WorldWideScience

Sample records for seepage control

  1. Cleveland Dam East Abutment : seepage control project

    Energy Technology Data Exchange (ETDEWEB)

    Huber, F.; Siu, D. [Greater Vancouver Regional District, Burnaby, BC (Canada); Ahlfield, S.; Singh, N. [Klohn Crippen Consultants Ltd., Vancouver, BC (Canada)

    2004-09-01

    North Vancouver's 91 meter high Cleveland Dam was built in the 1950s in a deep bedrock canyon to provide a reservoir for potable water to 18 municipalities. Flow in the concrete gravity dam is controlled by a gated spillway, 2 mid-level outlets and intakes and 2 low-level outlets. This paper describes the seepage control measures that were taken at the time of construction as well as the additional measures that were taken post construction to control piezometric levels, seepage and piping and slope instability in the East Abutment. At the time of construction, a till blanket was used to cover the upstream reservoir slope for 200 meters upstream of the dam. A single line grout curtain was used through the overburden from ground surface to bedrock for a distance of 166 meters from the dam to the East Abutment. Since construction, the safety of the dam has been compromised through changes in piezometric pressure, seepage and soil loss. Klohn Crippen Consultants designed a unique seepage control measure to address the instability risk. The project involved excavating 300,000 cubic meters of soil to form a stable slope and construction bench. A vertical wall was constructed to block seepage. The existing seepage control blanket was also extended by 260 meters. The social, environmental and technical issues that were encountered during the rehabilitation project are also discussed. The blanket extension construction has met design requirements and the abutment materials that are most susceptible to internal erosion have been covered by non-erodible blanket materials such as plastic and roller-compacted concrete (RCC). The project was completed on schedule and within budget and has greatly improved the long-term stability of the dam and public safety. 2 refs., 8 figs.

  2. Fault zone controlled seafloor methane seepage in the rupture area of the 2010 Maule Earthquake, Central Chile

    OpenAIRE

    Geersen, Jacob; Scholz, Florian; Linke, Peter; Schmidt, Mark; Lange, Dietrich; Behrmann, Jan H.; Völker, David; Hensen, Christian

    2016-01-01

    Seafloor seepage of hydrocarbon-bearing fluids has been identified in a number of marine forearcs. However, temporal variations in seep activity and the structural and tectonic parameters that control the seepage often remain poorly constrained. Subduction-zone earthquakes for example, are often discussed to trigger seafloor seepage but causal links that go beyond theoretical considerations have not yet been fully established. This is mainly due to the inaccessibility of offshore epicentral a...

  3. Control and prevention of seepage from uranium mill waste disposal facilities

    International Nuclear Information System (INIS)

    Williams, R.E.

    1978-01-01

    This paper constitutes an analysis of the technologies which are available for the prevention of movement of waste waters out of uranium mill waste disposal facilities via sub-surface routes. Hydrogeologic criteria for potential uranium mill waste disposal sites and mathematical modeling of contaminant migration in ground water are presented. Methods for prevention of seepage from uranium mill waste disposal facilities are investigated: liners, clay seals, synthetic polymeric membranes (PVC, polyethylene, chlorinated polyethylene, hypalon, butyl rubber, neoprene, elasticized polyolefin)

  4. Seepage Calibration Model and Seepage Testing Data

    International Nuclear Information System (INIS)

    Dixon, P.

    2004-01-01

    The purpose of this Model Report is to document the Seepage Calibration Model (SCM). The SCM is developed (1) to establish the conceptual basis for the Seepage Model for Performance Assessment (SMPA), and (2) to derive seepage-relevant, model-related parameters and their distributions for use in the SMPA and seepage abstraction in support of the Total System Performance Assessment for License Application (TSPA-LA). The SCM is intended to be used only within this Model Report for the estimation of seepage-relevant parameters through calibration of the model against seepage-rate data from liquid-release tests performed in several niches along the Exploratory Studies Facility (ESF) Main Drift and in the Cross Drift. The SCM does not predict seepage into waste emplacement drifts under thermal or ambient conditions. Seepage predictions for waste emplacement drifts under ambient conditions will be performed with the SMPA (see upcoming REV 02 of CRWMS M and O 2000 [153314]), which inherits the conceptual basis and model-related parameters from the SCM. Seepage during the thermal period is examined separately in the Thermal Hydrologic (TH) Seepage Model (see BSC 2003 [161530]). The scope of this work is (1) to evaluate seepage rates measured during liquid-release experiments performed in several niches in the Exploratory Studies Facility (ESF) and in the Cross Drift, which was excavated for enhanced characterization of the repository block (ECRB); (2) to evaluate air-permeability data measured in boreholes above the niches and the Cross Drift to obtain the permeability structure for the seepage model; (3) to use inverse modeling to calibrate the SCM and to estimate seepage-relevant, model-related parameters on the drift scale; (4) to estimate the epistemic uncertainty of the derived parameters, based on the goodness-of-fit to the observed data and the sensitivity of calculated seepage with respect to the parameters of interest; (5) to characterize the aleatory uncertainty

  5. Assessment of linear anionic polyacrylamide application to irrigation canals for seepage control

    Directory of Open Access Journals (Sweden)

    Hamil Uribe

    2013-09-01

    Full Text Available South- central area of Chile area has a Mediterranean climate and high crop water requirements. Irrigation water is distributed through long channels which have low water conveyance efficiency (Ec, difficult to improve by conventional techniques. The objective of this study was to quantify Ec and to evaluate the use of Linear Anionic Polyacrylamide (LA-PAM to reduce seepage losses. The study was carried out in south-central area of Chile, (UTM Coordinate N 5745000; E 725000 m, datum is WGS-84, zone 18S in 250 km of channels whose flow varied between 0.12 and 24.6 m3 s–1. Water users indicated channel reaches with potential low Ec, which were selected for LA-PAM application. In 11 reaches between 0.51 and 3 km in length, 1 to 3 LAPAM applications were performed at rates of 10 kg ha–1, considering the wet perimeter area as basis of calculation. Thirty-one LA-PAM applications were performed over a 30.5 km length. Most of the channels were large enough to allow motorboat moving against the current to carry-out LA-PAM application. Water flow was measured (StreamPro ADCP at both ends of selected reaches before and after granular LAPAM application. Weekly measurements were made to quantify treatment effect duration. Water turbidity and temperature were measured. Channels showed variable Ec from 87% to 94%. Two reaches showed 6% water gains. In more than 80% cases LA-PAM effect was positive, achieving loss reductions of 15 to 760 L s–1. In other cases LA-PAM had a negative effect since it mainly affected water entry into the channel. It was determined that field conditions referred by users as indicators of Ec are not always correct and vary in time according to climatic conditions. Ec was estimated and it was possible to reduce seepage through LA-PAM applications. This allow increasing irrigation security in critical periods, especially under drought conditions.

  6. Seepage Calibration Model and Seepage Testing Data

    Energy Technology Data Exchange (ETDEWEB)

    S. Finsterle

    2004-09-02

    The purpose of this Model Report is to document the Seepage Calibration Model (SCM). The SCM was developed (1) to establish the conceptual basis for the Seepage Model for Performance Assessment (SMPA), and (2) to derive seepage-relevant, model-related parameters and their distributions for use in the SMPA and seepage abstraction in support of the Total System Performance Assessment for License Application (TSPA-LA). This Model Report has been revised in response to a comprehensive, regulatory-focused evaluation performed by the Regulatory Integration Team [''Technical Work Plan for: Regulatory Integration Evaluation of Analysis and Model Reports Supporting the TSPA-LA'' (BSC 2004 [DIRS 169653])]. The SCM is intended to be used only within this Model Report for the estimation of seepage-relevant parameters through calibration of the model against seepage-rate data from liquid-release tests performed in several niches along the Exploratory Studies Facility (ESF) Main Drift and in the Cross-Drift. The SCM does not predict seepage into waste emplacement drifts under thermal or ambient conditions. Seepage predictions for waste emplacement drifts under ambient conditions will be performed with the SMPA [''Seepage Model for PA Including Drift Collapse'' (BSC 2004 [DIRS 167652])], which inherits the conceptual basis and model-related parameters from the SCM. Seepage during the thermal period is examined separately in the Thermal Hydrologic (TH) Seepage Model [see ''Drift-Scale Coupled Processes (DST and TH Seepage) Models'' (BSC 2004 [DIRS 170338])]. The scope of this work is (1) to evaluate seepage rates measured during liquid-release experiments performed in several niches in the Exploratory Studies Facility (ESF) and in the Cross-Drift, which was excavated for enhanced characterization of the repository block (ECRB); (2) to evaluate air-permeability data measured in boreholes above the niches and the Cross

  7. Seepage Calibration Model and Seepage Testing Data

    International Nuclear Information System (INIS)

    Finsterle, S.

    2004-01-01

    The purpose of this Model Report is to document the Seepage Calibration Model (SCM). The SCM was developed (1) to establish the conceptual basis for the Seepage Model for Performance Assessment (SMPA), and (2) to derive seepage-relevant, model-related parameters and their distributions for use in the SMPA and seepage abstraction in support of the Total System Performance Assessment for License Application (TSPA-LA). This Model Report has been revised in response to a comprehensive, regulatory-focused evaluation performed by the Regulatory Integration Team [''Technical Work Plan for: Regulatory Integration Evaluation of Analysis and Model Reports Supporting the TSPA-LA'' (BSC 2004 [DIRS 169653])]. The SCM is intended to be used only within this Model Report for the estimation of seepage-relevant parameters through calibration of the model against seepage-rate data from liquid-release tests performed in several niches along the Exploratory Studies Facility (ESF) Main Drift and in the Cross-Drift. The SCM does not predict seepage into waste emplacement drifts under thermal or ambient conditions. Seepage predictions for waste emplacement drifts under ambient conditions will be performed with the SMPA [''Seepage Model for PA Including Drift Collapse'' (BSC 2004 [DIRS 167652])], which inherits the conceptual basis and model-related parameters from the SCM. Seepage during the thermal period is examined separately in the Thermal Hydrologic (TH) Seepage Model [see ''Drift-Scale Coupled Processes (DST and TH Seepage) Models'' (BSC 2004 [DIRS 170338])]. The scope of this work is (1) to evaluate seepage rates measured during liquid-release experiments performed in several niches in the Exploratory Studies Facility (ESF) and in the Cross-Drift, which was excavated for enhanced characterization of the repository block (ECRB); (2) to evaluate air-permeability data measured in boreholes above the niches and the Cross-Drift to obtain the permeability structure for the seepage model

  8. Numerical Analysis on Seepage in the deep overburden CFRD

    Science.gov (United States)

    Zeyu, GUO; Junrui, CHAI; Yuan, QIN

    2017-12-01

    There are many problems in the construction of hydraulic structures on deep overburden because of its complex foundation structure and poor geological condition. Seepage failure is one of the main problems. The Combination of the seepage control system of the face rockfill dam and the deep overburden can effectively control the seepage of construction of the concrete face rockfill dam on the deep overburden. Widely used anti-seepage measures are horizontal blanket, waterproof wall, curtain grouting and so on, but the method, technique and its effect of seepage control still have many problems thus need further study. Due to the above considerations, Three-dimensional seepage field numerical analysis based on practical engineering case is conducted to study the seepage prevention effect under different seepage prevention methods, which is of great significance to the development of dam technology and the development of hydropower resources in China.

  9. A seepage meter designed for use in flowing water

    Science.gov (United States)

    Rosenberry, D.O.

    2008-01-01

    Seepage meters provide one of the most direct means to measure exchange of water across the sediment-water interface, but they generally have been unsuitable for use in fluvial settings. Although the seepage bag can be placed inside a rigid container to minimize velocity head concerns, the seepage cylinder installed in the sediment bed projects into and disrupts the flow field, altering both the local-scale fluid exchange as well as measurement of that exchange. A low-profile seepage meter designed for use in moving water was tested in a seepage meter flux tank where both current velocity and seepage velocity could be controlled. The conical seepage cylinder protrudes only slightly above the sediment bed and is connected via tubing to a seepage bag or flowmeter positioned inside a rigid shelter that is located nearby where current velocity is much slower. Laboratory and field tests indicate that the net effect of the small protrusion of the seepage cylinder into the surface water flow field is inconsequentially small for surface water currents up to 65 cm s-1. Current velocity affects the variability of seepage measurements; seepage standard deviation increased from ???2 to ???6 cm d-1 as current velocity increased from 9 to 65 cm s-1. Substantial bias can result if the shelter is not placed to minimize hydraulic gradient between the bag and the seepage cylinder.

  10. Abstraction of Drift Seepage

    International Nuclear Information System (INIS)

    J.T. Birkholzer

    2004-01-01

    This model report documents the abstraction of drift seepage, conducted to provide seepage-relevant parameters and their probability distributions for use in Total System Performance Assessment for License Application (TSPA-LA). Drift seepage refers to the flow of liquid water into waste emplacement drifts. Water that seeps into drifts may contact waste packages and potentially mobilize radionuclides, and may result in advective transport of radionuclides through breached waste packages [''Risk Information to Support Prioritization of Performance Assessment Models'' (BSC 2003 [DIRS 168796], Section 3.3.2)]. The unsaturated rock layers overlying and hosting the repository form a natural barrier that reduces the amount of water entering emplacement drifts by natural subsurface processes. For example, drift seepage is limited by the capillary barrier forming at the drift crown, which decreases or even eliminates water flow from the unsaturated fractured rock into the drift. During the first few hundred years after waste emplacement, when above-boiling rock temperatures will develop as a result of heat generated by the decay of the radioactive waste, vaporization of percolation water is an additional factor limiting seepage. Estimating the effectiveness of these natural barrier capabilities and predicting the amount of seepage into drifts is an important aspect of assessing the performance of the repository. The TSPA-LA therefore includes a seepage component that calculates the amount of seepage into drifts [''Total System Performance Assessment (TSPA) Model/Analysis for the License Application'' (BSC 2004 [DIRS 168504], Section 6.3.3.1)]. The TSPA-LA calculation is performed with a probabilistic approach that accounts for the spatial and temporal variability and inherent uncertainty of seepage-relevant properties and processes. Results are used for subsequent TSPA-LA components that may handle, for example, waste package corrosion or radionuclide transport

  11. Seepage into PEP tunnel

    International Nuclear Information System (INIS)

    Weidner, H.

    1990-01-01

    The current rate of seepage into the PEP tunnel in the vicinity of IR-10 is very low compared to previous years. Adequate means of handling this low flow are in place. It is not clear whether the reduction in the flow is temporary, perhaps due to three consecutive dry years, or permanent due to drainage of a perched water table. During PEP construction a large amount of effort was expended in attempts to seal the tunnel, with no immediate effect. The efforts to ''manage'' the water flow are deemed to be successful. By covering equipment to protect it from dripping water and channeling seepage into the drainage gutters, the seepage has been reduced to a tolerable nuisance. There is no sure, safe procedure for sealing a leaky shotcreted tunnel

  12. ABSTRACTION OF DRIFT SEEPAGE

    International Nuclear Information System (INIS)

    Wilson, Michael L.

    2001-01-01

    Drift seepage refers to flow of liquid water into repository emplacement drifts, where it can potentially contribute to degradation of the engineered systems and release and transport of radionuclides within the drifts. Because of these important effects, seepage into emplacement drifts is listed as a ''principal factor for the postclosure safety case'' in the screening criteria for grading of data in Attachment 1 of AP-3.15Q, Rev. 2, ''Managing Technical Product Inputs''. Abstraction refers to distillation of the essential components of a process model into a form suitable for use in total-system performance assessment (TSPA). Thus, the purpose of this analysis/model is to put the information generated by the seepage process modeling in a form appropriate for use in the TSPA for the Site Recommendation. This report also supports the Unsaturated-Zone Flow and Transport Process Model Report. The scope of the work is discussed below. This analysis/model is governed by the ''Technical Work Plan for Unsaturated Zone Flow and Transport Process Model Report'' (CRWMS MandO 2000a). Details of this activity are in Addendum A of the technical work plan. The original Work Direction and Planning Document is included as Attachment 7 of Addendum A. Note that the Work Direction and Planning Document contains tasks identified for both Performance Assessment Operations (PAO) and Natural Environment Program Operations (NEPO). Only the PAO tasks are documented here. The planning for the NEPO activities is now in Addendum D of the same technical work plan and the work is documented in a separate report (CRWMS MandO 2000b). The Project has been reorganized since the document was written. The responsible organizations in the new structure are the Performance Assessment Department and the Unsaturated Zone Department, respectively. The work plan for the seepage abstraction calls for determining an appropriate abstraction methodology, determining uncertainties in seepage, and providing

  13. SEEPAGE/INVERT INTERACTIONS

    International Nuclear Information System (INIS)

    P.S. Domski

    2000-01-01

    As directed by a written development plan (CRWMS M andO 1999a), a conceptual model for water entering the drift and reacting with the invert materials is to be developed. The purpose of this conceptual model is to assist Performance Assessment Operations (PAO) and its Engineered Barrier Performance Department in modeling the geochemical environment within a repository drift, thus allowing PAO to provide a more detailed and complete in-drift geochemical model abstraction, and to answer the key technical issues (KTI) raised in the NRC Issue Resolution Status Report (IRSR) for the Evolution of the Near-Field Environment (NFE), Revision 2 (NRC 1999). This AMR also seeks to: (1) Develop a logical conceptual model for physical/chemical interactions between seepage and the invert materials; (2) screen potential processes and reactions that may occur between seepage and invert to evaluate the potential consequences of the interactions; and (3) outline how seepage/invert processes may be quantified. This document provides the conceptual framework for screening out insignificant processes and for identifying and evaluating those seepage/invert interactions that have the potential to be important to subsequent PAO analyses including the Engineered Barrier System (EBS) physical and chemical model abstraction effort. This model has been developed to serve as a basis for the in-drift geochemical analyses performed by PAO. Additionally, the concepts discussed within this report may also apply to certain near and far-field geochemical processes and may have conceptual application within the unsaturated zone (UZ) and saturated zone (SZ) transport modeling efforts. The seepage/invert interactions will not directly affect any principal factors

  14. Shallow rainwater lenses in deltaic areas with saline seepage

    NARCIS (Netherlands)

    Louw, de P.G.B.; Eeman, S.; Siemon, B.; `Voortman, B.R.; Gunnink, J.; Baaren, E.S.; Oude Essink, G.H.P.

    2011-01-01

    In deltaic areas with saline seepage, freshwater availability is often limited to shallow rainwater lenses lying on top of saline groundwater. Here we describe the characteristics and spatial variability of such lenses in areas with saline seepage and the mechanisms that control their occurrence and

  15. Shallow rainwater lenses in deltaic areas with saline seepage

    NARCIS (Netherlands)

    De Louw, Perry G.B.; Eeman, Sara; Siemon, Bernhard; Voortman, Bernard R.; Gunnink, Jan; Van Baaren, Esther S.; Oude Essink, Gualbert

    2011-01-01

    In deltaic areas with saline seepage, fresh water availability is often limited to shallow rainwater lenses lying on top of saline groundwater. Here we describe the characteristics and spatial variability of such lenses in areas with saline seepage and the mechanisms that control their occurrence

  16. SEEPAGE/BACKFILL INTERACTIONS

    International Nuclear Information System (INIS)

    Mariner, P.

    2000-01-01

    As directed by written development plan (CRWMS M andO 1999a), a sub-model of seepage/backfill interactions is developed and presented in this document to support the Engineered Barrier System (EBS) Physical and Chemical Environment Model. The purpose of this analysis is to assist Performance Assessment Operations (PAO) and the Engineered Barrier Performance Department in modeling the geochemical environment within a repository drift. In this analysis, a conceptual model is developed to provide PAO a more detailed and complete in-drift geochemical model abstraction and to answer the key technical issues (KTI) raised in the NRC Issue Resolution Status Report (IRSR) for the Evolution of the Near Field Environment (NFE) Revision 2 (NRC 1999). The development plan calls for a sub-model that evaluates the effect on water chemistry of chemical reactions between water that enters the drift and backfill materials in the drift. The development plan specifically requests an evaluation of the following important chemical reaction processes: dissolution-precipitation, aqueous complexation, and oxidation-reduction. The development plan also requests the evaluation of the effects of varying seepage and drainage fluxes, varying temperature, and varying evaporation and condensation fluxes. Many of these effects are evaluated in a separate Analysis/Model Report (AMR), ''Precipitates Salts Analysis AMR'' (CRWMS M andO 2000), so the results of that AMR are referenced throughout this AMR

  17. SEEPAGE/BACKFILL INTERACTIONS

    Energy Technology Data Exchange (ETDEWEB)

    P. Mariner

    2000-04-14

    As directed by written development plan (CRWMS M&O 1999a), a sub-model of seepage/backfill interactions is developed and presented in this document to support the Engineered Barrier System (EBS) Physical and Chemical Environment Model. The purpose of this analysis is to assist Performance Assessment Operations (PAO) and the Engineered Barrier Performance Department in modeling the geochemical environment within a repository drift. In this analysis, a conceptual model is developed to provide PAO a more detailed and complete in-drift geochemical model abstraction and to answer the key technical issues (KTI) raised in the NRC Issue Resolution Status Report (IRSR) for the Evolution of the Near Field Environment (NFE) Revision 2 (NRC 1999). The development plan calls for a sub-model that evaluates the effect on water chemistry of chemical reactions between water that enters the drift and backfill materials in the drift. The development plan specifically requests an evaluation of the following important chemical reaction processes: dissolution-precipitation, aqueous complexation, and oxidation-reduction. The development plan also requests the evaluation of the effects of varying seepage and drainage fluxes, varying temperature, and varying evaporation and condensation fluxes. Many of these effects are evaluated in a separate Analysis/Model Report (AMR), ''Precipitates Salts Analysis AMR'' (CRWMS M&O 2000), so the results of that AMR are referenced throughout this AMR.

  18. The taming of brackish seepage

    NARCIS (Netherlands)

    Smits, F.J.C.; Olsthoorn, T.; Smulders, L.; van Wielink, I.

    2016-01-01

    In the area that is managed by the waterboard Amstel, Gooi and Vecht, some deep polders are located. Most of them attract large amounts of brackish seepage. This seepage not only contains salt, but also nutriënts.
    Without hydrological intervention, the waterquality in the area would suffer

  19. Seepage/Cement Interactions

    International Nuclear Information System (INIS)

    Carpenter, D.

    2000-01-01

    The Development Plan (CRWMS M andO 1999a) pertaining to this task defines the work scopes and objectives for development of various submodels for the Physical and Chemical Environment Abstraction Model for TSPA-LA. The Development Plan (CRWMS M andO 1999a) for this specific task establishes that an evaluation be performed of the chemical reactions between seepage that has entered the drift and concrete which might be used in the repository emplacement drifts. The Development Plan (CRWMS M andO 1999a) then states that the potential effects of these water/grout reactions on chemical conditions in the drift be assessed factoring in the influence of carbonation and the relatively small amount of grout. This task is also directed at: (1) developing a conceptualization of important cement/seepage interactions and potential impacts on EBS performance, (2) performing a screening analysis to assess the importance of cement/seepage interactions. As the work progresses and evolves on other studies, specifically the Engineered Barrier System: Physical and Chemical Environment (P andCE) Model (in progress), many of the issues associated with items 1 and 2, above, will be assessed. Such issues include: (1) Describing the mineralogy of the specified cementitious grout and its evolution over time. (2) Describing the composition of the water before contacting the grout. (3) Developing reasonable upper-bound estimates for the composition of water contacting grout, emphasizing pH and concentrations for anions such as sulfate. (4) Evaluating the equilibration of cement-influenced water with backfill and gas-phase CO 2 . (5) Developing reasonable-bound estimates for flow rate of affected water into the drift. The concept of estimating an ''upper-bound'' range for reaction between the grout and the seepage, particularly in terms of pH is based on equilibrium being established between the seepage and the grout. For example, this analysis can be based on equilibrium being established as

  20. Solution of AntiSeepage for Mengxi River Based on Numerical Simulation of Unsaturated Seepage

    Science.gov (United States)

    Ji, Youjun; Zhang, Linzhi; Yue, Jiannan

    2014-01-01

    Lessening the leakage of surface water can reduce the waste of water resources and ground water pollution. To solve the problem that Mengxi River could not store water enduringly, geology investigation, theoretical analysis, experiment research, and numerical simulation analysis were carried out. Firstly, the seepage mathematical model was established based on unsaturated seepage theory; secondly, the experimental equipment for testing hydraulic conductivity of unsaturated soil was developed to obtain the curve of two-phase flow. The numerical simulation of leakage in natural conditions proves the previous inference and leakage mechanism of river. At last, the seepage control capacities of different impervious materials were compared by numerical simulations. According to the engineering actuality, the impervious material was selected. The impervious measure in this paper has been proved to be effectible by hydrogeological research today. PMID:24707199

  1. Solution of AntiSeepage for Mengxi River Based on Numerical Simulation of Unsaturated Seepage

    Directory of Open Access Journals (Sweden)

    Youjun Ji

    2014-01-01

    Full Text Available Lessening the leakage of surface water can reduce the waste of water resources and ground water pollution. To solve the problem that Mengxi River could not store water enduringly, geology investigation, theoretical analysis, experiment research, and numerical simulation analysis were carried out. Firstly, the seepage mathematical model was established based on unsaturated seepage theory; secondly, the experimental equipment for testing hydraulic conductivity of unsaturated soil was developed to obtain the curve of two-phase flow. The numerical simulation of leakage in natural conditions proves the previous inference and leakage mechanism of river. At last, the seepage control capacities of different impervious materials were compared by numerical simulations. According to the engineering actuality, the impervious material was selected. The impervious measure in this paper has been proved to be effectible by hydrogeological research today.

  2. Calculating earth dam seepage using HYDRUS software applications

    Directory of Open Access Journals (Sweden)

    Jakub Nieć

    2017-06-01

    Full Text Available This paper presents simulations of water seepage within and under the embankment dam of Lake Kowalskie reservoir. The aim of the study was to compare seepage calculation results obtained using analytical and numerical methods. In April 1985, after the first filling of the reservoir to normal storage levels, water leaks was observed at the base of the escarpment, on the air side of the dam. In order to control seepage flow, drainage was performed and additional piezometers installed. To explain the causes of increased pressure in the aquifer under the dam in May 1985 a simplified calculation of filtration was performed. Now, on the basis of archived data from the Department of Hydraulic and Sanitary Engineering using 3D HYDRUS STANDARD software, the conditions of seepage under the dam have been recreated and re-calculated. Piezometric pressure was investigated in three variants of drainage, including drainage before and after modernization.

  3. Shallow rainwater lenses in deltaic areas with saline seepage

    Directory of Open Access Journals (Sweden)

    P. G. B. de Louw

    2011-12-01

    Full Text Available In deltaic areas with saline seepage, freshwater availability is often limited to shallow rainwater lenses lying on top of saline groundwater. Here we describe the characteristics and spatial variability of such lenses in areas with saline seepage and the mechanisms that control their occurrence and size. Our findings are based on different types of field measurements and detailed numerical groundwater models applied in the south-western delta of the Netherlands. By combining the applied techniques we could extrapolate measurements at point scale (groundwater sampling, temperature and electrical soil conductivity (TEC-probe measurements, electrical cone penetration tests (ECPT to field scale (continuous vertical electrical soundings (CVES, electromagnetic survey with EM31, and even to regional scale using helicopter-borne electromagnetic measurements (HEM. The measurements show a gradual mixing zone between infiltrating fresh rainwater and upward flowing saline groundwater. The mixing zone is best characterized by the depth of the centre of the mixing zone Dmix, where the salinity is half that of seepage water, and the bottom of the mixing zone Bmix, with a salinity equal to that of the seepage water (Cl-conc. 10 to 16 g l−1. Dmix is found at very shallow depth in the confining top layer, on average at 1.7 m below ground level (b.g.l., while Bmix lies about 2.5 m b.g.l. The model results show that the constantly alternating upward and downward flow at low velocities in the confining layer is the main mechanism of mixing between rainwater and saline seepage and determines the position and extent of the mixing zone (Dmix and Bmix. Recharge, seepage flux, and drainage depth are the controlling factors.

  4. Quantification of Seepage in Groundwater Dependent Wetlands

    DEFF Research Database (Denmark)

    Johansen, Ole; Beven, Keith; Jensen, Jacob Birk

    2018-01-01

    Restoration and management of groundwater dependent wetlands require tools for quantifying the groundwater seepage process. A method for determining point estimates of the groundwater seepage based on water level observations is tested. The study is based on field data from a Danish rich fen...

  5. Seepage Model for PA Including Drift Collapse

    International Nuclear Information System (INIS)

    Li, G.; Tsang, C.

    2000-01-01

    The purpose of this Analysis/Model Report (AMR) is to document the predictions and analysis performed using the Seepage Model for Performance Assessment (PA) and the Disturbed Drift Seepage Submodel for both the Topopah Spring middle nonlithophysal and lower lithophysal lithostratigraphic units at Yucca Mountain. These results will be used by PA to develop the probability distribution of water seepage into waste-emplacement drifts at Yucca Mountain, Nevada, as part of the evaluation of the long term performance of the potential repository. This AMR is in accordance with the ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' (CRWMS M andO 2000 [153447]). This purpose is accomplished by performing numerical simulations with stochastic representations of hydrological properties, using the Seepage Model for PA, and evaluating the effects of an alternative drift geometry representing a partially collapsed drift using the Disturbed Drift Seepage Submodel. Seepage of water into waste-emplacement drifts is considered one of the principal factors having the greatest impact of long-term safety of the repository system (CRWMS M andO 2000 [153225], Table 4-1). This AMR supports the analysis and simulation that are used by PA to develop the probability distribution of water seepage into drift, and is therefore a model of primary (Level 1) importance (AP-3.15Q, ''Managing Technical Product Inputs''). The intended purpose of the Seepage Model for PA is to support: (1) PA; (2) Abstraction of Drift-Scale Seepage; and (3) Unsaturated Zone (UZ) Flow and Transport Process Model Report (PMR). Seepage into drifts is evaluated by applying numerical models with stochastic representations of hydrological properties and performing flow simulations with multiple realizations of the permeability field around the drift. The Seepage Model for PA uses the distribution of permeabilities derived from air injection testing in niches and in the cross drift to

  6. Seepage Model for PA Including Dift Collapse

    Energy Technology Data Exchange (ETDEWEB)

    G. Li; C. Tsang

    2000-12-20

    The purpose of this Analysis/Model Report (AMR) is to document the predictions and analysis performed using the Seepage Model for Performance Assessment (PA) and the Disturbed Drift Seepage Submodel for both the Topopah Spring middle nonlithophysal and lower lithophysal lithostratigraphic units at Yucca Mountain. These results will be used by PA to develop the probability distribution of water seepage into waste-emplacement drifts at Yucca Mountain, Nevada, as part of the evaluation of the long term performance of the potential repository. This AMR is in accordance with the ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' (CRWMS M&O 2000 [153447]). This purpose is accomplished by performing numerical simulations with stochastic representations of hydrological properties, using the Seepage Model for PA, and evaluating the effects of an alternative drift geometry representing a partially collapsed drift using the Disturbed Drift Seepage Submodel. Seepage of water into waste-emplacement drifts is considered one of the principal factors having the greatest impact of long-term safety of the repository system (CRWMS M&O 2000 [153225], Table 4-1). This AMR supports the analysis and simulation that are used by PA to develop the probability distribution of water seepage into drift, and is therefore a model of primary (Level 1) importance (AP-3.15Q, ''Managing Technical Product Inputs''). The intended purpose of the Seepage Model for PA is to support: (1) PA; (2) Abstraction of Drift-Scale Seepage; and (3) Unsaturated Zone (UZ) Flow and Transport Process Model Report (PMR). Seepage into drifts is evaluated by applying numerical models with stochastic representations of hydrological properties and performing flow simulations with multiple realizations of the permeability field around the drift. The Seepage Model for PA uses the distribution of permeabilities derived from air injection testing in

  7. Heterogeneous seepage at the Nopal I natural analogue site, Chihuahua, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Dobson, Patrick F.; Cook, Paul J.; Ghezzehei, Teamrat A.; Rodriguez, J. Alfredo; Villalba, Lourdes; de la Garza, Rodrigo

    2008-10-25

    An integrated field, laboratory, and modeling study of the Pena Blanca (Chihuahua, Mexico) natural analogue site is being conducted to evaluate processes that control the mobilization and transport of radionuclides from a uranium ore deposit. One component of this study is an evaluation of the potential for radionuclide transport through the unsaturated zone (UZ) via a seepage study in an adit at the Nopal I uranium mine, excavated 10 m below a mined level surface. Seasonal rainfall on the exposed level surface infiltrates into the fractured rhyolitic ash-flow tuff and seeps into the adit. An instrumented seepage collection system and local automated weather station permit direct correlation between local precipitation events and seepage within the Nopal I +00 adit. Monitoring of seepage within the adit between April 2005 and December 2006 indicates that seepage is highly heterogeneous with respect to time, location, and quantity. Within the back adit area, a few zones where large volumes of water have been collected are linked to fast flow path fractures (0-4 h transit times) presumably associated with focused flow. In most locations, however, there is a 1-6 month time lag between major precipitation events and seepage within the adit, with longer residence times observed for the front adit area. Seepage data obtained from this study will be used to provide input to flow and transport models being developed for the Nopal I hydrogeologic system.

  8. Heterogeneous seepage at the Nopal I natural analogue site, Chihuahua, Mexico

    International Nuclear Information System (INIS)

    Dobson, Patrick F.; Cook, Paul J.; Ghezzehei, Teamrat A.; Rodriguez, J. Alfredo; Villalba, Lourdes; de la Garza, Rodrigo

    2008-01-01

    An integrated field, laboratory, and modeling study of the Pena Blanca (Chihuahua, Mexico) natural analogue site is being conducted to evaluate processes that control the mobilization and transport of radionuclides from a uranium ore deposit. One component of this study is an evaluation of the potential for radionuclide transport through the unsaturated zone (UZ) via a seepage study in an adit at the Nopal I uranium mine, excavated 10 m below a mined level surface. Seasonal rainfall on the exposed level surface infiltrates into the fractured rhyolitic ash-flow tuff and seeps into the adit. An instrumented seepage collection system and local automated weather station permit direct correlation between local precipitation events and seepage within the Nopal I +00 adit. Monitoring of seepage within the adit between April 2005 and December 2006 indicates that seepage is highly heterogeneous with respect to time, location, and quantity. Within the back adit area, a few zones where large volumes of water have been collected are linked to fast flow path fractures (0-4 h transit times) presumably associated with focused flow. In most locations, however, there is a 1-6 month time lag between major precipitation events and seepage within the adit, with longer residence times observed for the front adit area. Seepage data obtained from this study will be used to provide input to flow and transport models being developed for the Nopal I hydrogeologic system.

  9. Seepage into drifts with mechanical degradation

    International Nuclear Information System (INIS)

    Li, Guomin; Tsang, Chin-Fu

    2002-01-01

    Seepage into drifts in unsaturated tuff is an important issue for the long-term performance of the potential nuclear waste repository at Yucca Mountain, Nevada. Drifts in which waste packages will potentially be emplaced are subject to degradation in the form of rockfall from the drift ceiling induced by stress relief, seismic, or thermal effects. The objective of this study is to calculate seepage rates for various drift-degradation scenarios and for different values of percolation flux for the Topopah Spring middle nonlithophysal (Tptpmn) and the Topopah Spring lower lithophysal (Tptpll) units. Seepage calculations are conducted by (1) defining a heterogeneous permeability model on the drift scale that is consistent with field data, (2) selecting calibrated parameters associated with the Tptpmn and Tptpll units, and (3) simulating seepage on detailed degraded-drift profiles, which were obtained from a separate rock mechanics engineering analysis. The simulation results indicate (1) that the seepage threshold (i.e., the percolation flux at which seepage first occurs) is not significantly changed by drift degradation, and (2) the degradation-induced increase in seepage above the threshold is influenced more by the shape of the cavity created by rockfall than the rockfall volume

  10. ANL-W 779 pond seepage test

    International Nuclear Information System (INIS)

    Braun, D.R.

    1992-11-01

    The ANL-W 779 sanitary wastewater treatment ponds are located on the Idaho National Engineering Laboratory (INEL), north of the Argonne National Laboratory -- West (ANL-W) site A seepage test was performed for two Argonne National Laboratory -- West (ANL-W) sanitary wastewater treatment ponds, Facility 779. Seepage rates were measured to determine if the ponds are a wastewater land application facility. The common industry standard for wastewater land application facilities is a field-measured seepage rate of one quarter inch per day or greater

  11. SEEPAGE MODEL FOR PA INCLUDING DRIFT COLLAPSE

    International Nuclear Information System (INIS)

    C. Tsang

    2004-01-01

    The purpose of this report is to document the predictions and analyses performed using the seepage model for performance assessment (SMPA) for both the Topopah Spring middle nonlithophysal (Tptpmn) and lower lithophysal (Tptpll) lithostratigraphic units at Yucca Mountain, Nevada. Look-up tables of seepage flow rates into a drift (and their uncertainty) are generated by performing numerical simulations with the seepage model for many combinations of the three most important seepage-relevant parameters: the fracture permeability, the capillary-strength parameter 1/a, and the percolation flux. The percolation flux values chosen take into account flow focusing effects, which are evaluated based on a flow-focusing model. Moreover, multiple realizations of the underlying stochastic permeability field are conducted. Selected sensitivity studies are performed, including the effects of an alternative drift geometry representing a partially collapsed drift from an independent drift-degradation analysis (BSC 2004 [DIRS 166107]). The intended purpose of the seepage model is to provide results of drift-scale seepage rates under a series of parameters and scenarios in support of the Total System Performance Assessment for License Application (TSPA-LA). The SMPA is intended for the evaluation of drift-scale seepage rates under the full range of parameter values for three parameters found to be key (fracture permeability, the van Genuchten 1/a parameter, and percolation flux) and drift degradation shape scenarios in support of the TSPA-LA during the period of compliance for postclosure performance [Technical Work Plan for: Performance Assessment Unsaturated Zone (BSC 2002 [DIRS 160819], Section I-4-2-1)]. The flow-focusing model in the Topopah Spring welded (TSw) unit is intended to provide an estimate of flow focusing factors (FFFs) that (1) bridge the gap between the mountain-scale and drift-scale models, and (2) account for variability in local percolation flux due to

  12. Geophysical investigation of seepage beneath an earthen dam.

    Science.gov (United States)

    Ikard, S J; Rittgers, J; Revil, A; Mooney, M A

    2015-01-01

    A hydrogeophysical survey is performed at small earthen dam that overlies a confined aquifer. The structure of the dam has not shown evidence of anomalous seepage internally or through the foundation prior to the survey. However, the surface topography is mounded in a localized zone 150 m downstream, and groundwater discharges from this zone periodically when the reservoir storage is maximum. We use self-potential and electrical resistivity tomography surveys with seismic refraction tomography to (1) determine what underlying hydrogeologic factors, if any, have contributed to the successful long-term operation of the dam without apparent indicators of anomalous seepage through its core and foundation; and (2) investigate the hydraulic connection between the reservoir and the seepage zone to determine whether there exists a potential for this success to be undermined. Geophysical data are informed by hydraulic and geotechnical borehole data. Seismic refraction tomography is performed to determine the geometry of the phreatic surface. The hydro-stratigraphy is mapped with the resistivity data and groundwater flow patterns are determined with self-potential data. A self-potential model is constructed to represent a perpendicular profile extending out from the maximum cross-section of the dam, and self-potential data are inverted to recover the groundwater velocity field. The groundwater flow pattern through the aquifer is controlled by the bedrock topography and a preferential flow pathway exists beneath the dam. It corresponds to a sandy-gravel layer connecting the reservoir to the downstream seepage zone. © 2014, National Ground Water Association.

  13. POST-PROCESSING ANALYSIS FOR THC SEEPAGE

    International Nuclear Information System (INIS)

    SUN, Y.

    2004-01-01

    This report describes the selection of water compositions for the total system performance assessment (TSPA) model of results from the thermal-hydrological-chemical (THC) seepage model documented in ''Drift-Scale THC Seepage Model'' (BSC 2004 [DIRS 169856]). The selection has been conducted in accordance with ''Technical Work Plan for: Near-Field Environment and Transport: Coupled Processes (Mountain-Scale TH/THC/THM, Drift-Scale THC Seepage, and Post-Processing Analysis for THC Seepage) Report Integration'' (BSC 2004 [DIRS 171334]). This technical work plan (TWP) was prepared in accordance with AP-2.27Q, ''Planning for Science Activities''. Section 1.2.3 of the TWP describes planning information pertaining to the technical scope, content, and management of this report. The post-processing analysis for THC seepage (THC-PPA) documented in this report provides a methodology for evaluating the near-field compositions of water and gas around a typical waste emplacement drift as these relate to the chemistry of seepage, if any, into the drift. The THC-PPA inherits the conceptual basis of the THC seepage model, but is an independently developed process. The relationship between the post-processing analysis and other closely related models, together with their main functions in providing seepage chemistry information for the Total System Performance Assessment for the License Application (TSPA-LA), are illustrated in Figure 1-1. The THC-PPA provides a data selection concept and direct input to the physical and chemical environment (P and CE) report that supports the TSPA model. The purpose of the THC-PPA is further discussed in Section 1.2. The data selection methodology of the post-processing analysis (Section 6.2.1) was initially applied to results of the THC seepage model as presented in ''Drift-Scale THC Seepage Model'' (BSC 2004 [DIRS 169856]). Other outputs from the THC seepage model (DTN: LB0302DSCPTHCS.002 [DIRS 161976]) used in the P and CE (BSC 2004 [DIRS 169860

  14. A tube seepage meter for in situ measurement of seepage rate and groundwater sampling

    Science.gov (United States)

    Solder, John; Gilmore, Troy E.; Genereux, David P.; Solomon, D. Kip

    2016-01-01

    We designed and evaluated a “tube seepage meter” for point measurements of vertical seepage rates (q), collecting groundwater samples, and estimating vertical hydraulic conductivity (K) in streambeds. Laboratory testing in artificial streambeds show that seepage rates from the tube seepage meter agreed well with expected values. Results of field testing of the tube seepage meter in a sandy-bottom stream with a mean seepage rate of about 0.5 m/day agreed well with Darcian estimates (vertical hydraulic conductivity times head gradient) when averaged over multiple measurements. The uncertainties in q and K were evaluated with a Monte Carlo method and are typically 20% and 60%, respectively, for field data, and depend on the magnitude of the hydraulic gradient and the uncertainty in head measurements. The primary advantages of the tube seepage meter are its small footprint, concurrent and colocated assessments of q and K, and that it can also be configured as a self-purging groundwater-sampling device.

  15. Transient Seepage for Levee Engineering Analyses

    Science.gov (United States)

    Tracy, F. T.

    2017-12-01

    Historically, steady-state seepage analyses have been a key tool for designing levees by practicing engineers. However, with the advances in computer modeling, transient seepage analysis has become a potentially viable tool. A complication is that the levees usually have partially saturated flow, and this is significantly more complicated in transient flow. This poster illustrates four elements of our research in partially saturated flow relating to the use of transient seepage for levee design: (1) a comparison of results from SEEP2D, SEEP/W, and SLIDE for a generic levee cross section common to the southeastern United States; (2) the results of a sensitivity study of varying saturated hydraulic conductivity, the volumetric water content function (as represented by van Genuchten), and volumetric compressibility; (3) a comparison of when soils do and do not exhibit hysteresis, and (4) a description of proper and improper use of transient seepage in levee design. The variables considered for the sensitivity and hysteresis studies are pore pressure beneath the confining layer at the toe, the flow rate through the levee system, and a levee saturation coefficient varying between 0 and 1. Getting results for SEEP2D, SEEP/W, and SLIDE to match proved more difficult than expected. After some effort, the results matched reasonably well. Differences in results were caused by various factors, including bugs, different finite element meshes, different numerical formulations of the system of nonlinear equations to be solved, and differences in convergence criteria. Varying volumetric compressibility affected the above test variables the most. The levee saturation coefficient was most affected by the use of hysteresis. The improper use of pore pressures from a transient finite element seepage solution imported into a slope stability computation was found to be the most grievous mistake in using transient seepage in the design of levees.

  16. Seepage into drifts in unsaturated fractured rock at Yucca Mountain

    International Nuclear Information System (INIS)

    Birkholzer, Jens; Li, Guomin; Tsang, Chin-Fu; Tsang, Yvonne

    1998-01-01

    understanding of the key processes involved. The authors found that, for the conditions at Yucca Mountain, the heterogeneity in the flow domain is a key factor controlling the rate of seepage into drifts, because the 'channelized' flow in high-permeability features promotes local ponding conditions close to the drift walls. Figure 1 shows a typical flow field in the vicinity of the drift, presenting saturation contours in three horizontal slices of the 3-D model domain for a future climate scenario of 200 mm/yr percolation flux. In the horizontal plane just above the drift (middle horizontal slide), liquid accumulates at the drift crown as the vertical gravity-driven flow is diverted around it, while in the horizontal plane below the drift a low-saturation shadow develops. In addition to this flow perturbation effect, the saturation contours reflect the heterogeneity of the model area, showing several locations where 'channelized' flow accumulates creating high saturation values dependent on local permeability contrasts. In fact, at some of these locations, the saturation reaches unity, representing a local ponding condition. Obviously, the probability that local ponding occurs is highest near the stagnation point at the drift crown. Eventually, seepage into the drift occurs when a local ponding condition is encountered in a grid element adjacent to the drift wall

  17. New TNX Seepage Basin: Environmental information document

    International Nuclear Information System (INIS)

    Dunaway, J.K.W.; Johnson, W.F.; Kingley, L.E.; Simmons, R.V.; Bledsoe, H.W.

    1986-12-01

    The New TNX Seepage Basin has been in operation at the Savannah River Plant (SRP) since 1980 and is located in the southeastern section of the TNX facility. The basin receives waste from pilot scale tests conducted at TNX in support of the Defense Waste Processing Facility (DWPF) and the plant Separations area. The basin is scheduled for closure after the TNX Effluent Treatment Plant (ETP) begins operation. The basin will be closed pursuant to all applicable state and federal regulations. A statistical analysis of monitoring data indicates elevated levels of sodium and zinc in the groundwater at this site. Closure options considered for the New TNX Seepage Basin include waste removal and closure, no waste removal and closure, and no action. The two predominant pathways for human exposure to chemical contaminants are through surface, subsurface, and atmospheric transport. Modeling calculations were made to determine the risks to human population via these general pathways for the three postulated closure options for the New TNX Seepage Basin. Cost estimates for each closure option at the basin have also been prepared. An evaluation of the environmental impacts from the New TNX Seepage Basin indicate that the relative risks to human health and ecosystems for the postulated closure options are low. The transport of six chemical and one radionuclide constituents through the environmental pathways from the basin were modeled. The maximum chemical carcinogenic risk and the noncarcinogenic risk for the groundwater pathways were from exposure to trichloromethane and nitrate

  18. Drift-Scale THC Seepage Model

    Energy Technology Data Exchange (ETDEWEB)

    C.R. Bryan

    2005-02-17

    The purpose of this report (REV04) is to document the thermal-hydrologic-chemical (THC) seepage model, which simulates the composition of waters that could potentially seep into emplacement drifts, and the composition of the gas phase. The THC seepage model is processed and abstracted for use in the total system performance assessment (TSPA) for the license application (LA). This report has been developed in accordance with ''Technical Work Plan for: Near-Field Environment and Transport: Coupled Processes (Mountain-Scale TH/THC/THM, Drift-Scale THC Seepage, and Post-Processing Analysis for THC Seepage) Report Integration'' (BSC 2005 [DIRS 172761]). The technical work plan (TWP) describes planning information pertaining to the technical scope, content, and management of this report. The plan for validation of the models documented in this report is given in Section 2.2.2, ''Model Validation for the DS THC Seepage Model,'' of the TWP. The TWP (Section 3.2.2) identifies Acceptance Criteria 1 to 4 for ''Quantity and Chemistry of Water Contacting Engineered Barriers and Waste Forms'' (NRC 2003 [DIRS 163274]) as being applicable to this report; however, in variance to the TWP, Acceptance Criterion 5 has also been determined to be applicable, and is addressed, along with the other Acceptance Criteria, in Section 4.2 of this report. Also, three FEPS not listed in the TWP (2.2.10.01.0A, 2.2.10.06.0A, and 2.2.11.02.0A) are partially addressed in this report, and have been added to the list of excluded FEPS in Table 6.1-2. This report has been developed in accordance with LP-SIII.10Q-BSC, ''Models''. This report documents the THC seepage model and a derivative used for validation, the Drift Scale Test (DST) THC submodel. The THC seepage model is a drift-scale process model for predicting the composition of gas and water that could enter waste emplacement drifts and the effects of mineral

  19. Drift-Scale THC Seepage Model

    International Nuclear Information System (INIS)

    C.R. Bryan

    2005-01-01

    The purpose of this report (REV04) is to document the thermal-hydrologic-chemical (THC) seepage model, which simulates the composition of waters that could potentially seep into emplacement drifts, and the composition of the gas phase. The THC seepage model is processed and abstracted for use in the total system performance assessment (TSPA) for the license application (LA). This report has been developed in accordance with ''Technical Work Plan for: Near-Field Environment and Transport: Coupled Processes (Mountain-Scale TH/THC/THM, Drift-Scale THC Seepage, and Post-Processing Analysis for THC Seepage) Report Integration'' (BSC 2005 [DIRS 172761]). The technical work plan (TWP) describes planning information pertaining to the technical scope, content, and management of this report. The plan for validation of the models documented in this report is given in Section 2.2.2, ''Model Validation for the DS THC Seepage Model,'' of the TWP. The TWP (Section 3.2.2) identifies Acceptance Criteria 1 to 4 for ''Quantity and Chemistry of Water Contacting Engineered Barriers and Waste Forms'' (NRC 2003 [DIRS 163274]) as being applicable to this report; however, in variance to the TWP, Acceptance Criterion 5 has also been determined to be applicable, and is addressed, along with the other Acceptance Criteria, in Section 4.2 of this report. Also, three FEPS not listed in the TWP (2.2.10.01.0A, 2.2.10.06.0A, and 2.2.11.02.0A) are partially addressed in this report, and have been added to the list of excluded FEPS in Table 6.1-2. This report has been developed in accordance with LP-SIII.10Q-BSC, ''Models''. This report documents the THC seepage model and a derivative used for validation, the Drift Scale Test (DST) THC submodel. The THC seepage model is a drift-scale process model for predicting the composition of gas and water that could enter waste emplacement drifts and the effects of mineral alteration on flow in rocks surrounding drifts. The DST THC submodel uses a drift

  20. Infiltration and Seepage Through Fractured Welded Tuff

    International Nuclear Information System (INIS)

    T.A. Ghezzehei; P.F. Dobson; J.A. Rodriguez; P.J. Cook

    2006-01-01

    The Nopal I mine in Pena Blanca, Chihuahua, Mexico, contains a uranium ore deposit within fractured tuff. Previous mining activities exposed a level ground surface 8 m above an excavated mining adit. In this paper, we report results of ongoing research to understand and model percolation through the fractured tuff and seepage into a mined adit both of which are important processes for the performance of the proposed nuclear waste repository at Yucca Mountain. Travel of water plumes was modeled using one-dimensional numerical and analytical approaches. Most of the hydrologic properly estimates were calculated from mean fracture apertures and fracture density. Based on the modeling results, we presented constraints for the arrival time and temporal pattern of seepage at the adit

  1. Infiltration and Seepage Through Fractured Welded Tuff

    Energy Technology Data Exchange (ETDEWEB)

    T.A. Ghezzehei; P.F. Dobson; J.A. Rodriguez; P.J. Cook

    2006-06-20

    The Nopal I mine in Pena Blanca, Chihuahua, Mexico, contains a uranium ore deposit within fractured tuff. Previous mining activities exposed a level ground surface 8 m above an excavated mining adit. In this paper, we report results of ongoing research to understand and model percolation through the fractured tuff and seepage into a mined adit both of which are important processes for the performance of the proposed nuclear waste repository at Yucca Mountain. Travel of water plumes was modeled using one-dimensional numerical and analytical approaches. Most of the hydrologic properly estimates were calculated from mean fracture apertures and fracture density. Based on the modeling results, we presented constraints for the arrival time and temporal pattern of seepage at the adit.

  2. Numerical experiments on the probability of seepage into underground openings in heterogeneous fractured rock

    International Nuclear Information System (INIS)

    Birkholzer, J.; Li, G.; Tsang, C.F.; Tsang, Y.

    1998-01-01

    An important issue for the performance of underground nuclear waste repositories is the rate of seepage into the waste emplacement drifts. A prediction of this rate is particularly complicated for the potential repository site at Yucca Mountain, Nevada, because it is located in thick, unsaturated, fractured tuff formations. Underground opening in unsaturated media might act as capillary barriers, diverting water around them. In the present work, they study the potential rate of seepage into drifts as a function of the percolation flux at Yucca Mountain, based on a stochastic model of the fractured rock mass in the drift vicinity. A variety of flow scenarios are considered, assuming present-day and possible future climate conditions. They show that the heterogeneity in the flow domain is a key factor controlling seepage rates, since it causes channelized flow and local ponding in the unsaturated flow field

  3. Geophysical and hydrologic studies of lake seepage variability

    Science.gov (United States)

    Toran, Laura; Nyquist, Jonathan E.; Rosenberry, Donald O.; Gagliano, Michael P.; Mitchell, Natasha; Mikochik, James

    2014-01-01

    Variations in lake seepage were studied along a 130 m shoreline of Mirror Lake NH. Seepage was downward from the lake to groundwater; rates measured from 28 seepage meters varied from 0 to −282 cm/d. Causes of this variation were investigated using electrical resistivity surveys and lakebed sediment characterization. Two-dimensional (2D) resistivity surveys showed a transition in lakebed sediments from outwash to till that correlated with high- and low-seepage zones, respectively. However, the 2D survey was not able to predict smaller scale variations within these facies. In the outwash, fast seepage was associated with permeability variations in a thin (2 cm) layer of sediments at the top of the lakebed. In the till, where seepage was slower than that in the outwash, a three-dimensional resistivity survey mapped a point of high seepage associated with heterogeneity (lower resistivity and likely higher permeability). Points of focused flow across the sediment–water interface are difficult to detect and can transmit a large percentage of total exchange. Using a series of electrical resistivity geophysical methods in combination with hydrologic data to locate heterogeneities that affect seepage rates can help guide seepage meter placement. Improving our understanding of the causes and types of heterogeneity in lake seepage will provide better data for lake budgets and prediction of mass transfer of solutes or contaminants between lakes and groundwater.

  4. Seepage through a hazardous-waste trench cover

    Science.gov (United States)

    Healy, R.W.

    1989-01-01

    Water movement through a waste-trench cover under natural conditions at a low-level radioactive waste disposal site in northwestern Illinois was studied from July 1982 to June 1984, using tensiometers, a moisture probe, and meteorological instruments. Four methods were used to estimate seepage: the Darcy, zero-flux plane, surface-based water-budget, and groundwater-based water-budget methods. Annual seepage estimates ranged from 48 to 216 mm (5-23% of total precipitation), with most seepage occurring in spring. The Darcy method, although limited in accuracy by uncertainty in hydraulic conductivity, was capable of discretizing seepage in space and time and indicated that seepage varied by almost an order of magnitude across the width of the trench. Lowest seepage rates occurred near the center of the cover, where seepage was gradual. Highest rates occurred along the edge of the cover, where seepage was highly episodic, with 84% of the total there being traced to wetting fronts from 28 individual storms. Limitations of the zero-flux-plane method were severe enough for the method to be judged inappropriate for use in this study.Water movement through a waste-trench cover under natural conditions at a low-level radioactive waste disposal site in northwestern Illinois was studied from July 1982 to June 1984, using tensiometers, a moisture probe, and meteorological instruments. Four methods were used to estimate seepage: the Darcy, zero-flux plane, surface-based water-budget, and groundwater-based water-budget methods. Annual seepage estimates ranged from 48 to 216mm (5-23% of total precipitation), with most seepage occurring in spring. The Darcy method, although limited in accuracy by uncertainty in hydraulic conductivity, was capable of discretizing seepage in space and time and indicated that seepage varied by almost an order of magnitude across the width of the trench. Lowest seepage rates occurred near the center of the cover, where seepage was gradual. Highest

  5. Geochemical Modeling Of F Area Seepage Basin Composition And Variability

    International Nuclear Information System (INIS)

    Millings, M.; Denham, M.; Looney, B.

    2012-01-01

    From the 1950s through 1989, the F Area Seepage Basins at the Savannah River Site (SRS) received low level radioactive wastes resulting from processing nuclear materials. Discharges of process wastes to the F Area Seepage Basins followed by subsequent mixing processes within the basins and eventual infiltration into the subsurface resulted in contamination of the underlying vadose zone and downgradient groundwater. For simulating contaminant behavior and subsurface transport, a quantitative understanding of the interrelated discharge-mixing-infiltration system along with the resulting chemistry of fluids entering the subsurface is needed. An example of this need emerged as the F Area Seepage Basins was selected as a key case study demonstration site for the Advanced Simulation Capability for Environmental Management (ASCEM) Program. This modeling evaluation explored the importance of the wide variability in bulk wastewater chemistry as it propagated through the basins. The results are intended to generally improve and refine the conceptualization of infiltration of chemical wastes from seepage basins receiving variable waste streams and to specifically support the ASCEM case study model for the F Area Seepage Basins. Specific goals of this work included: (1) develop a technically-based 'charge-balanced' nominal source term chemistry for water infiltrating into the subsurface during basin operations, (2) estimate the nature of short term and long term variability in infiltrating water to support scenario development for uncertainty quantification (i.e., UQ analysis), (3) identify key geochemical factors that control overall basin water chemistry and the projected variability/stability, and (4) link wastewater chemistry to the subsurface based on monitoring well data. Results from this study provide data and understanding that can be used in further modeling efforts of the F Area groundwater plume. As identified in this study, key geochemical factors affecting basin

  6. Old TNX Seepage Basin: Environmental information document

    International Nuclear Information System (INIS)

    Dunaway, J.K.; Johnson, W.F.; Kingley, L.E.; Simmons, R.V.; Bledsoe, H.W.; Smith, J.A.

    1986-12-01

    This document provides environmental information on postulated closure options for the Old TNX Seepage Basin at the Savannah River Plant and was developed as background technical documentation for the Department of Energy's proposed Environmental Impact Statement (EIS) on waste management activities for groundwater protection at the plant. The results of groundwater and atmospheric pathway analyses, accident analysis, and other environmental assessments discussed in this document are based upon a conservative analysis of all foreseeable scenarios as defined by the National Environmental Policy Act (40 CFR 1500-1508). The scenarios do not necessarily represent actual environmental conditions. This document is not meant to be used as a regulatory closure plan or other regulatory document to comply with required federal or state environmental regulations

  7. Evolution Procedure of Multiple Rock Cracks under Seepage Pressure

    Directory of Open Access Journals (Sweden)

    Taoying Liu

    2013-01-01

    Full Text Available In practical geotechnical engineering, most of rock masses with multiple cracks exist in water environment. Under such circumstance, these adjacent cracks could interact with each other. Moreover, the seepage pressure, produced by the high water pressure, can change cracks’ status and have an impact on the stress state of fragile rocks. According to the theory of fracture mechanics, this paper discusses the law of crack initiation and the evolution law of stress intensity factor at the tip of a wing crack caused by compression-shear stress and seepage pressure. Subsequently, considering the interaction of the wing cracks and the additional stress caused by rock bridge damage, this paper proposes the intensity factor evolution equation under the combined action of compression-shear stress and seepage pressure. In addition, this paper analyzes the propagation of cracks under different seepage pressure which reveals that the existence of seepage pressure facilitates the wing crack’s growth. The result indicates that the high seepage pressure converts wing crack growth from stable form to unstable form. Meanwhile, based on the criterion and mechanism for crack initiation and propagation, this paper puts forward the mechanical model for different fracture transfixion failure modes of the crag bridge under the combined action of seepage pressure and compression-shear stress. At the last part, this paper, through investigating the flexibility tensor of the rock mass’s initial damage and its damage evolution in terms of jointed rock mass's damage mechanics, deduces the damage evolution equation for the rock mass with multiple cracks under the combined action of compression-shear stress and seepage pressure. The achievement of this investigation provides a reliable theoretical principle for quantitative research of the fractured rock mass failure under seepage pressure.

  8. Investigation of seepage under the Wenxiakou dam using radiotracer

    International Nuclear Information System (INIS)

    Li Zhangsu

    1988-01-01

    This paper describes the result of seepage observation on the dam foundation of Wenxiakou Reservoir using radioactive NaI (I-131) as a tracer. The main feature of the observing technique is to ascertain the seepages between the dam foundation and the clay core wall and around the abutment by measuring vertical flow. The results obtained from the observation have provided some important information for planning the engineering project of anti-seepage and reinforcement of the dam foundation and its right abutment. (author). 2 refs, 4 figs, 1 tab

  9. The analysis of physicochemical characteristics of pig farm seepage ...

    African Journals Online (AJOL)

    Dikonketso Matjuda

    -bodies, promoting ... that the seepage from pig farm degraded the natural environment by causing eutrophication, promote ... mainly livestock droppings, heavy metals, fertilizers and ... from microorganisms to insects, birds, fish, and at the.

  10. Three Dimensional Seepage Analyses in Mollasadra Dam after Its ...

    African Journals Online (AJOL)

    Michael Horsfall

    constructed on Kor River. pore water pressure in the dam was investigated following its construction and first and second ... Some problems like seepage failure and slope stability are ... In addition, the effects of change in certain input ...

  11. modelingthe effect the effect of contact and seepage forces

    African Journals Online (AJOL)

    eobe

    This research work has investigated the contribution of contact force and seepage force to the ... e equilibrium model has deduced an expression for the safe hydraulic head during well ...... Plastic deformation of soils simulation using DEM,.

  12. Seepage investigation by using Isotope and Geophysical Techniques in Gumti Flood Embankment/Dyke, Comilla

    International Nuclear Information System (INIS)

    Ahmed, N.; Wallin, B. G.; Majumder, R. K.; Mikail, M.; Rahman, M. S.

    2004-06-01

    Gumti Flood Control Embankment/Dyke is vital for irrigation water supply and flood control. Water seepage/leakage and slope failures are the major issues in Gumti earthen dyke. The distinct seepage and slope failure zone were observed at three places (Farizpur, Kathalia and Ebdarpur) along the countryside of left dyke. The isotopic technique has been integrated in the conventional hydrologic investigations. The isotope methodology works essentially by developing a characteristics pattern of the isotopic composition to identify the sources and flow dynamics of seeping/leaking in the dykes. Two sampling campaigns were conducted; one was on October, 2002 and the other was on July, 2003; near the seepage/leakage site for chemical analysis and stable isotopic analysis (''2H and ''1 8 O). Both samplings were done after recession of peak water level in the Gumti river. Interpretation of the hydrochemical data implies that the groundwater near the investigated seepage zones is Na-Ca-HCO 3 type and the river water is Ca-Mg-HCO 3 type. The chlorides content of both groundwater and river water are found mostly similar, indicating mixing between the two water system. The stable isotopes (''2H and ''1 8 O) of groundwater fall on the Meteoric Water Line, ranging the oxygen-18 values from -4.98 to -5.46 per mil and deuterium values from -30.0 to -33.6 per mil. It indicates the recharge from the river water during peak water level in the river Gumti. On the other hand, the stable isotopes of the Gumti river show some evaporation effect, which might have occurred due to stagnation of flowing water in the river. The oxygen-18 and deuterium values for river water range from -3.61 to -4.43 per mil and from -22.30 to -28.48 per mil respectively. These isotope results reflect the hydraulic connectivity between the river water and groundwater through the base of dyke. The earth imaging resistivity survey was carried out in the dry period along the four above mentioned areas of the Gumti

  13. H-Area Seepage Basins groundwater monitoring report

    International Nuclear Information System (INIS)

    1992-09-01

    During second quarter 1992, tritium, nitrate, nonvolatile beta, total alpha-emitting radium (radium-224 and radium-226), gross alpha, mercury, lead, tetrachloroethylene, arsenic, and cadmium exceeded the US Environmental Protection Agency Primary Drinking Water Standards (PDWS) in groundwater samples from monitoring wells at the H-Area Seepage Basins (HASB) at the Savannah River Plant. This report gives the results of the analyses of groundwater from the H-Area Seepage Basin

  14. Modeling Coupled Evaporation and Seepage in Ventilated Cavities

    International Nuclear Information System (INIS)

    Ghezzehei, T.; Trautz, R.; Finsterle, S.; Cook, P.; Ahlers, C.

    2004-01-01

    Cavities excavated in unsaturated geological formations are important to activities such as nuclear waste disposal and mining. Such cavities provide a unique setting for simultaneous occurrence of seepage and evaporation. Previously, inverse numerical modeling of field liquid-release tests and associated seepage into cavities were used to provide seepage-related large-scale formation properties by ignoring the impact of evaporation. The applicability of such models was limited to the narrow range of ventilation conditions under which the models were calibrated. The objective of this study was to alleviate this limitation by incorporating evaporation into the seepage models. We modeled evaporation as an isothermal vapor diffusion process. The semi-physical model accounts for the relative humidity, temperature, and ventilation conditions of the cavities. The evaporation boundary layer thickness (BLT) over which diffusion occurs was estimated by calibration against free-water evaporation data collected inside the experimental cavities. The estimated values of BLT were 5 to 7 mm for the open underground drifts and 20 mm for niches closed off by bulkheads. Compared to previous models that neglected the effect of evaporation, this new approach showed significant improvement in capturing seepage fluctuations into open cavities of low relative humidity. At high relative-humidity values (greater than 85%), the effect of evaporation on seepage was very small

  15. Optimization of Multiple Seepage Piping Parameters to Maximize the Critical Hydraulic Gradient in Bimsoils

    Directory of Open Access Journals (Sweden)

    Yu Wang

    2017-10-01

    Full Text Available Seepage failure in the form of piping can strongly influence the stability of block-in-matrix-soils (bimsoils, as well as weaken and affect the performance of bimsoil structures. The multiple-factor evaluation and optimization play a crucial role in controlling the seepage failure in bimsoil. The aim of this study is to improve the ability to control the piping seepage failure in bimsoil. In this work, the response surface method (RSM was employed to evaluate and optimize the multiple piping parameters to maximize the critical hydraulic gradient (CHG, in combination with experimental modeling based on a self-developed servo-controlled flow-erosion-stress coupled testing system. All of the studied specimens with rock block percentage (RBP of 30%, 50%, and 70% were produced as a cylindrical shape (50 mm diameter and 100 mm height by compaction tests. Four uncertain parameters, such as RBP, soil matrix density, confining pressure, and block morphology were used to fit an optimal response of the CHG. The sensitivity analysis reveals the influential order of the studied factors to CHG. It is found that RBP is the most sensitive factor, the CHG decreases with the increase of RBP, and CHG increases with the increase of confining pressure, soil matrix density, and block angularity.

  16. Effects of Uncertainty and Spatial Variability on Seepage into Drifts in the Yucca Mountain Total system Performance Assessment Model

    International Nuclear Information System (INIS)

    Kalinich, D. A.; Wilson, M. L.

    2001-01-01

    Seepage into the repository drifts is an important factor in total-system performance. Uncertainty and spatial variability are considered in the seepage calculations. The base-case results show 13.6% of the waste packages (WPs) have seepage. For 5th percentile uncertainty, 4.5% of the WPs have seepage and the seepage flow decreased by a factor of 2. For 95th percentile uncertainty, 21.5% of the WPs have seepage and the seepage flow increased by a factor of 2. Ignoring spatial variability resulted in seepage on 100% of the WPs, with a factor of 3 increase in the seepage flow

  17. A Model of Anisotropic Property of Seepage and Stress for Jointed Rock Mass

    Directory of Open Access Journals (Sweden)

    Pei-tao Wang

    2013-01-01

    Full Text Available Joints often have important effects on seepage and elastic properties of jointed rock mass and therefore on the rock slope stability. In the present paper, a model for discrete jointed network is established using contact-free measurement technique and geometrical statistic method. A coupled mathematical model for characterizing anisotropic permeability tensor and stress tensor was presented and finally introduced to a finite element model. A case study of roadway stability at the Heishan Metal Mine in Hebei Province, China, was performed to investigate the influence of joints orientation on the anisotropic properties of seepage and elasticity of the surrounding rock mass around roadways in underground mining. In this work, the influence of the principal direction of the mechanical properties of the rock mass on associated stress field, seepage field, and damage zone of the surrounding rock mass was numerically studied. The numerical simulations indicate that flow velocity, water pressure, and stress field are greatly dependent on the principal direction of joint planes. It is found that the principal direction of joints is the most important factor controlling the failure mode of the surrounding rock mass around roadways.

  18. Air Compressibility Effect on Bouwer and Rice Seepage Meter.

    Science.gov (United States)

    Peng, Xin; Zhan, Hongbin

    2017-11-01

    Measuring a disconnected streambed seepage flux using a seepage meter can give important streambed information and help understanding groundwater-surface water interaction. In this study, we provide a correction for calculating the seepage flux rate with the consideration of air compressibility inside the manometer of the Bouwer and Rice seepage meter. We notice that the effect of air compressibility in the manometer is considerably larger when more air is included in the manometer. We find that the relative error from neglecting air compressibility can be constrained within 5% if the manometer of the Bouwer and Rice seepage meter is shorter than 0.8 m and the experiment is done in a suction mode in which air is pumped out from the manometer before the start of measurement. For manometers longer than 0.8 m, the relative error will be larger than 5%. It may be over 10% if the manometer height is longer than 1.5 m and the experiment is done in a no-suction mode, in which air is not pumped out from the manometer before the start of measurement. © 2017, National Ground Water Association.

  19. Interpretation of self-potential data for dam seepage investigations

    Energy Technology Data Exchange (ETDEWEB)

    Corwin, R.F.; Sheffer, M.R.; Salmon, G. [BC Hydro, Burnaby, BC (Canada)

    2007-04-15

    This book represents one of a series on the subject of geophysical methods and their use in assessing seepage and internal erosion in embankment dams. This manual facilitates the interpretation of self-potential (SP) data generated by subsurface fluid flow, with an emphasis on dam seepage studies. It is intended for users with a background in geophysics or engineering having a general familiarity with both the SP and direct-current (DC) resistivity methods and their applications. It includes an extensive reference list covering all aspects of available SP interpretation techniques, including qualitative, analytical and numerical methods. Particular emphasis is placed on the use of geometric source analytical modeling methods to evaluate SP anomalies. These methods provide a simple yet efficient means of estimating the location and depth of current sources of observed SP data, which may be linked to fluid flow in the subsurface. The manual is primarily oriented toward embankment dams and earthen structures such as levees and dikes. SP methods have been used to investigate seepage through pervious zones and cracks in concrete and concrete-faced structures. The manual describes the nature of SP fields generated by both uniform and non-uniform dam seepage flow, as well as non-seepage sources of SP variations. These methods enable the study of more complex systems and require a more comprehensive analysis of a given field site. refs., tabs., figs.

  20. Mapping seepage through the River Reservoir Dam near Eagar, Arizona

    Energy Technology Data Exchange (ETDEWEB)

    Rollins, P.

    2005-06-30

    This article describes the actions taken to address an unusual amount of water seepage from the left abutment weir-box of the River Reservoir dam built in 1896 near Eagar, Arizona. Upon noting the seepage in March 2004, the operator, Round Valley Water Users Association, contacted the State of Arizona who funded the investigation and subsequent remediation activities through an emergency fund. The dam was originally built with local materials and did not include a clay core. It was modified at least four times. The embankment sits on basalt bedrock and consists of clayey soils within a rock-fill shell. AquaTrack technology developed by Willowstick Technologies was used to assess the deteriorating situation. AquaTrack uses a low voltage, low amperage audio-frequency electrical current to energize the groundwater or seepage. This made it possible to follow the path of groundwater between the electrodes. A magnetic field was created which made it possible to locate and map the field measurements. The measured magnetic field data was processed, contoured and correlated to other hydrogeologic information. This identified the extent and preferential flow paths of the seepage. The survey pinpointed the area with the greatest leakage in both the horizontal and vertical directions. Fluorescent dyes were also used for tracer work to confirm previous findings that showed a serious seepage problem. The water of the reservoir was lowered to perform remedial measures to eliminate the risk of immediate failure. Funding for a more permanent repair is pending. 10 figs.

  1. Mapping on Slope Seepage Problem using Electrical Resistivity Imaging (ERI)

    Science.gov (United States)

    Hazreek, Z. A. M.; Nizam, Z. M.; Aziman, M.; Dan, M. F. Md; Shaylinda, M. Z. N.; Faizal, T. B. M.; Aishah, M. A. N.; Ambak, K.; Rosli, S.; Rais, Y.; Ashraf, M. I. M.; Alel, M. N. A.

    2018-04-01

    The stability of slope may influenced by several factors such as its geomaterial properties, geometry and environmental factors. Problematic slope due to seepage phenomenon will influenced the slope strength thus promoting to its failure. In the past, slope seepage mapping suffer from several limitation due to cost, time and data coverage. Conventional engineering tools to detect or mapped the seepage on slope experienced those problems involving large and high elevation of slope design. As a result, this study introduced geophysical tools for slope seepage mapping based on electrical resistivity method. Two spread lines of electrical resistivity imaging were performed on the slope crest using ABEM SAS 4000 equipment. Data acquisition configuration was based on long and short arrangement, schlumberger array and 2.5 m of equal electrode spacing interval. Raw data obtained from data acquisition was analyzed using RES2DINV software. Both of the resistivity results show that the slope studied consists of three different anomalies representing top soil (200 – 1000 Ωm), perched water (10 – 100 Ωm) and hard/dry layer (> 200 Ωm). It was found that seepage problem on slope studied was derived from perched water zones with electrical resistivity value of 10 – 100 Ωm. Perched water zone has been detected at 6 m depth from the ground level with varying thickness at 5 m and over. Resistivity results have shown some good similarity output with reference to borehole data, geological map and site observation thus verified the resistivity results interpretation. Hence, this study has shown that the electrical resistivity imaging was applicable in slope seepage mapping which consider efficient in term of cost, time, data coverage and sustainability.

  2. Natural gas seepage from a dug well in Gemerska Panica

    International Nuclear Information System (INIS)

    Milicka, J.; Pereszlenyi, M.; Masaryk, P.

    1997-01-01

    On July 20 1993, a seepage of inflammable natural gas was reported by workers of the Slovak Gas Industry enterprise (SPP) to the Oil and Gas Research and Prospecting (VVNP). Therefore, the locality was visited with the aim to evaluate the current situation, to take rock and water samples for for chemical analysis, to survey the vicinity of Gemerska Panica and to prepare a preliminary oil-geological evaluation of the area, with a suggestion of further prospecting. At the same time, the seepage of inflammable natural gas was reported to the District Mining Office in Spisska Nova Ves. (authors)

  3. Heterogeneous seepage at the Nopal I natural analogue site, Chihuahua, Mexico

    Science.gov (United States)

    Dobson, Patrick F.; Ghezzehei, Teamrat A.; Cook, Paul J.; Rodríguez-Pineda, J. Alfredo; Villalba, Lourdes; de La Garza, Rodrigo

    2012-02-01

    A study of seepage occurring in an adit at the Nopal I uranium mine in Chihuahua, Mexico, was conducted as part of an integrated natural analogue study to evaluate the effects of infiltration and seepage on the mobilization and transport of radionuclides. An instrumented seepage collection system and local automated weather station permit direct correlation between local precipitation events and seepage. Field observations recorded between April 2005 and December 2006 indicate that seepage is highly heterogeneous with respect to time, location, and quantity. Seepage, precipitation, and fracture data were used to test two hypotheses: (1) that fast flow seepage is triggered by large precipitation events, and (2) that an increased abundance of fractures and/or fracture intersections leads to higher seepage volumes. A few zones in the back adit recorded elevated seepage volumes immediately following large (>20 mm/day) precipitation events, with transit times of less than 4 h through the 8-m thick rock mass. In most locations, there is a 1-6 month time lag between the onset of the rainy season and seepage, with longer times observed for the front adit. There is a less clear-cut relation between fracture abundance and seepage volume; processes such as evaporation and surface flow along the ceiling may also influence seepage.

  4. Analysis of three-dimensional transient seepage into ditch drains ...

    Indian Academy of Sciences (India)

    Ratan Sarmah

    waterlogged soils in many regions of the world, including. India [2, 6–9]—to name a ... predicting two-dimensional seepage into a network of ...... when d1 ¼ 0, the lower limits of integration of the integral ...... and agricultural development. Irrig.

  5. Heterogeneous Seepage at the Nopal I Uranium Mine, Chihuahua, Mexico

    International Nuclear Information System (INIS)

    Dobson, Patrick; Dobson, Patrick F.; Cook, Paul J.; Ghezzehei, Teamrat; Rodriguez, J. Alfredo; Garza, Rodrigo de la

    2008-01-01

    The primary objective of this analogue study is to evaluate flow and transport processes of relevance to the proposed Yucca Mountain repository. Seepage data obtained from this study will be used to constrain flow and transport models being developed for the Nopal I system

  6. Potential Antifreeze Compounds in Present-Day Martian Seepage Groundwater

    Directory of Open Access Journals (Sweden)

    Jiin-Shuh Jean

    2008-01-01

    Full Text Available Is the recently found seepage groundwater on Mars pure H2O, or mixed with salts and other antifreeze compounds? Given the surface conditions of Mars, it is unlikely that pure water could either exist in its liquid state or have shaped Mars¡¦ fluid erosional landforms (gullies, channels, and valley networks. More likely is that Mars¡¦ seepage groundwater contains antifreeze and salt compounds that resist freezing and suppress evaporation. This model better accounts for Mars¡¦ enigmatic surface erosion. This paper suggests 17 antifreeze compounds potentially present in Martian seepage groundwater. Given their liquid state and physical properties, triethylene glycol, diethylene glycol, ethylene glycol, and 1,3-propylene glycol are advanced as the most likely candidate compounds. This paper also explores how a mixing of glycol or glycerol with salts in the Martian seepage groundwater may have lowered water¡¦s freezing point and raised its boiling point, with consequences that created fluid gully and channel erosion. Ethylene glycol and related hydrocarbon compounds have been identified in Martian and other interstellar meteorites. We suggest that these compounds and their proportions to water be included for detection in future explorations.

  7. Modeling of Seepage Losses in Sewage Sludge Drying Bed ...

    African Journals Online (AJOL)

    This research was carried out to develop a model governing seepage losses in sewage sludge drying bed. The model will assist in the design of sludge drying beds for effective management of wastes derived from households' septic systems. In the experiment conducted this study, 125kg of sewage sludge, 90.7% moisture ...

  8. solution of confined seepage problems below hydraulic structures

    African Journals Online (AJOL)

    user

    1985-09-01

    Sep 1, 1985 ... boundaries are used for solving the seepage problem beneath practical profiles of ... 1. INTRODUCTION. The study of flow through porous media has a wide range of .... free surface flow [3, 4, 5] and unconfined flow situations ...

  9. SEEPAGE INTO DRIFTS IN UNSATRUATED FRACTURED ROCK AT YUCCA MOUNTAIN

    International Nuclear Information System (INIS)

    JENS BIRHOLZER; GUOMIN LI; CHIN-FU TSANG; YVONNE TSANG

    1998-01-01

    An important issue for the long-term performance of underground nuclear waste repositories is the rate of seepage into the waste emplacement drifts. A prediction of the future seepage rate is particularly complicated for the potential repository site at Yucca Mountain, Nevada, as it is located in thick, partially saturated, fractured tuff formations. The long-term situation in the drifts several thousand years after waste emplacement will be characterized by a relative humidity level close to or equal to 100%. as the drifts will be sealed and unventilated, and the waste packages will have cooled. The underground tunnels will then act as capillary barriers for the unsaturated flow, ideally diverting water around them, if the capillary forces are stronger than gravity and viscous forces. Seepage into the drifts will only be possible if the hydraulic pressure in the rock close to the drift walls increases to positive values; i.e., the flow field becomes locally saturated. In the present work, we have developed and applied a methodology to study the potential rate of seepage into underground cavities embedded in a variably saturated, heterogeneous fractured rock formation. The fractured rock mass is represented as a stochastic continuum where the fracture permeabilities vary by several orders of magnitude. Three different realizations of random fracture permeability fields are generated, with the random permeability structure based on extensive fracture mapping, borehole video analysis, and in-situ air permeability testing. A 3-D numerical model is used to simulate the heterogeneous steady-state flow field around the drift, with the drift geometry explicitly represented within the numerical discretization grid. A variety of flow scenarios are considered assuming present-day and future climate conditions at Yucca Mountain. The numerical study is complemented by theoretical evaluations of the drift seepage problem, using stochastic perturbation theory to develop a better

  10. Methane Seepage on Mars: Where to Look and Why.

    Science.gov (United States)

    Oehler, Dorothy Z; Etiope, Giuseppe

    2017-12-01

    Methane on Mars is a topic of special interest because of its potential association with microbial life. The variable detections of methane by the Curiosity rover, orbiters, and terrestrial telescopes, coupled with methane's short lifetime in the martian atmosphere, may imply an active gas source in the planet's subsurface, with migration and surface emission processes similar to those known on Earth as "gas seepage." Here, we review the variety of subsurface processes that could result in methane seepage on Mars. Such methane could originate from abiotic chemical reactions, thermogenic alteration of abiotic or biotic organic matter, and ancient or extant microbial metabolism. These processes can occur over a wide range of temperatures, in both sedimentary and igneous rocks, and together they enhance the possibility that significant amounts of methane could have formed on early Mars. Methane seepage to the surface would occur preferentially along faults and fractures, through focused macro-seeps and/or diffuse microseepage exhalations. Our work highlights the types of features on Mars that could be associated with methane release, including mud-volcano-like mounds in Acidalia or Utopia; proposed ancient springs in Gusev Crater, Arabia Terra, and Valles Marineris; and rims of large impact craters. These could have been locations of past macro-seeps and may still emit methane today. Microseepage could occur through faults along the dichotomy or fractures such as those at Nili Fossae, Cerberus Fossae, the Argyre impact, and those produced in serpentinized rocks. Martian microseepage would be extremely difficult to detect remotely yet could constitute a significant gas source. We emphasize that the most definitive detection of methane seepage from different release candidates would be best provided by measurements performed in the ground or at the ground-atmosphere interface by landers or rovers and that the technology for such detection is currently available. Key

  11. Pond-aquifer flow and water availability in the vicinity of two coastal area seepage ponds, Glynn and Bulloch Counties, Georgia

    Science.gov (United States)

    Clarke, John S.; Rumman, Malek Abu

    2005-01-01

    Pond-aquifer flow and water availability at excavated seepage pond sites in Glynn County and in southern Bulloch County, Georgia, were evaluated to determine their potential as sources of water supply for irrigation. Excavated seepage ponds derive water primarily from ground water seeping into the pond, in a manner similar to a dug well completed in a surficial aquifer. The availability of water from seepage ponds is controlled by the permeability of surficial deposits, the amount of precipitation recharging the ground-water system, and the volume of water stored in the pond. The viability of seepage ponds as supplies for irrigation is limited by low seepage rates and high dependence on climatic conditions. Ponds will not refill unless there is adequate precipitation to recharge the surficial aquifer, which subsequently drains (seeps) into the pond. Ground-water seepage was estimated using a water-budget approach that utilized on-site climatic and hydrologic measurements, computing pond-volume changes during pond pumping tests, and by digital simulation using steady-state and transient ground-water flow models. From August 1999 to May 2000, the Glynn County pond was mostly losing water (as indicated by negative net seepage); whereas from October 2000 to June 2001, the Bulloch County pond was mostly gaining water. At both sites, most ground-water seepage entered the pond following major rainfall events that provided recharge to the surficial aquifer. Net ground-water seepage, estimated using water-budget analysis and simulation, ranged from -11.5 to 15 gallons per minute (gal/min) at the Glynn County pond site and from -55 to 31 gal/min at the Bulloch County pond site. Simulated values during pumping tests indicate that groundwater seepage to both ponds increases with decreased pond stage. At the Glynn County pond, simulated net ground-water seepage varied between 7.8 gal/min at the beginning of the test (high pond stage and low hydraulic gradient) and 103 gal

  12. Detection Model for Seepage Behavior of Earth Dams Based on Data Mining

    Directory of Open Access Journals (Sweden)

    Zhenxiang Jiang

    2018-01-01

    Full Text Available Seepage behavior detecting is an important tool for ensuring the safety of earth dams. However, traditional seepage behavior detection methods have used insufficient monitoring data and have mainly focused on single-point measures and local seepage behavior. The seepage behavior of dams is not quantitatively detected based on the monitoring data with multiple measuring points. Therefore, this study uses data mining techniques to analyze the monitoring data and overcome the above-mentioned shortcomings. The massive seepage monitoring data with multiple points are used as the research object. The key information on seepage behavior is extracted using principal component analysis. The correlation between seepage behavior and upstream water level is described as mutual information. A detection model for overall seepage behavior is established. Result shows that the model can completely extract the seepage monitoring data with multiple points and quantitatively detect the overall seepage behavior of earth dams. The proposed method can provide a new and reasonable means of quantitatively detecting the overall seepage behavior of earth dams.

  13. Drift-Scale Coupled Processes (DST and THC Seepage) Models

    International Nuclear Information System (INIS)

    Dixon, P.

    2004-01-01

    The purpose of this Model Report (REV02) is to document the unsaturated zone (UZ) models used to evaluate the potential effects of coupled thermal-hydrological-chemical (THC) processes on UZ flow and transport. This Model Report has been developed in accordance with the ''Technical Work Plan for: Performance Assessment Unsaturated Zone'' (Bechtel SAIC Company, LLC (BSC) 2002 [160819]). The technical work plan (TWP) describes planning information pertaining to the technical scope, content, and management of this Model Report in Section 1.12, Work Package AUZM08, ''Coupled Effects on Flow and Seepage''. The plan for validation of the models documented in this Model Report is given in Attachment I, Model Validation Plans, Section I-3-4, of the TWP. Except for variations in acceptance criteria (Section 4.2), there were no deviations from this TWP. This report was developed in accordance with AP-SIII.10Q, ''Models''. This Model Report documents the THC Seepage Model and the Drift Scale Test (DST) THC Model. The THC Seepage Model is a drift-scale process model for predicting the composition of gas and water that could enter waste emplacement drifts and the effects of mineral alteration on flow in rocks surrounding drifts. The DST THC model is a drift-scale process model relying on the same conceptual model and much of the same input data (i.e., physical, hydrological, thermodynamic, and kinetic) as the THC Seepage Model. The DST THC Model is the primary method for validating the THC Seepage Model. The DST THC Model compares predicted water and gas compositions, as well as mineral alteration patterns, with observed data from the DST. These models provide the framework to evaluate THC coupled processes at the drift scale, predict flow and transport behavior for specified thermal-loading conditions, and predict the evolution of mineral alteration and fluid chemistry around potential waste emplacement drifts. The DST THC Model is used solely for the validation of the THC

  14. The role of optimality in characterizing CO2 seepage from geological carbon sequestration sites

    Energy Technology Data Exchange (ETDEWEB)

    Cortis, Andrea; Oldenburg, Curtis M.; Benson, Sally M.

    2008-09-15

    Storage of large amounts of carbon dioxide (CO{sub 2}) in deep geological formations for greenhouse gas mitigation is gaining momentum and moving from its conceptual and testing stages towards widespread application. In this work we explore various optimization strategies for characterizing surface leakage (seepage) using near-surface measurement approaches such as accumulation chambers and eddy covariance towers. Seepage characterization objectives and limitations need to be defined carefully from the outset especially in light of large natural background variations that can mask seepage. The cost and sensitivity of seepage detection are related to four critical length scales pertaining to the size of the: (1) region that needs to be monitored; (2) footprint of the measurement approach, and (3) main seepage zone; and (4) region in which concentrations or fluxes are influenced by seepage. Seepage characterization objectives may include one or all of the tasks of detecting, locating, and quantifying seepage. Each of these tasks has its own optimal strategy. Detecting and locating seepage in a region in which there is no expected or preferred location for seepage nor existing evidence for seepage requires monitoring on a fixed grid, e.g., using eddy covariance towers. The fixed-grid approaches needed to detect seepage are expected to require large numbers of eddy covariance towers for large-scale geologic CO{sub 2} storage. Once seepage has been detected and roughly located, seepage zones and features can be optimally pinpointed through a dynamic search strategy, e.g., employing accumulation chambers and/or soil-gas sampling. Quantification of seepage rates can be done through measurements on a localized fixed grid once the seepage is pinpointed. Background measurements are essential for seepage detection in natural ecosystems. Artificial neural networks are considered as regression models useful for distinguishing natural system behavior from anomalous behavior

  15. Numerical simulations of seepage flow in rough single rock fractures

    Directory of Open Access Journals (Sweden)

    Qingang Zhang

    2015-09-01

    Full Text Available To investigate the relationship between the structural characteristics and seepage flow behavior of rough single rock fractures, a set of single fracture physical models were produced using the Weierstrass–Mandelbrot functions to test the seepage flow performance. Six single fractures, with various surface roughnesses characterized by fractal dimensions, were built using COMSOL multiphysics software. The fluid flow behavior through the rough fractures and the influences of the rough surfaces on the fluid flow behavior was then monitored. The numerical simulation indicates that there is a linear relationship between the average flow velocity over the entire flow path and the fractal dimension of the rough surface. It is shown that there is good a agreement between the numerical results and the experimental data in terms of the properties of the fluid flowing through the rough single rock fractures.

  16. Shallow bedrock limits groundwater seepage-based headwater climate refugia

    Science.gov (United States)

    Briggs, Martin A.; Lane, John W.; Snyder, Craig D.; White, Eric A.; Johnson, Zachary; Nelms, David L.; Hitt, Nathaniel P.

    2018-01-01

    Groundwater/surface-water exchanges in streams are inexorably linked to adjacent aquifer dynamics. As surface-water temperatures continue to increase with climate warming, refugia created by groundwater connectivity is expected to enable cold water fish species to survive. The shallow alluvial aquifers that source groundwater seepage to headwater streams, however, may also be sensitive to seasonal and long-term air temperature dynamics. Depth to bedrock can directly influence shallow aquifer flow and thermal sensitivity, but is typically ill-defined along the stream corridor in steep mountain catchments. We employ rapid, cost-effective passive seismic measurements to evaluate the variable thickness of the shallow colluvial and alluvial aquifer sediments along a headwater stream supporting cold water-dependent brook trout (Salvelinus fontinalis) in Shenandoah National Park, VA, USA. Using a mean depth to bedrock of 2.6 m, numerical models predicted strong sensitivity of shallow aquifer temperature to the downward propagation of surface heat. The annual temperature dynamics (annual signal amplitude attenuation and phase shift) of potential seepage sourced from the shallow modeled aquifer were compared to several years of paired observed stream and air temperature records. Annual stream water temperature patterns were found to lag local air temperature by ∼8–19 d along the stream corridor, indicating that thermal exchange between the stream and shallow groundwater is spatially variable. Locations with greater annual signal phase lag were also associated with locally increased amplitude attenuation, further suggestion of year-round buffering of channel water temperature by groundwater seepage. Numerical models of shallow groundwater temperature that incorporate regional expected climate warming trends indicate that the summer cooling capacity of this groundwater seepage will be reduced over time, and lower-elevation stream sections may no longer serve as larger

  17. H-Area Seepage Basins groundwater monitoring report

    International Nuclear Information System (INIS)

    Thompson, C.Y.

    1992-06-01

    During first quarter 1992, tritium, nitrate, nonvolatile beta, total alpha-emitting radium (radium-224 and radium-226), gross alpha, antimony, mercury, lead, tetrachloroethylene, arsenic, and cadmium exceeded the US Environmental Protection Agency Primary Drinking Water Standards (PDWS) in groundwater samples from monitoring wells at the H-Area Seepage Basins (HASB) at the Savannah River Site. This report presents and discusses the groundwater monitoring results in the H-Area for first quarter 1992

  18. Gas seepage on an intertidal site: Torry Bay, Firth of Forth, Scotland

    Energy Technology Data Exchange (ETDEWEB)

    Judd, A.G.; Sim, R.; Kingston, P.; McNally, J. [University of Sunderland, Sunderland (United Kingdom)

    2002-07-01

    Gas seeps occurring on tidal flats on the northern shore of the inner Firth of Forth are described. The principal gas is methane, which is considered to come from the coal-bearing rocks of the Lower Limestone Series (Carboniferous); either naturally or from abandoned coal workings. Seep activity has been known, at the site for several years, and it is suggested that the presence of white filamentous bacteria (Beggiatoa sp.) and a carbonate precipitate are indicative of long-term seepage. Comparative studies at the seep and at a control site revealed that the seeps have only a marginal effect on the intertidal fauna. Migration of gas through the thin ({lt} 2 m) surficial sediments appears to be controlled by the topography of a gravel layer, seeps preferentially occurring where the top of the gravel is closest to the surface. The total gas emission from 70 to 100 individual seepage vents is estimated at approximate to 1 tonne CH{sub 4} yr{sup -1}, the majority of which is emitted direct to the atmosphere.

  19. Calculation of drift seepage for alternative emplacement designs

    International Nuclear Information System (INIS)

    Li, Guomin; Tsang, Chin-Fu; Birkholzer, Jens

    1999-01-01

    The calculations presented in this report are performed to obtain seepage rates into drift and boreholes for two alternative designs of drift and waste emplacement at Yucca Mountain. The two designs are defined according to the Scope of Work 14012021M1, activity 399621, drafted October 6, 1998, and further refined in a conference telephone call on October 13, 1998, between Mark Balady, Jim Blink, Rob Howard and Chin-Fu Tsang. The 2 designs considered are: (1) Design A--Horizontal boreholes 1.0 m in diameter on both sides of the drift, with each borehole 8 m long and inclined to the drift axis by 30 degrees. The pillar between boreholes, measured parallel to the drift axis, is 3.3 m. In the current calculations, a simplified model of an isolated horizontal borehole 8 m long will be simulated. The horizontal borehole will be located in a heterogeneous fracture continuum representing the repository layer. Three different realizations will be taken from the heterogeneous field, representing three different locations in the rock. Seepage for each realization is calculated as a function of the percolation flux. Design B--Vertical boreholes, 1.0 m in diameter and 8.0 m deep, drilled from the bottom of an excavated 8.0 m diameter drift. Again, the drift with the vertical borehole will be assumed to be located in a heterogeneous fracture continuum, representing the rock at the repository horizon. Two realizations are considered, and seepage is calculated for the 8-m drift with and without the vertical 1-m borehole at its bottom

  20. On leakage and seepage from geological carbon sequestration sites

    Energy Technology Data Exchange (ETDEWEB)

    Oldenburg, C.M.; Unger, A.J.A.; Hepple, R.P.; Jordan, P.D.

    2002-07-18

    Geologic carbon sequestration is one strategy for reducing the rate of increase of global atmospheric carbon dioxide (CO{sub 2} ) concentrations (IEA, 1997; Reichle, 2000). As used here, the term geologic carbon sequestration refers to the direct injection of supercritical CO{sub 2} deep into subsurface target formations. These target formations will typically be either depleted oil and gas reservoirs, or brine-filled permeable formations referred to here as brine formations. Injected CO{sub 2} will tend to be trapped by one or more of the following mechanisms: (1) permeability trapping, for example when buoyant supercritical CO{sub 2} rises until trapped by a confining caprock; (2) solubility trapping, for example when CO{sub 2} dissolves into the aqueous phase in water-saturated formations, or (3) mineralogic trapping, such as occurs when CO{sub 2} reacts to produce stable carbonate minerals. When CO{sub 2} is trapped in the subsurface by any of these mechanisms, it is effectively sequestered away from the atmosphere where it would otherwise act as a greenhouse gas. The purpose of this report is to summarize our work aimed at quantifying potential CO{sub 2} seepage due to leakage from geologic carbon sequestration sites. The approach we take is to present first the relevant properties of CO{sub 2} over the range of conditions from the deep subsurface to the vadose zone (Section 2), and then discuss conceptual models for how leakage might occur (Section 3). The discussion includes consideration of gas reservoir and natural gas storage analogs, along with some simple estimates of seepage based on assumed leakage rates. The conceptual model discussion provides the background for the modeling approach wherein we focus on simulating transport in the vadose zone, the last potential barrier to CO{sub 2} seepage (Section 4). Because of the potentially wide range of possible properties of actual future geologic sequestration sites, we carry out sensitivity analyses by

  1. Historical analysis indicates seepage control on initiation of meandering

    NARCIS (Netherlands)

    Eekhout, J.P.C.; Hoitink, A.J.F.; Makaske, B.

    2013-01-01

    In analytical and numerical models of river meandering, initiation of meandering typically occurs uniformly along the streamwise coordinate in the channel. Based on a historical analysis of the Nierskanaal, here we show how and under which circumstances meandering has initiated in isolated sections

  2. Three-dimensional imaging, change detection, and stability assessment during the centerline trench levee seepage experiment using terrestrial light detection and ranging technology, Twitchell Island, California, 2012

    Science.gov (United States)

    Bawden, Gerald W.; Howle, James; Bond, Sandra; Shriro, Michelle; Buck, Peter

    2014-01-01

    A full scale field seepage test was conducted on a north-south trending levee segment of a now bypassed old meander belt on Twitchell Island, California, to understand the effects of live and decaying root systems on levee seepage and slope stability. The field test in May 2012 was centered on a north-south trench with two segments: a shorter control segment and a longer seepage test segment. The complete length of the trench area measured 40.4 meters (m) near the levee centerline with mature trees located on the waterside and landside of the levee flanks. The levee was instrumented with piezometers and tensiometers to measure positive and negative porewater pressures across the levee after the trench was flooded with water and held at a constant hydraulic head during the seepage test—the results from this component of the experiment are not discussed in this report. We collected more than one billion three-dimensional light detection and ranging (lidar) data points before, during, and after the centerline seepage test to assess centimeter-scale stability of the two trees and the levee crown. During the seepage test, the waterside tree toppled (rotated 20.7 degrees) into the water. The landside tree rotated away from the levee by 5 centimeters (cm) at a height of 2 m on the tree. The paved surface of the levee crown had three regions that showed subsidence on the waterside of the trench—discussed as the northern, central, and southern features. The northern feature is an elongate region that subsided 2.1 cm over an area with an average width of 1.35 m that extends 15.8 m parallel to the trench from the northern end of the trench to just north of the trench midpoint, and is associated with a crack 1 cm in height that formed during the seepage test on the trench wall. The central subsidence feature is a semicircular region on the waterside of the trench that subsided by as much as 6.2 cm over an area 3.4 m wide and 11.2 m long. The southern feature is an elongate

  3. Radioactive Seepage through Groundwater Flow from the Uranium Mines, Namibia

    Directory of Open Access Journals (Sweden)

    Tamiru Abiye

    2017-02-01

    Full Text Available The study focused on the seepage of uranium from unlined tailing dams into the alluvial aquifer in the Gawib River floodplain in Namibia where the region solely relies on groundwater for its economic activities as a result of arid climatic condition. The study reviewed previous works besides water sample collection and analyses for major ions, metals and environmental isotopes in addition to field tests on physico-chemical parameters (pH, Electrical Conductivity, Redox and T. Estimation of seepage velocity (true velocity of groundwater flow has been conducted in order to understand the extent of radioactive plume transport. The hydrochemistry, stable isotopes and tritium results show that there is uranium contamination from the unlined uranium tailings in the Gawib shallow aquifer system which suggests high permeability of the alluvial aquifer facilitating groundwater flow in the arid region. The radioactive contaminants could spread into the deeper aquifer system through the major structures such as joints and faults. The contamination plume could also spread downstream into the Swakop River unless serious interventions are employed. There is also a very high risk of the plume to reach the Atlantic Ocean through seasonal flash floods that occurs in the area.

  4. Seepage into an Underground Opening Constructed in Unsaturated Fractured Rock Under Evaporative Conditions, RPR 29013(C)

    International Nuclear Information System (INIS)

    Trautz, R. C.; Wang, Joseph S. Y.

    2001-01-01

    Liquid-release tests, performed in boreholes above an underground opening constructed in unsaturated fractured rock, are used in this study to evaluate seepage into a waste emplacement drift. Evidence for the existence of a capillary barrier at the ceiling of the drift is presented, based on field observations (including spreading of the wetting front across the ceiling and water movement up fractures exposed in the ceiling before seepage begins). The capillary barrier mechanism has the potential to divert water around the opening, resulting in no seepage when the percolation flux is at or below the seepage threshold flux. Liquid-release tests are used to demonstrate that a seepage threshold exists and to measure the magnitude of the seepage threshold flux for three test zones that seeped. The seepage data are interpreted using analytical techniques to estimate the test-specific strength of the rock capillary forces (α -1 ) that prevent water from seeping into the drift. Evaporation increases the seepage threshold flux making it more difficult for water to seep into the drift and producing artificially inflated α -1 values. With adjustments for evaporation, the minimum test-specific threshold is 1,600 mm/yr with a corresponding α -1 of 0.027 m

  5. Seepage determinations through auxiliary dike in Chingaza reservoir using radioactive tracers

    International Nuclear Information System (INIS)

    Sanches, L.; Obando, E.; Jimenez, G.; Torrez, E.

    1986-01-01

    Isotope techniques used in hydrology and developed during the last ten years in Colombia are usually tracer techniques based on the use of nuclides either introduced or naturally present in water. A problem of current content importance in hydraulics structures is seepage and the problems connected with it, such as impermeability of dams docks and their foundations. Many approaches are used to investigate these questions, but the simplest and most successful is the radiometric method. Radiometric observation of the flow of water through the earth dock involves introducing at a fixed point in the flow of water a radioactive solution and then following its movement downstream of the dock, and finding the place where it goes using appropriate detectors arranged at fixed control points. This paper describes the mean of choosing the injection points, the techniques for introducing radioactive solution and the conditions that must be borne in mind when selecting the radioisotope and determining its optimum activity. (author)

  6. Subduction zone earthquake probably triggered submarine hydrocarbon seepage offshore Pakistan

    Science.gov (United States)

    Fischer, David; José M., Mogollón; Michael, Strasser; Thomas, Pape; Gerhard, Bohrmann; Noemi, Fekete; Volkhard, Spiess; Sabine, Kasten

    2014-05-01

    Seepage of methane-dominated hydrocarbons is heterogeneous in space and time, and trigger mechanisms of episodic seep events are not well constrained. It is generally found that free hydrocarbon gas entering the local gas hydrate stability field in marine sediments is sequestered in gas hydrates. In this manner, gas hydrates can act as a buffer for carbon transport from the sediment into the ocean. However, the efficiency of gas hydrate-bearing sediments for retaining hydrocarbons may be corrupted: Hypothesized mechanisms include critical gas/fluid pressures beneath gas hydrate-bearing sediments, implying that these are susceptible to mechanical failure and subsequent gas release. Although gas hydrates often occur in seismically active regions, e.g., subduction zones, the role of earthquakes as potential triggers of hydrocarbon transport through gas hydrate-bearing sediments has hardly been explored. Based on a recent publication (Fischer et al., 2013), we present geochemical and transport/reaction-modelling data suggesting a substantial increase in upward gas flux and hydrocarbon emission into the water column following a major earthquake that occurred near the study sites in 1945. Calculating the formation time of authigenic barite enrichments identified in two sediment cores obtained from an anticlinal structure called "Nascent Ridge", we find they formed 38-91 years before sampling, which corresponds well to the time elapsed since the earthquake (62 years). Furthermore, applying a numerical model, we show that the local sulfate/methane transition zone shifted upward by several meters due to the increased methane flux and simulated sulfate profiles very closely match measured ones in a comparable time frame of 50-70 years. We thus propose a causal relation between the earthquake and the amplified gas flux and present reflection seismic data supporting our hypothesis that co-seismic ground shaking induced mechanical fracturing of gas hydrate-bearing sediments

  7. Groundwater flow and heterogeneous discharge into a seepage lake

    DEFF Research Database (Denmark)

    Kazmierczak, Jolanta; Müller, Sascha; Nilsson, B.

    2016-01-01

    with the lake remained under seemingly steady state conditions across seasons, a high spatial and temporal heterogeneity in the discharge to the lake was observed. The results showed that part of the groundwater flowing from the west passes beneath the lake and discharges at the eastern shore, where groundwater......Groundwater discharge into a seepage lake was investigated by combining flux measurements, hydrochemical tracers, geological information, and a telescopic modeling approach using first two-dimensional (2-D) regional then 2-D local flow and flow path models. Discharge measurements and hydrochemical...... tracers supplement each other. Discharge measurements yield flux estimates but rarely provide information about the origin and flow path of the water. Hydrochemical tracers may reveal the origin and flow path of the water but rarely provide any information about the flux. While aquifer interacting...

  8. Development of electrical analogue model for studying seepage flow under hydraulic structures - case study: Sukkur barrage

    International Nuclear Information System (INIS)

    Gabriel, H.F.; Umar, I.A.; Khan, G.D.

    2003-01-01

    For the solution of groundwater problem many types of models are used, but electrical analogue model is preferred due to its close response with its prototype hydrological system. This model is easy to construct and is reusable. In the model voltage is correlated to groundwater head electric current to flow and capacitance to groundwater storage. The analogy of the model is derived based on Kirchhoffs law and Finite difference form of Laplace equation. The network is consisting of square and rectangular meshes. Scaling factor for voltage and resistors are selected. All the equipment needed for assembling the model are prepared. Terminal strips and their connectivity are checked. Calculated resistors with accurate values after cutting and molding are inserted in the terminal strips and desired section is completed. A network of resistors in X and Z direction is used to represent the aquifer. Two stabilized power supply are used to provide the electrical potential. The worst condition is maintained by supplying the maximum head at upstream and dry condition at downstream. After the development of the model conclusion derived shows that the model are in a position to express the groundwater potential for seepage distribution under the floor with high degree of accuracy. Moreover there is a very good proportion between sample and the actual prototype in existence. The actual model when tested by model show very clear results for the sheet pile in relation to floor length to control seepage or uplift pressure caused. The existence design of Sukkur barrage and its overestimation and underestimation with reference to their sheet pile have been specifically determined. (author)

  9. F-Area Seepage Basins groundwater monitoring report -- third and fourth quarters 1993

    International Nuclear Information System (INIS)

    Butler, C.T.

    1994-03-01

    During the second half of 1993, the groundwater at the F-Area Seepage Basins (FASB) was monitored in compliance with Module 3, Section C, of South Carolina Hazardous Waste Permit SC1-890-008-989, effective November 2, 1992. The monitoring well network is composed of 87 FSB wells screened in the three hydrostratigraphic units that make up the uppermost aquifer beneath the FASB. A detailed description of the uppermost aquifer is included in the Resource Conservation and Recovery Act Part B post-closure care permit application for the F-Area Hazardous Waste Management Facility submitted to the South Carolina Department of Health and Environmental Control (SCDHEC) in December 1990. Beginning in the first quarter of 1993, the standard for comparison became the SCDHEC Groundwater Protection Standard (GWPS) specified in the approved F-Area Seepage Basins Part B permit. Currently and historically, gross alpha, nitrate, nonvolatile beta, and tritium are among the primary constituents to exceed standards. Numerous other radionuclides and hazardous constituents also exceeded the GWPS in the groundwater at the FASB during the second half of 1993, notably aluminum, iodine-129, and zinc. The elevated constituents are found primarily in Aquifer Zone 2B 2 and Aquifer Zone 2B 1 wells. However, several Aquifer Unit 2A wells also contain elevated levels of constituents. Isoconcentration/isoactivity maps included in this report indicate both the concentration/activity and extent of the primary contaminants in each of the three hydrostratigraphic units. Water-level maps indicate that the groundwater flow rates and directions at the FASB have remained relatively constant since the basins ceased to be active in 1988

  10. Drift-Scale Coupled Processes (DST and THC Seepage) Models

    International Nuclear Information System (INIS)

    Sonnenthale, E.

    2001-01-01

    The purpose of this Analysis/Model Report (AMR) is to document the Near-Field Environment (NFE) and Unsaturated Zone (UZ) models used to evaluate the potential effects of coupled thermal-hydrologic-chemical (THC) processes on unsaturated zone flow and transport. This is in accordance with the ''Technical Work Plan (TWP) for Unsaturated Zone Flow and Transport Process Model Report'', Addendum D, Attachment D-4 (Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M and O) 2000 [1534471]) and ''Technical Work Plan for Nearfield Environment Thermal Analyses and Testing'' (CRWMS M and O 2000 [153309]). These models include the Drift Scale Test (DST) THC Model and several THC seepage models. These models provide the framework to evaluate THC coupled processes at the drift scale, predict flow and transport behavior for specified thermal loading conditions, and predict the chemistry of waters and gases entering potential waste-emplacement drifts. The intended use of this AMR is to provide input for the following: Performance Assessment (PA); Near-Field Environment (NFE) PMR; Abstraction of Drift-Scale Coupled Processes AMR (ANL-NBS-HS-000029); and UZ Flow and Transport Process Model Report (PMR). The work scope for this activity is presented in the TWPs cited above, and summarized as follows: Continue development of the repository drift-scale THC seepage model used in support of the TSPA in-drift geochemical model; incorporate heterogeneous fracture property realizations; study sensitivity of results to changes in input data and mineral assemblage; validate the DST model by comparison with field data; perform simulations to predict mineral dissolution and precipitation and their effects on fracture properties and chemistry of water (but not flow rates) that may seep into drifts; submit modeling results to the TDMS and document the models. The model development, input data, sensitivity and validation studies described in this AMR are

  11. DRIFT-SCALE COUPLED PROCESSES (DST AND TH SEEPAGE) MODELS

    International Nuclear Information System (INIS)

    J.T. Birkholzer; S. Mukhopadhyay

    2005-01-01

    The purpose of this report is to document drift-scale modeling work performed to evaluate the thermal-hydrological (TH) behavior in Yucca Mountain fractured rock close to waste emplacement drifts. The heat generated by the decay of radioactive waste results in rock temperatures elevated from ambient for thousands of years after emplacement. Depending on the thermal load, these temperatures are high enough to cause boiling conditions in the rock, giving rise to water redistribution and altered flow paths. The predictive simulations described in this report are intended to investigate fluid flow in the vicinity of an emplacement drift for a range of thermal loads. Understanding the TH coupled processes is important for the performance of the repository because the thermally driven water saturation changes affect the potential seepage of water into waste emplacement drifts. Seepage of water is important because if enough water gets into the emplacement drifts and comes into contact with any exposed radionuclides, it may then be possible for the radionuclides to be transported out of the drifts and to the groundwater below the drifts. For above-boiling rock temperatures, vaporization of percolating water in the fractured rock overlying the repository can provide an important barrier capability that greatly reduces (and possibly eliminates) the potential of water seeping into the emplacement drifts. In addition to this thermal process, water is inhibited from entering the drift opening by capillary forces, which occur under both ambient and thermal conditions (capillary barrier). The combined barrier capability of vaporization processes and capillary forces in the near-field rock during the thermal period of the repository is analyzed and discussed in this report

  12. Investigation of Seepage Meter Measurements in Steady Flow and Wave Conditions.

    Science.gov (United States)

    Russoniello, Christopher J; Michael, Holly A

    2015-01-01

    Water exchange between surface water and groundwater can modulate or generate ecologically important fluxes of solutes across the sediment-water interface. Seepage meters can directly measure fluid flux, but mechanical resistance and surface water dynamics may lead to inaccurate measurements. Tank experiments were conducted to determine effects of mechanical resistance on measurement efficiency and occurrence of directional asymmetry that could lead to erroneous net flux measurements. Seepage meter efficiency was high (average of 93%) and consistent for inflow and outflow under steady flow conditions. Wave effects on seepage meter measurements were investigated in a wave flume. Seepage meter net flux measurements averaged 0.08 cm/h-greater than the expected net-zero flux, but significantly less than theoretical wave-driven unidirectional discharge or recharge. Calculations of unidirectional flux from pressure measurements (Darcy flux) and theory matched well for a ratio of wave length to water depth less than 5, but not when this ratio was greater. Both were higher than seepage meter measurements of unidirectional flux made with one-way valves. Discharge averaged 23% greater than recharge in both seepage meter measurements and Darcy calculations of unidirectional flux. Removal of the collection bag reduced this net discharge. The presence of a seepage meter reduced the amplitude of pressure signals at the bed and resulted in a nearly uniform pressure distribution beneath the seepage meter. These results show that seepage meters may provide accurate measurements of both discharge and recharge under steady flow conditions and illustrate the potential measurement errors associated with dynamic wave environments. © 2014, National Ground Water Association.

  13. Variation of stream power with seepage in sand-bed channels

    African Journals Online (AJOL)

    2009-12-27

    Dec 27, 2009 ... Keywords: friction slope, seepage, sediment transport, stream power, suction ... particles from the bed and on further movement of the bed load is of great ..... KNIGHTON AD (1987) River channel adjustment – the down stream.

  14. Distributed optical fiber-based monitoring approach of spatial seepage behavior in dike engineering

    Science.gov (United States)

    Su, Huaizhi; Ou, Bin; Yang, Lifu; Wen, Zhiping

    2018-07-01

    The failure caused by seepage is the most common one in dike engineering. As to the characteristics of seepage in dike, such as longitudinal extension engineering, the randomness, strong concealment and small initial quantity order, by means of distributed fiber temperature sensor system (DTS), adopting an improved optical fiber layer layout scheme, the location of initial interpolation point of the saturation line is obtained. With the barycentric Lagrange interpolation collocation method (BLICM), the infiltrated surface of dike full-section is generated. Combined with linear optical fiber monitoring seepage method, BLICM is applied in an engineering case, which shows that a real-time seepage monitoring technique is presented in full-section of dike based on the combination method.

  15. Drift-Scale Coupled Processes (DST and THC Seepage) Models

    Energy Technology Data Exchange (ETDEWEB)

    E. Gonnenthal; N. Spyoher

    2001-02-05

    The purpose of this Analysis/Model Report (AMR) is to document the Near-Field Environment (NFE) and Unsaturated Zone (UZ) models used to evaluate the potential effects of coupled thermal-hydrologic-chemical (THC) processes on unsaturated zone flow and transport. This is in accordance with the ''Technical Work Plan (TWP) for Unsaturated Zone Flow and Transport Process Model Report'', Addendum D, Attachment D-4 (Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M and O) 2000 [153447]) and ''Technical Work Plan for Nearfield Environment Thermal Analyses and Testing'' (CRWMS M and O 2000 [153309]). These models include the Drift Scale Test (DST) THC Model and several THC seepage models. These models provide the framework to evaluate THC coupled processes at the drift scale, predict flow and transport behavior for specified thermal loading conditions, and predict the chemistry of waters and gases entering potential waste-emplacement drifts. The intended use of this AMR is to provide input for the following: (1) Performance Assessment (PA); (2) Abstraction of Drift-Scale Coupled Processes AMR (ANL-NBS-HS-000029); (3) UZ Flow and Transport Process Model Report (PMR); and (4) Near-Field Environment (NFE) PMR. The work scope for this activity is presented in the TWPs cited above, and summarized as follows: continue development of the repository drift-scale THC seepage model used in support of the TSPA in-drift geochemical model; incorporate heterogeneous fracture property realizations; study sensitivity of results to changes in input data and mineral assemblage; validate the DST model by comparison with field data; perform simulations to predict mineral dissolution and precipitation and their effects on fracture properties and chemistry of water (but not flow rates) that may seep into drifts; submit modeling results to the TDMS and document the models. The model development, input data

  16. Calcareous forest seepages acting as biodiversity hotspots and refugia for woodland snail faunas

    Science.gov (United States)

    Horsák, Michal; Tajovská, Eva; Horsáková, Veronika

    2017-07-01

    Land-snail species richness has repeatedly been found to increase with the increasing site calcium content and humidity. These two factors, reported as the main drivers of land-snail assemblage diversity, are also among the main habitat characteristics of calcareous seepages. Here we explore local species richness and compositional variation of forest spring-fed patches (i.e. seepages), to test the hypothesis that these habitats might act as biodiversity hotspots and refugia of regional snail faunas. In contrast to treeless spring fens, only little is known about land snail faunas inhabiting forest seepages. Studying 25 isolated calcareous forest seepages, evenly distributed across the White Carpathians Protected Landscape Area (SE Czech Republic), we found that these sites, albeit spatially very limited, can harbour up to 66% of the shelled land-snail species known to occur in this well-explored protected area (in total 83 species). By comparing land snail assemblages of the studied seepages with those occurring in the woodland surroundings of each site as well as those previously sampled in 28 preserved forest sites within the study area, we found the seepages to be among the most species rich sites. Although the numbers of species did not statistically differ among these three systems, we found highly significant differences in species composition. Seepage faunas were composed of many species significantly associated with spring sites, in contrast to the assemblages of both surrounding and preserved forest sites. Our results highly support the hypothesis that calcareous forest seepages might serve as refugia and biodiversity hotspots of regional land snail faunas. Protection of these unique habitats challenges both conservation plans and forest management guidelines as they might act as sources for the recolonization and restoration of forest snail assemblages particularly in areas impoverished by harvesting and clearcutting.

  17. Coupled LBM-DEM Three-phase Simulation on Seepage of CO2 Stored under the Seabed.

    Science.gov (United States)

    Kano, Y.; Sato, T.

    2017-12-01

    Concerning the seepage of CO2 stored in a subsea formation, CO2 bubble/droplet rises to the sea-surface dissolving into the seawater, and the acidification of local seawater will be a problem. Previous research indicated that seepage rate and bubble size significantly affect its behaviour (Kano et al., 2009; Dewar et al., 2013). On the other hand, Kawada's experiments (2014) indicated that grain size affects formation of gas channels and bubbles through granular media. CO2 seepage through marine sediments probably shows similar behaviour. Additionally, such mobilisation and displacement of sand grains by gas migration may also cause capillary fracturing of CO2 in the reservoir and seal. To predict these phenomena, it is necessary to reveal three-phase behaviour of gas-water-sediment grains. We built gas-liquid-solid three-phase flow 3D simulator by coupling LBM-DEM program, and simulation results showed that the mobilisation of sand grain forms gas channels and affects bubble formation compared with that through solid porous media (Kano and Sato, 2017). In this presentation, we will report simulation results on effects of porosity, grain size and gas flow rate on the formation of gas channels and bubble and their comparison with laboratory experimental data. The results indicate that porosity and grain size of sand gravels affect the width of formed gas channels and resulting formed bubble size on the order of supposed seepage rate in the CO2 storage and that in most of experiment's conditions. References: Abe, S., Place, D., Mora, P., 2004. Pure. Appl. Geophys., 161, 2265-2277. (accessed Aug 01, 2017). Dewar, M., Wei, W., McNeil, D., Chen, B., 2013. Marine Pollution Bulletin 73(2), 504-515. Kano, Y., Sato, T., Kita, J., Hirabayashi, S., Tabeta, S., 2009. Int. J. Greenhouse Gas Control, Vol. 3(5), 617-625. Kano, Y. and Sato, T., 2017. In Proceeding of GHGT-13, Lausanne, Switzerland, Nov. 14-18, 2016. Kawada, R. 2014. Graduation thesis. Faculty of Engineering, The

  18. Modelling stream aquifer seepage in an alluvial aquifer: an improved loosing-stream package for MODFLOW

    Science.gov (United States)

    Osman, Yassin Z.; Bruen, Michael P.

    2002-07-01

    Seepage from a stream, which partially penetrates an unconfined alluvial aquifer, is studied for the case when the water table falls below the streambed level. Inadequacies are identified in current modelling approaches to this situation. A simple and improved method of incorporating such seepage into groundwater models is presented. This considers the effect on seepage flow of suction in the unsaturated part of the aquifer below a disconnected stream and allows for the variation of seepage with water table fluctuations. The suggested technique is incorporated into the saturated code MODFLOW and is tested by comparing its predictions with those of a widely used variably saturated model, SWMS_2D simulating water flow and solute transport in two-dimensional variably saturated media. Comparisons are made of both seepage flows and local mounding of the water table. The suggested technique compares very well with the results of variably saturated model simulations. Most currently used approaches are shown to underestimate the seepage and associated local water table mounding, sometimes substantially. The proposed method is simple, easy to implement and requires only a small amount of additional data about the aquifer hydraulic properties.

  19. Seepage Flow Model and Deformation Properties of Coastal Deep Foundation Pit under Tidal Influence

    Directory of Open Access Journals (Sweden)

    Shu-chen Li

    2018-01-01

    Full Text Available As the coastal region is the most developed region in China, an increasing number of engineering projects are under construction in it in recent years. However, the quality of these projects is significantly affected by groundwater, which is influenced by tidal variations. Therefore, the regional groundwater dynamic characteristics under tidal impact and the spatiotemporal evolution of the seepage field must be considered in the construction of the projects. Then, Boussinesq function was introduced into the research to deduce the seepage equation under tidal influence for the coastal area. To determine the spatiotemporal evolution of the deep foundation pit seepage field and the coastal seepage field evolution model, numerical calculations based on changes in the tidal water level and seepage equation were performed using MATLAB. According to the developed model, the influence of the seepage field on the foundation pit supporting structure in the excavation process was analyzed through numerical simulations. The results of this research could be considered in design and engineering practice.

  20. Using self-potential housing technique to model water seepage at the UNHAS housing Antang area

    Science.gov (United States)

    Syahruddin, Muhammad Hamzah

    2017-01-01

    The earth's surface has an electric potential that is known as self-potentiall (SP). One of the causes of the electrical potential at the earth's surface is water seepage into the ground. Electrical potential caused by water velocity seepage into the ground known as streaming potential. How to model water seepage into the ground at the housing Unhas Antang? This study was conducted to answer these questions. The self-potential measurements performed using a simple digital voltmeter Sanwa brand PC500 with a precision of 0.01 mV. While the coordinates of measurements points are self-potential using Global Positioning System. Mmeasurements results thus obtained are plotted using surfer image distribution self-potential housing Unhas Antang. The self-potential data housing Unhas Antang processed by Forward Modeling methods to get a model of water infiltration into the soil. Housing Unhas Antang self-potential has a value of 5 to 23 mV. Self-potential measurements carried out in the rainy season so it can be assumed that the measurement results caused by the velocity water seepage into the ground. The results of modeling the velocity water seepage from the surface to a depth of 3 meters was 2.4 cm/s to 0.2 cm /s. Modeling results showed that the velocity water seepage of the smaller with depth.

  1. Impact of Quaternary Climate on Seepage at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    J.F. Whelan; J.B. Paces; L.A. Neymark; A.K. Schmitt; M. Grove

    2006-01-01

    Uranium-series ages, oxygen-isotopic compositions, and uranium contents were determined in outer growth layers of opal and calcite from 0.5- to 3-centimeter-thick mineral coatings hosted by lithophysal cavities in the unsaturated zone at Yucca Mountain, Nevada, the proposed site of a permanent repository for high-level radioactive waste. Micrometer-scale growth layering in the minerals was imaged using a cathodoluminescence detector on a scanning electron microscope. Determinations of the chemistry, ages, and delta oxygen-18 values of the growth layers were conducted by electron microprobe analysis and secondary ion mass spectrometry techniques at spatial resolutions of 1 to about 20 micrometers ((micro)m) and 25 to 40 micrometers, respectively. Growth rates for the last 300 thousand years (k.y.) calculated from about 300 new high-resolution uranium-series ages range from approximately 0.5 to 1.5 (micro)m/k.y. for 1- to 3-centimeter-thick coatings, whereas coatings less than about I-centimeter-thick have growth rates less than 0.5 (micro)m/k.y. At the depth of the proposed repository, correlations of uranium concentration and delta oxygen-18 values with regional climate records indicate that unsaturated zone percolation and seepage water chemistries have responded to changes in climate during the last several hundred thousand years

  2. Development and evaluation of an ultrasonic ground water seepage meter.

    Science.gov (United States)

    Paulsen, R J; Smith, C F; O'Rourke, D; Wong, T F

    2001-01-01

    Submarine ground water discharge can influence significantly the near-shore transport and flux of chemicals into the oceans. Quantification of the sources and rates of such discharge requires a ground water seepage meter that provides continuous measurements at high resolution over an extended period of time. An ultrasonic flowmeter has been adapted for such measurements in the submarine environment. Connected to a steel collection funnel, the meter houses two piezoelectric transducers mounted at opposite ends of a cylindrical flow tube. By monitoring the perturbations of fluid flow on the propagation of sound waves inside the flow tube, the ultrasonic meter can measure both forward and reverse fluid flows in real time. Laboratory and field calibrations show that the ultrasonic meter can resolve ground water discharges on the order of 0.1 microm/sec, and it is sufficiently robust for deployment in the field for several days. Data from West Neck Bay, Shelter Island, New York, elucidate the temporal and spatial heterogeneity of submarine ground water discharge and its interplay with tidal loading. A negative correlation between the discharge and tidal elevation was generally observed. A methodology was also developed whereby data for the sound velocity as a function of temperature can be used to infer the salinity and source of the submarine discharge. Independent measurements of electrical conductance were performed to validate this methodology.

  3. Hurricane Impact on Seepage Water in Larga Cave, Puerto Rico

    Science.gov (United States)

    Vieten, Rolf; Warken, Sophie; Winter, Amos; Schröder-Ritzrau, Andrea; Scholz, Denis; Spötl, Christoph

    2018-03-01

    Hurricane-induced rainfall over Puerto Rico has characteristic δ18O values which are more negative than local rainfall events. Thus, hurricanes may be recorded in speleothems from Larga cave, Puerto Rico, as characteristic oxygen isotope excursions. Samples of 84 local rainfall events between 2012 and 2013 ranged from -6.2 to +0.3‰, whereas nine rainfall samples belonging to a rainband of hurricane Isaac (23-24 August 2012) ranged from -11.8 to -7.1‰. Cave monitoring covered the hurricane season of 2014 and investigated the impact of hurricane rainfall on drip water chemistry. δ18O values were measured in cumulative monthly rainwater samples above the cave. Inside the cave, δ18O values of instantaneous drip water samples were analyzed and drip rates were recorded at six drip sites. Most effective recharge appears to occur during the wet months (April-May and August-November). δ18O values of instantaneous drip water samples ranged from -3.5 to -2.4‰. In April 2014 and April 2015 some drip sites showed more negative δ18O values than the effective rainfall (-2.9‰), implying an influence of hurricane rainfall reaching the cave via stratified seepage flow months to years after the event. Speleothems from these drip sites in Larga cave have a high potential for paleotempestology studies.

  4. Infinite slope stability under steady unsaturated seepage conditions

    Science.gov (United States)

    Lu, Ning; Godt, Jonathan W.

    2008-01-01

    We present a generalized framework for the stability of infinite slopes under steady unsaturated seepage conditions. The analytical framework allows the water table to be located at any depth below the ground surface and variation of soil suction and moisture content above the water table under steady infiltration conditions. The framework also explicitly considers the effect of weathering and porosity increase near the ground surface on changes in the friction angle of the soil. The factor of safety is conceptualized as a function of the depth within the vadose zone and can be reduced to the classical analytical solution for subaerial infinite slopes in the saturated zone. Slope stability analyses with hypothetical sandy and silty soils are conducted to illustrate the effectiveness of the framework. These analyses indicate that for hillslopes of both sandy and silty soils, failure can occur above the water table under steady infiltration conditions, which is consistent with some field observations that cannot be predicted by the classical infinite slope theory. A case study of shallow slope failures of sandy colluvium on steep coastal hillslopes near Seattle, Washington, is presented to examine the predictive utility of the proposed framework.

  5. F-Area Seepage Basins: Environmental information document

    International Nuclear Information System (INIS)

    Corbo, P.; Killian, T.H.; Kolb, N.L.; Marine, I.W.

    1986-12-01

    This document provides environmental information on postulated closure options for the F-Area Seepage Basins at the Savannah River Plant and was developed as background technical documentation for the Department of Energy's proposed Environmental Impact Statement (EIS) on waste management activities for groundwater protection at the plant. The results of groundwater and atmospheric pathway analyses, accident analysis, and other environmental assessments discussed in this document are based upon a conservative analysis of all foreseeable scenarios as defined by the National Environmental Policy Act (40 CFR 1502.22). The scenarios do not necessarily represent actual environmental conditions. This document is not meant to represent or be used as a regulatory closure plan or other regulatory sufficient document. Technical assistance in the environmental analyses of waste site closures was provided by Clemson University; GeoTrans, Inc.; JBF Associates, Inc.; S.S. Papadopulos and Associates Inc.; Radiological Assessments Corporation; Rogers and Associates Engineering Corporation; Science Applications International Corporation; C.B. Shedrow Environmental Consultants, Inc.; Exploration Software; and Verbatim Typing and Editing

  6. Model evaluation of seepage from uranium tailings disposal above and below the water table

    International Nuclear Information System (INIS)

    Nelson, R.W.; Meyer, P.R.; Oberlander, P.L.; Sneider, S.C.; Mayer, D.W.; Reisenauer, A.E.

    1983-03-01

    Model simulations identify the rate and amount of leachate released to the environment if disposed uranium mill tailings come into contact with ground water or if seepage from tailings reaches ground water. In this study, simulations of disposal above and below the water table, with various methods of leachate control, were compared. Three leachate control methods were used in the comparisons: clay bottom liners; stub-sidewall clay liners; and tailings drains with sumps, with the effluent pumped back from the sumps. The best leachate control for both above and below the water table is a combination of the three methods. The combined methods intercept up to 80% of the leachate volume in pits above the water table and intercept essentially all of the leachate in pits below the water table. Effluent pumping, however, requires continuous energy costs and an alternative method of disposal for the leachate that cannot be reused as makeup water in the mill process. Without the drains or effluent pumping, the clay bottom liners have little advantage in terms of the total volume of leachate lost. The clay liners do reduce the rate of leachate flow to the ground water, but the flow continues for a longer time. The buffering, sorption, and chemical reactions of the leachate passing directly through the liner are also advantages of the liner

  7. Removal Site Evaluation Report to the C-Reactor Seepage Basins (904-066, -067 and -068G)

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, E.R. [Westinghouse Savannah River Company, AIKEN, SC (United States)

    1997-07-01

    Removal Site Evaluation Reports are prepared in accordance with Section 300.410 of the National Contingency Plan (NCP) and Section X of the Federal Facility Agreement (FFA). The C-Reactor Seepage Basins (904-066G,-067G,-068G) are listed in Appendix C, Resource Conservation and Recovery Act (RCRA)/Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Units List, of the FFA. The purpose of this investigation is to report information concerning conditions at this unit sufficient to assess the threat (if any) posed to human health and the environment and to determine the need for additional CERCLA action. The scope of the investigation included a review of past survey and investigation data, the files, and a visit to the unit.Through this investigation unacceptable conditions of radioactive contaminant uptake in on-site vegetation were identified. This may have resulted in probable contaminant migration and become introduced into the local ecological food chain. As a result, the SRS will initiate a time critical removal action in accordance with Section 300.415 of the NCP and FFA Section XIV to remove, treat (if required), and dispose of contaminated vegetation from the C-Reactor Seepage Basins. Erosion in the affected areas will be managed by an approved erosion control plan. further remediation of this unit will be conducted in accordance with the FFA.

  8. Removal Site Evaluation Report to the C-Reactor Seepage Basins (904-066, -067 and -068G)

    International Nuclear Information System (INIS)

    Palmer, E.R.

    1997-07-01

    Removal Site Evaluation Reports are prepared in accordance with Section 300.410 of the National Contingency Plan (NCP) and Section X of the Federal Facility Agreement (FFA). The C-Reactor Seepage Basins (904-066G,-067G,-068G) are listed in Appendix C, Resource Conservation and Recovery Act (RCRA)/Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Units List, of the FFA. The purpose of this investigation is to report information concerning conditions at this unit sufficient to assess the threat (if any) posed to human health and the environment and to determine the need for additional CERCLA action. The scope of the investigation included a review of past survey and investigation data, the files, and a visit to the unit.Through this investigation unacceptable conditions of radioactive contaminant uptake in on-site vegetation were identified. This may have resulted in probable contaminant migration and become introduced into the local ecological food chain. As a result, the SRS will initiate a time critical removal action in accordance with Section 300.415 of the NCP and FFA Section XIV to remove, treat (if required), and dispose of contaminated vegetation from the C-Reactor Seepage Basins. Erosion in the affected areas will be managed by an approved erosion control plan. further remediation of this unit will be conducted in accordance with the FFA

  9. Long Term Effects of Acid Irrigation at the Hoeglwald on Seepage Water Chemistry and Nutrient Cycling

    International Nuclear Information System (INIS)

    Weis, Wendelin; Baier, Roland; Huber, Christian; Goettlein, Axel

    2007-01-01

    In order to test the hypothesis of aluminium toxicity induced by acid deposition, an experimental acid irrigation was carried out in a mature Norway spruce stand in Southern Germany (Hoeglwald). The experiment comprised three plots: no irrigation, irrigation (170 mm a -1 ), and acid irrigation with diluted sulphuric acid (pH of 2.6-2.8). During the seven years of acid irrigation (1984-1990) water containing 0.43 mol c m -2 a -1 of protons and sulphate was added with a mean pH of 3.2 (throughfall + acid irrigation water) compared to 4.9 (throughfall) on both control plots. Most of the additional proton input was consumed in the organic layer and the upper mineral soil. Acid irrigation resulted in a long lasting elevation of sulphate concentrations in the seepage water. Together with sulphate both aluminium and appreciable amounts of base cations were leached from the main rooting zone. The ratio between base cations (Ca + Mg + K) and aluminium was 0.79 during acid irrigation and 0.92 on the control. Neither tree growth and nutrition nor the pool of exchangeable cations were affected significantly. We conclude that at this site protection mechanisms against aluminium toxicity exist and that additional base cation runoff can still be compensated without further reduction of the supply of exchangeable base cations in the upper mineral soil

  10. An evaluation of seepage gains and losses in Indian Creek Reservoir, Ada County, Idaho, April 2010–November 2011

    Science.gov (United States)

    Williams, Marshall L.; Etheridge, Alexandra B.

    2013-01-01

    The U.S. Geological Survey, in cooperation with the Idaho Department of Water Resources, conducted an investigation on Indian Creek Reservoir, a small impoundment in east Ada County, Idaho, to quantify groundwater seepage into and out of the reservoir. Data from the study will assist the Idaho Water Resources Department’s Comprehensive Aquifer Management Planning effort to estimate available water resources in Ada County. Three independent methods were utilized to estimate groundwater seepage: (1) the water-budget method; (2) the seepage-meter method; and (3) the segmented Darcy method. Reservoir seepage was quantified during the periods of April through August 2010 and February through November 2011. With the water-budget method, all measureable sources of inflow to and outflow from the reservoir were quantified, with the exception of groundwater; the water-budget equation was solved for groundwater inflow to or outflow from the reservoir. The seepage-meter method relies on the placement of seepage meters into the bottom sediments of the reservoir for the direct measurement of water flux across the sediment-water interface. The segmented-Darcy method utilizes a combination of water-level measurements in the reservoir and in adjacent near-shore wells to calculate water-table gradients between the wells and the reservoir within defined segments of the reservoir shoreline. The Darcy equation was used to calculate groundwater inflow to and outflow from the reservoir. Water-budget results provided continuous, daily estimates of seepage over the full period of data collection, while the seepage-meter and segmented Darcy methods provided instantaneous estimates of seepage. As a result of these and other difference in methodologies, comparisons of seepage estimates provided by the three methods are considered semi-quantitative. The results of the water-budget derived estimates of seepage indicate seepage to be seasonally variable in terms of the direction and magnitude

  11. Probability distribution functions of turbulence in seepage-affected alluvial channel

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Anurag; Kumar, Bimlesh, E-mail: anurag.sharma@iitg.ac.in, E-mail: bimk@iitg.ac.in [Department of Civil Engineering, Indian Institute of Technology Guwahati, 781039 (India)

    2017-02-15

    The present experimental study is carried out on the probability distribution functions (PDFs) of turbulent flow characteristics within near-bed-surface and away-from-bed surfaces for both no seepage and seepage flow. Laboratory experiments were conducted in the plane sand bed for no seepage (NS), 10% seepage (10%S) and 15% seepage (15%) cases. The experimental calculation of the PDFs of turbulent parameters such as Reynolds shear stress, velocity fluctuations, and bursting events is compared with theoretical expression obtained by Gram–Charlier (GC)-based exponential distribution. Experimental observations follow the computed PDF distributions for both no seepage and seepage cases. Jensen-Shannon divergence (JSD) method is used to measure the similarity between theoretical and experimental PDFs. The value of JSD for PDFs of velocity fluctuation lies between 0.0005 to 0.003 while the JSD value for PDFs of Reynolds shear stress varies between 0.001 to 0.006. Even with the application of seepage, the PDF distribution of bursting events, sweeps and ejections are well characterized by the exponential distribution of the GC series, except that a slight deflection of inward and outward interactions is observed which may be due to weaker events. The value of JSD for outward and inward interactions ranges from 0.0013 to 0.032, while the JSD value for sweep and ejection events varies between 0.0001 to 0.0025. The theoretical expression for the PDF of turbulent intensity is developed in the present study, which agrees well with the experimental observations and JSD lies between 0.007 and 0.015. The work presented is potentially applicable to the probability distribution of mobile-bed sediments in seepage-affected alluvial channels typically characterized by the various turbulent parameters. The purpose of PDF estimation from experimental data is that it provides a complete numerical description in the areas of turbulent flow either at a single or finite number of points

  12. Treatment of septic tank effluents by a full-scale capillary seepage soil biofiltration system.

    Science.gov (United States)

    Fan, Chihhao; Chang, Fang-Chih; Ko, Chun-Han; Teng, Chia-Ji; Chang, Tzi-Chin; Sheu, Yiong-Shing

    2009-03-01

    The purpose of this study is to evaluate the efficiency of septic tank effluent treatment by an underground capillary seepage soil biofiltration system in a suburban area of Taipei, Taiwan. In contrast to traditional subsurface wastewater infiltration systems, capillary seepage soil biofiltration systems initially draw incoming influent upwards from the distribution pipe by capillary and siphonage actions, then spread influent throughout the soil biofiltration bed. The underground capillary seepage soil biofiltration system consists of a train of underground treatment units, including one wastewater distribution tank, two capillary seepage soil biofiltration units in series, and a discharge tank. Each capillary seepage soil biofiltration unit contains one facultative digestion tank and one set of biofiltration beds. At the flow rate of 50 m3/day, average influent concentrations of biochemical oxygen demand (BOD), suspended solid (SS), ammonia nitrogen (NH3-N), and total phosphates (TP), were 36.15 mg/L, 29.14 mg/L, 16.05 mg/L, and 1.75 mg/L, respectively. After 1.5 years of system operation, the measured influent and effluent results show that the treatment efficiencies of the soil biofiltration system for BOD, SS, NH3-N, TP, and total coliforms are 82.96%, 60.95%, 67.17%, 74.86%, and 99.99%, respectively.

  13. Effects of Atmospheric Dynamics on CO2 Seepage at Mammoth Mountain, California USA

    Directory of Open Access Journals (Sweden)

    Egemen Ogretim

    2013-12-01

    Full Text Available In the past few decades, atmospheric effects on the variation of seepage from soil have been studied in disciplines such as volcanology, environmental protection, safety and health hazard avoidance. Recently, monitoring of potential leakage from the geologic sequestration of carbon has been added to this list. Throughout these diverse fields, barometric pumping and presence of steady winds are the two most commonly investigated atmospheric factors. These two factors have the effect of pumping gas into and out of the unsaturated zone, and sweeping the gas in the porous medium. This study focuses on two new factors related to atmosphere in order to explain the CO2 seepage anomalies observed at the Horseshoe Lake tree kill near Mammoth Mountain, CA, where the temporal variation of seepage due to a storm event could not be explained by the two commonly studied effects. First, the interaction of the lower atmospheric dynamics and the ground topography is considered for its effect on the seepage variation over an area that is linked through high-porosity, high-permeability soils and/or fracture networks. Second, the regional pressure fronts that impose significant pressure oscillation over an area are studied. The comparison of the computer simulation results with the experimental measurements suggests that the seepage anomaly observed at the Horseshoe Lake Tree Kill could be due to the unsteady effects caused by regional pressure fronts.

  14. Formation of Box Canyon, Idaho, by megaflood: implications for seepage erosion on Earth and Mars.

    Science.gov (United States)

    Lamb, Michael P; Dietrich, William E; Aciego, Sarah M; Depaolo, Donald J; Manga, Michael

    2008-05-23

    Amphitheater-headed canyons have been used as diagnostic indicators of erosion by groundwater seepage, which has important implications for landscape evolution on Earth and astrobiology on Mars. Of perhaps any canyon studied, Box Canyon, Idaho, most strongly meets the proposed morphologic criteria for groundwater sapping because it is incised into a basaltic plain with no drainage network upstream, and approximately 10 cubic meters per second of seepage emanates from its vertical headwall. However, sediment transport constraints, 4He and 14C dates, plunge pools, and scoured rock indicate that a megaflood (greater than 220 cubic meters per second) carved the canyon about 45,000 years ago. These results add to a growing recognition of Quaternary catastrophic flooding in the American northwest, and may imply that similar features on Mars also formed by floods rather than seepage erosion.

  15. Numerical Modelling of Tailings Dam Thermal-Seepage Regime Considering Phase Transitions

    Directory of Open Access Journals (Sweden)

    Aniskin Nikolay Alekseevich

    2017-01-01

    Full Text Available Statement of the Problem. The article describes the problem of combined thermal-seepage regime for earth dams and those operated in the permafrost conditions. This problem can be solved using the finite elements method based on the local variational formulation. Results. A thermal-seepage regime numerical model has been developed for the “dam-foundation” system in terms of the tailings dam. The effect of heat-and-mass transfer and liquid phase transition in soil interstices on the dam state is estimated. The study with subsequent consideration of these factors has been undertaken. Conclusions. The results of studying the temperature-filtration conditions of the structure based on the factors of heat-and-mass transfer and liquid phase transition have shown that the calculation results comply with the field data. Ignoring these factors or one of them distorts the real situation of the dam thermal-seepage conditions.

  16. Seepage from uranium tailing ponds and its impact on ground water

    International Nuclear Information System (INIS)

    Rahn, P.H.; Mabes, D.L.

    1978-01-01

    A typical uranium mill produces about 1800 metric tons of tailing per day. An assessment of the seepage from an unlined tailing impoundment of a hypothetical mill in northwestern New Mexico indicates that about 2x10 5 m 3 /yr of water will seep over a period of 23 years. The seepage water will move vertically to the water table, and then spread out radially and ultimately downgradient with ground water. The principal dissolved contaminants in the tailing pond liquid are radium, thorium, sulfate, iron, manganese, and selenium; in addition, the liquid is acidic (pH=2). Many contaminants precipitate out as neutralization of seepage water occurs. At the termination of mill operation, radium will have advanced about 0.4 m and thorium no more than 0.1 m below the bottom of the tailing pond

  17. Results of a seepage investigation at Bear Creek Valley, Oak Ridge, Tennessee, January through September 1994

    International Nuclear Information System (INIS)

    Robinson, J.A.; Johnson, G.C.

    1996-01-01

    A seepage investigation was conducted of 4,600 acres of Bear Creek Valley southwest of the Y-12 Plant, Oak Ridge, Tennessee, for the period of January through September 1994. The data was collected to help the Y-12 Environmental Restoration Program develop a better understanding of ground-water and surface-water interactions, recharge and discharge relations, and ground-water flow patterns. The project was divided into three phases: a reconnaissance and mapping of seeps, springs, and stream-measurement sites; a high base flow seepage investigation; and a low base flow seepage investigation. This report describes the results of the investigation. It includes a map showing measurement site locations and tables that list the coordinates for each site and measurements of discharge, pH, specific conductance, temperature, and dissolved oxygen

  18. A numerical procedure for transient free surface seepage through fracture networks

    Science.gov (United States)

    Jiang, Qinghui; Ye, Zuyang; Zhou, Chuangbing

    2014-11-01

    A parabolic variational inequality (PVI) formulation is presented for the transient free surface seepage problem defined for a whole fracture network. Because the seepage faces are specified as Signorini-type conditions, the PVI formulation can effectively eliminate the singularity of spillpoints that evolve with time. By introducing a continuous penalty function to replace the original Heaviside function, a finite element procedure based on the PVI formulation is developed to predict the transient free surface response in the fracture network. The effects of the penalty parameter on the solution precision are analyzed. A relative error formula for evaluating the flow losses at steady state caused by the penalty parameter is obtained. To validate the proposed method, three typical examples are solved. The solutions for the first example are compared with the experimental results. The results from the last two examples further demonstrate that the orientation, extent and density of fractures significantly affect the free surface seepage behavior in the fracture network.

  19. H-Area Seepage Basin (H-HWMF): Fourth quarterly 1989, groundwater quality assessment report

    Energy Technology Data Exchange (ETDEWEB)

    1990-03-01

    During the fourth quarter of 1989 the wells which make up the H-Area Seepage Basins (H-HWMF){sup 1} monitoring network were sampled. Laboratory analyses were performed to measure levels of hazardous constituents, indicator parameters, tritium, and gross alpha. A Gas Chromatograph Mass Spectrometer (GCMS) scan was performed on all wells sampled to determine any hazardous organic constituents present in the groundwater. The primary contaminants observed at wells monitoring the H-Area Seepage Basins are tritium, nitrate, mercury, gross alpha, and total radium.

  20. Seepage studies through hydraulic structures and their foundations by inactive and radio tracers

    International Nuclear Information System (INIS)

    Ansari, Azher; Mahajan, N.M.; Kamble, M.D.

    1977-01-01

    In the last ten years extensive efforts have been made by the Central Water and Power Research Station, Pune to study seepage by means of inactive and radiotracers. Various inactive tracers like electrolytes and organic dyes and radiotracers like 82 Br and 3 H in the form of tritiated water have been used for location of source of seepage. Different techniques like borehole dilution, in situ detection at various observation points and analysis of water samples in liquid scintillation spectrometer in the laboratory have been employed to suit the field conditions. Some typical studies at river valley projects indicating the techniques are enumerated. (author)

  1. Comparison of Scour and Flow Characteristics Around Circular and Oblong Bridge Piers in Seepage Affected Alluvial Channels

    Science.gov (United States)

    Chavan, Rutuja; Venkataramana, B.; Acharya, Pratik; Kumar, Bimlesh

    2018-06-01

    The present study examines scour geometry and turbulent flow characteristics around circular and oblong piers in alluvial channel with downward seepage. Experiments were conducted in plane sand bed of non-uniform sand under no seepage, 10% seepage and 15% seepage conditions. Scour depth at oblong pier is significantly lesser than the scour depth at circular one. However, the scour depth at both piers reduces with downward seepage. The measurements show that the velocity and Reynolds stresses are negative near the bed at upstream of piers where the strong reversal occurs. At downstream of oblong pier near the free surface, velocity and Reynolds stresses are less positive; whereas, they are negative at downstream of circular pier. The streamline shape of oblong pier leads to reduce the strength of wake vortices and consequently reversal flow at downstream of pier. With application of downward seepage turbulent kinetic energy is decreasing. The results show that the wake vortices at oblong pier are weaker than the wake vortices at circular pier. The strength of wake vortices diminishes with downward seepage. The Strouhal number is lesser for oblong pier and decreases with downward seepage for both oblong and circular piers.

  2. Characterization of Coal Micro-Pore Structure and Simulation on the Seepage Rules of Low-Pressure Water Based on CT Scanning Data

    Directory of Open Access Journals (Sweden)

    Gang Zhou

    2016-07-01

    Full Text Available This paper used the X-ray three-dimensional (3D microscope and acquired, through CT scanning, the 3D data of the long-frame coal sample from the Daliuta Coal Mine. Then, the 3D datacube reconstructed from the coal’s CT scanning data was visualized with the use of Avizo, an advanced visualization software (FEI, Hillsboro, OR, USA. By means of a gray-scale segmentation technique, the model of the coal’s micro-pore structure was extracted from the object region, and the precise characterization was then conducted. Finally, the numerical simulation on the water seepage characteristics in the coal micro-pores model under the pressure of 3 MPa was performed on the CFX platform. Results show that the seepage of low-pressure water exhibited preference to the channels with large pore radii, short paths, and short distance from the outlet. The seepage pressure of low-pressure water decreased gradually along the seepage direction, while the seepage velocity of low-pressure water decreased gradually along the direction from the pore center to the wall. Regarding the single-channel seepage behaviors, the seepage velocity and mass flow rate of water seepage in the X direction were the largest, followed by the values of the seepage in the Y direction, and the seepage velocity and mass flow rate of water seepage in the Z direction were the smallest. Compared with the results in single-channel seepage, the dual-channel seepage in the direction of (X + Y and the multi-channel seepage in the direction of (X + Y + Z exhibited significant increases in the overall seepage velocity. The present study extends the application of 3D CT scanning data and provides a new idea and approach for exploring the seepage rules in coal micro-pore structures.

  3. Variations on seepage water geochemistry induced by natural and anthropogenic microclimatic changes: Implications for the speleothems growth conditions

    Science.gov (United States)

    Fernandez-Cortes, A.; Sanchez-Moral, S.; Canaveras, J. C.; Cuevas, J.; Cuezva, S.; Andreu, J. M.; Abella, R.

    2009-04-01

    During an annual cycle the effect of microclimatic changes (natural and anthropogenic origin) on the geochemical characteristics of seepage water and mineral precipitation rates was analyzed, for two karstic caves under opposing environmental stability and energy exchange with exterior. On the one hand Castañar cave (Caceres, Spain), an extremely controlled show cave with limited visitation showing a minimum exchange rate of energy with the outer atmosphere and, secondly, Canelobre cave (Alicante, Spain), a widely visited cave where the anthropogenic impact generates both high-speed and high-energy environmental changes. Microclimatic variations play a key role in CO2-dessgasing caused by the imbalance of pCO2 between the karstic water and the cave air, favoring the slow processes of mineral precipitation. Thus, a pCO2-range of seepage water have been detected for each cave (from 10-2.30/-2.35 to 10-2.47/-2.52 bar for Castañar cave, and from 10-2.8/-2.85 to 10-2.95/-3.0 bar for Canelobre cave) where the mineral oversaturation prevails, determining the type and rate of mineral precipitation in each cave. Finally, it analyzes how the changes on the oversaturation/ precipitation states are controlled by microclimatic variations, such as: 1) natural underground air renewal through the porous system of upper soil and the network of host-rock fissures (isolating membranes), or else through the cave entrance, 2) cumulative disruptions in the pCO2 levels of cave air due to the presence of visitors, and 3) forced ventilation of the subterranean atmosphere due to the uncontrolled opening of cave entrances. The obtained results reinforce the significance of the microclimatic fluctuations on short time scales in the dynamic and evolution of the subterranean karst system, in terms of rates of mineral precipitation and growth of speleothems. Likewise the interpretations are useful in order to ensure the constant climate required for the conservation of caves.

  4. The Seepage Simulation of Single Hole and Composite Gas Drainage Based on LB Method

    Science.gov (United States)

    Chen, Yanhao; Zhong, Qiu; Gong, Zhenzhao

    2018-01-01

    Gas drainage is the most effective method to prevent and solve coal mine gas power disasters. It is very important to study the seepage flow law of gas in fissure coal gas. The LB method is a simplified computational model based on micro-scale, especially for the study of seepage problem. Based on fracture seepage mathematical model on the basis of single coal gas drainage, using the LB method during coal gas drainage of gas flow numerical simulation, this paper maps the single-hole drainage gas, symmetric slot and asymmetric slot, the different width of the slot combined drainage area gas flow under working condition of gas cloud of gas pressure, flow path diagram and flow velocity vector diagram, and analyses the influence on gas seepage field under various working conditions, and also discusses effective drainage method of the center hole slot on both sides, and preliminary exploration that is related to the combination of gas drainage has been carried on as well.

  5. Steady flow rate to a partially penetrating well with seepage face in an unconfined aquifer

    Science.gov (United States)

    Behrooz-Koohenjani, Siavash; Samani, Nozar; Kompani-Zare, Mazda

    2011-06-01

    The flow rate to fully screened, partially penetrating wells in an unconfined aquifer is numerically simulated using MODFLOW 2000, taking into account the flow from the seepage face and decrease in saturated thickness of the aquifer towards the well. A simple three-step method is developed to find the top of the seepage face and hence the seepage-face length. The method is verified by comparing it with the results of previous predictive methods. The results show that the component of flow through the seepage face can supply a major portion of the total pumping rate. Variations in flow rate as a function of the penetration degree, elevation of the water level in the well and the distance to the far constant head boundary are investigated and expressed in terms of dimensionless curves and equations. These curves and equations can be used to design the degree of penetration for which the allowable steady pumping rate is attained for a given elevation of water level in the well. The designed degree of penetration or flow rate will assure the sustainability of the aquifer storage, and can be used as a management criterion for issuing drilling well permits by groundwater protection authorities.

  6. Microbial community changes along the active seepage site of one cold seep in the Red Sea.

    KAUST Repository

    Cao, Huiluo

    2015-07-21

    The active seepage of the marine cold seeps could be a critical process for the exchange of energy between the submerged geosphere and the sea floor environment through organic-rich fluids, potentially even affecting surrounding microbial habitats. However, few studies have investigated the associated microbial community changes. In the present study, 16S rRNA genes were pyrosequenced to decipher changes in the microbial communities from the Thuwal seepage point in the Red Sea to nearby marine sediments in the brine pool, normal marine sediments and water, and benthic microbial mats. An unexpected number of reads from unclassified groups were detected in these habitats; however, the ecological functions of these groups remain unresolved. Furthermore, ammonia-oxidizing archaeal community structures were investigated using the ammonia monooxygenase subunit A (amoA) gene. Analysis of amoA showed that planktonic marine habitats, including seeps and marine water, hosted archaeal ammonia oxidizers that differed from those in microbial mats and marine sediments, suggesting modifications of the ammonia oxidizing archaeal (AOA) communities along the environmental gradient from active seepage sites to peripheral areas. Changes in the microbial community structure of AOA in different habitats (water vs. sediment) potentially correlated with changes in salinity and oxygen concentrations. Overall, the present results revealed for the first time unanticipated novel microbial groups and changes in the ammonia-oxidizing archaea in response to environmental gradients near the active seepages of a cold seep.

  7. A method for estimating spatially variable seepage and hydrualic conductivity in channels with very mild slopes

    Science.gov (United States)

    Shanafield, Margaret; Niswonger, Richard G.; Prudic, David E.; Pohll, Greg; Susfalk, Richard; Panday, Sorab

    2014-01-01

    Infiltration along ephemeral channels plays an important role in groundwater recharge in arid regions. A model is presented for estimating spatial variability of seepage due to streambed heterogeneity along channels based on measurements of streamflow-front velocities in initially dry channels. The diffusion-wave approximation to the Saint-Venant equations, coupled with Philip's equation for infiltration, is connected to the groundwater model MODFLOW and is calibrated by adjusting the saturated hydraulic conductivity of the channel bed. The model is applied to portions of two large water delivery canals, which serve as proxies for natural ephemeral streams. Estimated seepage rates compare well with previously published values. Possible sources of error stem from uncertainty in Manning's roughness coefficients, soil hydraulic properties and channel geometry. Model performance would be most improved through more frequent longitudinal estimates of channel geometry and thalweg elevation, and with measurements of stream stage over time to constrain wave timing and shape. This model is a potentially valuable tool for estimating spatial variability in longitudinal seepage along intermittent and ephemeral channels over a wide range of bed slopes and the influence of seepage rates on groundwater levels.

  8. Natural convection in tunnels at Yucca Mountain and impact on drift seepage

    Energy Technology Data Exchange (ETDEWEB)

    Halecky, N.; Birkholzer, J.T.; Peterson, P.

    2010-04-15

    The decay heat from radioactive waste that is to be disposed in the once proposed geologic repository at Yucca Mountain (YM) will significantly influence the moisture conditions in the fractured rock near emplacement tunnels (drifts). Additionally, large-scale convective cells will form in the open-air drifts and will serve as an important mechanism for the transport of vaporized pore water from the fractured rock in the drift center to the drift end. Such convective processes would also impact drift seepage, as evaporation could reduce the build up of liquid water at the tunnel wall. Characterizing and understanding these liquid water and vapor transport processes is critical for evaluating the performance of the repository, in terms of water-induced canister corrosion and subsequent radionuclide containment. To study such processes, we previously developed and applied an enhanced version of TOUGH2 that solves for natural convection in the drift. We then used the results from this previous study as a time-dependent boundary condition in a high-resolution seepage model, allowing for a computationally efficient means for simulating these processes. The results from the seepage model show that cases with strong natural convection effects are expected to improve the performance of the repository, since smaller relative humidity values, with reduced local seepage, form a more desirable waste package environment.

  9. Seepage Analysis of Upper Gotvand Dam Concerning Gypsum Karstification (2D and 3D Approaches)

    DEFF Research Database (Denmark)

    Sadrekarimi, Jamshid; Kiyani, Majid; Fakhri, Behnam

    2011-01-01

    Upper Gotvand Dam is constructed on the Karun River at the south west of Iran. In this paper, 2D and 3D models of the dam together with the foundation and abutments were established, and several seepage analyses were carried out. Then, the gypsum veins that are scattered throughout the foundation...

  10. Microbial community changes along the active seepage site of one cold seep in the Red Sea.

    KAUST Repository

    Cao, Huiluo; Zhang, Weipeng; Wang, Yong; Qian, Pei-Yuan

    2015-01-01

    The active seepage of the marine cold seeps could be a critical process for the exchange of energy between the submerged geosphere and the sea floor environment through organic-rich fluids, potentially even affecting surrounding microbial habitats. However, few studies have investigated the associated microbial community changes. In the present study, 16S rRNA genes were pyrosequenced to decipher changes in the microbial communities from the Thuwal seepage point in the Red Sea to nearby marine sediments in the brine pool, normal marine sediments and water, and benthic microbial mats. An unexpected number of reads from unclassified groups were detected in these habitats; however, the ecological functions of these groups remain unresolved. Furthermore, ammonia-oxidizing archaeal community structures were investigated using the ammonia monooxygenase subunit A (amoA) gene. Analysis of amoA showed that planktonic marine habitats, including seeps and marine water, hosted archaeal ammonia oxidizers that differed from those in microbial mats and marine sediments, suggesting modifications of the ammonia oxidizing archaeal (AOA) communities along the environmental gradient from active seepage sites to peripheral areas. Changes in the microbial community structure of AOA in different habitats (water vs. sediment) potentially correlated with changes in salinity and oxygen concentrations. Overall, the present results revealed for the first time unanticipated novel microbial groups and changes in the ammonia-oxidizing archaea in response to environmental gradients near the active seepages of a cold seep.

  11. Statement of Basis/Proposed Plan for the Motor Shops Seepage Basin (716-A); FINAL

    International Nuclear Information System (INIS)

    Palmer, E.

    1998-01-01

    The purpose of this plan is to describe the preferred alternative for addressing the Motor Shops Seepage Basin located at the Savannah River site in Aiken County, Aiken, South Carolina and to provide an opportunity for public input into the remedial action selection process

  12. Evaluation of seepage and discharge uncertainty in the middle Snake River, southwestern Idaho

    Science.gov (United States)

    Wood, Molly S.; Williams, Marshall L.; Evetts, David M.; Vidmar, Peter J.

    2014-01-01

    The U.S. Geological Survey, in cooperation with the State of Idaho, Idaho Power Company, and the Idaho Department of Water Resources, evaluated seasonal seepage gains and losses in selected reaches of the middle Snake River, Idaho, during November 2012 and July 2013, and uncertainty in measured and computed discharge at four Idaho Power Company streamgages. Results from this investigation will be used by resource managers in developing a protocol to calculate and report Adjusted Average Daily Flow at the Idaho Power Company streamgage on the Snake River below Swan Falls Dam, near Murphy, Idaho, which is the measurement point for distributing water to owners of hydropower and minimum flow water rights in the middle Snake River. The evaluated reaches of the Snake River were from King Hill to Murphy, Idaho, for the seepage studies and downstream of Lower Salmon Falls Dam to Murphy, Idaho, for evaluations of discharge uncertainty. Computed seepage was greater than cumulative measurement uncertainty for subreaches along the middle Snake River during November 2012, the non-irrigation season, but not during July 2013, the irrigation season. During the November 2012 seepage study, the subreach between King Hill and C J Strike Dam had a meaningful (greater than cumulative measurement uncertainty) seepage gain of 415 cubic feet per second (ft3/s), and the subreach between Loveridge Bridge and C J Strike Dam had a meaningful seepage gain of 217 ft3/s. The meaningful seepage gain measured in the November 2012 seepage study was expected on the basis of several small seeps and springs present along the subreach, regional groundwater table contour maps, and results of regional groundwater flow model simulations. Computed seepage along the subreach from C J Strike Dam to Murphy was less than cumulative measurement uncertainty during November 2012 and July 2013; therefore, seepage cannot be quantified with certainty along this subreach. For the uncertainty evaluation, average

  13. Study of seepage losses from irrigation canals using radioactive tracer technique

    International Nuclear Information System (INIS)

    Ahmad, M.; Tariq, J.A.; Rashid, A.; Rafiq, M.; Iqbal, N.

    2004-06-01

    Pakistan has an intricate irrigation system comprising a huge network of canals. A significant fraction of water in irrigation canals is lost through seepage, which is further responsible for water logging and salinity in some areas. Government is considering lining of irrigation canals to overcome this twin menace. Due to involvement of huge costs, highly pervious sections where the seepage rate is appreciably high, are needed to be identified for planning and execution of remedial actions to eliminate or minimize seepage losses. The conventional methods of measuring seepage rate from canals are limited to 'ponding' and 'inflow-outflow' methods. The ponding method is usually restricted to small canals because of the costly bulkheads and water requirement, unaffordable closure of canal, non representation of the line source and variation in the rate of seepage loss with time due to the sealing effects of fine sediments settling out. Inaccurate measurement of discharge under field conditions and complication due to diversion do not favour the inflow-outflow method. It is believed that the analytical methods represent the most accurate and convenient means of determining seepage values using accurate insitu hydraulic conductivity of the subsoil determined by radiotracer, geometry of the canal and position of the groundwater. As a practical application, radiotracer experiments were carried out at Rakh branch canal near Sukhiki, District Hafizabad (Punjab) to determine groundwater filtration velocity by single well point dilution technique using Technetium-99m (sup 99m/Tc) radioactive tracer, Hydraulic conductivity (determined from filtration velocity and hydraulic gradient) and canal parameters were used in the parametric equation of parachute curve to estimate the seepage rate. The average seepage rate was 4.05 cubic meter per day per meter length of the canal (equivalent to 3.795 cusec per million square feet or 1.157 cumec per second per million square meter of

  14. Projected tritium releases from F ampersand H Area Seepage Basins and the Solid Waste Disposal Facilities to Fourmile Branch

    International Nuclear Information System (INIS)

    Looney, B.B.; Haselow, J.S.; Lewis, C.M.; Harris, M.K.; Wyatt, D.E.; Hetrick, C.S.

    1993-01-01

    A large percentage of the radioactivity released to the environment by operations at the Savannah River Site (SRS) is due to tritium. Because of the relative importance of the releases of tritium from SRS facilities through the groundwater to the environment, periodic evaluation and documentation of the facility operational status, proposed corrective actions, and projected changes/reductions in tritium releases are justified. Past, current, and projected tritium releases from the F and H Area Seepage Basins and the Solid Waste Disposal Facilities (SWDF) to Fourmile Branch are described. Each section provides a brief operational history along with the current status and proposed corrective actions. A conceptual model and quantitative estimates of tritium release from the facilities into the groundwater and the environment are developed. Tritium releases from the F and H Area Seepage Basins are declining and will be further reduced by the implementation of a groundwater corrective action required by the Resource Conservation and Recovery Act (RCRA). Tritium releases from the SWDF have been relatively stable over the past 10 years. It is anticipated that SWDF tritium releases to Fourmile Branch will remain approximately at current levels for at least 10--20 years. Specific characterization activities are recommended to allow an improved projection of tritium flux and to assist in developing plans for plume mitigation. SRS and the South Carolina Department of Health and Environmental Control are developing groundwater corrective action plans for the SWDF. Portions of the SWDF are also regulated under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). Reduction of tritium flux is one of the factors considered in the development of the RCRA/CERCLA groundwater corrective action. The final section of the document presents the sum of the projected tritium fluxes from these facilities to Fourmile Branch

  15. The impact of fluid advection on gas hydrate stability: Investigations at sites of methane seepage offshore Costa Rica

    Science.gov (United States)

    Crutchley, G. J.; Klaeschen, D.; Planert, L.; Bialas, J.; Berndt, C.; Papenberg, C.; Hensen, C.; Hornbach, M. J.; Krastel, S.; Brueckmann, W.

    2014-09-01

    Fluid flow through marine sediments drives a wide range of processes, from gas hydrate formation and dissociation, to seafloor methane seepage including the development of chemosynthetic ecosystems, and ocean acidification. Here, we present new seismic data that reveal the 3D nature of focused fluid flow beneath two mound structures on the seafloor offshore Costa Rica. These mounds have formed as a result of ongoing seepage of methane-rich fluids. We show the spatial impact of advective heat flow on gas hydrate stability due to the channelled ascent of warm fluids towards the seafloor. The base of gas hydrate stability (BGHS) imaged in the seismic data constrains peak heat flow values to ∼60 mW m and ∼70 mW m beneath two separate seep sites known as Mound 11 and Mound 12, respectively. The initiation of pronounced fluid flow towards these structures was likely controlled by fault networks that acted as efficient pathways for warm fluids ascending from depth. Through the gas hydrate stability zone, fluid flow has been focused through vertical conduits that we suggest developed as migrating fluids generated their own secondary permeability by fracturing strata as they forced their way upwards towards the seafloor. We show that Mound 11 and Mound 12 (about 1 km apart on the seafloor) are sustained by independent fluid flow systems through the hydrate system, and that fluid flow rates across the BGHS are probably similar beneath both mounds. 2D seismic data suggest that these two flow systems might merge at approximately 1 km depth, i.e. much deeper than the BGHS. This study provides a new level of detail and understanding of how channelled, anomalously-high fluid flow towards the seafloor influences gas hydrate stability. Thus, gas hydrate systems have good potential for quantifying the upward flow of subduction system fluids to seafloor seep sites, since the fluids have to interact with and leave their mark on the hydrate system before reaching the seafloor.

  16. H-Area Seepage Basins groundwater monitoring report -- third and fourth quarters 1993. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Butler, C.T.

    1994-03-01

    During the second half of 1993, the groundwater at the H-Area Seepage Basins (HASB) was monitored in compliance with the September 30, 1992, modification of South Carolina Hazardous Waste Permit SC1-890-008-989. A detailed description of the uppermost aquifer is included in the Resource Conservation and Recovery Act Part B post-closure care permit application for the H-Area Hazardous Waste Management Facility submitted to the South Carolina Department of Health and Environmental Control (SCDHEC) in December 1990. Beginning first quarter 1993, the HASB`s Groundwater Protection Standard (GWPS), established in Appendix 3D-A of the cited permit, became the standard for comparison. Historically as well as currently, nitrate, nonvolatile beta, and tritium have been among the primary constituents to exceed standards. Other radionuclides and hazardous constitutents also exceeded the GWPS in the groundwater at the HASB (notably aluminum, iodine-129, strontium-90, technetium-99, and zinc) during the second half of 1993. Elevated constituents were found primarily in Aquifer Zone 2B{sub 2} and in the upper portion of Aquifer Zone 2B{sub 1}. However, constituents exceeding standards also occurred in several wells screened in the lower portion of Aquifer Zone 2B{sub 1} and Aquifer Unit 2A. Isoconcentration/isoactivity maps include in this report indicate both the concentration/activity and extent of the primary contaminants in each of the three hydrostratigraphic units during the second half of 1993. Water-level maps indicate that the groundwater flow rates and directions at the HASB have remained relatively constant since the basins ceased to be active in 1988.

  17. H-Area Seepage Basins groundwater monitoring report -- third and fourth quarters 1993

    International Nuclear Information System (INIS)

    Butler, C.T.

    1994-03-01

    During the second half of 1993, the groundwater at the H-Area Seepage Basins (HASB) was monitored in compliance with the September 30, 1992, modification of South Carolina Hazardous Waste Permit SC1-890-008-989. A detailed description of the uppermost aquifer is included in the Resource Conservation and Recovery Act Part B post-closure care permit application for the H-Area Hazardous Waste Management Facility submitted to the South Carolina Department of Health and Environmental Control (SCDHEC) in December 1990. Beginning first quarter 1993, the HASB's Groundwater Protection Standard (GWPS), established in Appendix 3D-A of the cited permit, became the standard for comparison. Historically as well as currently, nitrate, nonvolatile beta, and tritium have been among the primary constituents to exceed standards. Other radionuclides and hazardous constitutents also exceeded the GWPS in the groundwater at the HASB (notably aluminum, iodine-129, strontium-90, technetium-99, and zinc) during the second half of 1993. Elevated constituents were found primarily in Aquifer Zone 2B 2 and in the upper portion of Aquifer Zone 2B 1 . However, constituents exceeding standards also occurred in several wells screened in the lower portion of Aquifer Zone 2B 1 and Aquifer Unit 2A. Isoconcentration/isoactivity maps include in this report indicate both the concentration/activity and extent of the primary contaminants in each of the three hydrostratigraphic units during the second half of 1993. Water-level maps indicate that the groundwater flow rates and directions at the HASB have remained relatively constant since the basins ceased to be active in 1988

  18. Effect of fluid–solid coupling on shale mechanics and seepage laws

    Directory of Open Access Journals (Sweden)

    Fuquan Song

    2018-02-01

    Full Text Available In this paper, the cores of outcropped black shale of Lower Silurian Longmaxi Fm in the Yibin area, Sichuan Basin, were taken as samples to investigate the effects of extraneous water on shale mechanics and seepage laws during the production of shale gas reservoirs. Firstly, the development of fractures in water saturated cores was observed by using a VHX-5000 optical superdepth microscope. Secondly, water, formation water and slick water, as well as the damage form and compression strength of water saturated/unsaturated cores were investigated by means of a uniaxial compression testing machine and a strain testing & analysis system. Finally, the effects of fluid–solid coupling on shale gas flowing performance in different water saturations were analyzed by using a DYQ-1 multi-function displacement device. Analysis on core components shows that the Longmaxi shale is a highly crushable reservoir with a high content of fragile minerals, so fracturing stimulation is suitable for it. Shale compression strength test reveals that the effects of deionized water, formation water and slick water on shale are different, so the compression strength of shale before being saturated is quite different from that after being saturated. Due to the existence of water, the compression strength of shale drops, so the shale can be fractured easily, more fractures are generated and thus its seepage capacity is improved. Experiments on shale gas seepage under different water saturations show that under the condition of fluid–solid coupling, the higher the water saturation is, the better the propagation and seepage capacity of micro-fractures in shale under the effect of pressure. To sum up, the existence of water is beneficial to fracturing stimulation of shale gas reservoirs and helps to achieve the goal of production improvement. Keywords: Shale gas, Core, Fluid–solid coupling, Water, Compression strength, Permeability, Seepage characteristic, Sichuan Basin

  19. Decontamination and decommissioning of the SPERT-I seepage pit at the Idaho National Engineering Laboratory. Final report

    International Nuclear Information System (INIS)

    Suckel, R.A.

    1984-11-01

    This report describes the decontamination and decommissioning of the SPERT-I seepage pit. Prior to its decontamination and decommissioning, the seepage pit was surrounded by an earthen dike varying from 2 to 6 ft above the pit bottom. A 6-in., cast iron, underground waste line originated at the pit tank in the reactor building and ran approximately 68 ft to the seepage pit. The soil in the seepage pit contained low-level radioactive contamination. The soil surface was removed to a depth of 2.5 ft and shipped to the Radioactive Waste Management Complex (RWMC). The waste line that contained fixed contamination was removed and also sent to the RWMC. The pit was backfilled with radiologically clean soil, reducing the surface activity to background. A permanent marker was erected over the backfilled pit to indicate that presence of residual subsurface radioactive contamination. 5 references, 26 figures, 3 tables

  20. R Reactor seepage basins soil moisture and resistivity field investigation using cone penetrometer technology, Savannah River Site, Aiken, South Carolina

    International Nuclear Information System (INIS)

    Harris, M.K.

    2000-01-01

    The focus of this report is the summer 1999 investigation of the shallow groundwater system using cone penetrometer technology characterization methods to determine if the water table is perched beneath the R Reactor Seepage Basins (RRSBs)

  1. Operating history and environmental effects of seepage basins in chemical-separations areas of the Savannah River Plant

    International Nuclear Information System (INIS)

    Fenimore, J.W.; Horton, J.H.

    1973-01-01

    This report summarizes the history of operation and monitoring of the earthen seepage basins, presents results of a comprehensive study of radionuclide distribution in groundwater downgradient from the basins, and evaluates past performance and possible future alternatives for these basins

  2. Investigation of seepage around the bucket skirt during installation in sand

    DEFF Research Database (Denmark)

    Koteras, Aleksandra Katarzyna; Ibsen, Lars Bo

    or along bucket skirt with known soil condition, bucket geometry and applied suction. The second aim of the study is to evaluate expressions for normalized seepage length, s/h, for different soil combinations and penetration depths. The seepage length is then 7 used to make a prediction of critical...... pressure that will create piping channels at exit, which is near to seabed and to the caisson wall, along bucket wall and at the tip. That is how the limits for suction installation can be assumed. Finally, the critical suction is used for predicting the reduction of penetration resistance and the method...... describing this approach is presented in the report with its assumptions. The method is called AAU CPT-based method and it is a great step in the development of practical design tool for bucket foundation installation process....

  3. A Pore Scale Flow Simulation of Reconstructed Model Based on the Micro Seepage Experiment

    Directory of Open Access Journals (Sweden)

    Jianjun Liu

    2017-01-01

    Full Text Available Researches on microscopic seepage mechanism and fine description of reservoir pore structure play an important role in effective development of low and ultralow permeability reservoir. The typical micro pore structure model was established by two ways of the conventional model reconstruction method and the built-in graphics function method of Comsol® in this paper. A pore scale flow simulation was conducted on the reconstructed model established by two different ways using creeping flow interface and Brinkman equation interface, respectively. The results showed that the simulation of the two models agreed well in the distribution of velocity, pressure, Reynolds number, and so on. And it verified the feasibility of the direct reconstruction method from graphic file to geometric model, which provided a new way for diversifying the numerical study of micro seepage mechanism.

  4. Sources, extent and history of methane seepage on the continental shelf off northern Norway

    Science.gov (United States)

    Sauer, Simone; Lepland, Aivo; Chand, Shyam; Schubert, Carsten J.; Eichinger, Florian; Knies, Jochen

    2014-05-01

    Active natural hydrocarbon gas seepage was recently discovered in the Hola area on the continental shelf off Vesterålen, northern Norway. We conducted acoustic and geochemical investigations to assess the modern and past extent, source and pathways of the gas seepage . Water column echosounder surveys showed bubble plumes up to several tens of metres above the seafloor. Analyses of dissolved methane in the water column indicated slightly elevated concentrations (50 nM) close to the seafloor. To identify fluxes and origin of methane in the sediments we analysed sediment pore water chemistry, the isotopic composition of methane and of dissolved inorganic carbon (d13CCH4, d2HCH4, d13CDIC) in three closely spaced (

  5. Modelling Technique for the Assessment of the Sub-Soil Drain for Groundwater Seepage Remediation

    Directory of Open Access Journals (Sweden)

    Tajul Baharuddin Mohamad Faizal

    2017-01-01

    Full Text Available Groundwater simulation technique was carried out for examining the performance of sub-soil drain at problematic site area. Subsoil drain was proposed as one of solution for groundwater seepage occurred at the slope face by reducing groundwater table at Taman Botani Park Kuala Lumpur. The simulation technique used Modular Three-Dimensional Finite Difference Groundwater Flow (MODFLOW software. In transient conditions, the results of simulation showed that heads increases surpass 1 to 2 m from the elevation level of the slope area that caused groundwater seepage on slope face. This study attempt to decrease the heads increase surpass by using different sub-soil drain size in simulation technique. The sub-soil drain capable to decline the heads ranges of 1 to 2 m.

  6. Study of Movement and Seepage Along Levees Using DINSAR and the Airborne UAVSAR Instrument

    Science.gov (United States)

    Jones, Cathleen E.; Bawden, Gerald; Deverel, Steven; Dudas, Joel; Hensley, Scott

    2012-01-01

    We have studied the utility of high resolution SAR (synthetic aperture radar) for levee monitoring using UAVSAR (Uninhabited Aerial Vehicle Synthetic Aperture Radar) data collected along the dikes and levees in California's Sacramento-San Joaquin Delta and along the lower Mississippi River. Our study has focused on detecting and tracking changes that are indicative of potential problem spots, namely deformation of the levees, subsidence along the levee toe, and seepage through the levees, making use of polarimetric and interferometric SAR techniques. Here was present some results of those studies, which show that high resolution, low noise SAR imaging could supplement more traditional ground-based monitoring methods by providing early indicators of seepage and deformation.

  7. Emission of Methane and Heavier Alkanes From the La Brea Tar Pits Seepage Area, Los Angeles

    Science.gov (United States)

    Etiope, G.; Doezema, L. A.; Pacheco, C.

    2017-11-01

    Natural hydrocarbon (oil and gas) seeps are widespread in Los Angeles, California, due to gas migration, along faults, from numerous subsurface petroleum fields. These seeps may represent important natural contributors of methane (CH4) and heavier alkanes (C2-C4) to the atmosphere, in addition to anthropogenic fossil fuel and biogenic sources. We measured the CH4 flux by closed-chamber method from the La Brea Tar Pits park (0.1 km2), one of the largest seepage sites in Los Angeles. The gas seepage occurs throughout the park, not only from visible oil-asphalt seeps but also diffusely from the soil, affecting grass physiology. About 500 kg CH4 d-1 is emitted from the park, especially along a belt of enhanced degassing that corresponds to the 6th Street Fault. Additional emissions are from bubble plumes in the lake within the park (order of 102-103 kg d-1) and at the intersection of Wilshire Boulevard and Curson Avenue (>130 kg d-1), along the same fault. The investigated area has the highest natural gas flux measured thus far for any onshore seepage zone in the USA. Gas migration, oil biodegradation, and secondary methanogenesis altered the molecular composition of the original gas accumulated in the Salt Lake Oil Field (>300 m deep), leading to high C1/C2+ and i-butane/n-butane ratios. These molecular alterations can be important tracers of natural seepage and should be considered in the atmospheric modeling of the relative contribution of fossil fuel (anthropogenic fugitive emission and natural geologic sources) versus biogenic sources of methane, on local and global scales.

  8. A pragmatic method for estimating seepage losses for small reservoirs with application in rural India

    Science.gov (United States)

    Oblinger, Jennifer A.; Moysey, Stephen M. J.; Ravindrinath, Rangoori; Guha, Chiranjit

    2010-05-01

    SummaryThe informal construction of small dams to capture runoff and artificially recharge ground water is a widespread strategy for dealing with water scarcity. A lack of technical capacity for the formal characterization of these systems, however, is often an impediment to the implementation of effective watershed management practices. Monitoring changes in reservoir storage provides a conceptually simple approach to quantify seepage, but does not account for the losses occurring when seepage is balanced by inflows to the reservoir and the stage remains approximately constant. To overcome this problem we evaluate whether a physically-based volume balance model that explicitly represents watershed processes, including reservoir inflows, can be constrained by a limited set of data readily collected by non-experts, specifically records of reservoir stage, rainfall, and evaporation. To assess the impact of parameter non-uniqueness associated with the calibration of the non-linear model, we perform a Monte Carlo analysis to quantify uncertainty in the total volume of water contributed to the subsurface by the 2007 monsoon for a dam located in the Deccan basalts near the village of Salri in Madhya Pradesh, India. The Monte Carlo analysis demonstrated that subsurface losses from the reservoir could be constrained with the available data, but additional measurements are required to constrain reservoir inflows. Our estimate of seepage from the reservoir (7.0 ± 0.6 × 10 4 m 3) is 3.5 times greater than the recharge volume estimated by considering reservoir volume changes alone. This result suggests that artificial recharge could be significantly underestimated when reservoir inflows are not explicitly included in models. Our seepage estimate also accounts for about 11% of rainfall occurring upstream of the dam and is comparable in magnitude to natural ground water recharge, thereby indicating that the reservoir plays a significant role in the hydrology of this small

  9. Groundwater Seepage Estimation into Amirkabir Tunnel Using Analytical Methods and DEM and SGR Method

    OpenAIRE

    Hadi Farhadian; Homayoon Katibeh

    2015-01-01

    In this paper, groundwater seepage into Amirkabir tunnel has been estimated using analytical and numerical methods for 14 different sections of the tunnel. Site Groundwater Rating (SGR) method also has been performed for qualitative and quantitative classification of the tunnel sections. The obtained results of above mentioned methods were compared together. The study shows reasonable accordance with results of the all methods unless for two sections of tunnel. In these t...

  10. Forward modeling of seepage of reservoir dam based on ground penetrating radar

    Directory of Open Access Journals (Sweden)

    Xueli WU

    2017-08-01

    Full Text Available The risk of the reservoir dam seepage will bring the waste of water resources and the loss of life and property. The ground penetrating radar (GPR is designed as a daily inspection system of dams to improve the existing technology which can't determine the actual situation of the dam seepage tunnel coordinates. The finite difference time domain (FDTD is used to solve the Yee's grids discreatization in two-dimensional space, and its electromagnetic distribution equation is obtained as well. Based on the actual structure of reservoir dam foundation, the ideal model of air layer, concrete layer, clay layer and two water seepage holes is described in detail, and the concrete layer interference model with limestone interference point is established. The system architecture is implemented by using MATLAB, and the forward modeling is performed. The results indicate that ground penetrating radar can be used for deep target detection. Through comparing the detection spectrum of three kinds of frequency electromagnetic wave by changing the center frequency of the GPR electromagnetic wave of 50 MHz, 100 MHz and 200 MHz, it is concluded that the scanning result is more accurate at 100 MHz. At the same time, the simulation results of the interference model show that this method can be used for the detection of complex terrain.

  11. Laboratorial studies on the seepage impact in open-channel flow turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Herrera Granados, Oscar; Kostecki, Stanislaw, E-mail: Oscar.Herrera-Granados@pwr.wroc.pi [Institute of Geotechnics and Hydro-engineering (I-10), Wroclaw University of Technology. Plac Grunwaldzki 9 D-2 p.112. 50-377 Wroclaw (Poland)

    2011-12-22

    In natural streams, the interaction between water in motion and movable beds derives in transport of material. This is a fact that causes several problems for river regulation, above all in streams which were heavily modified by human interferences. Therefore, to find solutions or at least to alleviate the negative effects that sediment transport can bring with is a topic to be researched. The impact of seepage on river sedimentation processes and open-channel flow is important for environmental issues but it is commonly neglected by water specialists. The present contribution presents the output of a series of experimental works where the influence of seepage on the open channel turbulence is analyzed at the laboratory scale. Even though that the magnitude of the groundwater flow is significantly smaller than the magnitude of the open channel flow; the output of the experiments demonstrates that seepage not only modifies the water-sediment interaction as demonstrated Herrera Granados (2008; 2010); but also is affecting the velocity field and turbulence dynamics of the open-channel flow.

  12. Faults as Windows to Monitor Gas Seepage: Application to CO2 Sequestration and CO2-EOR

    Directory of Open Access Journals (Sweden)

    Ronald W. Klusman

    2018-03-01

    Full Text Available Monitoring of potential gas seepage for CO2 sequestration and CO2-EOR (Enhanced Oil Recovery in geologic storage will involve geophysical and geochemical measurements of parameters at depth and at, or near the surface. The appropriate methods for MVA (Monitoring, Verification, Accounting are needed for both cost and technical effectiveness. This work provides an overview of some of the geochemical methods that have been demonstrated to be effective for an existing CO2-EOR (Rangely, CA, USA and a proposed project at Teapot Dome, WY, USA. Carbon dioxide and CH4 fluxes and shallow soil gas concentrations were measured, followed by nested completions of 10-m deep holes to obtain concentration gradients. The focus at Teapot Dome was the evaluation of faults as pathways for gas seepage in an under-pressured reservoir system. The measurements were supplemented by stable carbon and oxygen isotopic measurements, carbon-14, and limited use of inert gases. The work clearly demonstrates the superiority of CH4 over measurements of CO2 in early detection and quantification of gas seepage. Stable carbon isotopes, carbon-14, and inert gas measurements add to the verification of the deep source. A preliminary accounting at Rangely confirms the importance of CH4 measurements in the MVA application.

  13. Application of short-range photogrammetry for monitoring seepage erosion of riverbank by laboratory experiments

    Science.gov (United States)

    Masoodi, A.; Noorzad, A.; Majdzadeh Tabatabai, M. R.; Samadi, A.

    2018-03-01

    Temporal and spatial monitoring play a significant role in evaluating and examining the riverbank morphology and its spatiotemporal changes. Unlike the terrestrial laser scanners, other previously used methods such as satellite images, total station surveying, and erosion pins have limited application to quantify the small-scale bank variations due to the lack of rapid survey and resolution in data acquisition. High cost, lack of availability, specialized equipment and hard movement of laser scanners make it necessary to develop new accurate, economical and easily available methods. The present study aims to test the Kinect photogrametric technology for measuring and assessing riverbank variations in laboratory environment. For this purpose, three models of layered soil blocks for three different levels of groundwater (i.e. 24, 34 and 44 cm) were designed to investigate the seepage erosion behavior experimentally. The results indicate the high accuracy of Kinect in measuring the bank erosion cavity dimensions (i.e., 0.5% error) with high spatial resolution data (i.e. 300,000 points per frame). The high speed of Kinect in riverbank scanning enables the analysis of time variations of mechanisms such as seepage erosion which occurs rather rapidly. The results confirmed that there is a power relationship between the seepage gradient and the time of the bank failure with a determination coefficient of 0.97. Moreover, an increase in the level of groundwater on the riverbank increases the rate of undercutting retreat that caused more rapid failure of the riverbank.

  14. Theoretical and Experimental Investigation of Characteristics of Single Fracture Stress-Seepage Coupling considering Microroughness

    Directory of Open Access Journals (Sweden)

    Shengtong Di

    2017-01-01

    Full Text Available Based on the results of the test among the joint roughness coefficient (JRC of rock fracture, mechanical aperture, and hydraulic aperture proposed by Barton, this paper deduces and proposes a permeability coefficient formula of single fracture stress-seepage coupling considering microroughness by the introduction of effect variables considering the microparticle size and structural morphology of facture surface. Quasi-sandstone fracture of different particle size is made by the laboratory test, and the respective modification is made on the coupled shear-seepage test system of JAW-600 rock. Under this condition, the laboratory test of stress-seepage coupling of fracture of different particle size is carried out. The test results show that, for the different particle-sized fracture surface of the same JRC, the permeability coefficient is different, which means the smaller particle size, the smaller permeability coefficient, and the larger particle size, the larger permeability coefficient; with the increase of cranny hydraulic pressure, the permeability coefficient increases exponentially, and under the same cranny hydraulic pressure, there is relation of power function between the permeability coefficient and normal stress. Meanwhile, according to the theoretical formula, the microroughness coefficient of the fractures with different particle size is obtained by the calculation, and its accuracy and validity are verified by experiments. The theoretical verification values are in good agreement with the measured values.

  15. Laboratorial studies on the seepage impact in open-channel flow turbulence

    International Nuclear Information System (INIS)

    Herrera Granados, Oscar; Kostecki, Stanislaw

    2011-01-01

    In natural streams, the interaction between water in motion and movable beds derives in transport of material. This is a fact that causes several problems for river regulation, above all in streams which were heavily modified by human interferences. Therefore, to find solutions or at least to alleviate the negative effects that sediment transport can bring with is a topic to be researched. The impact of seepage on river sedimentation processes and open-channel flow is important for environmental issues but it is commonly neglected by water specialists. The present contribution presents the output of a series of experimental works where the influence of seepage on the open channel turbulence is analyzed at the laboratory scale. Even though that the magnitude of the groundwater flow is significantly smaller than the magnitude of the open channel flow; the output of the experiments demonstrates that seepage not only modifies the water-sediment interaction as demonstrated Herrera Granados (2008; 2010); but also is affecting the velocity field and turbulence dynamics of the open-channel flow.

  16. Determining the REV for Fracture Rock Mass Based on Seepage Theory

    Directory of Open Access Journals (Sweden)

    Lili Zhang

    2017-01-01

    Full Text Available Seepage problems of the fractured rock mass have always been a heated topic within hydrogeology and engineering geology. The equivalent porous medium model method is the main method in the study of the seepage of the fractured rock mass and its engineering application. The key to the method is to determine a representative elementary volume (REV. The FractureToKarst software, that is, discrete element software, is a main analysis tool in this paper and developed by a number of authors. According to the standard of rock classification established by ISRM, this paper aims to discuss the existence and the size of REV of fractured rock masses with medium tractility and provide a general method to determine the existence of REV. It can be gleaned from the study that the existence condition of fractured rock mass with medium tractility features average fracture spacing smaller than 0.6 m. If average fracture spacing is larger than 0.6 m, there is no existence of REV. The rationality of the model is verified by a case study. The present research provides a method for the simulation of seepage field in fissured rocks.

  17. COMPREHENSIVE ANALYSIS ON SEEPAGE AND STRUCTURAL STABILITY OF EARTH-ROCK DAM: A CASE STUDY OF XIQUANYAN DAM IN CHINA

    Directory of Open Access Journals (Sweden)

    Qingqing GUO

    2016-07-01

    Full Text Available Earth-rock dam is commonly used in the high-dam engineering around the world. It has been widely accepted that the analysis on structural and seepage stability plays a very important role, and it is necessary to take into account while designing the earth-rock dam. In performing the analysis of structural and seepage stability, many remarkable methods are available at current stage. However, there are still some important issues remaining unsolved, including: (1 Finite element methods (FEMs is a means of solutions to analysis seepage process, but it is often a difficult task to determine the so-called seepage coefficient, because the common-used water injection test is limited in the practical work due to the high cost and complex procedure. (2 It has long been discussed that the key parameters for structural stability analysis show a significant spatial and temporal variations. It may be partly explained by the inhomogeneous dam-filling during construction work and the developing seepage process. The consequence is that one constant value of the parameter cannot represent the above variations. In this context, we solve the above issues and introduce the solution with a practical earth-rock dam project. For determining the seepage coefficient, the data from the piezo metric tube is used to calculate the potential value, based on which the seepage coefficient can be back-analysed. Then the seepage field, as well as the seepage stability are numerically analysed using the FEM-based SEEP/W program. As to the structural safety, we take into account the spatial and temporal variations of the key parameters, and incorporate the Monte-Carlo simulation method into the commonly used M-P method to calculate the frequency distribution of the obtained structural safety factor. In this way, the structural and seepage safety can be well analysed. This study is also beneficial to provide a mature method and a theoretical insight into the earth-rock dam design

  18. Quality Assurance Project Plan for the treatability study of in situ vitrification of Seepage Pit 1 in Waste Area Grouping 7 at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    1995-07-01

    This Quality Assurance Project Plan (QAPjP) establishes the quality assurance procedures and requirements to be implemented for the control of quality-related activities for Phase 3 of the Treatability Study (TS) of In Situ Vitrification (ISV) of Seepage Pit 1, ORNL Waste Area Grouping 7. This QAPjP supplements the Quality Assurance Plan for Oak Ridge National Laboratory Environmental Restoration Program by providing information specific to the ISV-TS. Phase 3 of the TS involves the actual ISV melt operations and posttest monitoring of Pit 1 and vicinity. Previously, Phase 1 activities were completed, which involved determining the boundaries of Pit 1, using driven rods and pipes and mapping the distribution of radioactivity using logging tools within the pipes. Phase 2 involved sampling the contents, both liquid and solids, in and around seepage Pit 1 to determine their chemical and radionuclide composition and the spatial distribution of these attributes. A separate QAPjP was developed for each phase of the project. A readiness review of the Phase 3 activities presented QAPjP will be conducted prior to initiating field activities, and an Operational Acceptance, Test (OAT) will also be conducted with no contamination involved. After, the OAT is complete, the ISV process will be restarted, and the melt will be allowed to increase with depth and incorporate the radionuclide contamination at the bottom of Pit 1. Upon completion of melt 1, the equipment will be shut down and mobilized to an adjacent location at which melt 2 will commence

  19. The impact of land use and land cover changes on solute dynamics in seepage water of soil from karst hillslopes of Southwest China

    International Nuclear Information System (INIS)

    Ding Hu; Lang Yunchao; Liu Congqiang

    2011-01-01

    Land use and land cover changes can cause variations in terrestrial energy, water balance and availability of nutrients. To understand the role of vegetation in regulating the hydrochemistry of karst hillslopes, overland flow and soil seepage water from two hillslopes covered with and without vegetation were studied in the Huanjiang Observation and Research Station for Karst Ecosystems, Guangxi, SW China. Dissolved major ions, as well as isotopic compositions of dissolved inorganic C (DIC) were examined. Water from the vegetated control slope had higher solute concentrations (except NO 3 - ) and lower δ 13 C values than water from the disturbed slope. The dynamics of K + and NO 3 - in soil water sampled in time-sequence from the control slope was different from the disturbed slope. Specifically, K + and NO 3 - concentrations of the control slope decreased gradually over time, while K + and NO 3 - concentrations of the disturbed slope increased, and other ionic concentrations increased in both of the slopes.

  20. Infiltration, seepage and slope instability mechanisms during the 20–21 November 2000 rainstorm in Tuscany, central Italy

    Directory of Open Access Journals (Sweden)

    V. Tofani

    2006-01-01

    Full Text Available On 20–21 November 2000, a storm of high intensity, with a estimated return period of more than 100 years, triggered over 50 landslides within the province of Pistoia in Tuscany (Italy. These failures can be defined as complex earth slides- earth flows. One of the documented landslides has been investigated by modelling the ground water infiltration process, the positive and negative pore water pressure variations and the effects of these variations on slope stability during the rainfall event. Morphometric and geotechnical analyses were carried out through a series of in-situ and laboratory tests, the results of which were used as input for the modelling process. The surface infiltration rate was initially simulated using the rainfall recorded at the nearest raingauge station. Finite element seepage analysis for transient conditions were then employed to model the changes in pore water pressure during the storm event, using the computed infiltration rate as the ground surface boundary condition. Finally, the limit equilibrium slope stability method was applied to calculate the variations in the factor of safety during the event and thereby determine the critical time of instability. For the investigated site the trend of the factor of safety indicates that the critical time for failure occurs about 18 h after the storm commences, and highlights the key role played by the soil permeability and thickness in controlling the response in terms of slope instability.

  1. Assessment of tree toxicity near the F- and H-Area seepage basins of the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Loehle, C. (ed.) (Westinghouse Savannah River Co., Aiken, SC (USA)); Richardson, C.J. (ed.); Greenwood, K.P.; Hane, M.E.; Lander, A.J. (Duke Univ., Durham, NC (USA))

    1990-12-01

    Areas of tree mortality, originating in 1979, have been documented downslope of the F- and H-Area Seepage Basins. The basins were used as discharge areas for low-level radioactive and nonradioactive waste. Preliminary studies indicated that there are three possible causes of stress: altered hydrology; hazardous chemicals; and nonhazardous chemicals. It was originally hypothesized that the most likely hydrological stressors to Nyssa sylvatica var. biflora were flooding where water levels cover the lenticels for more than 26 percent of the growing season, resulting in low oxygen availability, and toxins produced under anaerobic conditions. In fact, trees began to show stress only flowing a drought year (1977) rather than a wet year. Dry conditions could exacerbate stress by concentrating contaminants, particularly salt. Study of the soil and water chemical parameters in the impacted sites indicated that salt concentrations in the affected areas have produced abnormally high exchangeable sodium percentages. Furthermore, significantly elevated concentrations of heavy metals were found in each impacted site, although no one metal was consistently elevated. Evaluation of the concentrations of various chemicals toxic to Nyssa sylvatica var. biflora revealed that aluminum was probably the most toxic in the F-Area. Manganese, cadmium, and zinc had concentrations great enough to be considered possible causes of tree mortality in the F-Area. Aluminum was the most likely cause of mortality in the H-Area. Controlled experiments testing metal and salt concentration effects on Nyssa sylvatica would be needed to specifically assign cause and effect mortality relationships.

  2. Assessment of tree toxicity near the F- and H-Area seepage basins of the Savannah River Site

    International Nuclear Information System (INIS)

    Loehle, C.; Richardson, C.J.

    1990-12-01

    Areas of tree mortality, originating in 1979, have been documented downslope of the F- and H-Area Seepage Basins. The basins were used as discharge areas for low-level radioactive and nonradioactive waste. Preliminary studies indicated that there are three possible causes of stress: altered hydrology; hazardous chemicals; and nonhazardous chemicals. It was originally hypothesized that the most likely hydrological stressors to Nyssa sylvatica var. biflora were flooding where water levels cover the lenticels for more than 26 percent of the growing season, resulting in low oxygen availability, and toxins produced under anaerobic conditions. In fact, trees began to show stress only flowing a drought year (1977) rather than a wet year. Dry conditions could exacerbate stress by concentrating contaminants, particularly salt. Study of the soil and water chemical parameters in the impacted sites indicated that salt concentrations in the affected areas have produced abnormally high exchangeable sodium percentages. Furthermore, significantly elevated concentrations of heavy metals were found in each impacted site, although no one metal was consistently elevated. Evaluation of the concentrations of various chemicals toxic to Nyssa sylvatica var. biflora revealed that aluminum was probably the most toxic in the F-Area. Manganese, cadmium, and zinc had concentrations great enough to be considered possible causes of tree mortality in the F-Area. Aluminum was the most likely cause of mortality in the H-Area. Controlled experiments testing metal and salt concentration effects on Nyssa sylvatica would be needed to specifically assign cause and effect mortality relationships

  3. Evaluating origins and water seepage rates at the subdam A of the Dong Mo reservoir using environmental isotope technique

    International Nuclear Information System (INIS)

    Bui Dac Dung; Trinh Van Giap; Dang Anh Minh; Nguyen Van Hoan

    2008-01-01

    Environmental isotope techniques have been world-widely used for investigating origins and the rates of the seepage - leakage water at reservoir dams. We have conducted a research on the use of environmental isotope techniques for evaluating the origin of the seepage water and the seepage rate at the sub dam A of the Dong Mo reservoir. The main works were collecting water samples, analyzing for 18 O/ 16 O, 2 H(D)/ 1 H ratios, analyzing for 3 H(T) and chemical contents. Findings of the project showed that: a) Waters at the piezometers on the top and the 1st roof are not originated from lake water; b) Waters at the piezometers on 1st and 2nd levels, as well as seepage waters at the dam toe are mixed of lake and ground waters, and the old river bed could be the channel for ground water upcoming from beneath the dam body; c) The transit times of water from the lake to the observation points are from 3 to 4 months, and the seepage velocity is of about 1.1x10 -3 cm/s; d) The findings from tritium analyses show that all waters around the Dong Mo area are recent waters recharged regularly by meteoric water. (author)

  4. Fiber Bragg grating-based performance monitoring of a slope model subjected to seepage

    Science.gov (United States)

    Zhu, Hong-Hu; Shi, Bin; Yan, Jun-Fan; Zhang, Jie; Zhang, Cheng-Cheng; Wang, Bao-Jun

    2014-09-01

    In the past few years, fiber optic sensing technologies have played an increasingly important role in the health monitoring of civil infrastructures. These innovative sensing technologies have recently been successfully applied to the performance monitoring of a series of geotechnical structures. Fiber optic sensors have shown many unique advantages in comparison with conventional sensors, including immunity to electrical noise, higher precision and improved durability and embedding capabilities; fiber optic sensors are also smaller in size and lighter in weight. In order to explore the mechanism of seepage-induced slope instability, a small-scale 1 g model test of the soil slope has been performed in the laboratory. During the model’s construction, specially fabricated sensing fibers containing nine fiber Bragg grating (FBG) strain sensors connected in a series were horizontally and vertically embedded into the soil mass. The surcharge load was applied on the slope crest, and the groundwater level inside of the slope was subsequently varied using two water chambers installed besides the slope model. The fiber optic sensing data of the vertical and horizontal strains within the slope model were automatically recorded by an FBG interrogator and a computer during the test. The test results are presented and interpreted in detail. It is found that the gradually accumulated deformation of the slope model subjected to seepage can be accurately captured by the quasi-distributed FBG strain sensors. The test results also demonstrate that the slope stability is significantly affected by ground water seepage, which fits well with the results that were calculated using finite element and limit equilibrium methods. The relationship between the strain measurements and the safety factors is further analyzed, together with a discussion on the residual strains. The performance evaluation of a soil slope using fiber optic strain sensors is proved to be a potentially effective

  5. Fiber Bragg grating-based performance monitoring of a slope model subjected to seepage

    International Nuclear Information System (INIS)

    Zhu, Hong-Hu; Shi, Bin; Yan, Jun-Fan; Zhang, Cheng-Cheng; Wang, Bao-Jun; Zhang, Jie

    2014-01-01

    In the past few years, fiber optic sensing technologies have played an increasingly important role in the health monitoring of civil infrastructures. These innovative sensing technologies have recently been successfully applied to the performance monitoring of a series of geotechnical structures. Fiber optic sensors have shown many unique advantages in comparison with conventional sensors, including immunity to electrical noise, higher precision and improved durability and embedding capabilities; fiber optic sensors are also smaller in size and lighter in weight. In order to explore the mechanism of seepage-induced slope instability, a small-scale 1 g model test of the soil slope has been performed in the laboratory. During the model’s construction, specially fabricated sensing fibers containing nine fiber Bragg grating (FBG) strain sensors connected in a series were horizontally and vertically embedded into the soil mass. The surcharge load was applied on the slope crest, and the groundwater level inside of the slope was subsequently varied using two water chambers installed besides the slope model. The fiber optic sensing data of the vertical and horizontal strains within the slope model were automatically recorded by an FBG interrogator and a computer during the test. The test results are presented and interpreted in detail. It is found that the gradually accumulated deformation of the slope model subjected to seepage can be accurately captured by the quasi-distributed FBG strain sensors. The test results also demonstrate that the slope stability is significantly affected by ground water seepage, which fits well with the results that were calculated using finite element and limit equilibrium methods. The relationship between the strain measurements and the safety factors is further analyzed, together with a discussion on the residual strains. The performance evaluation of a soil slope using fiber optic strain sensors is proved to be a potentially effective

  6. Study on the mechanism of seepage flow in the grouting for multiple fractured model

    International Nuclear Information System (INIS)

    Nishigaki, Makoto; Mikake, Shin-ichiro

    2002-01-01

    The purpose of study is to improve the grouting method for fractured rock masses. In this paper, the results on the fundamental phenomenon for grasping the properties of grouting injection and seepage flow are discussed. The case of grouting stage is studied about the multiple hydraulic fractured apertures in the injected borehole. So the theory on the mechanism is constructed, and experiment is executed in order to verify the availability of the theory. From the results, it is shown that Bernoulli's law is able to prove the behavior of the grouting. And the theoretical evaluation is executed on the experiential procedure of the grouting. (author)

  7. Simulation of 2-dimensional subsurface seepage flow in an anisotropic porous medium

    Directory of Open Access Journals (Sweden)

    Chhaya K. Lande

    2016-09-01

    Full Text Available In this study, we develop new analytical solution to estimate the transient behavior of phreatic surface in an anisotropic unconfined aquifer which is overlying a leaky base and subjected to multiple recharge and withdrawal. The hydrologic setting consists of a rectangular unconfined leaky aquifer adjacent to two water bodies of constant water head along the opposite faces of the aquifer. The remaining two faces of the aquifer have no flow conditions. The flow of seepage is approximated using two-dimensional Boussinesq equation, and solved analytically using mixed finite Fourier transform. Application of the new solution is demonstrated using an illustrative example.

  8. F-Area Seepage Basins Groundwater Monitoring Report: Volume 1, Third and fourth quarters 1994

    International Nuclear Information System (INIS)

    Chase, J.A.

    1994-03-01

    Isoconcentration/isoactivity maps included in this report indicate both the concentration/activity and extent of the primary contaminants in each of the three hydrostratigraphic units. Geologic cross sections indicate both the extent and depth of contamination of the primary contaminants in all of the hydrostratigraphic units during the second half of 1994. Water-level maps indicate that the groundwater flow rates and directions at the F-Area Seepage Basins have remained relatively constant since the basins ceased to be active in 1988

  9. Contribution to atmospheric methane by natural seepages on the Bulgarian continental shelf

    Energy Technology Data Exchange (ETDEWEB)

    Dimitrov, L. [Bulgarian Academy of Science, Varna (Bulgaria). Inst. of Oceanology

    2002-07-01

    This paper provides an estimation of the atmospheric methane flux from Bulgarian Black Sea continental shelf. Potential gas source rocks include Holocene gas-charged sediments, Quaternary peats and sapropels, and deep-lying Palaeocene and Neogene clays, Cretaceous coals, and other sediments of late Jurassic to early Cretaceous age. These cover almost the whole continental shelf and slope and, together with irregularly developed seal rocks and widespread active and conducting faults, provide good conditions for upward gas migration. A total of 5 100 line kilometers of shallow seismic (boomer) and echo-sounder records acquired during the Institute of Oceanology's regional surveys, and several detailed side-scan sonar lines, have been reviewed for water column targets. Four hundred and eighty-two targets were assigned as gas seepage plumes. It is estimated that a total of 19,735 individual seeps exists on the open shelf. The number of seeps in coastal waters was estimated to be 6020; this is based on available public-domain data, specific research, and results of a specially made questionnaire which was distributed to a range of 'seamen'. More than 150 measurements of the seabed flux rates were made in the 'Golden sands' and 'Zelenka' seepage areas between 1976 and 1991. Indirect estimations of flux rates from video and photo materials, and a review of published data have also been undertaken. Based on these data, three types of seepages were identified as the most representative of Bulgarian coastal waters. These have flux rates of 0.4, 1.8, and 3.51/min. The contribution to atmospheric methane is calculated by multiplying the flux rates with the number of seepages, and entering corrections for methane concentration and the survival of gas bubbles as they ascend through seawater of the corresponding water depth. The estimation indicates that between 45,100,000 (0.03 Tg) and 210,650,000 m{sup 3} (0. 15 Tg) methane yr{sup -1} come

  10. H-Area Seepage Basins Groundwater Monitoring Report: Volume 1, Third and Fourth quarters 1994

    International Nuclear Information System (INIS)

    Chase, J.A.

    1994-03-01

    Isoconcentration/isocactivity maps included in this report indicate both the concentration/activity and extent of the primary contaminants in each of the three hydrostratigraphic units during the second half of 1994. Geologic cross sections indicate both the extent and depth of contamination of the primary contaminants in all of the hydrostratigraphic units during the second half of 1994. Water-level maps indicate that the groundwater flow rates and directions at the H-Area Seepage Basins have remained relatively constant since the basins ceased to be active in 1988

  11. Simulation of water seepage through a vadose zone in fractured rock

    International Nuclear Information System (INIS)

    Fuentes, Nestor O.

    2003-01-01

    In order to improve our understanding of the vadose zone in fractured rock, obtaining useful tools to simulate, predict and prevent subsurface contamination, a three-dimensional model has been developed from the base of recent two-dimensional codes. Fracture systems are simulated by means of a dynamical evolution of a random-fuse network model, and the multiphase expression of Richards equation is used to describe fluid displacements. Physical situations presented here emphasized the importance of fracture connectivity and spatial variability on the seepage evolution through the vadose zone, and confirm the existence of dendritic patterns along localized preferential paths. (author)

  12. Abating coal tar seepage into surface water bodies using sheet piles with sealed interlocks

    International Nuclear Information System (INIS)

    Collingwood, B.I.; Boscardin, M.D.; Murdock, R.F.

    1995-01-01

    A former coal tar processing facility processed crude coal tar supplied from manufactured gas plants in the area. Coal-tar-contaminated ground water from the site was observed seeping through an existing timber bulkhead along a tidal river and producing a multicolored sheen on the surface of the river. As part of a short-term measure to abate the seepage into the river, 64-m long anchored sheet pile wall with sheet pile wing walls at each end was constructed inland of the of the timber bulkhead. The sheet piles extended to low-permeability soils at depth and the interlocks of the sheet piles were provided with polyurethane rubber seals. Based on postconstruction observations for leakage and sheens related to leakage, the steel sheet piles with polyurethane rubber interlock seals appeared to provide a successful seal and abate coal-tar-contaminated ground water seepage into the river. The tie rod penetration sealing proved to be a more problematic detail, but through several postconstruction grouting episodes, an effective seal was produced

  13. Radionuclide inventories for the F- and H-area seepage basin groundwater plumes

    Energy Technology Data Exchange (ETDEWEB)

    Hiergesell, Robert A [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Kubilius, Walter P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-05-01

    Within the General Separations Areas (GSA) at the Savannah River Site (SRS), significant inventories of radionuclides exist within two major groundwater contamination plumes that are emanating from the F- and H-Area seepage basins. These radionuclides are moving slowly with groundwater migration, albeit more slowly due to interaction with the soil and aquifer matrix material. The purpose of this investigation is to quantify the activity of radionuclides associated with the pore water component of the groundwater plumes. The scope of this effort included evaluation of all groundwater sample analyses obtained from the wells that have been established by the Environmental Compliance & Area Completion Projects (EC&ACP) Department at SRS to monitor groundwater contamination emanating from the F- and H-Area Seepage Basins. Using this data, generalized groundwater plume maps for the radionuclides that occur in elevated concentrations (Am-241, Cm-243/244, Cs-137, I-129, Ni-63, Ra-226/228, Sr-90, Tc-99, U-233/234, U-235 and U-238) were generated and utilized to calculate both the volume of contaminated groundwater and the representative concentration of each radionuclide associated with different plume concentration zones.

  14. Research on borehole stability of shale based on seepage-stress-damage coupling model

    Directory of Open Access Journals (Sweden)

    Xiaofeng Ran

    2014-01-01

    Full Text Available In oil drilling, one of the most complicated problems is borehole stability of shale. Based on the theory of continuum damage mechanics, a modified Mohr-Coulomb failure criterion according to plastic damage evolution and the seepage-stress coupling is established. Meanwhile, the damage evolution equation which is based on equivalent plastic strain and the permeability evolution equation of shale are proposed in this paper. The physical model of borehole rock for a well in China western oilfield is set up to analyze the distribution of damage, permeability, stress, plastic strain and displacement. In the calculation process, the influence of rock damage to elastic modulus, cohesion and permeability is involved by writing a subroutine for ABAQUS. The results show that the rock damage evolution has a significant effect to the plastic strain and stress in plastic zone. Different drilling fluid density will produce different damage in its value, range and type. This study improves the theory of mechanical mechanism of borehole collapse and fracture, and provides a reference for the further research of seepage-stress-chemical-damage coupling of wall rock.

  15. Laboratory Experiments on Steady State Seepage-Induced Landslides Using Slope Models and Sensors

    Directory of Open Access Journals (Sweden)

    Sandra G. Catane

    2011-06-01

    Full Text Available A thorough understanding of the failure initiation process is crucial in the development of physicallybased early warning system for landslides and slope failures. Laboratory-scale slope models were constructed and subjected to instability through simulated groundwater infiltration. This is done by progressively increasing the water level in the upslope tank and allowing water to infiltrate laterally towards the toe of the slope. Physical changes in the slope models were recorded by tilt sensors and video cameras. When the model slope was destabilized, the chronology of events occurred in the following sequence: (1 bulging at the toe, (2 seepage at the toe, (3 initial failure of soil mass, (4 piping, (5 retrogressive failure, (6 formation of tension cracks and (7 major failure of soil mass. Tension cracks, piping and eventual failure are manifestations of differential settlements due to variations in void ratio. Finite element analysis indicates that instability and subsequent failures in the model slope were induced primarily by high hydraulic gradients in the toe area. Seepage, initial deformation and subsequent failures were manifested in the toe area prior to failure, providing a maximum of 36 min lead time. Similar lead times are expected in slopes of the same material as shown in many case studies of dam failure. The potential of having a longer lead time is high for natural slopes made of materials with higher shear strength thus evacuation is possible. The tilt sensors were able to detect the initial changes before visual changes manifested, indicating the importance of instrumental monitoring.

  16. Unsaturated Seepage Analysis of Cracked Soil including Development Process of Cracks

    Directory of Open Access Journals (Sweden)

    Ling Cao

    2016-01-01

    Full Text Available Cracks in soil provide preferential pathways for water flow and their morphological parameters significantly affect the hydraulic conductivity of the soil. To study the hydraulic properties of cracks, the dynamic development of cracks in the expansive soil during drying and wetting has been measured in the laboratory. The test results enable the development of the relationships between the cracks morphological parameters and the water content. In this study, the fractal model has been used to predict the soil-water characteristic curve (SWCC of the cracked soil, including the developmental process of the cracks. The cracked expansive soil has been considered as a crack-pore medium. A dual media flow model has been developed to simulate the seepage characteristics of the cracked expansive soil. The variations in pore water pressure at different part of the model are quite different due to the impact of the cracks. This study proves that seepage characteristics can be better predicted if the impact of cracks is taken into account.

  17. Methane seepage intensities traced by biomarker patterns in authigenic carbonates from the South China Sea

    Science.gov (United States)

    Guan, H.; Feng, D.

    2015-12-01

    Authigenic carbonate rocks from an active seep (Site F) at 1120 m water depth of the South China Sea (SCS) were studied using mineralogical and lipid biomarker analyses. Carbonate mineral compositions, in specific samples, were predominantly aragonite, high-Mg calcite (HMC), or a mixture of both. Abundant 13C-depleted lipid biomarkers (various isoprenoids) diagnostic for archaea provide evidence that anaerobic oxidation of methane (AOM) mediated by anaerobic methane oxidizing archaea (ANME) and their bacterial partners is the major process leading to formation of the carbonates. Nearly a pure suite of AOM biomarkers was preserved in aragonitic carbonate in which predominant consortia were most likely ANME-2/Desulfosarcina & Desulfococcus (DSS) assemblages and a mixture of ANME-2/DSS and ANME-1/DSS consortia in the mixed mineral sample, the predominant consortia are in good accordance with the point that the relative higher methane seepage intensity favors the precipitation of aragonite over HMC. In contrast, the completely different biomarker patterns in HMC sample were mainly composed terrestrial organic matter and marine Thaumarchaea, which most likely originally within sediments accompanied with high organic matter input and low methane supply. This environment is known to be favored for archaea of ANME-1 and precipitation of HMC. High concentrations of 13C-depleted hopanoids, including diplopterol, hopanoic acids and hopanols were observed in the aragonite sample that may be sourced by the intermittent presence of oxic conditions in an overall anoxic condition, which was possibly induced by changing seepage intensities.

  18. Testing and modeling of seepage into underground openings in a heterogeneous fracture system at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Ahlers, C.F.; Trautz, R.C.; Cook, P.J.; Finsterle, S.

    2002-01-01

    We discuss field activities designed to characterize seepage into an underground opening at the potential site for geologic storage of high-level radioactive waste (HLRW) at Yucca Mountain, Nevada, and the use of these data for development and calibration of a model for predicting seepage into planned HLRW emplacement drifts. Air-injection tests were conducted to characterize the permeability of the fractured rock, and liquid-release tests (LRTs) were conducted and seepage monitored to characterize the seepage-relevant properties of the fractured rock. Both air-injection and liquid-release tests were performed in the same borehole intervals, located above the underground openings. For modeling, three-dimensional, heterogeneous permeability fields were generated, conditioned on the air-permeability data. The initial seepage data collected were used to calibrate the model and test the appropriateness of the modeling approach. A capillary-strength parameter and porosity were the model parameters selected for estimation by data inversion. However, due to the short-term nature of the initial data, the inversion process was unable to independently determine the capillary strength and porosity of the fractured rock. Subsequent seepage data collection focused on longer-term tests, a representative selection of which was used for data inversion. Field observations also played a key role by identifying factors such as evaporation and ceiling geometry that can enhance or reduce seepage. These observations help guide future test and model development by ensuring that relevant processes that influence seepage are identified, characterized, and incorporated into the model, thus increasing confidence in the parameter estimates. It is this iterative and collaborative approach to field testing and modeling, and the feedback mechanisms of field-test-methodology and model review and revision, that has been employed to continuously improve the scientific quality of the study

  19. Geochemical characterisation of seepage and drainage water quality from two sulphide mine tailings impoundments: Acid mine drainage versus neutral mine drainage

    Science.gov (United States)

    Heikkinen, P.M.; Raisanen, M.L.; Johnson, R.H.

    2009-01-01

    Seepage water and drainage water geochemistry (pH, EC, O2, redox, alkalinity, dissolved cations and trace metals, major anions, total element concentrations) were studied at two active sulphide mine tailings impoundments in Finland (the Hitura Ni mine and Luikonlahti Cu mine/talc processing plant). The data were used to assess the factors influencing tailings seepage quality and to identify constraints for water treatment. Changes in seepage water quality after equilibration with atmospheric conditions were evaluated based on geochemical modelling. At Luikonlahti, annual and seasonal changes were also studied. Seepage quality was largely influenced by the tailings mineralogy, and the serpentine-rich, low sulphide Hitura tailings produced neutral mine drainage with high Ni. In contrast, drainage from the high sulphide, multi-metal tailings of Luikonlahti represented typical acid mine drainage with elevated contents of Zn, Ni, Cu, and Co. Other factors affecting the seepage quality included weathering of the tailings along the seepage flow path, process water input, local hydrological settings, and structural changes in the tailings impoundment. Geochemical modelling showed that pH increased and some heavy metals were adsorbed to Fe precipitates after net alkaline waters equilibrated with the atmosphere. In the net acidic waters, pH decreased and no adsorption occurred. A combination of aerobic and anaerobic treatments is proposed for Hitura seepages to decrease the sulphate and metal loading. For Luikonlahti, prolonged monitoring of the seepage quality is suggested instead of treatment, since the water quality is still adjusting to recent modifications to the tailings impoundment.

  20. Superfund record of decision (EPA Region 4): Savannah River Site (USDOE) D-Area Oil Seepage Basin (631-G), Aiken, SC, August 14, 1998

    International Nuclear Information System (INIS)

    1999-03-01

    The D-Area Oil Seepage Basin (D-Area OSB) Operable Unit (OU) is listed as a Resource Conservation and Recovery Act (RCRA) 3004(u) Solid Waste Management Unit/Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) unit in Appendix C of the Federal Facility Agreement (FFA) for the Savannah River Site (SRS). No Action is the selected remedy for shallow soil, surface water and sediment, because no constituents of concern (COCs) were identified for them in the RCRA Facility Investigation/Remedial Investigation/Baseline Risk Assessment (RFI/RI/BRA). The selected remedy for D-Area OSB groundwater is Alternative GW-2: Natural Attenuation/Groundwater Mixing Zone (GWMZ) with Institutional Controls

  1. Evidence for natural molecular hydrogen seepage associated with Carolina bays (surficial, ovoid depressions on the Atlantic Coastal Plain, Province of the USA)

    Science.gov (United States)

    Zgonnik, Viacheslav; Beaumont, Valérie; Deville, Eric; Larin, Nikolay; Pillot, Daniel; Farrell, Kathleen M.

    2015-12-01

    A study of soil gases was made in North Carolina (USA) in and around morphological depressions called "Carolina bays." This type of depression is observed over the Atlantic coastal plains of the USA, but their origin remains debated. Significant concentrations of molecular hydrogen (H2) were detected, notably around the bays. These measurements suggest that Carolina bays are the surficial expression of fluid flow pathways for hydrogen gas moving from depth to the surface. The potential mechanisms of H2 production and transport and the geological controls on the fluid migration pathways are discussed, with reference to the hypothesis that Carolina bays are the result of local collapses caused by the alteration of rock along the deep pathways of H2 migrating towards the surface. The present H2 seepages are comparable to those in similar structures previously observed in the East European craton.

  2. Combined use of thermal methods and seepage meters to efficiently locate, quantify, and monitor focused groundwater discharge to a sand-bed stream

    Science.gov (United States)

    Rosenberry, Donald O.; Briggs, Martin A.; Delin, Geoffrey N.; Hare, Danielle K.

    2016-01-01

    Quantifying flow of groundwater through streambeds often is difficult due to the complexity of aquifer-scale heterogeneity combined with local-scale hyporheic exchange. We used fiber-optic distributed temperature sensing (FO-DTS), seepage meters, and vertical temperature profiling to locate, quantify, and monitor areas of focused groundwater discharge in a geomorphically simple sand-bed stream. This combined approach allowed us to rapidly focus efforts at locations where prodigious amounts of groundwater discharged to the Quashnet River on Cape Cod, Massachusetts, northeastern USA. FO-DTS detected numerous anomalously cold reaches one to several m long that persisted over two summers. Seepage meters positioned upstream, within, and downstream of 7 anomalously cold reaches indicated that rapid groundwater discharge occurred precisely where the bed was cold; median upward seepage was nearly 5 times faster than seepage measured in streambed areas not identified as cold. Vertical temperature profilers deployed next to 8 seepage meters provided diurnal-signal-based seepage estimates that compared remarkably well with seepage-meter values. Regression slope and R2 values both were near 1 for seepage ranging from 0.05 to 3.0 m d−1. Temperature-based seepage model accuracy was improved with thermal diffusivity determined locally from diurnal signals. Similar calculations provided values for streambed sediment scour and deposition at subdaily resolution. Seepage was strongly heterogeneous even along a sand-bed river that flows over a relatively uniform sand and fine-gravel aquifer. FO-DTS was an efficient method for detecting areas of rapid groundwater discharge, even in a strongly gaining river, that can then be quantified over time with inexpensive streambed thermal methods.

  3. Temporal variability of exchange between groundwater and surface water based on high-frequency direct measurements of seepage at the sediment-water interface

    Science.gov (United States)

    Rosenberry, Donald O.; Sheibley, Rich W.; Cox, Stephen E.; Simonds, Frederic W.; Naftz, David L.

    2013-01-01

    Seepage at the sediment-water interface in several lakes, a large river, and an estuary exhibits substantial temporal variability when measured with temporal resolution of 1 min or less. Already substantial seepage rates changed by 7% and 16% in response to relatively small rain events at two lakes in the northeastern USA, but did not change in response to two larger rain events at a lake in Minnesota. However, seepage at that same Minnesota lake changed by 10% each day in response to withdrawals from evapotranspiration. Seepage increased by more than an order of magnitude when a seiche occurred in the Great Salt Lake, Utah. Near the head of a fjord in Puget Sound, Washington, seepage in the intertidal zone varied greatly from −115 to +217 cm d−1 in response to advancing and retreating tides when the time-averaged seepage was upward at +43 cm d−1. At all locations, seepage variability increased by one to several orders of magnitude in response to wind and associated waves. Net seepage remained unchanged by wind unless wind also induced a lake seiche. These examples from sites distributed across a broad geographic region indicate that temporal variability in seepage in response to common hydrological events is much larger than previously realized. At most locations, seepage responded within minutes to changes in surface-water stage and within minutes to hours to groundwater recharge associated with rainfall. Likely implications of this dynamism include effects on water residence time, geochemical transformations, and ecological conditions at and near the sediment-water interface.

  4. Levee Seepage Detection in the Sacramento-San Joaquin Delta Using Polarimetric SAR

    Science.gov (United States)

    An, K.; Jones, C. E.; Bekaert, D. P.

    2017-12-01

    The Sacramento-San Joaquin Delta's extensive levee system protects over 2,800 km2 of reclaimed lands and serves as the main irrigation and domestic water supply for the state of California. However, ongoing subsidence and disaster threats from floods and earthquakes make the Delta levee system highly vulnerable, endangering water supplies for 23 million California residents and 2.5 million acres of agricultural land. Levee failure in the Delta can cause saltwater intrusion from San Francisco Bay, reducing water quality and curtailing water exports to residents, commercial users, and farmers. To protect the Delta levee system, it is essential to search for signs of seepage in which water is piping through or beneath levees, which can be associated with deformation of the levees themselves. Until now, in-situ monitoring has largely been applied, however, this is a time-consuming and expensive approach. We use data acquired with NASA's UAVSAR (Uninhabited Aerial Vehicle Synthetic Aperture Radar) airborne radar instrument to identify and characterize levee seepages and associated land subsidence through advanced remote sensing technologies. The high spatial resolution of UAVSAR can help to direct surveys to areas that are likely to be experiencing damage. UAVSAR is an L-band airborne sensor with high signal-to-noise ratio, repeat flight track accuracy, and spatial resolution of 7x7 m2 (for multi-looked products) that is necessary for detailed levee monitoring. The adaptability of radar instruments in their ability to see through smoke, haze, and clouds during the day or night, is especially relevant during disaster events, when cloud cover or lack of solar illumination inhibits traditional visual surveys of damage. We demonstrate the advantages of combining polarimetric radar imagery with geographic information systems (GIS) datasets in locating seepage features along critical levee infrastructure in the Delta for 2009-2016. The ability to efficiently locate potential

  5. A coupling model for gas diffusion and seepage in SRV section of shale gas reservoirs

    Directory of Open Access Journals (Sweden)

    Shusheng Gao

    2017-03-01

    Full Text Available A prerequisite to effective shale gas development is a complicated fracture network generated by extensive and massive fracturing, which is called SRV (stimulated reservoir volume section. Accurate description of gas flow behaviors in such section is fundamental for productivity evaluation and production performance prediction of shale gas wells. The SRV section is composed of bedrocks with varying sizes and fracture networks, which exhibit different flow behaviors – gas diffusion in bedrocks and gas seepage in fractures. According to the porosity and permeability and the adsorption, diffusion and seepage features of bedrocks and fractures in a shale gas reservoir, the material balance equations were built for bedrocks and fractures respectively and the continuity equations of gas diffusion and seepage in the SRV section were derived. For easy calculation, the post-frac bedrock cube was simplified to be a sphere in line with the principle of volume consistency. Under the assumption of quasi-steady flow behavior at the cross section of the sphere, the gas channeling equation was derived based on the Fick's laws of diffusion and the density function of gas in bedrocks and fractures. The continuity equation was coupled with the channeling equation to effectively characterize the complicated gas flow behavior in the SRV section. The study results show that the gas diffusivity in bedrocks and the volume of bedrocks formed by volume fracturing (or the scale of fracturing jointly determines the productivity and stable production period of a shale gas well. As per the actual calculation for the well field A in the Changning–Weiyuan Block in the Sichuan Basin, the matrix has low gas diffusivity – about 10−5 cm2/s and a large volume with an equivalent sphere radius of 6.2 m, hindering the gas channeling from bedrocks to fractures and thereby reducing the productivity of the shale gas well. It is concluded that larger scale of volume fracturing

  6. Tracing the source of emerging seepage water at failure slope downstream, Kampung Bharu Bukit Tinggi, Bentong, Pahang

    International Nuclear Information System (INIS)

    Lakam Mejus; Wan Zakaria Wan Mohd Tahir; Md Shahid Ayub; Jeremy Andy; Johari Latif

    2006-01-01

    This paper discusses method and monitoring result of the source of seepage water emerging (mud flow) at downstream toe of the failure slope at Kampung Bharu Bukit Tinggi, Bentong Pahang. In this investigation, a saline-tracer experiment was conducted by injecting its solution into a drain at an upstream section (old road to Janda Baik town) where a pipeline was found leaking in the vicinity of the roadside and flowing towards hill slopes. Some parts of flowing water was left undetected and seeped through the soil on its way to downstream area. Seepage water downstream was monitored by using a conductivity sensor hooked up to a CR10X data logger and optical back scattering conductivity probes. From the result, it is believed that the source of seepage water is related to the water from the leaking pipeline upstream. The travelling time for the leaking water to reach downstream slope failure was within 16-17 hours. Based on this preliminary investigation, one can conclude that seepage water is one of the main contributing factors that cause slope failure in the vicinity of the investigated hill slopes. Further investigation to understand the failure mechanism at this place by conducting multi-experimental approaches in different seasons, particularly during continuous rain storms. (Author)

  7. Toxicity of Water Samples Collected in the Vicinity of F and H Seepage Basin 1990-1995

    Energy Technology Data Exchange (ETDEWEB)

    Specht, W.L. [Westinghouse Savannah River Company, AIKEN, SC (United States); Bowers, B.

    1996-09-01

    Water and contaminants from the F- and H-Area Seepage Basins outcrop as shallow groundwater seeps down gradient from the basins. In 1990, 1991, 1993, 1994, and 1995, toxicity tests were performed on water collected from a number of these seeps, as well as from several locations in Fourmile Branch and several uncontaminated reference locations.

  8. Environmental hazards from natural hydrocarbons seepage: Integrated classification of risk from sediment chemistry, bioavailability and biomarkers responses in sentinel species

    International Nuclear Information System (INIS)

    Benedetti, Maura; Gorbi, Stefania; Fattorini, Daniele; D'Errico, Giuseppe; Piva, Francesco; Pacitti, Davide; Regoli, Francesco

    2014-01-01

    Potential effects of natural emissions of hydrocarbons in the marine environment have been poorly investigated. In this study, a multidisciplinary weight of evidence (WOE) study was carried out on a shallow seepage, integrating sediment chemistry with bioavailability and onset of subcellular responses (biomarkers) in caged eels and mussels. Results from different lines of evidence (LOEs) were elaborated within a quantitative WOE model which, based on logical flowcharts, provide synthetic indices of hazard for each LOE, before their integration in a quantitative risk assessment. Evaluations of different LOEs were not always in accordance and their overall elaboration summarized as Moderate the risk in the seepage area. This study provided first evidence of biological effects in organisms exposed to natural hydrocarbon emissions, confirming the limit of chemical characterization as stand-alone criteria for environmental quality assessment and the utility of multidisciplinary investigations to determine the good environmental status as required by Environmental Directives. -- Highlights: • Hazards from natural seepage were evaluated through a multidisciplinary WOE study. • Caged eels and mussels were chosen as bioindicator organisms. • Evaluations obtained from various LOEs were not always in accordance. • Biological effects of natural hydrocarbons release were demonstrated. • WOE approach could discriminate different levels of hazard in low impacted conditions. -- A multidisciplinary WOE study in a shallow coastal seepage summarized a Moderate level of risk based on integration of sediment chemistry with biological effects in caged organisms

  9. Albedo and land surface temperature shift in hydrocarbon seepage potential area, case study in Miri Sarawak Malaysia

    Science.gov (United States)

    Suherman, A.; Rahman, M. Z. A.; Busu, I.

    2014-02-01

    The presence of hydrocarbon seepage is generally associated with rock or mineral alteration product exposures, and changes of soil properties which manifest with bare development and stress vegetation. This alters the surface thermodynamic properties, changes the energy balance related to the surface reflection, absorption and emission, and leads to shift in albedo and LST. Those phenomena may provide a guide for seepage detection which can be recognized inexpensively by remote sensing method. District of Miri is used for study area. Available topographic maps of Miri and LANDSAT ETM+ were used for boundary construction and determination albedo and LST. Three land use classification methods, namely fixed, supervised and NDVI base classifications were employed for this study. By the intensive land use classification and corresponding statistical comparison was found a clearly shift on albedo and land surface temperature between internal and external seepage potential area. The shift shows a regular pattern related to vegetation density or NDVI value. In the low vegetation density or low NDVI value, albedo of internal area turned to lower value than external area. Conversely in the high vegetation density or high NDVI value, albedo of internal area turned to higher value than external area. Land surface temperature of internal seepage potential was generally shifted to higher value than external area in all of land use classes. In dense vegetation area tend to shift the temperature more than poor vegetation area.

  10. Effect of Seepage on Change in Stress Distribution Scenario in Static and Seismic Behaviour of Earthen Dams

    Directory of Open Access Journals (Sweden)

    Nandi N.

    2018-02-01

    Full Text Available The present study makes an effort to understand the damage of earthen dams under static and seismic loading condition. To make the investigation more realistic, behaviour of earthen dams considering the occurrence of a phreatic line indicating the submerged zone due to seepage within the dam body is considered. In case of earthen dams, homogeneous or nonhomogeneous, the consideration of the occurrence of a phreatic line or seepage line through the dam body is an important part of the earthen dam design methodology. The impervious material properties in the submerged zone below the phreatic line due to seepage may differ a lot in magnitudes as compared to the value of the same materials lying above this line. Hence, to have the exact stress distribution scenarios within the earthen dam, the different material properties above and below the phreatic line are considered in this present study. The study is first carried out by two-dimensional as well as three-dimensional finite element analysis under static loading condition. The work is further extended to observe the effect of seepage due to the consideration of the phreatic line on dynamic characteristics of earthen dams. Free vibration analysis and seismic analysis based on the Complete Quadratic Combination (CQC method by considering twodimensional and three-dimensional modeling are carried out to present the frequencies, mode shapes and the stress distribution pattern of the earthen dam.

  11. Albedo and land surface temperature shift in hydrocarbon seepage potential area, case study in Miri Sarawak Malaysia

    International Nuclear Information System (INIS)

    Suherman, A; Rahman, M Z A; Busu, I

    2014-01-01

    The presence of hydrocarbon seepage is generally associated with rock or mineral alteration product exposures, and changes of soil properties which manifest with bare development and stress vegetation. This alters the surface thermodynamic properties, changes the energy balance related to the surface reflection, absorption and emission, and leads to shift in albedo and LST. Those phenomena may provide a guide for seepage detection which can be recognized inexpensively by remote sensing method. District of Miri is used for study area. Available topographic maps of Miri and LANDSAT ETM+ were used for boundary construction and determination albedo and LST. Three land use classification methods, namely fixed, supervised and NDVI base classifications were employed for this study. By the intensive land use classification and corresponding statistical comparison was found a clearly shift on albedo and land surface temperature between internal and external seepage potential area. The shift shows a regular pattern related to vegetation density or NDVI value. In the low vegetation density or low NDVI value, albedo of internal area turned to lower value than external area. Conversely in the high vegetation density or high NDVI value, albedo of internal area turned to higher value than external area. Land surface temperature of internal seepage potential was generally shifted to higher value than external area in all of land use classes. In dense vegetation area tend to shift the temperature more than poor vegetation area

  12. Measuring and modelling salt and heat transport in low-land drainage canals : Flow and stratification effects of saline seepage

    NARCIS (Netherlands)

    Hilgersom, K.P.

    2017-01-01

    This thesis explores a new measuring approach to quantify the seepage flux from boils. Boils are preferential groundwater seeps and are a consequence of the groundwater flow that works its way through the soil matrix by creating vents of higher conductive material. In the Netherlands, boils often

  13. Geochemistry of Natural Gas Seepages in Boto Area, Bancak, Semarang, Central Java

    Directory of Open Access Journals (Sweden)

    Hendra Amijaya

    2017-03-01

    Full Text Available DOI: 10.17014/ijog.4.2.61-70Three seepage gas samples collected from Boto Area, Bancak, Semarang, Central Java, were studied to determine their chemical characteristics using GC and GC-IRMS methods. They are composed 53 - 85% of methane predominantly. However, gas seep Site 3 sample has the highest N2 compound and the lesser extent to the samples Site 2 and Site 1 respectively. The two hydrocarbon gas seeps (Site 1, 2, and Site 3 samples that are characterized by δ13C methane of -35.61‰ and -27.97‰, and values of δD methane of -112‰ and -109‰ respectively, are each isotopically distinct from all others suggesting, at least, they are derived from different maturity level. The Site 3 gas sample is suggested to be more mature than the others.

  14. Surface Water Transport for the F/H Area Seepage Basins Groundwater Program

    International Nuclear Information System (INIS)

    Chen, Kuo-Fu.

    1995-01-01

    The contribution of the F- and H-Area Seepage Basins (FHSBs) tritium releases to the tritium concentration in the Savannah River are presented in this report. WASP5 was used to simulate surface water transport for tritium releases from the FHSBs. The WASP5 model was qualified with the 1993 tritium measurements at US Highway 301. The tritium concentrations in Fourmile Branch and the Savannah River were calculated for tritium releases from FHSBs. The calculated tritium concentrations above normal environmental background in the Savannah River, resulting from FHSBs releases, drop from 1.25 pCi/ml (<10% of EPA Drinking Water Guide) in 1995 to 0.0056 pCi/ml in 2045

  15. Organic geochemistry of petroleum seepages within the Jurassic Bencliff Grit, Osmington Mills, Dorset, UK

    Energy Technology Data Exchange (ETDEWEB)

    Watson, D.F.; Farrimond, P. [University of Newcastle upon Tyne (United Kingdom). Fossil Fuels and Environmental Geochemistry; Hindle, A.D. [Egdon Resources (UK) Ltd., Odiham (United Kingdom)

    2000-11-01

    Occurrences of oil within the Bencliff Grit at Osmington Mills were studied through an integration of organic geochemistry and a consideration of the geological setting. Oil-stained sandstones dominate the cliff outcrop with localized regions of particularly concentrated oil impregnation. A second 'live' seep of oil occurs where the Bencliff Grit beds pass below high tide level at Bran Point. Organic geochemical analyses showed both oils to be at least moderately biodegraded, with the oils in the cliff outcrop showing enrichment in polar constituents compared with the active seep. Multivariate statistical analysis of the molecular composition identified an enrichment in diasterane biomarkers in the oils of the live seep; this difference is ascribed to source and/or maturity differences. The oil within the outcrop is considered to represent the residual staining of an unroofed oil field, whilst the live seepage at Bran Point represents a migration pathway towards the eroded anticline. (Author)

  16. Percolation testing at the F- and H-Area Seepage Basins

    International Nuclear Information System (INIS)

    McHood, M.D.

    1993-01-01

    The design of the F- and H-Area Seepage Basin contaminated groundwater remediation system requires information from multiple well pump tests (Reference 1). Soil percolation rates are needed in order to support the multiple well pump test planning. The objective of this task was to determine characteristic percolation rates for soils in four select areas where infiltration galleries are proposed. These infiltration galleries will be temporary installations built on the ground surface and used to disposes of water from the multiple well pump tests. A procedure defining the specific work process for collecting percolation rate data is contained in Appendix 3. Results from these percolation tests will be used in the design of infiltration galleries for the disposal of well water extracted during the multiple well pump tests

  17. F/H seepage basin groundwater influent, effluent, precipitated sludge characterization task technical plan

    International Nuclear Information System (INIS)

    Siler, J.L.

    1993-01-01

    A treatability study to support the development of a remediation system which would reduce the contaminant levels in groundwater removed from the aquifers in the vicinity of the F/H seepage basins and southwest of the Mixed Waste Management Facility (MWMF) at the Savannah River facility was conducted. Proposed changes in the remediation system require an additional study to determine whether precipitated sludge generated from the proposed remediation system will be hazardous as defined by RCRA. Several contaminants, such as lead and mercury, are above the groundwater protection standards. The presence of radionuclides and other contaminants in the sludge does not present a problem provided that the sludge can pass the Toxicity Characteristic Leaching Procedure (TCLP) test. The study has been developed in such a manner as to cover the possible range of treatment options that may be used

  18. Microbial Community Response to Simulated Petroleum Seepage in Caspian Sea Sediments

    Directory of Open Access Journals (Sweden)

    Katrin Knittel

    2017-04-01

    Full Text Available Anaerobic microbial hydrocarbon degradation is a major biogeochemical process at marine seeps. Here we studied the response of the microbial community to petroleum seepage simulated for 190 days in a sediment core from the Caspian Sea using a sediment-oil-flow-through (SOFT system. Untreated (without simulated petroleum seepage and SOFT sediment microbial communities shared 43% bacterial genus-level 16S rRNA-based operational taxonomic units (OTU0.945 but shared only 23% archaeal OTU0.945. The community differed significantly between sediment layers. The detection of fourfold higher deltaproteobacterial cell numbers in SOFT than in untreated sediment at depths characterized by highest sulfate reduction rates and strongest decrease of gaseous and mid-chain alkane concentrations indicated a specific response of hydrocarbon-degrading Deltaproteobacteria. Based on an increase in specific CARD-FISH cell numbers, we suggest the following groups of sulfate-reducing bacteria to be likely responsible for the observed decrease in aliphatic and aromatic hydrocarbon concentration in SOFT sediments: clade SCA1 for propane and butane degradation, clade LCA2 for mid- to long-chain alkane degradation, clade Cyhx for cycloalkanes, pentane and hexane degradation, and relatives of Desulfobacula for toluene degradation. Highest numbers of archaea of the genus Methanosarcina were found in the methanogenic zone of the SOFT core where we detected preferential degradation of long-chain hydrocarbons. Sequencing of masD, a marker gene for alkane degradation encoding (1-methylalkylsuccinate synthase, revealed a low diversity in SOFT sediment with two abundant species-level MasD OTU0.96.

  19. Succession of Hydrocarbon Degradation and Microbial Diversity during a Simulated Petroleum Seepage in Caspian Sea Sediments

    Science.gov (United States)

    Mishra, S.; Stagars, M.; Wefers, P.; Schmidt, M.; Knittel, K.; Krueger, M.; Leifer, I.; Treude, T.

    2016-02-01

    Microbial degradation of petroleum was investigated in intact sediment cores of Caspian Sea during a simulated petroleum seepage using a sediment-oil-flow-through (SOFT) system. Over the course of the SOFT experiment (190 days), distinct redox zones established and evolved in the sediment core. Methanogenesis and sulfate reduction were identified to be important processes in the anaerobic degradation of hydrocarbons. C1 to C6 n-alkanes were completely exhausted in the sulfate-reducing zone and some higher alkanes decreased during the upward migration of petroleum. A diversity of sulfate-reducing bacteria was identified by 16s rRNA phylogenetic studies, some of which are associated with marine seeps and petroleum degradation. The δ13C signal of produced methane decreased from -33.7‰ to -49.5‰ indicating crude oil degradation by methanogenesis, which was supported by enrichment culturing of methanogens with petroleum hydrocarbons and presence of methanogenic archaea. The SOFT system is, to the best of our knowledge, the first system that simulates an oil-seep like condition and enables live monitoring of biogeochemical changes within a sediment core during petroleum seepage. During our presentation we will compare the Caspian Sea data with other sediments we studied using the SOFT system from sites such as Santa Barbara (Pacific Ocean), the North Alex Mud Volcano (Mediterranean Sea) and the Eckernfoerde Bay (Baltic Sea). This research was funded by the Deutsche Forschungsgemeinschaft (SPP 1319) and DEA Deutsche Erdoel AG. Further support came from the Helmholtz and Max Planck Gesellschaft.

  20. Cadmium geochemistry in soil and groundwater at the F and H Seepage Basins

    International Nuclear Information System (INIS)

    Serkiz, S.M.; Johnson, W.H.

    1994-10-01

    For 33 years, low activity liquid wastes from the chemical separation areas at the US Department of Energy's Savannah River Site were disposed of in unlined seepage basins. This disposal practice was discontinued in 1988. At that time, the basins were drained and a low permeability cover system was placed over the basins. In the summer of 1993, soil and associated pore water samples of widely varying groundwater chemistries and contaminant concentrations were collected from the region downgradient of these basins using cone penetrometer technology. Analysis of these samples using inductively coupled plasma - mass spectrometry has allowed the investigation of cadmium partitioning between the aqueous phase and soil surfaces at this site. The distribution of cadmium was examined with respect to the solution and soil chemistry and aqueous-phase chemical speciation modeling. Cadmium was detected in 35 of 53 aqueous samples from the F- and H-Area Seepage Basins (FHSB). Porewater concentration were found to vary from 0.48 to 23.5 μg 1 -1 , with a mean concentration of 3.1 ± 4.3 μg 1 -1 . Based on the 43 of 86 soil samples for which cadmium was detected, the concentration in the soil ranged 88.5 to 1090 μg kg -1 . The mean soil concentration was 214 ± 168 μg kg -1 . This concentration is not significantly different from the concentrations observed in two upgradient soil samples collected from the same lithologic unit. The concentrations from these samples were 293 ± 214 and 431 ± 293 μg kg -1

  1. Uranium geochemistry in soil and groundwater at the F and H seepage basins

    International Nuclear Information System (INIS)

    Serkiz, S.M.; Johnson, W.H.

    1994-09-01

    For 33 years, low activity liquid wastes from the chemical separation areas at the U.S. Department of Energy's Savannah River Site were disposed of in unlined seepage basins. Soil and associated pore water samples of widely varying groundwater chemistries and contaminant concentrations were collected from the region downgradient of these basins using cone penetrometer technology. Analysis of samples using inductively coupled plasma - mass spectrometry has allowed the investigation of uranium partitioning between the aqueous phase and soil surfaces at this site. The distribution of uranium was examined with respect to the solution and soil chemistry (e.g., pH, redox potential, cation and contaminant concentration) and aqueous-phase chemical speciation modeling. The uranium soil source term at the F- and H-Area Seepage Basins (FHSB) is much smaller than has been used in previous modeling efforts. This should result in a much shorter remediation time and a greater effectiveness of a pump-and-treat design than previously predicted. Distribution coefficients at the (FHSB) were found to vary between 1.2 to 34,000 1 kg -1 for uranium. Differences in sorption of these elements can be explained primarily by changes in aqueous pH and the associated change in soil surface charge. Sorption models were fit directly to sorption isotherms from field samples. All models underestimated the fraction of uranium bound at low aqueous uranium concentrations. Linear models overestimated bound uranium at locations where the aqueous concentration was greater than 500 ppb. Mechanistic models provided a much better estimate of the bound uranium concentrations, especially at high aqueous concentrations. Since a large fraction of the uranium at the site is associated with the low-pH portion of the plume, consideration should be given to pumping water from the lowest pH portions of the plume in the F-Area

  2. Interpretation of Oil Seepage of Source Rock Based Magnetic Survey in Cipari Cilacap District

    Directory of Open Access Journals (Sweden)

    Sukmaji Anom Raharjo

    2015-12-01

    Full Text Available The magnetic survey had been conducted in Village of Cipari, District of Cipari, Region of  Cilacap to interpret to the location of the oil seepage source rock. Boundary of the research area is 108.75675°E – 108.77611°E and 7.42319°S – 7.43761°S. The observed total magnetic data is corrected and reducted to obtain the local magnetic anomaly data. The local magnetic anomaly data is applied to model the subsurface bodies anomalies based on the Mag2DC for Windows software. With be supported the geological information, the some bodies anomalies are interpreted as the basaltic igneous rock (c = 0.0051, the alternately of sandstone and claystone and insert of marl from Halang Formation (c = 0.0014, the breccia from Kumbang Formation (c = 0.0035, the alternately of sandstones and claystone with insert of marl and breccia from Halang Formation (c = 0.0036, the claystone from Tapak Formation (c = 0.0015, the alternately of sandstones and claystone with insert of marl and compacted breccia from Halang Formation (c = 0.0030, and the alternately of sandstone and claystone from   Halang Formation (c = 0.0020. The plantonic foraminifer fossils as resources of oil seepage are estimated in the sedimentaries rocks, where the oil flows from those rocks into the         reservoir (source rock. Based on the interpretation results, the source rock is above basaltic igneous rock with the approximate position is 108.76164°W and 7.43089°S; and the depth is 132.09 meters below the average topographic.

  3. Construction Foundation Report. Mud Mountain Dam Seepage Control Cutoff Wall, White River, Washington

    Science.gov (United States)

    1991-08-01

    a suspended man basket. All work, including Government investigations, was done from the man basket and in some instances from a boatswain’s chair...Teale, Somerton , etc.. The Enpasol recordings rely on the same basic principle. The Enpasol is a "black box" monitoring up to 8 drilling parameters...below, Kelly bar is center. Inspector being lowered into access shaft with a man basket. Note liner plates, left. Density test being taken in core

  4. Repair Works for Uplift and Seepage Control in Existing Concrete Dams

    Science.gov (United States)

    1989-08-01

    weathered and therefore where the presence of soil mterials is likely to occur in joints and fractures. Fig.5 - Varosa dam. Main results of mechanical...situations are associated with: emptying of reservoir by hot summer; water effects due to hydrostatic pressure and uplift; winter, spring and autumn...design stage were supported by tests of three-dimensional plaster- diatomite models, carried out at LNEC (1971c). The models were built in a scale of 1

  5. Application of carbon isotopes to detect seepage out of coalbed natural gas produced water impoundments

    International Nuclear Information System (INIS)

    Sharma, Shikha; Baggett, Joshua K.

    2011-01-01

    Highlights: → Coalbed natural gas extraction results in large amount of produced water. → Risk of deterioration of ambient water quality. → Carbon isotope natural tracer for detecting seepage from produced water impoundments. - Abstract: Coalbed natural gas (CBNG) production from coal bed aquifers requires large volumes of produced water to be pumped from the subsurface. The produced water ranges from high quality that meets state and federal drinking water standards to low quality due to increased salinity and/or sodicity. The Powder River Basin of northeastern Wyoming is a major coalbed natural gas producing region, where water quality generally decreases moving from the southeastern portion of the basin towards the center. Most produced water in Wyoming is disposed into impoundments and other surface drainages, where it may infiltrate into shallow groundwater. Groundwater degradation caused by infiltration of CBNG produced water holding impoundments into arid, soluble salt-rich soils is an issue of immense importance because groundwater is a major source for stock water, irrigation, and drinking water for many small communities in these areas. This study examines the potential of using stable C isotope signatures of dissolved inorganic C (δ 13 C DIC ) to track the fate of CBNG produced water after it is discharged into the impoundments. Other geochemical proxies like the major cations and major anions were used in conjunction with field water quality measurements to understand the geochemical differences between CBNG produced waters and ambient waters in the study area. Samples were collected from the CBNG discharge outfalls, produced water holding impoundments, and monitoring wells from different parts of the Powder River Basin and analyzed for δ 13 C DIC . The CBNG produced waters from outfalls and impoundments have positive δ 13 C DIC values that fall within the range of +12 per mille to +22 per mille, distinct from the ambient regional surface and

  6. Unsteady free surface flow in porous media: One-dimensional model equations including vertical effects and seepage face

    Science.gov (United States)

    Di Nucci, Carmine

    2018-05-01

    This note examines the two-dimensional unsteady isothermal free surface flow of an incompressible fluid in a non-deformable, homogeneous, isotropic, and saturated porous medium (with zero recharge and neglecting capillary effects). Coupling a Boussinesq-type model for nonlinear water waves with Darcy's law, the two-dimensional flow problem is solved using one-dimensional model equations including vertical effects and seepage face. In order to take into account the seepage face development, the system equations (given by the continuity and momentum equations) are completed by an integral relation (deduced from the Cauchy theorem). After testing the model against data sets available in the literature, some numerical simulations, concerning the unsteady flow through a rectangular dam (with an impermeable horizontal bottom), are presented and discussed.

  7. RATE-DEPENDENT PULL-OUT BEARING CAPACITY OF PILES BY SIMILITUDE MODEL TESTS USING SEEPAGE FORCE

    Science.gov (United States)

    Kato, Tatsuya; Kokusho, Takaji

    Pull-out test of model piles was conducted by varying the pull-out velocity and skin friction of piles using a seepage force similitude model test apparatus. Due to the seepage consolidation under the pressure of 150kPa, the effective stress distribution in a prototype saturated soil of 17m could be successfully reproduced in the model ground of 28cm thick, in which the pull-out tests were carried out. The pull-out load rose to a peak value at small displacement, and then decreased to a residual value. At the same time, pore pressure in the vicinity of the pile decreased due to suction near the tip and the positive dilatancy near the pile skin. The maximum pull-out load, pile axial load, side friction and the corresponding displacement increased dramatically with increasing pull-out velocity. It was found that these rate-dependent trends become more prominent with increasing skin friction.

  8. Phase II Interim Report - Assessment of Hydrocarbon Seepage Detection Methods on the Fort Peck Reservation, Northeast Montana; SEMIANNUAL

    International Nuclear Information System (INIS)

    Monson, Lawrence M.

    2002-01-01

    The following work was performed: (1) collected reconnaissance micro-magnetic data and background field data for Area 1, (2) identified and collected soil sample data in three anomalous regions of Area 1, (3) sampled soils in Northwest Poplar Oil Field, (4) graphed, mapped, and interpreted all data areas listed above, (5) registered for the AAPG Penrose Conference on Hydrocarbon Seepage Mechanisms and Migration (postponed from 9/16/01 until 4/7/02 in Vancouver, B.C.). Results include the identification and confirmation of an oil and gas prospect in the northwest part of Area 1 and the verification of a potential shallow gas prospect in the West Poplar Area. Correlation of hydrocarbon micro-seepage to TM tonal anomalies needs further data analysis

  9. Phase II Interim Report -- Assessment of Hydrocarbon Seepage Detection Methods on the Fort Peck Reservation, Northeast Montana

    Energy Technology Data Exchange (ETDEWEB)

    Monson, Lawrence M.

    2002-04-24

    The following work was performed: (1) collected reconnaissance micro-magnetic data and background field data for Area 1, (2) identified and collected soil sample data in three anomalous regions of Area 1, (3) sampled soils in Northwest Poplar Oil Field, (4) graphed, mapped, and interpreted all data areas listed above, (5) registered for the AAPG Penrose Conference on Hydrocarbon Seepage Mechanisms and Migration (postponed from 9/16/01 until 4/7/02 in Vancouver, B.C.). Results include the identification and confirmation of an oil and gas prospect in the northwest part of Area 1 and the verification of a potential shallow gas prospect in the West Poplar Area. Correlation of hydrocarbon micro-seepage to TM tonal anomalies needs further data analysis.

  10. Levels of radioactivity in fish from streams near F-Area and H-Area seepage basins

    International Nuclear Information System (INIS)

    Murphy, C.E. Jr.; Loehle, C.

    1991-05-01

    This report summarizes results of recent analyses of radioactivity in fish from SRS streams near the F-Area and H-Area seepage basins. Fish were collected from headwater areas of Four Mile Creek and Pen Branch, from just below the H-Area seepage basin, and from three sites downstream in Four Mile Creek. These fish were analyzed for gross alpha and gross beta radioactivity using standard EPA methods. Levels of gross alpha and nonvolatile beta radioactivity in fish were found to be comparable to levels previously reported for these sites. Gross alpha activity was not found to be influenced by Separations Area discharges. Nonvolatile beta activity was higher in the nonvolatile beta activity was attributable to Cs-137 and K-40. The dosimetric consequences of consuming fish from this area were found to be well below DOE guidelines

  11. Vegetation concentration and inventory of metals and radionuclides in the old F-area seepage basin, 904-49G

    International Nuclear Information System (INIS)

    Murphy, C.E. Jr.

    1994-01-01

    Measured concentrations of radionuclides and toxic metals are used to calculate the total inventory of in the vegetation growing on the Old F-Area Seepage Basin. Air concentrations and inhalation doses from exposure to smoke from burning the vegetation are calculated to evaluate the effect of open air burning. Radionuclide inventory is one order of magnitude (10 x) less than those necessary to produce a 1 mrem dose. Air concentrations of toxic metals are less than one third the permissible occupational dose

  12. Mud extrusion and ring-fault gas seepage - upward branching fluid discharge at a deep-sea mud volcano.

    Science.gov (United States)

    Loher, M; Pape, T; Marcon, Y; Römer, M; Wintersteller, P; Praeg, D; Torres, M; Sahling, H; Bohrmann, G

    2018-04-19

    Submarine mud volcanoes release sediments and gas-rich fluids at the seafloor via deeply-rooted plumbing systems that remain poorly understood. Here the functioning of Venere mud volcano, on the Calabrian accretionary prism in ~1,600 m water depth is investigated, based on multi-parameter hydroacoustic and visual seafloor data obtained using ship-borne methods, ROVs, and AUVs. Two seepage domains are recognized: mud breccia extrusion from a summit, and hydrocarbon venting from peripheral sites, hosting chemosynthetic ecosystems and authigenic carbonates indicative of long-term seepage. Pore fluids in freshly extruded mud breccia (up to 13 °C warmer than background sediments) contained methane concentrations exceeding saturation by 2.7 times and chloride concentrations up to five times lower than ambient seawater. Gas analyses indicate an underlying thermogenic hydrocarbon source with potential admixture of microbial methane during migration along ring faults to the peripheral sites. The gas and pore water analyses point to fluids sourced deep (>3 km) below Venere mud volcano. An upward-branching plumbing system is proposed to account for co-existing mud breccia extrusion and gas seepage via multiple surface vents that influence the distribution of seafloor ecosystems. This model of mud volcanism implies that methane-rich fluids may be released during prolonged phases of moderate activity.

  13. Non-Darcy Flow Experiments of Water Seepage through Rough-Walled Rock Fractures

    Directory of Open Access Journals (Sweden)

    Xiao-dong Ni

    2018-01-01

    Full Text Available The knowledge of flow phenomena in fractured rocks is very important for groundwater-resources management in hydrogeological engineering. The most commonly used tool to approximate the non-Darcy behavior of the flow velocity is the well-known Forchheimer equation, deploying the “inertial” coefficient β that can be estimated experimentally. Unfortunately, the factor of roughness is imperfectly considered in the literature. In order to do this, we designed and manufactured a seepage apparatus that can provide different roughness and aperture in the test; the rough fracture surface is established combining JRC and 3D printing technology. A series of hydraulic tests covering various flows were performed. Experimental data suggest that Forchheimer coefficients are to some extent affected by roughness and aperture. At last, favorable semiempirical Forchheimer equation which can consider fracture aperture and roughness was firstly derived. It is believed that such studies will be quite useful in identifying the limits of applicability of the well-known “cubic law,” in further improving theoretical/numerical models associated with fluid flow through a rough fracture.

  14. Mechanical model of water inrush from coal seam floor based on triaxial seepage experiments

    Institute of Scientific and Technical Information of China (English)

    Yihui Pang; Guofa Wang; Ziwei Ding

    2014-01-01

    In order to study the mechanism of confined water inrush from coal seam floor, the main influences on permeability in the process of triaxial seepage experiments were analyzed with methods such as laboratory experiments, theoretical analysis and mechanical model calculation. The crack extension rule and the ultimate destruction form of the rock specimens were obtained. The mechanism of water inrush was explained reasonably from mechanical point of view. The practical criterion of water inrush was put forward. The results show that the rock permeability ‘‘mutation’’ phe-nomenon reflects the differences of stress state and cracks extension rate when the rock internal crack begins to extend in large-scale. The rock ultimate destruction form is related to the rock lithology and the angle between crack and principal stress. The necessary condition of floor water inrush is that the mining pressure leads to the extension and transfixion of the crack. The sufficient condition of floor water inrush is that the confined water’s expansionary stress in normal direction and shear stress in tangential direction must be larger than the internal stress in the crack. With the two conditions satisfied at the same time, the floor water inrush accident will occur.

  15. PAHs distribution in sediments associated with gas hydrate and oil seepage from the Gulf of Mexico.

    Science.gov (United States)

    Wang, Cuiping; Sun, Hongwen; Chang, Ying; Song, Zhiguang; Qin, Xuebo

    2011-12-01

    Six sediment samples collected from the Gulf of Mexico were analyzed. Total concentrations of the PAHs ranged from 52 to 403 ng g(-1) dry weight. The lowest PAH concentration without 5-6 rings PAHs appeared in S-1 sample associated with gas hydrate or gas venting. Moreover, S-1 sample had the lowest organic carbon content with 0.85% and highest reduced sulfur level with 1.21% relative to other samples. And, analysis of the sources of PAHs in S-1 sample indicated that both pyrogenic and petrogenic sources, converserly, while S-8, S-10 and S-11 sample suggested petrogenic origin. The distribution of dibenzothiophene, fluorine and dibenzofuran and the maturity parameters of triaromatic steranes suggested that organic matters in S-1 sample were different from that in S-8, S-10 and S-11 sample. This study suggested that organic geochemical data could help in distinguish the characteristic of sediment associated with gas hydrate or with oil seepage. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. The impact of land use and land cover changes on solute dynamics in seepage water of soil from karst hillslopes of Southwest China

    Energy Technology Data Exchange (ETDEWEB)

    Ding Hu; Lang Yunchao [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 46th Guanshui Road, Guiyang 550002 (China); Liu Congqiang, E-mail: liucongqiang@vip.skleg.cn [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 46th Guanshui Road, Guiyang 550002 (China)

    2011-06-15

    Land use and land cover changes can cause variations in terrestrial energy, water balance and availability of nutrients. To understand the role of vegetation in regulating the hydrochemistry of karst hillslopes, overland flow and soil seepage water from two hillslopes covered with and without vegetation were studied in the Huanjiang Observation and Research Station for Karst Ecosystems, Guangxi, SW China. Dissolved major ions, as well as isotopic compositions of dissolved inorganic C (DIC) were examined. Water from the vegetated control slope had higher solute concentrations (except NO{sub 3}{sup -}) and lower {delta}{sup 13}C values than water from the disturbed slope. The dynamics of K{sup +} and NO{sub 3}{sup -} in soil water sampled in time-sequence from the control slope was different from the disturbed slope. Specifically, K{sup +} and NO{sub 3}{sup -} concentrations of the control slope decreased gradually over time, while K{sup +} and NO{sub 3}{sup -} concentrations of the disturbed slope increased, and other ionic concentrations increased in both of the slopes.

  17. Stream seepage and groundwater levels, Wood River Valley, south-central Idaho, 2012-13

    Science.gov (United States)

    Bartolino, James R.

    2014-01-01

    Stream discharge and water levels in wells were measured at multiple sites in the Wood River Valley, south-central Idaho, in August 2012, October 2012, and March 2013, as a component of data collection for a groundwater-flow model of the Wood River Valley aquifer system. This model is a cooperative and collaborative effort between the U.S. Geological Survey and the Idaho Department of Water Resources. Stream-discharge measurements for determination of seepage were made during several days on three occasions: August 27–28, 2012, October 22–24, 2012, and March 27–28, 2013. Discharge measurements were made at 49 sites in August and October, and 51 sites in March, on the Big Wood River, Silver Creek, their tributaries, and nearby canals. The Big Wood River generally gains flow between the Big Wood River near Ketchum streamgage (13135500) and the Big Wood River at Hailey streamgage (13139510), and loses flow between the Hailey streamgage and the Big Wood River at Stanton Crossing near Bellevue streamgage (13140800). Shorter reaches within these segments may differ in the direction or magnitude of seepage or may be indeterminate because of measurement uncertainty. Additional reaches were measured on Silver Creek, the North Fork Big Wood River, Warm Springs Creek, Trail Creek, and the East Fork Big Wood River. Discharge measurements also were made on the Hiawatha, Cove, District 45, Glendale, and Bypass Canals, and smaller tributaries to the Big Wood River and Silver Creek. Water levels in 93 wells completed in the Wood River Valley aquifer system were measured during October 22–24, 2012; these wells are part of a network established by the U.S. Geological Survey in 2006. Maps of the October 2012 water-table altitude in the unconfined aquifer and the potentiometric-surface altitude of the confined aquifer have similar topology to those on maps of October 2006 conditions. Between October 2006 and October 2012, water-table altitude in the unconfined aquifer rose by

  18. Seepage patterns of Diuron in a ditch bed during a sequence of flood events

    International Nuclear Information System (INIS)

    Dages, C.; Samouëlian, A.; Negro, S.; Storck, V.; Huttel, O.; Voltz, M.

    2015-01-01

    Although ditches limit surface water contamination, groundwater recharge through ditches in Mediterranean catchments may result in groundwater contamination. We analysed the dynamics of pesticide percolation in ditches by conducting an original lab experiment that mimicked the successive percolation processes that occur during a flood season. Nine successive percolation events were operated on an undisturbed soil column collected from a ditch bed. The infiltrating water was doped with 14 C-Diuron at concentrations that were chosen to decrease between the events so as to correspond to values observed during actual flood events. The water and solute fluxes were monitored during each event, and the final extractable and non-extractable Diuron residues in the column were determined. Two main observations were made. First, a high leaching potential was observed through the ditch bed over a succession of infiltrating flood events, with 58.9% of the infiltrated Diuron and its metabolites leaching. Second, compared with the contamination of surface water circulating in the ditches, the contamination of seepage water exhibited smaller peak values and persisted much longer because of the desorption of Diuron residues stored in the ditch bed. Thus, ditches serve as buffering zones between surface and groundwater. However, compared with field plots, ditches appear to be a preferential location for the percolation of pesticides into groundwater at the catchment scale. - Highlights: • Diuron percolation in a ditch bed during flood events was mimicked in a column setup. • Diuron percolation can represent up to 50% of the infiltrated Diuron. • The ditch bed exhibits a high buffering capacity due to its high sorption properties. • Contamination period of percolation water lasts longer than that of infiltrating water. • Diuron residues stored in ditch bed move deeper than in field topsoils.

  19. Seepage patterns of Diuron in a ditch bed during a sequence of flood events

    Energy Technology Data Exchange (ETDEWEB)

    Dages, C., E-mail: cecile.dages@supagro.inra.fr; Samouëlian, A.; Negro, S.; Storck, V.; Huttel, O.; Voltz, M.

    2015-12-15

    Although ditches limit surface water contamination, groundwater recharge through ditches in Mediterranean catchments may result in groundwater contamination. We analysed the dynamics of pesticide percolation in ditches by conducting an original lab experiment that mimicked the successive percolation processes that occur during a flood season. Nine successive percolation events were operated on an undisturbed soil column collected from a ditch bed. The infiltrating water was doped with {sup 14}C-Diuron at concentrations that were chosen to decrease between the events so as to correspond to values observed during actual flood events. The water and solute fluxes were monitored during each event, and the final extractable and non-extractable Diuron residues in the column were determined. Two main observations were made. First, a high leaching potential was observed through the ditch bed over a succession of infiltrating flood events, with 58.9% of the infiltrated Diuron and its metabolites leaching. Second, compared with the contamination of surface water circulating in the ditches, the contamination of seepage water exhibited smaller peak values and persisted much longer because of the desorption of Diuron residues stored in the ditch bed. Thus, ditches serve as buffering zones between surface and groundwater. However, compared with field plots, ditches appear to be a preferential location for the percolation of pesticides into groundwater at the catchment scale. - Highlights: • Diuron percolation in a ditch bed during flood events was mimicked in a column setup. • Diuron percolation can represent up to 50% of the infiltrated Diuron. • The ditch bed exhibits a high buffering capacity due to its high sorption properties. • Contamination period of percolation water lasts longer than that of infiltrating water. • Diuron residues stored in ditch bed move deeper than in field topsoils.

  20. Assessing the Impact of Animal Waste Lagoon Seepage on the Geochemistry of an Underlying Shallow Aquifer

    Energy Technology Data Exchange (ETDEWEB)

    McNab, W W; Singleton, M J; Moran, J E; Esser, B K

    2006-03-07

    Dairy facilities and similar confined animal operation settings pose a significant nitrate contamination threat via oxidation of animal wastes and subsequent transport to shallow groundwater. While nitrate contamination resulting from application of animal manure as fertilizer to fields is well recognized, the impact of manure lagoon leakage on groundwater quality is less well characterized. In this study, a dairy facility located in the southern San Joaquin Valley of California has been instrumented with monitoring wells as part of a two-year multidisciplinary study to evaluate nitrate loading and denitrification associated with facility operations. Among multiple types of data collected from the site, groundwater and surface water samples have been analyzed for major cations, anions, pH, oxidation-reduction potential, dissolved organic carbon, and selected dissolved gases (CO{sub 2}, CH{sub 4}, N{sub 2}, Ar, Ne). Modeling of putative geochemical processes occurring within the dairy site manure lagoons shows substantial off-gassing of CO{sub 2} and CH{sub 4} in response to mineralization of organic matter. The gas ebullition appears to strip dissolved gases, including Ar and Ne, from the lagoon water leaving concentrations that are undersaturated with respect to the atmosphere. The resulting fractionated dissolved gas signature serves as an effective tracer for the lagoon water in the underlying shallow groundwater and can be used to constrain inverse geochemical models that assess mixing fractions of lagoon water and local groundwater water. Together with ion exchange and mineral equilibria reactions, identification of lagoon seepage helps explain key attributes of the local groundwater chemistry, including input and cycling of nitrogen, across the site.

  1. Final technology report for D-Area oil seepage basin bioventing optimization test, environmental restoration support

    International Nuclear Information System (INIS)

    Radway, J.C.; Lombard, K.H.; Hazen, T.C.

    1997-01-01

    One method proposed for the cleanup of the D-Area Oil Seepage Basin was in situ bioremediation (bioventing), involving the introduction of air and gaseous nutrients to stimulate contaminant degradation by naturally occurring microorganisms. To test the feasibility of this approach, a bioventing system was installed at the site for use in optimization testing by the Environmental Biotechnology Section of the Savannah River Technology Center. During the interim action, two horizontal wells for a bioventing remediation system were installed eight feet below average basin grade. Nine piezometers were also installed. In September of 1996, a generator, regenerative blower, gas cylinder station, and associated piping and nutrient injection equipment were installed at the site and testing was begun. After baseline characterization of microbial activity and contaminant degradation at the site was completed, four injection campaigns were carried out. These consisted of (1) air alone, (2) air plus triethylphosphate (TEP), (3) air plus nitrous oxide, and (4) air plus methane. This report describes results of these tests, together with conclusions and recommendations for further remediation of the site. Natural biodegradation rates are high. Oxygen, carbon dioxide, and methane levels in soil gas indicate substantial levels of baseline microbial activity. Oxygen is used by indigenous microbes for biodegradation of organics via respiration and hence is depleted in the soil gas and water from areas with high contamination. Carbon dioxide is elevated in contaminated areas. High concentrations of methane, which is produced by microbes via fermentation once the oxygen has been depleted, are found at the most contaminated areas of this site. Groundwater measurements also indicated that substantial levels of natural contaminant biodegradation occurred prior to air injection

  2. Investigation of groundwater seepage from the Hanford shoreline of the Columbia River

    International Nuclear Information System (INIS)

    McCormack, W.D.; Carlile, J.M.V.

    1984-11-01

    Groundwater discharges to the Columbia River are evaluated by the Hanford Environmental Surveillance and Groundwater Surveillance Programs via monitoring of the Columbia River and Hanford groundwater. Both programs concluded that Hanford groundwater has not adversely affected Columbia River water quality. This report supplements the above programs by investigating the general characteristics of groundwater entering the Columbia River from the Hanford Site. Specific objectives of the investigation were to identify general shoreline areas where Hanford-related materials were entering the river, and to evaluate qualitatively the physical characteristics and relative magnitudes of those discharges. The study was conducted in two phases. Phase 1 involved visual inspection of Columbia River shoreline, within the Hanford Site, for indications of groundwater seepage. As a result of that inspection, 115 springs suspected of discharging groundwater were recorded. During Phase 2, water samples were collected from these springs and analyzed for Hanford-related materials known to be present in the groundwater. The specific materials used as indicators for the majority of samples were tritium or uranium and nitrate. The magnitude and distribution of concentrations measured in the spring samples were consistent with concentrations of these materials measured in groundwater near the sampled spring locations. Water samples were also collected from the Columbia River to investigate the localized effects of groundwater discharges occurring above and below river level. These samples were collected within 2 to 4 m of the Hanford shoreline and analyzed for tritium, nitrate, and uranium. Elevated concentrations were measured in river samples collected near areas where groundwater and spring concentrations were elevated. All concentrations were below applicable DOE Concentration Guides. 8 references, 6 figures, 7 tables

  3. Leakage and Seepage of CO2 from Geologic Carbon Sequestration Sites: CO2 Migration into Surface Water

    International Nuclear Information System (INIS)

    Oldenburg, Curt M.; Lewicki, Jennifer L.

    2005-01-01

    Geologic carbon sequestration is the capture of anthropogenic carbon dioxide (CO 2 ) and its storage in deep geologic formations. One of the concerns of geologic carbon sequestration is that injected CO 2 may leak out of the intended storage formation, migrate to the near-surface environment, and seep out of the ground or into surface water. In this research, we investigate the process of CO 2 leakage and seepage into saturated sediments and overlying surface water bodies such as rivers, lakes, wetlands, and continental shelf marine environments. Natural CO 2 and CH 4 fluxes are well studied and provide insight into the expected transport mechanisms and fate of seepage fluxes of similar magnitude. Also, natural CO 2 and CH 4 fluxes are pervasive in surface water environments at levels that may mask low-level carbon sequestration leakage and seepage. Extreme examples are the well known volcanic lakes in Cameroon where lake water supersaturated with respect to CO 2 overturned and degassed with lethal effects. Standard bubble formation and hydrostatics are applicable to CO 2 bubbles in surface water. Bubble-rise velocity in surface water is a function of bubble size and reaches a maximum of approximately 30 cm s -1 at a bubble radius of 0.7 mm. Bubble rise in saturated porous media below surface water is affected by surface tension and buoyancy forces, along with the solid matrix pore structure. For medium and fine grain sizes, surface tension forces dominate and gas transport tends to occur as channel flow rather than bubble flow. For coarse porous media such as gravels and coarse sand, buoyancy dominates and the maximum bubble rise velocity is predicted to be approximately 18 cm s -1 . Liquid CO 2 bubbles rise slower in water than gaseous CO 2 bubbles due to the smaller density contrast. A comparison of ebullition (i.e., bubble formation) and resulting bubble flow versus dispersive gas transport for CO 2 and CH 4 at three different seepage rates reveals that

  4. Application of environmental isotopes and hydrochemistry in the identification of source of seepage and likely connection with lake water in Lesser Himalaya, Uttarakhand, India

    Science.gov (United States)

    Rai, Shive Prakash; Singh, Dharmaveer; Rai, Ashwani Kumar; Kumar, Bhishm

    2017-12-01

    Oxygen (δ^{18}O) and hydrogen (δ2H and 3H) isotopes of water, along with their hydrochemistry, were used to identify the source of a newly emerged seepage water in the downstream of Lake Nainital, located in the Lesser Himalayan region of Uttarakhand, India. A total of 57 samples of water from 19 different sites, in and around the seepage site, were collected. Samples were analysed for chemical tracers like Ca^{++}, Mg^{++}, Na+, K+, {SO4}^{-} and Cl- using an Ion Chromatograph (Dionex IC-5000). A Dual Inlet Isotope Ratio Mass Spectrometer (DIIRMS) and an Ultra-Low Level Liquid Scintillation Counter (ULLSC), were used in measurements of stable isotopes (δ2H and δ^{18}O) and a radioisotope (3H), respectively. Results obtained in this study repudiate the possibility of any likely connection between seepage water and the lake water, and indicate that the source of seepage water is mainly due to locally recharged groundwater. The study suggests that environmental isotopes (δ2H, δ^{18}O and 3H) can effectively be used as `tracers' in the detection of the source of seepage water in conjunction with other hydrochemical tracers, and can help in water resource management and planning.

  5. Uncertainty of the Soil–Water Characteristic Curve and Its Effects on Slope Seepage and Stability Analysis under Conditions of Rainfall Using the Markov Chain Monte Carlo Method

    Directory of Open Access Journals (Sweden)

    Weiping Liu

    2017-10-01

    Full Text Available It is important to determine the soil–water characteristic curve (SWCC for analyzing slope seepage and stability under the conditions of rainfall. However, SWCCs exhibit high uncertainty because of complex influencing factors, which has not been previously considered in slope seepage and stability analysis under conditions of rainfall. This study aimed to evaluate the uncertainty of the SWCC and its effects on the seepage and stability analysis of an unsaturated soil slope under conditions of rainfall. The SWCC model parameters were treated as random variables. An uncertainty evaluation of the parameters was conducted based on the Bayesian approach and the Markov chain Monte Carlo (MCMC method. Observed data from granite residual soil were used to test the uncertainty of the SWCC. Then, different confidence intervals for the model parameters of the SWCC were constructed. The slope seepage and stability analysis under conditions of rainfall with the SWCC of different confidence intervals was investigated using finite element software (SEEP/W and SLOPE/W. The results demonstrated that SWCC uncertainty had significant effects on slope seepage and stability. In general, the larger the percentile value, the greater the reduction of negative pore-water pressure in the soil layer and the lower the safety factor of the slope. Uncertainties in the model parameters of the SWCC can lead to obvious errors in predicted pore-water pressure profiles and the estimated safety factor of the slope under conditions of rainfall.

  6. Effects of Loading Rate on Gas Seepage and Temperature in Coal and Its Potential for Coal-Gas Disaster Early-Warning

    Directory of Open Access Journals (Sweden)

    Chong Zhang

    2017-08-01

    Full Text Available The seepage velocity and temperature externally manifest the changing structure, gas desorption and energy release that occurs in coal containing gas failure under loading. By using the system of coal containing gas failure under loading, this paper studies the law of seepage velocity and temperature under different loading rates and at 1.0 MPa confining pressure and 0.5 MPa gas pressure, and combined the on-site results of gas pressure and temperature. The results show that the stress directly affects the seepage velocity and temperature of coal containing gas, and the pressure and content of gas have the most sensitivity to mining stress. Although the temperature is not sensitive to mining stress, it has great correlation with mining stress. Seepage velocity has the characteristic of critically slowing down under loading. This is demonstrated by the variance increasing before the main failure of the samples. Therefore, the variance of seepage velocity with time and temperature can provide an early warning for coal containing gas failing and gas disasters in a coal mine.

  7. Modeling of coupled heat transfer and reactive transport processes in porous media: Application to seepage studies at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Mukhopadhyay, Sumit; Sonnenthal, Eric L.; Spycher, Nicolas

    2007-01-01

    When hot radioactive waste is placed in subsurface tunnels, a series of complex changes occurs in the surrounding medium. The water in the pore space of the medium undergoes vaporization and boiling. Subsequently, vapor migrates out of the matrix pore space, moving away from the tunnel through the permeable fracture network. This migration is propelled by buoyancy, by the increased vapor pressure caused by heating and boiling, and through local convection. In cooler regions, the vapor condenses on fracture walls, where it drains through the fracture network. Slow imbibition of water thereafter leads to gradual rewetting of the rock matrix. These thermal and hydrological processes also bring about chemical changes in the medium. Amorphous silica precipitates from boiling and evaporation, and calcite from heating and CO2 volatilization. The precipitation of amorphous silica, and to a much lesser extent calcite, results in long-term permeability reduction. Evaporative concentration also results in the precipitation of gypsum (or anhydrite), halite, fluorite and other salts. These evaporative minerals eventually redissolve after the boiling period is over, however, their precipitation results in a significant temporary decrease in permeability. Reduction of permeability is also associated with changes in fracture capillary characteristics. In short, the coupled thermal-hydrological-chemical (THC) processes dynamically alter the hydrological properties of the rock. A model based on the TOUGHREACT reactive transport software is presented here to investigate the impact of THC processes on flow near an emplacement tunnel at Yucca Mountain, Nevada. We show how transient changes in hydrological properties caused by THC processes often lead to local flow channeling and saturation increases above the tunnel. For models that include only permeability changes to fractures, such local flow channeling may lead to seepage relative to models where THC effects are ignored. However

  8. Modeling of coupled heat transfer and reactive transport processes in porous media: Application to seepage studies at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Mukhopadhyay, S.; Sonnenthal, E.L.; Spycher, N.

    2007-01-01

    When hot radioactive waste is placed in subsurface tunnels, a series of complex changes occurs in the surrounding medium. The water in the pore space of the medium undergoes vaporization and boiling. Subsequently, vapor migrates out of the matrix pore space, moving away from the tunnel through the permeable fracture network. This migration is propelled by buoyancy, by the increased vapor pressure caused by heating and boiling, and through local convection. In cooler regions, the vapor condenses on fracture walls, where it drains through the fracture network. Slow imbibition of water thereafter leads to gradual rewetting of the rock matrix. These thermal and hydrological processes also bring about chemical changes in the medium. Amorphous silica precipitates from boiling and evaporation, and calcite from heating and CO 2 volatilization. The precipitation of amorphous silica, and to a much lesser extent calcite, results in long-term permeability reduction. Evaporative concentration also results in the precipitation of gypsum (or anhydrite), halite, fluorite and other salts. These evaporative minerals eventually redissolve after the boiling period is over, however, their precipitation results in a significant temporary decrease in permeability. Reduction of permeability is also associated with changes in fracture capillary characteristics. In short, the coupled thermal-hydrological-chemical (THC) processes dynamically alter the hydrological properties of the rock. A model based on the TOUGHREACT reactive transport software is presented here to investigate the impact of THC processes on flow near an emplacement tunnel at Yucca Mountain, Nevada. We show how transient changes in hydrological properties caused by THC processes often lead to local flow channeling and saturation increases above the tunnel. For models that include only permeability changes to fractures, such local flow channeling may lead to seepage relative to models where THC effects are ignored. However

  9. Reduced gas seepages in ophiolitic complexes: Evidences for multiple origins of the H2-CH4-N2 gas mixtures

    Science.gov (United States)

    Vacquand, Christèle; Deville, Eric; Beaumont, Valérie; Guyot, François; Sissmann, Olivier; Pillot, Daniel; Arcilla, Carlo; Prinzhofer, Alain

    2018-02-01

    This paper proposes a comparative study of reduced gas seepages occurring in ultrabasic to basic rocks outcropping in ophiolitic complexes based on the study of seepages from Oman, the Philippines, Turkey and New Caledonia. This study is based on analyses of the gas chemical composition, noble gases contents, stable isotopes of carbon, hydrogen and nitrogen. These seepages are mostly made of mixtures of three main components which are H2, CH4 and N2 in various proportions. The relative contents of the three main gas components show 4 distinct types of gas mixtures (H2-rich, N2-rich, N2-H2-CH4 and H2-CH4). These types are interpreted as reflecting different zones of gas generation within or below the ophiolitic complexes. In the H2-rich type, associated noble gases display signatures close to the value of air. In addition to the atmospheric component, mantle and crustal contributions are present in the N2-rich, N2-H2-CH4 and H2-CH4 types. H2-bearing gases are either associated with ultra-basic (pH 10-12) spring waters or they seep directly in fracture systems from the ophiolitic rocks. In ophiolitic contexts, ultrabasic rocks provide an adequate environment with available Fe2+ and alkaline conditions that favor H2 production. CH4 is produced either directly by reaction of dissolved CO2 with basic-ultrabasic rocks during the serpentinization process or in a second step by H2-CO2 interaction. H2 is present in the gas when no more carbon is available in the system to generate CH4. The N2-rich type is notably associated with relatively high contents of crustal 4He and in this gas type N2 is interpreted as issued mainly from sediments located below the ophiolitic units.

  10. Evaluation of the conditions imposed by the fracture surface geometry on water seepage through fractured porous media

    International Nuclear Information System (INIS)

    Fuentes, Nestor O.; Faybishenko, B.

    2003-01-01

    In order to determine the geometric patterns of the fracture surfaces that imposes conditions on the fluid flow through fractured porous media, a series a fracture models have been analyzed using the RIMAPS technique and the variogram method. Results confirm that the main paths followed by the fluid channels are determined by the surface topography and remain constant during water seepage evolution. Characteristics scale lengths of both situations: fracture surface and the flow of water, are also found. There exists a relationship between the scale lengths corresponding to each situation. (author)

  11. Study on of Seepage Flow Velocity in Sand Layer Profile as Affected by Water Depth and Slope Gradience

    Science.gov (United States)

    Han, Z.; Chen, X.

    2017-12-01

    BACKGROUND: The subsurface water flow velocity is of great significance in understanding the hydrodynamic characteristics of soil seepage and the influence of interaction between seepage flow and surface runoff on the soil erosion and sediment transport process. OBJECTIVE: To propose a visualized method and equipment for determining the seepage flow velocity and measuring the actual flow velocity and Darcy velocity as well as the relationship between them.METHOD: A transparent organic glass tank is used as the test soil tank, the white river sand is used as the seepage test material and the fluorescent dye is used as the indicator for tracing water flow, so as to determine the thickness and velocity of water flow in a visualized way. Water is supplied at the same flow rate (0.84 L h-1) to the three parts with an interval of 1m at the bottom of the soil tank and the pore water velocity and the thickness of each water layer are determined under four gradient conditions. The Darcy velocity of each layer is calculated according to the water supply flow and the discharge section area. The effective discharge flow pore is estimated according to the moisture content and porosity and then the relationship between Darcy velocity and the measured velocity is calculated based on the water supply flow and the water layer thickness, and finally the correctness of the calculation results is verified. RESULTS: According to the velocity calculation results, Darcy velocity increases significantly with the increase of gradient; in the sand layer profile, the flow velocity of pore water at different depths increases with the increase of gradient; under the condition of the same gradient, the lower sand layer has the maximum flow velocity of pore water. The air-filled porosity of sand layer determines the proportional relationship between Darcy velocity and pore flow velocity. CONCLUSIONS: The actual flow velocity and Darcy velocity can be measured by a visualized method and the

  12. Active hydrocarbon (methane) seepage at the Alboran Sea mud volcanoes indicated by specific lipid biomarkers.

    Science.gov (United States)

    Lopez-Rodriguez, C.; Stadnitskaia, A.; De Lange, G. J.; Martínez-Ruiz, F.; Comas, M.; Sinninghe Damsté, J. S.

    2012-04-01

    AOM in the mud breccias. Preliminary δ13C measurements of crocetane/phytane reveal depleted values (from -65.4‰ to -36.6‰), supporting the existence of AOM in these MVs. The absence of the specific GDGT signal in combinations with other indications for AOM may suggest that predominantly ANME-2 archaea, which do not produce GDGTs, are responsible for AOM in the Northern Mud Volcano Field from the Alboran Sea. In summary, our biomarker study reveals: 1) the northern Alboran mud volcanoes derives from similar source rocks containing thermally immature organic-matter; 2) The organic-matter present in the extruded materials is affected by methane-rich fluids from low-activity seepage. Acknowledgements: Projects GASALB-CTM2009-07715, TOPOMED-CGL2008-03474 and CONSOLIDER-CSD2006-00041 (MICINN and FEDER funds, Spain)

  13. Natural Gas Seepage Along the Edge of the Aquitaine Shelf (France): Origin and Flux Measurements

    Science.gov (United States)

    Ruffine, L.; Donval, J. P.; Battani, A.; Bignon, L.; Croguennec, C.; Caprais, J. C.; Birot, D.; Bayon, G.; Lantéri, N.; Levaché, D.; Dupré, S.

    2014-12-01

    A newly discovered and highly active seepage area has been acoustically mapped at the western edge of the Aquitaine Shelf in the Bay of Biscay [Dupré et al., 2014]. Three selected seeping sites have been investigated with a Remotely Operated Vehicle. All sites were characterized by vigorous gas emissions, and the occurrence of massive carbonate crusts and bacterial mats at the seafloor. Nine seeps have been sampled with the PEGAZ sampler. The latter allowed gas-bubble sampling and preservation at in situpressure, together with gas-flux measurement through its graduated transparent cone. The C2+ fraction of the gas samples accounts for less than 0.06 %-mol of the total composition. Both the abundance of methane and dD and d13C isotopic analyses of the hydrocarbons indicate a biogenic source generated by microbial reduction of carbon dioxide [Whiticar et al., 1986]. The analyses of the associated noble gases also provide further support for a shallow-depth generation. While sharing the same origin, the collected samples are different in other respects, such as the measured d13C values for carbon dioxide and the hydrocarbons. This is the case in particular for methane, with displays values in between -66.1 and -72.7 ‰. We hypothesized that such variations are the result of multiple gas-transport processes along with the occurrence of hydrocarbon oxidation at different rates within the sedimentary column. The measured gas fluxes are extremely heterogeneous from one seep to another, ranging from 18 to 193 m3.yr-1. These values will be discussed in detail by comparing them with values obtained from different measurement techniques at other gas-seeping sites. The GAZCOGNE study is co-funded by TOTAL and IFREMER as part of the PAMELA (Passive Margin Exploration Laboratories) scientific project. References:Dupré, S., L. Berger, N. Le Bouffant, C. Scalabrin, and J. F. Bourillet (2014), Fluid emissions at the Aquitaine Shelf (Bay of Biscay, France): a biogenic origin or

  14. Determining seepage water velocity by means of lysimeters; Bestimmung der Sickerwassergeschwindigkeit in Lysimetern

    Energy Technology Data Exchange (ETDEWEB)

    Klotz, D.; Seiler, K.P.

    1999-02-01

    The processes in the water-unsaturated zone have in the past received too little attention from hydrogeologists and their study by pedologists has been patchy. It is only recently that studies have been published, with for some part very diverse scientific approaches, which consider the water-unsaturated zone and the soil as a whole. There are small-scale and large-scale hydraulic approaches, hydraulic and first tracer-hydrological approaches. This poses the problem of how to transfer results obtained locally to larger spaces. Moreover, the homogeneity of substrates has been found to be such that hydraulic and tracer-hydrological approaches are unproblematic at the large scale, while at the small scale their results can only be interpreted with certain reservations. For example, this has led to findings of steady groundwater recharge at a large scale which contrast with findings at a smaller scale of a separation into highly variable matrix and bypass flows or into groundwater recharge and intermediate outflows. Studies at different levels of scale consequently bear different implications for material transport within and material export from specific landscape sections to underground or aboveground neighbouring compartments. The purpose of the present workshop on seepage water movement is to contribute to the establishment of facts on this issue, identify deficits, and stimulate future cooperation. [Deutsch] Die Prozesse in der wasserungesaettigten Zone wurden in der Vergangenheit zu wenig durch die Hydrogeologie und nur ausschnittsweise von der Pedologie betrachtet. Erst in neuerer Zeit mehren sich Arbeit, die die wasserungesaettigte Zone einschliesslich des Bodens integral betrachten, wobei die wissenschaftlichen Ansaetze z.T. sehr verschieden sind. Es gibt - klein- und grossskalige hydraulische Ansaetze, - hydraulische und erste tracerhydrologische Ansaetze und daraus erwaechst das Problem der Ueberleitung lokaler Ergebnisse auf groessere Raeume. Darueber

  15. Calibration and application of an automated seepage meter for monitoring water flow across the sediment-water interface.

    Science.gov (United States)

    Zhu, Tengyi; Fu, Dafang; Jenkinson, Byron; Jafvert, Chad T

    2015-04-01

    The advective flow of sediment pore water is an important parameter for understanding natural geochemical processes within lake, river, wetland, and marine sediments and also for properly designing permeable remedial sediment caps placed over contaminated sediments. Automated heat pulse seepage meters can be used to measure the vertical component of sediment pore water flow (i.e., vertical Darcy velocity); however, little information on meter calibration as a function of ambient water temperature exists in the literature. As a result, a method with associated equations for calibrating a heat pulse seepage meter as a function of ambient water temperature is fully described in this paper. Results of meter calibration over the temperature range 7.5 to 21.2 °C indicate that errors in accuracy are significant if proper temperature-dependence calibration is not performed. The proposed calibration method allows for temperature corrections to be made automatically in the field at any ambient water temperature. The significance of these corrections is discussed.

  16. Changing composition of microbial communities indicates seepage fluid difference of the Thuwal Seeps in the Red Sea

    KAUST Repository

    Yang, Bo; Zhang, Weipeng; Tian, Renmao; Wang, Yong; Qian, Pei-Yuan

    2015-01-01

    © Springer International Publishing Switzerland 2015. Cold seeps are unique ecosystems that are generally characterized by high salinity and reducing solutions. Seepage fluid, the major water influx of this system, contains hypersaline water, sediment pore water, and other components. The Thuwal cold seeps were recently discovered on the continental margin of the Red Sea. Using 16S rRNA gene pyro-sequencing technology, microbial communities were investigated by comparing samples collected in 2011 and 2013. The results revealed differences in the microbial communities between the two sampling times. In particular, a significantly higher abundance of Marine Group I (MGI) Thaumarchaeota was coupled with lower salinity in 2013. In the brine pool, the dominance of Desulfobacterales in 2011 was supplanted byMGI Thaumarchaeota in 2013, perhaps due to a reduced supply of hydrogen sulfide from the seepage fluid. Collectively, this study revealed a difference in water components in this ecosystem between two sampling times. The results indicated that the seawater in this cold seep displayed a greater number of characteristics of normal seawater in 2013 than in 2011, which might represent the dominant driving force for changes in microbial community structures. This is the first study to provide a temporal comparison of the microbial biodiversity of a cold seep ecosystem in the Red Sea.

  17. Hydrogeology, groundwater seepage, nitrate distribution, and flux at the Raleigh hydrologic research station, Wake County, North Carolina, 2005-2007

    Science.gov (United States)

    McSwain, Kristen Bukowski; Bolich, Richard E.; Chapman, Melinda J.

    2013-01-01

    gradients in the groundwater discharge area near the Neuse River were complex and were affected by fluctuations in river stage, with the exception of a well completed in a diabase dike. Water-quality data from the wells and surface-water sites at the RHRS were collected continuously as well as during periodic sampling events. Surface-water samples collected from a tributary were most similar in chemical composition to groundwater found in the regolith and transition zone. Nitrate (measured as nitrite plus nitrate, as nitrogen) concentrations in the sampled wells and tributary ranged from about 5 to more than 120 milligrams per liter as nitrogen. Waterborne continuous resistivity profiling conducted on the Neuse River in the area of the RHRS measured areas of low apparent resistivity that likely represent groundwater contaminated by high concentrations of nitrate. These areas were located on either side of a diabase dike and at the outfall of two unnamed tributaries. The diabase dike preferentially directed the discharge of groundwater to the Neuse River and may isolate groundwater movement laterally. Discrete temperature measurements made within the pore water beneath the Neuse River revealed seeps of colder groundwater discharging into warmer surface water near a diabase dike. Water-quality samples collected from the pore water beneath the Neuse River indicated that nitrate was present at concentrations as high as 80 milligrams per liter as nitrogen on the RHRS side of the river. The highest concentrations of nitrate were located within pore water collected from an area near a diabase dike that was identified as a suspected seepage area. Hydraulic head was measured and pore water samples were collected from two 140-centimeter-deep (55.1-inch-deep) multiport piezometers that were installed in bed sediments on opposite sides of a diabase dike. The concentration of nitrate in pore water at a suspected seepage area ranged from 42 to 82 milligrams per liter as nitrogen with a

  18. Changing composition of microbial communities indicates seepage fluid difference of the Thuwal Seeps in the Red Sea

    KAUST Repository

    Yang, Bo

    2015-06-10

    © Springer International Publishing Switzerland 2015. Cold seeps are unique ecosystems that are generally characterized by high salinity and reducing solutions. Seepage fluid, the major water influx of this system, contains hypersaline water, sediment pore water, and other components. The Thuwal cold seeps were recently discovered on the continental margin of the Red Sea. Using 16S rRNA gene pyro-sequencing technology, microbial communities were investigated by comparing samples collected in 2011 and 2013. The results revealed differences in the microbial communities between the two sampling times. In particular, a significantly higher abundance of Marine Group I (MGI) Thaumarchaeota was coupled with lower salinity in 2013. In the brine pool, the dominance of Desulfobacterales in 2011 was supplanted byMGI Thaumarchaeota in 2013, perhaps due to a reduced supply of hydrogen sulfide from the seepage fluid. Collectively, this study revealed a difference in water components in this ecosystem between two sampling times. The results indicated that the seawater in this cold seep displayed a greater number of characteristics of normal seawater in 2013 than in 2011, which might represent the dominant driving force for changes in microbial community structures. This is the first study to provide a temporal comparison of the microbial biodiversity of a cold seep ecosystem in the Red Sea.

  19. Polymer flooding effect of seepage characteristics of the second tertiary combined model of L oilfield block B

    Directory of Open Access Journals (Sweden)

    Huan ZHAO

    2015-06-01

    Full Text Available The second tertiary combined model is applied to develop the second and third type reservoirs which have more oil layer quantity and strong anisotropism, compared to the regular main reservoir with polymer injection, whose seepage characteristics of polymer-injection-after-water-drive shows a remarkable difference, in addition. This development appears to have a larger effect on the remaining oil development and production. Simulating the second tertiary combined model by reservoir numerical simulation under different polymer molecular weight, polymer concentration, polymer injection rate on the polymer injection period, conclusions of the influenced seepage characteristics of original and added perforated interval pressure and water saturation are drawn. The conclusion shows that the polymer molecular weight could influence water saturation of added perforated interval; polymer concentration makes a significant impact on reservoir pressure; polymer injection rate has a great influence on the separate rate of original and added perforated interval. This research provides firm science evidence to the theory of the second tertiary combined model to develop and enhance oil injection-production rate.

  20. Effects of outcropping groundwater from the F- and H-Area seepage basins on the distribution of fish in Four Mile Creek

    International Nuclear Information System (INIS)

    Paller, M.H.; Storey, C.

    1990-10-01

    Four Mile Creek was electrofished during June 26--July 2, 1990 to assess the impacts of outcropping ground water form the F- and H-Area Seepage Basins on fish abundance and distribution. Number of fish species and total catch were comparable at sample stations upstream from and downstream from the outcropping zone in Four Mile Creek. Species number and composition downstream from the outcropping zone in Four Mile Creek were similar to species number and composition in unimpacted portions of Pen Branch, Steel Creek, and Meyers Branch. These findings indicate that seepage basin outcropping was not adversely affecting the Four Mile Creek fish community. 5 refs., 3 figs., 4 tabs

  1. Focused groundwater discharge of phosphorus to a eutrophic seepage lake (Lake Væng, Denmark): implications for lake ecological state and restoration

    DEFF Research Database (Denmark)

    Kidmose, Jacob; Nilsson, Bertel; Engesgaard, Peter

    2013-01-01

    and borehole data. Discharge was found to be much focused and opposite to expected increase away from the shoreline. The average total phosphorus concentration in discharging groundwater sampled just beneath the lakebed was 0.162 mg TP/l and thereby well over freshwater ecological thresholds (0...... paths through the aquifer–lakebed interface either being overland flow through a seepage face, or focused in zones with very high discharge rates. In-lake springs have measured discharge of up to 7.45 m3 per m2 of lakebed per day. These findings were based on seepage meter measurements at 18 locations...

  2. Characterization of the Spatial and Temporal Variations of Submarine Groundwater Discharge Using Electrical Resistivity and Seepage Measurements

    Science.gov (United States)

    Durand, Josephine Miryam Kalyanie

    Submarine groundwater discharge (SGD) encompasses all fluids crossing the sediment/ocean interface, regardless of their origin, composition or driving forces. SGD provides a pathway for terrestrial contaminants that can significantly impact coastal ecosystems. Overexploitation of groundwater resources can decrease SGD which favors seawater intrusion at depth. Understanding SGD is therefore crucial for water quality and resource management. Quantifying SGD is challenging due to its diffuse and heterogeneous nature, in addition to significant spatio-temporal variations at multiple scales. In this thesis, an integrated approach combining electrical resistivity (ER) surveys, conductivity and temperature point measurements, seepage rates using manual and ultrasonic seepage meters, and pore fluid salinities was used to characterize SGD spatio-temporal variations and their implications for contaminant transport at several locations on Long Island, NY. The influence of surficial sediments on SGD distribution was investigated in Stony Brook Harbor. A low-permeability mud layer, actively depositing in the harbor, limits SGD at the shoreline, prevents mixing with seawater and channels a significant volume of freshwater offshore. SGD measured at locations without mud is high and indicates significant mixing between porewater and seawater. A 2D steady-state density-difference numerical model of the harbor was developed using SEAWAT and was validated by our field observations. Temporal variations of SGD due to semi-diurnal tidal forcing were studied in West Neck Bay, Shelter Island, using a 12-hr time-lapse ER survey together with continuous salinity and seepage measurements in the intertidal zone. The observed dynamic patterns of groundwater flux and salinity distribution disagree with published standard transient state numerical models, suggesting the need for developing more specific models of non-homogeneous anisotropic aquifers. SGD distribution and composition were

  3. Regeneration of Mature Norway Spruce Stands: Early Effects of Selective Cutting and Clear Cutting on Seepage Water Quality and Soil Fertility

    Directory of Open Access Journals (Sweden)

    Wendelin Weis

    2001-01-01

    Full Text Available The cutting of trees influences element turnover in the forest ecosystem. The reduction of plant uptake, as well as an increased mineralization and nitrification due to higher soil temperature and soil moisture, can lead to considerable losses of nutrients from the main rooting zone. This may result in a reduced soil fertility and a decrease in drinking water quality due to high nitrate concentrations in the seepage water. In Bavaria (Germany selective cutting is preferred to clear cutting when initiating the regeneration of Norway spruce stands with European beech. This paper summarizes the early effects of both forest management practices on soil fertility and seepage water quality for three different sites. Shown are the concentrations of nitrogen and base cations in the seepage water as well as the water and ion fluxes during the first year after tree cut. Nutrient inputs decreased on thinned plots and even more at clear-cuts. Nitrate concentrations in the seepage water are hardly affected by moderate thinning; however, on clear-cuts, the nitrate concentration increases significantly, and base cations are lost from the upper mineral soil. This effect is less obvious at sites where a dense ground vegetation, which is able to take up excess nitrogen, exists.

  4. Evaluation of ground-water flow and hydrologic budget for Lake Five-O, a seepage lake in northwestern Florida

    Science.gov (United States)

    Grubbs, J.W.

    1995-01-01

    Temporal and spatial distributions of ground-water inflow to, and leakage from Lake Five-O, a softwater, seepage lake in northwestern Florida, were evaluated using hydrologic data and simulation models of the shallow ground-water system adjacent to the lake. The simulation models indicate that ground-water inflow to the lake and leakage from the lake to the ground-water system are the dominant components in the total inflow (precipitation plus ground-water inflow) and total outflow (evaporation plus leakage) budgets of Lake Five-O. Simlulated ground-water inflow and leakage were approximately 4 and 5 times larger than precipitation inputs and evaporative losses, respectively, during calendar years 1989-90. Exchanges of water between Lake Five-O and the ground-water system were consistently larger than atmospheric-lake exchanges. A consistent pattern of shallow ground-water inflow and deep leakage was also evident throughout the study period. The mean time of travel from ground-water that discharges at Lake Five-O (time from recharge at the water table to discharge at the lake) was estimated to be within a range of 3 to 6 years. Flow-path evaluations indicated that the intermediate confining unit probably has a negligible influence on the geochemistry of ground-water inflow to Lake Five-O. The hydrologic budgets and flow-path evaluations provide critical information for developing geochemical budgets for Lake Five-O and for improving the understanding of the relative importance of various processes that regulate the acid-neutralizing capacity of softwater seepage lakes in Florida.

  5. Valley formation by groundwater seepage, pressurized groundwater outbursts and crater-lake overflow in flume experiments with implications for Mars

    Science.gov (United States)

    Marra, Wouter A.; Braat, Lisanne; Baar, Anne W.; Kleinhans, Maarten G.

    2014-04-01

    Remains of fluvial valleys on Mars reveal the former presence of water on the surface. However, the source of water and the hydrological setting is not always clear, especially in types of valleys that are rare on Earth and where we have limited knowledge of the processes involved. We investigated three hydrological scenarios for valley formation on Mars: hydrostatic groundwater seepage, release of pressurized groundwater and crater-lake overflow. Using physical modeling in laboratory experiments and numerical hydrological modeling we quantitatively studied the morphological development and processes involved in channel formation that result from these different sources of water in unconsolidated sediment. Our results show that valleys emerging from seeping groundwater by headward erosion form relatively slowly as fluvial transport takes place in a channel much smaller than the valley. Pressurized groundwater release forms a characteristic source area at the channel head by fluidization processes. This head consist of a pit in case of superlithostatic pressure and may feature small radial channels and collapse features. Valleys emerging from a crater-lake overflow event develop quickly in a run-away process of rim erosion and discharge increase. The valley head at the crater outflow point has a converging fan shape, and the rapid incision of the rim leaves terraces and collapse features. Morphological elements observed in the experiments can help in identifying the formative processes on Mars, when considerations of experimental scaling and lithological characteristics of the martian surface are taken into account. These morphological features might reveal the associated hydrological settings and formative timescales of a valley. An estimate of formative timescale from sediment transport is best based on the final channel dimensions for groundwater seepage valleys and on the valley dimensions for pressurized groundwater release and crater-lake overflow valleys. Our

  6. Correlation of Self Potential and Ground Magnetic Survey Techniques to Investigate Fluid Seepage in Archaeological site, Sungai Batu, Lembah Bujang, Kedah, Malaysia

    Directory of Open Access Journals (Sweden)

    Tajudeen O. Adeeko

    2018-05-01

    Full Text Available One of the substantial of geophysics is to investigate the subsurface condition of the earth (groundwater using appropriate geophysical techniques. In this research the correlation of self potential (SP and ground magnetic methods was used to investigate fluid seepage in Archaeological site, Sungai Batu, Lembah Bujang, Kedah, Malaysia. Self-potential method was used to determine flow of water, and Ground magnetic method was used to find object that can influence the result of self potential measurement and the aquifer depth, the lines were spread 0m ≤ x ≤ 9m, 0m ≤ y ≤ 30m with a trace intervals of 1.5m and 0.75m per electrode spacing respectively. The result display by Self Potential signals gives a clear understand that water flow from higher value (central towards the lower value which is mostly at the southwest part than other areas and distinct level of feasible flow at different part ranges from -30mV to +35mV,which are very related to seepage flow patterns, negative SP anomalies were related with subsurface seepage flow paths (recharge zone and positive SP anomalies were related with areas of seepage outflow (discharge zone; and Ground Magnetic signals shows good details of the buried materials with high magnetic values which was interpreted as baked clay bricks and low magnetic values indicate groundwater seepage with depth of 5m. Therefore, the two results have correlation significant at 0.8 which show good correlation in groundwater investigation in this study, which validates the results.

  7. Water chemistry, seepage investigation, streamflow, reservoir storage, and annual availability of water for the San Juan-Chama Project, northern New Mexico, 1942-2010

    Science.gov (United States)

    McKean, Sarah E.; Anderholm, Scott K.

    2014-01-01

    The Albuquerque Bernalillo County Water Utility Authority supplements the municipal water supply for the Albuquerque metropolitan area, in central New Mexico, with surface water diverted from the Rio Grande. The U.S. Geological Survey, in cooperation with the Albuquerque Bernalillo County Water Utility Authority, undertook this study in which water-chemistry data and historical streamflow were compiled and new water-chemistry data were collected to characterize the water chemistry and streamflow of the San Juan-Chama Project (SJCP). Characterization of streamflow included analysis of the variability of annual streamflow and comparison of the theoretical amount of water that could have been diverted into the SJCP to the actual amount of water that was diverted for the SJCP. Additionally, a seepage investigation was conducted along the channel between Azotea Tunnel Outlet and the streamflow-gaging station at Willow Creek above Heron Reservoir to estimate the magnitude of the gain or loss in streamflow resulting from groundwater interaction over the approximately 10-mile reach. Generally, surface-water chemistry varied with streamflow throughout the year. Streamflow ranged from high flow to low flow on the basis of the quantity of water diverted from the Rio Blanco, Little Navajo River, and Navajo River for the SJCP. Vertical profiles of the water temperature over the depth of the water column at Heron Reservoir indicated that the reservoir is seasonally stratified. The results from the seepage investigations indicated a small amount of loss of streamflow along the channel. Annual variability in streamflow for the SJCP was an indication of the variation in the climate parameters that interact to contribute to streamflow in the Rio Blanco, Little Navajo River, Navajo River, and Willow Creek watersheds. For most years, streamflow at Azotea Tunnel Outlet started in March and continued for approximately 3 months until the middle of July. The majority of annual streamflow

  8. Electrical resistivity investigation of fluvial geomorphology to evaluate potential seepage conduits to agricultural lands along the San Joaquin River, Merced County, California, 2012–13

    Science.gov (United States)

    Groover, Krishangi D.; Burgess, Matthew K.; Howle, James F.; Phillips, Steven P.

    2017-02-08

    Increased flows in the San Joaquin River, part of the San Joaquin River Restoration Program, are designed to help restore fish populations. However, increased seepage losses could result from these higher restoration flows, which could exacerbate existing drainage problems in neighboring agricultural lands and potentially damage crops. Channel deposits of abandoned river meanders that are hydraulically connected to the river could act as seepage conduits, allowing rapid and widespread water-table rise during restoration flows. There is a need to identify the geometry and properties of these channel deposits to assess their role in potential increased seepage effects and to evaluate management alternatives for reducing seepage. Electrical and electromagnetic surface geophysical methods have provided a reliable proxy for lithology in studies of fluvial and hyporheic systems where a sufficient electrical contrast exists between deposits of differing grain size. In this study, direct-current (DC) resistivity was used to measure subsurface resistivity to identify channel deposits and to map their subsurface geometry. The efficacy of this method was assessed by using DC resistivity surveys collected along a reach of the San Joaquin River in Merced County, California, during the summers of 2012 and 2013, in conjunction with borings and associated measurements from a hydraulic profiling tool. Modeled DC resistivity data corresponded with data from cores, hand-auger samples, a hydraulic profiling tool, and aerial photographs, confirming that DC resistivity is effective for differentiating between silt and sand deposits in this setting. Modeled DC resistivity data provided detailed two-dimensional cross-sectional resistivity profiles to a depth of about 20 meters. The distribution of high-resistivity units in these profiles was used as a proxy for identifying areas of high hydraulic conductivity. These data were used subsequently to guide the location and depth of wells

  9. SIMULATION OF RAINFALL AND SEEPAGE FLOW ON UNSATURATED SOIL BY A SEEPAGE-DEFORMATION COUPLED METHOD SIMULACIÓN DE LLUVIA E INFILTRACIÓN EN SUELOS PARCIALMENTE SATURADOS USANDO UN METODO ACOPLADO INFILTRACIÓN-DEFORMACIÓN

    Directory of Open Access Journals (Sweden)

    Edwin García-Aristizábal

    2012-06-01

    Full Text Available This paper presents an application for the analysis of structures formed by unsaturated layered soils subjected to rainfall and seepage flow; the results are part of a current research project on rainfall infiltration. A three-phase coupled infiltration-deformation method for unsaturated soil was used for the numerical analysis. The effects of the water permeability and horizontal drainage on the distribution of seepage flow velocities, saturation, and generation of deformations for an unsaturated layered embankment were investigated. The results show that the generation of deformation on the embankment surface highly depends on the water permeability of the soil. In addition, through horizontal drainage simulations, the advantage of this type of solution for decreasing the pore water pressures on the back of the slope embankment, thus avoiding local failure (erosion, is shown.Este artículo presenta una aplicación para el análisis de estructuras compuestas por suelos parcialmente saturados que están sometidas al efecto de la lluvia y la infiltración; los resultados hacen parte de una investigación en curso relacionada con infiltración de aguas lluvias. Para los análisis numéricos se utilizó un método trifásico acoplado de infiltración-deformación. Se investigaron los efectos que tienen la permeabilidad y el drenaje lateral en la distribución de los vectores de velocidad de infiltración, la saturación y la generación de deformaciones para un terraplén estratificado y parcialmente saturado. Los resultados muestran que la generación de deformación en el talud del terraplén depende, en gran parte, de la permeabilidad del suelo. Adicionalmente, por medio de simulación de drenes horizontales, se muestra la ventaja de este tipo de solución para disminuir las presiones de poros internas en el talud del terraplén, evitando la falla local (erosión.

  10. Changes in contaminant composition at landfill sites. (9). ; Application of soil covering to treatment of alkaline seepage water. Umetate ni okeru odaku seibun no doko. (9). ; Alkali sei shinsutsueki no gaido shori

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Y; Sugai, T; Masuda, T; Watanabe, Y; Kobayashi, S [Saitama Institute of Environmental Pollution, Saitama (Japan)

    1990-10-29

    Recently, alkaline seepage water has been found in many landfill sites. Strong alkaline seepage water results from the use of alkaline agents, such as quicklime and slaked lime, for water removal from waste. In the present report, the neutralizing ability of different types of soil is studied to provide a method to neutralize seepage water by using soil covering at landfill sites. Results show that clay contained in soil is playing a major role in neutralizing alkaline seepage penetrating the soil. Clay generally has negative electric charges, suggesting that positive ions in alkaline water is neutralized after being replaced by hydrogen ions. Another major factor is the carbonate ion and carbon dioxide existing in soil, which precipitate and solidify calcium hydroxide as calcium carbonate to achieve neutralization. Investigations indicate that top soil comprising volcanic ash is useful as material for soil covering. 2 figs., 5 tabs.

  11. Silage seepage and water protection. Production and recovery of silage seepage from animal feed and biomass for biogas plants. 7. ed.; Silagesickersaft und Gewaesserschutz. Anfall und Verwertung von Silagesickersaft aus Futtermitteln und Biomasse fuer Biogasanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Spiekers, Hubert [Bayerische Landesanstalt fuer Landwirtschaft (LfL), Freising-Weihenstephan (Germany); Attenberger, Erwin [Bayerisches Landesamt fuer Umwelt, Augsburg (Germany)

    2012-11-15

    The production of silage is now standard and an important basis for a successful milk and beef production. Silage is also needed in agricultural biogas plants as a substrate for energy production. This publication is intended to serve agriculture as a source of information and guidance document for the construction and operation of silos and the administration as an orientating work aid. The factors influencing the accumulation of silage seepage and the possibilities of prevention in silage and silage management are presented and evaluated from environmental and legal perspective. [German] Die Produktion von Silage ist heute Standard und eine wichtige Grundlage fuer eine erfolgreiche Milch- und Rindfleischerzeugung. Silage wird auch in landwirtschaftlichen Biogasanlagen als Substrat zur Energieerzeugung benoetigt. Die vorliegende Publikation soll der Landwirtschaft als Informationsquelle und Handlungsanleitung fuer den Bau und Betrieb von Siloanlagen und der Verwaltung als orientierende Arbeitshilfe dienen. Die Einflussgroessen auf den Anfall an Sickersaeften und die Moeglichkeiten der Vermeidung bei der Silierung und dem Silagemanagement werden dargestellt und aus umwelt- und rechtlicher Sicht bewertet.

  12. The influence of environmental factors and dredging on chironomid larval diversity in urban drainage systems in polders strongly influenced by seepage from large rivers

    DEFF Research Database (Denmark)

    Vermonden, K.; Brodersen, Klaus Peter; Jacobsen, Dean

    2011-01-01

    , in urban waters strongly influenced by seepage of large rivers. Chironomid assemblages were studied in urban surface-water systems (man-made drainage ditches) in polder areas along lowland reaches of the rivers Rhine-Meuse in The Netherlands. Multivariate analysis was used to identify the key environmental...... factors. Taxon richness, Shannon index (H'), rareness of species, and life-history strategies at urban locations were compared with available data from similar man-made water bodies in rural areas, and the effectiveness of dredging for restoring chironomid diversity in urban waters was tested. Three...... diversity of chironomid communities in urban waters affected by nutrient-rich seepage or inlet of river water...

  13. Correlation of Self Potential and Ground Magnetic Survey Techniques to Investigate Fluid Seepage in Archaeological site, Sungai Batu, Lembah Bujang, Kedah, Malaysia

    OpenAIRE

    Tajudeen O. Adeeko; Nordiana M. Muztaza; Taqiuddin M. Zakaria; Nurina Ismail

    2018-01-01

    One of the substantial of geophysics is to investigate the subsurface condition of the earth (groundwater) using appropriate geophysical techniques. In this research the correlation of self potential (SP) and ground magnetic methods was used to investigate fluid seepage in Archaeological site, Sungai Batu, Lembah Bujang, Kedah, Malaysia. Self-potential method was used to determine flow of water, and Ground magnetic method was used to find object that can influence the result of self potential...

  14. Chemical Properties of Pore Water and Sediment at Three Wetland Sites Near the F- and H-Area Seepage Basins, Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Friday, G.P.

    2001-05-15

    In 1980, vegetative stress and arboreal mortality in wetland plant communities down-gradient from the F- and H-Area seepage basins were detected using aerial imagery. By 1988, approximately six acres in H-Area and four acres in F-Area had been adversely impacted. Today, wetland plant communities have become well established at the H-Area tree-kill zone.

  15. Hydrocarbon Degradation in Caspian Sea Sediment Cores Subjected to Simulated Petroleum Seepage in a Newly Designed Sediment-Oil-Flow-Through System

    Directory of Open Access Journals (Sweden)

    Tina Treude

    2017-04-01

    Full Text Available The microbial community response to petroleum seepage was investigated in a whole round sediment core (16 cm length collected nearby natural hydrocarbon seepage structures in the Caspian Sea, using a newly developed Sediment-Oil-Flow-Through (SOFT system. Distinct redox zones established and migrated vertically in the core during the 190 days-long simulated petroleum seepage. Methanogenic petroleum degradation was indicated by an increase in methane concentration from 8 μM in an untreated core compared to 2300 μM in the lower sulfate-free zone of the SOFT core at the end of the experiment, accompanied by a respective decrease in the δ13C signal of methane from -33.7 to -49.5‰. The involvement of methanogens in petroleum degradation was further confirmed by methane production in enrichment cultures from SOFT sediment after the addition of hexadecane, methylnapthalene, toluene, and ethylbenzene. Petroleum degradation coupled to sulfate reduction was indicated by the increase of integrated sulfate reduction rates from 2.8 SO42-m-2 day-1 in untreated cores to 5.7 mmol SO42-m-2 day-1 in the SOFT core at the end of the experiment, accompanied by a respective accumulation of sulfide from 30 to 447 μM. Volatile hydrocarbons (C2–C6 n-alkanes passed through the methanogenic zone mostly unchanged and were depleted within the sulfate-reducing zone. The amount of heavier n-alkanes (C10–C38 decreased step-wise toward the top of the sediment core and a preferential degradation of shorter (C30 was seen during the seepage. This study illustrates, to the best of our knowledge, for the first time the development of methanogenic petroleum degradation and the succession of benthic microbial processes during petroleum passage in a whole round sediment core.

  16. Hydrocarbon Degradation in Caspian Sea Sediment Cores Subjected to Simulated Petroleum Seepage in a Newly Designed Sediment-Oil-Flow-Through System.

    Science.gov (United States)

    Mishra, Sonakshi; Wefers, Peggy; Schmidt, Mark; Knittel, Katrin; Krüger, Martin; Stagars, Marion H; Treude, Tina

    2017-01-01

    The microbial community response to petroleum seepage was investigated in a whole round sediment core (16 cm length) collected nearby natural hydrocarbon seepage structures in the Caspian Sea, using a newly developed Sediment-Oil-Flow-Through (SOFT) system. Distinct redox zones established and migrated vertically in the core during the 190 days-long simulated petroleum seepage. Methanogenic petroleum degradation was indicated by an increase in methane concentration from 8 μM in an untreated core compared to 2300 μM in the lower sulfate-free zone of the SOFT core at the end of the experiment, accompanied by a respective decrease in the δ 13 C signal of methane from -33.7 to -49.5‰. The involvement of methanogens in petroleum degradation was further confirmed by methane production in enrichment cultures from SOFT sediment after the addition of hexadecane, methylnapthalene, toluene, and ethylbenzene. Petroleum degradation coupled to sulfate reduction was indicated by the increase of integrated sulfate reduction rates from 2.8 SO 4 2- m -2 day -1 in untreated cores to 5.7 mmol SO 4 2- m -2 day -1 in the SOFT core at the end of the experiment, accompanied by a respective accumulation of sulfide from 30 to 447 μM. Volatile hydrocarbons (C2-C6 n -alkanes) passed through the methanogenic zone mostly unchanged and were depleted within the sulfate-reducing zone. The amount of heavier n -alkanes (C10-C38) decreased step-wise toward the top of the sediment core and a preferential degradation of shorter (C30) was seen during the seepage. This study illustrates, to the best of our knowledge, for the first time the development of methanogenic petroleum degradation and the succession of benthic microbial processes during petroleum passage in a whole round sediment core.

  17. Seepage safety monitoring model for an earth rock dam under influence of high-impact typhoons based on particle swarm optimization algorithm

    Directory of Open Access Journals (Sweden)

    Yan Xiang

    2017-01-01

    Full Text Available Extreme hydrological events induced by typhoons in reservoir areas have presented severe challenges to the safe operation of hydraulic structures. Based on analysis of the seepage characteristics of an earth rock dam, a novel seepage safety monitoring model was constructed in this study. The nonlinear influence processes of the antecedent reservoir water level and rainfall were assumed to follow normal distributions. The particle swarm optimization (PSO algorithm was used to optimize the model parameters so as to raise the fitting accuracy. In addition, a mutation factor was introduced to simulate the sudden increase in the piezometric level induced by short-duration heavy rainfall and the possible historical extreme reservoir water level during a typhoon. In order to verify the efficacy of this model, the earth rock dam of the Siminghu Reservoir was used as an example. The piezometric level at the SW1-2 measuring point during Typhoon Fitow in 2013 was fitted with the present model, and a corresponding theoretical expression was established. Comparison of fitting results of the piezometric level obtained from the present statistical model and traditional statistical model with monitored values during the typhoon shows that the present model has a higher fitting accuracy and can simulate the uprush feature of the seepage pressure during the typhoon perfectly.

  18. Vertical migration of fine-grained sediments from interior to surface of seabed driven by seepage flows-`sub-bottom sediment pump action'

    Science.gov (United States)

    Zhang, Shaotong; Jia, Yonggang; Wen, Mingzheng; Wang, Zhenhao; Zhang, Yaqi; Zhu, Chaoqi; Li, Bowen; Liu, Xiaolei

    2017-02-01

    A scientific hypothesis is proposed and preliminarily verified in this paper: under the driving of seepage flows, there might be a vertical migration of fine-grained soil particles from interior to surface of seabed, which is defined as `sub-bottom sediment pump action' in this paper. Field experiments were performed twice on the intertidal flat of the Yellow River delta to study this process via both trapping the pumped materials and recording the pore pressures in the substrate. Experimental results are quite interesting as we did observe yellow slurry which is mainly composed of fine-grained soil particles appearing on the seabed surface; seepage gradients were also detected in the intertidal flat, under the action of tides and small wind waves. Preliminary conclusions are that `sediment pump' occurs when seepage force exceeds a certain threshold: firstly, it is big enough to disconnect the soil particles from the soil skeleton; secondly, the degree of seabed fluidization or bioturbation is big enough to provide preferred paths for the detached materials to migrate upwards. Then they would be firstly pumped from interior to the surface of seabed and then easily re-suspended into overlying water column. Influential factors of `sediment pump' are determined as hydrodynamics (wave energy), degree of consolidation, index of bioturbation (permeability) and content of fine-grained materials (sedimentary age). This new perspective of `sediment pump' may provide some implications for the mechanism interpretation of several unclear geological phenomena in the Yellow River delta area.

  19. Underground Pumped Storage Hydropower using abandoned open pit mines: influence of groundwater seepage on the system efficiency

    Science.gov (United States)

    Pujades, Estanislao; Bodeux, Sarah; Orban, Philippe; Dassargues, Alain

    2016-04-01

    Pumped Storage Hydropower (PSH) plants can be used to manage the production of electrical energy according to the demand. These plants allow storing and generating electricity during low and high demand energy periods, respectively. Nevertheless, PSH plants require a determined topography because two reservoirs located at different heights are needed. At sites where PSH plants cannot be constructed due to topography requirements (flat regions), Underground Pumped Storage Hydropower (UPSH) plants can be used to adjust the electricity production. These plants consist in two reservoirs, the upper one is located at the surface (or at shallow depth) while the lower one is underground (or deeper). Abandoned open pit mines can be used as lower reservoirs but these are rarely isolated. As a consequence, UPSH plants will interact with surrounding aquifers exchanging groundwater. Groundwater seepage will modify hydraulic head inside the underground reservoir affecting global efficiency of the UPSH plant. The influence on the plant efficiency caused by the interaction between UPSH plants and aquifers will depend on the aquifer parameters, underground reservoir properties and pumping and injection characteristics. The alteration of the efficiency produced by the groundwater exchanges, which has not been previously considered, is now studied numerically. A set of numerical simulations are performed to establish in terms of efficiency the effects of groundwater exchanges and the optimum conditions to locate an UPSH plant.

  20. A GIS-based, confined aquifer, hypothetical model of ground-water seepage into a former mining open pit

    International Nuclear Information System (INIS)

    Salama, A; Negeed, E.R.

    2010-01-01

    Groundwater seepage into a former mining site in Egypt is proposed for simulation. This site was used for basalt extraction. After the mining activities had stopped a large open pit was left over and groundwater seeped into the pit forming a lake. The pit has a dimension of approximately 1200 x 600 x 30 m. Because of the lack of field data, several scenarios may be hypothesized to explain the filling of these open pits with water. In this paper, one of these scenarios is studied. It is suggested that this water comes from an underneath confined aquifer. Through fractures in the host rock, water seeped upwards into the open pit. To estimate the rate at which water seeps into the lake, numerical study based on the finite element method is performed. Firstly, geo-referencing of the site was performed using GIS. The boundary of the lake was then digitized and elevation contours was defined. These data was then imported into grid-builder software to generate a two-dimensional triangular mesh which was then used by hydro-geosphere software to build the three-dimensional mesh and solve the problem. It was found that the set of discrete fractures was insufficient to fill the lake in the time span that was actually elapsed to fill up the lake which is on the order of two to three years.

  1. Analysis of the Harmfulness of Water-Inrush from Coal Seam Floor Based on Seepage Instability Theory

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A theory of seepage instability was used to estimate the harmfulness of water-inrush from a coal seam floor in a particular coal mine of the Mining Group, Xuzhou.Based on the stratum column chart in this coal mine, the distribution of stress in mining floors when the long-wall mining was respectively pushed along to 100 m and to 150 m was simulated by using the numerical software (RFPA2D).The permeability parameters of the coal seam floor are described given the relationship between permeability parameters.Strain and the water-inrush-indices were calculated.The water-inrush-index was 67.2% when the working face was pushed to 100 m, showing that water-inrush is possible and it was 1630% when the working face was pushed to 150 m, showing that water-inrush is quite probable.The results show that as long-wall mining is pushed along, the failure zone is enlarged, the strain increased, and fissures developed correspondingly, resulting in the formation of water-inrush channels.Accompanied by the failure of the strata, the permeability increased exponentially.In contrast, the non-Darcy flow β factor and the acceleration coefficient decreased exponentially, while the increase in the water-inrush-index was nearly exponential and the harmfulness of water-inrush in the coal mine increased accordingly.

  2. Delineating a road-salt plume in lakebed sediments using electrical resistivity, piezometers, and seepage meters at Mirror Lake, New Hampshire, U.S.A

    Science.gov (United States)

    Toran, Laura; Johnson, Melanie; Nyquist, Jonathan E.; Rosenberry, Donald O.

    2010-01-01

    Electrical-resistivity surveys, seepage meter measurements, and drive-point piezometers have been used to characterize chloride-enriched groundwater in lakebed sediments of Mirror Lake, New Hampshire, U.S.A. A combination of bottom-cable and floating-cable electrical-resistivity surveys identified a conductive zone (ohm-m)">(ohm-m)(ohm-m) overlying resistive bedrock (ohm-m)">(ohm-m)(ohm-m)beneath the lake. Shallow pore-water samples from piezometers in lakebed sediments have chloride concentrations of 200–1800μeq/liter">200–1800μeq/liter200–1800μeq/liter, and lake water has a chloride concentration of 104μeq/liter">104μeq/liter104μeq/liter. The extent of the plume was estimated and mapped using resistivity and water-sample data. The plume (20×35m">20×35m20×35m wide and at least 3m">3m3m thick) extends nearly the full length and width of a small inlet, overlying the top of a basin formed by the bedrock. It would not have been possible to mapthe plume's shape without the resistivity surveys because wells provided only limited coverage. Seepage meters were installed approximately 40m">40m40m from the mouth of a small stream discharging at the head of the inlet in an area where the resistivity data indicated lake sediments are thin. These meters recorded in-seepage of chloride-enriched groundwater at rates similar to those observed closer to shore, which was unexpected because seepage usually declines away from shore. Although the concentration of road salt in the northeast inlet stream is declining, the plume map and seepage data indicate the groundwater contribution of road salt to the lake is not declining. The findings demonstrate the benefit of combining geophysical and hydrologic data to characterize discharge of a plume beneath Mirror Lake. The extent of the plume in groundwater beneath the lake and stream indicate there will likely be a long-term source of chloride to the lake from groundwater.

  3. A steady state solution for ditch drainage problem with special reference to seepage face and unsaturated zone flow contribution: Derivation of a new drainage spacing eqaution

    Science.gov (United States)

    Yousfi, Ammar; Mechergui, Mohammed

    2016-04-01

    The seepage face is an important feature of the drainage process when recharge occurs to a permeable region with lateral outlets. Examples of the formation of a seepage face above the downstream water level include agricultural land drained by ditches. Flow problem to these drains has been investigated extensively by many researchers (e.g. Rubin, 1968; Hornberger et al. 1969; Verma and Brutsaert, 1970; Gureghian and Youngs, 1975; Vauclin et al., 1975; Skaggs and Tang, 1976; Youngs, 1990; Gureghian, 1981; Dere, 2000; Rushton and Youngs, 2010; Youngs, 2012; Castro-Orgaz et al., 2012) and may be tackled either using variably saturated flow models, or the complete 2-D solution of Laplace equation, or using the Dupuit-Forchheimer approximation; the most widely accepted methods to obtain analytical solutions for unconfined drainage problems. However, the investigation reported by Clement et al. (1996) suggest that accounting for the seepage face alone, as in the fully saturated flow model, does not improve the discharge estimate because of disregarding flow the unsaturated zone flow contribution. This assumption can induce errors in the location of the water table surface and results in an underestimation of the seepage face and the net discharge (e.g. Skaggs and Tang, 1976; Vauclin et al., 1979; Clement et al., 1996). The importance of the flow in the unsaturated zone has been highlighted by many authors on the basis of laboratory experiments and/or numerical experimentations (e.g. Rubin, 1968; Verma and Brutsaert, 1970; Todsen, 1973; Vauclin et al., 1979; Ahmad et al., 1993; Anguela, 2004; Luthin and Day, 1955; Shamsai and Narasimhan, 1991; Wise et al., 1994; Clement et al., 1996; Boufadel et al., 1999; Romano et al., 1999; Kao et al., 2001; Kao, 2002). These studies demonstrate the failure of fully saturated flow models and suggested that the error made when using these models not only depends on soil properties but also on the infiltration rate as reported by Kao et

  4. Assessment of heavy metal tolerance and hexavalent chromium reducing potential of Corynebacterium paurometabolum SKPD 1204 isolated from chromite mine seepage

    Directory of Open Access Journals (Sweden)

    Amal Kanti Paul

    2016-07-01

    Full Text Available Corynebacterium paurometabolum SKPD 1204 (MTCC 8730, a heavy metal tolerant and chromate reducing bacterium isolated from chromite mine seepage of Odisha, India has been evaluated for chromate reduction under batch culture. The isolate was found to tolerate metals like Co(II, Cu(II, Ni(II, Mn(II, Zn(II, Fe(III and Hg(II along with Cr(VI and was resistant to different antibiotics as evaluated by disc-diffusion method. The isolate, SKPD 1204 was found to reduce 62.5% of 2 mM Cr(VI in Vogel Bonner broth within 8 days of incubation. Chromate reduction capability of SKPD 1204 decreased with increase in Cr(VI concentration, but increased with increase in cell density and attained its maximum at 1010 cells/mL. Chromate reducing efficiency of SKPD 1204 was promoted in the presence of glycerol and glucose, while the highest reduction was recorded at pH 7.0 and 35 °C. The reduction process was inhibited by divalent cations Zn(II, Cd(II, Cu(II, and Ni(II, but not by Mn(II. Anions like nitrate, phosphate, sulphate and sulphite was found to be inhibitory to the process of Cr(VI reduction. Similarly, sodium fluoride, carbonyl cyanide m-chlorophenylhydrazone, sodium azide and N, N,-Di cyclohexyl carboiimide were inhibitory to chromate reduction, while 2,4-dinitrophenol appeared to be neither promotive nor inhibitory to the process.

  5. Readiness review plan for the in situ vitrification demonstration of Seepage Pit 1 in Waste Area Grouping 7

    International Nuclear Information System (INIS)

    1995-05-01

    A treatability study is planned that encompasses the application of in situ vitrification (ISV) to at least two segments of the Oak Ridge National Laboratory Seepage Pit I during the third quarter of fiscal year 1995. Before the treatability study can be initiated, the proposed activity must be subjected to an Operational Readiness Review (ORR). ORR is a structured methodology of determining readiness to proceed as outlined in Martin Marietta Energy Systems, Inc. (Energy Systems), Environmental Restoration Waste Management Procedure ER/C-P1610, which provides Energy Systems organizations assurance that the work to be performed is consistent with management's expectations and that the subject activity is ready to proceed safely. The readiness review plan provides details of the review plan overview and the scope of work to be performed. The plan also identifies individuals and position responsibilities for implementing the activity. The management appointed Readiness Review Board (RRB) has been identified. A Field Readiness Review Team (FRT), a management appointed multidisciplinary group, has been established (1) to evaluate the ISV treatability study, (2) to identify and assemble supporting objective evidences of the readiness to proceed, and (3) to assist the team leader in presenting the evidences to the RRB. A major component of RRB is the formulation of readiness review criteria months before the operation. A comprehensive readiness review tree (a positive logic tree) is included, which identifies the activities required for the development of the readiness criteria. The readiness review tree serves as a tool to prevent the omission of an item that could affect system performance. All deficiencies identified in the review will be determined as prestart findings and must be resolved before the project is permitted to proceed. The final approval of the readiness to proceed will be the decision of RRB

  6. Geochemical evolution of highly alkaline and saline tank waste plumes during seepage through vadose zone sediments

    International Nuclear Information System (INIS)

    Wan, Jiamin; Tokunaga, Tetsu K.; Larsen, Joern T.; Serne, R. JEFFREY

    2004-01-01

    Leakage of highly saline and alkaline radioactive waste from storage tanks into underlying sediments is a serious environmental problem at the Hanford Site in Washington State. This study focuses on geochemical evolution of tank waste plumes resulting from interactions between the waste solution and sediment. A synthetic tank waste solution was infused into unsaturated Hanford sediment columns (0.2, 0.6, and 2 m) maintained at 70C to simulate the field contamination process. Spatially and temporally resolved geochemical profiles of the waste plume were obtained. Thorough OH neutralization (from an initial pH 14 down to 6.3) was observed. Three broad zones of pore solutions were identified to categorize the dominant geochemical reactions: the silicate dissolution zone (pH > 10), pH-neutralized zone (pH 10 to 6.5), and displaced native sediment pore water (pH 6.5 to 8). Elevated concentrations of Si, Fe, and K in plume fluids and their depleted concentrations in plume sediments reflected dissolution of primary minerals within the silicate dissolution zone. The very high Na concentrations in the waste solution resulted in rapid and complete cation exchange, reflected in high concentrations of Ca and Mg at the plume front. The plume-sediment profiles also showed deposition of hydrated solids and carbonates. Fair correspondence was obtained between these results and analyses of field borehole samples from a waste plume at the Hanford Site. Results of this study provide a well-defined framework for understanding waste plumes in the more complex field setting and for understanding geochemical factors controlling transport of contaminant species carried in waste solutions that leaked from single-shell storage tanks in the past

  7. Control system design for concrete irrigation channels

    OpenAIRE

    Strecker, Timm; Aamo, Ole Morten; Cantoni, Michael

    2017-01-01

    Concrete channels find use at the periphery of irrigation networks, for expansion and to replace small earthen channels given the relative ease of maintenance and elimination of seepage losses. In design, it is important to account for control system performance when dimensioning the channel infrastructure. In this paper, the design of a distributed controller is investigated in terms managing water-levels, and thereby the depth profile (i.e., amount of concrete) needed to support peak flow l...

  8. Removal and co-transport of Zn, As(V), and Cd during leachate seepage through downgradient mine soils: A batch sorption and column study

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Juhee [Division of Environmental Science and Ecological Engineering, Korea University, Seoul (Korea, Republic of); Nam, Seung Mo [Korea Testing and Research Institute, Gyeonggi-do (Korea, Republic of); Hyun, Seunghun, E-mail: soilhyun@korea.ac.kr [Division of Environmental Science and Ecological Engineering, Korea University, Seoul (Korea, Republic of)

    2016-05-01

    The removal of Zn, As(V), and Cd during the leachate seepage process was measured in single, binary, and ternary solute systems by batch sorption and 1-D column flow experiments, followed by a sequential extraction procedure (SEP). In single-solute systems, sorption (K{sub d}{sup ⁎}) occurred in the order of As(V) > Zn ≫ Cd, and this sequence did not change in the presence of other solutes. In multi-solute systems, the sorption of Zn (~ 20%) and Cd (~ 27%) was enhanced by As(V), while Zn and Cd suppressed the sorption of each other. In all cases, As(V) sorption was not affected by the cations, indicating that As(V) is prioritized by sorption sites to a much greater degree than Zn and Cd. Element retention by column soils was strongly correlated (r{sup 2} = 0.77) with K{sub d}{sup ⁎}. Across column segments, mass retention was in the order of inlet (36–54%) > middle (26–35%) > outlet (20–31%), except for Cd in the Zn–Cd binary system. The result of SEP revealed that most of the retained Cd (98–99%) and Zn (56–71%) was in the labile fraction (e.g., the sum of F1 and F2) while only 9–12% of As(V) was labile and most (> 55%) was specifically adsorbed to Fe/Al oxides. Plots of the labile fraction (f{sub labile}) and the fast sorption fraction (f{sub fast}) suggested that the kinetics of specific As(V) sorption occur rapidly (f{sub fast} > f{sub labile}), whereas labile Zn and Cd sorption occurs slowly (f{sub labile} > f{sub fast}), indicating the occurrence of kinetically limited labile sorption sites, probably due to Zn–Cd competition. In conclusion, the element leaching potential of mine leachate can be greatly attenuated during downgradient soil seepage. However, when assessing the soil attenuation process, the impact of sorption competitors and the lability of adsorbed elements should first be considered. - Highlights: • During soil seepage, element leaching potential is reduced as As(V) > Zn > Cd. • Element removal during leachate seepage

  9. Final Report for the Demonstration of Plasma In-situ Vitrification at the 904-65G K-Reactor Seepage Basin

    Energy Technology Data Exchange (ETDEWEB)

    Blundy, R.F. [Westinghouse Savannah River Company, AIKEN, SC (United States); Zionkowki, P.G.

    1997-12-22

    The In-situ Vitrification (ISV) process potentially offers the most stable waste-form for containment of radiologically contaminated soils while minimizing personnel contamination. This is a problem that is extensive, and at the same time unique, to the US Department of Energy`s (DOE) Weapons Complex. An earlier ISV process utilized joule heating of the soil to generate the subsurface molten glass product. However previous test work has indicated that the Savannah river Site soils (SRS) may not be entirely suitable for vitrification by joule heating due to their highly refractory nature. The concept of utilizing a plasma torch for soil remediation by in-situ vitrification has recently been developed, and laboratory test work on a 100 kW unit has indicated a potentially successful application with SRS soils. The Environmental Restoration Division (ERD) of Westinghouse Savannah River Company (WSRC) conducted the first field scale demonstration of this process at the (904-65G) K-Reactor Seepage Basin in October 1996 with the intention of determining the applicability and economics of the process for remediation of a SRS radioactive seepage basin. The demonstration was successful in completing three vitrification runs, including two consecutive runs that fused together adjacent columns of glass to form a continuous monolith. This report describes the demonstration, documents the engineering data that was obtained, summarizes the process economics and makes recommendations for future development of the process and equipment.

  10. Final Report for the Demonstration of Plasma In-situ Vitrification at the 904-65G K-Reactor Seepage Basin

    International Nuclear Information System (INIS)

    Blundy, R.F.; Zionkowki, P.G.

    1997-01-01

    The In-situ Vitrification (ISV) process potentially offers the most stable waste-form for containment of radiologically contaminated soils while minimizing personnel contamination. This is a problem that is extensive, and at the same time unique, to the US Department of Energy's (DOE) Weapons Complex. An earlier ISV process utilized joule heating of the soil to generate the subsurface molten glass product. However previous test work has indicated that the Savannah river Site soils (SRS) may not be entirely suitable for vitrification by joule heating due to their highly refractory nature. The concept of utilizing a plasma torch for soil remediation by in-situ vitrification has recently been developed, and laboratory test work on a 100 kW unit has indicated a potentially successful application with SRS soils. The Environmental Restoration Division (ERD) of Westinghouse Savannah River Company (WSRC) conducted the first field scale demonstration of this process at the (904-65G) K-Reactor Seepage Basin in October 1996 with the intention of determining the applicability and economics of the process for remediation of a SRS radioactive seepage basin. The demonstration was successful in completing three vitrification runs, including two consecutive runs that fused together adjacent columns of glass to form a continuous monolith. This report describes the demonstration, documents the engineering data that was obtained, summarizes the process economics and makes recommendations for future development of the process and equipment

  11. Seepage water balance of the mixed tailings site IAA Dresden-Coschuetz/Gittersee by means of the two-dimensional model BOWAHALD

    International Nuclear Information System (INIS)

    Helling, C.; Dunger, V.

    1998-01-01

    Uranium mill tailings were deposited in a section of the Kaitzbach valley which was closed by tow dams. The Kaitzbach creek was cased in the area. After the uranium ore processing was finish the dump was used as a municipal waste deposit. The water balance of the IAA Dresden-Coschuetz/Gittersee was only estimated in former works. In this case a modeling of the water balance is very useful in regard to a process orientated quantification of the contaminant transport within the dump as well as into the underground. Simplified and rough estimating methods such as the runoff coefficient concept or rating curves are less suited because of the complexity of the processes. That's why we tried to get a runoff and seepage water balance by means of a two-dimensional water balance model for waste heaps called BOWAHALD. The tailings site IAA Dresden-Coschuetz/Gittersee was divited into several hydrotopes (areas with similar hydrological characteristics). Different exposition and slopes as well as different soils and vegetation were taken into account. The parameter verification is possible due to comparison with available data such hydrochemical and isotopic analysis of seepage water and groundwater. (orig.)

  12. Natural Offshore Oil Seepage and Related Tarball Accumulation on the California Coastline - Santa Barbara Channel and the Southern Santa Maria Basin: Source Identification and Inventory

    Science.gov (United States)

    Lorenson, T.D.; Hostettler, Frances D.; Rosenbauer, Robert J.; Peters, Kenneth E.; Dougherty, Jennifer A.; Kvenvolden, Keith A.; Gutmacher, Christina E.; Wong, Florence L.; Normark, William R.

    2009-01-01

    Oil spillage from natural sources is very common in the waters of southern California. Active oil extraction and shipping is occurring concurrently within the region and it is of great interest to resource managers to be able to distinguish between natural seepage and anthropogenic oil spillage. The major goal of this study was to establish the geologic setting, sources, and ultimate dispersal of natural oil seeps in the offshore southern Santa Maria Basin and Santa Barbara Basins. Our surveys focused on likely areas of hydrocarbon seepage that are known to occur between Point Arguello and Ventura, California. Our approach was to 1) document the locations and geochemically fingerprint natural seep oils or tar; 2) geochemically fingerprint coastal tar residues and potential tar sources in this region, both onshore and offshore; 3) establish chemical correlations between offshore active seeps and coastal residues thus linking seep sources to oil residues; 4) measure the rate of natural seepage of individual seeps and attempt to assess regional natural oil and gas seepage rates; and 5) interpret the petroleum system history for the natural seeps. To document the location of sub-sea oil seeps, we first looked into previous studies within and near our survey area. We measured the concentration of methane gas in the water column in areas of reported seepage and found numerous gas plumes and measured high concentrations of methane in the water column. The result of this work showed that the seeps were widely distributed between Point Conception east to the vicinity of Coal Oil Point, and that they by in large occur within the 3-mile limit of California State waters. Subsequent cruises used sidescan and high resolution seismic to map the seafloor, from just south of Point Arguello, east to near Gaviota, California. The results of the methane survey guided the exploration of the area west of Point Conception east to Gaviota using a combination of seismic instruments. The

  13. Gas seepage from Tokamachi mud volcanoes, onshore Niigata Basin (Japan): Origin, post-genetic alterations and CH{sub 4}-CO{sub 2} fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Etiope, G., E-mail: etiope@ingv.it [Istituto Nazionale di Geofisica e Vulcanologia, via V. Murata 605, 00143 Roma (Italy); Nakada, R. [Dept. of Earth and Planetary Systems Science, Graduate School of Science, Hiroshima University (Japan); Tanaka, K. [Graduate School of Science and Engineering, Yamaguchi University (Japan); Yoshida, N. [Dept. of Environmental Chemistry and Engineering, Tokyo Institute of Technology (Japan)

    2011-03-15

    Research highlights: {yields} Tokamachi gas shows signals of subsurface hydrocarbon biodegradation. {yields} Hydrocarbon molecular fractionation depends on gas flux. {yields} Substantial gas emission from mud volcanoes is from invisible diffuse seepage. {yields} Global mud volcano methane emission is likely higher than 10 Mt a{sup -1}. - Abstract: Methane and CO{sub 2} emissions from the two most active mud volcanoes in central Japan, Murono and Kamou (Tokamachi City, Niigata Basin), were measured in from both craters or vents (macro-seepage) and invisible exhalation from the soil (mini- and microseepage). Molecular and isotopic compositions of the released gases were also determined. Gas is thermogenic ({delta}{sup 13}C{sub CH4} from -32.9 per mille to -36.2 per mille), likely associated with oil, and enrichments of {sup 13}C in CO{sub 2} ({delta}{sup 13}C{sub CO2} up to +28.3 per mille) and propane ({delta}{sup 13}C{sub C3H8} up to -8.6 per mille) suggest subsurface petroleum biodegradation. Gas source and post-genetic alteration processes did not change from 2004 to 2010. Methane flux ranged within the orders of magnitude of 10{sup 1}-10{sup 4} g m{sup -2} d{sup -1} in macro-seeps, and up to 446 g m{sup -2} d{sup -1} from diffuse seepage. Positive CH{sub 4} fluxes from dry soil were widespread throughout the investigated areas. Total CH{sub 4} emission from Murono and Kamou were estimated to be at least 20 and 3.7 ton a{sup -1}, respectively, of which more than half was from invisible seepage surrounding the mud volcano vents. At the macro-seeps, CO{sub 2} fluxes were directly proportional to CH{sub 4} fluxes, and the volumetric ratios between CH{sub 4} flux and CO{sub 2} flux were similar to the compositional CH{sub 4}/CO{sub 2} volume ratio. Macro-seep flux data, in addition to those of other 13 mud volcanoes, supported the hypothesis that molecular fractionation (increase of the 'Bernard ratio' C{sub 1}/(C{sub 2} + C{sub 3})) is inversely

  14. Authigenic carbonates from newly discovered active cold seeps on the northwestern slope of the South China Sea: Constraints on fluid sources, formation environments, and seepage dynamics

    Science.gov (United States)

    Liang, Qianyong; Hu, Yu; Feng, Dong; Peckmann, Jörn; Chen, Linying; Yang, Shengxiong; Liang, Jinqiang; Tao, Jun; Chen, Duofu

    2017-06-01

    Authigenic carbonates recovered from two newly discovered active cold seeps on the northwestern slope of the South China Sea have been studied using petrography, mineralogy, stable carbon and oxygen isotopic, as well as trace element compositions, together with AMS 14C ages of shells of seep-dwelling bivalves to unravel fluid sources, formation conditions, and seepage dynamics. The two seeps (ROV1 and ROV2), referred to as 'Haima seeps' herein, are approximately 7 kilometers apart, and are typified by abundant carbonate rocks represented bycrusts and nodules. Aragonite and high-Mg calcite are the main carbonate minerals. Based on low δ13Ccarbonate values ranging from -43.0‰ to -27.5‰ (V-PDB) methane is apparently the predominant carbon source of seep carbonates. The corresponding δ18O values, varying from 2.5‰ to 5.8‰ (V-PDB), mostly are higher than calculated values representing precipitation in equilibrium with seawater (2.5‰ to 3.8‰), which probably reflects past destabilization of locally abundant gas hydrates. In addition, we found that carbonates with bivalve shells are generally aragonite-dominated, and bear no barium enrichment but uranium enrichments, reflecting shallow formation depths close to the seafloor. In contrast, carbonate crusts without bivalve shells and nodules contain more calcite, and are characterized by major molybdenum enrichment and different degrees of barium enrichment, agreeing with precipitation at greater depth under strictly anoxic conditions. AMS 14C ages suggest that a major episode of carbonate precipitation occurred between 6.1 ka and 5.1 ka BP at the Haima seeps, followed by a possibly subordinate episode from approximately 3.9 ka to 2.9 ka BP. The common occurrence of dead bivalves at both sites indicates that chemosynthesis-based communities flourished to a greater extent in the past, probably reflecting a decline of seepage activity in recent times. Overall, these results confirm that authigenic carbonates from

  15. Characterization of Preferential Ground-Water Seepage From a Chlorinated Hydrocarbon-Contaminated Aquifer to West Branch Canal Creek, Aberdeen Proving Ground, Maryland, 2002-04

    Science.gov (United States)

    Majcher, Emily H.; Phelan, Daniel J.; Lorah, Michelle M.; McGinty, Angela L.

    2007-01-01

    Wetlands act as natural transition zones between ground water and surface water, characterized by the complex interdependency of hydrology, chemical and physical properties, and biotic effects. Although field and laboratory demonstrations have shown efficient natural attenuation processes in the non-seep wetland areas and stream bottom sediments of West Branch Canal Creek, chlorinated volatile organic compounds are present in a freshwater tidal creek at Aberdeen Proving Ground, Maryland. Volatile organic compound concentrations in surface water indicate that in some areas of the wetland, preferential flow paths or seeps allow transport of organic compounds from the contaminated sand aquifer to the overlying surface water without undergoing natural attenuation. From 2002 through 2004, the U.S. Geological Survey, in cooperation with the Environmental Conservation and Restoration Division of the U.S. Army Garrison, Aberdeen Proving Ground, characterized preferential ground-water seepage as part of an ongoing investigation of contaminant distribution and natural attenuation processes in wetlands at this site. Seep areas were discrete and spatially consistent during thermal infrared surveys in 2002, 2003, and 2004 throughout West Branch Canal Creek wetlands. In these seep areas, temperature measurements in shallow pore water and sediment more closely resembled those in ground water than those in nearby surface water. Generally, pore water in seep areas contaminated with chlorinated volatile organic compounds had lower methane and greater volatile organic compound concentrations than pore water in non-seep wetland sediments. The volatile organic compounds detected in shallow pore water in seeps were spatially similar to the dominant volatile organic compounds in the underlying Canal Creek aquifer, with both parent and anaerobic daughter compounds detected. Seep locations characterized as focused seeps contained the highest concentrations of chlorinated parent compounds

  16. Multitracer studies for determining seepage water and anion movement in four types of soil using lysimeters with different functions and designs

    International Nuclear Information System (INIS)

    Knappe, S.; Russow, R.

    1999-01-01

    Lysimeter experiments based on the stable isotope tracer technique are a suitable means of examining the complex relationships governing water and material transport processes in the soil. The present paper reports on experiments in which water and nitrate movement was traced directly by means of lysimeters placed at different depths and using deuterium water and [ 15 N]N-nitrate for pulse marking. Extensive investigations carried out during the dissection of soil monoliths that had been used for many years in lysimeters offered an opportunity for stable isotope tracer studies aimed at determining seepage water and anion movement in undisturbed soils and, after dismantling the lysimeters, conducting soil analyses to find out more about the fate of nonpercolated tracers at various soil depths. Following other authors, bromide anions were additionally used as conservative tracers [de

  17. Site Safety and Health Plan (Phase 3) for the treatability study for in situ vitrification at Seepage Pit 1 in Waste Area Grouping 7, Oak Ridge National Laboratory, Oak Ridge, TN

    Energy Technology Data Exchange (ETDEWEB)

    Spalding, B.P.; Naney, M.T.

    1995-06-01

    This plan is to be implemented for Phase III ISV operations and post operations sampling. Two previous project phases involving site characterization have been completed and required their own site specific health and safety plans. Project activities will take place at Seepage Pit 1 in Waste Area Grouping 7 at ORNL, Oak Ridge, Tennessee. Purpose of this document is to establish standard health and safety procedures for ORNL project personnel and contractor employees in performance of this work. Site activities shall be performed in accordance with Energy Systems safety and health policies and procedures, DOE orders, Occupational Safety and Health Administration Standards 29 CFR Part 1910 and 1926; applicable United States Environmental Protection Agency requirements; and consensus standards. Where the word ``shall`` is used, the provisions of this plan are mandatory. Specific requirements of regulations and orders have been incorporated into this plan in accordance with applicability. Included from 29 CFR are 1910.120 Hazardous Waste Operations and Emergency Response; 1910.146, Permit Required - Confined Space; 1910.1200, Hazard Communication; DOE Orders requirements of 5480.4, Environmental Protection, Safety and Health Protection Standards; 5480.11, Radiation Protection; and N5480.6, Radiological Control Manual. In addition, guidance and policy will be followed as described in the Environmental Restoration Program Health and Safety Plan. The levels of personal protection and the procedures specified in this plan are based on the best information available from reference documents and site characterization data. Therefore, these recommendations represent the minimum health and safety requirements to be observed by all personnel engaged in this project.

  18. Site Safety and Health Plan (Phase 3) for the treatability study for in situ vitrification at Seepage Pit 1 in Waste Area Grouping 7, Oak Ridge National Laboratory, Oak Ridge, TN

    International Nuclear Information System (INIS)

    Spalding, B.P.; Naney, M.T.

    1995-06-01

    This plan is to be implemented for Phase III ISV operations and post operations sampling. Two previous project phases involving site characterization have been completed and required their own site specific health and safety plans. Project activities will take place at Seepage Pit 1 in Waste Area Grouping 7 at ORNL, Oak Ridge, Tennessee. Purpose of this document is to establish standard health and safety procedures for ORNL project personnel and contractor employees in performance of this work. Site activities shall be performed in accordance with Energy Systems safety and health policies and procedures, DOE orders, Occupational Safety and Health Administration Standards 29 CFR Part 1910 and 1926; applicable United States Environmental Protection Agency requirements; and consensus standards. Where the word ''shall'' is used, the provisions of this plan are mandatory. Specific requirements of regulations and orders have been incorporated into this plan in accordance with applicability. Included from 29 CFR are 1910.120 Hazardous Waste Operations and Emergency Response; 1910.146, Permit Required - Confined Space; 1910.1200, Hazard Communication; DOE Orders requirements of 5480.4, Environmental Protection, Safety and Health Protection Standards; 5480.11, Radiation Protection; and N5480.6, Radiological Control Manual. In addition, guidance and policy will be followed as described in the Environmental Restoration Program Health and Safety Plan. The levels of personal protection and the procedures specified in this plan are based on the best information available from reference documents and site characterization data. Therefore, these recommendations represent the minimum health and safety requirements to be observed by all personnel engaged in this project

  19. 4-D imaging of seepage in earthen embankments with time-lapse inversion of self-potential data constrained by acoustic emissions localization

    Science.gov (United States)

    Rittgers, J. B.; Revil, A.; Planes, T.; Mooney, M. A.; Koelewijn, A. R.

    2015-02-01

    New methods are required to combine the information contained in the passive electrical and seismic signals to detect, localize and monitor hydromechanical disturbances in porous media. We propose a field experiment showing how passive seismic and electrical data can be combined together to detect a preferential flow path associated with internal erosion in a Earth dam. Continuous passive seismic and electrical (self-potential) monitoring data were recorded during a 7-d full-scale levee (earthen embankment) failure test, conducted in Booneschans, Netherlands in 2012. Spatially coherent acoustic emissions events and the development of a self-potential anomaly, associated with induced concentrated seepage and internal erosion phenomena, were identified and imaged near the downstream toe of the embankment, in an area that subsequently developed a series of concentrated water flows and sand boils, and where liquefaction of the embankment toe eventually developed. We present a new 4-D grid-search algorithm for acoustic emissions localization in both time and space, and the application of the localization results to add spatially varying constraints to time-lapse 3-D modelling of self-potential data in the terms of source current localization. Seismic signal localization results are utilized to build a set of time-invariant yet spatially varying model weights used for the inversion of the self-potential data. Results from the combination of these two passive techniques show results that are more consistent in terms of focused ground water flow with respect to visual observation on the embankment. This approach to geophysical monitoring of earthen embankments provides an improved approach for early detection and imaging of the development of embankment defects associated with concentrated seepage and internal erosion phenomena. The same approach can be used to detect various types of hydromechanical disturbances at larger scales.

  20. Effect of pore structure on the seepage characteristics of tight sandstone reservoirs: A case study of Upper Jurassic Penglaizhen Fm reservoirs in the western Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Liqiang Sima

    2017-01-01

    Full Text Available Tight sandstone reservoirs are characterized by complex pore structures and strong heterogeneity, and their seepage characteristics are much different from those of conventional sandstone reservoirs. In this paper, the tight sandstone reservoirs of Upper Jurassic Penglaizhen Fm in western Sichuan Basin were analyzed in terms of their pore structures by using the data about physical property, mercury injection and nuclear magnetic resonance (NMR tests. Then, the seepage characteristics and the gas–water two-phase migration mechanisms and distribution of tight sandstone reservoirs with different types of pore structures in the process of hydrocarbon accumulation and development were simulated by combining the relative permeability experiment with the visual microscopic displacement model. It is shown that crotch-like viscous fingering occurs in the process of gas front advancing in reservoirs with different pore structures. The better the pore structure is, the lower the irreducible water saturation is; the higher the gas-phase relative permeability of irreducible water is, the more easily the gas reservoir can be developed. At the late stage of development, the residual gas is sealed in reservoirs in the forms of bypass, cutoff and dead end. In various reservoirs, the interference between gas and water is stronger, so gas and water tends to be produced simultaneously. The sealed gas may reduce the production rate of gas wells significantly, and the existence of water phase may reduce the gas permeability greatly; consequently, the water-bearing low-permeability tight sandstone gas reservoirs reveal serious water production, highly-difficult development and low-recovery percentage at the late stage, which have adverse impacts on the effective production and development of gas wells.

  1. Reduced gas seepages in serpentinized peridotite complexes: Evidences for multiple origins of the H2-CH4-N2 gas mixtures

    Science.gov (United States)

    Deville, E.; Vacquand, C.; Beaumont, V.; Francois, G.; Sissmann, O.; Pillot, D.; Arcilla, C. A.; Prinzhofer, A.

    2017-12-01

    A comparative study of reduced gas seepages associated to serpentinized ultrabasic rocks was conducted in the ophiolitic complexes of Oman, the Philippines, Turkey and New Caledonia. This study is based on analyzes of the gas chemical composition, noble gases contents, and stable isotopes of carbon, hydrogen and nitrogen. These gas seepages are mostly made of mixtures of three main components which are H2, CH4 and N2 in various proportions. The relative contents of the three main gas components show 4 distinct families of gas mixtures (H2-rich, N2-rich, N2-H2-CH4 and H2-CH4). These families are interpreted as reflecting different zones of gas generation within or below the ophiolitic complexes. In the H2-rich family associated noble gases display signatures close to the value of air. In addition to the atmospheric component, mantle and crustal contributions are present in the N2-rich, N2-H2-CH4 and H2-CH4 families. H2-bearing gases are either associated to ultra-basic (pH 10-12) spring waters or they seep directly in fracture systems from the ophiolitic rocks. In ophiolitic contexts, ultrabasic rocks provide an adequate environment with available Fe2+ and high pH conditions that favor H2 production. CH4 is produced either directly by reaction of dissolved CO2 with basic-ultrabasic rocks during the serpentinization process or in a second step by H2-CO2 interaction. H2 is present in the gas when no more carbon is available in the system to generate CH4 (conditions of strong carbon restriction). The N2-rich family is associated with relatively high contents of crustal 4He. In this family N2 is interpreted as issued mainly from sediments located below the ophiolitic units.

  2. Control of groundwater in surface mining

    Science.gov (United States)

    Brawner, C. O.

    1982-03-01

    The presence of groundwater in surface mining operations often creates serious problems. The most important is generally a reduction in stability of the pit slopes. This is caused by pore water pressures and hydrodynamic shock due to blasting which reduce the shear strength and seepage pressures, water in tension cracks and increased unit weight which increase the shear stress. Groundwater and seepage also increase the cost of pit drainage, shipping, drilling and blasting, tyre wear and equipment maintenance. Surface erosion may also be increased and, in northern climates, ice flows on the slopes may occur. Procedures have been developed in the field of soil mechanics and engineering of dams to obtain quantitative data on pore water pressures and rock permeability, to evaluate the influence of pore water and seepage pressures on stability and to estimate the magnitude of ground-water flow. Based on field investigations, a design can be prepared for the control of groundwater in the slope and in the pit. Methods of control include the use of horizontal drains, blasted toe drains, construction of adits or drainage tunnels and pumping from wells in or outside of the pit. Recent research indicates that subsurface drainage can be augmented by applying a vacuum or by selective blasting. Instrumentation should be installed to monitor the groundwater changes created by drainage. Typical case histories are described that indicate the approach used to evaluate groundwater conditions.

  3. Source Characterization and Temporal Variation of Methane Seepage from Thermokarst Lakes on the Alaska North Slope in Response to Arctic Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2012-09-30

    The goals of this research were to characterize the source, magnitude and temporal variability of methane seepage from thermokarst lakes (TKL) within the Alaska North Slope gas hydrate province, assess the vulnerability of these areas to ongoing and future arctic climate change and determine if gas hydrate dissociation resulting from permafrost melting is contributing to the current lake emissions. Analyses were focused on four main lake locations referred to in this report: Lake Qalluuraq (referred to as Lake Q) and Lake Teshekpuk (both on Alaska's North Slope) and Lake Killarney and Goldstream Bill Lake (both in Alaska's interior). From analyses of gases coming from lakes in Alaska, we showed that ecological seeps are common in Alaska and they account for a larger source of atmospheric methane today than geologic subcap seeps. Emissions from the geologic source could increase with potential implications for climate warming feedbacks. Our analyses of TKL sites showing gas ebullition were complemented with geophysical surveys, providing important insight about the distribution of shallow gas in the sediments and the lake bottom manifestation of seepage (e.g., pockmarks). In Lake Q, Chirp data were limited in their capacity to image deeper sediments and did not capture the thaw bulb. The failure to capture the thaw bulb at Lake Q may in part be related to the fact that the present day lake is a remnant of an older, larger, and now-partially drained lake. These suggestions are consistent with our analyses of a dated core of sediment from the lake that shows that a wetland has been present at the site of Lake Q since approximately 12,000 thousand years ago. Chemical analyses of the core indicate that the availability of methane at the site has changed during the past and is correlated with past environmental changes (i.e. temperature and hydrology) in the Arctic. Discovery of methane seeps in Lake Teshekpuk in the northernmost part of the lake during 2009

  4. Oil seepage detection technique as a tool to hydrocarbon prospecting in offshore Campos Basin-Brazil; Deteccao de exsudacoes de oleo como uma ferramenta de prospeccao de hidrocarbonetos na regiao maritima da Bacia de Campos - Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Castilho, Jose G.; Brito, Ademilson F. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Lab. de Modelagem de Bacias (LAB2M); Landau, Luiz [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Lab. de Metodos Computacionais em Engenharia (LAMCE)

    2004-07-01

    With a proven capacity to identify oil slicks in offshore regions, RADARSAT-1 imagery can be useful for oil exploration purposes. The paper discusses the seepage detection method at Campos Basin, offshore Rio de Janeiro State, which is responsible for 80% of the Brazilian production of oil and gas. It is known that the horizontal migration of petroleum can occurs over tens or even hundreds of kilometers, where the source rock placed in more deep locations can be linked with shallow reservoirs or traps and even reach the ocean. It means that seepage can provide information for risking petroleum charge at basin scales, and cannot have a direct relation with the geographical position of the interpreted seeps and possible filled prospects. A good understanding of the geology, and hence the petroleum systems of a basin is the key to use seepage in exploration. The work is divided into three main steps. First step were select oil seepages interpreted at Campos Basin where is found several giant petroleum fields. Second, the geology of the study area and its structural and stratigraphic features were analyzed, in order to identify possible migration pathways related to faults generated by halokinesis. Another important aspect is the presence of 'windows' or ducts in the evaporates beds allowing the contact between the section that contains source rocks and the turbidities reservoirs, that contain the majority of the oil discovers. All these features were interpreted based on a regional dip seismic line (203 - 76), and a geologic cross section with E-W orientation, showing the structure of the Marlim Field. Finally, all the information was integrated in a Geographical Information System (GIS), and then analyzed in an interdisciplinary environment, with the intention to link possible routes of oil migration to post-evaporites reservoirs or to interpreted seeps. (author)

  5. Treatability study work plan for in situ vitrification of seepage pit 1 in Waste Area Grouping 7 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Spalding, B.P.

    1994-07-01

    A treatability study is described that encompasses the application of in situ vitrification (ISV) to at least two segments of Oak Ridge National Laboratory (ORNL) seepage pit 1 by the end of fiscal year 1995. This treatability study will establish the field-scale technical performance of ISV for (1) attaining the required depth, nominally 15 ft, to incorporate source contamination within and beneath the pits; (2) demonstrating field capability for the overlapping melt settings that are necessary to achieve fused melt segments; (3) demonstrating off-gas handling technology for accommodating and minimizing the volatilization of 137 Cs; (4) demonstrating adequate site characterization techniques to predict ISV melting kinetics, processing temperatures, and product durability; and (5) promoting public acceptance of ISV technology by demonstrating its safety, implementability, site impacts, and air emissions and by coordinating the treatability study within the regulatory closure process. The initial step of this treatability study will be to gather the required site characterization data about pit 1 so that the in situ vitrification can be effectively and safely planned. The second phase will be the field ISV operations at pit 1 employing at least two settings to achieve overlapping and fused melts. Such field operations are likely to require 6 to 8 weeks. Following termination of ISV melting operations at pit 1 and demobilization of portable ISV equipment and the off-gas hood, posttest characterization activities will begin

  6. Application of the top specified boundary layer (TSBL) approximation to initial characterization of an inland aquifer mineralization: 2. Seepage of saltwater through semi-confining layers

    Science.gov (United States)

    Rubin, H.; Buddemeier, R.W.

    1998-01-01

    This paper presents a generalized basic study that addresses practical needs for an understanding of the major mechanisms involved in the mineralization of groundwater in the Great Bend Prairie aquifer in south- central Kansas. This Quaternary alluvial aquifer and associated surface waters are subject to contamination by saltwater, which in some areas seeps from the deeper Permian bedrock formation into the overlying freshwater aquifer through semiconfining layers. A simplified conceptual model is adopted. It incorporates the freshwater aquifer whose bottom is comprised of a semiconfining layer through which a hydrologically minor but geochemically important saline water discharge seeps into the aquifer. A hierarchy of approximate approaches is considered to analyze the mineralization processes taking place in the aquifer. The recently developed top specified boundary layer (TSBL) approach is very convenient to use for the initial characterization of these processes, and is further adapted to characterization of head-driven seepage through semi-confining layers. TSBL calculations indicate that the seeping saline water may create two distinct new zones in the aquifer: (1) a completely saline zone (CSZ) adjacent to the semiconfining bottom of the aquifer, and (2) a transition zone (TZ) which develops between the CSZ and the freshwater zone. Some possible scenarios associated with the various mineralization patterns are analyzed and discussed.

  7. 生物反应器填埋场中水平沟回灌渗滤液非饱和-饱和渗流分析%Unsaturated-saturated seepage analysis for leachate recirculation using horizontal trenches in bioreactor landfills

    Institute of Scientific and Technical Information of China (English)

    冯世进; 张旭

    2013-01-01

    The horizontal trench is one of the main methods which are available to recirculate leachates.To study the unsaturated-saturated seepage laws during leachate recirculation process,different flow control equations are used for the saturated/unsaturated zones in bioreactor landfills.The saturated Richards' equation is adopted as the flow governing equation in the saturated area of the waste mass.For the unsaturated area of the waste mass,based on the law of conservation of mass,the modified Darcy's law and the Elagroudy's settlement model,a new flow governing equation considering solid waste settlement is developed.Based on the two-dimensional saturated/unsaturated model which has been developed considering solid waste settlement,the migration laws of recirculated leachates are studied.The simulated results indicate that the various parameters (i.e.,settlement of MSW,pressure head,initial void ratio,etc.) have effects on the zone of impact,pressure head,water content of MSW and recirculation leachate volume per m of trench length.The design method of horizontal trenches is proposed for the bioreactor landfills.%水平沟回灌是生物反应器填埋场中渗滤液回灌的主要模式之一,为研究水平沟回灌时生物反应器填埋场中渗滤液的非饱和-饱和运移规律,垃圾体的饱和与非饱和区域采用不同水流控制方程,饱和区域的水流控制方程采用饱和Richards方程,对垃圾体非饱和区域,由质量守恒原理,以修正的Darcy定理为基础,结合Elagroudy等提出的垃圾体沉降模型,建立了考虑垃圾体沉降的非饱和渗滤液运移控制方程.基于建立的考虑沉降特性的二维非饱和-饱和水平沟回灌计算模型,研究了水平沟回灌时渗滤液在生物反应器填埋场中的运移规律,提出水平沟回灌系统的设计方法.

  8. Stontium-90 contamination in vegetation from radioactive waste seepage areas at ORNL, and theoretical calculations of /sup 90/Sr accumulation by deer

    Energy Technology Data Exchange (ETDEWEB)

    Garten, C.T. Jr.; Lomax, R.D.

    1987-06-01

    This report describes data obtained during a preliminary characterization of /sup 90/Sr levels in browse vegetation from the vicinity of seeps adjacent to ORNL solid waste storage areas (SWSA) where deer (Odocoileus virginianus) were suspected to accumulate /sup 90/Sr through the food chain. The highest strontium concentrations in plant samples were found at seeps associated with SWSA-5. Strontium-90 concentrations in honeysuckle and/or blackberry shoots from two seeps in SWSA-5 averaged 39 and 19 nCi/g dry weight (DW), respectively. The maximum concentration observed was 90 nCi/g DW. Strontium-90 concentrations in honeysuckle and blackberry shoots averaged 7.4 nCi/g DW in a study area south of SWSA-4, and averaged 1.0 nCi/g DW in fescue grass from a seepage area located on SWSA-4. A simple model (based on metabolic data for mule deer) has been used to describe the theoretical accumulation of /sup 90/Sr in bone of whitetail deer following ingestion of contaminated vegetation. These model calculations suggest that if 30 pCi /sup 90/Sr/g deer bone is to be the accepted screening level for retaining deer killed on the reservation, then 5-pCi /sup 90/Sr/g DW vegetation should be considered as a possible action level in making decisions about the need for remedial measures, because unrestricted access and full utilization of vegetation contaminated with <5 pCi/g DW results in calculated steady-state (maximum) /sup 90/Sr bone concentrations of <30 pCi/g in a 45-kg buck.

  9. Stontium-90 contamination in vegetation from radioactive waste seepage areas at ORNL, and theoretical calculations of 90Sr accumulation by deer

    International Nuclear Information System (INIS)

    Garten, C.T. Jr.; Lomax, R.D.

    1987-06-01

    This report describes data obtained during a preliminary characterization of 90 Sr levels in browse vegetation from the vicinity of seeps adjacent to ORNL solid waste storage areas (SWSA) where deer (Odocoileus virginianus) were suspected to accumulate 90 Sr through the food chain. The highest strontium concentrations in plant samples were found at seeps associated with SWSA-5. Strontium-90 concentrations in honeysuckle and/or blackberry shoots from two seeps in SWSA-5 averaged 39 and 19 nCi/g dry weight (DW), respectively. The maximum concentration observed was 90 nCi/g DW. Strontium-90 concentrations in honeysuckle and blackberry shoots averaged 7.4 nCi/g DW in a study area south of SWSA-4, and averaged 1.0 nCi/g DW in fescue grass from a seepage area located on SWSA-4. A simple model (based on metabolic data for mule deer) has been used to describe the theoretical accumulation of 90 Sr in bone of whitetail deer following ingestion of contaminated vegetation. These model calculations suggest that if 30 pCi 90 Sr/g deer bone is to be the accepted screening level for retaining deer killed on the reservation, then 5-pCi 90 Sr/g DW vegetation should be considered as a possible action level in making decisions about the need for remedial measures, because unrestricted access and full utilization of vegetation contaminated with 90 Sr bone concentrations of <30 pCi/g in a 45-kg buck

  10. Evaluation Of The Physical Stability, Ground Water Seepage Control, And Faunal Changes Associated With An AquaBlok® Sediment Cap

    Science.gov (United States)

    Active sediment caps are being considered for addressing contaminated sediment areas in surface-water bodies. A demonstration of an active cap designed to reduce advective transport of contaminants using AquaBlok® (active cap material) was initiated in a small study a...

  11. The Gela Basin pockmark field in the strait of Sicily (Mediterranean Sea: chemosymbiotic faunal and carbonate signatures of postglacial to modern cold seepage

    Directory of Open Access Journals (Sweden)

    M. Taviani

    2013-07-01

    Full Text Available The geo-biological exploration of a pockmark field located at ca. 800 m below sea level in the Gela basin (Strait of Sicily, Central Mediterranean provided a relatively diverse chemosymbiotic community and methane-imprinted carbonates. To date, this is the first occurrence of such a type of specialised deep-water cold-seep communities recorded from this key region, before documented in the Mediterranean as rather disjunct findings in its eastern and westernmost basins. The thiotrophic chemosymbiotic organisms recovered from this area include empty tubes of the vestimentiferan Lamellibrachia sp., loose and articulated shells of lucinids (Lucinoma kazani, Myrtea amorpha, vesicomyids (Isorropodon perplexum, and gastropods (Taranis moerchii. A callianassid decapod (Calliax sp. was consistently found alive in large numbers in the pockmark mud. Their post-mortem calcified parts mixed with molluscs and subordinately miliolid foraminifers form a distinct type of skeletal assemblage. Carbonate concretions display δ13C values as low as −40‰ PDB suggesting the occurrence of light hydrocarbons in the seeping fluids. Since none of the truly chemosymbiotic organisms was found alive, although their skeletal parts appear at times very fresh, some specimens have been AMS-14C dated to shed light on the historical evolution of this site. Lamellibrachiav and Lucinoma are two of the most significant chemosymbiotic taxa reported from various Mediterranean cold seep sites (Alboran Sea and Eastern basin. Specimens from station MEDCOR78 (pockmark #1, Lat. 36°46´10.18" N, Long. 14°01´31.59" E, 815 m below sea level provided ages of 11736 ± 636 yr cal BP (Lamellibrachia sp., and 9609.5 ± 153.5 yr cal BP (L. kazani. One shell of M. amorpha in core MEDCOR81 (pockmark #6, Lat 36°45´38.89" N, Long 14°00´07.58" E, 822 m below sea level provided a sub-modern age of 484 ± 54 yr cal BP. These ages document that fluid seepage at this pockmark site has been

  12. Hydrogeologic setting, water budget, and preliminary analysis of ground-water exchange at Lake Starr, a seepage lake in Polk County, Florida

    Science.gov (United States)

    Swancar, Amy; Lee, T.M.; O'Hare, T. M.

    2000-01-01

    Lake Starr, a 134-acre seepage lake of multiple-sinkhole origin on the Lake Wales Ridge of central Florida, was the subject of a detailed water-budget study from August 1996 through July 1998. The study monitored the effects of hydrogeologic setting, climate, and ground-water pumping on the water budget and lake stage. The hydrogeologic setting of the Lake Starr basin differs markedly on the two sides of the lake. Ground water from the surficial aquifer system flows into the lake from the northwest side of the basin, and lake water leaks out to the surficial aquifer system on the southeast side of the basin. Lake Starr and the surrounding surficial aquifer system recharge the underlying Upper Floridan aquifer. The rate of recharge to the Upper Floridan aquifer is determined by the integrity of the intermediate confining unit and by the downward head gradient between the two aquifers. On the inflow side of the lake, the intermediate confining unit is more continuous, allowing ground water from the surficial aquifer system to flow laterally into the lake. Beneath the lake and on the southeast side of the basin, breaches in the intermediate confining unit enhance downward flow to the Upper Floridan aquifer, so that water flows both downward and laterally away from the lake through the ground-water flow system in these areas. An accurate water budget, including evaporation measured by the energy-budget method, was used to calculate net ground-water flow to the lake, and to do a preliminary analysis of the relation of net ground-water fluxes to other variables. Water budgets constructed over different timeframes provided insight on processes that affect ground-water interactions with Lake Starr. Weekly estimates of net ground-water flow provided evidence for the occurrence of transient inflows from the nearshore basin, as well as the short-term effects of head in the Upper Floridan aquifer on ground-water exchange with the lake. Monthly water budgets showed the effects

  13. Interaction between hydrocarbon seepage, chemosynthetic communities, and bottom water redox at cold seeps of the Makran accretionary prism: insights from habitat-specific pore water sampling and modeling

    Directory of Open Access Journals (Sweden)

    D. Fischer

    2012-06-01

    Full Text Available The interaction between fluid seepage, bottom water redox, and chemosynthetic communities was studied at cold seeps across one of the world's largest oxygen minimum zones (OMZ located at the Makran convergent continental margin. Push cores were obtained from seeps within and below the core-OMZ with a remotely operated vehicle. Extracted sediment pore water was analyzed for sulfide and sulfate concentrations. Depending on oxygen availability in the bottom water, seeps were either colonized by microbial mats or by mats and macrofauna. The latter, including ampharetid polychaetes and vesicomyid clams, occurred in distinct benthic habitats, which were arranged in a concentric fashion around gas orifices. At most sites colonized by microbial mats, hydrogen sulfide was exported into the bottom water. Where macrofauna was widely abundant, hydrogen sulfide was retained within the sediment.

    Numerical modeling of pore water profiles was performed in order to assess rates of fluid advection and bioirrigation. While the magnitude of upward fluid flow decreased from 11 cm yr−1 to <1 cm yr−1 and the sulfate/methane transition (SMT deepened with increasing distance from the central gas orifice, the fluxes of sulfate into the SMT did not significantly differ (6.6–9.3 mol m−2 yr−1. Depth-integrated rates of bioirrigation increased from 120 cm yr−1 in the central habitat, characterized by microbial mats and sparse macrofauna, to 297 cm yr−1 in the habitat of large and few small vesicomyid clams. These results reveal that chemosynthetic macrofauna inhabiting the outer seep habitats below the core-OMZ efficiently bioirrigate and thus transport sulfate down into the upper 10 to 15 cm of the sediment. In this way the animals deal with the lower upward flux of methane in outer habitats by stimulating rates of anaerobic oxidation of methane (AOM with sulfate high enough to provide

  14. Rupture and seepage law of roof-floor strata caused by coal mining between double-bearing aquifers%双承压水间采煤顶底板破断及渗流规律

    Institute of Scientific and Technical Information of China (English)

    王金安; 魏现昊; 纪洪广

    2012-01-01

    Based on coal mining between double-bearing aquifers in Shanxi Province, and focused on the stress-fluid coupling mechanism of coal and rocks, the study employed physical simulation experiment and discrete element numer- ical simulation to reveal the rupture regularity of stratum and the seepage with respect to different mining advances. The developing modes of water conductive zones in ruptured roof strata were put forward and the correspondent rela- tionship between the formation of ' four zones' in the floor strata and the mining process were established. The study shows that the mining area floor only appears broken zone during primary mining. When a full mining arrives, new damaged zone and mining induced water conductive-rising zone begin to develop. The new der the working face. At back of the mining face, the new damaged zone is mainly un- damaged zone is progressively closed because of the compac- tion of gob. The stress-seepage coupling effect in mining disturbed rock mass can be summarized as follows:the mining leads to rupture of roof and floor strata and a stress drop. The water permeability in rock mass increases, resulting in the aquifer in Taihui strata rush-in the goaf and mining face. The water conductive fracture zone develops and water conducting arises in the water proof layer in the floor strata under the water wedge splitting action. When the residual water pressure can not continuously split the water proof layer in the floor strata against the tensile strength of the rock mass, a stress-seepage stable state is recovered in the floor strata.%以山西某煤矿双承压水间下组煤开采为背景,针对煤岩应力一渗流耦合机理,采用相似材料模拟和离散元数值模拟,揭示双承压水间下组煤不同开采尺度下岩体断裂模式和渗流规律,提出顶板导水裂隙带发展模式,并建立底板“四带”形成与工作面开采过程的对应关系。研究发现:初采期间底板仅发育

  15. 基于压水试验的杨村煤矿底板断层带渗流性质研究%Research on Seepage Characteristics of Floor Fault Zone Based on Water Injection Test in Yangcun Coal Mine

    Institute of Scientific and Technical Information of China (English)

    邵明喜; 官云章; 曹思文; 张鑫; 刘近国; 吕先阳; 孙晓倩

    2016-01-01

    In order to study the seepage characteristics of the floor fault zone in Yangcun Mine, water injection test method was used for the measurement of Fault 5 and a number of measured data were obtained. Analysis results showed that the permeability of this fault was bad and its permeation resistance was relatively strong in the original state. Four water injection tests on this fault were carried out, and from the comparison of the permeability changing curves in four water injection tests it was found out that the repeated water injection can lead failure of the fault zone, which in turn improved its permeability. The relation between test pressure and flow rate(p—Q) of F5 fault was a dilation or erosion type, the fissures in this fault zone developed and many filling materials existed in it, so it has stronger resistance to seepage.%为研究杨村煤矿底板断层带的渗流性质,采用现场压水试验方法对底板F5断层进行了测试并获取了大量的实测数据,分析结果表明:该断层在原始状态下渗流能力较差,阻渗性较强。对该断层进行了4次压水试验,对比4次压水试验的渗透系数变化曲线可知,重复压水可导致断层带明显渗透破坏,由此造成其导渗性能的进一步增强;F5断层带两段压渗试验压力和流量关系( p—Q )为扩张或冲蚀型,该断层带裂隙发育,裂隙中间有较多充填物,阻渗能力较好。

  16. Innovative technologies of liquid media treatment in the system of ecological and sanitary-hygienic control of waste landfills

    Directory of Open Access Journals (Sweden)

    Shevchenko Andrey

    2017-01-01

    Full Text Available The article focuses on the scientific and practical aspects of establishing a comprehensive system of environmental compliance for industrial and household waste landfills, including the system of industrial and environmental monitoring and control, modern innovations in the field of instrumental-analytical control of the state of environmental components, new methods of neutralization of complex industrial pollution. Priority is given to wastewater treatment from toxic compounds coming from the surface and drainage water seepage of landfill sites into surface and underground water sources.

  17. Fracture and seepage characteristics in the floor strata when mining above a confined aquifer%承压水体上开采底板岩层破断及渗流特征

    Institute of Scientific and Technical Information of China (English)

    王金安; 魏现昊; 陈绍杰

    2012-01-01

    以山西某煤矿承压水体上下组煤开采为工程背景,通过对煤层底板岩石进行全应力-应变渗透性试验及单裂隙渗透性试验,揭示了岩石应力-渗流耦合机理,获得了断裂面渗透系数的定量关系式;采用离散元流固耦合模拟方法,对承压水体上煤层开采底板岩层的应力状态及渗流特征进行模拟分析.结果表明:底板岩层"四带"中的渗透性均与水平应力密切相关,其中:直接底板受工作面矿压影响严重,岩层中的水平应力杂乱无章,破坏带厚度约13m;奥灰含水层顶部岩层为低围压区,容易形成奥灰水楔劈裂导升机理,导升带厚度为17m左右;底板中部层位受采动矿压及底板承压水直接影响相对较小,此带中水平应力自上而下呈递增状态,有效隔水层带厚度38m,是底板的关键阻水层.%A quantitative relationship for the fractured rock permeability coefficient was obtained by conducting stress-strain permeability tests on intact and fractured rock samples. The stress seepage coupling mechanism is elucidated from these results. Mining a lower coal seam located above a confined aquifer in Shanxi province motivated this research. A discrete element numerical model was used to simulate fluid-solid coupling and determine stress and seepage in the floor strata. Four typical zones appear in the floor strata that are closely related to the hori- zontal stress. The damage state and the permeability are used to define these zones. If the di- rect floor stratum is seriously affected by mining induced pressure the horizontal stress is disor- dered and the damaged zone is about 13 m thick. The confining pressure in the strata above the Ordovician aquifer is low and hydraulic splitting fractures it easily. The thickness of the zone where water rises is about 17 m. The middle of the floor strata are less affected by mining and the confined aquifer. The horizontal stresses increase with increasing depth the

  18. Multitracer studies for determining seepage water and anion movement in four types of soil using lysimeters with different functions and designs; Multitracer-Untersuchungen zur Bestimmung der Sickerwasser- und Anionenbewegung in vier Bodenformen bei Lysimetern unterschiedlicher Nutzung und Bauart

    Energy Technology Data Exchange (ETDEWEB)

    Knappe, S.; Russow, R. [UFZ - Umweltforschungszentrum Leipzig-Halle GmbH, Bad Lauchstaedt (Germany). Sektion Bodenforschung; Seeger, J. [Lysimeterstation Falkenberg (Germany)

    1999-02-01

    Lysimeter experiments based on the stable isotope tracer technique are a suitable means of examining the complex relationships governing water and material transport processes in the soil. The present paper reports on experiments in which water and nitrate movement was traced directly by means of lysimeters placed at different depths and using deuterium water and [{sup 15}N]N-nitrate for pulse marking. Extensive investigations carried out during the dissection of soil monoliths that had been used for many years in lysimeters offered an opportunity for stable isotope tracer studies aimed at determining seepage water and anion movement in undisturbed soils and, after dismantling the lysimeters, conducting soil analyses to find out more about the fate of nonpercolated tracers at various soil depths. Following other authors, bromide anions were additionally used as conservative tracers. [Deutsch] Zur Untersuchung der komplexen Zusammenhaenge des Wasser- und Stofftransportes im Boden bieten sich Lysimeterversuche unter Nutzung der stabilisotopen Tracertechnik an. In der vorliegenden Arbeit wird zunaechst ueber die direkte Verfolgung der Wasser- und Nitrat-Bewegung in tiefengestaffelten Lysimetern durch Pulsmarkierung mit Deuteriumwasser und [{sup 15}N]Nitrat berichtet. Im Rahmen von umfangreichen Untersuchungen bei der Zerlegung von langjaehrig in Lysimetern genutzten Bodenmonolithen bestand des weiteren die Moeglichkeit, stabilisotope Traceruntersuchungen zur Bestimmung der Sickerwasser- und Anionenbewegung an ungestoerten Boeden durchzufuehren und nach der Zerlegung der Lysimeter ueber entsprechende Analysen des Bodens Aussagen zum Verbleib der nicht perkolierten Tracer in verschiedenen Bodentiefen zu treffen. Zusaetzlich wurde dabei das von anderen Autoren bereits genutzte Bromid-Anion als sogenannter konservativer Tracer eingesetzt. (orig.)

  19. SEEPAGE FIELD-STRAIN FIELD COUPLING ANALYSIS FOR ROCK MASSES OF COAL SEAM FLOOR DURING MINING ABOVE A CONFINED AQUIFER%煤层底板岩体采动渗流场-应变场耦合分析

    Institute of Scientific and Technical Information of China (English)

    姚多喜; 鲁海峰

    2012-01-01

    根据五沟煤矿1018 工作面地质及水文地质条件,应用三维快速拉格朗日(FLAC3D)流固耦合分析模块,采用变渗透系数方法,对该工作面底板岩体采动渗流应变机制进行数值模拟研究.分析结果表明:采动影响下,围岩渗透系数发生较大的变化,处在采空区正上方的泥岩段最大达到原始渗透系数的1293倍;根据渗流场分析,工作面采动并没有破坏底板隔水层的阻水性能,采动裂隙没有导通灰岩含水层,灰岩水涌入回采工作面形成水害可能性较小;工作面正下方岩体单元安全度小于1的区域最大深度为30 m.综合渗流场以及隔水底板单元安全度分析结果,10煤底板下灰岩水溃入工作面形成水害可能性较小.%Based on the geological and hydrogeological conditions of the face 1018 in Wugou coal mine, the fluid-solid coupling module in FLAC3D with changeable permeability coefficient is adopted to simulate the whole process of damage and failure of rock masses at floor of the coal seam No. 10. The results indicate that the permeability coefficient of surrounding rocks changes a lot due to mining. The maximum permeability coefficient reaches 1 293 times of the original one, which happens at the immediate roof of mined-out area. According to the analysis of seepage field, mining does not destroy water resistance of floor aquifer. Mining fissures do not connect limestone aquifers, and water in the limestone is less likely to flow into stopes to cause damage. The maximum depth of rock masses with element safety degree less than one is about 30 m. According to the change of permeability coefficient of and the analytical results of element safety degree of rock masses, safe mining of the face 1018 can be ensured.

  20. Contribution de l'homogénéisation à l'étude de la filtration d'un fluide en milieu poreux fracturé Contribution of the Homogenization Process to the Seepage Through Fractured Porous Media

    Directory of Open Access Journals (Sweden)

    Boutin C.

    2006-11-01

    Full Text Available Cet article est consacré à la modélisation de l'écoulement d'un fluide dans un massif poreux fracturé. Contrairement aux approches phénoménologiques, nous traitons le problème au moyen de la méthode d'homogénéisation par développements asymptotiques en milieux périodiques. Les comportements macroscopiques sont ainsi déduits de la physique à l'échelle microscopique, sans autre prérequis. Deux cas ont été examinés : l'écoulement d'un gaz dans un massif rigide et l'écoulement d'un fluide incompressible dans une matrice déformable. Dans ces deux situations, on met en évidence le rôle fondamental du rapport entre les deux séparations d'échelles (échelle macroscopique-échelle des fissures et échelle des fissures-échelle des pores. Les descriptions macroscopiques sont conditionnées par la relation entre les séparations d'échelles, le couplage interéchelle étant maximum lorsque les rapports d'échelles sont identiques. This paper deals with the seepage of a fluid through a fissured porous medium. Conversely to the phenomenological approaches we treat this problem by using the homogenization method of asymptotic developments for periodic structures. Thus the macroscopic behaviours are directly deduced from the physics at the microscopic scale, without any prerequisite. Two cases have been investigated : the flow of a gas through a rigid medium and the flow of an incompressible fluid through a deformable matrix. In both situations, it appears that the ratio between the two scale separations (macroscopic scale-fissure scale and fissure scale-pore scale plays an essential role. The macroscopic description depends on the scale separations, the interscale coupling being maximum when the scales are equally separated.

  1. Comprehensive nitrogen budgets for controlled tile drainage fields in eastern ontario, Canada.

    Science.gov (United States)

    Sunohara, M D; Craiovan, E; Topp, E; Gottschall, N; Drury, C F; Lapen, D R

    2014-03-01

    Excessive N loading from subsurface tile drainage has been linked to water quality degradation. Controlled tile drainage (CTD) has the potential to reduce N losses via tile drainage and boost crop yields. While CTD can reduce N loss from tile drainage, it may increase losses through other pathways. A multiple-year field-scale accounting of major N inputs and outputs during the cropping season was conducted on freely drained and controlled tile drained agricultural fields under corn ( L.)-soybean [ (L.) Merr.] production systems in eastern Ontario, Canada. Greater predicted gaseous N emissions for corn and soybean and greater observed lateral seepage N losses were observed for corn and soybean fields under CTD relative to free-draining fields. However, observed N losses from tile were significantly lower for CTD fields, in relation to freely drained fields. Changes in residual soil N were essentially equivalent between drainage treatments, while mass balance residual terms were systematically negative (slightly more so for CTD). Increases in plant N uptake associated with CTD were observed, probably resulting in higher grain yields for corn and soybean. This study illustrates the benefits of CTD in decreasing subsurface tile drainage N losses and boosting crop yields, while demonstrating the potential for CTD to increase N losses via other pathways related to gaseous emissions and groundwater seepage. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  2. Repair, Evaluation, Maintenance, and Rehabilitation Research Program: Proceedings of REMR Workshop on New Remedial Seepage Control Methods for Embankment-Dams and Soil Foundations Held in Vicksburg, Mississippi on 21-22 October 1986.

    Science.gov (United States)

    1988-01-01

    80 cm Mercedes Benz Pit (CCP System) Pressure .......................... 5,000 psi * Time ............................. 3.75 min/m...Army position unless so designated by other authorized documents. The contents of this report are not to be used for advertising , publication, or...Figure 4. Many of the metallic acrylates can function as chemical grouts. The selection of the ones marketed commercially is based largely on cost, but

  3. SQUIRT, Seepage in Reactor Tube Cracks

    International Nuclear Information System (INIS)

    Paul, D.; Ghadiali, N.; Wilkowski, G.; Rahman, S.; Krishnaswamy, P.

    1997-01-01

    1 - Description of program or function: The SQUIRT software is designed to perform leakage rate and area of crack opening calculations for through-wall cracks in pipes. The fluid in the piping system is assumed to be water at either subcooled or saturated conditions. The development of the SQUIRT computer model enables licensing authorities and industry users to conduct the leak-rate evaluations for leak-before-break applications in a more efficient manner. 2 - Method of solution: The SQUIRT program uses a modified form of the Henry-Fauske model for the thermal-hydraulics analysis together with Elastic-Plastic Fracture Mechanics using GE/EPRI and LBB.ENG2 methods for crack opening analysis. 3 - Restrictions on the complexity of the problem: Squirt requires 512 KB of conventional memory and an organized structure. Software can only be executed from the main SQUIRT23 directory where the software was installed

  4. Seepage phenomena on Mars at subzero temperature

    Science.gov (United States)

    Kereszturi, Akos; Möhlmann, Diedrich; Berczi, Szaniszlo; Ganti, Tibor; Horvath, Andras; Kuti, Adrienn; Pocs, Tamas; Sik, Andras; Szathmary, Eors

    At the southern hemisphere of Mars seasonal slope structures emanating from Dark Dune Spots are visible on MGS MOC, and MRO HiRISE images. Based on their analysis two groups of streaks could be identified: diffuse and fan shaped ones forming in an earlier phase of local spring, probably by CO2 gas jets, and confined streaks forming only on steep slopes during a later seasonal phase. The dark color of the streaks may arise from the dark color of the dune grains where surface frost disappeared above them, or caused by the phase change of the water ice to liquid-like water, or even it may be influenced by the solutes of salts in the undercooled interfacial water The second group's morphology (meandering style, ponds at their end), morphometry, and related theoretical modelling suggest they may form by undercooled water that remains in liquid phase in a thin layer around solid grains. We analyzed sequence of images, temperature and topographic data of Russel (54S 12E), Richardson (72S 180E) and an unnamed crater (68S 2E) during southern spring. The dark streaks here show slow motion, with an average speed of meter/day, when the maximal daytime temperature is between 190 and 220 K. Based on thermophysical considerations a thin layer of interfacial water is inevitable on mineral surfaces under the present conditions of Mars. With 10 precipitable micrometer of atmospheric water vapor, liquid phase can be present down about 190 K. Under such conditions dark streaks may form by the movement of grains lubricatred by interfacial water. This possibility have various consequences on chemical, mechanical or even possible astrobiological processes on Mars. Acknowledgment: This work was supported by the ESA ECS-project No. 98004 and the Pro Renovanda Cultura Hungariae Foundation.

  5. Transient Seepage Analyses in Levee Engineering Practice

    Science.gov (United States)

    2016-07-01

    and contractors in conventional engineering practice has outpaced the development of guidance documents and design recommendations. The major...ERDC TR-16-8 99 B.5 Final solution The final solution is obtained by first solving for ht from Equation B.5 as follows: t t tssˆh h h  (B

  6. MODELING OF SEEPAGE LOSSES I G OF SEEPAGE LOSSES IN G ...

    African Journals Online (AJOL)

    eobe

    t conducted this study, 125kg of sewage sludge, 90.7% moisture content w into a sand drying ... so that the intercept a 0 , data generated was modeled first. , data generated .... particles is due to physical, chemical or biological processes [10].

  7. Investigating Hydrogeologic Controls on Sandhill Wetlands in Covered Karst with 2D Resistivity and Ground Penetrating Radar

    Science.gov (United States)

    Downs, C. M.; Nowicki, R. S.; Rains, M. C.; Kruse, S.

    2015-12-01

    In west-central Florida, wetland and lake distribution is strongly controlled by karst landforms. Sandhill wetlands and lakes are sand-filled upland basins whose water levels are groundwater driven. Lake dimensions only reach wetland edges during extreme precipitation events. Current wetland classification schemes are inappropriate for identifying sandhill wetlands due to their unique hydrologic regime and ecologic expression. As a result, it is difficult to determine whether or not a wetland is impacted by groundwater pumping, development, and climate change. A better understanding of subsurface structures and how they control the hydrologic regime is necessary for development of an identification and monitoring protocol. Long-term studies record vegetation diversity and distribution, shallow ground water levels and surface water levels. The overall goals are to determine the hydrologic controls (groundwater, seepage, surface water inputs). Most recently a series of geophysical surveys was conducted at select sites in Hernando and Pasco County, Florida. Electrical resistivity and ground penetrating radar were employed to image sand-filled basins and the top of the limestone bedrock and stratigraphy of wetland slopes, respectively. The deepest extent of these sand-filled basins is generally reflected in topography as shallow depressions. Resistivity along inundated wetlands suggests the pools are surface expressions of the surficial aquifer. However, possible breaches in confining clay layers beneath topographic highs between depressions are seen in resistivity profiles as conductive anomalies and in GPR as interruptions in otherwise continuous horizons. These data occur at sites where unconfined and confined water levels are in agreement, suggesting communication between shallow and deep groundwater. Wetland plants are observed outside the historic wetland boundary at many sites, GPR profiles show near-surface layers dipping towards the wetlands at a shallower

  8. Method for screening prevention and control measures and technologies based on groundwater pollution intensity assessment.

    Science.gov (United States)

    Li, Juan; Yang, Yang; Huan, Huan; Li, Mingxiao; Xi, Beidou; Lv, Ningqing; Wu, Yi; Xie, Yiwen; Li, Xiang; Yang, Jinjin

    2016-05-01

    This paper presents a system for determining the evaluation and gradation indices of groundwater pollution intensity (GPI). Considering the characteristics of the vadose zone and pollution sources, the system decides which anti-seepage measures should be implemented at the contaminated site. The pollution sources hazards (PSH) and groundwater intrinsic vulnerability (GIV) are graded by the revised Nemerow Pollution Index and an improved DRTAS model, respectively. GPI is evaluated and graded by a double-sided multi-factor coupling model, which is constructed by the matrix method. The contaminated sites are categorized as prior, ordinary, or common sites. From the GPI results, we develop guiding principles for preventing and removing pollution sources, procedural interruption and remediation, and end treatment and monitoring. Thus, we can select appropriate prevention and control technologies (PCT). To screen the technological schemes and optimize the traditional analytical hierarchy process (AHP), we adopt the technique for order preference by the similarity to ideal solution (TOPSIS) method. Our GPI approach and PCT screening are applied to three types of pollution sites: the refuse dump of a rare earth mine development project (a potential pollution source), a chromium slag dump, and a landfill (existing pollution sources). These three sites are identified as ordinary, prior, and ordinary sites, respectively. The anti-seepage materials at the refuse dump should perform as effectively as a 1.5-m-thick clay bed. The chromium slag dump should be preferentially treated by soil flushing and in situ chemical remediation. The landfill should be treated by natural attenuation technology. The proposed PCT screening approach was compared with conventional screening methods results at the three sites and proved feasible and effective. The proposed method can provide technical support for the monitoring and management of groundwater pollution in China. Copyright © 2015

  9. Offset-Free Model Predictive Control of Open Water Channel Based on Moving Horizon Estimation

    Science.gov (United States)

    Ekin Aydin, Boran; Rutten, Martine

    2016-04-01

    Model predictive control (MPC) is a powerful control option which is increasingly used by operational water managers for managing water systems. The explicit consideration of constraints and multi-objective management are important features of MPC. However, due to the water loss in open water systems by seepage, leakage and evaporation a mismatch between the model and the real system will be created. These mismatch affects the performance of MPC and creates an offset from the reference set point of the water level. We present model predictive control based on moving horizon estimation (MHE-MPC) to achieve offset free control of water level for open water canals. MHE-MPC uses the past predictions of the model and the past measurements of the system to estimate unknown disturbances and the offset in the controlled water level is systematically removed. We numerically tested MHE-MPC on an accurate hydro-dynamic model of the laboratory canal UPC-PAC located in Barcelona. In addition, we also used well known disturbance modeling offset free control scheme for the same test case. Simulation experiments on a single canal reach show that MHE-MPC outperforms disturbance modeling offset free control scheme.

  10. Controllable circuit

    DEFF Research Database (Denmark)

    2010-01-01

    A switch-mode power circuit comprises a controllable element and a control unit. The controllable element is configured to control a current in response to a control signal supplied to the controllable element. The control unit is connected to the controllable element and provides the control...

  11. F-Area Seepage Basins groundwater monitoring report

    International Nuclear Information System (INIS)

    1992-06-01

    This progress report from the Savannah River Plant for first quarter 1992 includes discussion on the following topics: description of facilities; hydrostratigraphic units; monitoring well nomenclature; integrity of the monitoring well network; groundwater monitoring data; analytical results exceeding standards; tritium, nitrate, and pH time-trend data; water levels; groundwater flow rates and directions; upgradient versus downgradient results

  12. F-Area Seepage Basins groundwater monitoring report

    International Nuclear Information System (INIS)

    1992-09-01

    This progress report from the Savannah River Plant for second quarter 1992 includes discussion on the following topics: description of facilities; hydrostratigraphic units; monitoring well nomenclature; integrity of the monitoring well network; groundwater monitoring data; analytical results exceeding standards; tritium, nitrate, and pH time-trend data; water levels; groundwater flow rates and directions; upgradient versus downgradient results

  13. Stability of infinite slopes under transient partially saturated seepage conditions

    Science.gov (United States)

    Godt, Jonathan W.; ŞEner-Kaya, BaşAk; Lu, Ning; Baum, Rex L.

    2012-05-01

    Prediction of the location and timing of rainfall-induced shallow landslides is desired by organizations responsible for hazard management and warnings. However, hydrologic and mechanical processes in the vadose zone complicate such predictions. Infiltrating rainfall must typically pass through an unsaturated layer before reaching the irregular and usually discontinuous shallow water table. This process is dynamic and a function of precipitation intensity and duration, the initial moisture conditions and hydrologic properties of the hillside materials, and the geometry, stratigraphy, and vegetation of the hillslope. As a result, pore water pressures, volumetric water content, effective stress, and thus the propensity for landsliding vary over seasonal and shorter time scales. We apply a general framework for assessing the stability of infinite slopes under transient variably saturated conditions. The framework includes profiles of pressure head and volumetric water content combined with a general effective stress for slope stability analysis. The general effective stress, or suction stress, provides a means for rigorous quantification of stress changes due to rainfall and infiltration and thus the analysis of slope stability over the range of volumetric water contents and pressure heads relevant to shallow landslide initiation. We present results using an analytical solution for transient infiltration for a range of soil texture and hydrological properties typical of landslide-prone hillslopes and show the effect of these properties on the timing and depth of slope failure. We follow by analyzing field-monitoring data acquired prior to shallow landslide failure of a hillside near Seattle, Washington, and show that the timing of the slide was predictable using measured pressure head and volumetric water content and show how the approach can be used in a forward manner using a numerical model for transient infiltration.

  14. Seepage problem in Papan dam and the treatment

    Energy Technology Data Exchange (ETDEWEB)

    Sharghi, A. [JTMA Co., Tehran (Iran, Islamic Republic of); Palassi, M. [Tehran Univ. (Iran, Islamic Republic of). Dept. of Civil Engineering

    2003-07-01

    The Papan dam in the Krygyz Republic is 97 metres high. It is located in the Osh Oblast, within a narrow and steep sided gorge on the Ak-Bura River, approximately 20 kilometres south of the City of Osh. The impoundment of the dam revealed large inflows of water to the downstream dam through the upper half of the dam and through the joints in the right abutment. A number of options were considered before a treatment method was selected. The causes of the leakage were poor grouting, and joints and fissures in the abutment. The remedial process involved the use of a plastic concrete cutoff wall extended from the crest of the dam to a depth of approximately 70 metres, in addition to the use of a grouting curtain in the right abutment. 2 figs.

  15. Assessment of anomalous seepage conditions in the Opa dam ...

    African Journals Online (AJOL)

    , dipole-dipole electrical horizontal profiling, spontaneous potential (SP) profiling and magnetic profiling, was carried out along the embankment of the Opa dam located within the campus of the Obafemi Awolowo University, Ile-Ife, Nigeria.

  16. Geophysical Investigation in Support of Beaver Dam Comprehensive Seepage Investigation.

    Science.gov (United States)

    1988-05-01

    29 JANUARY 1986 1118.35 3 MARCH 1986 1117.10 43 _9_ KANSAS CITY 65S city 630 FigreD.MiteNa rLA~c c roof To PMMEE OZRKS oll 4) 4 c0 x 9 c~ c 4) 154 iL...8217 q 10 S To F S T I U yI: 0 E H N IN sb a ITIU M C F T E A K E UOE S CRI P T 10N I N E T 0 s N s ~ LIYESTW *IE T I LIGHT To IAIRK i; RAYO I 31 1 ILl...VARlIER IV ISTE Figure 3. Geologic column 00 K 0 0 A~ V. 44 z u w LL0 s.- US LS C.) zo WECC; w0 0 Ř 4, + + +S + 4+ 03 4- + + z oO Z I 4- x 144 0

  17. H-Area Seepage Basins: Environmental information document

    International Nuclear Information System (INIS)

    Killian, T.H.; Kolb, N.L.; Corbo, P.

    1986-12-01

    The basins contain liquid low-level radioactivity and chemicals from the H-Area separations facility. Wells monitor the water table in the vicinity of the basins and also underlying aquifers to detect any vertical contaminant migration. A statistical analysis of monitoring data from this site indicates elevated levels of chloride, fluoride, manganese, mercury, nitrate, sodium, and total radium in the groundwater. The predominant pathways for human exposure to contaminants are surface, subsurface, and atmospheric transport. Modeling calculations were performed to determine the risks to humans via these pathways for the postulated closure options. Modeling calculations were also performed to determine ecological impacts. The environmental impact evaluation indicates that the relative human health risks for all closure options are low. Tritium, the dominant radionuclide, reached a maximum risk in Year -29 (from 1985) of 2.7E-04 HE/yr. Results of the atmospheric pathway modeling indicate that risks associated with the no action option are 2 or more orders of magnitude greater than the waste removal closure option for both radionuclides and chemicals. Ecological analysis indicates that the choice of closure option has no effect on the maximum surface water quality impacts. Implementation of no waste removal or waste removal closure options would not appreciably accelerate a decline in groundwater outcrop concentrations. 49 refs., 41 figs., 94 tabs

  18. Hyperspectral reflectance of vegetation affected by underground hydrocarbon gas seepage

    NARCIS (Netherlands)

    Noomen, M.F.

    2007-01-01

    Anomalous concentrations of natural gas in the soil may be sourced from leaking underground gas pipelines or from natural microseepages. Due to the explosive nature of hydrocarbon gases, early detection of these gases is essential to avoid dangerous situations. It is known that natural gas in the

  19. Seepage characteristics of the second tertiary combined model

    Directory of Open Access Journals (Sweden)

    Huan ZHAO

    2015-08-01

    Full Text Available The second tertiary combined model experiment zone has been developed in Block B, Field L. The percolation feature of the second tertiary combined develop model shows great importance to rational and efficient development of the reservoir. In order to clearly illuminate its percolation feature, the typical reservoir numerical model is built by Eclipse, which is a reservoir numerical simulation software. The percolation features of original and added perforation interval under the second tertiary combined model are studied, and the variation features of general water-cut, recovery percentage, wellbore pressure, reservoir pressure and water saturation on condition of higher injection rate under the second tertiary combined model are analyzed. The research indicates that the second tertiary combined enhances the recovery of remaining oil on top of thick reservoir by developing and enhancing original perforation interval under water drive, then improves development results by polymer flooding, and gains higher recovery rate by synthetic action of water driver and polymer flooding.

  20. Lead isotopes as seepage indicators around a uranium tailings dam

    International Nuclear Information System (INIS)

    Gulson, B.L.; Mizon, K.J.; Korsch, M.J.; Noller, B.N.

    1989-01-01

    Lead isotope ratios and lead concentrations have been measured in water from 26 bores around the Ranger uranium tailings dam, Northern Territory, Australia, and from the dam itself to determine possible migration of lead derived from the radioactive decay of uranium. Lead isotope compositions have also been measured for the particulates retained on selected filters. The concentration of lead in the bore waters is extremely low (usually 206 Pb/ 204 Pb ratio measured in the bore waters differs by more than a factor of 100 from that in the tailings dam and shows no evidence of lead derived from a significant uranium accumulation. It may be possible to distinguish between lead from the tailings dam and that derived from a nearby uranium ore body

  1. Glendonites track methane seepage in Mesozoic polar seas

    NARCIS (Netherlands)

    Morales, C.; Rogov, M.; Wierzbowski, H.; Ershova, V.; Suan, G; Adatte, T.; Föllmi, K.B.; Tegelaar, E.; Reichart, G.-J.; de Lange, G.J.; Middelburg, J.J.; van de Schootbrugge, B.

    2017-01-01

    During the Phanerozoic, Earth has experienced a number of transientglobal warming events associated with major carbon cycle perturbations.Paradoxically, many of these extreme greenhouse episodesare preceded or followed by cold climate, perhaps even glacial conditions,as inferred from the occurrence

  2. Glendonites track methane seepage in Mesozoic polar seas

    NARCIS (Netherlands)

    Morales, Chloé; Rogov, Mikhail; Wierzbowski, Hubert; Ershova, Victoria; Suan, Guillaume; Adatte, Thierry; Föllmi, Karl B.; Tegelaar, Erik; Reichart, Gert-Jan; de Lange, Gert J.; Middelburg, Jack J.; van de Schootbrugge, Bas

    During the Phanerozoic, Earth has experienced a number of transient global warming events associated with major carbon cycle perturbations. Paradoxically, many of these extreme greenhouse episodes are preceded or followed by cold climate, perhaps even glacial conditions, as inferred from the

  3. Modeling the Effect of Contact and Seepage Forces at Equilibrium ...

    African Journals Online (AJOL)

    There have been records of failures and quicksand conditions in boreholes in recent times impeding the performance and operation of boreholes which may have resulted from various factors ranging from construction problems, drilling inaccuracies, fitting and installation problems, some chemical effects within the aquifer ...

  4. Method for screening prevention and control measures and technologies based on groundwater pollution intensity assessment

    Energy Technology Data Exchange (ETDEWEB)

    Li, Juan, E-mail: lijuan@craes.org.cn [College of Water Sciences, Beijing Normal University, Beijing 100875 (China); Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Beijing, 100012 (China); Yang, Yang [College of Environment, Beijing Normal University, Beijing 100875 (China); Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Beijing, 100012 (China); Huan, Huan; Li, Mingxiao [Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Beijing, 100012 (China); Xi, Beidou, E-mail: xibd413@yeah.net [Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Beijing, 100012 (China); Lanzhou Jiaotong University, Lanzhou 730070 (China); Lv, Ningqing [Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Beijing, 100012 (China); Wu, Yi [Guizhou Academy of Environmental Science and Designing, Guizhou 550000 (China); Xie, Yiwen, E-mail: qin3201@126.com [School of Chemical and Environmental Engineering, Dongguan University of Technology, Dongguan, 523808 (China); Li, Xiang; Yang, Jinjin [Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Beijing, 100012 (China)

    2016-05-01

    This paper presents a system for determining the evaluation and gradation indices of groundwater pollution intensity (GPI). Considering the characteristics of the vadose zone and pollution sources, the system decides which anti-seepage measures should be implemented at the contaminated site. The pollution sources hazards (PSH) and groundwater intrinsic vulnerability (GIV) are graded by the revised Nemerow Pollution Index and an improved DRTAS model, respectively. GPI is evaluated and graded by a double-sided multi-factor coupling model, which is constructed by the matrix method. The contaminated sites are categorized as prior, ordinary, or common sites. From the GPI results, we develop guiding principles for preventing and removing pollution sources, procedural interruption and remediation, and end treatment and monitoring. Thus, we can select appropriate prevention and control technologies (PCT). To screen the technological schemes and optimize the traditional analytical hierarchy process (AHP), we adopt the technique for order preference by the similarity to ideal solution (TOPSIS) method. Our GPI approach and PCT screening are applied to three types of pollution sites: the refuse dump of a rare earth mine development project (a potential pollution source), a chromium slag dump, and a landfill (existing pollution sources). These three sites are identified as ordinary, prior, and ordinary sites, respectively. The anti-seepage materials at the refuse dump should perform as effectively as a 1.5-m-thick clay bed. The chromium slag dump should be preferentially treated by soil flushing and in situ chemical remediation. The landfill should be treated by natural attenuation technology. The proposed PCT screening approach was compared with conventional screening methods results at the three sites and proved feasible and effective. The proposed method can provide technical support for the monitoring and management of groundwater pollution in China. - Highlights: • An

  5. Method for screening prevention and control measures and technologies based on groundwater pollution intensity assessment

    International Nuclear Information System (INIS)

    Li, Juan; Yang, Yang; Huan, Huan; Li, Mingxiao; Xi, Beidou; Lv, Ningqing; Wu, Yi; Xie, Yiwen; Li, Xiang; Yang, Jinjin

    2016-01-01

    This paper presents a system for determining the evaluation and gradation indices of groundwater pollution intensity (GPI). Considering the characteristics of the vadose zone and pollution sources, the system decides which anti-seepage measures should be implemented at the contaminated site. The pollution sources hazards (PSH) and groundwater intrinsic vulnerability (GIV) are graded by the revised Nemerow Pollution Index and an improved DRTAS model, respectively. GPI is evaluated and graded by a double-sided multi-factor coupling model, which is constructed by the matrix method. The contaminated sites are categorized as prior, ordinary, or common sites. From the GPI results, we develop guiding principles for preventing and removing pollution sources, procedural interruption and remediation, and end treatment and monitoring. Thus, we can select appropriate prevention and control technologies (PCT). To screen the technological schemes and optimize the traditional analytical hierarchy process (AHP), we adopt the technique for order preference by the similarity to ideal solution (TOPSIS) method. Our GPI approach and PCT screening are applied to three types of pollution sites: the refuse dump of a rare earth mine development project (a potential pollution source), a chromium slag dump, and a landfill (existing pollution sources). These three sites are identified as ordinary, prior, and ordinary sites, respectively. The anti-seepage materials at the refuse dump should perform as effectively as a 1.5-m-thick clay bed. The chromium slag dump should be preferentially treated by soil flushing and in situ chemical remediation. The landfill should be treated by natural attenuation technology. The proposed PCT screening approach was compared with conventional screening methods results at the three sites and proved feasible and effective. The proposed method can provide technical support for the monitoring and management of groundwater pollution in China. - Highlights: • An

  6. Control rod control device

    International Nuclear Information System (INIS)

    Seiji, Takehiko; Obara, Kohei; Yanagihashi, Kazumi

    1998-01-01

    The present invention provides a device suitable for switching of electric motors for driving each of control rods in a nuclear reactor. Namely, in a control rod controlling device, a plurality of previously allotted electric motors connected in parallel as groups, and electric motors of any selected group are driven. In this case, a voltage of not driving predetermined selected electric motors is at first applied. In this state an electric current supplied to the circuit of predetermined electric motors is detected. Whether integration or failure of a power source and the circuit of the predetermined electric motors are normal or not is judged by the detected electric current supplied. After they are judged normal, the electric motors are driven by a regular voltage. With such procedures, whether the selected circuit is normal or not can be accurately confirmed previously. Since the electric motors are not driven just at the selected time, the control rods are not operated erroneously. (I.S.)

  7. Control Areas

    Data.gov (United States)

    Department of Homeland Security — This feature class represents electric power Control Areas. Control Areas, also known as Balancing Authority Areas, are controlled by Balancing Authorities, who are...

  8. Control of control charts

    NARCIS (Netherlands)

    Sri Nurdiati, S.N.

    2005-01-01

    Although the Shewhart chart is widely used in practice because of its simplicity, applying this control chart to monitor the mean of a process may lead to two types of problems. The first concerns the typically unknown parameters involved in the distribution, while the second concerns the validity

  9. Dream controller

    Science.gov (United States)

    Cheng, George Shu-Xing; Mulkey, Steven L; Wang, Qiang; Chow, Andrew J

    2013-11-26

    A method and apparatus for intelligently controlling continuous process variables. A Dream Controller comprises an Intelligent Engine mechanism and a number of Model-Free Adaptive (MFA) controllers, each of which is suitable to control a process with specific behaviors. The Intelligent Engine can automatically select the appropriate MFA controller and its parameters so that the Dream Controller can be easily used by people with limited control experience and those who do not have the time to commission, tune, and maintain automatic controllers.

  10. Controllable dose; Dosis controlable

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez R, J T; Anaya M, R A [ININ, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2004-07-01

    With the purpose of eliminating the controversy about the lineal hypothesis without threshold which found the systems of dose limitation of the recommendations of ICRP 26 and 60, at the end of last decade R. Clarke president of the ICRP proposed the concept of Controllable Dose: as the dose or dose sum that an individual receives from a particular source which can be reasonably controllable by means of any means; said concept proposes a change in the philosophy of the radiological protection of its concern by social approaches to an individual focus. In this work a panorama of the foundations is presented, convenient and inconveniences that this proposal has loosened in the international community of the radiological protection, with the purpose of to familiarize to our Mexican community in radiological protection with these new concepts. (Author)

  11. Mosquito Control

    Science.gov (United States)

    ... Labs and Research Centers Contact Us Share Mosquito Control About Mosquitoes General Information Life Cycle Information from ... Repellent that is Right for You DEET Mosquito Control Methods Success in mosquito control: an integrated approach ...

  12. Birth Control

    Science.gov (United States)

    Birth control, also known as contraception, is designed to prevent pregnancy. Birth control methods may work in a number of different ... eggs that could be fertilized. Types include birth control pills, patches, shots, vaginal rings, and emergency contraceptive ...

  13. Hydrologic controls on nitrogen cycling processes and functional gene abundance in sediments of a groundwater flow-through lake

    Science.gov (United States)

    Stoliker, Deborah L.; Repert, Deborah A.; Smith, Richard L.; Song, Bongkeun; LeBlanc, Denis R.; McCobb, Timothy D.; Conaway, Christopher; Hyun, Sung Pil; Koh, Dong-Chan; Moon, Hee Sun; Kent, Douglas B.

    2016-01-01

    The fate and transport of inorganic nitrogen (N) is a critically important issue for human and aquatic ecosystem health because discharging N-contaminated groundwater can foul drinking water and cause algal blooms. Factors controlling N-processing were examined in sediments at three sites with contrasting hydrologic regimes at a lake on Cape Cod, MA. These factors included water chemistry, seepage rates and direction of groundwater flow, and the abundance and potential rates of activity of N-cycling microbial communities. Genes coding for denitrification, anaerobic ammonium oxidation (anammox), and nitrification were identified at all sites regardless of flow direction or groundwater dissolved oxygen concentrations. Flow direction was, however, a controlling factor in the potential for N-attenuation via denitrification in the sediments. Potential rates of denitrification varied from 6 to 4500 pmol N/g/h from the inflow to the outflow side of the lake, owing to fundamental differences in the supply of labile organic matter. The results of laboratory incubations suggested that when anoxia and limiting labile organic matter prevailed, the potential existed for concomitant anammox and denitrification. Where oxic lake water was downwelling, potential rates of nitrification at shallow depths were substantial (1640 pmol N/g/h). Rates of anammox, denitrification, and nitrification may be linked to rates of organic N-mineralization, serving to increase N-mobility and transport downgradient.

  14. Neurofuzzy Control

    DEFF Research Database (Denmark)

    Jantzen, Jan

    1997-01-01

    These notes are for a course in fuzzy control and neural networks. By neural networks we more precisely mean neurofuzzy systems rather than pure neural network theory. The notes are an extension to the existing notes on fuzzy control (Jantzen, Fuzzy Control, 1994).......These notes are for a course in fuzzy control and neural networks. By neural networks we more precisely mean neurofuzzy systems rather than pure neural network theory. The notes are an extension to the existing notes on fuzzy control (Jantzen, Fuzzy Control, 1994)....

  15. Control rod position control device

    International Nuclear Information System (INIS)

    Ubukata, Shinji.

    1997-01-01

    The present invention provides a control rod position control device which stores data such as of position signals and driving control rod instruction before and after occurrence of abnormality in control for the control rod position for controlling reactor power and utilized the data effectively for investigating the cause of abnormality. Namely, a plurality of individual control devices have an operation mismatching detection circuit for outputting signals when difference is caused between a driving instruction given to the control rod position control device and the control rod driving means and signals from a detection means for detecting an actual moving amount. A general control device collectively controls the individual control devices. In addition, there is also disposed a position storing circuit for storing position signals at least before and after the occurrence of the control rod operation mismatching. With such procedures, the cause of the abnormality can be determined based on the position signals before and after the occurrence of control rod mismatching operation stored in the position storing circuit. Accordingly, the abnormality cause can be determined to conduct restoration in an early stage. (I.S.)

  16. Control rods

    International Nuclear Information System (INIS)

    Maruyama, Hiromi.

    1984-01-01

    Purpose: To realize effective utilization, cost reduction and weight reduction in neutron absorbing materials. Constitution: Residual amount of neutron absorbing material is averaged between the top end region and other regions of a control rod upon reaching to the control rod working life, by using a single kind of neutron absorbing material and increasing the amount of the neutron absorber material at the top end region of the control rod as compared with that in the other regions. Further, in a case of a control rod having control rod blades such as in a cross-like control rod, the amount of the neutron absorbing material is decreased in the middle portion than in the both end portions of the control rod blade along the transversal direction of the rod, so that the residual amount of the neutron absorbing material is balanced between the central region and both end regions upon reaching the working life of the control rod. (Yoshihara, H.)

  17. Control apparatus

    International Nuclear Information System (INIS)

    Doll, D.W.

    1977-01-01

    A nuclear reactor system is described in which flexible control rods are used to enable insertion of the control rods into guide holes in the core which are distributed over an area larger than the cross section of the control rod penetration in the reactor pressure vessel. Guide tubes extend from the penetration and fan out to the guide holes for guiding the control rods from the penetration to the guide holes

  18. Gaining control

    NARCIS (Netherlands)

    Enden, van der E.; Laan, van der R.

    2008-01-01

    The article reports on the efforts of companies to find a solution for tax risk management, tax accounting and being in control. In trying to find a solution, companies work towards an integrated tax control framework (TCF), a tax risk management and control environment embedded in the internal

  19. Associational control

    DEFF Research Database (Denmark)

    Hvid, Helge Søndergaard; Lund, Henrik Lambrecht; Grosen, Sidsel Lond

    2010-01-01

    Over the last 30 years, the concept of control has had a central position in research into the psychological working environment. Control has been understood as individual autonomy and individual opportunities for development. This article examines whether the concept of control has the same key...

  20. The Controls of Pore-Throat Structure on Fluid Performance in Tight Clastic Rock Reservoir: A Case from the Upper Triassic of Chang 7 Member, Ordos Basin, China

    Directory of Open Access Journals (Sweden)

    Yunlong Zhang

    2018-01-01

    Full Text Available The characteristics of porosity and permeability in tight clastic rock reservoir have significant difference from those in conventional reservoir. The increased exploitation of tight gas and oil requests further understanding of fluid performance in the nanoscale pore-throat network of the tight reservoir. Typical tight sandstone and siltstone samples from Ordos Basin were investigated, and rate-controlled mercury injection capillary pressure (RMICP and nuclear magnetic resonance (NMR were employed in this paper, combined with helium porosity and air permeability data, to analyze the impact of pore-throat structure on the storage and seepage capacity of these tight oil reservoirs, revealing the control factors of economic petroleum production. The researches indicate that, in the tight clastic rock reservoir, largest throat is the key control on the permeability and potentially dominates the movable water saturation in the reservoir. The storage capacity of the reservoir consists of effective throat and pore space. Although it has a relatively steady and significant proportion that resulted from the throats, its variation is still dominated by the effective pores. A combination parameter (ε that was established to be as an integrated characteristic of pore-throat structure shows effectively prediction of physical capability for hydrocarbon resource of the tight clastic rock reservoir.

  1. Optimal control

    CERN Document Server

    Aschepkov, Leonid T; Kim, Taekyun; Agarwal, Ravi P

    2016-01-01

    This book is based on lectures from a one-year course at the Far Eastern Federal University (Vladivostok, Russia) as well as on workshops on optimal control offered to students at various mathematical departments at the university level. The main themes of the theory of linear and nonlinear systems are considered, including the basic problem of establishing the necessary and sufficient conditions of optimal processes. In the first part of the course, the theory of linear control systems is constructed on the basis of the separation theorem and the concept of a reachability set. The authors prove the closure of a reachability set in the class of piecewise continuous controls, and the problems of controllability, observability, identification, performance and terminal control are also considered. The second part of the course is devoted to nonlinear control systems. Using the method of variations and the Lagrange multipliers rule of nonlinear problems, the authors prove the Pontryagin maximum principle for prob...

  2. Environmental restoration: Integrating hydraulic control of groundwater, innovative contaminant removal technologies and wetlands restoration--A case study at SRS

    International Nuclear Information System (INIS)

    Lewis, C.M.; Serkiz, S.M.; Adams, J.; Welty, M.

    1992-01-01

    The groundwater remediation program at the F and H Seepage Basins, Savannah River Sits (SRS) is a case study of the integration of various environmental restoration technologies at a single waste site. Hydraulic control measures are being designed to mitigate the discharge of groundwater plumes to surface water. One of the primary constituents of the plumes is tritium. An extraction and reinjection scenario is being designed to keep the tritium in circulation in the shallow groundwater, until it can naturally decay. This will be accomplished by extracting groundwater downgradient of the waste sites, treatment, and reinjection of the tritiated water into the water table upgradient of the basins. Innovative in-situ technologies, including electrolytic migration, are being field tested at the site to augment the pump-treat-reinject system. The in-situ technologies target removal of contaminants which are relatively immobile, yet represent long term risks to human health and the environment. Wetland restoration is an integral part of the F and H remediation program. Both in-situ treatment of the groundwater discharging the wetlands to adjust the pH, and replacement of water loss due to the groundwater extraction program ar being considered. Toxicity studies indicate that drought and the effects of low pH groundwater discharge have been factors in observed tree mortality in wetlands near the waste sites

  3. Taking Control

    Centers for Disease Control (CDC) Podcasts

    2007-11-01

    This podcast gives action steps and reasons to control diabetes.  Created: 11/1/2007 by National Diabetes Education Program (NDEP), a joint program of the Centers for Disease Control and Prevention and the National Institutes of Health.   Date Released: 11/2/2007.

  4. Control Theory.

    Science.gov (United States)

    Toso, Robert B.

    2000-01-01

    Inspired by William Glasser's Reality Therapy ideas, Control Theory (CT) is a disciplinary approach that stresses people's ability to control only their own behavior, based on internal motivations to satisfy five basic needs. At one North Dakota high school, CT-trained teachers are the program's best recruiters. (MLH)

  5. CONTROL ROD

    Science.gov (United States)

    Walker, D.E.; Matras, S.

    1963-04-30

    This patent shows a method of making a fuel or control rod for a nuclear reactor. Fuel or control material is placed within a tube and plugs of porous metal wool are inserted at both ends. The metal wool is then compacted and the tube compressed around it as by swaging, thereby making the plugs liquid- impervious but gas-pervious. (AEC)

  6. Birth Control

    Science.gov (United States)

    ... even if you aren’t going for birth control. What doesn’t work to prevent pregnancy? top It’s ... and taking care of a baby’s many needs. What if I need birth control in an emergency? top Emergency contraception (EC) is ...

  7. Integrated controls

    International Nuclear Information System (INIS)

    Hollaway, F.W.

    1985-01-01

    During 1984, all portions of the Nova control system that were necessary for the support of laser activation and completion of the Nova project were finished and placed in service on time. The Nova control system has been unique in providing, on schedule, the capabilities required in the central control room and in various local control areas throughout the facility. The ambitious goal of deploying this system early enough to use it as an aid in the activation of the laser was accomplished; thus the control system made a major contribution to the completion of Nova activation on schedule. Support and enhancement activities continued during the year on the VAX computer systems, central control room, operator consoles and displays, Novanet data communications network, system-level software for both the VAX and LSI-11 computers, Praxis control system computer language, software management tools, and the development system, which includes office terminals. Computational support was also supplied for a wide variety of test fixtures required by the optical and mechanical subsystems. Significant new advancements were made in four areas in integrated controls this year: the integration software (which includes the shot scheduler), the Praxis language, software quality assurance audit, and software development and data handling. A description of the accomplishments in each of these areas follows

  8. Controlling Hypertension

    Centers for Disease Control (CDC) Podcasts

    A recent study found an increase in self-reported high blood pressure among U.S. adults, and an increase in the use of medications to control high blood pressure. This podcast discusses the importance of controlling high blood pressure.

  9. Experiencing control

    NARCIS (Netherlands)

    Monaci, G.; Braspenning, R.A.C.; Meerbeek, B.W.; Bingley, P.; Rajagopalan, R.; Triki, M.

    2009-01-01

    This report describes the activities carried out in the first part of the Experiencing Control project (2008-324). The guiding idea of the project is to make control part of the experience, exploring new interaction solutions for complex, engaging interactions with Philips devices in the living

  10. Control rod

    International Nuclear Information System (INIS)

    Kawakami, Kazuo; Shimoshige, Takanori; Nishimura, Akira

    1979-01-01

    Purpose: A control rod has been developed, which provided a plurality of through-holes in the vicinity of the sheath fitting position, in order to flatten burn-up, of fuel rods in positions confronting a control rod. Thereby to facilitate the manufacture of the control rods and prevent fuel rod failures. Constitution: A plurality of through-holes are formed in the vicinity of the sheath fitting position of a central support rod to which a sheath for the control rod is fitted. These through-holes are arranged in the axial direction of the central support rod. Accordingly, burn-up of fuel rods confronting the control rods can be reduced by through-holes and fuel rod failures can be prevented. (Yoshino, Y.)

  11. Describing control

    International Nuclear Information System (INIS)

    Fouet, J.M.; Starynkevitch, B.

    1987-01-01

    Incremental development and maintenance of large systems imply that control be clearly separated from knowledge. Finding efficient control for a given class of knowledge is itself a matter of expertise, to which knowledge-based methods may and should be applied. We present here two attempts at building root systems that may later be tuned by knowledge engineers, using the semantics of each particular application. These systems are given heuristics in a declarative manner, which they use to control the application of heuristics. Eventually, some heuristics may be used to compile others (or themselves) into efficient pieces of programmed code

  12. Remote Sensing and Monitoring of Earthen Flood-Control Structures

    Science.gov (United States)

    2017-07-01

    windows also provide valuable information about the earth’s surface and are useful for purposes of both land and water mapping or change detection ...spectrum (Figures 2-2 and 2-3) are considered to be useful for detection and monitoring of boil activity as temperature differences in water from seepage...are no breaks, holes, cracks in the discharge pipes/ culverts that would result in significant water leakage . The pipe shape is still essentially

  13. Drug Control

    Science.gov (United States)

    Leviton, Harvey S.

    1975-01-01

    This article attempts to assemble pertinent information about the drug problem, particularily marihuana. It also focuses on the need for an educational program for drug control with the public schools as the main arena. (Author/HMV)

  14. Institutional Controls

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset consists of institutional control data from multiple Superfund sites in U.S. EPA Region 8. These data were acquired from multiple sources at different...

  15. Control rooms

    International Nuclear Information System (INIS)

    Preuss, W.

    1990-01-01

    The current state of knowledge about screen systems for application in traffic (e.g., flight control), process control, and production is presented. The 29 lectures, 5 of which relate to aviation, deal with the optimization of the man-machine interface with respect to unusual operating situations and adequate presentation and action methods on the basis of taks and event analyses integrating the users. (DG) [de

  16. Controlling Hypertension

    Centers for Disease Control (CDC) Podcasts

    Hypertension, or high blood pressure, affects one third of U.S. adults and is a leading cause of heart disease and stroke. A recent study found an increase in self-reported high blood pressure among U.S. adults, and an increase in the use of medications to control high blood pressure. In this podcast, Dr. Fleetwood Loustalot discusses the importance of controlling high blood pressure.

  17. Control rods

    International Nuclear Information System (INIS)

    Koga, Isao; Masuoka, Ryuzo.

    1979-01-01

    Purpose: To prevent fuel element failures during power conditioning by removing liquid absorbents in poison tubes of control rods in a fast power up step and extracting control rods to slightly increase power in a medium power up step. Constitution: A plurality of poison tubes are disposed in a coaxial or plate-like arrangement and divided into a region capable of compensating the reactivity from the initial state at low temperature to 40% power operation and a region capable of compensating the reactivity in the power up above 40% power operation. Soluble poisons are used as absorbers in the poison tubes corresponding to above 40% power operation and they are adapted to be removed independently from the driving of control rods. The poison tubes filled with the soluble absorbers are responsible for the changes in the reactivity from the initial state at low temperature to the medium power region and the reactivity control is conducted by the elimination of liquid absorbers from the poison tubes. In the succeeding slight power up region above the medium power, power up is proceeding by extracting the control rods having remaining poison tubes filled with solid or liquid absorbers. (Seki, T.)

  18. Losing control

    DEFF Research Database (Denmark)

    Leppink, Eric; Odlaug, Brian Lawrence; Lust, Katherine

    2014-01-01

    picking disorder). CONCLUSIONS: Assaultive behavior appears fairly common among college students and is associated with symptoms of depression and impulse control disorders. Significant distress and diminished behavioral control suggest that assaultive behaviors may often be associated with significant......OBJECTIVE: Assaultive behaviors are common among young people and have been associated with a range of other unhealthy, impulsive behaviors such as substance use and problem gambling. This study sought to determine the predictive ability of single assaultive incidents for impulse control disorders......, an association that has yet to be examined, especially in young adults. METHODS: The authors conducted a university-wide email survey in the spring of 2011 on 6000 university students. The survey examined assaultive behavior and associated mental health variables (using a clinically validated screening...

  19. Coordinating controls

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1986-07-15

    While physics Laboratories are having to absorb cuts in resources, the machines they rely on are becoming more and more complex, requiring increasingly sophisticated systems. Rather than being a resourceful engineer or physicist able to timber together solutions in his 'backyard', the modern controls specialist has become a professional in his own right. Because of possible conflicts between increasing sophistication on one hand and scarcer resources on the other, there was felt a need for more contacts among controls specialists to exchange experiences, coordinate development and discuss 'family problems', away from meetings where the main interest is on experimental physics.

  20. Helicopter Controllability

    Science.gov (United States)

    1989-09-01

    106 3. Program CC Systems Technology, Inc. (STI) of Hawthorne, CA., develops and markets PC control system analysis and design software including...is marketed in Palo Alto, Ca., by Applied i and can be used for both linear and non- linear control system analysis. Using TUTSIM involves developing...gravity centroid ( ucg ) can be calculated as 112 n m pi - 2 zi acg n i (7-5) where pi = poles zi = zeroes n = number of poles m = number of zeroes If K

  1. Coordinating controls

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    While physics Laboratories are having to absorb cuts in resources, the machines they rely on are becoming more and more complex, requiring increasingly sophisticated systems. Rather than being a resourceful engineer or physicist able to timber together solutions in his 'backyard', the modern controls specialist has become a professional in his own right. Because of possible conflicts between increasing sophistication on one hand and scarcer resources on the other, there was felt a need for more contacts among controls specialists to exchange experiences, coordinate development and discuss 'family problems', away from meetings where the main interest is on experimental physics

  2. Topology control

    NARCIS (Netherlands)

    Buchin, K.; Buchin, M.; Wagner, D.; Wattenhofer, R.

    2007-01-01

    Information between two nodes in a network is sent based on the network topology, the structure of links connecting pairs of nodes of a network. The task of topology control is to choose a connecting subset from all possible links such that the overall network performance is good. For instance, a

  3. Control mental

    OpenAIRE

    Bueno i Torrens, David, 1965-

    2013-01-01

    La revista especialitzada NeuroReport ha publicat un article que m'ha aportat nous elements de reflexió sobre els mecanismes neurals de control mental que, de forma innata, realitzem les persones com a part de la nostra vida social.

  4. Control rod

    International Nuclear Information System (INIS)

    Igarashi, Takao; Yoshimoto, Yuichiro; Sugawara, Satoshi; Fukumoto, Takashi; Endo, Zen-ichiro; Saito, Shozo; Shinpo, Katsutoshi; Nishimura, Akira; Ozawa, Michihiro

    1988-01-01

    Purpose: To provide a sufficient shutdown margin upon reactor shutdown, prevent sheath deformation without decreasing neutron absorbents and prevent impact shocks exerted to structural materials. Constitution: The control rod of the present invention comprises a neutron absorption region, a sheath deformation means attached to the side wall and means for restricting and supporting axial movement of the neutron absorbent rod. Then, the amount of absorptive nuclei chained absorbents in the lower region is reduced than that in the upper region. In this way, effective neutron absorbing performance can be obtained relative to the neutron importance distribution during reactor shutdown. In addition, since the operationability is improved by reducing the weight of the control rod and the absorptive nuclei chained neutron abosrbers are used, mechanical nuclear life of the control rod can be increased. Thus, it is possible to prevent the outward deformation of the sheath, as well as prevent collision between the neutron absorber rod and the structural material on the side of inserting the control rod generated upon reactor scram by a simple structure. (Kamimura, M.)

  5. COPD - control drugs

    Science.gov (United States)

    Chronic obstructive pulmonary disease - control drugs; Bronchodilators - COPD - control drugs; Beta agonist inhaler - COPD - control drugs; Anticholinergic inhaler - COPD - control drugs; Long-acting inhaler - COPD - control drugs; ...

  6. Does seismic activity control carbon exchanges between transform-faults in old ocean crust and the deep sea? A hypothesis examined by the EU COST network FLOWS

    Science.gov (United States)

    Lever, M. A.

    2014-12-01

    The European Cooperation in Science and Technology (COST)-Action FLOWS (http://www.cost.eu/domains_actions/essem/Actions/ES1301) was initiated on the 25th of October 2013. It is a consortium formed by members of currently 14 COST countries and external partners striving to better understand the interplay between earthquakes and fluid flow at transform-faults in old oceanic crust. The recent occurrence of large earthquakes and discovery of deep fluid seepage calls for a revision of the postulated hydrogeological inactivity and low seismic activity of old oceanic transform-type plate boundaries, and indicates that earthquakes and fluid flow are intrinsically associated. This Action merges the expertise of a large number of research groups and supports the development of multidisciplinary knowledge on how seep fluid (bio)chemistry relates to seismicity. It aims to identify (bio)geochemical proxies for the detection of precursory seismic signals and to develop innovative physico-chemical sensors for deep-ocean seismogenic faults. National efforts are coordinated through Working Groups (WGs) focused on 1) geophysical and (bio)geochemical data acquisition; 2) modelling of structure and seismicity of faults; 3) engineering of deep-ocean physico-chemical seismic sensors; and 4) integration and dissemination. This poster will illustrate the overarching goals of the FLOWS Group, with special focus to research goals concerning the role of seismic activity in controlling the release of carbon from the old ocean crust into the deep ocean.

  7. Environmental controls

    International Nuclear Information System (INIS)

    Brown, S.

    1996-01-01

    Members of the public are exposed to environmental radiations from a variety of sources. In terms of average dose received the major component is from natural sources of radiation for which there is little or no scope to reduce exposure. Where such opportunities do exist, in those homes with high radon concentrations, the householders tend to ignore the risks despite the availability of comparatively straightforward and inexpensive remediation measures. By comparison there is significant public concern about radioactive waste management and the disposal and discharge of radioactivity to the environment despite strict environmental controls. This paper describes the controls and the wider policy context for radioactive waste management following a major review of policy last year. (author)

  8. Controllable dose

    International Nuclear Information System (INIS)

    Alvarez R, J.T.; Anaya M, R.A.

    2004-01-01

    With the purpose of eliminating the controversy about the lineal hypothesis without threshold which found the systems of dose limitation of the recommendations of ICRP 26 and 60, at the end of last decade R. Clarke president of the ICRP proposed the concept of Controllable Dose: as the dose or dose sum that an individual receives from a particular source which can be reasonably controllable by means of any means; said concept proposes a change in the philosophy of the radiological protection of its concern by social approaches to an individual focus. In this work a panorama of the foundations is presented, convenient and inconveniences that this proposal has loosened in the international community of the radiological protection, with the purpose of to familiarize to our Mexican community in radiological protection with these new concepts. (Author)

  9. quality control

    International Nuclear Information System (INIS)

    Skujina, A.; Purina, S.; Riekstina, D.

    1999-01-01

    The optimal objects: soils, spruce needles and bracken ferns were found for the environmental monitoring in the regions of possible radioactive contamination - near SalaspiIs nuclear reactor and Ignalina nuclear power plant. The determination of Sr-90 was based on the radiochemical separation of Sr-90 (=Y-90) by HDEHP extraction and counting the Cerenkov radiation. The quality control of the results was carried out. (authors)

  10. Vehicle Controller

    Science.gov (United States)

    1985-01-01

    UNISTICK is an airplane-like joystick being developed by Johnson Engineering under NASA and VA sponsorship. It allows a driver to control a vehicle with one hand, and is based upon technology developed for the Apollo Lunar Landings of the 1970's. It allows severely handicapped drivers to operate an automobile or van easily. The system is expected to be in production by March 1986.

  11. Control rod

    International Nuclear Information System (INIS)

    Takeda, Toshikazu; Inoue, Kotaro.

    1979-01-01

    Purpose: To flatten the power distribution in the reactor core without impairing neutron economy by disposing pins containing elements of lower atomic number in the central region of a shroud and loading pins containing depleted uranium in the periphery region thereof. Constitution: The shroud has a layer of pins containing depleted uranium in the peripheral region and a layer of pins containing elements of lower atomic number such as beryllium in the central region. Heat removal from those pins containing depleted uranium and elements of lower atomic number (neutron moderator) is effected by sodium flow outside of the cladding material. The control rod operation is conducted by inserting or extracting the central portion (pins containing elements of lower atomic number such as beryllium) inside of the stainless pipe. Upon extraction of the control rod, the moderator in the central region is removed whereby high speed neutrons are no more deccelerated and the absorption rate to the depleted uranium is decreased. This can flatten the power distribution in the reactore core with the disposition of a plurality of control rods at a better neutron economy as compared with the use of neutron absorber such as boron. (Seki, T.)

  12. Control rod

    International Nuclear Information System (INIS)

    Fukumoto, Takashi; Hirakawa, Hiromasa; Kawashima, Norio; Goto, Yasuyuki.

    1994-01-01

    Neutron absorbers are contained in a tubular member comprising, integrally a tubular portion and four corners disposed at the outer circumference of the tubular portion at every 90deg, to provide a neutron absorbing tube. A plurality of neutron absorbing tubes are arranged in parallel in the lateral direction, and adjacent corners are joined, into a blade to constitute a control rod. Such a control rod has a great structural strength, simple in the structure and relatively light in weight and can contain a great amount of neutron absorbers. Upon formation of the control rod by arranging the blades in a cross-like shape, at least a portion thereof is constituted with short neutron absorbing tubes shorter than the entire length of the blade, and gaps are formed at positions in adjacent in the axial direction. With such a constitution, there is no worry that a wing end of the blade collides against or be abraded with a fuel channel box or a fuel support. Even if fuel channels are vibrated upon scram of the reactor, such as occurrence of earthquakes, it can be inserted to the reactor easily. (N.H.)

  13. Controlled fragmentation

    International Nuclear Information System (INIS)

    Arnold, Werner

    2002-01-01

    Contrary to natural fragmentation, controlled fragmentation offers the possibility to adapt fragment parameters like size and mass to the performance requirements in a very flexible way. Known mechanisms like grooves inside the casing, weaken the structure. This is, however, excluded for applications with high accelerations during launch or piercing requirements for example on a semi armor piercing penetrator. Another method to achieve controlled fragmentation with an additional grid layer is presented with which the required grooves are produced 'just in time' inside the casing during detonation of the high explosive. The process of generating the grooves aided by the grid layer was studied using the hydrocode HULL with respect to varying grid designs and material combinations. Subsequent to this, a large range of these theoretically investigated combinations was contemplated in substantial experimental tests. With an optimised grid design and a suitable material selection, the controlled fragment admits a very flexible adaptation to the set requirements. Additional advantages like the increase of perforation performance or incendiary amplification can be realized with the grid layer

  14. Flow Control

    Science.gov (United States)

    2013-04-08

    can be written as â fj (t) =WO tanh( WIx (t)+bI)+bO, (38) where WI , WO are the input and output matrices, respectively, and bI and bO are the input...applications, present on envisioned airborne optical platforms . One of the problems is that all adaptive optical systems rely on mechanically moving some...of successfully controlling the optical aberration due to the flow over the aperture of airborne optical platforms . As outlined above, systems

  15. Control rod

    International Nuclear Information System (INIS)

    Igarashi, Takao; Sugawara, Satoshi; Yoshimoto, Yuichiro; Saito, Shozo; Fukumoto, Takashi.

    1987-01-01

    Purpose: To reduce the weight and thereby obtain satisfactory operationability of control rods by combining absorbing nuclear chain type neutron absorbers and conventional type neutron absorbers in the axial direction of blades. Constitution: Neutron absorber rods and long life type neutron absorber rods are disposed in a tie rod and a sheath. The neutron absorber rod comprises a poison tube made of stainless steels and packed with B 4 C powder. The long life type neutron absorber rod is prepared by packing B-10 enriched boron carbide powder into a hafnium metal rod, hafnium pipe, europium and stainless made poison tube. Since the long life type absorber rod uses HF as the absorbing nuclear chain type neutron absorber, it absorbs neutrons to form new neutron absorbers to increase the nuclear life. (Yoshino, Y.)

  16. Control Valve

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Wayne R.

    2018-03-20

    A control valve includes a first conduit having a first inlet and a first outlet and defining a first passage; a second conduit having a second inlet and a second outlet and defining a second passage, the second conduit extending into the first passage such that the second inlet is located within the first passage; and a valve plate disposed pivotably within the first passage, the valve plate defining a valve plate surface. Pivoting of the valve plate within the first passage varies flow from the first inlet to the first outlet and the valve plate is pivotal between a first position and a second position such that in the first position the valve plate substantially prevents fluid communication between the first passage and the second passage and such that in the second position the valve plate permits fluid communication between the first passage and the second passage.

  17. Control Prenatal

    Directory of Open Access Journals (Sweden)

    P. Susana Aguilera, DRA.

    2014-11-01

    Full Text Available Los principales objetivos del control prenatal son identificar aquellos pacientes de mayor riesgo, con el fin de realizar intervenciones en forma oportuna que permitan prevenir dichos riesgos y así lograr un buen resultado perinatal. Esto se realiza a través de la historia médica y reproductiva de la mujer, el examen físico, la realización de algunos exámenes de laboratorio y exámenes de ultrasonido. Además es importante promover estilos de vida saludables, la suplementación de ácido fólico, una consejería nutricional y educación al respecto.

  18. Custom controls

    Science.gov (United States)

    Butell, Bart

    1996-02-01

    Microsoft's Visual Basic (VB) and Borland's Delphi provide an extremely robust programming environment for delivering multimedia solutions for interactive kiosks, games and titles. Their object oriented use of standard and custom controls enable a user to build extremely powerful applications. A multipurpose, database enabled programming environment that can provide an event driven interface functions as a multimedia kernel. This kernel can provide a variety of authoring solutions (e.g. a timeline based model similar to Macromedia Director or a node authoring model similar to Icon Author). At the heart of the kernel is a set of low level multimedia components providing object oriented interfaces for graphics, audio, video and imaging. Data preparation tools (e.g., layout, palette and Sprite Editors) could be built to manage the media database. The flexible interface for VB allows the construction of an infinite number of user models. The proliferation of these models within a popular, easy to use environment will allow the vast developer segment of 'producer' types to bring their ideas to the market. This is the key to building exciting, content rich multimedia solutions. Microsoft's VB and Borland's Delphi environments combined with multimedia components enable these possibilities.

  19. Control rods

    International Nuclear Information System (INIS)

    Hirukawa, Koji.

    1979-01-01

    Purpose: To ensure the fuel safety by constituting a control rod with a plurality of poison bodies suspended in a cross-like section and shorter length poison bodies made movable and engageable in the gap between each of the above poison bodies thereby maintaining the function of the shorter length poison constant. Constitution: Cross-like supports are secured to the upper and lower parts of a driving shaft journaled in a sheath and poison bodies composed of neutron absorber poisons of a large thermal neutron absorption cross section and neutron absorber poison tubes for containing them are suspended from the supports. A movable cross-like support is mounted slidably at its base to the lower part of the driving shaft and poison bodies shorter than the above poison bodies and composed of neutron absorber poisons having a greater absorption cross section at the neutron energy region higher than thermal neutron region and neutron poison tubes for containing them are suspended to the movable support at the position capable of engaging in the gap between each of the poison bodies. (Kawakami, Y.)

  20. Radiation control

    International Nuclear Information System (INIS)

    Uchida, Akira

    1981-01-01

    This paper describes on how the condition of radiation level in the ring (storage ring) experimentation room changes corresponding to the operating stage of SOR-ring (synchrotron radiation storage ring), and does not describe on the present radiation control in the SOR facility. The operating stage of SOR is divided into the following five: (1) 307 MeV electron injection, (2) 307 MeV electron storage (used for SOR experiments), (3) energy increase from 307 to 380 MeV, (4) 380 MeV electron storage, (5) re-injection and completion of operation. Gamma and X ray levels are shown when electron beam is injected from the electron synchrotron to the SOR-ring. Two main causes of the high level are reported. Spatial dose rate in storing 307 MeV electrons in also illustrated. This is sufficiently lower than that at electron incidence. The measurement of radiation level at the time of energy increase from 307 to 380 MeV has just started. Since the radiation level in 380 MeV storage, measured at the points about 20 cm apart from the electron orbit, showed several mR/h, the level seems to be negligible at the points where experiments are carried out, 1 m away from the measurement points. The radiation level in electron reinjection and completion of operation may be large during a short period (a few Roentgen) like the time of energy increase. Therefore, the beam shall be re-injected or decreased after confirming that all experimenters have retreated into the predetermined place. (Wakatsuki, Y.)

  1. Environmental Release Prevention and Control Plan

    International Nuclear Information System (INIS)

    Mamatey, A.; Arnett, M.

    1997-01-01

    During the history of SRS, continual improvements in facilities, process, and operations, and changes in the site''s mission have reduced the amount of radioactive liquid releases. In the early years of SRS (1958 to 1965), the amount of tritium discharged to the Savannah River averaged approximately 61,000 curies a year. During the mid-1980''s (1983 to 1988), liquid releases of tritium averaged 27,000 curies a year. By 1996, liquid releases of tritium are projected to be just 3000 curies for the year. This large projected decrease is the result of the planned shut-down of all reactors and the anticipated significant decline in the amount of tritium migrating from the site seepage basins and the Solid Waste Disposal Facility

  2. Active vibration control by robust control techniques

    International Nuclear Information System (INIS)

    Lohar, F.A.

    2001-01-01

    This paper studies active vibration control of multi-degree-of-freedom system. The control techniques considered are LTR, H/sup 2/ and H/sup infinite/. The results show that LTR controls the vibration but its respective settling time is higher than that of the other techniques. The control performance of H/sup infinite/ control is similar to that of H/sup 2/ control in the case of it weighting functions. However, H/sup infinite/ control is superior to H/sup 2/ control with respect to robustness, steady state error and settling time. (author)

  3. Hydrogeological controls on spatial patterns of groundwater discharge in peatlands

    Directory of Open Access Journals (Sweden)

    D. K. Hare

    2017-11-01

    Full Text Available Peatland environments provide important ecosystem services including water and carbon storage, nutrient processing and retention, and wildlife habitat. However, these systems and the services they provide have been degraded through historical anthropogenic agricultural conversion and dewatering practices. Effective wetland restoration requires incorporating site hydrology and understanding groundwater discharge spatial patterns. Groundwater discharge maintains wetland ecosystems by providing relatively stable hydrologic conditions, nutrient inputs, and thermal buffering important for ecological structure and function; however, a comprehensive site-specific evaluation is rarely feasible for such resource-constrained projects. An improved process-based understanding of groundwater discharge in peatlands may help guide ecological restoration design without the need for invasive methodologies and detailed site-specific investigation. Here we examine a kettle-hole peatland in southeast Massachusetts historically modified for commercial cranberry farming. During the time of our investigation, a large process-based ecological restoration project was in the assessment and design phases. To gain insight into the drivers of site hydrology, we evaluated the spatial patterning of groundwater discharge and the subsurface structure of the peatland complex using heat-tracing methods and ground-penetrating radar. Our results illustrate that two groundwater discharge processes contribute to the peatland hydrologic system: diffuse lower-flux marginal matrix seepage and discrete higher-flux preferential-flow-path seepage. Both types of groundwater discharge develop through interactions with subsurface peatland basin structure, often where the basin slope is at a high angle to the regional groundwater gradient. These field observations indicate strong correlation between subsurface structures and surficial groundwater discharge. Understanding these general patterns

  4. Hydrogeological controls on spatial patterns of groundwater discharge in peatlands

    Science.gov (United States)

    Hare, Danielle K.; Boutt, David F.; Clement, William P.; Hatch, Christine E.; Davenport, Glorianna; Hackman, Alex

    2017-11-01

    Peatland environments provide important ecosystem services including water and carbon storage, nutrient processing and retention, and wildlife habitat. However, these systems and the services they provide have been degraded through historical anthropogenic agricultural conversion and dewatering practices. Effective wetland restoration requires incorporating site hydrology and understanding groundwater discharge spatial patterns. Groundwater discharge maintains wetland ecosystems by providing relatively stable hydrologic conditions, nutrient inputs, and thermal buffering important for ecological structure and function; however, a comprehensive site-specific evaluation is rarely feasible for such resource-constrained projects. An improved process-based understanding of groundwater discharge in peatlands may help guide ecological restoration design without the need for invasive methodologies and detailed site-specific investigation. Here we examine a kettle-hole peatland in southeast Massachusetts historically modified for commercial cranberry farming. During the time of our investigation, a large process-based ecological restoration project was in the assessment and design phases. To gain insight into the drivers of site hydrology, we evaluated the spatial patterning of groundwater discharge and the subsurface structure of the peatland complex using heat-tracing methods and ground-penetrating radar. Our results illustrate that two groundwater discharge processes contribute to the peatland hydrologic system: diffuse lower-flux marginal matrix seepage and discrete higher-flux preferential-flow-path seepage. Both types of groundwater discharge develop through interactions with subsurface peatland basin structure, often where the basin slope is at a high angle to the regional groundwater gradient. These field observations indicate strong correlation between subsurface structures and surficial groundwater discharge. Understanding these general patterns may allow resource

  5. ANALYSIS OF FACTORS CAUSING WATER DAMAGE TO LOESS DOUBLE-ARCHED TUNNEL BASED ON TFN-AHP

    Directory of Open Access Journals (Sweden)

    Mao Zheng-jun

    2017-04-01

    Full Text Available In order to analysis the factors causing water damage to loess double-arched tunnel, this paper conducts field investigation on water damage to tunnels on Lishi-Jundu Expressway in Shanxi, China, confirms its development characteristics, builds an index system (covering 36 evaluation indexes for construction condition, design stage, construction stage, and operation stage for the factors causing water damage to loess double-arched tunnel, applies TFN-AHP (triangular fuzzy number-analytic hierarchy process in calculating the weight of indexes at different levels, and obtains the final sequence of weight of the factors causing water seepage to loess double-arched tunnel. It is found out that water damage to loess double-arched tunnel always develops in construction joints, expansion joints, settlement joints, and lining joints of tunnel and even around them; there is dotted water seepage, linear water seepage, and planar water seepage according to the trace and scope of water damage to tunnel lining. The result shows that water damage to loess double-arched tunnel mainly refers to linear water seepage, planar water seepage is also developed well, and partition and equipment box at the entrance and exit of tunnel are prone to water seepage; construction stage is crucial for controlling water damage to loess double-arched tunnel, atmospheric precipitation is the main water source, and the structure defect of double-arched tunnel increases the possibility of water seepage; the final sequence for weight of various factors is similar to the actual result.

  6. Controlling Separation in Turbomachines

    Science.gov (United States)

    Evans, Simon; Himmel, Christoph; Power, Bronwyn; Wakelam, Christian; Xu, Liping; Hynes, Tom; Hodson, Howard

    2010-01-01

    Four examples of flow control: 1) Passive control of LP turbine blades (Laminar separation control). 2) Aspiration of a conventional axial compressor blade (Turbulent separation control). 3) Compressor blade designed for aspiration (Turbulent separation control). 4.Control of intakes in crosswinds (Turbulent separation control).

  7. Control panel for CMC 8080 crate controller

    International Nuclear Information System (INIS)

    Masayuki Inokuchi

    1978-01-01

    The main features of Control Panel for CAMAC Crate Controller CMC 8080 are described. The control panel can be directly connected with CRATE CONTROLLER's front panel connector with a 50 lines cable without any changes in CMC 8080 system circuits. (author)

  8. Uniting Control Lyapunov and Control Barrier Functions

    NARCIS (Netherlands)

    Romdlony, Zakiyullah; Jayawardhana, Bayu

    2014-01-01

    In this paper, we propose a nonlinear control design for solving the problem of stabilization with guaranteed safety. The design is based on the merging of a Control Lyapunov Function and a Control Barrier Function. The proposed control method allows us to combine the design of a stabilizer based on

  9. Interaction between production control and quality control

    NARCIS (Netherlands)

    Bij, van der J.D.; Ekert, van J.H.W.

    1999-01-01

    Describes a qualitative study on interaction between systems for production control and quality control within industrial organisations. Production control and quality control interact in a sense. Good performance for one aspect often influences or frustrates the performance of the other. As far as

  10. Control heeft vele gezichten

    NARCIS (Netherlands)

    Steens, H.B.A.

    The editorial summarizes several perspectives of control, including the control conducted by supervisors, control based on classical budgeting, control by analytics, et cetera, and relates these angles to the papers in this issue of the journal.

  11. Hierarchical Control of Thermostatically Controller Loads for Primary Frequency Control

    DEFF Research Database (Denmark)

    Zhao, Haoran; Wu, Qiuwei; Huang, Shaojun

    2016-01-01

    reserve references. At the middle level, distribution substations estimate the available power of TCLs based on the aggregated bin model, and dispatch control signals to individual TCLs. At the local level, a supplementary frequency control loop is implemented at the local controller, which makes TCLs...... respond to the frequency event autonomously. Case studies show that the proposed controller can efficiently respond to frequency events and fulfill the requirement specified by the system operator. The users’ comforts are not compromised and the short cycling of TCLs is largely reduced. Due...... to the autonomous control, the communication requirement is minimized....

  12. Incoherent control of locally controllable quantum systems

    International Nuclear Information System (INIS)

    Dong Daoyi; Zhang Chenbin; Rabitz, Herschel; Pechen, Alexander; Tarn, T.-J.

    2008-01-01

    An incoherent control scheme for state control of locally controllable quantum systems is proposed. This scheme includes three steps: (1) amplitude amplification of the initial state by a suitable unitary transformation, (2) projective measurement of the amplified state, and (3) final optimization by a unitary controlled transformation. The first step increases the amplitudes of some desired eigenstates and the corresponding probability of observing these eigenstates, the second step projects, with high probability, the amplified state into a desired eigenstate, and the last step steers this eigenstate into the target state. Within this scheme, two control algorithms are presented for two classes of quantum systems. As an example, the incoherent control scheme is applied to the control of a hydrogen atom by an external field. The results support the suggestion that projective measurements can serve as an effective control and local controllability information can be used to design control laws for quantum systems. Thus, this scheme establishes a subtle connection between control design and controllability analysis of quantum systems and provides an effective engineering approach in controlling quantum systems with partial controllability information.

  13. Covariance upperbound controllers for networked control systems

    International Nuclear Information System (INIS)

    Ko, Sang Ho

    2012-01-01

    This paper deals with designing covariance upperbound controllers for a linear system that can be used in a networked control environment in which control laws are calculated in a remote controller and transmitted through a shared communication link to the plant. In order to compensate for possible packet losses during the transmission, two different techniques are often employed: the zero-input and the hold-input strategy. These use zero input and the latest control input, respectively, when a packet is lost. For each strategy, we synthesize a class of output covariance upperbound controllers for a given covariance upperbound and a packet loss probability. Existence conditions of the covariance upperbound controller are also provided for each strategy. Through numerical examples, performance of the two strategies is compared in terms of feasibility of implementing the controllers

  14. Microbial Community Structure in a Serpentine-Hosted Abiotic Gas Seepage at the Chimaera Ophiolite, Turkey.

    Science.gov (United States)

    Neubeck, Anna; Sun, Li; Müller, Bettina; Ivarsson, Magnus; Hosgörmez, Hakan; Özcan, Dogacan; Broman, Curt; Schnürer, Anna

    2017-06-15

    The surface waters at the ultramafic ophiolitic outcrop in Chimaera, Turkey, are characterized by high pH values and high metal levels due to the percolation of fluids through areas of active serpentinization. We describe the influence of the liquid chemistry, mineralogy, and H 2 and CH 4 levels on the bacterial community structure in a semidry, exposed, ultramafic environment. The bacterial and archaeal community structures were monitored using Illumina sequencing targeting the 16S rRNA gene. At all sampling points, four phyla, Proteobacteria , Actinobacteria , Chloroflexi , and Acidobacteria , accounted for the majority of taxa. Members of the Chloroflexi phylum dominated low-diversity sites, whereas Proteobacteria dominated high-diversity sites. Methane, nitrogen, iron, and hydrogen oxidizers were detected as well as archaea and metal-resistant bacteria. IMPORTANCE Our study is a comprehensive microbial investigation of the Chimaera ophiolite. DNA has been extracted from 16 sites in the area and has been studied from microbial and geochemical points of view. We describe a microbial community structure that is dependent on terrestrial, serpentinization-driven abiotic H 2 , which is poorly studied due to the rarity of these environments on Earth. Copyright © 2017 Neubeck et al.

  15. Mathematical Analysis of Malfunctions Caused by Seepage Water to the Republic Radioactive Waste Dump in Mochovce

    Directory of Open Access Journals (Sweden)

    Jozef Kuzma

    2007-01-01

    Full Text Available The storage of radioactive waste and the problem of assuring the low and medium radioactive waste is an actual interdisciplinary problem. An important factor influencing on a complex approach to solving these problems is also a creation of suitable technical conditions for its long-term storage. In this article we mathematically analyze an influence of the break covering and its effect on the long-term stability and reliable serviceability of the Republic radioactive waste dump in Mochovce.

  16. Computational Fluid Dynamics Simulation of Oxygen Seepage in Coal Mine Goaf with Gas Drainage

    Directory of Open Access Journals (Sweden)

    Guo-Qing Shi

    2015-01-01

    Full Text Available Mine fires mainly arise from spontaneous combustion of coal seams and are a global issue that has attracted increasing public attention. Particularly in china, the closure of coal workfaces because of spontaneous combustion has contributed to substantial economic loss. To reduce the occurrence of mine fires, the spontaneous coal combustion underground needs to be studied. In this paper, a computational fluid dynamics (CFD model was developed for coal spontaneous combustion under goaf gas drainage conditions. The CFD model was used to simulate the distribution of oxygen in the goaf at the workface in a fully mechanized cave mine. The goaf was treated as an anisotropic medium, and the effects of methane drainage and oxygen consumption on spontaneous combustion were considered. The simulation results matched observational data from a field study, which indicates CFD simulation is suitable for research on the distribution of oxygen in coalmines. The results also indicated that near the workface spontaneous combustion was more likely to take place in the upper part of the goaf than near the bottom, while further from workface the risk of spontaneous combustion was greater in the lower part of the goaf. These results can be used to develop firefighting approaches for coalmines.

  17. Calibration of mathematical models for simulation of thermal, seepage and mechanical behaviour of boom clay

    International Nuclear Information System (INIS)

    Baldi, G.; Borsetto, M.; Hueckel, T.

    1987-01-01

    This report presents results of research on the verification of the validity of a generalized thermo-elastoplastic-hydraulic mathematical model elaborated at Ismes for description of the behaviour of boom clay. The model is described in Section 2. Experimental results performed at Ismes for the identification of the material constants in athermal and thermal drained conditions are then presented. Procedures for the identification are described in Section 4. The undrained consolidated constant total stress heating test is then discussed. The undrained test shows the possibility of clay yielding due to effective pressure decrease during heating, caused by water pressure growth. The test has been simulated numerically, confirming the interpretation of the experiment. Further simulation of plane strain and plane stress central heating axisymmetric problem shows again a formation of a yielded clay zone around the heater. Interpretation of the results and recommendations for further research are given

  18. Geochemistry of crude oils, seepage oils and source rocks from Belize and Guatemala

    DEFF Research Database (Denmark)

    Petersen, H.I.; Holland, B.; Nytoft, H.P.

    2012-01-01

    This study reviews the stratigraphy and the poorly documented petroleum geology of the Belize-Guatemala area in northern Central America. Guatemala is divided by the east-west trending La Libertad arch into the North and South Petén Basins. The arch is the westward continuation of the Maya...... generated from source rocks with similar thermal maturities. The crude oils were generated from marine carbonate source rocks and could be divided into three groups: Group 1 oils come from the North Petén Basin (Guatemala) and the western part of the Corozal Basin (Belize), and have a typical carbonate...

  19. Seepage Study for Suction Installation of Bucket Foundation in Different Soil Combinations

    DEFF Research Database (Denmark)

    Koteras, Aleksandra Katarzyna; Ibsen, Lars Bo; Clausen, Johan Christian

    2016-01-01

    Research has proven the bucket foundation to be a feasible and an attractive solution for offshore wind turbines. Its potential derives partly from the cost-effectiveness due to the suction-assisted installation. The suction applied under the bucket lid produces a downward driving force and addit......Research has proven the bucket foundation to be a feasible and an attractive solution for offshore wind turbines. Its potential derives partly from the cost-effectiveness due to the suction-assisted installation. The suction applied under the bucket lid produces a downward driving force...... around the bucket skirt. The exceedance of critical suction might lead to installation failure due to formation of piping channels, which break the hydraulic seal between the skirt and soil. The excess pore pressure arising due to applied suction changes the effective stress, hence the penetration...

  20. The microbial community of a passive biochemical reactor treating arsenic, zinc and sulfate-rich seepage

    Directory of Open Access Journals (Sweden)

    Susan Anne Baldwin

    2015-03-01

    Full Text Available Sulfidogenic biochemical reactors for metal removal that use complex organic carbon have been shown to be effective in laboratory studies, but their performance in the field is highly variable. Successful operation depends on the types of microorganisms supported by the organic matrix, and factors affecting the community composition are unknown. A molecular survey of a field-based biochemical reactor that had been removing zinc and arsenic for over six years revealed that the microbial community was dominated by methanogens related to Methanocorpusculum sp. and Methanosarcina sp., which co-occurred with Bacteroidetes environmental groups, such as Vadin HA17, in places where the organic matter was more degraded. The metabolic potential for organic matter decomposition by Ruminococcaceae was prevalent in samples with more pyrolysable carbon. Rhodobium- and Hyphomicrobium-related genera within the Rhizobiales Order that have the metabolic potential for dark hydrogen fermentation and methylotrophy, and unclassified Comamonadaceae were the dominant Proteobacteria. The unclassified environmental group Sh765B-TzT-29 was an important Delta-Proteobacteria group in this BCR, that co-occurred with the dominant Rhizobiales OTUs. Organic matter degradation is one driver for shifting the microbial community composition and therefore possibly the performance of these bioreactors over time.

  1. Certain possible causes of between shaft gas seepage in gas wells

    Energy Technology Data Exchange (ETDEWEB)

    Shikhmamedov, N.S.

    1981-01-01

    Investigations for casing wells are carried out at the Turkmen branch of VNIIgaz (All Union petroleum and Gas Research Institute). The presence of high bottom hole pressure that affects further development of wells was established. Thus, for example, at the Shatlyk formation bottom hole pressures reach 138/sup 0/, and the temperature of the gas at the well head - 106/sup 0/C. Because of the heating process, the casing tubes lengthen, and as a result the euqipment at the well head is raised. Thus, at wells 42 and 312 the height of equipment's rise reaches 12 and 15 cm. respectively. Due to high bottom hole pressure temperatures grouting cement is necessary, one composed of 85% cement and 15% clay powder with a water-cement factor of up to 0.9, and density 1.57-1.60 g/cm/sup 3/. The necessity to create prelimnary casing tube tension was noted. The heated casing tubes must not be cooled during well damping. Wells with high gas temperature and presence of packer at bottom hole should have temperature elongation compensators.

  2. Seepage Characteristics Study on Power-Law Fluid in Fractal Porous Media

    Directory of Open Access Journals (Sweden)

    Meijuan Yun

    2014-01-01

    Full Text Available We present fractal models for the flow rate, velocity, effective viscosity, apparent viscosity, and effective permeability for power-law fluid based on the fractal properties of porous media. The proposed expressions realize the quantitative description to the relation between the properties of the power-law fluid and the parameters of the microstructure of the porous media. The model predictions are compared with related data and good agreement between them is found. The analytical expressions will contribute to the revealing of physical principles for the power-law fluid flow in porous media.

  3. Incorporating seepage losses into a 1D unsteady model of floods in ...

    African Journals Online (AJOL)

    Zangemar River is an ephemeral river located in the northwestern part of Iran. Maku and Poldasht are hydrometric stations located upstream and downstream of Zangemar River, respectively. The measured flood hydrograph indicates that the output hydrograph volume from Poldasht station is significantly less than the input ...

  4. On the seepage voids in the compacted soil observed by the x-ray imaging method

    International Nuclear Information System (INIS)

    Tokunaga, Koichi; Koga, Kiyoshi

    1991-01-01

    The structure of large voids in the soil layer by banking and rolling compaction and the form of the water channel structure seeping through soil layers have important significance in geotechnical engineering, and it was decided to examine them by the heavy liquid infiltration method developed recently by one of the authors. It has been known that the water permeability of soil due to compaction varies remarkably according to the water content in the soil at the time of compaction. However, the factor which determines the water permeability is related to the voids in soil, particularly the form of large voids which become water channel. As for the heavy liquid infiltration method, the sample soil is set similarly to the permeability test of compacted soil, and liquid contrast medium is infiltrated. The stereoscopic photographing is carried out as it is, and the path of the contrast medium infiltrating into soil, namely the form of the voids corresponding to water channel can be observed. Sample soil, the experimental method and the results are reported. The compaction permeability curves have the same tendency in volcanic ash soil and red clay. (K.I.)

  5. Occurrence of pockmarks and gas seepages along the central western continental margin of India

    Digital Repository Service at National Institute of Oceanography (India)

    Karisiddaiah, S.M.; Veerayya, M.

    Izatnagar 243 122 The 39th IUPAC Congress and 86th Conference of The C a nadian Society for Chemistry Date: 10 ? 15 Aug ust 2003 Place: Ottawa, Canada Contact: Secretariat 39th IUPAC Congress and 86th Conference....ca International Conference on Discotic Liquid Crystals Date: 25 ? 26 November 2002 Place: Bangalore, India Topics include: Chemistry, physics and applications of dis - cotics, including discotic olig omers, polymers and networks. Contact: Prof. S...

  6. Investigation of water seepage through porous media using X-ray imaging technique

    Science.gov (United States)

    Jung, Sung Yong; Lim, Seungmin; Lee, Sang Joon

    2012-07-01

    SummaryDynamic movement of wetting front and variation of water contents through three different porous media were investigated using X-ray radiography. Water and natural sand particles were used as liquid and porous media in this study. To minimize the effects of minor X-ray attenuation and uneven illumination, the flat field correction (FFC) was applied before determining the position of wetting front. In addition, the thickness-averaged (in the direction of the X-ray penetration) water content was obtained by employing the Beer-Lambert law. The initial inertia of water droplet influences more strongly on the vertical migration, compared to the horizontal migration. The effect of initial inertia on the horizontal migration is enhanced as sand size decreases. The pattern of water transport is observed to be significantly affected by the initial water contents. As the initial water contents increases, the bulb-type transport pattern is shifted to a trapezoidal shape. With increasing surface temperature, water droplets are easily broken on the sand surface. This consequently decreases the length of the initial inertia region. Different from the wetting front migration, the water contents at the initial stage clearly exhibit a preferential flow along the vertical direction. The water transport becomes nearly uniform in all directions beyond the saturation state.

  7. Seepage and Piping through Levees and Dikes using 2D and 3D Modeling Codes

    Science.gov (United States)

    2016-06-01

    hydraulic property assumptions used in the Existing Condition simulations, except that a cutoff wall was added to reduce groundwater heads and the... reduce the migration of groundwater by either obstructing the flow path within the foundation of the embankment or lengthening the flow path to an...greatest in the area of interest to compute the groundwater flow fields adequately under the Existing Condition and with various improvements such as

  8. Effect of drains on the seepage of contaminants from subgrade tailings disposal areas

    International Nuclear Information System (INIS)

    Witten, A.J.; Pin, F.G.; Sharp, R.D.

    1984-01-01

    A numerical simulation study is performed to investigate the influence of ponded water and a bottom drain on the pathways for contaminant migration from a subgrade uranium mill tailings disposal pit. A numerical model is applied to a generic disposal pit constructed with a bottom clay liner and steep unlined sidewalls. The migration of a two-contaminant system is modeled assuming that neither contaminant decays and only one contaminant is retarded. Two dominant pathways are identified; one associated with lateral sidewall leakage and the other associated with transport through the bottom clay liner. It is found that the drain serves to reduce migration through the sidewall which, in turn, prevents the retarded contaminant from reaching the aquifer. The ponded water provides increased head which causes an accelerated vertical movement of moisture through the clay liner. 2 references, 8 figures

  9. The effect of drains on the seepage of contaminants from subgrade tailings disposal areas

    International Nuclear Information System (INIS)

    Witten, A.J.; Pin, F.G.; Sharp, R.D.

    1984-01-01

    A numerical simulation study is performed to investigate the influence of ponded water and a bottom drain on the pathways for contaminant migration from a subgrade uranium mill tailings disposal pit. A numerical model is applied to a generic disposal pit constructed with a bottom clay liner and steep unlined sidewalls. The migration of a two-contaminant system is modeled assuming that neither contaminant decays and only one contaminant is retarded. Two dominant pathways are indentified; one associated with lateral sidewall leakage and the other associated with transport through the bottom clay liner. It is found that the drain serves to reduce migration through the sidewall which, in turn, prevents the retarded contaminant from reaching the aquifer. The ponded water provides increased head which causes an accelarated vertical movement of moisture through the clay liner

  10. Reactive liquid/liquid extraction of heavy metals from landfill seepage waters. Its characterisation and application

    International Nuclear Information System (INIS)

    Woller, N.

    1994-06-01

    This study demonstrates the applicability of liquid-liquid extraction by means of the commercial complexers LIX26 R and LIX84 R to heavy metal removal from waste waters. The composition of this oil-soluble complex is MeR 2 , where Me denotes Hg 2+ , Cd 2+ , Zn 2+ , Cu 2+ , and Ni 2+ , and R denotes LIX84 R . This composition makes the complex electrically neutral, and all polar groups are located inside the molecule. The extraction efficiency of the complexer LIX84 R for the various metal ions is evident in the succession Cu 2+ , Ni 2+ >> Zn 2+ > Hg 2+ > Cd 2+ . These heavy metal ions are even readily extractable at chloride concentrations of up to 1 mol/l. As the structure of the complexer is that of an oil-soluble surfactant with complexing properties, it accumulates at the phase boundary between oil and water. Measurement of interfacial tension in various solvent systems showed that the polar solvent chloroform permits only a weak accumulation of the complexer (400 nmol/m 2 ), whereas the unpolar solvent kerosine permits greater accumulation specifically on the water side of the phase boundary (1958 nmol/m 2 ). Organic solvents solvate the complexer so well, that it is even removed from the air side of the phase boundary. The differing accumulation of the complexer at the water/oil phase boundary explains the differing increase of phase separation time for polar and unpolar solvents. (orig.) [de

  11. Oil seepage polarimetric contrast analysis in a time series of TerraSAR-X images

    OpenAIRE

    de Macedo, Carina Regina; Nunziata, Ferdinando; Velotto, Domenico; Migliaccio, Maurizio

    2017-01-01

    Natural hydrocarbon seeps are broadly distributed across the Gulf of Mexico. Such seeps emit oil and gas into the water column, increasing the phytoplankton biomass and impacting regionally the productivity, carbon and nutrient cycling [1]. A fraction of this oil reaches to the sea surface and can be detected by SAR data. Although the ability of SAR data to detect oil features present in ocean's surface is wide exploited in the literature, it is known that the detection of those features is a...

  12. Transience and persistence of natural hydrocarbon seepage in Mississippi Canyon, Gulf of Mexico

    Science.gov (United States)

    Garcia-Pineda, Oscar; MacDonald, Ian; Silva, Mauricio; Shedd, William; Daneshgar Asl, Samira; Schumaker, Bonny

    2016-07-01

    Analysis of the magnitude of oil discharged from natural hydrocarbon seeps can improve understanding of the carbon cycle and the Gulf of Mexico (GOM) ecosystem. With use of a large archive of remote sensing data, in combination with geophysical and multibeam data, we identified, mapped, and characterized natural hydrocarbon seeps in the Macondo prospect region near the wreck site of the drill-rig Deepwater Horizon (DWH). Satellite image processing and the cluster analysis revealed locations of previously undetected seep zones. Including duplicate detections, a total of 562 individual gas plumes were also observed in multibeam surveys. In total, SAR imagery confirmed 52 oil-producing seep zones in the study area. In almost all cases gas plumes were associated with oil-producing seep zones. The cluster of seeps in the vicinity of lease block MC302 appeared to host the most persistent and prolific oil vents. Oil slicks and gas plumes observed over the DWH site were consistent with discharges of residual oil from the wreckage. In contrast with highly persistent oil seeps observed in the Green Canyon and Garden Banks lease areas, the seeps in the vicinity of Macondo Prospect were intermittent. The difference in the number of seeps and the quantity of surface oil detected in Green Canyon was almost two orders of magnitude greater than in Mississippi Canyon.

  13. A new method for mapping variability in vertical seepage flux in streambeds

    Science.gov (United States)

    Chen, Xunhong; Song, Jinxi; Cheng, Cheng; Wang, Deming; Lackey, Susan O.

    2009-05-01

    A two-step approach was used to measure the flux across the water-sediment interface in river channels. A hollow tube was pressed into the streambed and an in situ sediment column of the streambed was created inside the tube. The hydraulic gradient between the two ends of the sediment column was measured. The vertical hydraulic conductivity of the sediment column was determined using a falling-head permeameter test in the river. Given the availability of the hydraulic gradient and vertical hydraulic conductivity of the streambed, Darcy’s law was used to calculate the specific discharge. This approach was applied to the Elkhorn River and one tributary in northeastern Nebraska, USA. The results suggest that the magnitude of the vertical flux varied greatly within a short distance. Furthermore, the flux can change direction from downward to upward between two locations only several meters apart. This spatial pattern of variation probably represents the inflow and outflow within the hyporheic zone, not the regional ambient flow systems. In this study, a thermal infrared camera was also used to detect the discharge locations of groundwater in the streambed. After the hydraulic gradient and the vertical hydraulic conductivity were estimated from the groundwater spring, the discharge rate was calculated.

  14. Application of the neutron gamma method to a study of water seepage under a rice plantation

    International Nuclear Information System (INIS)

    Puard, M.; Couchat, P.; Moutonnet, P.

    1980-01-01

    In order to determine the share of percolation in the pollution by pesticides (particularly Lindane) being carried down in the drainage water of rice plantations, an application of the neutron gamma method under rice cultivation in the Camargue is suggested. A preliminary laboratory study enabled a comparison to be made between deuteriated water (DHO) and tritiated water (THO) used as water tracers in the determination of the dispersive phenomena and retention in a column of saturated soil [fr

  15. F-Area Seepage Basins groundwater monitoring report, fourth quarter 1991 and 1991 summary

    International Nuclear Information System (INIS)

    1992-03-01

    This progress report for fourth quarter 1991 and 1991 summary fro the Savannah River Plant includes discussion on the following topics: description of facilities; hydrostratigraphic units; monitoring well nomenclature; integrity of the monitoring well network; groundwater monitoring data; analytical results exceeding standards; tritium, nitrate, and pH time-trend data; water levels; groundwater flow rates and directions; upgradient versus downgradient results

  16. Spatial distribution of seepage at a flow-through lake: Lake Hampen, Western Denmark

    DEFF Research Database (Denmark)

    Kidmose, Jacob Baarstrøm; Engesgaard, Peter Knudegaard; Nilsson, Bertel

    2011-01-01

    recharge patiern of the lake and relating these to the geologic history of the lake. Recharge of the surrounding aquifer by lake water occurs off shore in a narrow zone, as measured from lake–groundwater gradients. A 33-m-deep d18O profi le at the recharge side shows a lake d18O plume at depths...... that corroborates the interpretation of lake water recharging off shore and moving down gradient. Inclusion of lake bed heterogeneity in the model improved the comparison of simulated and observed discharge to the lake. The apparent age of the discharging groundwater to the lake was determined by CFCs, resulting...

  17. Output Control Using Feedforward And Cascade Controllers

    Science.gov (United States)

    Seraji, Homayoun

    1990-01-01

    Report presents theoretical study of open-loop control elements in single-input, single-output linear system. Focus on output-control (servomechanism) problem, in which objective is to find control scheme that causes output to track certain command inputs and to reject certain disturbance inputs in steady state. Report closes with brief discussion of characteristics and relative merits of feedforward, cascade, and feedback controllers and combinations thereof.

  18. Controlling chaotic systems via nonlinear feedback control

    International Nuclear Information System (INIS)

    Park, Ju H.

    2005-01-01

    In this article, a new method to control chaotic systems is proposed. Using Lyapunov method, we design a nonlinear feedback controller to make the controlled system be stabilized. A numerical example is given to illuminate the design procedure and advantage of the result derived

  19. Personal exposure control system

    International Nuclear Information System (INIS)

    Tanabe, Ken-ichi; Akashi, Michio

    1994-01-01

    Nuclear power stations are under strict radiation control. Exposure control for nuclear workers is the most important operation, and so carefully thought out measures are taken. This paper introduces Fuji Electric's personal exposure control system that meets strict exposure control and rationalizes control operations. The system has a merit that it can provide required information in an optimum form using the interconnection of a super minicomputer and exposure control facilities and realizes sophisticated exposure control operations. (author)

  20. Introduction of digital control

    International Nuclear Information System (INIS)

    Kim, Sang Jin

    1988-01-01

    This book is one of mechatronics series. It deals with digital control, which includes what is digital control?, display way of control system, output of primary system, secondary system like example of system and display way of the system, stabilizing of control system such as method to decide stability and system out of control, displaying equation of state into vector, good control such as the right characteristic, transient behavior and design of position control system using DC servo motor.

  1. Solid state controller three axes controller

    Science.gov (United States)

    Bailey, C. L., Jr. (Inventor)

    1973-01-01

    The reported flight controller features a handle grip which is mounted on a longitudinally extending control element. The handle grip is pivotally mounted on the control element about a pitch axis which is perpendicular to the longitudinal axis through the control element. The pivotal mounting includes a resilient force mounting mechanism which centers the grip relative to the control element. Rotation of the handle grip produces a direct rotation of a transducer element in a transducer which provides an electrical indication of the rotative movement about three mutually perpendicular axes.

  2. PID control with robust disturbance feedback control

    DEFF Research Database (Denmark)

    Kawai, Fukiko; Vinther, Kasper; Andersen, Palle

    2015-01-01

    Disturbance Feedback Control (DFC) is a technique, originally proposed by Fuji Electric, for augmenting existing control systems with an extra feedback for attenuation of disturbances and model errors. In this work, we analyze the robustness and performance of a PID-based control system with DFC...... and performance (if such gains exist). Finally, two different simulation case studies are evaluated and compared. Our numerical studies indicate that better performance can be achieved with the proposed method compared with a conservatively tuned PID controller and comparable performance can be achieved when...... compared with an H-infinity controller....

  3. Organizational Control: Two Functions

    Science.gov (United States)

    Ouchi, William G.; Maguire, Mary Ann

    1975-01-01

    Distinguishes between two modes of organizational control, personal surveillance (behavior control) and the measurement of outputs (output control). Output control occurs in response to a manager's need to provide legitimate evidence of performance, while behavior control is exerted when means-ends relations are known and appropriate instruction…

  4. Structural Pest Control.

    Science.gov (United States)

    Kahn, M. S.; Hoffman, W. M.

    This manual is designed for those who seek certification as pesticide applicators for industrial, institutional, structural, and health-related pest control. It is divided into six sections covering general pest control, wood-destroying organisms, bird control, fumigation, rodent control, and industrial weed control. The manual gives information…

  5. BSF control system

    International Nuclear Information System (INIS)

    Irie, Y.; Ishii, K.; Ninomiya, S.; Sasaki, H.; Sakai, I.

    1982-08-01

    The booster synchrotron utilization facility (BSF) is a facility which utilizes the four fifths of available beam pulses from the KEK booster synchrotron. The BSF control system includes the beam line control, interactions with the PS central control room and the experimental facilities, and the access control system. A brief description of the various components in the control system is given. (author)

  6. Motion control report

    CERN Document Server

    2013-01-01

    Please note this is a short discount publication. In today's manufacturing environment, Motion Control plays a major role in virtually every project.The Motion Control Report provides a comprehensive overview of the technology of Motion Control:* Design Considerations* Technologies* Methods to Control Motion* Examples of Motion Control in Systems* A Detailed Vendors List

  7. A comparison of the economic benefits of centralized and distributed model predictive control strategies for optimal and sub-optimal mine dewatering system designs

    International Nuclear Information System (INIS)

    Romero, Alberto; Millar, Dean; Carvalho, Monica; Maestre, José M.; Camacho, Eduardo F.

    2015-01-01

    Mine dewatering can represent up to 5% of the total energy demand of a mine, and is one of the mine systems that aim to guarantee safe operating conditions. As mines go deeper, dewatering pumping heads become bigger, potentially involving several lift stages. Greater depth does not only mean greater dewatering cost, but more complex systems that require more sophisticated control systems, especially if mine operators wish to gain benefits from demand response incentives that are becoming a routine part of electricity tariffs. This work explores a two stage economic optimization procedure of an underground mine dewatering system, comprising two lifting stages, each one including a pump station and a water reservoir. First, the system design is optimized considering hourly characteristic dewatering demands for twelve days, one day representing each month of the year to account for seasonal dewatering demand variations. This design optimization minimizes the annualized cost of the system, and therefore includes the investment costs in underground reservoirs. Reservoir size, as well as an hourly pumping operation plan are calculated for specific operating environments, defined by characteristic hourly electricity prices and water inflows (seepage and water use from production activities), at best known through historical observations for the previous year. There is no guarantee that the system design will remain optimal when it faces the water inflows and market determined electricity prices of the year ahead, or subsequent years ahead, because these remain unknown at design time. Consequently, the dewatering optimized system design is adopted subsequently as part of a Model Predictive Control (MPC) strategy that adaptively maintains optimality during the operations phase. Centralized, distributed and non-centralized MPC strategies are explored. Results show that the system can be reliably controlled using any of these control strategies proposed. Under the operating

  8. Integrated Control Using the SOFFT Control Structure

    Science.gov (United States)

    Halyo, Nesim

    1996-01-01

    The need for integrated/constrained control systems has become clearer as advanced aircraft introduced new coupled subsystems such as new propulsion subsystems with thrust vectoring and new aerodynamic designs. In this study, we develop an integrated control design methodology which accomodates constraints among subsystem variables while using the Stochastic Optimal Feedforward/Feedback Control Technique (SOFFT) thus maintaining all the advantages of the SOFFT approach. The Integrated SOFFT Control methodology uses a centralized feedforward control and a constrained feedback control law. The control thus takes advantage of the known coupling among the subsystems while maintaining the identity of subsystems for validation purposes and the simplicity of the feedback law to understand the system response in complicated nonlinear scenarios. The Variable-Gain Output Feedback Control methodology (including constant gain output feedback) is extended to accommodate equality constraints. A gain computation algorithm is developed. The designer can set the cross-gains between two variables or subsystems to zero or another value and optimize the remaining gains subject to the constraint. An integrated control law is designed for a modified F-15 SMTD aircraft model with coupled airframe and propulsion subsystems using the Integrated SOFFT Control methodology to produce a set of desired flying qualities.

  9. ISABELLE control system

    International Nuclear Information System (INIS)

    Humphrey, J.W.; Frankel, R.S.; Niederer, J.A.

    1980-01-01

    Design principles for the Brookhaven ISABELLE control intersecting storage ring accelerator are described. Principal features include a locally networked console and control computer complex, a system wide process data highway, and intelligent local device controllers. Progress to date is summarized

  10. Control Measure Dataset

    Data.gov (United States)

    U.S. Environmental Protection Agency — The EPA Control Measure Dataset is a collection of documents describing air pollution control available to regulated facilities for the control and abatement of air...

  11. Olivo-Cerebellar Controller

    National Research Council Canada - National Science Library

    Bandyopadhyay, Promode R

    2008-01-01

    ...) used in a maneuvering controller or control system of an underwater vehicle. In order to attain the objects described, the present invention provides closed-loop control of multiple inferior olives (IOs...

  12. Birth control pills - combination

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/patientinstructions/000655.htm Birth control pills - combination To use the sharing features on ... both progestin and estrogen. What Are Combination Birth Control Pills? Birth control pills help keep you from ...

  13. Riot Control Agents

    Science.gov (United States)

    ... Submit What's this? Submit Button Facts About Riot Control Agents Interim document Recommend on Facebook Tweet Share Compartir What riot control agents are Riot control agents (sometimes referred to ...

  14. Essure Permanent Birth Control

    Science.gov (United States)

    ... Prosthetics Essure Permanent Birth Control Essure Permanent Birth Control Share Tweet Linkedin Pin it More sharing options ... Print Essure is a a permanently implanted birth control device for women (female sterilization). Implantation of Essure ...

  15. Geophysical Investigations at Hidden Dam, Raymond, California: Summary of Fieldwork and Data Analysis

    Science.gov (United States)

    Minsley, Burke J.; Burton, Bethany L.; Ikard, Scott; Powers, Michael H.

    2010-01-01

    Geophysical field investigations have been carried out at the Hidden Dam in Raymond, California for the purpose of better understanding the hydrogeology and seepage-related conditions at the site. Known seepage areas on the northwest right abutment area of the downstream side of the dam are documented by Cedergren. Subsequent to the 1980 seepage study, a drainage blanket with a subdrain system was installed to mitigate downstream seepage. Flow net analysis provided by Cedergren suggests that the primary seepage mechanism involves flow through the dam foundation due to normal reservoir pool elevations, which results in upflow that intersects the ground surface in several areas on the downstream side of the dam. In addition to the reservoir pool elevations and downstream surface topography, flow is also controlled by the existing foundation geology as well as the presence or absence of a horizontal drain within the downstream portion of the dam. The purpose of the current geophysical work is to (1) identify present-day seepage areas that may not be evident due to the effectiveness of the drainage blanket in redirecting seepage water, and (2) provide information about subsurface geologic structures that may control subsurface flow and seepage. These tasks are accomplished through the use of two complementary electrical geophysical methods, self-potentials (SP) and direct-current (DC) electrical resistivity, which have been commonly utilized in dam-seepage studies. SP is a passive method that is primarily sensitive to active subsurface groundwater flow and seepage, whereas DC resistivity is an active-source method that is sensitive to changes in subsurface lithology and groundwater saturation. The focus of this field campaign was on the downstream area on the right abutment, or northwest side of the dam, as this is the main area of interest regarding seepage. Two exploratory self-potential lines were also collected on the downstream left abutment of the dam to identify

  16. Wisdom Appliance Control System

    Science.gov (United States)

    Hendrick; Jheng, Jyun-Teng; Tsai, Chen-Chai; Liou, Jia-Wei; Wang, Zhi-Hao; Jong, Gwo-Jia

    2017-07-01

    Intelligent appliances wisdom involves security, home care, convenient and energy saving, but the home automation system is still one of the core unit, and also using micro-processing electronics technology to centralized and control the home electrical products and systems, such as: lighting, television, fan, air conditioning, stereo, it composed of front-controller systems and back-controller panels, user using front-controller to control command, and then through the back-controller to powered the device.

  17. Evapotranspiration And Geochemical Controls On Groundwater Plumes At Arid Sites: Toward Innovative Alternate End-States For Uranium Processing And Tailings Facilities

    International Nuclear Information System (INIS)

    Looney, Brian B.; Denham, Miles E.; Eddy-Dilek, Carol A.; Millings, Margaret R.; Kautsky, Mark

    2014-01-01

    Management of legacy tailings/waste and groundwater contamination are ongoing at the former uranium milling site in Tuba City AZ. The tailings have been consolidated and effectively isolated using an engineered cover system. For the existing groundwater plume, a system of recovery wells extracts contaminated groundwater for treatment using an advanced distillation process. The ten years of pump and treat (P and T) operations have had minimal impact on the contaminant plume - primarily due to geochemical and hydrological limits. A flow net analysis demonstrates that groundwater contamination beneath the former processing site flows in the uppermost portion of the aquifer and exits the groundwater as the plume transits into and beneath a lower terrace in the landscape. The evaluation indicates that contaminated water will not reach Moenkopi Wash, a locally important stream. Instead, shallow groundwater in arid settings such as Tuba City is transferred into the vadose zone and atmosphere via evaporation, transpiration and diffuse seepage. The dissolved constituents are projected to precipitate and accumulate as minerals such as calcite and gypsum in the deep vadose zone (near the capillary fringe), around the roots of phreatophyte plants, and near seeps. The natural hydrologic and geochemical controls common in arid environments such as Tuba City work together to limit the size of the groundwater plume, to naturally attenuate and detoxify groundwater contaminants, and to reduce risks to humans, livestock and the environment. The technical evaluation supports an alternative beneficial reuse (''brownfield'') scenario for Tuba City. This alternative approach would have low risks, similar to the current P and T scenario, but would eliminate the energy and expense associated with the active treatment and convert the former uranium processing site into a resource for future employment of local citizens and ongoing benefit to the Native American Nations

  18. Evapotranspiration And Geochemical Controls On Groundwater Plumes At Arid Sites: Toward Innovative Alternate End-States For Uranium Processing And Tailings Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Looney, Brian B.; Denham, Miles E.; Eddy-Dilek, Carol A.; Millings, Margaret R.; Kautsky, Mark

    2014-01-08

    Management of legacy tailings/waste and groundwater contamination are ongoing at the former uranium milling site in Tuba City AZ. The tailings have been consolidated and effectively isolated using an engineered cover system. For the existing groundwater plume, a system of recovery wells extracts contaminated groundwater for treatment using an advanced distillation process. The ten years of pump and treat (P&T) operations have had minimal impact on the contaminant plume – primarily due to geochemical and hydrological limits. A flow net analysis demonstrates that groundwater contamination beneath the former processing site flows in the uppermost portion of the aquifer and exits the groundwater as the plume transits into and beneath a lower terrace in the landscape. The evaluation indicates that contaminated water will not reach Moenkopi Wash, a locally important stream. Instead, shallow groundwater in arid settings such as Tuba City is transferred into the vadose zone and atmosphere via evaporation, transpiration and diffuse seepage. The dissolved constituents are projected to precipitate and accumulate as minerals such as calcite and gypsum in the deep vadose zone (near the capillary fringe), around the roots of phreatophyte plants, and near seeps. The natural hydrologic and geochemical controls common in arid environments such as Tuba City work together to limit the size of the groundwater plume, to naturally attenuate and detoxify groundwater contaminants, and to reduce risks to humans, livestock and the environment. The technical evaluation supports an alternative beneficial reuse (“brownfield”) scenario for Tuba City. This alternative approach would have low risks, similar to the current P&T scenario, but would eliminate the energy and expense associated with the active treatment and convert the former uranium processing site into a resource for future employment of local citizens and ongoing benefit to the Native American Nations.

  19. Test Control Center (TCC)

    Data.gov (United States)

    Federal Laboratory Consortium — The Test Control Center (TCC) provides a consolidated facility for planning, coordinating, controlling, monitoring, and analyzing distributed test events. ,The TCC...

  20. A new controllable damper with neuro controller

    International Nuclear Information System (INIS)

    Kobayashi, N.; Kobayashi, H.; Saito, O.; Yokoi, R.; Morishita, S.

    1993-01-01

    A new controllable damper is proposed for suppressing the vibration of the piping system for wide frequency range. Electro-Rheological fluid (ER fluid) is enclosed in the damper casing in place of oil, and the apparent viscosity of ER fluid can be varied by applying electric field strength (E.F.S.), which is controlled by an adaptive neural network controller. The shaking test is conducted about a simplified L-shaped piping model with a prototype controllable damper. The test results show the effectiveness of the presented controllable damper for suppressing very small amplitude vibration of the piping system. Furthermore an application of neural network is discussed to control E.F.S. of the electrode. (author)

  1. Digital control programmer for temperature control

    International Nuclear Information System (INIS)

    Rajore, S.B.; Kumar, S.V.

    1993-01-01

    This report describes a PC based digital control programmer for controlling and programming temperature of a high vacuum resistance heating furnace and the software developed to control power using PID algorithm. It also describes the amplifier specially developed to suit the input requirement of the non-standard W5 thermocouple and the software and hardware protections introduced in the system. (author). 5 refs., 8 figs., 1 appendix

  2. Control and optimal control theories with applications

    CERN Document Server

    Burghes, D N

    2004-01-01

    This sound introduction to classical and modern control theory concentrates on fundamental concepts. Employing the minimum of mathematical elaboration, it investigates the many applications of control theory to varied and important present-day problems, e.g. economic growth, resource depletion, disease epidemics, exploited population, and rocket trajectories. An original feature is the amount of space devoted to the important and fascinating subject of optimal control. The work is divided into two parts. Part one deals with the control of linear time-continuous systems, using both transfer fun

  3. Reactor control device

    International Nuclear Information System (INIS)

    Fukami, Haruo; Morimoto, Yoshinori.

    1981-01-01

    Purpose: To operate a reactor always with safety operation while eliminating the danger of tripping. Constitution: In a reactor control device adapted to detect the process variants of a reactor, control a control rod drive controlling system based on the detected signal to thereby control the driving the control rods, control the reactor power and control the electric power generated from an electric generator by the output from the reactor, detection means is provided for the detection of the electric power from said electric generator, and a compensation device is provided for outputting control rod driving compensation signals to the control rod driving controlling system in accordance with the amount of variation in the detected value. (Seki, T.)

  4. Power control device

    International Nuclear Information System (INIS)

    Fukawa, Naohiro.

    1982-01-01

    Purpose: To alleviate the load of an operator by automatically operating the main controller, the speed controller, etc. of a recirculation control system and safely operating them without erroneous operation for long period of time, thereby improving the efficiency of a plant. Constitution: An electric type hydraulic control device controls loads of a turbine and a generator and outputs a control signal also to the main controller of a recirculation flow rate control system. At this time, the main controller is set at an automatic position, and the speed controller receives a recirculation pump speed signal from the main controller at the automatic position. The speed controller outputs a pump speed control signal to the recirculation pump system, and a reactor generates a power corresponding thereto. When the power control is automatically performed by the recirculation flow rate control, an operator sets a rate of change of the recirculation pump speed and the rate of change of the mean power range monitor at a change rate setting unit. Therefore, the control of the recirculation flow rate under the power control can be substantially entirely automated. (Yoshigara, H.)

  5. Process and apparatus for controlling control rods

    International Nuclear Information System (INIS)

    Gebelin, B.; Couture, R.

    1987-01-01

    This process and apparatus is characterized by 2 methods, for examination of cluster of nuclear control rods. Foucault current analyzer which examines fraction by fraction all the control rods. This examination is made by rotation of the cluster. Doubtful rods are then analysed by ultrasonic probe [fr

  6. Robust control charts in statistical process control

    NARCIS (Netherlands)

    Nazir, H.Z.

    2014-01-01

    The presence of outliers and contaminations in the output of the process highly affects the performance of the design structures of commonly used control charts and hence makes them of less practical use. One of the solutions to deal with this problem is to use control charts which are robust

  7. Try to Control Yourself!

    Science.gov (United States)

    Esque, Timm J.

    1996-01-01

    Conventional management controls employees, but successful management encourages and enables employees to control themselves. Where control resides in an organization can be determined by examining its performance tracking systems. Most are management information systems. The best are owned and used by the employees to control and adjust their own…

  8. Evaluation of Internal Control

    OpenAIRE

    Gheorghe Suciu; Pipu-Nicolae Barsan

    2013-01-01

    Performance is indissolubly tied to control. Performance cannot be obtained without a strong, adequate control, regardless if it is in the public or private sector. Control is one of management’s attributes and it must be organized, implemented and evaluated in every company, regardless of its size. Each person from a company participates to a greater or lesser extent in the control activities.

  9. Programmable dc motor controller

    Science.gov (United States)

    Hopwood, J. E.

    1982-11-01

    A portable programmable dc motor controller, with features not available on commercial instruments was developed for controlling fixtures during welding processes. The controller can be used to drive any dc motor having tachometer feedback and motor requirements not exceeding 30 volts, 3 amperes. Among the controller's features are delayed start time, upslope time, speed, and downslope time.

  10. Exotic biological control agents

    NARCIS (Netherlands)

    Hajek, Ann E.; Hurley, Brett P.; Kenis, Marc; Garnas, Jeffrey R.; Bush, Samantha J.; Wingfield, Michael J.; Lenteren, van Joop C.; Cock, Matthew J.W.

    2016-01-01

    Biological control is a valuable and effective strategy for controlling arthropod pests and has been used extensively against invasive arthropods. As one approach for control of invasives, exotic natural enemies from the native range of a pest are introduced to areas where control is needed.

  11. Optimal decoupling controllers revisited

    Czech Academy of Sciences Publication Activity Database

    Kučera, Vladimír

    2013-01-01

    Roč. 42, č. 1 (2013), s. 1-16 ISSN 0324-8569 R&D Projects: GA TA ČR(CZ) TE01020197 Institutional support: RVO:67985556 Keywords : linear systems * fractional representations * decoupling control lers * stabilizing control lers * optimal control lers Subject RIV: BC - Control Systems Theory

  12. Automatic control systems engineering

    International Nuclear Information System (INIS)

    Shin, Yun Gi

    2004-01-01

    This book gives descriptions of automatic control for electrical electronics, which indicates history of automatic control, Laplace transform, block diagram and signal flow diagram, electrometer, linearization of system, space of situation, state space analysis of electric system, sensor, hydro controlling system, stability, time response of linear dynamic system, conception of root locus, procedure to draw root locus, frequency response, and design of control system.

  13. Catastrophes control problem

    International Nuclear Information System (INIS)

    Velichenko, V.V.

    1994-01-01

    The problem of catastrophe control is discussed. Catastrophe control aims to withdraw responsible engineering constructions out of the catastrophe. The mathematical framework of catastrophes control systems is constructed. It determines the principles of systems filling by the concrete physical contents and, simultaneously, permits to employ modern control methods for the synthesis of optimal withdrawal strategy for protected objects

  14. Adaptive Extremum Control and Wind Turbine Control

    DEFF Research Database (Denmark)

    Ma, Xin

    1997-01-01

    This thesis is divided into two parts, i.e., adaptive extremum control and modelling and control of a wind turbine. The rst part of the thesis deals with the design of adaptive extremum controllers for some processes which have the behaviour that process should have as high e ciency as possible...... in parameters, and thus directly lends itself to parameter estimation and adaptive control. The extremum control law is derived based on static optimization of a performance function. For a process with nonlinearity at output the intermediate signal between the linear part and nonlinear part plays an important....... Firstly, it is assumed that the nonlinear processes can be divided into a dynamic linear part and static nonlinear part. Consequently the processes with input nonlinearity and output nonlinearity are treated separately. With the nonlinearity at the input it is easy to set up a model which is linear...

  15. HYDRAULIC SERVO CONTROL MECHANISM

    Science.gov (United States)

    Hussey, R.B.; Gottsche, M.J. Jr.

    1963-09-17

    A hydraulic servo control mechanism of compact construction and low fluid requirements is described. The mechanism consists of a main hydraulic piston, comprising the drive output, which is connected mechanically for feedback purposes to a servo control piston. A control sleeve having control slots for the system encloses the servo piston, which acts to cover or uncover the slots as a means of controlling the operation of the system. This operation permits only a small amount of fluid to regulate the operation of the mechanism, which, as a result, is compact and relatively light. This mechanism is particuiarly adaptable to the drive and control of control rods in nuclear reactors. (auth)

  16. Precision digital control systems

    Science.gov (United States)

    Vyskub, V. G.; Rozov, B. S.; Savelev, V. I.

    This book is concerned with the characteristics of digital control systems of great accuracy. A classification of such systems is considered along with aspects of stabilization, programmable control applications, digital tracking systems and servomechanisms, and precision systems for the control of a scanning laser beam. Other topics explored are related to systems of proportional control, linear devices and methods for increasing precision, approaches for further decreasing the response time in the case of high-speed operation, possibilities for the implementation of a logical control law, and methods for the study of precision digital control systems. A description is presented of precision automatic control systems which make use of electronic computers, taking into account the existing possibilities for an employment of computers in automatic control systems, approaches and studies required for including a computer in such control systems, and an analysis of the structure of automatic control systems with computers. Attention is also given to functional blocks in the considered systems.

  17. CONTROLLING AND BUSINESS EFFICIENCY

    Directory of Open Access Journals (Sweden)

    Tina Vuko

    2013-02-01

    Full Text Available Managing business successfully in dynamic environment requires effective controlling system. Controlling is the process of defining objectives, planning and management control so that every decision maker can act in accordance with agreed objectives. Controlling function as a separate department contributes business efficiency trough ensuring transparency of business result and business processes. Controlling takes place when manager and controller cooperate. The aim of this paper is to investigate the effectiveness of controlling function (i.e. controlling department in Croatian companies and to address the specific features of the function that contribute significantly to overall business performance. The research is conducted on the sample of companies listed on the Regulated market of the Zagreb Stock Exchange. Survey is used as a method to collect the data regarding the controlling function, while financial data necessary for the research are extracted from the published financial statements. Results of the research indicate that controlling department has positive effects on the business performance.

  18. Undergraduate reactor control experiment

    International Nuclear Information System (INIS)

    Edwards, R.M.; Power, M.A.; Bryan, M.

    1992-01-01

    A sequence of reactor and related experiments has been a central element of a senior-level laboratory course at Pennsylvania State University (Penn State) for more than 20 yr. A new experiment has been developed where the students program and operate a computer controller that manipulates the speed of a secondary control rod to regulate TRIGA reactor power. Elementary feedback control theory is introduced to explain the experiment, which emphasizes the nonlinear aspect of reactor control where power level changes are equivalent to a change in control loop gain. Digital control of nuclear reactors has become more visible at Penn State with the replacement of the original analog-based TRIGA reactor control console with a modern computer-based digital control console. Several TRIGA reactor dynamics experiments, which comprise half of the three-credit laboratory course, lead to the control experiment finale: (a) digital simulation, (b) control rod calibration, (c) reactor pulsing, (d) reactivity oscillator, and (e) reactor noise

  19. Control of Bioprocesses

    DEFF Research Database (Denmark)

    Huusom, Jakob Kjøbsted

    2015-01-01

    The purpose of bioprocess control is to ensure that the plant operates as designed. This chapter presents the fundamental principles for control of biochemical processes. Through examples, the selection of manipulated and controlled variables in the classical reactor configurations is discussed, so...... are control objectives and the challenges in obtaining good control of the bioreactor. The objective of this chapter is to discuss the bioreactor control problems and to highlight some general traits that distinguish operation of bioprocesses from operation of processes in the conventional chemical process...... industries. It also provides a number of typical control loops for different objectives. A brief introduction to the general principles of process control, the PID control algorithm is discussed, and the design and effect of tuning are shown in an example. Finally, a discussion of novel, model-free control...

  20. Foundations Of Fuzzy Control

    DEFF Research Database (Denmark)

    Jantzen, Jan

    The objective of this textbook is to acquire an understanding of the behaviour of fuzzy logic controllers. Under certain conditions a fuzzy controller is equivalent to a proportional-integral-derivative (PID) controller. Using that equivalence as a link, the book applies analysis methods from...... linear and nonlinear control theory. In the linear domain, PID tuning methods and stability analyses are transferred to linear fuzzy controllers. The Nyquist plot shows the robustness of different settings of the fuzzy gain parameters. As a result, a fuzzy controller is guaranteed to perform as well...... as any PID controller. In the nonlinear domain, the stability of four standard control surfaces is analysed by means of describing functions and Nyquist plots. The self-organizing controller (SOC) is shown to be a model reference adaptive controller. There is a possibility that a nonlinear fuzzy PID...

  1. Reactor control device

    International Nuclear Information System (INIS)

    Kameda, Akiyuki.

    1979-01-01

    Purpose: To enable three types of controls, that is, level control, scram control and excess reactivity control required for a reactor by a same mechanism by feeding neutron absorber liquid and pressure control gas to several blind pipes provided in the reactor core. Constitution: A plurality of blind pipes are disposed spaced apart in a reactor core and connected by way of injection pipes to a neutron absorber liquid tank. A pressure regulator is connected to the blind pipes, to which pressure control gas is supplied. The neutron absorber liquid used herein consists of sodium, potassium or their alloy, or mercury as a basic substance incorporated with one or more selected from boron, tantalum, rhenium, europium or their compounds. The level control, scram control and excess reactivity control can be attained by moderating the pressure changes in the pressure control gas or by regulating the fluctuation in the liquid level. (Horiughi, T.)

  2. Applied predictive control

    CERN Document Server

    Sunan, Huang; Heng, Lee Tong

    2002-01-01

    The presence of considerable time delays in the dynamics of many industrial processes, leading to difficult problems in the associated closed-loop control systems, is a well-recognized phenomenon. The performance achievable in conventional feedback control systems can be significantly degraded if an industrial process has a relatively large time delay compared with the dominant time constant. Under these circumstances, advanced predictive control is necessary to improve the performance of the control system significantly. The book is a focused treatment of the subject matter, including the fundamentals and some state-of-the-art developments in the field of predictive control. Three main schemes for advanced predictive control are addressed in this book: • Smith Predictive Control; • Generalised Predictive Control; • a form of predictive control based on Finite Spectrum Assignment. A substantial part of the book addresses application issues in predictive control, providing several interesting case studie...

  3. Control rod drives

    International Nuclear Information System (INIS)

    Nakamura, Akira.

    1984-01-01

    Purpose: To enable to monitor the coupling state between a control rod and a control rod drive. Constitution: After the completion of a control rod withdrawal, a coolant pressure is applied to a control rod drive being adjusted so as to raise only the control rod drive and, in a case where the coupling between the control rod drive and the control rod is detached, the former is elevated till it contacts the control rod and then stopped. The actual stopping position is detected by an actual position detection circuit and compared with a predetermined position stored in a predetermined position detection circuit. If both of the positions are not aligned with each other, it is judged by a judging circuit that the control rod and the control rod drives are not combined. (Sekiya, K.)

  4. TFTR diagnostic vacuum controller

    International Nuclear Information System (INIS)

    Olsen, D.; Persons, R.

    1981-01-01

    The TFTR diagnostic vacuum controller (DVC) provides in conjunction with the Central Instrumentation Control and Data Acquisition System (CICADA), control and monitoring for the pumps, valves and gauges associated with each individual diagnostic vacuum system. There will be approximately 50 systems on TFTR. Two standard versions of the controller (A and B) wil be provided in order to meet the requirements of two diagnostic manifold arrangements. All pump and valve sequencing, as well as protection features, will be implemented by the controller

  5. Trust and controlling

    OpenAIRE

    Bieńkowska Agnieszka; Zabłocka-Kluczka Anna

    2016-01-01

    The purpose of this study is to discuss the trust within and towards an organisation in the context of implementation of controlling therein. In this context the essence of trust and its importance in organisation management was presented, as well as trust in the contemporary management methods and concepts. Controlling as a trust-building factor inside an organisation was pointed out. Especially controlling and control were described. Moreover management by considering deviations in controll...

  6. Arduino based laser control

    OpenAIRE

    Bernal Muñoz, Ferran

    2015-01-01

    ARDUINO is a vey usefull platform for prototypes. In this project ARDUINO will be used for controling a Semiconductor Tuneable Laser. [ANGLÈS] Diode laser for communications control based on an Arduino board. Temperature control implementation. Software and hardware protection for the laser implementation. [CASTELLÀ] Control de un láser de comunicaciones ópticas desde el ordenador utilizando una placa Arduino. Implementación de un control de temperatura y protección software y hardware ...

  7. Pneumatic control technology

    International Nuclear Information System (INIS)

    Tae, Seong Gil; Kim, Won Hoe; Nam, Dae Hyun

    1993-03-01

    This book contains property of pneumatic pressure drive, pneumatic pressure device like air cleaning, pressure control, lubricators, air pressure pipe, kinds and function of pneumatic pressure equipment like pneumatic cylinders, pneumatic motor, flow control valve, direction control valve, design of pneumatic control circuit, pneumatic system design, cause and measurement of pneumatic circuit failure, PLC and pneumatic control like introduction and system application and method of PLC programing.

  8. Control rod drives

    International Nuclear Information System (INIS)

    Hayakawa, Hiroyasu.

    1979-01-01

    Purpose: To enable rapid control in a simple circuit by providing a motor control device having an electric capacity capable of simultaneously driving all of the control rods rapidly only in the inserting direction as well as a motor controlling device capable of fine control for the insertion and extraction at usual operation. Constitution: The control rod drives comprise a first motor control device capable of finely controlling the control rods both in inserting and extracting directions, a second motor control device capable of rapidly driving the control rods only in the inserting direction, and a first motor switching circuit and a second motor switching circuit switched by switches. Upon issue of a rapid insertion instruction for the control rods, the second motor switching circuit is closed by the switch and the second motor control circuit and driving motors are connected. Thus, each of the control rod driving motors is driven at a high speed in the inserting direction to rapidly insert all of the control rods. (Yoshino, Y.)

  9. SODR Memory Control Buffer Control ASIC

    Science.gov (United States)

    Hodson, Robert F.

    1994-01-01

    The Spacecraft Optical Disk Recorder (SODR) is a state of the art mass storage system for future NASA missions requiring high transmission rates and a large capacity storage system. This report covers the design and development of an SODR memory buffer control applications specific integrated circuit (ASIC). The memory buffer control ASIC has two primary functions: (1) buffering data to prevent loss of data during disk access times, (2) converting data formats from a high performance parallel interface format to a small computer systems interface format. Ten 144 p in, 50 MHz CMOS ASIC's were designed, fabricated and tested to implement the memory buffer control function.

  10. Controlling chaos in Internet congestion control model

    International Nuclear Information System (INIS)

    Chen Liang; Wang Xiaofan; Han Zhengzhi

    2004-01-01

    The TCP end-to-end congestion control plus RED router queue management can be modeled as a discrete-time dynamical system, which may create complex bifurcating and chaotic behavior. Based on the basic features of the TCP-RED model, we propose a time-dependent delayed feedback control algorithm to control chaos in the system by perturbing the accessible RED parameter p max . This method is able to stabilized a router queue occupancy at a level without knowing the exact knowledge of the network. Further, we study the situation of the presence of the UDP traffic

  11. Generic device controller for accelerator control systems

    International Nuclear Information System (INIS)

    Mariotti, R.; Buxton, W.; Frankel, R.; Hoff, L.

    1987-01-01

    A new distributed intelligence control system has become operational at the AGS for transport, injection, and acceleration of heavy ions. A brief description of the functionality of the physical devices making up the system is given. An attempt has been made to integrate the devices for accelerator specific interfacing into a standard microprocessor system, namely, the Universal Device Controller (UDC). The main goals for such a generic device controller are to provide: local computing power; flexibility to configure; and real time event handling. The UDC assemblies and software are described

  12. Controlling chaos in Internet congestion control model

    Energy Technology Data Exchange (ETDEWEB)

    Chen Liang E-mail: chenmoon110@yahoo.com.cn; Wang Xiaofan; Han Zhengzhi

    2004-07-01

    The TCP end-to-end congestion control plus RED router queue management can be modeled as a discrete-time dynamical system, which may create complex bifurcating and chaotic behavior. Based on the basic features of the TCP-RED model, we propose a time-dependent delayed feedback control algorithm to control chaos in the system by perturbing the accessible RED parameter p{sub max}. This method is able to stabilized a router queue occupancy at a level without knowing the exact knowledge of the network. Further, we study the situation of the presence of the UDP traffic.

  13. Vehicle Dynamics and Control

    CERN Document Server

    Rajamani, Rajesh

    2012-01-01

    Vehicle Dynamics and Control provides a comprehensive coverage of vehicle control systems and the dynamic models used in the development of these control systems. The control system applications covered in the book include cruise control, adaptive cruise control, ABS, automated lane keeping, automated highway systems, yaw stability control, engine control, passive, active and semi-active suspensions, tire-road friction coefficient estimation, rollover prevention, and hybrid electric vehicle. In developing the dynamic model for each application, an effort is made to both keep the model simple enough for control system design but at the same time rich enough to capture the essential features of the dynamics. A special effort has been made to explain the several different tire models commonly used in literature and to interpret them physically. In the second edition of the book, chapters on roll dynamics, rollover prevention and hybrid electric vehicles have been added, and the chapter on electronic stability co...

  14. Balancing Trust and Control

    DEFF Research Database (Denmark)

    Jagd, Søren

    This paper focuses on the leadership challenge of balancing trust and control. The relation between trust and control has for a long time been a puzzling issue for management researchers. In the paper I first show that there has been a dramatic change in the way the relation between trust...... and control has been conceptualized in trust research. While the relation between trust and control earlier was conceptualized as a more or less stable balance between trust and control, more recent research conceptualizes the relation between trust and control more as a dynamical process that involves...... an ongoing process of balancing the relation between trust and control. Second, taking the departure in the recent conceptualization of the balance between trust and control as an interactive process I discuss the challenges for management in handling this more subtle balancing of trust and control...

  15. CAMAC multipurpose microprocessor controller

    International Nuclear Information System (INIS)

    Belyakova, M.P.; Nemesh, T.; Buj Zoan Chong.

    1978-01-01

    The use of CAMAC controllers in an autonomous system of data acquisition and measurement is considered. The system consists of a control intelligence controller, memory modules, and user modules in the CAMAC standard. The controller and all the modules have an output into the highway and this permits to exchange data among them without using special external cables. To increase the servicing rate, an auxiliary controller which has direct access to memory and controls the user modules, is additionally connected to the data acquisition and measurement system. In this case, the intelligence controller is passive. The system of data acquisition can be realized in the form of a multiple system with branch usage. The controller module width is three units, and the controller incorporates the Intel-8080-type microprocessor and the following interfaces: of CAMAC highways, of interruption, of memory bootstrap, and of data sequence channel

  16. Control rod shutdown system

    International Nuclear Information System (INIS)

    Miyamoto, Yoshiyuki; Higashigawa, Yuichi.

    1996-01-01

    The present invention provides a control rod terminating system in a BWR type nuclear power plant, which stops an induction electric motor as rapidly as possible to terminate the control rods. Namely, the control rod stopping system controls reactor power by inserting/withdrawing control rods into a reactor by driving them by the induction electric motor. The system is provided with a control device for controlling the control rods and a control device for controlling the braking device. The control device outputs a braking operation signal for actuating the braking device during operation of the control rods to stop the operation of the control rods. Further, the braking device has at least two kinds of breaks, namely, a first and a second brakes. The two kinds of brakes are actuated by receiving the brake operation signals at different timings. The brake device is used also for keeping the control rods after the stopping. Even if a stopping torque of each of the breaks is small, different two kinds of brakes are operated at different timings thereby capable of obtaining a large stopping torque as a total. (I.S.)

  17. Plasma position control device

    International Nuclear Information System (INIS)

    Takase, Haruhiko.

    1987-01-01

    Purpose: To conduct position control stably to various plasmas and reduce the burden on the control coil power source. Constitution: Among the proportional, integration and differentiation controls, a proportional-differentiation control section and an integration control section are connected in parallel. Then, a signal switching circuit is disposed to the control signal input section for the proportional-differentiation control section such that either a present position of plasmas or deviation between the present plasma position and an aimed value can be selected as a control signal depending on the control procedures or the state of the plasmas. For instance, if a rapid response is required for the control, the deviation between the present plasma position and the aimed value is selected as the input signal to conduct proportional, integration and differentiation controls. While on the other hand, if it is intended to reduce the burden on the control coil power source, it is adapted such that the control signal inputted to the proportional-differentiation control section itself can select the present plasma position. (Yoshihara, H.)

  18. Control rod assembly

    International Nuclear Information System (INIS)

    Takahashi, Akio.

    1982-01-01

    Purpose: To enable reliable insertion and drops of control rods, as well as insure a sufficient flow rate of coolants flowing through the control rods for attaining satisfactory cooling thereof to enable relexation of thermal stress resulted to rectifying mechanisms or the likes. Constitution: To the outer circumference of a control rod contained vertically movably within a control rod guide tube, resistive members are retractably provided in such a way as to project to close the gap between outer circumference of the control rod and the inner surface of the control rod guide tube upon engagement of a gripper of control rod drives, and retract upon release of the engagement of the gripper. Thus, since the resistive members project to provide a greater resistance to the coolants flowing between them and the control rod guide tube in the normal operation where the gripper is engaged to drive the control rod by the control rod drives, a major part of the coolant flowing into the control rod guide tube flows into the control rod. This enables to cool the control rod effectively and make the temperature distribution uniform for the coolant flowing from the upper end of the control rod guide tube to thereby attain the relaxation of the thermal stress resulted in the rectifying mechanisms or the likes. (Moriyama, K.)

  19. Control rod displacement

    International Nuclear Information System (INIS)

    Nakazato, S.

    1987-01-01

    This patent describes a nuclear reactor including a core, cylindrical control rods, a single support means supporting the control rods from their upper ends in spaced apart positions and movable for displacing the control rods in their longitudinal direction between a first end position in which the control rods are fully inserted into the core and a second end position in which the control rods are retracted from the core, and guide means contacting discrete regions of the outer surface of each control rod at least when the control rods are in the vicinity of the second end position. The control rods are supported by the support means for longitudinal movement without rotation into and out of the core relative to the guide means to thereby cause the outer surface of the control rods to experience wear as a result of sliding contact with the guide means. The support means are so arranged with respect to the core and the guide means that it is incapable of rotation relative to the guide means. The improvement comprises displacement means being operatively coupled to a respective one of the control rods for periodically rotating the control rod in a single angular direction through an angle selected to change the locations on the outer surfaces of the control rods at which the control rods are contacted by the guide means during subsequent longitudinal movement of the control rods

  20. Intelligent control-III: fuzzy control system

    International Nuclear Information System (INIS)

    Nagrial, M.H.

    2004-01-01

    During the last decade or so, fuzzy logic control (FLC) has emerged as one of the most active and fruitful areas of research and development. The applications include industrial process control to medical diagnostic and financial markets. Many consumer products using this technology are available in the market place. FLC is best suited to complex ill-defined processes that can be controlled by a skilled human operator without much knowledge of their underlying dynamics. This lecture will cover the basic architecture and the design methodology of fuzzy logic controllers. FLC will be strongly based on the concepts of fuzzy set theory, introduced in first lecture. Some practical applications will also be discussed and presented. (author)

  1. Control and automation systems

    International Nuclear Information System (INIS)

    Schmidt, R.; Zillich, H.

    1986-01-01

    A survey is given of the development of control and automation systems for energy uses. General remarks about control and automation schemes are followed by a description of modern process control systems along with process control processes as such. After discussing the particular process control requirements of nuclear power plants the paper deals with the reliability and availability of process control systems and refers to computerized simulation processes. The subsequent paragraphs are dedicated to descriptions of the operating floor, ergonomic conditions, existing systems, flue gas desulfurization systems, the electromagnetic influences on digital circuits as well as of light wave uses. (HAG) [de

  2. Electricity sequence control

    International Nuclear Information System (INIS)

    Shin, Heung Ryeol

    2010-03-01

    The contents of the book are introduction of control system, like classification and control signal, introduction of electricity power switch, such as push-button and detection switch sensor for induction type and capacitance type machinery for control, solenoid valve, expression of sequence and type of electricity circuit about using diagram, time chart, marking and term, logic circuit like Yes, No, and, or and equivalence logic, basic electricity circuit, electricity sequence control, added condition, special program control about choice and jump of program, motor control, extra circuit on repeat circuit, pause circuit in a conveyer, safety regulations and rule about classification of electricity disaster and protective device for insulation.

  3. VOC emissions control systems

    International Nuclear Information System (INIS)

    Spessard, J.E.

    1993-01-01

    The air pollution control equipment marketplace offers many competing technologies for controlling emissions of volatile organic compounds (VOC) in air. If any technology was economically and technically superior under all conditions, it would be the only one on the market. In fact, each technology used to control VOCs is superior under some set of conditions. The reasons for choosing one control technology over another are situation-specific. Some general guidelines to VOC control technologies and the situations where each may be appropriate are presented in this article. The control technologies and applications are summarized in a table

  4. Programmable Digital Controller

    Science.gov (United States)

    Wassick, Gregory J.

    2012-01-01

    An existing three-channel analog servo loop controller has been redesigned for piezoelectric-transducer-based (PZT-based) etalon control applications to a digital servo loop controller. This change offers several improvements over the previous analog controller, including software control over proportional-integral-derivative (PID) parameters, inclusion of other data of interest such as temperature and pressure in the control laws, improved ability to compensate for PZT hysteresis and mechanical mount fluctuations, ability to provide pre-programmed scanning and stepping routines, improved user interface, expanded data acquisition, and reduced size, weight, and power.

  5. Robot welding process control

    Science.gov (United States)

    Romine, Peter L.

    1991-01-01

    This final report documents the development and installation of software and hardware for Robotic Welding Process Control. Primary emphasis is on serial communications between the CYRO 750 robotic welder, Heurikon minicomputer running Hunter & Ready VRTX, and an IBM PC/AT, for offline programming and control and closed-loop welding control. The requirements for completion of the implementation of the Rocketdyne weld tracking control are discussed. The procedure for downloading programs from the Intergraph, over the network, is discussed. Conclusions are made on the results of this task, and recommendations are made for efficient implementation of communications, weld process control development, and advanced process control procedures using the Heurikon.

  6. Control system design method

    Science.gov (United States)

    Wilson, David G [Tijeras, NM; Robinett, III, Rush D.

    2012-02-21

    A control system design method and concomitant control system comprising representing a physical apparatus to be controlled as a Hamiltonian system, determining elements of the Hamiltonian system representation which are power generators, power dissipators, and power storage devices, analyzing stability and performance of the Hamiltonian system based on the results of the determining step and determining necessary and sufficient conditions for stability of the Hamiltonian system, creating a stable control system based on the results of the analyzing step, and employing the resulting control system to control the physical apparatus.

  7. Robust Self Tuning Controllers

    DEFF Research Database (Denmark)

    Poulsen, Niels Kjølstad

    1985-01-01

    The present thesis concerns robustness properties of adaptive controllers. It is addressed to methods for robustifying self tuning controllers with respect to abrupt changes in the plant parameters. In the thesis an algorithm for estimating abruptly changing parameters is presented. The estimator...... has several operation modes and a detector for controlling the mode. A special self tuning controller has been developed to regulate plant with changing time delay.......The present thesis concerns robustness properties of adaptive controllers. It is addressed to methods for robustifying self tuning controllers with respect to abrupt changes in the plant parameters. In the thesis an algorithm for estimating abruptly changing parameters is presented. The estimator...

  8. Control integral systems; Sistemas integrales de control

    Energy Technology Data Exchange (ETDEWEB)

    Burgos, Estrella [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1999-12-31

    Almost two third of the electric power generation in Mexico are obtained from hydrocarbons, for that reasons Comision Federal de Electricidad (CFE) dedicated special commitment in modernizing the operation of fossil fuel central stations. In attaining this objective the control systems play a fundamental roll, from them depend a good share of the reliability and the efficiency of the electric power generation process, as well as the extension of the equipment useful life. Since 1984 the Instituto de Investigaciones Electricas (IIE) has been working, upon the request of CFE, on the development of digital control systems. To date it has designed and implemented a logic control system for gas burners, which controls 32 burners of the Unit 4 boiler of the Generation Central of Valle de Mexico and two systems for distributed control for two combined cycle central stations, which are: Dos Bocas, Veracruz Combined cycle central, and Gomez Palacio, Durango combined cycle central. With these two developments the IIE enters the World tendency of implementing distributed control systems for the fossil fuel power central update [Espanol] Casi las dos terceras partes de la generacion electrica en Mexico se obtienen a partir de hidrocarburos, es por eso que la Comision Federal de Electricidad (CFE) puso especial empeno en modernizar la operacion de las centrales termoelectricas de combustibles fosiles. En el logro de este objetivo los sistemas de control desempenan un papel fundamental, de ellos depende una buena parte la confiabilidad y la eficiencia en el proceso de generacion de energia electrica, asi como la prolongacion de la vida util de los equipos. Desde 1984 el Instituto de Investigaciones Electricas (IIE) ha trabajado, a solicitud de la CFE, en el desarrollo de sistemas digitales de control. A la fecha se han disenado e implantado un sistema de control logico de quemadores de gas, el cual controla 32 quemadores de la caldera de la unidad 4 de la central de generacion

  9. Control integral systems; Sistemas integrales de control

    Energy Technology Data Exchange (ETDEWEB)

    Burgos, Estrella [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1998-12-31

    Almost two third of the electric power generation in Mexico are obtained from hydrocarbons, for that reasons Comision Federal de Electricidad (CFE) dedicated special commitment in modernizing the operation of fossil fuel central stations. In attaining this objective the control systems play a fundamental roll, from them depend a good share of the reliability and the efficiency of the electric power generation process, as well as the extension of the equipment useful life. Since 1984 the Instituto de Investigaciones Electricas (IIE) has been working, upon the request of CFE, on the development of digital control systems. To date it has designed and implemented a logic control system for gas burners, which controls 32 burners of the Unit 4 boiler of the Generation Central of Valle de Mexico and two systems for distributed control for two combined cycle central stations, which are: Dos Bocas, Veracruz Combined cycle central, and Gomez Palacio, Durango combined cycle central. With these two developments the IIE enters the World tendency of implementing distributed control systems for the fossil fuel power central update [Espanol] Casi las dos terceras partes de la generacion electrica en Mexico se obtienen a partir de hidrocarburos, es por eso que la Comision Federal de Electricidad (CFE) puso especial empeno en modernizar la operacion de las centrales termoelectricas de combustibles fosiles. En el logro de este objetivo los sistemas de control desempenan un papel fundamental, de ellos depende una buena parte la confiabilidad y la eficiencia en el proceso de generacion de energia electrica, asi como la prolongacion de la vida util de los equipos. Desde 1984 el Instituto de Investigaciones Electricas (IIE) ha trabajado, a solicitud de la CFE, en el desarrollo de sistemas digitales de control. A la fecha se han disenado e implantado un sistema de control logico de quemadores de gas, el cual controla 32 quemadores de la caldera de la unidad 4 de la central de generacion

  10. Embedded controllers for local board-control

    CERN Document Server

    Neufeld, Niko; Mini, Giuseppe; Sannino, Mario; Guzik, Zbigniew; Jacobsson, Richard; Jost, Beat

    2005-01-01

    The LHCb experiment at CERN has a large number of custom electronic boards performing high-speed data-processing. Like in any large experiment the control and monitoring of these crate-mounted boards must be integrated into the overall control-system. Traditionally this has been done by using buses like VME on the back-plane of the crates. LHCb has chosen to equip every board with an embedded micro-controller and connecting them in a large Local Area Network. The intelligence of these devices allows complex (soft) real-time control and monitoring, required for modern powerful FPGA driven electronics. Moreover each board has its own, isolated control access path, which increases the robustness of the entire system. The system is now in pre-production at several sites and will go into full production during next year. The hardware and software will be discussed and experiences from the R&D and pre-production will be reviewed, with an emphasis on advantages and difficulties of this approach to board-control.

  11. Advanced Emissions Control Development Program: Mercury Control

    International Nuclear Information System (INIS)

    Evans, A.P.; Redinger, K.W.; Holmes, M.J.

    1997-07-01

    McDermott Technology, Inc. (a subsidiary of Babcock ampersand Wilcox) is conducting the Advanced Emissions Control Development Project (AECDP) which is aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (HAPS) from coal-fired electric utility plants. The need for such controls may arise as the US Environmental Protection Agency (EPA) proceeds with implementation of requirements set forth in the Clean Air Act Amendments (CAAA's) of 1990. Promulgation of air toxics emissions regulations for electric utility plants could dramatically impact utilities burning coal, their industrial and residential customers, and the coal industry. AECDP project work will supply the information needed by utilities to respond to potential HAPs regulations in a timely, cost-effective, enviromnentally-sound manner which supports the continued use of the Nation's abundant reserves of coal, such as those in the State of Ohio. The development work is being carried out using the 10 MW Clean Environment Development Facility wherein air toxics emissions control strategies can be developed under controlled conditions. The specific objectives of the project are to (1) measure and understand production and partitioning of air toxics species for a variety of coals, (2) optimize the air toxics removal performance of conventional flue gas cleanup systems, (3) develop advanced air toxics emissions control concepts, (4) develop and validate air toxics emissions measurement and monitoring techniques, and (5) establish a comprehensive, self-consistent air toxics data library. This project is supported by the Department of Energy, the Ohio Coal Development Office within the Ohio Department of Development and Babcock ampersand Wilcox. A comprehensive assessment of HAP emissions from coal-fired electric utility boilers sponsored by the Department of Energy and the Electric Power Research Institute concluded that with the exception of

  12. Control room design

    International Nuclear Information System (INIS)

    Zinke, H.

    1980-01-01

    To control a 1300 megawatt nuclear power plant, about 15000 plant parameters must be collected together to control and operate the plant. The control room design therefore is of particular importance. The main design criteria are: Required functions of the power plant process - Level of Automation - Ergonomics - Available Technology. Extensive analysis has resulted in a control room design method. This ensures that an objective solution will be reached. Resulting from this methodical approach are: 1. Scope, position and appearance of the instrumentation. 2. Scope, position and appearance of the operator controls. Process analysis dictates what instrumentation and operator controls are needed. The priority and importance of the control and instrumentation (this we define as the utilisation areas), dictates the rough layout of the control room. (orig./RW)

  13. Intelligent Mission Controller Node

    National Research Council Canada - National Science Library

    Perme, David

    2002-01-01

    The goal of the Intelligent Mission Controller Node (IMCN) project was to improve the process of translating mission taskings between real-world Command, Control, Communications, Computers, and Intelligence (C41...

  14. NGS Survey Control Map

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NGS Survey Control Map provides a map of the US which allows you to find and display geodetic survey control points stored in the database of the National...

  15. Method of controlling reactivity

    International Nuclear Information System (INIS)

    Tochihara, Hiroshi.

    1982-01-01

    Purpose: To improve the reactivity controlling characteristics by artificially controlling the leakage of neutron from a reactor and providing a controller for controlling the reactivity. Method: A reactor core is divided into several water gaps to increase the leakage of neutron, its reactivity is reduced, a gas-filled control rod or a fuel assembly is inserted into the gap as required, the entire core is coupled in a system to reduce the leakage of the neutron, and the reactivity is increased. The reactor shutdown is conducted by the conventional control rod, and to maintain critical state, boron density varying system is used together. Futher, a control rod drive is used with that similar to the conventional one, thereby enabling fast reactivity variation, and the positive reactivity can be obtained by the insertion, thereby improving the reactivity controlling characteristics. (Yoshihara, H.)

  16. The remote control system

    International Nuclear Information System (INIS)

    Jansweijer, P.P.M.

    1988-01-01

    The remote-control system is applied in order to control various signals in the car of the spectrometer at distance. The construction (hardware and software) as well as the operation of the system is described. (author). 20 figs

  17. Systems and Control Engineering

    Indian Academy of Sciences (India)

    activities directed towards the students and the general public. Designed .... attention has been directed towards the use of control and automation to mitigate the effects of those ... The history of automatic control can be divided into four main.

  18. A modular control system

    International Nuclear Information System (INIS)

    Cruz, B.; Drexler, J.; Olcese, G.; Santome, D.

    1990-01-01

    The main objective of the modular control system is to provide the requirements to most of the processes supervision and control applications within the industrial automatization area. The design is based on distribution, modulation and expansion concepts. (Author) [es

  19. Birth Control Shot

    Science.gov (United States)

    ... Health Food & Fitness Diseases & Conditions Infections Drugs & Alcohol School & Jobs Sports Expert Answers (Q&A) Staying Safe Videos for Educators Search English Español Birth Control Shot KidsHealth / For Teens / Birth Control Shot What's ...

  20. Birth Control Ring

    Science.gov (United States)

    ... Health Food & Fitness Diseases & Conditions Infections Drugs & Alcohol School & Jobs Sports Expert Answers (Q&A) Staying Safe Videos for Educators Search English Español Birth Control Ring KidsHealth / For Teens / Birth Control Ring What's ...