WorldWideScience

Sample records for seesaw neutrino mass

  1. Neutrino mass and mixing in the seesaw playground

    International Nuclear Information System (INIS)

    King, Stephen F.

    2016-01-01

    We discuss neutrino mass and mixing in the framework of the classic seesaw mechanism, involving right-handed neutrinos with large Majorana masses, which provides an appealing way to understand the smallness of neutrino masses. However, with many input parameters, the seesaw mechanism is in general not predictive. We focus on natural implementations of the seesaw mechanism, in which large cancellations do not occur, where one of the right-handed neutrinos is dominantly responsible for the atmospheric neutrino mass, while a second right-handed neutrino accounts for the solar neutrino mass, leading to an effective two right-handed neutrino model. We discuss recent attempts to predict lepton mixing and CP violation within such natural frameworks, focusing on the Littlest Seesaw and its distinctive predictions.

  2. Neutrino oscillations and the seesaw origin of neutrino mass

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, O.G., E-mail: omr@fis.cinvestav.mx [Departamento de Física, Centro de Investigación y de Estudios Avanzados del IPN, Apdo. Postal 14-740, 07000 Mexico, Distrito Federal (Mexico); Valle, J.W.F. [AHEP Group, Institut de Física Corpuscular – C.S.I.C./Universitat de València, Parc Cientific de Paterna, C/Catedratico José Beltrán, 2, E-46980 Paterna (València) (Spain)

    2016-07-15

    The historical discovery of neutrino oscillations using solar and atmospheric neutrinos, and subsequent accelerator and reactor studies, has brought neutrino physics to the precision era. We note that CP effects in oscillation phenomena could be difficult to extract in the presence of unitarity violation. As a result upcoming dedicated leptonic CP violation studies should take into account the non-unitarity of the lepton mixing matrix. Restricting non-unitarity will shed light on the seesaw scale, and thereby guide us towards the new physics responsible for neutrino mass generation.

  3. Trinification, the hierarchy problem, and inverse seesaw neutrino masses

    International Nuclear Information System (INIS)

    Cauet, Christophe; Paes, Heinrich; Wiesenfeldt, Soeren

    2011-01-01

    In minimal trinification models light neutrino masses can be generated via a radiative seesaw mechanism, where the masses of the right-handed neutrinos originate from loops involving Higgs and fermion fields at the unification scale. This mechanism is absent in models aiming at solving or ameliorating the hierarchy problem, such as low-energy supersymmetry, since the large seesaw scale disappears. In this case, neutrino masses need to be generated via a TeV-scale mechanism. In this paper, we investigate an inverse seesaw mechanism and discuss some phenomenological consequences.

  4. The singular seesaw mechanism with hierarchical Dirac neutrino mass

    International Nuclear Information System (INIS)

    Chikira, Y.; Mimura, Y.

    2000-01-01

    The singular seesaw mechanism can naturally explain the atmospheric neutrino deficit by maximal oscillations between ν μ L and ν μ R . This mechanism can also induce three different scales of the neutrino mass squared differences, which can explain the neutrino deficits of three independent experiments (solar, atmospheric, and LSND) by neutrino oscillations. In this paper we show that realistic mixing angles among the neutrinos can be obtained by introducing a hierarchy in the Dirac neutrino mass. In the case where the Majorana neutrino mass matrix has rank 2, the solar neutrino deficit is explained by vacuum oscillations between ν e and ν τ . We also consider the case where the Majorana neutrino mass matrix has rank 1. In this case, the matter enhanced Mikheyev-Smirnov-Wolfenstein solar neutrino solution is preferred as the solution of the solar neutrino deficit. (orig.)

  5. Seesaw neutrino masses with large mixings from dimensional deconstruction

    International Nuclear Information System (INIS)

    Balaji, K.R.S.; Lindner, Manfred; Seidl, Gerhart

    2003-01-01

    We demonstrate a dynamical origin for the dimension-five seesaw operator in dimensional deconstruction models. Light neutrino masses arise from the seesaw scale which corresponds to the inverse lattice spacing. It is shown that the deconstructing limit naturally prefers maximal leptonic mixing. Higher-order corrections which are allowed by gauge invariance can transform the bimaximal into a bilarge mixing. These terms may appear to be nonrenormalizable at scales smaller than the deconstruction scale

  6. Neutrino masses from SUSY breaking in radiative seesaw models

    International Nuclear Information System (INIS)

    Figueiredo, Antonio J.R.

    2015-01-01

    Radiatively generated neutrino masses (m ν ) are proportional to supersymmetry (SUSY) breaking, as a result of the SUSY non-renormalisation theorem. In this work, we investigate the space of SUSY radiative seesaw models with regard to their dependence on SUSY breaking (SUSY). In addition to contributions from sources of SUSY that are involved in electroweak symmetry breaking (SUSY EWSB contributions), and which are manifest from left angle F H † right angle = μ left angle anti H right angle ≠ 0 and left angle D right angle = g sum H left angle H † x H H right angle ≠ 0, radiatively generated m ν can also receive contributions from SUSY sources that are unrelated to EWSB (SUSY EWS contributions). We point out that recent literature overlooks pure-SUSY EWSB contributions (∝ μ/M) that can arise at the same order of perturbation theory as the leading order contribution from SUSY EWS . We show that there exist realistic radiative seesaw models in which the leading order contribution to m ν is proportional to SUSY EWS . To our knowledge no model with such a feature exists in the literature. We give a complete description of the simplest model topologies and their leading dependence on SUSY. We show that in one-loop realisations LLHH operators are suppressed by at least μ m soft /M 3 or m soft 2 /M 3 . We construct a model example based on a oneloop type-II seesaw. An interesting aspect of these models lies in the fact that the scale of soft-SUSY effects generating the leading order m ν can be quite small without conflicting with lower limits on the mass of new particles. (orig.)

  7. Seesaw roadmap to neutrino mass and dark matter

    Science.gov (United States)

    Centelles Chuliá, Salvador; Srivastava, Rahul; Valle, José W. F.

    2018-06-01

    We describe the many pathways to generate Majorana and Dirac neutrino mass through generalized dimension-5 operators a la Weinberg. The presence of new scalars beyond the Standard Model Higgs doublet implies new possible field contractions, which are required in the case of Dirac neutrinos. We also notice that, in the Dirac neutrino case, the extra symmetries needed to ensure the Dirac nature of neutrinos can also be made responsible for stability of dark matter.

  8. Neutrino masses and flavor mixing in the extended double Seesaw model with two texture zeros

    International Nuclear Information System (INIS)

    Hu, Li-Jun; Dulat, Sayipjamal; Ablat, Abduleziz

    2011-01-01

    We study the light neutrino mass matrix in the extended double Seesaw model (EDSM), and as a result we get its general form. Also we demonstrate that conventional type-I and double seesaw mechanisms can be regarded as two special cases. We analyze the structure of the 9 x 9 neutrino mass matrix in this scenario, and surprisingly we find that EDSM will degenerate to a conventional type-I seesaw mechanism when M R = M S M μ -1 M S T holds exactly. Considering two simple ansaetze in two texture zeros for its 3 x 3 submatrices, we calculate the neutrino masses and flavor mixing angles, in which the θ 13 is a nonzero large angle. (orig.)

  9. Interplay of type I and type II seesaw contributions to neutrino mass

    International Nuclear Information System (INIS)

    Akhmedov, Evgeny Kh.; Frigerio, Michele

    2007-01-01

    Type I and type II seesaw contributions to the mass matrix of light neutrinos are inherently related if left-right symmetry is realized at high energy scales. We investigate implications of such a relation for the interpretation of neutrino data. We proved recently that the left-right symmetric seesaw equation has eight solutions, related by a duality property, for the mass matrix of right-handed neutrinos M R . In this paper the eight allowed structures of M R are reconstructed analytically and analyzed numerically in a bottom-up approach. We study the dependence of right-handed neutrino masses on the mass spectrum of light neutrinos, mixing angle θ 13 , leptonic CP violation, scale of left-right symmetry breaking and on the hierarchy in neutrino Yukawa couplings. The structure of the seesaw formula in several specific SO(10) models is explored in the light of the duality. The outcome of leptogenesis may depend crucially on the choice among the allowed structures of M R and on the level crossing between right-handed neutrino masses

  10. Discriminating neutrino mass models using Type-II see-saw formula

    Indian Academy of Sciences (India)

    though a fuller analysis needs the full matrix form when all terms are present. This is followed by the normal hierarchical model (Type [III]) and inverted hierarchical model with opposite CP phase (Type [IIB]). γ ≃ 10−2 for both of them. Our main results on neutrino masses and mixings in Type-II see-saw formula are presented ...

  11. Beyond the standard seesaw neutrino masses from Kahler operators and broken supersymmetry

    CERN Document Server

    Brignole, Andrea; Rossi, Anna

    2010-01-01

    We investigate supersymmetric scenarios in which neutrino masses are generated by effective d=6 operators in the Kahler potential, rather than by the standard d=5 superpotential operator. First, we discuss some general features of such effective operators, also including SUSY-breaking insertions, and compute the relevant renormalization group equations. Contributions to neutrino masses arise at low energy both at the tree level and through finite threshold corrections. In the second part we present simple explicit realizations in which those Kahler operators arise by integrating out heavy SU(2)_W triplets, as in the type II seesaw. Distinct scenarios emerge, depending on the mechanism and the scale of SUSY-breaking mediation. In particular, we propose an appealing and economical picture in which the heavy seesaw mediators are also messengers of SUSY breaking. In this case, strong correlations exist among neutrino parameters, sparticle and Higgs masses, as well as lepton flavour violating processes. Hence, thi...

  12. Renormalization of seesaw neutrino masses in the standard model ...

    Indian Academy of Sciences (India)

    the neutrino-mass-operator in the standard model with two-Higgs doublets, and also the QCD–QED ... data of atmospheric muon deficits, thereby suggesting a large mixing angle with ЖС¾. Ь ~ ... One method consists of running the gauge.

  13. Compromise between neutrino masses and collider signatures in the type-II seesaw model

    International Nuclear Information System (INIS)

    Chao Wei; Luo Shu; Xing Zhizhong; Zhou Shun

    2008-01-01

    A natural extension of the standard SU(2) L xU(1) Y gauge model to accommodate massive neutrinos is to introduce one Higgs triplet and three right-handed Majorana neutrinos, leading to a 6x6 neutrino mass matrix which contains three 3x3 submatrices, M L , M D and M R . We show that three light Majorana neutrinos (i.e., the mass eigenstates of ν e , ν μ , and ν τ ) are exactly massless in this model, if and only if M L =M D M R -1 M D T exactly holds. This no-go theorem implies that small but nonvanishing neutrino masses may result from a significant but incomplete cancellation between M L and M D M R -1 M D T terms in the Type-II seesaw formula, provided three right-handed Majorana neutrinos are of O(1) TeV and experimentally detectable at the LHC. We propose three simple Type-II seesaw scenarios with the A 4 xU(1) X flavor symmetry and its explicit breaking to interpret the observed neutrino mass spectrum and neutrino mixing pattern. Such a TeV-scale neutrino model can be tested in two complementary ways: (1) searching for possible collider signatures of lepton number violation induced by the right-handed Majorana neutrinos and doubly-charged Higgs particles; and (2) searching for possible consequences of unitarity violation of the 3x3 neutrino mixing matrix in the future long-baseline neutrino oscillation experiments

  14. Seesaw induced electroweak scale, the hierarchy problem and sub-eV neutrino masses

    International Nuclear Information System (INIS)

    Atwood, D.; Bar-Shalom, S.; Soni, A.

    2006-01-01

    We describe a model for the scalar sector where all interactions occur either at an ultra-high scale, Λ U ∝10 16 -10 19 GeV, or at an intermediate scale, Λ I =10 9 -10 11 GeV. The interaction of physics on these two scales results in an SU(2) Higgs condensate at the electroweak (EW) scale, Λ EW , through a seesaw-like Higgs mechanism, Λ EW ∝Λ I 2 /Λ U , while the breaking of the SM SU(2) x U(1) gauge symmetry occurs at the intermediate scale Λ I . The EW scale is, therefore, not fundamental but is naturally generated in terms of ultra-high energy phenomena and so the hierarchy problem is alleviated. We show that the class of such ''seesaw Higgs'' models predict the existence of sub-eV neutrino masses which are generated through a ''two-step'' seesaw mechanism in terms of the same two ultra-high scales: m ν ∝Λ I 4 /Λ U 3 ∝Λ EW 2 /Λ U . The neutrinos can be either Dirac or Majorana, depending on the structure of the scalar potential. We also show that our seesaw Higgs model can be naturally embedded in theories with tiny extra dimensions of size R∝Λ U -1 ∝10 -16 fm, where the seesaw induced EW scale arises from a violation of a symmetry at a distant brane; in particular, in the scenario presented there are seven tiny extra dimensions. (orig.)

  15. Radiative corrections to light neutrino masses in low scale type I seesaw scenarios and neutrinoless double beta decay

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Pavon, J. [SISSA and INFN - sezione di Trieste, via Bonomea 265, 34136 Trieste (Italy); Molinaro, E. [CP-Origins and Danish Institute for Advanced Study, University of Southern Denmark,Campusvej 55, DK-5230 Odense M (Denmark); Petcov, S.T. [SISSA and INFN - sezione di Trieste, via Bonomea 265, 34136 Trieste (Italy); Kavli IPMU (WPI), University of Tokyo, 5-1-5 Kashiwanoha, 277-8583 Kashiwa (Japan)

    2015-11-05

    We perform a detailed analysis of the one-loop corrections to the light neutrino mass matrix within low scale type I seesaw extensions of the Standard Model and their implications in experimental searches for neutrinoless double beta decay. We show that a sizable contribution to the effective Majorana neutrino mass from the exchange of heavy Majorana neutrinos is always possible, provided one requires a fine-tuned cancellation between the tree-level and one-loop contribution to the light neutrino masses. We quantify the level of fine-tuning as a function of the seesaw parameters and introduce a generalisation of the Casas-Ibarra parametrization of the neutrino Yukawa matrix, which easily allows to include the one-loop corrections to the light neutrino masses.

  16. Explaining dark matter and neutrino mass in the light of TYPE-II seesaw model

    Science.gov (United States)

    Biswas, Anirban; Shaw, Avirup

    2018-02-01

    With the motivation of simultaneously explaining dark matter and neutrino masses, mixing angles, we have invoked the Type-II seesaw model extended by an extra SU(2) doublet Φ. Moreover, we have imposed a Z2 parity on Φ which remains unbroken as the vacuum expectation value of Φ is zero. Consequently, the lightest neutral component of Φ becomes naturally stable and can be a viable dark matter candidate. On the other hand, light Majorana masses for neutrinos have been generated following usual Type-II seesaw mechanism. Further in this framework, for the first time we have derived the full set of vacuum stability and unitarity conditions, which must be satisfied to obtain a stable vacuum as well as to preserve the unitarity of the model respectively. Thereafter, we have performed extensive phenomenological studies of both dark matter and neutrino sectors considering all possible theoretical and current experimental constraints. Finally, we have also discussed a qualitative collider signatures of dark matter and associated odd particles at the 13 TeV Large Hadron Collider.

  17. Seesaw neutrinos from the heterotic string

    International Nuclear Information System (INIS)

    Buchmueller, W.; Hamaguchi, K.; Ramos-Sanchez, S.; Ratz, M.

    2007-03-01

    We study the possibility of realizing the neutrino seesaw mechanism in the E 8 x E 8 heterotic string. In particular, we consider its Z 6 orbifold compactifications leading to the supersymmetric standard model gauge group and matter content. We find that these models possess all the necessary ingredients for the seesaw mechanism, including the required Dirac Yukawa couplings and large Majorana mass terms. We argue that this situation is quite common in heterotic orbifolds. In contrast to the conventional seesaw of grand unified theories (GUTs), no large GUT representations are needed to generate the Majorana mass terms. The total number of right-handed neutrinos can be very large, up to O(100). (orig.)

  18. The mass-hierarchy puzzle and the 17-keV neutrino in the context of a universal seesaw model

    International Nuclear Information System (INIS)

    Papageorgiu, E.; Ranfone, S.

    1991-06-01

    In the light of renewed evidence for the existence of a 17 keV neutrino, we study the possible mass patterns for the charged and the neutral leptons, in the context of a generalized ''seesaw''-type of model, which implements a horizontal U(1) A Peccei-Quinn symmetry. Under some general assumptions concerning the structure of the mass matrix we find that the mass hierarchy between the first two generations of charged leptons and the third one is explained in terms of the natural scales of the model. At the same time, with the additional assumption of the proportionality of Majorana- and Dirac-type couplings, the spectrum of the neutral leptons contains two very light Majorana neutrinos, such as required by the Mikheyev-Smirnov-Wolfenstein interpretation of the solar neutrino deficit, and the 17 keV ''Simpson'' neutrino. A cosmologically consistent decay mode of this neutrino is into a ν e and the axion. (author)

  19. Neutrino seesaw mechanism with texture zeros

    International Nuclear Information System (INIS)

    Liao, Jiajun; Marfatia, D.; Whisnant, K.

    2015-01-01

    In the context of the Type I seesaw mechanism, we carry out a systematic study of the constraints that result from zeros in both the Dirac and right-handed Majorana neutrino mass matrices. We find that most constraints can be expressed in the standard form with one or two element/cofactor zeros alone, while there are 9 classes of nonstandard constraints. We show that all the constraints are stable under one-loop renormalization group running from the lightest right-handed neutrino mass scale to the electroweak scale. We study the predictions of the nonstandard constraints for the lightest neutrino mass, Dirac CP phase and neutrinoless double beta decay.

  20. NEUTRINO MASS

    OpenAIRE

    Kayser, Boris

    1988-01-01

    This is a review article about the most recent developments on the field of neutrino mass. The first part of the review introduces the idea of neutrino masses and mixing angles, summarizes the most recent experimental data then discusses the experimental prospects and challenges in this area. The second part of the review discusses the implications of these results for particle physics and cosmology, including the origin of neutrino mass, the see-saw mechanism and sequential dominance, and la...

  1. Standard coupling unification in SO(10), hybrid seesaw neutrino mass and leptogenesis, dark matter, and proton lifetime predictions

    Energy Technology Data Exchange (ETDEWEB)

    Parida, M.K.; Nayak, Bidyut Prava; Satpathy, Rajesh [Centre of Excellence in Theoretical and Mathematical Sciences,Siksha ‘O’ Anusandhan University,Khandagiri Square, Bhubaneswar 751030 (India); Awasthi, Ram Lal [Indian Institute of Science Education and Research,Knowledge City, Sector 81, SAS Nagar, Manauli 140306 (India)

    2017-04-12

    We discuss gauge coupling unification of SU(3){sub C}×SU(2){sub L}×U(1){sub Y} descending directly from non-supersymmetric SO(10) while providing solutions to the three outstanding problems of the standard model: neutrino masses, dark matter, and the baryon asymmetry of the universe. Conservation of matter parity as gauged discrete symmetry for the stability and identification of dark matter in the model calls for high-scale spontaneous symmetry breaking through 126{sub H} Higgs representation. This naturally leads to the hybrid seesaw formula for neutrino masses mediated by heavy scalar triplet and right-handed neutrinos. Being quadratic in the Majorana coupling, the seesaw formula predicts two distinct patterns of right-handed neutrino masses, one hierarchical and another not so hierarchical (or compact), when fitted with the neutrino oscillation data. Predictions of the baryon asymmetry via leptogenesis are investigated through the decays of both the patterns of RHν masses. A complete flavor analysis has been carried out to compute CP-asymmetries including washouts and solutions to Boltzmann equations have been utilised to predict the baryon asymmetry. The additional contribution to vertex correction mediated by the heavy left-handed triplet scalar is noted to contribute as dominantly as other Feynman diagrams. We have found successful predictions of the baryon asymmetry for both the patterns of right-handed neutrino masses. The SU(2){sub L} triplet fermionic dark matter at the TeV scale carrying even matter parity is naturally embedded into the non-standard fermionic representation 45{sub F} of SO(10). In addition to the triplet scalar and the triplet fermion, the model needs a nonstandard color octet fermion of mass ∼5×10{sup 7} GeV to achieve precision gauge coupling unification at the GUT mass scale M{sub U}{sup 0}=10{sup 15.56} GeV. Threshold corrections due to superheavy components of 126{sub H} and other representations are estimated and found to be

  2. Gauge Anomalies and Neutrino Seesaw Models

    CERN Document Server

    Neves Cebola, Luis Manuel

    Despite the success of the Standard Model concerning theoretical predictions, there are several experimental results that cannot be explained and there are reasons to believe that there exists new physics beyond it. Neutrino oscillations, and hence their masses, are examples of this. Experimentally it is known that neutrinos masses are quite small, when compared to all Standard Model particle masses. Among the theoretical possibilities to explain these tiny masses, the seesaw mechanism is a simple and well-motivated framework. In its minimal version, heavy particles are introduced that decouple from the theory in the early universe. To build consistent theories, classical symmetries need to be preserved at quantum level, so that there are no anomalies. The cancellation of these anomalies leads to constraints in the parameters of the theory. One attractive solution is to realize the anomaly cancellation through the modication of the gauge symmetry. In this thesis we present a short review of some features of t...

  3. Precision neutrino experiments vs the Littlest Seesaw

    Energy Technology Data Exchange (ETDEWEB)

    Ballett, Peter [Institute for Particle Physics Phenomenology,Department of Physics, Durham University,South Road, Durham DH1 3LE (United Kingdom); King, Stephen F. [School of Physics and Astronomy, University of Southampton,SO17 1BJ Southampton (United Kingdom); Pascoli, Silvia [Institute for Particle Physics Phenomenology,Department of Physics, Durham University,South Road, Durham DH1 3LE (United Kingdom); Prouse, Nick W. [School of Physics and Astronomy, University of Southampton,SO17 1BJ Southampton (United Kingdom); Particle Physics Research Centre, School of Physics and Astronomy,Queen Mary University of London,Mile End Road, London E1 4NS (United Kingdom); Wang, TseChun [Institute for Particle Physics Phenomenology,Department of Physics, Durham University,South Road, Durham DH1 3LE (United Kingdom)

    2017-03-21

    We study to what extent upcoming precision neutrino oscillation experiments will be able to exclude one of the most predictive models of neutrino mass and mixing: the Littlest Seesaw. We show that this model provides a good fit to current data, predicting eight observables from two input parameters, and provide new assessments of its predictions and their correlations. We then assess the ability to exclude this model using simulations of upcoming neutrino oscillation experiments including the medium-distance reactor experiments JUNO and RENO-50 and the long-baseline accelerator experiments DUNE and T2HK. We find that an accurate determination of the currently least well measured parameters, namely the atmospheric and solar angles and the CP phase δ, provide crucial independent tests of the model. For θ{sub 13} and the two mass-squared differences, however, the model’s exclusion requires a combination of measurements coming from a varied experimental programme. Our results show that the synergy and complementarity of future experiments will play a vital role in efficiently discriminating between predictive models of neutrino flavour, and hence, towards advancing our understanding of neutrino oscillations in the context of the flavour puzzle of the Standard Model.

  4. Neutrino mass and the solar neutrino problem

    International Nuclear Information System (INIS)

    Wolfenstein, L.

    1987-01-01

    Theoretical ideas about neutrino mass based on grand-unified theories are reviewed. These give the see-saw formula in which neutrino mass is inversely proportional to a large mass scale M. For M between 10/sup 11/ and 10/sup 15/ Gev the study of solar neutrinos appears to be the best probe of neutrino masses and mixings

  5. Soft see-saw: Radiative origin of neutrino masses in SUSY theories

    Directory of Open Access Journals (Sweden)

    Luka Megrelidze

    2017-01-01

    Full Text Available Radiative neutrino mass generation within supersymmetric (SUSY construction is studied. The mechanism is considered where the lepton number violation is originating from the soft SUSY breaking terms. This requires MSSM extensions with states around the TeV scale. We present several explicit realizations based on extensions either by MSSM singlet or SU(2w triplet states. Besides some novelties of the proposed scenarios, various phenomenological implications are also discussed.

  6. The seesaw with many right-handed neutrinos

    International Nuclear Information System (INIS)

    Ellis, John; Lebedev, Oleg

    2007-01-01

    There are no upper limits on the possible number of massive, singlet (right-handed) neutrinos that may participate in the seesaw mechanism, and some string constructions motivate seesaw models with up to O(100) right-handed neutrinos. In this case, the seesaw mass scale can be significantly higher than that in the traditional scheme with just 3 right-handed neutrinos. We consider the possible phenomenological implications of such models, in particular, for lepton-flavour violation and electric dipole moments. Since the neutrino masses depend on the Majorana mass scale linearly, while supersymmetric loop corrections depend on it logarithmically, the magnitude of lepton-flavour- and CP-violating transitions may increase with the multiplicity of the right-handed neutrinos and may be enhanced by orders of magnitude. We also point out that, in the context of leptogenesis, the bounds on the reheating temperature and the lightest neutrino mass get relaxed compared to those in the case of 3 right-handed neutrinos

  7. New mechanism for Type-II seesaw dominance in SO(10) with low-mass Z', RH neutrinos, and verifiable LFV, LNV and proton decay

    Energy Technology Data Exchange (ETDEWEB)

    Nayak, Bidyut Prava; Parida, Mina Ketan [Siksha ' ' O' ' Anusandhan University, Centre of Excellence in Theoretical and Mathematical Sciences, Bhubaneswar, Odisha (India)

    2015-05-15

    The dominance of Type-II seesaw mechanism for the neutrino masses has attracted considerable attention because of a number of advantages. We show a novel approach to achieve Type-II seesaw dominance in nonsupersymmetric SO(10) grand unification where a low-mass Z' boson and specific patterns of right-handed neutrino masses are predicted within the accessible energy range of the Large Hadron Collider. In spite of the high value of the seesaw scale, M{sub Δ{sub L}} ≅ 10{sup 8}-10{sup 9} GeV, the model predicts new dominant contributions to neutrino-less double beta decay in the W{sub L}-W{sub L} channel close to the current experimental limits via exchanges of heavier singlet fermions used as essential ingredients of this model even when the light active neutrino masses are normally hierarchical or invertedly hierarchical. We obtain upper bounds on the lightest sterile neutrino mass m{sub s} neutrino masses, respectively. The underlying nonunitarity effects lead to lepton flavour violating decay branching ratios within the reach of ongoing or planned experiments and the leptonic CP-violation parameter nearly two order larger than the quark sector. Some of the predicted values on the proton lifetime for p → e{sup +}π{sup 0} are found to be within the currently accessible search limits. Other aspects of model applications including leptogenesis etc. are briefly indicated. (orig.)

  8. A see-saw mechanism with light sterile neutrinos

    International Nuclear Information System (INIS)

    McKellar, B.H.J.; Garbutt, M.; Stephenson, G.J.; Goldman, T.

    2001-01-01

    The usual see-saw mechanism for the generation of light neutrino masses is based on the assumption that all of the flavours of right-handed (more properly, sterile) neutrinos are heavy. If the sterile Majorana mass matrix is singular, one or more of the sterile neutrinos will have zero mass before mixing with the active (left-handed) neutrinos and be light after that mixing is introduced In particular, a rank 1 sterile mass matrix leads naturally to two pseudo-Dirac pairs, one very light active Majorana neutrino and one heavy sterile Majorana neutrino. For any pattern of Dirac masses, there exists a region of parameter space in which the two pseudo-Dirac pairs are nearly degenerate in mass. This, in turn, leads to large amplitude mixing of active states as well as mixing into sterile states

  9. See-saw enhancement of neutrino mixing due to the right-handed phases

    International Nuclear Information System (INIS)

    Tanimoto, M.

    1994-11-01

    We study the see-saw enhancement mechanism in presence of the right-handed phases of the Dirac neutrino mass matrix and the Majorana mass matrix. The enhancement condition given by Smirnov is modified. We point out that the see-saw enhancement could be obtained due to the right-handed phases even if the Majorana matrix is proportional to the unit matrix. We show a realistic Dirac mass matrix which causes the see-saw enhancement. (author)

  10. Leptogenesis and neutrino masses

    International Nuclear Information System (INIS)

    Pluemacher, M.

    2004-01-01

    Thermal leptogenesis explains the baryon asymmetry of the universe by the out-of-equilibrium decays of heavy right-handed neutrinos. In the minimal seesaw model this leads to interesting implications for light neutrino properties. In particular, quasi-degenerate light neutrino masses are incompatible with leptogenesis. An upper bound on light neutrino masses of 0.1 eV can be derived, which will be tested by forthcoming laboratory experiments and cosmology. (author)

  11. Flavor democracy and type-II seesaw realization of bilarge neutrino mixing

    International Nuclear Information System (INIS)

    Rodejohann, Werner; Xing Zhizhong

    2004-01-01

    We generalize the democratic neutrino mixing ansatz by incorporating the type-II seesaw mechanism with S(3) flavor symmetry. For only the triplet mass term or only the conventional seesaw term large neutrino mixing can be achieved only by assuming an unnatural suppression of the flavor democracy contribution. We show that bilarge neutrino mixing can naturally appear if the flavor democracy term is strongly suppressed due to significant cancellation between the conventional seesaw and triplet mass terms. Explicit S(3) symmetry breaking yields successful neutrino phenomenology and various testable correlations between the neutrino mass and mixing parameters. Among the results are a normal neutrino mass ordering, 0.005= e3 vertical bar = 2 2θ 23 >=0.005, positive J CP and moderate cancellation in the effective mass of the neutrinoless double beta decay

  12. Phenomenological study of extended seesaw model for light sterile neutrino

    International Nuclear Information System (INIS)

    Nath, Newton; Ghosh, Monojit; Goswami, Srubabati; Gupta, Shivani

    2017-01-01

    We study the zero textures of the Yukawa matrices in the minimal extended type-I seesaw (MES) model which can give rise to ∼ eV scale sterile neutrinos. In this model, three right handed neutrinos and one extra singlet S are added to generate a light sterile neutrino. The light neutrino mass matrix for the active neutrinos, m ν , depends on the Dirac neutrino mass matrix (M D ), Majorana neutrino mass matrix (M R ) and the mass matrix (M S ) coupling the right handed neutrinos and the singlet. The model predicts one of the light neutrino masses to vanish. We systematically investigate the zero textures in M D and observe that maximum five zeros in M D can lead to viable zero textures in m ν . For this study we consider four different forms for M R (one diagonal and three off diagonal) and two different forms of (M S ) containing one zero. Remarkably we obtain only two allowed forms of m ν (m eτ =0 and m ττ =0) having inverted hierarchical mass spectrum. We re-analyze the phenomenological implications of these two allowed textures of m ν in the light of recent neutrino oscillation data. In the context of the MES model, we also express the low energy mass matrix, the mass of the sterile neutrino and the active-sterile mixing in terms of the parameters of the allowed Yukawa matrices. The MES model leads to some extra correlations which disallow some of the Yukawa textures obtained earlier, even though they give allowed one-zero forms of m ν . We show that the allowed textures in our study can be realized in a simple way in a model based on MES mechanism with a discrete Abelian flavor symmetry group Z 8 ×Z 2 .

  13. Coupling active and sterile neutrinos in the cosmon plus seesaw framework

    International Nuclear Information System (INIS)

    Bernardini, A.E.

    2010-01-01

    The cosmological evolution of neutrino energy densities driven by cosmon-type field equations is introduced assuming that active and sterile neutrinos are intrinsically connected by cosmon fields through the seesaw mechanism. Interpreting sterile neutrinos as dark matter adiabatically coupled with dark energy results in a natural decoupling of (active) mass varying neutrino (MaVaN) equations. Identifying the dimensionless scale of the seesaw mechanism, m/M, with a power of the cosmological scale factor, a, allows for embedding the resulting masses into the generalized Chaplygin gas (GCG) scenario for the dark sector. Without additional assumptions, our findings establish a precise connection among three distinct frameworks: the cosmon field dynamics for MaVaN's, the seesaw mechanism for dynamical mass generation and the GCG scenario. Our results also corroborate with previous assertions that mass varying particles can be the right responsible for the stability issue and for the cosmic acceleration of the universe.

  14. Neutrino μ - τ reflection symmetry and its breaking in the minimal seesaw

    OpenAIRE

    Liu, Zhi-Cheng; Yue, Chong-Xing; Zhao, Zhen-Hua

    2017-01-01

    In this paper, we attempt to implement the neutrino $\\mu$-$\\tau$ reflection symmetry (which predicts $\\theta^{}_{23} = \\pi/4$ and $\\delta = \\pm \\pi/2$ as well as trivial Majorana phases) in the minimal seesaw (which enables us to fix the neutrino masses). For some direct (the preliminary experimental hints towards $\\theta^{}_{23} \

  15. Anatomy of Higgs mass in supersymmetric inverse seesaw models

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Eung Jin, E-mail: ejchun@kias.re.kr [Korea Institute for Advanced Study, Seoul 130-722 (Korea, Republic of); Mummidi, V. Suryanarayana, E-mail: soori9@cts.iisc.ernet.in [Centre for High Energy Physics, Indian Institute of Science, Bangalore 560012 (India); Vempati, Sudhir K., E-mail: vempati@cts.iisc.ernet.in [Centre for High Energy Physics, Indian Institute of Science, Bangalore 560012 (India)

    2014-09-07

    We compute the one loop corrections to the CP-even Higgs mass matrix in the supersymmetric inverse seesaw model to single out the different cases where the radiative corrections from the neutrino sector could become important. It is found that there could be a significant enhancement in the Higgs mass even for Dirac neutrino masses of O(30) GeV if the left-handed sneutrino soft mass is comparable or larger than the right-handed neutrino mass. In the case where right-handed neutrino masses are significantly larger than the supersymmetry breaking scale, the corrections can utmost account to an upward shift of 3 GeV. For very heavy multi TeV sneutrinos, the corrections replicate the stop corrections at 1-loop. We further show that general gauge mediation with inverse seesaw model naturally accommodates a 125 GeV Higgs with TeV scale stops.

  16. Mass of neutrino and particle physics

    CERN Document Server

    Yanagida, T

    2003-01-01

    We give a brief review on the seesaw mechanism in a grand unified theory which predicts small neutrino masses. In the seesaw mechanism the lepton-number conservation is broken and neutrinos have Majorana type masses. We also explain why the lepton-number nonconservation can be an origin of the baryon-number asymmetry in the present universe. (author)

  17. Study of experimentally undetermined neutrino parameters in the light of baryogenesis considering type I and type II Seesaw models

    International Nuclear Information System (INIS)

    Kalita, Rupam

    2017-01-01

    We study to connect all the experimentally undetermined neutrino parameters namely lightest neutrino mass, neutrino CP phases and baryon asymmetry of the Universe within the framework of a model where both type I and type II seesaw mechanisms can contribute to tiny neutrino masses. In this work we study the effects of Dirac and Majorana neutrino phases in the origin of matter-antimatter asymmetry through the mechanism of leptogenesis. Type I seesaw mass matrix considered to a tri-bimaximal (TBM) type neutrino mixing which always gives non zero reactor mixing angle. The type II seesaw mass matrix is then considered in such a way that the necessary deviation from TBM mixing and the best fit values of neutrino parameters can be obtained when both type I and type II seesaw contributions are taken into account. We consider different contribution from type I and type II seesaw mechanism to study the effects of neutrino CP phases in the baryon asymmetry of the universe. We further study to connect all these experimentally undetermined neutrino parameters by considering various contribution of type I and type II seesaw. (author)

  18. Phenomenological study of extended seesaw model for light sterile neutrino

    Energy Technology Data Exchange (ETDEWEB)

    Nath, Newton [Physical Research Laboratory,Navarangpura, Ahmedabad 380 009 (India); Indian Institute of Technology,Gandhinagar, Ahmedabad-382424 (India); Ghosh, Monojit [Department of Physics, Tokyo Metropolitan University,Hachioji, Tokyo 192-0397 (Japan); Goswami, Srubabati [Physical Research Laboratory,Navarangpura, Ahmedabad 380 009 (India); Gupta, Shivani [Center of Excellence for Particle Physics (CoEPP), University of Adelaide,Adelaide SA 5005 (Australia)

    2017-03-14

    We study the zero textures of the Yukawa matrices in the minimal extended type-I seesaw (MES) model which can give rise to ∼ eV scale sterile neutrinos. In this model, three right handed neutrinos and one extra singlet S are added to generate a light sterile neutrino. The light neutrino mass matrix for the active neutrinos, m{sub ν}, depends on the Dirac neutrino mass matrix (M{sub D}), Majorana neutrino mass matrix (M{sub R}) and the mass matrix (M{sub S}) coupling the right handed neutrinos and the singlet. The model predicts one of the light neutrino masses to vanish. We systematically investigate the zero textures in M{sub D} and observe that maximum five zeros in M{sub D} can lead to viable zero textures in m{sub ν}. For this study we consider four different forms for M{sub R} (one diagonal and three off diagonal) and two different forms of (M{sub S}) containing one zero. Remarkably we obtain only two allowed forms of m{sub ν} (m{sub eτ}=0 and m{sub ττ}=0) having inverted hierarchical mass spectrum. We re-analyze the phenomenological implications of these two allowed textures of m{sub ν} in the light of recent neutrino oscillation data. In the context of the MES model, we also express the low energy mass matrix, the mass of the sterile neutrino and the active-sterile mixing in terms of the parameters of the allowed Yukawa matrices. The MES model leads to some extra correlations which disallow some of the Yukawa textures obtained earlier, even though they give allowed one-zero forms of m{sub ν}. We show that the allowed textures in our study can be realized in a simple way in a model based on MES mechanism with a discrete Abelian flavor symmetry group Z{sub 8}×Z{sub 2}.

  19. Simpson's neutrino and the singular see-saw

    International Nuclear Information System (INIS)

    Allen, T.J.; Johnson, R.; Ranfone, S.; Schechter, J.; Walle, J.W.F.

    1991-01-01

    The authors of this paper derive explicit forms for the neutrino and lepton mixing-matrices which describe the generic singular see-saw model. The dependence on the hierarchy parameter is contrasted with the non-singular case. Application is made to Simpson's 17 keV neutrino

  20. Large and almost maximal neutrino mixing within the type II see-saw mechanism

    International Nuclear Information System (INIS)

    Lindner, Manfred; Rodejohann, Werner

    2007-01-01

    Within the type II see-saw mechanism the light neutrino mass matrix is given by a sum of a direct (or triplet) mass term and the conventional (type I) see-saw term. Both versions of the see-saw mechanism explain naturally small neutrino masses, but the type II scenario offers interesting additional possibilities to explain large or almost maximal or vanishing mixings which are discussed in this paper. We first introduce 'type II enhancement' of neutrino mixing, where moderate cancellations between the two terms can lead to large neutrino mixing even if all individual mass matrices and terms generate small mixing. However, nearly maximal or vanishing mixings are not naturally explained in this way, unless there is a certain initial structure (symmetry) which enforces certain elements of the matrices to be identical or related in a special way. We therefore assume that the leading structure of the neutrino mass matrix is the triplet term and corresponds to zero U e3 and maximal θ 23 . Small but necessary corrections are generated by the conventional see-saw term. Then we assume that one of the two terms corresponds to an extreme mixing scenario, such as bimaximal or tri-bimaximal mixing. Deviations from this scheme are introduced by the second term. One can mimic Quark-Lepton Complementarity in this way. Finally, we note that the neutrino mass matrix for tri-bimaximal mixing can be-depending on the mass hierarchy-written as a sum of two terms with simple structure. Their origin could be the two terms of type II see-saw

  1. Neutrino CP violation and sign of baryon asymmetry in the minimal seesaw model

    Science.gov (United States)

    Shimizu, Yusuke; Takagi, Kenta; Tanimoto, Morimitsu

    2018-03-01

    We discuss the correlation between the CP violating Dirac phase of the lepton mixing matrix and the cosmological baryon asymmetry based on the leptogenesis in the minimal seesaw model with two right-handed Majorana neutrinos and the trimaximal mixing for neutrino flavors. The sign of the CP violating Dirac phase at low energy is fixed by the observed cosmological baryon asymmetry since there is only one phase parameter in the model. According to the recent T2K and NOνA data of the CP violation, the Dirac neutrino mass matrix of our model is fixed only for the normal hierarchy of neutrino masses.

  2. Phenomenological analysis of properties of the right-handed Majorana neutrino in the seesaw mechanism

    International Nuclear Information System (INIS)

    Pan Haijun; Cheng, G.

    2002-01-01

    As an extension of our previous work in the seesaw mechanism, we analyze the influence of nonzero U e3 on the properties (masses and mixing) of the right-handed Majorana neutrinos in three flavors. The quasidegenerate light neutrinos case is also considered. Assuming the hierarchical Dirac neutrino masses, we find the heavy Majorana neutrino mass spectrum is either hierarchical or partially degenerate if θ 23 ν is large. We show that degenerate right-handed (RH) Majorana masses correspond to a maximal RH mixing angle while hierarchical ones correspond to the RH mixing angles which scale linearly with the mass ratios of the Dirac neutrino masses. An interesting analogue to the behavior of the matter-enhanced neutrino conversion and their difference is presented

  3. Neutrino mass?

    International Nuclear Information System (INIS)

    Kayser, B.

    1992-01-01

    After arguing that we should be looking for evidence of neutrino mass, we illustrate the possible consequences of neutrino mass and mixing. We then turn to the question of whether neutrinos are their own antiparticles, and to the process which may answer this question: neutrinoless double beta decay. Next, we review the proposed Mikheyev-Smirnov-Wolfenstein solution to the solar neutrino problem, and discuss models which can generate neutrino electromagnetic moments large enough to play a role in the sun. Finally, we consider how the possible 17 keV neutrino, if real, would fit in with everything we know about neutrinos. (orig.)

  4. Non-unitary neutrino mixing and CP violation in the minimal inverse seesaw model

    International Nuclear Information System (INIS)

    Malinsky, Michal; Ohlsson, Tommy; Xing, Zhi-zhong; Zhang He

    2009-01-01

    We propose a simplified version of the inverse seesaw model, in which only two pairs of the gauge-singlet neutrinos are introduced, to interpret the observed neutrino mass hierarchy and lepton flavor mixing at or below the TeV scale. This 'minimal' inverse seesaw scenario (MISS) is technically natural and experimentally testable. In particular, we show that the effective parameters describing the non-unitary neutrino mixing matrix are strongly correlated in the MISS, and thus, their upper bounds can be constrained by current experimental data in a more restrictive way. The Jarlskog invariants of non-unitary CP violation are calculated, and the discovery potential of such new CP-violating effects in the near detector of a neutrino factory is discussed.

  5. Neutrino mass

    International Nuclear Information System (INIS)

    Robertson, R.G.H.

    1992-01-01

    Despite intensive experimental work since the neutrino's existence was proposed by Pauli 60 years ago, and its first observation by Reines and Cowan almost 40 years ago, the neutrino's fundamental properties remain elusive. Among those properties are the masses of the three known flavors, properties under charge conjugation, parity and time-reversal, and static and dynamic electromagnetic moments. Mass is perhaps the most fundamental, as it constrains the other properties. The present status of the search for neutrino mass is briefly reviewed

  6. Large mixing of light and heavy neutrinos in seesaw models and the LHC

    International Nuclear Information System (INIS)

    He Xiaogang; Oh, Sechul; Tandean, Jusak; Wen, C.-C.

    2009-01-01

    In the type-I seesaw model the size of mixing between light and heavy neutrinos, ν and N, respectively, is of order the square root of their mass ratio, (m ν /m N ) 1/2 , with only one generation of the neutrinos. Since the light-neutrino mass must be less than an eV or so, the mixing would be very small, even for a heavy-neutrino mass of order a few hundred GeV. This would make it unlikely to test the model directly at the LHC, as the amplitude for producing the heavy neutrino is proportional to the mixing size. However, it has been realized for some time that, with more than one generation of light and heavy neutrinos, the mixing can be significantly larger in certain situations. In this paper we explore this possibility further and consider specific examples in detail in the context of type-I seesaw. We study its implications for the single production of the heavy neutrinos at the LHC via the main channel qq ' →W*→lN involving an ordinary charged lepton l. We then extend the discussion to the type-III seesaw model, which has richer phenomenology due to presence of the charged partners of the heavy neutrinos, and examine the implications for the single production of these heavy leptons at the LHC. In the latter model the new kinds of solutions that we find also make it possible to have sizable flavor-changing neutral-current effects in processes involving ordinary charged leptons.

  7. Low-scale seesaw and the CP violation in neutrino oscillations

    Science.gov (United States)

    Penedo, J. T.; Petcov, S. T.; Yanagida, Tsutomu T.

    2018-04-01

    We consider a version of the low-scale type I seesaw mechanism for generating small neutrino masses, as an alternative to the standard seesaw scenario. It involves two right-handed (RH) neutrinos ν1R and ν2R having a Majorana mass term with mass M, which conserves the lepton charge L. The RH neutrino ν2R has lepton-charge conserving Yukawa couplings gℓ2 to the lepton and Higgs doublet fields, while small lepton-charge breaking effects are assumed to induce tiny lepton-charge violating Yukawa couplings gℓ1 for ν1R, l = e , μ , τ. In this approach the smallness of neutrino masses is related to the smallness of the Yukawa coupling of ν1R and not to the large value of M: the RH neutrinos can have masses in the few GeV to a few TeV range. The Yukawa couplings |gℓ2 | can be much larger than |gℓ1 |, of the order |gℓ2 | ∼10-4-10-2, leading to interesting low-energy phenomenology. We consider a specific realisation of this scenario within the Froggatt-Nielsen approach to fermion masses. In this model the Dirac CP violation phase δ is predicted to have approximately one of the values δ ≃ π / 4 , 3 π / 4, or 5 π / 4 , 7 π / 4, or to lie in a narrow interval around one of these values. The low-energy phenomenology of the considered low-scale seesaw scenario of neutrino mass generation is also briefly discussed.

  8. Lightest Higgs boson mass in split supersymmetry with the seesaw mechanism

    International Nuclear Information System (INIS)

    Cao Junjie; Yang Jinmin

    2005-01-01

    In the minimal supersymmetric standard model extended by including right-handed neutrinos with seesaw mechanism, the neutrino Yukaka couplings can be as large as the top-quark Yukawa couplings and thus the neutrino/sneutrino may cause sizable effects in Higgs boson self-energy loops. Our explicit one-loop calculations show that the neutrino/sneutrino effects may have an opposite sign to top/stop effects and thus lighten the lightest Higgs boson. If the soft-breaking mass of the right-handed neutrino is very large (at the order of Majorana mass scale), such as in the split-supersymmetry (SUSY) scenario, the effects can lower the lightest Higgs boson mass by a few tens of GeV. So the Higgs mass bound of about 150 GeV in split-SUSY may be lowered significantly if right-handed neutrinos come into play with seesaw mechanism

  9. keV right-handed neutrinos from type II seesaw mechanism in a 3-3-1 model

    International Nuclear Information System (INIS)

    Cogollo, D.; Diniz, H.; Pires, C.A. de S

    2009-01-01

    We adapt the type II seesaw mechanism to the framework of the 3-3-1 model with right-handed neutrinos. We emphasize that the mechanism is capable of generating small masses for the left-handed and right-handed neutrinos and the structure of the model allows that both masses arise from the same Yukawa coupling. For typical values of the free parameters of the model we may obtain at least one right-handed neutrino with mass in the keV range. Right-handed neutrino with mass in this range is a viable candidate for the warm component of the dark matter existent in the universe.

  10. Decay of standard-model-like Higgs boson h →μ τ in a 3-3-1 model with inverse seesaw neutrino masses

    Science.gov (United States)

    Nguyen, T. Phong; Le, T. Thuy; Hong, T. T.; Hue, L. T.

    2018-04-01

    By adding new gauge singlets of neutral leptons, the improved versions of the 3-3-1 models with right-handed neutrinos have been recently introduced in order to explain recent experimental neutrino oscillation data through the inverse seesaw mechanism. We prove that these models predict promising signals of lepton-flavor-violating decays of the standard-model-like Higgs boson h10→μ τ ,e τ , which are suppressed in the original versions. One-loop contributions to these decay amplitudes are introduced in the unitary gauge. Based on a numerical investigation, we find that the branching ratios of the decays h10→μ τ ,e τ can reach values of 10-5 in the regions of parameter space satisfying the current experimental data of the decay μ →e γ . The value of 10-4 appears when the Yukawa couplings of leptons are close to the perturbative limit. Some interesting properties of these regions of parameter space are also discussed.

  11. Neutrino mass from M theory SO(10)

    International Nuclear Information System (INIS)

    Acharya, Bobby S.; Bożek, Krzysztof; Romão, Miguel Crispim; King, Stephen F.; Pongkitivanichkul, Chakrit

    2016-01-01

    We study the origin of neutrino mass from SO(10) arising from M Theory compactified on a G_2-manifold. This is linked to the problem of the breaking of the extra U(1) gauge group, in the SU(5)×U(1) subgroup of SO(10), which we show can achieved via a (generalised) Kolda-Martin mechanism. The resulting neutrino masses arise from a combination of the seesaw mechanism and induced R-parity breaking contributions. The rather complicated neutrino mass matrix is analysed for one neutrino family and it is shown how phenomenologically acceptable neutrino masses can emerge.

  12. Neutrino mass from M theory SO(10)

    Energy Technology Data Exchange (ETDEWEB)

    Acharya, Bobby S. [Department of Physics, King’s College,WC2R 2LS, London (United Kingdom); International Centre for Theoretical Physics,I-34151 Trieste (Italy); Bożek, Krzysztof [Department of Physics, King’s College,WC2R 2LS, London (United Kingdom); Romão, Miguel Crispim; King, Stephen F. [School of Physics and Astronomy, University of Southampton,SO17 1BJ, Southampton (United Kingdom); Pongkitivanichkul, Chakrit [Department of Physics, King’s College,WC2R 2LS, London (United Kingdom)

    2016-11-29

    We study the origin of neutrino mass from SO(10) arising from M Theory compactified on a G{sub 2}-manifold. This is linked to the problem of the breaking of the extra U(1) gauge group, in the SU(5)×U(1) subgroup of SO(10), which we show can achieved via a (generalised) Kolda-Martin mechanism. The resulting neutrino masses arise from a combination of the seesaw mechanism and induced R-parity breaking contributions. The rather complicated neutrino mass matrix is analysed for one neutrino family and it is shown how phenomenologically acceptable neutrino masses can emerge.

  13. Common origin of μ-τ and CP breaking in the neutrino seesaw, baryon asymmetry, and hidden flavor symmetry

    International Nuclear Information System (INIS)

    He Hongjian; Yin Furong

    2011-01-01

    We conjecture that all CP violations (both Dirac and Majorana types) arise from a common origin in the neutrino seesaw. With this conceptually attractive and simple conjecture, we deduce that μ-τ breaking shares the common origin with all CP violations. We study the common origin of μ-τ and CP breaking in the Dirac mass matrix of seesaw Lagrangian (with right-handed neutrinos being μ-τ blind), which uniquely leads to inverted mass ordering of light neutrinos. We then predict a very different correlation between the two small μ-τ breaking observables θ 13 -0 deg. and θ 23 -45 deg., which can saturate the present experimental upper limit on θ 13 . This will be tested against our previous normal mass-ordering scheme by the ongoing oscillation experiments. We also analyze the correlations of θ 13 with Jarlskog invariant and neutrinoless ββ-decay observable. From the common origin of CP and μ-τ breaking in the neutrino seesaw, we establish a direct link between the low energy CP violations and the cosmological CP violation for baryon asymmetry. With these we further predict a lower bound on θ 13 , supporting the ongoing probes of θ 13 at Daya Bay, Double Chooz, and RENO experiments. Finally, we analyze the general model-independent Z 2 x Z 2 symmetry structure of the light neutrino sector, and map it into the seesaw sector, where one of the Z 2 's corresponds to the μ-τ symmetry Z 2 μτ and another the hidden symmetry Z 2 s (revealed in our previous work) which dictates the solar mixing angle θ 12 . We derive the physical consequences of this Z 2 s and its possible partial violation in the presence of μ-τ breaking (with or without the neutrino seesaw), regarding the θ 12 determination and the correlation between μ-τ breaking observables.

  14. Comments on reconstruction and origins of the neutrino mass spectrum

    International Nuclear Information System (INIS)

    Smirnov, A.Yu.

    2000-01-01

    There are two main issues in the present day neutrino physics: (i) Reconstruction of the neutrino mass (and flavor) spectrum and (ii) Identification of origin of the neutrino mass and mixing, or in other terms, implications of the neutrino data for the fundamental theory. Present status and perspectives of the reconstruction are summarized. We comment on the see-saw and the 'bulk-brane' mechanisms of neutrino mass generation

  15. Neutrino masses and neutrino oscillations

    CERN Document Server

    Di Lella, L

    2000-01-01

    These lectures review direct measurements of neutrino masses and the status of neutrino oscillation searches using both natural neutrino sources (the Sun and cosmic rays interacting in the Earth atmosphere) and artificial neutrinos (produced by nuclear reactors and accelerators). Finally, future experiments and plans are presented. (68 refs).

  16. Neutrino masses in the minimal gauged (B -L ) supersymmetry

    Science.gov (United States)

    Yan, Yu-Li; Feng, Tai-Fu; Yang, Jin-Lei; Zhang, Hai-Bin; Zhao, Shu-Min; Zhu, Rong-Fei

    2018-03-01

    We present the radiative corrections to neutrino masses in a minimal supersymmetric extension of the standard model with local U (1 )B -L symmetry. At tree level, three tiny active neutrinos and two nearly massless sterile neutrinos can be obtained through the seesaw mechanism. Considering the one-loop corrections to the neutrino masses, the numerical results indicate that two sterile neutrinos obtain KeV masses and the small active-sterile neutrino mixing angles. The lighter sterile neutrino is a very interesting dark matter candidate in cosmology. Meanwhile, the active neutrinos mixing angles and mass squared differences agree with present experimental data.

  17. Neutrino masses and oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, A Yu

    1996-11-01

    New effects related to refraction of neutrinos in different media are reviewed and implication of the effects to neutrino mass and mixing are discussed. Patterns of neutrino masses and mixing implied by existing hints/bounds are described. Recent results on neutrino mass generation are presented. They include neutrino masses in SO(10) GUT`s and models with anomalous U(1), generation of neutrino mass via neutrino-neutralino mixing, models of sterile neutrino. (author). 95 refs, 9 figs.

  18. A common source for neutrino and sparticle masses

    CERN Document Server

    Brignole, Andrea; Rossi, Anna

    2010-01-01

    We discuss supersymmetric scenarios in which neutrino masses arise from effective d=6 operators in the Kahler potential (including SUSY-breaking insertions). Simple explicit realizations of those Kahler operators are presented in the context of the type II seesaw. An appealing scenario emerges upon identifying the seesaw mediators with SUSY-breaking messengers.

  19. CLFV and the origin of neutrino masses

    Science.gov (United States)

    Hambye, Thomas

    2014-03-01

    The neutrino oscillations constitute the unique absolute guarantee we have at the moment that charged lepton flavor violation (CLFV) processes do exist. Even if the associated rates are in general expected very suppressed, it turns out that this is not always necessarily the case. In the framework of the three basic seesaw models, we review the possibilities of having observable rates. Each seesaw case presenting a quite different CLFV pattern, we show how these observable rates could allow us to distinguish these various possible neutrino mass origins.

  20. CLFV and the origin of neutrino masses

    International Nuclear Information System (INIS)

    Hambye, Thomas

    2014-01-01

    The neutrino oscillations constitute the unique absolute guarantee we have at the moment that charged lepton flavor violation (CLFV) processes do exist. Even if the associated rates are in general expected very suppressed, it turns out that this is not always necessarily the case. In the framework of the three basic seesaw models, we review the possibilities of having observable rates. Each seesaw case presenting a quite different CLFV pattern, we show how these observable rates could allow us to distinguish these various possible neutrino mass origins

  1. LHC and the origin of neutrino mass

    International Nuclear Information System (INIS)

    Senjanovic, Goran

    2008-01-01

    It is often said that neutrino mass is a window to a new physics beyond the standard model (SM). This is true if neutrinos are Majorana particles for the SM with Majorana neutrino mass is not a complete theory. The classical text-book test of neutrino Majorana mass, the neutrino-less double beta decay depends on the completion, and thus cannot probe neutrino mass. As pointed out already twenty five years ago, the colliders such as Tevatron or LHC offer a hope of probing directly the origin of neutrino (Majorana) mass through lepton number violating production of like sign lepton pairs. I make a case here for this in the context of all three types of seesaw mechanism.

  2. On the Hierarchy of Neutrino Masses

    International Nuclear Information System (INIS)

    Jezabek, M.; Urban, P.

    2002-01-01

    We present a model of neutrino masses combining the seesaw mechanism and strong Dirac mass hierarchy and at the same time exhibiting a significantly reduced hierarchy at the level of active neutrino masses. The heavy Majorana masses are assumed to be degenerate. The suppression of the hierarchy is due to a symmetric and unitary operator R whose role is discussed. The model gives realistic mixing and mass spectrum. The mixing of atmospheric neutrinos is attributed to the charged lepton sector whereas the mixing of solar neutrinos is due to the neutrino sector. Small U e3 is a consequence of the model. The masses of the active neutrinos are given by μ 3 ≅ √(Δm 2 O ) and μ 1 /μ 2 = ≅ tan 2 (θ O ). (author)

  3. Parametrization of Seesaw Models and Light Sterile Neutrinos

    CERN Document Server

    Blennow, Mattias

    2011-01-01

    The recent recomputation of the neutrino fluxes from nuclear reactors relaxes the tension between the LSND and MiniBooNE anomalies and disappearance data when interpreted in terms of sterile neutrino oscillations. The simplest extension of the Standard Model with such fermion singlets is the addition of right-handed sterile neutrinos with small Majorana masses. Even when introducing three right-handed neutrinos, this scenario has less free parameters than the 3+2 scenarios studied in the literature. This begs the question whether the best fit regions obtained can be reproduced by this simplest extension of the Standard Model. In order to address this question, we devise an exact parametrization of Standard Model extensions with right-handed neutrinos. Apart from the usual 3x3 neutrino mixing matrix and the 3 masses of the lightest neutrinos, the extra degrees of freedom are encoded in another 3x3 unitary matrix and 3 additional mixing angles. The parametrization includes all the correlations among masses and ...

  4. Threshold effects on renormalization group running of neutrino parameters in the low-scale seesaw model

    International Nuclear Information System (INIS)

    Bergstroem, Johannes; Ohlsson, Tommy; Zhang He

    2011-01-01

    We show that, in the low-scale type-I seesaw model, renormalization group running of neutrino parameters may lead to significant modifications of the leptonic mixing angles in view of so-called seesaw threshold effects. Especially, we derive analytical formulas for radiative corrections to neutrino parameters in crossing the different seesaw thresholds, and show that there may exist enhancement factors efficiently boosting the renormalization group running of the leptonic mixing angles. We find that, as a result of the seesaw threshold corrections to the leptonic mixing angles, various flavor symmetric mixing patterns (e.g., bi-maximal and tri-bimaximal mixing patterns) can be easily accommodated at relatively low energy scales, which is well within the reach of running and forthcoming experiments (e.g., the LHC).

  5. The seesaw mechanism at TeV scale in the 3-3-1 model with right-handed neutrinos

    International Nuclear Information System (INIS)

    Cogollo, D.; Diniz, H.; Pires, C.A. de S.; Silva, P.S.R. da

    2008-01-01

    We implement the seesaw mechanism in the 3-3-1 model with right-handed neutrinos. This will be accomplished by the introduction of a scalar sextet into the model and the spontaneous violation of lepton number. The main result of this work is that the seesaw mechanism can work already at the TeV scale with the consequence that the right-handed neutrino masses lie in the electroweak scale, in the range from MeV to tens of GeV. This window provides a great opportunity to test their appearance at current detectors, though when we contrast our results with some previous analyses concerning the detection sensitivity at LHC, we conclude that further work is needed in order to validate this search. (orig.)

  6. Neutrino masses

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Postulated in the early days of quantum mechanics by Wolfgang Pauli to make energy-momentum conservation in nuclear beta decay come out right, the neutrino has never strayed far from physicists' attention. The Moriond Workshop on Massive Neutrinos in Particle Physics and Astrophysics held recently in the French Alps showed that more than half a century after Pauli's prediction, the neutrino stubbornly refuses to yield up all its secrets

  7. Neutrino masses

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1986-04-15

    Postulated in the early days of quantum mechanics by Wolfgang Pauli to make energy-momentum conservation in nuclear beta decay come out right, the neutrino has never strayed far from physicists' attention. The Moriond Workshop on Massive Neutrinos in Particle Physics and Astrophysics held recently in the French Alps showed that more than half a century after Pauli's prediction, the neutrino stubbornly refuses to yield up all its secrets.

  8. Common origin of soft μ−τ and CP breaking in neutrino seesaw and the origin of matter

    International Nuclear Information System (INIS)

    Ge, Shao-Feng; He, Hong-Jian; Yin, Fu-Rong

    2010-01-01

    Neutrino oscillation data strongly support μ – τ symmetry as a good approximate flavor symmetry of the neutrino sector, which has to appear in any viable theory for neutrino mass-generation. The μ – τ breaking is not only small, but also the source of Dirac CP-violation. We conjecture that both discrete μ – τ and CP symmetries are fundamental symmetries of the seesaw Lagrangian (respected by interaction terms), and they are only softly broken, arising from a common origin via a unique dimension-3 Majorana mass-term of the heavy right-handed neutrinos. From this conceptually attractive and simple construction, we can predict the soft μ – τ breaking at low energies, leading to quantitative correlations between the apparently two small deviations θ 23 −45° and θ 13 −0°. This nontrivially connects the on-going measurements of mixing angle θ 23 with the upcoming experimental probes of θ 13 . We find that any deviation of θ 23 −45° must put a lower limit on θ 13 . Furthermore, we deduce the low energy Dirac and Majorana CP violations from a common soft-breaking phase associated with μ – τ breaking in the neutrino seesaw. Finally, from the soft CP breaking in neutrino seesaw we derive the cosmological CP violation for the baryon asymmetry via leptogenesis. We fully reconstruct the leptogenesis CP-asymmetry from the low energy Dirac CP phase and establish a direct link between the cosmological CP-violation and the low energy Jarlskog invariant. We predict new lower and upper bounds on the θ 13 mixing angle, 1°∼ 13 ∼ 12 by its group-parameter, and includes the conventional tri-bimaximal mixing as a special case, allowing deviations from it

  9. Radiative seesaw-type mechanism of fermion masses and non-trivial quark mixing

    Energy Technology Data Exchange (ETDEWEB)

    Arbelaez, Carolina; Hernandez, A.E.C.; Kovalenko, Sergey; Schmidt, Ivan [Universidad Tecnica Federico Santa Maria, Centro Cientifico-Tecnologico de Valparaiso-CCTVal, Valparaiso (Chile)

    2017-06-15

    We propose a predictive inert two-Higgs doublet model, where the standard model (SM) symmetry is extended by S{sub 3} x Z{sub 2} x Z{sub 12} and the field content is enlarged by extra scalar fields, charged exotic fermions and two heavy right-handed Majorana neutrinos. The charged exotic fermions generate a non-trivial quark mixing and provide one-loop-level masses for the first- and second-generation charged fermions. The masses of the light active neutrinos are generated from a one-loop-level radiative seesaw mechanism. Our model successfully explains the observed SM fermion mass and mixing pattern. (orig.)

  10. LHC signals for singlet neutrinos from a natural warped seesaw mechanism. II

    Science.gov (United States)

    Agashe, Kaustubh; Du, Peizhi; Hong, Sungwoo

    2018-04-01

    A natural seesaw mechanism for obtaining the observed size of SM neutrino masses can arise in a warped extra-dimensional/composite Higgs framework. In a previous paper, we initiated the study of signals at the LHC for the associated ˜TeV mass SM singlet neutrinos, within a canonical model of S U (2 )L×S U (2 )R×U (1 )B-L (LR) symmetry in the composite sector, as motivated by consistency with the EW precision tests. Here, we investigate LHC signals in a different region of parameter space for the same model, where production of singlet neutrinos can occur from particles beyond those in the usual LR models. Specifically, we assume that the composite (B -L ) gauge boson is lighter than all the others in the EW sector. We show that the composite (B -L ) gauge boson can acquire a significant coupling to light quarks simply via mixing with elementary hypercharge gauge boson. Thus, the singlet neutrino can be pair-produced via decays of the(B -L ) gauge boson, without a charged current counterpart. Furthermore, there is no decay for the (B -L ) gauge boson directly into dibosons, unlike for the usual case of WR± and Z'. Independently of the above extension of the EW sector, we analyze production of singlet neutrinos in decays of composite partners of S U (2 )L doublet leptons, which are absent in the usual LR models. In turn, these doublet leptons can be produced in composite WL decays. We show that the 4 -5 σ signal can be achieved for both cases described above for the following spectrum with 3000 fb-1 luminosity: 2-2.5 TeV composite gauge bosons, 1 TeV composite doublet lepton (for the second case) and 500-750 GeV singlet neutrino.

  11. Hierarchical Neutrino Masses and Mixing in Flipped-SU(5)

    CERN Document Server

    Rizos, J

    2010-01-01

    We consider the problem of neutrino masses and mixing in the framework of flipped SU(5). The right-handed neutrino mass, generated through the operation of a seesaw mechanism by a sector of gauge singlets, leads naturally, at a subsequent level, to the standard seesaw mechanism resulting into three light neutrino states with masses of the desired phenomenological order of magnitude. In this framework we study simple Ansatze for the singlet couplings for which hierarchical neutrino masses emerge naturally, parametrized in terms of the Cabbibo parameter. The resulting neutrino mixing matrices are characterized by a hierarchical structure, in which theta-(13) is always predicted to be the smallest. Finally, we discuss a possible factorized parametrization of the neutrino mass that, in addition to Cabbibo mixing, encodes also mixing due to the singlet sector.

  12. Hierarchical neutrino masses and mixing in flipped-SU(5)

    Energy Technology Data Exchange (ETDEWEB)

    Rizos, J. [Physics Department, University of Ioannina, 45110 Ioannina (Greece); Tamvakis, K., E-mail: tamvakis@uoi.g [Physics Department, University of Ioannina, 45110 Ioannina (Greece); Physics Department, CERN, CH-1211, Geneva 23 (Switzerland)

    2010-02-22

    We consider the problem of neutrino masses and mixing in the framework of flipped SU(5). The right-handed neutrino mass, generated through the operation of a seesaw mechanism by a sector of gauge singlets, leads naturally, at a subsequent level, to the standard seesaw mechanism resulting into three light neutrino states with masses of the desired phenomenological order of magnitude. In this framework we study simple Ansaetze for the singlet couplings for which hierarchical neutrino masses emerge naturally as lambda{sup n}:lambda:1 or lambda{sup n}:lambda{sup 2}:1, parametrized in terms of the Cabbibo parameter. The resulting neutrino mixing matrices are characterized by a hierarchical structure, in which theta{sub 13} is always predicted to be the smallest. Finally, we discuss a possible factorized parametrization of the neutrino mass that, in addition to Cabbibo mixing, encodes also mixing due to the singlet sector.

  13. Alternatives to Seesaw

    International Nuclear Information System (INIS)

    Murayama, Hitoshi

    2004-01-01

    The seesaw mechanism is attractive not only because it 'explains' small neutrino mass, but also because of its packaging with the SUSY-GUT, leptogenesis, Dark Matter, and electroweak symmetry breaking. However, this package has the flavor, CP, and gravitino problems. I discuss two alternatives to the seesaw mechanism. In one of them, the anomaly-mediated supersymmetry breaking solves these problems, while predicts naturally light Dirac neutrinos. In the other, the light Majorana neutrinos arise from supersymmetry breaking with right-handed neutrinos below TeV, and the Dark Matter and collider phenomenology are significantly different.

  14. LHC signals for singlet neutrinos from a natural warped seesaw mechanism. I

    Science.gov (United States)

    Agashe, Kaustubh; Du, Peizhi; Hong, Sungwoo

    2018-04-01

    Recently, it was shown in K. Agashe et al. [Phys. Rev. D 94, 013001 (2016), 10.1103/PhysRevD.94.013001] that a straightforward implementation of the type I seesaw mechanism in a warped extra dimensional framework is in reality a natural realization of "inverse" seesaw; i.e., the Standard Model (SM) neutrino mass is dominantly generated by exchange of pseudo-Dirac TeV-mass SM singlet neutrinos. By the AdS /CFT correspondence, this scenario is dual to these singlet particles being composites of some new strong dynamics, along with the SM Higgs boson (and possibly the top quark), with the rest of the SM particles being mostly elementary. We study signals from production of these heavy neutrinos at the Large Hadron Collider (LHC). We focus on the scenario where the strong sector has a global S U (2 )L×S U (2 )R×U (1 )X symmetry; such a left-right (LR) structure being motivated by consistency with the electroweak (EW) precision tests. The singlet neutrinos are charged under S U (2 )R×U (1 )X symmetry, thus can be produced from WR± exchange, as in four-dimensional LR symmetric models. However, the direct coupling of light quarks to WR± is negligible, due to WR± also being composite (cf. four-dimensional LR models); nonetheless, a sizable coupling can be induced by mixings among the various types of W± bosons. Furthermore, WR± decays dominantly into the singlet and composite partner of charged lepton (cf. SM lepton itself in four-dimensional LR model). This heavy charged lepton, in turn, decays into SM lepton, plus Z /Higgs , thus the latter can be used for extra identification of the signal. For a benchmark scenario with WR± of mass 2 TeV and singlet neutrino of mass 750 GeV, we find that, in both the dilepton +dijet +Higgs and trilepton +Higgs channels, significant evidence can be seen at the 14 TeV LHC for an integrated luminosity of 300 fb-1 and that even discovery is possible with slightly more luminosity.

  15. KeV right-handed neutrinos from type II seesaw mechanism in a 3-3-1 model

    International Nuclear Information System (INIS)

    Cogollo, D.; Diniz, H.; Pires, Carlos

    2009-01-01

    Full text. Right-handed neutrinos were not detected yet in nature. Nobody knows if they are light or heavy particles. Light right-handed neutrinos are phenomenologically interesting because of their intricate implications in particle physics, astrophysics and cosmology. For example, warm dark matter in the form of sterile neutrinos with mass in the KeV range has been advocated as a solution to the conflict among cold dark matter and observations of clustering on sub galactic scales. There are many papers devoted to the study of such implications. However, as far as we know, there are few ones devoted to the development of mechanisms that could lead to light right-handed neutrinos. Suppose a scenario where the left-handed neutrinos as well as the right-handed ones are all light particles. In a scenario like this, a challenging task to particle physics would be to develop a seesaw mechanism in the framework of some extension of the standard model that could induce the small masses of these neutrinos. In this regard, an even more interesting scenario would be one where the explanation of the lightness of both left-handed and right-handed neutrino masses would have a common origin. In this paper we consider a variant of the gauge models based in the SU(3) C xSU(3) L xU(1) N (3-3-1) symmetry called 3-3-1 model with right-handed neutrinos and adapt the type II seesaw mechanism in this framework. (author)

  16. Search for heavy lepton partners of neutrinos in proton-proton collisions in the context of the type III seesaw mechanism

    CERN Document Server

    Chatrchyan, Serguei; Sirunyan, Albert M; Tumasyan, Armen; Adam, Wolfgang; Aguilo, Ernest; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hammer, Josef; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Knünz, Valentin; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Mikulec, Ivan; Pernicka, Manfred; Rahbaran, Babak; Rohringer, Christine; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Taurok, Anton; Waltenberger, Wolfgang; Walzel, Gerhard; Widl, Edmund; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Bansal, Monika; Bansal, Sunil; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Luyckx, Sten; Mucibello, Luca; Ochesanu, Silvia; Roland, Benoit; Rougny, Romain; Selvaggi, Michele; Staykova, Zlatka; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Gonzalez Suarez, Rebeca; Kalogeropoulos, Alexis; Maes, Michael; Olbrechts, Annik; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Clerbaux, Barbara; De Lentdecker, Gilles; Dero, Vincent; Gay, Arnaud; Hreus, Tomas; Léonard, Alexandre; Marage, Pierre Edouard; Mohammadi, Abdollah; Reis, Thomas; Thomas, Laurent; Vander Marcken, Gil; Vander Velde, Catherine; Vanlaer, Pascal; Wang, Jian; Adler, Volker; Beernaert, Kelly; Cimmino, Anna; Costantini, Silvia; Garcia, Guillaume; Grunewald, Martin; Klein, Benjamin; Lellouch, Jérémie; Marinov, Andrey; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Ryckbosch, Dirk; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Verwilligen, Piet; Walsh, Sinead; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Bruno, Giacomo; Castello, Roberto; Ceard, Ludivine; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Lemaitre, Vincent; Liao, Junhui; Militaru, Otilia; Nuttens, Claude; Pagano, Davide; Pin, Arnaud; Piotrzkowski, Krzysztof; Schul, Nicolas; Vizan Garcia, Jesus Manuel; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Alves, Gilvan; Correa Martins Junior, Marcos; De Jesus Damiao, Dilson; Martins, Thiago; Pol, Maria Elena; Henrique Gomes E Souza, Moacyr; Aldá Júnior, Walter Luiz; Carvalho, Wagner; Custódio, Analu; Melo Da Costa, Eliza; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Oguri, Vitor; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Soares Jorge, Luana; Sznajder, Andre; Souza Dos Anjos, Tiago; Bernardes, Cesar Augusto; De Almeida Dias, Flavia; Tomei, Thiago; De Moraes Gregores, Eduardo; Lagana, Caio; Da Cunha Marinho, Franciole; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Genchev, Vladimir; Iaydjiev, Plamen; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Tcholakov, Vanio; Trayanov, Rumen; Vutova, Mariana; Dimitrov, Anton; Hadjiiska, Roumyana; Kozhuharov, Venelin; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Jiang, Chun-Hua; Liang, Dong; Liang, Song; Meng, Xiangwei; Tao, Junquan; Wang, Jian; Wang, Xianyou; Wang, Zheng; Xiao, Hong; Xu, Ming; Zang, Jingjing; Zhang, Zhen; Asawatangtrakuldee, Chayanit; Ban, Yong; Guo, Yifei; Li, Wenbo; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Teng, Haiyun; Wang, Dayong; Zhang, Linlin; Zou, Wei; Avila, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Osorio Oliveros, Andres Felipe; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Plestina, Roko; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Duric, Senka; Kadija, Kreso; Luetic, Jelena; Morovic, Srecko; Attikis, Alexandros; Galanti, Mario; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Elgammal, Sherif; Ellithi Kamel, Ali; Khalil, Shaaban; Mahmoud, Mohammed; Radi, Amr; Kadastik, Mario; Müntel, Mait; Raidal, Martti; Rebane, Liis; Tiko, Andres; Eerola, Paula; Fedi, Giacomo; Voutilainen, Mikko; Härkönen, Jaakko; Heikkinen, Mika Aatos; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Ungaro, Donatella; Wendland, Lauri; Banzuzi, Kukka; Karjalainen, Ahti; Korpela, Arja; Tuuva, Tuure; Besancon, Marc; Choudhury, Somnath; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Millischer, Laurent; Nayak, Aruna; Rander, John; Rosowsky, André; Shreyber, Irina; Titov, Maksym; Baffioni, Stephanie; Beaudette, Florian; Benhabib, Lamia; Bianchini, Lorenzo; Bluj, Michal; Broutin, Clementine; Busson, Philippe; Charlot, Claude; Daci, Nadir; Dahms, Torsten; Dalchenko, Mykhailo; Dobrzynski, Ludwik; Granier de Cassagnac, Raphael; Haguenauer, Maurice; Miné, Philippe; Mironov, Camelia; Naranjo, Ivo Nicolas; Nguyen, Matthew; Ochando, Christophe; Paganini, Pascal; Sabes, David; Salerno, Roberto; Sirois, Yves; Veelken, Christian; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Bloch, Daniel; Bodin, David; Brom, Jean-Marie; Cardaci, Marco; Chabert, Eric Christian; Collard, Caroline; Conte, Eric; Drouhin, Frédéric; Ferro, Cristina; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Juillot, Pierre; Le Bihan, Anne-Catherine; Van Hove, Pierre; Fassi, Farida; Mercier, Damien; Beauceron, Stephanie; Beaupere, Nicolas; Bondu, Olivier; Boudoul, Gaelle; Chasserat, Julien; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Kurca, Tibor; Lethuillier, Morgan; Mirabito, Laurent; Perries, Stephane; Sgandurra, Louis; Sordini, Viola; Tschudi, Yohann; Verdier, Patrice; Viret, Sébastien; Tsamalaidze, Zviad; Anagnostou, Georgios; Autermann, Christian; Beranek, Sarah; Edelhoff, Matthias; Feld, Lutz; Heracleous, Natalie; Hindrichs, Otto; Jussen, Ruediger; Klein, Katja; Merz, Jennifer; Ostapchuk, Andrey; Perieanu, Adrian; Raupach, Frank; Sammet, Jan; Schael, Stefan; Sprenger, Daniel; Weber, Hendrik; Wittmer, Bruno; Zhukov, Valery; Ata, Metin; Caudron, Julien; Dietz-Laursonn, Erik; Duchardt, Deborah; Erdmann, Martin; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Klingebiel, Dennis; Kreuzer, Peter; Merschmeyer, Markus; Meyer, Arnd; Olschewski, Mark; Papacz, Paul; Pieta, Holger; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Steggemann, Jan; Teyssier, Daniel; Weber, Martin; Bontenackels, Michael; Cherepanov, Vladimir; Erdogan, Yusuf; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Haj Ahmad, Wael; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Lingemann, Joschka; Nowack, Andreas; Perchalla, Lars; Pooth, Oliver; Sauerland, Philip; Stahl, Achim; Aldaya Martin, Maria; Behr, Joerg; Behrenhoff, Wolf; Behrens, Ulf; Bergholz, Matthias; Bethani, Agni; Borras, Kerstin; Burgmeier, Armin; Cakir, Altan; Calligaris, Luigi; Campbell, Alan; Castro, Elena; Costanza, Francesco; Dammann, Dirk; Diez Pardos, Carmen; Eckerlin, Guenter; Eckstein, Doris; Flucke, Gero; Geiser, Achim; Glushkov, Ivan; Gunnellini, Paolo; Habib, Shiraz; Hauk, Johannes; Hellwig, Gregor; Jung, Hannes; Kasemann, Matthias; Katsas, Panagiotis; Kleinwort, Claus; Kluge, Hannelies; Knutsson, Albert; Krämer, Mira; Krücker, Dirk; Kuznetsova, Ekaterina; Lange, Wolfgang; Lohmann, Wolfgang; Lutz, Benjamin; Mankel, Rainer; Marfin, Ihar; Marienfeld, Markus; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mnich, Joachim; Mussgiller, Andreas; Naumann-Emme, Sebastian; Novgorodova, Olga; Olzem, Jan; Perrey, Hanno; Petrukhin, Alexey; Pitzl, Daniel; Raspereza, Alexei; Ribeiro Cipriano, Pedro M; Riedl, Caroline; Ron, Elias; Rosin, Michele; Salfeld-Nebgen, Jakob; Schmidt, Ringo; Schoerner-Sadenius, Thomas; Sen, Niladri; Spiridonov, Alexander; Stein, Matthias; Walsh, Roberval; Wissing, Christoph; Blobel, Volker; Draeger, Jula; Enderle, Holger; Erfle, Joachim; Gebbert, Ulla; Görner, Martin; Hermanns, Thomas; Höing, Rebekka Sophie; Kaschube, Kolja; Kaussen, Gordon; Kirschenmann, Henning; Klanner, Robert; Lange, Jörn; Mura, Benedikt; Nowak, Friederike; Peiffer, Thomas; Pietsch, Niklas; Rathjens, Denis; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Schröder, Matthias; Schum, Torben; Seidel, Markus; Sola, Valentina; Stadie, Hartmut; Steinbrück, Georg; Thomsen, Jan; Vanelderen, Lukas; Barth, Christian; Berger, Joram; Böser, Christian; Chwalek, Thorsten; De Boer, Wim; Descroix, Alexis; Dierlamm, Alexander; Feindt, Michael; Guthoff, Moritz; Hackstein, Christoph; Hartmann, Frank; Hauth, Thomas; Heinrich, Michael; Held, Hauke; Hoffmann, Karl-Heinz; Husemann, Ulrich; Katkov, Igor; Komaragiri, Jyothsna Rani; Lobelle Pardo, Patricia; Martschei, Daniel; Mueller, Steffen; Müller, Thomas; Niegel, Martin; Nürnberg, Andreas; Oberst, Oliver; Oehler, Andreas; Ott, Jochen; Quast, Gunter; Rabbertz, Klaus; Ratnikov, Fedor; Ratnikova, Natalia; Röcker, Steffen; Schilling, Frank-Peter; Schott, Gregory; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Troendle, Daniel; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weiler, Thomas; Zeise, Manuel; Daskalakis, Georgios; Geralis, Theodoros; Kesisoglou, Stilianos; Kyriakis, Aristotelis; Loukas, Demetrios; Manolakos, Ioannis; Markou, Athanasios; Markou, Christos; Mavrommatis, Charalampos; Ntomari, Eleni; Gouskos, Loukas; Mertzimekis, Theodoros; Panagiotou, Apostolos; Saoulidou, Niki; Evangelou, Ioannis; Foudas, Costas; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Patras, Vaios; Bencze, Gyorgy; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Beni, Noemi; Czellar, Sandor; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Karancsi, János; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Beri, Suman Bala; Bhatnagar, Vipin; Dhingra, Nitish; Gupta, Ruchi; Kaur, Manjit; Mehta, Manuk Zubin; Nishu, Nishu; Saini, Lovedeep Kaur; Sharma, Archana; Singh, Jasbir; Kumar, Ashok; Kumar, Arun; Ahuja, Sudha; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Sharma, Varun; Shivpuri, Ram Krishen; Banerjee, Sunanda; Bhattacharya, Satyaki; Dutta, Suchandra; Gomber, Bhawna; Jain, Sandhya; Jain, Shilpi; Khurana, Raman; Sarkar, Subir; Sharan, Manoj; Abdulsalam, Abdulla; Choudhury, Rajani Kant; Dutta, Dipanwita; Kailas, Swaminathan; Kumar, Vineet; Mehta, Pourus; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Aziz, Tariq; Ganguly, Sanmay; Guchait, Monoranjan; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Parida, Bibhuti; Sudhakar, Katta; Wickramage, Nadeesha; Banerjee, Sudeshna; Dugad, Shashikant; Arfaei, Hessamaddin; Bakhshiansohi, Hamed; Etesami, Seyed Mohsen; Fahim, Ali; Hashemi, Majid; Hesari, Hoda; Jafari, Abideh; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Paktinat Mehdiabadi, Saeid; Safarzadeh, Batool; Zeinali, Maryam; Abbrescia, Marcello; Barbone, Lucia; Calabria, Cesare; Chhibra, Simranjit Singh; Colaleo, Anna; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Lusito, Letizia; Maggi, Giorgio; Maggi, Marcello; Marangelli, Bartolomeo; My, Salvatore; Nuzzo, Salvatore; Pacifico, Nicola; Pompili, Alexis; Pugliese, Gabriella; Selvaggi, Giovanna; Silvestris, Lucia; Singh, Gurpreet; Venditti, Rosamaria; Zito, Giuseppe; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Meneghelli, Marco; Montanari, Alessandro; Navarria, Francesco; Odorici, Fabrizio; Perrotta, Andrea; Primavera, Federica; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Travaglini, Riccardo; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Frosali, Simone; Gallo, Elisabetta; Gonzi, Sandro; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Colafranceschi, Stefano; Fabbri, Franco; Piccolo, Davide; Fabbricatore, Pasquale; Musenich, Riccardo; Tosi, Silvano; Benaglia, Andrea; De Guio, Federico; Di Matteo, Leonardo; Fiorendi, Sara; Gennai, Simone; Ghezzi, Alessio; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Martelli, Arabella; Massironi, Andrea; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Sala, Silvano; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Carrillo Montoya, Camilo Andres; Cavallo, Nicola; De Cosa, Annapaola; Dogangun, Oktay; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Bellan, Paolo; Biggio, C; Bisello, Dario; Bonnet, F; Branca, Antonio; Carlin, Roberto; Checchia, Paolo; Dorigo, Tommaso; Gasparini, Fabrizio; Gozzelino, Andrea; Kanishchev, Konstantin; Lacaprara, Stefano; Lazzizzera, Ignazio; Margoni, Martino; Meneguzzo, Anna Teresa; Nespolo, Massimo; Pazzini, Jacopo; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Vanini, Sara; Zotto, Pierluigi; Zumerle, Gianni; Gabusi, Michele; Ratti, Sergio P; Riccardi, Cristina; Torre, Paola; Vitulo, Paolo; Biasini, Maurizio; Bilei, Gian Mario; Fanò, Livio; Lariccia, Paolo; Mantovani, Giancarlo; Menichelli, Mauro; Nappi, Aniello; Romeo, Francesco; Saha, Anirban; Santocchia, Attilio; Spiezia, Aniello; Taroni, Silvia; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; D'Agnolo, Raffaele Tito; Dell'Orso, Roberto; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Kraan, Aafke; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Palla, Fabrizio; Rizzi, Andrea; Serban, Alin Titus; Spagnolo, Paolo; Squillacioti, Paola; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; Del Re, Daniele; Diemoz, Marcella; Fanelli, Cristiano; Grassi, Marco; Longo, Egidio; Meridiani, Paolo; Micheli, Francesco; Nourbakhsh, Shervin; Organtini, Giovanni; Paramatti, Riccardo; Rahatlou, Shahram; Sigamani, Michael; Soffi, Livia; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Biino, Cristina; Cartiglia, Nicolo; Costa, Marco; Demaria, Natale; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Pastrone, Nadia; Pelliccioni, Mario; Potenza, Alberto; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Solano, Ada; Staiano, Amedeo; Vilela Pereira, Antonio; Belforte, Stefano; Candelise, Vieri; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; Marone, Matteo; Montanino, Damiana; Penzo, Aldo; Schizzi, Andrea; Heo, Seong Gu; Kim, Tae Yeon; Nam, Soon-Kwon; Chang, Sunghyun; Kim, Dong Hee; Kim, Gui Nyun; Kong, Dae Jung; Park, Hyangkyu; Ro, Sang-Ryul; Son, Dong-Chul; Son, Taejin; Kim, Jae Yool; Kim, Zero Jaeho; Song, Sanghyeon; Choi, Suyong; Gyun, Dooyeon; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Tae Jeong; Lee, Kyong Sei; Moon, Dong Ho; Park, Sung Keun; Choi, Minkyoo; Kim, Ji Hyun; Park, Chawon; Park, Inkyu; Park, Sangnam; Ryu, Geonmo; Cho, Yongjin; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kim, Min Suk; Kwon, Eunhyang; Lee, Byounghoon; Lee, Jongseok; Lee, Sungeun; Seo, Hyunkwan; Yu, Intae; Bilinskas, Mykolas Jurgis; Grigelionis, Ignas; Janulis, Mindaugas; Juodagalvis, Andrius; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-de La Cruz, Ivan; Lopez-Fernandez, Ricardo; Magaña Villalba, Ricardo; Martínez-Ortega, Jorge; Sánchez-Hernández, Alberto; Villasenor-Cendejas, Luis Manuel; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Salazar Ibarguen, Humberto Antonio; Casimiro Linares, Edgar; Morelos Pineda, Antonio; Reyes-Santos, Marco A; Krofcheck, David; Bell, Alan James; Butler, Philip H; Doesburg, Robert; Reucroft, Steve; Silverwood, Hamish; Ahmad, Muhammad; Ansari, Muhammad Hamid; Asghar, Muhammad Irfan; Hoorani, Hafeez R; Khalid, Shoaib; Khan, Wajid Ali; Khurshid, Taimoor; Qazi, Shamona; Shah, Mehar Ali; Shoaib, Muhammad; Bialkowska, Helena; Boimska, Bozena; Frueboes, Tomasz; Gokieli, Ryszard; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Wrochna, Grzegorz; Zalewski, Piotr; Brona, Grzegorz; Bunkowski, Karol; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Almeida, Nuno; Bargassa, Pedrame; David Tinoco Mendes, Andre; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Seixas, Joao; Varela, Joao; Vischia, Pietro; Belotelov, Ivan; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Gorbunov, Ilya; Kamenev, Alexey; Karjavin, Vladimir; Kozlov, Guennady; Lanev, Alexander; Malakhov, Alexander; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Smirnov, Vitaly; Volodko, Anton; Zarubin, Anatoli; Evstyukhin, Sergey; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Vorobyev, Andrey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Matveev, Viktor; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Erofeeva, Maria; Gavrilov, Vladimir; Kossov, Mikhail; Lychkovskaya, Natalia; Popov, Vladimir; Safronov, Grigory; Semenov, Sergey; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Belyaev, Andrey; Boos, Edouard; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Markina, Anastasia; Obraztsov, Stepan; Perfilov, Maxim; Petrushanko, Sergey; Popov, Andrey; Sarycheva, Ludmila; Savrin, Viktor; Snigirev, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Vinogradov, Alexey; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Grishin, Viatcheslav; Kachanov, Vassili; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Djordjevic, Milos; Ekmedzic, Marko; Krpic, Dragomir; Milosevic, Jovan; Aguilar-Benitez, Manuel; Alcaraz Maestre, Juan; Arce, Pedro; Battilana, Carlo; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Domínguez Vázquez, Daniel; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Ferrando, Antonio; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Merino, Gonzalo; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Santaolalla, Javier; Senghi Soares, Mara; Willmott, Carlos; Albajar, Carmen; Codispoti, Giuseppe; de Trocóniz, Jorge F; Brun, Hugues; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Lloret Iglesias, Lara; Piedra Gomez, Jonatan; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Chuang, Shan-Huei; Duarte Campderros, Jordi; Felcini, Marta; Fernandez, Marcos; Gomez, Gervasio; Gonzalez Sanchez, Javier; Graziano, Alberto; Jorda, Clara; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baillon, Paul; Ball, Austin; Barney, David; Benitez, Jose F; Bernet, Colin; Bianchi, Giovanni; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Botta, Cristina; Breuker, Horst; Camporesi, Tiziano; Cerminara, Gianluca; Christiansen, Tim; Coarasa Perez, Jose Antonio; D'Enterria, David; Dabrowski, Anne; De Roeck, Albert; Di Guida, Salvatore; Dobson, Marc; Dupont-Sagorin, Niels; Elliott-Peisert, Anna; Frisch, Benjamin; Funk, Wolfgang; Georgiou, Georgios; Giffels, Manuel; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Girone, Maria; Giunta, Marina; Glege, Frank; Gomez-Reino Garrido, Robert; Govoni, Pietro; Gowdy, Stephen; Guida, Roberto; Hansen, Magnus; Harris, Philip; Hartl, Christian; Harvey, John; Hegner, Benedikt; Hinzmann, Andreas; Innocente, Vincenzo; Janot, Patrick; Kaadze, Ketino; Karavakis, Edward; Kousouris, Konstantinos; Lecoq, Paul; Lee, Yen-Jie; Lenzi, Piergiulio; Lourenco, Carlos; Magini, Nicolo; Maki, Tuula; Malberti, Martina; Malgeri, Luca; Mannelli, Marcello; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moser, Roland; Mozer, Matthias Ulrich; Mulders, Martijn; Musella, Pasquale; Nesvold, Erik; Orimoto, Toyoko; Orsini, Luciano; Palencia Cortezon, Enrique; Perez, Emmanuelle; Perrozzi, Luca; Petrilli, Achille; Pfeiffer, Andreas; Pierini, Maurizio; Pimiä, Martti; Piparo, Danilo; Polese, Giovanni; Quertenmont, Loic; Racz, Attila; Reece, William; Rodrigues Antunes, Joao; Rolandi, Gigi; Rovelli, Chiara; Rovere, Marco; Sakulin, Hannes; Santanastasio, Francesco; Schäfer, Christoph; Schwick, Christoph; Segoni, Ilaria; Sekmen, Sezen; Sharma, Archana; Siegrist, Patrice; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Spiga, Daniele; Tsirou, Andromachi; Veres, Gabor Istvan; Vlimant, Jean-Roch; Wöhri, Hermine Katharina; Worm, Steven; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Gabathuler, Kurt; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; König, Stefan; Kotlinski, Danek; Langenegger, Urs; Meier, Frank; Renker, Dieter; Rohe, Tilman; Sibille, Jennifer; Bäni, Lukas; Bortignon, Pierluigi; Buchmann, Marco-Andrea; Casal, Bruno; Chanon, Nicolas; Deisher, Amanda; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Dünser, Marc; Eugster, Jürg; Freudenreich, Klaus; Grab, Christoph; Hits, Dmitry; Lecomte, Pierre; Lustermann, Werner; Marini, Andrea Carlo; Martinez Ruiz del Arbol, Pablo; Mohr, Niklas; Moortgat, Filip; Nägeli, Christoph; Nef, Pascal; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pape, Luc; Pauss, Felicitas; Peruzzi, Marco; Ronga, Frederic Jean; Rossini, Marco; Sala, Leonardo; Sanchez, Ann - Karin; Starodumov, Andrei; Stieger, Benjamin; Takahashi, Maiko; Tauscher, Ludwig; Thea, Alessandro; Theofilatos, Konstantinos; Treille, Daniel; Urscheler, Christina; Wallny, Rainer; Weber, Hannsjoerg Artur; Wehrli, Lukas; Amsler, Claude; Chiochia, Vincenzo; De Visscher, Simon; Favaro, Carlotta; Ivova Rikova, Mirena; Millan Mejias, Barbara; Otiougova, Polina; Robmann, Peter; Snoek, Hella; Tupputi, Salvatore; Verzetti, Mauro; Chang, Yuan-Hann; Chen, Kuan-Hsin; Kuo, Chia-Ming; Li, Syue-Wei; Lin, Willis; Liu, Zong-Kai; Lu, Yun-Ju; Mekterovic, Darko; Singh, Anil; Volpe, Roberta; Yu, Shin-Shan; Bartalini, Paolo; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Dietz, Charles; Grundler, Ulysses; Hou, George Wei-Shu; Hsiung, Yee; Kao, Kai-Yi; Lei, Yeong-Jyi; Lu, Rong-Shyang; Majumder, Devdatta; Petrakou, Eleni; Shi, Xin; Shiu, Jing-Ge; Tzeng, Yeng-Ming; Wan, Xia; Wang, Minzu; Asavapibhop, Burin; Srimanobhas, Norraphat; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Karaman, Turker; Karapinar, Guler; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sogut, Kenan; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Vergili, Latife Nukhet; Vergili, Mehmet; Akin, Ilina Vasileva; Aliev, Takhmasib; Bilin, Bugra; Bilmis, Selcuk; Deniz, Muhammed; Gamsizkan, Halil; Guler, Ali Murat; Ocalan, Kadir; Ozpineci, Altug; Serin, Meltem; Sever, Ramazan; Surat, Ugur Emrah; Yalvac, Metin; Yildirim, Eda; Zeyrek, Mehmet; Gülmez, Erhan; Isildak, Bora; Kaya, Mithat; Kaya, Ozlem; Ozkorucuklu, Suat; Sonmez, Nasuf; Cankocak, Kerem; Levchuk, Leonid; Bostock, Francis; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Frazier, Robert; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Kreczko, Lukasz; Metson, Simon; Newbold, Dave M; Nirunpong, Kachanon; Poll, Anthony; Senkin, Sergey; Smith, Vincent J; Williams, Thomas; Basso, Lorenzo; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Jackson, James; Kennedy, Bruce W; Olaiya, Emmanuel; Petyt, David; Radburn-Smith, Benjamin Charles; Shepherd-Themistocleous, Claire; Tomalin, Ian R; Womersley, William John; Bainbridge, Robert; Ball, Gordon; Beuselinck, Raymond; Buchmuller, Oliver; Colling, David; Cripps, Nicholas; Cutajar, Michael; Dauncey, Paul; Davies, Gavin; Della Negra, Michel; Ferguson, William; Fulcher, Jonathan; Futyan, David; Gilbert, Andrew; Guneratne Bryer, Arlo; Hall, Geoffrey; Hatherell, Zoe; Hays, Jonathan; Iles, Gregory; Jarvis, Martyn; Karapostoli, Georgia; Lyons, Louis; Magnan, Anne-Marie; Marrouche, Jad; Mathias, Bryn; Nandi, Robin; Nash, Jordan; Nikitenko, Alexander; Papageorgiou, Anastasios; Pela, Joao; Pesaresi, Mark; Petridis, Konstantinos; Pioppi, Michele; Raymond, David Mark; Rogerson, Samuel; Rose, Andrew; Ryan, Matthew John; Seez, Christopher; Sharp, Peter; Sparrow, Alex; Stoye, Markus; Tapper, Alexander; Vazquez Acosta, Monica; Virdee, Tejinder; Wakefield, Stuart; Wardle, Nicholas; Whyntie, Tom; Chadwick, Matthew; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leggat, Duncan; Leslie, Dawn; Martin, William; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Hatakeyama, Kenichi; Liu, Hongxuan; Scarborough, Tara; Charaf, Otman; Henderson, Conor; Rumerio, Paolo; Avetisyan, Aram; Bose, Tulika; Fantasia, Cory; Heister, Arno; St John, Jason; Lawson, Philip; Lazic, Dragoslav; Rohlf, James; Sperka, David; Sulak, Lawrence; Alimena, Juliette; Bhattacharya, Saptaparna; Cutts, David; Demiragli, Zeynep; Ferapontov, Alexey; Garabedian, Alex; Heintz, Ulrich; Jabeen, Shabnam; Kukartsev, Gennadiy; Laird, Edward; Landsberg, Greg; Luk, Michael; Narain, Meenakshi; Nguyen, Duong; Segala, Michael; Sinthuprasith, Tutanon; Speer, Thomas; Tsang, Ka Vang; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Dolen, James; Erbacher, Robin; Gardner, Michael; Houtz, Rachel; Ko, Winston; Kopecky, Alexandra; Lander, Richard; Mall, Orpheus; Miceli, Tia; Pellett, Dave; Ricci-Tam, Francesca; Rutherford, Britney; Searle, Matthew; Smith, John; Squires, Michael; Tripathi, Mani; Vasquez Sierra, Ricardo; Yohay, Rachel; Andreev, Valeri; Cline, David; Cousins, Robert; Duris, Joseph; Erhan, Samim; Everaerts, Pieter; Farrell, Chris; Hauser, Jay; Ignatenko, Mikhail; Jarvis, Chad; Plager, Charles; Rakness, Gregory; Schlein, Peter; Traczyk, Piotr; Valuev, Vyacheslav; Weber, Matthias; Babb, John; Clare, Robert; Dinardo, Mauro Emanuele; Ellison, John Anthony; Gary, J William; Giordano, Ferdinando; Hanson, Gail; Jeng, Geng-Yuan; Liu, Hongliang; Long, Owen Rosser; Luthra, Arun; Nguyen, Harold; Paramesvaran, Sudarshan; Sturdy, Jared; Sumowidagdo, Suharyo; Wilken, Rachel; Wimpenny, Stephen; Andrews, Warren; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; Evans, David; Golf, Frank; Holzner, André; Kelley, Ryan; Lebourgeois, Matthew; Letts, James; Macneill, Ian; Mangano, Boris; Padhi, Sanjay; Palmer, Christopher; Petrucciani, Giovanni; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Sudano, Elizabeth; Tadel, Matevz; Tu, Yanjun; Vartak, Adish; Wasserbaech, Steven; Würthwein, Frank; Yagil, Avraham; Yoo, Jaehyeok; Barge, Derek; Bellan, Riccardo; Campagnari, Claudio; D'Alfonso, Mariarosaria; Danielson, Thomas; Flowers, Kristen; Geffert, Paul; Incandela, Joe; Justus, Christopher; Kalavase, Puneeth; Koay, Sue Ann; Kovalskyi, Dmytro; Krutelyov, Vyacheslav; Lowette, Steven; Mccoll, Nickolas; Pavlunin, Viktor; Rebassoo, Finn; Ribnik, Jacob; Richman, Jeffrey; Rossin, Roberto; Stuart, David; To, Wing; West, Christopher; Apresyan, Artur; Bornheim, Adolf; Chen, Yi; Di Marco, Emanuele; Duarte, Javier; Gataullin, Marat; Ma, Yousi; Mott, Alexander; Newman, Harvey B; Rogan, Christopher; Spiropulu, Maria; Timciuc, Vladlen; Veverka, Jan; Wilkinson, Richard; Xie, Si; Yang, Yong; Zhu, Ren-Yuan; Akgun, Bora; Azzolini, Virginia; Calamba, Aristotle; Carroll, Ryan; Ferguson, Thomas; Iiyama, Yutaro; Jang, Dong Wook; Liu, Yueh-Feng; Paulini, Manfred; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Drell, Brian Robert; Ford, William T; Gaz, Alessandro; Luiggi Lopez, Eduardo; Smith, James; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Alexander, James; Chatterjee, Avishek; Eggert, Nicholas; Gibbons, Lawrence Kent; Heltsley, Brian; Khukhunaishvili, Aleko; Kreis, Benjamin; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Ryd, Anders; Salvati, Emmanuele; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Tucker, Jordan; Vaughan, Jennifer; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bloch, Ingo; Burkett, Kevin; Butler, Joel Nathan; Chetluru, Vasundhara; Cheung, Harry; Chlebana, Frank; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gao, Yanyan; Green, Dan; Gutsche, Oliver; Hanlon, Jim; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Kilminster, Benjamin; Klima, Boaz; Kunori, Shuichi; Kwan, Simon; Leonidopoulos, Christos; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Maruyama, Sho; Mason, David; McBride, Patricia; Mishra, Kalanand; Mrenna, Stephen; Musienko, Yuri; Newman-Holmes, Catherine; O'Dell, Vivian; Prokofyev, Oleg; Sexton-Kennedy, Elizabeth; Sharma, Seema; Spalding, William J; Spiegel, Leonard; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Whitmore, Juliana; Wu, Weimin; Yang, Fan; Yumiceva, Francisco; Yun, Jae Chul; Acosta, Darin; Avery, Paul; Bourilkov, Dimitri; Chen, Mingshui; Cheng, Tongguang; Das, Souvik; De Gruttola, Michele; Di Giovanni, Gian Piero; Dobur, Didar; Drozdetskiy, Alexey; Field, Richard D; Fisher, Matthew; Fu, Yu; Furic, Ivan-Kresimir; Gartner, Joseph; Hugon, Justin; Kim, Bockjoo; Konigsberg, Jacobo; Korytov, Andrey; Kropivnitskaya, Anna; Kypreos, Theodore; Low, Jia Fu; Matchev, Konstantin; Milenovic, Predrag; Mitselmakher, Guenakh; Muniz, Lana; Park, Myeonghun; Remington, Ronald; Rinkevicius, Aurelijus; Sellers, Paul; Skhirtladze, Nikoloz; Snowball, Matthew; Yelton, John; Zakaria, Mohammed; Gaultney, Vanessa; Hewamanage, Samantha; Lebolo, Luis Miguel; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Chen, Jie; Diamond, Brendan; Gleyzer, Sergei V; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Jenkins, Merrill; Johnson, Kurtis F; Prosper, Harrison; Veeraraghavan, Venkatesh; Weinberg, Marc; Baarmand, Marc M; Dorney, Brian; Hohlmann, Marcus; Kalakhety, Himali; Vodopiyanov, Igor; Adams, Mark Raymond; Anghel, Ioana Maria; Apanasevich, Leonard; Bai, Yuting; Bazterra, Victor Eduardo; Betts, Russell Richard; Bucinskaite, Inga; Callner, Jeremy; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Khalatyan, Samvel; Lacroix, Florent; Malek, Magdalena; O'Brien, Christine; Silkworth, Christopher; Strom, Derek; Turner, Paul; Varelas, Nikos; Akgun, Ugur; Albayrak, Elif Asli; Bilki, Burak; Clarida, Warren; Duru, Firdevs; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Newsom, Charles Ray; Norbeck, Edwin; Onel, Yasar; Ozok, Ferhat; Sen, Sercan; Tan, Ping; Tiras, Emrah; Wetzel, James; Yetkin, Taylan; Yi, Kai; Barnett, Bruce Arnold; Blumenfeld, Barry; Bolognesi, Sara; Fehling, David; Giurgiu, Gavril; Gritsan, Andrei; Guo, Zijin; Hu, Guofan; Maksimovic, Petar; Rappoccio, Salvatore; Swartz, Morris; Whitbeck, Andrew; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Kenny Iii, Raymond Patrick; Murray, Michael; Noonan, Daniel; Sanders, Stephen; Stringer, Robert; Tinti, Gemma; Wood, Jeffrey Scott; Zhukova, Victoria; Barfuss, Anne-Fleur; Bolton, Tim; Chakaberia, Irakli; Ivanov, Andrew; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Shrestha, Shruti; Svintradze, Irakli; Gronberg, Jeffrey; Lange, David; Wright, Douglas; Baden, Drew; Boutemeur, Madjid; Calvert, Brian; Eno, Sarah Catherine; Gomez, Jaime; Hadley, Nicholas John; Kellogg, Richard G; Kirn, Malina; Kolberg, Ted; Lu, Ying; Marionneau, Matthieu; Mignerey, Alice; Pedro, Kevin; Skuja, Andris; Temple, Jeffrey; Tonjes, Marguerite; Tonwar, Suresh C; Twedt, Elizabeth; Apyan, Aram; Bauer, Gerry; Bendavid, Joshua; Busza, Wit; Butz, Erik; Cali, Ivan Amos; Chan, Matthew; Dutta, Valentina; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Hahn, Kristan Allan; Kim, Yongsun; Klute, Markus; Krajczar, Krisztian; Luckey, Paul David; Ma, Teng; Nahn, Steve; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Rudolph, Matthew; Stephans, George; Stöckli, Fabian; Sumorok, Konstanty; Sung, Kevin; Velicanu, Dragos; Wenger, Edward Allen; Wolf, Roger; Wyslouch, Bolek; Yang, Mingming; Yilmaz, Yetkin; Yoon, Sungho; Zanetti, Marco; Cooper, Seth; Dahmes, Bryan; De Benedetti, Abraham; Franzoni, Giovanni; Gude, Alexander; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Pastika, Nathaniel; Rusack, Roger; Sasseville, Michael; Singovsky, Alexander; Tambe, Norbert; Turkewitz, Jared; Cremaldi, Lucien Marcus; Kroeger, Rob; Perera, Lalith; Rahmat, Rahmat; Sanders, David A; Avdeeva, Ekaterina; Bloom, Kenneth; Bose, Suvadeep; Butt, Jamila; Claes, Daniel R; Dominguez, Aaron; Eads, Michael; Keller, Jason; Kravchenko, Ilya; Lazo-Flores, Jose; Malbouisson, Helena; Malik, Sudhir; Snow, Gregory R; Godshalk, Andrew; Iashvili, Ia; Jain, Supriya; Kharchilava, Avto; Kumar, Ashish; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Haley, Joseph; Nash, David; Trocino, Daniele; Wood, Darien; Zhang, Jinzhong; Anastassov, Anton; Kubik, Andrew; Mucia, Nicholas; Odell, Nathaniel; Ofierzynski, Radoslaw Adrian; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael Henry; Stoynev, Stoyan; Velasco, Mayda; Won, Steven; Antonelli, Louis; Berry, Douglas; Brinkerhoff, Andrew; Chan, Kwok Ming; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kolb, Jeff; Lannon, Kevin; Luo, Wuming; Lynch, Sean; Marinelli, Nancy; Morse, David Michael; Pearson, Tessa; Planer, Michael; Ruchti, Randy; Slaunwhite, Jason; Valls, Nil; Wayne, Mitchell; Wolf, Matthias; Bylsma, Ben; Durkin, Lloyd Stanley; Hill, Christopher; Hughes, Richard; Kotov, Khristian; Ling, Ta-Yung; Puigh, Darren; Rodenburg, Marissa; Vuosalo, Carl; Williams, Grayson; Winer, Brian L; Adam, Nadia; Berry, Edmund; Elmer, Peter; Gerbaudo, Davide; Halyo, Valerie; Hebda, Philip; Hegeman, Jeroen; Hunt, Adam; Jindal, Pratima; Lopes Pegna, David; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Raval, Amita; Safdi, Ben; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zuranski, Andrzej; Brownson, Eric; Lopez, Angel; Mendez, Hector; Ramirez Vargas, Juan Eduardo; Alagoz, Enver; Barnes, Virgil E; Benedetti, Daniele; Bolla, Gino; Bortoletto, Daniela; De Mattia, Marco; Everett, Adam; Hu, Zhen; Jones, Matthew; Koybasi, Ozhan; Kress, Matthew; Laasanen, Alvin T; Leonardo, Nuno; Maroussov, Vassili; Merkel, Petra; Miller, David Harry; Neumeister, Norbert; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Vidal Marono, Miguel; Yoo, Hwi Dong; Zablocki, Jakub; Zheng, Yu; Guragain, Samir; Parashar, Neeti; Adair, Antony; Boulahouache, Chaouki; Ecklund, Karl Matthew; Geurts, Frank JM; Li, Wei; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; Chung, Yeon Sei; Covarelli, Roberto; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Ferbel, Thomas; Garcia-Bellido, Aran; Goldenzweig, Pablo; Han, Jiyeon; Harel, Amnon; Miner, Daniel Carl; Vishnevskiy, Dmitry; Zielinski, Marek; Bhatti, Anwar; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Lungu, Gheorghe; Malik, Sarah; Mesropian, Christina; Arora, Sanjay; Barker, Anthony; Chou, John Paul; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Duggan, Daniel; Ferencek, Dinko; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Lath, Amitabh; Panwalkar, Shruti; Park, Michael; Patel, Rishi; Rekovic, Vladimir; Robles, Jorge; Rose, Keith; Salur, Sevil; Schnetzer, Steve; Seitz, Claudia; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Cerizza, Giordano; Hollingsworth, Matthew; Spanier, Stefan; Yang, Zong-Chang; York, Andrew; Eusebi, Ricardo; Flanagan, Will; Gilmore, Jason; Kamon, Teruki; Khotilovich, Vadim; Montalvo, Roy; Osipenkov, Ilya; Pakhotin, Yuriy; Perloff, Alexx; Roe, Jeffrey; Safonov, Alexei; Sakuma, Tai; Sengupta, Sinjini; Suarez, Indara; Tatarinov, Aysen; Toback, David; Akchurin, Nural; Damgov, Jordan; Dragoiu, Cosmin; Dudero, Phillip Russell; Jeong, Chiyoung; Kovitanggoon, Kittikul; Lee, Sung Won; Libeiro, Terence; Roh, Youn; Volobouev, Igor; Appelt, Eric; Delannoy, Andrés G; Florez, Carlos; Greene, Senta; Gurrola, Alfredo; Johns, Willard; Kurt, Pelin; Maguire, Charles; Melo, Andrew; Sharma, Monika; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Arenton, Michael Wayne; Balazs, Michael; Boutle, Sarah; Cox, Bradley; Francis, Brian; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Lin, Chuanzhe; Neu, Christopher; Wood, John; Gollapinni, Sowjanya; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Sakharov, Alexandre; Anderson, Michael; Belknap, Donald; Borrello, Laura; Carlsmith, Duncan; Cepeda, Maria; Dasu, Sridhara; Friis, Evan; Gray, Lindsey; Grogg, Kira Suzanne; Grothe, Monika; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Klukas, Jeffrey; Lanaro, Armando; Lazaridis, Christos; Leonard, Jessica; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Palmonari, Francesco; Pierro, Giuseppe Antonio; Ross, Ian; Savin, Alexander; Smith, Wesley H; Swanson, Joshua

    2012-12-05

    A search is presented in proton-proton collisions at $\\sqrt{s}$ = 7 TeV for fermionic triplet states expected in type III seesaw models. The search is performed using final states with three isolated charged leptons and an imbalance in transverse momentum. The data, collected with the CMS detector at the LHC, correspond to an integrated luminosity of 4.9 inverse femtobarns. No excess of events is observed above the background predicted by the standard model, and the results are interpreted in terms of limits on production cross sections and masses of the heavy partners of the neutrinos in type III seesaw models. Depending on the considered scenarios, lower limits are obtained on the mass of the heavy partner of the neutrino that range from 180 to 210 GeV. These are the first limits on the production of type III seesaw fermionic triplet states reported by an experiment at the LHC.

  17. Search for heavy lepton partners of neutrinos in proton–proton collisions in the context of the type III seesaw mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Aguilo, E.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hammer, J.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Pernicka, M.; Rahbaran, B.; Rohringer, C.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Waltenberger, W.; Walzel, G.; Widl, E.; Wulz, C. -E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Luyckx, S.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; Staykova, Z.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; DʼHondt, J.; Gonzalez Suarez, R.; Kalogeropoulos, A.; Maes, M.; Olbrechts, A.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hreus, T.; Léonard, A.; Marage, P. E.; Mohammadi, A.; Reis, T.; Thomas, L.; Vander Marcken, G.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Adler, V.; Beernaert, K.; Cimmino, A.; Costantini, S.; Garcia, G.; Grunewald, M.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Ocampo Rios, A. A.; Ryckbosch, D.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Verwilligen, P.; Walsh, S.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Bruno, G.; Castello, R.; Ceard, L.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Schul, N.; Vizan Garcia, J. M.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Alves, G. A.; Correa Martins Junior, M.; De Jesus Damiao, D.; Martins, T.; Pol, M. E.; Souza, M. H. G.; Aldá Júnior, W. L.; Carvalho, W.; Custódio, A.; Da Costa, E. M.; De Oliveira Martins, C.; Fonseca De Souza, S.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Oguri, V.; Prado Da Silva, W. L.; Santoro, A.; Soares Jorge, L.; Sznajder, A.; Anjos, T. S.; Bernardes, C. A.; Dias, F. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Lagana, C.; Marinho, F.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.; Vutova, M.; Dimitrov, A.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, J.; Wang, X.; Wang, Z.; Xiao, H.; Xu, M.; Zang, J.; Zhang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Guo, Y.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Teng, H.; Wang, D.; Zhang, L.; Zou, W.; Avila, C.; Gomez, J. P.; Gomez Moreno, B.; Osorio Oliveros, A. F.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Plestina, R.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Duric, S.; Kadija, K.; Luetic, J.; Morovic, S.; Attikis, A.; Galanti, M.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Finger, M.; Finger, M.; Assran, Y.; Elgammal, S.; Ellithi Kamel, A.; Khalil, S.; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Müntel, M.; Raidal, M.; Rebane, L.; Tiko, A.; Eerola, P.; Fedi, G.; Voutilainen, M.; Härkönen, J.; Heikkinen, A.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.; Banzuzi, K.; Karjalainen, A.; Korpela, A.; Tuuva, T.; Besancon, M.; Choudhury, S.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Millischer, L.; Nayak, A.; Rander, J.; Rosowsky, A.; Shreyber, I.; Titov, M.; Baffioni, S.; Beaudette, F.; Benhabib, L.; Bianchini, L.; Bluj, M.; Broutin, C.; Busson, P.; Charlot, C.; Daci, N.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Granier de Cassagnac, R.; Haguenauer, M.; Miné, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Veelken, C.; Zabi, A.; Agram, J. -L.; Andrea, J.; Bloch, D.; Bodin, D.; Brom, J. -M.; Cardaci, M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Ferro, C.; Fontaine, J. -C.; Gelé, D.; Goerlach, U.; Juillot, P.; Le Bihan, A. -C.; Van Hove, P.; Fassi, F.; Mercier, D.; Beauceron, S.; Beaupere, N.; Bondu, O.; Boudoul, G.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sgandurra, L.; Sordini, V.; Tschudi, Y.; Verdier, P.; Viret, S.; Tsamalaidze, Z.; Anagnostou, G.; Autermann, C.; Beranek, S.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.; Klein, K.; Merz, J.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Caudron, J.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Olschewski, M.; Papacz, P.; Pieta, H.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Steggemann, J.; Teyssier, D.; Weber, M.; Bontenackels, M.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Haj Ahmad, W.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Lingemann, J.; Nowack, A.; Perchalla, L.; Pooth, O.; Sauerland, P.; Stahl, A.; Aldaya Martin, M.; Behr, J.; Behrenhoff, W.; Behrens, U.; Bergholz, M.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Castro, E.; Costanza, F.; Dammann, D.; Diez Pardos, C.; Eckerlin, G.; Eckstein, D.; Flucke, G.; Geiser, A.; Glushkov, I.; Gunnellini, P.; Habib, S.; Hauk, J.; Hellwig, G.; Jung, H.; Kasemann, M.; Katsas, P.; Kleinwort, C.; Kluge, H.; Knutsson, A.; Krämer, M.; Krücker, D.; Kuznetsova, E.; Lange, W.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Marienfeld, M.; Melzer-Pellmann, I. -A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Novgorodova, O.; Olzem, J.; Perrey, H.; Petrukhin, A.; Pitzl, D.; Raspereza, A.; Ribeiro Cipriano, P. M.; Riedl, C.; Ron, E.; Rosin, M.; Salfeld-Nebgen, J.; Schmidt, R.; Schoerner-Sadenius, T.; Sen, N.; Spiridonov, A.; Stein, M.; Walsh, R.; Wissing, C.; Blobel, V.; Draeger, J.; Enderle, H.; Erfle, J.; Gebbert, U.; Görner, M.; Hermanns, T.; Höing, R. S.; Kaschube, K.; Kaussen, G.; Kirschenmann, H.; Klanner, R.; Lange, J.; Mura, B.; Nowak, F.; Peiffer, T.; Pietsch, N.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schröder, M.; Schum, T.; Seidel, M.; Sola, V.; Stadie, H.; Steinbrück, G.; Thomsen, J.; Vanelderen, L.; Barth, C.; Berger, J.; Böser, C.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Guthoff, M.; Hackstein, C.; Hartmann, F.; Hauth, T.; Heinrich, M.; Held, H.; Hoffmann, K. H.; Husemann, U.; Katkov, I.; Komaragiri, J. R.; Lobelle Pardo, P.; Martschei, D.; Mueller, S.; Müller, Th.; Niegel, M.; Nürnberg, A.; Oberst, O.; Oehler, A.; Ott, J.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Ratnikova, N.; Röcker, S.; Schilling, F. -P.; Schott, G.; Simonis, H. J.; Stober, F. M.; Troendle, D.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Zeise, M.; Daskalakis, G.; Geralis, T.; Kesisoglou, S.; Kyriakis, A.; Loukas, D.; Manolakos, I.; Markou, A.; Markou, C.; Mavrommatis, C.; Ntomari, E.; Gouskos, L.; Mertzimekis, T. J.; Panagiotou, A.; Saoulidou, N.; Evangelou, I.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Patras, V.; Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Beni, N.; Czellar, S.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Karancsi, J.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Kaur, M.; Mehta, M. Z.; Nishu, N.; Saini, L. K.; Sharma, A.; Singh, J. B.; Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, V.; Shivpuri, R. K.; Banerjee, S.; Bhattacharya, S.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Choudhury, R. K.; Dutta, D.; Kailas, S.; Kumar, V.; Mehta, P.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Aziz, T.; Ganguly, S.; Guchait, M.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.; Banerjee, S.; Dugad, S.; Arfaei, H.; Bakhshiansohi, H.; Etesami, S. M.; Fahim, A.; Hashemi, M.; Hesari, H.; Jafari, A.; Khakzad, M.; Mohammadi Najafabadi, M.; Paktinat Mehdiabadi, S.; Safarzadeh, B.; Zeinali, M.; Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Lusito, L.; Maggi, G.; Maggi, M.; Marangelli, B.; My, S.; Nuzzo, S.; Pacifico, N.; Pompili, A.; Pugliese, G.; Selvaggi, G.; Silvestris, L.; Singh, G.; Venditti, R.; Zito, G.; Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Meneghelli, M.; Montanari, A.; Navarria, F. L.; Odorici, F.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Travaglini, R.; Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; DʼAlessandro, R.; Focardi, E.; Frosali, S.; Gallo, E.; Gonzi, S.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Benussi, L.; Bianco, S.; Colafranceschi, S.; Fabbri, F.; Piccolo, D.; Fabbricatore, P.; Musenich, R.; Tosi, S.; Benaglia, A.; De Guio, F.; Di Matteo, L.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Massironi, A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Sala, S.; Tabarelli de Fatis, T.; Buontempo, S.; Carrillo Montoya, C. A.; Cavallo, N.; De Cosa, A.; Dogangun, O.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Azzi, P.; Bacchetta, N.; Bellan, P.; Biggio, C.; Bisello, D.; Bonnet, F.; Branca, A.; Carlin, R.; Checchia, P.; Dorigo, T.; Gasparini, F.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Lazzizzera, I.; Margoni, M.; Meneguzzo, A. T.; Nespolo, M.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Vanini, S.; Zotto, P.; Zumerle, G.; Gabusi, M.; Ratti, S. P.; Riccardi, C.; Torre, P.; Vitulo, P.; Biasini, M.; Bilei, G. M.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Nappi, A.; Romeo, F.; Saha, A.; Santocchia, A.; Spiezia, A.; Taroni, S.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; DʼAgnolo, R. T.; DellʼOrso, R.; Fiori, F.; Foà, L.; Giassi, A.; Kraan, A.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Del Re, D.; Diemoz, M.; Fanelli, C.; Grassi, M.; Longo, E.; Meridiani, P.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Sigamani, M.; Soffi, L.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Biino, C.; Cartiglia, N.; Costa, M.; Demaria, N.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Pastrone, N.; Pelliccioni, M.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Vilela Pereira, A.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; Marone, M.; Montanino, D.; Penzo, A.; Schizzi, A.; Heo, S. G.; Kim, T. Y.; Nam, S. K.; Chang, S.; Kim, D. H.; Kim, G. N.; Kong, D. J.; Park, H.; Ro, S. R.; Son, D. C.; Son, T.; Kim, J. Y.; Kim, Zero J.; Song, S.; Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, T. J.; Lee, K. S.; Moon, D. H.; Park, S. K.; Choi, M.; Kim, J. H.; Park, C.; Park, I. C.; Park, S.; Ryu, G.; Cho, Y.; Choi, Y.; Choi, Y. K.; Goh, J.; Kim, M. S.; Kwon, E.; Lee, B.; Lee, J.; Lee, S.; Seo, H.; Yu, I.; Bilinskas, M. J.; Grigelionis, I.; Janulis, M.; Juodagalvis, A.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Lopez-Fernandez, R.; Magaña Villalba, R.; Martínez-Ortega, J.; Sánchez-Hernández, A.; Villasenor-Cendejas, L. M.; Carrillo Moreno, S.; Vazquez Valencia, F.; Salazar Ibarguen, H. A.; Casimiro Linares, E.; Morelos Pineda, A.; Reyes-Santos, M. A.; Krofcheck, D.; Bell, A. J.; Butler, P. H.; Doesburg, R.; Reucroft, S.; Silverwood, H.; Ahmad, M.; Ansari, M. H.; Asghar, M. I.; Hoorani, H. R.; Khalid, S.; Khan, W. A.; Khurshid, T.; Qazi, S.; Shah, M. A.; Shoaib, M.; Bialkowska, H.; Boimska, B.; Frueboes, T.; Gokieli, R.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Wrochna, G.; Zalewski, P.; Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Almeida, N.; Bargassa, P.; David, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Seixas, J.; Varela, J.; Vischia, P.; Belotelov, I.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Kozlov, G.; Lanev, A.; Malakhov, A.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Smirnov, V.; Volodko, A.; Zarubin, A.; Evstyukhin, S.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Matveev, V.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Erofeeva, M.; Gavrilov, V.; Kossov, M.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Stolin, V.; Vlasov, E.; Zhokin, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Markina, A.; Obraztsov, S.; Perfilov, M.; Petrushanko, S.; Popov, A.; Sarycheva, L.; Savrin, V.; Snigirev, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Grishin, V.; Kachanov, V.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Djordjevic, M.; Ekmedzic, M.; Krpic, D.; Milosevic, J.; Aguilar-Benitez, M.; Alcaraz Maestre, J.; Arce, P.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Domínguez Vázquez, D.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Ferrando, A.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Merino, G.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.; Willmott, C.; Albajar, C.; Codispoti, G.; de Trocóniz, J. F.; Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Lloret Iglesias, L.; Piedra Gomez, J.; Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Chuang, S. H.; Duarte Campderros, J.; Felcini, M.; Fernandez, M.; Gomez, G.; Gonzalez Sanchez, J.; Graziano, A.; Jorda, C.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benitez, J. F.; Bernet, C.; Bianchi, G.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Christiansen, T.; Coarasa Perez, J. A.; DʼEnterria, D.; Dabrowski, A.; De Roeck, A.; Di Guida, S.; Dobson, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Frisch, B.; Funk, W.; Georgiou, G.; Giffels, M.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Giunta, M.; Glege, F.; Gomez-Reino Garrido, R.; Govoni, P.; Gowdy, S.; Guida, R.; Hansen, M.; Harris, P.; Hartl, C.; Harvey, J.; Hegner, B.; Hinzmann, A.; Innocente, V.; Janot, P.; Kaadze, K.; Karavakis, E.; Kousouris, K.; Lecoq, P.; Lee, Y. -J.; Lenzi, P.; Lourenço, C.; Magini, N.; Mäki, T.; Malberti, M.; Malgeri, L.; Mannelli, M.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moser, R.; Mozer, M. U.; Mulders, M.; Musella, P.; Nesvold, E.; Orimoto, T.; Orsini, L.; Palencia Cortezon, E.; Perez, E.; Perrozzi, L.; Petrilli, A.; Pfeiffer, A.; Pierini, M.; Pimiä, M.; Piparo, D.; Polese, G.; Quertenmont, L.; Racz, A.; Reece, W.; Rodrigues Antunes, J.; Rolandi, G.; Rovelli, C.; Rovere, M.; Sakulin, H.; Santanastasio, F.; Schäfer, C.; Schwick, C.; Segoni, I.; Sekmen, S.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Tsirou, A.; Veres, G. I.; Vlimant, J. R.; Wöhri, H. K.; Worm, S. D.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Gabathuler, K.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; König, S.; Kotlinski, D.; Langenegger, U.; Meier, F.; Renker, D.; Rohe, T.; Sibille, J.; Bäni, L.; Bortignon, P.; Buchmann, M. A.; Casal, B.; Chanon, N.; Deisher, A.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dünser, M.; Eugster, J.; Freudenreich, K.; Grab, C.; Hits, D.; Lecomte, P.; Lustermann, W.; Marini, A. C.; Martinez Ruiz del Arbol, P.; Mohr, N.; Moortgat, F.; Nägeli, C.; Nef, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pape, L.; Pauss, F.; Peruzzi, M.; Ronga, F. J.; Rossini, M.; Sala, L.; Sanchez, A. K.; Starodumov, A.; Stieger, B.; Takahashi, M.; Tauscher, L.; Thea, A.; Theofilatos, K.; Treille, D.; Urscheler, C.; Wallny, R.; Weber, H. A.; Wehrli, L.; Amsler, C.; Chiochia, V.; De Visscher, S.; Favaro, C.; Ivova Rikova, M.; Millan Mejias, B.; Otiougova, P.; Robmann, P.; Snoek, H.; Tupputi, S.; Verzetti, M.; Chang, Y. H.; Chen, K. H.; Kuo, C. M.; Li, S. W.; Lin, W.; Liu, Z. K.; Lu, Y. J.; Mekterovic, D.; Singh, A. P.; Volpe, R.; Yu, S. S.; Bartalini, P.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Dietz, C.; Grundler, U.; Hou, W. -S.; Hsiung, Y.; Kao, K. Y.; Lei, Y. J.; Lu, R. -S.; Majumder, D.; Petrakou, E.; Shi, X.; Shiu, J. G.; Tzeng, Y. M.; Wan, X.; Wang, M.; Asavapibhop, B.; Srimanobhas, N.; Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Karaman, T.; Karapinar, G.; Kayis Topaksu, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Sunar Cerci, D.; Tali, B.; Topakli, H.; Vergili, L. N.; Vergili, M.; Akin, I. V.; Aliev, T.; Bilin, B.; Bilmis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Ocalan, K.; Ozpineci, A.; Serin, M.; Sever, R.; Surat, U. E.; Yalvac, M.; Yildirim, E.; Zeyrek, M.; Gülmez, E.; Isildak, B.; Kaya, M.; Kaya, O.; Ozkorucuklu, S.; Sonmez, N.; Cankocak, K.; Levchuk, L.; Bostock, F.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Frazier, R.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Kreczko, L.; Metson, S.; Newbold, D. M.; Nirunpong, K.; Poll, A.; Senkin, S.; Smith, V. J.; Williams, T.; Basso, L.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Jackson, J.; Kennedy, B. W.; Olaiya, E.; Petyt, D.; Radburn-Smith, B. C.; Shepherd-Themistocleous, C. H.; Tomalin, I. R.; Womersley, W. J.; Bainbridge, R.; Ball, G.; Beuselinck, R.; Buchmuller, O.; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Della Negra, M.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Guneratne Bryer, A.; Hall, G.; Hatherell, Z.; Hays, J.; Iles, G.; Jarvis, M.; Karapostoli, G.; Lyons, L.; Magnan, A. -M.; Marrouche, J.; Mathias, B.; Nandi, R.; Nash, J.; Nikitenko, A.; Papageorgiou, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Pioppi, M.; Raymond, D. M.; Rogerson, S.; Rose, A.; Ryan, M. J.; Seez, C.; Sharp, P.; Sparrow, A.; Stoye, M.; Tapper, A.; Vazquez Acosta, M.; Virdee, T.; Wakefield, S.; Wardle, N.; Whyntie, T.; Chadwick, M.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Martin, W.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Hatakeyama, K.; Liu, H.; Scarborough, T.; Charaf, O.; Henderson, C.; Rumerio, P.; Avetisyan, A.; Bose, T.; Fantasia, C.; Heister, A.; St. John, J.; Lawson, P.; Lazic, D.; Rohlf, J.; Sperka, D.; Sulak, L.; Alimena, J.; Bhattacharya, S.; Cutts, D.; Demiragli, Z.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Jabeen, S.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Nguyen, D.; Segala, M.; Sinthuprasith, T.; Speer, T.; Tsang, K. V.; Breedon, R.; Breto, G.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Dolen, J.; Erbacher, R.; Gardner, M.; Houtz, R.; Ko, W.; Kopecky, A.; Lander, R.; Mall, O.; Miceli, T.; Pellett, D.; Ricci-tam, F.; Rutherford, B.; Searle, M.; Smith, J.; Squires, M.; Tripathi, M.; Vasquez Sierra, R.; Yohay, R.; Andreev, V.; Cline, D.; Cousins, R.; Duris, J.; Erhan, S.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Plager, C.; Rakness, G.; Schlein, P.; Traczyk, P.; Valuev, V.; Weber, M.; Babb, J.; Clare, R.; Dinardo, M. E.; Ellison, J.; Gary, J. W.; Giordano, F.; Hanson, G.; Jeng, G. Y.; Liu, H.; Long, O. R.; Luthra, A.; Nguyen, H.; Paramesvaran, S.; Sturdy, J.; Sumowidagdo, S.; Wilken, R.; Wimpenny, S.; Andrews, W.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Evans, D.; Golf, F.; Holzner, A.; Kelley, R.; Lebourgeois, M.; Letts, J.; Macneill, I.; Mangano, B.; Padhi, S.; Palmer, C.; Petrucciani, G.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Wasserbaech, S.; Würthwein, F.; Yagil, A.; Yoo, J.; Barge, D.; Bellan, R.; Campagnari, C.; DʼAlfonso, M.; Danielson, T.; Flowers, K.; Geffert, P.; Incandela, J.; Justus, C.; Kalavase, P.; Koay, S. A.; Kovalskyi, D.; Krutelyov, V.; Lowette, S.; Mccoll, N.; Pavlunin, V.; Rebassoo, F.; Ribnik, J.; Richman, J.; Rossin, R.; Stuart, D.; To, W.; West, C.; Apresyan, A.; Bornheim, A.; Chen, Y.; Di Marco, E.; Duarte, J.; Gataullin, M.; Ma, Y.; Mott, A.; Newman, H. B.; Rogan, C.; Spiropulu, M.; Timciuc, V.; Veverka, J.; Wilkinson, R.; Xie, S.; Yang, Y.; Zhu, R. Y.; Akgun, B.; Azzolini, V.; Calamba, A.; Carroll, R.; Ferguson, T.; Iiyama, Y.; Jang, D. W.; Liu, Y. F.; Paulini, M.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Drell, B. R.; Ford, W. T.; Gaz, A.; Luiggi Lopez, E.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Eggert, N.; Gibbons, L. K.; Heltsley, B.; Khukhunaishvili, A.; Kreis, B.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Ryd, A.; Salvati, E.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Vaughan, J.; Weng, Y.; Winstrom, L.; Wittich, P.; Winn, D.; Abdullin, S.; Albrow, M.; Anderson, J.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bloch, I.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chlebana, F.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Green, D.; Gutsche, O.; Hanlon, J.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Kilminster, B.; Klima, B.; Kunori, S.; Kwan, S.; Leonidopoulos, C.; Linacre, J.; Lincoln, D.; Lipton, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Mishra, K.; Mrenna, S.; Musienko, Y.; Newman-Holmes, C.; OʼDell, V.; Prokofyev, O.; Sexton-Kennedy, E.; Sharma, S.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitmore, J.; Wu, W.; Yang, F.; Yumiceva, F.; Yun, J. C.; Acosta, D.; Avery, P.; Bourilkov, D.; Chen, M.; Cheng, T.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Dobur, D.; Drozdetskiy, A.; Field, R. D.; Fisher, M.; Fu, Y.; Furic, I. K.; Gartner, J.; Hugon, J.; Kim, B.; Konigsberg, J.; Korytov, A.; Kropivnitskaya, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Park, M.; Remington, R.; Rinkevicius, A.; Sellers, P.; Skhirtladze, N.; Snowball, M.; Yelton, J.; Zakaria, M.; Gaultney, V.; Hewamanage, S.; Lebolo, L. M.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Adams, T.; Askew, A.; Bochenek, J.; Chen, J.; Diamond, B.; Gleyzer, S. V.; Haas, J.; Hagopian, S.; Hagopian, V.; Jenkins, M.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.; Baarmand, M. M.; Dorney, B.; Hohlmann, M.; Kalakhety, H.; Vodopiyanov, I.; Adams, M. R.; Anghel, I. M.; Apanasevich, L.; Bai, Y.; Bazterra, V. E.; Betts, R. R.; Bucinskaite, I.; Callner, J.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Lacroix, F.; Malek, M.; OʼBrien, C.; Silkworth, C.; Strom, D.; Turner, P.; Varelas, N.; Akgun, U.; Albayrak, E. A.; Bilki, B.; Clarida, W.; Duru, F.; Merlo, J. -P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Newsom, C. R.; Norbeck, E.; Onel, Y.; Ozok, F.; Sen, S.; Tan, P.; Tiras, E.; Wetzel, J.; Yetkin, T.; Yi, K.; Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Giurgiu, G.; Gritsan, A. V.; Guo, Z. J.; Hu, G.; Maksimovic, P.; Rappoccio, S.; Swartz, M.; Whitbeck, A.; Baringer, P.; Bean, A.; Benelli, G.; Kenny Iii, R. P.; Murray, M.; Noonan, D.; Sanders, S.; Stringer, R.; Tinti, G.; Wood, J. S.; Zhukova, V.; Barfuss, A. F.; Bolton, T.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Shrestha, S.; Svintradze, I.; Gronberg, J.; Lange, D.; Wright, D.; Baden, A.; Boutemeur, M.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kirn, M.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Pedro, K.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.; Twedt, E.; Apyan, A.; Bauer, G.; Bendavid, J.; Busza, W.; Butz, E.; Cali, I. A.; Chan, M.; Dutta, V.; Gomez Ceballos, G.; Goncharov, M.; Hahn, K. A.; Kim, Y.; Klute, M.; Krajczar, K.; Luckey, P. D.; Ma, T.; Nahn, S.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Rudolph, M.; Stephans, G. S. F.; Stöckli, F.; Sumorok, K.; Sung, K.; Velicanu, D.; Wenger, E. A.; Wolf, R.; Wyslouch, B.; Yang, M.; Yilmaz, Y.; Yoon, A. S.; Zanetti, M.; Cooper, S. I.; Dahmes, B.; De Benedetti, A.; Franzoni, G.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Sasseville, M.; Singovsky, A.; Tambe, N.; Turkewitz, J.; Cremaldi, L. M.; Kroeger, R.; Perera, L.; Rahmat, R.; Sanders, D. A.; Avdeeva, E.; Bloom, K.; Bose, S.; Butt, J.; Claes, D. R.; Dominguez, A.; Eads, M.; Keller, J.; Kravchenko, I.; Lazo-Flores, J.; Malbouisson, H.; Malik, S.; Snow, G. R.; Godshalk, A.; Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Haley, J.; Nash, D.; Trocino, D.; Wood, D.; Zhang, J.; Anastassov, A.; Kubik, A.; Mucia, N.; Odell, N.; Ofierzynski, R. A.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Velasco, M.; Won, S.; Antonelli, L.; Berry, D.; Brinkerhoff, A.; Chan, K. M.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kolb, J.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Morse, D. M.; Pearson, T.; Planer, M.; Ruchti, R.; Slaunwhite, J.; Valls, N.; Wayne, M.; Wolf, M.; Bylsma, B.; Durkin, L. S.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Puigh, D.; Rodenburg, M.; Vuosalo, C.; Williams, G.; Winer, B. L.; Adam, N.; Berry, E.; Elmer, P.; Gerbaudo, D.; Halyo, V.; Hebda, P.; Hegeman, J.; Hunt, A.; Jindal, P.; Lopes Pegna, D.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroué, P.; Quan, X.; Raval, A.; Safdi, B.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.; Brownson, E.; Lopez, A.; Mendez, H.; Ramirez Vargas, J. E.; Alagoz, E.; Barnes, V. E.; Benedetti, D.; Bolla, G.; Bortoletto, D.; De Mattia, M.; Everett, A.; Hu, Z.; Jones, M.; Koybasi, O.; Kress, M.; Laasanen, A. T.; Leonardo, N.; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Vidal Marono, M.; Yoo, H. D.; Zablocki, J.; Zheng, Y.; Guragain, S.; Parashar, N.; Adair, A.; Boulahouache, C.; Ecklund, K. M.; Geurts, F. J. M.; Li, W.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.; Betchart, B.; Bodek, A.; Chung, Y. S.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Miner, D. C.; Vishnevskiy, D.; Zielinski, M.; Bhatti, A.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Rekovic, V.; Robles, J.; Rose, K.; Salur, S.; Schnetzer, S.; Seitz, C.; Somalwar, S.; Stone, R.; Thomas, S.; Cerizza, G.; Hollingsworth, M.; Spanier, S.; Yang, Z. C.; York, A.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Safonov, A.; Sakuma, T.; Sengupta, S.; Suarez, I.; Tatarinov, A.; Toback, D.; Akchurin, N.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Jeong, C.; Kovitanggoon, K.; Lee, S. W.; Libeiro, T.; Roh, Y.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Florez, C.; Greene, S.; Gurrola, A.; Johns, W.; Kurt, P.; Maguire, C.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Arenton, M. W.; Balazs, M.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Lin, C.; Neu, C.; Wood, J.; Gollapinni, S.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sakharov, A.; Anderson, M.; Belknap, D.; Borrello, L.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Friis, E.; Gray, L.; Grogg, K. S.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Klukas, J.; Lanaro, A.; Lazaridis, C.; Leonard, J.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Palmonari, F.; Pierro, G. A.; Ross, I.; Savin, A.; Smith, W. H.; Swanson, J.

    2012-12-01

    A search is presented in proton-proton collisions at sqrt(s) = 7 TeV for fermionic triplet states expected in type III seesaw models. The search is performed using final states with three isolated charged leptons and an imbalance in transverse momentum. The data, collected with the CMS detector at the LHC, correspond to an integrated luminosity of 4.9 inverse femtobarns. No excess of events is observed above the background predicted by the standard model, and the results are interpreted in terms of limits on production cross sections and masses of the heavy partners of the neutrinos in type III seesaw models. Depending on the considered scenarios, lower limits are obtained on the mass of the heavy partner of the neutrino that range from 180 to 210 GeV. These are the first limits on the production of type III seesaw fermionic triplet states reported by an experiment at the LHC.

  18. ABSOLUTE NEUTRINO MASSES

    DEFF Research Database (Denmark)

    Schechter, J.; Shahid, M. N.

    2012-01-01

    We discuss the possibility of using experiments timing the propagation of neutrino beams over large distances to help determine the absolute masses of the three neutrinos.......We discuss the possibility of using experiments timing the propagation of neutrino beams over large distances to help determine the absolute masses of the three neutrinos....

  19. Low-scale neutrino seesaw mechanism and scalar dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Fabbrichesi, M. [INFN, Sezione di Trieste, Trieste (Italy); Petcov, S.T. [INFN, Sezione di Trieste, Trieste (Italy); SISSA, Trieste (Italy); Kavli IPMU, University of Tokyo, Tokyo (Japan)

    2014-02-15

    We discuss how two birds - the little hierarchy problem of low-scale type-I seesaw models and the search for a viable dark matter candidate - are (proverbially) killed by one stone: a new inert scalar state. (orig.)

  20. Neutrino mass matrix

    International Nuclear Information System (INIS)

    Strobel, E.L.

    1985-01-01

    Given the many conflicting experimental results, examination is made of the neutrino mass matrix in order to determine possible masses and mixings. It is assumed that the Dirac mass matrix for the electron, muon, and tau neutrinos is similar in form to those of the quarks and charged leptons, and that the smallness of the observed neutrino masses results from the Gell-Mann-Ramond-Slansky mechanism. Analysis of masses and mixings for the neutrinos is performed using general structures for the Majorana mass matrix. It is shown that if certain tentative experimental results concerning the neutrino masses and mixing angles are confirmed, significant limitations may be placed on the Majorana mass matrix. The most satisfactory simple assumption concerning the Majorana mass matrix is that it is approximately proportional to the Dirac mass matrix. A very recent experimental neutrino mass result and its implications are discussed. Some general properties of matrices with structure similar to the Dirac mass matrices are discussed

  1. Dark matter from split seesaw

    International Nuclear Information System (INIS)

    Kusenko, Alexander; Takahashi, Fuminobu; Yanagida, Tsutomu T.

    2010-01-01

    The seesaw mechanism in models with extra dimensions is shown to be generically consistent with a broad range of Majorana masses. The resulting democracy of scales implies that the seesaw mechanism can naturally explain the smallness of neutrino masses for an arbitrarily small right-handed neutrino mass. If the scales of the seesaw parameters are split, with two right-handed neutrinos at a high scale and one at a keV scale, one can explain the matter-antimatter asymmetry of the universe, as well as dark matter. The dark matter candidate, a sterile right-handed neutrino with mass of several keV, can account for the observed pulsar velocities and for the recent data from Chandra X-ray Observatory, which suggest the existence of a 5 keV sterile right-handed neutrino.

  2. Reconstructing Neutrino Mass Spectrum

    OpenAIRE

    Smirnov, A. Yu.

    1999-01-01

    Reconstruction of the neutrino mass spectrum and lepton mixing is one of the fundamental problems of particle physics. In this connection we consider two central topics: (i) the origin of large lepton mixing, (ii) possible existence of new (sterile) neutrino states. We discuss also possible relation between large mixing and existence of sterile neutrinos.

  3. Neutrino masses and mixings

    International Nuclear Information System (INIS)

    Wolfenstein, L.

    1991-01-01

    Theoretical prejudices, cosmology, and neutrino oscillation experiments all suggest neutrino mass are far below present direct experimental limits. Four interesting scenarios and their implications are discussed: (1) a 17 keV ν τ , (2) a 30 ev ν τ making up the dark matter, (3) a 10 -3 ev ν μ to solve the solar neutrino problem, and (4) a three-neutrino MSW solution

  4. A4 see-saw models and form dominance

    International Nuclear Information System (INIS)

    Chen, M-C; King, Stephen F.

    2009-01-01

    We introduce the idea of Form Dominance in the (type I) see-saw mechanism, according to which a particular right-handed neutrino mass eigenstate is associated with a particular physical neutrino mass eigenstate, leading to a form diagonalizable effective neutrino mass matrix. Form Dominance, which allows an arbitrary neutrino mass spectrum, may be regarded as a generalization of Constrained Sequential Dominance which only allows strongly hierarchical neutrino masses. We consider alternative implementations of the see-saw mechanism in minimal A 4 see-saw models and show that such models satisfy Form Dominance, leading to neutrino mass sum rules which predict closely spaced neutrino masses with a normal or inverted neutrino mass ordering. To avoid the partial cancellations inherent in such models we propose Natural Form Dominance, in which a different flavon is associated with each physical neutrino mass eigenstate.

  5. Neutrino mass, a status report

    International Nuclear Information System (INIS)

    Robertson, R.G.H.

    1993-01-01

    Experimental approaches to neutrino mass include kinematic mass measurements, neutrino oscillation searches at rectors and accelerators, solar neutrinos, atmospheric neutrinos, and single and double beta decay. The solar neutrino results yield fairly strong and consistent indications that neutrino oscillations are occurring. Other evidence for new physics is less consistent and convincing

  6. Minimalistic Neutrino Mass Model

    CERN Document Server

    De Gouvêa, A; Gouvea, Andre de

    2001-01-01

    We consider the simplest model which solves the solar and atmospheric neutrino puzzles, in the sense that it contains the smallest amount of beyond the Standard Model ingredients. The solar neutrino data is accounted for by Planck-mass effects while the atmospheric neutrino anomaly is due to the existence of a single right-handed neutrino at an intermediate mass scale between 10^9 GeV and 10^14 GeV. Even though the neutrino mixing angles are not exactly predicted, they can be naturally large, which agrees well with the current experimental situation. Furthermore, the amount of lepton asymmetry produced in the early universe by the decay of the right-handed neutrino is very predictive and may be enough to explain the current baryon-to-photon ratio if the right-handed neutrinos are produced out of thermal equilibrium. One definitive test for the model is the search for anomalous seasonal effects at Borexino.

  7. Measurements of neutrino mass

    International Nuclear Information System (INIS)

    Robertson, R.G.H.

    1985-01-01

    Direct experimental information of neutrino mass as derived from the study of nuclear and elementary-particle weak decays is reviewed. Topics include tritium beta decay; the 3 He-T mass difference; electron capture decay of 163 Ho and 158 Tb; and limits on massive neutrinos from cosmology. 38 references

  8. Question of neutrino mass

    International Nuclear Information System (INIS)

    Branco, G.C.; Senjanovic, G.

    1978-01-01

    We investigate the question of neutrino mass in theories in which neutrinos are four-component Dirac particles. Our analysis is done in the framework of left-right--symmetric theories. The requirement of calculability and natural smallness of neutrino mass leads to the following constraints: (i) left and right charged weak currents must be ''orthogonal'' to each other, and (ii) there should be no W/sub L/-W/sub R/ mixing at the three level. Finally, we exhibit a model in which, due to the existence of an unbroken symmetry of the total Lagrangian, the electron and muon neutrinos remain massless to all orders in perturbation theory

  9. Radiative Majorana Neutrino Masses

    OpenAIRE

    Hou, Wei-Shu; Wong, Gwo-Guang

    1994-01-01

    We present new radiative mechanisms for generating Majorana neutrino masses, within an extension of the standard model that successfully generates radiative charged lepton masses, order by order, from heavy sequential leptons. Only the new sequential neutral lepton has a right-handed partner, and its Majorana mass provides the seed for Majorana neutrino mass generation. Saturating the cosmological bound of $50$ eV with $m_{\

  10. Neutrino mass from Cosmology

    CERN Document Server

    Lesgourgues, Julien

    2012-01-01

    Neutrinos can play an important role in the evolution of the Universe, modifying some of the cosmological observables. In this contribution we summarize the main aspects of cosmological relic neutrinos and we describe how the precision of present cosmological data can be used to learn about neutrino properties, in particular their mass, providing complementary information to beta decay and neutrinoless double-beta decay experiments. We show how the analysis of current cosmological observations, such as the anisotropies of the cosmic microwave background or the distribution of large-scale structure, provides an upper bound on the sum of neutrino masses of order 1 eV or less, with very good perspectives from future cosmological measurements which are expected to be sensitive to neutrino masses well into the sub-eV range.

  11. Neutrino mass experiments

    International Nuclear Information System (INIS)

    Robertson, R.G.H.

    1989-01-01

    The current status of the experimental search for neutrino mass is reviewed, with emphasis on direct kinematic methods. Simpson and Hime report finding new evidence for a 17-keV neutrino in the β decay of 3 H and 35 S. The situation concerning the electron neutrino mass as measured in tritium beta decay has not changed significantly in the last two years. We discuss the ''model independent'' lower limit of 17 eV obtained by the ITEP group in light of existing data on the 3 H-- 3 He mass difference. 42 refs., 1 fig., 1 tab

  12. A three-parameter neutrino mass matrix with maximal CP violation

    International Nuclear Information System (INIS)

    Grimus, W.; Lavoura, L.

    2009-01-01

    Using the seesaw mechanism, we construct a model for the light-neutrino Majorana mass matrix which yields trimaximal lepton mixing together with maximal CP violation and maximal atmospheric-neutrino mixing. We demonstrate that, in our model, the light-neutrino mass matrix retains its form under the one-loop renormalization-group evolution. With our neutrino mass matrix, the absolute neutrino mass scale is a function of |U e3 | and of the atmospheric mass-squared difference. We study the effective mass in neutrinoless ββ decay as a function of |U e3 |, showing that it contains a fourfold ambiguity

  13. Neutrino masses at v3/2

    International Nuclear Information System (INIS)

    Arkani-Hamed, Nima; Hall, Lawrence; Murayama, Hitoshi; Smith, David; Weiner, Neal

    2000-01-01

    Theories in which neutrino masses are generated by a conventional see-saw mechanism generically yield masses which are O(v 2 ) in units where M Pl = 1, which is naively too small to explain the results from SuperKamiokande. In supersymmetric theories with gravity mediated supersymmetry breaking, the fundamental small parameter is not v/M Pl , but m I /M Pl , where m I is the scale of supersymmetry breaking in the hidden sector. We note that m I 3 /M Pl 2 is only slightly too large to explain SuperKamiokande, and present two models that achieve neutrino masses at this order in m I , one of which has an additional suppression λ τ 2 , while the other has additional suppression arising from a loop factor. The latter model shares a great deal of phenomenology with a class of models previously explored, including the possibility of viable sneutrino dark matter

  14. Neutrino masses and mixing

    International Nuclear Information System (INIS)

    Fogli, G.

    1998-01-01

    The paper presents an analysis of the solar neutrino problem in terms of both Mikheyev-Smirnov-Wolfenstein (MSW) and vacuum neutrino oscillations, with the inclusion of the data collected by the SuperKamiokande experiment during 306.3 days of operation. In particular, the observed energy spectrum of the recoil electrons from 8 B neutrino scattering is discussed in detail and used to constrain the mass-mixing parameter space. Going to the atmospheric neutrino anomaly, the paper performs both a two- and three-flavor analysis of the most recent SuperKamiokande atmospheric neutrino data. The variations of the zenith distributions of ν events in the presence of flavor oscillations are investigated. It is seen that fits to the SK data, with and without the addition of the CHOOZ constrains, strongly limit the parameter space. Detailed bounds in triangle graphs are reported

  15. Neutrino mass: Recent results

    International Nuclear Information System (INIS)

    Robertson, R.G.H.

    1989-01-01

    Some recent developments in the experimental search for neutrino mass are discussed. Simpson and Hime report finding new evidence for a 17-keV neutrino in the β decay of 3 H and 35 S. New data from Los Alamos on the electron neutrino mass as measured in tritium beta decay give an upper limit of 13.5 eV at the 95% confidence level. This result is not consistent with the long-standing ITEP result of 26(5) eV within a ''model-independent'' range of 17 to 40 eV. It now appears that the electron neutrino is not sufficiently massive to close the universe by itself. 38 refs., 1 figs., 2 tabs

  16. Neutrino Masses from Neutral Top Partners

    CERN Document Server

    Batell, Brian

    2015-01-01

    We present theories of `Natural Neutrinos' in which neutral fermionic top partner fields are simultaneously the right-handed neutrinos (RHN), linking seemingly disparate aspects of the Standard Model structure: a) The RHN top partners are responsible for the observed small neutrino masses, b) They help ameliorate the tuning in the weak scale and address the little hierarchy problem, and c) The factor of $3$ arising from $N_c$ in the top-loop Higgs mass corrections is countered by a factor $3$ from the number of vector-like generations of RHN. The RHN top partners may arise in pseudo-Nambu-Goldstone-Boson (pNGB) Higgs models such as the Twin Higgs, as well as more general Composite, Little, and Orbifold Higgs scenarios, and three simple example models are presented. This framework firmly predicts a TeV-scale seesaw, as the RHN masses are bounded to be below the TeV scale by naturalness. The generation of light neutrino masses relies on a collective breaking of lepton number, allowing for comparatively large ne...

  17. Late time neutrino masses, the LSND experiment, and the cosmic microwave background.

    Science.gov (United States)

    Chacko, Z; Hall, Lawrence J; Oliver, Steven J; Perelstein, Maxim

    2005-03-25

    Models with low-scale breaking of global symmetries in the neutrino sector provide an alternative to the seesaw mechanism for understanding why neutrinos are light. Such models can easily incorporate light sterile neutrinos required by the Liquid Scintillator Neutrino Detector experiment. Furthermore, the constraints on the sterile neutrino properties from nucleosynthesis and large-scale structure can be removed due to the nonconventional cosmological evolution of neutrino masses and densities. We present explicit, fully realistic supersymmetric models, and discuss the characteristic signatures predicted in the angular distributions of the cosmic microwave background.

  18. Baryogenesis and neutrino masses

    International Nuclear Information System (INIS)

    Peccei, R.D.

    1992-01-01

    The erasure of any preexisting B+L asymmetry in the universe in its late stages suggests that the B asymmetry observed today either originated at the electroweak scale or it arose from an original L asymmetry. For the latter case to be viable either neutrino masses are much below the eV scale or the L asymmetry itself is generated at an intermediate scale. Several features of the generation of a B asymmetry via an L asymmetry are discussed, including the interesting possibility that the present baryon asymmetry in the universe originates as a result of CP violating phases in the neutrino mass matrix

  19. Towards absolute neutrino masses

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, Petr [Kellogg Radiation Laboratory 106-38, Caltech, Pasadena, CA 91125 (United States)

    2007-06-15

    Various ways of determining the absolute neutrino masses are briefly reviewed and their sensitivities compared. The apparent tension between the announced but unconfirmed observation of the 0{nu}{beta}{beta} decay and the neutrino mass upper limit based on observational cosmology is used as an example of what could happen eventually. The possibility of a 'nonstandard' mechanism of the 0{nu}{beta}{beta} decay is stressed and the ways of deciding which of the possible mechanisms is actually operational are described. The importance of the 0{nu}{beta}{beta} nuclear matrix elements is discussed and their uncertainty estimated.

  20. Higgs mass from neutrino-messenger mixing

    International Nuclear Information System (INIS)

    Byakti, Pritibhajan; Khosa, Charanjit K.; Mummidi, V.S.; Vempati, Sudhir K.

    2017-01-01

    The discovery of the Higgs particle at 125 GeV has put strong constraints on minimal messenger models of gauge mediation, pushing the stop masses into the multi-TeV regime. Extensions of these models with matter-messenger mixing terms have been proposed to generate a large trilinear parameter, A t , relaxing these constraints. The detailed survey of these models (DOI: 10.1007/JHEP05(2013)055; 10.1007/JHEP08(2013)093 ) so far considered messenger mixings with only MSSM superfields. In the present work, we extend the survey to MSSM with inverse-seesaw mechanism. The neutrino-sneutrino corrections to the Higgs mass in the inverse seesaw model are not significant in the minimal gauge mediation model, unless one considers messenger-matter interaction terms. We classify all possible models with messenger-matter interactions and perform thorough numerical analysis to find out the promising models. We found that out of the 17 possible models 9 of them can lead to Higgs mass within the observed value without raising the sfermion masses significantly. The successful models have stop masses ∼1.5 TeV with small or negligible mixing and yet a light CP even Higgs at 125 GeV.

  1. Higgs mass from neutrino-messenger mixing

    Energy Technology Data Exchange (ETDEWEB)

    Byakti, Pritibhajan [Center for High Energy Physics, Indian Institute of Science,C.V. Raman Ave, Bangalore 560012 (India); Department of Theoretical Physics, Indian Association for the Cultivation of Science,2A & 2B Raja S.C. Mullick Road, Kolkata 700 032 (India); Khosa, Charanjit K. [Center for High Energy Physics, Indian Institute of Science,C.V. Raman Ave, Bangalore 560012 (India); Mummidi, V.S. [Harish-Chandra Research Institute,Chhatnag Road, Jhusi, Allahabad 211019 (India); Vempati, Sudhir K. [Center for High Energy Physics, Indian Institute of Science,C.V. Raman Ave, Bangalore 560012 (India)

    2017-03-06

    The discovery of the Higgs particle at 125 GeV has put strong constraints on minimal messenger models of gauge mediation, pushing the stop masses into the multi-TeV regime. Extensions of these models with matter-messenger mixing terms have been proposed to generate a large trilinear parameter, A{sub t}, relaxing these constraints. The detailed survey of these models (DOI: 10.1007/JHEP05(2013)055; 10.1007/JHEP08(2013)093 ) so far considered messenger mixings with only MSSM superfields. In the present work, we extend the survey to MSSM with inverse-seesaw mechanism. The neutrino-sneutrino corrections to the Higgs mass in the inverse seesaw model are not significant in the minimal gauge mediation model, unless one considers messenger-matter interaction terms. We classify all possible models with messenger-matter interactions and perform thorough numerical analysis to find out the promising models. We found that out of the 17 possible models 9 of them can lead to Higgs mass within the observed value without raising the sfermion masses significantly. The successful models have stop masses ∼1.5 TeV with small or negligible mixing and yet a light CP even Higgs at 125 GeV.

  2. Neutrino mass sum-rule

    Science.gov (United States)

    Damanik, Asan

    2018-03-01

    Neutrino mass sum-rele is a very important research subject from theoretical side because neutrino oscillation experiment only gave us two squared-mass differences and three mixing angles. We review neutrino mass sum-rule in literature that have been reported by many authors and discuss its phenomenological implications.

  3. Connecting Dirac and Majorana neutrino mass matrices in the minimal left-right symmetric model.

    Science.gov (United States)

    Nemevšek, Miha; Senjanović, Goran; Tello, Vladimir

    2013-04-12

    Probing the origin of neutrino mass by disentangling the seesaw mechanism is one of the central issues of particle physics. We address it in the minimal left-right symmetric model and show how the knowledge of light and heavy neutrino masses and mixings suffices to determine their Dirac Yukawa couplings. This in turn allows one to make predictions for a number of high and low energy phenomena, such as decays of heavy neutrinos, neutrinoless double beta decay, electric dipole moments of charged leptons, and neutrino transition moments. We also discuss a way of reconstructing the neutrino Dirac Yukawa couplings at colliders such as the LHC.

  4. Direct neutrino mass measurements

    Energy Technology Data Exchange (ETDEWEB)

    Weinheimer, Christian, E-mail: weinheimer@uni-muenster.de [Westfaelische Wilhelms-Universitaet, Institut fuer Kernphysik (Germany)

    2013-03-15

    Direct neutrino mass experiments are complementary to searches for neutrinoless double {beta}-decay and to analyses of cosmological data. The previous tritium beta decay experiments at Mainz and at Troitsk have achieved upper limits on the neutrino mass of about 2 eV/c{sup 2} . The KATRIN experiment under construction will improve the neutrino mass sensitivity down to 200 meV/c{sup 2} by increasing strongly the statistics and-at the same time-reducing the systematic uncertainties. Huge improvements have been made to operate the system extremely stably and at very low background rate. The latter comprises new methods to reject secondary electrons from the walls as well as to avoid and to eject electrons stored in traps. As an alternative to tritium {beta}-decay experiments cryo-bolometers investigating the endpoint region of {sup 187}Re {beta}-decay or the electron capture of {sup 163}Ho are being developed. This article briefly reviews the current status of the direct neutrino mass measurements.

  5. Renormalization group evolution of neutrino parameters in presence of seesaw threshold effects and Majorana phases

    Directory of Open Access Journals (Sweden)

    Shivani Gupta

    2015-04-01

    Full Text Available We examine the renormalization group evolution (RGE for different mixing scenarios in the presence of seesaw threshold effects from high energy scale (GUT to the low electroweak (EW scale in the Standard Model (SM and Minimal Supersymmetric Standard Model (MSSM. We consider four mixing scenarios namely Tri–Bimaximal Mixing, Bimaximal Mixing, Hexagonal Mixing and Golden Ratio Mixing which come from different flavor symmetries at the GUT scale. We find that the Majorana phases play an important role in the RGE running of these mixing patterns along with the seesaw threshold corrections. We present a comparative study of the RGE of all these mixing scenarios both with and without Majorana CP phases when seesaw threshold corrections are taken into consideration. We find that in the absence of these Majorana phases both the RGE running and seesaw effects may lead to θ13<5° at low energies both in the SM and MSSM. However, if the Majorana phases are incorporated into the mixing matrix the running can be enhanced both in the SM and MSSM. Even by incorporating non-zero Majorana CP phases in the SM, we do not get θ13 in its present 3σ range. The current values of the two mass squared differences and mixing angles including θ13 can be produced in the MSSM case with tan⁡β=10 and non-zero Majorana CP phases at low energy. We also calculate the order of effective Majorana mass and Jarlskog Invariant for each scenario under consideration.

  6. Froggatt-Nielsen hierarchy and the neutrino mass matrix

    International Nuclear Information System (INIS)

    Kamikado, H.; Takasugi, E.

    2008-05-01

    We study the neutrino mass matrix derived from the seesaw mechanism in which the neutrino Yukawa couplings and the heavy Majorana neutrino mass matrix are controlled by the Froggatt-Nielsen mechanism. In order to obtain the large neutrino mixings, two Froggatt-Nielsen fields are introduced with a complex vacuum expectation values. As a by-product, CP violation is systematically induced even if the order one couplings of FN fields are real. We show several predictions of this model, such as θ 13 , the Dirac CP phase, two Majorana CP phases, the effective mass of the neutrinoless double beta decay and the leptogenesis. The prediction of the branching ratio of μ→eγ is also given in SUSY model. (orig.)

  7. Sterile neutrino in a minimal three-generation see-saw model

    Indian Academy of Sciences (India)

    Sterile neutrino in a minimal three-generation see-saw model. Table 1. Relevant right-handed fermion and scalar fields and their transformation properties. Here we have defined Y. I3R· (B–L)/2. SU´2µL ¢U´1µI3R ¢U´1µB L. SU´2µL ¢UY ´1µ. Le ·Lµ Lτ. Seµ. 2R ν R. (1,1/2, 1). (1,0). 1. 1 ν·R. (1,1/2, 1). (1,0). 1. 1. ντR. (1, 1/2, 1).

  8. Neutrino mass matrices with two vanishing cofactors and Fritzsch texture for charged lepton mass matrix

    Science.gov (United States)

    Wang, Weijian; Guo, Shu-Yuan; Wang, Zhi-Gang

    2016-04-01

    In this paper, we study the cofactor 2 zero neutrino mass matrices with the Fritzsch-type structure in charged lepton mass matrix (CLMM). In the numerical analysis, we perform a scan over the parameter space of all the 15 possible patterns to get a large sample of viable scattering points. Among the 15 possible patterns, three of them can accommodate the latest lepton mixing and neutrino mass data. We compare the predictions of the allowed patterns with their counterparts with diagonal CLMM. In this case, the severe cosmology bound on the neutrino mass set a strong constraint on the parameter space, rendering two patterns only marginally allowed. The Fritzsch-type CLMM will have impact on the viable parameter space and give rise to different phenomenological predictions. Each allowed pattern predicts the strong correlations between physical variables, which is essential for model selection and can be probed in future experiments. It is found that under the no-diagonal CLMM, the cofactor zeros structure in neutrino mass matrix is unstable as the running of renormalization group (RG) from seesaw scale to the electroweak scale. A way out of the problem is to propose the flavor symmetry under the models with a TeV seesaw scale. The inverse seesaw model and a loop-induced model are given as two examples.

  9. Physics of the neutrino mass

    International Nuclear Information System (INIS)

    Mohapatra, R N

    2004-01-01

    Recent neutrino oscillation experiments have yielded valuable information on the nature of neutrino masses and mixings and qualify as the first evidence for physics beyond the standard model. Even though we are far from a complete understanding of the new physics implied by them, there are many useful hints. As the next precision era in neutrino physics is about to be launched, we review the physics of neutrino mass: what we have learned and what we are going to learn

  10. Neutrino mass and mixing with discrete symmetry

    International Nuclear Information System (INIS)

    King, Stephen F; Luhn, Christoph

    2013-01-01

    This is a review paper about neutrino mass and mixing and flavour model building strategies based on discrete family symmetry. After a pedagogical introduction and overview of the whole of neutrino physics, we focus on the PMNS mixing matrix and the latest global fits following the Daya Bay and RENO experiments which measure the reactor angle. We then describe the simple bimaximal, tri-bimaximal and golden ratio patterns of lepton mixing and the deviations required for a non-zero reactor angle, with solar or atmospheric mixing sum rules resulting from charged lepton corrections or residual trimaximal mixing. The different types of see-saw mechanism are then reviewed as well as the sequential dominance mechanism. We then give a mini-review of finite group theory, which may be used as a discrete family symmetry broken by flavons either completely, or with different subgroups preserved in the neutrino and charged lepton sectors. These two approaches are then reviewed in detail in separate chapters including mechanisms for flavon vacuum alignment and different model building strategies that have been proposed to generate the reactor angle. We then briefly review grand unified theories (GUTs) and how they may be combined with discrete family symmetry to describe all quark and lepton masses and mixing. Finally, we discuss three model examples which combine an SU(5) GUT with the discrete family symmetries A 4 , S 4 and Δ(96). (review article)

  11. Systems of neutrinos with mass

    International Nuclear Information System (INIS)

    Groot, S.R. de

    1984-01-01

    From the formalism of relativistic kinetic theory and the weak interaction Lagrangian the volume viscosity of a massive neutrino system is derived. Its value is calculated as a function of the neutrino mass and the temperature. Its role in the way of expanding or contraction of neutrino clouds in the universe is discussed. (Author) [pt

  12. Reconstructing see-saw models

    International Nuclear Information System (INIS)

    Ibarra, Alejandro

    2007-01-01

    In this talk we discuss the prospects to reconstruct the high-energy see-saw Lagrangian from low energy experiments in supersymmetric scenarios. We show that the model with three right-handed neutrinos could be reconstructed in theory, but not in practice. Then, we discuss the prospects to reconstruct the model with two right-handed neutrinos, which is the minimal see-saw model able to accommodate neutrino observations. We identify the relevant processes to achieve this goal, and comment on the sensitivity of future experiments to them. We find the prospects much more promising and we emphasize in particular the importance of the observation of rare leptonic decays for the reconstruction of the right-handed neutrino masses

  13. The quark mass spectrum in the Universal Seesaw model

    International Nuclear Information System (INIS)

    Ranfone, S.

    1993-03-01

    In the context of a Universal Seesaw model implemented in a left-right symmetric theory, we show that, by allowing the two left-handed doublet Higgs fields to develop different vacuum-expectation-values (VEV's), it is possible to account for the observed structure of the quark mass spectrum without the need of any hierarchy among the Yukawa couplings. In this framework the top-quark mass is expected to be of the order of its present experimental lower bound, m t ≅ 90 to 100 GeV. Moreover, we find that, while one of the Higgs doublets gets essentially the standard model VEV of approximately 250 GeV, the second doublet is expected to have a much smaller VEV, of order 10 GeV. The identification of the large mass scale of the model with the Peccei-Quinn scale fixes the mass of the right-handed gauge bosons in the range 10 7 to 10 10 GeV, far beyond the reach of present collider experiments. (author)

  14. Quark mass hierarchies from the universal seesaw mechanism

    International Nuclear Information System (INIS)

    Davidson, A.; Michel, L.; Sage, M.L.; Wali, K.C.

    1994-01-01

    The paper is an extension of the previous work based on the idea of a universal seesaw mechanism to explain the hierarchies in the fermion mass spectrum. A model is proposed within the framework of left-right symmetry with a minimal Higgs system and an axial U(1) symmetry imposed to distinguish the generations. Previous work was confined, for mathematical simplifications, to the case of nonsingular mass matrices. In the present paper, singular matrices are considered. A systematic perturbative technique is developed to display the mass eigenvalues in terms of the vacuum expectation values of the assumed Higgs multiplets. The model successfully correlates the mass hierarchies among the quarks to the assumed hierarchies in the vacuum expectation values without appealing to a hierarchy in the Yukawa-type fermion--Higgs-boson couplings. By considering a general Higgs potential appropriate to the model, we study its minimization and prove that there exists an open subdomain in the parameter space where the orbit of the lowest minima of the potential corresponds to the kind of hierarchy in the vacuum expectation values needed for the success of the model

  15. Hints on the high-energy seesaw mechanism from the low-energy neutrino spectrum

    International Nuclear Information System (INIS)

    Casas, J.A.; Jimenez-Alburquerque, F.

    2006-12-01

    It is an experimental fact that the mass ratio for the two heavier neutrinos, h=m 3 /m 2 3 /m 2 >> m 3 /m 2 , so m 1 should be extremely tiny. Also, the V R matrix associated to the neutrino Yukawa couplings has a far from random structure, naturally resembling V CKM . In fact we show that identifying V R and V CKM , as well as neutrino and u-quark Yukawa couplings can reproduce h exp in a highly non-trivial way, which is very suggestive. The physical implications of these results are also discussed. (orig.)

  16. The scalar spectrum of the triple seesaw mechanism

    International Nuclear Information System (INIS)

    Caetano, Wellington; Pires, Carlos

    2011-01-01

    Full text: The Triple seesaw mechanism provides an expression to the neutrino masses which get suppressed by high-scale M 3 in its denominator. Thus, we have a seesaw mechanism which works naturally at TeV scale, presenting, in this way, a great potential of being probed at LHC. In order to generate the small left-handed neutrino masses, the triple seesaw mechanism also requires only heavy right-handed neutrinos as extra fermionic content as the type I seesaw. The minimum Higgs sector required by the mechanism is composed by the standard Higgs doublet plus another Higgs doublet and a Higgs singlet. In this work we obtain the mass spectrum and the eigenvectors of the scalar sector that realizes the Triple seesaw mechanism. As our results, we recover the standard Higgs boson with mass in a region at 116 H < 151 GeV. We analyzed the expression given in the Triple seesaw mechanism for the neutrino mass in a scenario that is consistent with the small mass from the neutrino oscillation data and compatible with the requirements for a WIMP (weakly interacting massive particles) candidate. Finally, we obtain, as our main result, a neutral pseudoscalar with mass around 8-10 GeV which is stable and can be a possible WIMP dark matter candidate. (author)

  17. Perturbativity in the seesaw mechanism

    International Nuclear Information System (INIS)

    Asaka, Takehiko; Tsuyuki, Takanao

    2016-01-01

    We consider the Standard Model extended by right-handed neutrinos to explain massive neutrinos through the seesaw mechanism. The new fermion can be observed when it has a sufficiently small mass and large mixings to left-handed neutrinos. If such a particle is the lightest right-handed neutrino, its contribution to the mass matrix of active neutrinos needs to be canceled by that of a heavier one. Yukawa couplings of the heavier one are then larger than those of the lightest one. We show that the perturbativity condition gives a severe upper bound on the mixing of the lightest right-handed neutrino, depending on the masses of heavier ones. Models of high energy phenomena, such as leptogenesis, can be constrained by low energy experiments.

  18. Neutrino mass and the mirror universe

    International Nuclear Information System (INIS)

    Silagadze, Z.K.

    1995-01-01

    The existence of the mirror world, with the same microphysics as our own one but with opposite P-asymmetry, not only restores an exact equivalence between left and right, but provides a natural explanation via see-saw like mechanism why neutrino is massless (or ultralight). 28 refs

  19. Seesaw mechanism in warped geometry

    International Nuclear Information System (INIS)

    Huber, S.J.; Shafi, Q.

    2003-09-01

    We show how the seesaw mechanism for neutrino masses can be realized within a five dimensional (5D) warped geometry framework. Intermediate scale standard model (SM) singlet neutrino masses, needed to explain the atmospheric and solar neutrino oscillations, are shown to be proportional to M P1 .exp((2c-1)πkR), where c denotes the coefficient of the 5D Dirac mass term for the singlet neutrino which also has a Planck scale Majorana mass localized on the Planck-brane, and kR∼11 in order to resolve the gauge hierarchy problem. The case with a bulk 5D Majorana mass term for the singlet neutrino is briefly discussed. (orig.)

  20. Seesaw mechanism in warped geometry

    International Nuclear Information System (INIS)

    Huber, Stephan J.; Shafi, Qaisar

    2004-01-01

    We show how the seesaw mechanism for neutrino masses can be realized within a five-dimensional (5D) warped geometry framework. Intermediate scale standard model (SM) singlet neutrino masses, needed to explain the atmospheric and solar neutrino oscillations, are shown to be proportional to M Pl exp((2c-1)πkR), where c denotes the coefficient of the 5D Dirac mass term for the singlet neutrino which also has a Planck scale Majorana mass localized on the Planck-brane, and kR∼11 in order to resolve the gauge hierarchy problem. The case with a bulk 5D Majorana mass term for the singlet neutrino is briefly discussed

  1. Gauge Trimming of Neutrino Masses

    International Nuclear Information System (INIS)

    Chen, Mu-Chun; de Gouvea, Andre; Dobrescu, Bogdan A.

    2006-01-01

    We show that under a new U(1) gauge symmetry, which is non-anomalous in the presence of one ''right-handed neutrino'' per generation and consistent with the standard model Yukawa couplings, the most general fermion charges are determined in terms of four rational parameters. This generalization of the B-L symmetry with generation-dependent lepton charges leads to neutrino masses induced by operators of high dimensionality. Neutrino masses are thus naturally small without invoking physics at energies above the TeV scale, whether neutrinos are Majorana or Dirac fermions. This ''Leptocratic'' Model predicts the existence of light quasi-sterile neutrinos with consequences for cosmology, and implies that collider experiments may reveal the origin of neutrino masses

  2. Understanding neutrino masses and mixings

    Indian Academy of Sciences (India)

    various possible oscillation solutions to the solar neutrino puzzle. It seems .... A first hint of this new ingredient came from the observation of Weinberg that if ..... Using the discussion of the above paragraph, the Dirac mass of the neutrino as .... that contributes to charged fermion masses, one can write the quark and lepton.

  3. Neutrino mass and physics beyond the Standard Model

    International Nuclear Information System (INIS)

    Hosteins, P.

    2007-09-01

    The purpose of this thesis is to study, in the neutrino sector, the flavour structures at high energy. The work is divided into two main parts. The first part is dedicated to the well known mechanism to produce small neutrino masses: the seesaw mechanism, which implies the existence of massive particles whose decays violate lepton number. Therefore this mechanism can also be used to generate a net baryon number in the early universe and explain the cosmological observation of the asymmetry between matter and antimatter. However, it is often non-trivial to fulfill the constraints coming at the same time from neutrino oscillations and cosmological experiments, at least in frameworks where the couplings can be somehow constrained, like some Grand Unification models. Therefore we devoted the first part to the study of a certain class of seesaw mechanism which can be found in the context of SO(10) theories for example. We introduce a method to extract the mass matrix of the heavy right-handed neutrinos and explore the phenomenological consequences of this quantity, mainly concerning the production of a sufficient baryon asymmetry. When trying to identify the underlying symmetry governing the mixings between the different generations, we see that there is a puzzling difference between the quark and the lepton sectors. However, the quark and lepton parameters have to be compared at the scale of the flavour symmetry breaking, therefore we have to make them run to the appropriate scale. Thus, it is worthwhile investigating models where quantum corrections allow an approximate unification of quark and lepton mixings. This is why the other part of the thesis investigates the running of the effective neutrino mass operator in models with an extra compact dimension, where quantum corrections to the neutrino masses and mixings can be potentially large due to the multiplicity of states

  4. Hadron collider tests of neutrino mass-generating mechanisms

    Science.gov (United States)

    Ruiz, Richard Efrain

    The Standard Model of particle physics (SM) is presently the best description of nature at small distances and high energies. However, with tiny but nonzero neutrino masses, a Higgs boson mass unstable under radiative corrections, and little guidance on understanding the hierarchy of fermion masses, the SM remains an unsatisfactory description of nature. Well-motivated scenarios that resolve these issues exist but also predict extended gauge (e.g., Left-Right Symmetric Models), scalar (e.g., Supersymmetry), and/or fermion sectors (e.g., Seesaw Models). Hence, discovering such new states would have far-reaching implications. After reviewing basic tenets of the SM and collider physics, several beyond the SM (BSM) scenarios that alleviate these shortcomings are investigated. Emphasis is placed on the production of a heavy Majorana neutrinos at hadron colliders in the context of low-energy, effective theories that simultaneously explain the origin of neutrino masses and their smallness compared to other elementary fermions, the so-called Seesaw Mechanisms. As probes of new physics, rare top quark decays to Higgs bosons in the context of the SM, the Types I and II Two Higgs Doublet Model (2HDM), and the semi-model independent framework of Effective Field Theory (EFT) have also been investigated. Observation prospects and discovery potentials of these models at current and future collider experiments are quantified.

  5. Neutrino masses and leptogenesis in left-right symmetric models: a review from a model building perspective

    Science.gov (United States)

    Hati, Chandan; Patra, Sudhanwa; Pritimita, Prativa; Sarkar, Utpal

    2018-03-01

    In this review, we present several variants of left-right symmetric models in the context of neutrino masses and leptogenesis. In particular, we discuss various low scale seesaw mechanisms like linear seesaw, inverse seesaw, extended seesaw and their implications to lepton number violating process like neutrinoless double beta decay. We also visit an alternative framework of left-right models with the inclusion of vector-like fermions to analyze the aspects of universal seesaw. The symmetry breaking of left-right symmetric model around few TeV scale predicts the existence of massive right-handed gauge bosons W_R and Z_R which might be detected at the LHC in near future. If such signals are detected at the LHC that can have severe implications for leptogenesis, a mechanism to explain the observed baryon asymmetry of the Universe. We review the implications of TeV scale left-right symmetry breaking for leptogenesis.

  6. Neutrino mass and physics beyond the Standard Model; Masse des Neutrinos et Physique au-dela du Modele Standard

    Energy Technology Data Exchange (ETDEWEB)

    Hosteins, P

    2007-09-15

    The purpose of this thesis is to study, in the neutrino sector, the flavour structures at high energy. The work is divided into two main parts. The first part is dedicated to the well known mechanism to produce small neutrino masses: the seesaw mechanism, which implies the existence of massive particles whose decays violate lepton number. Therefore this mechanism can also be used to generate a net baryon number in the early universe and explain the cosmological observation of the asymmetry between matter and antimatter. However, it is often non-trivial to fulfill the constraints coming at the same time from neutrino oscillations and cosmological experiments, at least in frameworks where the couplings can be somehow constrained, like some Grand Unification models. Therefore we devoted the first part to the study of a certain class of seesaw mechanism which can be found in the context of SO(10) theories for example. We introduce a method to extract the mass matrix of the heavy right-handed neutrinos and explore the phenomenological consequences of this quantity, mainly concerning the production of a sufficient baryon asymmetry. When trying to identify the underlying symmetry governing the mixings between the different generations, we see that there is a puzzling difference between the quark and the lepton sectors. However, the quark and lepton parameters have to be compared at the scale of the flavour symmetry breaking, therefore we have to make them run to the appropriate scale. Thus, it is worthwhile investigating models where quantum corrections allow an approximate unification of quark and lepton mixings. This is why the other part of the thesis investigates the running of the effective neutrino mass operator in models with an extra compact dimension, where quantum corrections to the neutrino masses and mixings can be potentially large due to the multiplicity of states.

  7. Interplay of LFV and slepton mass splittings at the LHC as a probe of the SUSY seesaw

    CERN Document Server

    Abada, A; Romao, J C; Teixeira, A M

    2010-01-01

    We study the impact of a type-I SUSY seesaw concerning lepton flavour violation (LFV) both at low-energies and at the LHC. The study of the di-lepton invariant mass distribution at the LHC allows to reconstruct some of the masses of the different sparticles involved in a decay chain. In particular, the combination with other observables renders feasible the reconstruction of the masses of the intermediate sleptons involved in $ \\chi_2^0\\to \\tilde \\ell \\,\\ell \\to \\ell \\,\\ell\\,\\chi_1^0$ decays. Slepton mass splittings can be either interpreted as a signal of non-universality in the SUSY soft breaking-terms (signalling a deviation from constrained scenarios as the cMSSM) or as being due to the violation of lepton flavour. In the latter case, in addition to these high-energy processes, one expects further low-energy manifestations of LFV such as radiative and three-body lepton decays. Under the assumption of a type-I seesaw as the source of neutrino masses and mixings, all these LFV observables are related. Worki...

  8. Neutrino masses and family replication

    International Nuclear Information System (INIS)

    Hung, P.Q.

    1999-01-01

    The issue of whether or not there is any link between the smallness of the neutrino mass (if present) and the odd or even nature of the number of families is investigated. It is found that, by assuming the existence of right-handed neutrinos (which would imply that neutrinos will have a mass) and a new chiral SU(2) gauge theory, a constraint on the nature of the number of families can be obtained. In addition, a model, based on that extra SU(2), is constructed where it is plausible to have one 'very heavy' fourth neutrino and three almost degenerate light neutrinos whose masses are all of the Dirac type. copyright 1999 The American Physical Society

  9. Current Direct Neutrino Mass Experiments

    Directory of Open Access Journals (Sweden)

    G. Drexlin

    2013-01-01

    Full Text Available In this contribution, we review the status and perspectives of direct neutrino mass experiments, which investigate the kinematics of β-decays of specific isotopes (3H, 187Re, 163Ho to derive model-independent information on the averaged electron (antineutrino mass. After discussing the kinematics of β-decay and the determination of the neutrino mass, we give a brief overview of past neutrino mass measurements (SN1987a-ToF studies, Mainz and Troitsk experiments for 3H, cryobolometers for 187Re. We then describe the Karlsruhe Tritium Neutrino (KATRIN experiment currently under construction at Karlsruhe Institute of Technology, which will use the MAC-E-Filter principle to push the sensitivity down to a value of 200 meV (90% C.L.. To do so, many technological challenges have to be solved related to source intensity and stability, as well as precision energy analysis and low background rate close to the kinematic endpoint of tritium β-decay at 18.6 keV. We then review new approaches such as the MARE, ECHO, and Project8 experiments, which offer the promise to perform an independent measurement of the neutrino mass in the sub-eV region. Altogether, the novel methods developed in direct neutrino mass experiments will provide vital information on the absolute mass scale of neutrinos.

  10. Neutrino mass models and CP violation

    International Nuclear Information System (INIS)

    Joshipura, Anjan S.

    2011-01-01

    Theoretical ideas on the origin of (a) neutrino masses (b) neutrino mass hierarchies and (c) leptonic mixing angles are reviewed. Topics discussed include (1) symmetries of neutrino mass matrix and their origin (2) ways to understand the observed patterns of leptonic mixing angles and (3)unified description of neutrino masses and mixing angles in grand unified theories.

  11. Shedding light on neutrino masses with dark forces

    Energy Technology Data Exchange (ETDEWEB)

    Batell, Brian [Pittsburgh Particle Physics, Astrophysics, and Cosmology Center,Department of Physics and Astronomy, University of Pittsburgh, PA 15260 (United States); Pospelov, Maxim [Perimeter Institute for Theoretical Physics,Waterloo, ON N2J 2W9 (Canada); Department of Physics and Astronomy, University of Victoria,Victoria, BC V8P 5C2 (Canada); Shuve, Brian [SLAC National Accelerator Laboratory,2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2016-08-08

    Heavy right-handed neutrinos, N, provide the simplest explanation for the origin of light neutrino masses and mixings. If M{sub N} is at or below the weak scale, direct experimental discovery of these states is possible at accelerator experiments such as the LHC or new dedicated beam dump experiments; in these experiments, N decays after traversing a macroscopic distance from the collision point. The experimental sensitivity to right-handed neutrinos is significantly enhanced if there is a new “dark” gauge force connecting them to the Standard Model (SM), and detection of N can be the primary discovery mode for the new dark force itself. We take the well-motivated example of a B−L gauge symmetry and analyze the sensitivity to displaced decays of N produced via the new gauge interaction in two experiments: the LHC and the proposed SHiP beam dump experiment. In the most favorable case in which the mediator can be produced on-shell and decays to right handed neutrinos (pp→X+V{sub B−L}→X+NN), the sensitivity reach is controlled by the square of the B−L gauge coupling. We demonstrate that these experiments could access neutrino parameters responsible for the observed SM neutrino masses and mixings in the most straightforward implementation of the see-saw mechanism.

  12. Duality in Left-Right Symmetric Seesaw Mechanism

    International Nuclear Information System (INIS)

    Akhmedov, E.Kh.; Frigerio, M.

    2006-01-01

    We consider type I+II seesaw mechanism, where the exchanges of both right-handed neutrinos and isotriplet Higgs bosons contribute to the neutrino mass. Working in the left-right symmetric framework and assuming the mass matrix of light neutrinos m ν and the Dirac-type Yukawa couplings to be known, we find the triplet Yukawa coupling matrix f, which carries the information about the masses and mixing of the right-handed neutrinos. We show that in this case there exists a duality: for any solution f, there is a dual solution f-circumflex=m ν /v L -f, where v L is the vacuum expectation value of the triplet Higgs boson. Thus, unlike in pure type I (II) seesaw, there is no unique allowed structure for the matrix f. For n lepton generations the number of solutions is 2 n . We develop an exact analytic method of solving the seesaw nonlinear matrix equation for f

  13. Leptogenesis. Theory and neutrino masses

    Energy Technology Data Exchange (ETDEWEB)

    Buchmueller, W.

    2012-12-15

    After a brief discussion of baryon and lepton number nonconservation, we review the status of thermal leptogenesis with GUT scale neutrino masses, as well as low scale alternatives with keV neutrinos as dark matter and heavy neutrino masses within the reach of the LHC. Recent progress towards a full quantum mechanical description of leptogenesis is described with resonant leptogenesis as an application. Finally, cosmological B-L breaking after inflation is considered as origin of the hot early universe, generating entropy, baryon asymmetry and dark matter.

  14. CONFERENCE: Neutrino mass

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    The successes in capturing neutrinos from last year's supernova underlined the usefulness of large underground detectors for this sort of physics, and ambitious new projects are now in the pipeline. Meanwhile another approach to cosmic neutrino detection, carefully prepared during the past decade, has now taken its first experimental steps. DUMAND - Deep Underwater Muon and Neutrino Detector - aims to use the ocean as the active medium, tracking particles with arrays of photomultipliers picking up the tiny nanosecond flashes of blue Cherenkov light emitted by cosmic particles as they pass through seawater

  15. CONFERENCE: Neutrino mass

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1988-06-15

    The successes in capturing neutrinos from last year's supernova underlined the usefulness of large underground detectors for this sort of physics, and ambitious new projects are now in the pipeline. Meanwhile another approach to cosmic neutrino detection, carefully prepared during the past decade, has now taken its first experimental steps. DUMAND - Deep Underwater Muon and Neutrino Detector - aims to use the ocean as the active medium, tracking particles with arrays of photomultipliers picking up the tiny nanosecond flashes of blue Cherenkov light emitted by cosmic particles as they pass through seawater.

  16. Cosmology in Mirror Twin Higgs and neutrino masses

    Science.gov (United States)

    Chacko, Zackaria; Craig, Nathaniel; Fox, Patrick J.; Harnik, Roni

    2017-07-01

    We explore a simple solution to the cosmological challenges of the original Mirror Twin Higgs (MTH) model that leads to interesting implications for experiment. We consider theories in which both the standard model and mirror neutrinos acquire masses through the familiar seesaw mechanism, but with a low right-handed neutrino mass scale of order a few GeV. In these νMTH models, the right-handed neutrinos leave the thermal bath while still relativistic. As the universe expands, these particles eventually become nonrelativistic, and come to dominate the energy density of the universe before decaying. Decays to standard model states are preferred, with the result that the visible sector is left at a higher temperature than the twin sector. Consequently the contribution of the twin sector to the radiation density in the early universe is suppressed, allowing the current bounds on this scenario to be satisfied. However, the energy density in twin radiation remains large enough to be discovered in future cosmic microwave background experiments. In addition, the twin neutrinos are significantly heavier than their standard model counterparts, resulting in a sizable contribution to the overall mass density in neutrinos that can be detected in upcoming experiments designed to probe the large scale structure of the universe.

  17. Constraining neutrino mass from neutrinoless double beta decay

    Science.gov (United States)

    Dev, P. S. Bhupal; Goswami, Srubabati; Mitra, Manimala; Rodejohann, Werner

    2013-11-01

    We study the implications of the recent results on neutrinoless double beta decay (0νββ) from GERDA-I (Ge76) and KamLAND-Zen+EXO-200 (Xe136) and the upper limit on the sum of light neutrino masses from Planck. We show that the upper limits on the effective neutrino mass from Xe136 are stronger than those from Ge76 for most of the recent calculations of the nuclear matrix elements (NMEs). We also analyze the compatibility of these limits with the claimed observation in Ge76 and show that while the updated claim value is still compatible with the recent GERDA limit as well as the individual Xe136 limits for a few NME calculations, it is inconsistent with the combined Xe136 limit for all but one NME. Imposing the most stringent limit from Planck, we find that the canonical light neutrino contribution cannot saturate the current limit, irrespective of the NME uncertainties. Saturation can be reached by inclusion of the right-handed (RH) neutrino contributions in TeV-scale left-right symmetric models with type-II seesaw. This imposes a lower limit on the lightest neutrino mass. Using the 0νββ bounds, we also derive correlated constraints in the RH sector, complimentary to those from direct searches at the LHC.

  18. Mass relation for neutrinos

    Science.gov (United States)

    Babu; Barr

    2000-08-07

    A generalization of the well-known Georgi-Jarlskog relation (m(&mgr;)/m(tau)) = 3(m(s)/m(b)) to neutrinos is found in the context of SO(10). This new relation is (m(nu(&mgr;))/m(nu(tau))) = 16(m(c)/m(t)), which is consistent with present data, assuming the Mikheyev-Smirnov-Wolfenstein solution to the solar neutrino problem.

  19. Mass Relation for Neutrinos

    International Nuclear Information System (INIS)

    Babu, K. S.; Barr, S. M.

    2000-01-01

    A generalization of the well-known Georgi-Jarlskog relation (m μ /m τ ) =3(m s /m b ) to neutrinos is found in the context of SO(10) . This new relation is (m ν μ /m ν τ )=16(m c /m t ) , which is consistent with present data, assuming the Mikheyev-Smirnov-Wolfenstein solution to the solar neutrino problem. (c) 2000 The American Physical Society

  20. Symplectic symmetry of the neutrino mass for many neutrino flavors

    International Nuclear Information System (INIS)

    Oeztuerk, N.; Ankara Univ.

    2001-01-01

    The algebraic structure of the neutrino mass Hamiltonian is presented for two neutrino flavors considering both Dirac and Majorana mass terms. It is shown that the algebra is Sp(8) and also discussed how the algebraic structure generalizes for the case of more than two neutrino flavors. (orig.)

  1. Majorana mass term, Dirac neutrinos and selective neutrino oscillations

    International Nuclear Information System (INIS)

    Leung, C.N.

    1987-01-01

    In a theory of neutrino mixing via a Majorana mass term involving only the left-handed neutrinos there exist selection rules for neutrino oscillations if true Dirac and/or exactly zero mass eigenstates are present. In the case of three neutrino flavours no oscillation is allowed if the mass spectrum contains one Dirac and one nondegenerate Majorana massive neutrino. The origin of these selection rules and their implications are discussed and the number of possible CP-violating phases in the lepton mixing matrix when Dirac and Majorana mass eigenstates coexist is given. (orig.)

  2. Direct measurements of neutrino mass

    International Nuclear Information System (INIS)

    Robertson, R.G.H.

    1991-01-01

    Some recent developments in the experimental search for neutrino mass are discussed. New data from Los Alamos on the electron neutrino mass as measured in tritium beta decay give an upper limit of 9.3 eV at the 95% confidence level. This result is not consistent with the long-standing ITEP result of 26(5) eV within a ''model-independent'' range of 17 to 40 eV. It now appears that the electron neutrino is not sufficiently massive to close the universe by itself. Hime and Jelley report finding new evidence for a 17-keV neutrino in the Β decay of 35 S and 63 Ni. Many other experiments are being reported and the situation is still unresolved. 56 refs., 1 fig., 3 tabs

  3. Status of neutrino mass experiments

    International Nuclear Information System (INIS)

    Fackler, O.

    1985-01-01

    In 1980 two experiments ignited a fertile field of research - the determination of the neutrino masses. Subsequently, over 35 experiments using a variety of techniques have probed or are probing this question. Primarily the author discuss electron antineutrino (hereafter referred to as neutrino) mass experiments. Section I begins with a discussion of astronomical and terrestrial observations which motivated these experiments. In Section II, the author quote limits from muon and tau mass determinations. These limits are more thoroughly discussed in other paper. The author continues by describing the four approaches used to measure the electron neutrino mass. In Section III, tritium beta decay mass determinations are reviewed. This section includes a general summary of previous experimental results, and discussion of the major ongoing experiments. Section IV offers concluding remarks

  4. Status of neutrino mass experiments

    International Nuclear Information System (INIS)

    Fackler, O.

    1985-12-01

    In 1980 two experiments ignited a fertile field of research the determination of the neutrino masses. Subsequently, over 35 experiments using a variety of techniques have probed or are probing this question. Primarily I will discuss electron antineutrino (hereafter referred to as neutrino) mass experiments. However, let me begin in Section I to discuss astronomical and terrestrial observations which motivated these experiments. In Section II, I will quote limits from muon and tau mass determinations. These limits are more thoroughly discussed in other papers. I will continue by describing the four approaches used to measure the electron neutrino mass. In Section III, tritium beta decay mass determinations will be reviewed. This section includes a general summary of previous experimental results, and discussion of the major ongoing experiments. Section IV offers concluding remarks. 24 refs., 24 figs

  5. Neutrino masses and family symmetry

    International Nuclear Information System (INIS)

    Grinstein, B.; Preskill, J.; Wise, M.B.

    1985-01-01

    Neutrino masses in the 100 eV-1 MeV range are permitted if there is a spontaneously broken global family symmetry that allows the heavy neutrinos to decay by Goldstone boson emission with a cosmologically acceptable lifetime. The family symmetry may be either abelian or nonabelian; we present models illustrating both possibilities. If the family symmetry is nonabelian, then the decay tau -> μ + Goldstone boson or tau -> e + Goldstone may have an observable rate. (orig.)

  6. The Mainz Neutrino Mass Experiment

    Czech Academy of Sciences Publication Activity Database

    Kraus, C.; Bornschein, L.; Bonn, J.; Bornschein, B.; Flatt, B.; Kovalík, Alojz; Müller, B.; Otten, EW; Schall, JP.; Thummler, T.; Weinheimer, C.

    2005-01-01

    Roč. 143, - (2005), s. 143 ISSN 0920-5632. [International Conference on Neutrino Physics and Astrophysics /21./. Paříž, 14.06.2004-19.06.2004] R&D Projects: GA MŠk 1P04LA213 Institutional research plan: CEZ:AV0Z10480505 Keywords : neutrino mass * tritium beta decay Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.875, year: 2005

  7. Status of Heavy Neutrino Experiments

    CERN Document Server

    Wynne, Benjamin; The ATLAS collaboration

    2017-01-01

    The observation of neutrino oscillations raises the possibility that there exist additional, undiscovered high-mass neutrinos, giving mass to Standard Model neutrinos via the seesaw mechanism. By pushing the collider energy frontier at the LHC, the possibility arises that these heavy neutrinos may be produced and identified. We summarise the latest LHC results of searches for heavy neutrinos in a variety of final states.

  8. Neutrino masses and a low breaking scale of left-right symmetry

    International Nuclear Information System (INIS)

    Khasanov, Oleg; Perez, Gilad

    2002-01-01

    In left-right symmetric models (LRSMs) the light neutrino masses arise from two sources: the seesaw mechanism and a vacuum expectation value of an SU(2) L triplet. If the left-right symmetry breaking v R is low, v R (less-or-similar sign)15 TeV, the contributions to the light neutrino masses from both the seesaw mechanism and the triplet Yukawa couplings are expected to be well above the experimental bounds. We present a minimal LRSM with an additional U(1) symmetry in which the masses induced by the two sources are below the eV scale and the twofold problem is solved. We further show that, if the U(1) symmetry is also responsible for the lepton flavor structure, the model yields a small mixing angle within the first two lepton generations

  9. Leptoquark mechanism of neutrino masses within the grand unification framework

    Science.gov (United States)

    Doršner, Ilja; Fajfer, Svjetlana; Košnik, Nejc

    2017-06-01

    We demonstrate the viability of the one-loop neutrino mass mechanism within the framework of grand unification when the loop particles comprise scalar leptoquarks (LQs) and quarks of the matching electric charge. This mechanism can be implemented in both supersymmetric and non-supersymmetric models and requires the presence of at least one LQ pair. The appropriate pairs for the neutrino mass generation via the up-type and down-type quark loops are S_3-R_2 and S_{1, 3}-\\tilde{R}_2, respectively. We consider two distinct regimes for the LQ masses in our analysis. The first regime calls for very heavy LQs in the loop. It can be naturally realized with the S_{1, 3}-\\tilde{R}_2 scenarios when the LQ masses are roughly between 10^{12} and 5 × 10^{13} GeV. These lower and upper bounds originate from experimental limits on partial proton decay lifetimes and perturbativity constraints, respectively. Second regime corresponds to the collider accessible LQs in the neutrino mass loop. That option is viable for the S_3-\\tilde{R}_2 scenario in the models of unification that we discuss. If one furthermore assumes the presence of the type II see-saw mechanism there is an additional contribution from the S_3-R_2 scenario that needs to be taken into account beside the type II see-saw contribution itself. We provide a complete list of renormalizable operators that yield necessary mixing of all aforementioned LQ pairs using the language of SU(5). We furthermore discuss several possible embeddings of this mechanism in SU(5) and SO(10) gauge groups.

  10. Leptoquark mechanism of neutrino masses within the grand unification framework

    Energy Technology Data Exchange (ETDEWEB)

    Dorsner, Ilja [University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture in Split (FESB), Split (Croatia); Fajfer, Svjetlana; Kosnik, Nejc [University of Ljubljana, Department of Physics, Ljubljana (Slovenia); Jozef Stefan Institute, Jamova 39, P. O. Box 3000, Ljubljana (Slovenia)

    2017-06-15

    We demonstrate the viability of the one-loop neutrino mass mechanism within the framework of grand unification when the loop particles comprise scalar leptoquarks (LQs) and quarks of the matching electric charge. This mechanism can be implemented in both supersymmetric and non-supersymmetric models and requires the presence of at least one LQ pair. The appropriate pairs for the neutrino mass generation via the up-type and down-type quark loops are S{sub 3}-R{sub 2} and S{sub 1,3}-R{sub 2}, respectively. We consider two distinct regimes for the LQ masses in our analysis. The first regime calls for very heavy LQs in the loop. It can be naturally realized with the S{sub 1,3}-R{sub 2} scenarios when the LQ masses are roughly between 10{sup 12} and 5 x 10{sup 13} GeV. These lower and upper bounds originate from experimental limits on partial proton decay lifetimes and perturbativity constraints, respectively. Second regime corresponds to the collider accessible LQs in the neutrino mass loop. That option is viable for the S{sub 3}-R{sub 2} scenario in the models of unification that we discuss. If one furthermore assumes the presence of the type II see-saw mechanism there is an additional contribution from the S{sub 3}-R{sub 2} scenario that needs to be taken into account beside the type II see-saw contribution itself. We provide a complete list of renormalizable operators that yield necessary mixing of all aforementioned LQ pairs using the language of SU(5). We furthermore discuss several possible embeddings of this mechanism in SU(5) and SO(10) gauge groups. (orig.)

  11. A neutrino mass-mixing sum rule from SO(10) and neutrinoless double beta decay

    Energy Technology Data Exchange (ETDEWEB)

    Buccella, F. [INFN, Sezione di Napoli,Complesso University Monte S. Angelo, I-80126 Napoli (Italy); Chianese, M. [INFN, Sezione di Napoli,Complesso University Monte S. Angelo, I-80126 Napoli (Italy); Dipartimento di Fisica Ettore Pancini, Università di Napoli Federico II,Complesso University Monte S. Angelo, I-80126 Napoli (Italy); Mangano, G. [INFN, Sezione di Napoli,Complesso University Monte S. Angelo, I-80126 Napoli (Italy); Miele, G.; Morisi, S.; Santorelli, P. [INFN, Sezione di Napoli,Complesso University Monte S. Angelo, I-80126 Napoli (Italy); Dipartimento di Fisica Ettore Pancini, Università di Napoli Federico II,Complesso University Monte S. Angelo, I-80126 Napoli (Italy)

    2017-04-03

    Minimal SO(10) grand unified models provide phenomenological predictions for neutrino mass patterns and mixing. These are the outcome of the interplay of several features, namely: i) the seesaw mechanism; ii) the presence of an intermediate scale where B-L gauge symmetry is broken and the right-handed neutrinos acquire a Majorana mass; iii) a symmetric Dirac neutrino mass matrix whose pattern is close to the up-type quark one. In this framework two natural characteristics emerge. Normal neutrino mass hierarchy is the only allowed, and there is an approximate relation involving both light-neutrino masses and mixing parameters. This differs from what occurring when horizontal flavour symmetries are invoked. In this case, in fact, neutrino mixing or mass relations have been separately obtained in literature. In this paper we discuss an example of such comprehensive mixing-mass relation in a specific realization of SO(10) and, in particular, analyse its impact on the expected neutrinoless double beta decay effective mass parameter 〈m{sub ee}〉, and on the neutrino mass scale. Remarkably a lower limit for the lightest neutrino mass is obtained (m{sub lightest}≳7.5×10{sup −4} eV, at 3 σ level).

  12. Neutrino mass textures with maximal CP violation

    International Nuclear Information System (INIS)

    Aizawa, Ichiro; Kitabayashi, Teruyuki; Yasue, Masaki

    2005-01-01

    We show three types of neutrino mass textures, which give maximal CP violation as well as maximal atmospheric neutrino mixing. These textures are described by six real mass parameters: one specified by two complex flavor neutrino masses and two constrained ones and the others specified by three complex flavor neutrino masses. In each texture, we calculate mixing angles and masses, which are consistent with observed data, as well as Majorana CP phases

  13. Mass and oscillations of Dirac neutrinos

    International Nuclear Information System (INIS)

    Collot, J.

    1989-01-01

    In the most economical extension of the standard model, we have presented the theory of massive Dirac neutrinos. We have particularly emphasized that, in this model, a complete analogy between quarks and leptons can be erected and predicts neutrino flavor oscillations. We have reviewed the last experimental results concerning kinetic neutrino mass experiments and neutrino oscillation investigations

  14. Search for heavy lepton partners of neutrinos in the context of type III seesaw mechanism in 2012 LHC CMS data

    CERN Document Server

    Gozzelino, Andrea

    2014-01-01

    In the thesis the analysis performed for the search for seesaw mechanism with heavy fermionweak triplets mediators (type III) is presented. The search is based on the process of seesaw mediators via virtual charged boson with the subsequent decay in real vector boson and standardcharged leptons. The considered final states host exactly three charged standard leptons andmissing transverse energy, which displays indirectly standard neutrinos, and jets. The investigated electric charge sum of three leptons has unit value, both signs. The analyzed data sample has been recorded by the Compact Muon Solenoid (CMS) experiment at the CERN LargeHadron Collider (LHC) in Geneva, Switzerland, during the 2012 proton-proton collisions datataking period. The data sample consists of a total integrated luminosity of 19.7 f b−1 at center ofmass energy 8 TeV. The selected trigger algorithms require two charged leptons (dilepton) withtransverse momentum above thresholds of 17 GeV and 8 GeV, respectively. The backgroundcontribu...

  15. Testing the low scale seesaw and leptogenesis

    Science.gov (United States)

    Drewes, Marco; Garbrecht, Björn; Gueter, Dario; Klarić, Juraj

    2017-08-01

    Heavy neutrinos with masses below the electroweak scale can simultaneously generate the light neutrino masses via the seesaw mechanism and the baryon asymmetry of the universe via leptogenesis. The requirement to explain these phenomena imposes constraints on the mass spectrum of the heavy neutrinos, their flavour mixing pattern and their CP properties. We first combine bounds from different experiments in the past to map the viable parameter regions in which the minimal low scale seesaw model can explain the observed neutrino oscillations, while being consistent with the negative results of past searches for physics beyond the Standard Model. We then study which additional predictions for the properties of the heavy neutrinos can be made based on the requirement to explain the observed baryon asymmetry of the universe. Finally, we comment on the perspectives to find traces of heavy neutrinos in future experimental searches at the LHC, NA62, BELLE II, T2K, SHiP or a future high energy collider, such as ILC, CEPC or FCC-ee. If any heavy neutral leptons are discovered in the future, our results can be used to assess whether these particles are indeed the common origin of the light neutrino masses and the baryon asymmetry of the universe. If the magnitude of their couplings to all Standard Model flavours can be measured individually, and if the Dirac phase in the lepton mixing matrix is determined in neutrino oscillation experiments, then all model parameters can in principle be determined from this data. This makes the low scale seesaw a fully testable model of neutrino masses and baryogenesis.

  16. Neutrino mass priors for cosmology from random matrices

    Science.gov (United States)

    Long, Andrew J.; Raveri, Marco; Hu, Wayne; Dodelson, Scott

    2018-02-01

    Cosmological measurements of structure are placing increasingly strong constraints on the sum of the neutrino masses, Σ mν, through Bayesian inference. Because these constraints depend on the choice for the prior probability π (Σ mν), we argue that this prior should be motivated by fundamental physical principles rather than the ad hoc choices that are common in the literature. The first step in this direction is to specify the prior directly at the level of the neutrino mass matrix Mν, since this is the parameter appearing in the Lagrangian of the particle physics theory. Thus by specifying a probability distribution over Mν, and by including the known squared mass splittings, we predict a theoretical probability distribution over Σ mν that we interpret as a Bayesian prior probability π (Σ mν). Assuming a basis-invariant probability distribution on Mν, also known as the anarchy hypothesis, we find that π (Σ mν) peaks close to the smallest Σ mν allowed by the measured mass splittings, roughly 0.06 eV (0.1 eV) for normal (inverted) ordering, due to the phenomenon of eigenvalue repulsion in random matrices. We consider three models for neutrino mass generation: Dirac, Majorana, and Majorana via the seesaw mechanism; differences in the predicted priors π (Σ mν) allow for the possibility of having indications about the physical origin of neutrino masses once sufficient experimental sensitivity is achieved. We present fitting functions for π (Σ mν), which provide a simple means for applying these priors to cosmological constraints on the neutrino masses or marginalizing over their impact on other cosmological parameters.

  17. Signatures of the neutrino mass hierarchy in supernova neutrinos

    International Nuclear Information System (INIS)

    Chiu, S.H.; Huang, Chu-Ching; Lai, Kwang-Chang

    2015-01-01

    The undetermined neutrino mass hierarchy may leave an observable imprint on the neutrino fluxes from a core-collapse supernova (SN). The interpretation of the observables, however, is subject to the uncertain SN models and the flavor conversion mechanism of neutrinos in a SN. We attempt to propose a qualitative interpretation of the expected neutrino events at terrestrial detectors, focusing on the accretion phase of the neutrino burst. The flavor conversions due to neutrino self-interaction, the MSW effect, and the Earth regeneration effect are incorporated in the calculation. It leads to several distinct scenarios that are identified by the neutrino mass hierarchies and the collective flavor transitions. Consequences resulting from the variation of incident angles and SN models are also discussed

  18. Starobinsky-like inflation and neutrino masses in a no-scale SO(10) model

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, John [Theoretical Particle Physics and Cosmology Group,Department of Physics, King’s College London, WC2R 2LS London (United Kingdom); Theoretical Physics Department, CERN,CH-1211 Geneva 23 (Switzerland); Garcia, Marcos A.G. [Physics and Astronomy Department, Rice University,6100 Main Street, Houston, TX 77005 (United States); Nagata, Natsumi [Department of Physics, University of Tokyo,Bunkyo-ku, Tokyo 113-0033 (Japan); Nanopoulos, Dimitri V. [George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy,Texas A& M University, College Station, 77843 Texas (United States); Olive, Keith A. [William I. Fine Theoretical Physics Institute, School of Physics and Astronomy, University of Minnesota,116 Church Street SE, Minneapolis, MN 55455 (United States)

    2016-11-08

    Using a no-scale supergravity framework, we construct an SO(10) model that makes predictions for cosmic microwave background observables similar to those of the Starobinsky model of inflation, and incorporates a double-seesaw model for neutrino masses consistent with oscillation experiments and late-time cosmology. We pay particular attention to the behaviour of the scalar fields during inflation and the subsequent reheating.

  19. Starobinsky-Like Inflation and Neutrino Masses in a No-Scale SO(10) Model

    CERN Document Server

    Ellis, John

    2016-11-08

    Using a no-scale supergravity framework, we construct an SO(10) model that makes predictions for cosmic microwave background observables similar to those of the Starobinsky model of inflation, and incorporates a double-seesaw model for neutrino masses consistent with oscillation experiments and late-time cosmology. We pay particular attention to the behaviour of the scalar fields during inflation and the subsequent reheating.

  20. Scalar dark matter with type II seesaw

    Directory of Open Access Journals (Sweden)

    Arnab Dasgupta

    2014-12-01

    Full Text Available We study the possibility of generating tiny neutrino mass through a combination of type I and type II seesaw mechanism within the framework of an abelian extension of standard model. The model also provides a naturally stable dark matter candidate in terms of the lightest neutral component of a scalar doublet. We compute the relic abundance of such a dark matter candidate and also point out how the strength of type II seesaw term can affect the relic abundance of dark matter. Such a model which connects neutrino mass and dark matter abundance has the potential of being verified or ruled out in the ongoing neutrino, dark matter, as well as accelerator experiments.

  1. Neutrino mass matrix and hierarchy

    International Nuclear Information System (INIS)

    Kaus, Peter; Meshkov, Sydney

    2003-01-01

    We build a model to describe neutrinos based on strict hierarchy, incorporating as much as possible, the latest known data, for Δsol and Δatm, and for the mixing angles determined from neutrino oscillation experiments, including that from KamLAND. Since the hierarchy assumption is a statement about mass ratios, it lets us obtain all three neutrino masses. We obtain a mass matrix, Mν and a mixing matrix, U, where both Mν and U are given in terms of powers of Λ, the analog of the Cabibbo angle λ in the Wolfenstein representation, and two parameters, ρ and κ, each of order one. The expansion parameter, Λ, is defined by Λ2 = m2/m3 = √(Δsol/Δatm) ≅ 0.16, and ρ expresses our ignorance of the lightest neutrino mass m1, (m1 ρΛ4m3), while κ scales s13 to the experimental upper limit, s13 = κΛ2 ≅ 0.16κ. These matrices are similar in structure to those for the quark and lepton families, but with Λ about 1.6 times larger than the λ for the quarks and charged leptons. The upper limit for the effective neutrino mass in double β-decay experiments is 4 x 10-3eV if s13 = 0 and 6 x 10-3eV if s13 is maximal. The model, which is fairly unique, given the hierarchy assumption and the data, is compared to supersymmetric extension and texture zero models of mass generation

  2. Direct measurements of neutrino masses

    Energy Technology Data Exchange (ETDEWEB)

    Holzschuh, E [Zurich Univ. (Switzerland). Inst. fuer Physik

    1996-11-01

    The direct measurements have so far given no indication for a nonzero (positive) mass of any of the three known neutrinos. The experiments measuring the tau and the muon neutrino are good shape. The tritium experiments are in an unfortunate situation. It is unclear to me whether the problems are experimental or theoretical or a combination of both. The electronic final states distribution have been calculated, but the results have never been tested experimentally. The most important question to be answered is about the validity of the sudden approximation. (author) 9 figs., 2 tabs., 16 refs.

  3. Neutrino Mass and Flavour Models

    International Nuclear Information System (INIS)

    King, Stephen F.

    2010-01-01

    We survey some of the recent promising developments in the search for the theory behind neutrino mass and tri-bimaximal mixing, and indeed all fermion masses and mixing. We focus in particular on models with discrete family symmetry and unification, and show how such models can also solve the SUSY flavour and CP problems. We also discuss the theoretical implications of the measurement of a non-zero reactor angle, as hinted at by recent experimental measurements.

  4. Identifying the neutrino mass spectrum from a supernova neutrino burst

    International Nuclear Information System (INIS)

    Dighe, A.S.; Smirnov, A.Yu.

    1999-12-01

    We study the role that the future detection of the neutrino burst from a galactic supernova can play in the reconstruction of the neutrino mass spectrum. We consider all possible 3ν mass and flavor spectra which describe the solar and atmospheric neutrino data. For each of these spectra we find the observable effects of the supernova neutrino conversions both in the matter of the star and the earth. We show that studies of the electron neutrino and antineutrino spectra as well as observations of the neutral current effects from supernova will allow us (i) to identify the solar neutrino solution, (ii) to determine the type of mass hierarchy (normal or inverted) and (iii) to probe the mixing vertical bar U e3 vertical bar 2 to values as low as 10 -4 - 10 -3 . (author)

  5. Introduction to models of neutrino masses and mixings

    International Nuclear Information System (INIS)

    Joshipura, Anjan S.

    2004-01-01

    This review contains an introduction to models of neutrino masses for non-experts. Topics discussed are i) different types of neutrino masses ii) structure of neutrino masses and mixing needed to understand neutrino oscillation results iii) mechanism to generate neutrino masses in gauge theories and iv) discussion of generic scenarios proposed to realize the required neutrino mass structures. (author)

  6. Planck-scale physics and neutrino masses

    International Nuclear Information System (INIS)

    Akhmedov, E.Kh.; Senjanovic, G.; Berezhiani, Z.G.

    1992-05-01

    We discuss gravitationally induced masses and mass splittings of Majorana, Zeldovich-Konopinski-Mahmoud and Dirac neutrinos. Among other implications, these effects can provide a solution of the solar neutrino puzzle. In particular, we show how this may work in the 17 keV neutrino picture. (author). 18 refs

  7. Leptogenesis in unified theories with Type II see-saw

    International Nuclear Information System (INIS)

    Antusch, Stefan; King, Steve F.

    2006-01-01

    In some classes of flavour models based on unified theories with a type I see-saw mechanism, the prediction for the mass of the lightest right-handed neutrino is in conflict with the lower bound from the requirement of successful thermal leptogenesis. We investigate how lifting the absolute neutrino mass scale by adding a type II see-saw contribution proportional to the unit matrix can solve this problem. Generically, lifting the neutrino mass scale increases the prediction for the mass of the lightest right-handed neutrino while the decay asymmetry is enhanced and washout effects are reduced, relaxing the lower bound on the mass of the lightest right-handed neutrino from thermal leptogenesis. For instance in classes of unified theories where the lightest right-handed neutrino dominates the type I see-saw contribution, we find that thermal leptogenesis becomes possible if the neutrino mass scale is larger than about 0.15 eV, making this scenario testable by neutrinoless double beta decay experiments in the near future

  8. Neutrino masses and b - τ unification in the supersymmetric standard model

    International Nuclear Information System (INIS)

    Vissani, F.; Smirnov, A.Yu.

    1994-05-01

    There are several indications that the Majorana masses of the right-handed neutrino components, M R , are at the intermediate scale: M R ∼ (10 10 - 10 12 ) GeV or even lighter. The renormalization effects due to large Yukawa couplings of neutrinos from region of momenta M R G are studied in the supersymmetric standard model. It is shown that neutrino renormalization effect can increase the m b /m τ ratio up to (10/15)%. This strongly disfavors m b - m τ unification for low values of tan β s . Lower bound on M R and tan β from the b - τ unification condition were found. The implications of the results to the see-saw mechanism of the neutrino mass generation are discussed. (author). 17 refs, 4 figs

  9. Radiative neutrino mass model with degenerate right-handed neutrinos

    International Nuclear Information System (INIS)

    Kashiwase, Shoichi; Suematsu, Daijiro

    2016-01-01

    The radiative neutrino mass model can relate neutrino masses and dark matter at a TeV scale. If we apply this model to thermal leptogenesis, we need to consider resonant leptogenesis at that scale. It requires both finely degenerate masses for the right-handed neutrinos and a tiny neutrino Yukawa coupling. We propose an extension of the model with a U(1) gauge symmetry, in which these conditions are shown to be simultaneously realized through a TeV scale symmetry breaking. Moreover, this extension can bring about a small quartic scalar coupling between the Higgs doublet scalar and an inert doublet scalar which characterizes the radiative neutrino mass generation. It also is the origin of the Z 2 symmetry which guarantees the stability of dark matter. Several assumptions which are independently supposed in the original model are closely connected through this extension. (orig.)

  10. Effects of neutrino oscillation on supernova neutrino. Inverted mass hierarchy

    International Nuclear Information System (INIS)

    Takahashi, Keitaro; Sato, Katsuhiko

    2003-01-01

    We study the effects of neutrino oscillation on supernova neutrinos in the case of the inverted mass hierarchy (m 3 1 2 ) as well as the normal mass hierarchy (m 1 2 3 ). Numerical analysis using realistic supernova and presupernova models allows us to investigate quantitatively the possibility to probe neutrino oscillation parameters. We show that information about the mass hierarchy can be obtained if θ 13 is rather large (sin 2 2θ 13 > 10 -3 ) and that θ 13 can be probed effectively by SuperKamiokande if the neutrino mass hierarchy is inverted. Errors due to the uncertainty in the original neutrino spectra and the Earth effect are also discussed. (author)

  11. Connections between the seesaw model and dark matter searches

    International Nuclear Information System (INIS)

    Adulpravitchai, Adisorn; Gu Peihong; Lindner, Manfred

    2010-01-01

    In some dark matter models, the coupling of the dark matter particle to the standard model Higgs determines the dark matter relic density while it is also consistent with dark matter direct-detection experiments. On the other hand, the seesaw model for generating the neutrino masses probably arises from a spontaneous symmetry breaking of global lepton number. The dark matter particle thus can significantly annihilate into massless Majorons when the lepton number-breaking scale and hence the seesaw scale are near the electroweak scale. This leads to an interesting interplay between neutrino physics and dark matter physics, and the annihilation mode has an interesting implication on dark matter searches.

  12. Perturbed Yukawa textures in the minimal seesaw model

    Energy Technology Data Exchange (ETDEWEB)

    Rink, Thomas; Schmitz, Kai [Max Planck Institute for Nuclear Physics (MPIK),69117 Heidelberg (Germany)

    2017-03-29

    We revisit the minimal seesaw model, i.e., the type-I seesaw mechanism involving only two right-handed neutrinos. This model represents an important minimal benchmark scenario for future experimental updates on neutrino oscillations. It features four real parameters that cannot be fixed by the current data: two CP-violating phases, δ and σ, as well as one complex parameter, z, that is experimentally inaccessible at low energies. The parameter z controls the structure of the neutrino Yukawa matrix at high energies, which is why it may be regarded as a label or index for all UV completions of the minimal seesaw model. The fact that z encompasses only two real degrees of freedom allows us to systematically scan the minimal seesaw model over all of its possible UV completions. In doing so, we address the following question: suppose δ and σ should be measured at particular values in the future — to what extent is one then still able to realize approximate textures in the neutrino Yukawa matrix? Our analysis, thus, generalizes previous studies of the minimal seesaw model based on the assumption of exact texture zeros. In particular, our study allows us to assess the theoretical uncertainty inherent to the common texture ansatz. One of our main results is that a normal light-neutrino mass hierarchy is, in fact, still consistent with a two-zero Yukawa texture, provided that the two texture zeros receive corrections at the level of O(10 %). While our numerical results pertain to the minimal seesaw model only, our general procedure appears to be applicable to other neutrino mass models as well.

  13. Neutrino Masses and Mixings and Astrophysics

    Science.gov (United States)

    Fuller, George M.

    1998-10-01

    Here we discuss the implications of light neutrino masses and neutrino flavor/type mixing for dark matter, big bang nucleosynthesis, and models of heavy element nucleosynthesis in super novae. We will also argue the other way and discuss possible constraints on neutrino physics from these astrophysical considerations.

  14. The Friedberg-Lee symmetry and minimal seesaw model

    International Nuclear Information System (INIS)

    He Xiaogang; Liao Wei

    2009-01-01

    The Friedberg-Lee (FL) symmetry is generated by a transformation of a fermionic field q to q+ξz. This symmetry puts very restrictive constraints on allowed terms in a Lagrangian. Applying this symmetry to N fermionic fields, we find that the number of independent fields is reduced to N-1 if the fields have gauge interaction or the transformation is a local one. Using this property, we find that a seesaw model originally with three generations of left- and right-handed neutrinos, with the left-handed neutrinos unaffected but the right-handed neutrinos transformed under the local FL translation, is reduced to an effective theory of minimal seesaw which has only two right-handed neutrinos. The symmetry predicts that one of the light neutrino masses must be zero.

  15. Neutrino masses in astrophysics and cosmology

    International Nuclear Information System (INIS)

    Raffelt, G.G.

    1996-01-01

    Astrophysical and cosmological arguments and observations give us the most restrictive constraints on neutrino masses, electromagnetic couplings, and other properties. Conversely, massive neutrinos would contribute to the cosmic dark-matter density and would play an important role for the formation of structure in the universe. Neutrino oscillations may well solve the solar neutrino problem, and can have a significant impact on supernova physics. (author) 14 figs., tabs., 33 refs

  16. Neutrino masses in astrophysics and cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Raffelt, G G [Max-Planck-Institut fuer Physik, Muenchen (Germany)

    1996-11-01

    Astrophysical and cosmological arguments and observations give us the most restrictive constraints on neutrino masses, electromagnetic couplings, and other properties. Conversely, massive neutrinos would contribute to the cosmic dark-matter density and would play an important role for the formation of structure in the universe. Neutrino oscillations may well solve the solar neutrino problem, and can have a significant impact on supernova physics. (author) 14 figs., tabs., 33 refs.

  17. Neutrino Masses and Oscillations

    CERN Multimedia

    CERN. Geneva. Audiovisual Unit; Treille, Daniel

    2002-01-01

    This course will not cover its subject in the customary way. The emphasis will be on the simple theoretical concepts (helicity, handedness, chirality, Majorana masses) which are obscure in most of the literature, and on the quantum mechanics of oscillations, that ALL books get wrong. Which, hopefully, will not deter me from discussing some of the most interesting results from the labs and from the cosmos.

  18. Neutrino masses, leptogenesis and dark matter from small lepton number violation?

    Energy Technology Data Exchange (ETDEWEB)

    Abada, Asmaa [CNRS, Univ. Paris-Sud, Univ. Paris-Saclay, Orsay (France). Lab. de Physique Theorique; Arcadi, Giorgio [Max Planck Institut fuer Kernphysik, Heidelberg (Germany); Domcke, Valerie [Paris Diderot Univ. (France). AstroParticule et Cosmologie (APC)/Paris Centre for Cosmological Physics (PCCP); Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Lucente, Michele [Univ. Catholique de Louvain, Louvain-la-Neuve (Belgium). Centre for Cosmology, Particle Physics and Phenomenology (CP3)

    2017-09-05

    We consider the possibility of simultaneously addressing the baryon asymmetry of the Universe, the dark matter problem and the neutrino mass generation in minimal extensions of the Standard Model via sterile fermions with (small) total lepton number violation. Within the framework of Inverse and Linear Seesaw models, the small lepton number violating parameters set the mass scale of the active neutrinos, the efficiency of leptogenesis through a small mass splitting between pairs of sterile fermions as well as the mass scale of a sterile neutrino dark matter candidate. We provide an improved parametrization of these seesaw models taking into account existing experimental constraints and derive a linearized system of Boltzmann equations to describe the leptogenesis process, which allows for an efficient investigation of the parameter space. This in particular enables us to perform a systematic study of the strong washout regime of leptogenesis. Our study reveals that one can have a successful leptogenesis at the temperature of the electroweak scale through oscillations between two sterile states with a natural origin of the (necessary) strong degeneracy in their mass spectrum. The minimal model however requires a non-standard cosmological history to account for the relic dark matter. Finally, we discuss the prospect for neutrinoless double beta decay and for testing, in future experiments, the values of mass and different active-sterile mixings required for successful leptogenesis.

  19. Neutrino masses, leptogenesis and dark matter from small lepton number violation?

    International Nuclear Information System (INIS)

    Abada, Asmaa; Domcke, Valerie; Lucente, Michele

    2017-01-01

    We consider the possibility of simultaneously addressing the baryon asymmetry of the Universe, the dark matter problem and the neutrino mass generation in minimal extensions of the Standard Model via sterile fermions with (small) total lepton number violation. Within the framework of Inverse and Linear Seesaw models, the small lepton number violating parameters set the mass scale of the active neutrinos, the efficiency of leptogenesis through a small mass splitting between pairs of sterile fermions as well as the mass scale of a sterile neutrino dark matter candidate. We provide an improved parametrization of these seesaw models taking into account existing experimental constraints and derive a linearized system of Boltzmann equations to describe the leptogenesis process, which allows for an efficient investigation of the parameter space. This in particular enables us to perform a systematic study of the strong washout regime of leptogenesis. Our study reveals that one can have a successful leptogenesis at the temperature of the electroweak scale through oscillations between two sterile states with a natural origin of the (necessary) strong degeneracy in their mass spectrum. The minimal model however requires a non-standard cosmological history to account for the relic dark matter. Finally, we discuss the prospect for neutrinoless double beta decay and for testing, in future experiments, the values of mass and different active-sterile mixings required for successful leptogenesis.

  20. Neutrino masses, leptogenesis and dark matter from small lepton number violation?

    Science.gov (United States)

    Abada, Asmaa; Arcadi, Giorgio; Domcke, Valerie; Lucente, Michele

    2017-12-01

    We consider the possibility of simultaneously addressing the baryon asymmetry of the Universe, the dark matter problem and the neutrino mass generation in minimal extensions of the Standard Model via sterile fermions with (small) total lepton number violation. Within the framework of Inverse and Linear Seesaw models, the small lepton number violating parameters set the mass scale of the active neutrinos, the efficiency of leptogenesis through a small mass splitting between pairs of sterile fermions as well as the mass scale of a sterile neutrino dark matter candidate. We provide an improved parametrization of these seesaw models taking into account existing experimental constraints and derive a linearized system of Boltzmann equations to describe the leptogenesis process, which allows for an efficient investigation of the parameter space. This in particular enables us to perform a systematic study of the strong washout regime of leptogenesis. Our study reveals that one can have a successful leptogenesis at the temperature of the electroweak scale through oscillations between two sterile states with a natural origin of the (necessary) strong degeneracy in their mass spectrum. The minimal model however requires a non-standard cosmological history to account for the relic dark matter. Finally, we discuss the prospect for neutrinoless double beta decay and for testing, in future experiments, the values of mass and different active-sterile mixings required for successful leptogenesis.

  1. Computation with Inverse States in a Finite Field FPα: The Muon Neutrino Mass, the Unified Strong-Electroweak Coupling Constant, and the Higgs Mass

    International Nuclear Information System (INIS)

    Dai, Yang; Borisov, Alexey B.; Boyer, Keith; Rhodes, Charles K.

    2000-01-01

    The construction of inverse states in a finite field F P α enables the organization of the mass scale with fundamental octets in an eight-dimensional index space that identifies particle states with residue class designations. Conformance with both CPT invariance and the concept of supersymmetry follows as a direct consequence of this formulation. Based on two parameters (P α and g α ) that are anchored on a concordance of physical data, this treatment leads to (1) a prospective mass for the muon neutrino of approximately27.68 meV, (2) a value of the unified strong-electroweak coupling constant α* = (34.26) -1 that is physically defined by the ratio of the electron neutrino and muon neutrino masses, and (3) a see-saw congruence connecting the Higgs, the electron neutrino, and the muon neutrino masses. Specific evaluation of the masses of the corresponding supersymmetric Higgs pair reveals that both particles are superheavy (> 10 18 GeV). No renormalization of the Higgs masses is introduced, since the calculational procedure yielding their magnitudes is intrinsically divergence-free. Further, the Higgs fulfills its conjectured role through the see-saw relation as the particle defining the origin of all particle masses, since the electron and muon neutrino systems, together with their supersymmetric partners, are the generators of the mass scale and establish the corresponding index space. Finally, since the computation of the Higgs masses is entirely determined by the modulus of the field P α , which is fully defined by the large-scale parameters of the universe through the value of the universal gravitational constant G and the requirement for perfect flatness (Omega = 1.0), the see-saw congruence fuses the concepts of mass and space and creates a new unified archetype

  2. Probing the Absolute Mass Scale of Neutrinos

    International Nuclear Information System (INIS)

    Formaggio, Joseph A.

    2011-01-01

    The experimental efforts of the Neutrino Physics Group at MIT center primarily around the exploration of neutrino mass and its significance within the context of nuclear physics, particle physics, and cosmology. The group has played a prominent role in the Sudbury Neutrino Observatory, a neutrino experiment dedicated to measure neutrino oscillations from 8B neutrinos created in the sun. The group is now focusing its efforts in the measurement of the neutrino mass directly via the use of tritium beta decay. The MIT group has primary responsibilities in the Karlsruhe Tritium Neutrino mass experiment, expected to begin data taking by 2013. Specifically, the MIT group is responsible for the design and development of the global Monte Carlo framework to be used by the KATRIN collaboration, as well as responsibilities directly associated with the construction of the focal plane detector. In addition, the MIT group is sponsoring a new research endeavor for neutrino mass measurements, known as Project 8, to push beyond the limitations of current neutrino mass experiments.

  3. Identifying the neutrino mass hierarchy with supernova neutrinos

    International Nuclear Information System (INIS)

    Tomas, Ricard

    2006-01-01

    We review how a high-statistics observation of the neutrino signal from a future galactic core-collapse supernova (SN) may be used to discriminate between different neutrino mixing scenarios. We discuss two complementary methods that allow for the positive identification of the mass hierarchy without knowledge of the emitted neutrino fluxes, provided that the 13-mixing angle is large, sin 2 θ 13 -5 . These two approaches are the observation of modulations in the neutrino spectra by Earth matter effects or by the passage of shock waves through the SN envelope. If the value of the 13-mixing angle is unknown, using additionally the information encoded in the prompt neutronization ν e burst-a robust feature found in all modern SN simulations-can be sufficient to fix both the neutrino hierarchy and to decide whether θ 13 is 'small' or 'large'

  4. Effects of neutrino oscillation on supernova neutrino: inverted mass hierarchy

    International Nuclear Information System (INIS)

    Takahashi, Keitaro; Sato, Katsuhiko

    2003-01-01

    We study the effects of neutrino oscillation on supernova neutrino in the case of the inverted mass hierarchy (m 3 1 2 ). This is an extended study of our previous study where all analyses are performed with normal mass hierarchy (m 1 2 3 ). Numerical analysis using a realistic supernova and presupernova model allow us to discuss quantitatively a possibility to probe neutrino oscillation parameters. We show that we can break partly the degeneracy of the solar neutrino problem (LMA or SMA) and probe the magnitude of θ 13 to some extent by the ratios of high-energy events and low-energy events at SuperKamiokande and SNO and the presence of the Earth effects. Further, if the magnitude of θ 13 is known roughly, we can identify the mass hierarchy

  5. JUNO. Determination of the neutrino mass hierarchy using reactor neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Wonsak, Bjoern [Hamburg University, Inst. Exp. Phys., Hamburg (Germany)

    2015-07-01

    The Jiangmen Underground Neutrino Observatory (JUNO) is a medium-baseline reactor neutrino experiment located in China. Its aim is to determine the neutrino mass hierarchy at more than 3 sigma significance after six years of data taking by using a 20kt liquid scintillator detector. To achieve this goal, an energy resolution of less than 3%/√(E) is necessary, creating strict requirements on the detector design and the liquid scintillator. Moreover, JUNO will be the only experiment in the near future able to measure the solar mixing parameters with a precision of better than 1%. This is at the same level as our current knowledge on flavour mixing in the quark sector, marking an important milestone of neutrino physics. In addition, supernova neutrinos, geo-neutrinos, sterile neutrinos as well as solar and atmospheric neutrinos can be studied. JUNO was approved in 2013 and the construction of the underground facility started early this year. In this talk the status of the experiment and its prospects is discussed.

  6. Neutrino masses and beyond from supersymmetry

    International Nuclear Information System (INIS)

    Kong, O.C.W.

    2004-01-01

    A generic form of the supersymmetric SM naturally gives rise to the lepton number violating neutrino masses and mixings, without the need for extra superfields beyond the minimal spectrum. Hence, SUSY can be considered the origin of beyond SM properties of neutrinos. We have developed a formulation under which one can efficiently analyze the model. Various sources of neutrino masses are discussed. Such mass contributions come from lepton number and flavor violating couplings that also give rise to a rich phenomenology of the neutrinos and other leptons, also to be discussed. (author)

  7. Flipped Heavy Neutrinos from the Solar Neutrino Problem to Baryogenesis

    CERN Document Server

    Ellis, Jonathan Richard; Olive, Keith A

    1993-01-01

    We discuss baryogenesis using the flipped $SU(5)$ model for lepton mass matrices. We show that the generalized see-saw mechanism in this model can not only provide MSW neutrino mixing suitable for solving the solar neutrino problem, and supply a hot dark matter candidate ($\

  8. The IBM neutrino-mass experiment

    International Nuclear Information System (INIS)

    Clark, G.J.; Frisch, M.A.; Chaudhari, P.; Bregman, M.F.

    1985-01-01

    IBM is undertaking an experiment to measure the electron anti-neutrino mass. A high precision measurement of the tritium Β-decay spectrum near the end point is used to infer the neutrino mass. Electron energies are measured using a large spherical retarding grid analyzer. We are placing particular emphasis on understanding the complications introduced by solid state effects in the source

  9. The IBM neutrino-mass experiment

    International Nuclear Information System (INIS)

    Clark, G.J.; Frisch, M.A.; Chaudhari, P.; Bregman, M.F.

    1985-01-01

    IBM is undertaking an experiment to measure the electron anti-neutrino mass. A high precision measurement of the tritium β-decay spectrum near the end point is used to infer the neutrino mass. Electron energies are measured using a large spherical retarding grid analyzer. They are placing particular emphasis on understanding the complications introduced by solid state effects in the source

  10. Quark see-saw, Higgs mass and vacuum stability

    Indian Academy of Sciences (India)

    2State Key Laboratory of Theoretical Physics and Kavli Institute for .... This paper is organized as follows: in §2, we present the basic ingredients of the ..... scalar coupling λ must satisfy the positivity condition λ(μ) > 0 for all values of the mass μ.

  11. Renormalisation group corrections to the littlest seesaw model and maximal atmospheric mixing

    International Nuclear Information System (INIS)

    King, Stephen F.; Zhang, Jue; Zhou, Shun

    2016-01-01

    The Littlest Seesaw (LS) model involves two right-handed neutrinos and a very constrained Dirac neutrino mass matrix, involving one texture zero and two independent Dirac masses, leading to a highly predictive scheme in which all neutrino masses and the entire PMNS matrix is successfully predicted in terms of just two real parameters. We calculate the renormalisation group (RG) corrections to the LS predictions, with and without supersymmetry, including also the threshold effects induced by the decoupling of heavy Majorana neutrinos both analytically and numerically. We find that the predictions for neutrino mixing angles and mass ratios are rather stable under RG corrections. For example we find that the LS model with RG corrections predicts close to maximal atmospheric mixing, θ_2_3=45"∘±1"∘, in most considered cases, in tension with the latest NOvA results. The techniques used here apply to other seesaw models with a strong normal mass hierarchy.

  12. Renormalisation group corrections to the littlest seesaw model and maximal atmospheric mixing

    Energy Technology Data Exchange (ETDEWEB)

    King, Stephen F. [School of Physics and Astronomy, University of Southampton,SO17 1BJ Southampton (United Kingdom); Zhang, Jue [Center for High Energy Physics, Peking University,Beijing 100871 (China); Zhou, Shun [Center for High Energy Physics, Peking University,Beijing 100871 (China); Institute of High Energy Physics, Chinese Academy of Sciences,Beijing 100049 (China)

    2016-12-06

    The Littlest Seesaw (LS) model involves two right-handed neutrinos and a very constrained Dirac neutrino mass matrix, involving one texture zero and two independent Dirac masses, leading to a highly predictive scheme in which all neutrino masses and the entire PMNS matrix is successfully predicted in terms of just two real parameters. We calculate the renormalisation group (RG) corrections to the LS predictions, with and without supersymmetry, including also the threshold effects induced by the decoupling of heavy Majorana neutrinos both analytically and numerically. We find that the predictions for neutrino mixing angles and mass ratios are rather stable under RG corrections. For example we find that the LS model with RG corrections predicts close to maximal atmospheric mixing, θ{sub 23}=45{sup ∘}±1{sup ∘}, in most considered cases, in tension with the latest NOvA results. The techniques used here apply to other seesaw models with a strong normal mass hierarchy.

  13. Neutrino mass and mixing, and non-accelerator experiments

    International Nuclear Information System (INIS)

    Robertson, R.G.H.

    1992-01-01

    We review the current status of experimental knowledge about neutrinos derived from kinematic mass measurements, neutrino oscillation searches at reactors and accelerators, solar neutrinos, atmospheric neutrinos, and single and double beta decay. The solar neutrino results yield fairly strong and consistent indication that neutrino oscillations are occurring. Other evidence for new physics is less consistent and convincing

  14. The experimental status of neutrino masses and mixings

    International Nuclear Information System (INIS)

    Robertson, R.G.H.

    1992-01-01

    We review the current status of experimental knowledge about neutrinos derived from kinematic mass measurements, neutrino oscillation searches at reactors and accelerators, solar neutrinos, atmospheric neutrinos, and single and double beta decay. The solar neutrino results yield fairly strong and consistent indications that neutrino oscillations are occurring. Other evidence for new physics is less consistent and convincing

  15. Models of neutrino masses: Anarchy versus hierarchy

    International Nuclear Information System (INIS)

    Altarelli, Guido; Feruglio, Ferruccio; Masina, Isabella

    2003-01-01

    We present a quantitative study of the ability of models with different levels of hierarchy to reproduce the solar neutrino solutions, in particular the LA solution. As a flexible testing ground we consider models based on SU(5)xU(1) F . In this context, we have made statistical simulations of models with different patterns from anarchy to various types of hierarchy: normal hierarchical models with and without automatic suppression of the 23 (sub)determinant and inverse hierarchy models. We find that, not only for the LOW or VO solutions, but even in the LA case, the hierarchical models have a significantly better success rate than those based on anarchy. The normal hierarchy and the inverse hierarchy models have comparable performances in models with see-saw dominance, while the inverse hierarchy models are particularly good in the no see-saw versions. As a possible distinction between these categories of models, the inverse hierarchy models favour a maximal solar mixing angle and their rate of success drops dramatically as the mixing angle decreases, while normal hierarchy models are far more stable in this respect. (author)

  16. Neutrino masses in the flipped SU(5) x U(1) and the SU(4) x O(4) GUT models

    Energy Technology Data Exchange (ETDEWEB)

    Ranfone, S.; Papageorgiu, E.

    1992-03-01

    We classify the different neutrino-mass pattern arising in string-inspired Grand Universal Theory (GUT) and supersymmetric GUT models based on the flipped SU(5)xU(1) and the SU(4)xO(4) gauge groups. Phenomenologically interesting spectra are obtained through the interplay of the two seesaw mechanisms present, with typical neutrino masses {approx}10{sup -3} eV in the supersymmetric GUT models and of order 0.1 - 10 KeV in the ordinary GUTs. (author).

  17. Neutrino masses twenty-five years later

    International Nuclear Information System (INIS)

    Valle, J.W.F.

    2003-01-01

    The discovery of neutrino mass marks a turning point in elementary particle physics, with important implications for nuclear and astroparticle physics. Here I give a brief update, where I summarize the current status of three-neutrino oscillation parameters from current solar, atmospheric, reactor and accelerator neutrino data, discuss the case for sterile neutrinos and LSND, and also the importance of tritium and double beta decay experiments probing the absolute scale of neutrino mass. In this opinionated look at the present of neutrino physics, I keep an eye in the future, and a perspective of the past, taking the opportunity to highlight Joe Schechter's pioneering contribution, which I have had the fortune to share, as his PhD student back in the early eighties

  18. Naturalness and stability of the generalized Chaplygin gas in the seesaw cosmon scenario

    International Nuclear Information System (INIS)

    Bernardini, A. E.; Bertolami, O.

    2010-01-01

    The seesaw mechanism is conceived on the basis that a mass scale, ξ, and a dimensionless scale, s, can be fine-tuned in order to control the dynamics of active and sterile neutrinos through cosmon-type equations of motion: the seesaw cosmon equations. This allows for sterile neutrinos to be a dark matter candidate. In this scenario, the dynamical masses and energy densities of active and sterile neutrinos can be consistently embedded into the generalized Chaplygin gas (GCG), the unified dark sector model. In addition, dark matter adiabatically coupled to dark energy allows for a natural decoupling of the (active) mass varying neutrino component from the dark sector. Thus mass varying neutrinos turn into a secondary effect. Through the scale parameters, ξ and s, the proposed scenario allows for a convergence among three distinct frameworks: the cosmon scenario, the seesaw mechanism for mass generation, and the GCG model. It is found that the equation of state of the perturbations is the very one of the GCG background cosmology so that all the results from this approach are maintained, being smoothly modified by active neutrinos. Constrained by the seesaw relations, it is shown that the mass varying mechanism is responsible for the stability against linear perturbations and is indirectly related to the late time cosmological acceleration.

  19. Neutrino masses and mixing: evidence and implications

    International Nuclear Information System (INIS)

    Gonzalez-Garcia, M.C.; Nir, Yosef

    2003-01-01

    Measurements of various features of the fluxes of atmospheric and solar neutrinos have provided evidence for neutrino oscillations and therefore for neutrino masses and mixing. The authors review the phenomenology of neutrino oscillations in vacuum and in matter. They present the existing evidence from solar and atmospheric neutrinos as well as the results from laboratory searches, including the final status of the Liquid Scintillator Neutrino Detector (LSND) experiment. The theoretical inputs that are used to interpret the experimental results are described in terms of neutrino oscillations. The allowed ranges for the mass and mixing parameters are derived in two frameworks: First, each set of observations is analyzed separately in a two-neutrino framework; Second, the data from solar and atmospheric neutrinos are analyzed in a three-active-neutrino framework. The theoretical implications of these results are then discussed, including the existence of new physics, the estimate of the scale of this new physics, and the lessons for grand unified theories, for models of extra dimensions and singlet fermions in the bulk, and for flavor models

  20. PINGU sensitivity to neutrino mass hierarchy

    International Nuclear Information System (INIS)

    Groß, Andreas

    2014-01-01

    Determination of the neutrino mass hierarchy (NMH) is among the most fundamental questions in particle physics. Recent measurements of 1) a large mixing angle between the first and the third neutrino mass eigenstates and 2) the first observation of atmospheric neutrino oscillations at tens of GeV with neutrino telescopes, open the intriguing new possibility to exploit matter effects in neutrino oscillation to determine the neutrino mass hierarchy. A further extension of IceCube/DeepCore called PINGU (Precision IceCube Next Generation Upgrade) has been recently envisioned with the ultimate goal to measure neutrino mass hierarchy. PINGU would consist of additional IceCube-like strings of detectors deployed in the deepest and cleanest ice in the center of IceCube. More densely deployed instrumentation would provide a threshold substantially below 10 GeV and enhance the sensitivity to the mass hierarchy signal in atmospheric neutrinos. Here we discuss an estimate of the PINGU sensitivity to the mass hierarchy determined using an approximation with an Asimov dataset and an oscillation parameter fit

  1. The seesaw path to leptonic CP violation

    Energy Technology Data Exchange (ETDEWEB)

    Caputo, A.; Hernandez, P. [Universidad de Valencia and CSIC, Edificio Institutos Investigacion, Instituto de Fisica Corpuscular, Paterna (Spain); CERN, Theoretical Physics Department, Geneva (Switzerland); Kekic, M.; Salvado, J. [Universidad de Valencia and CSIC, Edificio Institutos Investigacion, Instituto de Fisica Corpuscular, Paterna (Spain); Lopez-Pavon, J. [CERN, Theoretical Physics Department, Geneva (Switzerland)

    2017-04-15

    Future experiments such as SHiP and high-intensity e{sup +}e{sup -} colliders will have a superb sensitivity to heavy Majorana neutrinos with masses below M{sub Z}. We show that the measurement of the mixing to electrons and muons of one such state could establish the existence of CP violating phases in the neutrino mixing matrix, in the context of low-scale seesaw models. We quantify in the minimal model the CP reach of these future experiments, and demonstrate that CP violating phases in the mixing matrix could be established at 5σ CL in a very significant fraction of parameter space. (orig.)

  2. Lepton flavor violation and seesaw symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Aristizabal Sierra, D., E-mail: daristizabal@ulg.ac.be [Universite de Liege, IFPA, Department AGO (Belgium)

    2013-03-15

    When the standard model is extended with right-handed neutrinos the symmetries of the resulting Lagrangian are enlarged with a new global U(1){sub R} Abelian factor. In the context of minimal seesaw models we analyze the implications of a slightly broken U(1){sub R} symmetry on charged lepton flavor violating decays. We find, depending on the R-charge assignments, models where charged lepton flavor violating rates can be within measurable ranges. In particular, we show that in the resulting models due to the structure of the light neutrino mass matrix muon flavor violating decays are entirely determined by neutrino data (up to a normalization factor) and can be sizable in a wide right-handed neutrino mass range.

  3. Neutrino mass hierarchy and matter effects

    OpenAIRE

    Smirnov, Alexei Yu.

    2013-01-01

    Matter effects modify the mixing and the effective masses of neutrinos in a way which depends on the neutrino mass hierarchy. Consequently, for normal and inverted hierarchies the oscillations and flavor conversion results are different. Sensitivity to the mass hierarchy appears whenever the matter effects on the 1-3 mixing and mass splitting become substantial. This happens in supernovae in wide energy range and in the matter of the Earth. The Earth density profile is a multi-layer medium wh...

  4. Neutrino mass, leptogenesis and FIMP dark matter in a U(1){sub B-L} model

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Anirban; Khan, Sarif [Harish-Chandra Research Institute, Allahabad (India); Homi Bhabha National Institute, Training School Complex, Mumbai (India); Choubey, Sandhya [Harish-Chandra Research Institute, Allahabad (India); Homi Bhabha National Institute, Training School Complex, Mumbai (India); AlbaNova University Center, Department of Theoretical Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Stockholm (Sweden)

    2017-12-15

    The Standard Model (SM) is inadequate to explain the origin of tiny neutrino masses, the dark matter (DM) relic abundance and the baryon asymmetry of the Universe. In this work, to address all three puzzles, we extend the SM by a local U(1){sub B-L} gauge symmetry, three right-handed (RH) neutrinos for the cancellation of gauge anomalies and two complex scalars having non-zero U(1){sub B-L} charges. All the newly added particles become massive after the breaking of the U(1){sub B-L} symmetry by the vacuum expectation value (VEV) of one of the scalar fields φ{sub H}. The other scalar field, φ{sub DM}, which does not have any VEV, becomes automatically stable and can be a viable DM candidate. Neutrino masses are generated using the Type-I seesaw mechanism, while the required lepton asymmetry to reproduce the observed baryon asymmetry can be attained from the CP violating out of equilibrium decays of the RH neutrinos in TeV scale. More importantly within this framework, we study in detail the production of DM via the freeze-in mechanism considering all possible annihilation and decay processes. Finally, we find a situation when DM is dominantly produced from the annihilation of the RH neutrinos, which are at the same time also responsible for neutrino mass generation and leptogenesis. (orig.)

  5. Neutrino mass, leptogenesis and FIMP dark matter in a U(1)_{B-L} model

    Science.gov (United States)

    Biswas, Anirban; Choubey, Sandhya; Khan, Sarif

    2017-12-01

    The Standard Model (SM) is inadequate to explain the origin of tiny neutrino masses, the dark matter (DM) relic abundance and the baryon asymmetry of the Universe. In this work, to address all three puzzles, we extend the SM by a local U(1)_{B-L} gauge symmetry, three right-handed (RH) neutrinos for the cancellation of gauge anomalies and two complex scalars having non-zero U(1)_{B-L} charges. All the newly added particles become massive after the breaking of the U(1)_{B-L} symmetry by the vacuum expectation value (VEV) of one of the scalar fields φ _H. The other scalar field, φ _DM, which does not have any VEV, becomes automatically stable and can be a viable DM candidate. Neutrino masses are generated using the Type-I seesaw mechanism, while the required lepton asymmetry to reproduce the observed baryon asymmetry can be attained from the CP violating out of equilibrium decays of the RH neutrinos in TeV scale. More importantly within this framework, we study in detail the production of DM via the freeze-in mechanism considering all possible annihilation and decay processes. Finally, we find a situation when DM is dominantly produced from the annihilation of the RH neutrinos, which are at the same time also responsible for neutrino mass generation and leptogenesis.

  6. Radiative stability of neutrino-mass textures

    Indian Academy of Sciences (India)

    physics pp. 647-650. Radiative stability of neutrino-mass textures. M K PARIDA ... A major challenge to particle physics at present is the theoretical understanding of ... A possible origin of two large neutrino mixings for /e -/μ and /μ -/г but small.

  7. Neutrino masses and ordering via multimessenger astronomy

    DEFF Research Database (Denmark)

    Langæble, Kasper; Meroni, Aurora; Sannino, Francesco

    2016-01-01

    We define the theoretical framework and deduce the conditions under which multi-messenger astronomy can provide useful information about neutrino masses and their ordering. The framework uses time differences between the arrival of neutrinos and the other light messenger, i.e. the graviton, emitted...

  8. Hiding neutrino mass in modified gravity cosmologies

    Energy Technology Data Exchange (ETDEWEB)

    Bellomo, Nicola; Bellini, Emilio; Hu, Bin; Jimenez, Raul; Verde, Licia [ICC, University of Barcelona (UB-IEEC), Marti i Franques 1, 08028, Barcelona (Spain); Pena-Garay, Carlos, E-mail: nicola.bellomo@icc.ub.edu, E-mail: emilio.bellini@physics.ox.ac.uk, E-mail: binhu@icc.ub.edu, E-mail: raul.jimenez@icc.ub.edu, E-mail: penya@ific.uv.es, E-mail: liciaverde@icc.ub.edu [Instituto de Fisica Corpuscular, CSIC-UVEG, P.O. 22085, Valencia, 46071 (Spain)

    2017-02-01

    Cosmological observables show a dependence with the neutrino mass, which is partially degenerate with parameters of extended models of gravity. We study and explore this degeneracy in Horndeski generalized scalar-tensor theories of gravity. Using forecasted cosmic microwave background and galaxy power spectrum datasets, we find that a single parameter in the linear regime of the effective theory dominates the correlation with the total neutrino mass. For any given mass, a particular value of this parameter approximately cancels the power suppression due to the neutrino mass at a given redshift. The extent of the cancellation of this degeneracy depends on the cosmological large-scale structure data used at different redshifts. We constrain the parameters and functions of the effective gravity theory and determine the influence of gravity on the determination of the neutrino mass from present and future surveys.

  9. Supernova signatures of neutrino mass ordering

    Science.gov (United States)

    Scholberg, Kate

    2018-01-01

    A suite of detectors around the world is poised to measure the flavor-energy-time evolution of the ten-second burst of neutrinos from a core-collapse supernova occurring in the Milky Way or nearby. Next-generation detectors to be built in the next decade will have enhanced flavor sensitivity and statistics. Not only will the observation of this burst allow us to peer inside the dense matter of the extreme event and learn about the collapse processes and the birth of the remnant, but the neutrinos will bring information about neutrino properties themselves. This review surveys some of the physical signatures that the currently-unknown neutrino mass pattern will imprint on the observed neutrino events at Earth, emphasizing the most robust and least model-dependent signatures of mass ordering.

  10. Renormalization group evolution of Dirac neutrino masses

    International Nuclear Information System (INIS)

    Lindner, Manfred; Ratz, Michael; Schmidt, Michael Andreas

    2005-01-01

    There are good reasons why neutrinos could be Majorana particles, but there exist also a number of very good reasons why neutrinos could have Dirac masses. The latter option deserves more attention and we derive therefore analytic expressions describing the renormalization group evolution of mixing angles and of the CP phase for Dirac neutrinos. Radiative corrections to leptonic mixings are in this case enhanced compared to the quark mixings because the hierarchy of neutrino masses is milder and because the mixing angles are larger. The renormalization group effects are compared to the precision of current and future neutrino experiments. We find that, in the MSSM framework, radiative corrections of the mixing angles are for large tan β comparable to the precision of future experiments

  11. Neutrino mass hierarchy determination via atmospheric neutrinos with future detectors

    International Nuclear Information System (INIS)

    Gandhi, Raj; Ghoshal, Pomita; Goswami, Srubabati; Mehta, Poonam; Sankar, S Uma; Shalgar, Shashank

    2008-01-01

    The issue of determining the neutrino mass hierarchy is one of the outstanding questions in neutrino physics. We consider the potential of hierarchy determination using atmospheric neutrinos as the source in three different proposed future detectors: A large Iron Calorimeter detector, a megaton Water Cerenkov detector and a large-mass Liquid Argon detector. If the mixing angle θ 13 is about 10 deg. (close to CHOOZ upper bound), the hierarchy sensitivity is essentially determined by resonant matter effects. To maximize the potential of these effects in atmospheric neutrinos, charge discrimination capability in the detector is desirable. Hence, detectors with this capability have an advantage in hierarchy determination. We compare and contrast the performance of the above three detectors in this respect. We perform a realistic analysis of the above future detectors for atmospheric neutrinos and show that it is possible to achieve a significant hierarchy sensitivity if the detector characteristics are favourable. Note: The abstract has been modified from its original form to incorporate suggestions received during the conference. The poster is being submitted in its original form.

  12. Leptogenesis constraints on B - L breaking Higgs boson in TeV scale seesaw models

    Science.gov (United States)

    Dev, P. S. Bhupal; Mohapatra, Rabindra N.; Zhang, Yongchao

    2018-03-01

    In the type-I seesaw mechanism for neutrino masses, there exists a B - L symmetry, whose breaking leads to the lepton number violating mass of the heavy Majorana neutrinos. This would imply the existence of a new neutral scalar associated with the B - L symmetry breaking, analogous to the Higgs boson of the Standard Model. If in such models, the heavy neutrino decays are also responsible for the observed baryon asymmetry of the universe via the leptogenesis mechanism, the new seesaw scalar interactions with the heavy neutrinos will induce additional dilution terms for the heavy neutrino and lepton number densities. We make a detailed study of this dilution effect on the lepton asymmetry in three generic classes of seesaw models with TeV-scale B - L symmetry breaking, namely, in an effective theory framework and in scenarios with global or local U(1) B- L symmetry. We find that requiring successful leptogenesis imposes stringent constraints on the mass and couplings of the new scalar in all three cases, especially when it is lighter than the heavy neutrinos. We also discuss the implications of these new constraints and prospects of testing leptogenesis in presence of seesaw scalars at colliders.

  13. The Neutrino Mass Window for Baryogenesis

    CERN Document Server

    Buchmüller, Wilfried; Plümacher, Michael

    2003-01-01

    Interactions of heavy Majorana neutrinos in the thermal phase of the early universe may be the origin of the cosmological matter-antimatter asymmetry. This mechanism of baryogenesis implies stringent constraints on light and heavy Majorana neutrino masses. We derive an improved upper bound on the CP asymmetry in heavy neutrino decays which, together with the kinetic equations, yields an upper bound on all light neutrino masses of 0.1 eV. Lepton number changing processes at temperatures above the temperature T_B of baryogenesis can erase other, pre-existing contributions to the baryon asymmetry. We find that these washout processes become very efficient if the effective neutrino mass \\tilde{m}_1 is larger than m_* \\simeq 10^{-3} eV. All memory of the initial conditions is then erased. Hence, for neutrino masses in the range from (\\Delta m^2_sol)^{1/2} \\simeq 8*10^{-3} eV to (\\Delta m^2_atm)^{1/2} \\simeq 5*10^{-2} eV, which is suggested by neutrino oscillations, leptogenesis emerges as the unique source of the ...

  14. Neutrino physics present and future

    CERN Multimedia

    CERN. Geneva

    2006-01-01

    Our understanding of neutrinos has been revolutionized by the discovery that they have nonzero masses and very large mixing. We will explain the phenomenology of massive neutrinos, including neutrino oscillation in vacuum and in matter, and the physics of neutrinos that are their own antiparticles. We will review the evidence for neutrino masses and mixing, and summarize what has been learned about the neutrinos so far. Identifying the very interesting open questions raised by the discovery of neutrino mass, we will discuss how these questions may be answered through future experiments. Finally, we will consider the possibility that CP violation by neutrinos is the key to understanding the matter-antimatter asymmetry of the universe, and discuss the see-saw theory of why neutrino masses are so tiny.

  15. Cosmological and astrophysical neutrino mass measurements

    DEFF Research Database (Denmark)

    Abazajian, K.N.; Calabrese, E.; Cooray, A.

    2011-01-01

    Cosmological and astrophysical measurements provide powerful constraints on neutrino masses complementary to those from accelerators and reactors. Here we provide a guide to these different probes, for each explaining its physical basis, underlying assumptions, current and future reach.......Cosmological and astrophysical measurements provide powerful constraints on neutrino masses complementary to those from accelerators and reactors. Here we provide a guide to these different probes, for each explaining its physical basis, underlying assumptions, current and future reach....

  16. Cold light dark matter in extended seesaw models

    Science.gov (United States)

    Boulebnane, Sami; Heeck, Julian; Nguyen, Anne; Teresi, Daniele

    2018-04-01

    We present a thorough discussion of light dark matter produced via freeze-in in two-body decays A→ B DM . If A and B are quasi-degenerate, the dark matter particle has a cold spectrum even for keV masses. We show this explicitly by calculating the transfer function that encodes the impact on structure formation. As examples for this setup we study extended seesaw mechanisms with a spontaneously broken global U(1) symmetry, such as the inverse seesaw. The keV-scale pseudo-Goldstone dark matter particle is then naturally produced cold by the decays of the quasi-degenerate right-handed neutrinos.

  17. Probing Neutrino Mass Hierarchy with Supernova

    International Nuclear Information System (INIS)

    Chakraborty, Sovan

    2013-01-01

    The rise time of electron antineutrino lightcurve from a Galactic supernova (SN), observable at the IceCube Cherenkov detector, can provide signature of the neutrino mass hierarchy at “large” 1-3 leptonic mixing angle ϑ 13 . In the early accretion phase of the SN, the neutrino oscillations are nontrivial. Due to the matter suppression of collective effects at these early post bounce times, only the MSW resonances in the outer layers of the SN influence the neutrino flux. When the oscillations are taken into account, the signal in IceCube shows sufficiently fast rise time for the inverted mass hierarchy compared to the normal hierarchy. An investigation with an extensive set of stellar core-collapse simulations, provides both qualitative and quantitative robustness of these features. Thus opening another avenue to explore the neutrino mass hierarchy with the rise time of a supernova burst

  18. Baryon asymmetry via leptogenesis in a neutrino mass model with complex scaling

    International Nuclear Information System (INIS)

    Samanta, Rome; Ghosal, Ambar; Chakraborty, Mainak; Roy, Probir

    2017-01-01

    Baryogenesis via leptogenesis is investigated in a specific model of light neutrino masses and mixing angles. The latter was proposed on the basis of an assumed complex-extended scaling property of the neutrino Majorana mass matrix M ν , derived with a type-1 seesaw from a Dirac mass matrix m D and a heavy singlet neutrino Majorana mass matrix M R . One of its important features, highlighted here, is that there is a common source of the origin of a nonzero θ 13 and the CP violating lepton asymmetry through the imaginary part of m D . The model predicted CP violation to be maximal for the Dirac type and vanishing for the Majorana type. We assume strongly hierarchical mass eigenvalues for M R . The leptonic CP asymmetry parameter ε α 1 mm with lepton flavor α, originating from the decays of the lightest of the heavy neutrinos N 1 (of mass M 1 ) at a temperature T ∼ M 1 , is what matters here with the lepton asymmetries, originating from the decays of N 2,3 , being washed out. The light leptonic and heavy neutrino number densities (normalized to the entropy density) are evolved via Boltzmann equations down to electroweak temperatures to yield a baryon asymmetry through sphaleronic transitions. The effects of flavored vs. unflavored leptogenesis in the three mass regimes (1) M 1 < 10 9 GeV, (2) 10 9 GeV < M 1 < 10 12 GeV and (3) M 1 > 10 12 GeV are numerically worked out for both a normal and an inverted mass ordering of the light neutrinos. Corresponding results on the baryon asymmetry of the universe are obtained, displayed and discussed. For values close to the best-fit points of the input neutrino mass and mixing parameters, obtained from neutrino oscillation experiments, successful baryogenesis is achieved for the mass regime (2) and a normal mass ordering of the light neutrinos with a nonzero θ 13 playing a crucial role. However, the other possibility of an inverted mass ordering for the same mass regime, though disfavored, cannot be excluded. A

  19. Baryon asymmetry via leptogenesis in a neutrino mass model with complex scaling

    Energy Technology Data Exchange (ETDEWEB)

    Samanta, Rome; Ghosal, Ambar [Saha Institute of Nuclear Physics, HBNI, 1/AF Bidhannagar, Kolkata 700064 (India); Chakraborty, Mainak [Centre of Excellence in Theoretical and Mathematical Sciences, SOA University, Khandagiri Square, Bhubaneswar 751030 (India); Roy, Probir, E-mail: rome.samanta@saha.ac.in, E-mail: mainak.chakraborty2@gmail.com, E-mail: probirrana@gmail.com, E-mail: ambar.ghosal@saha.ac.in [Center for Astroparticle Physics and Space Science, Bose Institute, Kolkata 700091 (India)

    2017-03-01

    Baryogenesis via leptogenesis is investigated in a specific model of light neutrino masses and mixing angles. The latter was proposed on the basis of an assumed complex-extended scaling property of the neutrino Majorana mass matrix M {sub ν}, derived with a type-1 seesaw from a Dirac mass matrix m {sub D} and a heavy singlet neutrino Majorana mass matrix M {sub R} . One of its important features, highlighted here, is that there is a common source of the origin of a nonzero θ{sub 13} and the CP violating lepton asymmetry through the imaginary part of m {sub D} . The model predicted CP violation to be maximal for the Dirac type and vanishing for the Majorana type. We assume strongly hierarchical mass eigenvalues for M {sub R} . The leptonic CP asymmetry parameter ε{sup α}{sub 1} mm with lepton flavor α, originating from the decays of the lightest of the heavy neutrinos N {sub 1} (of mass M {sub 1}) at a temperature T ∼ M {sub 1}, is what matters here with the lepton asymmetries, originating from the decays of N {sub 2,3}, being washed out. The light leptonic and heavy neutrino number densities (normalized to the entropy density) are evolved via Boltzmann equations down to electroweak temperatures to yield a baryon asymmetry through sphaleronic transitions. The effects of flavored vs. unflavored leptogenesis in the three mass regimes (1) M {sub 1} < 10{sup 9} GeV, (2) 10{sup 9} GeV < M {sub 1} < 10{sup 12} GeV and (3) M {sub 1} > 10{sup 12} GeV are numerically worked out for both a normal and an inverted mass ordering of the light neutrinos. Corresponding results on the baryon asymmetry of the universe are obtained, displayed and discussed. For values close to the best-fit points of the input neutrino mass and mixing parameters, obtained from neutrino oscillation experiments, successful baryogenesis is achieved for the mass regime (2) and a normal mass ordering of the light neutrinos with a nonzero θ{sub 13} playing a crucial role. However, the other

  20. Neutrinos: in and out of the standard model

    Energy Technology Data Exchange (ETDEWEB)

    Parke, Stephen; /Fermilab

    2006-07-01

    The particle physics Standard Model has been tremendously successful in predicting the outcome of a large number of experiments. In this model Neutrinos are massless. Yet recent evidence points to the fact that neutrinos are massive particles with tiny masses compared to the other particles in the Standard Model. These tiny masses allow the neutrinos to change flavor and oscillate. In this series of Lectures, I will review the properties of Neutrinos In the Standard Model and then discuss the physics of Neutrinos Beyond the Standard Model. Topics to be covered include Neutrino Flavor Transformations and Oscillations, Majorana versus Dirac Neutrino Masses, the Seesaw Mechanism and Leptogenesis.

  1. Neutrino mass from laboratory: contribution of double beta decay to the neutrino mass matrix

    International Nuclear Information System (INIS)

    Klapdor-Kleingrothaus, H.V.

    2001-01-01

    Double beta decay is indispensable to solve the question of the neutrino mass matrix together with ν oscillation experiments. The most sensitive experiment - since eight years the HEIDELBERG-MOSCOW experiment in Gran-Sasso - already now, with the experimental limit of ν > < 0.26 eV practically excludes degenerate ν mass scenarios allowing neutrinos as hot dark matter in the universe for the smallangle MSW solution of the solar neutrino problem. It probes cosmological models including hot dark matter already now on the level of future satellite experiments MAP and PLANCK. It further probes many topics of beyond SM physics at the TeV scale. Future experiments should give access to the multi-TeV range and complement on many ways the search for new physics at future colliders like LHC and NLC. For neutrino physics some of them (GENIUS) will allow to test almost all neutrino mass scenarios allowed by the present neutrino oscillation experiments

  2. Leptoquarks: Neutrino masses and related accelerator signals

    International Nuclear Information System (INIS)

    Aristizabal Sierra, D.; Hirsch, M.; Kovalenko, S. G.

    2008-01-01

    Leptoquark-Higgs interactions induce mixing between leptoquark (LQ) states with different chiralities once the electroweak symmetry is broken. In such LQ models Majorana neutrino masses are generated at 1-loop order. Here we calculate the neutrino mass matrix and explore the constraints on the parameter space enforced by the assumption that LQ-loops explain current neutrino oscillation data. LQs will be produced at the CERN LHC, if their masses are at or below the TeV scale. Since the fermionic decays of LQs are governed by the same Yukawa couplings, which are responsible for the nontrivial neutrino mass matrix, several decay branching ratios of LQ states can be predicted from measured neutrino data. Especially interesting is that large lepton flavor violating rates in muon and tau final states are expected. In addition, the model predicts that, if kinematically possible, heavier LQs decay into lighter ones plus either a standard model Higgs boson or a Z 0 /W ± gauge boson. Thus, experiments at the LHC might be able to exclude the LQ mechanism as an explanation of neutrino data.

  3. Neutrino masses in flipped SU(5)

    Energy Technology Data Exchange (ETDEWEB)

    Abel, S.A. (Bristol Univ. (UK). H.H. Wills Physics Lab.)

    1990-01-04

    It is demonstrated that the, recently proposed, SU(5)xU(1) unification scheme is one of only a small number of the current candidates that allows, in its parameter space, the possibility of heavy neutrinos. This is due to the fact that the usual GIM suppression mechanism does not operate, leading to fast decays of heavy tau neutrinos of the form {nu}{yields}{nu}{gamma}, with an estimated lifetime of O(1 yr) for a tau neutrino mass of 1 MeV. Using well known cosmological arguments, based on the observed 3 K background radiation, the mass of the electron neutrino is constrained to be either greater than O(1 eV), or less than the usual limit of O(10{sup -2} eV). (orig.).

  4. Fully constrained Majorana neutrino mass matrices using Σ(72 x 3)

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, R.; Harrison, P.F. [Warwick Univ., Coventry (United Kingdom); Scott, W.G. [Rutherford Appleton Laboratory, Chilton, Didcot (United Kingdom)

    2018-01-15

    In 2002, two neutrino mixing ansatze having trimaximally mixed middle (ν{sub 2}) columns, namely tri-chi-maximal mixing (TχM) and tri-phi-maximal mixing (TφM), were proposed. In 2012, it was shown that TχM with χ = ± (π)/(16) as well as TφM with φ = ± (π)/(16) leads to the solution, sin{sup 2} θ{sub 13} = (2)/(3) sin{sup 2} (π)/(16), consistent with the latest measurements of the reactor mixing angle, θ{sub 13}. To obtain TχM{sub (χ=±(π)/(16))} and TφM{sub (φ=±(π)/(16))}, the type I see-saw framework with fully constrained Majorana neutrino mass matrices was utilised. These mass matrices also resulted in the neutrino mass ratios, m{sub 1}: m{sub 2}: m{sub 3} = ((2+√2))/(1+√(2(2+√2))): 1: ((2+√2))/(-1+√(2(2+√2))). In this paper we construct a flavour model based on the discrete group Σ(72 x 3) and obtain the aforementioned results. A Majorana neutrino mass matrix (a symmetric 3 x 3 matrix with six complex degrees of freedom) is conveniently mapped into a flavon field transforming as the complex six-dimensional representation of Σ(72 x 3). Specific vacuum alignments of the flavons are used to arrive at the desired mass matrices. (orig.)

  5. Determining the neutrino mass hierarchy with cosmology

    International Nuclear Information System (INIS)

    De Bernardis, Francesco; Kitching, Thomas D.; Heavens, Alan; Melchiorri, Alessandro

    2009-01-01

    The combination of current large-scale structure and cosmic microwave background anisotropies data can place strong constraints on the sum of the neutrino masses. Here we show that future cosmic shear experiments, in combination with cosmic microwave background constraints, can provide the statistical accuracy required to answer questions about differences in the mass of individual neutrino species. Allowing for the possibility that masses are nondegenerate we combine Fisher matrix forecasts for a weak lensing survey like Euclid with those for the forthcoming Planck experiment. Under the assumption that neutrino mass splitting is described by a normal hierarchy we find that the combination Planck and Euclid will possibly reach enough sensitivity to put a constraint on the mass of a single species. Using a Bayesian evidence calculation we find that such future experiments could provide strong evidence for either a normal or an inverted neutrino hierarchy. Finally we show that if a particular neutrino hierarchy is assumed then this could bias cosmological parameter constraints, for example, the dark energy equation of state parameter, by > or approx. 1σ, and the sum of masses by 2.3σ. We finally discuss the impact of uncertainties on the theoretical modeling of nonlinearities. The results presented in this analysis are obtained under an approximation to the nonlinear power spectrum. This significant source of uncertainty needs to be addressed in future work.

  6. On oscillations of neutrinos with Dirac and Majorana masses

    International Nuclear Information System (INIS)

    Bilenky, S.M.; Hosek, J.; Petcov, S.T.; Bylgarska Akademiya na Naukite, Sofia)

    1980-01-01

    Pontecorvo neutrino beam oscillations are discussed assuming both Dirac and Majorana neutrino mass terms. It is proved that none of possible experiments on neutrino oscillations, including those on effects of CP violation, can distinguish between these two possibilities. Neutrino oscillations with concomitant Dirac and Majorana mass terms are also considered

  7. Neutrinoless double beta decay in type I+II seesaw models

    Energy Technology Data Exchange (ETDEWEB)

    Borah, Debasish [Department of Physics, Tezpur University,Tezpur-784028 (India); Dasgupta, Arnab [Institute of Physics, Sachivalaya Marg,Bhubaneshwar-751005 (India)

    2015-11-30

    We study neutrinoless double beta decay in left-right symmetric extension of the standard model with type I and type II seesaw origin of neutrino masses. Due to the enhanced gauge symmetry as well as extended scalar sector, there are several new physics sources of neutrinoless double beta decay in this model. Ignoring the left-right gauge boson mixing and heavy-light neutrino mixing, we first compute the contributions to neutrinoless double beta decay for type I and type II dominant seesaw separately and compare with the standard light neutrino contributions. We then repeat the exercise by considering the presence of both type I and type II seesaw, having non-negligible contributions to light neutrino masses and show the difference in results from individual seesaw cases. Assuming the new gauge bosons and scalars to be around a TeV, we constrain different parameters of the model including both heavy and light neutrino masses from the requirement of keeping the new physics contribution to neutrinoless double beta decay amplitude below the upper limit set by the GERDA experiment and also satisfying bounds from lepton flavor violation, cosmology and colliders.

  8. Dark matter and neutrino mass from the smallest non-Abelian chiral dark sector

    Science.gov (United States)

    Berryman, Jeffrey M.; de Gouvêa, André; Kelly, Kevin J.; Zhang, Yue

    2017-10-01

    All pieces of concrete evidence for phenomena outside the standard model (SM)—neutrino masses and dark matter—are consistent with the existence of new degrees of freedom that interact very weakly, if at all, with those in the SM. We propose that these new degrees of freedom organize themselves into a simple dark sector, a chiral S U (3 )×S U (2 ) gauge theory with the smallest nontrivial fermion content. Similar to the SM, the dark S U (2 ) is spontaneously broken while the dark S U (3 ) confines at low energies. At the renormalizable level, the dark sector contains massless fermions—dark leptons—and stable massive particles—dark protons. We find that dark protons with masses between 10 and 100 TeV satisfy all current cosmological and astrophysical observations concerning dark matter even if dark protons are a symmetric thermal relic. The dark leptons play the role of right-handed neutrinos and allow simple realizations of the seesaw mechanism or the possibility that neutrinos are Dirac fermions. In the latter case, neutrino masses are also parametrically different from charged-fermion masses and the lightest neutrino is predicted to be massless. Since the new "neutrino" and "dark-matter" degrees of freedom interact with one another, these two new-physics phenomena are intertwined. Dark leptons play a nontrivial role in early Universe cosmology while indirect searches for dark matter involve, decisively, dark-matter annihilations into dark leptons. These, in turn, may lead to observable signatures at high-energy neutrino and gamma-ray observatories, especially once one accounts for the potential Sommerfeld enhancement of the annihilation cross section, derived from the low-energy dark-sector effective theory, a possibility we explore quantitatively in some detail.

  9. LHC signals of radiatively-induced neutrino masses and implications for the Zee-Babu model

    Science.gov (United States)

    Alcaide, Julien; Chala, Mikael; Santamaria, Arcadi

    2018-04-01

    Contrary to the see-saw models, extended Higgs sectors leading to radiatively-induced neutrino masses do require the extra particles to be at the TeV scale. However, these new states have often exotic decays, to which experimental LHC searches performed so far, focused on scalars decaying into pairs of same-sign leptons, are not sensitive. In this paper we show that their experimental signatures can start to be tested with current LHC data if dedicated multi-region analyses correlating different observables are used. We also provide high-accuracy estimations of the complicated Standard Model backgrounds involved. For the case of the Zee-Babu model, we show that regions not yet constrained by neutrino data and low-energy experiments can be already probed, while most of the parameter space could be excluded at the 95% C.L. in a high-luminosity phase of the LHC.

  10. Successful leptogenesis in SO(10 unification with a left–right symmetric seesaw mechanism

    Directory of Open Access Journals (Sweden)

    Asmaa Abada

    2009-03-01

    Full Text Available We study thermal leptogenesis in a broad class of supersymmetric SO(10 models with a left–right symmetric seesaw mechanism, taking into account flavour effects and the contribution of the next-to-lightest right-handed neutrino supermultiplet. Assuming MD=Mu and a normal hierarchy of light neutrino masses, we show that four out of the eight right-handed neutrino mass spectra reconstructed from low-energy neutrino data can lead to successful leptogenesis with a reheating temperature in the (109–1010 GeV range. In the remaining four solutions, leptogenesis is dominated by N2 decays, as in the type I seesaw case. We find that some of these spectra can generate the observed baryon asymmetry for reheating temperatures above 1010 GeV, in contrast to the type I case. Together with flavour effects, an accurate description of charged fermion masses turns out to be a crucial ingredient in the analysis.

  11. Neutrino mass and mixing – status

    Indian Academy of Sciences (India)

    be specific, a Majorana mass term for neutrinos, together with the mass term for charged leptons: LM = −. 1 .... hierarchy, respectively (see refs [5,6] for details and references). Parameter ... In figure 3 we show the region in the sin2 θ13–δ plane indicated by T2K ..... and 40 m and the precise rate measurement from Bugey4.

  12. Leptoquarks and neutrino masses at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Fileviez Perez, Pavel [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States)], E-mail: fileviez@physics.wisc.edu; Han Tao [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Li Tong [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Department of Physics, Nankai University, Tianjin 300071 (China); Center for High Energy Physics, Peking University, Beijing 100871 (China); Ramsey-Musolf, Michael J. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States)

    2009-09-21

    The properties of light leptoquarks predicted in the context of a simple grand unified theory and their observability at the LHC are investigated. The SU(5) symmetry of the theory implies that the leptoquark couplings to matter are related to the neutrino mass matrix. We study the resulting connection between neutrino masses and mixing parameters and the leptoquark decays, and show that different light neutrino hierarchies imply distinctive leptoquark decay signatures. We also discuss low-energy constraints implied by searches for charged lepton flavour violation, studies of meson decays, and electroweak precision data. We perform a detailed parton-level study of the leptoquark signals and the Standard Model backgrounds at the LHC. With the clean final states containing a di-lepton plus two jets, the QCD production of the leptoquark pair can be observed for a leptoquark mass of one TeV and beyond. By examining the lepton flavor structure of the observed events, one could further test the model predictions related to the neutrino mass spectrum. In particular, b-flavor tagging will be useful in distinguishing the neutrino mass pattern and possibly probing an unknown Majorana phase in the Inverted Hierarchy or the Quasi-Degenerate scenario. Electroweak associated production of the leptoquark doublet can also be useful in identifying the quantum numbers of the leptoquarks and distinguishing between the neutrino mass spectra, even though the corresponding event rates are smaller than for QCD production. We find that with only the clean channel of {mu}+E/{sub T}+jets, one could expect an observable signal for a leptoquark masses of about 600 GeV or higher.

  13. Leptoquarks and neutrino masses at the LHC

    International Nuclear Information System (INIS)

    Fileviez Perez, Pavel; Han Tao; Li Tong; Ramsey-Musolf, Michael J.

    2009-01-01

    The properties of light leptoquarks predicted in the context of a simple grand unified theory and their observability at the LHC are investigated. The SU(5) symmetry of the theory implies that the leptoquark couplings to matter are related to the neutrino mass matrix. We study the resulting connection between neutrino masses and mixing parameters and the leptoquark decays, and show that different light neutrino hierarchies imply distinctive leptoquark decay signatures. We also discuss low-energy constraints implied by searches for charged lepton flavour violation, studies of meson decays, and electroweak precision data. We perform a detailed parton-level study of the leptoquark signals and the Standard Model backgrounds at the LHC. With the clean final states containing a di-lepton plus two jets, the QCD production of the leptoquark pair can be observed for a leptoquark mass of one TeV and beyond. By examining the lepton flavor structure of the observed events, one could further test the model predictions related to the neutrino mass spectrum. In particular, b-flavor tagging will be useful in distinguishing the neutrino mass pattern and possibly probing an unknown Majorana phase in the Inverted Hierarchy or the Quasi-Degenerate scenario. Electroweak associated production of the leptoquark doublet can also be useful in identifying the quantum numbers of the leptoquarks and distinguishing between the neutrino mass spectra, even though the corresponding event rates are smaller than for QCD production. We find that with only the clean channel of μ+E/ T +jets, one could expect an observable signal for a leptoquark masses of about 600 GeV or higher.

  14. Dirac neutrino masses from generalized supersymmetry breaking

    International Nuclear Information System (INIS)

    Demir, D.A.; Everett, L.L.; Langacker, P.

    2007-12-01

    We demonstrate that Dirac neutrino masses in the experimentally preferred range are generated within supersymmetric gauge extensions of the Standard Model with a generalized supersymmetry breaking sector. If the usual superpotential Yukawa couplings are forbidden by the additional gauge symmetry (such as a U(1) ' ), effective Dirac mass terms involving the ''wrong Higgs'' field can arise either at tree level due to hard supersymmetry breaking fermion Yukawa couplings, or at one-loop due to nonanalytic or ''nonholomorphic'' soft supersymmetry breaking trilinear scalar couplings. As both of these operators are naturally suppressed in generic models of supersymmetry breaking, the resulting neutrino masses are naturally in the sub-eV range. The neutrino magnetic and electric dipole moments resulting from the radiative mechanism also vanish at one-loop order. (orig.)

  15. Anarchy and neutrino physics

    Energy Technology Data Exchange (ETDEWEB)

    Fortin, Jean-François; Giasson, Nicolas; Marleau, Luc [Département de Physique, de Génie Physique et d’Optique,Université Laval, Québec, QC G1V 0A6 (Canada)

    2017-04-21

    The neutrino sector of a seesaw-extended Standard Model is investigated under the anarchy hypothesis. The previously derived probability density functions for neutrino masses and mixings, which characterize the type I-III seesaw ensemble of N×N complex random matrices, are used to extract information on the relevant physical parameters. For N=2 and N=3, the distributions of the light neutrino masses, as well as the mixing angles and phases, are obtained using numerical integration methods. A systematic comparison with the much simpler type II seesaw ensemble is also performed to point out the fundamental differences between the two ensembles. It is found that the type I-III seesaw ensemble is better suited to accommodate experimental data. Moreover, the results indicate a strong preference for the mass splitting associated to normal hierarchy. However, since all permutations of the singular values are found to be equally probable for a particular mass splitting, predictions regarding the hierarchy of the mass spectrum remains out of reach in the framework of anarchy.

  16. Experiment for a precision neutrino mass measurement

    International Nuclear Information System (INIS)

    Fackler, O.; Mugge, M.; Sticker, H.; Woerner, R.

    1984-04-01

    We describe an experiment which is designed to determine the electron neutrino mass to better than 2 eV. Key features of the experiment are a high activity frozen tritium source and a high resolution electrostatic spectrometer designed to make a careful measurement of the tritium beta decay end point spectrum. The goal is to determine the neutrino mass to better than 1 eV statistically in a four day run. A series of these runs will allow study of potential systematics. The construction phase is nearly complete and preliminary data will be taken in late spring

  17. A minimal spontaneous CP violation model with small neutrino mass and SU(2) x U(1) x Z3 symmetry

    International Nuclear Information System (INIS)

    Geng, C.Q.; Ng, J.N.

    1988-04-01

    It is shown that spontaneous CP violation and natural flavor conservation can occur in the SU(2) L x U(1) Y model based on two Higgs doublet and one Higgs singlet fields with a Z 3 discrete symmetry. Physical CP nonconservation is purely due to scalar-pseudoscalar mixings. In order for this to be a major source of CP violation a light spin-O boson of mass less than 10 GeV is required. The see-saw mechanism can be implemented to generate small neutrino masses. The model implies a relatively large electric dipole moment for charged leptons and small value for ε'/ε

  18. Neutrino mass as the probe of intermediate mass scales

    International Nuclear Information System (INIS)

    Senjanovic, G.

    1980-01-01

    A discussion of the calculability of neutrino mass is presented. The possibility of neutrinos being either Dirac or Majorana particles is analyzed in detail. Arguments are offered in favor of the Majorana case: the smallness of neutrino mass is linked to the maximality of parity violation in weak interactions. It is shown how the measured value of neutrino mass would probe the existence of an intermediate mass scale, presumably in the TeV region, at which parity is supposed to become a good symmetry. Experimental consequences of the proposed scheme are discussed, in particular the neutrino-less double β decay, where observation would provide a crucial test of the model, and rare muon decays such as μ → eγ and μ → ee anti e. Finally, the embedding of this model in an O(10) grand unified theory is analyzed, with the emphasis on the implications for intermediate mass scales that it offers. It is concluded that the proposed scheme provides a distinct and testable alternative for understanding the smallness of neutrino mass. 4 figures

  19. Neutrino mass as the probe of intermediate mass scales

    Energy Technology Data Exchange (ETDEWEB)

    Senjanovic, G.

    1980-01-01

    A discussion of the calculability of neutrino mass is presented. The possibility of neutrinos being either Dirac or Majorana particles is analyzed in detail. Arguments are offered in favor of the Majorana case: the smallness of neutrino mass is linked to the maximality of parity violation in weak interactions. It is shown how the measured value of neutrino mass would probe the existence of an intermediate mass scale, presumably in the TeV region, at which parity is supposed to become a good symmetry. Experimental consequences of the proposed scheme are discussed, in particular the neutrino-less double ..beta.. decay, where observation would provide a crucial test of the model, and rare muon decays such as ..mu.. ..-->.. e..gamma.. and ..mu.. ..-->.. ee anti e. Finally, the embedding of this model in an O(10) grand unified theory is analyzed, with the emphasis on the implications for intermediate mass scales that it offers. It is concluded that the proposed scheme provides a distinct and testable alternative for understanding the smallness of neutrino mass. 4 figures.

  20. Atmospheric neutrino oscillations, θ13 and neutrino mass hierarchy

    International Nuclear Information System (INIS)

    Bernabeu, J.; Palomares-Ruiz, Sergio; Petcov, S.T.

    2003-01-01

    We derive predictions for the Nadir angle (θ n ) dependence of the ratio N μ /N e of the rates of the μ-like and e-like multi-GeV events measured in water-Cerenkov detectors in the case of 3-neutrino oscillations of the atmospheric ν e (ν-bar e ) and ν μ (ν-bar μ ), driven by one neutrino mass squared difference, vertical bar Δm 2 31 vertical bar ∼(2.5-3.0)x10 -3 eV 2 >> Δm 2 21 . This ratio is particularly sensitive to the Earth matter effects in the atmospheric neutrino oscillations, and thus to the values of sin 2 θ 13 and sin 2 θ 23 , θ 13 and θ 23 being the neutrino mixing angle limited by CHOOZ and Palo Verde experiments and that responsible for the dominant atmospheric ν μ →ν τ (ν-bar μ →ν-bar τ ) oscillations. It is also sensitive to the type of neutrino mass spectrum which can be with normal (Δm 2 31 >0) or with inverted (Δm 2 31 2 θ 13 > or approx. 0.01, sin 2 θ 23 > or approx. 0.5 and at cosθ n > or approx. 0.4, the Earth matter effects modify substantially the θ n -dependence of the ratio N μ /N e and in a way which cannot be reproduced with sin 2 θ 13 =0 and a different value of sin 2 θ 23 . For normal hierarchy the effects can be as large as ∼25% for cosθ n ∼(0.5-0.8), can reach ∼35% in the Earth core bin cosθ n ∼(0.84-1.0), and might be observable. They are typically by ∼10% smaller in the inverted hierarchy case. An observation of the Earth matter effects in the Nadir angle distribution of the ratio N μ /N e would clearly indicate that sin 2 θ 13 > or approx. 0.01 and sin 2 θ 23 > or approx. 0.50

  1. Neutrino masses in the flipped SU(5)xU(1) and the SU(4)xO(4) GUT models

    Energy Technology Data Exchange (ETDEWEB)

    Papageorgiu, E.; Ranfone, S. (Rutherford Appleton Lab., Chilton (United Kingdom))

    1992-05-21

    We classify the different neutrino-mass patterns arising in string-inspired GUT and supersymmetric GUT models based on the flipped SU(5)xU(1) and the SU(4)xO(4) gauge groups. Phenomenologically interesting spectra are obtained through the interplay of the two seesaw mechanisms present, with typical neutrino masses {proportional to}10{sup -3} eV in the supersymmetric GUT models and of order 0.1-10 keV in the ordinary GUTs. (orig.).

  2. Results from neutrino experiments

    International Nuclear Information System (INIS)

    Smirnov, A.Yu.

    1993-11-01

    Recent (first or/and the best) results from the neutrino experiments are reviewed and their implications for the theory are discussed. The sense of the experiments is the searching for neutrino masses, mixing and interactions beyond the standard model. Present laboratory experiments give upper bounds on the masses and the mixing which are at the level of predictions of the ''electroweak see-saw''. Positive indications of nonzero lepton mixing follow from studies of the solar and atmospheric neutrinos. (author). 95 refs, 11 figs

  3. Constraining the lightest neutrino mass and mee from general ...

    Indian Academy of Sciences (India)

    surements. For example, neutrino oscillation experiments provide no clue regarding the absolute neutrino mass scale and the related issue of the neutrino mass hierarchy. Another important issue which needs to be taken note of is regarding the rather small neu- trino masses as compared to their charged counterparts.

  4. The seesaw path to leptonic CP violation

    CERN Document Server

    Caputo, A.; Kekic, M.; López-Pavón, J.; Salvado, J.

    2017-04-24

    Future experiments such as SHiP and high-intensity $e^+ e^-$ colliders will have a superb sensitivity to heavy Majorana neutrinos with masses below $M_Z$. We show that the measurement of the mixing to electrons and muons of one such state could imply the discovery of leptonic CP violation in the context of seesaw models. We quantify in the minimal model the CP discovery potential of these future experiments, and demonstrate that a 5$\\sigma$ CL discovery of leptonic CP violation would be possible in a very significant fraction of parameter space.

  5. Supernova constraints on neutrino mass and mixing

    Indian Academy of Sciences (India)

    the Chandrasekhar limiting mass the pressure of the relativistic electron gas alone can ... and facilitates electron capture by nuclei and free protons leading to .... the neutrino luminosity in units of 10 ¾ ergs/sec, Т and Ф are the neutron and proton ... would be changed to М . One can make a rough estimate of the increase in ...

  6. Models of neutrino masses and baryogenesis

    Indian Academy of Sciences (India)

    Majorana masses of the neutrino implies lepton number violation and is intimately related to the lepton asymmetry of the universe, which gets related to the baryon asymmetry of the universe in the presence of the sphalerons during the electroweak phase transition. Assuming that the baryon asymmetry of the universe is ...

  7. Models of neutrino mass and mixing

    International Nuclear Information System (INIS)

    Ma, Ernest

    2000-01-01

    There are two basic theoretical approaches to obtaining neutrino mass and mixing. In the minimalist approach, one adds just enough new stuff to the Minimal Standard Model to get m ν ≠0 and U αi ≠1. In the holistic approach, one uses a general framework or principle to enlarge the Minimal Standard Model such that, among other things, m ν ≠0 and U αi ≠1. In both cases, there are important side effects besides neutrino oscillations. I discuss a number of examples, including the possibility of leptogenesis from R parity nonconservation in supersymmetry

  8. A model for Simpson's 17 keV neutrino

    International Nuclear Information System (INIS)

    Rajpoot, S.

    1992-01-01

    Recent studies of β-decay spectra seem to confirm Simpson's earlier findings that the electron neutrinos contain a small (1%) admixture of a 17 keV Dirac neutrino. In this paper an unconventional model with SU(2) L x SU(2) R x U(1) B-1 gauge interactions is presented in which all neutrinos are Dirac particles. Electron and muon neutrinos acquire seesaw Dirac masses of order 10 -3 eV for the MSW solution for the solar neutrino problem. The τ neutrino is identified as Simpson's 17 keV neutrino. Constraints coming from cosmology and particle physics are shown to be satisfied

  9. See-saw geometry and leptogenesis

    International Nuclear Information System (INIS)

    Di Bari, P.

    2005-01-01

    The representation of the see-saw orthogonal matrix in the complex plane establishes a graphical correspondence between neutrino mass models and geometrical configurations, particularly useful to study relevant aspects of leptogenesis. We first derive the CP asymmetry bound for hierarchical heavy neutrinos and then an expression for the effective leptogenesis phase, determining the conditions for maximal phase and placing a lower bound on the phase suppression for generic models. Reconsidering the lower bounds on the lightest right-handed (RH) neutrino mass M 1 and on the reheating temperature T reh , we find that models where one of the two heavier neutrino masses is dominated by the lightest right-handed (RH) neutrinos, typically arising from connections with quark masses, undergo both phase suppression and strong wash-out such that M 1 (T reh )-bar 10 11 (10 10 ) GeV. The window 10 9 GeV-bar M 1 ,T reh -bar 10 10 GeV is accessible only for a class of models where m 1 is dominated by the lightest RH neutrino, with no straightforward connections with quark masses. Within this class we describe a new scenario of thermal leptogenesis where the baryon asymmetry of the Universe is generated by the decays of the second lightest RH neutrino, such that the lower bound on M 1 disappears and is replaced by a lower bound on M 2 . Interestingly, the final asymmetry is independent on the initial conditions. We also discuss the validity of the approximation of hierarchical heavy neutrinos in a simple analytical way

  10. Right-handed neutrinos at CERN LHC and the mechanism of neutrino mass generation

    International Nuclear Information System (INIS)

    Kersten, Joern; Smirnov, Alexei Yu.

    2007-01-01

    We consider the possibility to detect right-handed neutrinos, which are mostly singlets of the standard model gauge group, at future accelerators. Substantial mixing of these neutrinos with the active neutrinos requires a cancellation of different contributions to the light neutrino mass matrix at the level of 10 -8 . We discuss possible symmetries behind this cancellation and argue that for three right-handed neutrinos they always lead to conservation of total lepton number. Light neutrino masses can be generated by small perturbations violating these symmetries. In the most general case, LHC physics and the mechanism of neutrino mass generation are essentially decoupled; with additional assumptions, correlations can appear between collider observables and features of the neutrino mass matrix

  11. Double beta decay and neutrino mass models

    Energy Technology Data Exchange (ETDEWEB)

    Helo, J.C. [Universidad Técnica Federico Santa María, Centro-Científico-Tecnológico de Valparaíso, Casilla 110-V, Valparaíso (Chile); Hirsch, M. [AHEP Group, Instituto de Física Corpuscular - C.S.I.C./Universitat de València, Edificio de Institutos de Paterna, Apartado 22085, E-46071 València (Spain); Ota, T. [Department of Physics, Saitama University, Shimo-Okubo 255, 338-8570 Saitama-Sakura (Japan); Santos, F.A. Pereira dos [Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro,Rua Marquês de São Vicente 225, 22451-900 Gávea, Rio de Janeiro (Brazil)

    2015-05-19

    Neutrinoless double beta decay allows to constrain lepton number violating extensions of the standard model. If neutrinos are Majorana particles, the mass mechanism will always contribute to the decay rate, however, it is not a priori guaranteed to be the dominant contribution in all models. Here, we discuss whether the mass mechanism dominates or not from the theory point of view. We classify all possible (scalar-mediated) short-range contributions to the decay rate according to the loop level, at which the corresponding models will generate Majorana neutrino masses, and discuss the expected relative size of the different contributions to the decay rate in each class. Our discussion is general for models based on the SM group but does not cover models with an extended gauge. We also work out the phenomenology of one concrete 2-loop model in which both, mass mechanism and short-range diagram, might lead to competitive contributions, in some detail.

  12. Neutrino mass constraints from joint cosmological probes.

    Science.gov (United States)

    Kwan, Juliana

    2018-01-01

    One of the most promising avenues to come from precision cosmology is the measurement of the sum of neutrino masses in the next 5-10 years. Ongoing imaging surveys, such as the Dark Energy Survey and the Hyper Suprime Cam survey, will cover a substantial volume of the sky and when combined with existing spectroscopic data, are expected to deliver a definitive measurement in the near future. But it is important that the accuracy of theoretical predictions matches the precision of the observational data so that the neutrino mass signal can be properly detected without systematic error. To this end, we have run a suite of high precision, large volume cosmological N-body simulations containing massive neutrinos to quantify their effect on probes of large scale structure such as weak lensing and galaxy clustering. In this talk, I will describe the analytical tools that we have developed to extract the neutrino mass that are capable of fully utilizing the non-linear regime of structure formation. These include predictions for the bias in the clustering of dark matter halos (one of the fundamental ingredients of the halo model) with an error of only a few percent.

  13. The νMSM, dark matter and neutrino masses

    International Nuclear Information System (INIS)

    Asaka, Takehiko; Blanchet, Steve; Shaposhnikov, Mikhail

    2005-01-01

    We investigate an extension of the Minimal Standard Model by right-handed neutrinos (the νMSM) to incorporate neutrino masses consistent with oscillation experiments. Within this theory, the only candidates for dark matter particles are sterile right-handed neutrinos with masses of a few keV. Requiring that these neutrinos explain entirely the (warm) dark matter, we find that their number is at least three. We show that, in the minimal choice of three sterile neutrinos, the mass of the lightest active neutrino is smaller than O(10 -5 ) eV, which excludes the degenerate mass spectra of three active neutrinos and fixes the absolute mass scale of the other two active neutrinos

  14. Double beta decays and neutrino masses

    International Nuclear Information System (INIS)

    Ejiri, Hiro

    2006-01-01

    Neutrino-less double beta decays(0νββ) are of great interest for studying the Majorana nature of ν's and the absolute ν-mass scale. The present report is a brief review of the 0νββ studies with emphasis on future experiments with the mass sensitivity of an order of 25∼100 meV and on experimental probes for investigating 0νββ nuclear matrix elements

  15. Probing neutrino mass hierarchy by comparing the charged-current and neutral-current interaction rates of supernova neutrinos

    OpenAIRE

    Lai, Kwang-Chang; Lee, Fei-Fan; Lee, Feng-Shiuh; Lin, Guey-Lin; Liu, Tsung-Che; Yang, Yi

    2016-01-01

    The neutrino mass hierarchy is one of the neutrino fundamental properties yet to be determined. We introduce a method to determine neutrino mass hierarchy by comparing the interaction rate of neutral current (NC) interactions, $\

  16. Naturalness and lepton number/flavor violation in inverse seesaw models

    Energy Technology Data Exchange (ETDEWEB)

    Haba, Naoyuki [Graduate School of Science and Engineering, Shimane University,1060, Nishikawatsu, Matsue, Shimane (Japan); Ishida, Hiroyuki [Graduate School of Science and Engineering, Shimane University,1060, Nishikawatsu, Matsue, Shimane (Japan); Physics Division, National Center for Theoretical Sciences,101, Section 2 Kuang Fu Road, Hsinchu, 300 Taiwan (China); Yamaguchi, Yuya [Graduate School of Science and Engineering, Shimane University,1060, Nishikawatsu, Matsue, Shimane (Japan); Department of Physics, Faculty of Science, Hokkaido University,Kita 9 Nishi 8, Kita-ku, Sapporo, Hokkaido (Japan)

    2016-11-02

    We introduce three right-handed neutrinos and three sterile neutrinos, and consider an inverse seesaw mechanism for neutrino mass generation. From naturalness point of view, their Majorana masses should be small, while it induces a large neutrino Yukawa coupling. Then, a neutrinoless double beta decay rate can be enhanced, and a sizable Higgs mass correction is inevitable. We find that the enhancement rate can be more than ten times compared with a standard prediction from light neutrino contribution alone, and an analytic form of heavy neutrino contributions to the Higgs mass correction. In addition, we numerically analyze the model, and find almost all parameter space of the model can be complementarily searched by future experiments of neutrinoless double beta decay and μ→e conversion.

  17. Minimal type-I seesaw model with maximally restricted texture zeros

    Science.gov (United States)

    Barreiros, D. M.; Felipe, R. G.; Joaquim, F. R.

    2018-06-01

    In the context of Standard Model (SM) extensions, the seesaw mechanism provides the most natural explanation for the smallness of neutrino masses. In this work we consider the most economical type-I seesaw realization in which two right-handed neutrinos are added to the SM field content. For the sake of predictability, we impose the maximum number of texture zeros in the lepton Yukawa and mass matrices. All possible patterns are analyzed in the light of the most recent neutrino oscillation data, and predictions for leptonic C P violation are presented. We conclude that, in the charged-lepton mass basis, eight different texture combinations are compatible with neutrino data at 1 σ , all of them for an inverted-hierarchical neutrino mass spectrum. Four of these cases predict a C P -violating Dirac phase close to 3 π /2 , which is around the current best-fit value from the global analysis of neutrino oscillation data. If one further reduces the number of free parameters by considering three equal elements in the Dirac neutrino Yukawa coupling matrix, several texture combinations are still compatible with data but only at 3 σ . For all viable textures, the baryon asymmetry of the Universe is computed in the context of thermal leptogenesis, assuming (mildly) hierarchical heavy Majorana neutrino masses M1 ,2. It is shown that the flavored regime is ruled out, while the unflavored one requires M1˜1014 GeV .

  18. Neutrino mass textures from F-theory

    CERN Document Server

    Antoniadis, I

    2013-01-01

    Experimental data on the neutrino mixing and masses strongly suggest an underlying approximate symmetry of the relevant Yukawa superpotential terms. Intensive phenomenological explorations during the last decade indicate that permutation symmetries such as S_4, A_4 and their subgroups, under certain assumptions and vacuum alignments, predict neutrino mass textures compatible with such data. Motivated by these findings, in the present work we analyse the neutrino properties in F-theory GUT models derived in the framework of the maximal underlying E_8 symmetry in the elliptic fibration. More specifically, we consider local F-SU(5) GUT models and study in detail spectral cover geometries with monodromies associated to the finite symmetries S_4, A_4 and their transitive subgroups, including the dihedral group D_4 and Z_2 X Z_2. We discuss various issues that emerge in the implementation of S_4, A_4 neutrino models in the F-theory context and suggest how these can be resolved. Realistic models are presented for th...

  19. Neutrinos

    CERN Multimedia

    CERN. Geneva

    2004-01-01

    The Standard Model predicts that the neutrinos are massless and do not mix. Generic extensions of the Standard Model predict that neutrinos are massive (but, very likely, much lighter than the charged fermions). Therefore, the search for neutrino masses and mixing tests the Standard Model and probes new phasics. Measurements of various features of the fluxes of atmospheric, solar and, more recently, reactor neutrinos have provided evidence for neutrino oscillations and therefore for neutrino masses and mixing. These results have significant theoretical implications: new physics exists, and its scale can be estimated. There are interesting lessons for grand unified theories and for models of extra dimensions. The measured neutrino flavor parameters pose a challenge to flavor models.

  20. Neutrino Mass Matrix Textures: A Data-driven Approach

    CERN Document Server

    Bertuzzo, E; Machado, P A N

    2013-01-01

    We analyze the neutrino mass matrix entries and their correlations in a probabilistic fashion, constructing probability distribution functions using the latest results from neutrino oscillation fits. Two cases are considered: the standard three neutrino scenario as well as the inclusion of a new sterile neutrino that potentially explains the reactor and gallium anomalies. We discuss the current limits and future perspectives on the mass matrix elements that can be useful for model building.

  1. Neutrino mass spectrum with υμ → υs oscillations of atmospheric neutrinos

    International Nuclear Information System (INIS)

    Liu, Q.Y.; Smirnov, A.Yu.

    1998-02-01

    We consider the ''standard'' spectrum of the active neutrinos (characterized by strong mass hierarchy and small mixing) with additional sterile, υ s . The sterile neutrino mixes strongly with the muon neutrino, so that υ μ ↔ υ s oscillations solve the atmospheric neutrino problem. We show that the parametric enhancement of the υ μ ↔ υ s oscillations occurs for the high energy atmospheric neutrinos which cross the core of the Earth. This can be relevant for the anomaly observed by the MACRO experiment. Solar neutrinos are converted both to υ μ and υ s . The heaviest neutrino (approx. υ τ ) may compose the hot dark matter of the Universe. Phenomenology of this scenario is elaborated and crucial experimental signatures are identified. We also discuss properties of the underlying neutrino mass matrix. (author)

  2. Neutrino masses and mixings: Big Bang and Supernova nucleosynthesis and neutrino dark matter

    International Nuclear Information System (INIS)

    Fuller, George M.

    1999-01-01

    The existence of small mixings between light active and sterile neutrino species could have implications for Big Bang and Supernova Heavy Element Nucleosynthesis. As well, such mixing would force us to abandon cherished constraints on light neutrino Dark Matter. Two proposed 4-neutrino mass and mixing schemes, for example, can both accomodate existing experimental results and lead to elegant solutions to the neutron-deficit problem for r-Process nucleosynthesis from neutrino-heated supernova ejecta. Each of these solutions is based on matter-enhanced (MSW) active-sterile neutrino transformation. In plausible extensions of these schemes to the early universe, Shi and Fuller have shown that relatively light mass (∼200 eV to ∼10 keV) sterile neutrinos produced via active-sterile MSW conversion can have a ''cold'' energy spectrum. Neutrinos produced in this way circumvent the principal problem of light neutrino dark matter and would be, essentially, Cold Dark Matter

  3. Neutrino masses, lepton number violation and unification

    CERN Document Server

    Barbieri, Riccardo

    1980-01-01

    Theories with parity as a short-distance symmetry lead rather naturally to a small but non-vanishing nu L/sub 2/ mass. A reference formula for the size of the effect is m/sub nu / approximately=m/sup 2 //M with M a huge Majorana mass of the nu /sub R/ field, associated with the breaking of the group down to SU(3)*SU(2)*U(1) and m a typical quark mass, most likely that of charge 2/3. This is because of the Pati-Salam SU(4) which relates neutrinos with charge 2/3 quarks, and is contained in the prototypes of these theories, SO(10) or E/sub 6/. Ten GeV for m requires M approximately=10/sup 11/ GeV in order to saturate the cosmological bound (m/sub nu / of a few eV). This value is not too far from the currently preferred mass approximately=10/sup 14/ GeV of the superheavy gauge bosons. In view of these concepts, the search for neutrino oscillations appears to be of overwhelming importance. A combined effort in all different kinds of possible experiments (reactors, accelerators, deep mines, and solar neutrino obse...

  4. Neutrino masses and their ordering: global data, priors and models

    Science.gov (United States)

    Gariazzo, S.; Archidiacono, M.; de Salas, P. F.; Mena, O.; Ternes, C. A.; Tórtola, M.

    2018-03-01

    We present a full Bayesian analysis of the combination of current neutrino oscillation, neutrinoless double beta decay and Cosmic Microwave Background observations. Our major goal is to carefully investigate the possibility to single out one neutrino mass ordering, namely Normal Ordering or Inverted Ordering, with current data. Two possible parametrizations (three neutrino masses versus the lightest neutrino mass plus the two oscillation mass splittings) and priors (linear versus logarithmic) are exhaustively examined. We find that the preference for NO is only driven by neutrino oscillation data. Moreover, the values of the Bayes factor indicate that the evidence for NO is strong only when the scan is performed over the three neutrino masses with logarithmic priors; for every other combination of parameterization and prior, the preference for NO is only weak. As a by-product of our Bayesian analyses, we are able to (a) compare the Bayesian bounds on the neutrino mixing parameters to those obtained by means of frequentist approaches, finding a very good agreement; (b) determine that the lightest neutrino mass plus the two mass splittings parametrization, motivated by the physical observables, is strongly preferred over the three neutrino mass eigenstates scan and (c) find that logarithmic priors guarantee a weakly-to-moderately more efficient sampling of the parameter space. These results establish the optimal strategy to successfully explore the neutrino parameter space, based on the use of the oscillation mass splittings and a logarithmic prior on the lightest neutrino mass, when combining neutrino oscillation data with cosmology and neutrinoless double beta decay. We also show that the limits on the total neutrino mass ∑ mν can change dramatically when moving from one prior to the other. These results have profound implications for future studies on the neutrino mass ordering, as they crucially state the need for self-consistent analyses which explore the

  5. Neutrino mass constraints on β decay

    International Nuclear Information System (INIS)

    Ito, Takeyasu M.; Prezeau, Gary

    2005-01-01

    Using the general connection between the upper limit on the neutrino mass and the upper limits on certain types of non-standard-model interactions that can generate loop corrections to the neutrino mass, we derive constraints on some non-standard-model d→ue - ν interactions. When cast into limits on n→pe - ν coupling constants, our results yield constraints on scalar and tensor weak interactions improved by more than an order of magnitude over the current experimental limits. When combined with the existing limits, our results yield vertical bar C S /C V vertical bar or approx. 5x10 -3 , vertical bar C S ' /C V vertical bar or approx. 5x10 -3 , vertical bar C T /C A vertical bar -2 , and vertical bar C T ' /C A vertical bar -2

  6. Theory of Neutrino Masses and Mixing

    CERN Document Server

    González-Garciá, M Concepción

    2003-01-01

    In this talk I will review our present knowledge on neutrino masses and mixing trying to emphasize what has been definitively proved and what is in the process of being probed. I will also discuss the most important theoretical implications of these results: the existence of new physics, the estimate of the scale of this new physics as well as some other possible consequences such as leptogenesis origin of the baryon asymmetry.

  7. Mass limits for the muon neutrino

    International Nuclear Information System (INIS)

    Hoffman, C.M.; Sandberg, V.D.

    1982-01-01

    The possibility of improving the present limit on the mass of the muon neutrino is discussed. It is found that decays of muons and pions are not useful means to significantly improve this limit. On the other hand, the decays K 0 /sub L/ → π/sup +-/μ/sup -+/nu/sub μ/ and K + → π 0 μ + nu/sub μ/ appear to be quite promising. Possible experiments are discussed

  8. Texture zeros in neutrino mass matrix

    Energy Technology Data Exchange (ETDEWEB)

    Dziewit, B., E-mail: bartosz.dziewit@us.edu.pl; Holeczek, J., E-mail: jacek.holeczek@us.edu.pl; Richter, M., E-mail: monikarichter18@gmail.com [University of Silesia, Institute of Physics (Poland); Zajac, S., E-mail: s.zajac@uksw.edu.pl [Cardinal Stefan Wyszyński University in Warsaw, Faculty of Mathematics and Natural Studies (Poland); Zralek, M., E-mail: marek.zralek@us.edu.pl [University of Silesia, Institute of Physics (Poland)

    2017-03-15

    The Standard Model does not explain the hierarchy problem. Before the discovery of nonzero lepton mixing angle θ{sub 13} high hopes in explanation of the shape of the lepton mixing matrix were combined with non-Abelian symmetries. Nowadays, assuming one Higgs doublet, it is unlikely that this is still valid. Texture zeroes, that are combined with abelian symmetries, are intensively studied. The neutrino mass matrix is a natural way to study such symmetries.

  9. Cosmology and the neutrino mass ordering

    DEFF Research Database (Denmark)

    Hannestad, Steen; Schwetz, Thomas

    2016-01-01

    We propose a simple method to quantify a possible exclusion of the inverted neutrino mass ordering from cosmological bounds on the sum of the neutrino masses. The method is based on Bayesian inference and allows for a calculation of the posterior odds of normal versus inverted ordering. We apply...... the method for a specific set of current data from Planck CMB data and large-scale structure surveys, providing an upper bound on the sum of neutrino masses of 0.14 eV at 95% CL. With this analysis we obtain posterior odds for normal versus inverted ordering of about 2:1. If cosmological data is combined...... with data from oscillation experiments the odds reduce to about 3:2. For an exclusion of the inverted ordering from cosmology at more than 95% CL, an accuracy of better than 0.02 eV is needed for the sum. We demonstrate that such a value could be reached with planned observations of large scale structure...

  10. Absolute values of neutrino masses: status and prospects

    International Nuclear Information System (INIS)

    Bilenky, S.M.; Giunti, C.; Grifols, J.A.; Masso, E.

    2003-01-01

    Compelling evidences in favor of neutrino masses and mixing obtained in the last years in Super-Kamiokande, SNO, KamLAND and other neutrino experiments made the physics of massive and mixed neutrinos a frontier field of research in particle physics and astrophysics. There are many open problems in this new field. In this review we consider the problem of the absolute values of neutrino masses, which apparently is the most difficult one from the experimental point of view. We discuss the present limits and the future prospects of β-decay neutrino mass measurements and neutrinoless double-β decay. We consider the important problem of the calculation of nuclear matrix elements of neutrinoless double-β decay and discuss the possibility to check the results of different model calculations of the nuclear matrix elements through their comparison with the experimental data. We discuss the upper bound of the total mass of neutrinos that was obtained recently from the data of the 2dF Galaxy Redshift Survey and other cosmological data and we discuss future prospects of the cosmological measurements of the total mass of neutrinos. We discuss also the possibility to obtain information on neutrino masses from the observation of the ultra high-energy cosmic rays (beyond the GZK cutoff). Finally, we review the main aspects of the physics of core-collapse supernovae, the limits on the absolute values of neutrino masses from the observation of SN1987A neutrinos and the future prospects of supernova neutrino detection

  11. Signatures from an extra-dimensional seesaw model

    International Nuclear Information System (INIS)

    Blennow, Mattias; Melbeus, Henrik; Ohlsson, Tommy; Zhang He

    2010-01-01

    We study the generation of small neutrino masses in an extra-dimensional model, where singlet fermions are allowed to propagate in the extra dimension, while the standard model particles are confined to a brane. Motivated by the fact that extra-dimensional models are nonrenormalizable, we truncate the Kaluza-Klein towers at a maximal Kaluza-Klein number. This truncation, together with the structure of the bulk Majorana mass term, motivated by the Sherk-Schwarz mechanism, implies that the Kaluza-Klein modes of the singlet fermions pair to form Dirac fermions, except for a number of unpaired Majorana fermions at the top of each tower. These heavy Majorana fermions are the only sources of lepton number breaking in the model, and similarly to the type-I seesaw mechanism, they naturally generate small masses for the left-handed neutrinos. The lower Kaluza-Klein modes mix with the light neutrinos, and the mixing effects are not suppressed with respect to the light-neutrino masses. Compared to conventional fermionic seesaw models, such mixing can be more significant. We study the signals of this model at the Large Hadron Collider, and find that the current low-energy bounds on the nonunitarity of the leptonic mixing matrix are strong enough to exclude an observation.

  12. Finding Mass Constraints Through Third Neutrino Mass Eigenstate Decay

    Science.gov (United States)

    Gangolli, Nakul; de Gouvêa, André; Kelly, Kevin

    2018-01-01

    In this paper we aim to constrain the decay parameter for the third neutrino mass utilizing already accepted constraints on the other mixing parameters from the Pontecorvo-Maki-Nakagawa-Sakata matrix (PMNS). The main purpose of this project is to determine the parameters that will allow the Jiangmen Underground Neutrino Observatory (JUNO) to observe a decay parameter with some statistical significance. Another goal is to determine the parameters that JUNO could detect in the case that the third neutrino mass is lighter than the first two neutrino species. We also replicate the results that were found in the JUNO Conceptual Design Report (CDR). By utilizing Χ2-squared analysis constraints have been put on the mixing angles, mass squared differences, and the third neutrino decay parameter. These statistical tests take into account background noise and normalization corrections and thus the finalized bounds are a good approximation for the true bounds that JUNO can detect. If the decay parameter is not included in our models, the 99% confidence interval lies within The bounds 0s to 2.80x10-12s. However, if we account for a decay parameter of 3x10-5 ev2, then 99% confidence interval lies within 8.73x10-12s to 8.73x10-11s.

  13. Complex scaling and residual flavour symmetry in the neutrino mass ...

    Indian Academy of Sciences (India)

    Probir Roy

    2017-10-09

    Oct 9, 2017 ... Leptonic Dirac CP violation must be maximal while atmospheric neutrino mixing need not be exactly maximal. Each of the two Majorana phases, to be probed by the search for 0νββ decay, has to be zero or π and a normal neutrino mass hierarchy is allowed. Keywords. Neutrinos; residual flavour symmetry; ...

  14. Constraining dynamical neutrino mass generation with cosmological data

    Energy Technology Data Exchange (ETDEWEB)

    Koksbang, S.M.; Hannestad, S., E-mail: koksbang@phys.au.dk, E-mail: sth@phys.au.dk [Department of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C (Denmark)

    2017-09-01

    We study models in which neutrino masses are generated dynamically at cosmologically late times. Our study is purely phenomenological and parameterized in terms of three effective parameters characterizing the redshift of mass generation, the width of the transition region, and the present day neutrino mass. We also study the possibility that neutrinos become strongly self-interacting at the time where the mass is generated. We find that in a number of cases, models with large present day neutrino masses are allowed by current CMB, BAO and supernova data. The increase in the allowed mass range makes it possible that a non-zero neutrino mass could be measured in direct detection experiments such as KATRIN. Intriguingly we also find that there are allowed models in which neutrinos become strongly self-interacting around the epoch of recombination.

  15. Neutrino masses and spontaneously broken flavor symmetries

    International Nuclear Information System (INIS)

    Staudt, Christian

    2014-01-01

    We study the phenomenology of supersymmetric flavor models. We show how the predictions of models based on spontaneously broken non-Abelian discrete flavor symmetries are altered when we include so-called Kaehler corrections. Furthermore, we discuss anomaly-free discrete R symmetries which are compatible with SU(5) unification. We find a set of symmetries compatible with suppressed Dirac neutrino masses and a unique symmetry consistent with the Weinberg operator. We also study a pseudo-anomalous U(1) R symmetry which explains the fermion mass hierarchies and, when amended with additional singlet fields, ameliorates the fine-tuning problem.

  16. Nonzero θ13 and neutrino masses from the modified tri-bi-maximal neutrino mixing matrix

    International Nuclear Information System (INIS)

    Damanik, A.

    2014-01-01

    There are 3 types of neutrino mixing matrices: tri-bi-maximal, bi-maximal and democratic. These 3 types of neutrino mixing matrices predict that the mixing angle θ 13 should be null. Motivated by the recent experimental evidence of nonzero and relatively large θ 13 , we modified the tribimaximal mixing matrix by introducing a simple perturbation matrix into tribimaximal neutrino mixing matrix. In this scenario, we obtained nonzero mixing angle θ 13 =7.9 degrees which is in agreement with the present experimental results. By imposing 2 zeros texture into the obtained neutrino mass matrix from modified tribimaximal mixing matrix, we then have the neutrino mass spectrum in normal hierarchy. Some phenomenological implications are also discussed. It appears that if we use the solar neutrino squared-mass difference to determine the values of neutrino masses, then we cannot have the correct value for the atmospheric squared-mass difference. Conversely, if we use the experimental value of the squared-mass difference to determine the neutrino masses, then we cannot have the correct value for the solar neutrino squared-mass difference

  17. A comprehensive study of neutrino spin-flavour conversion in supernovae and the neutrino mass hierarchy

    Science.gov (United States)

    Ando, Shin'ichiro; Sato, Katsuhiko

    2003-10-01

    Resonant spin-flavour (RSF) conversions of supernova neutrinos, which are induced by the interaction between the nonzero neutrino magnetic moment and supernova magnetic fields, are studied for both normal and inverted mass hierarchy. As the case for the pure matter-induced neutrino oscillation (Mikheyev–Smirnov–Wolfenstein (MSW) effect), we find that the RSF transitions are strongly dependent on the neutrino mass hierarchy as well as the value of θ13. Flavour conversions are solved numerically for various neutrino parameter sets, with the presupernova profile calculated by Woosley and Weaver. In particular, it is very interesting that the RSF-induced νe→bar nue transition occurs if the following conditions are all satisfied: the value of μνB (μν is the neutrino magnetic moment and B is the magnetic field strength) is sufficiently strong, the neutrino mass hierarchy is inverted, and the value of θ13 is large enough to induce adiabatic MSW resonance. In this case, the strong peak due to the original νe emitted from the neutronization burst would exist in the time profile of the neutrino events detected at the Super-Kamiokande detector. If this peak were observed in reality, it would provide fruitful information on the neutrino properties. On the other hand, the characteristics of the neutrino spectra are also different between the neutrino models, but we find that there remains degeneracy among several models. Dependence on presupernova models is also discussed.

  18. Two radiative inverse seesaw models, dark matter, and baryogenesis

    International Nuclear Information System (INIS)

    Baldes, Iason; Bell, Nicole F.; Petraki, Kalliopi; Volkas, Raymond R.

    2013-01-01

    The inverse seesaw mechanism allows the neutrino masses to be generated by new physics at an experimentally accessible scale, even with O(1) Yukawa couplings. In the inverse seesaw scenario, the smallness of neutrino masses is linked to the smallness of a lepton number violating parameter. This parameter may arise radiatively. In this paper, we study the cosmological implications of two contrasting radiative inverse seesaw models, one due to Ma and the other to Law and McDonald. The former features spontaneous, the latter explicit lepton number violation. First, we examine the effect of the lepton-number violating interactions introduced in these models on the baryon asymmetry of the universe. We investigate under what conditions a pre-existing baryon asymmetry does not get washed out. While both models allow a baryon asymmetry to survive only once the temperature has dropped below the mass of their heaviest fields, the Ma model can create the baryon asymmetry through resonant leptogenesis. Then we investigate the viability of the dark matter candidates arising within these models, and explore the prospects for direct detection. We find that the Law/McDonald model allows a simple dark matter scenario similar to the Higgs portal, while in the Ma model the simplest cold dark matter scenario would tend to overclose the universe

  19. Hidden-Sector Dynamics and the Supersymmetric Seesaw

    CERN Document Server

    Campbell, Bruce A; Maybury, David W

    2008-01-01

    In light of recent analyses that have shown that nontrivial hidden-sector dynamics in models of supersymmetry breaking can lead to a significant impact on the predicted low-energy supersymmetric spectrum, we extend these studies to consider hidden-sector effects in extensions of the MSSM to include a seesaw model for neutrino masses. A dynamical hidden sector in an interval of mass scales below the seesaw scale would yield renormalization-group running involving both the anomalous dimension from the hidden sector and the seesaw-extended MSSM renormalization group equations (RGEs). These effects interfere in general, altering the generational mixing of the sleptons, and allowing for a substantial change to the expected level of charged-lepton flavour violation in seesaw-extended MSSM models. These results provide further support for recent theoretical observations that knowledge of the hidden sector is required in order to make concrete low-energy predictions, if the hidden sector is strongly coupled. In parti...

  20. The neutrino masses in SO(10) grand unified theory

    International Nuclear Information System (INIS)

    Leontaris, G.K.; Vergados, J.D.; Ioannina Univ.

    1987-01-01

    The neutrino masses and mixing are investigated in an SO(10) model in which the ten-dimensional and 126-dimensional representations are allowed to obtain vacuum expectation values. The parameters specifying the heavy Majorana neutrino mass matrix are constrained from the cosmological bound of light neutrino masses and the limits from ν μ ↔ ν τ oscillations. The implications of our model on 0ν-ββ decay and muon-number violating processes are explored. (orig.)

  1. Neutrino masses and superheavy dark matter in the 3-3-1-1 model

    Energy Technology Data Exchange (ETDEWEB)

    Huong, D.T.; Dong, P.V. [Vietnam Academy of Science and Technology, Institute of Physics, Hanoi (Viet Nam)

    2017-04-15

    In this work, we interpret the 3-3-1-1 model when the B - L and 3-3-1 breaking scales behave simultaneously as the inflation scale. This setup not only realizes the previously achieved consequences of inflation and leptogenesis, but also provides new insights in superheavy dark matter and neutrino masses. We argue that the 3-3-1-1 model can incorporate a scalar sextet, which induces both small masses for the neutrinos via a combined type I and II seesaw and large masses for the new neutral fermions. Additionally, all the new particles have large masses in the inflation scale. The lightest particle among the W-particles that have abnormal (i.e., wrong) B - L number in comparison to those of the standard model particles may be superheavy dark matter as it is stabilized by W-parity. The dark matter candidate may be a Majorana fermion, a neutral scalar, or a neutral gauge boson, which was properly created in the early universe due to gravitational effects on the vacuum or thermal production after cosmic inflation. (orig.)

  2. Inverse type II seesaw mechanism and its signature at the LHC and ILC

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, F.F.; Pires, C.A. de S, E-mail: cpires@fisica.ufpb.br; Rodrigues da Silva, P.S.

    2017-06-10

    The advent of the LHC, and the proposal of building future colliders as the ILC, both programmed to explore new physics at the TeV scale, justify the recent interest in collider phenomenology of seesaw mechanisms whose signatures lie on TeV scale or less. The most popular TeV scale seesaw mechanisms are the inverse seesaw ones. There are three types of inverse seesaw mechanisms, but only that one implemented in an arrangement involving six non-standard heavy neutrinos has received attention. In this paper we develop an inverse seesaw mechanism based on Higgs triplet model and simulate its collider phenomenology by producing doubly charged Higgses at the LHC and ILC and analyzing their subsequent decays in pair of leptons. We find that although the new scalars decouple from the standard ones, signals of these scalars may be detected in the current run of the LHC or in the future ILC. Our simulations probe the model in the region of parameter space that generates the correct neutrino masses and mixing for both normal and inverted hierarchy cases.

  3. Abelian realization of phenomenological two-zero neutrino textures

    Directory of Open Access Journals (Sweden)

    R. González Felipe

    2014-09-01

    Full Text Available In an attempt at explaining the observed neutrino mass-squared differences and leptonic mixing, lepton mass matrices with zero textures have been widely studied. In the weak basis where the charged lepton mass matrix is diagonal, various neutrino mass matrices with two zeros have been shown to be consistent with the current experimental data. Using the canonical and Smith normal form methods, we construct the minimal Abelian symmetry realizations of these phenomenological two-zero neutrino textures. The implementation of these symmetries in the context of the seesaw mechanism for Majorana neutrino masses is also discussed.

  4. NEUTRINO mass textures and the nature of new physics implied by present neutrino data

    International Nuclear Information System (INIS)

    Mohapatra, R.N.

    1997-01-01

    If all the indications for neutrino oscillations observed in the solar, atmospheric neutrino data as well as in the LSND experiment are borned out by the ongoing and future experiments, then they severely constrain the neutrino mass texture. In particular, the need for an extra ultra-light sterile neutrino species is hard to avoid. Such an extra neutrino has profound implication not only for physics beyond the standard model but even perhaps for physics beyond conventional grand unification. A scenario involving a parallel (or shadow) universe that interacts with the familiar universe only via the gravitational interactions where the ultra-lightness of the sterile neutrino follows from the same physics that explains the near masslessness of the familiar neutrinos is discussed in the presentation

  5. Relaxing neutrino mass bounds by a running cosmological constant

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, F.; Schrempp, L.

    2007-11-15

    We establish an indirect link between relic neutrinos and the dark energy sector which originates from the vacuum energy contributions of the neutrino quantum fields. Via renormalization group effects they induce a running of the cosmological constant with time which dynamically influences the evolution of the cosmic neutrino background. We demonstrate that the resulting reduction of the relic neutrino abundance allows to largely evade current cosmological neutrino mass bounds and discuss how the scenario might be probed by the help of future large scale structure surveys and Planck data. (orig.)

  6. Relaxing neutrino mass bounds by a running cosmological constant

    International Nuclear Information System (INIS)

    Bauer, F.; Schrempp, L.

    2007-11-01

    We establish an indirect link between relic neutrinos and the dark energy sector which originates from the vacuum energy contributions of the neutrino quantum fields. Via renormalization group effects they induce a running of the cosmological constant with time which dynamically influences the evolution of the cosmic neutrino background. We demonstrate that the resulting reduction of the relic neutrino abundance allows to largely evade current cosmological neutrino mass bounds and discuss how the scenario might be probed by the help of future large scale structure surveys and Planck data. (orig.)

  7. Electron electric dipole moment in Inverse Seesaw models

    Energy Technology Data Exchange (ETDEWEB)

    Abada, Asmaa; Toma, Takashi [Laboratoire de Physique Théorique, CNRS, University Paris-Sud, Université Paris-Saclay,91405 Orsay (France)

    2016-08-11

    We consider the contribution of sterile neutrinos to the electric dipole moment of charged leptons in the most minimal realisation of the Inverse Seesaw mechanism, in which the Standard Model is extended by two right-handed neutrinos and two sterile fermion states. Our study shows that the two pairs of (heavy) pseudo-Dirac mass eigenstates can give significant contributions to the electron electric dipole moment, lying close to future experimental sensitivity if their masses are above the electroweak scale. The major contribution comes from two-loop diagrams with pseudo-Dirac neutrino states running in the loops. In our analysis we further discuss the possibility of having a successful leptogenesis in this framework, compatible with a large electron electric dipole moment.

  8. Electron electric dipole moment in Inverse Seesaw models

    International Nuclear Information System (INIS)

    Abada, Asmaa; Toma, Takashi

    2016-01-01

    We consider the contribution of sterile neutrinos to the electric dipole moment of charged leptons in the most minimal realisation of the Inverse Seesaw mechanism, in which the Standard Model is extended by two right-handed neutrinos and two sterile fermion states. Our study shows that the two pairs of (heavy) pseudo-Dirac mass eigenstates can give significant contributions to the electron electric dipole moment, lying close to future experimental sensitivity if their masses are above the electroweak scale. The major contribution comes from two-loop diagrams with pseudo-Dirac neutrino states running in the loops. In our analysis we further discuss the possibility of having a successful leptogenesis in this framework, compatible with a large electron electric dipole moment.

  9. Limit on the tau neutrino mass

    International Nuclear Information System (INIS)

    Cinabro, D.; Henderson, S.; Kinoshita, K.; Liu, T.; Saulnier, M.; Wilson, R.; Yamamoto, H.; Sadoff, A.J.; Ammar, R.; Ball, S.; Baringer, P.; Coppage, D.; Copty, N.; Davis, R.; Hancock, N.; Kelly, M.; Kwak, N.; Lam, H.; Kubota, Y.; Lattery, M.; Nelson, J.K.; Patton, S.; Perticone, D.; Poling, R.; Savinov, V.; Schrenk, S.; Wang, R.; Alam, M.S.; Kim, I.J.; Nemati, B.; O'Neill, J.J.; Romero, V.; Severini, H.; Sun, C.R.; Zoeller, M.M.; Crawford, G.; Fulton, R.; Fujino, D.; Gan, K.K.; Kagan, H.; Kass, R.; Lee, J.; Malchow, R.; Morrow, F.; Skovpen, Y.; Sung, M.; White, C.; Whitmore, J.; Wilson, P.; Butler, F.; Fu, X.; Kalbfleisch, G.; Lambrecht, M.; Ross, W.R.; Skubic, P.; Snow, J.; Wang, P.L.; Wood, M.; Bortoletto, D.; Brown, D.N.; Dominick, J.; McIlwain, R.L.; Miao, T.; Miller, D.H.; Modesitt, M.; Schaffner, S.F.; Shibata, E.I.; Shipsey, I.P.J.; Wang, P.N.; Battle, M.; Ernst, J.; Kroha, H.; Roberts, S.; Sparks, K.; Thorndike, E.H.; Wang, C.H.; Sanghera, S.; Skwarnicki, T.; Stroynowski, R.; Artuso, M.; He, D.; Goldberg, M.; Horwitz, N.; Kennett, R.; Moneti, G.C.; Muheim, F.; Mukhin, Y.; Playfer, S.; Rozen, Y.; Rubin, P.; Stone, S.; Thulasidas, M.; Vasseur, G.; Zhu, G.; Barnes, A.V.; Bartelt, J.; Csorna, S.E.; Egyed, Z.; Jain, V.; Sheldon, P.; Akerib, D.S.; Barish, B.; Chadha, M.; Chan, S.; Cowen, D.F.; Eigen, G.; Miller, J.S.; Urheim, J.; Weinstein, A.J.; Acosta, D.; Athanas, M.; Masek, G.; Ong, B.; Paar, H.; Sivertz, M.; Bean, A.; Gronberg, J.; Kutschke, R.; Menary, S.; Morrison, R.J.; Nakanishi, S.; Nelson, H.N.; Nelson, T.K.; Richman, J.D.; Tajima, H.; Schmidt, D.; Sperka, D.; Witherell, M.S.; Procario, M.; Yang, S.; Balest, R.; Cho, K.; Daoudi, M.; Ford, W.T.; Johnson, D.R.; Lingel, K.; Lohner, M.; Rankin, P.; Smith, J.G.; Alexander, J.P.; Bebek, C.; Berkelman, K.; Besson, D.; Browder, T.E.; Cassel, D.G.; Cho, H.A.; Coffman, D.M.; Drell, P.S.; Ehrlich, R.; Galik, R.S.; Garcia-Sciveres, M.; Geiser, B.; Gittelman, B.; Gray, S.W.; Hartill, D.L.; Heltsley, B.

    1993-01-01

    A limit on the tau neutrino mass M ντ is obtained from a study of tau decays in the reaction e + e-→τ + τ - at center-of-mass energies ∼10.6 GeV. The result is based on an end-point analysis of the invariant mass spectrum of the decay products in the decay modes τ - →3h - 2h + ν τ and τ - →2h - h+2π 0 ν τ . The data sample used in this analysis contains 1.77x10 6 tau pairs, corresponding to an integrated luminosity of 1.92 fb -1 , and is substantially larger than previous data samples used to place a limit on M ντ . The limit obtained for both five-hadron modes together is 32.6 MeV at 95% C.L

  10. Verifiable origin of neutrino mass at TeV scale

    International Nuclear Information System (INIS)

    Ma, Ernest

    2002-01-01

    The physics responsible for neutrino mass may reside at or below the TeV energy scale. The neutrino mass matrix in the (ν e ν μ ν gt ) basis may then be deduced from future high-energy accelerator experiments. The newly observed excess in the muon anomalous magnetic moment may also be related

  11. Hybrid method to resolve the neutrino mass hierarchy by supernova (anti)neutrino induced reactions

    Energy Technology Data Exchange (ETDEWEB)

    Vale, D. [Department of Physics, Faculty of Science, University of Zagreb, Bijenička c. 32, HR-10000 Zagreb (Croatia); Rauscher, T. [Centre for Astrophysics Research, University of Hertfordshire, College Lane, Hatfield AL10 9AB (United Kingdom); Paar, N., E-mail: dvale@phy.hr, E-mail: Thomas.Rauscher@unibas.ch, E-mail: npaar@phy.hr [Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland)

    2016-02-01

    We introduce a hybrid method to determine the neutrino mass hierarchy by simultaneous measurements of responses of at least two detectors to antineutrino and neutrino fluxes from accretion and cooling phases of core-collapse supernovae. The (anti)neutrino-nucleus cross sections for {sup 56}Fe and {sup 208}Pb are calculated in the framework of the relativistic nuclear energy density functional and weak interaction Hamiltonian, while the cross sections for inelastic scattering on free protons p(ν-bar {sub e},e{sup +})n are obtained using heavy-baryon chiral perturbation theory. The modelling of (anti)neutrino fluxes emitted from a protoneutron star in a core-collapse supernova include collective and Mikheyev-Smirnov-Wolfenstein effects inside the exploding star. The particle emission rates from the elementary decay modes of the daughter nuclei are calculated for normal and inverted neutrino mass hierarchy. It is shown that simultaneous use of (anti)neutrino detectors with different target material allows to determine the neutrino mass hierarchy from the ratios of ν{sub e}- and ν-bar {sub e}-induced particle emissions. This hybrid method favors neutrinos from the supernova cooling phase and the implementation of detectors with heavier target nuclei ({sup 208}Pb) for the neutrino sector, while for antineutrinos the use of free protons in mineral oil or water is the appropriate choice.

  12. Hybrid method to resolve the neutrino mass hierarchy by supernova (anti)neutrino induced reactions

    Science.gov (United States)

    Vale, D.; Rauscher, T.; Paar, N.

    2016-02-01

    We introduce a hybrid method to determine the neutrino mass hierarchy by simultaneous measurements of responses of at least two detectors to antineutrino and neutrino fluxes from accretion and cooling phases of core-collapse supernovae. The (anti)neutrino-nucleus cross sections for 56Fe and 208Pb are calculated in the framework of the relativistic nuclear energy density functional and weak interaction Hamiltonian, while the cross sections for inelastic scattering on free protons p(bar nue,e+)n are obtained using heavy-baryon chiral perturbation theory. The modelling of (anti)neutrino fluxes emitted from a protoneutron star in a core-collapse supernova include collective and Mikheyev-Smirnov-Wolfenstein effects inside the exploding star. The particle emission rates from the elementary decay modes of the daughter nuclei are calculated for normal and inverted neutrino mass hierarchy. It is shown that simultaneous use of (anti)neutrino detectors with different target material allows to determine the neutrino mass hierarchy from the ratios of νe- and bar nue-induced particle emissions. This hybrid method favors neutrinos from the supernova cooling phase and the implementation of detectors with heavier target nuclei (208Pb) for the neutrino sector, while for antineutrinos the use of free protons in mineral oil or water is the appropriate choice.

  13. Unification of gauge couplings in radiative neutrino mass models

    DEFF Research Database (Denmark)

    Hagedorn, Claudia; Ohlsson, Tommy; Riad, Stella

    2016-01-01

    masses at one-loop level and (III) models with particles in the adjoint representation of SU(3). In class (I), gauge couplings unify in a few models and adding dark matter amplifies the chances for unification. In class (II), about a quarter of the models admits gauge coupling unification. In class (III......We investigate the possibility of gauge coupling unification in various radiative neutrino mass models, which generate neutrino masses at one- and/or two-loop level. Renormalization group running of gauge couplings is performed analytically and numerically at one- and two-loop order, respectively....... We study three representative classes of radiative neutrino mass models: (I) minimal ultraviolet completions of the dimension-7 ΔL = 2 operators which generate neutrino masses at one- and/or two-loop level without and with dark matter candidates, (II) models with dark matter which lead to neutrino...

  14. Neutrino mass in flavor dependent gauged lepton model

    Science.gov (United States)

    Nomura, Takaaki; Okada, Hiroshi

    2018-03-01

    We study a neutrino model introducing an additional nontrivial gauged lepton symmetry where the neutrino masses are induced at two-loop level, while the first and second charged-leptons of the standard model are done at one-loop level. As a result of the model structure, we can predict one massless active neutrino, and there is a dark matter candidate. Then we discuss the neutrino mass matrix, muon anomalous magnetic moment, lepton flavor violations, oblique parameters, and relic density of dark matter, taking into account the experimental constraints.

  15. Minimal models for axion and neutrino

    Directory of Open Access Journals (Sweden)

    Y.H. Ahn

    2016-01-01

    Full Text Available The PQ mechanism resolving the strong CP problem and the seesaw mechanism explaining the smallness of neutrino masses may be related in a way that the PQ symmetry breaking scale and the seesaw scale arise from a common origin. Depending on how the PQ symmetry and the seesaw mechanism are realized, one has different predictions on the color and electromagnetic anomalies which could be tested in the future axion dark matter search experiments. Motivated by this, we construct various PQ seesaw models which are minimally extended from the (non- supersymmetric Standard Model and thus set up different benchmark points on the axion–photon–photon coupling in comparison with the standard KSVZ and DFSZ models.

  16. Prospects for cosmic neutrino detection in tritium experiments in the case of hierarchical neutrino masses

    International Nuclear Information System (INIS)

    Blennow, Mattias

    2008-01-01

    We discuss the effects of neutrino mixing and the neutrino mass hierarchy when considering the capture of the cosmic neutrino background (CNB) on radioactive nuclei. The implications of mixing and hierarchy at future generations of tritium decay experiments are considered. We find that the CNB should be detectable at these experiments provided that the resolution for the kinetic energy of the outgoing electron can be pushed to a few 0.01 eV for the scenario with inverted neutrino mass hierarchy, about an order of magnitude better than that of the upcoming KATRIN experiment. Another order of magnitude improvement is needed in the case of normal neutrino mass hierarchy. We also note that mixing effects generally make the prospects for CNB detection worse due to an increased maximum energy of the normal beta decay background

  17. Probing neutrino masses with CMB lensing extraction

    International Nuclear Information System (INIS)

    Lesgourgues, Julien; Perotto, Laurence; Pastor, Sergio; Piat, Michel

    2006-01-01

    We evaluate the ability of future cosmic microwave background (CMB) experiments to measure the power spectrum of large scale structure using quadratic estimators of the weak lensing deflection field. We calculate the sensitivity of upcoming CMB experiments such as BICEP, QUaD, BRAIN, ClOVER and Planck to the nonzero total neutrino mass M ν indicated by current neutrino oscillation data. We find that these experiments greatly benefit from lensing extraction techniques, improving their one-sigma sensitivity to M ν by a factor of order four. The combination of data from Planck and the SAMPAN mini-satellite project would lead to σ(M ν )∼0.1 eV, while a value as small as σ(M ν )∼0.035 eV is within the reach of a space mission based on bolometers with a passively cooled 3-4 m aperture telescope, representative of the most ambitious projects currently under investigation. We show that our results are robust not only considering possible difficulties in subtracting astrophysical foregrounds from the primary CMB signal but also when the minimal cosmological model (Λ Mixed Dark Matter) is generalized in order to include a possible scalar tilt running, a constant equation-of-state parameter for the dark energy and/or extra relativistic degrees of freedom

  18. Natural fermion mass hierarchy and mixings in family unification

    International Nuclear Information System (INIS)

    Dent, James B.; Feger, Robert; Kephart, Thomas W.; Nandi, S.

    2011-01-01

    We present an SU(9) model of family unification with three light chiral families, and a natural hierarchy of charged fermion masses and mixings. The existence of singlet right handed neutrinos with masses about two orders of magnitude smaller than the GUT scale, as needed to understand the light neutrinos masses via the see-saw mechanism, is compelling in our model.

  19. Earth Effects and Mass Hierarchy with Supernova Neutrinos

    International Nuclear Information System (INIS)

    Dasgupta, Basudeb

    2009-01-01

    Collective neutrino flavor transformations take place deep inside a supernova if the neutrino mass hierarchy is inverted, even for extremely small values of θ 13 . We show that the presence (or absence) of Earth matter effects in antineutrino signal is directly related to the absence (or presence) of these collective effects, when the mixing angle θ 13 is small. Thus a neutrino signal from a galactic supernova may enable us to distinguish between the hierarchies even for small values of θ 13 .

  20. Neutrino mass matrices with vanishing determinant

    International Nuclear Information System (INIS)

    Chauhan, Bhag C.; Pulido, Joao; Picariello, Marco

    2006-01-01

    We investigate the prospects for neutrinoless double beta decay, texture zeros. and equalities between neutrino mass matrix elements in scenarios with vanishing determinant mass matrices for vanishing and finite θ 13 mixing angles in normal and inverse mass hierarchies. For normal hierarchy and both zero and finite θ 13 it is found that neutrinoless double beta decay cannot be observed by any of the present or next generation experiments, while for inverse hierarchy it is, on the contrary, accessible to experiments. Regarding texture zeros and equalities between mass matrix elements, we find that in both normal and inverse hierarchies with θ 13 =0 no texture zeros nor any such equalities can exist apart from the obvious ones. For θ 13 ≠0 some texture zeros become possible. In normal hierarchy two texture zeros occur if 8.1x10 -2 ≤sinθ 13 ≤9.1x10 -2 while in inverse hierarchy three are possible, one with sinθ 13 ≥7x10 -3 and two others with sinθ 13 ≥0.18. All equalities between mass matrix elements are impossible with θ 13 ≠0

  1. Renormalisation group analysis of single right-handed neutrino dominance

    International Nuclear Information System (INIS)

    King, S.F.; Nimai Singh, N.

    2000-01-01

    We perform a renormalisation group (RG) analysis of neutrino masses and mixing angles in the see-saw mechanism in the minimal supersymmetric standard model with three right-handed neutrinos, including the effects of the heavy neutrino thresholds. We focus on the case that one of the right-handed neutrinos provides the dominant contribution to the 23 block of the light Majorana matrix, causing its determinant to approximately vanish and giving an automatic neutrino mass hierarchy, so-called single right-handed neutrino dominance which may arise from a U(1) family symmetry. In these models radiative corrections can increase atmospheric and solar neutrino mixing by up to about 10% and 5%, respectively, and may help to achieve bi-maximal mixing. Significantly we find that the radiative corrections over the heavy neutrino threshold region are at least as important as those usually considered from the lightest right-handed neutrino down to low energies

  2. Baryogenesis, neutrino masses, and dynamical dark energy

    International Nuclear Information System (INIS)

    Eisele, M.T.

    2007-01-01

    This thesis considers several models that connect different areas of particle physics and cosmology. Our first discussion in this context concerns a baryogenesis scenario, in which the baryon asymmetry of our universe is created through the dynamics of a dark energy field, thereby illustrating that these two topics might be related. Subsequently, several neutrino mass models are analyzed, which make use of an extra-dimensional setting to overcome certain problems of their fourdimensional counterparts. The central discussion of this thesis concerns a leptogenesis model with many standard model singlets. Amongst other things, we show that the presence of these states can lower the standard bound for the necessary reheating temperature of the universe by at least one and a half orders of magnitude. To further motivate this approach, we also discuss an explicit, extradimensional leptogenesis scenario that naturally yields many of the ingredients required in this context. (orig.)

  3. Neutrino oscillation observables from mass matrix structure

    International Nuclear Information System (INIS)

    Winter, Walter

    2008-01-01

    We present a systematic procedure to establish a connection between complex neutrino mass matrix textures and experimental observables, including the Dirac CP phase. In addition, we illustrate how future experimental measurements affect the selection of textures in the (θ 13 ,δ CP )-plane. For the mixing angles, we use generic assumptions motivated by quark-lepton complementarity. We allow for any combination between U l and U ν , as well as we average over all present complex phases. We find that individual textures lead to very different distributions of the observables, such as to large or small leptonic CP violation. In addition, we find that the extended quark-lepton complementarity approach motivates future precision measurements of δ CP at the level of θ C ≅11 deg

  4. Baryogenesis, neutrino masses, and dynamical dark energy

    Energy Technology Data Exchange (ETDEWEB)

    Eisele, M.T.

    2007-10-09

    This thesis considers several models that connect different areas of particle physics and cosmology. Our first discussion in this context concerns a baryogenesis scenario, in which the baryon asymmetry of our universe is created through the dynamics of a dark energy field, thereby illustrating that these two topics might be related. Subsequently, several neutrino mass models are analyzed, which make use of an extra-dimensional setting to overcome certain problems of their fourdimensional counterparts. The central discussion of this thesis concerns a leptogenesis model with many standard model singlets. Amongst other things, we show that the presence of these states can lower the standard bound for the necessary reheating temperature of the universe by at least one and a half orders of magnitude. To further motivate this approach, we also discuss an explicit, extradimensional leptogenesis scenario that naturally yields many of the ingredients required in this context. (orig.)

  5. Role of lepton flavor violating muon decay in the seesaw model and LSND

    International Nuclear Information System (INIS)

    Jamil Aslam, M.; Riazuddin

    2002-01-01

    The aim of this work is to study lepton flavor violation in a newly proposed seesaw model of neutrino mass and to see whether it could explain the Liquid Scintillation Neutrino Detector excess. The motivation of this seesaw model is that there is no new physics beyond the TeV scale. By studying μ→3e in this model, it is shown that the upper bound on the branching ratio requires a Higgs boson mass m h of a new scalar doublet with the lepton number L=-1 needed in this model to be about 9 TeV. The predicted branching ratio for μ→eν l ν-bar l is too small to explain the LSND

  6. The neutrino mass hierarchy measurement with a neutrino telescope in the Mediterranean Sea: A feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Tsirigotis, A. G. [Physics Laboratory, Hellenic Open University (Greece); Collaboration: KM3NeT Collaboration

    2014-11-18

    With the measurement of a non zero value of the θ{sub 13} neutrino mixing parameter, interest in neutrinos as source of the baryon asymmetry of the universe has increased. Among the measurements of a rich and varied program in near future neutrino physics is the determination of the mass hierarchy. We present the status of a study of the feasibility of using a densely instrumented undersea neutrino detector to determine the mass hierarchy, utilizing the Mikheyev-Smirnov-Wolfenstein (MSW) effect on atmospheric neutrino oscillations. The detector will use technology developed for KM3NeT. We present the systematic studies of the optimization of a detector in the required 5–10 GeV energy regime. These studies include new tracking and interaction identification algorithms as well as geometrical optimizations of the detector.

  7. Search for type-III Seesaw heavy leptons in $pp$ collisions at $\\sqrt{s}= 8$ TeV with the ATLAS Detector

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdinov, Ovsat; Aben, Rosemarie; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Affolder, Tony; Agatonovic-Jovin, Tatjana; Aguilar-Saavedra, Juan Antonio; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Alkire, Steven Patrick; Allbrooke, Benedict; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Άlvarez Piqueras, Damián; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Auerbach, Benjamin; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baak, Max; Baas, Alessandra; Bacci, Cesare; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Oliver Keith; Balek, Petr; Balestri, Thomas; Balli, Fabrice; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Bansil, Hardeep Singh; Barak, Liron; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Basalaev, Artem; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James Baker; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Maurice; Becker, Sebastian; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Janna Katharina; Belanger-Champagne, Camille; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Beringer, Jürg; Bernard, Clare; Bernard, Nathan Rogers; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertsche, Carolyn; Bertsche, David; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bevan, Adrian John; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blanco, Jacobo Ezequiel; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boehler, Michael; Bogaerts, Joannes Andreas; Bogavac, Danijela; Bogdanchikov, Alexander; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozic, Ivan; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Breaden Madden, William Dmitri; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Lydia; Brenner, Richard; Bressler, Shikma; Bristow, Kieran; Bristow, Timothy Michael; Britton, Dave; Britzger, Daniel; Brochu, Frederic; Brock, Ian; Brock, Raymond; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Brown, Jonathan; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bruscino, Nello; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Buchholz, Peter; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Buehrer, Felix; Bugge, Lars; Bugge, Magnar Kopangen; Bulekov, Oleg; Bullock, Daniel; Burckhart, Helfried; Burdin, Sergey; Burghgrave, Blake; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Buzykaev, Aleksey; Cabrera Urbán, Susana; Caforio, Davide; Cairo, Valentina; Cakir, Orhan; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Caloba, Luiz; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarda, Stefano; Camarri, Paolo; Cameron, David; Caminada, Lea Michaela; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Cardillo, Fabio; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Caudron, Julien; Cavaliere, Viviana; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerio, Benjamin; Cerny, Karel; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chang, Philip; Chapleau, Bertrand; Chapman, John Derek; Charlton, Dave; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Liming; Chen, Shenjian; Chen, Xin; Chen, Ye; Cheng, Hok Chuen; Cheng, Yangyang; Cheplakov, Alexander; Cheremushkina, Evgenia; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Childers, John Taylor; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Choi, Kyungeon; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christodoulou, Valentinos; Chromek-Burckhart, Doris; Chudoba, Jiri; Chuinard, Annabelle Julia; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Cinca, Diane; Cindro, Vladimir; Cioara, Irina Antonela; Ciocio, Alessandra; Citron, Zvi Hirsh; Ciubancan, Mihai; Clark, Allan G; Clark, Brian Lee; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Dandoy, Jeffrey Rogers; Dang, Nguyen Phuong; Daniells, Andrew Christopher; Danninger, Matthias; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Eleanor; Davies, Merlin; Davison, Peter; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Deigaard, Ingrid; Del Peso, Jose; Del Prete, Tarcisio; Delgove, David; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; DeMarco, David; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Domenico, Antonio; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaconu, Cristinel; Diamond, Miriam; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; Barros do Vale, Maria Aline; Dobos, Daniel; Dobre, Monica; Doglioni, Caterina; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Drechsler, Eric; Dris, Manolis; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Duschinger, Dirk; Dyndal, Mateusz; Eckardt, Christoph; Ecker, Katharina Maria; Edgar, Ryan Christopher; Edson, William; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Elliot, Alison; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Erdmann, Johannes; Ereditato, Antonio; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Faucci Giannelli, Michele; Favareto, Andrea; Fayard, Louis; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Feremenga, Last; Fernandez Martinez, Patricia; Fernandez Perez, Sonia; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Cora; Fischer, Julia; Fisher, Wade Cameron; Fitzgerald, Eric Andrew; Fleck, Ivor; Fleischmann, Philipp; Fleischmann, Sebastian; Fletcher, Gareth Thomas; Fletcher, Gregory; Fletcher, Rob Roy MacGregor; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Formica, Andrea; Forti, Alessandra; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Francis, David; Franconi, Laura; Franklin, Melissa; Frate, Meghan; Fraternali, Marco; Freeborn, David; French, Sky; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gao, Jun; Gao, Yanyan; Gao, Yongsheng; Garay Walls, Francisca; Garberson, Ford; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudiello, Andrea; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Geisler, Manuel Patrice; Gemme, Claudia; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghazlane, Hamid; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Giannetti, Paola; Gibbard, Bruce; Gibson, Stephen; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giromini, Paolo; Giugni, Danilo; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos Leonidas; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Goblirsch-Kolb, Maximilian; Goddard, Jack Robert; Godlewski, Jan; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Goujdami, Driss; Goussiou, Anna; Govender, Nicolin; Gozani, Eitan; Grabas, Herve Marie Xavier; Graber, Lars; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Gray, Heather; Graziani, Enrico; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grivaz, Jean-Francois; Grohs, Johannes Philipp; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Grout, Zara Jane; Guan, Liang; Guenther, Jaroslav; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Gupta, Shaun; Gustavino, Giuliano; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Haefner, Petra; Hageböck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Haley, Joseph; Hall, David; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamer, Matthias; Hamilton, Andrew; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Maike Christina; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harrington, Robert; Harrison, Paul Fraser; Hartjes, Fred; Hasegawa, Makoto; Hasegawa, Satoshi; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauser, Reiner; Hauswald, Lorenz; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Lukas; Hejbal, Jiri; Helary, Louis; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Hengler, Christopher; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herrberg-Schubert, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hetherly, Jeffrey Wayne; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hinman, Rachel Reisner; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hohlfeld, Marc; Hohn, David; Holmes, Tova Ray; Homann, Michael; Hong, Tae Min; Hooft van Huysduynen, Loek; Hopkins, Walter; Horii, Yasuyuki; Horton, Arthur James; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hrynevich, Aliaksei; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Qipeng; Hu, Xueye; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Idrissi, Zineb; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikematsu, Katsumasa; Ikeno, Masahiro; Ilchenko, Iurii; Iliadis, Dimitrios; Ilic, Nikolina; Inamaru, Yuki; Ince, Tayfun; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Ivarsson, Jenny; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jabbar, Samina; Jackson, Brett; Jackson, Matthew; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansky, Roland; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanty, Laura; Jejelava, Juansher; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Yi; Jiggins, Stephen; Jimenez Pena, Javier; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Joergensen, Morten Dam; Johansson, Per; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Ju, Xiangyang; Jung, Christian; Jussel, Patrick; Juste Rozas, Aurelio; Kaci, Mohammed; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kahn, Sebastien Jonathan; Kajomovitz, Enrique; Kalderon, Charles William; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karamaoun, Andrew; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Katre, Akshay; Katzy, Judith; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Kehoe, Robert; Keller, John; Kempster, Jacob Julian; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Keyes, Robert; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharlamov, Alexey; Khoo, Teng Jian; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hee Yeun; Kim, Hyeon Jin; Kim, Shinhong; Kim, Young-Kee; Kimura, Naoki; Kind, Oliver Maria; King, Barry; King, Matthew; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kiuchi, Kenji; Kivernyk, Oleh; Kladiva, Eduard; Klein, Matthew Henry; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Aine; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Koletsou, Iro; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; König, Sebastian; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Kortner, Oliver; Kortner, Sandra; Kosek, Tomas; Kostyukhin, Vadim; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kreiss, Sven; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Krizka, Karol; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Krumnack, Nils; Krumshteyn, Zinovii; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kucuk, Hilal; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuger, Fabian; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kurumida, Rie; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwan, Tony; Kyriazopoulos, Dimitrios; La Rosa, Alessandro; La Rosa Navarro, Jose Luis; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Lambourne, Luke; Lammers, Sabine; Lampen, Caleb; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lange, J örn Christian; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Lazovich, Tomo; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeBlanc, Matthew Edgar; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leisos, Antonios; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Leontsinis, Stefanos; Leroy, Claude; Lester, Christopher; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Adrian; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Shu; Li, Yichen; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Liblong, Aaron; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Linde, Frank; Lindquist, Brian Edward; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Hao; Liu, Jian; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanwen; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Long, Brian Alexander; Long, Jonathan David; Long, Robin Eamonn; Looper, Kristina Anne; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Lösel, Philipp Jonathan; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lu, Nan; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lynn, David; Lysak, Roman; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Macdonald, Calum Michael; Machado Miguens, Joana; Macina, Daniela; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeland, Steffen; Maeno, Tadashi; Maevskiy, Artem; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maier, Thomas; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Mancini, Giada; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mantifel, Rodger; Mantoani, Matteo; Mapelli, Livio; March, Luis; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marjanovic, Marija; Marley, Daniel; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian Thomas; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Mario; Martin-Haugh, Stewart; Martoiu, Victor Sorin; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massa, Lorenzo; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazza, Simone Michele; Mazzaferro, Luca; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Middleton, Robin; Miglioranzi, Silvia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milesi, Marco; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minami, Yuto; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Mohapatra, Soumya; Mohr, Wolfgang; Molander, Simon; Moles-Valls, Regina; Mönig, Klaus; Monini, Caterina; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Morinaga, Masahiro; Morisbak, Vanja; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Mortensen, Simon Stark; Morton, Alexander; Morvaj, Ljiljana; Mosidze, Maia; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Klemens; Mueller, Ralph Soeren Peter; Mueller, Thibaut; Muenstermann, Daniel; Mullen, Paul; Mullier, Geoffrey; Munwes, Yonathan; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nagy, Elemer; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Nef, Pascal Daniel; Negri, Andrea; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Andrew; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Jon Kerr; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nomachi, Masaharu; Nomidis, Ioannis; Nooney, Tamsin; Norberg, Scarlet; Nordberg, Markus; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nuti, Francesco; O'Brien, Brendan Joseph; O'grady, Fionnbarr; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Ochoa-Ricoux, Juan Pedro; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Oide, Hideyuki; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Rhys Edward; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paganis, Efstathios; Pahl, Christoph; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Palma, Alberto; Pan, Yibin; Panagiotopoulou, Evgenia; Pandini, Carlo Enrico; Panduro Vazquez, William; Pani, Priscilla; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Michael Andrew; Parker, Kerry Ann; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Pauly, Thilo; Pearce, James; Pearson, Benjamin; Pedersen, Lars Egholm; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Pelikan, Daniel; Peng, Haiping; Penning, Bjoern; Penwell, John; Perepelitsa, Dennis; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Pettersson, Nora Emilia; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Pickering, Mark Andrew; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinfold, James; Pingel, Almut; Pinto, Belmiro; Pires, Sylvestre; Pitt, Michael; Pizio, Caterina; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Pluth, Daniel; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Polesello, Giacomo; Poley, Anne-luise; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Prell, Soeren; Price, Darren; Price, Lawrence; Primavera, Margherita; Prince, Sebastien; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopapadaki, Eftychia-sofia; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Ptacek, Elizabeth; Puddu, Daniele; Pueschel, Elisa; Puldon, David; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quarrie, David; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Raddum, Silje; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Rajagopalan, Srinivasan; Rammensee, Michael; Rangel-Smith, Camila; Rauscher, Felix; Rave, Stefan; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reisin, Hernan; Relich, Matthew; Rembser, Christoph; Ren, Huan; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter, Stefan; Richter-Was, Elzbieta; Ricken, Oliver; Ridel, Melissa; Rieck, Patrick; Riegel, Christian Johann; Rieger, Julia; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Ristić, Branislav; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romano Saez, Silvestre Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Peyton; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Rud, Viacheslav; Rudolph, Christian; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Russell, Heather; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sabato, Gabriele; Sacerdoti, Sabrina; Saddique, Asif; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Saimpert, Matthias; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sannino, Mario; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sasaki, Osamu; Sasaki, Yuichi; Sato, Koji; Sauvage, Gilles; Sauvan, Emmanuel; Savage, Graham; Savard, Pierre; Sawyer, Craig; Sawyer, Lee; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaefer, Ralph; Schaeffer, Jan; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Schiavi, Carlo; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitt, Stefan; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schopf, Elisabeth; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schroeder, Christian; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schwegler, Philipp; Schweiger, Hansdieter; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Sciacca, Gianfranco; Scifo, Estelle; Sciolla, Gabriella; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekhon, Karishma; Sekula, Stephen; Seliverstov, Dmitry; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Serre, Thomas; Sessa, Marco; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shaw, Savanna Marie; Shcherbakova, Anna; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Shojaii, Seyedruhollah; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Shushkevich, Stanislav; Sicho, Petr; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silver, Yiftah; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simon, Dorian; Simoniello, Rosa; Sinervo, Pekka; Sinev, Nikolai; Siragusa, Giovanni; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinner, Malcolm Bruce; Skottowe, Hugh Philip; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Matthew; Smith, Russell; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Song, Hong Ye; Soni, Nitesh; Sood, Alexander; Sopczak, Andre; Sopko, Bruno; Sopko, Vit; Sorin, Veronica; Sosa, David; Sosebee, Mark; Sotiropoulou, Calliope Louisa; Soualah, Rachik; Soukharev, Andrey; South, David; Sowden, Benjamin; Spagnolo, Stefania; Spalla, Margherita; Spanò, Francesco; Spearman, William Robert; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; Spreitzer, Teresa; St Denis, Richard Dante; Staerz, Steffen; Stahlman, Jonathan; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Stavina, Pavel; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramaniam, Rajivalochan; Succurro, Antonella; Sugaya, Yorihito; Suhr, Chad; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Shota; Suzuki, Yu; Svatos, Michal; Swedish, Stephen; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Shuji; Tannenwald, Benjamin Bordy; Tannoury, Nancy; Tapprogge, Stefan; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Tepel, Fabian-Phillipp; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Ray; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tibbetts, Mark James; Ticse Torres, Royer Edson; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todorov, Theodore; Todorova-Nova, Sharka; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tolley, Emma; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; True, Patrick; Truong, Loan; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turra, Ruggero; Turvey, Andrew John; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ugland, Maren; Uhlenbrock, Mathias; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urban, Jozef; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valderanis, Chrysostomos; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; Van Der Leeuw, Robin; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vannucci, Francois; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloce, Laurelle Maria; Veloso, Filipe; Velz, Thomas; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wang, Chao; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Xiaoxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Warsinsky, Markus; Washbrook, Andrew; Wasicki, Christoph; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; Wharton, Andrew Mark; White, Andrew; White, Martin; White, Ryan; White, Sebastian; Whiteson, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wildauer, Andreas; Wilkens, Henric George; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, Alan; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winter, Benedict Tobias; Wittgen, Matthias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wu, Mengqing; Wu, Miles; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yakabe, Ryota; Yamada, Miho; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Shimpei; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Yi; Yao, Weiming; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yen, Andy L; Yildirim, Eda; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Yusuff, Imran; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zalieckas, Justas; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Huijun; Zhang, Jinlong; Zhang, Lei; Zhang, Ruiqi; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Xiandong; Zhao, Yongke; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Chen; Zhou, Lei; Zhou, Li; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Stephanie; Zinonos, Zinonas; Zinser, Markus; Ziolkowski, Michael; Živković, Lidija; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zwalinski, Lukasz

    2015-08-03

    A search for the pair-production of heavy leptons ($N^0,L^{\\pm}$) predicted by the type-III seesaw theory formulated to explain the origin of small neutrino masses is presented. The decay channels $N^0\\rightarrow W^{\\pm}l^{\\mp}$ ($\\ell = e, \\mu, \\tau$) and $L^{\\pm}\\rightarrow W^\\pm \

  8. Leptogenesis in a neutrino mass model coupled with inflaton

    Directory of Open Access Journals (Sweden)

    Daijiro Suematsu

    2016-09-01

    Full Text Available We propose a scenario for the generation of baryon number asymmetry based on the inflaton decay in a radiative neutrino mass model extended with singlet scalars. In this scenario, lepton number asymmetry is produced through the decay of non-thermal right-handed neutrinos caused from the inflaton decay. Since the amount of non-thermal right-handed neutrinos could be much larger than the thermal ones, the scenario could work without any resonance effect for rather low reheating temperature. Sufficient baryon number asymmetry can be generated for much lighter right-handed neutrinos compared with the Davidson–Ibarra bound.

  9. The high mass frontier: limits on heavy neutrinos

    International Nuclear Information System (INIS)

    Gronau, M.

    1984-01-01

    The theoretical motivation for a search for heavy neutrinos is discussed followed by the presentation of typical model dependent expectations for the mixing of the latter with ordinary neutrinos. Present mass and mixing limits on such heavy neutral leptons are based on search for secondary peaks in π and K leptonic decays and on the absence of neutrino decay signatures in neutrino beams from conventional sources and beam dumps. While these limits are quite poor for masses above 1 GeV, we describe methods to extend the limits to masses in the many GeV region. Such limits may be derived from search in b decays, high statistics neutrino experiments, search in ep colliders, W and Z decays and finally - decays of very heavy gauge bosons (if such exist in the TeV region) when produced in multi-TeV pp and antipp colliders

  10. The Neutrino Bomb: A New Weapon of Mass Destruction

    International Nuclear Information System (INIS)

    Broda, E.

    1978-01-01

    This text was written by E. Broda in a “Supplementary” paper for Pugwash in the year 1978. It is about the neutrino and a general principle of its use as a potential weapon of mass destruction. It ends with a suggestion to convene a Pugwash workshop for dealing with the threat of the neutrino bomb. (zarka)

  11. Neutrino Mass Models: impact of non-zero reactor angle

    International Nuclear Information System (INIS)

    King, Stephen F.

    2011-01-01

    In this talk neutrino mass models are reviewed and the impact of a non-zero reactor angle and other deviations from tri-bi maximal mixing are discussed. We propose some benchmark models, where the only way to discriminate between them is by high precision neutrino oscillation experiments.

  12. Naturalness of nearly degenerate neutrinos

    International Nuclear Information System (INIS)

    Casas, J.A.; Espinosa, J.R.; Ibarra, A.; Navarro, I.

    1999-01-01

    If neutrinos are to play a relevant cosmological role, they must be essentially degenerate. We study whether radiative corrections can or cannot be responsible for the small mass splittings, in agreement with all the available experimental data. We perform an exhaustive exploration of the bimaximal mixing scenario, finding that (i) the vacuum oscillations solution to the solar neutrino problem is always excluded; (ii) if the mass matrix is produced by a see-saw mechanism, there are large regions of the parameter space consistent with the large angle MSW solution, providing a natural origin for the Δm sol 2 atm 2 hierarchy; (iii) the bimaximal structure becomes then stable under radiative corrections. We also provide analytical expressions for the mass splittings and mixing angles and present a particularly simple see-saw ansatz consistent with all observations

  13. Disappearing neutrinos at KamLAND suport the case for neutrino mass

    CERN Multimedia

    Johnson, G

    2002-01-01

    Measurements from KamLAND, show that anti-neutrinos emanating from nearby nuclear reactors are "disappearing," which indicates they have mass and can oscillate or change from one type to another (2 pages)

  14. The {mu} term and neutrino masses

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Mu-Chun [California Univ., Irvine, CA (United States). Dept. of Physics and Astronomy; Ratz, Michael; Staudt, Christian [Technische Univ. Muenchen, Garching (Germany). Physik-Department; Vaudrevange, Patrick K.S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-06-15

    The well-known Giudice-Masiero mechanism explains the presence of a {mu} term of the order of the gravitino mass, but does not explain why the holomorphic mass term is absent in the superpotential. We discuss anomaly-free discrete symmetries which are both compatible with SU(5) unification of matter and the Giudice-Masiero mechanism, i.e. forbid the {mu} term in the superpotential while allowing the necessary Kaehler potential term. We find that these are Z{sup R}{sub M} symmetries with the following properties: (i) M is a multiple of four; (ii) the Higgs bilinear H{sub u} H{sub d} transforms trivially; (iii) the superspace coordinate {theta} has charge M/4 and, accordingly, the superpotential has charge M/2; (iv) dimension five proton decay operators are automatically absent. All Z{sup R}{sub M} symmetries are anomaly-free due to a non-trivial transformation of a Green-Schwarz axion, and, as a consequence, a holomorphic {mu} term appears at the non-perturbative level. There is a unique symmetry that is consistent with the Weinberg operator while there is a class of Z{sup R}{sub M} symmetries which explain suppressed Dirac neutrino masses.

  15. The μ term and neutrino masses

    International Nuclear Information System (INIS)

    Chen, Mu-Chun

    2012-06-01

    The well-known Giudice-Masiero mechanism explains the presence of a μ term of the order of the gravitino mass, but does not explain why the holomorphic mass term is absent in the superpotential. We discuss anomaly-free discrete symmetries which are both compatible with SU(5) unification of matter and the Giudice-Masiero mechanism, i.e. forbid the μ term in the superpotential while allowing the necessary Kaehler potential term. We find that these are Z R M symmetries with the following properties: (i) M is a multiple of four; (ii) the Higgs bilinear H u H d transforms trivially; (iii) the superspace coordinate θ has charge M/4 and, accordingly, the superpotential has charge M/2; (iv) dimension five proton decay operators are automatically absent. All Z R M symmetries are anomaly-free due to a non-trivial transformation of a Green-Schwarz axion, and, as a consequence, a holomorphic μ term appears at the non-perturbative level. There is a unique symmetry that is consistent with the Weinberg operator while there is a class of Z R M symmetries which explain suppressed Dirac neutrino masses.

  16. Effects of fermionic singlet neutrinos on high- and low-energy observables

    International Nuclear Information System (INIS)

    Weiland, C.

    2013-01-01

    In this doctoral thesis, we study both low- and high-energy observables related to massive neutrinos. Neutrino oscillations have provided indisputable evidence in favour of non-zero neutrino masses and mixings. However, the original formulation of the standard model cannot account for these observations, which calls for the introduction of new physics. Among many possibilities, we focus here on the inverse seesaw, a neutrino mass generation mechanism in which the standard model is extended with fermionic gauge singlets. This model offers an attractive alternative to the usual seesaw realisations since it can potentially have natural Yukawa couplings (O(1)) while keeping the new physics scale at energies within the reach of the LHC. Among the many possible effects, this scenario can lead to deviations from lepton flavour universality. We have investigated these signatures and found that the ratios R K and R π provide new, additional constraints on the inverse seesaw. We have also considered the embedding of the inverse seesaw in supersymmetric models. This leads to increased rates for various lepton flavour violating processes, due to enhanced contributions from penguin diagrams mediated by the Higgs and Z 0 bosons. Finally, we also found that the new invisible decay channels associated with the sterile neutrinos present in the super-symmetric inverse seesaw could significantly weaken the constraints on the mass and couplings of a light CP-odd Higgs boson. (author)

  17. Lepton electric dipole moments, supersymmetric seesaw, and leptogenesis phase

    International Nuclear Information System (INIS)

    Dutta, Bhaskar; Mohapatra, R.N.

    2003-01-01

    We calculate the lepton electric dipole moments in a class of supersymmetric seesaw models and explore the possibility that they may provide a way to probe some of the CP violating phases responsible for the origin of matter via leptogenesis. We show that in models where the right handed neutrino masses M R arise from the breaking of local B-L by a Higgs field with B-L=2, some of the leptogenesis phases can lead to enhancement of the lepton dipole moments compared to the prediction of models where M R is either directly put in by hand or is a consequence of a higher dimensional operator

  18. Susy seesaw inflation and NMSO(10)GUT

    International Nuclear Information System (INIS)

    Aulakh, Charanjit S.

    2013-01-01

    We show that Supersymmetric models with Type I seesaw neutrino masses support slow roll inflection point inflation. The inflaton is the D-flat direction labelled by the chiral invariant HLN composed of the Higgs(H), slepton(L) and conjugate sneutrino(N) superfields. The scale of inflation and fine tuning is set by the conjugate neutrino Majorana mass M ν c ∼ 10 6 - 10 12 GeV. The cubic term in the (quartic) inflaton potential is dominantly from superpotential (not soft Susy breaking) couplings. The tuning conditions are thus insensitive to soft supersymmetry breaking parameters and are generically much less stringent than for previous 'A-term' inflation scenarios controlled by mass scales ∼TeV. WMAP limits on the ratio of tensor to scalar perturbations limit the scale M controlling inflection point inflation: M 13 GeV. 'Instant preheating' is operative and dumps the inflaton energy into MSSM modes giving a high reheat temperature: T rh ≈M ν c (3/4) 10 6 GeV ∼ 10 11 - 10 15 GeV. A large gravitino mass > 50 TeV is therefore required to avoid over closure by reheat produced gravitinos. 'Instant preheating' and NLH inflaton facilitate production of right handed neutrinos during inflaton decay and thus non-thermal leptogenesis in addition to thermal leptogenesis. We show that the embedding in the fully realistic New Minimal Supersymmetric SO(10) GUT requires use of the heaviest righthanded neutrino mass as the controlling scale but the possibility of a measurable tensor scalar perturbation ratio seems marginal. We examine the parametric difficulties remaining.

  19. LHC and the neutrino paradigm

    CERN Multimedia

    CERN. Geneva

    2011-01-01

    I argue that LHC may shed light on the nature of neutrino mass through the probe of the seesaw mechanism. The smoking gun signature is lepton number violation through the production of same sign lepton pairs, a collider analogy of the neutrinoless double beta decay. I discuss this in the context of L-R symmetric theories, which predicted neutrino mass long before experiment and led to the seesaw mechanism. A WR gauge boson with a mass in a few TeV region could easily dominate neutrinoless double beta decay, and its discovery at LHC would have spectacular signatures of parity restoration and lepton number violation. I also discuss the collider signatures of the three types of seesaw mechanism, and show how in the case of Type II one can measure the PMNS mixing matrix at the LHC, complementing the low energy probes. Finally, I give an example of a simple realistic SU(5) grand unified theory that predicts the hybrid Type I + III seesaw with a weak fermion triplet at the LHC energies. The seminar will be fol...

  20. Gravity wave and neutrino bursts from stellar collapse: A sensitive test of neutrino masses

    International Nuclear Information System (INIS)

    Arnaud, N.; Barsuglia, M.; Bizouard, M.A.; Cavalier, F.; Davier, M.; Hello, P.; Pradier, T.

    2002-01-01

    New methods are proposed with the goal to determine absolute neutrino masses from the simultaneous observation of the bursts of neutrinos and gravitational waves emitted during a stellar collapse. It is shown that the neutronization electron neutrino flash and the maximum amplitude of the gravitational wave signal are tightly synchronized with the bounce occurring at the end of the core collapse on a time scale better than 1 ms. The existing underground neutrino detectors (SuperKamiokande, SNO,...) and the gravity wave antennas soon to operate (LIGO, VIRGO,...) are well matched in their performance for detecting galactic supernovae and for making use of the proposed approach. Several methods are described, which apply to the different scenarios depending on neutrino mixing. Given the present knowledge on neutrino oscillations, the methods proposed are sensitive to a mass range where neutrinos would essentially be mass degenerate. The 95% C.L. upper limit which can be achieved varies from 0.75 eV/c 2 for large ν e survival probabilities to 1.1 eV/c 2 when in practice all ν e 's convert into ν μ 's or ν τ 's. The sensitivity is nearly independent of the supernova distance

  1. Reconstructing neutrino properties from collider experiments in a Higgs triplet neutrino mass model

    International Nuclear Information System (INIS)

    Aristizabal Sierra, D.; Hirsch, M.; Valle, J. W. F.; Villanova del Moral, A.

    2003-01-01

    We extend the minimal supersymmetric standard model with bilinear R-parity violation to include a pair of Higgs triplet superfields. The neutral components of the Higgs triplets develop small vacuum expectation values (VEVs) quadratic in the bilinear R-parity breaking parameters. In this scheme the atmospheric neutrino mass scale arises from bilinear R-parity breaking while for reasonable values of parameters the solar neutrino mass scale is generated from the small Higgs triplet VEVs. We calculate neutrino masses and mixing angles in this model and show how the model can be tested at future colliders. The branching ratios of the doubly charged triplet decays are related to the solar neutrino angle via a simple formula

  2. Neutrino mass sum rules and symmetries of the mass matrix

    Energy Technology Data Exchange (ETDEWEB)

    Gehrlein, Julia [Karlsruhe Institute of Technology, Institut fuer Theoretische Teilchenphysik, Karlsruhe (Germany); Universidad Autonoma de Madrid, Departamento de Fisica Teorica, Madrid (Spain); Instituto de Fisica Teorica UAM/CSIC, Madrid (Spain); Spinrath, Martin [Karlsruhe Institute of Technology, Institut fuer Theoretische Teilchenphysik, Karlsruhe (Germany); National Center for Theoretical Sciences, Physics Division, Hsinchu (China)

    2017-05-15

    Neutrino mass sum rules have recently gained again more attention as a powerful tool to discriminate and test various flavour models in the near future. A related question which has not yet been discussed fully satisfactorily was the origin of these sum rules and if they are related to any residual or accidental symmetry. We will address this open issue here systematically and find previous statements confirmed. Namely, the sum rules are not related to any enhanced symmetry of the Lagrangian after family symmetry breaking but they are simply the result of a reduction of free parameters due to skillful model building. (orig.)

  3. Probing grand unification with fermion masses, neutrino oscillations ...

    Indian Academy of Sciences (India)

    owing to the contributions from both the standard and the neutrino mass-relatedd =5 op- ..... framework emerges, which successfully accounts for a host of observed phenomena per- ...... conclusion reached by other authors (see especially ref.

  4. Objective Bayesian analysis of neutrino masses and hierarchy

    Science.gov (United States)

    Heavens, Alan F.; Sellentin, Elena

    2018-04-01

    Given the precision of current neutrino data, priors still impact noticeably the constraints on neutrino masses and their hierarchy. To avoid our understanding of neutrinos being driven by prior assumptions, we construct a prior that is mathematically minimally informative. Using the constructed uninformative prior, we find that the normal hierarchy is favoured but with inconclusive posterior odds of 5.1:1. Better data is hence needed before the neutrino masses and their hierarchy can be well constrained. We find that the next decade of cosmological data should provide conclusive evidence if the normal hierarchy with negligible minimum mass is correct, and if the uncertainty in the sum of neutrino masses drops below 0.025 eV. On the other hand, if neutrinos obey the inverted hierarchy, achieving strong evidence will be difficult with the same uncertainties. Our uninformative prior was constructed from principles of the Objective Bayesian approach. The prior is called a reference prior and is minimally informative in the specific sense that the information gain after collection of data is maximised. The prior is computed for the combination of neutrino oscillation data and cosmological data and still applies if the data improve.

  5. Neutrino mass and the reionization history of the Universe

    International Nuclear Information System (INIS)

    Popa, L.A.; Burigana, C.; Mandolesi, N.

    2005-01-01

    We investigate the role of a HDM component in the form of the three massive neutrino flavors for the reionization history of the Universe. Assuming a flat background cosmology described by the best fit power low ΛCDM model with WMAP data (Ω b h 2 =0.024, Ω m h 2 =0.14, h=0.72), we analyze the role of the neutrino mass for the properties of the gas in the intergalactic medium (IGM), showing that the temporal evolution of the hydrogen and helium ionization fractions are sensitive to the neutrino mass, with important implications for the CMB anisotropy and polarization angular power spectra

  6. Two-loop Dirac neutrino mass and WIMP dark matter

    OpenAIRE

    Bonilla, Cesar; Ma, Ernest; Peinado, Eduardo; Valle, Jose W.F.

    2018-01-01

    We propose a "scotogenic" mechanism relating small neutrino mass and cosmological dark matter. Neutrinos are Dirac fermions with masses arising only in two--loop order through the sector responsible for dark matter. Two triality symmetries ensure both dark matter stability and strict lepton number conservation at higher orders. A global spontaneously broken U(1) symmetry leads to a physical $Diracon$ that induces invisible Higgs decays which add up to the Higgs to dark matter mode. This enhan...

  7. Origins of tiny neutrino mass and large flavor mixings

    International Nuclear Information System (INIS)

    Haba, Naoyuki

    2015-01-01

    Active neutrino masses are extremely smaller than those of other quarks and leptons, and there are large flavor mixings in the lepton sector, contrary to the quark sector. They are great mysteries in the standard model, but also excellent hints of new physics beyond the standard model. Thus, questions 'What is an origin of tiny neutrino mass?' and 'What is an origin of large lepton flavor mixings?' are very important. In this paper, we overview various attempts to solve these big questions. (author)

  8. Limits on neutrino masses from tritium beta decay

    CERN Document Server

    Bonn, J; Bornschein, L; Flatt, B; Kraus, C V; Otten, E W; Schall, J P; Thuemmler, T; Weinheimer, C

    2002-01-01

    The presently lowest limit for the mass of the electron neutrino is m nu < 2.2 eV (95 % C.L.) derived from measurements at Mainz up to 1999. The data taken in 2000 are not fully analyzed yet but limits of possible distortions as reported by the Troitsk group can be given. The next generation neutrino mass experiment KATRIN is briefly discussed.

  9. Radiatively induced neutrino mass model with flavor dependent gauge symmetry

    Science.gov (United States)

    Lee, SangJong; Nomura, Takaaki; Okada, Hiroshi

    2018-06-01

    We study a radiative seesaw model at one-loop level with a flavor dependent gauge symmetry U(1) μ - τ, in which we consider bosonic dark matter. We also analyze the constraints from lepton flavor violations, muon g - 2, relic density of dark matter, and collider physics, and carry out numerical analysis to search for allowed parameter region which satisfy all the constraints and to investigate some predictions. Furthermore we find that a simple but adhoc hypothesis induces specific two zero texture with inverse mass matrix, which provides us several predictions such as a specific pattern of Dirac CP phase.

  10. Higgs seesaw mechanism as a source for dark energy.

    Science.gov (United States)

    Krauss, Lawrence M; Dent, James B

    2013-08-09

    Motivated by the seesaw mechanism for neutrinos which naturally generates small neutrino masses, we explore how a small grand-unified-theory-scale mixing between the standard model Higgs boson and an otherwise massless hidden sector scalar can naturally generate a small mass and vacuum expectation value for the new scalar which produces a false vacuum energy density contribution comparable to that of the observed dark energy dominating the current expansion of the Universe. This provides a simple and natural mechanism for producing the correct scale for dark energy, even if it does not address the long-standing question of why much larger dark energy contributions are not produced from the visible sector. The new scalar produces no discernible signatures in existing terrestrial experiments so that one may have to rely on other cosmological tests of this idea.

  11. Constraining sleptons at the LHC in a supersymmetric low-scale seesaw scenario

    Energy Technology Data Exchange (ETDEWEB)

    Cerna-Velazco, Nhell; Jones-Perez, Joel [Pontificia Universidad Catolica del Peru, Seccion Fisica, Departamento de Ciencias, Lima (Peru); Faber, Thomas; Porod, Werner [Uni Wuerzburg, Institut fuer Theoretische Physik und Astrophysik, Wuerzburg (Germany)

    2017-10-15

    We consider a scenario inspired by natural supersymmetry, where neutrino data is explained within a low-scale seesaw scenario. We extend the Minimal Supersymmetric Standard Model by adding light right-handed neutrinos and their superpartners, the R-sneutrinos, and consider the lightest neutralinos to be higgsino-like. We consider the possibilities of having either an R-sneutrino or a higgsino as lightest supersymmetric particle. Assuming that squarks and gauginos are heavy, we systematically evaluate the bounds on slepton masses due to existing LHC data. (orig.)

  12. Prospects for experiments on neutrino masses and mixing via neutrino oscillations at future accelerators

    International Nuclear Information System (INIS)

    Lanou, R.E. Jr.

    1982-01-01

    A study is made of the requirements necessary for improvement in our knowledge of limits in mass and mixing parameters for neutrinos via oscillation phenomena at accelerators. It is concluded that increased neutrino event rate (flux x energy) at modest energy machines (e.g., AGS and LAMPF) is the single most important requirement. This will permit smaller E/L ratios and refinement of systematics

  13. Neutrino Mixing and Masses from a Minimum Principle

    CERN Document Server

    Alonso, R; Isidori, G; Maiani, L

    2013-01-01

    We analyze the structure of quark and lepton mass matrices under the hypothesis that they are determined from a minimum principle applied to a generic potential invariant under the $\\left[SU(3)\\right]^5\\otimes \\mathcal O(3)$ flavor symmetry, acting on Standard Model fermions and right-handed neutrinos. Unlike the quark case, we show that hierarchical masses for charged leptons are naturally accompanied by degenerate Majorana neutrinos with one mixing angle close to maximal, a second potentially large, a third one necessarily small, and one maximal relative Majorana phase. Adding small perturbations the predicted structure for the neutrino mass matrix is in excellent agreement with present observations and could be tested in the near future via neutrino-less double beta decay and cosmological measurements. The generalization of these results to arbitrary sew-saw models is also discussed.

  14. Supersymmetric interpretations of the neutrino anomalies

    CERN Document Server

    Valle, José W F

    2002-01-01

    Solar and atmospheric neutrino data strongly indicate the need for physics beyond the standard model. The neutrino oscillation interpretation of the atmospheric data is rather unambiguous, with more options still open for the solar data. After a brief summary of the latest global fits of neutrino data, I discuss theoretical neutrino mass models. This is done first from a top-bottom approach inspired by unification ideas involving a see-saw mechanism or high dimension operators. Then I consider bottom-up approaches, with especial emphasis on the idea that the origin of neutrino mass and mixing is intrinsically supersymmetric. Models involve effective bilinear breaking of R-parity. This allows for the possibility of probing the neutrino mixing also in the context of high-energy collider experiments such as the LHC. (41 refs).

  15. Probing neutrino mass hierarchy by comparing the charged-current and neutral-current interaction rates of supernova neutrinos

    Science.gov (United States)

    Lai, Kwang-Chang; Lee, Fei-Fan; Lee, Feng-Shiuh; Lin, Guey-Lin; Liu, Tsung-Che; Yang, Yi

    2016-07-01

    The neutrino mass hierarchy is one of the neutrino fundamental properties yet to be determined. We introduce a method to determine neutrino mass hierarchy by comparing the interaction rate of neutral current (NC) interactions, ν(bar nu) + p → ν(bar nu) + p, and inverse beta decays (IBD), bar nue + p → n + e+, of supernova neutrinos in scintillation detectors. Neutrino flavor conversions inside the supernova are sensitive to neutrino mass hierarchy. Due to Mikheyev-Smirnov-Wolfenstein effects, the full swapping of bar nue flux with the bar nux (x = μ, τ) one occurs in the inverted hierarchy, while such a swapping does not occur in the normal hierarchy. As a result, more high energy IBD events occur in the detector for the inverted hierarchy than the high energy IBD events in the normal hierarchy. By comparing IBD interaction rate with the mass hierarchy independent NC interaction rate, one can determine the neutrino mass hierarchy.

  16. Probing neutrino mass hierarchy by comparing the charged-current and neutral-current interaction rates of supernova neutrinos

    International Nuclear Information System (INIS)

    Lai, Kwang-Chang; Lee, Fei-Fan; Lee, Feng-Shiuh; Lin, Guey-Lin; Liu, Tsung-Che; Yang, Yi

    2016-01-01

    The neutrino mass hierarchy is one of the neutrino fundamental properties yet to be determined. We introduce a method to determine neutrino mass hierarchy by comparing the interaction rate of neutral current (NC) interactions, ν(ν-bar)+p→ν(ν-bar)+p, and inverse beta decays (IBD), ν-bar_e+p→n+e"+, of supernova neutrinos in scintillation detectors. Neutrino flavor conversions inside the supernova are sensitive to neutrino mass hierarchy. Due to Mikheyev-Smirnov-Wolfenstein effects, the full swapping of ν-bar_e flux with the ν-bar_x (x=μ, τ) one occurs in the inverted hierarchy, while such a swapping does not occur in the normal hierarchy. As a result, more high energy IBD events occur in the detector for the inverted hierarchy than the high energy IBD events in the normal hierarchy. By comparing IBD interaction rate with the mass hierarchy independent NC interaction rate, one can determine the neutrino mass hierarchy.

  17. Low scale gravity as the source of neutrino masses?

    Energy Technology Data Exchange (ETDEWEB)

    Berezinsky, Veniamin [INFN, Laboratori Nazionali del Gran Sasso, I-67010 Assergi, AQ (Italy); Narayan, Mohan [INFN, Laboratori Nazionali del Gran Sasso, I-67010 Assergi, AQ (Italy); Vissani, Francesco [INFN, Laboratori Nazionali del Gran Sasso, I-67010 Assergi, AQ (Italy)

    2005-04-01

    We address the question whether low-scale gravity alone can generate the neutrino mass matrix needed to accommodate the observed phenomenology. In low-scale gravity the neutrino mass matrix in the flavor basis is characterized by one parameter (the gravity scale M{sub X}) and by an exact or approximate flavor blindness (namely, all elements of the mass matrix are of comparable size). Neutrino masses and mixings are consistent with the observational data for certain values of the matrix elements, but only when the spectrum of mass is inverted or degenerate. For the latter type of spectra the parameter M{sub ee} probed in double beta experiments and the mass parameter probed by cosmology are close to existing upper limits.

  18. Low scale gravity as the source of neutrino masses?

    International Nuclear Information System (INIS)

    Berezinsky, Veniamin; Narayan, Mohan; Vissani, Francesco

    2005-01-01

    We address the question whether low-scale gravity alone can generate the neutrino mass matrix needed to accommodate the observed phenomenology. In low-scale gravity the neutrino mass matrix in the flavor basis is characterized by one parameter (the gravity scale M X ) and by an exact or approximate flavor blindness (namely, all elements of the mass matrix are of comparable size). Neutrino masses and mixings are consistent with the observational data for certain values of the matrix elements, but only when the spectrum of mass is inverted or degenerate. For the latter type of spectra the parameter M ee probed in double beta experiments and the mass parameter probed by cosmology are close to existing upper limits

  19. Wave-packet treatment of reactor neutrino oscillation experiments and its implications on determining the neutrino mass hierarchy

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Yat-Long; Chu, M.C.; Xu, Jianyi [The Chinese University of Hong Kong, Department of Physics, Shatin (China); Tsui, Ka Ming [University of Tokyo, RCCN, ICRR, Kashiwa, Chiba (Japan); Wong, Chan Fai [Sun Yat-Sen University, Guangzhou (China)

    2016-06-15

    We derive the neutrino flavor transition probabilities with the neutrino treated as a wave packet. The decoherence and dispersion effects from the wave-packet treatment show up as damping and phase-shifting of the plane-wave neutrino oscillation patterns. If the energy uncertainty in the initial neutrino wave packet is larger than around 0.01 of the neutrino energy, the decoherence and dispersion effects would degrade the sensitivity of reactor neutrino experiments to mass hierarchy measurement to lower than 3 σ confidence level. (orig.)

  20. Nearly degenerate neutrinos, supersymmetry and radiative corrections

    International Nuclear Information System (INIS)

    Casas, J.A.; Espinosa, J.R.; Ibarra, A.; Navarro, I.

    2000-01-01

    If neutrinos are to play a relevant cosmological role, they must be essentially degenerate with a mass matrix of the bimaximal mixing type. We study this scenario in the MSSM framework, finding that if neutrino masses are produced by a see-saw mechanism, the radiative corrections give rise to mass splittings and mixing angles that can accommodate the atmospheric and the (large angle MSW) solar neutrino oscillations. This provides a natural origin for the Δm 2 sol 2 atm hierarchy. On the other hand, the vacuum oscillation solution to the solar neutrino problem is always excluded. We discuss also in the SUSY scenario other possible effects of radiative corrections involving the new neutrino Yukawa couplings, including implications for triviality limits on the Majorana mass, the infrared fixed point value of the top Yukawa coupling, and gauge coupling and bottom-tau unification

  1. Neutrino mass hierarchy and three-flavor spectral splits of supernova neutrinos

    International Nuclear Information System (INIS)

    Dasgupta, Basudeb; Mirizzi, Alessandro; Tomas, Ricard; Tamborra, Irene

    2010-01-01

    It was recently realized that three-flavor effects could peculiarly modify the development of spectral splits induced by collective oscillations, for supernova neutrinos emitted during the cooling phase of a protoneutron star. We systematically explore this case, explaining how the impact of these three-flavor effects depends on the ordering of the neutrino masses. In inverted mass hierarchy, the solar mass splitting gives rise to instabilities in regions of the (anti)neutrino energy spectra that were otherwise stable under the leading two-flavor evolution governed by the atmospheric mass splitting and by the 1-3 mixing angle. As a consequence, the high-energy spectral splits found in the electron (anti)neutrino spectra disappear, and are transferred to other flavors. Imperfect adiabaticity leads to smearing of spectral swap features. In normal mass hierarchy, the three-flavor and the two-flavor instabilities act in the same region of the neutrino energy spectrum, leading to only minor departures from the two-flavor treatment.

  2. Neutrino diffusion and mass ejection in protoneutron stars

    International Nuclear Information System (INIS)

    Almeida, L. G.; Rodrigues, H.; Portes, D. Jr.; Duarte, S. B.

    2010-01-01

    We discuss the mass ejection mechanism induced by diffusion of neutrino during the early stage of the protoneutron star cooling. A dynamical calculation is employed in order to determine the amount of matter ejected and the remnant compact object mass. An equation of state considering hadronic and quark phases for the stellar dense matter was used to solve the whole time evolution of the system during the cooling phase. The initial neutrino population was obtained by considering beta equilibrium in the dense stellar matter with confined neutrinos, in the very early period of the deleptonic stage of the nascent pulsar. For specified initial configurations of the protoneutron star, we solve numerically the set of equations of motion together with neutrino diffusion through the dense stellar medium.

  3. Resolving neutrino mass hierarchy from supernova (anti)neutrino-nucleus reactions

    Science.gov (United States)

    Vale, Deni; Paar, Nils

    2015-10-01

    Recently a hybrid method has been introduced to determine neutrino mass hierarchy by simultaneous measurements of detector responses induced by antineutrino and neutrino fluxes from accretion and cooling phase of type II supernova. The (anti)neutrino-nucleus cross sections for 12C, 16O, 56Fe and 208Pb are calculated in the framework of relativistic nuclear energy density functional and weak interaction Hamiltonian, while the cross sections for inelastic scattering on free protons in mineral oil and water, p (v¯e,e+)n are obtained using heavy-baryon chiral perturbation theory. The simulations of (anti)neutrino fluxes emitted from a proto-neutron star in a core-collapse supernova include collective and Mikheyev-Smirnov-Wolfenstein effects inside star. It is shown that simultaneous use of ve/v¯e detectors with different target material allow to determine the neutrino mass hierarchy from the ratios of ve/v¯e induced particle emissions. The hybrid method favors detectors with heavier target nuclei (208Pb) for the neutrino sector, while for antineutrinos the use of free protons in mineral oil and water is more appropriate.

  4. Fermion masses and mixings in the 3-3-1 model with right-handed neutrinos based on the S{sub 3} flavor symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, A.E.C. [Universidad Tecnica Federico Santa Maria, Valparaiso (Chile); Martinez, R.; Ochoa, F. [Universidad Nacional de Colombia, Departamento de Fisica, Bogota (Colombia)

    2016-11-15

    We propose a 3-3-1 model where the SU(3){sub C} x SU(3){sub L} x U(1){sub X} symmetry is extended by S{sub 3} x Z{sub 3} x Z{sub 3}{sup '} x Z{sub 8} x Z{sub 16} and the scalar spectrum is enlarged by extra SU(3){sub L} singlet scalar fields. The model successfully describes the observed SM fermion mass and mixing pattern. In this framework, the light active neutrino masses arise via an inverse seesaw mechanism and the observed charged fermion mass and quark mixing hierarchy is a consequence of the Z{sub 3} x Z{sub 3}{sup '} x Z{sub 8} x Z{sub 16} symmetry breaking at very high energy. The obtained physical observables for both quark and lepton sectors are compatible with their experimental values. The model predicts the effective Majorana neutrino mass parameter of neutrinoless double beta decay to be m{sub ββ} = 4 and 48 meV for the normal and the inverted neutrino spectra, respectively. Furthermore, we found a leptonic Dirac CP-violating phase close to (π)/(2) and a Jarlskog invariant close to about 3 x 10{sup -2} for both normal and inverted neutrino mass hierarchy. (orig.)

  5. Massive Neutrinos and Flavour Violation

    CERN Document Server

    Masiero, A; Vives, O; Masiero, Antonio; Vempati, Sudhir K.; Vives, Oscar

    2004-01-01

    In spite of the large lepton flavour violation (LFV) observed in neutrino oscillations, within the Standard Model, we do \\textit{not} expect any visible LFV in the charged lepton sector ($\\mu \\to e, \\gamma$, $\\tau \\to \\mu, \\gamma$, etc.). On the contrary, the presence of new physics close to the electroweak scale can enhance the amplitudes of these processes. We discuss this in general and focus on a particularly interesting case: the marriage of low-energy supersymmetry (SUSY) and seesaw mechanism for neutrino masses (SUSY seesaw). Several ideas presented in this context are reviewed both in the bottom-up and top-down approaches. We show that there exist attractive models where the rate for LFV processes can attain values to be probed in pre-LHC experiments.

  6. Massive neutrinos and flavour violation

    Energy Technology Data Exchange (ETDEWEB)

    Masiero, Antonio [Dipartimento di Fisica ' Galileo Galilei' , Universita di Padova, and INFN, Sezione di Padova, via F Marzolo 8, I-35131, Padova (Italy); Vempati, Sudhir K [Dipartimento di Fisica ' Galileo Galilei' , Universita di Padova, and INFN, Sezione di Padova, via F Marzolo 8, I-35131, Padova (Italy); Vives, Oscar [Theory Group, Physics Department, CERN, Geneva (Switzerland)

    2004-12-01

    In spite of the large lepton flavour violation (LFV) observed in neutrino oscillations, within the Standard Model, we do not expect any visible LFV in the charged lepton sector ({mu} {yields} e, {gamma}, {tau} {yields} {mu}, {gamma}, etc). On the contrary, the presence of new physics close to the electroweak scale can enhance the amplitudes of these processes. We discuss this in general and focus on a particularly interesting case: the marriage of low-energy supersymmetry (SUSY) and seesaw mechanism for neutrino masses (SUSY seesaw). Several ideas presented in this context are reviewed both in the bottom-up and top-down approaches. We show that there exist attractive models where the rate for LFV processes can attain values to be probed in pre-LHC experiments.

  7. GUT and flavor models for neutrino masses and mixing

    Science.gov (United States)

    Meloni, Davide

    2017-10-01

    In the recent years experiments have established the existence of neutrino oscillations and most of the oscillation parameters have been measured with a good accuracy. However, in spite of many interesting ideas, no real illumination was sparked on the problem of flavor in the lepton sector. In this review, we discuss the state of the art of models for neutrino masses and mixings formulated in the context of flavor symmetries, with particular emphasis on the role played by grand unified gauge groups.

  8. Lepton Dipole Moments in Supersymmetric Low-Scale Seesaw Models

    CERN Document Server

    Ilakovac, Amon; Popov, Luka

    2014-01-01

    We study the anomalous magnetic and electric dipole moments of charged leptons in supersymmetric low-scale seesaw models with right-handed neutrino superfields. We consider a minimally extended framework of minimal supergravity, by assuming that CP violation originates from complex soft SUSY-breaking bilinear and trilinear couplings associated with the right-handed sneutrino sector. We present numerical estimates of the muon anomalous magnetic moment and the electron electric dipole moment (EDM), as functions of key model parameters, such as the Majorana mass scale mN and tan(\\beta). In particular, we find that the contributions of the singlet heavy neutrinos and sneutrinos to the electron EDM are naturally small in this model, of order 10^{-27} - 10^{-28} e cm, and can be probed in the present and future experiments.

  9. Direct search for neutrino mass and anomaly in the tritium beta-spectrum: Status of 'Troitsk neutrino mass' experiment

    International Nuclear Information System (INIS)

    Lobashev, V.M.; Aseev, V.N.; Belesev, A.I.; Berlev, A.I.; Geraskin, E.V.; Golubev, A.A.; Kazachenko, O.V.; Kuznetsov, Yu.E.; Ostroumov, R.P.; Rivkis, L.A.; Stern, B.E.; Titov, N.A.; Zadoroghny, C.V.; Zakharov, Yu.I.

    2000-01-01

    Results of the 'Troitsk ν-mass' experiment on search for the neutrino rest mass in the tritium beta-decay are presented. New data on the time dependence of the anomalous, bump-like structure at the end of the beta spectrum reported earlier are discussed. Possible systematics is considered in view of contradiction of 'Troitsk nu-mass' observation with those of 'Mainz neutrino' set-up. An upper limit for electron antineutrino rest mass remains at m ν 2 at 95% C.L

  10. Flavor versus mass eigenstates in neutrino asymmetries: implications for cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Barenboim, Gabriela [Universitat de Valencia-CSIC, Departament de Fisica Teorica y IFIC, Burjassot (Spain); Kinney, William H. [University at Buffalo, Department of Physics, Buffalo, NY (United States); Park, Wan-Il [Universitat de Valencia-CSIC, Departament de Fisica Teorica y IFIC, Burjassot (Spain); Chonbuk National University, Division of Science Education and Institute of Fusion Science, Jeonju (Korea, Republic of)

    2017-09-15

    We show that, if they exist, lepton number asymmetries (L{sub α}) of neutrino flavors should be distinguished from the ones (L{sub i}) of mass eigenstates, since Big Bang Nucleosynthesis (BBN) bounds on the flavor eigenstates cannot be directly applied to the mass eigenstates. Similarly, Cosmic Microwave Background (CMB) constraints on the mass eigenstates do not directly constrain flavor asymmetries. Due to the difference of mass and flavor eigenstates, the cosmological constraint on the asymmetries of neutrino flavors can be much stronger than the conventional expectation, but they are not uniquely determined unless at least the asymmetry of the heaviest neutrino is well constrained. The cosmological constraint on L{sub i} for a specific case is presented as an illustration. (orig.)

  11. Neutrino mass ordering and μ-τ reflection symmetry breaking

    Science.gov (United States)

    Xing, Zhi-zhong; Zhu, Jing-yu

    2017-12-01

    If the neutrino mass spectrum turns out to be m 3case the columns of the 3×3 lepton flavor mixing matrix U should be reordered accordingly, and the resulting pattern U‧ may involve one or two large mixing angles in the standard parametrization or its variations. Since the Majorana neutrino mass matrix remains unchanged in such a mass relabeling, a possible μ-τ reflection symmetry is respected in this connection and its breaking effects are model-independently constrained at the 3σ level by using current experimental data. Supported by National Natural Science Foundation of China (11135009, 11375207)

  12. A biased review of tau neutrino mass limits

    Energy Technology Data Exchange (ETDEWEB)

    Duboscq, J.E

    2001-04-01

    After a quick review of astrophysically relevant limits, I present a summary of MeV scale tau neutrino mass limits derived from accelerator based experiments. I argue that the current published limits appear to be too consistent, and that we therefore cannot conclude that the tau neutrino mass limit is as low as usually claimed. I provide motivational arguments calling into question the assumed statistical properties of the usual maximum likelihood estimators, and provide a prescription for deriving a more robust and understandable mass limit.

  13. Neutrino mass hierarchy determination for θ13 = 0

    International Nuclear Information System (INIS)

    Gandhi, Raj; Ghoshal, Pomita; Goswami, Srubabati; Sankar, S. Uma

    2010-01-01

    We examine the possibility of determining the neutrino mass hierarchy in the limit θ 13 = 0 using atmospheric neutrinos as the source. In this limit, θ 13 driven matter effects are absent so independent measurements of Δ 31 and Δ 32 can, in principle, lead to hierarchy determination. Since their difference is Δ 21 , one needs an experimental arrangement where Δ 21 L/E > or approx. 1 can be achieved. This can be satisfied by atmospheric neutrinos which have a large range of L and E. Still, we find that hierarchy determination in the θ 13 = 0 limit with atmospheric neutrinos is not a realistic possibility, even in conjunction with a beam experiment like T2K or NOνA. We discuss why, and also reiterate the general conditions for hierarchy determination if θ 13 = 0.

  14. Deconstructing the neutrino mass constraint from galaxy redshift surveys

    Science.gov (United States)

    Boyle, Aoife; Komatsu, Eiichiro

    2018-03-01

    The total mass of neutrinos can be constrained in a number of ways using galaxy redshift surveys. Massive neutrinos modify the expansion rate of the Universe, which can be measured using baryon acoustic oscillations (BAOs) or the Alcock-Paczynski (AP) test. Massive neutrinos also change the structure growth rate and the amplitude of the matter power spectrum, which can be measured using redshift-space distortions (RSD). We use the Fisher matrix formalism to disentangle these information sources, to provide projected neutrino mass constraints from each of these probes alone and to determine how sensitive each is to the assumed cosmological model. We isolate the distinctive effect of neutrino free-streaming on the matter power spectrum and structure growth rate as a signal unique to massive neutrinos that can provide the most robust constraints, which are relatively insensitive to extensions to the cosmological model beyond ΛCDM . We also provide forecasted constraints using all of the information contained in the observed galaxy power spectrum combined, and show that these maximally optimistic constraints are primarily limited by the accuracy to which the optical depth of the cosmic microwave background, τ, is known.

  15. Models of neutrino masses and baryogenesis

    Indian Academy of Sciences (India)

    previous other indications of solar [2] and accelerator [3] neutrino oscillations ... baryon asymmetry of the universe before and during the electroweak phase ... The subject of baryogenesis originated when Sakharov [12] pointed out that ..... Whether a system is in equilibrium or not can be understood by solving the Boltzmann.

  16. Neutrinos and the origin of fermion mass structure

    International Nuclear Information System (INIS)

    Ross, Graham G.

    2007-01-01

    The pattern of neutrino masses and mixings is characteristically different from those observed in the quark sector. I discuss why this should be the case and what implications this has for the origin of quark and lepton masses, mixings and CP violation

  17. An origin for small neutrino masses in the NMSSM

    International Nuclear Information System (INIS)

    Abada, Asmaa; Moreau, Gregory

    2006-01-01

    We consider the Next to Minimal Supersymmetric Standard Model (NMSSM) which provides a natural solution to the so-called μ problem by introducing a new gauge-singlet superfield S. We realize that a mechanism of neutrino mass suppression arises, based on the R-parity violating bilinear terms μ i L i H u mixing neutrinos and higgsinos, offering thus an original approach to the neutrino mass problem (connected to the solution for the μ problem). We generate realistic (Majorana) neutrino mass values without requiring any strong hierarchy amongst the fundamental parameters, in contrast with the alternative models. In particular, the ratio μ i /μ can reach ∼ 10 -1 , unlike in the MSSM where it has to be much smaller than unity. We check that the obtained parameters also satisfy the collider constraints and internal consistencies of the NMSSM. The price to pay for this new cancellation-type mechanism of neutrino mass reduction is a certain fine tuning, which get significantly improved in some regions of parameter space. Besides, we discuss the feasibility of our scenario when the R-parity violating bilinear terms have a common origin with the μ term, namely when those are generated via a VEV of the S scalar component from the couplings λ i SL i H u . Finally, we make comments on some specific phenomenology of the NMSSM in the presence of R-parity violating bilinear terms

  18. A see-saw scenario of an $A_4$ flavour symmetric standard model

    CERN Document Server

    Dinh, Dinh Nguyen; Văn, Phi Quang; Vân, Nguyen Thi Hông

    2016-01-01

    A see-saw scenario for an $A_4$ flavour symmetric standard model is presented. As before, the see-saw mechanism can be realized in several models of different types depending on different ways of neutrino mass generation corresponding to the introduction of new fields with different symmetry structures. In the present paper, a general desription of all these see-saw types is made with a more detailed investigation on type-I models. As within the original see-saw mechanism, the symmetry structure of the standard model fields decides the number and the symmetry structure of the new fields. In a model considered here, the scalar sector consists of three standard-model-Higgs-like iso-doublets ($SU_L(2)$-doublets) forming an $A_4$ triplet. The latter is a superposition of three mass-eigen states, one of which could be identified with the recently discovered Higgs boson. A possible relation to the still-deliberated 750 GeV diphoton resonance at the 13 TeV LHC collisions is also discussed. In the lepton sector, the ...

  19. Testable baryogenesis in seesaw models

    Energy Technology Data Exchange (ETDEWEB)

    Hernández, P.; Kekic, M. [Instituto de Física Corpuscular, Universidad de Valencia and CSIC,Edificio Institutos Investigación,Catedrático José Beltrán 2, 46980 (Spain); López-Pavón, J. [INFN, Sezione di Genova,via Dodecaneso 33, 16146 Genova (Italy); Racker, J.; Salvado, J. [Instituto de Física Corpuscular, Universidad de Valencia and CSIC,Edificio Institutos Investigación,Catedrático José Beltrán 2, 46980 (Spain)

    2016-08-26

    We revisit the production of baryon asymmetries in the minimal type I seesaw model with heavy Majorana singlets in the GeV range. In particular we include “washout” effects from scattering processes with gauge bosons, Higgs decays and inverse decays, besides the dominant top scatterings. We show that in the minimal model with two singlets, and for an inverted light neutrino ordering, future measurements from SHiP and neutrinoless double beta decay could in principle provide sufficient information to predict the matter-antimatter asymmetry in the universe. We also show that SHiP measurements could provide very valuable information on the PMNS CP phases.

  20. Proposal on electron anti-neutrino mass measurement at INS

    International Nuclear Information System (INIS)

    Ohshima, Takayoshi.

    1981-03-01

    Some comment on the proposed experiment, namely the measurement of electron anti-neutrino mass, is described. Various experiments with the measurement of β-ray from tritium have been reported. The precise measurement of the shape of the Kurie plot is required in this kind of experiment. The present experiment aimed at more accurate determination of neutrino mass than any other previous ones. An important point of the present experiment is to reduce the background due to the β-ray from evaporating tritium. The source candidates have low evaporation rate. A double focus √2π air core spectrometer is employed for the measurement of β-ray. The spectrometer was improved to meet the present purpose. The accumulated event rate was expected to be about 10 times higher than Russian experiment. The estimated energy resolution was about 30 eV. The neutrino mass with less than 10 eV accuracy will be obtained. (Kato, T.)

  1. Two old ways to measure the electron-neutrino mass

    CERN Document Server

    De Rújula, A

    2013-01-01

    Three decades ago, the measurement of the electron neutrino mass in atomic electron capture (EC) experiments was scrutinized in its two variants: single EC and neutrino-less double EC. For certain isotopes an atomic resonance enormously enhances the expected decay rates. The favoured technique, based on calorimeters as opposed to spectrometers, has the advantage of greatly simplifying the theoretical analysis of the data. After an initial surge of measurements, the EC approach did not seem to be competitive. But very recently, there has been great progress on micro-calorimeters and the measurement of atomic mass differences. Meanwhile, the beta-decay neutrino-mass limits have improved by a factor of 15, and the difficulty of the experiments by the cube of that figure. Can the "calorimetric" EC theory cope with this increased challenge? I answer this question affirmatively. In so doing I briefly review the subject and extensively address some persistent misunderstandings of the underlying quantum physics.

  2. Direct bounds on the tau neutrino mass from LEP

    International Nuclear Information System (INIS)

    Passalacqua, L.

    1996-11-01

    A review of direct bounds on the mass of the tau neutrino obtained at the LEP collider is presented. In addition to published results it includes preliminary results presented at recent conferences and new results presented at the 1996 Tau Workshop. The different techniques and decay modes employed by the ALEPH, DELPHI and OPAL collaborations are compared. The impact of the theoretical modelling of tau decays is also discussed. The most stringent 95 % CL limit on the tau neutrino mass is now obtained by a preliminary ALEPH analysis which combines the results from τ → 5 π ± (π 0 ) v τ and τ → 3 π ± v τ decays. This bound constraints the mass of the tau neutrino below 18.2 M e V / c 2

  3. Determining neutrino mass from the cosmic microwave background alone.

    Science.gov (United States)

    Kaplinghat, Manoj; Knox, Lloyd; Song, Yong-Seon

    2003-12-12

    Distortions of cosmic microwave background temperature and polarization maps caused by gravitational lensing, observable with high angular resolution and high sensitivity, can be used to measure the neutrino mass. Assuming two massless species and one with mass m(nu), we forecast sigma(m(nu))=0.15 eV from the Planck satellite and sigma(m(nu))=0.04 eV from observations with twice the angular resolution and approximately 20 times the sensitivity. A detection is likely at this higher sensitivity since the observation of atmospheric neutrino oscillations requires Deltam(2)(nu) greater, similar (0.04 eV)(2).

  4. Neutrino Majorana masses from string theory instanton effects

    International Nuclear Information System (INIS)

    Ibanez, Luis E.; Uranga, Angel M.

    2007-01-01

    Finding a plausible origin for right-handed neutrino Majorana masses in semirealistic compactifications of string theory remains one of the most difficult problems in string phenomenology. We argue that right-handed neutrino Majorana masses are induced by non-perturbative instanton effects in certain classes of string compactifications in which the U(1) B-L gauge boson has a Stueckelberg mass. The induced operators are of the form e -U ν R ν R where U is a closed string modulus whose imaginary part transforms appropriately under B-L. This mass term may be quite large since this is not a gauge instanton and Re U is not directly related to SM gauge couplings. Thus the size of the induced right-handed neutrino masses could be a few orders of magnitude below the string scale, as phenomenologically required. It is also argued that this origin for neutrino masses would predict the existence of R-parity in SUSY versions of the SM. Finally we comment on other phenomenological applications of similar instanton effects, like the generation of a μ-term, or of Yukawa couplings forbidden in perturbation theory

  5. Searching for Majorana Neutrinos in the Like-Sign Dilepton Final State at $\\sqrt{s

    CERN Document Server

    CMS Collaboration

    2009-01-01

    in the recent oscillation experiments. Perhaps the most commonly studied model is the type-I seesaw mechanism. This model introduces a new neutrino with a Majorana nature and an unknown mass. In this study we conclude that the CMS detector has the potential to reach a discovery in a first year at 10 TeV startup collision energy, for a nominal integrated of 100 pb$^{-1}$, in a Majorana neutrino mass range near 100 \\GeV.

  6. Implications for new physics from fine-tuning arguments 1. Application to SUSY and seesaw cases

    International Nuclear Information System (INIS)

    Alberto Casas, J.; Hidalgo, Irene; Espinosa, Jose R.

    2004-01-01

    We revisit the standard argument to estimate the scale of new physics (NP) beyond the SM, based on the sensitivity of the Higgs mass to quadratic divergences. Although this argument is arguably naive, the corresponding estimate, Λ SM SM . One can obtain more precise implications from fine-tuning arguments in specific examples of NP. Here we consider SUSY and right-handed (seesaw) neutrinos. SUSY is a typical example for which the previous general estimate is indeed conservative: the MSSM is fine-tuned a few %, even for soft masses of a few hundred GeV. In contrast, other SUSY scenarios, in particular those with low-scale SUSY breaking, can easily saturate the general bound on Λ SM . The seesaw mechanism requires large fine-tuning if M R > or approx.10 7 GeV, unless there is additional NP (SUSY being a favourite option). (author)

  7. Lepton flavor violating Higgs boson decays in seesaw models: New discussions

    Directory of Open Access Journals (Sweden)

    N.H. Thao

    2017-08-01

    Full Text Available The lepton flavor violating decay of the Standard Model-like Higgs boson (LFVHD, h→μτ, is discussed in seesaw models at the one-loop level. Based on particular analytic expressions of Passarino–Veltman functions, the two unitary and 't Hooft Feynman gauges are used to compute the branching ratio of LFVHD and compare with results reported recently. In the minimal seesaw (MSS model, the branching ratio was investigated in the whole valid range 10−9–1015 GeV of new neutrino mass scale mn6. Using the Casas–Ibarra parameterization, this branching ratio enhances with large and increasing mn6. But the maximal value can reach only order of 10−11. Interesting relations of LFVHD predicted by the MSS and inverse seesaw (ISS model are discussed. The ratio between two LFVHD branching ratios predicted by the ISS and MSS is simply mn62μX−2, where μX is the small neutrino mass scale in the ISS. The consistence between different calculations is shown precisely from analytical approach.

  8. Implications of neutrino masses and mixing for weak processes

    International Nuclear Information System (INIS)

    Shrock, R.E.

    1981-01-01

    A general theory is presented of weak processes involving neutrinos which consistently incorporates the possibility of nonzero neutrino masses and associated lepton mixing. The theory leads to new tests for and bounds on such masses and mixing. These tests make use of (π,K)/sub l2/ decay, nuclear β decay, and μ and tau decays, among others. New experiments at SIN and KEK to apply the tests are mentioned. Further, some implications are discussed for (1) the analysis of the spectral parameters in leptonic decays to determine the Lorentz structure of the weak leptonic couplings; (2) fundamental weak interaction constants such as G/sub μ/, G/sub V/', f/sub π/, f/sub K/, V/sub uq/, q = d or s, m/sub W/, and m/sub Z/; and (3) neutrino propagation

  9. Determining neutrino mass hierarchy from electron disappearance at a low energy neutrino factory

    International Nuclear Information System (INIS)

    Raut, Sushant K.

    2013-01-01

    Reactor neutrino experiments have recently measured the value of θ 13 , to be non-zero and moderately large. This makes the determination of the neutrino mass hierarchy possible. However, our lack of knowledge of δ CP results in a parameter degeneracy, which makes this task difficult. The electron neutrino disappearance probability does not depend on δ CP . Therefore, in principle, it is possible to determine the hierarchy independently of δ CP using this channel. Previous studies of neutrino factories have not considered this channel, because the effect of systematics in electron disappearance is substantial. However, we show that for the moderately large value of θ 13 measured, hierarchy determination is possible in spite of systematic effects. We consider a low energy neutrino factory (LENF) setup with a totally active scintillator detector (TASD) with charge-identification. We optimize the setup in muon energy and baseline, for different allowed values of θ 13 and runtime. We find that a LENF with baseline of around 1300 km and muon energy around 3-4 GeV is well suited for hierarchy determination. For the RENO best-fit value of θ 13 , this setup can determine the hierarchy at 5ω, for all values of δ CP and for both hierarchies. (author)

  10. Remarks on ''Neutrino masses and mixing angles in a predictive theory of fermion masses''

    International Nuclear Information System (INIS)

    Lavoura, L.; Silva, J.P.

    1994-01-01

    In the extension of the Dimopoulos-Hall-Raby model of the fermion mass matrices to the neutrino sector, there is an entry in the up-quark and neutrino Dirac mass matrices which can be assumed to arise from the Yukawa coupling of a 120, instead of a 10 or a 126, of SO(10). Although this assumption leads to an extra undetermined complex parameter in the model, the resulting lepton mixing matrix exhibits the remarkable feature that the ν τ does not mix with the other two neutrinos. Making a reasonable assumption about the extra parameter, we are able to fit the large-mixing-angle MSW solution of the solar-neutrino problem, and we obtain m ντ ∼10 eV, the right mass range to close the Universe. Other possibilities for explaining the solar-neutrino deficit are also discussed

  11. CP violation and neutrino masses and mixings from quark mass hierarchies

    International Nuclear Information System (INIS)

    Buchmueller, W.; Covi, L.; Emmanuel-Costa, D.; Wiesenfeldt, S.

    2007-10-01

    We study the connection between quark and lepton mass matrices in a supersymmetric SO(10) GUT model in six dimensions, compactified on an orbifold. The physical quarks and leptons are mixtures of brane and bulk states. This leads to a characteristic pattern of mass matrices and high-energy CP violating phases. The hierarchy of up and down quark masses determines the CKM matrix and most charged lepton and neutrino masses and mixings. The small hierarchy of neutrino masses is a consequence of the mismatch of the up and down quark mass hierarchies. The effective CP violating phases in the quark sector, neutrino oscillations and leptogenesis are unrelated. In the neutrino sector we can accomodate naturally sin θ 23 ∝1, sin θ 13 1 2 ∝√(Δm 2 sol ) 3 ∝√(Δm 2 atm ). (orig.)

  12. CP violation and neutrino masses and mixings from quark mass hierarchies

    International Nuclear Information System (INIS)

    Buchmueller, Wilfried; Covi, Laura; Emmanuel-Costa, David; Wiesenfeldt, Soeren

    2007-01-01

    We study the connection between quark and lepton mass matrices in a supersymmetric SO(10) GUT model in six dimensions, compactified on an orbifold. The physical quarks and leptons are mixtures of brane and bulk states. This leads to a characteristic pattern of mass matrices and high-energy CP violating phases. The hierarchy of up and down quark masses determines the CKM matrix and most charged lepton and neutrino masses and mixings. The small hierarchy of neutrino masses is a consequence of the mismatch of the up and down quark mass hierarchies. The effective CP violating phases in the quark sector, neutrino oscillations and leptogenesis are unrelated. In the neutrino sector we can accomodate naturally sin θ 23 ∼ 1, sin θ 13 ∼ 1 ∼ 2 ∼ (Δm 2 sol ) 1/2 3 ∼ (Δm 2 atm ) 1/2

  13. Determination of absolute neutrino masses from Z-bursts

    International Nuclear Information System (INIS)

    Fodor, Z.

    2001-05-01

    Ultrahigh energy neutrinos (UHEν) scatter on cosmological relic neutrinos (Rν) producing Z bosons, which can decay hadronically producing protons (Z-burst). We compare the predicted proton spectrum with the observed ultrahigh energy cosmic ray (UHECR) spectrum and determine the mass of the heaviest Rν via a maximum likelihood analysis. Our mass prediction depends on the origin of the power-like part of the UHECR spectrum: m ν = 2.34 -0.84 +1.29 eV for Galactic halo and 0.26 -0.14 +0.20 eV for extragalactic (EG) origin. The second mass, with a lower bound of 0.06 eV on the 95% confidence level (CL), is compatible with a hierarchical ν mass scenario with the largest mass suggested by the atmospheric ν oscillation. The necessary UHEν flux is compatible with present upper limits and should be detected in the near future. (orig.)

  14. arXiv Neutrino Masses from Outer Space

    CERN Document Server

    D'Amico, Guido; Kaloper, Nemanja

    Neutrinos can gain mass from coupling to an ultralight field in slow roll. When such a field is displaced from its minimum, its vev acts just like the Higgs vev in spontaneous symmetry breaking. Although these masses may eventually vanish, they do it over a very long time. The theory is technically natural, with the ultralight field-dependent part being the right-handed Majorana mass. The mass variation induced by the field correlates with the cosmological evolution. The change of the mass term changes the mixing matrix, and therefore suppresses the fraction of sterile neutrinos at earlier times and increases it at later times. Since the issue of quantum gravity corrections to field theories with large field variations remains open, this framework may give an observational handle on the Weak Gravity Conjecture.

  15. Common Origin of Neutrino Mass, Dark Matter, and Baryogenesis

    OpenAIRE

    Ma, Ernest

    2006-01-01

    Combining one established idea with two recent ones, it is pointed out for the first time that three of the outstanding problems of particle physics and cosmology, i.e. neutrino mass, dark matter, and baryogenesis, may have a common solution, arising from the interactions of a single term, with experimentally verifiable consequences.

  16. Neutrino masses and the unification of the SO(10) families

    International Nuclear Information System (INIS)

    Maalampi, J.; Enqvist, K.

    1980-01-01

    We show that the unification of the SO(10) families in SO(10+m) group can offer a solution to the neutrino mass problem. For simplicity we have restricted our analysis to SO(11), which contains - aside from generation mixing -the main novel feature of the theories of this kind: fermions that couple by V+A charged weak currents. (author)

  17. Most recent results of the Mainz Neutrino Mass Espetiment

    Czech Academy of Sciences Publication Activity Database

    Kraus, Ch.; Bornschein, L.; Bonn, J.; Bornschein, B.; Conde, F.; Flatt, B.; Kovalík, Alojz; Müller, B.; Otten, E.; Schall, J.; Thümmler, Th.; Weinheimer, Ch.

    2003-01-01

    Roč. 118, - (2003), s. 482 ISSN 0920-5632 R&D Projects: GA ČR GA202/02/0157 Institutional research plan: CEZ:AV0Z1048901 Keywords : beta-spectrum * neutrino mass Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.990, year: 2003

  18. Neutrino mass | Nduka | Journal of the Nigerian Association of ...

    African Journals Online (AJOL)

    It turns out that geometrization of matter is a necessary prerequisite for the resolution of many problems of considerable current interest. In this paper we discuss the geometrization of matter, and deduce therefore the mass of the neutrino. Journal of the Nigerian Association of Mathematical Physics Vol. 10 2006: pp. 1-4 ...

  19. The Use of Low Temperature Detectors for Direct Measurements of the Mass of the Electron Neutrino

    Directory of Open Access Journals (Sweden)

    A. Nucciotti

    2016-01-01

    Full Text Available Recent years have witnessed many exciting breakthroughs in neutrino physics. The detection of neutrino oscillations has proved that neutrinos are massive particles, but the assessment of their absolute mass scale is still an outstanding challenge in today particle physics and cosmology. Since low temperature detectors were first proposed for neutrino physics experiments in 1984, there has been tremendous technical progress: today this technique offers the high energy resolution and scalability required to perform competitive experiments challenging the lowest electron neutrino masses. This paper reviews the thirty-year effort aimed at realizing calorimetric measurements with sub-eV neutrino mass sensitivity using low temperature detectors.

  20. PINGU and the neutrino mass hierarchy: Statistical and systematical aspects

    International Nuclear Information System (INIS)

    Capozzi, F.; Marrone, A.; Lisi, E.

    2016-01-01

    The proposed PINGU project (Precision IceCube Next Generation Upgrade) is supposed to determine neutrino mass hierarchy through matter effects of atmospheric neutrinos crossing the Earth core and mantle, which leads to variations in the events spectrum in energy and zenith angle. The presence of non-negligible (and partly unknown) systematics on the spectral shape can make the statistical analysis particularly challenging in the limit of high statistics. Assuming plausible spectral shape uncertainties at the percent level (due to effective volume, cross section, resolution functions, oscillation parameters, etc.), we obtain a significant reduction in the sensitivity to the hierarchy. The obtained results show the importance of a dedicated research program aimed at a better characterization and reduction of the uncertainties in future high-statistics experiments with atmospheric neutrinos.

  1. Minimal see-saw model predicting best fit lepton mixing angles

    International Nuclear Information System (INIS)

    King, Stephen F.

    2013-01-01

    We discuss a minimal predictive see-saw model in which the right-handed neutrino mainly responsible for the atmospheric neutrino mass has couplings to (ν e ,ν μ ,ν τ ) proportional to (0,1,1) and the right-handed neutrino mainly responsible for the solar neutrino mass has couplings to (ν e ,ν μ ,ν τ ) proportional to (1,4,2), with a relative phase η=−2π/5. We show how these patterns of couplings could arise from an A 4 family symmetry model of leptons, together with Z 3 and Z 5 symmetries which fix η=−2π/5 up to a discrete phase choice. The PMNS matrix is then completely determined by one remaining parameter which is used to fix the neutrino mass ratio m 2 /m 3 . The model predicts the lepton mixing angles θ 12 ≈34 ∘ ,θ 23 ≈41 ∘ ,θ 13 ≈9.5 ∘ , which exactly coincide with the current best fit values for a normal neutrino mass hierarchy, together with the distinctive prediction for the CP violating oscillation phase δ≈106 ∘

  2. On the gravitational seesaw in higher-derivative gravity

    Energy Technology Data Exchange (ETDEWEB)

    Accioly, Antonio; Giacchini, Breno L. [Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, RJ (Brazil); Shapiro, Ilya L. [Universidade Federal de Juiz de Fora, Departamento de Fisica, ICE, Juiz de Fora, MG (Brazil); Tomsk State Pedagogical University, Tomsk (Russian Federation); Tomsk State University, Tomsk (Russian Federation)

    2017-08-15

    Local gravitational theories with more than four derivatives are superrenormalizable. They also may be unitary in the Lee-Wick sense. Thus it is relevant to study the low-energy properties of these theories, especially to identify observables which might be useful for experimental detection of higher derivatives. Using an analogy with the neutrino physics, we explore the possibility of a gravitational seesaw mechanism in which several dimensional parameters of the same order of magnitude produce a hierarchy in the masses of propagating particles. Such a mechanism could make a relatively light degree of freedom detectable in low-energy laboratory and astrophysical observations, such as torsion-balance experiments and the bending of light. We demonstrate that such a seesaw mechanism in the six- and more-derivative theories is unable to reduce the lightest mass more than in the simplest four-derivative model. Adding more derivatives to the four-derivative action of gravity makes heavier masses even greater, while the lightest massive ghost is not strongly affected. This fact is favorable for protecting the theory from instabilities but makes the experimental detection of higher derivatives more difficult. (orig.)

  3. Predicting {theta}{sub 13} and the neutrino mass scale from quark lepton mass hierarchies

    Energy Technology Data Exchange (ETDEWEB)

    Buchmueller, W.; Domcke, V.; Schmitz, K.

    2011-11-15

    Flavour symmetries of Froggatt-Nielsen type can naturally reconcile the large quark and charged lepton mass hierarchies and the small quark mixing angles with the observed small neutrino mass hierarchies and their large mixing angles. We point out that such a flavour structure, together with the measured neutrino mass squared differences and mixing angles, strongly constrains yet undetermined parameters of the neutrino sector. Treating unknown O(1) parameters as random variables, we obtain surprisingly accurate predictions for the smallest mixing angle, sin{sup 2}2{theta}{sub 13}=0.07{sup +0.11}{sub -0.05}, the smallest neutrino mass, m{sub 1}=2.5{sup +1.7}{sub -1.6} x 10{sup -3} eV, and one Majorana phase, {alpha}{sub 21}/{pi}=1.0{sup +0.2}{sub -0.2}. (orig.)

  4. Neutrino mass, dark energy, and the linear growth factor

    International Nuclear Information System (INIS)

    Kiakotou, Angeliki; Lahav, Ofer; Elgaroey, Oystein

    2008-01-01

    We study the degeneracies between neutrino mass and dark energy as they manifest themselves in cosmological observations. In contradiction to a popular formula in the literature, the suppression of the matter power spectrum caused by massive neutrinos is not just a function of the ratio of neutrino to total mass densities f ν =Ω ν /Ω m , but also each of the densities independently. We also present a fitting formula for the logarithmic growth factor of perturbations in a flat universe, f(z,k;f ν ,w,Ω DE )≅[1-A(k)Ω DE f ν +B(k)f ν 2 -C(k)f ν 3 ]Ω m α (z), where α depends on the dark energy equation of state parameter w. We then discuss cosmological probes where the f factor directly appears: peculiar velocities, redshift distortion, and the integrated Sachs-Wolfe effect. We also modify the approximation of Eisenstein and Hu [Astrophys. J. 511, 5 (1999)] for the power spectrum of fluctuations in the presence of massive neutrinos and provide a revised code [http://www.star.ucl.ac.uk/∼lahav/nu m atter p ower.f].

  5. Axion like particles and the inverse seesaw mechanism

    International Nuclear Information System (INIS)

    Carvajal, C.D.R.; Dias, A.G.; Nishi, C.C.; Sánchez-Vega, B.L.

    2015-01-01

    Light pseudoscalars known as axion like particles (ALPs) may be behind physical phenomena like the Universe transparency to ultra-energetic photons, the soft γ-ray excess from the Coma cluster, and the 3.5 keV line. We explore the connection of these particles with the inverse seesaw (ISS) mechanism for neutrino mass generation. We propose a very restrictive setting where the scalar field hosting the ALP is also responsible for generating the ISS mass scales through its vacuum expectation value on gravity induced nonrenormalizable operators. A discrete gauge symmetry protects the theory from the appearance of overly strong gravitational effects and discrete anomaly cancellation imposes strong constraints on the order of the group. The anomalous U(1) symmetry leading to the ALP is an extended lepton number and the protective discrete symmetry can be always chosen as a subgroup of a combination of the lepton number and the baryon number.

  6. Axion like particles and the inverse seesaw mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Carvajal, C.D.R.; Dias, A.G. [Universidade Federal do ABC, Centro de Ciências Naturais e Humanas,Av. dos Estados, 5001, 09210-580, Santo André, SP (Brazil); Nishi, C.C. [Maryland Center for Fundamental Physics, University of Maryland,College Park, MD 20742 (United States); Universidade Federal do ABC, Centro de Matemática, Computação e Cognição,Av. dos Estados, 5001, 09210-580, Santo André, SP (Brazil); Sánchez-Vega, B.L. [Argonne National Laboratory,9700 S. Cass Avenue, Argonne, Illinois 60439 (United States)

    2015-05-13

    Light pseudoscalars known as axion like particles (ALPs) may be behind physical phenomena like the Universe transparency to ultra-energetic photons, the soft γ-ray excess from the Coma cluster, and the 3.5 keV line. We explore the connection of these particles with the inverse seesaw (ISS) mechanism for neutrino mass generation. We propose a very restrictive setting where the scalar field hosting the ALP is also responsible for generating the ISS mass scales through its vacuum expectation value on gravity induced nonrenormalizable operators. A discrete gauge symmetry protects the theory from the appearance of overly strong gravitational effects and discrete anomaly cancellation imposes strong constraints on the order of the group. The anomalous U(1) symmetry leading to the ALP is an extended lepton number and the protective discrete symmetry can be always chosen as a subgroup of a combination of the lepton number and the baryon number.

  7. Neutrino mass with large S U (2 )L multiplet fields

    Science.gov (United States)

    Nomura, Takaaki; Okada, Hiroshi

    2017-11-01

    We propose an extension of the standard model introducing large S U (2 )L multiplet fields which are quartet and septet scalars and quintet Majorana fermions. These multiplets can induce the neutrino masses via interactions with the S U (2 ) doublet leptons. We then find the neutrino masses are suppressed by a small vacuum expectation value of the quartet/septet and an inverse of the quintet fermion mass, relaxing the Yukawa hierarchies among the standard model fermions. We also discuss collider physics at the Large Hadron Collider, considering the production of charged particles in these multiplets, and due to the effects of violating the custodial symmetry, some specific signatures can be found. Then, we discuss the detectability of these signals.

  8. Majorana neutrinos in a warped 5D standard model

    International Nuclear Information System (INIS)

    Huber, S.J.; Shafi, Q.

    2002-05-01

    We consider neutrino oscillations and neutrinoless double beta decay in a five dimensional standard model with warped geometry. Although the see-saw mechanism in its simplest form cannot be implemented because of the warped geometry, the bulk standard model neutrinos can acquire the desired (Majorana) masses from dimension five interactions. We discuss how large mixings can arise, why the large mixing angle MSW solution for solar neutrinos is favored, and provide estimates for the mixing angle U e3 . Implications for neutrinoless double beta decay are also discussed. (orig.)

  9. Neutrino mass matrix: Inverted hierarchy and CP violation

    International Nuclear Information System (INIS)

    Frigerio, Michele; Smirnov, Alexei Yu.

    2003-01-01

    We reconstruct the neutrino mass matrix in the flavor basis, in the case of an inverted mass hierarchy (ordering), using all available experimental data on neutrino masses and oscillations. We analyze the dependence of the matrix elements m αβ on the CP violating Dirac δ and Majorana ρ and σ phases, for different values of the absolute mass scale. We find that the present data admit various structures of the mass matrix: (i) hierarchical structures with a set of small (zero) elements; (ii) structures with equalities among various groups of elements: e-row and/or μτ-block elements, diagonal and/or off-diagonal elements; (iii) 'democratic' structure. We find the values of phases for which these structures are realized. The mass matrix elements can anticorrelate with flavor: inverted partial or complete flavor alignment is possible. For various structures of the mass matrix we identify the possible underlying symmetry. We find that the mass matrix can be reconstructed completely only in particular cases, provided that the absolute scale of the mass is measured. Generally, the freedom related to the Majorana phase σ will not be removed, thus admitting various types of mass matrix

  10. Born–Infeld condensate as a possible origin of neutrino masses and dark energy

    Energy Technology Data Exchange (ETDEWEB)

    Addazi, Andrea [Dipartimento di Fisica, Università di L' Aquila, 67010 Coppito AQ (Italy); Laboratori Nazionali del Gran Sasso (INFN), 67010 Assergi AQ (Italy); Capozziello, Salvatore [Dipartimento di Fisica “Ettore Pancini”, Università di Napoli “Federico II”, INFN Sez. di Napoli, Compl. Univ. di Monte S. Angelo, Edificio G, Via Cinthia, I-80126, Napoli (Italy); INFN Sez. di Napoli, Compl. Univ. di Monte S. Angelo, Edificio G, Via Cinthia, I-80126, Napoli (Italy); Gran Sasso Science Institute (INFN), Viale F. Crispi 7, I-67100, L' Aquila (Italy); Odintsov, Sergei [Institució Catalana de Recerca i Estudis Avancats (ICREA), Barcelona (Spain); Institut de Ciencies de l' Espai (IEEC-CSIC), Campus UAB, Carrer de Can Magrans, s/n 08193 Cerdanyola del Valles, Barcelona (Spain); Lab. Theor. Cosmology, Tomsk State University of Control Systems and Radioelectronics (TUSUR), 634050 Tomsk (Russian Federation); Tomsk State Pedagogical University, 634061 Tomsk (Russian Federation)

    2016-09-10

    We discuss the possibility that a Born–Infeld condensate coupled to neutrinos can generate both neutrino masses and an effective cosmological constant. In particular, an effective field theory is provided capable of dynamically realizing the neutrino superfluid phase firstly suggested by Ginzburg and Zharkov. In such a case, neutrinos acquire a mass gap inside the Born–Infeld ether forming a long-range Cooper pair. Phenomenological implications of the approach are also discussed.

  11. Neutrino 2012: Outlook – theory

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, A.Yu. [International Center for Theoretical Physics, Trieste (Italy)

    2013-02-15

    Ongoing developments in theory and phenomenology are related to the measured large value of 1–3 mixing and indications of significant deviation of the 2–3 mixing from maximal one. “Race” for the mass hierarchy has started and there is good chance that multi-megaton scale atmospheric neutrino detectors with low threshold (e.g. PINGU) will establish the type of hierarchy. Two IceCube candidates of the PeV cosmic neutrinos if confirmed, is the beginning of new era of high energy neutrino astronomy. Accumulation of data on solar neutrinos (energy spectrum, D-N asymmetry, value of Δm{sub 21}{sup 2}) may uncover some new physics. The Tri-bimaximal mixing is disfavored and the existing discrete symmetry paradigm may change. The confirmed QLC prediction, θ{sub 13}≈θ{sub C}/√(2), testifies for GUT, seesaw and some symmetry at very high scales. However, the same value of 1–3 mixing can be obtained in various ways which have different implications. The situation in lepton sector changes from special (with specific neutrino symmetries, etc.) to normal, closer to that in the quark sector. Sterile neutrinos are challenge for neutrino physics but also opportunity with many interesting phenomenological consequences. Further studies of possible connections between neutrinos and the dark sector of the Universe may lead to breakthrough both in particle physics and cosmology.

  12. Common origin of neutrino mass, dark matter and Dirac leptogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Borah, Debasish [Department of Physics, Indian Institute of Technology Guwahati, Assam 781039 (India); Dasgupta, Arnab, E-mail: dborah@iitg.ernet.in, E-mail: arnab.d@iopb.res.in [Institute of Physics, HBNI, Sachivalaya Marg, Bhubaneshwar 751005 (India)

    2016-12-01

    We study the possibility of generating tiny Dirac neutrino masses at one loop level through the scotogenic mechanism such that one of the particles going inside the loop can be a stable cold dark matter (DM) candidate. Majorana mass terms of singlet fermions as well as tree level Dirac neutrino masses are prevented by incorporating the presence of additional discrete symmetries in a minimal fashion, which also guarantee the stability of the dark matter candidate. Due to the absence of total lepton number violation, the observed baryon asymmetry of the Universe is generated through the mechanism of Dirac leptogenesis where an equal and opposite amount of leptonic asymmetry is generated in the left and right handed sectors which are prevented from equilibration due to tiny Dirac Yukawa couplings. Dark matter relic abundance is generated through its usual freeze-out at a temperature much below the scale of leptogenesis. We constrain the relevant parameter space from neutrino mass, baryon asymmetry, Planck bound on dark matter relic abundance, and latest LUX bound on spin independent DM-nucleon scattering cross section. We also discuss the charged lepton flavour violation (μ → e γ) and electric dipole moment of electron in this model in the light of the latest experimental data and constrain the parameter space of the model.

  13. Dark energy from pNGB mediated Dirac neutrino condensate

    Directory of Open Access Journals (Sweden)

    Ujjal Kumar Dey

    2018-03-01

    Full Text Available We consider an extension of the Standard Model that provide an unified description of eV scale neutrino mass and dark energy. An explicit model is presented by augmenting the Standard Model with an SU(2L doublet scalar, a singlet scalar and right handed neutrinos where all of them are assumed to be charged under a global U(1X symmetry. A light pseudo-Nambu–Goldstone Boson, associated with the spontaneously broken U(1X symmetry, acts as a mediator of an attractive force leading to a Dirac neutrino condensate, with large correlation length, and a non-zero gap in the right range providing a cosmologically feasible dark energy scenario. The neutrino mass is generated through the usual Dirac seesaw mechanism. Parameter space, reproducing viable dark energy scenario while having neutrino mass in the right ballpark, is presented.

  14. Scalar dark matter, type II seesaw and the DAMPE cosmic ray e+ + e- excess

    Science.gov (United States)

    Li, Tong; Okada, Nobuchika; Shafi, Qaisar

    2018-04-01

    The DArk Matter Particle Explorer (DAMPE) has reported a measurement of the flux of high energy cosmic ray electrons plus positrons (CREs) in the energy range between 25GeV and 4.6TeV. With unprecedented high energy resolution, the DAMPE data exhibit an excess of the CREs flux at an energy of around 1.4TeV. In this letter, we discuss how the observed excess can be understood in a minimal framework where the Standard Model (SM) is supplemented by a stable SM singlet scalar as dark matter (DM) and type II seesaw for generating the neutrino mass matrix. In our framework, a pair of DM particles annihilates into a pair of the SM SU(2) triplet scalars (Δs) in type II seesaw, and the subsequent Δ decays create the primary source of the excessive CREs around 1.4TeV. The lepton flavor structure of the primary source of CREs has a direct relation with the neutrino oscillation data. We find that the DM interpretation of the DAMPE excess determines the pattern of neutrino mass spectrum to be the inverted hierarchy type, taking into account the constraints from the Fermi-LAT observations of dwarf spheroidal galaxies.

  15. Generalized one-loop neutrino mass model with charged particles

    Science.gov (United States)

    Cheung, Kingman; Okada, Hiroshi

    2018-04-01

    We propose a radiative neutrino-mass model by introducing 3 generations of fermion pairs E-(N +1 )/2E+(N +1 )/2 and a couple of multicharged bosonic doublet fields ΦN /2,ΦN /2 +1, where N =1 , 3, 5, 7, 9. We show that the models can satisfy the neutrino masses and oscillation data, and are consistent with lepton-flavor violations, the muon anomalous magnetic moment, the oblique parameters, and the beta function of the U (1 )Y hypercharge gauge coupling. We also discuss the collider signals for various N , namely, multicharged leptons in the final state from the Drell-Yan production of E-(N +1 )/2E+(N +1 )/2. In general, the larger the N the more charged leptons will appear in the final state.

  16. Neutrino mass and the origin of galactic magnetic fields

    International Nuclear Information System (INIS)

    Enqvist, K.; Semikoz, V.; Shukurov, A.; Sokoloff, D.

    1993-01-01

    We compare two constraints on the strength of the cosmological primordial magnetic field: the one following from the restrictions on the Dirac neutrino spin flip in the early Universe, and another one based on the galactic dynamo theory for the Milky Way (presuming that the seed magnetic field has a relic origin). Since the magnetic field facilitates transitions between left- and right-handed neutrino states, thereby affecting 4 He production at primordial nucleosynthesis, we can obtain a guaranteed upper limit on the strength of the relic magnetic field in the protogalaxy, B c approx-lt 4x10 -9 --3x10 -13 G, depending on the neutrino magnetic moment, if we adopt the MSW explanation of the GALLEX results. On the other hand, models of the dynamo in the Milky Way indicate that the seed magnetic field should be at least 10 -11 --10 -13 G at the protogalaxy scale L=100 kpc. These upper and lower limiting ranges are marginally consistent provided the electron neutrino mass is below 0.3 eV. The results apply to a relic magnetic field produced in the early Universe by any causal mechanism before the nucleosynthesis

  17. An SO(10) × SO(10)' model for common origin of neutrino masses, ordinary and dark matter-antimatter asymmetries

    International Nuclear Information System (INIS)

    Gu, Pei-Hong

    2014-01-01

    We propose an SO(10) × SO(10)' model to simultaneously realize a seesaw for Dirac neutrino masses and a leptogenesis for ordinary and dark matter-antimatter asymmetries. A (16 × 1-bar 6-bar ') H scalar crossing the SO(10) and SO(10)' sectors plays an essential role in this seesaw-leptogenesis scenario. As a result of lepton number conservation, the lightest dark nucleon as the dark matter particle should have a determined mass around 15 GeV to explain the comparable fractions of ordinary and dark matter in the present universe. The (16 × 1-bar 6-bar ') H scalar also mediates a U(1) em × U(1)' em kinetic mixing after the ordinary and dark left-right symmetry breaking so that we can expect a dark nucleon scattering in direct detection experiments and/or a dark nucleon decay in indirect detection experiments. Furthermore, we can impose a softly broken mirror symmetry to simplify the parameter choice

  18. An SO(10) × SO(10)' model for common origin of neutrino masses, ordinary and dark matter-antimatter asymmetries

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Pei-Hong, E-mail: peihong.gu@sjtu.edu.cn [Department of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China)

    2014-12-01

    We propose an SO(10) × SO(10)' model to simultaneously realize a seesaw for Dirac neutrino masses and a leptogenesis for ordinary and dark matter-antimatter asymmetries. A (16 × 1-bar 6-bar '){sub H} scalar crossing the SO(10) and SO(10)' sectors plays an essential role in this seesaw-leptogenesis scenario. As a result of lepton number conservation, the lightest dark nucleon as the dark matter particle should have a determined mass around 15 GeV to explain the comparable fractions of ordinary and dark matter in the present universe. The (16 × 1-bar 6-bar '){sub H} scalar also mediates a U(1){sub em} × U(1)'{sub em} kinetic mixing after the ordinary and dark left-right symmetry breaking so that we can expect a dark nucleon scattering in direct detection experiments and/or a dark nucleon decay in indirect detection experiments. Furthermore, we can impose a softly broken mirror symmetry to simplify the parameter choice.

  19. Remark on natural models of neutrinos

    International Nuclear Information System (INIS)

    Fujikawa, Kazuo

    2005-01-01

    We comment on what 't Hooft's naturalness argument implies with regard to a minimal extension of the Standard Model that incorporates right-handed neutrinos with generic mass terms. If this Lagrangian is taken as that of a low energy effective theory, the idea of pseudo-Dirac neutrinos with very small masses is consistent with 't Hooft's naturalness argument. This argument is based on the observation that the right-handed components of neutrinos in the massless limit exhibit an extra enhanced symmetry which is absent in other charged fermions. This enhanced symmetry is reminiscent of the Nambu-Goldstone fermions associated with spontaneously broken supersymmetry. The conventional seesaw scenario gives another natural solution if the ultra-heavy right-handed neutrinos are integrated out in the formulation of a low energy effective theory. (author)

  20. Probing neutrino mass hierarchy by comparing the charged-current and neutral-current interaction rates of supernova neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Kwang-Chang [Center for General Education, Chang Gung University,Kwei-Shan, Taoyuan, 333, Taiwan (China); Leung Center for Cosmology and Particle Astrophysics (LeCosPA), National Taiwan University, Taipei, 106, Taiwan (China); Lee, Fei-Fan [Institute of Physics, National Chiao Tung University,Hsinchu, 300, Taiwan (China); Lee, Feng-Shiuh [Department of Electrophysics, National Chiao Tung University,Hsinchu, 300, Taiwan (China); Lin, Guey-Lin [Leung Center for Cosmology and Particle Astrophysics (LeCosPA), National Taiwan University, Taipei, 106, Taiwan (China); Institute of Physics, National Chiao Tung University,Hsinchu, 300, Taiwan (China); Liu, Tsung-Che [Leung Center for Cosmology and Particle Astrophysics (LeCosPA), National Taiwan University, Taipei, 106, Taiwan (China); Yang, Yi [Department of Electrophysics, National Chiao Tung University,Hsinchu, 300, Taiwan (China)

    2016-07-22

    The neutrino mass hierarchy is one of the neutrino fundamental properties yet to be determined. We introduce a method to determine neutrino mass hierarchy by comparing the interaction rate of neutral current (NC) interactions, ν(ν-bar)+p→ν(ν-bar)+p, and inverse beta decays (IBD), ν-bar{sub e}+p→n+e{sup +}, of supernova neutrinos in scintillation detectors. Neutrino flavor conversions inside the supernova are sensitive to neutrino mass hierarchy. Due to Mikheyev-Smirnov-Wolfenstein effects, the full swapping of ν-bar{sub e} flux with the ν-bar{sub x} (x=μ, τ) one occurs in the inverted hierarchy, while such a swapping does not occur in the normal hierarchy. As a result, more high energy IBD events occur in the detector for the inverted hierarchy than the high energy IBD events in the normal hierarchy. By comparing IBD interaction rate with the mass hierarchy independent NC interaction rate, one can determine the neutrino mass hierarchy.

  1. Bilarge neutrino mixing and mass of the lightest neutrino from third generation dominance in a democratic approach

    International Nuclear Information System (INIS)

    Dermisek, Radovan

    2004-01-01

    We show that both small mixing in the quark sector and large mixing in the lepton sector can be obtained from a simple assumption of universality of Yukawa couplings and the right-handed neutrino Majorana mass matrix in leading order. We discuss conditions under which bilarge mixing in the lepton sector is achieved with a minimal amount of fine-tuning requirements for possible models. From knowledge of the solar and atmospheric mixing angles we determine the allowed values of sin θ 13 . If embedded into grand unified theories, the third generation Yukawa coupling unification is a generic feature while masses of the first two generations of charged fermions depend on small perturbations. In the neutrino sector, the heavier two neutrinos are model dependent, while the mass of the lightest neutrino in this approach does not depend on perturbations in the leading order. The right-handed neutrino mass scale can be identified with the GUT scale in which case the mass of the lightest neutrino is given as (m top 2 /M GUT )sin 2 θ 23 sin 2 θ 12 in the limit sin θ 13 ≅0. Discussing symmetries we make a connection with hierarchical models and show that the basis independent characteristic of this scenario is a strong dominance of the third generation right-handed neutrino, M 1 ,M 2 -4 M 3 , M 3 =M GUT

  2. The neutrino mass from beta spectrum (ITEP-85)

    International Nuclear Information System (INIS)

    Lubimov, V.

    1986-01-01

    The new cycle of tritium beta spectrum measurements in valine with the ITEP spectrometer is discussed (ITEP-85). The detailed investigation of the total response function (TRF) has been performed. The special run of beta spectrum measurements carried out in a wide energy interval (3.4 KeV) has turned out to be a sensitive mode for the TRF experimental test. The results confirm the indication of the neutrino nonzero mass. 11 refs., 10 figs

  3. Supersymmetric seesaw inflection

    International Nuclear Information System (INIS)

    Aulakh, Charanjit S.; Garg, Ila

    2013-01-01

    We showed that Supersymmetric Unified theories which explain small neutrino masses via renormalizable Type-I-see-saw mechanism can also support slow roll inflection point inflation. In such a scenario inflation occurs along a MSSM D-flat direction associated with gauge invariant combination of Higgs, slepton and right handed sneutrino. The scale of inflation is set by right handed neutrino mass M υc ∼10 6 10 12 GeV and inflation parameters are determined in terms of Dirac and Majorana couplings responsible for neutrino masses. The fine tuning conditions to have effective slow roll inflation are determined in terms of superpotential parameters (Dirac and Majorana couplings). This is in contrast to MSSM or Dirac neutrino inflection scenarios where fine tuning conditions are on soft Susy breaking parameters. In our case M υc ≫ M Susy , so soft Susy breaking parameters have hardly any role to play in fine tuning. The fine tuning conditions are thus radiatively stable due to nonrenormalization theorems. Reheating occurs via instant preheating which dumps all the inflation energy into MSSM degrees of freedom giving a high reheat temperature T rh ≅ M υc 10 6 GeV ∼ 10 1l 10 15 GeV. We also examined how this scenario can be embedded in realistic New Minimal Supersymmetric SO(10) Grand Unified Theory. (author)

  4. Universal seesaw and 0νββ in new 3331 left-right symmetric model

    Directory of Open Access Journals (Sweden)

    Debasish Borah

    2017-08-01

    Full Text Available We consider a class of left-right symmetric model with enlarged gauge group SU(3c×SU(3L×SU(3R×U(1X without having scalar bitriplet. In the absence of scalar bitriplet, there is no Dirac mass term for fermions including usual quarks and leptons. We introduce new isosinglet vector-like fermions so that all the fermions get their masses through a universal seesaw mechanism. We extend our discussion to neutrino mass and its implications in neutrinoless double beta decay (0νββ. We show that for TeV scale SU(3R gauge bosons, the heavy-light neutrino mixing contributes dominantly to 0νββ that can be observed at ongoing experiments. The new physics contributions arising from purely left-handed currents via exchange of keV scale right-handed neutrinos and the so called mixed helicity λ-diagram can saturate the KamLANDZen bound. We show that the right handed neutrinos in this model can have mass in the sub keV range and can be long lived compared to the age of the Universe. The contributions of these right handed neutrinos to flavour physics observables like μ→eγ and muon g−2 is also discussed. Towards the end we also comment on different possible symmetry breaking patterns of this enlarged gauge symmetry to that of the standard model.

  5. 7 keV sterile neutrino dark matter from split flavor mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, Hiroyuki [Tohoku Univ., Sendai (Japan). Dept. of Physics; Jeong, Kwang Sik [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Takahashi, Fuminobu [Tohoku Univ., Sendai (Japan). Dept. of Physics; Tokyo Univ., Kashiwa (Japan). Kavli IPMU, TODIAS

    2014-02-15

    The recently discovered X-ray line at about 3.5 keV can be explained by sterile neutrino dark matter with mass, m{sub s}≅ 7 keV, and the mixing, sin{sup 2}2θ∝10{sup -10}. Such sterile neutrino is more long-lived than estimated based on the seesaw formula, which strongly suggests an extra flavor structure in the seesaw sector. We show that one can explain both the small mass and the longevity based on the split flavor mechanism where the breaking of flavor symmetry is tied to the breaking of the B-L symmetry. In a supersymmetric case we find that the 7 keV sterile neutrino implies the gravitino mass about 100 TeV.

  6. 7 keV sterile neutrino dark matter from split flavor mechanism

    International Nuclear Information System (INIS)

    Ishida, Hiroyuki; Takahashi, Fuminobu; Tokyo Univ., Kashiwa

    2014-02-01

    The recently discovered X-ray line at about 3.5 keV can be explained by sterile neutrino dark matter with mass, m s ≅ 7 keV, and the mixing, sin 2 2θ∝10 -10 . Such sterile neutrino is more long-lived than estimated based on the seesaw formula, which strongly suggests an extra flavor structure in the seesaw sector. We show that one can explain both the small mass and the longevity based on the split flavor mechanism where the breaking of flavor symmetry is tied to the breaking of the B-L symmetry. In a supersymmetric case we find that the 7 keV sterile neutrino implies the gravitino mass about 100 TeV.

  7. With neutrino masses revealed, proton decay is the missing link

    International Nuclear Information System (INIS)

    Pati, J.C.

    1999-01-01

    By way of paying tribute to Abdus Salam, I recall the ideas of higher unification that he and I initiated. I discuss the current status of those ideas in the light of recent developments, including those of: (a) gauge coupling unification, (b) discovery of neutrino-oscillation at SuperKamiokande, and (c) ongoing searches for proton decay. It is noted that the mass of ν τ (∼ 1/20 eV), suggested by the SuperK result, provides clear support for the route to higher unification based on the ideas of (i) SU(4)-color, (ii) left-right symmetry and (iii) supersymmetry. The change in perspective, pertaining to both gauge coupling unification and proton decay, brought forth by supersymmetry and superstrings, is noted. And, the beneficial roles of string-symmetries in addressing certain naturalness problems of supersymmetry, including that of rapid proton decay, are emphasized. Further, it is noted that with neutrino masses and coupling unification revealed, proton decay is the missing link. Following recent joint work with K. Babu and F. Wilczek, based on supersymmetric unification, it is remarked that the SuperKamiokande result on neutrino oscillation in fact enhances the expected rate of proton decay compared to prior estimates. Thus, assuming supersymmetric unification, one expects that the discovery of proton decay should not be far behind. (author)

  8. Majorana neutrino masses and the neutrinoless double-beta decay

    International Nuclear Information System (INIS)

    Faessler, A.

    2006-01-01

    Neutrinoless double-beta decay is forbidden in the Standard Model of electroweak and strong interaction but allowed in most Grand Unified Theories (GUTs). Only if the neutrino is a Majorana particle (identical with its antiparticle) and if it has a mass is neutrinoless double-beta decay allowed. Apart from one claim that the neutrinoless double-beta decay in 76 Ge is measured, one has only upper limits for this transition probability. But even the upper limits allow one to give upper limits for the electron Majorana neutrino mass and upper limits for parameters of GUTs and the minimal R-parity-violating supersymmetric model. One further can give lower limits for the vector boson mediating mainly the right-handed weak interaction and the heavy mainly right-handed Majorana neutrino in left-right symmetric GUTs. For that, one has to assume that the specific mechanism is the leading one for neutrinoless double-beta decay and one has to be able to calculate reliably the corresponding nuclear matrix elements. In the present work, one discusses the accuracy of the present status of calculating of the nuclear matrix elements and the corresponding limits of GUTs and supersymmetric parameters

  9. Leptogenesis and low energy CP-violation in neutrino physics

    International Nuclear Information System (INIS)

    Pascoli, S.; Petcov, S.T.; Riotto, A.

    2007-01-01

    Taking into account the recent progress in the understanding of the lepton flavor effects in leptogenesis, we investigate in detail the possibility that the CP-violation necessary for the generation of the baryon asymmetry of the Universe is due exclusively to the Dirac and/or Majorana CP-violating phases in the PMNS neutrino mixing matrix U, and thus is directly related to the low energy CP-violation in the lepton sector (e.g., in neutrino oscillations, etc.). We first derive the conditions of CP-invariance of the neutrino Yukawa couplings λ in the see-saw Lagrangian, and of the complex orthogonal matrix R in the 'orthogonal' parametrization of λ. We show, e.g. that under certain conditions (i) real R and specific CP-conserving values of the Majorana and Dirac phases can imply CP-violation, and (ii) purely imaginary R does not necessarily imply breaking of CP-symmetry. We study in detail the case of hierarchical heavy Majorana neutrino mass spectrum, presenting results for three possible types of light neutrino mass spectrum: (i) normal hierarchical, (ii) inverted hierarchical, and (iii) quasi-degenerate. Results in the alternative case of quasi-degenerate in mass heavy Majorana neutrinos, are also derived. The minimal supersymmetric extension of the standard theory with right-handed Majorana neutrinos and see-saw mechanism of neutrino mass generation is discussed as well. We illustrate the possible correlations between the baryon asymmetry of the Universe and (i) the rephasing invariant J CP controlling the magnitude of CP-violation in neutrino oscillations, or (ii) the effective Majorana mass in neutrinoless double beta decay, in the cases when the only source of CP-violation is respectively the Dirac or the Majorana phases in the neutrino mixing matrix

  10. Effects of triplet Higgs bosons in long baseline neutrino experiments

    Science.gov (United States)

    Huitu, K.; Kärkkäinen, T. J.; Maalampi, J.; Vihonen, S.

    2018-05-01

    The triplet scalars (Δ =Δ++,Δ+,Δ0) utilized in the so-called type-II seesaw model to explain the lightness of neutrinos, would generate nonstandard interactions (NSI) for a neutrino propagating in matter. We investigate the prospects to probe these interactions in long baseline neutrino oscillation experiments. We analyze the upper bounds that the proposed DUNE experiment might set on the nonstandard parameters and numerically derive upper bounds, as a function of the lightest neutrino mass, on the ratio the mass MΔ of the triplet scalars, and the strength |λϕ| of the coupling ϕ ϕ Δ of the triplet Δ and conventional Higgs doublet ϕ . We also discuss the possible misinterpretation of these effects as effects arising from a nonunitarity of the neutrino mixing matrix and compare the results with the bounds that arise from the charged lepton flavor violating processes.

  11. Measuring neutrino mass imprinted on the anisotropic galaxy clustering

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Minji; Song, Yong-Seon, E-mail: minjioh@kasi.re.kr, E-mail: ysong@kasi.re.kr [Korea Astronomy and Space Science Institute, Daejeon 34055 (Korea, Republic of)

    2017-04-01

    The anisotropic galaxy clustering of large scale structure observed by the Baryon Oscillation Spectroscopic Survey Data Release 11 is analyzed to probe the sum of neutrino masses in the small m {sub ν} ∼< 1 eV limit in which the early broadband shape determined before the last scattering surface is immune from the variation of m {sub ν}. The signature of m {sub ν} is imprinted on the altered shape of the power spectrum at later epoch, which provides an opportunity to access the non-trivial m {sub ν} through the measured anisotropic correlation function in redshift space (hereafter RSD instead of Redshift Space Distortion). The non-linear RSD corrections with massive neutrinos in the quasi linear regime are approximately estimated using one-loop order terms. We suggest an approach to probe m {sub ν} simultaneously with all other distance measures and coherent growth functions, exploiting this deformation of the early broadband shape of the spectrum at later epoch. If the origin of cosmic acceleration is unknown, m {sub ν} is poorly determined after marginalizing over all other observables. However, we find that the measured distances and coherent growth functions are minimally affected by the presence of mild neutrino mass. Although the standard model of cosmic acceleration is assumed to be the cosmological constant, the constraint on m {sub ν} is little improved. Interestingly, the measured Cosmic Microwave Background (hereafter CMB) distance to the last scattering surface sharply slices the degeneracy between the matter content and m {sub ν}, and the m {sub ν} is observed to be m {sub ν} = 0.19{sup +0.28}{sub −0.17} eV which is different from massless neutrino at 68% confidence.

  12. SUSY see-saw and NMSO(10)GUT inflation after BICEP2

    International Nuclear Information System (INIS)

    Garg, Ila

    2016-01-01

    Supersymmetric see-saw slow roll inflection point inflation occurs along a MSSM D-flat direction associated with gauge invariant combination of Higgs, s lepton and right-handed s neutrino at a scale set by the right-handed neutrino mass M vc ∼ 10 6 -10 13 GeV. The tensor to scalar perturbation ratio r ∼ 10 -3 can be achieved in this scenario. However, this scenario faced difficulty in being embedded in the realistic new minimal supersymmetric SO(10) grand unified theory (NMSO(10)GUT). The recent discovery of B-mode polarization by BICEP2, changes the prospects of NMSO(10) GUT inflation. Inflection point models become strongly disfavoured, as the trilinear coupling of SUSY see-saw inflation potential gets suppressed relative to the mass parameter favoured by BICEP2. Large values of r ≈ 0.2 can be achieved with super-Planck scale inflaton values and mass scales of inflaton ≥10 13 GeV. In NMSO(10)GUT, this can be made possible with an admixture of heavy Higgs doublet fields, i.e., other than MSSM Higgs field, which are present and have masses of order GUT scale. (author)

  13. A flavor dependent gauge symmetry, predictive radiative seesaw and LHCb anomalies

    Directory of Open Access Journals (Sweden)

    P. Ko

    2017-09-01

    Full Text Available We propose a predictive radiative seesaw model at one-loop level with a flavor dependent gauge symmetry U(1xB3−xe−μ+τ and Majorana fermion dark matter. For the neutrino mass matrix, we obtain an A1 type texture (with two zeros that provides us several predictions such as the normal ordering for the neutrino masses. We analyze the constraints from lepton flavor violations, relic density of dark matter, and collider physics for the new U(1xB3−xe−μ+τ gauge boson. Within the allowed region, the LHCb anomalies in B→K⁎μ+μ− and B→Kℓ+ℓ− with ℓ=e or μ can be resolved, and such Z′ could be also observed at the LHC.

  14. Probing the Type I Seesaw mechanism with displaced vertices at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Gago, Alberto M. [Pontificia Universidad Catolica del Peru, Seccion Fisica, Departamento de Ciencias, Lima (Peru); Hernandez, Pilar [CSIC-Universitat de Valencia, Instituto de Fisica Corpuscular (IFIC), Valencia (Spain); Jones-Perez, Joel [Pontificia Universidad Catolica del Peru, Seccion Fisica, Departamento de Ciencias, Lima (Peru); CSIC-Universitat de Valencia, Instituto de Fisica Corpuscular (IFIC), Valencia (Spain); Losada, Marta; Moreno Briceno, Alexander [Universidad Antonio Narino, Centro de Investigaciones en Ciencias Basicas y Aplicadas, Bogota, D. C. (Colombia)

    2015-10-15

    The observation of Higgs decays into heavy neutrinos would be strong evidence for new physics associated to neutrino masses. In this work we propose a search for such decays within the Type I Seesaw model in the few-GeV mass range via displaced vertices. Using 300 fb{sup -1} of integrated luminosity, at 13 TeV, we explore the region of parameter space where such decays are measurable. We show that, after imposing pseudorapidity cuts, there still exists a region where the number of events is larger than O(10). We also find that conventional triggers can greatly limit the sensitivity of our signal, so we display several relevant kinematical distributions which might aid in the optimization of a dedicated trigger selection. (orig.)

  15. Probing the Type I Seesaw mechanism with displaced vertices at the LHC

    International Nuclear Information System (INIS)

    Gago, Alberto M.; Hernandez, Pilar; Jones-Perez, Joel; Losada, Marta; Moreno Briceno, Alexander

    2015-01-01

    The observation of Higgs decays into heavy neutrinos would be strong evidence for new physics associated to neutrino masses. In this work we propose a search for such decays within the Type I Seesaw model in the few-GeV mass range via displaced vertices. Using 300 fb -1 of integrated luminosity, at 13 TeV, we explore the region of parameter space where such decays are measurable. We show that, after imposing pseudorapidity cuts, there still exists a region where the number of events is larger than O(10). We also find that conventional triggers can greatly limit the sensitivity of our signal, so we display several relevant kinematical distributions which might aid in the optimization of a dedicated trigger selection. (orig.)

  16. Lepton electric dipole moments in non-degenerate supersymmetric Seesaw models

    CERN Document Server

    Ellis, Jonathan Richard; Raidal, Martti; Shimizu, Y; Ellis, John; Hisano, Junji; Raidal, Martti; Shimizu, Yasuhiro

    2002-01-01

    In the context of supersymmetric seesaw models of neutrino masses with non-degenerate heavy neutrinos, we show that Dirac Yukawa interactions N^c_i (Y_nu)_{ij} L_j H_2 induce large threshold corrections to the slepton soft masses via renormalization. While still yielding rates for lepton-flavour-violating processes below the experimental bounds, these contributions may increase the muon and electron electric dipole moments d_mu and d_e by several orders of magnitude. In the leading logarithmic approximation, this is due to three additional physical phases in Y_nu, one of which also contributes to leptogenesis. The naive relation d_mu/d_e\\approx -m_mu/m_e is violated strongly in the case of successful phenomenological textures for Y_nu, and the values of d_mu and/or d_e may be within the range of interest for the future experiments.

  17. General property of neutrino mass matrix and CP-violation

    International Nuclear Information System (INIS)

    Aizawa, Ichiro; Yasue, Masaki

    2005-01-01

    It is found that the atmospheric neutrino mixing angle of θ atm is determined to be tanθ atm =Im(B)/Im(C) for B=M ν e ν μ and C=M ν e ν τ , where M ij is the ij element of M ν - bar M ν with M ν as a complex symmetric neutrino mass matrix in the (ν e , ν μ , ν τ )-basis. Another mixing angle, θ 13 , defined as U e3 =sinθ 13 e -iδ is subject to the condition: tan2θ 13 ∝|sinθ atm B+cosθ atm C| and the CP-violating Dirac phase of δ is identical to the phase of sinθ atm B*+cosθ atm C*. The smallest value of |sinθ 13 | is achieved at tanθ atm =-Re(C)/Re(B) that yields the maximal CP-violation and that implies C=-κB* for the maximal atmospheric neutrino mixing of tanθ atm =κ=+/-1. The generic smallness of |sinθ 13 | can be ascribed to the tiny violation of the electron number conservation

  18. Repressing Anarchy in Neutrino Mass Textures

    CERN Document Server

    Altarelli, Guido; Masina, Isabella; Merlo, Luca

    2012-01-01

    The recent results that $\\theta_{13}$ is relatively large, of the order of the previous upper bound, and the indications of a sizable deviation of $\\theta_{23}$ from the maximal value are in agreement with the predictions of Anarchy in the lepton sector. The quark and charged lepton hierarchies can then be reproduced in a SU(5) GUT context by attributing non-vanishing $U(1)_{FN}$ charges, different for each family, only to the SU(5) tenplet states. The fact that the observed mass hierarchies are stronger for up quarks than for down quarks and charged leptons supports this idea. As discussed in the past, in the flexible context of $SU(5)\\otimes U(1)_{FN}$, different patterns of charges can be adopted going from Anarchy to various types of hierarchy. We revisit this approach by also considering new models and we compare all versions to the present data. As a result we confirm that, by relaxing the extreme ansatz of equal $U(1)_{FN}$ charges for all SU(5) pentaplets and singlets, better agreement with the data t...

  19. Quark-lepton complementarity relation and neutrino mass hierarchy

    International Nuclear Information System (INIS)

    Ferrandis, Javier; Pakvasa, Sandip

    2005-01-01

    Latest measurements have revealed that the deviation from a maximal solar mixing angle is approximately the Cabibbo angle [i.e., quark-lepton complementarity (QLC) relation]. We argue that it is not plausible that this deviation from maximality, be it a coincidence or not, comes from the charged lepton mixing. Consequently we have calculated the required corrections to the exactly bimaximal neutrino mass matrix ansatz necessary to account for the solar mass difference and the solar mixing angle. We point out that the relative size of these two corrections depends strongly on the hierarchy case under consideration. We find that the inverted hierarchy case with opposite CP parities, which is known to guarantee the renormalization group equations stability of the solar mixing angle, offers the most plausible scenario for a high-energy origin of a QLC-corrected bimaximal neutrino mass matrix. This possibility may allow us to explain the QLC relation in connection with the origin of the charged fermion mass matrices

  20. A highly predictive A 4 flavor 3-3-1 model with radiative inverse seesaw mechanism

    Science.gov (United States)

    Cárcamo Hernández, A. E.; Long, H. N.

    2018-04-01

    We build a highly predictive 3-3-1 model, where the field content is extended by including several SU(3) L scalar singlets and six right handed Majorana neutrinos. In our model the {SU}{(3)}C× {SU}{(3)}L× U{(1)}X gauge symmetry is supplemented by the {A}4× {Z}4× {Z}6× {Z}16× {Z}16{\\prime } discrete group, which allows to get a very good description of the low energy fermion flavor data. In the model under consideration, the {A}4× {Z}4× {Z}6× {Z}16× {Z}16{\\prime } discrete group is broken at very high energy scale down to the preserved Z 2 discrete symmetry, thus generating the observed pattern of SM fermion masses and mixing angles and allowing the implementation of the loop level inverse seesaw mechanism for the generation of the light active neutrino masses, respectively. The obtained values for the physical observables in the quark sector agree with the experimental data, whereas those ones for the lepton sector also do, only for the case of inverted neutrino mass spectrum. The normal neutrino mass hierarchy scenario of the model is ruled out by the neutrino oscillation experimental data. We find an effective Majorana neutrino mass parameter of neutrinoless double beta decay of m ee = 46.9 meV, a leptonic Dirac CP violating phase of -81.37° and a Jarlskog invariant of about 10-2 for the inverted neutrino mass hierarchy. The preserved Z 2 symmetry allows for a stable scalar dark matter candidate.

  1. Minimal flavour violation and neutrino masses without R-parity

    DEFF Research Database (Denmark)

    Arcadi, G.; Di Luzio, L.; Nardecchia, M.

    2012-01-01

    symmetry breaking all the couplings of the superpotential including the R-parity violating ones. If R-parity violation is responsible for neutrino masses, our setup can be seen as an extension of MFV to the lepton sector. We analyze two patterns based on the non-abelian flavour symmetries SU(3)(4) circle...... times SU(4) and SU(3)(5). In the former case the total lepton number and the lepton flavour number are broken together, while in the latter the lepton number can be broken independently by an abelian spurion, so that visible effects and peculiar correlations can be envisaged in flavour changing charged...

  2. Determination of neutrino mass hierarchy by 21 cm line and CMB B-mode polarization observations

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Yoshihiko, E-mail: oyamayo@post.kek.jp [The Graduate University for Advanced Studies (SOKENDAI), 1-1 Oho, Tsukuba 305-0801 (Japan); Shimizu, Akie [The Graduate University for Advanced Studies (SOKENDAI), 1-1 Oho, Tsukuba 305-0801 (Japan); Kohri, Kazunori [The Graduate University for Advanced Studies (SOKENDAI), 1-1 Oho, Tsukuba 305-0801 (Japan); Institute of Particle and Nuclear Studies, KEK, 1-1 Oho, Tsukuba 305-0801 (Japan)

    2013-01-29

    We focus on the ongoing and future observations for both the 21 cm line and the CMB B-mode polarization produced by a CMB lensing, and study their sensitivities to the effective number of neutrino species, the total neutrino mass, and the neutrino mass hierarchy. We find that combining the CMB observations with future square kilometer arrays optimized for 21 cm line such as Omniscope can determine the neutrino mass hierarchy at 2{sigma}. We also show that a more feasible combination of Planck + POLARBEAR and SKA can strongly improve errors of the bounds on the total neutrino mass and the effective number of neutrino species to be {Delta}{Sigma}m{sub {nu}}{approx}0.12 eV and {Delta}N{sub {nu}}{approx}0.38 at 2{sigma}, respectively.

  3. Newest results from the Mainz neutrino-mass experiment

    International Nuclear Information System (INIS)

    Bonn, J.; Bornschein, B.; Bornschein, L.; Fickinger, L.; Kraus, Ch.; Otten, E.W.; Ulrich, H.; Weinheimer, Ch.; Kazachenko, O.; Kovalik, A.

    2000-01-01

    The Mainz neutrino-mass experiment investigates the endpoint region of the tritium β-decay spectrum with a MAC-E spectrometer to determine the mass of the electron antineutrino. By the recent upgrade, the former problem of dewetting T 2 films has been solved, and the signal-to-background ratio was improved by a factor of 10. The latest measurement leads to m ν 2 -3.7 ± 5.3(stat.) ± 2.1(syst.) eV 2 /c 4 , from which an upper limit of m ν 2 (95% C.L.) is derived. Some indication for the anomaly, reported by the Troitsk group, was found, but its postulated half-year period is contradicted by our data. To push the sensitivity on the neutrino mass below 1 eV/c 2 , a new larger MAC-E spectrometer is proposed. Besides its integrating mode, it could run in a new nonintegration operation MAC-E-TOF mode

  4. Running of radiative neutrino masses: the scotogenic model — revisited

    Energy Technology Data Exchange (ETDEWEB)

    Merle, Alexander; Platscher, Moritz [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany)

    2015-11-23

    A few years ago, it had been shown that effects stemming from renormalisation group running can be quite large in the scotogenic model, where neutrinos obtain their mass only via a 1-loop diagram (or, more generally, in many models in which the light neutrino mass is generated via quantum corrections at loop-level). We present a new computation of the renormalisation group equations (RGEs) for the scotogenic model, thereby updating previous results. We discuss the matching in detail, in particular in what regards the different mass spectra possible for the new particles involved. We furthermore develop approximate analytical solutions to the RGEs for an extensive list of illustrative cases, covering all general tendencies that can appear in the model. Comparing them with fully numerical solutions, we give a comprehensive discussion of the running in the scotogenic model. Our approach is mainly top-down, but we also discuss an attempt to get information on the values of the fundamental parameters when inputting the low-energy measured quantities in a bottom-up manner. This work serves the basis for a full parameter scan of the model, thereby relating its low- and high-energy phenomenology, to fully exploit the available information.

  5. The maximal U(1){sub L} inverse seesaw from d = 5 operator and oscillating asymmetric Sneutrino dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Zhaofeng [Korea Institute for Advanced Study, School of Physics, Seoul (Korea, Republic of); Institute of Theoretical Physics, Chinese Academy of Sciences, Key Laboratory of Frontiers in Theoretical Physics, Beijing (China); Li, Jinmian [Institute of Theoretical Physics, Chinese Academy of Sciences, Key Laboratory of Frontiers in Theoretical Physics, Beijing (China); University of Adelaide, ARC Centre of Excellence for Particle Physics at the Terascale and CSSM, Department of Physics, Adelaide, SA (Australia); Li, Tianjun [Institute of Theoretical Physics, Chinese Academy of Sciences, Key Laboratory of Frontiers in Theoretical Physics, Beijing (China); University of Electronic Science and Technology of China, School of Physical Electronics, Chengdu (China); Liu, Tao [University of Alberta, Department of Physics, Edmonton, Alberta (Canada); Yang, Jin Min [Institute of Theoretical Physics, Chinese Academy of Sciences, Key Laboratory of Frontiers in Theoretical Physics, Beijing (China)

    2016-05-15

    The maximal U(1){sub L} supersymmetric inverse seesaw mechanism (MLSIS) provides a natural way to relate asymmetric darkmatter (ADM)with neutrino physics. In this paper we point out that MLSIS is a natural outcome if one dynamically realizes the inverse seesaw mechanism in the next-to minimal supersymmetric standard model (NMSSM) via the dimension-five operator (N){sup 2}S{sup 2}/M{sub *}, with S the NMSSM singlet developing TeV scale VEV; it slightly violates lepton number due to the suppression by the fundamental scale M{sub *}, thus preserving U(1){sub L} maximally. The resulting sneutrino is a distinguishable ADM candidate, oscillating and favored to have weak scale mass. A fairly large annihilating cross section of such a heavy ADM is available due to the presence of singlet. (orig.)

  6. Constraints on a general 3-generation neutrino mass matrix from neutrino data application to the MSSM with R-parity violation

    CERN Document Server

    Abada, A

    2000-01-01

    We consider a general symmetric $(3\\times 3)$ mass matrix for three generations of neutrinos. Imposing the constraints, from the atmospheric neutrino and solar neutrino anomalies as well as from the CHOOZ experiment, on the mass squared differences and on the mixing angles, we identify the ranges of allowed inputs for the 6 matrix elements. We apply our results to Majorana left-handed neutrino masses generated at tree level and through The present experimental results on neutrinos from laboratories, cosmology and astrophysics are implemented to either put bounds on trilinear ($\\lambda_{ijk}, or constrain combinations of products of these couplings.

  7. The B - L scotogenic models for Dirac neutrino masses

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Weijian [North China Electric Power University, Department of Physics, Baoding (China); Wang, Ruihong [Hebei Agricultural University, College of Information Science and Technology, Baoding (China); Han, Zhi-Long [University of Jinan, School of Physics and Technology, Jinan, Shandong (China); Han, Jin-Zhong [Zhoukou Normal University, School of Physics and Telecommunications Engineering, Zhoukou, Henan (China)

    2017-12-15

    We construct the one-loop and two-loop scotogenic models for Dirac neutrino mass generation in the context of U(1){sub B-L} extensions of standard model. It is indicated that the total number of intermediate fermion singlets is uniquely fixed by the anomaly free condition and the new particles may have exotic B - L charges so that the direct SM Yukawa mass term anti ν{sub L}ν{sub R}φ{sup 0} and the Majorana mass term (m{sub N}/2)ν{sub R}{sup C}ν{sub R} are naturally forbidden. After the spontaneous breaking of the U(1){sub B-L} symmetry, the discrete Z{sub 2} or Z{sub 3} symmetry appears as the residual symmetry and gives rise to the stability of intermediate fields as DM candidates. Phenomenological aspects of lepton flavor violation, DM, leptogenesis and LHC signatures are discussed. (orig.)

  8. The B-L scotogenic models for Dirac neutrino masses

    Science.gov (United States)

    Wang, Weijian; Wang, Ruihong; Han, Zhi-Long; Han, Jin-Zhong

    2017-12-01

    We construct the one-loop and two-loop scotogenic models for Dirac neutrino mass generation in the context of U(1)_{B-L} extensions of standard model. It is indicated that the total number of intermediate fermion singlets is uniquely fixed by the anomaly free condition and the new particles may have exotic B-L charges so that the direct SM Yukawa mass term \\bar{ν }_Lν _R\\overline{φ ^0} and the Majorana mass term (m_N/2)\\overline{ν _R^C}ν _R are naturally forbidden. After the spontaneous breaking of the U(1)_{B-L} symmetry, the discrete Z2 or Z3 symmetry appears as the residual symmetry and gives rise to the stability of intermediate fields as DM candidates. Phenomenological aspects of lepton flavor violation, DM, leptogenesis and LHC signatures are discussed.

  9. MASSIVE NEUTRINOS IN A GROUNDS-UP APPROACH

    International Nuclear Information System (INIS)

    BAR-SHALOM, S.; ATWOOD, D.; SONI, A.

    2005-01-01

    We examine neutrino oscillations in a two Higgs doublet model (2HDM) in which the second doublet couples only to the third generation right-handed up-fermions, i.e., to t R and N 3 which is the heaviest right-handed Majorana neutrino. The inherently large tan β of this model can naturally account for the large top-quark mass and, based on a quark-lepton similarity ansatz, when embedded into a seesaw mechanism it can also account for the observed neutrino masses and mixing angles giving a very small θ 13 : -0.96 0 ∼ 13 ∼ 0 at 99% CL, and a very restrictive prediction for the atmospheric mixing angle: 42.9 0 ∼ atm ∼ 0 at 99% CL. The large value of tan β also sets the mass scale of the heaviest right-handed Majorana neutrino N 3 and triggers successful leptogenesis

  10. Double beta decay and majorana neutrinos. Right-handed currents or nonzero masses

    International Nuclear Information System (INIS)

    Rosen, S.P.; Perlmutter, A.

    1981-01-01

    This chapter describes some new developments concerning the mechanism for lepton number nonconservation in no-neutrino double beta decay. Explains that lepton number nonconservation in no-neutrino double beta decay comes about either because both left- and right-handed components of a Majorano neutrino are coupled to the electron in the weak leptonic current, or because the neutrino has nonzero mass. Shows that while nuclear ground-state to ground-state transitions arise from right-handed currents and from neutrino mass terms, transitions to low-lying excited states with J /SUP P/ =2 + can arise only from right-handed currents. Emphasizes that the possibilities of detecting small admixtures of right-handed currents, and of setting limits on neutrino masses that are either very small or very large, make double beta decay a most rewarding phenomenon to study

  11. Unifying inflation with the axion, dark matter, baryogenesis and the seesaw mechanism

    International Nuclear Information System (INIS)

    Ballesterose, Guillermo; Ringwald, Andreas; Tamarit, Carlos

    2016-08-01

    A minimal extension of the Standard Model (SM) providing a complete and consistent picture of particle physics and cosmology up to the Planck scale is presented. We add to the SM three right-handed SM-singlet neutrinos, a new vector-like color triplet fermion and a complex SM singlet scalar σ whose vacuum expectation value at ∝10"1"1 GeV breaks lepton number and a Peccei-Quinn symmetry simultaneously. Primordial inflaton is produced by a combination of σ and the SM Higgs. Baryogenesis proceeds via thermal leptogenesis. At low energies, the model reduces to the SM, augmented by seesaw-generated neutrino masses, plus the axion, which solves the strong CP problem and accounts for the dark matter in the Universe. The model can be probed decisively by the next generation of cosmic microwave background and axion dark matter experiments.

  12. Leptonic CP violation induced by approximately μ-τ symmetric seesaw mechanism

    International Nuclear Information System (INIS)

    Baba, Teppei; Yasue, Masaki

    2008-01-01

    Assuming a minimal seesaw model with two heavy neutrinos (N), we examine effects of leptonic CP violation induced by approximate μ-τ symmetric interactions. As long as N is subject to the μ-τ symmetry, we can choose CP phases of Dirac mass terms without loss of generality in such a way that these phases arise from μ-τ symmetry breaking interactions. In the case that no phase is present in heavy neutrino mass terms, leptonic CP phases are controlled by two phases α and β. The similar consideration is extended to N blind to the μ-τ symmetry. It is argued that N subject (blind) to the μ-τ symmetry necessarily describes the normal (inverted) mass hierarchy. We restrict ourselves to μ-τ symmetric textures giving the tribimaximal mixing and calculate flavor neutrino masses to estimate CP-violating Dirac and Majorana phases as well as neutrino mixing angles as functions of α and β. Since α and β are generated by μ-τ symmetry breaking interactions, the CP-violating Majorana phase tends to be suppressed and is found to be at most O(0.1) radian. On the other hand, the CP-violating Dirac phase tends to show a proportionality to α or to β.

  13. Measuring neutrino masses with a future galaxy survey

    DEFF Research Database (Denmark)

    Hamann, Jan; Hannestad, Steen; Wong, Yvonne Y. Y.

    2012-01-01

    that the minimum mass sum of sum m_nu ~ 0.06 eV in the normal hierarchy can be detected at 1.5 sigma to 2.5 sigma significance, depending on the model complexity, using a combination of galaxy and cosmic shear power spectrum measurements in conjunction with CMB temperature and polarisation observations from Planck....... With better knowledge of the galaxy bias, the significance of the detection could potentially reach 5.4 sigma. Interestingly, neither Planck+shear nor Planck+galaxy alone can achieve this level of sensitivity; it is the combined effect of galaxy and cosmic shear power spectrum measurements that breaks......) in the parameter estimation is induced by fitting inaccurate models of the neutrino mass splittings to the mock data, nor does the goodness-of-fit of these models suffer any significant degradation relative to the true one (Delta chi_eff ^2

  14. On neutrino and charged lepton masses and mixings: a view from the electroweak-scale right-handed neutrino model

    Energy Technology Data Exchange (ETDEWEB)

    Hung, P.Q.; Le, Trinh [Department of Physics, University of Virginia,Charlottesville, VA 22904-4714 (United States)

    2015-09-01

    We present a model of neutrino masses within the framework of the EW-ν{sub R} model in which the experimentally desired form of the PMNS matrix is obtained by applying an A{sub 4} symmetry to the Higgs singlet sector responsible for the neutrino Dirac mass matrix. This mechanism naturally avoids potential conflict with the LHC data which severely constrains the Higgs sector, in particular the Higgs doublets. Moreover, by making a simple ansa{sup ¨}tz we extract M{sub l}M{sub l}{sup †} for the charged lepton sector. A similar ansa{sup ¨}tz is proposed for the quark sector. The sources of masses for the neutrinos are entirely different from those for the charged leptons and for the quarks and this might explain why U{sub PMNS} is very different from V{sub CKM}.

  15. A model of radiative neutrino masses. Mixing and a possible fourth generation

    International Nuclear Information System (INIS)

    Babu, K.S.; Ma, E.; Pantaleone, J.

    1989-01-01

    We consider the phenomenological consequences of a recently proposed model with four lepton generations such that the three known neutrinos have radiatively induced Majorana masses. Mixing among generations in the presence of a heavy fourth neutrino necessitates a reevaluation of the usual experimental tests of the standard model. One interesting possibility is to have a τ lifetime longer than predicted by the standard three-generation model. Another is to have neutrino masses and mixing angles in the range needed for a natural explanation of the solar-neutrino puzzle in terms of the Mikheyev-Smirnov-Wolfenstein effect. (orig.)

  16. LSND versus MiniBooNE: Sterile neutrinos with energy dependent masses and mixing?

    CERN Document Server

    Schwetz, Thomas

    2008-01-01

    Standard active-sterile neutrino oscillations do not provide a satisfactory description of the LSND evidence for neutrino oscillations together with the constraints from MiniBooNE and other null-result short-baseline oscillation experiments. However, if the mass or the mixing of the sterile neutrino depends in an exotic way on its energy all data become consistent. I explore the phenomenological consequences of the assumption that either the mass or the mixing scales with the neutrino energy as $1/E_\

  17. More is different: Reconciling eV sterile neutrinos with cosmological mass bounds

    Directory of Open Access Journals (Sweden)

    Yong Tang

    2015-11-01

    Full Text Available It is generally expected that adding light sterile species would increase the effective number of neutrinos, Neff. In this paper we discuss a scenario that Neff can actually decrease due to the neutrino oscillation effect if sterile neutrinos have self-interactions. We specifically focus on the eV mass range, as suggested by the neutrino anomalies. With large self-interactions, sterile neutrinos are not fully thermalized in the early Universe because of the suppressed effective mixing angle or matter effect. As the Universe cools down, flavor equilibrium between active and sterile species can be reached after big bang nucleosynthesis (BBN epoch, but leading to a decrease of Neff. In such a scenario, we also show that the conflict with cosmological mass bounds on the additional sterile neutrinos can be relaxed further when more light species are introduced. To be consistent with the latest Planck results, at least 3 sterile species are needed.

  18. Knitting neutrino mass textures with or without Tri-Bi maximal mixing

    Energy Technology Data Exchange (ETDEWEB)

    Leontaris, G.K., E-mail: leonta@uoi.gr [Theoretical Physics Division, Ioannina University, GR-45110 Ioannina (Greece); Vlachos, N.D. [Theoretical Physics Division, Aristotle University, GR-54124 Thessaloniki (Greece)

    2011-08-03

    The solar and baseline neutrino oscillation data suggest bimaximal neutrino mixing among the first two generations, and trimaximal mixing between all three neutrino flavors. It has been conjectured that this indicates the existence of an underlying symmetry for the leptonic fermion mass textures. The experimentally measured quantities, however, are associated to the latter indirectly and in a rather complicated way through the mixing matrices of the charged leptons and neutrinos. Motivated by these facts, we derive exact analytical expressions which directly link the charged lepton and neutrino mass and mixing parameters to measured quantities and obtain constraints on the parameter space. We discuss deviations from Tri-Bi mixing matrices and present minimal extensions of the Harrison, Perkins and Scott matrices capable of interpreting all neutrino data.

  19. μ - e conversion in nuclei within the CMSSM seesaw: universality versus non-universality

    International Nuclear Information System (INIS)

    Arganda, Ernesto; Herrero, MarIa J.; Teixeira, Ana M.

    2007-01-01

    In this paper we study μ-e conversion in nuclei within the context of the Constrained Minimal Supersymmetric Standard Model, enlarged by three right handed neutrinos and their supersymmetric partners, and where the neutrino masses are generated via a seesaw mechanism. Two different scenarios with either universal or non-universal soft supersymmetry breaking Higgs masses at the gauge coupling unification scale are considered. In the first part we present a complete one-loop computation of the conversion rate for this process that includes the photon-, Z-boson, and Higgs-boson penguins, as well as box diagrams, and compare their size in the two considered scenarios. Then, in these two scenarios we analyse the relevance of the various parameters on the conversion rates, particularly emphasising the role played by the heavy neutrino masses, tan β, and especially θ 13 . In the case of hierachical heavy neutrinos, an extremely high sensitivity of the rates to θ 13 is indeed found. The last part of this work is devoted to the study of the interesting loss of correlation between the μ-e conversion and μ→eγ rates that occurs in the non-universal scenario. In the case of large tan β and light H 0 Higgs boson, an enhanced ratio of the μ-e to μ→eγ rates, with respect to the universal case is found, and this could be tested with the future experimental sensitivities

  20. The triple Higgs coupling: a new probe of low-scale seesaw models

    Energy Technology Data Exchange (ETDEWEB)

    Baglio, Julien [Institute for Theoretical Physics, University of Tübingen,Auf der Morgenstelle 14, 72076 Tübingen (Germany); Weiland, Cédric [Institute for Particle Physics Phenomenology, Department of Physics, Durham University,South Road, Durham DH1 3LE (United Kingdom)

    2017-04-07

    The measure of the triple Higgs coupling is one of the major goals of the high-luminosity run of the CERN Large Hadron Collider (HL-LHC) as well as the future colliders, either leptonic such as the International Linear Collider (ILC) or hadronic such as the 100 TeV Future Circular Collider in hadron-hadron mode (FCC-hh). We have recently proposed this observable as a test of neutrino mass generating mechanisms in a regime where heavy sterile neutrino masses are hard to be probed otherwise. We present in this article a study of the one-loop corrected triple Higgs coupling in the inverse seesaw model, taking into account all relevant constraints on the model. This is the first study of the impact on the triple Higgs coupling of heavy neutrinos in a realistic, renormalizable neutrino mass model. We obtain deviations from the Standard Model as large as to ∼+30% that are at the current limit of the HL-LHC sensitivity, but would be clearly visible at the ILC or at the FCC-hh.

  1. Study of the mass of the electron neutrino in Japan

    International Nuclear Information System (INIS)

    Yasumi, Shinjiro; Maezawa, Hideki

    1996-02-01

    This report describes a study of the mass of the electron neutrino using electron capture in 163 Ho in Japan for the period from 1981 to 1994. This monograph has two purposes, one is to supplement the papers on the mass of the electron neutrino already published by us and another is to make a record on some details of our experiments for future. Electron capture in a nucleus takes place in a rather small space inside an atom, where atomic physics, nuclear physics and particle physics work closely together. Therefore, this study needed an intimate collaboration of atomic physicists, nuclear physicists and particle physicists. In addition, it was necessary for this study to use various fine techniques, including metallurgy, production of 163 Ho activity, micro-analysis by wet chemistry, isotope-dilution mass spectrometry, undulator radiation source technology, the soft X-ray monochromator technology, a counting technique for very intense soft X-rays and so on. As a result, our collaboration consisted of many researchers from various fields as follows; M. Ando, H. Arai, M. Fujioka, N. Hashimoto, H. Ikeda, Y. Inagaki, K. Ishii, K. Itoh, G. Izawa, O. Kawakami, S. Kishimoto, H. Kitamura, H. Maezawa, M. Maruyama, A. Masuda, K. Masumoto, A. Mikuni, T. Mizogawa, T. Mukoyama, F. Ochiai, T. Ohta, T. Omori, G. Rajasekaran, K. Sera, K. Shima, T. Shinozuka, P.M. Stefan, I. Sugai, H. Taketani, M. Yagi, and S. Yasumi. Without such an excellent collaboration, this study would not have been completed. We would like to express our sincere gratitude to Professor T. Sasaki for supporting this study and recommending the undulator beam line of 2.5 GeV Photon Factory Storage Ring as a light source to be used in the experiment. We also would like to thank Dr. A. Yagishita and Dr. Y. Kitajima who are responsible for the BL-2 beamline. Finally we are grateful to Ms. M. Noji for her patient typewriting of manuscripts written by hand. (author)

  2. Implications of the Mikheyev-Smirnov-Wolfenstein (MSW) mechanism of amplification of neutrino oscillations in matter

    International Nuclear Information System (INIS)

    Langacker, P.; Petcov, S.T.; Steigman, G.; Toshev, S.

    1987-01-01

    Mikheyev and Smirnov have recently proposed a novel and plausible solution of the solar neutrino problem, based on the resonant amplification of the neutrino oscillations in matter. We comment on several aspects of this mechanism. (i) For the values of neutrino masses and mixing angles predicted by the seesaw model of grand unified theories, the MSW effect may take place naturally in the Sun, leading to a considerable reduction of the flux of solar electron neutrinos, with the dominant transition being ν e →ν τ (rather than ν e →ν μ ). (ii) Oscillations between the ordinary neutrinos (ν e ,ν μ ,ν τ ) can affect primordial nucleosynthesis, but the effect is small (i.e., the abundance of 4 He is predicted to change by less than 1.3x10 -3 ). (iii) A comparison of some of the general properties of neutrino oscillations in matter and in vacuum is given. (orig.)

  3. Neutrino oscillations from discrete non-Abelian family symmetries

    International Nuclear Information System (INIS)

    Schmaltz, M.

    1994-11-01

    The author discusses a SUSY-GUT model with a non-Abelian discrete family symmetry that explains the observed hierarchical pattern of quark and lepton masses. This SO(10) x Δ(75) model predicts modified quadratic seesaw neutrino masses and mixing angles which are interesting for three reasons: (1) they offer a solution to the solar neutrino problem, (2) the tau neutrino has the right mass for a cosmologically interesting hot dark matter candidate, and (3) they suggest a positive result for the ν μ → ν τ oscillation searches by the CHORUS and NOMAD collaborations. However, the model shares some problems with many other predictive GUT models of quark and lepton masses. Well-known and once successful mass and angle relations, such as the SU(5) relation λ b GUT = λ t GUT , are found to be in conflict with the current experimental status. Attempts to correct these relations seem to lead to rather contrived models

  4. Neutrino oscillations from discrete non-Abelian family symmetries

    International Nuclear Information System (INIS)

    Schmaltz, M.

    1995-01-01

    I disuss a SUSY GUT model with a non-Abelian discrete family symmetry that explains the observed hierarchical pattern of quark and lepton masses. This SO(10)xΔ(75) model predicts modified quadratic seesaw neutrino masses and mixing angles which are interesting for three reasons: (i) they offer a solution to the solar neutrino problem, (ii) the τ neutrino has the right mass for a cosmologically interesting hot dark matter candidate, and (iii) they suggest a positive result for the ν μ →ν τ oscillation searches by the CHORUS and NOMAD Collaborations. However, the model shares some problems with many other predictive GUT models of quark and lepton masses. The predictions from well-known mass and angle relations, such as the relation λ b GUT =λ τ GUT , fail in many cases. Attempts to correct these relations seem to lead to rather contrived models

  5. Neutrino physics

    International Nuclear Information System (INIS)

    Gil-Botella, I.

    2011-01-01

    The fundamental properties of neutrinos are reviewed in these lectures. The first part is focused on the basic characteristics of neutrinos in the Standard Model and how neutrinos are detected. Neutrino masses and oscillations are introduced and a summary of the most important experimental results on neutrino oscillations to date is provided. Then, present and future experimental proposals are discussed, including new precision reactor and accelerator experiments. Finally, different approaches for measuring the neutrino mass and the nature (Majorana or Dirac), of neutrinos are reviewed. The detection of neutrinos from supernovae explosions and the information that this measurement can provide are also summarized at the end. (author)

  6. Neutrino masses, scale-dependent growth, and redshift-space distortions

    Energy Technology Data Exchange (ETDEWEB)

    Hernández, Oscar F., E-mail: oscarh@physics.mcgill.ca [Marianopolis College, 4873 Westmount Ave., Westmount, QC H3Y 1X9 (Canada)

    2017-06-01

    Massive neutrinos leave a unique signature in the large scale clustering of matter. We investigate the wavenumber dependence of the growth factor arising from neutrino masses and use a Fisher analysis to determine the aspects of a galaxy survey needed to measure this scale dependence.

  7. Cosmological nucleosynthesis and active-sterile neutrino oscillations with small mass differences: the nonresonant case

    International Nuclear Information System (INIS)

    Kirilova, D.P.; Chizhov, M.V.

    1998-05-01

    We study the nonresonant oscillations between left-handed electron neutrinos ν s and nonthermalized sterile neutrinos ν s in the early Universe plasma. The case when ν s do not thermalize till 2 MeV and the oscillations become effective after ν e decoupling is discussed. As far as for this model the rates of expansion of the Universe, neutrino oscillations and neutrino interactions with the medium may be comparable, we have analyzed the kinetic equations for neutrino density matrix, accounting simultaneously for these processes. The evolution of neutrino ensembles was described numerically by integrating the kinetic equations for the neutrino density matrix in momentum space for small mass differences δm 2 ≤10 -7 eV 2 . This approach allowed us to study precisely the evolution of the neutrino number densities, energy spectrum distortion and the asymmetry between neutrinos and antineutrinos due to oscillations for each momentum mode. We have performed a complete numerical analysis for the full range of the oscillations parameters of the model of the influence of the nonequilibrium ν e ↔ν s oscillations on the primordial production of 4 He. The exact kinetic approach enabled us to calculate the effects of neutrino population depletion, the distortion of the neutrino spectrum and the generation of neutrino-antineutrino asymmetry on the kinetics of neutron-to-proton transitions during the primordial nucleosynthesis epoch and correspondingly on the cosmological 4 He production. It was shown that the neutrino population depletion and spectrum distortion play an important role. The asymmetry effect, in case the lepton asymmetry is accepted initially equal to the baryon one, is proved to be negligible for the discussed range of δm 2 . Constant helium contours in δm 2 -θ plane were calculated. Thanks to the exact kinetic approach more precise cosmological constraints on the mixing parameters were obtained. (author)

  8. TRIMS: Validating T2 Molecular Effects for Neutrino Mass Experiments

    Science.gov (United States)

    Lin, Ying-Ting; Trims Collaboration

    2017-09-01

    The Tritium Recoil-Ion Mass Spectrometer (TRIMS) experiment examines the branching ratio of the molecular tritium (T2) beta decay to the bound state (3HeT+). Measuring this branching ratio helps to validate the current molecular final-state theory applied in neutrino mass experiments such as KATRIN and Project 8. TRIMS consists of a magnet-guided time-of-flight mass spectrometer with a detector located on each end. By measuring the kinetic energy and time-of-flight difference of the ions and beta particles reaching the detectors, we will be able to distinguish molecular ions from atomic ones and hence derive the ratio in question. We will give an update on the apparatus, simulation software, and analysis tools, including efforts to improve the resolution of our detectors and to characterize the stability and uniformity of our field sources. We will also share our commissioning results and prospects for physics data. The TRIMS experiment is supported by U.S. Department of Energy Office of Science, Office of Nuclear Physics, Award Number DE-FG02-97ER41020.

  9. Dark matter stability and one-loop neutrino mass generation based on Peccei-Quinn symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Suematsu, Daijiro [Kanazawa University, Institute for Theoretical Physics, Kanazawa (Japan)

    2018-01-15

    We propose a model which is a simple extension of the KSVZ invisible axion model with an inert doublet scalar. Peccei-Quinn symmetry forbids tree-level neutrino mass generation and its remnant Z{sub 2} symmetry guarantees dark matter stability. The neutrino masses are generated by one-loop effects as a result of the breaking of Peccei-Quinn symmetry through a nonrenormalizable interaction. Although the low energy effective model coincides with an original scotogenic model which contains right-handed neutrinos with large masses, it is free from the strong CP problem. (orig.)

  10. Texture one zero Dirac neutrino mass matrix with vanishing determinant or trace condition

    Science.gov (United States)

    Singh, Madan

    2018-06-01

    In the light of non-zero and relatively large value of rector mixing angle (θ13), we have performed a detailed analysis of texture one zero neutrino mass matrix Mν in the scenario of vanishing determinant/trace conditions, assuming the Dirac nature of neutrinos. In both the scenarios, normal mass ordering is ruled out for all the six possibilities of Mν, however for inverted mass ordering, only two are found to be viable with the current neutrino oscillation data at 3σ confidence level. Numerical and some approximate analytical results are presented.

  11. Dark matter stability and one-loop neutrino mass generation based on Peccei-Quinn symmetry

    Science.gov (United States)

    Suematsu, Daijiro

    2018-01-01

    We propose a model which is a simple extension of the KSVZ invisible axion model with an inert doublet scalar. Peccei-Quinn symmetry forbids tree-level neutrino mass generation and its remnant Z_2 symmetry guarantees dark matter stability. The neutrino masses are generated by one-loop effects as a result of the breaking of Peccei-Quinn symmetry through a nonrenormalizable interaction. Although the low energy effective model coincides with an original scotogenic model which contains right-handed neutrinos with large masses, it is free from the strong CP problem.

  12. Muon anomalous magnetic moment in SUSY B−L model with inverse seesaw

    Directory of Open Access Journals (Sweden)

    Shaaban Khalil

    2016-12-01

    Full Text Available Motivated by the tension between the Higgs mass and muon g−2 in minimal supersymmetric standard model (MSSM, we analyze the muon g−2 in supersymmetric B−L extension of the standard model (BLSSM with inverse seesaw mechanism. In this model, the Higgs mass receives extra important radiative corrections proportional to large neutrino Yukawa coupling. We point out that muon g−2 also gets significant contribution, due to the constructive interferences of light neutralino effects. The light neutralinos are typically the MSSM Bino like and the supersymmetric partner of U(1B−L gauge boson (B˜′-ino. We show that with universal soft supersymmetry breaking terms, the muon g−2 resides within 2σ of the measured value, namely ∼20×10−10, with Higgs mass equal to 125 GeV.

  13. Neutrino masses from U(1) symmetries and the Super-Kamiokande data

    CERN Document Server

    Lola, S; Lola, Smaragda; Ross, Graham G.

    1999-01-01

    Motivated by the Super-Kamiokande data, we revisit models with U(1) symmetries and discuss the origin of neutrino masses and mixings in such theories. We show that, in models with just three light neutrinos and a hierarchy of neutrino masses, large (2-3) mixing fixes the lepton doublet U(1) charges and is thus related to the structure of the charged lepton mass matrix. We discuss the fermion mass structure that follows from the abelian family symmetry with an extended gauge group. Requiring that the quark and lepton masses be ordered by the family symmetry, we identify the most promising scheme. This requires large, but not necessarily maximal, mixing in the mu tau sector and gives e mu mixing in the range that is required for the small angle solution of the solar neutrino deficit.

  14. Study of the mass of the electron neutrino in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Yasumi, Shinjiro; Maezawa, Hideki [eds.

    1996-02-01

    This report describes a study of the mass of the electron neutrino using electron capture in {sup 163}Ho in Japan for the period from 1981 to 1994. This monograph has two purposes, one is to supplement the papers on the mass of the electron neutrino already published by us and another is to make a record on some details of our experiments for future. Electron capture in a nucleus takes place in a rather small space inside an atom, where atomic physics, nuclear physics and particle physics work closely together. Therefore, this study needed an intimate collaboration of atomic physicists, nuclear physicists and particle physicists. In addition, it was necessary for this study to use various fine techniques, including metallurgy, production of {sup 163}Ho activity, micro-analysis by wet chemistry, isotope-dilution mass spectrometry, undulator radiation source technology, the soft X-ray monochromator technology, a counting technique for very intense soft X-rays and so on. As a result, our collaboration consisted of many researchers from various fields as follows; M. Ando, H. Arai, M. Fujioka, N. Hashimoto, H. Ikeda, Y. Inagaki, K. Ishii, K. Itoh, G. Izawa, O. Kawakami, S. Kishimoto, H. Kitamura, H. Maezawa, M. Maruyama, A. Masuda, K. Masumoto, A. Mikuni, T. Mizogawa, T. Mukoyama, F. Ochiai, T. Ohta, T. Omori, G. Rajasekaran, K. Sera, K. Shima, T. Shinozuka, P.M. Stefan, I. Sugai, H. Taketani, M. Yagi, and S. Yasumi. Without such an excellent collaboration, this study would not have been completed. We would like to express our sincere gratitude to Professor T. Sasaki for supporting this study and recommending the undulator beam line of 2.5 GeV Photon Factory Storage Ring as a light source to be used in the experiment. We also would like to thank Dr. A. Yagishita and Dr. Y. Kitajima who are responsible for the BL-2 beamline. Finally we are grateful to Ms. M. Noji for her patient typewriting of manuscripts written by hand. (author).

  15. Search for GeV-Scale Sterile Neutrinos Responsible for Active Neutrino Oscillations and Baryon Asymmetry of the Universe

    Directory of Open Access Journals (Sweden)

    S. N. Gninenko

    2012-01-01

    Full Text Available Standard Model fails to explain neutrino oscillations, dark matter, and baryon asymmetry of the Universe. All these problems can be solved with three sterile neutrinos added to SM. Quite remarkably, if sterile neutrino masses are well below the electroweak scale, this modification—Neutrino Minimal Standard Model (νMSM—can be tested experimentally. We discuss a new experiment on search for decays of GeV-scale sterile neutrinos, which are responsible for the matter-antimatter asymmetry generation and for the active neutrino masses. If lighter than 2 GeV, these particles can be produced in decays of charm mesons generated by high energy protons in a target, and subsequently decay into SM particles. To fully explore this sector of νMSM, the new experiment requires data obtained with at least 1020 incident protons on target (achievable at CERN SPS in future and a big volume detector constructed from a large amount of identical single modules, with a total sterile neutrino decay length of few kilometers. The preliminary feasibility study for the proposed experiment shows that it has sensitivity which may either lead to the discovery of new particles below the Fermi scale—right-handed partners of neutrinos—or rule out seesaw sterile neutrinos with masses below 2 GeV.

  16. Neutrino mass and mixing: from theory to experiment

    International Nuclear Information System (INIS)

    King, Stephen F; Merle, Alexander; Morisi, Stefano; Shimizu, Yusuke; Tanimoto, Morimitsu

    2014-01-01

    The origin of fermion mass hierarchies and mixings is one of the unresolved and most difficult problems in high-energy physics. One possibility to address the flavour problems is by extending the standard model to include a family symmetry. In the recent years it has become very popular to use non-Abelian discrete flavour symmetries because of their power in the prediction of the large leptonic mixing angles relevant for neutrino oscillation experiments. Here we give an introduction to the flavour problem and to discrete groups that have been used to attempt a solution for it. We review the current status of models in light of the recent measurement of the reactor angle, and we consider different model-building directions taken. The use of the flavons or multi-Higgs scalars in model building is discussed as well as the direct versus indirect approaches. We also focus on the possibility of experimentally distinguishing flavour symmetry models by means of mixing sum rules and mass sum rules. In fact, we illustrate in this review the complete path from mathematics, via model building, to experiments, so that any reader interested in starting work in the field could use this text as a starting point in order to obtain a broad overview of the different subject areas

  17. General analysis of corrections to the standard seesaw formula in grand unified models

    International Nuclear Information System (INIS)

    Barr, S.M.; Kyae, Bumseok

    2004-01-01

    In realistic grand unified models there are typically extra vectorlike matter multiplets at the GUT-scale that are needed to explain the family hierarchy. These contain neutrinos that, when integrated out, can modify the usual neutrino seesaw formula. A general analysis is given. It is noted that such modifications can explain why the neutrinos do not exhibit a strong family hierarchy like the other types of fermions

  18. Can the neutrino mass be measured using /sup 163/Ho electron capture

    International Nuclear Information System (INIS)

    Bennett, C.L.

    1985-01-01

    The safest limit on the neutrino mass comes from allowing the interference amplitude to be a free parameter in a fit to Springer's inner bremsstrahlung data while fixing the Q value to its upper limit based on the results of the relative capture rates from F. Hartmann's data. Since /sup 163/Ho was the most promising electron capture candidate for a neutrino mass detector, it is unlikely that electron capture will ever compete with tritium beta decay in terms of sensitivity to neutrino mass. The best fundamental thing that can be said is that the limit of the difference in the mass of the neutrino and its anti-particle is smaller in absolute value than for any other fermion anti-fermion pair

  19. Search for indications of the neutrino mass hierarchy using IceCube/DeepCore

    Energy Technology Data Exchange (ETDEWEB)

    Leuermann, Martin; Vehring, Markus; Wallraff, Marius; Wiebusch, Christopher [III. Physikalisches Institut B, RWTH Aachen (Germany); Collaboration: IceCube-Collaboration

    2016-07-01

    In 2015, the Nobel prize in physics was awarded for ''the discovery of neutrino oscillations, which shows that neutrinos have mass'', showing the high relevance of neutrino masses for modern particle physics. However, the ordering of the three neutrino masses is still unknown and is often referred to as neutrino mass hierarchy. Its measurement is a major goal for future experiments. One strategy is to measure matter effects in the oscillation pattern of atmospheric neutrinos e.g. as proposed for the PINGU extension of the IceCube neutrino observatory. Already now, the IceCube/DeepCore detector at the Geographic South Pole can be used to search for this signature. In this talk, we present an analysis based on data taken between 2011 and 2015. Due to recent improvements in the detector's reconstruction performance and the quality of the data selection, a measurement on the significance level of 1 sigma is expected.

  20. A radiative neutrino mass model in light of DAMPE excess with hidden gauged U(1) symmetry

    Science.gov (United States)

    Nomura, Takaaki; Okada, Hiroshi; Wu, Peiwen

    2018-05-01

    We propose a one-loop induced neutrino mass model with hidden U(1) gauge symmetry, in which we successfully involve a bosonic dark matter (DM) candidate propagating inside a loop diagram in neutrino mass generation to explain the e+e‑ excess recently reported by the DArk Matter Particle Explorer (DAMPE) experiment. In our scenario dark matter annihilates into four leptons through Z' boson as DM DM → Z' Z' (Z' → l+ l‑) and Z' decays into leptons via one-loop effect. We then investigate branching ratios of Z' taking into account lepton flavor violations and neutrino oscillation data.

  1. Neutrino masses in the SU(5) x (lower case x) SU(5)' mirror symmetric model

    International Nuclear Information System (INIS)

    Collie, M.; Foot, R.

    1998-02-01

    Motivated by the atmospheric and solar neutrino anomalies, we study neutrino masses in a parity invariant SU(5) x SU(5)' grand unified model. Two distinct ways of incorporating neutrino masses into this model are envisaged. One way involves adding a gauge singlet fermion to each generation. The other way, is to extend the scalar sector. This possibility suggests that photon - mirror photon kinetic mixing is non-zero since is generated radiatively. It is argued that the kinetic mixing is such models may well be close to the experimental limit

  2. Neutrino masses, dark matter and leptogenesis with U(1) B - L gauge symmetry

    Science.gov (United States)

    Geng, Chao-Qiang; Okada, Hiroshi

    2018-06-01

    We propose a model with an U(1) B - L gauge symmetry, in which small neutrino masses, dark matter and the matter-antimatter asymmetry in the Universe can be simultaneously explained. In particular, the neutrino masses are generated radiatively, while the matter-antimatter asymmetry is led by the leptogenesis mechanism, at TeV scale. We also explore allowed regions of the model parameters and discuss some phenomenological effects, including lepton flavor violating processes.

  3. Oblique corrections in a model with neutrino masses and strong C P resolution

    International Nuclear Information System (INIS)

    Natale, A.A.; Rodrigues da Silva, P.S.

    1994-01-01

    Our intention in this work is to verify what is the order of the limits we obtain on the light neutrino masses, through the calculation and comparison of the oblique corrections with the experimental data. The calculation will be performed for a specific model, although we expect it to be sufficiently general to give one idea of the limits that can be obtained on neutrino masses in this class of models. (author)

  4. Molecular effects in the neutrino mass determination from beta-decay of the tritium molecule

    International Nuclear Information System (INIS)

    Fackler, O.; Jeziorski, B.; Kolos, W.; Szalewicz, K.; Monkhorst, H.J.; Mugge, M.

    1986-03-01

    Molecular final state energies and transition probabilities have been computed for beta-decay of the tritium molecule. The results are of sufficient accuracy to make a determination of the electron neutrino rest mass with an error not exceeding a few tenths of an electron volt. Effects of approximate models of tritium beta-decay on the neutrino mass determination are discussed. 14 refs., 3 figs., 1 tab

  5. A Dynamical Origin of the Mass Hierarchy among Neutrinos, Charged Leptons, and Quarks

    OpenAIRE

    Akama, Keiichi; Katsuura, Kazuo

    1998-01-01

    We propose a dynamical mass-generation scenario which naturally realizes the mass hierarchy among the neutrinos, charged leptons and quarks, where the mass is dominated by the self-mass induced through the anomalous (i.e. non-minimal) gauge interactions.

  6. Measuring the neutrino mass hierarchy with the future KM3NeT/ORCA detector

    Energy Technology Data Exchange (ETDEWEB)

    Hofestaedt, Jannik

    2017-02-22

    The neutrino mass hierarchy can be determined by measuring the energy- and zenith-angle-dependent oscillation pattern of few-GeV atmospheric neutrinos that have traversed the Earth. This measurement is the main science goal of KM3NeT/ORCA ('Oscillation Research with Cosmics in the Abyss'), a planned multi-megaton underwater Cherenkov detector in the Mediterranean Sea. A key task is the reconstruction of shower-like events induced by electron neutrinos in charged-current interactions, which substantially affect the neutrino mass hierarchy sensitivity. In this thesis, numerous aspects of the expected neutrino detection performance of the planned ORCA detector are investigated. A new reconstruction algorithm for neutrino-induced shower-like events is developed. Excellent reconstruction accuracies are achieved, with a neutrino energy resolution better than 26%/24%, and a median neutrino direction resolution better than 11 /9 for electron neutrinos/antineutrinos in charged-current interactions with energies above 7 GeV. It is shown that these resolutions are close to the reconstruction accuracy limits imposed by intrinsic fluctuations in the Cherenkov light signatures. These intrinsic resolution limits are based on generic assumptions about event reconstruction in Cherenkov detectors and are derived as part of this thesis. Differences in event reconstruction capabilities between water- and ice-based Cherenkov detectors are discussed. The configuration of existing trigger algorithms is optimised for the ORCA detector. Based on the developed shower reconstruction, a detector optimisation study of the photosensor density is performed. In addition, it is shown that optical background noise in the deep Mediterranean Sea is not expected to compromise the feasibility of the neutrino mass hierarchy measurement with ORCA. Together, these investigations contribute significantly to the estimated neutrino mass hierarchy sensitivity of ORCA published in the 'Letter of

  7. Texture zero neutrino models and their connection with resonant leptogenesis

    Science.gov (United States)

    Achelashvili, Avtandil; Tavartkiladze, Zurab

    2018-04-01

    Within the low scale resonant leptogenesis scenario, the cosmological CP asymmetry may arise by radiative corrections through the charged lepton Yukawa couplings. While in some cases, as one expects, decisive role is played by the λτ coupling, we show that in specific neutrino textures only by inclusion of the λμ the cosmological CP violation is generated at 1-loop level. With the purpose to relate the cosmological CP violation to the leptonic CP phase δ, we consider an extension of MSSM with two right handed neutrinos (RHN), which are degenerate in mass at high scales. Together with this, we first consider two texture zero 3 × 2 Dirac Yukawa matrices of neutrinos. These via see-saw generated neutrino mass matrices augmented by single ΔL = 2 dimension five (d = 5) operator give predictive neutrino sectors with calculable CP asymmetries. The latter is generated through λμ,τ coupling(s) at 1-loop level. Detailed analysis of the leptogenesis is performed. We also revise some one texture zero Dirac Yukawa matrices, considered earlier, and show that addition of a single ΔL = 2, d = 5 entry in the neutrino mass matrices, together with newly computed 1-loop corrections to the CP asymmetries, give nice accommodation of the neutrino sector and desirable amount of the baryon asymmetry via the resonant leptogenesis even for rather low RHN masses (∼few TeV-107 GeV).

  8. Can measurements of electric dipole moments determine the seesaw parameters?

    International Nuclear Information System (INIS)

    Demir, Durmus A.; Farzan, Yasaman

    2005-01-01

    In the context of the supersymmetrized seesaw mechanism embedded in the Minimal Supersymmetric Standard Model (MSSM), complex neutrino Yukawa couplings can induce Electric Dipole Moments (EDMs) for the charged leptons, providing an additional route to seesaw parameters. However, the complex neutrino Yukawa matrix is not the only possible source of CP violation. Even in the framework of Constrained MSSM (CMSSM), there are additional sources, usually attributed to the phases of the trilinear soft supersymmetry breaking couplings and the mu-term, which contribute not only to the electron EDM but also to the EDMs of neutron and heavy nuclei. In this work, by combining bounds on various EDMs, we analyze how the sources of CP violation can be discriminated by the present and planned EDM experiments

  9. Experimental tests for the Babu-Zee two-loop model of Majorana neutrino masses

    International Nuclear Information System (INIS)

    Sierra, Diego Aristizabal; Hirsch, Martin

    2006-01-01

    The smallness of the observed neutrino masses might have a radiative origin. Here we revisit a specific two-loop model of neutrino mass, independently proposed by Babu and Zee. We point out that current constraints from neutrino data can be used to derive strict lower limits on the branching ratio of flavour changing charged lepton decays, such as μ→eγ. Non-observation of Br(μ→eγ) at the level of 10 -13 would rule out singly charged scalar masses smaller than 590 GeV (5.04 TeV) in case of normal (inverse) neutrino mass hierarchy. Conversely, decay branching ratios of the non-standard scalars of the model can be fixed by the measured neutrino angles (and mass scale). Thus, if the scalars of the model are light enough to be produced at the LHC or ILC, measuring their decay properties would serve as a direct test of the model as the origin of neutrino masses

  10. Experimental tests for the Babu-Zee two-loop model of Majorana neutrino masses

    International Nuclear Information System (INIS)

    Aristizabal, D.

    2006-01-01

    Abstract: The smallness of the observed neutrino masses might have a radiative origin. Here we revisit a specific two-loop model of neutrino mass, independently proposed by Babu and Zee. We point out that current constraints from neutrino data can be used to derive strict lower limits on the branching ratio of flavour changing charged lepton decays, such as μ → e γ. Non-observation of Br(μ → e γ) at the level of 10 -13 would rule out singly charged scalar masses smaller than 590 GeV (5.04 TeV) in case of normal (inverse) neutrino mass hierarchy. Conversely, decay branching ratios of the non-standard scalars of the model can be fixed by the measured neutrino angles (and mass scale). Thus, if the scalars of the model are light enough to be produced at the LHC or ILC, measuring their decay properties would serve as a direct test of the model as the origin of neutrino masses. (author)

  11. Closing in on minimal dark matter and radiative neutrino masses

    Energy Technology Data Exchange (ETDEWEB)

    Sierra, D. Aristizabal [IFPA, Dép. AGO, Université de Liège, Bât B5, Sart Tilman B-4000 Liège 1 (Belgium); Departamento de Física, Universidad Técnica Federico Santa María, Casilla 110-V, Avda. España 1680, Valparaiso (Chile); Simoes, C.; Wegman, D. [IFPA, Dép. AGO, Université de Liège, Bât B5, Sart Tilman B-4000 Liège 1 (Belgium)

    2016-06-20

    We study one-loop radiative neutrino mass models in which one of the beyond-the-standard model fields is either a hypercharge-zero fermion quintet (minimal dark matter) or a hypercharge-zero scalar septet. By systematically classifying all possible one-loop such models we identify various processes that render the neutral component of these representations (dark matter) cosmologically unstable. Thus, our findings show that these scenarios are in general not reconcilable with dark matter stability unless tiny couplings or additional ad hoc symmetries are assumed, in contrast to minimal dark matter models where stability is entirely due to the standard model gauge symmetry. For some variants based on higher-order loops we find that α{sub 2} reaches a Landau pole at rather low scales, a couple orders of magnitude from the characteristic scale of the model itself. Thus, we argue that some of these variations although consistent with dark matter stability and phenomenological constraints are hard to reconcile with perturbativity criteria.

  12. Oscillating asymmetric sneutrino dark matter from the maximally U(1L supersymmetric inverse seesaw

    Directory of Open Access Journals (Sweden)

    Shao-Long Chen

    2016-10-01

    Full Text Available The inverse seesaw mechanism provides an attractive approach to generate small neutrino mass, which origins from a tiny U(1L breaking. In this paper, we work in the supersymmetric version of this mechanism, where the singlet-like sneutrino could be an asymmetric dark matter (ADM candidate in the maximally U(1L symmetric limit. However, even a tiny δm, the mass splitting between sneutrino and anti-sneutrino as a result of the tiny U(1L breaking effect, could lead to fast oscillation between sneutrino and anti-sneutrino and thus spoils the ADM scenario. We study the evolution of this oscillation and find that a weak scale sneutrino, which tolerates a relatively larger δm∼10−5 eV, is strongly favored. We also investigate possible natural ways to realize that small δm in the model.

  13. Neutrino masses in RPV models with two pairs of Higgs doublets

    Energy Technology Data Exchange (ETDEWEB)

    Grossman, Yuval [Laboratory for Elementary-Particle Physics, Cornell University,Ithaca, N.Y. (United States); Peset, Clara [Institut de Fisica d’Altes Energies (IFAE), Universitat Autònoma de Barcelona,08193 Bellaterra, Barcelona (Spain)

    2014-04-07

    We study the generation of neutrino masses and mixing in supersymmetric R-parity violating models containing two pairs of Higgs doublets. In these models, new RPV terms H^{sub D{sub 1}}H^{sub D{sub 2}}E^ arise in the superpotential, as well as new soft terms. Such terms give new contributions to neutrino masses. We identify the different parameters and suppression/enhancement factors that control each of these contributions. At tree level, just like in the MSSM, only one neutrino acquires a mass due to neutrino-neutralino mixing. There are no new one loop effects. We study the two loop contributions and find the conditions under which they can be important.

  14. Neutrino cosmology

    International Nuclear Information System (INIS)

    Berstein, J.

    1984-01-01

    These lectures offer a self-contained review of the role of neutrinos in cosmology. The first part deals with the question 'What is a neutrino.' and describes in a historical context the theoretical ideas and experimental discoveries related to the different types of neutrinos and their properties. The basic differences between the Dirac neutrino and the Majorana neutrino are pointed out and the evidence for different neutrino 'flavours', neutrino mass, and neutrino oscillations is discussed. The second part summarizes current views on cosmology, particularly as they are affected by recent theoretical and experimental advances in high-energy particle physics. Finally, the close relationship between neutrino physics and cosmology is brought out in more detail, to show how cosmological constraints can limit the various theoretical possibilities for neutrinos and, more particularly, how increasing knowledge of neutrino properties can contribute to our understanding of the origin, history, and future of the Universe. The level is that of the beginning graduate student. (orig.)

  15. Implication of the solar neutrino experiments

    International Nuclear Information System (INIS)

    Dar, A.; Nussinov, S.

    1992-01-01

    The recent results from the KAMIOKANDE II and BAKSAN solar neutrino experiments, if correct, imply that lepton flavour is not conserved. The Mikheyev-Smirnov-Wolfenstein (MSW) solution to the solar neutrino problem, which was first exposed by the HOMESTAKE Cl experiment, fully explains also these results if the electron neutrino is mixed with the muon neutrino or the tau neutrino with mixing parameters Δm 2 ≅ 10 -6 eV 2 2 and sin 2 Θ ≅ 4 x 10 -2 . This MSW solution can be tested with the new generation of solar neutrino experiments which will be able to detect both the predicted distortion of the spectrum of 8 B solar νe's and the 'missing' ν e 's that appear as ν μ 's or ν τ 's. Further evidence may be obtained from the day-night effect and from the flavour content of the neutronization burst from the birth of a neutron star in a nearby supernova. Moreover, the MSW solution combined with the seesaw mechanism for generating neutrino masses further suggests m νe ≅ 10 -8 eV, m νμ ≅ 10 -3 cV, m ντ ≅ 10eV, and sin 2 2Θ ≅ 4x10 -2 for ν μ ν τ mixing. These predictions can be tested by previously proposed neutrino oscillation experiments at accelerators and by detecting neutrinos from a nearby supernova explosion. A tau neutrino with m ντ ≅ 10 eV can account for most of the dark matter in the Universe and is a viable candidate for the hot dark matter scenario of the formation of large scale structure in the Universe. (orig.)

  16. Dirac or Majorana nature and mass effects on the neutrino behaviour; Effets de la nature de Dirac ou de Majorana, ainsi que de la masse, sur le comportement du neutrino

    Energy Technology Data Exchange (ETDEWEB)

    Campagne, J E

    1995-04-01

    This work deals with the Dirac or Majorana nature and mass effects on the neutrino behaviour. In the first part of this study are given the Dirac equation properties and the Majorana neutrino definition. As the difference between a Dirac and a Majorana neutrino has only a sense if their masses are not equal to zero, the second part presents a generalization of the Dirac mass term and the different ways to generate a neutrino mass. Several comparisons are made in the third part between quarks and leptons families mixtures which are linked intimately to masses generation. The fourth part gives an example of masses possible values and neutrinos particles mixtures matrix elements predicting. The neutrino electromagnetic and weak interactions are then considered as well as the neutrinos production by the neutral currents. The charged currents are however better to discriminate the Dirac or Majorana nature. The neutrinos propagation in the matter and in the vacuum are analyzed (the case of neutrino oscillations more particularly) under the result of recent experimental observations. At last, are presented the evaluation of neutrino mass (if it exists) through the analysis of double beta decay and the sensibility of future experiments. (O.L.). 164 refs., 73 figs., 20 tabs.

  17. Effect of atmospheric flux uncertainties on the determination of the neutrino mass hierarchy

    Directory of Open Access Journals (Sweden)

    Sandroos Joakim

    2016-01-01

    Full Text Available The next generation of large-volume neutrino telescopes will include low-energy subarrays which will be able to measure neutrinos with energies of a few GeV. In this energy range the primary signal below the horizon is neutrinos created by cosmic ray interactions in the atmosphere. The measured event rate will depend on the neutrino mass hierarchy, allowing determination of this quantity to a significance level of about 3.5 sigma within a 5-year period, mostly limited by systematic uncertainties. We present here the impact of the uncertainties on the atmospheric neutrino flux normalization on the determination of the neutrino mass hierarchy. We suggest constraining the systematic uncertainties by including the downgoing neutrino sample, which will increase the significance. This work was performed using simulation data from the low-energy extension to the IceCube detector located at the geographic south pole, PINGU, and is relevant to a wide range of other experiments.

  18. Experimental conditions for determination of the neutrino mass hierarchy with reactor antineutrinos

    Directory of Open Access Journals (Sweden)

    Myoung Youl Pac

    2016-01-01

    Full Text Available This article reports the optimized experimental requirements to determine neutrino mass hierarchy using electron antineutrinos (ν¯e generated in a nuclear reactor. The features of the neutrino mass hierarchy can be extracted from the |Δm312| and |Δm322| oscillations by applying the Fourier sine and cosine transforms to the L/E spectrum. To determine the neutrino mass hierarchy above 90% probability, the requirements on the energy resolution as a function of the baseline are studied at sin2⁡2θ13=0.1. If the energy resolution of the neutrino detector is less than 0.04/Eν and the determination probability obtained from Bayes' theorem is above 90%, the detector needs to be located around 48–53 km from the reactor(s to measure the energy spectrum of ν¯e. These results will be helpful for setting up an experiment to determine the neutrino mass hierarchy, which is an important problem in neutrino physics.

  19. Direct detection of darkmatter in radiative seesaw model

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Daniel; Schwetz, Thomas [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Toma, Takashi [Institute for Theoretical Physics, Kanazawa University (Japan)

    2012-07-01

    In the radiative seesaw model proposed by Ma, we assume that the lightest right-handed neutrino is the Dark Matter candidate and almost degenerated with the second lightest right-handed neutrino. Thus, elastic Dark Matter-nucleus scattering is suppressed. Inelastic scattering is induced by a lepton-loop coupled to the photon. Effectively, there are charge-charge, dipole-charge and dipole-dipole interactions. We present the event rate of the model and compare it with existing data. Moreover, monochromatic photons from the decay of the excited Dark Matter state are discussed.

  20. Neutrino mass and oscillation angle phenomena within the asymmetric left-right models

    International Nuclear Information System (INIS)

    Boyarkin, O.; Rein, D.

    1994-07-01

    The light and heavy Majorana neutrinos which appear naturally in SU(2) L x SU(2) R x U(1) B-L model are investigated. The exact solutions are presented for the system of two neutrinos with multipole moments propagating through magnetic and matter fields. The cross section of the reaction e - e - → W - k W - n calculated and its dependence on the mass of the right-handed neutrino and the oscillation angle is investigated. The process e + e - → W + k W - n is also included in our analysis. (author). 26 refs, 9 figs

  1. Neutrino Physics

    CERN Document Server

    Barenboim, G.

    2014-12-10

    The Standard Model has been incredibly successful in predicting the outcome of almost all the experiments done up so far. In it, neutrinos are mass-less. However, in recent years we have accumulated evidence pointing to tiny masses for the neutrinos (as compared to the charged leptons). These masses allow neutrinos to change their flavour and oscillate. In these lectures I review the properties of neutrinos in and beyond the Standard Model.

  2. EFFECTS OF THE NEUTRINO MASS SPLITTING ON THE NONLINEAR MATTER POWER SPECTRUM

    International Nuclear Information System (INIS)

    Wagner, Christian; Verde, Licia; Jimenez, Raul

    2012-01-01

    We have performed cosmological N-body simulations which include the effect of the masses of the individual neutrino species. The simulations were aimed at studying the effect of different neutrino hierarchies on the matter power spectrum. Compared to the linear theory predictions, we find that nonlinearities enhance the effect of hierarchy on the matter power spectrum at mildly nonlinear scales. The maximum difference between the different hierarchies is about 0.5% for a sum of neutrino masses of 0.1 eV. Albeit this is a small effect, it is potentially measurable from upcoming surveys. In combination with neutrinoless double-β decay experiments, this opens up the possibility of using the sky to determine if neutrinos are Majorana or Dirac fermions.

  3. Cosmology favoring extra radiation and sub-eV mass sterile neutrinos as an option.

    Science.gov (United States)

    Hamann, Jan; Hannestad, Steen; Raffelt, Georg G; Tamborra, Irene; Wong, Yvonne Y Y

    2010-10-29

    Precision cosmology and big-bang nucleosynthesis mildly favor extra radiation in the Universe beyond photons and ordinary neutrinos, lending support to the existence of low-mass sterile neutrinos. We use the WMAP 7-year data, small-scale cosmic microwave background observations from ACBAR, BICEP, and QuAD, the SDSS 7th data release, and measurement of the Hubble parameter from HST observations to derive credible regions for the assumed common mass scale m{s} and effective number N{s} of thermally excited sterile neutrino states. Our results are compatible with the existence of one or perhaps two sterile neutrinos, as suggested by LSND and MiniBooNE, if m{s} is in the sub-eV range.

  4. Unveiling ν secrets with cosmological data: Neutrino masses and mass hierarchy

    Science.gov (United States)

    Vagnozzi, Sunny; Giusarma, Elena; Mena, Olga; Freese, Katherine; Gerbino, Martina; Ho, Shirley; Lattanzi, Massimiliano

    2017-12-01

    Using some of the latest cosmological data sets publicly available, we derive the strongest bounds in the literature on the sum of the three active neutrino masses, Mν, within the assumption of a background flat Λ CDM cosmology. In the most conservative scheme, combining Planck cosmic microwave background temperature anisotropies and baryon acoustic oscillations (BAO) data, as well as the up-to-date constraint on the optical depth to reionization (τ ), the tightest 95% confidence level upper bound we find is Mν0.06 eV from oscillations data would raise the quoted upper bounds by O (0.1 σ ) and would not affect our conclusions.

  5. Neutrino Masses with Inverse Hierarchy from Broken $L_{e}-L_{\\mu}-L_{\\tau}$: a Reappraisal

    CERN Document Server

    Altarelli, Guido; Altarelli, Guido; Franceschini, Roberto

    2006-01-01

    We discuss a class of models of neutrino masses and mixings with inverse hierarchy based on a broken U(1)_F flavour symmetry with charge L_e-L_\\mu-L_\\tau. The symmetry breaking sector receives separate contributions from flavon vev breaking terms and from soft mass breaking in the right handed Majorana sector. The model is able to reproduce in a natural way all observed features of the charged lepton mass spectrum and of neutrino masses and mixings (even with arbitrarily small \\theta_{13}), with the exception of a moderate fine tuning which is needed to accomodate the observed small value of r = Delta m^2_{sol} / Delta m^2_{atm}.

  6. Insights into neutrino decoupling gleaned from considerations of the role of electron mass

    Science.gov (United States)

    Grohs, E.; Fuller, George M.

    2017-10-01

    We present calculations showing how electron rest mass influences entropy flow, neutrino decoupling, and Big Bang Nucleosynthesis (BBN) in the early universe. To elucidate this physics and especially the sensitivity of BBN and related epochs to electron mass, we consider a parameter space of rest mass values larger and smaller than the accepted vacuum value. Electromagnetic equilibrium, coupled with the high entropy of the early universe, guarantees that significant numbers of electron-positron pairs are present, and dominate over the number of ionization electrons to temperatures much lower than the vacuum electron rest mass. Scattering between the electrons-positrons and the neutrinos largely controls the flow of entropy from the plasma into the neutrino seas. Moreover, the number density of electron-positron-pair targets can be exponentially sensitive to the effective in-medium electron mass. This entropy flow influences the phasing of scale factor and temperature, the charged current weak-interaction-determined neutron-to-proton ratio, and the spectral distortions in the relic neutrino energy spectra. Our calculations show the sensitivity of the physics of this epoch to three separate effects: finite electron mass, finite-temperature quantum electrodynamic (QED) effects on the plasma equation of state, and Boltzmann neutrino energy transport. The ratio of neutrino to plasma-component energy scales manifests in Cosmic Microwave Background (CMB) observables, namely the baryon density and the radiation energy density, along with the primordial helium and deuterium abundances. Our results demonstrate how the treatment of in-medium electron mass (i.e., QED effects) could translate into an important source of uncertainty in extracting neutrino and beyond-standard-model physics limits from future high-precision CMB data.

  7. Insights into neutrino decoupling gleaned from considerations of the role of electron mass

    Directory of Open Access Journals (Sweden)

    E. Grohs

    2017-10-01

    Full Text Available We present calculations showing how electron rest mass influences entropy flow, neutrino decoupling, and Big Bang Nucleosynthesis (BBN in the early universe. To elucidate this physics and especially the sensitivity of BBN and related epochs to electron mass, we consider a parameter space of rest mass values larger and smaller than the accepted vacuum value. Electromagnetic equilibrium, coupled with the high entropy of the early universe, guarantees that significant numbers of electron–positron pairs are present, and dominate over the number of ionization electrons to temperatures much lower than the vacuum electron rest mass. Scattering between the electrons–positrons and the neutrinos largely controls the flow of entropy from the plasma into the neutrino seas. Moreover, the number density of electron–positron-pair targets can be exponentially sensitive to the effective in-medium electron mass. This entropy flow influences the phasing of scale factor and temperature, the charged current weak-interaction-determined neutron-to-proton ratio, and the spectral distortions in the relic neutrino energy spectra. Our calculations show the sensitivity of the physics of this epoch to three separate effects: finite electron mass, finite-temperature quantum electrodynamic (QED effects on the plasma equation of state, and Boltzmann neutrino energy transport. The ratio of neutrino to plasma–component energy scales manifests in Cosmic Microwave Background (CMB observables, namely the baryon density and the radiation energy density, along with the primordial helium and deuterium abundances. Our results demonstrate how the treatment of in-medium electron mass (i.e., QED effects could translate into an important source of uncertainty in extracting neutrino and beyond-standard-model physics limits from future high-precision CMB data.

  8. Precision electron-capture energy in {sup 202}Pb and its relevance for neutrino mass determination

    Energy Technology Data Exchange (ETDEWEB)

    Welker, A. [CERN, Geneva (Switzerland); Technische Universitaet Dresden, Dresden (Germany); Filianin, P. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Petersburg Nuclear Physics Institute, Gatchina (Russian Federation); Althubiti, N.A.S. [The University of Manchester, School of Physics and Astronomy, Manchester (United Kingdom); Atanasov, D.; Blaum, K.; Eliseev, S.; Kreim, S. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Cocolios, T.E. [The University of Manchester, School of Physics and Astronomy, Manchester (United Kingdom); KU Leuven, Instituut voor Kern- en Stralingsfysica, Leuven (Belgium); Herfurth, F.; Neidherr, D. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Lunney, D. [CSNSM-IN2P3-CNRS, Universite Paris-Sud, Orsay (France); Manea, V. [CERN, Geneva (Switzerland); Novikov, Yu. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Petersburg Nuclear Physics Institute, Gatchina (Russian Federation); Physics Faculty, St. Petersburg State University (Russian Federation); Rosenbusch, M.; Schweikhard, L.; Wienholtz, F. [Ernst-Moritz-Arndt-Universitaet, Institut fuer Physik, Greifswald (Germany); Wolf, R.N. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); The University of Sydney, ARC Centre of Excellence for Engineered Quantum Systems, Sydney (Australia); Zuber, K. [Technische Universitaet Dresden, Dresden (Germany)

    2017-07-15

    Within the framework of an extensive programme devoted to the search for alternative candidates for the neutrino mass determination, the atomic mass difference between {sup 202}Pb and {sup 202}Tl has been measured with the Penning trap mass spectrometer ISOLTRAP at the ISOLDE facility at CERN. The obtained value Q{sub EC} = 38.8(43) keV is three times more precise than the AME2012 value. While it will probably not lead to a replacement of {sup 163}Ho in modern experiments on the determination of the electron-neutrino mass, the electron capture in {sup 202}Pb would however allow a determination of the electron-neutrino mass on the few-eV level using a cryogenic micro-calorimeter. (orig.)

  9. Determining the neutrino mass hierarchy with INO, T2K, NOvA and reactor experiments

    International Nuclear Information System (INIS)

    Ghosh, Anushree; Choubey, Sandhya; Thakore, Tarak

    2013-01-01

    The relatively large measured value of θ 13 has opened up the possibility of determining the neutrino mass hierarchy through earth matter effects. Amongst the current accelerator experiments only NOvA has a long enough baseline to observe earth matter effects. However, even NOvA is plagued with uncertainty on the knowledge of the true value of Δ CP which drastically reduces its sensitivity to the neutrino mass hierarchy. Earth matter effects in atmospheric neutrinos on the other hand is almost independent of δ CP . The 50 kton magnetized Iron CALorimeter at the India-based Neutrino Observatory (ICAL at the rate lNO) will be observing atmospheric neutrinos. The charge identification capability of this detector gives it an edge over others for mass hierarchy determination through observation of earth matter effects. We study in detail the neutrino mass hierarchy sensitivity of the data from this experiment simulated using the Nuance based generator developed for ICAL at the rate lNO and folded with the detector resolution and efficiencies obtained by the INO collaboration from a full detector Geant based simulation. The data from ICAL at the rate lNO is then combined with simulated of T2K, NOvA Double Chooz, RENO and Daya Bay experiments and a combined sensitivity study to the mass hierarchy performed. With 10 years of ICAL at the rate lNO data combined with T2K, NOvA and reactor data, one could get 2.8σ - 5σ discovery for the neutrino mass hierarchy depending on the true value of (θ23, θ13 and δ CP . (author)

  10. Standard Model-Axion-Seesaw-Higgs portal inflation. Five problems of particle physics and cosmology solved in one stroke

    International Nuclear Information System (INIS)

    Ballesteros, Guillermo; Ringwald, Andreas; Tamarit, Carlos

    2016-10-01

    We present a minimal extension of the Standard Model (SM) providing a consistent picture of particle physics from the electroweak scale to the Planck scale and of cosmology from inflation until today. Three right-handed neutrinos N_i, a new color triplet Q and a complex SM-singlet scalar σ, whose vacuum expectation value υ_σ∝10"1"1 GeV breaks lepton number and a Peccei-Quinn symmetry simultaneously, are added to the SM. At low energies, the model reduces to the SM, augmented by seesaw generated neutrino masses and mixing, plus the axion. The latter solves the strong CP problem and accounts for the cold dark matter in the Universe. The inflaton is comprised by a mixture of σ and the SM Higgs and reheating of the Universe after inflation proceeds via the Higgs portal. Baryogenesis occurs via thermal leptogenesis. Thus, five fundamental problems of particle physics and cosmology are solved at one stroke in this unified Standard Model-Axion-Seesaw-Higgs portal inflation (SMASH) model. It can be probed decisively by upcoming cosmic microwave background and axion dark matter experiments.

  11. Neutrino physics

    CERN Document Server

    Hernandez, P.

    2016-01-01

    This is the writeup of the lectures on neutrino physics delivered at various schools: TASI and Trieste in 2013 and the CERN-Latin American School in 2015. The topics discussed in this lecture include: general properties of neutrinos in the SM, the theory of neutrino masses and mixings (Dirac and Majorana), neutrino oscillations both in vacuum and in matter, as well as an overview of the experimental evidence for neutrino masses and of the prospects in neutrino oscillation physics. We also briefly review the relevance of neutri- nos in leptogenesis and in beyond-the-Standard-Model physics.

  12. Neutrino astrophysics

    International Nuclear Information System (INIS)

    Roulet, E.

    2001-01-01

    A general overview of neutrino physics and astrophysics is given, starting with a historical account of the development of our understanding of neutrinos and how they helped to unravel the structure of the Standard Model. We discuss why it is so important to establish if neutrinos are massive and introduce the main scenarios to provide them a mass. The present bounds and the positive indications in favor of non-zero neutrino masses are discussed, including the recent results on atmospheric and solar neutrinos. The major role that neutrinos play in astrophysics and cosmology is illustrated. (author)

  13. An upper limit on the $\\tau$ neutrino mass from three- and five-prong tau decays

    CERN Document Server

    Barate, R; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Nief, J Y; Pietrzyk, B; Casado, M P; Chmeissani, M; Comas, P; Crespo, J M; Delfino, M C; Fernández, E; Fernández-Bosman, M; Garrido, L; Juste, A; Martínez, M; Merino, G; Miquel, R; Mir, L M; Padilla, C; Park, I C; Pascual, A; Perlas, J A; Riu, I; Sánchez, F; Colaleo, A; Creanza, D; De Palma, M; Gelao, G; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Abbaneo, D; Alemany, R; Becker, U; Bright-Thomas, P G; Casper, David William; Cattaneo, M; Cerutti, F; Dissertori, G; Drevermann, H; Forty, Roger W; Frank, M; Hagelberg, R; Hansen, J B; Harvey, J; Janot, P; Jost, B; Lehraus, Ivan; Mato, P; Minten, Adolf G; Moneta, L; Pacheco, A; Pusztaszeri, J F; Ranjard, F; Rolandi, Luigi; Rousseau, D; Schlatter, W D; Schmitt, M; Schneider, O; Tejessy, W; Teubert, F; Tomalin, I R; Wachsmuth, H W; Wagner, A; Ajaltouni, Ziad J; Barrès, A; Boyer, C; Falvard, A; Ferdi, C; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rosnet, P; Rossignol, J M; Fearnley, Tom; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Rensch, B; Wäänänen, A; Daskalakis, G; Kyriakis, A; Markou, C; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Rougé, A; Rumpf, M; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Boccali, T; Focardi, E; Parrini, G; Zachariadou, K; Corden, M; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Dorris, S J; Halley, A W; Lynch, J G; O'Shea, V; Raine, C; Scarr, J M; Smith, K; Teixeira-Dias, P; Thompson, A S; Thomson, E; Thomson, F; Buchmüller, O L; Dhamotharan, S; Geweniger, C; Graefe, G; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Sommer, J; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Girone, M; Goodsir, S M; Martin, E B; Moutoussi, A; Nash, J; Sedgbeer, J K; Spagnolo, P; Stacey, A M; Williams, M D; Ghete, V M; Girtler, P; Kneringer, E; Kuhn, D; Rudolph, G; Betteridge, A P; Bowdery, C K; Buck, P G; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Jones, R W L; Sloan, Terence; Williams, M I; Giehl, I; Greene, A M; Hoffmann, C; Jakobs, K; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Benchouk, C; Bonissent, A; Bujosa, G; Carr, J; Coyle, P; Diaconu, C A; Etienne, F; Leroy, O; Motsch, F; Payre, P; Talby, M; Sadouki, A; Thulasidas, M; Trabelsi, K; Aleppo, M; Antonelli, M; Ragusa, F; Berlich, R; Blum, Walter; Büscher, V; Dietl, H; Ganis, G; Gotzhein, C; Kroha, H; Lütjens, G; Lutz, Gerhard; Mannert, C; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Stenzel, H; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Chen, S; Choi, Y; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Höcker, A; Jacholkowska, A; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Nikolic, I A; Schune, M H; Tournefier, E; Veillet, J J; Videau, I; Zerwas, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Palla, Fabrizio; Rizzo, G; Sanguinetti, G; Sciabà, A; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Vannini, C; Venturi, A; Verdini, P G; Blair, G A; Bryant, L M; Chambers, J T; Green, M G; Medcalf, T; Perrodo, P; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Norton, P R; Thompson, J C; Wright, A E; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Black, S N; Dann, J H; Johnson, R P; Kim, H Y; Konstantinidis, N P; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Brew, C A J; Cartwright, S L; Combley, F; Kelly, M S; Lehto, M H; Reeve, J; Thompson, L F; Affholderbach, K; Böhrer, A; Brandt, S; Cowan, G D; Grupen, Claus; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Charles, E; Elmer, P; Ferguson, D P S; Gao, Y; González, S; Greening, T C; Hayes, O J; Hu, H; Jin, S; McNamara, P A; Nachtman, J M; Nielsen, J; Orejudos, W; Pan, Y B; Saadi, Y; Scott, I J; Walsh, J; Wu Sau Lan; Wu, X; Yamartino, J M; Zobernig, G

    1998-01-01

    A bound on the tau neutrino mass is established using the data collected from 1991 to 1995 at Ecm = M(Z) with the ALEPH detector. Two separate limits are derived by fitting the distribution of visible energy vs invariant mass in tau+ -> pi+ pi+ pi- nu and tau+ -> pi+ pi+ pi- pi- pi+ (pi0) nu decays. The two results are combined to obtain a 95 % confidence level upper limit of 18.2 MeV/c^2 on the mass of the tau neutrino.

  14. Neutrino mass models and the implications of a non-zero reactor angle

    International Nuclear Information System (INIS)

    King, S.F.

    2009-01-01

    In this talk we survey some of the recent promising developments in the search for the theory behind neutrino mass and mixing, and indeed all fermion masses and mixing. The talk is organized in terms of a neutrino mass models decision tree according to which the answers to experimental questions provide sign posts to guide through the maze of theoretical models eventually towards a complete theory of flavour and unification. It is also discussed the theoretical implications of the measurement of non-zero reactor angle, as hinted at by recent experimental measurements.

  15. Higgs inflation, seesaw physics and fermion dark matter

    Directory of Open Access Journals (Sweden)

    Nobuchika Okada

    2015-07-01

    Full Text Available We present an inflationary model in which the Standard Model Higgs doublet field with non-minimal coupling to gravity drives inflation, and the effective Higgs potential is stabilized by new physics which includes a dark matter particle and right-handed neutrinos for the seesaw mechanism. All of the new particles are fermions, so that the Higgs doublet is the unique inflaton candidate. With central values for the masses of the top quark and the Higgs boson, the renormalization group improved Higgs potential is employed to yield the scalar spectral index ns≃0.968, the tensor-to-scalar ratio r≃0.003, and the running of the spectral index α=dns/dln⁡k≃−5.2×10−4 for the number of e-folds N0=60 (ns≃0.962, r≃0.004, and α≃−7.5×10−4 for N0=50. The fairly low value of r≃0.003 predicted in this class of models means that the ongoing space and land based experiments are not expected to observe gravity waves generated during inflation.

  16. Renormalization-group equations of neutrino masses and flavor mixing parameters in matter

    Science.gov (United States)

    Xing, Zhi-zhong; Zhou, Shun; Zhou, Ye-Ling

    2018-05-01

    We borrow the general idea of renormalization-group equations (RGEs) to understand how neutrino masses and flavor mixing parameters evolve when neutrinos propagate in a medium, highlighting a meaningful possibility that the genuine flavor quantities in vacuum can be extrapolated from their matter-corrected counterparts to be measured in some realistic neutrino oscillation experiments. Taking the matter parameter a≡ 2√{2}{G}F{N}_eE to be an arbitrary scale-like variable with N e being the net electron number density and E being the neutrino beam energy, we derive a complete set of differential equations for the effective neutrino mixing matrix V and the effective neutrino masses {\\tilde{m}}_i (for i = 1 , 2 , 3). Given the standard parametrization of V , the RGEs for {{\\tilde{θ}}_{12}, {\\tilde{θ}}_{13}, {\\tilde{θ}}_{23}, \\tilde{δ}} in matter are formulated for the first time. We demonstrate some useful differential invariants which retain the same form from vacuum to matter, including the well-known Naumov and Toshev relations. The RGEs of the partial μ- τ asymmetries, the off-diagonal asymmetries and the sides of unitarity triangles of V are also obtained as a by-product.

  17. Neutrino mass bounds from neutrinoless double beta-decays and ...

    Indian Academy of Sciences (India)

    2016-01-21

    Jan 21, 2016 ... CMD model. In addition, we explore the interacting neutrino dark-energy model, where the ... This decay has a small energy release (E0 ≃ 18.6 keV) and a convenient lifetime (T1/2 = 12.3 yr). As the ...... Research Programme funded by the Korean Ministry of Science, ICT and Future Planning. (Grant No.

  18. Theoretical aspects of neutrino mass and lepton flavour violation