterations and minor cracking in a microstructure did not affect the design specification for the concrete

  4. Advanced materials for control of post-earthquake damage in bridges

    International Nuclear Information System (INIS)

    Shrestha, Kshitij C; Saiidi, M Saiid; Cruz, Carlos A

    2015-01-01

    This paper presents analytical modeling to study the seismic response of bridge systems with conventional and advanced details. For validation, a 33 m quarter-scale model of a four-span bridge incorporating innovative materials and details seismically tested on the shake tables at the University of Nevada, Reno was taken. The bridge specimen involved use of advanced materials and details to reduce damage at plastic hinges and minimize residual displacements. A three-dimensional, nonlinear model incorporating the response of the innovative materials was developed to study the bridge response using the finite-element software OpenSees. Existing finite-element formulations were used to capture the response of the advanced materials used in the bridge. The analytical model was found to be able to reproduce comparable bent displacements and bent shear forces within reasonable accuracy. The validated model was further used to study different types of bridges under suite of scaled bi-directional near-fault ground motions. Comparisons were made on behavior of five different bridge types, first conventional reinforced concrete bridge, second post-tensioned column bridge, third bridge with elastomeric rubber elements at the plastic hinge zone, fourth bridge with nickel–titanium superelastic shape memory alloy (SMA) reinforcing bar and fifth bridge with CuAlMn superelastic SMA reinforcing bar. Both the SMA used bridges also utilized engineered cementitious composite element at the plastic hinge zone. The results showed effectiveness of the innovative interventions on the bridges in providing excellent recentering capabilities with minimal damage to the columns. (paper)

  5. Assessment of vehicular live load and load factors for design of short-span bridges according to the new Egyptian Code

    Directory of Open Access Journals (Sweden)

    Hatem M. Seliem

    2015-04-01

    The study shows that concrete box-girders designed according to ECP-201:2012 and ECP-201:2003 using the ultimate limit state method yield almost the same demand. Despite the increase in the VLL of ECP-201:2012, and consequently the live load forces, concrete I-shaped girder bridges will be subjected to less total factored internal forces in comparison to ECP-201:2003 This is attributed to the interaction between the live to dead loads ratio and the load combinations. Design of composite steel plate girder bridges according to ECP-201:2012 using the allowable stress design method yields over designed sections.

  6. Structural analysis and evaluation of actual PC bridge using 950 keV/3.95 MeV X-band linacs

    Science.gov (United States)

    Takeuchi, H.; Yano, R.; Ozawa, I.; Mitsuya, Y.; Dobashi, K.; Uesaka, M.; Kusano, J.; Oshima, Y.; Ishida, M.

    2017-07-01

    In Japan, bridges constructed during the strong economic growth era are facing an aging problem and advanced maintenance methods have become strongly required recently. To meet this demand, we develop the on-site inspection system using 950 keV/3.95 MeV X-band (9.3 GHz) linac X-ray sources. These systems can visualize in seconds the inner states of bridges, including cracks of concrete, location and state of tendons (wires) and other imperfections. At the on-site inspections, 950 keV linac exhibited sufficient performance. But, for thicker concrete, it is difficult to visualize the internal state by 950 keV linac. Therefore, we proceeded the installation of 3.95 MeV linac for on-site bridge inspection. In addition, for accurate evaluation, verification on the parallel motion CT technique and FEM analysis are in progress.

  7. Study of displacements of a bridge abutment using FEM

    Directory of Open Access Journals (Sweden)

    Wymysłowski Michał

    2016-06-01

    Full Text Available Steel sheet piles are often used to support excavations for bridge foundations. When they are left in place in the permanent works, they have the potential to increase foundation bearing capacity and reduce displacements; but their presence is not usually taken into account in foundation design. In this article, the results of finite element analysis of a typical abutment foundation, with and without cover of sheet piles, are presented to demonstrate these effects. The structure described is located over the Więceminka river in the town of Kołobrzeg, Poland. It is a single-span road bridge with reinforced concrete slab.

  8. Applications of fiber optic sensors in concrete structural health monitoring

    Science.gov (United States)

    Dai, Jingyun; Zhang, Wentao; Sun, Baochen; Du, Yanliang

    2007-11-01

    The research of fiber optic extrinsic Fabry-Perot interferometer (EFPI) sensors and their applications in concrete structural health monitoring are presented in this paper. Different types of fiber optic EFPI sensors are designed and fabricated. Experiments are carried out to test the performance of the sensors. The results show that the sensors have good linearity and stability. The applications of the fiber optic EFPI sensors in concrete structural health monitoring are also introduced. Ten fiber optic sensors are embedded into one section of the Liaohe Bridge in Qinghuangdao-Shenyang Railway. Field test demonstrates that the results of fiber optic sensors agree well with conventional strain gauges.

  9. Influence of surface modified basalt fiber on strength of cinder lightweight aggregate concrete

    Science.gov (United States)

    Xiao, Liguang; Li, Jiheng; Liu, Qingshun

    2017-12-01

    In order to improve the bonding and bridging effect between volcanic slag lightweight aggregate concrete cement and basalt fiber, The basalt fiber was subjected to etching and roughening treatment by NaOH solution, and the surface of the basalt fiber was treated with a mixture of sodium silicate and micro-silica powder. The influence of modified basalt fiber on the strength of volcanic slag lightweight aggregate concrete was systematically studied. The experimental results show that the modified basalt fiber volcanic slag lightweight aggregate concrete has a flexural strength increased by 47%, the compressive strength is improved by 16% and the toughness is increased by 27% compared with that of the non-fiber.

  10. The Selection of Bridge Materials Utilizing the Analytical Hierarchy Process

    Science.gov (United States)

    Robert L. Smith; Robert J. Bush; Daniel L. Schmoldt

    1997-01-01

    Effective decisions on the use of natural resources often require the input of many individuals. Determining how specific criteria affect the selection of materials can lead to better utilization of raw materials. Concrete, steel, and timber represent over 98% of the materials used for bridge construction in the United States. Highway officials must often consider...

  11. Material Evaluation of an Elastomer, Epoxy and Lightweight Concrete Rail Attachment System for Direct Fixation Light Rail Applications

    Science.gov (United States)

    Swarner, Benjamin R.

    Sound Transit plans to extend its current light rail system, which runs along the I-5 corridor in Seattle, Washington, across the I-90 Homer Hadley floating bridge as part of a project to connect the major city centers in the region. But, no light rail has ever crossed a floating bridge due to several unique engineering challenges. One of these challenges is attaching the rails to the existing bridge deck without drilling into the bridge pontoons. This research program was developed to test and analyze a direct fixation method that uses lightweight concrete plinths and an elastomer-epoxy system to attach the rails to the bridge deck. The elastomer used was a two-part, pourable elastomer with cork particles intermixed to alter the mechanical properties of the material. A lightweight concrete mixture was analyzed for use in the plinths, and system tests investigated the system response under tensile, compressive and shear loading. The shear response of the system was examined further under varying loading conditions including different surface preparations, elastomer thicknesses, strain-rates and after freeze-thaw conditioning. Experimental data was examined for trends based on these parameters to best characterize the system, and the elastomer was evaluated in the context of modern elastomer research.

  12. MODELING MAIN BODY OF OVERCROSSING BRIDGE BASED ON VEHICLE-BORNE LASER SCANNING DATA

    Directory of Open Access Journals (Sweden)

    X. Chen

    2017-09-01

    Full Text Available Vehicle-borne laser scanning (VBLS is widely used to collect urban data for various mapping and modelling systems. This paper proposes a strategy of feature extraction and 3d model reconstruction for main body of overcrossing bridges based on VBLS point clouds. As the bridges usually have a large span, and the clouds data is often affected by obstacles, we have to use round-trip cloud data to avoid missing part. To begin with, pick out the cloud of the bridge body by an interactive clip-box, and group points by scan-line, then sort the points by scanning angle on each scan line. Since the position under the vehicle have a fixed scan-angle, a virtual path can be obtained. Secondly, extract horizontal line segments perpendicular to the virtual path along adjacent scan-lines, and then cluster line segments into long line-strings, which represent the top and bottom edge. Finally, regularize the line-strings and build 3d surface model of the bridge body. Experimental studies have demonstrated its efficiency and accuracy in case of building bridge model. Modelling the stairs at the both end of the bridge will be the direction of the next step.

  13. Continuous prestressed concrete girder bridges, volume 2 : analysis, testing, and recommendations.

    Science.gov (United States)

    2016-12-01

    The Texas Department of Transportation designs typical highway bridge structures as simple span systems using : standard precast, pretensioned girders. Spans are limited to about 150 ft due to weight and length restrictions on : transporting the prec...

  14. Predicting fatigue service life extension of RC bridges with externally bonded CFRP repairs : [project brief].

    Science.gov (United States)

    2015-12-01

    Externally bonded carbon fiber reinforced polymer composites (CFRPs) are increasingly used to : repair concrete bridges. CFRP design techniques are a proven approach for enhancing the strength : of existing structures. This project investigated the d...

  15. Progress of optical sensor system for health monitoring of bridges at Chongqing University

    Science.gov (United States)

    Chen, W.; Fu, Y.; Zhu, Y.; Huang, S.

    2005-02-01

    With decades of research experience on optical sensors, Optoelectronic Technology Lab of Chongqing University (OTLCU) has studied on a variety of sensors system designed for practical use in health monitoring. In OTLCU, embedded and surface mounted fiber Fabry-Perot strain sensor has been developed for monitoring the local strain of both concrete and steel truss bridge. Optoelectronic deflect meter, with a group of optical level sensor in a series connected pipe, was developed for deflection monitoring and line shape monitoring of the bridges. Laser deflect meter, with a laser pointer and a sensors array, has been also developed for a dynamic deflection monitoring of the bridges. To monitoring the 2-Dimentional displacement of the bridge, a self-calibrating imaging system was developed. All these sensor systems have been applied in different bridges successfully. This paper briefly describes principle of these optical sensing systems, and also gives some representative results of the system in practical application of bridges.

  16. Shear Behavior of Corrugated Steel Webs in H Shape Bridge Girders

    Directory of Open Access Journals (Sweden)

    Qi Cao

    2015-01-01

    Full Text Available In bridge engineering, girders with corrugated steel webs have shown good mechanical properties. With the promotion of composite bridge with corrugated steel webs, in particular steel-concrete composite girder bridge with corrugated steel webs, it is necessary to study the shear performance and buckling of the corrugated webs. In this research, by conducting experiment incorporated with finite element analysis, the stability of H shape beam welded with corrugated webs was tested and three failure modes were observed. Structural data including load-deflection, load-strain, and shear capacity of tested beam specimens were collected and compared with FEM analytical results by ANSYS software. The effects of web thickness, corrugation, and stiffening on shear capacity of corrugated webs were further discussed.

  17. Proof load testing of reinforced concrete bridges: Experience from a program of testing in the Netherlands

    NARCIS (Netherlands)

    Lantsoght, E.O.L.

    2017-01-01

    For existing bridges with large uncertainties, analytical methods have limitations. Therefore, to reduce these uncertainties, field testing of a bridge can be used. A type of such a field test is a proof load test, in which a load equivalent to the factored live load is applied. If the bridge can

  18. Modeling of nanofabricated paddle bridges for resonant mass sensing

    International Nuclear Information System (INIS)

    Lobontiu, N.; Ilic, B.; Garcia, E.; Reissman, T.; Craighead, H. G.

    2006-01-01

    The modeling of nanopaddle bridges is studied in this article by proposing a lumped-parameter mathematical model which enables structural characterization in the resonant domain. The distributed compliance and inertia of all three segments composing a paddle bridge are taken into consideration in order to determine the equivalent lumped-parameter stiffness and inertia fractions, and further on the bending and torsion resonant frequencies. The approximate model produces results which are confirmed by finite element analysis and experimental measurements. The model is subsequently utilized to quantify the amount of mass which attaches to the bridge by predicting the modified resonant frequencies in either bending or torsion

  19. On-site bridge inspection with partial CT by 3.95Mev X-band linac source

    International Nuclear Information System (INIS)

    Wu, Wenjing; Zhu, Haito; Jin, Ming

    2012-01-01

    Since more and more bridges built several decades ago in Japan have become aged and dangerous, the non-destructive evaluation of those bridges is really an urgent problem. CT system with portable 3.95MeV linacs for bridge inspection is considered to work on-site, considering the law of Japanese radiation protection allows using linacs up to 4MeV outside radiation controlled area. The system would confirm the internal steel situation of bridges and analyze structural strain and stress with 3D model built from sectional imaging to evaluate load-bearing performance. The reconstruction process of bridge imaging is based on partial scanned data because bridge shape confines possible scanning angle to smaller than 180deg and a few translations. A small concrete sample with internal steel bars and attachment accessories is scanned in laboratory as preliminary work. (author)

  20. Proportioning of Lightweight Concrete by the Inclusions of Expanded Polystyrene Beads (EPS and Foam Agent

    Directory of Open Access Journals (Sweden)

    Eethar Thanon Dawood

    2016-10-01

    Full Text Available This paper illustrates the performance of lightweight concrete using various amounts of expanded polystyrene beads (EPS and different amounts of foam agent to produce lightweight concrete. The objective of this paper is to produce lightweight concrete with good workability and strength, by different mix proportion of foam agent (0.4, 0.6, 0.8, 1, 1.2 kg/m3 and varying water cement ratio (w/c depending on the flow. Besides, various proportions using different percentages of EPS in order of volume fractions are used. The flow range used in the study is 110-130%. Each mix proportion is tested for compressive strength, modulus of rupture, density and voids ratio. The results gives acceptable ranges of strength for lightweight concrete produced by the inclusions of EPS beads and foam concrete. Therefore, the lightweight concrete produced in this work can be used for structural applications like multistory building frames, floors, bridges and prestressed or precast elements. 

  1. Early corrosion monitoring of prestressed concrete piles using acoustic emission

    Science.gov (United States)

    Vélez, William; Matta, Fabio; Ziehl, Paul H.

    2013-04-01

    The depassivation and corrosion of bonded prestressing steel strands in concrete bridge members may lead to major damage or collapse before visual inspections uncover evident signs of damage, and well before the end of the design life. Recognizing corrosion in its early stage is desirable to plan and prioritize remediation strategies. The Acoustic Emission (AE) technique is a rational means to develop structural health monitoring and prognosis systems for the early detection and location of corrosion in concrete. Compelling features are the sensitivity to events related to micro- and macrodamage, non-intrusiveness, and suitability for remote and wireless applications. There is little understanding of the correlation between AE and the morphology and extent of early damage on the steel surface. In this paper, the evidence collected from prestressed concrete (PC) specimens that are exposed to salt water is discussed vis-à-vis AE data from continuous monitoring. The specimens consist of PC strips that are subjected to wet/dry salt water cycles, representing portions of bridge piles that are exposed to tidal action. Evidence collected from the specimens includes: (a) values of half-cell potential and linear polarization resistance to recognize active corrosion in its early stage; and (b) scanning electron microscopy micrographs of steel areas from two specimens that were decommissioned once the electrochemical measurements indicated a high probability of active corrosion. These results are used to evaluate the AE activity resulting from early corrosion.

  2. Construction of the Chamagawa bridge; Chamagawabashi no seko

    Energy Technology Data Exchange (ETDEWEB)

    Kawado, A.; Okawa, M. [Honshu-Shikoku Bridge Authority, Tokyo (Japan); Yoshii, M.; Oda, I.

    1997-09-30

    The Chamagawa Bridge is a reinforced concrete fixed-arch bridge which is located at the northern end of Awaji Island, 1.5 km away from the Honshu-Shikoku linking large-scale Akashi Strait Bridge. This paper describes the design and construction of the bridge. Overhang construction method using cable stayed members was adopted. Against the tensile stress generated in the arch-ring under construction, reaction force was burdened with cable stayed columns, anchor blocks and ground anchors by regulating stress using cable stayed members and by resisting using PC steel rods arranging in the arch-ring. For the construction of arch-ring, a space was made for fabricating a specific large-scale movable working vehicle by the grounding support. Then, overhang construction was started. For the construction of overhang, construction of cable stayed members, regulation of stress, and tension of ground anchors were conducted with the construction of each block. The construction of linking block in the center was conducted by hanging support method after the specific large-scale movable working vehicle was taken to pieces. After the connection of arch-ring, tensile forces of cable stayed members and ground anchors were released. The bridge was completed in the down road in 1997. 1 ref., 21 figs., 6 tabs.

  3. Chloride Ingress in Concrete with Different Age at Time of First Chloride Exposure

    DEFF Research Database (Denmark)

    Hansen, Esben Østergaard; Iskau, Martin Riis; Hasholt, Marianne Tange

    2016-01-01

    Concrete structures cast in spring have longer time to hydrate and are therefore denser and more resistant to chloride ingress when first subjected to deicing salts in winter than structures cast in autumn. Consequently, it is expected that a spring casting will have a longer service life....... This hypothesis is investigated in the present study by testing drilled cores from concrete cast in 2012 and 2013 on the Svendborgsund Bridge. The cores are subject to petrographic examination and mapping of chloride profiles. Moreover, chloride migration coefficients have been measured. The study shows...

  4. Materials and methods for corrosion control of reinforced and prestressed concrete structures in new construction

    Science.gov (United States)

    2000-08-01

    Salt-induced reinforcing steel corrosion in concrete bridges has undoubtedly become a considerable economic burden to many State and local transportation agencies. Since the iron in the steel has a natural tendency to revert eventually to its most st...

  5. Strengthening of Existing Bridge Structures for Shear and Bending with Carbon Textile-Reinforced Mortar

    Directory of Open Access Journals (Sweden)

    Martin Herbrand

    2017-09-01

    Full Text Available Increasing traffic loads and changes in code provisions lead to deficits in shear and flexural capacity of many existing highway bridges. Therefore, a large number of structures are expected to require refurbishment and strengthening in the future. This projection is based on the current condition of many older road bridges. Different strengthening methods for bridges exist to extend their service life, all having specific advantages and disadvantages. By applying a thin layer of carbon textile-reinforced mortar (CTRM to bridge deck slabs and the webs of pre-stressed concrete bridges, the fatigue and ultimate strength of these members can be increased significantly. The CTRM layer is a combination of a corrosion resistant carbon fiber reinforced polymer (CFRP fabric and an efficient mortar. In this paper, the strengthening method and the experimental results obtained at RWTH Aachen University are presented.

  6. Strengthening of Existing Bridge Structures for Shear and Bending with Carbon Textile-Reinforced Mortar.

    Science.gov (United States)

    Herbrand, Martin; Adam, Viviane; Classen, Martin; Kueres, Dominik; Hegger, Josef

    2017-09-19

    Increasing traffic loads and changes in code provisions lead to deficits in shear and flexural capacity of many existing highway bridges. Therefore, a large number of structures are expected to require refurbishment and strengthening in the future. This projection is based on the current condition of many older road bridges. Different strengthening methods for bridges exist to extend their service life, all having specific advantages and disadvantages. By applying a thin layer of carbon textile-reinforced mortar (CTRM) to bridge deck slabs and the webs of pre-stressed concrete bridges, the fatigue and ultimate strength of these members can be increased significantly. The CTRM layer is a combination of a corrosion resistant carbon fiber reinforced polymer (CFRP) fabric and an efficient mortar. In this paper, the strengthening method and the experimental results obtained at RWTH Aachen University are presented.

  7. Bridge Condition Assessment based on Vibration Responses of Passenger Vehicle

    International Nuclear Information System (INIS)

    Miyamoto, Ayaho; Yabe, Akito

    2011-01-01

    In this paper, we propose a new method of assessing the condition of existing short- and medium-span reinforced/prestressed concrete bridges based on vibration monitoring data obtained from a public bus. This paper not only describes details of a prototype monitoring system that uses information technology and sensors capable of providing more accurate knowledge of bridge performance than conventional ways but also shows a few specific examples of bridge condition assessment based on vehicle vibrations measured by using an in-service public bus equipped with vibration measurement instrumentation. This paper also describes a sensitivity analysis of deteriorating bridges based on simulation of the acceleration response of buses conducted by the 'substructure method' employing a finite element model to verify the above bridge performance results. The main conclusions obtained in this study can be summarized as follows: (1) Because the vibration responses of passenger vehicles, such as buses, have a good linear relationship with the vibration responses of the target bridges, the proposed system can be used as a practical monitoring system for bridge condition assessment. (2) The results of sensitivity analysis performed by the substructure method show that bus vibration responses are useful for evaluating target bridge performance. (3) The proposed method was applied to a network of real bridges in a local area to evaluate its effectiveness. The results indicate that the proposed method can be used to prioritize the repair/strengthening works of existing bridges based on various vibration information in order to help bridge administrators establish rational maintenance strategies.

  8. ANDERS: future of concrete bridge deck evaluation and rehabilitation

    Science.gov (United States)

    Gucunski, Nenad; Moon, Franklin

    2011-04-01

    The Automated Nondestructive Evaluation and Rehabilitation System (ANDERS) aims to provide a uniquely comprehensive tool that will transform the manner in which bridge decks are assessed and rehabilitated. It is going to be achieved through: 1) much higher evaluation detail and comprehensiveness of detection at an early stage deterioration, 2) comprehensive condition and structural assessment at all stages of deterioration, and 3) integrated assessment and rehabilitation that will be minimally invasive, rapid and cost effective. ANDERS is composed of four systems. that merge novel imaging and NDE techniques, together with novel intervention approaches to arrest the deterioration processes. These technologies are incorporated within a series of human-operated and robotic vehicles. To perform assessments, ANDERS will be equipped with two complimentary nondestructive approaches. The first, Multi-Modal Nondestructive Evaluation (MM-NDE) System aims to identify and characterize localized deterioration with a high degree of resolution. The second, Global Structural Assessment (GSA) System aims to capture global structural characteristics and identify any appreciable effects of deterioration on a bridge structure. Output from these two approaches will be merged through a novel Automated Structural Identification (Auto St-Id) approach that will construct, calibrate, and utilize simulation models to assess overall structural vulnerability and capacity. These three systems comprise the assessment suite of ANDERS and will directly inform the Nondestructive Rehabilitation (NDR) System. The NDR System leverages robotics for the precision and rapid delivery of novel materials capable of halting the early-stage deterioration identified.

  9. Creep and cracking of concrete hinges: insight from centric and eccentric compression experiments.

    Science.gov (United States)

    Schlappal, Thomas; Schweigler, Michael; Gmainer, Susanne; Peyerl, Martin; Pichler, Bernhard

    2017-01-01

    Existing design guidelines for concrete hinges consider bending-induced tensile cracking, but the structural behavior is oversimplified to be time-independent. This is the motivation to study creep and bending-induced tensile cracking of initially monolithic concrete hinges systematically. Material tests on plain concrete specimens and structural tests on marginally reinforced concrete hinges are performed. The experiments characterize material and structural creep under centric compression as well as bending-induced tensile cracking and the interaction between creep and cracking of concrete hinges. As for the latter two aims, three nominally identical concrete hinges are subjected to short-term and to longer-term eccentric compression tests. Obtained material and structural creep functions referring to centric compression are found to be very similar. The structural creep activity under eccentric compression is significantly larger because of the interaction between creep and cracking, i.e. bending-induced cracks progressively open and propagate under sustained eccentric loading. As for concrete hinges in frame-like integral bridge construction, it is concluded (i) that realistic simulation of variable loads requires consideration of the here-studied time-dependent behavior and (ii) that permanent compressive normal forces shall be limited by 45% of the ultimate load carrying capacity, in order to avoid damage of concrete hinges under sustained loading.

  10. Historic Concrete : From Concrete Repair to Concrete Conservation

    NARCIS (Netherlands)

    Heinemann, H.A.

    2013-01-01

    Concrete like materials were already applied during the Roman Empire. After the decline of the Roman Empire, a wide scale application of concrete only reappeared in the 19th century. Here lies also the origin of modern (reinforced) concrete. Since then, both concrete application and composition have

  11. Forensic investigation of two voided slab bridges in the Virginia Department of Transportation's Richmond District.

    Science.gov (United States)

    2017-06-01

    The precast prestressed concrete voided slab structure is a popular bridge design because of its rapid construction and cost : savings in terms of eliminating formwork at the jobsite. However, the longitudinal shear transfer mechanism often fails, le...

  12. Experimental Study on Modification of Concrete with Asphalt Admixture

    Science.gov (United States)

    Bołtryk, Michał; Małaszkiewicz, Dorota; Pawluczuk, Edyta

    2017-10-01

    Durability of engineering structures made of cement concrete with high compressive strength is a very vital issue, especially when they are exposed to different aggressive environments and dynamic loads. Concrete resistance to weathering actions and chemical attack can be improved by combined chemical and mechanical modification of concrete microstructure. Asphalt admixture in the form of asphalt paste (AP) was used for chemical modification of cement composite microstructure. Concrete structure was formed using special technology of compaction. A stand for vibro-vibropressing with regulated vibrator force and pressing force was developed. The following properties of the modified concrete were tested: compressive strength, water absorption, freeze-thaw resistance, scaling resistance in the presence of de-icing agents, chloride migration, resistance to CO2 and corrosion in aggressive solutions. Corrosion resistance was tested alternately in 1.8% solutions of NH4Cl, MgSO4, (NH2)2CO and CaCl2, which were altered every 7 days; the experiment lasted 9.5 months. Optimum compaction parameters in semi-industrial conditions were determined: ratio between piston stress (Qp ) and external top vibrator force (Po ) in the range 0.4÷-0.5 external top vibrator force 4 kN. High strength concretes with compressive strength fcm = 60÷70 MPa, very low water absorption (barrier formed in pores of cement hydrates against dioxide and chloride ions. Concrete specimens containing AP 4% c.m. and consolidated by vibro-vibropressing method proved to be practically resistant to highly corrosive environment. Vibro-vibropressing compaction technology of concrete modified with AP can be applied in prefabrication plants to produce elements for road, bridge and hydraulic engineering constructions.

  13. Design and construction of a cable-stayed composite girder bridge with precast RC-slabs; Purekyasuto shohan gosei keta shachokoyo no sekkei to seko

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, K. [Tokyo Metropolitan Univ. (Japan). Faculty of Technology; Shimura, T.; Tachibana, Y.; Echigo, S. [Kawada Industries Inc., Tokyo (Japan)

    1995-09-20

    A report on design and execution of cable-stayed composite girder bridge with precast RC-slabs constructed first in Japan though in small scale was described. This bridge adopted steel slabs relatively low in slab height for main slab and with two boxes slab section, and was designed at an aim of being more economic and shorter in its working term in comparison with steel girder slab type, on a base of the design in a region allowable with the existing design standards. This bridge is mainly in accordance with the regulation on continuous bridge in the prescription of road bridge, and is designed for normal RC-girder selecting between girder supports to direction normal to bridge axis as usual without using specially strong concrete to the girder. And, in order to fill with the regulation on allowable tensile stress on considering effects of creep and drying shrinkage, a method adding prestress to the slabs was adopted. Furthermore, a loop-like overlap joint for cable joint for the precast girders, expansion concrete for joint portion to compose the girder with the steel slab and so forth were adopted. 12 refs., 22 figs., 5 tabs.

  14. Static and fatigue investigation of second generation steel free bridge decks

    International Nuclear Information System (INIS)

    Klowak, C.; Memon, Amjad H.; Mufti, Aftab A.

    2006-01-01

    This paper outlines the static and fatigue behavior of two different cast-in-place second generation steel-free bridge decks, which are: hybrid carbon fiber reinforced polymer (CFRP); and glass fiber reinforced polymer (GFRP) and steel strap design. Although cast monolithically, the first deck slab was divided into three segments with different reinforcement configurations. All three segments were tested under a 222kN cyclic loading to investigate fatigue behavior. The second bridge deck comprised an internal panel and two cantilevers and was equipped with a civionics system. The internal panel static test that this paper deals with is useful in the development of fatigue theory derived from fatigue testing of the first bridge deck. Test results form the cyclic loading of the first bridge deck indicated that the cross-sectional area of the reinforcement used in the test bridge deck can be reduced by 40% based on the reinforcement provided in the deck under service loads. The hybrid system also reduced the development of longitudinal crack widths to approximately 0.4 mm under service conditions, compared to the cracks that occurred approximately halfway between adjacent bridge girders that were determined to be roughly 1 mm in several first generation steel-free bridge decks constructed in Canada. Civionics, also discussed in the paper, is a new term coined from Civil-Electronics, which is the application of electronics to civil structures. The Civionics Specifications (2004) developed by ISIS Canada researchers are a helpful design tool for engineers and contractors to develop civionics and structural health monitoring systems for civil infrastructure that will last the lifetime of a structure. The use of civionics for the second test bridge deck ensured the survival of 100% of the 63 internal sensors throughout the rigors of the construction and casting of the deck. (author)

  15. Strengthening of RC bridge slabs using CFRP sheets

    Directory of Open Access Journals (Sweden)

    Fahmy A. Fathelbab

    2014-12-01

    Full Text Available Many old structures became structurally insufficient to carry the new loading conditions requirements. Moreover, they suffer from structural degradation, reinforcement steel bars corrosion, bad weather conditions…etc. Many official authorities in several countries had recognized many old bridges and buildings as structurally deficient by today’s standards. Due to these reasons, structural strengthening became an essential requirement and different strengthening techniques appeared in market. Fiber Reinforced Polymer (FRP strengthening techniques established a good position among all other techniques, giving excellent structural results, low time required and moderate cost compared with the other techniques. The main purpose of this research is to study analytically the strengthening of a reinforced concrete bridge slabs due to excessive loads, using externally bonded FRP sheets technique. A commercial finite element program ANSYS was used to perform a structural linear and non-linear analysis for strengthened slab models using several schemes of FRP sheets. A parametric study was performed to evaluate analytically the effect of changing both FRP stiffness and FRP schemes in strengthening RC slabs. Comparing the results with control slab (reinforced concrete slab without strengthening it is obvious that attaching FRP sheets to the RC slab increases its capacity and enhances the ductility/toughness.

  16. Implementation of a Refined Shear Rating Methodology for Prestressed Concrete Girder Bridges

    Science.gov (United States)

    2017-12-01

    Lower than desirable shear ratings at the ends of prestressed concrete beams have been the topic of ongoing research between MnDOT and the University of Minnesota. A recent study by the University of Minnesota entitled Investigation of Shear Distribu...

  17. Open-source software platform for medical image segmentation applications

    Science.gov (United States)

    Namías, R.; D'Amato, J. P.; del Fresno, M.

    2017-11-01

    Segmenting 2D and 3D images is a crucial and challenging problem in medical image analysis. Although several image segmentation algorithms have been proposed for different applications, no universal method currently exists. Moreover, their use is usually limited when detection of complex and multiple adjacent objects of interest is needed. In addition, the continually increasing volumes of medical imaging scans require more efficient segmentation software design and highly usable applications. In this context, we present an extension of our previous segmentation framework which allows the combination of existing explicit deformable models in an efficient and transparent way, handling simultaneously different segmentation strategies and interacting with a graphic user interface (GUI). We present the object-oriented design and the general architecture which consist of two layers: the GUI at the top layer, and the processing core filters at the bottom layer. We apply the framework for segmenting different real-case medical image scenarios on public available datasets including bladder and prostate segmentation from 2D MRI, and heart segmentation in 3D CT. Our experiments on these concrete problems show that this framework facilitates complex and multi-object segmentation goals while providing a fast prototyping open-source segmentation tool.

  18. Mechanical properties of high-strength concrete

    Science.gov (United States)

    Mokhtarzadeh, Alireza

    This report summarizes an experimental program conducted to investigate production techniques and mechanical properties of high strength concrete in general and to provide recommendations for using these concretes in manufacturing precast/prestressed bridge girders. Test variables included total amount and composition of cementitious material (portland cement, fly ash, and silica fume), type and brand of cement, type of silica fume (dry densified and slurry), type and brand of high-range water-reducing admixture, type of aggregate, aggregate gradation, maximum aggregate size, and curing. Tests were conducted to determine the effects of these variables on changes in compressive strength and modulus of elasticity over time, splitting tensile strength, modulus of rupture, creep, shrinkage, and absorption potential (as an indirect indicator of permeability). Also investigated were the effects of test parameters such as mold size, mold material, and end condition. Over 6,300 specimens were cast from approximately 140 mixes over a period of 3 years.

  19. Reliability Assessment of a Bridge Structure Subjected to Chloride Attack

    DEFF Research Database (Denmark)

    Leira, Bernt J.; Thöns, Sebastian; Nielsen, Michael Havbro Faber

    2018-01-01

    Prediction of the service lifetime of concrete structures with respect to chloride ingress involves a number of parameters that are associated with large uncertainties. Hence, full-scale measurements are strongly in demand. This paper begins by summarizing statistical distributions based on measu......Prediction of the service lifetime of concrete structures with respect to chloride ingress involves a number of parameters that are associated with large uncertainties. Hence, full-scale measurements are strongly in demand. This paper begins by summarizing statistical distributions based...... on measurements taken from the Gimsøystraumen Bridge in Norway. A large number of chloride profiles are available based on concrete coring samples, and for each of these profiles the diffusion coefficient and surface concentration (due to sea spray) are estimated. Extensive measurements of the concrete cover...... depth are also performed. The probability distributions are input into a prediction model for chloride concentration at the steel reinforcement. By also introducing the critical chloride concentration as a random variable, the probability of exceeding the critical threshold is determined as a function...

  20. Complex measurement system for long-term monitoring of prestressed railway bridges of the new Lehrter Bahnhof in Berlin

    Science.gov (United States)

    Habel, Wolfgang R.; Hofmann, Detlef; Kohlhoff, H.; Knapp, J.; Brandes, K.; Haenichen, H.; Inaudi, Daniele

    2002-07-01

    A new central railway station - Lehrter Bahnhof - is being built in Berlin. Because of construction activities in immediate vicinity and because of difficult soil conditions, different vertical displacements have to be expected. In order to avoid damage to the bridges and to a widely spanned glass roof which will be supported by two concrete bridges these two bridges have to be monitored with regard to their deformation performance right from the beginning of construction until commissioning as well as later on for several years. For this purpose, a monitoring concept has been developed and sensors with excellent long-term stability have been chosen. This paper describes the system for monitoring settlements and heaves by means of laser-based optics and hydrostatic leveling. Additionally, strain and inclination of the prestressed concrete bridges are redundantly monitored by embedded long-gage length fiber-optic strain sensors as well as resistive strain gages, and inclinometers. Measurements on-site are referenced by measurements on two test beams well-defined loaded under laboratory and field conditions. The paper also describes the measuring concept and the sensor techniques as well as installation of the sensor system and first results.

  1. The results of the CCI-3 reactor material experiment investigating 2-D core-concrete interaction and debris coolability with a siliceous concrete crucible

    International Nuclear Information System (INIS)

    Farmer, M.T.; Basu, S.

    2006-01-01

    The OECD-sponsored Melt Coolability and Concrete Interaction (MCCI) program is conducting reactor material experiments and associated analysis with the objectives of resolving the ex-vessel debris coolability issue, and to address remaining uncertainties related to long-term two-dimensional molten core-concrete interactions under both wet and dry cavity conditions. Achievement of these two objectives will demonstrate the efficacy of severe accident management guidelines for existing plants and provide the technical basis for better containment designs for future plants. Despite years of international research, there are remaining uncertainties in the models that evaluate the lateral vs. axial power split during core-concrete interaction because of a lack of truly two-dimensional experiment data. As a result, there are differences in the 2-D cavity erosion predicted by codes such as MELCOR, WECHSL, and COSACO. In the continuing effort to bridge this data gap, the third in a series of large scale Core-Concrete Interaction experiments (CCI-3) has been conducted as part of the MCCI program. This test involved the interaction of a 375 kg core-oxide melt within a two-dimensional siliceous concrete crucible. The initial phase of the test was conducted under dry conditions. After a predetermined ablation depth was reached, the cavity was flooded to obtain data on the coolability of a core melt after core-concrete interaction has progressed for some time. This paper provides a summary description of the test facility and an overview of test results

  2. CONCRETE STRUCTURES' QUALITY CONTROL IN PRACTICE

    OpenAIRE

    Dolaček-Alduk, Zlata; Blanda, Miroslav

    2011-01-01

    The Croatian civil engineering is characterized by a lack of systematic approach to planning, control and quality assurance in all phases of project realization. The results obtained in establishing the quality management system in some segments of civil engineering production represent initial trends in solving this problem. Benefits are of two types: the achievement of quality for the contractor and obtaining that quaity is being achieved for clients. Execution of concrete structures is a c...

  3. Study on the bearing capacity of embedded chute on shield tunnel segment

    Science.gov (United States)

    Fanzhen, Zhang; Jie, Bu; Zhibo, Su; Qigao, Hu

    2018-05-01

    The method of perforation and steel implantation is often used to fix and install pipeline, cables and other facilities in the shield tunnel, which would inevitably do damage to the precast segments. In order to reduce the damage and the resulting safety and durability problems, embedded chute was set at the equipment installation in one shield tunnel. Finite element models of segment concrete and steel are established in this paper. When water-soil pressure calculated separately and calculated together, the mechanical property of segment is studied. The bearing capacity and deformation of segment are analysed before and after embedding the chute. Research results provide a reference for similar shield tunnel segment engineering.

  4. Design Optimization of Hybrid FRP/RC Bridge

    Science.gov (United States)

    Papapetrou, Vasileios S.; Tamijani, Ali Y.; Brown, Jeff; Kim, Daewon

    2018-04-01

    The hybrid bridge consists of a Reinforced Concrete (RC) slab supported by U-shaped Fiber Reinforced Polymer (FRP) girders. Previous studies on similar hybrid bridges constructed in the United States and Europe seem to substantiate these hybrid designs for lightweight, high strength, and durable highway bridge construction. In the current study, computational and optimization analyses were carried out to investigate six composite material systems consisting of E-glass and carbon fibers. Optimization constraints are determined by stress, deflection and manufacturing requirements. Finite Element Analysis (FEA) and optimization software were utilized, and a framework was developed to run the complete analyses in an automated fashion. Prior to that, FEA validation of previous studies on similar U-shaped FRP girders that were constructed in Poland and Texas is presented. A finer optimization analysis is performed for the case of the Texas hybrid bridge. The optimization outcome of the hybrid FRP/RC bridge shows the appropriate composite material selection and cross-section geometry that satisfies all the applicable Limit States (LS) and, at the same time, results in the lightest design. Critical limit states show that shear stress criteria determine the optimum design for bridge spans less than 15.24 m and deflection criteria controls for longer spans. Increased side wall thickness can reduce maximum observed shear stresses, but leads to a high weight penalty. A taller cross-section and a thicker girder base can efficiently lower the observed deflections and normal stresses. Finally, substantial weight savings can be achieved by the optimization framework if base and side-wall thickness are treated as independent variables.

  5. Effect of Concrete Creep on the displacement of single tower single cable plane Extradosed Cable-stayed Bridge

    Science.gov (United States)

    Shi, Jing-xian; Ran, Zhi-hong

    2018-03-01

    Extradossed Cable-stayed Bridge is both cable-stayed Bridge and Continuous rigid frame bridge mechanics feature, Beam is the main force components, cable is supplement.This article combined with a single tower and single cable plane Extradossed cable-stayed bridge in Yunnan, use different creep calculation models and analysis deflection caused by creep effects. The results showing that deflection caused by creep effect is smaller than the same span continuous rigid frame bridge, the value is about 2cm. On the other hand the deflection is increasing with ambient humidity decreases, therefore in the dry environment the calculation model is relatively large in the pre-camber. In the choice of RC creep model is significant in the dry areas.

  6. Experimental Study of Properties of Pervious Concrete used for Bridge Superstructure

    DEFF Research Database (Denmark)

    Lund, Mia Schou Møller; Hansen, Kurt Kielsgaard; Hertz, Kristian Dahl

    2014-01-01

    around freezing point are exposed to a harsh freeze-thaw impact, since bridges are not only cooled from the topside, as a normal road bed, but also from underneath. Hence, the demands to the moisture properties of the superstructure are strict in order to ensure the necessary durability. Pearl...

  7. Smart concrete slabs with embedded tubular PZT transducers for damage detection

    Science.gov (United States)

    Gao, Weihang; Huo, Linsheng; Li, Hongnan; Song, Gangbing

    2018-02-01

    The objective of this study is to develop a new concept and methodology of smart concrete slab (SCS) with embedded tubular lead zirconate titanate transducer array for image based damage detection. Stress waves, as the detecting signals, are generated by the embedded tubular piezoceramic transducers in the SCS. Tubular piezoceramic transducers are used due to their capacity of generating radially uniform stress waves in a two-dimensional concrete slab (such as bridge decks and walls), increasing the monitoring range. A circular type delay-and-sum (DAS) imaging algorithm is developed to image the active acoustic sources based on the direct response received by each sensor. After the scattering signals from the damage are obtained by subtracting the baseline response of the concrete structures from those of the defective ones, the elliptical type DAS imaging algorithm is employed to process the scattering signals and reconstruct the image of the damage. Finally, two experiments, including active acoustic source monitoring and damage imaging for concrete structures, are carried out to illustrate and demonstrate the effectiveness of the proposed method.

  8. Vehicle Signal Analysis Using Artificial Neural Networks for a Bridge Weigh-in-Motion System

    Directory of Open Access Journals (Sweden)

    Min-Seok Park

    2009-10-01

    Full Text Available This paper describes the procedures for development of signal analysis algorithms using artificial neural networks for Bridge Weigh-in-Motion (B-WIM systems. Through the analysis procedure, the extraction of information concerning heavy traffic vehicles such as weight, speed, and number of axles from the time domain strain data of the B-WIM system was attempted. As one of the several possible pattern recognition techniques, an Artificial Neural Network (ANN was employed since it could effectively include dynamic effects and bridge-vehicle interactions. A number of vehicle traveling experiments with sufficient load cases were executed on two different types of bridges, a simply supported pre-stressed concrete girder bridge and a cable-stayed bridge. Different types of WIM systems such as high-speed WIM or low-speed WIM were also utilized during the experiments for cross-checking and to validate the performance of the developed algorithms.

  9. Vehicle Signal Analysis Using Artificial Neural Networks for a Bridge Weigh-in-Motion System.

    Science.gov (United States)

    Kim, Sungkon; Lee, Jungwhee; Park, Min-Seok; Jo, Byung-Wan

    2009-01-01

    This paper describes the procedures for development of signal analysis algorithms using artificial neural networks for Bridge Weigh-in-Motion (B-WIM) systems. Through the analysis procedure, the extraction of information concerning heavy traffic vehicles such as weight, speed, and number of axles from the time domain strain data of the B-WIM system was attempted. As one of the several possible pattern recognition techniques, an Artificial Neural Network (ANN) was employed since it could effectively include dynamic effects and bridge-vehicle interactions. A number of vehicle traveling experiments with sufficient load cases were executed on two different types of bridges, a simply supported pre-stressed concrete girder bridge and a cable-stayed bridge. Different types of WIM systems such as high-speed WIM or low-speed WIM were also utilized during the experiments for cross-checking and to validate the performance of the developed algorithms.

  10. D0 Silicon Upgrade: End Calorimeter Transfer Bridge Design and Installation Procedures

    International Nuclear Information System (INIS)

    Stredde, H.J.

    1991-01-01

    The North Endcap Calorimeter (NEC) is to be moved from the clean room to the north sidewalk in preparation for the final installation on the DO detector center beam. In order to make this move, the cable bridge must be 'flattened' and the NEC lifted to move over it. The detector is moved west, approximately 24 feet, while the moveable counting house remains stationary. This movement allows the cable bridge to 'flatten' i.e. become horizontal. The cable bridge lowering is steadied and stabilized by 7.5 ton hoist mounted on the moveable counting house. By moving the detector to lower the bridge, a vacancy has been created in the pit that must be filled to the level of the clean room rail elevation. This filler will consist of concrete shield blocks, stacked in two rows. These rows are spaced appropriately to match the wheel base of the EC transporter. A steel plate is placed on top of each row of shield blocks and leveled to the elevation of the clean room rails. Steel plates will be installed and leveled on the north sidewalk similar to those used on the south sidewalk for the CC installation. These plates are used as rails for the Hilman rollers, bearing surfaces for shim blocks used during lifting and anchors for holding the transporter extension units and the transfer bridge. After the plates are installed, the transfer bridge is put in place, spanning the cable bridge, shimmed and leveled. The transporter extension units are positioned next to the transfer bridge on the north sidewalk. With the completion of this prep work, the actual transfer of the NEC from the clean room can begin. The NEC is pulled from the clean room with the same mechanism (cyl. and chain) that was used for the CC and the pull anchor point will be located at the end of the concrete blocks. The NEC will come out of the north west door in the clean room and move along the temporary rail plates in the pit until it is in line with the transfer bridge. At this point the NEC is ready to be

  11. A Mesoscopic Simulation for the Early-Age Shrinkage Cracking Process of High Performance Concrete in Bridge Engineering

    Directory of Open Access Journals (Sweden)

    Guodong Li

    2017-01-01

    Full Text Available On a mesoscopic level, high performance concrete (HPC was assumed to be a heterogeneous composite material consisting of aggregates, mortar, and pores. The concrete mesoscopic structure model had been established based on CT image reconstruction. By combining this model with continuum mechanics, damage mechanics, and fracture mechanics, a relatively complete system for concrete mesoscopic mechanics analysis was established to simulate the process of early-age shrinkage cracking in HPC. This process was based on the dispersion crack model. The results indicated that the interface between the aggregate and mortar was the crack point caused by shrinkage cracks in HPC. The locations of early-age shrinkage cracks in HPC were associated with the spacing and the size of the aggregate particle. However, the shrinkage deformation size of the mortar was related to the scope of concrete cracking and was independent of the crack position. Whereas lower water to cement ratios can improve the early strength of concrete, this ratio cannot control early-age shrinkage cracks in HPC.

  12. The Influence of the Track Axis Curvature at Railway Filler-Beam Deck Bridges

    Directory of Open Access Journals (Sweden)

    Răzvan Marian Stănescu

    2016-06-01

    Full Text Available The article presents a comparative study between the simplified method calculation proposed by the prescriptions of design codes and the analysis with the FEM program LUSAS [1], regarding the influence of the curvature of the track axis at railway bridges with steel beams embedded in concrete.

  13. Case study: highly loaded MSE bridge supporting structure, Syncrude NMAPS conveyor overpasses

    Energy Technology Data Exchange (ETDEWEB)

    Scherger, B.; Brockbank, B. [Reinforced Earth Company Ltd., Edmonton, AB (Canada); Mimura, W. [Syncrude Canada Ltd., Edmonton, AB (Canada)

    2005-07-01

    A crusher and conveyor system was constructed at the Mildred Lake Oil Sands Mine near Fort McMurray, Alberta in order to facilitate ore delivery from Syncrude's North Mine. As part of this North Mine Auxiliary Production System (NMAPS), Syncrude Canada and their consultant Cosyn Technology identified the need for 3 overpasses over conveyors in the North Mine in order to provide unrestricted crossing over the operating conveyor system for the heavy hauler trucks and light vehicle mine traffic. The overpasses were designed to support the dead load of the granular fill and the live load of two loaded heavy hauler trucks, with a design load for each loaded hauler of 670 900 kg. This paper reviewed various aspects of the design from planning, structure selection, and overall stability and bearing capacity considerations. The different designs in the 3 new overpasses accommodated foundation and loading requirements. The designs ranged from the use of precast one-piece reinforced concrete arches, Mechanically Stabilized Earth (MSE) bridge abutment technology, and a combination of the two. The MSE retaining walls directly supported the bridge superstructure without the use of piles or other deep structural foundations. The design was challenging because of the significant vertical stresses transferred onto the wall. All 3 overpasses also used MSE walls for the supporting end wing walls. The main focus of this paper was on the heavily loaded MSE walls supporting the bridge abutment style overpasses. This structure has illustrated the capability of properly designed MSE wall structures with steel soil reinforcement and reinforced precast concrete face panels to successfully carry bridge footing pressure loadings up to 545 kPa. It was concluded that this case has good potential for use in future bridge projects in both the industrial and highway sectors. 2 refs., 7 figs.

  14. Tresfjord Bridge - a human friendly and traffic efficient structure

    Science.gov (United States)

    Dahl, Kristian B.; Anta Magerøy Tønnessen, Aja; Toverud, Lars I.

    2017-09-01

    The E136 Tresfjord Bridge opened in October 2015, and crosses the Tresfjorden on the west coast of Norway. It is a concrete bridge with a total length of 1290 m, consisting of 19 viaduct spans, 60 m each, and a FCM (free cantilever method) main span of 160 m. The E136 is one of the most important transportation routes in the county of Møre and Romsdal and starts in Ålesund, and passes along Tresfjorden to Åndalsnes. The existing road is very narrow with speed limit of 60 km/h and characterizes by many accidents involving cars and people. The traffic flow is approximately ca 2500 vehicles a day, of this is 25% heavy vehicles. Those transport fresh salmon from the breeders in the fjords along the coast. To try to decrease the transportation time is very important for the fresh salmon. The bridge reduces the distance between Ålesund and Åndalsnes by 13 km. The speed limit is now 80 km/h, and with much less risk for accidents since there are separate lanes for cars and pedestrians over the whole bridge. This means that the bridge represents a human friendly and traffic efficient structure to the benefit for the people and the region.

  15. Optimization of Casting Process Parameters for Homogeneous Aggregate Distribution in Self-Compacting Concrete: A Feasibility Study

    DEFF Research Database (Denmark)

    Spangenberg, Jon; Tutum, Cem Celal; Hattel, Jesper Henri

    2011-01-01

    The use of self-compacting concrete (SCC) as a construction material has been getting more attention from the industry. Its application area varies from standard structural elements in bridges and skyscrapers to modern architecture having geometrical challenges. However, heterogeneities induced...

  16. Continuous prestressed concrete girder bridges volume 1 : literature review and preliminary designs.

    Science.gov (United States)

    2012-06-01

    The Texas Department of Transportation (TxDOT) is currently designing typical highway bridge structures as simply supported using standard precast, pretensioned girders. TxDOT is interested in developing additional economical design alternatives for ...

  17. Use of Macro Basalt Fibre Concrete for Marine Applications

    OpenAIRE

    Mohammadi Mohaghegh, Ali

    2016-01-01

    Deterioration of concrete structures due to the corrosion of embedded steel is a well-known universal problem. Norway with its numerous bridges, ports, offshore and floating structures along its coastline, is also encountered with corrosion degradation. The harsh environment of the Norwegian Sea regarding its low temperature, wind, and waves, makes the design and construction of marine structures more demanding. In recent years, usage of sustainable composite materials in the field of structu...

  18. Finite Element Based Response Surface Methodology to Optimize Segmental Tunnel Lining

    Directory of Open Access Journals (Sweden)

    A. Rastbood

    2017-04-01

    Full Text Available The main objective of this paper is to optimize the geometrical and engineering characteristics of concrete segments of tunnel lining using Finite Element (FE based Response Surface Methodology (RSM. Input data for RSM statistical analysis were obtained using FEM. In RSM analysis, thickness (t and elasticity modulus of concrete segments (E, tunnel height (H, horizontal to vertical stress ratio (K and position of key segment in tunnel lining ring (θ were considered as input independent variables. Maximum values of Mises and Tresca stresses and tunnel ring displacement (UMAX were set as responses. Analysis of variance (ANOVA was carried out to investigate the influence of each input variable on the responses. Second-order polynomial equations in terms of influencing input variables were obtained for each response. It was found that elasticity modulus and key segment position variables were not included in yield stresses and ring displacement equations, and only tunnel height and stress ratio variables were included in ring displacement equation. Finally optimization analysis of tunnel lining ring was performed. Due to absence of elasticity modulus and key segment position variables in equations, their values were kept to average level and other variables were floated in related ranges. Response parameters were set to minimum. It was concluded that to obtain optimum values for responses, ring thickness and tunnel height must be near to their maximum and minimum values, respectively and ground state must be similar to hydrostatic conditions.

  19. Effect of Piers Shape on the Dynamic Structural Responses of Prestressed Concrete Bridge: Part II

    Directory of Open Access Journals (Sweden)

    Ali Fadhil Naser

    2016-03-01

    Full Text Available Pier of bridge is usually used as a general term for any type of substructure located between horizontal spans and foundations. Piers give vertical supports for spans at intermediate points and perform two main functions. The objective of this study is to inspect the effect of piers shape on the dynamic structural performance by adopting theoretical dynamic analysis. The results of dynamic analysis of 25 bridges models show that the maximum value of natural frequency is equal to 5.64Hz in two circles piers bridge model. Therefore, this type of model has good stiffness and bearing capacity. The two square piers model, the one circle pier model, and the two circles piers model appear good stiffness because of the natural frequencies (5.30Hz, 5.52Hz, and 5.64Hz are more than the maximum forced frequencies (4.52Hz, 5.45Hz, and 4.52Hz respectively. According to the comparison between all models results, the two circles piers model has the higher stiffness because of this model has the maximum value of natural frequency (5.64Hz and it is more than all forced vibration frequencies of all others models. Therefore, this study recommends that using the bridge model of two circles piers in the bridges construction that consists of three spans (30m+40m+30m with section of box girder.

  20. Effect of Piers Shape on the Dynamic Structural Responses of Prestressed Concrete Bridge: Part II

    Directory of Open Access Journals (Sweden)

    Ali Fadhil Naser

    2016-12-01

    Full Text Available Pier of bridge is usually used as a general term for any type of substructure located between horizontal spans and foundations. Piers give vertical supports for spans at intermediate points and perform two main functions. The objective of this study is to inspect the effect of piers shape on the dynamic structural performance by adopting theoretical dynamic analysis. The results of dynamic analysis of 25 bridges models show that the maximum value of natural frequency is equal to 5.64Hz in two circles piers bridge model. Therefore, this type of model has good stiffness and bearing capacity. The two square piers model, the one circle pier model, and the two circles piers model appear good stiffness because of the natural frequencies (5.30Hz, 5.52Hz, and 5.64Hz are more than the maximum forced frequencies (4.52Hz, 5.45Hz, and 4.52Hz respectively. According to the comparison between all models results, the two circles piers model has the higher stiffness because of this model has the maximum value of natural frequency (5.64Hz and it is more than all forced vibration frequencies of all others models. Therefore, this study recommends that using the bridge model of two circles piers in the bridges construction that consists of three spans (30m+40m+30m with section of box girder.