WorldWideScience

Sample records for seed recovery technology

  1. Oil spill recovery technology

    International Nuclear Information System (INIS)

    Nash, J.; Cooper, W.; Nee, V.; Nigim, H.

    1992-01-01

    Current deficiencies in oil spill cleanup processes have resulted in research and development of new cleanup technologies at the University of Notre Dame. Emphasis on reducing, reusing and recycling equipment and waste at a cleanup site has prompted advances in oil recovery technology as well as improvement in sorbent materials. (author)

  2. Heat recovery and seed recovery development project: preliminary design report (PDR)

    Energy Technology Data Exchange (ETDEWEB)

    Arkett, A. H.; Alexander, K. C.; Bolek, A. D.; Blackman, B. K.; Kurrle, P. E.; Tram, S. V.; Warren, A. M.; Ziobrowski, A. J.

    1981-06-01

    The preliminary design and performance characteristics are described of the 20 MWt heat recovery and seed recovery (HRSR) system to be fabricated, installed, and evaluated to provide a technological basis for the design of commercial size HRSR systems for coal-fired open-cycle MHD power plants. The system description and heat and material balances, equipment description and functional requirements, controls, interfacing systems, and operation and maintenance are detailed. Appendices include: (1) recommended environmental requirements for compliance with federal and state of Tennessee regulations, (2) channel and diffuser simulator, (3) equipment arrangement drawings, and (4) channel and diffuser simulator barrel drawings. (WHK)

  3. MHD seed recovery and regeneration, Phase II. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1994-10-01

    This final report summarizes the work performed by the Space and Technology Division of the TRW Space and Electronics Group for the U.S. Department of Energy, Pittsburgh Energy Technology Center for the Econoseed process. This process involves the economical recovery and regeneration of potassium seed used in the MHD channel. The contract period of performance extended from 1987 through 1994 and was divided into two phases. The Phase II test results are the subject of this Final Report. However, the Phase I test results are presented in summary form in Section 2.3 of this Final Report. The Econoseed process involves the treatment of the potassium sulfate in spent MHD seed with an aqueous calcium formate solution in a continuously stirred reactor system to solubilize, as potassium formate, the potassium content of the seed and to precipitate and recover the sulfate as calcium sulfate. The slurry product from this reaction is centrifuged to separate the calcium sulfate and insoluble seed constituents from the potassium formate solution. The dilute solids-free potassium formate solution is then concentrated in an evaporator. The concentrated potassium formate product is a liquid which can be recycled as a spray into the MHD channel. Calcium formate is the seed regenerant used in the Econoseed process. Since calcium formate is produced in the United States in relatively small quantities, a new route to the continuous production of large quantities of calcium formate needed to support an MHD power industry was investigated. This route involves the reaction of carbon monoxide gas with lime solids in an aqueous medium.

  4. Seed technology training in the year 2000

    Directory of Open Access Journals (Sweden)

    McDonald M.B.

    1998-01-01

    Full Text Available Seed quality will remain the centerpiece of successful agricultural programs in the year 2000. As new changes occur in agriculture driven by advancements in biotechnology, seed enhancement technologies, a more diverse seed user clientele, and communication technologies, successful seed companies will require a knowledgeable and informed workforce to assure high seed quality. A new approach to seed technology training is professed that relies on the establishment of a three-institution consortium to achieve this objective. Advantages of the consortium are identified that emphasize the unique strengths of each institution, their geographic advantages representing major climactic/agricultural zones in the world, and differing approaches to seed technology training that are facilitated by increasing ease of global communication. This may be a better way to conduct seed technology training in the year 2000.

  5. Seed research for improved technologies

    OpenAIRE

    Bino,R.J.; Jalink,H.; Oluoch,M.O.; Groot,S.P.C.

    1998-01-01

    The production of high-quality seed is the basis for a durable a profitable agriculture. After production, seed is processed, conditioned, stored, shipped and germinated. For quality assurance, seed quality has to be controlled at all steps of the production chain. Seed functioning is accompanied by programmed transitions from cell proliferation to quiescence upon maturation and from quiescence to reinitiation of cellular metabolism upon imbibition. Despite the obvious importance of these con...

  6. Postradiation recovery and radioresistance of seeds

    International Nuclear Information System (INIS)

    Atayan, R.R.; Semerdzhyan, S.P.

    1990-01-01

    Problems on radiobiology of seeds were studied. Irradiation was shown to induce primary injuries in chromosomes sensitive to various modifying factors. Primary injuries can eliminate and form stable physico-chemical injuries as a result of physico-chemical reactions and under concomitant factors. These injuries can be reversible and nonreversible character. Reversible injuries turned out to be potential for they can be repaired at biochemical level. The cells of strong ability to repair postirradiation injuries under various equal conditions reveal a relatively high level of radioresistance. The mechanisms were shown to be basical in the observed differences of radiosensitivity of large and small seeds. 7 refs.; 3 figs

  7. Impurities in alfalfa seed and their impact on processing technology

    OpenAIRE

    Đokić, Dragoslav; Stanisavljević, Rade; Marković, Jordan; Terzić, Dragan; Anđelković, Bojan

    2012-01-01

    The aim of this research was to determine relevant parameters and optimal alfalfa seed processing technology by a comparative analysis of two systems of machinery for processing natural alfalfa seed of different purity (59.0% and 71.0%) and with different content of impurities. The relevant parameters monitored during the test were: pure seed (%), weed seeds and seeds of other crops (%), inert matter (%), amount of processed seed (kg), seed processing time (min), consumption of steel powder (...

  8. Technology for recovery of byproducts

    International Nuclear Information System (INIS)

    Van Tuyl, H.H.

    1983-02-01

    In this paper, a byproduct is considered to be any product from a nuclear fuel reprocessing plant other than the principal products of uranium and plutonium. Those which have been recovered on a large scale include: 237 Np, 90 Sr, 137 Cs, 85 Kr, 147 Pm, 241 Am, 244 Cm, and 144 Ce. Other byproducts which have been recovered in small amounts during development efforts are: Tc, Ru, Rh, Pd, and Xe. This paper reviews the byproducts of interest, compares and contrasts byproduct recovery with waste management, describes current and past byproduct recovery operations, development status of alternative processes, and bases for selection among alternative processes in developing an integrated byproduct recovery plant

  9. Nuclear technology and mineral recovery

    International Nuclear Information System (INIS)

    Stewart, Richard M.; Niermeyer, Karl E.

    1970-01-01

    The particular aspect of nuclear technology most applicable to the mineral field, as has been pointed out by various authors, is nuclear blasting. The prime target for this nuclear blasting has usually been a large disseminated deposit of copper mineralization which, because of large dimensions, employs the nuclear devices most effectively. From the work of the AEC we know that the larger nuclear devices fragment rock for a lower energy cost per unit of ground broken than do smaller nuclear devices or chemical explosives. A mineralized deposit near the surface is usually not amenable to nuclear fragmentation, nor are the more deeply buried thin deposits. Also, one would not anticipate fragmenting a zone of excessively erratic mineralization with nuclear devices. Many of our mineralized areas would be eliminated using the above criteria, so at this point you are well aware that my self-imposed limitation is to nuclear blasting and large disseminated copper deposits. As with most other industries, copper mining faces rising costs and greater demands for its products. One of the rising cost features peculiar to extractive industries is the reliance placed on production from lower grade deposits as the higher grade deposits are depleted. As the grade or metal content of an orebody decreases more material must be handled to produce a given amount of metal. The increased volume of ore which must be handled as the grade declines requires expansion of facilities and higher capital expenditures. Expansion of facilities for mining, milling, and concentrating of the ore increases the per unit capital cost of the end product--copper. Increased copper consumption will aggravate this situation with demand for more metal, much of which will have to be obtained from lower grade deposits. As the higher grade deposits are depleted, future production will come from those deposits which cannot be exploited economically today. Most familiar of the proposed new methods for copper mining

  10. Nuclear technology and mineral recovery

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Richard M; Niermeyer, Karl E [Anaconda Company, Salt Lake City, UT (United States)

    1970-05-15

    The particular aspect of nuclear technology most applicable to the mineral field, as has been pointed out by various authors, is nuclear blasting. The prime target for this nuclear blasting has usually been a large disseminated deposit of copper mineralization which, because of large dimensions, employs the nuclear devices most effectively. From the work of the AEC we know that the larger nuclear devices fragment rock for a lower energy cost per unit of ground broken than do smaller nuclear devices or chemical explosives. A mineralized deposit near the surface is usually not amenable to nuclear fragmentation, nor are the more deeply buried thin deposits. Also, one would not anticipate fragmenting a zone of excessively erratic mineralization with nuclear devices. Many of our mineralized areas would be eliminated using the above criteria, so at this point you are well aware that my self-imposed limitation is to nuclear blasting and large disseminated copper deposits. As with most other industries, copper mining faces rising costs and greater demands for its products. One of the rising cost features peculiar to extractive industries is the reliance placed on production from lower grade deposits as the higher grade deposits are depleted. As the grade or metal content of an orebody decreases more material must be handled to produce a given amount of metal. The increased volume of ore which must be handled as the grade declines requires expansion of facilities and higher capital expenditures. Expansion of facilities for mining, milling, and concentrating of the ore increases the per unit capital cost of the end product--copper. Increased copper consumption will aggravate this situation with demand for more metal, much of which will have to be obtained from lower grade deposits. As the higher grade deposits are depleted, future production will come from those deposits which cannot be exploited economically today. Most familiar of the proposed new methods for copper mining

  11. Botanical seed technology at the US Potato Genebank

    Science.gov (United States)

    Studies on botanical seed technology have potential payoffs for genebank in-house operations as well as promoting efficient use of the germplasm by cooperators. When we tested the effects of soil fertilization, mother plants with extra fertilizer produced more fruit and seeds, but those extra seeds ...

  12. Application of various technological processes in red clover seed processing

    OpenAIRE

    Đokić, Dragoslav; Stanisavljević, Rade; Terzić, Dragan; Marković, Jordan; Radivojević, Gordana; Anđelković, Bojan; Barać, Saša

    2012-01-01

    This paper presents the results of the processing of natural red clover seed on the processing equipment using different technological methods. Red clover seed, for the establishment and crop utilization, must be of high purity, germination, and high genetic values. These requirements are achieved by processing, or removing impurities and poor quality seeds. Red clover seed processing involves a number of operations, of which the most important are: cleaning, packaging, labeling and storage. ...

  13. Tree seed rain and seed removal, but not the seed bank, impede forest recovery in bracken (Pteridium aquilinum (L.) Kuhn)-dominated clearings in the African highlands.

    Science.gov (United States)

    Ssali, Fredrick; Moe, Stein R; Sheil, Douglas

    2018-04-01

    Considerable areas dominated by bracken Pteridium aquilinum (L.) Kuhn occur worldwide and are associated with arrested forest recovery. How forest recovery is impeded in these areas remains poorly understood, especially in the African highlands. The component processes that can lead to recruitment limitation-including low seed arrival, availability and persistence-are important determinants of plant communities and offer a potential explanation for bracken persistence. We investigated key processes that can contribute to recruitment limitation in bracken-dominated clearings in the Bwindi Impenetrable National Park, Uganda. We examined if differences in seed rain (dispersal limitation), soil seed bank, or seed removal (seed viability and persistence) can, individually or in combination, explain the differences in tree regeneration found between bracken-dominated areas and the neighboring forest. These processes were assessed along ten 50-m transects crossing the forest-bracken boundary. When compared to the neighboring forest, bracken clearings had fewer seedlings (bracken 11,557 ± 5482 vs. forest 34,515 ± 6066 seedlings/ha), lower seed rain (949 ± 582 vs. 1605 ± 335 tree seeds m -2  year -1 ), comparable but sparse soil seed bank (304 ± 236 vs. 264 ± 99 viable tree seeds/m 2 ), higher seed removal (70.1% ± 2.4% vs. 40.6% ± 2.4% over a 3-day interval), and markedly higher rodent densities (25.7 ± 5.4 vs. 5.0 ± 1.6 rodents per 100 trapping sessions). Camera traps revealed that rodents were the dominant animals visiting the seeds in our seed removal study. Synthesis : Recruitment limitation contributes to both the slow recovery of forest in bracken-dominated areas, and to the composition of the tree species that occur. Low seed arrival and low persistence of unburied seeds can both explain the reduced density of seedlings found in bracken versus neighboring forest. Seed removal, likely due to rodents, in particular appears sufficient to

  14. A method for seedling recovery in Jatropha curcas after cryogenic exposure of the seeds.

    Science.gov (United States)

    Silva, Rafael de C; Camillo, Julcéia; Scherwinski-Pereira, Jonny E

    2012-03-01

    Actually, the germplasm of Jatropha spp. is conserved as whole plants in field collections. Under this storage method, the genetic resources are exposed to disease, pest and natural hazards such as human error, drought and weather damage. Besides, field genebanks are costly to maintain and with important requirements of trained personnel. Thus, the development of efficient techniques to ensure its safe conservation and regeneration is therefore of paramount importance. In this work we describe a method for Jatropha curcas seeds cryoexposure and seedling recovery after thawed. In a first experiment, an efficient protocol for in vitro plant recovery was carried out using zygotic embryo or seeds with or without coat. In a second experiment, desiccated seeds with or without coat were exposed to liquid nitrogen and evaluated after cryoexposure. Germination percentages were variable among treatments, and seeds demonstrated tolerance to liquid nitrogen exposure under certain conditions. Seeds of J. curcas presented up to 99.6% germination after seed coat removal. Seeds with coat cultured in vitro did not germinate, and were 60% contaminated. The germination of the zygotic embryos was significantly higher in the 1/2 MS medium (93.1%) than in WPM medium (76.2%), but from zygotic embryo, abnormal seedlings reached up to 99%. Seeds with coat exposed to liquid nitrogen showed 60% germination in culture after coat removal with good plant growth, and seeds cryopreserved without coat presented 82% germination, but seedlings showed a reduced vigor and a significant increase in abnormal plants. Seeds cultured in vitro with coat did not germinate, independently of cryoexposure or not. This study reports the first successful in vitro seedling recovery methodology for Jatropha curcas seeds, after a cryopreservation treatment, and is recommended as an efficient procedure for in vitro plant recovery, when seeds are conserved in germplasm banks by low or cryotemperatures.

  15. A method for seedling recovery in Jatropha curcas after cryogenic exposure of the seeds

    Directory of Open Access Journals (Sweden)

    Rafael de C. Silva

    2012-03-01

    Full Text Available Actually, the germplasm of Jatropha spp. is conserved as whole plants in field collections. Under this storage method, the genetic resources are exposed to disease, pest and natural hazards such as human error, drought and weather damage. Besides, field genebanks are costly to maintain and with important requirements of trained personnel. Thus, the development of efficient techniques to ensure its safe conservation and regeneration is therefore of paramount importance. In this work we describe a method for Jatropha curcas seeds cryoexposure and seedling recovery after thawed. In a first experiment, an efficient protocol for in vitro plant recovery was carried out using zygotic embryo or seeds with or without coat. In a second experiment, desiccated seeds with or without coat were exposed to liquid nitrogen and evaluated after cryoexposure. Germination percentages were variable among treatments, and seeds demonstrated tolerance to liquid nitrogen exposure under certain conditions. Seeds of J. curcas presented up to 99.6% germination after seed coat removal. Seeds with coat cultured in vitro did not germinate, and were 60% contaminated. The germination of the zygotic embryos was significantly higher in the ½ MS medium (93.1% than in WPM medium (76.2%, but from zygotic embryo, abnormal seedlings reached up to 99%. Seeds with coat exposed to liquid nitrogen showed 60% germination in culture after coat removal with good plant growth, and seeds cryopreserved without coat presented 82% germination, but seedlings showed a reduced vigor and a significant increase in abnormal plants. Seeds cultured in vitro with coat did not germinate, independently of cryoexposure or not. This study reports the first successful in vitro seedling recovery methodology for Jatropha curcas seeds, after a cryopreservation treatment, and is recommended as an efficient procedure for in vitro plant recovery, when seeds are conserved in germplasm banks by low or cryotemperatures.

  16. Recovery and germination of Dichrostachys cinerea seeds fed to goats (Capra hircus)

    CSIR Research Space (South Africa)

    Tjelele, JT

    2012-01-01

    Full Text Available addressed. The objective of this study was to determine the recovery rate and germination of D. cinerea seeds that pass through the digestive tract of goats. We hypothesized that 1) D. cinerea seeds will remain intact and viable after passage through...

  17. Recovery rates, enhanced oil recovery and technological limits.

    Science.gov (United States)

    Muggeridge, Ann; Cockin, Andrew; Webb, Kevin; Frampton, Harry; Collins, Ian; Moulds, Tim; Salino, Peter

    2014-01-13

    Enhanced oil recovery (EOR) techniques can significantly extend global oil reserves once oil prices are high enough to make these techniques economic. Given a broad consensus that we have entered a period of supply constraints, operators can at last plan on the assumption that the oil price is likely to remain relatively high. This, coupled with the realization that new giant fields are becoming increasingly difficult to find, is creating the conditions for extensive deployment of EOR. This paper provides a comprehensive overview of the nature, status and prospects for EOR technologies. It explains why the average oil recovery factor worldwide is only between 20% and 40%, describes the factors that contribute to these low recoveries and indicates which of those factors EOR techniques can affect. The paper then summarizes the breadth of EOR processes, the history of their application and their current status. It introduces two new EOR technologies that are beginning to be deployed and which look set to enter mainstream application. Examples of existing EOR projects in the mature oil province of the North Sea are discussed. It concludes by summarizing the future opportunities for the development and deployment of EOR.

  18. [Advances of NIR spectroscopy technology applied in seed quality detection].

    Science.gov (United States)

    Zhu, Li-wei; Ma, Wen-guang; Hu, Jin; Zheng, Yun-ye; Tian, Yi-xin; Guan, Ya-jing; Hu, Wei-min

    2015-02-01

    Near infrared spectroscopy (NIRS) technology developed fast in recent years, due to its rapid speed, less pollution, high-efficiency and other advantages. It has been widely used in many fields such as food, chemical industry, pharmacy, agriculture and so on. The seed is the most basic and important agricultural capital goods, and seed quality is important for agricultural production. Most methods presently used for seed quality detecting were destructive, slow and needed pretreatment, therefore, developing one kind of method that is simple and rapid has great significance for seed quality testing. This article reviewed the application and trends of NIRS technology in testing of seed constituents, vigor, disease and insect pests etc. For moisture, starch, protein, fatty acid and carotene content, the model identification rates were high as their relative contents were high; for trace organic, the identification rates were low as their relative content were low. The heat-damaged seeds with low vigor were discriminated by NIRS, the seeds stored for different time could also been identified. The discrimination of frost-damaged seeds was impossible. The NIRS could be used to identify health and infected disease seeds, and did the classification for the health degree; it could identify parts of the fungal pathogens. The NIRS could identify worm-eaten and health seeds, and further distinguished the insect species, however the identification effects for small larval and low injury level of insect pests was not good enough. Finally, in present paper existing problems and development trends for NIRS in seed quality detection was discussed, especially the single seed detecting technology which was characteristic of the seed industry, the standardization of its spectral acquisition accessories will greatly improve its applicability.

  19. Physical Methods for Seed Invigoration: Advantages and Challenges in Seed Technology.

    Science.gov (United States)

    Araújo, Susana de Sousa; Paparella, Stefania; Dondi, Daniele; Bentivoglio, Antonio; Carbonera, Daniela; Balestrazzi, Alma

    2016-01-01

    In the context of seed technology, the use of physical methods for increasing plant production offers advantages over conventional treatments based on chemical substances. The effects of physical invigoration treatments in seeds can be now addressed at multiple levels, ranging from morpho-structural aspects to changes in gene expression and protein or metabolite accumulation. Among the physical methods available, "magneto-priming" and irradiation with microwaves (MWs) or ionizing radiations (IRs) are the most promising pre-sowing seed treatments. "Magneto-priming" is based on the application of magnetic fields and described as an eco-friendly, cheap, non-invasive technique with proved beneficial effects on seed germination, vigor and crop yield. IRs, as γ-rays and X-rays, have been widely regarded as a powerful tool in agricultural sciences and food technology. Gamma-rays delivered at low dose have showed to enhance germination percentage and seedling establishment, acting as an actual 'priming' treatment. Different biological effects have been observed in seeds subjected to MWs and X-rays but knowledge about their impact as seed invigoration agent or stimulatory effects on germination need to be further extended. Ultraviolet (UV) radiations, namely UV-A and UV-C have shown to stimulate positive impacts on seed health, germination, and seedling vigor. For all mentioned physical treatments, extensive fundamental and applied research is still needed to define the optimal dose, exposition time, genotype- and environment-dependent irradiation conditions. Electron paramagnetic resonance has an enormous potential in seed technology not fully explored to monitor seed invigoration treatments and/or identifying the best suitable irradiation dose or time-point to stop the treatment. The present manuscript describes the use of physical methods for seed invigoration, while providing a critical discussion on the constraints and advantages. The future perspectives related to

  20. Physical Methods for Seed Invigoration: Advantages and Challenges in Seed Technology

    Science.gov (United States)

    Araújo, Susana de Sousa; Paparella, Stefania; Dondi, Daniele; Bentivoglio, Antonio; Carbonera, Daniela; Balestrazzi, Alma

    2016-01-01

    In the context of seed technology, the use of physical methods for increasing plant production offers advantages over conventional treatments based on chemical substances. The effects of physical invigoration treatments in seeds can be now addressed at multiple levels, ranging from morpho-structural aspects to changes in gene expression and protein or metabolite accumulation. Among the physical methods available, “magneto-priming” and irradiation with microwaves (MWs) or ionizing radiations (IRs) are the most promising pre-sowing seed treatments. “Magneto-priming” is based on the application of magnetic fields and described as an eco-friendly, cheap, non-invasive technique with proved beneficial effects on seed germination, vigor and crop yield. IRs, as γ-rays and X-rays, have been widely regarded as a powerful tool in agricultural sciences and food technology. Gamma-rays delivered at low dose have showed to enhance germination percentage and seedling establishment, acting as an actual ‘priming’ treatment. Different biological effects have been observed in seeds subjected to MWs and X-rays but knowledge about their impact as seed invigoration agent or stimulatory effects on germination need to be further extended. Ultraviolet (UV) radiations, namely UV-A and UV-C have shown to stimulate positive impacts on seed health, germination, and seedling vigor. For all mentioned physical treatments, extensive fundamental and applied research is still needed to define the optimal dose, exposition time, genotype- and environment-dependent irradiation conditions. Electron paramagnetic resonance has an enormous potential in seed technology not fully explored to monitor seed invigoration treatments and/or identifying the best suitable irradiation dose or time-point to stop the treatment. The present manuscript describes the use of physical methods for seed invigoration, while providing a critical discussion on the constraints and advantages. The future perspectives

  1. Physical methods for seed vigourization: advantages and challenges in seed technology

    Directory of Open Access Journals (Sweden)

    Susana eAraújo

    2016-05-01

    Full Text Available In the context of seed technology, the use of physical methods for increasing plant production offers advantages over conventional treatments based on chemical substances. The effects of physical vigourization treatments in seeds can be now addressed at multiple levels, ranging from morpho-structural aspects to changes in gene expression and protein or metabolite accumulation. Among the physical methods available, magneto-priming and irradiation with microwaves or ionizing radiations are the most promissory pre-sowing seed treatments. Magneto-priming is based on the application of magnetic fields and described as an eco-friendly, cheap, non-invasive technique with proved beneficial effects on seed germination, vigour and crop yield. Ionizing radiations, as gamma-rays and X-rays, have been widely regarded as a powerful tool in agricultural sciences and food technology. Gamma-rays delivered at low dose have showed to enhance germination percentage and seedling establishment, acting as an actual ‘priming’ treatment. Different biological effects have been observed in seeds subjected to microwaves and X-rays but knowledge about their impact as seed vigourization agent or stimulatory effects on germination need to be further extended. Ultraviolet (UV radiations, namely UV-A and UV-C have shown to stimulate positive impacts on seed health, germination and seedling vigour. For all mentioned physical treatments, extensive fundamental and applied research is still needed to define the optimal dose, exposition time, genotype- and environment-dependent irradiation conditions. Electron paramagnetic resonance (EPR has an enormous potential in seed technology not fully explored to monitor seed vigourization treatments and/or identifying the best suitable irradiation dose or time-point to stop the treatment. The present manuscript describes the use of physical methods for seed vigourization, while providing a critical discussion on the constraints and

  2. Technologies for the future : conventional recovery enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Isaacs, E. [Alberta Energy Research Inst., Edmonton, AB (Canada)

    2005-07-01

    This conference presentation examined Alberta's oil production and water use; global finding and development costs across continents; and current trends for conventional oil. The presentation examined opportunities for testing new technologies for enhanced oil recovery (EOR) and provided several tables of data on EOR production in the United States. The evolution of United States EOR production, and the number of EOR projects in Canada were also addressed. The presentation also discussed where EOR goes from here as well as the different EOR mechanisms to alter phase behaviour and to alter relative flow. It also discussed chemical methods and major challenges for chemical EOR and examined EOR technologies needing a major push in the Western Canada Sedimentary Basin. Lessons learned from the Joffre site regarding carbon dioxide miscible flood were revealed along with how coal gasification produces substitute natural gas and carbon dioxide for EOR. Suggestions for research and technology and enhanced water management were included. tabs., figs.

  3. Technology seed Sebastiania membranifolia Mull Arg (Euphorbiaceae

    Directory of Open Access Journals (Sweden)

    Neidiquele Maria Silveira

    2013-12-01

    Full Text Available Sebastiania membranifolia, popularly known as sarandi, is a tree species native to Brazil, usually found in land of alluvial floodplains and river banks, suitable for restoration of degraded areas. Despite the commercial importance of this species, little is known about its mechanisms of propagation. This research evaluated the germinating seeds under different conditions of temperature, substrate and light, and determined methods of scarification in order to establish a suitable protocol for sexual propagation. The study was conducted in chambers with BOD and thermal control photoperiod, testing the following treatments: temperatures of 25, 30 and alternating 20/30º C; substrates (sand-EA, on paper-SP and from paper -EP, four solutions gibberellin (50, 100, 200, 400 mgL-1; potassium nitrate (0.1, 0.2, 0.3 and 0.4% in the presence (12 h photoperiod and absence of light. The experimental design was completely randomized with four replications of 50 seeds each. We found that the average degree of seed moisture was 10.4% and the weight of a thousand seeds (PMS of 3.16 g. The highest percentage of germination was obtained with photoperiod at 25 º C, on paper (SP and between role (EP. The concentrations of 100 mg L-1 gibberellin and 0.1% potassium nitrate showed higher germination and vigor. Seed treatment with a gibberellin solution of 100 mgL-1 favored the growth of seedlings, unlike potassium nitrate that inhibit the growth even at low concentration.

  4. Adoption Study Of Seed Priming Technology In Upland Rice ...

    African Journals Online (AJOL)

    Adoption study was carried out during 2003 cropping season on randomly selected 83 farmers out of the 300 that participated in the upland rice seed priming technology transfer between year 2000 – 2002 to determine the impact of the technology on upland rice production in five States of Nigeria, through the use of ...

  5. Diagnostic instrumentation development program for the heat recovery/seed recovery system of the open-cycle, coal-fired magnetohydrodynamic power plant

    International Nuclear Information System (INIS)

    Murphree, D.L.; Cook, R.L.; Bauman, L.E.

    1981-01-01

    Highly efficient and environmentally acceptable, the coal-fired MHD power plant is an attractive facility for producing electricity. The design of its downstream system, however, presents technological risks which must be corrected if such a plant is to be commercially viable before the end of the century. The heat recovery/seed recovery system (HRSR) at its present stage is vulnerable to corrosion on the gas side of the radiant furnace, the secondary superheater, and the intermediate temperature air heater. Slagging and fouling of the heat transfer surface have yet to be eliminated. Gas chemistry, radiant heat transfer, and particulate removal are other problematic areas which are being researched in a DOE development program whose test activities at three facilities are contributing to an MHD/HRSR data base. In addition, a 20 MWt system to study HRSR design, is being now assembled in Tennessee

  6. Technology for recovery of by-products

    International Nuclear Information System (INIS)

    Van Tuy, H.H.

    1983-01-01

    Products of conventional nuclear fuel processing plants are uranium and plutonium, and any other recovered material is considered to be a by-product. Some by-products have been recovered from past nuclear fuel processing operations, either as a normal mode of operation or by special campaigns. Routing recovery over an extended period has been limited to neptunium, but extended campaigns were used at Hanford to recover strontium for radioisotope thermoelectric generators. Krypton is recovered at Idaho Chemical Processing Plant on a campaign basis, and isotope separation of krypton is done at Oak Ridge National Laboratory. Past campaigns at Hanford PUREX have recovered cesium, promethium, amercium, cerium, and technetium. Past by-product recovery efforts were usually severely constrained by the status of flowsheet development and availability of existing facilities at the time decisions wee made to recover the by-products. Additional processes were developed to accommodate other unit operations and in response to changes in waste management objectives or user requirements. Now an impressive variety of recovery technology is available for most potential by-products, with varying degrees of demonstration under conditions which satisfy today's environmental protection and waste management constraints

  7. Innovations in precision seed drilling technology: successes or failures?

    Directory of Open Access Journals (Sweden)

    Johannes Benninger

    2016-06-01

    Full Text Available In view of the development of various technological alternatives in precision seed drilling, it has become a matter of research whether there are clear criteria for the success or failure of technological innovations. Around the turn to the 20th century, two very different precision seed drill methods were developed almost at the same time. Band seeding made it possible to achieve nearly perfect single grain sowing. For this purpose, individual, equally spaced seeds were embedded into bands of paper or cotton. In the field, these seed tapes were then unreeled from large drums. The pneumatic system proposed in 1897, by contrast, introduced grain singling using a vacuum for the first time. Although band seeding presented a satisfactory technological solution, it was never widely applied. Pneumatic systems, on the other hand, took long to catch on and only started to be successful in the late 1960s. Up to then, these innovative systems had to be considered as failures. Changing the period under review, however, may completely reverse the assessment of whether an innovation is a success or a failure.

  8. Improving Jatropha curcas seed protein recovery by using counter current multistage extraction

    NARCIS (Netherlands)

    Lestari, D.; Mulder, W.J.; Sanders, J.P.M.

    2010-01-01

    Jatropha curcas seed press cake contains 23 wt% proteins (dry basis). Due to the toxic compounds in Jatropha, we will use the proteins for non-food applications. Related to non-food applications, an efficient protein extraction to obtain a high protein recovery and high protein concentration with

  9. Waste heat recovery technologies for offshore platforms

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Benato, Alberto; Scolari, E.

    2014-01-01

    This article aims at finding the most suitable waste heat recovery technology for existing and future offshore facilities. The technologies considered in this work are the steam Rankine cycle, the air bottoming cycle and the organic Rankine cycle. A multi-objective optimization approach is employed...... to attain optimal designs for each bottoming unit by selecting specific functions tailored to the oil and gas sector, i.e. yearly CO2 emissions, weight and economic revenue. The test case is the gas turbine-based power system serving an offshore platform in the North Sea. Results indicate that the organic...... and of the primary heat exchanger, organic Rankine cycle turbogenerators appear thus to be the preferred solution to abate CO2 emissions and pollutants on oil and gas facilities. As a practical consequence, this paper provides guidelines for the design of high-efficiency, cost-competitive and low-weight power...

  10. Implementing recovery: an analysis of the key technologies in Scotland

    Science.gov (United States)

    2011-01-01

    Background Over the past ten years the promotion of recovery has become a stated aim of mental health policies within a number of English speaking countries, including Scotland. Implementation of a recovery approach involves a significant reorientation of mental health services and practices, which often poses significant challenges for reformers. This article examines how four key technologies of recovery have assisted in the move towards the creation of a recovery-oriented mental health system in Scotland. Methods Drawing on documentary analysis and a series of interviews we examine the construction and implementation of four key recovery 'technologies' as they have been put to use in Scotland: recovery narratives, the Scottish Recovery Indicator (SRI), Wellness Recovery Action Planning (WRAP) and peer support. Results Our findings illuminate how each of these technologies works to instantiate, exemplify and disseminate a 'recovery orientation' at different sites within the mental health system in order to bring about a 'recovery oriented' mental health system. They also enable us to identify some of the factors that facilitate or hinder the effectiveness of those technologies in bringing about a change in how mental health services are delivered in Scotland. These finding provide a basis for some general reflections on the utility of 'recovery technologies' to implement a shift towards recovery in mental health services in Scotland and elsewhere. Conclusions Our analysis of this process within the Scottish context will be valuable for policy makers and service coordinators wishing to implement recovery values within their own national mental health systems. PMID:21569633

  11. Implementing recovery: an analysis of the key technologies in Scotland

    Directory of Open Access Journals (Sweden)

    Sturdy Steve

    2011-05-01

    Full Text Available Abstract Background Over the past ten years the promotion of recovery has become a stated aim of mental health policies within a number of English speaking countries, including Scotland. Implementation of a recovery approach involves a significant reorientation of mental health services and practices, which often poses significant challenges for reformers. This article examines how four key technologies of recovery have assisted in the move towards the creation of a recovery-oriented mental health system in Scotland. Methods Drawing on documentary analysis and a series of interviews we examine the construction and implementation of four key recovery 'technologies' as they have been put to use in Scotland: recovery narratives, the Scottish Recovery Indicator (SRI, Wellness Recovery Action Planning (WRAP and peer support. Results Our findings illuminate how each of these technologies works to instantiate, exemplify and disseminate a 'recovery orientation' at different sites within the mental health system in order to bring about a 'recovery oriented' mental health system. They also enable us to identify some of the factors that facilitate or hinder the effectiveness of those technologies in bringing about a change in how mental health services are delivered in Scotland. These finding provide a basis for some general reflections on the utility of 'recovery technologies' to implement a shift towards recovery in mental health services in Scotland and elsewhere. Conclusions Our analysis of this process within the Scottish context will be valuable for policy makers and service coordinators wishing to implement recovery values within their own national mental health systems.

  12. Disaster recovery plan for Automation Technology

    International Nuclear Information System (INIS)

    Owens, M.J.

    1997-06-01

    Automation Technology provides a multitude of data processing and network services to the Environmental Restoration Contract (ERC). These services include: personal computers, local and wide area networks, and Internet and intranet support and services. ERC employees and client personnel receive these services primarily from the Data Center located on the ground floor in the Bechtel Corporate Center at 3350 George Washington Way, Richland, Washington. Centralized databases, server-based software, and network services for the Bechtel Local Area Network reside on servers located in the Data Center. The data communication circuits supported in this center allow for the transmission of business information to and from all project locations in the Hanford Site complex. The loss of one or more of these functions would seriously impact the ability of the ERC to conduct business and bring a virtual standstill to many ERC employees'' activities. Upon declaration of disaster by the Contingency Manager and the Disaster Recovery Coordinator, the disaster recovery plan will be implemented. 24 tabs

  13. The economics of aquifer storage recovery technology

    International Nuclear Information System (INIS)

    David, R.; Pyne, G.

    2014-01-01

    Aquifer storage recovery (ASR) technology is increasingly being utilized around the world for storing water underground through one or more wells during wet months and other times when water is available for storage. The water is then recovered from the same wells when needed to meet a growing variety of water supply objectives. The economics of ASR constitute the principal reason for its increasing utilization. ASR unit capital costs are typically less than half those of other water supply and water storage alternatives. Unit operating costs are usually only slightly greater than for conventional production well-fields. Marginal costs for ASR storage and recovery provide a powerful tool for making more efficient use of existing infrastructure, providing water supply sustainability and reliability at relatively low cost. The opportunity exists for a careful analysis of the net present value of ASR well-fields, addressing not only the associated capital and operating costs but also the value of the benefits achieved for each of the water supply objectives at each site. (Author)

  14. The economics of aquifer storage recovery technology

    Energy Technology Data Exchange (ETDEWEB)

    David, R.; Pyne, G.

    2014-10-01

    Aquifer storage recovery (ASR) technology is increasingly being utilized around the world for storing water underground through one or more wells during wet months and other times when water is available for storage. The water is then recovered from the same wells when needed to meet a growing variety of water supply objectives. The economics of ASR constitute the principal reason for its increasing utilization. ASR unit capital costs are typically less than half those of other water supply and water storage alternatives. Unit operating costs are usually only slightly greater than for conventional production well-fields. Marginal costs for ASR storage and recovery provide a powerful tool for making more efficient use of existing infrastructure, providing water supply sustainability and reliability at relatively low cost. The opportunity exists for a careful analysis of the net present value of ASR well-fields, addressing not only the associated capital and operating costs but also the value of the benefits achieved for each of the water supply objectives at each site. (Author)

  15. Assistive Technology for Individuals with Special Seeds

    Directory of Open Access Journals (Sweden)

    Adrian Lupasc

    2015-09-01

    Full Text Available Disabled people face barriers in performing their various activities, including teaching. By using assistive technologies for different activities, people with disabilities may be able to perform a wider range of tasks independently. Fortunately, it helps to reduce many of these barriers, but, unfortunately, disabled people (learning, autism or ADHD face a variety of barriers when they want to use software tools or hardware devices. In this regard, assistive technologies are available to help persons with different types of disabilities, from cognitive problems to physical impairment. Hardware devices and software tools (known as adaptive or assistive technologies have been developed to provide functional alternatives for all individuals with disabilities, depending on the type of disability. In addition, the use of assistive technologies to support them is an effective approach for many persons with disabilities, regardless of the type of disability. Additionally, individuals with disabilities often experience greater success when they are allowed to use their abilities to work around their disabilities (the challenges they imply. Moreover, mobile devices are useful for their ability to weave Internet access and social networking into the daily life. To the people with disabilities, these devices have the potential to unlock unprecedented new possibilities for communication or navigation. In this context, some actual assistive technology and approaches to use them are described in this paper.

  16. Data Back-Up and Recovery Techniques for Cloud Server Using Seed Block Algorithm

    OpenAIRE

    R. V. Gandhi; M Seshaiah

    2015-01-01

    In cloud computing, data generated in electronic form are large in amount. To maintain this data efficiently, there is a necessity of data recovery services. To cater this, we propose a smart remote data backup algorithm, Seed Block Algorithm. The objective of proposed algorithm is twofold; first it help the users to collect information from any remote location in the absence of network connectivity and second to recover the files in case of the file deletion or if the cloud gets ...

  17. Seed recovery and regeneration in coal-fired, open-cycle magnetohydrodynamic systems

    International Nuclear Information System (INIS)

    Sheth, A.C.; Jackson, D.M.; Attig, R.C.

    1986-01-01

    Coal-fired magnetohydrodynamic (MHD) power systems not only have high cycle efficiency, but they also have an inherent sulfur removal capability. The potassium compound uses as ''seed'' plays a dual role. It 1) increases the electrical conductivity of the plasma needed to produce power in the MHD electrical topping cycle, and 2) reacts with sulfur dioxide to form potassium sulfate, thereby eliminating most of the sulfur oxides from the gaseous effluent. For economical reasons, the spent seed must be recovered, desulfurized and recycled to the MHD power plant. This paper reviews some of the available experimental results and literature relating to SO 2 removal and seed recovery, and will also discuss several potential seed regeneration processes. Three methods of potassium extraction are discussed, i.e., hot aqueous digestion with CA(OH) 2 /NaOH, acid washing, and aqueous extraction. The selected candidate regeneration systems are discussed from the viewpoint of energy and process water requirements and environmental considerations such as waste discharges and emissions of gaseous, particulate and trace element pollutants

  18. Post-Fire Recovery in Coastal Sage Scrub: Seed Rain and Community Trajectory.

    Directory of Open Access Journals (Sweden)

    Erin Conlisk

    Full Text Available Disturbance is a primary mechanism structuring ecological communities. However, human activity has the potential to alter the frequency and intensity of natural disturbance regimes, with subsequent effects on ecosystem processes. In Southern California, human development has led to increased fire frequency close to urban areas that can form a positive feedback with invasive plant spread. Understanding how abiotic and biotic factors structure post-fire plant communities is a critical component of post-fire management and restoration. In this study we considered a variety of mechanisms affecting post-fire vegetation recovery in Riversidean sage scrub. Comparing recently burned plots to unburned plots, we found that burning significantly reduced species richness and percent cover of exotic vegetation the first two years following a 100-hectare wildfire. Seed rain was higher in burned plots, with more native forb seeds, while unburned plots had more exotic grass seeds. Moreover, there were significant correlations between seed rain composition and plant cover composition the year prior and the year after. Collectively, this case study suggests that fire can alter community composition, but there was not compelling evidence of a vegetation-type conversion. Instead, the changes in the community composition were temporary and convergence in community composition was apparent within two years post-fire.

  19. Post-Fire Recovery in Coastal Sage Scrub: Seed Rain and Community Trajectory.

    Science.gov (United States)

    Conlisk, Erin; Swab, Rebecca; Martínez-Berdeja, Alejandra; Daugherty, Matthew P

    2016-01-01

    Disturbance is a primary mechanism structuring ecological communities. However, human activity has the potential to alter the frequency and intensity of natural disturbance regimes, with subsequent effects on ecosystem processes. In Southern California, human development has led to increased fire frequency close to urban areas that can form a positive feedback with invasive plant spread. Understanding how abiotic and biotic factors structure post-fire plant communities is a critical component of post-fire management and restoration. In this study we considered a variety of mechanisms affecting post-fire vegetation recovery in Riversidean sage scrub. Comparing recently burned plots to unburned plots, we found that burning significantly reduced species richness and percent cover of exotic vegetation the first two years following a 100-hectare wildfire. Seed rain was higher in burned plots, with more native forb seeds, while unburned plots had more exotic grass seeds. Moreover, there were significant correlations between seed rain composition and plant cover composition the year prior and the year after. Collectively, this case study suggests that fire can alter community composition, but there was not compelling evidence of a vegetation-type conversion. Instead, the changes in the community composition were temporary and convergence in community composition was apparent within two years post-fire.

  20. Department of Energy Recovery Act Investment in Biomass Technologies

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-11-01

    The American Recovery and Reinvestment Act of 2009 (Recovery Act) provided more than $36 billion to the Department of Energy (DOE) to accelerate work on existing projects, undertake new and transformative research, and deploy clean energy technologies across the nation. Of this funding, $1029 million is supporting innovative work to advance biomass research, development, demonstration, and deployment.

  1. Technology disaster response and recovery planning a LITA guide

    CERN Document Server

    Mallery, Mary

    2015-01-01

    Featuring contributions from librarians who offer hard-won advice gained from personal experience, this compendium leads readers through a step-by-step process of creating a library technology disaster response and recovery plan.

  2. The Service Failure and Recovery in the Information Technology Services

    OpenAIRE

    Jun Luo; Weiguo Zhang.; Dabin Qin

    2010-01-01

    It is important to retain customer satisfaction in information technology services. When a service failure occurs, companies need to take service recovery action to recover their customer satisfaction. Although companies cannot avoid all problems and complaints, they should try to make up. Therefore, service failure and service recovery have become an important and challenging issue for companies. In this paper, the literature and the problems in the information technolog...

  3. Design Recovery Technology for Real-Time Systems.

    Science.gov (United States)

    1995-10-01

    RL-TR-95-208 Final Technical Report October 1995 DESIGN RECOVERY TECHNOLOGY FOR REAL TIME SYSTEMS The MITRE Corporation Lester J. Holtzblatt...92 - Jan 95 4. TTTLE AND SUBTITLE DESIGN RECOVERY TECHNOLOGY FOR REAL - TIME SYSTEMS 6. AUTHOR(S) Lester J. Holtzblatt, Richard Piazza, and Susan...behavior of real - time systems in general, our initial efforts have centered on recovering this information from one system in particular, the Modular

  4. A method for seedling recovery in Jatropha curcas after cryogenic exposure of the seeds

    Directory of Open Access Journals (Sweden)

    Rafael de C. Silva

    2012-03-01

    Full Text Available Actually, the germplasm of Jatropha spp. is conserved as whole plants in field collections. Under this storage method, the genetic resources are exposed to disease, pest and natural hazards such as human error, drought and weather damage. Besides, field genebanks are costly to maintain and with important requirements of trained personnel. Thus, the development of efficient techniques to ensure its safe conservation and regeneration is therefore of paramount importance. In this work we describe a method for Jatropha curcas seeds cryoexposure and seedling recovery after thawed. In a first experiment, an efficient protocol for in vitro plant recovery was carried out using zygotic embryo or seeds with or without coat. In a second experiment, desiccated seeds with or without coat were exposed to liquid nitrogen and evaluated after cryoexposure. Germination percentages were variable among treatments, and seeds demonstrated tolerance to liquid nitrogen exposure under certain conditions. Seeds of J. curcas presented up to 99.6% germination after seed coat removal. Seeds with coat cultured in vitro did not germinate, and were 60% contaminated. The germination of the zygotic embryos was significantly higher in the ½ MS medium (93.1% than in WPM medium (76.2%, but from zygotic embryo, abnormal seedlings reached up to 99%. Seeds with coat exposed to liquid nitrogen showed 60% germination in culture after coat removal with good plant growth, and seeds cryopreserved without coat presented 82% germination, but seedlings showed a reduced vigor and a significant increase in abnormal plants. Seeds cultured in vitro with coat did not germinate, independently of cryoexposure or not. This study reports the first successful in vitro seedling recovery methodology for Jatropha curcas seeds, after a cryopreservation treatment, and is recommended as an efficient procedure for in vitro plant recovery, when seeds are conserved in germplasm banks by low or cryotemperatures

  5. Training and research in seed technology. No quality seeds without skilled staff

    NARCIS (Netherlands)

    Groot, S.P.C.; Hilhorst, H.W.M.

    2016-01-01

    The seed industry in the Netherlands is the largest exporter of horticultural seeds, reaching farmers in every country of the world. High seed quality is one of the key factors of this success. Maintaining and increasing the level of seed qualtiy requires skilled staff, innovation and collaboration

  6. Leveraging technology to enhance addiction treatment and recovery.

    Science.gov (United States)

    Marsch, Lisa A

    2012-01-01

    Technology such as the Internet and mobile phones offers considerable promise for affecting the assessment, prevention, and treatment of and recovery from substance use disorders. Technology may enable entirely new models of behavioral health care within and outside of formal systems of care. This article reviews the promise of technology-based therapeutic tools for affecting the quality and reach of addiction treatment and recovery support systems, as well as the empirical support to date for this approach. Potential models for implementing technology-based interventions targeting substance use disorders are described. Opportunities to optimize the effectiveness and impact of technology-based interventions targeting addiction and recovery, along with outstanding research needs, are discussed.

  7. A review of waste heat recovery technologies for maritime applications

    International Nuclear Information System (INIS)

    Singh, Dig Vijay; Pedersen, Eilif

    2016-01-01

    Highlights: • Major waste heat sources available on ships have been reviewed. • A review of suitable waste heat recovery systems was conducted for marine vessels. • Technologies have been compared for their potential and suitability for marine use. • Kalina cycle offers the highest potential for marine waste heat recovery. • Turbo compound system most suitable for recovering diesel exhaust pressure energy. - Abstract: A waste heat recovery system produces power by utilizing the heat energy lost to the surroundings from thermal processes, at no additional fuel input. For marine vessels, about 50 percent of the total fuel energy supplied to diesel power-plant aboard is lost to the surroundings. While the total amount of wasted energy is considerable, the quality of this energy is quite low due to its low temperature and has limited potential for power production. Effective waste heat recovery systems use the available low temperature waste heat to produce mechanical/electrical power with high efficiency value. In this study a review of different waste heat recovery systems has been conducted, to lay out the potential recovery efficiencies and suitability for marine applications. This work helps in identifying the most suitable heat recovery technologies for maritime use depending on the properties of shipboard waste heat and achievable recovery efficiencies, whilst discussing the features of each type of system.

  8. Limitations to postfire seedling establishment: The role of seeding technology, water availability, and invasive plant abundance

    Science.gov (United States)

    Jeremy J. James; Tony Svejcar

    2010-01-01

    Seeding rangeland following wildfire is a central tool managers use to stabilize soils and inhibit the spread of invasive plants. Rates of successful seeding on arid rangeland, however, are low. The objective of this study was to determine the degree to which water availability, invasive plant abundance, and seeding technology influence postfire seedling establishment...

  9. Coabsorbent and thermal recovery compression heat pumping technologies

    CERN Document Server

    Staicovici, Mihail-Dan

    2014-01-01

    This book introduces two of the most exciting heat pumping technologies, the coabsorbent and the thermal recovery (mechanical vapor) compression, characterized by a high potential in primary energy savings and environmental protection. New cycles with potential applications of nontruncated, truncated, hybrid truncated, and multi-effect coabsorbent types are introduced in this work.   Thermal-to-work recovery compression (TWRC) is the first of two particular methods explored here, including how superheat is converted into work, which diminishes the compressor work input. In the second method, thermal-to-thermal recovery compression (TTRC), the superheat is converted into useful cooling and/or heating, and added to the cycle output effect via the coabsorbent technology. These and other methods of discharge gas superheat recovery are analyzed for single-, two-, three-, and multi-stage compression cooling and heating, ammonia and ammonia-water cycles, and the effectiveness results are given.  The author presen...

  10. Thermoelectric integrated membrane evaporation water recovery technology

    Science.gov (United States)

    Roebelen, G. J., Jr.; Winkler, H. E.; Dehner, G. F.

    1982-01-01

    The recently developed Thermoelectric Integrated Membrane Evaporation Subsystem (TIMES) offers a highly competitive approach to water recovery from waste fluids for future on-orbit stations such as the Space Operations Center. Low power, compactness and gravity insensitive operation are featured in this vacuum distillation subsystem that combines a hollow fiber membrane evaporator with a thermoelectric heat pump. The hollow fiber elements provide positive liquid/gas phase control with no moving parts other than pumps and an accumulator, thus solving problems inherent in other reclamation subsystem designs. In an extensive test program, over 850 hours of operation were accumulated during which time high quality product water was recovered from both urine and wash water at an average steady state production rate of 2.2 pounds per hour.

  11. New technologies of enhanced oil recovery

    Directory of Open Access Journals (Sweden)

    Paweł Wojnarowski

    2006-10-01

    Full Text Available It is known from the literature that up to 27 % of oil in oilfields can be produced using primary and hydration methods. The efficiency of production can be increased by employing more advanced methods, i.e. EOR. The Polish Oil and Gas Company iwork with Polish oilfields, where currently primary methods are applied, but the Polish experiences with EOR date back to the years 1932-1987. In view of high oil prices, reconsidering EOR as a production method is economically justifiable. Therefore, it is purposeful to implement new pilot technologies, aimed at implementing new technologies, understanding accompanying phenomena, and calibrating of simulation models, including economical models for an optimal control of the oilfield exploitation. World’s new exploitation methods worked out in the last few years and suggestions for their implementation in Polish conditions are presented in the paper

  12. The True Seed of Shalott (TSS Technology Production on Trisula Variety in East Java

    Directory of Open Access Journals (Sweden)

    P.E.R. Prahardini

    2018-01-01

    Full Text Available One of the onion increasing production problem is the lack of quality seeds availability. In order to provide high quality seeds of high yield and available throughout the year, an improvement of seed technology is required. One of the developing onion seed technologies is onion seeding through TSS (true seed of shallot. TSS technology development is expected to overcome the problem of onion seeding in Indonesia. East Java as one of the production centers of onion requires in developing onion seeding technology through TSS. This study aims to apply and develop TSS production technology using Trisula varieties which has been done from April to December 2016 in Tulungrejo village, Bumiaji district, Batu. The result of TSS production technology implementation indicates that Trisula variety is able to produce 110,5 kg TSS. Based on its agro-ecology, Batu area has the potential as the center of TSS production in East Java. Keywords: Onion, Technology, Trisula Varieties, True Seed of Shalot

  13. Comparison of Seed Germination and Recovery Responses of a Salt Marsh Halophyte Halopeplis Perfoliata to Osmotic and Ionic Treatments

    International Nuclear Information System (INIS)

    Rasool, S. G.; Hameed, A.; Ahmed, M. Z.; Khan, M. A.

    2016-01-01

    Salinity affects seed germination of halophytes by inducing ionic toxicity, osmotic constraint or both. Information about the effects of salinity on seed germination of a large number of halophytes exists, but generally little is known about the basis of salinity-induced germination inhibition. In order to partition salinity effects, we studied seed germination and recovery responses of a coastal salt marsh halophyte halopeplis perfoliata to different isotonic treatments (Psi/sub S/: -0.5, -1.0, -1.5, -2.0 and -2.5, MPa) of various salts and polythylene glycol (PEG) under two light regimes (12-h light photo period and 24-h complete darkness). Highest seed germination was observed in distilled water under 12-h light photo period and reduction in osmotic potential of the solution decreased seed germination. However, some seeds of H. perfoliata could germinate in as low as -2.5 MPa (600 mM NaCl), which is equivalent to seawater salinity. Sea-salt treatment was more inhibitory than isotonic NaCl at the lowest osmotic potential (Psi/sub S/ -2.5 MPa). Generally, chloride salts with lowest Psi/sub S/ inhibited germination more than the isotonic sulfate salts. Comparable germination responses of the seeds in NaCl and isotonic PEG treatments as well as high recovery of germination in un-germinated seeds after alleviation of NaCl salinity indicated prevalence of osmotic constraint. These results thus indicate that the seeds of H. perfoliata could tolerate high levels of a wide variety of salts found in soil. (author)

  14. Influence of 125I seed interstitial brachytherapy on recovery of facial nerve function

    International Nuclear Information System (INIS)

    Song Tieli; Zheng Lei; Zhang Jie; Cai Zhigang; Yang Zhaohui; Yu Guangyan; Zhang Jianguo

    2010-01-01

    Objective: To study the influence of 125 I seed interstitial brachytherapy in parotid region on the recovery of facial nerve function. Methods: A total of the data of 21 patients with primary parotid carcinoma were treated with resection and 125 I interstitial brachytherapy. All the patients had no facial palsy before operation and the prescribed dose was 60 Gy. During 4 years of follow-up, the House-Brackmann grading scales and ENoG were used to evaluate the function of facial nerve. According to the modified regional House-Brackmann grading scales, the facial nerve branches of patients in affected side were divided into normal and abnormal groups, and were compared with those in contra-lateral side. Results: Post-operation facial palsy occurred in all the patients, but the facial palsy recovered within 6 months. The latency time differences between affected side and contralateral side were statistically significant in abnormal group from 1 week to 6 months after treatment (t=2.362, P=0.028), and were also different in normal group 1 week after treatment (t=2.522, P=0.027). Conclusions: 125 I interstitital brachytherapy has no influence on recovery of facial nerve function after tumor resection and no delayed facial nerve damage. (authors)

  15. RADISH SEED PRODUCTION (TRANSPLANTATION CULTURE; STANDARD OF ORGANISATION FOR MODEL TECHNOLOGICAL PROCESS

    Directory of Open Access Journals (Sweden)

    L. V. Pavlov

    2016-01-01

    Full Text Available The standard of organization for model technological process of seed production waselaborated at VNIISSOK. Requirements established are for implementation of technological operation at radish seed production as transplantation culture as followed: seed plant growing in polyhouses to produce elite seeds, seedlings planting out, plant nursing, harvesting and postharvest processing. The standard is aimed to provide the qualified work in radish seed production through transplantation culture. Radish seed plants for elite seed production are grown on warmed soil beds in winter greenhouses with use of plastic roofing or in plastic houses supplied with heating system. Seeds with germination not less than 85 % according to GOST 32592-2013 are taken for seed production aims. Hand sowing under marker ensures the identical all-around nutrition for plants that is particularly important when growing and selecting the seed plants (1 hectare - 55-60 thousand seed plant roots. Approbation of seed plants is carried out just before harvesting. The terms of seed plant planting are the earliest. Scheme of planting is 70 x 15 - 20 (cm, 60 x 30 (cm or 90 x 15 (cm. To protect the seed production plantation of radish against weeds, diseases and pests, the pesticides are allowed to apply in accordance with State Catalogue of Pesticides and Agrochemicals, permitted to use in the territory of Russian Federation. Postharvest desiccation of seed plants enables to yield radish by means of direct combining. Radish seeds after processing on sowing qualities have to meet all sowing requirements according to the acting standard. The standard of organization is agreed and affirmed in 2016 CTO45727225-52-16.

  16. Membrane Technology for the Recovery of Lignin: A Review

    Directory of Open Access Journals (Sweden)

    Daniel Humpert

    2016-09-01

    Full Text Available Utilization of renewable resources is becoming increasingly important, and only sustainable processes that convert such resources into useful products can achieve environmentally beneficial economic growth. Wastewater from the pulp and paper industry is an unutilized resource offering the potential to recover valuable products such as lignin, pigments, and water [1]. The recovery of lignin is particularly important because it has many applications, and membrane technology has been investigated as the basis of innovative recovery solutions. The concentration of lignin can be increased from 62 to 285 g∙L−1 using membranes and the recovered lignin is extremely pure. Membrane technology is also scalable and adaptable to different waste liquors from the pulp and paper industry.

  17. Membrane Technology for the Recovery of Lignin: A Review

    Science.gov (United States)

    Humpert, Daniel; Ebrahimi, Mehrdad; Czermak, Peter

    2016-01-01

    Utilization of renewable resources is becoming increasingly important, and only sustainable processes that convert such resources into useful products can achieve environmentally beneficial economic growth. Wastewater from the pulp and paper industry is an unutilized resource offering the potential to recover valuable products such as lignin, pigments, and water [1]. The recovery of lignin is particularly important because it has many applications, and membrane technology has been investigated as the basis of innovative recovery solutions. The concentration of lignin can be increased from 62 to 285 g∙L−1 using membranes and the recovered lignin is extremely pure. Membrane technology is also scalable and adaptable to different waste liquors from the pulp and paper industry. PMID:27608047

  18. Technology strategy for enhanced recovery; Technology Target Areas; TTA3 - enhanced recovery

    Energy Technology Data Exchange (ETDEWEB)

    2007-07-01

    The Norwegian Continental Shelf (NCS) is facing new challenges in reserve replacement and improved recovery in order to maintain the overall oil production rate from the area. A new target for an increase in oil reserves of 800 million Sm3 of oil (5 billion barrels) by year 2015 has been set by NPD. This is an ambitious goal considering several of the large fields are on a steep decline, and most of the recent discoveries are relatively small. A significant part of these increased reserves will have to come from fields currently on production, from reservoir areas that have been partly or fully swept, and it is therefore evident that Enhanced Oil Recovery (EOR) methods have to play a key role in achieving this target. EOR methods can be divided into gas based EOR methods and water based EOR methods. Thermal methods are not considered applicable on the NCS due to the relatively light oils present, and the depth of the reservoirs. Gas Based EOR; Water Based EOR; CO{sub 2} injection; Surfactants; Air injection; Polymer; Nitrogen injection; Alkaline; Flue gas injection; Polymer gels; WAG; MEOR; FAWAG. The former OG21 strategy document gave high priority to Water Alternating Gas (WAG) methods and CO{sub 2} injection for enhanced recovery. A lot of research and development and evaluation projects on CO{sub 2} injection were launched and are on-going, most of these are being CO{sub 2} WAG studies. The main challenge now in order to realize CO{sub 2} injection on the NCS is on CO{sub 2} availability and transport. It is also believed that increasing gas prices will limit the availability of hydrocarbon gas for injection purposes in the future. There is, however, a clear need for developing alternative cost efficient EOR methods that can improve the sweep efficiency significantly. Since a majority of the fields on the NCS are being produced under water flooding (or WAG), methods that can improve the water flooding efficiency by chemical additives are of special interest and

  19. Advances in primary recovery: centrifugation and membrane technology.

    Science.gov (United States)

    Roush, David J; Lu, Yuefeng

    2008-01-01

    Significant and continual improvements in upstream processing for biologics have resulted in challenges for downstream processing, both primary recovery and purification. Given the high cell densities achievable in both microbial and mammalian cell culture processes, primary recovery can be a significant bottleneck in both clinical and commercial manufacturing. The combination of increased product titer and low viability leads to significant relative increases in the levels of process impurities such as lipids, intracellular proteins and nucleic acid versus the product. In addition, cell culture media components such as soy and yeast hydrolysates have been widely applied to achieve the cell culture densities needed for higher titers. Many of the process impurities can be negatively charged at harvest pH and can form colloids during the cell culture and harvest processes. The wide size distribution of these particles and the potential for additional particles to be generated by shear forces within a centrifuge may result in insufficient clarification to prevent fouling of subsequent filters. The other residual process impurities can lead to precipitation and increased turbidity during processing and even interference with the performance of the capturing chromatographic step. Primary recovery also poses significant challenges owing to the necessity to execute in an expedient manner to minimize both product degradation and bioburden concerns. Both microfiltration and centrifugation coupled with depth filtration have been employed successfully as primary recovery processing steps. Advances in the design and application of membrane technology for microfiltration and dead-end filtration have contributed to significant improvements in process performance and integration, in some cases allowing for a combination of multiple unit operations in a given step. Although these advances have increased productivity and reliability, the net result is that optimization of primary

  20. seeds

    African Journals Online (AJOL)

    Owner

    peptidohydrolase (8.0%) from mung bean seedlings. (Baumgartner and Chrispeels, 1977), EP-HG (4.5%) from horse gram seedlings ( Rajeswari, 1997), acidic protease (15%) from germinating winged-bean seeds. (Usha and Singh, 1996) and EP-1 (1.6%) from barley seedlings and GA3-induced cysteine protease (3.38%).

  1. Phosphorus recovery from municipal wastewater: An integrated comparative technological, environmental and economic assessment of P recovery technologies.

    Science.gov (United States)

    Egle, L; Rechberger, H; Krampe, J; Zessner, M

    2016-11-15

    Phosphorus (P) is an essential and limited resource. Municipal wastewater is a promising source of P via reuse and could be used to replace P derived from phosphate rocks. The agricultural use of sewage sludge is restricted by legislation or is not practiced in several European countries due to environmental risks posed by organic micropollutants and pathogens. Several technologies have been developed in recent years to recover wastewater P. However, these technologies target different P-containing flows in wastewater treatment plants (effluent, digester supernatant, sewage sludge, and sewage sludge ash), use diverse engineering approaches and differ greatly with respect to P recycling rate, potential of removing or destroying pollutants, product quality, environmental impact and cost. This work compares 19 relevant P recovery technologies by considering their relationships with existing wastewater and sludge treatment systems. A combination of different methods, such as material flow analysis, damage units, reference soil method, annuity method, integrated cost calculation and a literature study on solubility, fertilizing effects and handling of recovered materials, is used to evaluate the different technologies with respect to technical, ecological and economic aspects. With regard to the manifold origins of data an uncertainty concept considering validity of data sources is applied. This analysis revealed that recovery from flows with dissolved P produces clean and plant-available materials. These techniques may even be beneficial from economic and technical perspectives under specific circumstances. However, the recovery rates (a maximum of 25%) relative to the wastewater treatment plant influent are relatively low. The approaches that recover P from sewage sludge apply complex technologies and generally achieve effective removal of heavy metals at moderate recovery rates (~40-50% relative to the WWTP input) and comparatively high costs. Sewage sludge ash is

  2. Digital innovations and emerging technologies for enhanced recovery programmes

    DEFF Research Database (Denmark)

    Michard, F; Gan, T J; Kehlet, H

    2017-01-01

    Enhanced recovery programmes (ERPs) are increasingly used to improve post-surgical recovery. However, compliance to various components of ERPs-a key determinant of success-remains sub-optimal. Emerging technologies have the potential to help patients and caregivers to improve compliance with ERPs...... of the above-mentioned ERP elements is omitted during the surgical journey.By optimizing compliance to the multiple components of ERPs, digital innovations, non-invasive techniques and wearable sensors have the potential to magnify the clinical and economic benefits of ERPs. Among the growing number...... of technical innovations, studies are needed to clarify which tools and solutions have real clinical value and are cost-effective....

  3. Technologies for waste heat recovery in off-shore applications

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Haglind, Fredrik; Kandepu, Rambabu

    2013-01-01

    different technologies are presented, considering the Draugen platform in the North Sea as a base case. The Turboden 65-HRS unit is considered as representative of the organic Rankine cycle technology. Air bottoming cycles are analyzed and optimal design pressure ratios are selected. We also study a one...... pressure level steam Rankine cycle employing the once-through heat recovery steam generator without bypass stack. We compare the three technologies considering the combined cycle thermal efficiency, the weight, the net present value, the profitability index and payback time. Both incomes related to CO2...... of the unit is expected to be around 250 ton. The air bottoming cycle without intercooling is also a possible alternative due to its low weight (76 ton) and low investment cost (8.8 M$). However, cycle performance and profitability index are poorer, 12.1% and 0.75. Furthermore, the results suggest...

  4. Waste Heat Recovery. Technology and Opportunities in U.S. Industry

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Ilona [BCS, Inc., Laurel, MD (United States); Choate, William T. [BCS, Inc., Laurel, MD (United States); Davidson, Amber [BCS, Inc., Laurel, MD (United States)

    2008-03-01

    This study was initiated in order to evaluate RD&D needs for improving waste heat recovery technologies. A bottomup approach is used to evaluate waste heat quantity, quality, recovery practices, and technology barriers in some of the largest energyconsuming units in U.S. manufacturing. The results from this investigation serve as a basis for understanding the state of waste heat recovery and providing recommendations for RD&D to advance waste heat recovery technologies.

  5. Technology of uranium recovery from wet-process phosphoric acid

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Katsutoshi [Saga Univ. (Japan). Faculty of Science and Engineering; Nakashio, Fumiyuki

    1982-12-01

    Rock phosphate contains from 0.005 to 0.02 wt.% of uranium. Though the content is a mere 5 to 10 % of that in uranium ore, the total recovery of uranium is significant since it is used for fertilizer manufacture in a large quantity. Wet-process phosphoric acid is produced by the reaction of rock phosphate with sulfuric acid. The recovery of uranium from this phosphoric acid is mostly by solvent extraction at present. According to U/sup 4 +/ or UO/sub 2//sup 2 +/ as the form of its existence, the technique of solvent extraction differs. The following matters are described: processing of rock phosphate; recovery techniques including the extraction by OPPA-octyl pyrophosphoric acid for U/sup 4 +/, and by mixed DEHPA-Di-(2)-ethylhexyl phosphoric acid and TOPO-tryoctyl phosphine oxide for UO/sub 2//sup 2 +/, and by OPAP-octylphenyl acid phosphate for U/sup 4 +/; the recent progress of the technology as seen in patents.

  6. Electron beam irradiation: a novel technology to enhance the quality of soybean seeds

    International Nuclear Information System (INIS)

    Bhalla, Shashi; Srinivasan, K.; Singh, Subadas; Thakur, Manju; Sharma, S.K.; Pramod, R.; Dwivedi, J.; Bapna, S.C.

    2010-01-01

    Soybean seeds, rich in protein and oil, maintain their germinability only for short durations under ambient conditions. Loss of viability of stored seeds often hampers soybean production in harsh environments worldwide. Physiological factors favored by high temperature and high moisture content accelerate the seed deterioration in the tropics. Several chemical and physical treatments are being used to enhance quality. Irradiation is a novel technology for food preservation and is gaining importance all over the world. Low doses of irradiation bring about improvement in quality of food/seeds, which can be beneficial in several ways. Electron Beam (EB) irradiation is a new approach in this area. The objective of present study was to investigate the effect of EB irradiation in enhancing the quality of low vigour soybean seeds

  7. Synthetic seed technology for encapsulation and regrowth of in vitro ...

    African Journals Online (AJOL)

    In this study, various concentrations of sodium alginate solutions and calcium chloride solutions were tested in order to optimize the size, shape and texture of alginate synthetic seeds or beads for Acacia hybrid bud-sprouting. The shoot buds and axillary buds from in vitro Acacia hybrids, as explants were encapsulated with ...

  8. OPTICAL FIBER SENSOR TECHNOLOGIES FOR EFFICIENT AND ECONOMICAL OIL RECOVERY

    Energy Technology Data Exchange (ETDEWEB)

    Anbo Wang; Kristie L. Cooper; Gary R. Pickrell

    2003-06-01

    Efficient recovery of petroleum reserves from existing oil wells has been proven to be difficult due to the lack of robust instrumentation that can accurately and reliably monitor processes in the downhole environment. Commercially available sensors for measurement of pressure, temperature, and fluid flow exhibit shortened lifetimes in the harsh downhole conditions, which are characterized by high pressures (up to 20 kpsi), temperatures up to 250 C, and exposure to chemically reactive fluids. Development of robust sensors that deliver continuous, real-time data on reservoir performance and petroleum flow pathways will facilitate application of advanced recovery technologies, including horizontal and multilateral wells. This is the final report for the four-year program ''Optical Fiber Sensor Technologies for Efficient and Economical Oil Recovery'', funded by the National Petroleum Technology Office of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech from October 1, 1999 to March 31, 2003. The main objective of this research program was to develop cost-effective, reliable optical fiber sensor instrumentation for real-time monitoring of various key parameters crucial to efficient and economical oil production. During the program, optical fiber sensors were demonstrated for the measurement of temperature, pressure, flow, and acoustic waves, including three successful field tests in the Chevron/Texaco oil fields in Coalinga, California, and at the world-class oil flow simulation facilities in Tulsa, Oklahoma. Research efforts included the design and fabrication of sensor probes, development of signal processing algorithms, construction of test systems, development and testing of strategies for the protection of optical fibers and sensors in the downhole environment, development of remote monitoring capabilities allowing real

  9. Technological Desition of Extraction of Melanin from the Waste of Production of Sunflower-Seed Oil

    Science.gov (United States)

    Kartushina, Yu N.; Nefedieva, E. E.; Sevriukova, G. A.; Gracheva, N. V.; Zheltobryukhov, V. F.

    2017-05-01

    The research was realized in the field of the technology for re-use of waste of sunflower-seed oil production. A technological scheme of production of melanin from sunflower husk as a waste was developed. Re-cycling will give the opportunity to reduce the amount of waste and to obtain an additional source of income.

  10. Oak habitat recovery on California's largest islands: Scenarios for the role of corvid seed dispersal

    Science.gov (United States)

    Pesendorfer, Mario B.; Baker, Christopher M.; Stringer, Martin; McDonald-Madden, Eve; Bode, Michael; McEachern, A. Kathryn; Morrison, Scott A.; Sillett, T. Scott

    2018-01-01

    Seed dispersal by birds is central to the passive restoration of many tree communities. Reintroduction of extinct seed dispersers can therefore restore degraded forests and woodlands. To test this, we constructed a spatially explicit simulation model, parameterized with field data, to consider the effect of different seed dispersal scenarios on the extent of oak populations. We applied the model to two islands in California's Channel Islands National Park (USA), one of which has lost a key seed disperser.We used an ensemble modelling approach to simulate island scrub oak (Quercus pacifica) demography. The model was developed and trained to recreate known population changes over a 20-year period on 250-km2 Santa Cruz Island, and incorporated acorn dispersal by island scrub-jays (Aphelocoma insularis), deer mice (Peromyscus maniculatus) and gravity, as well as seed predation. We applied the trained model to 215-km2 Santa Rosa Island to examine how reintroducing island scrub-jays would affect the rate and pattern of oak population expansion. Oak habitat on Santa Rosa Island has been greatly reduced from its historical extent due to past grazing by introduced ungulates, the last of which were removed by 2011.Our simulation model predicts that a seed dispersal scenario including island scrub-jays would increase the extent of the island scrub oak population on Santa Rosa Island by 281% over 100 years, and by 544% over 200 years. Scenarios without jays would result in little expansion. Simulated long-distance seed dispersal by jays also facilitates establishment of discontinuous patches of oaks, and increases their elevational distribution.Synthesis and applications. Scenario planning provides powerful decision support for conservation managers. We used ensemble modelling of plant demographic and seed dispersal processes to investigate whether the reintroduction of seed dispersers could provide cost-effective means of achieving broader ecosystem restoration goals on

  11. Digital innovations and emerging technologies for enhanced recovery programmes.

    Science.gov (United States)

    Michard, F; Gan, T J; Kehlet, H

    2017-07-01

    Enhanced recovery programmes (ERPs) are increasingly used to improve post-surgical recovery. However, compliance to various components of ERPs-a key determinant of success-remains sub-optimal. Emerging technologies have the potential to help patients and caregivers to improve compliance with ERPs.Preoperative physical condition, a major determinant of postoperative outcome, could be optimized with the use of text messages (SMS) or digital applications (Apps) designed to facilitate smoking cessation, modify physical activity, and better manage hypertension and diabetes. Several non-invasive haemodynamic monitoring techniques and decision support tools are now available to individualize perioperative fluid management, a key component of ERPs. Objective nociceptive assessment may help to rationalize the use of pain medications, including opioids. Wearable sensors designed to monitor cardio-respiratory function may help in the early detection of clinical deterioration during the postoperative recovery and to address 'failure to rescue'. Activity trackers may be useful to monitor early mobilization, another major element of ERPs. Finally, electronic checklists have been developed to ensure that none of the above-mentioned ERP elements is omitted during the surgical journey.By optimizing compliance to the multiple components of ERPs, digital innovations, non-invasive techniques and wearable sensors have the potential to magnify the clinical and economic benefits of ERPs. Among the growing number of technical innovations, studies are needed to clarify which tools and solutions have real clinical value and are cost-effective. © The Author 2017. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. OPTICAL FIBER SENSOR TECHNOLOGIES FOR EFFICIENT AND ECONOMICAL OIL RECOVERY

    Energy Technology Data Exchange (ETDEWEB)

    A. Wang; H. Xiao; R. May

    1999-10-29

    Efficient and complete recovery of petroleum reserves from existing oil wells has proven difficult due to a lack of robust instrumentation that can monitor processes in the downhole environment. Commercially available sensors for measurement of pressure, temperature, and fluid flow exhibit shortened lifetimes in the harsh downhole conditions, which are characterized by high pressures (up to 20 kpsi), temperatures up to 250 C, and exposure to chemically reactive fluids. Development of robust sensors that deliver continuous, real-time data on reservoir performance and petroleum flow pathways will facilitate application of advanced recovery technologies, including horizontal and multi-lateral wells. The main objective of the research program is to develop cost-effective, reliable fiber sensor instrumentation for real-time monitoring and /or control of various key parameters crucial to efficient and economical oil production. This report presents the detailed research work and technical progress from October 1, 1998 to September 30, 1999. The research performed over the first year of the program has followed the schedule as proposed, and solid research progress has been made in specification of the technical requirements, design and fabrication of the SCIIB sensor probes, development of the sensor systems, development of DSP-based signal processing techniques, and construction of the test systems. These technical achievements will significantly help to advance continued research on sensor tests and evaluation during the second year of the program.

  13. An Economic Analysis of Pigeonpea Seed Production Technology and Its Adoption Behavior: Indian Context.

    Science.gov (United States)

    Pal, Govind; Channanamchery, Radhika; Singh, R K; Kethineni, Udaya Bhaskar; Ram, H; Prasad, S Rajendra

    2016-01-01

    The present study was based on primary data collected from 100 farmers in Gulbarga district of Karnataka, India, during the agricultural year 2013-2014. Study shows that average land holding size of pigeonpea seed farmers was higher in comparison to grain farmers and district average. The study illustrates a ratio of 32 : 68 towards fixed and variable costs in pigeonpea certified seed production with a total cost of ₹ 39436 and the gross and net returns were ₹ 73300 and ₹ 33864 per hectare, respectively. The total cost of cultivation, gross return, and net return in pigeonpea seed production were higher by around 23, 32, and 44 percent than grain production, respectively. Hence, production of certified seed has resulted in a win-win situation for the farmers with higher yield and increased returns. The decision of the farmer on adoption of seed production technology was positively influenced by his education, age, land holding, irrigated land, number of crops grown, and extension contacts while family size was influencing negatively. Higher yield and profitability associated with seed production can be effectively popularized among farmers, resulting in increased certified seed production.

  14. Techno-economic analysis of resource recovery technologies for wastewater treatment plants

    DEFF Research Database (Denmark)

    Boiocchi, Riccardo; Matafome, Beatriz; Loureiro da Costa Lira Gargalo, Carina

    2017-01-01

    resource-recovery treatment units: (a) a chemical precipitation process, for recovery of iron phosphate fertilizer; (b) the Exelys technology, for increased biogas production; and, (c) the Phosnix technology, for recovery of struvite fertilizer. Seven upgrade strategies/flowsheets employing different...... upgrading combinations involving chemical precipitation and Exelys technologies were not found economical for the given plant. Sensitivity analyses on the economic evaluation criteria have demonstrated that the results obtained are robust against uncertainties in influent wastewater characteristics...

  15. Pepper seed variety identification based on visible/near-infrared spectral technology

    Science.gov (United States)

    Li, Cuiling; Wang, Xiu; Meng, Zhijun; Fan, Pengfei; Cai, Jichen

    2016-11-01

    Pepper is a kind of important fruit vegetable, with the expansion of pepper hybrid planting area, detection of pepper seed purity is especially important. This research used visible/near infrared (VIS/NIR) spectral technology to detect the variety of single pepper seed, and chose hybrid pepper seeds "Zhuo Jiao NO.3", "Zhuo Jiao NO.4" and "Zhuo Jiao NO.5" as research sample. VIS/NIR spectral data of 80 "Zhuo Jiao NO.3", 80 "Zhuo Jiao NO.4" and 80 "Zhuo Jiao NO.5" pepper seeds were collected, and the original spectral data was pretreated with standard normal variable (SNV) transform, first derivative (FD), and Savitzky-Golay (SG) convolution smoothing methods. Principal component analysis (PCA) method was adopted to reduce the dimension of the spectral data and extract principal components, according to the distribution of the first principal component (PC1) along with the second principal component(PC2) in the twodimensional plane, similarly, the distribution of PC1 coupled with the third principal component(PC3), and the distribution of PC2 combined with PC3, distribution areas of three varieties of pepper seeds were divided in each twodimensional plane, and the discriminant accuracy of PCA was tested through observing the distribution area of samples' principal components in validation set. This study combined PCA and linear discriminant analysis (LDA) to identify single pepper seed varieties, results showed that with the FD preprocessing method, the discriminant accuracy of pepper seed varieties was 98% for validation set, it concludes that using VIS/NIR spectral technology is feasible for identification of single pepper seed varieties.

  16. Seed banks as a source of vegetation regeneration to support the recovery of degraded rivers: A comparison of river reaches of varying condition.

    Science.gov (United States)

    O'Donnell, Jessica; Fryirs, Kirstie A; Leishman, Michelle R

    2016-01-15

    Anthropogenic disturbance has contributed to widespread geomorphic adjustment and the degradation of many rivers. This research compares for river reaches of varying condition, the potential for seed banks to support geomorphic river recovery through vegetation regeneration. Seven river reaches in the lower Hunter catchment of south-eastern Australia were assessed as being in poor, moderate, or good condition, based on geomorphic and ecological indicators. Seed bank composition within the channel and floodplain (determined in a seedling emergence study) was compared to standing vegetation. Seed bank potential for supporting geomorphic recovery was assessed by measuring native species richness, and the abundance of different plant growth forms, with consideration of the roles played by different growth forms in geomorphic adjustment. The exotic seed bank was considered a limiting factor for achieving ecological restoration goals, and similarly analysed. Seed bank native species richness was comparable between the reaches, and regardless of condition, early successional and pioneer herbs, sedges, grasses and rushes dominated the seed bank. The capacity for these growth forms to colonise and stabilise non-cohesive sediments and initiate biogeomorphic succession, indicates high potential for the seed banks of even highly degraded reaches to contribute to geomorphic river recovery. However, exotic propagules increasingly dominated the seed banks of moderate and poor condition reaches and reflected increasing encroachment by terrestrial exotic vegetation associated with riparian degradation. As the degree of riparian degradation increases, the resources required to control the regeneration of exotic species will similarly increase, if seed bank-based regeneration is to contribute to both geomorphic and ecological restoration goals. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. IN SITU STEAM ENHANCED RECOVERY PROCESS - HUGHES ENVIRONMENTAL SYSTEMS, INC. - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    Science.gov (United States)

    This Innovative Technology Evaluation report summarizes the findings of an evaluation of the in situ Steam Enhanced Recovery Process (SERP) operated by Hughes Environmental Systems, Inc. at the Rainbow Disposal facility in Huntington Beach, California. he technology demonstration...

  18. Multipurpose units: combining of technological operations of a soil cultivating and seeding

    Directory of Open Access Journals (Sweden)

    D. A. Petukhov

    2015-01-01

    Full Text Available The modern domestic market of technique for grain crops seeding differs variety of machines brands and types. The intensive type technologies combining technological operations of a soil cultivating and grain crops seeding in one pass are more widely used. The authors have established that one-operational units in new machine park have to be replaced multipurpose, universal and combined machines. Such approach will reduce number of machines in grain production from 20-30 to 5-6 name titles. Possibilities of multipurpose sowing units for simultaneous fertilizers application, soil cultivating and weeds destruction were analyzed. It was specified that nowadays there are several technologies types with two, four or six operations overlapping. Operational performance, technological and economical efficiency of the best multipurpose and also efficiency of technological operations overlapping at grain crops cultivating in the conditions of their real operation and at a trial establishment in the Kuban research institute of information and technical and economic studies of agro-industrial complex engineering and technical services were studied. Tit was defined that use of multipurpose sowing units and also studied efficiency of decreases operational costs by 48-71 percent, fuel consumption - by 41-76 percent and reduces labor input by 72-80 percent. Thus grain crops seeding is possible in optimal agrotime because of 4-6 technological operations overlapping in one pass.

  19. Enhancing the recovery of oilseed rape seed oil bodies (oleosomes) using bicarbonate-based soaking and grinding media.

    Science.gov (United States)

    De Chirico, Simone; di Bari, Vincenzo; Foster, Tim; Gray, David

    2018-02-15

    An aqueous process for the recovery of oil bodies from rapeseed using sodium bicarbonate-based soaking and grinding media (pH 9.5) was investigated. The effect of the ratio between seed and mass of media during grinding and molarity of the medium used on oil body integrity, purity and storage stability have been studied. The grinding of seeds in solution at a ratio of 1:7 (w/w) significantly improved the quality of oil body suspension to a size more in-line with that seen in vivo (average D 4,3 of 1.19µm). The purity and the composition of the recovered oil bodies depends on the molarity of medium used; the use of a sodium bicarbonate solution (pH 9.5, 0.1M) in the grinding and washing steps produced oil body preparations with the same purity as that resulting from washing a crude preparation with 9M urea. The resultant emulsion had improved physical stability over a storage period of one month. Copyright © 2017. Published by Elsevier Ltd.

  20. Current technologies and new insights for the recovery of high valuable compounds from fruits by-products.

    Science.gov (United States)

    Ferrentino, Giovanna; Asaduzzaman, Md; Scampicchio, Matteo Mario

    2018-02-11

    The recovery of high valuable compounds from food waste is becoming a tighten issue in food processing. The large amount of non-edible residues produced by food industries causes pollution, difficulties in the management, and economic loss. The waste produced during the transformation of fruits includes a huge amount of materials such as peels, seeds, and bagasse, whose disposal usually represents a problem. Research over the past 20 years revealed that many food wastes could serve as a source of potentially valuable bioactive compounds, such as antioxidants and vitamins with increasing scientific interest thanks to their beneficial effects on human health. The challenge for the recovery of these compounds is to find the most appropriate and environment friendly extraction technique able to achieve the maximum extraction yield without compromising the stability of the extracted products. Based on this scenario, the aim of the current review is twofold. The first is to give a brief overview of the most important bioactive compounds occurring in fruit wastes. The second is to describe the pro and cons of the most up-to-dated innovative and environment friendly extraction technologies that can be an alternative to the classical solvent extraction procedures for the recovery of valuable compounds from fruit processing. Furthermore, a final section will take into account published findings on the combination of some of these technologies to increase the extracts yields of bioactives.

  1. Effect of osmotic stress and post-stress recovery on the content of phenolics and properties of antioxidants in germinating seeds of grapevine Vitis californica

    Directory of Open Access Journals (Sweden)

    Stanisław Weidner

    2011-05-01

    Full Text Available The tested material consisted of grapevine Vitis californica stratified seeds germinated under optimum conditions (+25°C in water, under osmotic stress (-0.2 MPa in PEG solution and submitted to recovery after stress (+25°C in water. The germinating seeds were determined to contain tannins, catechins and the following phenolic acids: gallic, caffeic, p-coumaric and ferulic. The acids occurred in free, ester- and glycoside-bound forms. The dominant form of phenolic acids was the ester-bound fraction. Gallic acid was the most abundant phenolic acid in germinating seeds, while ferulic acid appeared in the smallest amounts. Our analysis of tannins demonstrated that osmotic stress depressed their concentration. Presence of catechin group compounds such as catechin and epicatechin was also determined. In each sample epicatechin was dominant. The total concentration of catechin increased under stress conditions and declined during post-stress recovery. Catechins are a constituent of tannins and their increase under osmotic stress is most probably caused by the breakdown of some tannins in seeds germinating under stress conditions. Samples submitted to osmotic stress were also found to contain less of total phenolic compounds, whereas in samples which underwent post-stress recovery the total level of phenolic compounds increased. Compared to extracts from seeds germinating under optimum conditions, osmotic stress depressed the capacity of extract to scavenge DPPH● (2,2-diphenyl-1-picrylhydrazyl and ABTS●+ – 2,2-Azino-bis (3-etylbenzothiazoline-6-sulfonic acid free radicals, but the antioxidant activity rose in seeds submitted to recovery after stress. Positive correlation was therefore demonstrated between the total content of phenolic acids in germinating grapevine seeds and the reducing power of extracts obtained from these seeds and their free radical scavenging activity. The results suggest that osmotic stress inhibits the activity of

  2. OMNI: An optoelectronic multichannel network interface based on hybrid CMOS-SEED technology

    Science.gov (United States)

    Pinkston, Timothy M.

    1996-11-01

    This paper presents a hybrid CMOS-SEED multiprocessor network interface smart pixel design that implements a reservation-based channel control protocol for collisionless concurrent access to multiple optical interprocessor communication channels. An asynchronous optical token is used as the arbitration mechanism for reservation control instead of slotted access. This work demonstrates that complex network protocol functions can be implemented using optoelectronic smart pixel technology.

  3. Impacts Seed Technology Improvement on Economic Aspects of Chilli Production in Central Java - Indonesia

    Directory of Open Access Journals (Sweden)

    Joko Mariyono

    2016-06-01

    Full Text Available Vegetable production, including that of chillies, plays an important role in agricultural sector and rural economic development worldwide. This is because of greater farm productivity with regard to vegetables than cereal and staple crops. This paper analyses the impact of seed technology development on the economic aspects of chilli production in Central Java. Particular attention is paid to improved varieties of chilli. Potential consequences of seed technology development are discussed. Data of this study are compiled from surveys conducted in three selected chilli producing regions in 2010-2012. The results show that the major varieties of chilli grown by surveyed farmers are grouped into three broad types: hybrids, local and improved open pollinated varieties. The chilli varieties farmers selected varied according to location and cropping season. In the dry season, farmers grew similar proportions of hybrid, local, and open pollinated types. Nevertheless, there were differences among the survey sites. Farmers grew different varieties to exploit seasonal microclimates and market preferences. Mostly, farmers selected varieties for economic motives. The consequence of growing hybrids was less use of agrochemicals, particularly pesticides, than for other varieties. Overall, they show the best economic performance in the study site. Development of seed technology should consider agro-ecological and economic aspects to obtain better outcomes. Private sector and national research institutions need to collaborate more to utilise available genetic resources to produce better varieties of chilli.

  4. Analysis of Phenolic Compounds and Antioxidant Abilities of Extracts from Germinating Vitis californica Seeds Submitted to Cold Stress Conditions and Recovery after the Stress

    Science.gov (United States)

    Weidner, Stanisław; Chrzanowski, Sebastian; Karamać, Magdalena; Król, Angelika; Badowiec, Anna; Mostek, Agnieszka; Amarowicz, Ryszard

    2014-01-01

    The material for this study consisted of stratified seeds of Vitis californica submitted to germination under optimum conditions (+25 °C) or under chill stress (+10 °C), also followed by recovery. It has been determined that the germinating seeds contain considerable amounts of tannins, catechins as well as phenolic acids such as gallic, p-coumaric, caffeic and ferulic acids. Gallic acid appeared in the highest amount in the germinating seeds (from 42.40–204.00 µg/g of fresh weight (FW)), followed by caffeic acid (from 6.62–20.13 µg/g FW), p-coumaric acid (from 2.59–5.41 µg/g FW), and ferulic acid (from 0.56–0.92 µg/g FW). The phenolic acids occurred mostly in the ester form. Under chill stress, the germinating seeds were determined to contain an elevated total amount of phenolics, as well as raised levels of condensed tannins, catechins, gallic acid, and gafeic acid. The levels of p-coumoric and ferulic acids were found to have decreased. In extracts isolated from a sample exposed to low temperature, increased antioxidant activity and reduction potential were also demonstrated. Tissue of the germinating seeds which underwent post-stress recovery was found to have less total phenolics. PMID:25222557

  5. Recovery of volatile fruit juice aroma compounds by membrane technology

    DEFF Research Database (Denmark)

    Bagger-Jørgensen, Rico; Meyer, Anne S.; Pinelo, Manuel

    2011-01-01

    The influence of temperature (10–45°C), feed flow rate (300–500L/h) and sweeping gas flow rate (1.2–2m3/h) on the recovery of berry fruit juice aroma compounds by sweeping gas membrane distillation (SGMD) was examined on an aroma model solution and on black currant juice in a lab scale membrane...... distillation set up. The data were compared to recovery of the aroma compounds by vacuum membrane distillation (VMD). The flux of SGMD increased with an increase in temperature, feed flow rate or sweeping gas flow rate. Increased temperature and feed flow rate also increased the concentration factors...... the degradation of anthocyanins and polyphenolic compounds in the juice. Industrial relevanceHigh temperature evaporation is the most widely used industrial technique for aroma recovery and concentration of juices, but membrane distillation (MD) may provide for gentler aroma stripping and lower energy consumption...

  6. The technology of storage of a geno-fund of seeds of plants and animals

    International Nuclear Information System (INIS)

    Ombayev, A.M.; Tokhanov, M.T.; Burtebayeva, D.T.; Burtebayev, N.

    2002-01-01

    waves, of special frequencies and of a gaseous medium, created by the liquid nitrogen. There is established, that such way of the storage of ram sperms improves essentially a fertilization-ability of sheep and of a quality of sperms. The final object of our investigations consists in a creation of a new complex technology for the storage of the geno-fund of plant seeds, including various combinations of three ecologically - pure technological techniques. These are a pyramid, a gaseous medium and electromagnetic waves. It is necessary to note, that in some cases a choice of storages in the form of pyramids does not require a construction of special spaces with refrigerating machinery and large energetic and labour - consuming expenditures

  7. Membrane-based processes for wastewater nutrient recovery: Technology, challenges, and future direction.

    Science.gov (United States)

    Xie, Ming; Shon, Ho Kyong; Gray, Stephen R; Elimelech, Menachem

    2016-02-01

    Wastewater nutrient recovery holds promise for more sustainable water and agricultural industries. We critically review three emerging membrane processes - forward osmosis (FO), membrane distillation (MD) and electrodialysis (ED) - that can advance wastewater nutrient recovery. Challenges associated with wastewater nutrient recovery were identified. The advantages and challenges of applying FO, MD, and ED technologies to wastewater nutrient recovery are discussed, and directions for future research and development are identified. Emphasis is given to exploration of the unique mass transfer properties of these membrane processes in the context of wastewater nutrient recovery. We highlight that hybridising these membrane processes with existing nutrient precipitation process will lead to better management of and more diverse pathways for near complete nutrient recovery in wastewater treatment facilities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. FY07 LDRD Final Report Precision, Split Beam, Chirped-Pulse, Seed Laser Technology

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, J W; Messerly, M J; Phan, H H; Crane, J K; Beach, R J; Siders, C W; Barty, C J

    2009-11-12

    The goal of this LDRD ER was to develop a robust and reliable technology to seed high-energy laser systems with chirped pulses that can be amplified to kilo-Joule energies and recompressed to sub-picosecond pulse widths creating extremely high peak powers suitable for petawatt class physics experiments. This LDRD project focused on the development of optical fiber laser technologies compatible with the current long pulse National Ignition Facility (NIF) seed laser. New technologies developed under this project include, high stability mode-locked fiber lasers, fiber based techniques for reduction of compressed pulse pedestals and prepulses, new compact stretchers based on chirped fiber Bragg gratings (CFBGs), new techniques for manipulation of chirped pulses prior to amplification and new high-energy fiber amplifiers. This project was highly successful and met virtually all of its goals. The National Ignition Campaign has found the results of this work to be very helpful. The LDRD developed system is being employed in experiments to engineer the Advanced Radiographic Capability (ARC) front end and the fully engineered version of the ARC Front End will employ much of the technology and techniques developed here.

  9. Polymer filtration: A new technology for selective metals recovery

    Energy Technology Data Exchange (ETDEWEB)

    Smith, B.F.; Robison, T.W.; Cournoyer, M.E.; Wilson, K.V.; Sauer, N.N.; Mullen, K.I.; Lu, M.T.; Jarvinen, J.J.

    1995-04-01

    Polymer Filtration (PF) was evaluated for the recovery of electroplating metal ions (zinc and nickel) from rinse waters. Polymer Filtration combines the use of water-soluble metal-binding polymers and ultrafiltration to concentrate metal ions from dilute rinse water solutions. The metal ions are retained by the polymers; the smaller, unbound species freely pass through the ultrafiltration membrane. By using this process the ultrafiltered permeate more than meets EPA discharge limits. The metal ions are recovered from the concentrated polymer solution by pH adjustment using diafiltration and can be recycled to the original electroplating baths with no deleterious effects on the test panels. Metal-ion recovery is accomplished without producing sludge.

  10. Rapid Airfield Damage Recovery: Deployable Saw Technology Evaluation

    Science.gov (United States)

    2017-12-29

    portland cement concrete for Rapid Airfield Damage Recovery (RADR). However, the next generation of RADR is focusing on lighter and leaner efforts...best tools for cutting portland cement concrete (PCC) in ADR scenarios (Bell et al. 2015 and Edwards et al. 2015). The saws are easily attached to...Various teeth are available for varying needs and jobs. Most teeth are made of steel with carbide tips. The carbide may be produced as a seat tip or

  11. Energy recovery as a key technology for future mobility

    Energy Technology Data Exchange (ETDEWEB)

    Zellbeck, Hans; Risse, Silvio [Technische Univ. Dresden (Germany). Lehrstuhl fuer Verbrennungsmotoren

    2011-07-01

    Internal and external combustion engines in both stationary and mobile applications represent an essential, basic module for a functioning economy and society. In ensuring mobility worldwide by land and by sea, the combustion engine plays the dominant role. Customer requirements to be fulfilled are manifold. Accordingly a downward trend in the demand for or indeed the abandonment of the combustion engine in personal or freight transport is in the near future unforeseeable. With regard to the continuously increasing need for mobility subject to limited resources and rising environmental consciousness, the combustion engine and the means to improve its efficiency and sustainability are under intensive investigation. Along with the application of CO{sub 2}-neutral fuels, improvements in the system itself will be valuable to its future. More specifically, compared to many other techniques the recovery of energy losses resulting from the operation of these engines promises a very high degree of optimization. An overview of the current and predicted number of combustion engines in both stationary and mobile applications is given at the beginning of the paper. Furthermore, a differentiation between personal and freight traffic must be made since there is not only a difference in their respective power requirements but also in their lifecycles. The energy losses through exhaust gases and coolants, for example, are quantified and rated in terms of their capabilities on the basis of certain fields of application and utilization profiles. With regard to additional specific boundary conditions, various concepts ranging from recuperation in theory to actual recovery in practice under conditions approximating actual production are analysed in different application scenarios for their efficiency, ecological benefit, and economy. Retroactive or synergistic effects which may follow from their integration into the complete system are considered precisely with the help of examples

  12. Microfluidics: an enabling screening technology for enhanced oil recovery (EOR).

    Science.gov (United States)

    Lifton, Victor A

    2016-05-21

    Oil production is a critical industrial process that affects the entire world population and any improvements in its efficiency while reducing its environmental impact are of utmost societal importance. The paper reviews recent applications of microfluidics and microtechnology to study processes of oil extraction and recovery. It shows that microfluidic devices can be useful tools in investigation and visualization of such processes used in the oil & gas industry as fluid propagation, flooding, fracturing, emulsification and many others. Critical macro-scale processes that define oil extraction and recovery are controlled by the micro-scale processes based on wetting, adhesion, surface tension, colloids and other concepts of microfluidics. A growing number of research efforts demonstrates that microfluidics is becoming, albeit slowly, an accepted methodology in this area. We propose several areas of development where implementation of microfluidics may bring about deeper understanding and hence better control over the processes of oil recovery based on fluid propagation, droplet generation, wettability control. Studies of processes such as hydraulic fracturing, sand particle propagation in porous networks, high throughput screening of chemicals (for example, emulsifiers and surfactants) in microfluidic devices that simulate oil reservoirs are proposed to improve our understanding of these complicated physico-chemical systems. We also discuss why methods of additive manufacturing (3D printing) should be evaluated for quick prototyping and modification of the three-dimensional structures replicating natural oil-bearing rock formations for studies accessible to a wider audience of researchers.

  13. Commercial Demonstration of Wood Recovery, Recycling, and Value Adding Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Auburn Machinery, Inc.

    2004-07-15

    This commercial demonstration project demonstrated the technical feasibility of converting low-value, underutilized and waste stream solid wood fiber material into higher valued products. With a growing need to increase product/production yield and reduce waste in most sawmills, few recovery operations and practically no data existed to support the viability of recovery operations. Prior to our efforts, most all in the forest products industry believed that recovery was difficult, extremely labor intensive, not cost effective, and that recovered products had low value and were difficult to sell. This project provided an opportunity for many within the industry to see through demonstration that converting waste stream material into higher valued products does in fact offer a solution. Our work, supported by the U.S. Department of Energy, throughout the project aimed to demonstrate a reasonable approach to reducing the millions of recoverable solid wood fiber tons that are annually treated as and converted into low value chips, mulch and fuel. Consequently sawmills continue to suffer from reduced availability of forest resources, higher raw material costs, growing waste disposal problems, increased global competition, and more pressure to operate in an Environmentally Friendly manner. It is our belief (based upon the experience of this project) that the successful mainstreaming of the recovery concept would assist in alleviating this burden as well as provide for a realistically achievable economic benefit to those who would seriously pursue the concept and tap into the rapidly growing ''GREEN'' building marketplace. Ultimately, with participation and aggressive pursuit of the recovery concept, the public would benefit in that: (1) Landfill/disposal waste volume could be reduced adding greater life to existing municipal landfill sites thereby minimizing the need to prematurely license and open added facilities. Also, there would be a cost

  14. Control of quality and silo storage of sunflower seeds using near infrared technology

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Martin, I.; Vilaescusa-Garcia, V.; Lopez-Gonzalez, F.; Oiz-Jimenez, C.; Lobos-Ortega, I. A.; Gordillo, B.; Hernandez-Hierro, J. M.

    2013-05-01

    This work assesses the application of near infrared spectroscopy technology for the quality control of sunflower seeds direct from farmers and from a storage silo. The results show that the analytical method employing near infrared spectroscopy can be used as a rapid and non-destructive tool for the determination of moisture, fat and high/low oleic acid contents in samples of sunflower seeds. The ranges obtained were comparable to those reported for classic chemical methods, and were between 4.6-21.4% for moisture; 38.4-49.6% for fat, and 60.0-93.1% for oleic acid expressed as percentage of total fatty acids. A stepwise discriminant analysis was performed to determine the most useful wavelengths for classifying sunflower seeds in terms of their (high/low) oleic acid composition. The discriminant model allows the acid contents, with a prediction rate of 90.5% for internal validation and of 89.4% for cross-validation. (Author) 23 refs.

  15. Control of quality and silo storage of sunflower seeds using near infrared technology

    International Nuclear Information System (INIS)

    Gonzalez-Martin, I.; Vilaescusa-Garcia, V.; Lopez-Gonzalez, F.; Oiz-Jimenez, C.; Lobos-Ortega, I. A.; Gordillo, B.; Hernandez-Hierro, J. M.

    2013-01-01

    This work assesses the application of near infrared spectroscopy technology for the quality control of sunflower seeds direct from farmers and from a storage silo. The results show that the analytical method employing near infrared spectroscopy can be used as a rapid and non-destructive tool for the determination of moisture, fat and high/low oleic acid contents in samples of sunflower seeds. The ranges obtained were comparable to those reported for classic chemical methods, and were between 4.6-21.4% for moisture; 38.4-49.6% for fat, and 60.0-93.1% for oleic acid expressed as percentage of total fatty acids. A stepwise discriminant analysis was performed to determine the most useful wavelengths for classifying sunflower seeds in terms of their (high/low) oleic acid composition. The discriminant model allows the acid contents, with a prediction rate of 90.5% for internal validation and of 89.4% for cross-validation. (Author) 23 refs.

  16. Industrial Waste Heat Recovery - Potential Applications, Available Technologies and Crosscutting R&D Opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Thekdi, Arvind [E3M Inc, North Potomac, MD (United States); Nimbalkar, Sachin U. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    The purpose of this report was to explore key areas and characteristics of industrial waste heat and its generation, barriers to waste heat recovery and use, and potential research and development (R&D) opportunities. The report also provides an overview of technologies and systems currently available for waste heat recovery and discusses the issues or barriers for each. Also included is information on emerging technologies under development or at various stages of demonstrations, and R&D opportunities cross-walked by various temperature ranges, technology areas, and energy-intensive process industries.

  17. Development of alkaline/surfactant/polymer (ASP flooding technology for recovery of Karazhanbas oil

    Directory of Open Access Journals (Sweden)

    Birzhan Zhappasbaev

    2016-03-01

    Full Text Available The tertiary oil recovery methods like alkaline, surfactant and polymer (ASP flooding are very perspective in order to achieve the synergetic effect out of the different impacts which are caused by these chemicals, which affect oil and water filtration in the reservoir and increase oil recovery. In this communication, we consider the applicability of hydrophobically modified polyampholyte – poly(hexadecylaminocrotonatebetaine (PHDACB as ASP flooding agent for recovery of oil from Karazhanbas oilfield. As “polysoap”, the aqueous solution of PHDACB dissolved in aqueous KOH was used. This system combines the advantages of alkaline, surfactant and polymer and exhibits the synergistic effect. The laboratory results showed that the ASP flooding considerably increases the oil recovery in addition to water flooding. In perspective, the ASP flooding may substitute the steam injection and other thermal enhanced oil recovery (EOR technologies.

  18. ECOLOGY SAFETY TECHNOLOGIES OF UNCONVENTIONAL OIL RESERVES RECOVERY FOR SUSTAINABLE OIL AND GAS INDUSTRY DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Viacheslav Zyrin

    2016-09-01

    Full Text Available The problem of effective technology for heavy oil recovery nowadays has a great importance, because of worsening geological conditions of the developed deposits, decreasing recovery factor, increasing the part of heavy oil. For the future sustainable development of oil producing industry the involved technologies must require energy effectiveness and ecological safety. The paper proves the enhanced oil recovery methods necessity for heavy oil deposits, highlighted thermal technologies as the most effective. But traditional thermal treatment technologies is a source of air pollutant emission, such as CO, NO etc. The calculation of emissions for traditional steam generator is provided. Besides, the paper shows the effectiveness of electrical enhanced oil recovery methods. The advantages of associated gas as a fuel for cogeneration plants is shown. The main approaches to implementation of carbon dioxide sequestration technologies in the oil and gas industry of Russia are defined. Conceptual view of СО2-EOR technologies potential within the context of sustainable development of oil and gas industry are presented. On the basis of the conducted research a number of scientific research and practical areas of the CCS technology development are revealed.

  19. Biohydrometallurgy and membrane technology for resource recovery from low-grade ores and mining residuals

    International Nuclear Information System (INIS)

    Werner, Arite; Meschke, Katja; Bohlke, Kevin; Haseneder, Roland; Daus, Birgit; Repke, Jens-Uwe

    2017-01-01

    The recovery of strategic elements from secondary mineral resources and low grade ores is of increasing relevance, due to a changing global market as well as for reasons of sustainability. The present article shows the potential of biohydrometallurgy as an efficient technology for mobilization of metals from secondary mineral resources. Furthermore, the application of membrane separation as a successful technique for the recovery of metals from bioleaching solutions is presented. These issues are discussed within the scope of recent research projects.

  20. Application of polymer flooding technology for enhanced oil recovery

    Directory of Open Access Journals (Sweden)

    Sarkyt Kudaivergenov

    2015-12-01

    Full Text Available Application of brine-initiated gelation of gellan for conformance control and water shutoff operations in field conditions was demonstrated. The developed technology was tested in Kumkol oilfield (Kyzylorda region, Kazakhstan on five injection wells. According to the results of the first oilfield test, the amount of additionally recovered oil during 11 months (from October 1, 2013 till September 1, 2014 was equal to 5890 tons. In 2014, the JSC “NIPIneftegas” (Aktau city, Kazakhstan carried out the second pilot test of polymer flooding technology on the same oilfield. The amount of additionally recovered oil during eight months (from October 2014 till May 2015 was equal to 8695 tons. The technology was tested for water shut-off purposes in producing well of Karabulak oilfield. After one-month treatment of production well the amount of water decreased 16 times in comparison with previous results.

  1. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology

    International Nuclear Information System (INIS)

    Gerke, Frank G.

    2001-01-01

    This cooperative program between the DOE Office of Heavy Vehicle Technology and Caterpillar, Inc. is aimed at demonstrating electric turbocompound technology on a Class 8 truck engine. This is a lab demonstration program, with no provision for on-truck testing of the system. The goal is to demonstrate the level of fuel efficiency improvement attainable with the electric turbocompound system. Also, electric turbocompounding adds an additional level of control to the air supply which could be a component in an emissions control strategy

  2. Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, Mark B.

    1999-02-24

    The Nash Draw Brushy Canyon Pool in Eddy County New Mexico is a cost-shared field demonstration project in the US Department of Energy Class II Program. A major goal of the Class III Program is to stimulate the use of advanced technologies to increase ultimate recovery from slope-basin clastic reservoirs. Advanced characterization techniques are being used at the Nash Draw project to develop reservoir management strategies for optimizing oil recovery from this Delaware reservoir. Analysis, interpretation, and integration of recently acquired geologic, geophysical, and engineering data revealed that the initial reservoir characterization was too simplistic to capture the critical features of this complex formation. Contrary to the initial characterization, a new reservoir description evolved that provided sufficient detail regarding the complexity of the Brushy Canyon interval at Nash Draw. This new reservoir description is being used as a risk reduction tool to identify ''sweet spots'' for a development drilling program as well as to evaluate pressure maintenance strategies. The reservoir characterization, geological modeling, 3-D seismic interpretation, and simulation studies have provided a detailed model of the Brushy Canyon zones. This model was used to predict the success of different reservoir management scenarios and to aid in determining the most favorable combination of targeted drilling, pressure maintenance, well simulation, and well spacing to improve recovery from this reservoir.

  3. Status of technology of uranium recovery from seawater

    International Nuclear Information System (INIS)

    Sugo, Takanobu; Saito, Kyoichi.

    1990-01-01

    By bringing the solid material called adsorbent in contact with seawater, uranium can be collected, therefore, the adsorbent to which uranium was adsorbed in seawater can be regarded as the resource of uranium storing. To the adsorbent, also rare metals are concentrated in addition to uranium. From such viewpoint, the development of the technology for collecting seawater uranium is important for the Japanese energy policy. The uranium concentration in seawater is about 3 mg/m 3 and its form of dissolution is uranyl tricarbonate ions. The technology of collecting seawater uranium is the separation technology for extracting the component of very low concentration from the aqueous solution containing many components. The total amount of uranium in the whole oceans reaches about 4 billion t, which is about 1000 times as much as the uranium commercially mined on land. It is the target of the technology to make artificial uranium ore of as high quality as possible quickly. The process of collecting seawater uranium comprises adsorption, desorption, separation and enrichment. As the adsorbents, hydrated titanium oxide and chelate resin represented by amidoxime are promising. The adsorption system is described. (K.I.)

  4. Space Technology Game Changing Development- Next Generation Life Support: Spacecraft Oxygen Recovery (SCOR)

    Science.gov (United States)

    Abney, Morgan; Barta, Daniel

    2015-01-01

    The Next Generation Life Support Spacecraft Oxygen Recovery (SCOR) project element is dedicated to developing technology that enables oxygen recovery from metabolically produced carbon dioxide in space habitats. The state-of-the-art system on the International Space Station uses Sabatier technology to recover (is) approximately 50% oxygen from carbon dioxide. The remaining oxygen required for crew respiration is supplied from Earth. For long duration manned missions beyond low-Earth orbit, resupply of oxygen becomes economically and logistically prohibitive. To mitigate these challenges, the SCOR project element is targeting development of technology to increase the recovery of oxygen to 75% or more, thereby reducing the total oxygen resupply required for future missions.

  5. Supporting technology for enhanced oil recovery for thermal processes

    Energy Technology Data Exchange (ETDEWEB)

    Reid, T.B.; Bolivar, J.

    1997-12-01

    This report contains the results of efforts under the six tasks of the Ninth Amendment and Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Agreement. The report is presented in sections (for each of the 6 tasks) and each section contains one or more reports prepared by various individuals or groups describing the results of efforts under each of the tasks. A statement of each task, taken from the agreement, is presented on the first page of each section. The tasks are numbered 62 through 67. The first, second, third, fourth fifth, sixth, seventh, eighth, and ninth reports on Annex IV, [Venezuela MEM/USA-DOE Fossil Energy Report IV-1, IV-2, IV-3, IV-4, IV-5, IV-6, IV-7, and IV-8 (DOE/BETC/SP-83/15, DOE/BC-84/6/SP, DOE/BC-86/2/SP, DOE/BC-87/2/SP, DOE/BC-90/1/SP, DOE/BC-90/1/SP) (DOE/BC-92/1/SP, DOE/BC-93/3/SP, and DOE/BC-95/3/SP)] contain the results from the first 61 tasks. Those reports are dated April 1983, August 1984, March 1986, July 1987, November 1988, October 1991, February 1993, and March 1995 respectively.

  6. Effects of seeding ryegrass (Lolium multiflorum) on vegetation recovery following fire in a ponderosa pine (Pinus ponderosa) forest

    Science.gov (United States)

    Barclay, Angela D.; Betancourt, Julio L.; Allen, Craig D.

    2004-01-01

    Forty-nine vegetation transects were measured in 1997 and 1998 to determine the impact of grass seeding after the 1996 Dome Fire, which burned almost 6900 ha of ponderosa pine (Pinus ponderosa Lawson) forest in the Jemez Mountains of north-central New Mexico. High- and moderate-burned areas in Santa Fe National Forest were seeded with a mixture that included the exotic ryegrass (Lolium multiflorum Lam.). Adjacent burned areas of Bandelier National Monument were not seeded, and were used as a control in the post-seeding study. On the seeded plots, foliar cover of ryegrass declined from 1997 to 1998 due to self-inhibition and/or reduced precipitation from 1997 to 1998. Foliar cover and diversity of native forbs were greater in 1997 than 1998, probably due to a wet growing season in 1997. Cover, species richness, and diversity of native forbs were highest in non-seeded areas of moderate- and high-burn intensities. Regeneration and survivorship of conifer seedlings decreased as ryegrass cover increased, particularly in areas of high-burn intensity. Exotic plant cover, mostly horseweed [Conyza canadensis (L.) Cronq.], increased from 1997 to 1998 in non-seeded areas of moderate- and high-burn intensity. Both the initial success of seeding and the eventual impacts on native vegetation were strongly modulated by climate variability.

  7. Review of technology for Arctic offshore oil and gas recovery

    Energy Technology Data Exchange (ETDEWEB)

    Sackinger, W. M.

    1980-08-01

    The technical background briefing report is the first step in the preparation of a plan for engineering research oriented toward Arctic offshore oil and gas recovery. A five-year leasing schedule for the ice-prone waters of the Arctic offshore is presented, which also shows the projected dates of the lease sale for each area. The estimated peak production rates for these areas are given. There is considerable uncertainty for all these production estimates, since no exploratory drilling has yet taken place. A flow chart is presented which relates the special Arctic factors, such as ice and permafrost, to the normal petroleum production sequence. Some highlights from the chart and from the technical review are: (1) in many Arctic offshore locations the movement of sea ice causes major lateral forces on offshore structures, which are much greater than wave forces; (2) spray ice buildup on structures, ships and aircraft will be considerable, and must be prevented or accommodated with special designs; (3) the time available for summer exploratory drilling, and for deployment of permanent production structures, is limited by the return of the pack ice. This time may be extended by ice-breaking vessels in some cases; (4) during production, icebreaking workboats will service the offshore platforms in most areas throughout the year; (5) transportation of petroleum by icebreaking tankers from offshore tanker loading points is a highly probable situation, except in the Alaskan Beaufort; and (6) Arctic pipelines must contend with permafrost, making instrumentation necessary to detect subtle changes of the pipe before rupture occurs.

  8. Recovery of acids from dilute streams : A review of process technologies

    International Nuclear Information System (INIS)

    Talnikar, Vivek Digambar; Mahajan, Yogesh Shankar

    2014-01-01

    Chemical process industries convert raw materials into useful products. Acids, among other chemicals, are used in many industries as reactants, solvents and also as catalysts in a few instances as well. Resulting streams are dilute, from which the acids must be recovered. For recovery, many technologies can be used by which acids can be regained as such or can be converted into other value-added products like esters. Membrane processes and biological processes are being researched academically and practiced industrially. These have their own advantages and disadvantages in view of conversion, energy consumption etc. These are not always advantageous and hence an alternate process technology is necessary like reactive separation (RS). RS is advantageous especially when the acid is to be converted to other useful products by reaction, due to additional advantages or because no other technology is well suited or due to cost considerations alone. Conventional process technologies use the reactor configuration followed by the subsequent separation sequence. This approach can sometimes suffer from lesser conversion, difficulties in separation etc. To overcome these problems, RS has an edge over other processes in terms of the recovery of the useful compounds. Reactive distillation (RD), reactive extraction (RE) and reactive chromatography (RC) are the separation technologies that can be useful for acid recovery in an economically feasible way. This review covers the various processes of acid recovery along with the recent work in the field of reactive separations

  9. Hybrid breeding in wheat: technologies to improve hybrid wheat seed production.

    Science.gov (United States)

    Whitford, Ryan; Fleury, Delphine; Reif, Jochen C; Garcia, Melissa; Okada, Takashi; Korzun, Viktor; Langridge, Peter

    2013-12-01

    Global food security demands the development and delivery of new technologies to increase and secure cereal production on finite arable land without increasing water and fertilizer use. There are several options for boosting wheat yields, but most offer only small yield increases. Wheat is an inbred plant, and hybrids hold the potential to deliver a major lift in yield and will open a wide range of new breeding opportunities. A series of technological advances are needed as a base for hybrid wheat programmes. These start with major changes in floral development and architecture to separate the sexes and force outcrossing. Male sterility provides the best method to block self-fertilization, and modifying the flower structure will enhance pollen access. The recent explosion in genomic resources and technologies provides new opportunities to overcome these limitations. This review outlines the problems with existing hybrid wheat breeding systems and explores molecular-based technologies that could improve the hybrid production system to reduce hybrid seed production costs, a prerequisite for a commercial hybrid wheat system.

  10. Technologies for utilization of industrial excess heat: Potentials for energy recovery and CO2 emission reduction

    International Nuclear Information System (INIS)

    Broberg Viklund, Sarah; Johansson, Maria T.

    2014-01-01

    Highlights: • Technologies for recovery and use of industrial excess heat were investigated. • Heat harvesting, heat storage, heat utilization, and heat conversion technologies. • Heat recovery potential for Gävleborg County in Sweden was calculated. • Effects on global CO 2 emissions were calculated for future energy market scenarios. - Abstract: Industrial excess heat is a large untapped resource, for which there is potential for external use, which would create benefits for industry and society. Use of excess heat can provide a way to reduce the use of primary energy and to contribute to global CO 2 mitigation. The aim of this paper is to present different measures for the recovery and utilization of industrial excess heat and to investigate how the development of the future energy market can affect which heat utilization measure would contribute the most to global CO 2 emissions mitigation. Excess heat recovery is put into a context by applying some of the excess heat recovery measures to the untapped excess heat potential in Gävleborg County in Sweden. Two different cases for excess heat recovery are studied: heat delivery to a district heating system and heat-driven electricity generation. To investigate the impact of excess heat recovery on global CO 2 emissions, six consistent future energy market scenarios were used. Approximately 0.8 TWh/year of industrial excess heat in Gävleborg County is not used today. The results show that with the proposed recovery measures approximately 91 GWh/year of district heating, or 25 GWh/year of electricity, could be supplied from this heat. Electricity generation would result in reduced global CO 2 emissions in all of the analyzed scenarios, while heat delivery to a DH system based on combined heat and power production from biomass would result in increased global CO 2 emissions when the CO 2 emission charge is low

  11. Functional chitosan-based grapefruit seed extract composite films for applications in food packaging technology

    International Nuclear Information System (INIS)

    Tan, Y.M.; Lim, S.H.; Tay, B.Y.; Lee, M.W.; Thian, E.S.

    2015-01-01

    Highlights: • Chitosan-based grapefruit seed extract (GFSE) films were solution casted. • GFSE was uniformly dispersed within all chitosan film matrices. • All chitosan-based composite films showed remarkable transparency. • Increasing amounts of GFSE incorporated increased the elongation at break of films. • Chitosan-based GFSE composite films inhibited the proliferation of fungal growth. - Abstract: Chitosan-based composite films with different amounts of grapefruit seed extract (GFSE) (0.5, 1.0 and 1.5% v/v) were fabricated via solution casting technique. Experimental results showed that GFSE was uniformly dispersed within all chitosan film matrices. The presence of GFSE made the films more amorphous and tensile strength decreased, while elongation at break values increased as GFSE content increased. Results from the measurement of light transmission revealed that increasing amounts of GFSE (from 0.5 to 1.5% v/v) did not affect transparency of the films. Furthermore, packaging of bread samples with chitosan-based GFSE composite films inhibited the proliferation of fungal growth as compared to control samples. Hence, chitosan-based GFSE composite films have the potential to be a useful material in the area of food technology

  12. Functional chitosan-based grapefruit seed extract composite films for applications in food packaging technology

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Y.M. [Department of Mechanical Engineering, National University of Singapore (Singapore); Lim, S.H.; Tay, B.Y. [Forming Technology Group, Singapore Institute of Manufacturing Technology (Singapore); Lee, M.W. [Food Innovation and Resource Centre, Singapore Polytechnic (Singapore); Thian, E.S., E-mail: mpetes@nus.edu.sg [Department of Mechanical Engineering, National University of Singapore (Singapore)

    2015-09-15

    Highlights: • Chitosan-based grapefruit seed extract (GFSE) films were solution casted. • GFSE was uniformly dispersed within all chitosan film matrices. • All chitosan-based composite films showed remarkable transparency. • Increasing amounts of GFSE incorporated increased the elongation at break of films. • Chitosan-based GFSE composite films inhibited the proliferation of fungal growth. - Abstract: Chitosan-based composite films with different amounts of grapefruit seed extract (GFSE) (0.5, 1.0 and 1.5% v/v) were fabricated via solution casting technique. Experimental results showed that GFSE was uniformly dispersed within all chitosan film matrices. The presence of GFSE made the films more amorphous and tensile strength decreased, while elongation at break values increased as GFSE content increased. Results from the measurement of light transmission revealed that increasing amounts of GFSE (from 0.5 to 1.5% v/v) did not affect transparency of the films. Furthermore, packaging of bread samples with chitosan-based GFSE composite films inhibited the proliferation of fungal growth as compared to control samples. Hence, chitosan-based GFSE composite films have the potential to be a useful material in the area of food technology.

  13. Using mobile phone technology to provide recovery support for women offenders.

    Science.gov (United States)

    Scott, Christy K; Johnson, Kimberly; Dennis, Michael L

    2013-10-01

    Mobile technology holds promise as a recovery tool for people with substance use disorders. However, some populations who may benefit the most may not have access to or experience with mobile phones. Incarcerated women represent a group at high risk for recidivism and relapse to substance abuse. Cost-effective mechanisms must be in place to support their recovery upon release. This study explores using mobile technology as a recovery management tool for women offenders residing in the community following release from jail. This study surveyed 325 minority women offenders with substance use disorders to determine whether or not they use cell phones, their comfort with texting and search features, and the social networks that they access from mobile phones. We found that 83% of survey subjects had cell phones; 30% of those were smartphones. Seventy-seven percent of the women reported access to supportive friends, and 88% had close family members they contacted regularly using mobile technology. Results indicated that most of the women were comfortable using a mobile phone, although the majority of them had prepaid minutes rather than plans, and most did currently use smartphones or have the capability to download applications or access social networks via their phones. Most women reported that they would be comfortable using a mobile phone to text, e-mail, and answer surveys. The high rate of adoption of mobile technology by women offenders makes them a promising target for recovery support delivered via mobile phone.

  14. Progress in recovery technology for uranium from seawater

    International Nuclear Information System (INIS)

    Sugo, Takanobu; Saito, Kyoichi.

    1994-01-01

    By the facts that the research group in Japan improved the performance of amidoxime resin which is the adsorbent for collecting seawater uranium, proposed the method of mooring floating bodies utilizing sea current and waves as the adsorption system, and further, verified the results of laboratory basic experiment by marine experiment, the technology of collecting seawater uranium has progressed. After the oil crisis, various countries started the research on seawater uranium, but only Japan has continued the systematic study up to now. In this report, the research on seawater uranium collection carried out so far is summarized, and the characteristics of the adsorbent which was synthesized by radiation graft polymerization and the results of the uranium collection test using coastal seawater are reported. In seawater of 1 m 3 , the uranium of 3.3 mg is dissolved in the form of uranyl tricarbonate complex ions. In the total quantity of seawater, the dissolved uranium amounts to about 4.6 billion tons, about 1000 times of the uranium resources on land. The research on seawater uranium collection and the performance of uranium adsorption of synthesized amidoxime fibers are reported. (K.I.)

  15. Improvement and evaluation of vegerable seed quality by the use of non-destructive technologies

    DEFF Research Database (Denmark)

    Olesen, Merete Halkjær

    and HC=CH structures which represent some of the functional groups in lipids.The same differences in absorbance bands were observed between seeds with different germination capacities. Correct classification of seed germination ranged from 89.5 % to 98.3 %, using extended canonical variance analysis...... are all supposed to influence germination of the seed. To increase the number of non-germinating seeds, seed samples were exposed to accelerated ageing (41 °C for 72 h). This also provides an opportunity to evaluate the difference between NIR spectra of aged and non-aged seeds. Lipids play a major role...... in both ageing and germination. During accelerated ageing lipid peroxidation leads to deterioration of cell membranes and this leads to reduced germination capacity of the seeds. Assignment of difference between scatter corrected absorbance spectra of aged and non-aged seeds leads to 12 the CH2, CH3...

  16. Evaluating a seed technology for sagebrush restoration across an elevation gradient: support for bet hedging

    Science.gov (United States)

    Big sagebrush (Artemisia tridentata Nutt.) restoration is needed across vast areas, especially after large wildfires, to restore important ecosystem services. Sagebrush restoration success is inconsistent with a high rate of seeding failures, particularly at lower elevations. Seed enhancement tech...

  17. Bypassing the learning curve in permanent seed implants using state-of-the-art technology

    International Nuclear Information System (INIS)

    Beaulieu, Luc; Evans, Dee-Ann Radford; Aubin, Sylviane; Angyalfi, Steven; Husain, Siraj; Kay, Ian; Martin, Andre-Guy; Varfalvy, Nicolas; Vigneault, Eric; Dunscombe, Peter

    2007-01-01

    Purpose: The aim of this study was to demonstrate, based on clinical postplan dose distributions, that technology can be used efficiently to eliminate the learning curve associated with permanent seed implant planning and delivery. Methods and Materials: Dose distributions evaluated 30 days after the implant of the initial 22 consecutive patients treated with permanent seed implants at two institutions were studied. Institution 1 (I1) consisted of a new team, whereas institution 2 (I2) had performed more than 740 preplanned implantations over a 9-year period before the study. Both teams had adopted similar integrated systems based on three-dimensional (3D) transrectal ultrasonography, intraoperative dosimetry, and an automated seed delivery and needle retraction system (FIRST, Nucletron). Procedure time and dose volume histogram parameters such as D90, V100, V150, V200, and others were collected in the operating room and at 30 days postplan. Results: The average target coverage from the intraoperative plan (V100) was 99.4% for I1 and 99.9% for I2. D90, V150, and V200 were 191.4 Gy (196.3 Gy), 75.3% (73.0%), and 37.5% (34.1%) for I1 (I2) respectively. None of these parameters shows a significant difference between institutions. The postplan D90 was 151.2 Gy for I1 and 167.3 Gy for I2, well above the 140 Gy from the Stock et al. analysis, taking into account differences at planning, results in a p value of 0.0676. The procedure time required on average 174.4 min for I1 and 89 min for I2. The time was found to decrease with the increasing number of patients. Conclusion: State-of-the-art technology enables a new brachytherapy team to obtain excellent postplan dose distributions, similar to those achieved by an experienced team with proven long-term clinical results. The cost for bypassing the usual dosimetry learning curve is time, with increasing team experience resulting in shorter treatment times

  18. Study on the petroleum recovery technology : Analysis of pipeline flow

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Se Joon; Kim, Hyun Tae; Kim, In Kee; Huh, Dae Gee [Korea Institute of Geology Mining and Materials, Taejon (Korea)

    1998-12-01

    The petroleum exploration activities have been performed by our own technology in the concession Block VI-I in Korean continental shelf for more than 10 years. Gas and gas condensate were discovered from several exploratory wells drilled in this block. This year, the news of another hit in the well of Gorae-V was very encouraging. Different from the previous gas discoveries, the reservoir properties and the productivity of Gorea-V well were excellent and the reserve estimate was very optimistic for the gas field development in this region. Gas consumption was very rapidly increased during recent years because of the image of cleaner fuel compared with other fossil fuels and convenience of usage. Korea is the fifth country in the world in terms of total quantity of petroleum consumption. This is the reason why the secure supply of oil and gas in the future is vital to our industry. The development of gas or gas condensate reservoir is different from that of oil reservoir. Especially sales contract must be made before the initiation of gas field exploitation. The production facilities including pipeline system must be selected and designed for further consideration. In this study, we have selected the 'K' offshore gas field where the water depth is 155 m and the distance from the shore is 50 km. The main purpose of this production system analysis is to select the optimum size and capacity of production facilities including pipeline in order to find the most appropriate production schedule. Production system analysis using nodal analysis includes deliverability calculation of the reservoir, production system optimization, recoverable reserve estimation, and performance forecast of the reservoir with three different production rate scenarios. The reservoir pressure is 4525 psia and the temperature is 248 deg.F. The OGIP of this reservoir was calculated as 24.64 BCF/well and the reservoir is expected to produce for up to 10 years. The porosity is 6% and the

  19. Fragment-based lead generation: identification of seed fragments by a highly efficient fragment screening technology

    Science.gov (United States)

    Neumann, Lars; Ritscher, Allegra; Müller, Gerhard; Hafenbradl, Doris

    2009-08-01

    For the detection of the precise and unambiguous binding of fragments to a specific binding site on the target protein, we have developed a novel reporter displacement binding assay technology. The application of this technology for the fragment screening as well as the fragment evolution process with a specific modelling based design strategy is demonstrated for inhibitors of the protein kinase p38alpha. In a fragment screening approach seed fragments were identified which were then used to build compounds from the deep-pocket towards the hinge binding area of the protein kinase p38alpha based on a modelling approach. BIRB796 was used as a blueprint for the alignment of the fragments. The fragment evolution of these deep-pocket binding fragments towards the fully optimized inhibitor BIRB796 included the modulation of the residence time as well as the affinity. The goal of our study was to evaluate the robustness and efficiency of our novel fragment screening technology at high fragment concentrations, compare the screening data with biochemical activity data and to demonstrate the evolution of the hit fragments with fast kinetics, into slow kinetic inhibitors in an in silico approach.

  20. Optimization of mutant recovery from plants obtained from gamma-radiated seeds of winged bean (Psophocarpus tetragonolobus (L) DC)

    International Nuclear Information System (INIS)

    Klu, J. Y. P.; Harten, A. M. van

    2000-01-01

    Dry seeds of winged bean (Psophocarpus tetragonolobus (L.) DC) cvs UPS 122 and Kade 6/16 were treated with acute radiation doses of 150 Gy and 250 Gy at a dose rate of 737.32 Gy/hr from a Cobalt-60 gamma source for studies in optimisation of mutant selection in M 2 and M 3 populations. Mature dry pods were harvested at four different locations on each M 1 plant viz. 0.5, 1.0, 1.5 and 2.0 metres from the ground. M 2 seedlings were screened for different groups of chlorophyll deficiencies and their frequencies. Reduction in chlorophyll mutation frequency from the first formed seeds to the latest ones within the M 1 pods has been observed for both cultivars studied. The high degree of chimerism recorded in the M 2 seedlings present in the first-formed seeds in the M 1 pods provides a clear indication that these seeds constitute a zone from which seeds for the M 2 generation have to be harvested in order to give the highest probability for obtaining different types of mutants. On the other hand, significant differences in mutation frequency were not obtained in M 2 seedlings from pods harvested at the various positions on the M 1 plants. M 1 pods can be harvested at any height on the M 1 plants but is preferable to use the earliest mature ones to save time and labour. The zones identified on M 1 plants in this investigation coupled with the use of the 'spare' or 'remnant' seed selection method, should provide an improved method for mutation breeding in a viny legume like the winged bean. (au)

  1. Resource Recovery from Wastewater by Biological Technologies: Opportunities, Challenges, and Prospects

    Science.gov (United States)

    Puyol, Daniel; Batstone, Damien J.; Hülsen, Tim; Astals, Sergi; Peces, Miriam; Krömer, Jens O.

    2017-01-01

    Limits in resource availability are driving a change in current societal production systems, changing the focus from residues treatment, such as wastewater treatment, toward resource recovery. Biotechnological processes offer an economic and versatile way to concentrate and transform resources from waste/wastewater into valuable products, which is a prerequisite for the technological development of a cradle-to-cradle bio-based economy. This review identifies emerging technologies that enable resource recovery across the wastewater treatment cycle. As such, bioenergy in the form of biohydrogen (by photo and dark fermentation processes) and biogas (during anaerobic digestion processes) have been classic targets, whereby, direct transformation of lipidic biomass into biodiesel also gained attention. This concept is similar to previous biofuel concepts, but more sustainable, as third generation biofuels and other resources can be produced from waste biomass. The production of high value biopolymers (e.g., for bioplastics manufacturing) from organic acids, hydrogen, and methane is another option for carbon recovery. The recovery of carbon and nutrients can be achieved by organic fertilizer production, or single cell protein generation (depending on the source) which may be utilized as feed, feed additives, next generation fertilizers, or even as probiotics. Additionlly, chemical oxidation-reduction and bioelectrochemical systems can recover inorganics or synthesize organic products beyond the natural microbial metabolism. Anticipating the next generation of wastewater treatment plants driven by biological recovery technologies, this review is focused on the generation and re-synthesis of energetic resources and key resources to be recycled as raw materials in a cradle-to-cradle economy concept. PMID:28111567

  2. GRIM-Filter: Fast seed location filtering in DNA read mapping using processing-in-memory technologies.

    Science.gov (United States)

    Kim, Jeremie S; Senol Cali, Damla; Xin, Hongyi; Lee, Donghyuk; Ghose, Saugata; Alser, Mohammed; Hassan, Hasan; Ergin, Oguz; Alkan, Can; Mutlu, Onur

    2018-05-09

    Seed location filtering is critical in DNA read mapping, a process where billions of DNA fragments (reads) sampled from a donor are mapped onto a reference genome to identify genomic variants of the donor. State-of-the-art read mappers 1) quickly generate possible mapping locations for seeds (i.e., smaller segments) within each read, 2) extract reference sequences at each of the mapping locations, and 3) check similarity between each read and its associated reference sequences with a computationally-expensive algorithm (i.e., sequence alignment) to determine the origin of the read. A seed location filter comes into play before alignment, discarding seed locations that alignment would deem a poor match. The ideal seed location filter would discard all poor match locations prior to alignment such that there is no wasted computation on unnecessary alignments. We propose a novel seed location filtering algorithm, GRIM-Filter, optimized to exploit 3D-stacked memory systems that integrate computation within a logic layer stacked under memory layers, to perform processing-in-memory (PIM). GRIM-Filter quickly filters seed locations by 1) introducing a new representation of coarse-grained segments of the reference genome, and 2) using massively-parallel in-memory operations to identify read presence within each coarse-grained segment. Our evaluations show that for a sequence alignment error tolerance of 0.05, GRIM-Filter 1) reduces the false negative rate of filtering by 5.59x-6.41x, and 2) provides an end-to-end read mapper speedup of 1.81x-3.65x, compared to a state-of-the-art read mapper employing the best previous seed location filtering algorithm. GRIM-Filter exploits 3D-stacked memory, which enables the efficient use of processing-in-memory, to overcome the memory bandwidth bottleneck in seed location filtering. We show that GRIM-Filter significantly improves the performance of a state-of-the-art read mapper. GRIM-Filter is a universal seed location filter that can be

  3. New technology for sulfide reductions and increased oil recovery: Petroleum project fact sheet

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-12-14

    This Fact Sheet is written for the Inventions and Innovations Program about a new technology for sulfide reduction and increased oil recovery. The new technology, called Bio-Competitive Exclusion (BCX), results in greater oil production and prevents the production of corrosive hydrogen sulfide in oil and gas reservoirs. This BCX process is initiated and maintained by a new product, called Max-Well 2000, in which nutrients are custom designed to stimulate targeted beneficial microorganisms that live in every oil and gas reservoir. Rapid growth of these microorganisms excludes activity of harmful sulfide-producing bacteria and produces by-products that serve as effective tertiary oil recovery agents and as sulfide degradation agents. Oil and gas production is both increased and sweetened.

  4. physical, chemical, technological and biological properties of some mutant oil seeds induced by gamma radiation

    International Nuclear Information System (INIS)

    Ali, H.G.M.

    2003-01-01

    The present study has been undertaken to evaluated sesame, sunflower and safflower seeds induced by gamma rays, as plant breeding unit, plant research department, radioisotope application division, nuclear research center, atomic energy authority Inshas. the obtained results indicate the following : chemical composition of mutant seeds: the radiation mutation caused a significant increase in both oil and ash content total carbohydrates showed a significant decreased in sesame seeds. radiation mutation induced significant increase in oil and protein content of sunflower and safflower seeds. while the total carbohydrate showed a significant decrease. physiochemical properties of oils extracted mutant seeds: the radiation mutation had no real effect on the refractive index and A.V of oils extracted from control and mutant sesame, sunflower and safflower seeds. while it caused a slight increase in red color and P.V. of sesame oil, the thiobarbituric acid (TBA) value of mutant sesame oil was not alter upon radiation mutation, but it induced a slight decrease in TBA of mutant sunflower and safflower oils. the unsaponifiable matter percentage of oils extracted from mutant sesame, sunflower and safflower seeds were slightly increased by radiation mutation .radiation mutation of seeds had no real effect on the total SFA and USFA of sesame oil. however, radiation mutation induced a remarkable changes in fatty acid profiles of sunflower and safflower oil as total SFA decreased, while USFA increased. Uric acid was only detected in oil extracted from mutant sunflower seeds

  5. Advanced Energy and Water Recovery Technology from Low Grade Waste Heat

    Energy Technology Data Exchange (ETDEWEB)

    Dexin Wang

    2011-12-19

    The project has developed a nanoporous membrane based water vapor separation technology that can be used for recovering energy and water from low-temperature industrial waste gas streams with high moisture contents. This kind of exhaust stream is widely present in many industrial processes including the forest products and paper industry, food industry, chemical industry, cement industry, metal industry, and petroleum industry. The technology can recover not only the sensible heat but also high-purity water along with its considerable latent heat. Waste heats from such streams are considered very difficult to recover by conventional technology because of poor heat transfer performance of heat-exchanger type equipment at low temperature and moisture-related corrosion issues. During the one-year Concept Definition stage of the project, the goal was to prove the concept and technology in the laboratory and identify any issues that need to be addressed in future development of this technology. In this project, computational modeling and simulation have been conducted to investigate the performance of a nanoporous material based technology, transport membrane condenser (TMC), for waste heat and water recovery from low grade industrial flue gases. A series of theoretical and computational analyses have provided insight and support in advanced TMC design and experiments. Experimental study revealed condensation and convection through the porous membrane bundle was greatly improved over an impermeable tube bundle, because of the membrane capillary condensation mechanism and the continuous evacuation of the condensate film or droplets through the membrane pores. Convection Nusselt number in flue gas side for the porous membrane tube bundle is 50% to 80% higher than those for the impermeable stainless steel tube bundle. The condensation rates for the porous membrane tube bundle also increase 60% to 80%. Parametric study for the porous membrane tube bundle heat transfer

  6. Preinoculation of Soybean Seeds Treated with Agrichemicals up to 30 Days before Sowing: Technological Innovation for Large-Scale Agriculture.

    Science.gov (United States)

    Araujo, Ricardo Silva; da Cruz, Sonia Purin; Souchie, Edson Luiz; Martin, Thomas Newton; Nakatani, André Shigueyoshi; Nogueira, Marco Antonio; Hungria, Mariangela

    2017-01-01

    The cultivation of soybean in Brazil experienced an expressive growth in the last decades. Soybean is highly demanding on nitrogen (N) that must come from fertilizers or from biological fixation. The N supply to the soybean crop in Brazil relies on the inoculation with elite strains of Bradyrhizobium japonicum, B. elkanii, and B. diazoefficiens , which are able to fulfill the crop's N requirements and enrich the soil for the following crop. The effectiveness of the association between N 2 -fixing bacteria and soybean plants depends on the efficacy of the inoculation process. Seed treatment with pesticides, especially fungicides or micronutrients, may rapidly kill the inoculated bacteria, affecting the establishment and outcome of the symbiosis. The development of technologies that allow inoculation to become a successful component of industrial seed treatment represents a valuable tool for the seed industry, as well as for the soybean crop worldwide. In this article, we report the results of new technologies, developed by the company Total Biotecnologia Indústria e Comércio S/A of Brazil, for preinoculation of soybean seeds with bradyrhizobia, in the presence of agrichemicals. Our results demonstrate improved bacterial survival for up to 30 days after inoculation, without compromising nodulation, N 2 -fixation, and yield in the field.

  7. Electron beam irradiation: a technology for quarantine disinfestation of green gram seeds against Callsobruchus maculatus

    International Nuclear Information System (INIS)

    Bhalla, Shashi; Srinivasan, K.; Singh, Subadas; Thakur, Manju; Sharma, S.K.; Pramod, R.; Dwivedi, J.; Bapna, S.C.

    2010-01-01

    Green gram (Vigna radiata (L.) Wilkzec) an important legume crop in India is grown in 33.4 lakh hectares. India accounts for ∼ 60% of the world's green gram area but contributes only 47% of its production. Major constraint in storage is the pulse beetle Callosobruchus maculatus Fab. (Coleoptera: Bruchidae), which may cause damage upto 100%. It is widespread throughout tropics and sub-tropics with wide host range and also has different strains. Fumigation with methyl bromide (MB) has been the most widely applied management practice for its control. However, the ozone depleting effect of MB has led to restrictions in its use. Therefore, there is a need for an alternative strategy for controlling the pests. Irradiation, an approved technology by International Plant Protection Convention, seems to be a viable non-chemical, residue-free strategy. Therefore, present studies were conducted to see the efficacy of electron beam (EB) irradiation as quarantine disinfestation treatment against green gram seeds infested with different stages of the target pest, C. maculatus

  8. In vivo and in situ investigative results of repair and recovery processes during ontogenesis, after X-ray irradiation of bean seeds

    International Nuclear Information System (INIS)

    Koeroesi, F.; Jezierska-Szabo, E.; Szoeke, P.

    1999-01-01

    When exposing plant organs to high doses of ionizing radiation, disorders in growth and development or even lethality may occur. With the aim of modelling this phenomenon, seeds of bean, variety Echo Elit, were irradiated with a 300 Gy dose of X-ray irradiation (120 kV; 4.5 mA). In order to characterize repair and recovery at plant level, the biological production and photosynthetic pigments of the plants during ontogenesis in vivo and changes in their electric capacitance were continuously monitored and recorded via a computer-aided and -controlled data acquisition system. According to the data obtained, the repair in the biosynthesis of photosynthetic pigments will have been completed by the beginning of flowering. It may be assumed from the capacitance measurements made at 11 a.m. According to this postulation the process of repairing X-ray injuries might be finished by the beginning of pod formation without the plants actually recovering. (author)

  9. Enhancing recovery of ammonia from swine manure anaerobic digester effluent using gas-permeable membrane technology.

    Science.gov (United States)

    Dube, P J; Vanotti, M B; Szogi, A A; García-González, M C

    2016-03-01

    Gas-permeable membrane technology is useful to recover ammonia from manure. In this study, the technology was enhanced using aeration instead of alkali chemicals to increase pH and the ammonium (NH4(+)) recovery rate. Digested effluents from covered anaerobic swine lagoons containing 1465-2097 mg NH4(+)-N L(-1) were treated using submerged membranes (0.13 cm(2) cm(-3)), low-rate aeration (120 mL air L-manure(-1) min(-1)) and nitrification inhibitor (22 mg L(-1)) to prevent nitrification. The experiment included a control without aeration. The pH of the manure with aeration rose from 8.6 to 9.2 while the manure without aeration decreased from 8.6 to 8.1. With aeration, 97-99% of the NH4(+) was removed in about 5 days of operation with 96-98% recovery efficiency. In contrast, without aeration it took 25 days to treat the NH4(+). Therefore, the recovery of NH4(+) was five times faster with the low-rate aeration treatment. This enhancement could reduce costs by 70%. Published by Elsevier Ltd.

  10. The design and simulation of new downhole vibration device about acoustic oil recovery technology

    Directory of Open Access Journals (Sweden)

    Yongjun Hou

    2015-09-01

    Full Text Available More and more oilfields are using acoustic technology to enhance oil recovery. In order to know the mechanism of acoustic oil recovery technology, the sound radiator of a new downhole vibration device is modeled and analyzed. Based on the theoretical background, this paper firstly analyzes the acoustic mechanism for the oil reservoir and then makes a acoustic response analysis on the sound radiator model for frequency and time-domain investigation by using professional acoustic simulation software–LMS Virtual.lab Acoustics, finally calculates the acoustic transmission loss in the downhole oil reservoir. The research reveals that firstly, acoustic waves have influences on the oil & water fluidity in the oil reservoir, the oil pressure gradient and the interfacial tension of capillary; secondly, the acoustic radiation power and sound pressure of field point attain a peak on the natural frequency of the sound radiator; thirdly, with the acoustic impact, the sound pressure of oil reservoir would fluctuate so as to improve the oil recovery ratio; the last but not the least one is both the sound pressure of oil reservoir point and the transmission loss of rock have a positive correlation with the vibration frequency. Therefore, it is of great importance for the research of vibration frequency and structure optimization of sound radiator.

  11. Producing the target seed: Seed collection, treatment, and storage

    Science.gov (United States)

    Robert P. Karrfalt

    2011-01-01

    The role of high quality seeds in producing target seedlings is reviewed. Basic seed handling and upgrading techniques are summarized. Current advances in seed science and technology as well as those on the horizon are discussed.

  12. Information Technology Management: Hurricane Katrina Disaster Recovery Efforts Related to Army Information Technology Resources

    National Research Council Canada - National Science Library

    Jolliffe, Richard B; Burton, Bruce A; Wicecarver, Jacqueline L; Kince, Therese M; Ryan, Susan R; Price, Matthew J; Cleveland, Karma J; N. Pugh, Jacqueline; Milner, Jillisa H; Johnson, Meredith H

    2006-01-01

    ... of Louisiana, Mississippi, Alabama, and Florida with Category 3 winds and torrential rain. This audit report is the first in a planned series of audits on the effects of Hurricane Katrina on DoD information technology resources...

  13. Use of Drying Technologies for Resource Recovery from Solid Wastes and Brines

    Science.gov (United States)

    Wignarajah, Kanapathipillai; Alba, Ric; Fisher, John W.; Hogan, John A.; Polonsky, Alex

    2010-01-01

    Long term storage of unprocessed biological wastes and human wastes can present major health issues and a loss of potential resources. Space vehicles and planetary habitats are typically resource-scarce or resource-limited environments for long-term human habitation. To-date, most of the resources will need to be supplied from Earth, but this may not be possible for long duration human exploration. Based on present knowledge, there is only very limited in-situ resources on planetary habitats. Hence, the opportunity to "live off the land" in a planetary habitat is limited. However, if we assume that wastes generated by human explorers are viewed as resources, there is great potential to utilize and recycle them, thereby reducing the requirements for supply Earth and enabling the "live off the land" exploration scenario. Technologies used for the recovery of resources from wastes should be reliable, safe, easy to operate, fail-proof, modular, automated and preferably multifunctional in being capable of handling mixed solid and liquid wastes. For a lunar habitat, energy does not appear to be the major driving factor amongst the technologies studied. Instead, reliability appears to be more important[1] . This paper reports studies to date on drying technologies to remove water from solid wastes and brines. Experimental performance data obtained for recovery water from wastes and brine are presented. Simplicity of operation of hardware and energy efficiency are discussed. Some improvements and modifications to hardware were performed. Hopefully, this information will assist in future efforts in the "downselection" of technologies for recovery of water and resources from solid wastes and brines.

  14. Overcoming seed dormancy using gibberellic acid and the performance of young Syagrus coronata plants under severe drought stress and recovery.

    Science.gov (United States)

    Medeiros, Maria J; Oliveira, Marciel T; Willadino, Lilia; Santos, Mauro G

    2015-12-01

    Syagrus coronata, a native palm tree of the Brazilian semi-arid region, exhibits low germinability due to seed dormancy. This study aimed to increase the germinability, analyze the morphology of seedlings and evaluate the performance of young plants under a water deficit. We used immersion in water and gibberellic acid (GA3) as pyrene (seed with endocarp) pre-germination treatments, and we analyzed the water relations, gas exchange, chlorophyll fluorescence and carbon balance components of young plants under drought and rehydration conditions. The immersion of pyrenes in 0.3 mM GA3 solution for 24 h enhanced the emergence and survival of plants and the emergence rate index. The germination of S. coronata is of the remote tubular type, and seedling growth originates with the protrusion of the cotyledon petiole, followed by the subsequent emergence of the root, leaf sheaths and eophyll. The plants exhibited high tolerance to no irrigation for 37 days, which was attributed to strong stomatal control, a higher proportion of energy dissipation and a higher content of photoprotective pigments. Despite the reduced stomatal conductance (regardless of soil water availability), the photosynthetic rate remained high throughout the day, which indicated a low correlation between these two parameters. After rehydration, we observed that both the leaf water content and photosynthesis recovered, which showed an absence of irreversible damage of the photosynthetic apparatus. The use of 0.3 mM GA3 is recommended as a treatment for overcoming seed dormancy in this species. Young S. coronata plants showed high tolerance during drought and resilience after rehydration by adjusting their leaf metabolism, which could explain the endemism of this species in semi-arid regions and its ability to remain evergreen throughout the year. Furthermore, with high photosynthetic rate in the most favorable time of day, even under drought stress. Copyright © 2015 Elsevier Masson SAS. All rights

  15. Synthetic Vision System Commercial Aircraft Flight Deck Display Technologies for Unusual Attitude Recovery

    Science.gov (United States)

    Prinzel, Lawrence J., III; Ellis, Kyle E.; Arthur, Jarvis J.; Nicholas, Stephanie N.; Kiggins, Daniel

    2017-01-01

    A Commercial Aviation Safety Team (CAST) study of 18 worldwide loss-of-control accidents and incidents determined that the lack of external visual references was associated with a flight crew's loss of attitude awareness or energy state awareness in 17 of these events. Therefore, CAST recommended development and implementation of virtual day-Visual Meteorological Condition (VMC) display systems, such as synthetic vision systems, which can promote flight crew attitude awareness similar to a day-VMC environment. This paper describes the results of a high-fidelity, large transport aircraft simulation experiment that evaluated virtual day-VMC displays and a "background attitude indicator" concept as an aid to pilots in recovery from unusual attitudes. Twelve commercial airline pilots performed multiple unusual attitude recoveries and both quantitative and qualitative dependent measures were collected. Experimental results and future research directions under this CAST initiative and the NASA "Technologies for Airplane State Awareness" research project are described.

  16. Evaluation of phytotoxicity effect of olive mill wastewater treated by different technologies on seed germination of barley (Hordeum vulgare L.).

    Science.gov (United States)

    Rusan, Munir J M; Albalasmeh, Ammar A; Zuraiqi, Said; Bashabsheh, Mohammad

    2015-06-01

    Olive-mill wastewater (OMW) is a by-product effluent of olive oil extraction process that is produced in large amount in the Mediterranean region. OMW is believed to induce phytotoxic effect on organisms including seed germination and plant growth. The objective of this study was to evaluate the impact of untreated and treated OMW with different techniques on seed germination of barley (Hordeum vulgare L.). The following treatments were investigated: (1) tap water (control); (2) OMW treated by aerobic biological technology in a Jacto Reactor (JR); (3) OMW treated by solar fenton oxidation (SFO); (4) OMW treated by microfiltration followed by nanofiltration (MF+NF); (5) OMW treated by microfiltration followed by reverse osmosis (MF+RO) process; (6) diluted OMW with tap water (25 % OMW); (7) diluted OMW with tap water (50 % OMW); (8) diluted OMW with tap water (75 % OMW); and (9) untreated OMW (100 % OMW). A germination test was conducted in an incubator at temperature of 23 (∘)C. In each petri dish, a filter paper was mounted and ten seeds of barley were placed on the filter paper. Five milliliter of water were added to each petri dish. The seed germination was determined by counting the number of germinated seeds to calculate the percentage of germination (G %). Germination rate index (GRI), seed vigor index (SVI), and phytotoxicity index (PI) were also calculated. Then, the dry weights and lengths of the shoots and the roots of the germinated seeds were measured. The results show that 100, 75, and 50 %OMW were very phytotoxic and completely prohibited seed germination. However, phytotoxicity decreased significantly following treatments of OMW with all techniques investigated and by the 25 % OMW dilution, as results of removing the phenols and other phytotoxic organic compounds from the OMW or by diluting it. This was evidenced by relative enhancement of the dry weights and lengths of shoot and root as well as the G %, GRI, SVG, and PI. It was concluded that if

  17. [Optimization study on extraction technology of the seed of Ziziphus jujuba var. spinosa by orthogonal design with multi-targets].

    Science.gov (United States)

    Wang, Xiao-liang; Zhang, Yu-jie; Chen, Ming-xia; Wang, Ze-feng

    2005-05-01

    To optimize extraction technology of the seed of Ziziphus jujuba var. spinosa with the targets of the total saponin, total jujuboside A and B and total flavonoids. In the method of one-way and orthogonal tests, ethanol concentration, amount of ethanol, extraction time and extraction times were the factors in orthogonal test, and each factor with three levels. Ethanol concentration and extraction times had significant effect on all the targets, other factors should be selected in accordance with production practice. The best extraction technology is to extract for three times with 8 fold ethanol solution (60%), and 1.5 h each time.

  18. Influence of levels of nitrogen and management on seed cotton yield and 15N recovery by cotton

    International Nuclear Information System (INIS)

    Arulmozhiselvan, K.; Govindaswamy, M.

    1999-01-01

    Cotton var.MCU.5 showed varied response to N levels under different management practices. Higher yields were associated at 60-80 kg N ha -1 under combined application of urea, FYM and azospirillum. Whereas urea alone registered higher yield at 100-120 kg N ha -1 , high 15 N recovery (35.84%) was found to be associated with urea + FYM combination. (author)

  19. Experimental study on an innovative enthalpy recovery technology based on indirect flash evaporative cooling

    DEFF Research Database (Denmark)

    Nie, Jinzhe; Yuan, Shu; Fang, Lei

    2018-01-01

    recovery unit. The principle of the technology is to over saturate indoor exhaust air by ultrasonic atomizing humidification. The evaporation of ultrafine mists cools down indoor exhaust air to its wet-bulb temperature and makes not only sensible heat transfer but also moisture condensed in outdoor supply...... were measured to investigate and analyze its energy recover efficiencies. The results showed that in hot and humid climate, up to 71% of total heat recover efficiency could be achieved by the prototype unit, and more than 50% of the enthalpy recovered was contributed by moisture condensation...

  20. Technology for industrial waste heat recovery by organic Rankine cycle systems

    Science.gov (United States)

    Cain, W. G.; Drake, R. L.; Prisco, C. J.

    1984-10-01

    The recovery of industrial waste heat and the conversion thereof to useful electric power by use of Rankine cycle systems is studied. Four different aspects of ORC technology were studied: possible destructive chemical reaction between an aluminum turbine wheel and R-113 working fluid under wheel-to-rotor rub conditions; possible chemical reaction between stainless steel or carbon steel and any of five different ORC working fluids under rotor-stator rub conditions; effects on electric generator properties of extended exposure to an environment of saturated R-113 vapor/fluid; and operational proof tests under laboratory conditions of two 1070 kW, ORC, R-113 hermetic turbogenerator power module systems.

  1. Characterization of oil and gas reservoirs and recovery technology deployment on Texas State Lands

    Energy Technology Data Exchange (ETDEWEB)

    Tyler, R.; Major, R.P.; Holtz, M.H. [Univ. of Texas, Austin, TX (United States)] [and others

    1997-08-01

    Texas State Lands oil and gas resources are estimated at 1.6 BSTB of remaining mobile oil, 2.1 BSTB, or residual oil, and nearly 10 Tcf of remaining gas. An integrated, detailed geologic and engineering characterization of Texas State Lands has created quantitative descriptions of the oil and gas reservoirs, resulting in delineation of untapped, bypassed compartments and zones of remaining oil and gas. On Texas State Lands, the knowledge gained from such interpretative, quantitative reservoir descriptions has been the basis for designing optimized recovery strategies, including well deepening, recompletions, workovers, targeted infill drilling, injection profile modification, and waterflood optimization. The State of Texas Advanced Resource Recovery program is currently evaluating oil and gas fields along the Gulf Coast (South Copano Bay and Umbrella Point fields) and in the Permian Basin (Keystone East, Ozona, Geraldine Ford and Ford West fields). The program is grounded in advanced reservoir characterization techniques that define the residence of unrecovered oil and gas remaining in select State Land reservoirs. Integral to the program is collaboration with operators in order to deploy advanced reservoir exploitation and management plans. These plans are made on the basis of a thorough understanding of internal reservoir architecture and its controls on remaining oil and gas distribution. Continued accurate, detailed Texas State Lands reservoir description and characterization will ensure deployment of the most current and economically viable recovery technologies and strategies available.

  2. Recovery of Drug Delivery Nanoparticles from Human Plasma Using an Electrokinetic Platform Technology.

    Science.gov (United States)

    Ibsen, Stuart; Sonnenberg, Avery; Schutt, Carolyn; Mukthavaram, Rajesh; Yeh, Yasan; Ortac, Inanc; Manouchehri, Sareh; Kesari, Santosh; Esener, Sadik; Heller, Michael J

    2015-10-01

    The effect of complex biological fluids on the surface and structure of nanoparticles is a rapidly expanding field of study. One of the challenges holding back this research is the difficulty of recovering therapeutic nanoparticles from biological samples due to their small size, low density, and stealth surface coatings. Here, the first demonstration of the recovery and analysis of drug delivery nanoparticles from undiluted human plasma samples through the use of a new electrokinetic platform technology is presented. The particles are recovered from plasma through a dielectrophoresis separation force that is created by innate differences in the dielectric properties between the unaltered nanoparticles and the surrounding plasma. It is shown that this can be applied to a wide range of drug delivery nanoparticles of different morphologies and materials, including low-density nanoliposomes. These recovered particles can then be analyzed using different methods including scanning electron microscopy to monitor surface and structural changes that result from plasma exposure. This new recovery technique can be broadly applied to the recovery of nanoparticles from high conductance fluids in a wide range of applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico

    International Nuclear Information System (INIS)

    Murphy, Mark B.

    1999-01-01

    The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry

  4. Study of the Relationships between Technological and Productivity Elements that Determine Seed Yield in Birdsfoot Trefoil (Lotus Corniculatus L.

    Directory of Open Access Journals (Sweden)

    Neculai Dragomir

    2011-10-01

    Full Text Available During an experience performed to elaborate an efficient technology of seed production in birdsfoot trefoil, we observed a series of correlations between yield and the elements of productivity, which exert a strong influence on seed quantity. In this viewpoint, the matrix of correlations between the elements of fructification, in the case of the influence exerted by birdsfoot trefoil cultivation method, made evident the following correlation coefficients: r = 0.81**, between the number of pods/plant; r = 0.82**, between the number of generative sprigs and the number of pods/inflorescence; r = 0.98**, between the number of generative sprigs and the number of pods/plant.

  5. Energy and water conservation at lignite-fired power plants using drying and water recovery technologies

    International Nuclear Information System (INIS)

    Liu, Ming; Qin, Yuanzhi; Yan, Hui; Han, Xiaoqu; Chong, Daotong

    2015-01-01

    Highlights: • Pre-drying and water recovery technologies were used to conserve energy and water. • The energy and water conservation potential were analyzed with reference cases. • The air-cooling unit produces water when the water content of lignite is high enough. • Influences of main parameters on energy and water conservation were analyzed. - Abstract: Lignite is considered as a competitive energy raw material with high security of supply viewed from a global angle. However, lignite-fired power plants have many shortcomings, including high investment, low energy efficiency and high water use. To address these issues, the drying and water recovery technologies are integrated within lignite-fired power plants. Both air-cooling and wet-cooling units with three kinds of lignite as feeding fuel were analyzed quantitatively. Results showed that energy conservation and water conservation are obtained simultaneously. The power plant firing high moisture lignite becomes more environmental friendly with higher power generation efficiency and a lower water makeup rate than the one firing low moisture lignite. And further calculation revealed that the air-cooling unit needs no makeup water and even produces some water as it generates power, when the water carrying coefficient is higher than 40 g/MJ.

  6. Dynamic Modeling of Process Technologies for Closed-Loop Water Recovery Systems

    Science.gov (United States)

    Allada, Rama Kumar; Lange, Kevin E.; Anderson, Molly S.

    2012-01-01

    Detailed chemical process simulations are a useful tool in designing and optimizing complex systems and architectures for human life support. Dynamic and steady-state models of these systems help contrast the interactions of various operating parameters and hardware designs, which become extremely useful in trade-study analyses. NASA s Exploration Life Support technology development project recently made use of such models to compliment a series of tests on different waste water distillation systems. This paper presents dynamic simulations of chemical process for primary processor technologies including: the Cascade Distillation System (CDS), the Vapor Compression Distillation (VCD) system, the Wiped-Film Rotating Disk (WFRD), and post-distillation water polishing processes such as the Volatiles Removal Assembly (VRA). These dynamic models were developed using the Aspen Custom Modeler (Registered TradeMark) and Aspen Plus(Registered TradeMark) process simulation tools. The results expand upon previous work for water recovery technology models and emphasize dynamic process modeling and results. The paper discusses system design, modeling details, and model results for each technology and presents some comparisons between the model results and available test data. Following these initial comparisons, some general conclusions and forward work are discussed.

  7. Dynamic Modeling of Process Technologies for Closed-Loop Water Recovery Systems

    Science.gov (United States)

    Allada, Rama Kumar; Lange, Kevin; Anderson, Molly

    2011-01-01

    Detailed chemical process simulations are a useful tool in designing and optimizing complex systems and architectures for human life support. Dynamic and steady-state models of these systems help contrast the interactions of various operating parameters and hardware designs, which become extremely useful in trade-study analyses. NASA s Exploration Life Support technology development project recently made use of such models to compliment a series of tests on different waste water distillation systems. This paper presents dynamic simulations of chemical process for primary processor technologies including: the Cascade Distillation System (CDS), the Vapor Compression Distillation (VCD) system, the Wiped-Film Rotating Disk (WFRD), and post-distillation water polishing processes such as the Volatiles Removal Assembly (VRA) that were developed using the Aspen Custom Modeler and Aspen Plus process simulation tools. The results expand upon previous work for water recovery technology models and emphasize dynamic process modeling and results. The paper discusses system design, modeling details, and model results for each technology and presents some comparisons between the model results and available test data. Following these initial comparisons, some general conclusions and forward work are discussed.

  8. Integrated Atmosphere Resource Recovery and Environmental Monitoring Technology Demonstration for Deep Space Exploration

    Science.gov (United States)

    Perry, Jay L.; Abney, Morgan B.; Knox, James C.; Parrish, Keith J.; Roman, Monserrate C.; Jan, Darrell L.

    2012-01-01

    Exploring the frontiers of deep space continues to be defined by the technological challenges presented by safely transporting a crew to and from destinations of scientific interest. Living and working on that frontier requires highly reliable and efficient life support systems that employ robust, proven process technologies. The International Space Station (ISS), including its environmental control and life support (ECLS) system, is the platform from which humanity's deep space exploration missions begin. The ISS ECLS system Atmosphere Revitalization (AR) subsystem and environmental monitoring (EM) technical architecture aboard the ISS is evaluated as the starting basis for a developmental effort being conducted by the National Aeronautics and Space Administration (NASA) via the Advanced Exploration Systems (AES) Atmosphere Resource Recovery and Environmental Monitoring (ARREM) Project.. An evolutionary approach is employed by the ARREM project to address the strengths and weaknesses of the ISS AR subsystem and EM equipment, core technologies, and operational approaches to reduce developmental risk, improve functional reliability, and lower lifecycle costs of an ISS-derived subsystem architecture suitable for use for crewed deep space exploration missions. The most promising technical approaches to an ISS-derived subsystem design architecture that incorporates promising core process technology upgrades will be matured through a series of integrated tests and architectural trade studies encompassing expected exploration mission requirements and constraints.

  9. Nickel toxicity on seed germination and growth in radish (Raphanus sativus) and its recovery using copper and boron.

    Science.gov (United States)

    Yadav, Shiv Shankar; Shukla, Rajni; Sharma, Y K

    2009-05-01

    Effect of various concentrations of nickel (100, 200, 500 and 1000 microM) and recovery treatments of boron (50 and 100 microM) and copper (15 and 75 microM) each with 200 microM and 500 microM of nickel on germination, growth, biomass, chlorophyll, carotenoids, pheophytin, amylase, protein, sugar as well as activity of catalase and peroxidase were studied in radish (Raphanus sativus cv. Early menu) seedlings. Nickel treatments caused a considerable reduction in germination percentage, growth and biomass. The different pigments were also decreased with nickel treatments. However boron addition with nickel recovered the negative effect on pigment contents. Among biochemical estimations, amylase activity and total proteins were found to be reduced in nickel treatments. Peroxidase and catalase activity were induced other than higher total sugar with nickel treatments. The combination of nickel with boron resulted into increased protein contents. This combination also reduced the catalase and peroxidase activity. The influence of nickel with copper failed to produce significant recovery except 200 microM nickel in combination with 15 microM copper with regard to catalase and peroxidase activity. The effect of nickel on hydrolyzing enzyme amylase was observed to be inhibitory resulting into poor germination followed by poor seedlings growth. The stress protecting enzymes peroxidase and catalase seem to be induced under the influence of nickel, and providing protection to the seedlings. The application of boron with nickel showed improved germination and growth. The level of catalase and peroxidase were found to be significantly reduced showing normal growth and biomass of seedlings.

  10. Direct Seeding of Pinus halepensis Mill. for Recovery of Burned Semi-Arid Forests: Implications for Post-Fire Management for Improving Natural Regeneration

    Directory of Open Access Journals (Sweden)

    Francisco Antonio García-Morote

    2017-09-01

    Full Text Available Background: In order to maximize the resiliency of Pinus halepensis in semiarid forests, we analyzed direct seeding methods to recover burned stands by simulating post-fire soil treatments. Methods: Seeding was done by installing spot seeding (100 seeds in a 50 × 50 cm plot, using five methods: (1 covering seeding with wood chips; (2 seeding in branch piles; (3 seeding along trunks on contour-felled logs (on the shaded side; (4 seeding next to grass (Stipa tenacissima; and (5 seeding on the bare ground (control. The experiment was replicated according to aspect (northern and southern aspects. The response variables were seed germination (%, and seedling survival after the summer (measured in autumn 2015 and 2016. Direct seeding was carried out in 32 plots with 160-spot seeding, and data were analyzed using general linear models, including nested random effects. Results: Wood chips as a surface-covering material represented the only treatment that significantly improved seed germination and seedling survival (by 12.4%, and 17.4 seedlings m−2 in year 2, respectively compared with the control in the two topographic aspects. Conclusions: Covering seeding with wood chips, and thus chipping wood within the burned stand, form a recommended post-fire treatment to improve regeneration in Pinus halepensis semiarid stands.

  11. Safe Disposal of Medical and Plastic Waste and Energy Recovery Possibilities using Plasma Pyrolysis Technology

    International Nuclear Information System (INIS)

    Nema, S.K.; Mukherjee, S.

    2010-01-01

    Plasma pyrolysis and plasma gasification are emerging technologies that can provide complete solution to organic solid waste disposal. In these technologies plasma torch is used as a workhorse to convert electrical energy into heat energy. These technologies dispose the organic waste in an environment friendly manner. Thermal plasma provides extremely high temperature in oxygen free or controlled air environment which is required for pyrolysis or gasification reactions. Plasma based medical waste treatment is an extremely complex technology since it has to contend with extreme temperatures and corrosion-prone environment, complex pyro-chemistry resulting in toxic and dangerous products, if not controlled. In addition, one has to take care of complete combustion of pyrolyzed gases followed by efficient scrubbing to meet the emission standards set by US EPA and Central Pollution Control Board, India. In medical waste, high volume and low packing density waste with nonstandard composition consisting of a variety of plastics, organic material and liquids used to be present. The present paper describes the work carried out at Institute for Plasma Research, India, on plasma pyrolysis of (i) medical waste disposal and the results of emission measurement done at various locations in the system and (ii) energy recovery from cotton and plastic waste. The process and system development has been done in multiple steps. Different plasma pyrolysis models were made and each subsequent model was improved upon to meet stringent emission norms and to make the system energy efficient and user friendly. FCIPT, has successfully demonstrated up to 50 kg/ hr plasma pyrolysis systems and have installed plasma pyrolysis facilities at various locations in India . Plastic Waste disposal along with energy recovery in 15 kg/ hr model has also been developed and demonstrated at FCIPT. In future, this technology has great potential to dispose safely different waste streams such as biomass

  12. Technological problems concerning the complex recovery of uranium and accompanying elements from sedimentary ores

    International Nuclear Information System (INIS)

    Pinkas, K.

    1977-01-01

    In Poland a deposit of carbonaceous clay shales has been discovered, it contains 1600ppmV, 100ppmu and 180ppm Mo. On the basis of the experiments carried out on the laboratory scale, it has been shown, that the leaching of the shales by means of the diluted solutions of sulphuric acid or sodium carbonates does not assure the high recovery of vanadium and uranium because of their occurrence in shales in refractory forms. The treatment of the shales by using of the concentrated sulphuric acid /250g/1kg shales/, according to the ''acid cure'' method and baking them in the temperature of 250 0 C, has permitted the recovery of 70% vanadium and 65% uranium. From the acid leaching residue, or from the shales directly, 70% of molybdenum can be gained, employing an alkaline pretreatment. The solutions after acid leaching contain great quantities of Al and Fe, which before the separation of U and V by solvent extraction must be to some extent removed. The performed tests have confirmed this, and by using a crystallization process, as by-products the aluminum- and iron sulphates have been obtained. From the solutions, after crystallization by amine solvent extraction, the uranium and vanadium concentrates have been recovered. The currently recognized technological method has been estimated as difficult and expensive. In order to utilize, more economically, this low grade and very refractory for pretreatment shales it is necessary to continue intensive technological research on the improvement of the recognized method and explore new ways, which could contribute to successful solution of this complicated technological problem

  13. Integrated economic and experimental framework for screening of primary recovery technologies for high cell density CHO cultures.

    Science.gov (United States)

    Popova, Daria; Stonier, Adam; Pain, David; Titchener-Hooker, Nigel J; Farid, Suzanne S

    2016-07-01

    Increases in mammalian cell culture titres and densities have placed significant demands on primary recovery operation performance. This article presents a methodology which aims to screen rapidly and evaluate primary recovery technologies for their scope for technically feasible and cost-effective operation in the context of high cell density mammalian cell cultures. It was applied to assess the performance of current (centrifugation and depth filtration options) and alternative (tangential flow filtration (TFF)) primary recovery strategies. Cell culture test materials (CCTM) were generated to simulate the most demanding cell culture conditions selected as a screening challenge for the technologies. The performance of these technology options was assessed using lab scale and ultra scale-down (USD) mimics requiring 25-110mL volumes for centrifugation and depth filtration and TFF screening experiments respectively. A centrifugation and depth filtration combination as well as both of the alternative technologies met the performance selection criteria. A detailed process economics evaluation was carried out at three scales of manufacturing (2,000L, 10,000L, 20,000L), where alternative primary recovery options were shown to potentially provide a more cost-effective primary recovery process in the future. This assessment process and the study results can aid technology selection to identify the most effective option for a specific scenario. © 2016 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Ethical issues in the use of the terminator seed technology | Yusuf ...

    African Journals Online (AJOL)

    Biodiversity and food security especially in developing countries are under threat by a newly patented technique for preventing plants from producing viable seeds. The method dubbed “the suicide seeds” by critics was developed in a joint venture between the United State Department of Agriculture (USDA) and Mississippi ...

  15. Biodiesel Production from Kapok (Ceiba pentandra Seed Oil using Naturally Alkaline Catalyst as an Effort of Green Energy and Technology

    Directory of Open Access Journals (Sweden)

    N.A. Handayani

    2013-10-01

    Full Text Available Nowadays, energy that used to serve all the needs of community, mainly generated from fossil (conventional energy. Terrace in energy consumption is not balanced with adequate fossil fuel reserves and will be totally depleted in the near future. Indonesian Government through a Presidential Decree No. 5 year 2006 mandates an increased capacity in renewable energy production from 5 percent to 15 percent in 2025. C. pentandra seed oil has feasibility as a sustainable biodiesel feedstock in Indonesia. The aim of this paper was to investigate biodiesel production from ceiba petandra seed oil using naturally potassium hydroxide catalyst. Research designs are based on factorial design with 2 levels and 3 independent variables (temperature, reaction time and molar ratio of methanol to oil. According to data calculation, the most influential single variable is molar ratio of methanol to oil. Characterization of biodiesel products meet all the qualifications standardized by SNI 04-7182-2006. Keywords: biodiesel, kapok seed oil, c. pentandra, green technology

  16. The Impact of Sowing Technology on Ponderal Features of Winter Wheat Seeds in Timişoara

    OpenAIRE

    Marcela Dragoş; Paul Pîrşan

    2011-01-01

    Wheat is a grass, originally from the Fertile Crescent region of the Near East, but now cultivated worldwide. The paper presents the results obtained in the last two years of experience, about the influence of sowing technology on the ponderal features of the winter wheat seeds. The experimental parcels were laid down in a randomized complete block design with three replications in the pedo-climatic conditions of Timişoara. The purpose of the research is to determine the influence of some sow...

  17. Application of Reservoir Characterization and Advanced Technology to Improve Recovery and Economics in a Lower Quality Shallow Shelf Carbonate Reservoir

    International Nuclear Information System (INIS)

    Hickman, Scott T.; Justice James L.; Taylor, Archie R.

    1999-01-01

    The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs

  18. Development of a method and technology for obtaining vegetable oil from safflower seeds

    Directory of Open Access Journals (Sweden)

    S. T. Antipov

    2017-01-01

    Full Text Available The article is designed and engineered compact line for processing grain safflower, which used the equipment of the increased efficiency, implementing progressive processes with application of modern physical methods of treatment. This line includes bucket Elevator (Noria, a receiving hopper , the air-sieve separator , intermediate tank, Trier (osgoodby and qualitronic, stone-dividing machine and separator for separation of Caucalis lappula, screw conveyor, intermediate bunker, peeler, oil press machines, the device for the deposition of oil (the sump, pump, frame filter. The process of collapse in the grinding pilot plant, in which the destruction of the epithelial layer of the shell is due to the fact that the compression stress in the impact zone exceeds the limit of elastic deformation of the shell of the grain. Conducted sieve analysis, which was studied granulometric composition fed to the compression of the particles of safflower seed , in this case to characterize the granulometric composition of the raw material, consisting of particles of irregular shape, used the concept of equivalent diameter. As a result of the experiments was the dependence of the equivalent particle diameter from the diameter of the sieve. Since the degree of extraction of safflower seed are hugely influenced by the moisture source of the product, was therefore carried out experimental studies of compaction with different moisture content of the seeds , and with the addition of Luz-Ki. From the analysis of graphic dependences were established a range of optimum moisture safflower seed 8,5--10%, providing the lowest residual oil content and hence the greatest yield of oil. Also managed to significantly increase the efficiency of extraction of oil by adding safflower seed pre-milled husks, which allowed to obtain cake with a residual oil content of 12% when you multiply pre-pressing and to 6% at the final extraction

  19. WE-A-17A-09: Exploiting Electromagnetic Technologies for Real-Time Seed Drop Position Validation in Permanent Implant Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Racine, E [Departement de Radio-Oncologie et Centre de Recherche du CHU de Quebec, Quebec, QC (Canada); Hautvast, G [Biomedical Systems, Philips Group Innovation, Eindhoven, North Brabant (Netherlands); Binnekamp, D [Integrated Clinical Solutions and Marketing, Philips Healthcare, Best, DA (Netherlands); Beaulieu, L [Centre Hospitalier University de Quebec, Quebec, QC (Canada)

    2014-06-15

    Purpose: To report on preliminary results validating the performance of a specially designed LDR brachytherapy needle prototype possessing both electromagnetic (EM) tracking and seed drop detection abilities. Methods: An EM hollow needle prototype has been designed and constructed in collaboration with research partner Philips Healthcare. The needle possesses conventional 3D tracking capabilities, along with a novel seed drop detection mechanism exploiting local changes of electromagnetic properties generated by the passage of seeds in the needle's embedded sensor coils. These two capabilities are exploited by proprietary engineering and signal processing techniques to generate seed drop position estimates in real-time treatment delivery. The electromagnetic tracking system (EMTS) used for the experiment is the NDI Aurora Planar Field Generator. The experiment consisted of dropping a total of 35 seeds in a prismatic agarose phantom, and comparing the 3D seed drop positions of the EMTS to those obtained by an image analysis of subsequent micro-CT scans. Drop position error computations and statistical analysis were performed after a 3D registration of the two seed distributions. Results: Of the 35 seeds dropped in the phantom, 32 were properly detected by the needle prototype. Absolute drop position errors among the detected seeds ranged from 0.5 to 4.8 mm with mean and standard deviation values of 1.6 and 0.9 mm, respectively. Error measurements also include undesirable and uncontrollable effects such as seed motion upon deposition. The true accuracy performance of the needle prototype is therefore underestimated. Conclusion: This preliminary study demonstrates the potential benefits of EM technologies in detecting the passage of seeds in a hollow needle as a means of generating drop position estimates in real-time treatment delivery. Such tools could therefore represent a potentially interesting addition to existing brachytherapy protocols for rapid dosimetry

  20. WE-A-17A-09: Exploiting Electromagnetic Technologies for Real-Time Seed Drop Position Validation in Permanent Implant Brachytherapy

    International Nuclear Information System (INIS)

    Racine, E; Hautvast, G; Binnekamp, D; Beaulieu, L

    2014-01-01

    Purpose: To report on preliminary results validating the performance of a specially designed LDR brachytherapy needle prototype possessing both electromagnetic (EM) tracking and seed drop detection abilities. Methods: An EM hollow needle prototype has been designed and constructed in collaboration with research partner Philips Healthcare. The needle possesses conventional 3D tracking capabilities, along with a novel seed drop detection mechanism exploiting local changes of electromagnetic properties generated by the passage of seeds in the needle's embedded sensor coils. These two capabilities are exploited by proprietary engineering and signal processing techniques to generate seed drop position estimates in real-time treatment delivery. The electromagnetic tracking system (EMTS) used for the experiment is the NDI Aurora Planar Field Generator. The experiment consisted of dropping a total of 35 seeds in a prismatic agarose phantom, and comparing the 3D seed drop positions of the EMTS to those obtained by an image analysis of subsequent micro-CT scans. Drop position error computations and statistical analysis were performed after a 3D registration of the two seed distributions. Results: Of the 35 seeds dropped in the phantom, 32 were properly detected by the needle prototype. Absolute drop position errors among the detected seeds ranged from 0.5 to 4.8 mm with mean and standard deviation values of 1.6 and 0.9 mm, respectively. Error measurements also include undesirable and uncontrollable effects such as seed motion upon deposition. The true accuracy performance of the needle prototype is therefore underestimated. Conclusion: This preliminary study demonstrates the potential benefits of EM technologies in detecting the passage of seeds in a hollow needle as a means of generating drop position estimates in real-time treatment delivery. Such tools could therefore represent a potentially interesting addition to existing brachytherapy protocols for rapid dosimetry

  1. Recovery and treatment of uranium from uranium-containing solution by liquid membrane emulsion technology

    International Nuclear Information System (INIS)

    Xia Liangshu; Zhou Yantong; Xiao Yiqun; Peng Anguo; Xiao Jingshui; Chen Wei

    2014-01-01

    The recovery and treatment of uranium from uranium-containing solution using liquid membrane emulsion (LME) technology were studied in this paper, which contained the best volume ratio of membrane materials, stirring speed during emulsion process, the conditions of extracting, such as temperature, pH, initial concentration of uranium. Moreover, the mechanism for extracting uranium was also discussed. The best experimental conditions of emulsifying were acquired. The volume fractions of P 204 and liquid paraffin are 0.1 and 0.05, the volume ratios of Span80 and sulphonated kerosene to P 204 are 0.06 and 0.79 respectively, stirring speed is controlled in 2 000 r/min, and the concentration of inner phase is 4 mol/L. The recovery rate of uranium is up to 99% through the LME extracted uranium for 0.5 h at pH 2.5 and room temperature when the initial concentration is less than 400 mg/L and the volume ratio is 5 between the uranium-containing waste water and LME. The calculation results of Gibbs free energy show that the reaction process is spontaneous. (authors)

  2. Development of metallic uranium recovery technology from uranium oxide by Li reduction and electrorefining

    International Nuclear Information System (INIS)

    Tokiwai, Moriyasu; Kawabe, Akihiro; Yuda, Ryouichi; Usami, Tsuyoshi; Fujita, Reiko; Nakamura, Hitoshi; Yahata, Hidetsugu

    2002-01-01

    The purpose of the study is to develop technology for pre-treatment of oxide fuel reprocessing through pyroprocess. In the pre-treatment process, it is necessary to reduce actinide oxide to metallic form. This paper outlines some experimental results of uranium oxide reduction and recovery of refined metallic uranium in electrorefining. Both uranium oxide granules and pellets were used for the experiments. Uranium oxide granules was completely reduced by lithium in several hours at 650degC. Reduced uranium pellets by about 70% provided a simulation of partial reduction for the process flow design. Almost all adherent residues of Li and Li 2 O were successfully washed out with fresh LiCl salt. During electrorefining, metallic uranium deposited on the iron cathode as expected. The recovery efficiencies of metallic uranium from reduced uranium oxide granules and from pellets were about 90% and 50%, respectively. The mass balance data provided the technical bases of Li reduction and refining process flow for design. (author)

  3. Seed research for improved technologies Pesquisa para o aprimoramento de tecnologia de sementes

    Directory of Open Access Journals (Sweden)

    R.J. Bino

    1998-01-01

    Full Text Available The production of high-quality seed is the basis for a durable a profitable agriculture. After production, seed is processed, conditioned, stored, shipped and germinated. For quality assurance, seed quality has to be controlled at all steps of the production chain. Seed functioning is accompanied by programmed transitions from cell proliferation to quiescence upon maturation and from quiescence to reinitiation of cellular metabolism upon imbibition. Despite the obvious importance of these control mechanisms, very little information is available at the molecular level concerning those elements that regulate seed germination. In the present study, the induction of cell cycle activity and the regulation of ß-tubulin expression is related to the water content and other physical properties of the seed.A produção de sementes de alta qualidade é a base para uma agricultura produtiva. Após a colheita, a semente é beneficiada, embalada, armazenada, transportada e semeada. Para maior segurança, tanto dos produtores como dos consumidores, a qualidade da semente deve ser mantida sob controle em todas as fases do processo de produção. O desempenho da semente é resultado de transições programadas desde a divisão celular até a quiescência, durante a maturação, e da quiescência até o reinicio do metabolismo celular, durante a embebição. Apesar da importância destes mecanismos de controle, há pouca informação disponível, a nível molecular, no que diz respeito aos elementos que regulam a germinação da semente. No presente trabalho, a indução do ciclo de atividade celular e a regulação da expressão de ß-tubulina são relacionadas ao grau de umidade e a outras propriedades físicas da semente.

  4. Advanced Membrane Separation Technologies for Energy Recovery from Industrial Process Streams

    Energy Technology Data Exchange (ETDEWEB)

    Keiser, J. R.; Wang, D. [Gas Technology Institute; Bischoff, B.; Ciora, [Media and Process Technology; Radhakrishnan, B.; Gorti, S. B.

    2013-01-14

    Recovery of energy from relatively low-temperature waste streams is a goal that has not been achieved on any large scale. Heat exchangers do not operate efficiently with low-temperature streams and thus require such large heat exchanger surface areas that they are not practical. Condensing economizers offer one option for heat recovery from such streams, but they have not been widely implemented by industry. A promising alternative to these heat exchangers and economizers is a prototype ceramic membrane system using transport membrane technology for separation of water vapor and recovery of heat. This system was successfully tested by the Gas Technology Institute (GTI) on a natural gas fired boiler where the flue gas is relatively clean and free of contaminants. However, since the tubes of the prototype system were constructed of aluminum oxide, the brittle nature of the tubes limited the robustness of the system and even limited the length of tubes that could be used. In order to improve the robustness of the membrane tubes and make the system more suitable for industrial applications, this project was initiated with the objective of developing a system with materials that would permit the system to function successfully on a larger scale and in contaminated and potentially corrosive industrial environments. This required identifying likely industrial environments and the hazards associated with those environments. Based on the hazardous components in these environments, candidate metallic materials were identified that are expected to have sufficient strength, thermal conductivity and corrosion resistance to permit production of longer tubes that could function in the industrial environments identified. Tests were conducted to determine the corrosion resistance of these candidate alloys, and the feasibility of forming these materials into porous substrates was assessed. Once the most promising metallic materials were identified, the ability to form an alumina

  5. MULTI-INSECTICIDE EXTRACTIVE TECHNOLOGY OF NEEM SEEDS FOR SMALL GROWERS

    Directory of Open Access Journals (Sweden)

    Gabriela Esparza-Díaz

    2011-11-01

    Full Text Available The neem tree (Azadirachta indica A. Juss. is known for its insecticidal properties. In this study an extraction method for neem seeds based on cold extrusion with methanol was applied. On the resulting extract (azadirex, limonoids azadirachtin A and B (AZA and AZB, salannin, and nimbin were quantified by HPLC. A 10 years old neem orchard was used (19° 11.65’ N, 96° 20.07’ W. The extrusion of 1.0 kg of dry endocarp, ground seeds previously immersed in 150 mL of methanol during 20 min, was performed in a manual hydraulic press, at 20 kg cm-2 and room temperature. Concentration of limonoids underwent an analysis of variance and means separation (Tukey, P < 0.05. The seed with endocarp showed a salannin concentration of 4500 mg kg-1, 3450 mg kg-1 of nimbin and 2784 mg kg-1 of the azadirachtins A and B mixture. Azadirex had a typical composition of AZA, AZB, nimbin and salannin, however the latter (3866 mg kg-1 was found in a significantly higher proportion compared to the others (Tukey, P < 0.05. No significant differences were found between the mixture of AZA + AZB (1818 mg kg-1 and nimbin (1280 mg kg-1.

  6. 1998 Annual Study Report. Surveys on seeds for global environmental technologies, including those for energy saving; 1998 nendo chosa hokokusho. Sho energy nado chikyu kankyo taisaku gijutsu no seeds ni kansuru chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The energy-saving and other global environmental technologies are surveyed by collecting relevant information from various institutes, both abroad and domestic, to contribute to development of ceramic gas turbines. USA has announced a climate change plan, based on the five principles, to promote utilization of high-efficiency technologies and development of new clean technologies. UK is promoting to improve energy efficiency, along with liberalization of its energy markets. Germany concentrates its efforts in the 'Program for Energy Research and Energy Technologies.' France places emphasis on prevention of air pollution and rational use of energy. The R and D trends at public institutes, e.g., universities, for global environmental technologies are surveyed, from which a total of 14 themes are extracted as the seed technologies. At the same time, a total of 9 techniques potentially applicable to the seeds are extracted by mainly reviewing JICST and patent information, and assessed. The R&D trends of the IPCC-related researchers are also surveyed, but provide no theme directly applicable to the seeds. Most of the related themes at the private and public institutes surveyed, both domestic and abroad, are concentrated on carbon dioxide. (NEDO)

  7. Uranium in phosphorus-bearing raw materials and technological problems of its recovery

    Energy Technology Data Exchange (ETDEWEB)

    Gorecki, H; Gorecka, H [Politechnika Wroclawska (Poland)

    1981-01-01

    A problem of uranium recovery from phosphorus-bearinq raw materials is discussed. The different methods of uranium recovery from extractive phosphoric acid are briefly described. The information on their applications in the industry is also given.

  8. Development of an In Situ Biosurfactant Production Technology for Enhanced Oil Recovery

    Energy Technology Data Exchange (ETDEWEB)

    M.J. McInerney; R.M. Knapp; Kathleen Duncan; D.R. Simpson; N. Youssef; N. Ravi; M.J. Folmsbee; T.Fincher; S. Maudgalya; Jim Davis; Sandra Weiland

    2007-09-30

    The long-term economic potential for enhanced oil recovery (EOR) is large with more than 300 billion barrels of oil remaining in domestic reservoirs after conventional technologies reach their economic limit. Actual EOR production in the United States has never been very large, less than 10% of the total U. S. production even though a number of economic incentives have been used to stimulate the development and application of EOR processes. The U.S. DOE Reservoir Data Base contains more than 600 reservoirs with over 12 billion barrels of unrecoverable oil that are potential targets for microbially enhanced oil recovery (MEOR). If MEOR could be successfully applied to reduce the residual oil saturation by 10% in a quarter of these reservoirs, more than 300 million barrels of oil could be added to the U.S. oil reserve. This would stimulate oil production from domestic reservoirs and reduce our nation's dependence on foreign imports. Laboratory studies have shown that detergent-like molecules called biosurfactants, which are produced by microorganisms, are very effective in mobilizing entrapped oil from model test systems. The biosurfactants are effective at very low concentrations. Given the promising laboratory results, it is important to determine the efficacy of using biosurfactants in actual field applications. The goal of this project is to move biosurfactant-mediated oil recovery from laboratory investigations to actual field applications. In order to meet this goal, several important questions must be answered. First, it is critical to know whether biosurfactant-producing microbes are present in oil formations. If they are present, then it will be important to know whether a nutrient regime can be devised to stimulate their growth and activity in the reservoir. If biosurfactant producers are not present, then a suitable strain must be obtained that can be injected into oil reservoirs. We were successful in answering all three questions. The specific

  9. A hurricane modification process, applying a new technology tested for warm cloud seeding to produce artificial rains

    Science.gov (United States)

    Imai, T.; Martin, I.; Iha, K.

    A Hurricane Modification Process with application of a new clean technology attested for seeding warm clouds with collector pure water droplets of controlled size to produce artificial rains in warm clouds is proposed to modify the hurricanes in order to avoid their formation or to modify the trajectory or to weaken hurricanes in action The Process is based on the time-dependent effects of cloud droplets microphysical processes for the formation and growth of the natural water droplets inside the clouds releasing large volumes of Aeolian energy to form the strong rotative upside air movements A new Paradigm proposed explain the strong and rotative winds created with the water droplets formation and grow process releasing the rotative Aeolian Energy in Tornados and Hurricanes This theory receive the Gold Medal Award of the Water Science in the 7th International Water Symposium 2005 in France Artificial seeding in the Process studies condensing a specified percentage of the water vapor to liquid water droplets where we observe the release of larges intensity of the Aeolian energy creates the hurricanes producing appreciable perturbations With they rotating strong wind created by the water droplets releasing Aeolian energy The Amplitudes of these winds are comparable to natural disasters Once this natural thermal process is completely understood artificial process to modify the hurricanes become scientifically possible to avoid them to happen or to deviate their trajectory or to weaken the already formed hurricanes In this work

  10. Study on Salting out-Steam Distillation Extraction Technology and Antibacterial Activities of Essential Oil from Cumin Seeds

    Directory of Open Access Journals (Sweden)

    Hong Zhang

    2014-11-01

    Full Text Available The effects of different factors on the yield of essential oil from were discussed, and the extraction conditions of essential oil from cumin seeds by salting out-steam distillation technology based on single-factor test and orthogonal experiment, as well as its antibacterial activities on several common food spoilage bacteria were studied in this paper. The results showed that, the impact order of the influence factors was liquid/solid ratio > distilling time > NaCl concentration, and optimized extraction conditions were as follows, liquid to material ratio 15:1, soaking time 1 h, 4% NaCl, steam distilling time 3 h. The yield of essential oil was up to 4.48% under these conditions. The results of antibacterial activity assays showed that the essential oil from cumin seeds exhibited the different antibacterial activities against some food borne pathogens, especially it presented the best inhibitory effect against Bacillus subtilis with the minimum inhibitory concentration (MIC and minimum bactericidal concentration (MBC values of 6.25 and 12.5 mg/mL respectively, followed by Staphylococcus albus and Staphylococcus aureus, the lowest for Pseudomonas aeruginosa and Shigella dysenteriae

  11. Energy recovery of the H2S and CO2 elimination with technology by hybrid plasma

    International Nuclear Information System (INIS)

    Salazar T, J. A.

    2014-01-01

    This document is a research focused on energy recovery from acid gas removal contained in natural gas as hydrogen sulfide (H 2 S) and carbon dioxide (CO 2 ), by obtaining highly energetic gas such as syngas (mixture of hydrogen and carbon monoxide, in particular) using plasma technology in its hybrid form, namely, gliding arc plasma, that has the property to behave like a thermal plasma and cold plasma, besides possessing among other virtues the ability to treat large flows continuously at atmospheric pressure without the need of using noble gases, with a power consumption of no more than 1000 W. Furthermore, this type of plasma has demonstrated to be a clean and efficient not only by high conversion rates of H 2 S (86%) and CO 2 (56%) and high percentages of selectivity in the production of hydrogen (H 2 ) and carbon monoxide carbon (CO) obtained in this work, but because it can even be seriously considered to replace other technologies currently used in the process of sweetening natural gas as adsorption, absorption and sequestering membranes. The results shown are based on a series of analysis, simulations, experiments and calculations, from the design of the plasma generating source based on an impulse-phase circuit, to the electrical characterization results and simulation by acquiring electrical signals, without forgetting the characterization of the resulting chemical components using various analytical techniques such as mass spectrometry, gas chromatography (GC), optical emission spectroscopy (OES), optical spectroscopy Fourier inverse transformed (XRD) and scanning electron microscopy (Sem), X-ray diffraction (XRD) and multi-gas detectors (iBrid MX6). Additionally, performed chemical kinetics and reaction mechanism of the compounds involved in the degradation of H 2 S and CO 2 similar to those experienced as well as the study of energy efficiency (Ece), specific energy (Se), all this to meet a projects needs 127499, entitled -Development of alternative

  12. Pilot scale intensification of rubber seed (Hevea brasiliensis) oil via chemical interesterification using hydrodynamic cavitation technology.

    Science.gov (United States)

    Bokhari, Awais; Yusup, Suzana; Chuah, Lai Fatt; Klemeš, Jiří Jaromír; Asif, Saira; Ali, Basit; Akbar, Majid Majeed; Kamil, Ruzaimah Nik M

    2017-10-01

    Chemical interesterification of rubber seed oil has been investigated for four different designed orifice devices in a pilot scale hydrodynamic cavitation (HC) system. Upstream pressure within 1-3.5bar induced cavities to intensify the process. An optimal orifice plate geometry was considered as plate with 1mm dia hole having 21 holes at 3bar inlet pressure. The optimisation results of interesterification were revealed by response surface methodology; methyl acetate to oil molar ratio of 14:1, catalyst amount of 0.75wt.% and reaction time of 20min at 50°C. HC is compared to mechanical stirring (MS) at optimised values. The reaction rate constant and the frequency factor of HC were 3.4-fold shorter and 3.2-fold higher than MS. The interesterified product was characterised by following EN 14214 and ASTM D 6751 international standards. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Injection seeded, diode pumped regenerative ring Nd:YAG amplifier for spaceborne laser ranging technology development

    Science.gov (United States)

    Coyle, D. Barry; Kay, Richard B.; Degnan, John J.; Krebs, Danny J.; Seery, Bernard D.

    1992-01-01

    A small, all solid state, regenerative ring amplifier designed as a prototype for space application is discussed. Novel features include dual side pumping of the Nd:YAG crystal and a triangular ring cavity design which minimizes the number of optical components and losses. The amplifier is relatively small (3 ns round trip time) even though standard optical elements are employed. The ring regeneratively amplifies a 100 ps single pulse by approximately 10(exp 5) at a repetition rate of 10 to 100 Hz. The amplifier is designed to be injection seeded with a pulsed, 100 ps laser diode at 1.06 microns, but another Nd:YAG laser system supplying higher pulse energies was employed for laboratory experiment. This system is a prototype laser oscillator for the Geoscience Laser Ranging System (GLRS) platform. Results on measurements of beam quality, astigmatism, and gain are given.

  14. An LCA model for waste incineration enhanced with new technologies for metal recovery and application to the case of Switzerland.

    Science.gov (United States)

    Boesch, Michael E; Vadenbo, Carl; Saner, Dominik; Huter, Christoph; Hellweg, Stefanie

    2014-02-01

    A process model of municipal solid waste incinerators (MSWIs) and new technologies for metal recovery from combustion residues was developed. The environmental impact is modeled as a function of waste composition as well as waste treatment and material recovery technologies. The model includes combustion with a grate incinerator, several flue gas treatment technologies, electricity and steam production from waste heat recovery, metal recovery from slag and fly ash, and landfilling of residues and can be tailored to specific plants and sites (software tools can be downloaded free of charge). Application of the model to Switzerland shows that the treatment of one tonne of municipal solid waste results on average in 425 kg CO2-eq. generated in the incineration process, and 54 kg CO2-eq. accrue in upstream processes such as waste transport and the production of operating materials. Downstream processes, i.e. residue disposal, generates 5 kg CO2-eq. Savings from energy recovery are in the range of 67 to 752 kg CO2-eq. depending on the assumptions regarding the substituted energy production, while the recovery of metals from slag and fly ash currently results in a net saving of approximately 35 kg CO2-eq. A similar impact pattern is observed when assessing the MSWI model for aggregated environmental impacts (ReCiPe) and for non-renewable resource consumption (cumulative exergy demand), except that direct emissions have less and no relevance, respectively, on the total score. The study illustrates that MSWI plants can be an important element of industrial ecology as they provide waste disposal services and can help to close material and energetic cycles. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Integrated funnel-and-gate/GZB product recovery technologies for in situ management of creosote NAPL-impacted aquifers

    International Nuclear Information System (INIS)

    Mueller, J.G.; Borchert, S.M.; Klingel, E.J.

    1997-01-01

    An in situ source management system was modeled and designed for the containment and recovery of creosote non-aqueous phase liquid (NAPL) at a former wood treating facility in Nashua, New Hampshire. The conceptual system was based on the integration of patented technologies for physical source containment and management (ie., funnel-and-gate technology) with patented in situ product recovery (i.e, GZB technology - described below). A funnel-and-gate physical barrier was proposed to mitigate the continued flow of NAPL into the Merrimack River. The purpose of the funnel was to divert groundwater (and potential NAPL) flow through two gate areas. Where required, an in situ system for product recovery was integrated. Mathematical modeling of the combined technologies led to the selection of a metal sheet pile barrier wall along 650 feet of the river's shoreline with the wall anchored into an underlying zone of lesser permeability. Multiple GZB wells were placed strategically within the system. This combination of technologies promised to offer a more effective, cost-efficient approach for long-term management of environmental concerns at Nashua, and related sites

  16. GBRN/DOE Project: Dynamic enhanced recovery technologies. Quarterly technical report, January 1994--March 1994

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R.N.

    1994-04-15

    Global Basins Research Network will perform a field demonstration of their ``Dynamic Enhanced Recovery Technology`` to test the concept that the growth faults in EI-330 field are conduits through which producing reservoirs are charged and that enhanced production can be developed by producing directly from the fault zone. The site, operated by Penzoil, is located in 250 feet of water the productive depth intervals include 4000 to 9000 feet. Previous work, which incorporated pressure, temperature, fluid flow, heat flow, seismic, production, and well log data, indicated active fluid flow along fault zones. The field demonstration will be accomplished by drilling and production test of growth fault systems associated with the EI-330 field. The project utilizes advanced 3-D seismic analysis, geochemical studies, structural and stratigraphic reservoir characterization, reservoir simulation, and compact visualization systems. The quarterly progress reports contains accomplishments to date for the following tasks: Management start-up; database management; field and demonstration equipment; reservoir characterization, modeling; geochemistry; and data integration.

  17. A Discussion of Oxygen Recovery Definitions and Key Performance Parameters for Closed-Loop Atmosphere Revitalization Life Support Technology Development

    Science.gov (United States)

    Abney, Morgan B.; Perry, Jay L.

    2016-01-01

    Over the last 55 years, NASA has evolved life support for crewed space exploration vehicles from simple resupply during Project Mercury to the complex and highly integrated system of systems aboard the International Space Station. As NASA targets exploration destinations farther from low Earth orbit and mission durations of 500 to 1000 days, life support systems must evolve to meet new requirements. In addition to having more robust, reliable, and maintainable hardware, limiting resupply becomes critical for managing mission logistics and cost. Supplying a crew with the basics of food, water, and oxygen become more challenging as the destination ventures further from Earth. Aboard ISS the Atmosphere Revitalization Subsystem (ARS) supplies the crew's oxygen demand by electrolyzing water. This approach makes water a primary logistics commodity that must be managed carefully. Chemical reduction of metabolic carbon dioxide (CO2) provides a method of recycling oxygen thereby reducing the net ARS water demand and therefore minimizing logistics needs. Multiple methods have been proposed to achieve this recovery and have been reported in the literature. However, depending on the architecture and the technology approach, "oxygen recovery" can be defined in various ways. This discontinuity makes it difficult to compare technologies directly. In an effort to clarify community discussions of Oxygen Recovery, we propose specific definitions and describe the methodology used to arrive at those definitions. Additionally, we discuss key performance parameters for Oxygen Recovery technology development including challenges with comparisons to state-of-the-art.

  18. Seeds of Innovation: Three Years of the Technology Innovation Challenge Grant Program.

    Science.gov (United States)

    Harris, Larry A.

    This publication describes the 62 projects that received 5-year Technology Innovation Challenge Grants beginning in 1995, 1996, and 1997, with reviews of the projects occurring in late 1999 and early 2000. Part 1 of the report describes the Technology Innovation Challenge Grant (TICG) program and its importance. Part 2 contains the project…

  19. The potential environmental gains from recycling waste plastics: Simulation of transferring recycling and recovery technologies to Shenyang, China

    International Nuclear Information System (INIS)

    Chen Xudong; Xi Fengming; Geng Yong; Fujita, Tsuyoshi

    2011-01-01

    Research highlights: → Urban symbiosis creates compatibility of industrial development and waste management. → Mechanical technology leads to more CO 2 emission reduction. → Energy recovery technology leads to more fossil fuel saving. → Clean energy makes recycling technologies cleaner. → Demand management is crucial for realizing potential environmental gains of recycling. - Abstract: With the increasing attention on developing a low-carbon economy, it is necessary to seek appropriate ways on reducing greenhouse gas (GHG) emissions through innovative municipal solid waste management (MSWM), such as urban symbiosis. However, quantitative assessments on the environmental benefits of urban symbiosis, especially in developing countries, are limited because only a limited number of planned synergistic activities have been successful and it is difficult to acquire detailed inventory data from private companies. This paper modifies and applies a two-step simulation system and used it to assess the potential environmental benefits, including the reduction of GHG emissions and saving of fossil fuels, by employing various Japanese plastics recycling/energy-recovery technologies in Shenyang, China. The results showed that among various recycling/energy-recovery technologies, the mechanical waste plastics recycling technology, which produces concrete formwork boards (NF boards), has the greatest potential in terms of reducing GHG emissions (1.66 kg CO 2 e/kg plastics), whereas the technology for the production of refuse plastic fuel (RPF) has the greatest potential on saving fossil fuel consumption (0.77 kgce/kg-plastics). Additional benefits can be gained by applying combined technologies that cascade the utilization of waste plastics. Moreover, the development of clean energy in conjunction with the promotion of new waste plastics recycling programs could contribute to additional reductions in GHG emissions and fossil fuel consumption.

  20. Methane Post-Processor Development to Increase Oxygen Recovery beyond State-of-the-Art Carbon Dioxide Reduction Technology

    Science.gov (United States)

    Abney, Morgan B.; Greenwood, Zachary; Miller, Lee A.; Alvarez, Giraldo; Iannantuono, Michelle; Jones, Kenny

    2013-01-01

    State-of-the-art life support carbon dioxide (CO2) reduction technology, based on the Sabatier reaction, is theoretically capable of 50% recovery of oxygen from metabolic CO2. This recovery is constrained by the limited availability of reactant hydrogen. Post-processing of the methane byproduct from the Sabatier reactor results in hydrogen recycle and a subsequent increase in oxygen recovery. For this purpose, a Methane Post-Processor Assembly containing three sub-systems has been developed and tested. The assembly includes a Methane Purification Assembly (MePA) to remove residual CO2 and water vapor from the Sabatier product stream, a Plasma Pyrolysis Assembly (PPA) to partially pyrolyze methane into hydrogen and acetylene, and an Acetylene Separation Assembly (ASepA) to purify the hydrogen product for recycle. The results of partially integrated testing of the sub-systems are reported

  1. Systems biology and genome-wide approaches to unveil the molecular players involved in the pre-germinative metabolism: implications on seed technology traits.

    Science.gov (United States)

    Macovei, Anca; Pagano, Andrea; Leonetti, Paola; Carbonera, Daniela; Balestrazzi, Alma; Araújo, Susana S

    2017-05-01

    The pre-germinative metabolism is among the most fascinating aspects of seed biology. The early seed germination phase, or pre-germination, is characterized by rapid water uptake (imbibition), which directs a series of dynamic biochemical events. Among those are enzyme activation, DNA damage and repair, and use of reserve storage compounds, such as lipids, carbohydrates and proteins. Industrial seedling production and intensive agricultural production systems require seed stocks with high rate of synchronized germination and low dormancy. Consequently, seed dormancy, a quantitative trait related to the activation of the pre-germinative metabolism, is probably the most studied seed trait in model species and crops. Single omics, systems biology, QTLs and GWAS mapping approaches have unveiled a list of molecules and regulatory mechanisms acting at transcriptional, post-transcriptional and post-translational levels. Most of the identified candidate genes encode for regulatory proteins targeting ROS, phytohormone and primary metabolisms, corroborating the data obtained from simple molecular biology approaches. Emerging evidences show that epigenetic regulation plays a crucial role in the regulation of these mentioned processes, constituting a still unexploited strategy to modulate seed traits. The present review will provide an up-date of the current knowledge on seed pre-germinative metabolism, gathering the most relevant results from physiological, genetics, and omics studies conducted in model and crop plants. The effects exerted by the biotic and abiotic stresses and priming are also addressed. The possible implications derived from the modulation of pre-germinative metabolism will be discussed from the point of view of seed quality and technology.

  2. The effects of process technology on the physicochemical properties of peony seed oil

    International Nuclear Information System (INIS)

    Qu, J.; Zhang, F.; Thakur, K.; Shi, J.J.; Zhang, J.G.; Faisal, S.; Wei, Z.J.

    2017-01-01

    Peony seed oils (PSOs) were prepared using supercritical CO2 (SC) and compared with soxhlet extraction (SE) and mechanical screw press extraction (SPE) methods. The fatty acid compositions of the oils were determined, and the physicochemical properties of the oils, including free radical-scavenging activity, α-amylase and α-glucosidase inhibition, thermal and rheological properties were evaluated. The unsaturated fatty acids in the SE oils were higher than SC and SPE oils due to the higher percentage of olefinic, allylic methylene and allylic methine protons in the SE oils. The SPE oils also displayed the highest DPPH and ABTS+ radical scavenging activity at the tested concentrations. However, the SE oils showed stronger inhibitory effects on α-amylase and α-glucosidase enzymes under in vitro conditions when compared with the other oil samples. The three oils had similar melting and crystalline point due to similar contents of fatty acids (FAs). The SC oils had a lower Ea than the others. [es

  3. Optimization of technological procedure for amygdalin isolation from plum seeds (Pruni domesticae semen)

    Science.gov (United States)

    Savic, Ivan M.; Nikolic, Vesna D.; Savic-Gajic, Ivana M.; Nikolic, Ljubisa B.; Ibric, Svetlana R.; Gajic, Dragoljub G.

    2015-01-01

    The process of amygdalin extraction from plum seeds was optimized using central composite design (CCD) and multilayer perceptron (MLP). The effect of time, ethanol concentration, solid-to-liquid ratio, and temperature on the amygdalin content in the extracts was estimated using both mathematical models. The MLP 4-3-1 with exponential function in hidden layer and linear function in output layer was used for describing the extraction process. MLP model was more superior compared with CCD model due to better prediction ability. According to MLP model, the suggested optimal conditions are: time of 120 min, 100% (v/v) ethanol, solid-to liquid ratio of 1:25 (m/v) and temperature of 34.4°C. The predicted value of amygdalin content in the dried extract (25.42 g per 100 g) at these conditions was experimentally confirmed (25.30 g per 100 g of dried extract). Amygdalin (>90%) was isolated from the complex extraction mixture and structurally characterized by FT-IR, UV, and MS methods. PMID:25972881

  4. Optimization of technological procedure for amygdalin isolation from plum seeds (Pruni domesticae semen

    Directory of Open Access Journals (Sweden)

    Ivan M Savic

    2015-04-01

    Full Text Available The process of amygdalin extraction from plum seeds was optimized using central composite design (CCD and multilayer perceptron (MLP. The effect of time, ethanol concentration, solid-to-liquid ratio and temperature on the amygdalin content in the extracts was estimated using both mathematical models. The MLP 4-3-1 with exponential function in hidden layer and linear function in output layer was used for describing the extraction process. MLP model was more superior compared with CCD model due to better prediction ability. According to MLP model, the suggested optimal conditions are: time of 120 min, 100% (v/v ethanol, solid-to liquid ratio of 1:25 (m/v and temperature of 34.4 °C. The predicted value of amygdalin content in the dried extract (25.42 g per 100 g at these conditions was experimentally confirmed (25.30 g per 100 g of dried extract. Amygdalin (>90% was isolated from the complex extraction mixture and structurally characterized by FT-IR, UV and MS methods.

  5. Resource Recovery. Redefining the 3 Rs. Reduce...Reuse...Recycle. Resources in Technology.

    Science.gov (United States)

    Technology Teacher, 1991

    1991-01-01

    Discusses the problems of waste disposal, recycling, and resource recovery. Includes information on the social and cultural impact, the three classes of resource recovery (reuse, direct recycling, and indirect recycling), and specific products (paper, glass, plastics, metals, and so on). Includes a student quiz and possible outcomes. (JOW)

  6. An LCA model for waste incineration enhanced with new technologies for metal recovery and application to the case of Switzerland

    International Nuclear Information System (INIS)

    Boesch, Michael E.; Vadenbo, Carl; Saner, Dominik; Huter, Christoph; Hellweg, Stefanie

    2014-01-01

    Highlights: • An enhanced process-based LCA model for MSWI is featured and applied in case study. • LCA modeling of recent technological developments for metal recovery from fly ash. • Net release from Swiss MSWI 133 kg CO 2 -eq/tonne waste from attributional LCA perspective. • Net savings from a consequential LCA perspective reach up to 303 kg CO 2 -eq/tonne waste. • Impacts according to ReCiPe and CExD show similar pattern to climate change. - Abstract: A process model of municipal solid waste incinerators (MSWIs) and new technologies for metal recovery from combustion residues was developed. The environmental impact is modeled as a function of waste composition as well as waste treatment and material recovery technologies. The model includes combustion with a grate incinerator, several flue gas treatment technologies, electricity and steam production from waste heat recovery, metal recovery from slag and fly ash, and landfilling of residues and can be tailored to specific plants and sites (software tools can be downloaded free of charge). Application of the model to Switzerland shows that the treatment of one tonne of municipal solid waste results on average in 425 kg CO 2 -eq. generated in the incineration process, and 54 kg CO 2 -eq. accrue in upstream processes such as waste transport and the production of operating materials. Downstream processes, i.e. residue disposal, generates 5 kg CO 2 -eq. Savings from energy recovery are in the range of 67 to 752 kg CO 2 -eq. depending on the assumptions regarding the substituted energy production, while the recovery of metals from slag and fly ash currently results in a net saving of approximately 35 kg CO 2 -eq. A similar impact pattern is observed when assessing the MSWI model for aggregated environmental impacts (ReCiPe) and for non-renewable resource consumption (cumulative exergy demand), except that direct emissions have less and no relevance, respectively, on the total score. The study illustrates

  7. Tc Generator Development: Up-to-Date Tc Recovery Technologies for Increasing the Effectiveness of Mo Utilisation

    Directory of Open Access Journals (Sweden)

    Van So Le

    2014-01-01

    Full Text Available A review on the Mo sources available today and on the Tc generators developed up to date for increasing the effectiveness of Mo utilisation is performed in the format of detailed description of the features and technical performance of the technological groups of the Mo production and Tc recovery. The latest results of the endeavour in this field are also surveyed in regard of the technical solution for overcoming the shortage of Mo supply. The technological topics are grouped and discussed in a way to reflect the similarity in the technological process of each group. The following groups are included in this review which are high specific activity Mo: the current issues of production, the efforts of more effective utilisation, and the high specific activity Mo-based Tc generator and Tc concentration units; low specific activity Mo: the Mo production based on neutron capture and accelerators and the direct production of Tc and the methods of increasing the specific activity of Mo using Szilard-Chalmers reaction and high electric power isotopic separator; up-to-date technologies of Tc recovery from low specific activity Mo: the solvent extraction-based Tc generator, the sublimation methods for Mo/Tc separation, the electrochemical method for Tc recovery, and the column chromatographic methods for Tc recovery. Besides the traditional Tc-generator systems, the integrated Tc generator systems (Tc generator column combined with postelution purification/concentration unit are discussed with the format of process diagram and picture of real generator systems. These systems are the technetium selective sorbent column-based generators, the high Mo-loading capacity column-based integrated Tc generator systems which include the saline-eluted generator systems, and the nonsaline aqueous and organic solvent eluent-eluted generator systems using high Mo-loading capacity molybdategel and recently developed sorbent columns. Tc concentration methods used in the

  8. An LCA model for waste incineration enhanced with new technologies for metal recovery and application to the case of Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Boesch, Michael E. [Aveny GmbH, Schwandenholzstr. 212, CH-8046 Zürich (Switzerland); Vadenbo, Carl, E-mail: vadenbo@ifu.baug.ethz.ch [ETH Zurich, Institute of Environmental Engineering, Schafmattstrasse 6, CH-8093 Zurich (Switzerland); Saner, Dominik [Swiss Post, Communications, Politics and Social Responsibility, Viktoriastrasse 21, P.O. Box, CH-3030 Berne (Switzerland); Huter, Christoph [City of Zürich, ERZ Entsorgung - Recycling Zürich, Hagenholzstrasse 110, P.O. Box, CH-8050 Zürich (Switzerland); Hellweg, Stefanie [ETH Zurich, Institute of Environmental Engineering, Schafmattstrasse 6, CH-8093 Zurich (Switzerland)

    2014-02-15

    Highlights: • An enhanced process-based LCA model for MSWI is featured and applied in case study. • LCA modeling of recent technological developments for metal recovery from fly ash. • Net release from Swiss MSWI 133 kg CO{sub 2}-eq/tonne waste from attributional LCA perspective. • Net savings from a consequential LCA perspective reach up to 303 kg CO{sub 2}-eq/tonne waste. • Impacts according to ReCiPe and CExD show similar pattern to climate change. - Abstract: A process model of municipal solid waste incinerators (MSWIs) and new technologies for metal recovery from combustion residues was developed. The environmental impact is modeled as a function of waste composition as well as waste treatment and material recovery technologies. The model includes combustion with a grate incinerator, several flue gas treatment technologies, electricity and steam production from waste heat recovery, metal recovery from slag and fly ash, and landfilling of residues and can be tailored to specific plants and sites (software tools can be downloaded free of charge). Application of the model to Switzerland shows that the treatment of one tonne of municipal solid waste results on average in 425 kg CO{sub 2}-eq. generated in the incineration process, and 54 kg CO{sub 2}-eq. accrue in upstream processes such as waste transport and the production of operating materials. Downstream processes, i.e. residue disposal, generates 5 kg CO{sub 2}-eq. Savings from energy recovery are in the range of 67 to 752 kg CO{sub 2}-eq. depending on the assumptions regarding the substituted energy production, while the recovery of metals from slag and fly ash currently results in a net saving of approximately 35 kg CO{sub 2}-eq. A similar impact pattern is observed when assessing the MSWI model for aggregated environmental impacts (ReCiPe) and for non-renewable resource consumption (cumulative exergy demand), except that direct emissions have less and no relevance, respectively, on the total

  9. Homeless drug users and information technology: a qualitative study with potential implications for recovery from drug dependence.

    Science.gov (United States)

    Neale, Joanne; Stevenson, Caral

    2014-09-01

    Having access to information and communication technologies (ICTs) is a prerequisite to meaningful participation in society. This paper seeks to: i. explore the engagement of homeless drug users (HDUs) with ICTs and ii. discuss the findings with reference to recovery from drug dependence. The study design was qualitative and longitudinal, involving data collected in 2012-13 via 52 semi-structured interviews with 30 homeless drug users (25 men; five women). Participants were recruited from 17 hostels in two English cities. Interview data were analyzed using Framework. HDUs had access to ICTs, used ICTs, and wanted to engage with them more. Experiences of digital exclusion were a function of participants' inability to afford ICTs, the relatively cheap and poor quality technology available to them, limited knowledge about ICTs, and lack of support in using them. That HDUs were often unable to take full advantage of technology because they had nobody to explain what their devices could do or to show them how they worked was ironic given that using ICTs to (re)establish and maintain relationships were functions of technology that HDUs particularly liked. The physical, human, cultural, and social capital of HDUs influenced their access to, and use of, ICTs. Equally, ICTs were themselves an important recovery resource. Services and others should endeavor to provide HDUs with easy access to good quality technology, as well as offers of support and education so that all individuals have the knowledge and confidence to make optimum use of the technology that is available to them.

  10. Application of Reservoir Characterization and Advanced Technology to Improve Recovery and Economics in a Lower Quality Shallow Shelf Carbonate Reservoir

    International Nuclear Information System (INIS)

    Taylor, Archie R.

    1996-01-01

    The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three dimensional (3-D) seismic; (3) Cross-well bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO 2 ) stimulation treatments; (6) Hydraulic fracturing design and monitoring; and (7) Mobility control agents

  11. Energy recovery from waste streams with microbial fuel cell (MFC)-based technologies

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.

    2012-09-15

    Microbial fuel cell (MFC)-based technologies are promising technologies for direct energy production from various wastewaters and waste streams. Beside electrical power production, more emphasis is recently devoted to alternative applications such as hydrogen production, bioremediation, seawater desalination, and biosensors. Although the technologies are promising, a number of hurdles need to be overcome before that field applications are economically feasible. The main purpose of this work was to improve the performance, reduce the construction cost, and expand the application scopes of MFC-based bio-electrochemical systems. To reduce the energy cost in nitrogen removal and during the same process achieve phosphorus elimination, a sediment-type photomicrobial fuel cell was developed based on the cooperation between microalgae (Chlorella vulgaris) and electrochemically active bacteria. The main removal mechanism of nitrogen and phosphorus was algae biomass uptake, while nitrification and denitrification process contributed to part of nitrogen removal. The key factors such as algae concentration, COD/N ratios and photoperiod were systemically studied. A self-powered submersible microbial electrolysis cell was developed for in situ biohydrogen production from anaerobic reactors. The hydrogen production increased along with acetate and buffer concentration. The hydrogen production rate of 32.2 mL/L/d and yield of 1.43 mol-H2/mol-acetate were achieved. Alternate exchanging the function between the two cell units was found to be an effective approach to inhibit methanogens. A sensor, based on a submersible microbial fuel cell, was developed for in situ monitoring of microbial activity and biochemical oxygen demand in groundwater. Presence or absence of a biofilm on the anode was a decisive factor for the applicability of the sensor. Temperature, pH, conductivity and inorganic solid content were significantly affecting the sensitivity of the sensor. The sensor showed

  12. Concept definition study for recovery of tumbling satellites. Volume 2: Supporting research and technology report

    Science.gov (United States)

    Cable, D. A.; Derocher, W. L., Jr.; Cathcart, J. A.; Keeley, M. G.; Madayev, L.; Nguyen, T. K.; Preese, J. R.

    1986-01-01

    A number of areas of research and laboratory experiments were identified which could lead to development of a cost efficient remote, disable satellite recovery system. Estimates were planned of disabled satellite motion. A concept is defined as a Tumbling Satellite Recovery kit which includes a modular system, composed of a number of subsystem mechanisms that can be readily integrated into varying combinations. This would enable the user to quickly configure a tailored remote, disabled satellite recovery kit to meet a broad spectrum of potential scenarios. The capability was determined of U.S. Earth based satellite tracking facilities to adequately determine the orientation and motion rates of disabled satellites.

  13. Assessment of the greenhouse effect impact of technologies used for energy recovery from municipal waste: a case for England.

    Science.gov (United States)

    Papageorgiou, A; Barton, J R; Karagiannidis, A

    2009-07-01

    Waste management activities contribute to global greenhouse gas emissions approximately by 4%. In particular the disposal of waste in landfills generates methane that has high global warming potential. Effective mitigation of greenhouse gas emissions is important and could provide environmental benefits and sustainable development, as well as reduce adverse impacts on public health. The European and UK waste policy force sustainable waste management and especially diversion from landfill, through reduction, reuse, recycling and composting, and recovery of value from waste. Energy from waste is a waste management option that could provide diversion from landfill and at the same time save a significant amount of greenhouse gas emissions, since it recovers energy from waste which usually replaces an equivalent amount of energy generated from fossil fuels. Energy from waste is a wide definition and includes technologies such as incineration of waste with energy recovery, or combustion of waste-derived fuels for energy production or advanced thermal treatment of waste with technologies such as gasification and pyrolysis, with energy recovery. The present study assessed the greenhouse gas emission impacts of three technologies that could be used for the treatment of Municipal Solid Waste in order to recover energy from it. These technologies are Mass Burn Incineration with energy recovery, Mechanical Biological Treatment via bio-drying and Mechanical Heat Treatment, which is a relatively new and uninvestigated method, compared to the other two. Mechanical Biological Treatment and Mechanical Heat Treatment can turn Municipal Solid Waste into Solid Recovered Fuel that could be combusted for energy production or replace other fuels in various industrial processes. The analysis showed that performance of these two technologies depends strongly on the final use of the produced fuel and they could produce GHG emissions savings only when there is end market for the fuel. On the

  14. The modern working of Iago: the seeds of jealousy to the challenge of new technologies

    Directory of Open Access Journals (Sweden)

    Gina Troisi

    2016-12-01

    Full Text Available The authors present a theoretical-clinical contribution about jealousy of the young between normality and pathology. They identify a third borderline area characterized by the shared right to control each other, in the couple's relationship. The control of the partner becomes forced and intrusive until reaching a psychopathological risk. Cyberspace gives the opportunity to express such risk. The potentials of new technologies collude with excessive jealousy, amplifying fantasies and making them fictitiously real by the disembodiment of cyberspace.

  15. Recovery of uranium from seawater-status of technology and needed future research and development

    International Nuclear Information System (INIS)

    Kelmers, A.D.

    1980-01-01

    A survey of recent publications concerning uranium recovery from seawater shows that considerable experimental work in this area is currently under way in Japan, less in European countries. Repeated screening programs have identified hydrous titanium oxide as the most promising candidate adsorbent; however, many of its properties, such as distribution coefficient, selectivity, loading, and possibly stability, appear to fall far short of those required for a practical recovery system. In addition, various evaluations of the energy efficiency of pumped or tidal power schemes for contacting the sorbent and seawater are in serious disagreement. Needed future research and development tasks have been identified. A fundamental development program to achieve significantly improved adsorbent properties would be required to permit economical recovery of uranium from seawater. Unresolved engineering aspects of such recovery systems are also identified and discussed. 63 references

  16. Life cycle assessment as development and decision support tool for wastewater resource recovery technology

    DEFF Research Database (Denmark)

    Fang, Linda L.; Valverde Perez, Borja; Damgaard, Anders

    2016-01-01

    resource recovery. The freshwater and nutrient content of wastewater are recognized as potential valuable resources that can be recovered for beneficial reuse. Both recovery and reuse are intended to address existing environmental concerns, for example, water scarcity and use of non-renewable phosphorus...... and water recovery system in its potential operating environment, we assess the potential environmental impacts of such a system using the EASETECH model. In the simulation, recovered water and nutrients are used in scenarios of agricultural irrigation-fertilization and aquifer recharge. In these scenarios......, TRENS reduces global warming up to 15% and marine eutrophication impacts up to 9% compared to conventional treatment. This is due to the recovery and reuse of nutrient resources, primarily nitrogen. The key environmental concerns obtained through the LCA are linked to increased human toxicity impacts...

  17. Crossdisciplinary fundamental research--the seed for scientific advance and technological innovation.

    Science.gov (United States)

    Kroto, Harold

    2011-12-28

    As it was earlier in the 1980's, so it is now, fundamental science research is under threat as decisions are made on science funding by people who do not do fundamental research, seem congenitally incapable of understanding what it is and furthermore in the face of countless examples seem blind to how important it has been to the technologies that govern our modern life and will be to the future technologies that we desperately need to develop to survive. In this article some general observations are made on how the fascination for what happens in space and stars was the key trigger that gave birth to Science itself and a particular case is outlined which indicates that this same fascination is still the catalyst of some fundamental breakthroughs today. This article also outlines an archetypal example of the way major breakthroughs are often made by the synergy that comes from cross-disciplinary research in a way which is totally surprising. In this case it started from a curiosity about the quantum mechanical description of molecular dynamics and involved pioneering advances in synthetic organic chemistry which led to the suprising discovery that some exotic carbon molecules were abundant in space and stars. These results initiated an experiment using a new technology that represented a major breakthrough in cluster science. The upshot was totally unpredictable, the birth of a whole new field of Chemistry as well as a paradigm shift in major areas of Nanoscience and Nanotechnology.

  18. The potential environmental gains from recycling waste plastics: simulation of transferring recycling and recovery technologies to Shenyang, China.

    Science.gov (United States)

    Chen, Xudong; Xi, Fengming; Geng, Yong; Fujita, Tsuyoshi

    2011-01-01

    With the increasing attention on developing a low-carbon economy, it is necessary to seek appropriate ways on reducing greenhouse gas (GHG) emissions through innovative municipal solid waste management (MSWM), such as urban symbiosis. However, quantitative assessments on the environmental benefits of urban symbiosis, especially in developing countries, are limited because only a limited number of planned synergistic activities have been successful and it is difficult to acquire detailed inventory data from private companies. This paper modifies and applies a two-step simulation system and used it to assess the potential environmental benefits, including the reduction of GHG emissions and saving of fossil fuels, by employing various Japanese plastics recycling/energy-recovery technologies in Shenyang, China. The results showed that among various recycling/energy-recovery technologies, the mechanical waste plastics recycling technology, which produces concrete formwork boards (NF boards), has the greatest potential in terms of reducing GHG emissions (1.66 kg CO(2)e/kg plastics), whereas the technology for the production of refuse plastic fuel (RPF) has the greatest potential on saving fossil fuel consumption (0.77 kg ce/kg-plastics). Additional benefits can be gained by applying combined technologies that cascade the utilization of waste plastics. Moreover, the development of clean energy in conjunction with the promotion of new waste plastics recycling programs could contribute to additional reductions in GHG emissions and fossil fuel consumption. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. An Assessment of the Drivers and Barriers for the Deployment of Urban Phosphorus Recovery Technologies: A Case Study of The Netherlands

    Directory of Open Access Journals (Sweden)

    Marissa A. de Boer

    2018-05-01

    Full Text Available Phosphorus (P, being one of the building blocks of life, is essential for a multitude of applications, primarily for fertilizer usage. Sustainable management of phosphorus is becoming increasingly important in light of adverse environmental effects, ambiguous reserves, increasing global demand and unilateral dependence. Recovery of phosphorus from the biggest loss stream, communal wastewater, has the potential to tackle each of these problems. The implementation of phosphorus recovery technologies at wastewater treatment plants is not widespread, despite prolonged efforts primarily done by researchers over the past decade. This study aimed to assess the drivers and barriers of a phosphorus recovery transition. Several key stakeholders involved in this transition in The Netherlands were interviewed. The Netherlands was taken as a case study, since it serves as a frontrunner in the implementation of phosphorus recovery technologies. This study shows that the main barriers from the point of view of fertilizer companies are the different and unclear characteristics of the phosphorus recovery product struvite compared to common fertilizers. Moreover, the end-of-waste status of struvite is mentioned as a prominent barrier for a phosphorus transition, since it hinders free market trade. Many water boards indicate that the main barrier is the high investment cost with an uncertain return on investment for onsite struvite recovery processes. The specified main driver for water boards for onsite struvite phosphorus recovery technology is the reduction of maintenance costs, and for phosphorus recovery from sewage sludge ash, the low organic pollutant in the P recovery product.

  20. (Heckel) seeds

    African Journals Online (AJOL)

    UTILISATEUR

    Garcinia kola seeds to six different hormonal pre-germination treatments. This consisted of ... Thus, seed dormancy in this case is not a coat- imposed .... development of the cultivation of the species. The cause .... Hormonal regulation of seed ...

  1. Computers in the Cop Car: Impact of the Mobile Digital Terminal Technology on Motor Vehicle Theft Clearance and Recovery Rates in a Texas City.

    Science.gov (United States)

    Nunn, Samuel

    1993-01-01

    Assessed the impact of the Mobile Digital Terminal technology (computers used to communicate with remote crime databases) on motor vehicle theft clearance (arresting a perpetrator) and recovery rates in Fort Worth (Texas), using a time series analysis. Impact has been ambiguous, with little evidence of improved clearance or recovery. (SLD)

  2. The Impact of Sowing Technology on Ponderal Features of Winter Wheat Seeds in Timişoara

    Directory of Open Access Journals (Sweden)

    Marcela Dragoş

    2011-10-01

    Full Text Available Wheat is a grass, originally from the Fertile Crescent region of the Near East, but now cultivated worldwide. The paper presents the results obtained in the last two years of experience, about the influence of sowing technology on the ponderal features of the winter wheat seeds. The experimental parcels were laid down in a randomized complete block design with three replications in the pedo-climatic conditions of Timişoara. The purpose of the research is to determine the influence of some sowing links on the thousand grain mass and hectoliter mass. The average data obtained after two years of study indicate an increase of about 2 % of the thousand grain mass and hectoliter mass on the second sowing period (16-31 Octoberand a distinctive decrease of 2-3% on the fourth sowing period(16-30 November. During the two years of experience the row distance and the sowing density had a negative impact on both thousand grain mass and hectoliter mass in both variants compared with the control variant, the difference being statistical significant.

  3. Seeds of confusion : the impact of policies on seed systems

    NARCIS (Netherlands)

    Louwaars, N.P.

    2007-01-01

    Seed is basic to crop production. Next to its importance in production, food security and rural development, seed is a key element in many debates about technology development and transfer, biodiversity, globalisation and equity. The sustainable availability of good quality seed is thus an important

  4. Enhancing nutrient recovery and compost maturity of coconut husk by vermicomposting technology.

    Science.gov (United States)

    Swarnam, T P; Velmurugan, A; Pandey, Sanjay Kumar; Dam Roy, S

    2016-05-01

    Vermicompost was prepared by five different treatments from relatively resistant coconut husk mixed with either pig slurry or poultry manure. The recovery of vermicompost varied from 35% to 43% and it resulted in significant increase in pH, microbial biomass carbon, macro and micro nutrients concentration. Among the treatments highest relative N (1.6) and K (1.3) recovery were observed for 20% feedstock substitution by pig slurry while poultry manure substitution recorded highest P recovery (2.4). Compost maturity parameters significantly differed and well correlated. The characteristics of different treatments established the maturity indices as C/N 15-20; Cw1.5 and HI>15.0. The manurial value of the coconut husk compost was improved by feedstock substitution with pig slurry (80:20). The results revealed the technical feasibility of converting coconut husk into valuable compost by feedstock substitution with pig slurry. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Air Evaporation closed cycle water recovery technology - Advanced energy saving designs

    Science.gov (United States)

    Morasko, Gwyndolyn; Putnam, David F.; Bagdigian, Robert

    1986-01-01

    The Air Evaporation water recovery system is a visible candidate for Space Station application. A four-man Air Evaporation open cycle system has been successfully demonstrated for waste water recovery in manned chamber tests. The design improvements described in this paper greatly enhance the system operation and energy efficiency of the air evaporation process. A state-of-the-art wick feed design which results in reduced logistics requirements is presented. In addition, several design concepts that incorporate regenerative features to minimize the energy input to the system are discussed. These include a recuperative heat exchanger, a heat pump for energy transfer to the air heater, and solar collectors for evaporative heat. The addition of the energy recovery devices will result in an energy reduction of more than 80 percent over the systems used in earlier manned chamber tests.

  6. A review of technologies and performances of thermal treatment systems for energy recovery from waste

    Energy Technology Data Exchange (ETDEWEB)

    Lombardi, Lidia, E-mail: lidia.lombardi@unicusano.it [Niccolò Cusano University, via Don Carlo Gnocchi, 3, 00166 Rome (Italy); Carnevale, Ennio [Industrial Engineering Department, University of Florence, via Santa Marta, 3, 50129 Florence (Italy); Corti, Andrea [Department of Information Engineering and Mathematics, University of Siena, via Roma, 56, 53100 (Italy)

    2015-03-15

    Highlights: • The topic of energy recovery from waste by thermal treatment is reviewed. • Combustion, gasification and pyrolysis were considered. • Data about energy recovery performances were collected and compared. • Main limitations to high values of energy performances were illustrated. • Diffusion of energy recovery from waste in EU, USA and other countries was discussed. - Abstract: The aim of this work is to identify the current level of energy recovery through waste thermal treatment. The state of the art in energy recovery from waste was investigated, highlighting the differences for different types of thermal treatment, considering combustion/incineration, gasification and pyrolysis. Also different types of wastes – Municipal Solid Waste (MSW), Refuse Derived Fuel (RDF) or Solid Refuse Fuels (SRF) and some typologies of Industrial Waste (IW) (sludge, plastic scraps, etc.) – were included in the analysis. The investigation was carried out mainly reviewing papers, published in scientific journals and conferences, but also considering technical reports, to gather more information. In particular the goal of this review work was to synthesize studies in order to compare the values of energy conversion efficiencies measured or calculated for different types of thermal processes and different types of waste. It emerged that the dominant type of thermal treatment is incineration associated to energy recovery in a steam cycle. When waste gasification is applied, the produced syngas is generally combusted in a boiler to generate steam for energy recovery in a steam cycle. For both the possibilities – incineration or gasification – cogeneration is the mean to improve energy recovery, especially for small scale plants. In the case of only electricity production, the achievable values are strongly dependent on the plant size: for large plant size, where advanced technical solutions can be applied and sustained from an economic point of view, net

  7. Seeds of confusion : the impact of policies on seed systems

    OpenAIRE

    Louwaars, N.P.

    2007-01-01

    Seed is basic to crop production. Next to its importance in production, food security and rural development, seed is a key element in many debates about technology development and transfer, biodiversity, globalisation and equity. The sustainable availability of good quality seed is thus an important development issue. This study deals with the impact different types of regulation have on how farmers access seed. I have analysed current regulatory frameworks in terms of their impact on differe...

  8. Prevention of Preharvest Sprouting through Hormone Engineering and Germination Recovery by Chemical Biology.

    Science.gov (United States)

    Nonogaki, Mariko; Nonogaki, Hiroyuki

    2017-01-01

    Vivipary, germination of seeds on the maternal plant, is observed in nature and provides ecological advantages in certain wild species, such as mangroves. However, precocious seed germination in agricultural species, such as preharvest sprouting (PHS) in cereals, is a serious issue for food security. PHS reduces grain quality and causes economical losses to farmers. PHS can be prevented by translating the basic knowledge of hormone biology in seeds into technologies. Biosynthesis of abscisic acid (ABA), which is an essential hormone for seed dormancy, can be engineered to enhance dormancy and prevent PHS. Enhancing nine- cis -epoxycarotenoid dioxygenase (NCED), a rate-limiting enzyme of ABA biosynthesis, through a chemically induced gene expression system, has successfully been used to suppress germination of Arabidopsis seeds. The more advanced system NCED positive-feedback system, which amplifies ABA biosynthesis in a seed-specific manner without chemical induction, has also been developed. The proofs of concept established in the model species are now ready to be applied to crops. A potential problem is recovery of germination from hyperdormant crop grains. Hyperdormancy induced by the NCED systems can be reversed by inducing counteracting genes, such as NCED RNA interference or gibberellin (GA) biosynthesis genes. Alternatively, seed sensitivity to ABA can be modified to rescue germination using the knowledge of chemical biology. ABA antagonists, which were developed recently, have great potential to recover germination from the hyperdormant seeds. Combination of the dormancy-imposing and -releasing approaches will establish a comprehensive technology for PHS prevention and germination recovery.

  9. The Potential of Wastewater Energy Recovery in Smart Buildings by using Internet of Things Technology

    DEFF Research Database (Denmark)

    Lynggaard, Per

    2015-01-01

    exchanger technology in combination with smart building and Internet of Things technologies. By using advanced artificial intelligence and the Internet of Things technologies found in smart homes the heat recovering process is organized, controlled and planned intelligently; this provides the savings...

  10. Barium recovery by crystallization in a fluidized-bed reactor: effects of pH, Ba/P molar ratio and seed.

    Science.gov (United States)

    Su, Chia-Chi; Reano, Resmond L; Dalida, Maria Lourdes P; Lu, Ming-Chun

    2014-06-01

    The effects of process conditions, including upward velocity inside the column, the amount of added seed and seed size, the pH value of the precipitant or the phosphate stream and the Ba/P molar ratio in a fluidized-bed reactor (FBR) were studied with a view to producing BaHPO₄ crystals of significant size and maximize the removal of barium. XRD were used to identify the products that were collected from the FBR. Experimental results show that an upward velocity of 48 cmmin(-1) produced the largest BaHPO₄ crystals with a size of around 0.84-1.0mm. The addition of seed crystals has no effect on barium removal. The use of a seed of a size in the ranges unseededbarium was removed at pH 8.4-8.6 and [Ba]/[P]=1.0. The XRD results show that a significant amount of barium phosphate (Ba₃(PO₄)₂) was obtained at pH 11. The compounds BaHPO₄ and BaO were present at a pH of below 10. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Supporting technology for enhanced oil recovery: EOR thermal processes. Seventh Amendment and Extension to Annex 4, Enhanced oil recovery thermal processes

    Energy Technology Data Exchange (ETDEWEB)

    Reid, T B [USDOE Bartlesville Project Office, OK (United States); Colonomos, P [INTEVEP, Filial de Petroleos de Venezuela, SA, Caracas (Venezuela)

    1993-02-01

    This report contains the results of efforts under the six tasks of the Seventh Amendment and Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Agreement. The report is presented in sections (for each of the 6 tasks) and each section contains one or more reports prepared by various individuals or groups describing the results of efforts under each of the tasks. A statement of each task, taken from the agreement, is presented on the first page of each section. The tasks are numbered 50 through 55. The first, second, third, fourth, fifth, sixth and seventh reports on Annex IV, Venezuela MEM/USA-DOE Fossil Energy Report IV-1, IV-2, IV-3, IV-4, IV-5 and IV-6 (DOE/BETC/SP-83/15, DOE/BC-84/6/SP, DOE/BC-86/2/SP, DOE/BC-87/2/SP, DOE/BC-89/l/SP, DOE/BC-90/l/SP, and DOE/BC-92/l/SP) contain the results for the first 49 tasks. Those reports are dated April 1983, August 1984, March 1986, July 1987, November 1988, December 1989, and October 1991, respectively. Each task report has been processed separately for inclusion in the Energy Science and Technology Database.

  12. Ethanol production from food waste at high solids content with vacuum recovery technology.

    Science.gov (United States)

    Huang, Haibo; Qureshi, Nasib; Chen, Ming-Hsu; Liu, Wei; Singh, Vijay

    2015-03-18

    Ethanol production from food wastes does not only solve environmental issues but also provides renewable biofuels. This study investigated the feasibility of producing ethanol from food wastes at high solids content (35%, w/w). A vacuum recovery system was developed and applied to remove ethanol from fermentation broth to reduce yeast ethanol inhibition. A high concentration of ethanol (144 g/L) was produced by the conventional fermentation of food waste without a vacuum recovery system. When the vacuum recovery is applied to the fermentation process, the ethanol concentration in the fermentation broth was controlled below 100 g/L, thus reducing yeast ethanol inhibition. At the end of the conventional fermentation, the residual glucose in the fermentation broth was 5.7 g/L, indicating incomplete utilization of glucose, while the vacuum fermentation allowed for complete utilization of glucose. The ethanol yield for the vacuum fermentation was found to be 358 g/kg of food waste (dry basis), higher than that for the conventional fermentation at 327 g/kg of food waste (dry basis).

  13. Study on incineration technology of oil gas generated during the recovery process of oil spill

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Shuhn-Shyurng [Department of Mechanical Engineering, Kun Shan University, Tainan 71003 (China); Ko, Yung-Chang [China Steel Corporation, Kaohsiung 81233 (China); Lin, Ta-Hui [Department of Mechanical Engineering, National Cheng Kung University, Tainan 70101 (China)

    2011-03-15

    The objective of this study is to design, set up and operate an incinerator system capable of providing clean exhaust and safety control for burning oil gas generated during the recovery process of oil spill in Taiwan. In this study, we successfully develop a vertical-type incinerator, which consists of five oil gas burners with entrained primary air, a pilot burner, and an auxiliary burner. The incinerator system is equipped with necessary control units in order to achieve safe, easy, fast, and efficient operation. Flame appearance, flue gas temperature and CO emission of the incinerator system for burning oil gas are reported and discussed. Under the long-term operation, it is found that the new designed incinerator is satisfactory for burning oil gas with low supply pressure at various compositions and supply rates during the recovery process of oil spill. It is noteworthy that the results obtained herein are of great significance to provide a good guidance for those who need to design, set up and operate an incinerator system providing clean exhaust and safety control for burning oil gas generated during the recovery process of oil spill in a polluted site with a large area. (author)

  14. Study on incineration technology of oil gas generated during the recovery process of oil spill

    International Nuclear Information System (INIS)

    Hou, Shuhn-Shyurng; Ko, Yung-Chang; Lin, Ta-Hui

    2011-01-01

    The objective of this study is to design, set up and operate an incinerator system capable of providing clean exhaust and safety control for burning oil gas generated during the recovery process of oil spill in Taiwan. In this study, we successfully develop a vertical-type incinerator, which consists of five oil gas burners with entrained primary air, a pilot burner, and an auxiliary burner. The incinerator system is equipped with necessary control units in order to achieve safe, easy, fast, and efficient operation. Flame appearance, flue gas temperature and CO emission of the incinerator system for burning oil gas are reported and discussed. Under the long-term operation, it is found that the new designed incinerator is satisfactory for burning oil gas with low supply pressure at various compositions and supply rates during the recovery process of oil spill. It is noteworthy that the results obtained herein are of great significance to provide a good guidance for those who need to design, set up and operate an incinerator system providing clean exhaust and safety control for burning oil gas generated during the recovery process of oil spill in a polluted site with a large area.

  15. Advancements in Imaging Technology: Do They (or Will They) Equate to Advancements in Our Knowledge of Recovery in Whiplash?

    Science.gov (United States)

    Elliott, James M; Dayanidhi, Sudarshan; Hazle, Charles; Hoggarth, Mark A; McPherson, Jacob; Sparks, Cheryl L; Weber, Kenneth A

    2016-10-01

    Synopsis It is generally accepted that up to 50% of those with a whiplash injury following a motor vehicle collision will fail to fully recover. Twenty-five percent of these patients will demonstrate a markedly complex clinical picture that includes severe pain-related disability, sensory and motor disturbances, and psychological distress. A number of psychosocial factors have shown prognostic value for recovery following whiplash from a motor vehicle collision. To date, no management approach (eg, physical therapies, education, psychological interventions, or interdisciplinary strategies) for acute whiplash has positively influenced recovery rates. For many of the probable pathoanatomical lesions (eg, fracture, ligamentous rupture, disc injury), there remains a lack of available clinical tests for identifying their presence. Fractures, particularly at the craniovertebral and cervicothoracic junctions, may be radiographically occult. While high-resolution computed tomography scans can detect fractures, there remains a lack of prevalence data for fractures in this population. Conventional magnetic resonance imaging has not consistently revealed lesions in patients with acute or chronic whiplash, a "failure" that may be due to limitations in the resolution of available devices and the use of standard sequences. The technological evolution of imaging techniques and sequences eventually might provide greater resolution to reveal currently elusive anatomical lesions (or, perhaps more importantly, temporal changes in physiological responses to assumed lesions) in those patients at risk of poor recovery. Preliminary findings from 2 prospective cohort studies in 2 different countries suggest that this is so, as evidenced by changes to the structure of skeletal muscles in those who do not fully recover. In this clinical commentary, we will briefly introduce the available imaging decision rules and the current knowledge underlying the pathomechanics and pathophysiology of

  16. Fifth DOE symposium on enhanced oil and gas recovery and improved drilling technology. Volume 2. Oil

    Energy Technology Data Exchange (ETDEWEB)

    Linville, B. [ed.

    1979-01-01

    Volume 2 contains papers from the following sessions: residual oil determination; thermal methods; heavy oil-tar sands; technology transfer; and carbon dioxide flooding. Individual papers were processed.

  17. Selective removal/recovery of RCRA metals from waste and process solutions using polymer filtration{trademark} technology

    Energy Technology Data Exchange (ETDEWEB)

    Smith, B.F. [Los Alamos National Lab., NM (United States)

    1997-10-01

    Resource Conservation and Recovery Act (RCRA) metals are found in a number of process and waste streams at many DOE, U.S. Department of Defense, and industrial facilities. RCRA metals consist principally of chromium, mercury, cadmium, lead, and silver. Arsenic and selenium, which form oxyanions, are also considered RCRA elements. Discharge limits for each of these metals are based on toxicity and dictated by state and federal regulations (e.g., drinking water, RCRA, etc.). RCRA metals are used in many current operations, are generated in decontamination and decommissioning (D&D) operations, and are also present in old process wastes that require treatment and stabilization. These metals can exist in solutions, as part of sludges, or as contaminants on soils or solid surfaces, as individual metals or as mixtures with other metals, mixtures with radioactive metals such as actinides (defined as mixed waste), or as mixtures with a variety of inert metals such as calcium and sodium. The authors have successfully completed a preliminary proof-of-principle evaluation of Polymer Filtration{trademark} (PF) technology for the dissolution of metallic mercury and have also shown that they can remove and concentrate RCRA metals from dilute solutions for a variety of aqueous solution types using PF technology. Another application successfully demonstrated is the dilute metal removal of americium and plutonium from process streams. This application was used to remove the total alpha contamination to below 30 pCi/L for the wastewater treatment plant at TA-50 at Los Alamos National Laboratory (LANL) and from nitric acid distillate in the acid recovery process at TA-55, the Plutonium Facility at LANL (ESP-CP TTP AL16C322). This project will develop and optimize the PF technology for specific DOE process streams containing RCRA metals and coordinate it with the needs of the commercial sector to ensure that technology transfer occurs.

  18. Selective removal/recovery of RCRA metals from waste and process solutions using polymer filtration trademark technology

    International Nuclear Information System (INIS)

    Smith, B.F.

    1997-01-01

    Resource Conservation and Recovery Act (RCRA) metals are found in a number of process and waste streams at many DOE, U.S. Department of Defense, and industrial facilities. RCRA metals consist principally of chromium, mercury, cadmium, lead, and silver. Arsenic and selenium, which form oxyanions, are also considered RCRA elements. Discharge limits for each of these metals are based on toxicity and dictated by state and federal regulations (e.g., drinking water, RCRA, etc.). RCRA metals are used in many current operations, are generated in decontamination and decommissioning (D ampersand D) operations, and are also present in old process wastes that require treatment and stabilization. These metals can exist in solutions, as part of sludges, or as contaminants on soils or solid surfaces, as individual metals or as mixtures with other metals, mixtures with radioactive metals such as actinides (defined as mixed waste), or as mixtures with a variety of inert metals such as calcium and sodium. The authors have successfully completed a preliminary proof-of-principle evaluation of Polymer Filtration trademark (PF) technology for the dissolution of metallic mercury and have also shown that they can remove and concentrate RCRA metals from dilute solutions for a variety of aqueous solution types using PF technology. Another application successfully demonstrated is the dilute metal removal of americium and plutonium from process streams. This application was used to remove the total alpha contamination to below 30 pCi/L for the wastewater treatment plant at TA-50 at Los Alamos National Laboratory (LANL) and from nitric acid distillate in the acid recovery process at TA-55, the Plutonium Facility at LANL (ESP-CP TTP AL16C322). This project will develop and optimize the PF technology for specific DOE process streams containing RCRA metals and coordinate it with the needs of the commercial sector to ensure that technology transfer occurs

  19. Poor recovery of households from out-of-pocket payment for assisted reproductive technology.

    Science.gov (United States)

    Dyer, Silke J; Vinoos, Latiefa; Ataguba, John E

    2017-12-01

    How do households recover financially from direct out-of-pocket payment for government subsidized ART? After a mean of 3.8 years, there was poor recovery from initiated financial coping strategies with the poorest households being disproportionatley affected. Out-of-pocket payment for health services can create financial burdens for households and inequities in access to care. A previous study conducted at a public-academic institution in South Africa documented that patient co-payment for one cycle of ART resulted in catastrophic expenditure for one in five households, and more frequently among the poorest, requiring diverse financial coping strategies to offset costs. An observational follow-up study was conducted ~4 years later to assess financial recovery among the 135 couples who had participated in this previous study. Data were collected over 12 months from 73 informants. The study was conducted at a level three referral hospital in the public-academic health sector of South Africa. At this institution ART is subsidized but requires patient co-payments. A purpose-built questionnaire capturing socio-economic information and recovery from financial coping strategies which had been activated was administered to all informants. Financial recovery was defined as the resolution of strategies initiated for the specific purpose of covering the original ART cycle. Results were analysed by strategy and household with the latter including analysis by tertiles based on socio-economic status at the time of the original expenditure. In addition to descriptive statistics, the Pearson Chi squared test was used to determine differences between socioeconomic tertiles and associations between recovery and other variables. The participation rate in this follow-up study was 54.1% with equal representation from the three socio-economic tertiles. The average duration of follow-up was 46.1 months (±9.78 SD) and respondents' mean age was 42 years (range 31-52). The recovery rate

  20. School District Information Technology Disaster Recovery Planning: An Explanatory Case Study

    Science.gov (United States)

    Gray, Shaun L.

    2017-01-01

    Despite research and practitioner articles outlining the importance information technology disaster plans (ITDRPs) to organizational success, barriers have impeded the process of disaster preparation for Burlington County New Jersey school districts. The purpose of this explanatory qualitative case study was to understand how technology leader…

  1. Review: Water recovery from brines and salt-saturated solutions: operability and thermodynamic efficiency considerations for desalination technologies.

    Science.gov (United States)

    Vane, Leland M

    2017-03-08

    When water is recovered from a saline source, a brine concentrate stream is produced. Management of the brine stream can be problematic, particularly in inland regions. An alternative to brine disposal is recovery of water and possibly salts from the concentrate. This review provides an overview of desalination technologies and discusses the thermodynamic efficiencies and operational issues associated with the various technologies particularly with regard to high salinity streams. Due to the high osmotic pressures of the brine concentrates, reverse osmosis, the most common desalination technology, is impractical. Mechanical vapor compression which, like reverse osmosis, utilizes mechanical work to operate, is reported to have the highest thermodynamic efficiency of the desalination technologies for treatment of salt-saturated brines. Thermally-driven processes, such as flash evaporation and distillation, are technically able to process saturated salt solutions, but suffer from low thermodynamic efficiencies. This inefficiency could be offset if an inexpensive source of waste or renewable heat could be used. Overarching issues posed by high salinity solutions include corrosion and the formation of scales/precipitates. These issues limit the materials, conditions, and unit operation designs that can be used.

  2. Technologies for recovery of transuranics and immobilization of non-high-level wastes

    International Nuclear Information System (INIS)

    Richardson, G.L.

    1976-06-01

    This paper supplements the preceding Symposium paper on ''Treatment Technologies for Non-High-Level Wastes (U.S.A.)'' by C. R. Cooley and D. E. Clark (HEDL-SA-851), and covers the additional treatment technologies in use and under development for recovering transuranics and immobilizing non-high-level wastes for transportation and storage. Methods used for nondestructive assay (NDA) of TRU elements in non-high-level wastes are also discussed briefly

  3. Integrating Microbial Electrochemical Technology with Forward Osmosis and Membrane Bioreactors: Low-Energy Wastewater Treatment, Energy Recovery and Water Reuse

    KAUST Repository

    Werner, Craig M.

    2014-06-01

    Wastewater treatment is energy intensive, with modern wastewater treatment processes consuming 0.6 kWh/m3 of water treated, half of which is required for aeration. Considering that wastewater contains approximately 2 kWh/m3 of energy and represents a reliable alternative water resource, capturing part of this energy and reclaiming the water would offset or even eliminate energy requirements for wastewater treatment and provide a means to augment traditional water supplies. Microbial electrochemical technology is a novel technology platform that uses bacteria capable of producing an electric current outside of the cell to recover energy from wastewater. These bacteria do not require oxygen to respire but instead use an insoluble electrode as their terminal electron acceptor. Two types of microbial electrochemical technologies were investigated in this dissertation: 1) a microbial fuel cell that produces electricity; and 2) a microbial electrolysis cell that produces hydrogen with the addition of external power. On their own, microbial electrochemical technologies do not achieve sufficiently high treatment levels. Innovative approaches that integrate microbial electrochemical technologies with emerging and established membrane-based treatment processes may improve the overall extent of wastewater treatment and reclaim treated water. Forward osmosis is an emerging low-energy membrane-based technology for seawater desalination. In forward osmosis water is transported across a semipermeable membrane driven by an osmotic gradient. The microbial osmotic fuel cell described in this dissertation integrates a microbial fuel cell with forward osmosis to achieve wastewater treatment, energy recovery and partial desalination. This system required no aeration and generated more power than conventional microbial fuel cells using ion exchange membranes by minimizing electrochemical losses. Membrane bioreactors incorporate semipermeable membranes within a biological wastewater

  4. Biohydrometallurgy and membrane technology for resource recovery from low-grade ores and mining residuals; Biohydrometallurgie und Membrantechnik zur Wertstoffgewinnung aus Armerzlagerstaetten und bergbaulichen Altablagerungen

    Energy Technology Data Exchange (ETDEWEB)

    Werner, Arite; Meschke, Katja; Bohlke, Kevin; Haseneder, Roland [TU Bergakademie Freiberg (Germany). Inst. fuer Thermische Verfahrenstechnik, Umwelt-, Naturstoffverfahrenstechnik (ITUN); Daus, Birgit [Helmholtz-Zentrum fuer Umweltforschung GmbH - UFZ, Leipzig (Germany). Dept. Analytik; Repke, Jens-Uwe [Technische Univ. Berlin (Germany). FG Dynamik und Betrieb Technischer Anlagen

    2017-02-15

    The recovery of strategic elements from secondary mineral resources and low grade ores is of increasing relevance, due to a changing global market as well as for reasons of sustainability. The present article shows the potential of biohydrometallurgy as an efficient technology for mobilization of metals from secondary mineral resources. Furthermore, the application of membrane separation as a successful technique for the recovery of metals from bioleaching solutions is presented. These issues are discussed within the scope of recent research projects.

  5. Total recovery of nitrogen and phosphorus from three wetland plants by fast pyrolysis technology.

    Science.gov (United States)

    Liu, Wu-Jun; Zeng, Fan-Xin; Jiang, Hong; Yu, Han-Qing

    2011-02-01

    Fast pyrolysis of three wetland plants (Alligator weed, Oenanthe javanica and Typha angustifolia) in a vertical drop fixed bed reactor was investigated in this study. The experiments were carried out at different pyrolysis temperatures, and the maximum bio-oil yields achieved were 42.3%, 40.2% and 43.6% for Alligator weed, Oenanthe javanica and Typha angustifolia, respectively. The elemental composition of the bio-oil and char were analyzed, and the results show that a low temperature was appropriate for the nitrogen and phosphorus enrichment in char. GC-MS analysis shows that nitrogenous compounds, phenols and oxygenates were the main categories in the bio-oil. A series of leaching tests were carried out to examine the recovery of the nitrogen and phosphorus in the char, and the results indicate that significant fractions of nitrogen and phosphorus could be recovered by leaching process. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Preliminary market assessment of fluidized-bed waste-heat recovery technology

    Energy Technology Data Exchange (ETDEWEB)

    Campos, F.T.; Fey, C.L.; Grogan, P.J.; Klein, N.P.

    1980-06-01

    A preliminary assessment of fluidized-bed waste-heat recovery (FBWHR) system market potential is presented with emphasis on the factors influencing industrial acceptability. Preliminary market potential areas are identified based on the availability of waste heat. Trends in energy use are examined to see the effect they might have on these market potential areas in the future. Focus groups interviews are used to explore important factors in the industrial decision-making process. These important factors are explored quantitatively in a survey of industrial plant engineers. The survey deals with the waste-heat boiler configuration of the FBWHR system. Results indicate market acceptance of the fluidized-bed waste-heat boiler could be quite low.

  7. Mechanical harvesting of pumpkin seeds

    OpenAIRE

    Sito, Stjepan; Ivančan, Stjepan; Barković, Edi; Mucalo, Ana

    2009-01-01

    One of the key problems in production technology of pumpkin seed for oil production is mechanized harvesting and losses of seed during mechanical harvesting. The losses of pumpkin seed during mechanical harvesting at peripheral velocity of 1.57 m/s (optimally adjusted machine) were 4.4% for Gleisdorf species, 5.2% for Slovenska species and 7.8% for pumpkin with husk. The higher average losses of pumpkin seed with husk were caused by tight connection of seed and pumpkin fruit.

  8. Detailed Modeling of Distillation Technologies for Closed-Loop Water Recovery Systems

    Science.gov (United States)

    Allada, Rama Kumar; Lange, Kevin E.; Anderson, Molly S.

    2011-01-01

    Detailed chemical process simulations are a useful tool in designing and optimizing complex systems and architectures for human life support. Dynamic and steady-state models of these systems help contrast the interactions of various operating parameters and hardware designs, which become extremely useful in trade-study analyses. NASA?s Exploration Life Support technology development project recently made use of such models to compliment a series of tests on different waste water distillation systems. This paper presents efforts to develop chemical process simulations for three technologies: the Cascade Distillation System (CDS), the Vapor Compression Distillation (VCD) system and the Wiped-Film Rotating Disk (WFRD) using the Aspen Custom Modeler and Aspen Plus process simulation tools. The paper discusses system design, modeling details, and modeling results for each technology and presents some comparisons between the model results and recent test data. Following these initial comparisons, some general conclusions and forward work are discussed.

  9. Kinetic energy recovery turbine technology: resource assessment and site development strategy

    Energy Technology Data Exchange (ETDEWEB)

    Briand, Marie-Helene; Ng, Karen

    2010-09-15

    New technologies to extract readily available energy from waves, tides and river flow are being developed and are promising but are still at the demonstration stage. Harnessing kinetic energy from currents (hydrokinetic power) is considered an attractive and cost-effective renewable energy solution to replace thermal generation without requiring construction of a dam or large civil works. The nature of this innovative hydrokinetic technology requires an adaptation of conventional approach to project engineering and environmental impact studies. This paper presents the approach developed by RSW to design a hydrokinetic site in the riverine environment, from resource assessment to detailed engineering design.

  10. Seed for change

    NARCIS (Netherlands)

    Hassena Beko, Mohammed

    2017-01-01

    Ethiopia is an agrarian country where agriculture dominates the economy, and thus agriculture is considered as an engine of growth by the government. Seed as one of the agricultural technologies, in fact, a carrier of many technologies, is critical to increasing production, but the use of quality

  11. Energy recovery potential and life cycle impact assessment of municipal solid waste management technologies in Asian countries using ELP model

    Energy Technology Data Exchange (ETDEWEB)

    Pandyaswargo, Andante Hadi; Onoda, Hiroshi; Nagata, Katsuya [Waseda Univ., Saitama (Japan). Graduate School of Environment and Energy Engineering

    2012-11-01

    Natural resource scarcity and the effects of environmental destruction have pushed societies to use and reuse resources more efficiently. Waste should no longer be seen as a burden but rather as another source of material such as energy fuel. This study analyzes the potential of three waste management technologies - incineration with energy recovery, composting, and sanitary landfill gas collection - as ways to recover energy and material from municipal solid waste. The study applies the environmental load point (ELP) method and utilizes municipal waste characteristics and composition from India, Indonesia, and China as case studies. The ELP methodology employs integrated weighting in the quantification process to get a one-unit result. This study particularly uses analytic hierarchical process questionnaires to get the weighting value of the nine impact categories: energy depletion, global warming, ozone depletion, resource consumption, ecosystem influence, water pollution, waste disposal, air pollution, and acid rain. The results show that the scenario which includes composting organic waste and sanitary landfill with gas collection for energy recovery has medium environmental impact and the highest practicability. The optimum material and energy potential is from the Chinese case study in which 254 tonnes of compost fertilizer and 60 MWh of electricity is the estimated output for every 1,000 tonnes of waste treated. (orig.)

  12. Development of Auto-Seeding System Using Image Processing Technology in the Sapphire Crystal Growth Process via the Kyropoulos Method

    Directory of Open Access Journals (Sweden)

    Churl Min Kim

    2017-04-01

    Full Text Available The Kyropoulos (Ky and Czochralski (Cz methods of crystal growth are used for large-diameter single crystals. The seeding process in these methods must induce initial crystallization by initiating contact between the seed crystals and the surface of the melted material. In the Ky and Cz methods, the seeding process lays the foundation for ingot growth during the entire growth process. When any defect occurs in this process, it is likely to spread to the entire ingot. In this paper, a vision system was constructed for auto seeding and for observing the surface of the melt in the Ky method. An algorithm was developed to detect the time when the internal convection of the melt is stabilized by observing the shape of the spoke pattern on the melt material surface. Then, the vision system and algorithm were applied to the growth furnace, and the possibility of process automation was examined for sapphire growth. To confirm that the convection of the melt was stabilized, the position of the island (i.e., the center of a spoke pattern was detected using the vision system and image processing. When the observed coordinates for the center of the island were compared with the coordinates detected from the image processing algorithm, there was an average error of 1.87 mm (based on an image with 1024 × 768 pixels.

  13. Recovery of valuable nitrogen compounds from agricultural liquid wastes: potential possibilities, bottlenecks and future technological challenges.

    NARCIS (Netherlands)

    Rulkens, W.H.; Klapwijk, A.; Willers, H.C.

    1998-01-01

    Agricultural liquid livestock wastes are an important potential source of valuable nitrogen-containing compounds such as ammonia and proteins. Large volumetric quantities of these wastes are produced in areas with a high livestock production density. Much technological research has been carried out

  14. Water Recovery Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The AES Water Recovery Project (WRP) is advancing environmental control and life support systems water recovery technologies to support human exploration beyond low...

  15. Re-Innovating. Technological research contribution in the recovery of Our Lady of Mercy Church in Baranzate

    Directory of Open Access Journals (Sweden)

    Anna Mangiarotti

    2011-04-01

    Full Text Available The recovery project of Our Lady of Mercy Church in Baranzate, by Angelo Mangiarotti and Bruno Morassutti, with Aldo Favini for structures, built in 1956, and now in charge by Giulio Barazzetta, Anna Mangiarotti, Ingrid Paoletti, Tito Neri for structures and Giancarlo Chiesa for hvac, has requested a high technological effort in order to identify the technical options in order to ‘re-innovate’ on this building. The aim is to increase performances and internal comfort, while maintaining the original concept of the church. The deteriorated envelope will be changed with a façade envelope in steel dry assembled and a triple glazed unit high performance and with face fritted surfaced in order to reproduce the original architectural effects. Thanks to hvac, performances are radically improved.

  16. Supporting Technology for Enhanced Oil Recovery-EOR Thermal Processes Report IV-12

    Energy Technology Data Exchange (ETDEWEB)

    Izequeido, Alexandor

    2001-04-01

    This report contains the results of efforts under the six tasks of the Ninth Amendment and Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Agreement. The report is presented in sections (for each of the 6 tasks) and each section contains one or more reports prepared by various individuals or groups describing the results of efforts under each of the tasks. A statement of each task, taken from the agreement, is presented on the first page of each section. The tasks are numbered 62 through 67. The first, second, third, fourth, fifth, sixth, seventh, eight, and ninth reports on Annex IV, [Venezuela MEM/USA-DOE Fossil Energy Report IV-1, IV-2, IV-3, IV-4, IV-5, IV-6, IV-7, and IV-8 (DOE/BETC/SP-83/15, DOE/BC-84/6/SP, DOE/BC-86/2/SP, DOE/BC-87/2/SP, DOE/BC-89/1/SP, DOE/BC-90/1/SP) DOE/BC-92/1/SP, DOE/BC-93/3/SP, and DOE/BC-95/3/SP] contain the results from the first 61 tasks. Those reports are dated April 1983, August 1984, March 1986, July 1! 987, November 1988, December 1989, October 1991, February 1993, and March 1995 respectively.

  17. Recuperator with microjet technology as a proposal for heat recovery from low-temperature sources

    Directory of Open Access Journals (Sweden)

    Wajs Jan

    2015-12-01

    Full Text Available A tendency to increase the importance of so-called dispersed generation, based on the local energy sources and the working systems utilizing both the fossil fuels and the renewable energy resources is observed nowadays. Generation of electricity on industrial or domestic scale together with production of heat can be obtained for example through employment of the ORC systems. It is mentioned in the EU directive 2012/27/EU for cogenerative production of heat and electricity. For such systems the crucial points are connected with the heat exchangers, which should be small in size but be able to transfer high heat fluxes. In presented paper the prototype microjet heat exchanger dedicated for heat recovery systems is introduced. Its novel construction is described together with the systematical experimental analysis of heat transfer and flow characteristics. Reported results showed high values of the overall heat transfer coefficient and slight increase in the pressure drop. The results of microjet heat exchanger were compared with the results of commercially available compact plate heat exchanger.

  18. Recuperator with microjet technology as a proposal for heat recovery from low-temperature sources

    Science.gov (United States)

    Wajs, Jan; Mikielewicz, Dariusz; Fornalik-Wajs, Elżbieta; Bajor, Michał

    2015-12-01

    A tendency to increase the importance of so-called dispersed generation, based on the local energy sources and the working systems utilizing both the fossil fuels and the renewable energy resources is observed nowadays. Generation of electricity on industrial or domestic scale together with production of heat can be obtained for example through employment of the ORC systems. It is mentioned in the EU directive 2012/27/EU for cogenerative production of heat and electricity. For such systems the crucial points are connected with the heat exchangers, which should be small in size but be able to transfer high heat fluxes. In presented paper the prototype microjet heat exchanger dedicated for heat recovery systems is introduced. Its novel construction is described together with the systematical experimental analysis of heat transfer and flow characteristics. Reported results showed high values of the overall heat transfer coefficient and slight increase in the pressure drop. The results of microjet heat exchanger were compared with the results of commercially available compact plate heat exchanger.

  19. Technological methods for the combined recovery of spent fuel elements from thermal neutron atomic reactors

    Energy Technology Data Exchange (ETDEWEB)

    Shevchenko, V B; Smelov, V S; Kozlov, A G; Smetanin, E Ya; Chubukov, V V; Anisimov, V I

    1976-01-01

    Results are presented for using a two-cycle extraction process to recover the uranium from a water-moderated nuclear-plant fuel cell after it had cooled 14 months. The general schematic is as follows: dissolution of the fuel in nitric acid; simultaneous extraction of U, Pu, and Np with tributyl phosphate; reduction with hydrazine and re-extraction of Pu and Np and their selective elution; re-examination of U; the regeneration of the extractant and beginning of the second cycle. The purification coefficients of U from other ..gamma..-radiating products and from Pu were equal to 1.4 x 10/sup 7/ and 5.5 x 10/sup 5/. The losses of U, Pu, and Np with the washing solutions were 0.007, 0.024, and 3.4% respectively of the initial amount. An analogous extraction process is discussed for separating Sr, Am, Cm, and the rare earth elements. A recovery of 92 to 95% of each of the four is effected.

  20. Review of technology for Arctic offshore oil and gas recovery. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Sackinger, W. M.

    1980-06-06

    This volume contains appendices of the following: US Geological Survey Arctic operating orders, 1979; Det Noske Vertas', rules for the design, construction and inspection of offshore technology, 1977; Alaska Oil and Gas Association, industry research projects, March 1980; Arctic Petroleum Operator's Association, industry research projects, January 1980; selected additional Arctic offshore bibliography on sea ice, icebreakers, Arctic seafloor conditions, ice-structures, frost heave and structure icing.

  1. Cost (non)-recovery by platform technology facilities in the Bio21 Cluster.

    Science.gov (United States)

    Gibbs, Gerard; Clark, Stella; Quinn, Julieanne; Gleeson, Mary Joy

    2010-04-01

    Platform technologies (PT) are techniques or tools that enable a range of scientific investigations and are critical to today's advanced technology research environment. Once installed, they require specialized staff for their operations, who in turn, provide expertise to researchers in designing appropriate experiments. Through this pipeline, research outputs are raised to the benefit of the researcher and the host institution. Platform facilities provide access to instrumentation and expertise for a wide range of users beyond the host institution, including other academic and industry users. To maximize the return on these substantial public investments, this wider access needs to be supported. The question of support and the mechanisms through which this occurs need to be established based on a greater understanding of how PT facilities operate. This investigation was aimed at understanding if and how platform facilities across the Bio21 Cluster meet operating costs. Our investigation found: 74% of platforms surveyed do not recover 100% of direct operating costs and are heavily subsidized by their home institution, which has a vested interest in maintaining the technology platform; platform managers play a major role in establishing the costs and pricing of the facility, normally in a collaborative process with a management committee or institutional accountant; and most facilities have a three-tier pricing structure recognizing internal academic, external academic, and commercial clients.

  2. International perspective on energy recovery from landfill gas. A joint report of the IEA Bioenergy Programme and the IEA CADDET Renewable Energy Technologies Programme

    International Nuclear Information System (INIS)

    2000-02-01

    This report presents a review of the current status of energy recovery from landfill gas. Utilisation, collection and treatment technologies are examined, and ten case studies of landfill gas utilisation are given. Non-technical issues such as barrier to energy recovery from landfill gas, landfill gas generation, and landfill gas emissions are addressed, and recommendations are outlined. The potential market for landfill gas, and market opportunities are considered. Details of the objectives of the International Energy Agency (IEA), the IEA Bioenergy Programme, and the IEA CADDET Renewable Energy Technologies Programme are included in appendices. (UK)

  3. Wood Polymer Composites Technology Supporting the Recovery and Protection of Tropical Forests: The Amazonian Phoenix Project

    Directory of Open Access Journals (Sweden)

    Antonio D. Nobre

    2009-12-01

    Full Text Available The Amazon Rain Forest has attracted worldwide attention due its large scale services to climate and also due to the green house gas emissions arising from deforestation. Contributing to the later and detrimental to the former, timber logging in the region has very low efficiency (only 16% in the production chain. Such timber extraction, often referred to as selective logging, has been claimed as a sustainable extractive industry, because the forest is said to restore itself through regenerative growth. But forest regeneration in the Amazon occurs naturally only in a very limited scale, resulting that large scale, low efficiency logging poses a big treat to the functional integrity of the biome, supplying to the market only a fraction of what it could if done differently. So, instead of extracting big centennial logs from the forests, the Amazonian Phoenix project proposes that large expanses of degraded lands be reforested using pioneer plants species from the forest itself. These plants have the capacity to heal gaps in the canopy, being able to grow and produce woody biomass in very extreme conditions. The idea is to mimic the regenerative dynamics of the natural ecosystem in short cycle agrosilvicultural production areas, utilizing a variety of technologies to transform raw fibers from these fast growth native plants into a variety of materials with high aggregated value. This communication presents the research on natural fibers by the Polymeric Composites Group within the Amazonian Phoenix Project. Sustainable technologies employing materials with good and responsible ecological footprints are important and necessary stimulus for a change in the destructive economical activities present in the Amazon frontiers. The relatively well established wood polymer composites technology, for example, is a good candidate solution. Two research and development fields are proposed: the first one considers production systems with simple and cheap

  4. Conventional recovery : new frac technologies plus better royalty rates revive oil-related activity in Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Chandler, G.

    2010-11-15

    The revolutionary application of hydraulic fracturing to horizontal wellbores took several years to be deployed on a significant scale in Alberta, even though the technology was locally developed, because the province lacked the appropriate fiscal regime to interest investors. The Province put forward revised drilling incentives, which combined with the prospect of drawing more oil out of known conventional oilfields via multi-stage fracs on horizontal wells has spurred activity. The technology can be used for both oil and gas targets but must be adjusted for differences in permeability in the formations, which results in different fracturing properties. The reduced permeability of tight gas formations also requires a frac treatment an order of magnitude greater than for tight oil formations. Different chemicals and proppant are applied to oil and gas targets. Downhole motors developed for horizontal drilling are now being applied to drilling vertical wells because they create a straighter hole. Oil-based mud is used in drilling shales instead of water-based mud because shales often have clays that interact with water. The oil reduces the lifespan of the rubber liners, so rubber compounds that are less susceptible are under development. To complement the efficiencies gained from horizontal fracing, a downhole tool that generates a fluid pulse in the reservoir has been developed. The pulse momentarily expands the rock's pore structure, helping to move fluid through the formation and allowing oil that has never before moved to flow freely. The wave technology is also applicable to remediating wells. 3 figs.

  5. Recovery of the knowledge in science and technology of the millennial Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Bokhimi, X. [Institute of Physics, National University of Mexico (UNAM), A.P. 20-364, 01000, Mexico D. F. (Mexico)]. e-mail: bokhimi@fisica.unam.mx

    2006-07-01

    The development of Mexican Culture began many millennia ago, and it was always associated to the development of science and technology, as it happened in other ancient cultures. As it frequently occurs in human history, the information about the Millennial Mexican Culture suffered a tremendous lost when it became in contact with Europeans in the Sixteen Century, because almost all of the books containing this information were burned, and the Mexican priests and teachers that knew it were killed or conditioned to teaching. Only a few books survived this catastrophe, and some of the priests, teachers, or their students that coexisted with the new social situation served as information source of the Mexican Culture to generate documents in the Sixteen Century about it; which will be used as the technical basic primary information source to recover the knowledge about science and technology of the Millennial Mexico. This information help to find the raw materials used in different technological processes; for example, in painting or in dying. It will be also used to interpret the results about the observed materials in archaeological monuments paintings, and in documents, when they are analyzed with modern characterization techniques as X-ray diffraction and electron microscopy. Another source of information of the Millennial Mexican Culture is the analysis of actual processes having an ancient Mexican origin. In this case, however, it is necessary to make compatible the ingredients used nowadays with those registered in the documents of the Sixteen Century to accept them as belonging to the Millennial Mexican Culture. In this work, we present details about the results obtained for the dyes nocheztli, xochipalli, matlalli, tlacehuilli, and k'axti. (Author)

  6. Recovery of the knowledge in science and technology of the millennial Mexico

    International Nuclear Information System (INIS)

    Bokhimi, X.

    2006-01-01

    The development of Mexican Culture began many millennia ago, and it was always associated to the development of science and technology, as it happened in other ancient cultures. As it frequently occurs in human history, the information about the Millennial Mexican Culture suffered a tremendous lost when it became in contact with Europeans in the Sixteen Century, because almost all of the books containing this information were burned, and the Mexican priests and teachers that knew it were killed or conditioned to teaching. Only a few books survived this catastrophe, and some of the priests, teachers, or their students that coexisted with the new social situation served as information source of the Mexican Culture to generate documents in the Sixteen Century about it; which will be used as the technical basic primary information source to recover the knowledge about science and technology of the Millennial Mexico. This information help to find the raw materials used in different technological processes; for example, in painting or in dying. It will be also used to interpret the results about the observed materials in archaeological monuments paintings, and in documents, when they are analyzed with modern characterization techniques as X-ray diffraction and electron microscopy. Another source of information of the Millennial Mexican Culture is the analysis of actual processes having an ancient Mexican origin. In this case, however, it is necessary to make compatible the ingredients used nowadays with those registered in the documents of the Sixteen Century to accept them as belonging to the Millennial Mexican Culture. In this work, we present details about the results obtained for the dyes nocheztli, xochipalli, matlalli, tlacehuilli, and k'axti. (Author)

  7. Technology Roadmap. Energy Loss Reduction and Recovery in Industrial Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2004-11-01

    To help guide R&D decision-making and gain industry insights on the top opportunities for improved energy systems, ITP sponsored the Energy Loss Reduction and Recoveryin Energy Systems Roadmapping Workshopin April 2004 in Baltimore, Maryland. This Technology Roadmapis based largely on the results of the workshop and additional industrial energy studies supported by ITP and EERE. It summarizes industry feedback on the top opportunities for R&D investments in energy systems, and the potential for national impacts on energy use and the environment.

  8. Recovery of Cobalt as Cobalt Oxalate from Cobalt Tailings Using Moderately Thermophilic Bioleaching Technology and Selective Sequential Extraction

    Directory of Open Access Journals (Sweden)

    Guobao Chen

    2016-07-01

    Full Text Available Cobalt is a very important metal which is widely applied in various critical areas, however, it is difficult to recover cobalt from minerals since there is a lack of independent cobalt deposits in nature. This work is to provide a complete process to recover cobalt from cobalt tailings using the moderately thermophilic bioleaching technology and selective sequential extraction. It is found that 96.51% Co and 26.32% Cu were extracted after bioleaching for four days at 10% pulp density. The mean compositions of the leach solutions contain 0.98 g·L−1 of Co, 6.52 g·L−1 of Cu, and 24.57 g·L−1 of Fe (III. The copper ion was then recovered by a solvent extraction process and the ferric ions were selectively removed by applying a goethite deironization process. The technological conditions of the above purification procedures were deliberately discussed. Over 98.6% of copper and 99.9% of ferric ions were eliminated from the leaching liquor. Cobalt was finally produced as cobalt oxalate and its overall recovery during the whole process was greater than 95%. The present bioleaching process of cobalt is worth using for reference to deal with low-grade cobalt ores.

  9. Data summary of municipal solid waste management alternatives. Volume 7, Appendix E -- Material recovery/material recycling technologies

    Energy Technology Data Exchange (ETDEWEB)

    None

    1992-10-01

    The enthusiasm for and commitment to recycling of municipal solid wastes is based on several intuitive benefits: Conservation of landfill capacity; Conservation of non-renewable natural resources and energy sources; Minimization of the perceived potential environmental impacts of MSW combustion and landfilling; Minimization of disposal costs, both directly and through material resale credits. In this discussion, ``recycling`` refers to materials recovered from the waste stream. It excludes scrap materials that are recovered and reused during industrial manufacturing processes and prompt industrial scrap. Materials recycling is an integral part of several solid waste management options. For example, in the preparation of refuse-derived fuel (RDF), ferrous metals are typically removed from the waste stream both before and after shredding. Similarly, composting facilities, often include processes for recovering inert recyclable materials such as ferrous and nonferrous metals, glass, Plastics, and paper. While these two technologies have as their primary objectives the production of RDF and compost, respectively, the demonstrated recovery of recyclables emphasizes the inherent compatibility of recycling with these MSW management strategies. This appendix discusses several technology options with regard to separating recyclables at the source of generation, the methods available for collecting and transporting these materials to a MRF, the market requirements for post-consumer recycled materials, and the process unit operations. Mixed waste MRFs associated with mass bum plants are also presented.

  10. Energy recovery from waste streams with microbial fuel cell (MFC)-based technologies

    DEFF Research Database (Denmark)

    Zhang, Yifeng

    to the sediment. The proposed approach may broad the application of sediment MFC technology. A novel submersible microbial desalination cell was developed as an in situ and non-invasive approach for nitrate removal from groundwater. The system performance in terms of power generation and nitrate removal...... efficiency were investigated. The effects of hydraulic retention time, external resistance, other ionic species in the groundwater and external nitrification on the system performance were also elucidated. Over 90% of nitrate was removed from groundwater without energy input, water pressure, draw solution......-based bio-electrochemical systems. To reduce the energy cost in nitrogen removal and during the same process achieve phosphorus elimination, a sediment-type photomicrobial fuel cell was developed based on the cooperation between microalgae (Chlorella vulgaris) and electrochemically active bacteria. The main...

  11. The potential of Saudi Arabian natural zeolites in energy recovery technologies

    International Nuclear Information System (INIS)

    Nizami, A.S.; Ouda, O.K.M.; Rehan, M.; El-Maghraby, A.M.O.; Gardy, J.; Hassanpour, A.; Kumar, S.; Ismail, I.M.I.

    2016-01-01

    Energy consumption in KSA (kingdom of Saudi Arabia) is growing rapidly due to economic development with raised levels of population, urbanization and living standards. Fossil fuels are currently solely used to meet the energy requirements. The KSA government have planned to double its energy generating capacity (upto 120 GW (gigawatts)) by 2032. About half of the electricity capacity of this targeted energy will come from renewable resources such as nuclear, wind, solar, WTE (waste-to-energy) etc. Natural zeolites are found abundantly in KSA at Jabal Shamah occurrence near Jeddah city, whose characteristics have never been investigated in energy related applications. This research aims to study the physical and chemical characteristics of natural zeolite in KSA and to review its potential utilization in selected WTE technologies and solar energy. The standard zeolite group of alumina–silicate minerals were found with the presence of other elements such as Na, Mg and K etc. A highly crystalline structure and thermal stability of natural zeolites together with unique ion exchange, adsorption properties, high surface area and porosity make them suitable in energy applications such as WTE and solar energy as an additive or catalyst. A simple solid–gas absorption system for storing solar energy in natural zeolites will be a cheap alternative method for KSA. In AD (anaerobic digestion), the dual characteristics of natural zeolite like Mordenite will increase the CH_4 production of OFMSW (organic fraction of municipal solid waste). Further investigations are recommended to study the technical, economical, and environmental feasibility of natural zeolite utilization in WTE technologies in KSA. - Highlights: • A highly crystalline structure is found in natural zeolites. • Natural zeolites will store solar energy in solid–gas absorption system. • The composites of natural zeolites will produce more liquid fuel like gasoline. • The natural zeolite will increase

  12. Recent technological advances in the application of nano-catalytic technology to the enhanced recovery and upgrading of bitumen and heavy oils

    Energy Technology Data Exchange (ETDEWEB)

    Pereira Almao, P. [Calgary Univ., AB (Canada). Schulich School of Engineering

    2013-11-01

    Advances in Nanotechnology, such as manufacturing of nano-catalysts allow the online (during processing) and on site production of nano-catalysts for heavy oils upgrading. These inventions have also facilitated the development of two lines of heavy oils upgrading processes that make use of nano-catalysts for producing upgraded oil: In Situ Upgrading and Field Upgrading. Producing chemical upgrading of heavy oils is achievable and economically viable at lower temperatures and lower pressures than used in most upgraders if the use of nano-catalysts were implemented. The spontaneity of thermal, steam and hydro processing reactions for converting the different chemical families of hydrocarbons present in the heaviest fractions of heavy oils and bitumen (HO-B) into lighter products was shown recently. Spontaneity was measured by the value of the change of free energy at low pressure. These undesirable paths are spontaneous and uncontrollable under thermal cracking conditions, and require providing years of residence time for intermolecular hydrogen redistribution to minimize olefins polymerization, if at all possible. Instead, hydroprocessing in the presence of hydrogen activating catalysts would create an abundance of hydrogen radicals impeding large molecules condensation and olefins proliferation. In Situ Upgrading: performs coupled Enhanced Oil Recovery with In Reservoir Upgrading via Hot Fluid Injection (HFI). The heat handling of this HFI process and the production of transportable oil with no need of diluent from the start of operation completes the originality of it. This technology uses heavy fractions separated from produced oil to reintroduce heat into the reservoir along with suspended nano-catalysts and hydrogen. These components react in the well bore and inside the reservoir to release more heat (hydroprocessing reactions are exothermic) producing light gases and volatile hydrocarbons that contribute to increase oil detachment from the rock resulting in

  13. Seed quality in informal seed systems

    NARCIS (Netherlands)

    Biemond, P.C.

    2013-01-01

    Keywords: informal seed systems, seed recycling, seed quality, germination, seed pathology, seed health, seed-borne diseases, mycotoxigenic fungi, Fusarium verticillioides, mycotoxins, Vigna unguiculata, Zea mays, Nigeria.

    Seed is a crucial input for agricultural production.

  14. The recovery plants of solid wastes: the technology for the environment; Plantas de recuperacion de residuos solidos: tecnologia al servicio del medio ambiente

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, E.

    1996-12-01

    The recovery plant built by FAES-AMADEO FARELL, S.A. in Tarragona has an area of 150.000 m``2 and it combines the best environmental-friendly technology in this field. Then main objective of this plant is to include in the production cycle all the wastes that can be recovered and avoid their dumping landfills. (Author)

  15. Low Cost Advanced Thermoelectric (TE) Technology for Automotive Waste Heat Recovery

    Science.gov (United States)

    Meisner, G. P.

    2014-03-01

    Low cost, fully integrated TE generators (TEGs) to recover waste heat from vehicle exhaust will reduce transportation sector energy consumption and emissions. TEGs will be the first application of high-temperature TE materials for high-volume use and establish new industrial sectors with scaled up production capability of TEG materials and components. We will create a potential supply chain for practical automotive TEGs and identify manufacturing and assembly processes for large scale production of TEG materials and components. Our work focusses on several innovative R&D paths: (1) enhanced TE material performance by doping and compositional tuning, (2) optimized TE material fabrication and processing to reduce thermal conductivity and improve fracture strength, (3) high volume production for successful skutterudite commercialization, (4) new material, nanostructure, and nanoscale approaches to reduce thermal interface and electrical contact resistances, (5) innovative heat exchangers for high efficiency heat flows and optimum temperature profiles despite highly variable exhaust gas operating conditions, (6) new modeling and simulation tools, and (7) inexpensive materials for thermal insulation and coatings for TE encapsulation. Recent results will be presented. Supported by the U.S. DOE Vehicle Technology Program.

  16. Heat Pipe-Assisted Thermoelectric Power Generation Technology for Waste Heat Recovery

    Science.gov (United States)

    Jang, Ju-Chan; Chi, Ri-Guang; Rhi, Seok-Ho; Lee, Kye-Bock; Hwang, Hyun-Chang; Lee, Ji-Su; Lee, Wook-Hyun

    2015-06-01

    Currently, large amounts of thermal energy dissipated from automobiles are emitted through hot exhaust pipes. This has resulted in the need for a new efficient recycling method to recover energy from waste hot exhaust gas. The present experimental study investigated how to improve the power output of a thermoelectric generator (TEG) system assisted by a wickless loop heat pipe (loop thermosyphon) under the limited space of the exhaust gas pipeline. The present study shows a novel loop-type heat pipe-assisted TEG concept to be applied to hybrid vehicles. The operating temperature of a TEG's hot side surface should be as high as possible to maximize the Seebeck effect. The present study shows a novel TEG concept of transferring heat from the source to the sink. This technology can transfer waste heat to any local place with a loop-type heat pipe. The present TEG system with a heat pipe can transfer heat and generate an electromotive force power of around 1.3 V in the case of 170°C hot exhaust gas. Two thermoelectric modules (TEMs) for a conductive block model and four Bi2Te3 TEMs with a heat pipe-assisted model were installed in the condenser section. Heat flows to the condenser section from the evaporator section connected to the exhaust pipe. This novel TEG system with a heat pipe can be placed in any location on an automobile.

  17. Sustainable resource recovery and energy conversion processes using microbial electrochemical technologies

    Science.gov (United States)

    Yates, Matthew D.

    Microbial Electrochemical Technologies (METs) are emerging technological platforms for the conversion of waste into usable products. METs utilize naturally occurring bacteria, called exoelectrogens, capable of transferring electrons to insoluble terminal electron acceptors. Electron transfer processes in the exoelectrogen Geobacter sulfurreducens were exploited here to develop sustainable processes for synthesis of industrially and socially relevant end products. The first process examined was the removal of soluble metals from solution to form catalytic nanoparticles and nanoporous structures. The second process examined was the biocatalytic conversion of electrons into hydrogen gas using electrons supplied directly to an electrode. Nanoparticle formation is desirable because materials on the nanoscale possess different physical, optical, electronic, and mechanical properties compared to bulk materials. In the first process, soluble palladium was used to form catalytic palladium nanoparticles using extracellular electron transfer (EET) processes of G. sulfurreducens, typically the dominant member of mixedculture METs. Geobacter cells reduced the palladium extracellularly using naturally produced pili, which provided extracellular adsorption and reduction sites to help delay the diffusion of soluble metals into the cell. The extracellular reduction prevented cell inactivation due to formation of intracellular particles, and therefore the cells could be reused in multiple palladium reduction cycles. A G. sulfurreducens biofilm was next investigated as a biotemplate for the formation of a nanoporous catalytic palladium structure. G. sulfurreducens biofilms have a dense network of pili and extracellular cytochromes capable of high rates of electron transfer directly to an electrode surface. These pili and cytochromes provide a dense number of reduction sites for nanoparticle formation without the need for any synthetic components. The cells within the biofilm also can

  18. The Effect of Sonic Bloom Fertilizing Technology on The Seed Germination and Growth of Acacia mangium Willd Seedling

    Directory of Open Access Journals (Sweden)

    Mulyadi A T

    2012-11-01

    Full Text Available Acacia mangium Willd is one of the promising wood species, it is a fast growing species and can be used as raw materials for pulp, furniture and wood working. Musi Hutan Persada Company has planted Acacia mangium Willd in large scale for pulp processing raw materials and for wood working industry. The faculty of forestry of the Nusa Bangsa University in collaboration with the Musi Hutan Persada have examined  the effect of “Sonic Bloom” to the Acacia mangium Willd germination and seedling growth. The results of the research are the following : (1 The seed germination with “Sonic Bloom” provided percented of germination of 82%, better than those without “Sonic Bloom”, i.e. only 34%; (2 With Sonic Bloom,  the height of 80-days old seedling is 129.6 cm higher than those without “Sonic Bloom”of only 90.7 cm  ; (3 the diameter of 80-days old seedling with “Sonic Bloom” is 0,24 cm higher than those without “Sonic Bloom” harving diameters of only 0.19 cm.The study concludes that sonic bloom treatment is very useful for the seed germination and the growth of Acacia mangium Willd seedling Key Words : Sonic Bloom, persemaian, Acacia mangium, perkecambahan, bibit   Normal 0 false false false IN X-NONE X-NONE

  19. seed oils

    African Journals Online (AJOL)

    Timothy Ademakinwa

    processes, production of biodiesel, as lubricant and in deep-frying purposes. They could ... for its juice, nectars and fruit while its seeds are ... Malaysia. The fine seed powder was stored in a plastic container inside a refrigerator at between 4 o.

  20. seed flour

    African Journals Online (AJOL)

    ONOS

    2010-09-06

    Sep 6, 2010 ... and with a nice taste, used for cooking or as lamp oil. The fatty acid ... Pra seeds were obtained from a local market in Nakhon Si Thammarat. Page 2. Table 1. Proximate composition of pra seed flour. Constituent. Percentage ...

  1. Wheat seed system in Ethiopia: Farmers' varietal perception, seed sources, and seed management

    NARCIS (Netherlands)

    Bishaw, Z.; Struik, P.C.; Gastel, van A.J.G.

    2010-01-01

    Knowledge and information on farmers' perception and its influence on adoption of modern wheat varieties, awareness and source of new wheat production technology, wheat seed sources, and on-farm seed-management practices remain sporadic in Ethiopia. This study was conducted to understand the

  2. Game Changing Development Program - Next Generation Life Support Project: Oxygen Recovery From Carbon Dioxide Using Ion Exchange Membrane Electrolysis Technology

    Science.gov (United States)

    Burke, Kenneth A.; Jiao, Feng

    2016-01-01

    This report summarizes the Phase I research and development work performed during the March 13, 2015 to July 13, 2016 period. The proposal for this work was submitted in response to NASA Research Announcement NNH14ZOA001N, "Space Technology Research, Development, Demonstration, and Infusion 2014 (SpaceTech-REDDI-2014)," Appendix 14GCD-C2 "Game Changing Development Program, Advanced Oxygen Recovery for Spacecraft Life Support Systems Appendix" The Task Agreement for this Phase I work is Document Control Number: GCDP-02-TA-15015. The objective of the Phase I project was to demonstrate in laboratories two Engineering Development Units (EDU) that perform critical functions of the low temperature carbon dioxide electrolysis and the catalytic conversion of carbon monoxide into carbon and carbon dioxide. The low temperature carbon dioxide electrolysis EDU was built by the University of Delaware with Dr. Feng Jiao as the principal investigator in charge of this EDU development (under NASA Contract NNC15CA04C). The carbon monoxide catalytic conversion EDU was built by the NASA Glenn Research Center with Kenneth Burke as the principal investigator and overall project leader for the development of both EDUs. Both EDUs were successfully developed and demonstrated the critical functions for each process. The carbon dioxide electrolysis EDU was delivered to the NASA Johnson Space Center and the carbon monoxide catalytic conversion EDU was delivered to the NASA Marshall Spaceflight Center.

  3. Effect of Transplanting Dates and Spacing on Yield Attributing Character, Productivity and Economics of Potato Cultivation Through True Potato Seed (TPS Technology

    Directory of Open Access Journals (Sweden)

    Debashish Sen

    2010-03-01

    Full Text Available A field experiment in split plot design was conducted during the rabi season of 2001-02 and 2002-03 at Potato Research and Seed Multiplication Farm, Anandapur,West Midnapore,West Bengal to study the effect of dates of transplanting and spacing on yield attributing character, productivity and economics of potato cultivation through true potato seed (TPS technology. The highest number of tubers per plant was recorded in early transplanted (December 3 crop, while, crop spacing did not produce any significant differences in recording tuber number per plant. Early established crop also produced significantly higher tuber weight per plant as compared to intermediate (December 11 and late (December 19 transplanted crops and widely spaced (60 x 15 cm crop recorded higher weight of tuber per plant as compared to the narrowly spaced crop. Early transplanting and wider spacing also showed its superiority in respect of recording harvest index of potato. As such, early transplanted and densely planted crops produced significantly higher yield of seedling tuber, marketable tuber and total tuber than their counterparts. Though cost of production of early transplanted and closely spaced crop was higher, but net profit and return per rupee investment was also higher in those cases.

  4. Battleground Energy Recovery Project

    Energy Technology Data Exchange (ETDEWEB)

    Bullock, Daniel [USDOE Gulf Coast Clean Energy Application Center, Woodlands, TX (United States)

    2011-12-31

    In October 2009, the project partners began a 36-month effort to develop an innovative, commercial-scale demonstration project incorporating state-of-the-art waste heat recovery technology at Clean Harbors, Inc., a large hazardous waste incinerator site located in Deer Park, Texas. With financial support provided by the U.S. Department of Energy, the Battleground Energy Recovery Project was launched to advance waste heat recovery solutions into the hazardous waste incineration market, an area that has seen little adoption of heat recovery in the United States. The goal of the project was to accelerate the use of energy-efficient, waste heat recovery technology as an alternative means to produce steam for industrial processes. The project had three main engineering and business objectives: Prove Feasibility of Waste Heat Recovery Technology at a Hazardous Waste Incinerator Complex; Provide Low-cost Steam to a Major Polypropylene Plant Using Waste Heat; and Create a Showcase Waste Heat Recovery Demonstration Project.

  5. Effects of seed fermentation method on seed germination and vigor ...

    African Journals Online (AJOL)

    BERTIN

    2013-11-27

    Nov 27, 2013 ... methods (fermented in ambient air, plastic bag stored in ambient or in plastic bag buried) were tested ... fruits into plastic bag that was exposed in ambient air in the field; SFD, seeds ..... Concepts and technologies of selected.

  6. Robotic seeding

    DEFF Research Database (Denmark)

    Pedersen, Søren Marcus; Fountas, Spyros; Sørensen, Claus Aage Grøn

    2017-01-01

    Agricultural robotics has received attention for approximately 20 years, but today there are only a few examples of the application of robots in agricultural practice. The lack of uptake may be (at least partly) because in many cases there is either no compelling economic benefit......, or there is a benefit but it is not recognized. The aim of this chapter is to quantify the economic benefits from the application of agricultural robots under a specific condition where such a benefit is assumed to exist, namely the case of early seeding and re-seeding in sugar beet. With some predefined assumptions...... with regard to speed, capacity and seed mapping, we found that among these two technical systems both early seeding with a small robot and re-seeding using a robot for a smaller part of the field appear to be financially viable solutions in sugar beet production....

  7. Magnetic-seeding filtration

    Energy Technology Data Exchange (ETDEWEB)

    DePaoli, D.W.; Tsouris, C. [Oak Ridge National Lab., TN (United States); Yiacoumi, Sotira

    1997-10-01

    Magnetic-seeding filtration is a technology under development for the enhanced removal of magnetic and non-magnetic particulates from liquids. This process involves the addition of a small amount of magnetic seed particles (such as naturally occurring iron oxide) to a waste suspension, followed by treatment with a magnetic filter. Non-magnetic and weakly magnetic particles are made to undergo nonhomogeneous flocculation with the seed particles, forming flocs of high magnetic susceptibility that are readily removed by a conventional high-gradient magnetic filter. This technology is applicable to a wide range of liquid wastes, including groundwater, process waters, and tank supernatants. Magnetic-seeding filtration may be used in several aspects of treatment, such as (1) removal of solids, particularly those in the colloidal size range that are difficult to remove by conventional means; (2) removal of contaminants by precipitation processes; and (3) removal of contaminants by sorption processes. Waste stream characteristics for which the technology may be applicable include (1) particle sizes ranging from relatively coarse (several microns) to colloidal particles, (2) high or low radiation levels, (3) broad-ranging flow rates, (4) low to moderate solids concentration, (5) cases requiring high decontamination factors, and (6) aqueous or non-aqueous liquids. At this point, the technology is at the bench-scale stage of development; laboratory studies and fundamental modeling are currently being employed to determine the capabilities of the process.

  8. Magnetic-seeding filtration

    International Nuclear Information System (INIS)

    DePaoli, D.W.; Tsouris, C.; Yiacoumi, Sotira.

    1997-01-01

    Magnetic-seeding filtration is a technology under development for the enhanced removal of magnetic and non-magnetic particulates from liquids. This process involves the addition of a small amount of magnetic seed particles (such as naturally occurring iron oxide) to a waste suspension, followed by treatment with a magnetic filter. Non-magnetic and weakly magnetic particles are made to undergo nonhomogeneous flocculation with the seed particles, forming flocs of high magnetic susceptibility that are readily removed by a conventional high-gradient magnetic filter. This technology is applicable to a wide range of liquid wastes, including groundwater, process waters, and tank supernatants. Magnetic-seeding filtration may be used in several aspects of treatment, such as (1) removal of solids, particularly those in the colloidal size range that are difficult to remove by conventional means; (2) removal of contaminants by precipitation processes; and (3) removal of contaminants by sorption processes. Waste stream characteristics for which the technology may be applicable include (1) particle sizes ranging from relatively coarse (several microns) to colloidal particles, (2) high or low radiation levels, (3) broad-ranging flow rates, (4) low to moderate solids concentration, (5) cases requiring high decontamination factors, and (6) aqueous or non-aqueous liquids. At this point, the technology is at the bench-scale stage of development; laboratory studies and fundamental modeling are currently being employed to determine the capabilities of the process

  9. New Approach on Sunflower Seeds Processing: Kernel with Several Technological Applications, Husks Package, Different Fat Content Tahini and Halva Properties

    Directory of Open Access Journals (Sweden)

    Vlad Mureşan

    2015-11-01

    Full Text Available Sunflower is the basic oil-crop in Central and Eastern Europe. As sunflower seeds are mainly used for oil production, the most of the kernels available on the market show high oil content (>55%. Consequently, when sunflower kernel paste (tahini is used in different food products, oil exudation occurs.The aim of current work was to use entirely the sunflower seeds by partially defatting and obtaining different fat content sunflower pastes with multiple food applications, while using the husks for developing an ecological package. Sunflower kernels were industrially roasted in a continuous roasting drum.  Raw and roasted kernels were pressed at pilot plant scale by using a laboratory expeller. Partially defatted sunflower paste was obtained from the press cakes by employing a ball mill. Different fat content tahini samples were obtained by adding the required amount of oil to the partially defatted paste. Tahini samples fat content ranged from 45 to 60%. Tahini and halva were chosen as a study model. Decreasing tahini oil content increased its colloidal stability during storage, a similar trend being noticed when halva samples were stored. Moreover, halva texture analysis and sensory characteristics were assessed for selecting the optimum tahini oil content and thermal treatment. Various sunflower kernel food applications were proposed by obtaining the related prototypes at pilot plant scale: roasted sunflower kernel biscuits, sunflower spreadable cream filled biscuits, hummus, sunflower paste coated in chocolate, sunflower kernel chikki and bars, as well as an innovative ecological package based on the resulting sunflower husks and a starch adhesive. 

  10. Analysis of an integrated packed bed thermal energy storage system for heat recovery in compressed air energy storage technology

    International Nuclear Information System (INIS)

    Ortega-Fernández, Iñigo; Zavattoni, Simone A.; Rodríguez-Aseguinolaza, Javier; D'Aguanno, Bruno; Barbato, Maurizio C.

    2017-01-01

    Highlights: •A packed bed TES system is proposed for heat recovery in CAES technology. •A CFD-based approach has been developed to evaluate the behaviour of the TES unit. •TES system enhancement and improvement alternatives are also demonstrated. •TES performance evaluated according to the first and second law of thermodynamics. -- Abstract: Compressed air energy storage (CAES) represents a very attracting option to grid electric energy storage. Although this technology is mature and well established, its overall electricity-to-electricity cycle efficiency is lower with respect to other alternatives such as pumped hydroelectric energy storage. A meager heat management strategy in the CAES technology is among the main reasons of this gap of efficiency. In current CAES plants, during the compression stage, a large amount of thermal energy is produced and wasted. On the other hand, during the electricity generation stage, an extensive heat supply is required, currently provided by burning natural gas. In this work, the coupling of both CAES stages through a thermal energy storage (TES) unit is introduced as an effective solution to achieve a noticeable increase of the overall CAES cycle efficiency. In this frame, the thermal energy produced in the compression stage is stored in a TES unit for its subsequent deployment during the expansion stage, realizing an Adiabatic-CAES plant. The present study addresses the conceptual design of a TES system based on a packed bed of gravel to be integrated in an Adiabatic-CAES plant. With this objective, a complete thermo-fluid dynamics model has been developed, including the implications derived from the TES operating under variable-pressure conditions. The formulation and treatment of the high pressure conditions were found being particularly relevant issues. Finally, the model provided a detailed performance and efficiency analysis of the TES system under charge/discharge cyclic conditions including a realistic operative

  11. Seed regulations and local seed systems

    NARCIS (Netherlands)

    Louwaars, N.

    2000-01-01

    Seed regulations have been introduced in most countries based on the development of formal seed production. Concerns about seed quality and about the varietal identity of the seeds have commonly led to seed laws. However, formal regulations are often inappropriate for informal seed systems, which

  12. Key Determinant Derivations for Information Technology Disaster Recovery Site Selection by the Multi-Criterion Decision Making Method

    Directory of Open Access Journals (Sweden)

    Chia-Lee Yang

    2015-05-01

    Full Text Available Disaster recovery sites are an important mechanism in continuous IT system operations. Such mechanisms can sustain IT availability and reduce business losses during natural or human-made disasters. Concerning the cost and risk aspects, the IT disaster-recovery site selection problems are multi-criterion decision making (MCDM problems in nature. For such problems, the decision aspects include the availability of the service, recovery time requirements, service performance, and more. The importance and complexities of IT disaster recovery sites increases with advances in IT and the categories of possible disasters. The modern IT disaster recovery site selection process requires further investigation. However, very few researchers tried to study related issues during past years based on the authors’ extremely limited knowledge. Thus, this paper aims to derive the aspects and criteria for evaluating and selecting a modern IT disaster recovery site. A hybrid MCDM framework consisting of the Decision Making Trial and Evaluation Laboratory (DEMATEL and the Analytic Network Process (ANP will be proposed to construct the complex influence relations between aspects as well as criteria and further, derive weight associated with each aspect and criteria. The criteria with higher weight can be used for evaluating and selecting the most suitable IT disaster recovery sites. In the future, the proposed analytic framework can be used for evaluating and selecting a disaster recovery site for data centers by public institutes or private firms.

  13. Magnetic-seeding filtration

    International Nuclear Information System (INIS)

    Depaoli, D.

    1996-01-01

    This task will investigate the capabilities of magnetic-seeding filtration for the enhanced removal of magnetic and nonmagnetic particulates from liquids. This technology appies to a wide range of liquid wastes, including groundwater, process waters, and tank supernatant. Magnetic-seeding filtration can be used in several aspects of treatment, such as (1) removal of solids, particularly those in the colloidal-size range that are difficult to remove by conventional means; (2) removal of contaminants by precipitation processes; and (3) removal of contaminants by sorption processes

  14. In situ recovery of oil from Utah tar sand: a summary of tar sand research at the Laramie Energy Technology Center

    Energy Technology Data Exchange (ETDEWEB)

    Marchant, L.C.; Westhoff, J.D.

    1985-10-01

    This report describes work done by the United States Department of Energy's Laramie Energy Technology Center from 1971 through 1982 to develop technology for future recovery of oil from US tar sands. Work was concentrated on major US tar sand deposits that are found in Utah. Major objectives of the program were as follows: determine the feasibility of in situ recovery methods applied to tar sand deposits; and establish a system for classifying tar sand deposits relative to those characteristics that would affect the design and operation of various in situ recovery processes. Contents of this report include: (1) characterization of Utah tar sand; (2) laboratory extraction studies relative to Utah tar sand in situ methods; (3) geological site evaluation; (4) environmental assessments and water availability; (5) reverse combustion field experiment, TS-1C; (6) a reverse combustion followed by forward combustion field experiment, TS-2C; (7) tar sand permeability enhancement studies; (8) two-well steam injection experiment; (9) in situ steam-flood experiment, TS-1S; (10) design of a tar sand field experiment for air-stream co-injection, TS-4; (11) wastewater treatment and oil analyses; (12) economic evaluation of an in situ tar sand recovery process; and (13) appendix I (extraction studies involving Utah tar sands, surface methods). 70 figs., 68 tabs.

  15. On-line near infrared spectroscopy as a Process Analytical Technology (PAT) tool to control an industrial seeded API crystallization.

    Science.gov (United States)

    Schaefer, C; Lecomte, C; Clicq, D; Merschaert, A; Norrant, E; Fotiadu, F

    2013-09-01

    The final step of an active pharmaceutical ingredient (API) manufacturing synthesis process consists of a crystallization during which the API and residual solvent contents have to be quantified precisely in order to reach a predefined seeding point. A feasibility study was conducted to demonstrate the suitability of on-line NIR spectroscopy to control this step in line with new version of the European Medicines Agency (EMA) guideline [1]. A quantitative method was developed at laboratory scale using statistical design of experiments (DOE) and multivariate data analysis such as principal component analysis (PCA) and partial least squares (PLS) regression. NIR models were built to quantify the API in the range of 9-12% (w/w) and to quantify the residual methanol in the range of 0-3% (w/w). To improve the predictive ability of the models, the development procedure encompassed: outliers elimination, optimum model rank definition, spectral range and spectral pre-treatment selection. Conventional criteria such as, number of PLS factors, R(2), root mean square errors of calibration, cross-validation and prediction (RMSEC, RMSECV, RMSEP) enabled the selection of three model candidates. These models were tested in the industrial pilot plant during three technical campaigns. Results of the most suitable models were evaluated against to the chromatographic reference methods. Maximum relative bias of 2.88% was obtained about API target content. Absolute bias of 0.01 and 0.02% (w/w) respectively were achieved at methanol content levels of 0.10 and 0.13% (w/w). The repeatability was assessed as sufficient for the on-line monitoring of the 2 analytes. The present feasibility study confirmed the possibility to use on-line NIR spectroscopy as a PAT tool to monitor in real-time both the API and the residual methanol contents, in order to control the seeding of an API crystallization at industrial scale. Furthermore, the successful scale-up of the method proved its capability to be

  16. APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SAN ANDRES RESERVOIR

    International Nuclear Information System (INIS)

    Raj Kumar; Keith Brown; Hickman, T. Scott; Justice, James J.

    2000-01-01

    The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three-dimensional (3-D) seismic; (3) Crosswell bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO 2 ) stimulation treatments; (6) Hydraulic fracturing design and monitoring; and (7) Mobility control agents

  17. APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SAN ANDRES RESERVOIR

    International Nuclear Information System (INIS)

    Hickman, T. Scott

    2003-01-01

    The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three-dimensional (3-D) seismic; (3) Crosswell bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO 2 ) stimulation treatments; (6) Hydraulic fracturing design and monitoring; and (7) Mobility control agents

  18. APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SAN ANDRES RESERVOIR

    International Nuclear Information System (INIS)

    Hickman, T. Scott; Justice, James J.

    2001-01-01

    The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three-dimensional (3-D) seismic; (3) Crosswell bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO 2 ) stimulation treatments; (6) Hydraulic fracturing design and monitoring; and (7) Mobility control agents

  19. APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SAN ANDRES RESERVOIR

    Energy Technology Data Exchange (ETDEWEB)

    T. Scott Hickman; James J. Justice

    2001-06-16

    The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three-dimensional (3-D) seismic; (3) Crosswell bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO{sub 2}) stimulation treatments; (6) Hydraulic fracturing design and monitoring; and (7) Mobility control agents.

  20. Comparison of germination and seed bank dynamics of dimorphic seeds of the cold desert halophyte Suaeda corniculata subsp. mongolica

    Science.gov (United States)

    Cao, Dechang; Baskin, Carol C.; Baskin, Jerry M.; Yang, Fan; Huang, Zhenying

    2012-01-01

    Background and Aims Differences in dormancy and germination requirements have been documented in heteromorphic seeds of many species, but it is unknown how this difference contributes to maintenance and regeneration of populations. The primary aim of this study was to compare the seed bank dynamics, including dormancy cycling, of the two seed morphs (black and brown) of the cold desert halophyte Suaeda corniculata and, if differences were found, to determine their influence on regeneration of the species. Method Seeds of the two seed morphs were buried, exhumed and tested monthly for 24 months over a range of temperatures and salinities, and germination recovery and viability were determined after exposure to salinity and water stress. Seedling emergence and dynamics of the soil seed bank were also investigated for the two morphs. Key Results Black seeds had an annual dormancy/non-dormancy cycle, while brown seeds, which were non-dormant at maturity, remained non-dormant. Black seeds also exhibited an annual cycle in sensitivity of germination to salinity. Seedlings derived from black seeds emerged in July and August and those from brown seeds in May. Seedlings were recruited from 2·6 % of the black seeds and from 2·8 % of the brown seeds in the soil, and only 0·5 % and 0·4 % of the total number of black and brown seeds in the soil, respectively, gave rise to seedlings that survived to produce seeds. Salinity and water stress induced dormancy in black seeds and decreased viability of brown seeds. Brown seeds formed only a transient soil seed bank and black seeds a persistent seed bank. Conclusions The presence of a dormancy cycle in black but not in brown seeds of S. corniculata and differences in germination requirements of the two morphs cause them to differ in their germination dynamics. The study contributes to our limited knowledge of dormancy cycling and seed bank formation in species producing heteromorphic seeds. PMID:22975287

  1. Development of natural cellulase inhibitor mediated intensified biological pretreatment technology using Pleurotus florida for maximum recovery of cellulose from paddy straw under solid state condition.

    Science.gov (United States)

    Naresh Kumar, Manickam; Ravikumar, Rajarathinam; Thenmozhi, Senniyappan; Kirupa Sankar, Muthuvelu

    2017-11-01

    Inhibitor mediated intensified bio-pretreatment (IMBP) technology using natural cellulase inhibitor (NCI) for maximum cellulose recovery from paddy straw was studied. Pretreatment was carried out under solid state condition. Supplementation of 8% NCI in pretreatment medium improves cellulose recovery and delignification by 1.2 and 1.5-fold respectively, compared to conventional bio-pretreatment due to inhibition of 61% of cellulase activity in IMBP. Further increase in NCI concentration showed negative effect on Pleurotus florida growth and suppress the laccase productivity by 1.1-fold. Laccase activity in IMBP was found to be 2.0U/mL on 19 th day, which is higher than (1.5U/mL) conventional bio-pretreatment. Physico-chemical modifications in paddy straw before and after pretreatment were analysed by SEM, ATR-FTIR, XRD and TGA. According to these findings, the IMBP technology can be a viable eco-friendly technology for sustainable production of bioethanol with maximum cellulose recovery. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. New innovative electrocoagulation (EC) treatment technology for BWR colloidal iron utilizing the seeding and filtration electronically (SAFETTM) system

    International Nuclear Information System (INIS)

    Denton, Mark S.; Bostick, William D.

    2007-01-01

    is 1) to break the colloid (i.e., break the outer radius repulsive charges of the similar charged colloidal particles), 2) allow these particles to now flocculate (floc), and 3) form a type of floc that is more readily filterable, and, thus, de-waterable. This task has been carried out with the innovative application of electronically seeding the feed stream with the metal of choice, and without the addition of chemicals common to ferri-flocking, or polymer addition. This patent-pending new system and technique is called Seeding And Filtration Electronically, or the SAFE TM System. Once the colloid has been broken and flocking has begun, removal of the resultant floc can be carried out by standard, back-washable (or, in simple cases, dead-end) filters; or simply in de-waterable HICs or liners. Such applications include low level radwaste (LLW) from both PWRs and BWRs, fuel pools, storage basins, salt water collection tanks, etc. For the removal of magnetic materials, such as some BWR irons, an Electro Magnetic Filter (EMF) was developed to couple with the Electro Coagulation (EC), (or metal-Flocking) Unit. In the advent that the waste stream primarily contains magnetic materials (e.g., boiler condensates and magnetite, and he-magnetite from BWRs), the material was simply filtered using the EMF. Bench-, pilot- and full-scale systems have been assembled and applied on actual plant waste samples quite successfully. The effects of initial feed pH and conductivity, as well as flocculation retention times was examined prior to applying the production equipment into the field. Since the initial studies (Denton, et al, EPRI, 2006), the ultimate success of field applications is now being demonstrated as the next development phase. For such portable field demonstrations and demand systems, a fully self enclosed (secondary containment) EC system was first developed and assembled in a modified B 25 Box (Floc-In-A-Box) and is being deployed to a number of NPP sites. Finally, a

  3. Cheesemaking in highland pastures: Milk technological properties, cream, cheese and ricotta yields, milk nutrients recovery, and products composition.

    Science.gov (United States)

    Bergamaschi, M; Cipolat-Gotet, C; Stocco, G; Valorz, C; Bazzoli, I; Sturaro, E; Ramanzin, M; Bittante, G

    2016-12-01

    (before and after natural creaming), the whole morning milk, and the mixed vat milk had different chemical compositions, traditional coagulation properties, and curd-firming modeling parameters. These variations over the pasture season were similar to the residual variations with respect to chemical composition, and much lower with respect to coagulation and curd-firming traits. Much larger variations were noted in cream, cheese, and ricotta yields, as well as in nutrient recoveries in curd during the pasture season. The protein content of forage was correlated with some of the coagulation and curd-firming traits, the ether extract of forage was positively correlated with milk fat content and cheese yields, and fiber fractions of forage were unfavorably correlated with some of the chemical and technological traits. Traditional cheese- and ricotta-making procedures showed average cream, cheese, and ricotta yields of 6.3, 14.2, and 4.9%, respectively, and an overall recovery of almost 100% of milk fat, 88% of milk protein, and 60% of total milk solids. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Seed banks in a degraded desert shrubland: Influence of soil surface condition and harvester ant activity on seed abundance

    Science.gov (United States)

    DeFalco, L.A.; Esque, T.C.; Kane, J.M.; Nicklas, M.B.

    2009-01-01

    We compared seed banks between two contrasting anthropogenic surface disturbances (compacted, trenched) and adjacent undisturbed controls to determine whether site condition influences viable seed densities of perennial and annual Mojave Desert species. Viable seeds of perennials were rare in undisturbed areas (3-4 seeds/m2) and declined to importance of litter as an indicator of site degradation and recovery potential in arid lands.

  5. Updated Methods for Seed Shape Analysis

    Directory of Open Access Journals (Sweden)

    Emilio Cervantes

    2016-01-01

    Full Text Available Morphological variation in seed characters includes differences in seed size and shape. Seed shape is an important trait in plant identification and classification. In addition it has agronomic importance because it reflects genetic, physiological, and ecological components and affects yield, quality, and market price. The use of digital technologies, together with development of quantification and modeling methods, allows a better description of seed shape. Image processing systems are used in the automatic determination of seed size and shape, becoming a basic tool in the study of diversity. Seed shape is determined by a variety of indexes (circularity, roundness, and J index. The comparison of the seed images to a geometrical figure (circle, cardioid, ellipse, ellipsoid, etc. provides a precise quantification of shape. The methods of shape quantification based on these models are useful for an accurate description allowing to compare between genotypes or along developmental phases as well as to establish the level of variation in different sets of seeds.

  6. Preparation of recovery fuel - assumptions, quality, technology and cost; Upparbetning av returbraenslen - foerutsaettningar, kvalite, teknik och kostnader

    Energy Technology Data Exchange (ETDEWEB)

    Njurell, Rolf; Gyllenhammar, Marianne [SEP Scandinavian Energy Project AB, Goeteborg (Sweden)

    2000-05-01

    New laws and restrictions, in Sweden and within the EU, will change the handling of waste within the next years. The combustible wastes going to landfill today, have to be dealt with in another way in the future. The knowledge about fuel preparation has been accentuated. Preparation of wastes - properly executed - will make it a useful fuel and increase energy recovery. S.E.P. Scandinavian Energy Project AB has by the assignment of the Thermal Engineering Research Institute made this survey of required conditions technology and quality costs related to fuel preparation of recovered waste like wood, paper and plastic. Only a few fuel preparation plants for recovered waste exist in Sweden today. Most of the municipalities do not have any waste treatment except for landfill. In the future regional preparation plants will most likely be built. In that way recovered wastes can be treated in a cost-effective way and be converted into useful fuel. Transportation will increase when landfills, presently in use, will close and the waste has to be transported to regional plants. Recovered fuel can be divided into two types depending on their content. Recovered Wood Fuel is what we call RWF in this report. Recovered Commercial waste Fuel containing plastic, paper, textiles etc, is called RCF in this report. To receive a suitable fuel for a special combustion plant, the nature, quality and content of the fuel must be known. The choice of preparation equipment is guided both by the type of waste and the quality of fuel needed for the combustion plant. Different contaminations in waste are presented in the report, together with technology to separate them from the fuel. The report also focuses on some type of equipment that are available for fuel preparation in different applications. In general the waste has to be shredded or crushed and the tramp iron has to be removed. If required the waste also has to be screened. The non waste incineration plants firing RWF today and intend

  7. Research and development of technologies for safe and environmentally optimal recovery and disposal of explosive wastes. Task 2, Preliminary impact assessment for environment, health and safety (EIA)

    Energy Technology Data Exchange (ETDEWEB)

    Duijm, N.J.; Markert, F. [Risoe (Denmark); Larsen, S.G. [DEMEX A/S (Denmark)

    1998-09-01

    As described in the project proposal `Research and Development of Technologies for Safe and Environmentally optimal recovery and Disposal of Explosive Wastes`, dated 31. May 1996, the objective of Task 2, Preliminary Impact Assessment for Environment, Health and Safety, is to: Analyse the environmental impact of noise and emissions to air, water and soil; Assess the risk of hazards to workers` health and safety and to the public. Task 2, Preliminary Impact Assessment for Environment, Health and Safety (EIA), has been performed from August 1997 to September 1998. First, a methodology has been established, based on Multi-Criteria Decision Analysis (MCDA), to select the `best` technology on the basis of clearly defined objectives, including minimal impacts on environment, health and safety. This included a review of different types of explosive waste with a focus on the environment implications, identifying the issues relevant to defining the criteria or objectives with respect to environment and safety in the framework of explosive waste, as well as the preliminary definition of objectives for the final impact assessment. Second, the previously identified recovery and disposal technologies (Task 1) have been qualitatively assessed on the basis of the relevant objectives. This qualitative assessment includes also economic considerations and an attempt to rank the technologies in an MCDA framework. (au)

  8. Burial increases seed longevity of two Artemisia tridentata (Asteraceae) subspecies

    Science.gov (United States)

    Wijayratne, Upekala C.; Pyke, David A.

    2012-01-01

    Premise of the study: Seed longevity and persistence in soil seed banks may be especially important for population persistence in ecosystems where opportunities for seedling establishment and disturbance are unpredictable. The fire regime, an important driver of population dynamics in sagebrush steppe ecosystems, has been altered by exotic annual grass invasion. Soil seed banks may play an active role in postfire recovery of the foundation shrub Artemisia tridentata, yet conditions under which seeds persist are largely unknown. Methods: We investigated seed longevity of two Artemisia tridentata subspecies in situ by retrieving seed bags that were placed at varying depths over a 2 yr period. We also sampled naturally dispersed seeds in litter and soil immediately after seed dispersal and before flowering in subsequent seasons to estimate seed persistence. Key results: After 24 mo, seeds buried at least 3 cm below the soil surface retained 30–40% viability whereas viability of seeds on the surface and under litter declined to 0 and Artemisia tridentata has the potential to form a short-term soil seed bank that persists longer than has been commonly assumed, and that burial is necessary for seed longevity. Use of seeding techniques that promote burial of some seeds to aid in formation of a soil seed bank may increase restoration potential.

  9. Targeted technology applications for infield reserve growth: A synopsis of the Secondary Natural Gas Recovery project, Gulf Coast Basin. Topical report, September 1988--April 1993

    Energy Technology Data Exchange (ETDEWEB)

    Levey, R.A.; Finley, R.J.; Hardage, B.A.

    1994-06-01

    The Secondary Natural Gas Recovery (SGR): Targeted Technology Applications for Infield Reserve Growth is a joint venture research project sponsored by the Gas Research Institute (GRI), the US Department of Energy (DOE), the State of Texas through the Bureau of Economic Geology at The University of Texas at Austin, with the cofunding and cooperation of the natural gas industry. The SGR project is a field-based program using an integrated multidisciplinary approach that integrates geology, geophysics, engineering, and petrophysics. A major objective of this research project is to develop, test, and verify those technologies and methodologies that have near- to mid-term potential for maximizing recovery of gas from conventional reservoirs in known fields. Natural gas reservoirs in the Gulf Coast Basin are targeted as data-rich, field-based models for evaluating infield development. The SGR research program focuses on sandstone-dominated reservoirs in fluvial-deltaic plays within the onshore Gulf Coast Basin of Texas. The primary project research objectives are: To establish how depositional and diagenetic heterogeneities cause, even in reservoirs of conventional permeability, reservoir compartmentalization and hence incomplete recovery of natural gas. To document examples of reserve growth occurrence and potential from fluvial and deltaic sandstones of the Texas Gulf Coast Basin as a natural laboratory for developing concepts and testing applications. To demonstrate how the integration of geology, reservoir engineering, geophysics, and well log analysis/petrophysics leads to strategic recompletion and well placement opportunities for reserve growth in mature fields.

  10. Technologies for the management of MSW incineration ashes from gas cleaning: New perspectives on recovery of secondary raw materials and circular economy.

    Science.gov (United States)

    Quina, Margarida J; Bontempi, Elza; Bogush, Anna; Schlumberger, Stefan; Weibel, Gisela; Braga, Roberto; Funari, Valerio; Hyks, Jiri; Rasmussen, Erik; Lederer, Jakob

    2018-09-01

    Environmental policies in the European Union focus on the prevention of hazardous waste and aim to mitigate its impact on human health and ecosystems. However, progress is promoting a shift in perspective from environmental impacts to resource recovery. Municipal solid waste incineration (MSWI) has been increasing in developed countries, thus the amount of air pollution control residues (APCr) and fly ashes (FA) have followed the same upward trend. APCr from MSWI is classified as hazardous waste in the List of Waste (LoW) and as an absolute entry (19 01 07*), but FA may be classified as a mirror entry (19 0 13*/19 01 14). These properties arise mainly from their content in soluble salts, potentially toxic metals, trace organic pollutants and high pH in contact with water. Since these residues have been mostly disposed of in underground and landfills, other possibilities must be investigated to recover secondary raw materials and products. According to the literature, four additional routes of recovery have been found: detoxification (e.g. washing), product manufacturing (e.g. ceramic products and cement), practical applications (e.g. CO 2 sequestration) and recovery of materials (e.g. Zn and salts). This work aims to identify the best available technologies for material recovery in order to avoid landfill solutions. Within this scope, six case studies are presented and discussed: recycling in lightweight aggregates, glass-ceramics, cement, recovery of zinc, rare metals and salts. Finally, future perspectives are provided to advance understanding of this anthropogenic waste as a source of resources, yet tied to safeguards for the environment. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  11. seed oil

    African Journals Online (AJOL)

    Wara

    Neem seed oil from the neem tree (Azadiracta indica) finds wide usage one of which is its utilization for cosmetics particularly .... obtained which is higher than that of olive oil 17. mgKOH/g (Davine ... The skin tolerance of shea fat employed as ...

  12. Water recovery from brines and salt-saturated solutions: operability and thermodynamic efficiency considerations for desalination technologies

    Science.gov (United States)

    This review provides an overview of desalination technologies and discusses the thermodynamic efficiencies and operational issues associated with the various technologies particularly with regard to high salinity streams. When water is recovered from a saline source, a brine conc...

  13. Genetic dissection of seed vigour traits in maize (Zea mays L.) under ...

    Indian Academy of Sciences (India)

    YONG SHI

    ity, reflects potential seed germination, seedling growth, seed ... Keywords. recombinant inbred line population; seed vigour; quantitative trait locus analysis; cold tolerance. ..... nent youth fund of Henan province, Corn Industry Technology Sys-.

  14. IMPROVED OIL RECOVERY FROM UPPER JURASSIC SMACKOVER CARBONATES THROUGH THE APPLICATION OF ADVANCED TECHNOLOGIES AT WOMACK HILL OIL FIELD, CHOCTAW AND CLARKE COUNTIES, EASTERN GULF COASTAL PLAIN

    Energy Technology Data Exchange (ETDEWEB)

    Ernest A. Mancini

    2003-05-20

    Pruet Production Co. and the Center for Sedimentary Basin Studies at the University of Alabama, in cooperation with Texas A&M University, Mississippi State University, University of Mississippi, and Wayne Stafford and Associates are undertaking a focused, comprehensive, integrated and multidisciplinary study of Upper Jurassic Smackover carbonates (Class II Reservoir), involving reservoir characterization and 3-D modeling and an integrated field demonstration project at Womack Hill Oil Field Unit, Choctaw and Clarke Counties, Alabama, Eastern Gulf Coastal Plain. The principal objectives of the project are: increasing the productivity and profitability of the Womack Hill Field Unit, thereby extending the economic life of this Class II Reservoir and transferring effectively and in a timely manner the knowledge gained and technology developed from this project to producers who are operating other domestic fields with Class II Reservoirs. The principal research efforts for Year 3 of the project have been recovery technology analysis and recovery technology evaluation. The research focus has primarily been on well test analysis, 3-D reservoir simulation, microbial core experiments, and the decision to acquire new seismic data for the Womack Hill Field area. Although Geoscientific Reservoir Characterization and 3-D Geologic Modeling have been completed and Petrophysical and Engineering Characterization and Microbial Characterization are essentially on schedule, a no-cost extension until September 30, 2003, has been granted by DOE so that new seismic data for the Womack Hill Field can be acquired and interpreted to assist in the determination as to whether Phase II of the project should be implemented.

  15. Anaerobic treatment as a core technology for energy, nutrients and water recovery from source-separated domestic waste(water).

    Science.gov (United States)

    Zeeman, Grietje; Kujawa, Katarzyna; de Mes, Titia; Hernandez, Lucia; de Graaff, Marthe; Abu-Ghunmi, Lina; Mels, Adriaan; Meulman, Brendo; Temmink, Hardy; Buisman, Cees; van Lier, Jules; Lettinga, Gatze

    2008-01-01

    Based on results of pilot scale research with source-separated black water (BW) and grey water (GW), a new sanitation concept is proposed. BW and GW are both treated in a UASB (-septic tank) for recovery of CH4 gas. Kitchen waste is added to the anaerobic BW treatment for doubling the biogas production. Post-treatment of the effluent is providing recovery of phosphorus and removal of remaining COD and nitrogen. The total energy saving of the new sanitation concept amounts to 200 MJ/year in comparison with conventional sanitation, moreover 0.14 kg P/p/year and 90 litres of potential reusable water are produced. (c) IWA Publishing 2008.

  16. Mechanisms of Vanadium Recovery from Stone Coal by Novel BaCO3/CaO Composite Additive Roasting and Acid Leaching Technology

    Directory of Open Access Journals (Sweden)

    Zhenlei Cai

    2016-03-01

    Full Text Available In this report, the vanadium recovery mechanisms by novel BaCO3/CaO composite additive roasting and acid leaching technology, including the phase transformations and the vanadium leaching kinetics, were studied. The purpose of this manuscript is to realize and improve the vanadium recovery from stone coal using BaCO3/CaO as the composite additive. The results indicated that during the composite additive BaCO3/CaO roasting process, the monoclinic crystalline structure of muscovite (K(Al,V2[Si3AlO10](OH2 was converted into the hexagonal crystalline structure of BaSi4O9 and the tetragonal crystalline structure of Gehlenite (Ca2Al2SiO7, which could, therefore, facilitate the release and extraction of vanadium. Vanadium in leaching residue was probably in the form of vanadate or pyrovanadate of barium and calcium, which were hardly extracted during the sulfuric acid leaching process. The vanadium leaching kinetic analysis indicated that the leaching process was controlled by the diffusion through a product layer. The apparent activation energy could be achieved as 46.51 kJ/mol. The reaction order with respect to the sulfuric acid concentration was 1.1059. The kinetic model of vanadium recovery from stone coal using novel composite additive BaCO3/CaO could be finally established.

  17. SUSTAINABLE ENVIRONMENTAL TECHNOLOGIES INCLUDING WATER RECOVERY FOR REUSE FROM TANNERY AND INDUSTRIAL WASTEWATER – INDIAN AND ASIAN SCENARIO

    Directory of Open Access Journals (Sweden)

    Dr. S. RAJAMANI

    2017-05-01

    Full Text Available World leather sector generates 600million m3 of wastewater per annum. The Asian tanneries contributes more than 350 million m3 of wastewater from the process of 8 to 10 millions tons of hides and skins. Environmental challenges due to depletion of quality water resources and increase in salinity, it has become necessary to control Total Dissolved Solids (TDS in the treated effluent with water recovery wherever feasible. Adoption of special membrane system has been engineered in many individual and Common Effluent Treatment Plants (CETPs in India, China and other leather producing countries. The sustainability of saline reject management is one of the major challenges. Conventional tannery wastewater treatment systems include physiochemical and biological treatment to reduce Chromium, BOD, COD and Suspended Solids. To tackle treated effluent with TDS in the rage of 10000 to 30000mg/l, multiple stage high pressure membrane units have been designed and implemented for recovery of water. To reduce the chemical usage and sludge generation in the tertiary treatment, Membrane Bio-Reactor (MBR has been adopted which replace secondary clarifier and sophisticated tertiary treatment units such as Reactive Clarifier, Ultra-filtration (UF, etc. Commercial scale high-tech membrane systems have been implemented in many locations for the capacities ranging from 500 to 10000m3/day. Recent applied R&D on the environmental protection techniques with focus on water-recovery for reuse, salt recovery, marine disposal of saline reject with proper bio-control system, etc. are dealt in this novel technical paper.

  18. Commercial Scale Production of Mushroom Liquid Seeds

    International Nuclear Information System (INIS)

    Rosnani Abdul Rashid; Hassan Hamdani Hassan Mutaat; Mohd Meswan Maskom; Khairuddin Abdul Rahim

    2015-01-01

    Mushroom liquid seed production technology was developed by Malaysian Nuclear Agency (Nuclear Malaysia) in the late 1990s. Initially, the liquid seeds were used mainly in the solid state fermentation process for converting oil palm empty fruit bunch fibres into ruminant feed. Considering widespread problems encountered by mushroom growers from use of solid seeds, especially in cases of contaminant agents infecting cultivated bags and inconsistencies in yield, we diverted our focus to utilising liquid seeds as alternative inocula for mushroom cultivation. These problems provide us opportunities to look into the issues and address the problems faced by mushroom growers. However, the technology of producing liquid seed at laboratory scale needs to be primed for commercial production. This paper discusses developmental aspects of mushroom liquid seed at commercial scale for the advancement of the country's mushroom industry. (author)

  19. Central sorting and recovery of MSW recyclable materials: A review of technological state-of-the-art, cases, practice and implications for materials recycling.

    Science.gov (United States)

    Cimpan, Ciprian; Maul, Anja; Jansen, Michael; Pretz, Thomas; Wenzel, Henrik

    2015-06-01

    Today's waste regulation in the EU comprises stringent material recovery targets and calls for comprehensive programs in order to achieve them. A similar movement is seen in the US where more and more states and communities commit to high diversion rates from landfills. The present paper reviews scientific literature, case studies and results from pilot projects, on the topic of central sorting of recyclable materials commonly found in waste from households. The study contributes, inter alia, with background understanding on the development of materials recovery, both in a historical and geographical perspective. Physical processing and sorting technology has reached a high level of maturity, and many quality issues linked to cross-contamination by commingling have been successfully addressed to date. New sorting plants tend to benefit from economies of scale, and innovations in automation and process control, which are targeted at curtailing process inefficiencies shown by operational practice. Technology developed for the sorting of commingled recyclables from separate collection is also being successfully used to upgrade residual MSW processing plants. The strongest motivation for central sorting of residual MSW is found for areas where source separation and separate collection is difficult, such as urban agglomerations, and can in such areas contribute to increasing recycling rates, either complementary to- or as a substitute for source separation of certain materials, such as plastics and metals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Physico-chemical induced modification of seed germination and early development in artichoke (Cynara scolymus L.) using low energy plasma technology

    Science.gov (United States)

    Hosseini, Seyed Iman; Mohsenimehr, Soad; Hadian, Javad; Ghorbanpour, Mansour; Shokri, Babak

    2018-01-01

    In this study, low pressure non-thermal radiofrequency nitrogen plasma at very low power has been used to treat the artichoke seeds on the powered cathode for the first time. The influence of treatment time on the surface physical properties, germination rate, seedling growth, and enzyme activity of the seeds has been investigated. Results showed that plasma treatment considerably improved the germination rate and seedling growth. The root length grew by 28.5% and 50% and root dry weight increased by 13% and 53%, respectively, for 10 and 15 min of treatment. The same trend has been found for the shoot growth parameters although the greater stimulatory efficacy on root has been obtained. The nitrogen plasma treatment substantially made the seeds' surface hydrophilic which leads to 36.9% improvement in seed's water uptake at 15 min of treatment. Our study showed the activity of peroxidase and catalase enzymes slightly increased after the plasma treatment.

  1. Study on engineering technologies in the Mizunami Underground Research Laboratory. FY 2014. Development of recovery and mitigation technology on excavation damage (Contract research)

    International Nuclear Information System (INIS)

    Fukaya, Masaaki; Hata, Koji; Akiyoshi, Kenji; Sato, Shin; Takeda, Nobufumi; Miura, Norihiko; Uyama, Masao; Kanata, Tsutomu; Ueda, Tadashi; Hara, Akira; Torisu, Seda; Ishida, Tomoko; Sato, Toshinori; Mikake, Shinichiro; Aoyagi, Yoshiaki

    2016-03-01

    The researches on engineering technology in the Mizunami Underground Research Laboratory (MIU) project consist of (1) development of design and construction planning technologies, (2) development of construction technology, (3) development of countermeasure technology, (4) development of technology for security and (5) development of technologies for restoration and/or reduction of the excavation damage. As a part of the second phase of the MIU project, research has been focused on the evaluation of engineering technologies including the initial design based on the data obtained during construction. In this research, examination of the plug applied to the future reflood test was conducted as a part of (5) development of technologies for restoration and/or reduction of the excavation damage relating to the engineering technology in the MIU (2014), specifically focused on (1) plug examination (e.g. functions, structure and material) and the quality control methods and (2) analytical evaluation of rock mass behavior around the plug through the reflood test. As a result, specifications of the plug were determined. These specifications should be able to meet requirements for the safety structure and surrounding rock mass against predicted maximum water pressure, temperature stress and seismic force, and for controlling the groundwater inflow, ensuring the access into the reflood gallery and the penetration performance of measurement cable. Also preliminary knowledge regarding the rock mass behavior around the plug after flooding the reflood gallery by installed plug was obtained. A CD-ROM is attached as an appendix. (J.P.N.)

  2. Fifth DOE symposium on enhanced oil and gas recovery and improved drilling technology. Volume 3. Gas and drilling

    Energy Technology Data Exchange (ETDEWEB)

    Linville, B. [ed.

    1979-01-01

    Volume 3 contains papers from the sessions on natural gas supporting research, western gas sands project, drilling technology, and environmental effects. Individuals were processed for inclusion in the Energy Data Base.

  3. The Aquatic Macrophyte Seed Bank in Lake Onalaska, Wisconsin

    National Research Council Canada - National Science Library

    McFarland, D

    1998-01-01

    .... americana have made a partial recovery. While the production of vegetative propagules may largely account for increases in populations of both species, the extent to which seed production may contribute to their expansion in the lake is unknown...

  4. Study of seed for synthetical quartz

    International Nuclear Information System (INIS)

    Suzuki, C.K.; Torikai, D.

    1988-01-01

    Natural quartz blocks for seed (synthetic quartz technology) were studied by using various characterization techniques, such as X-ray topography, optical micrography, inspectoscopy, polariscopy and conoscopy, and etching. One of the most commonly found defect is the electrical or Dauphine twin. In The present research, we have developed a methodology to obtain a highly perfect seed for the synthetic quartz industries. (author) [pt

  5. Organic leek seed production - securing seed quality

    DEFF Research Database (Denmark)

    Deleuran, Lise Christina; Boelt, Birte

    2011-01-01

    To maintain integrity in organic farming, availability of organically produced GM-free seed of varieties adapted to organic production systems is of vital impor-tance. Despite recent achievements, organic seed supply for a number of vegetable species is insufficient. Still, in many countries...... seeds. Tunnel production is a means of securing seed of high genetic purity and quality, and organic leek (Allium porrum L.) seed production was tested in tunnels in Denmark. The present trial focused on steckling size and in all years large stecklings had a positive effect on both seed yield...

  6. Organic Leek Seed Production - Securing Seed Quality

    DEFF Research Database (Denmark)

    Deleuran, L C; Boelt, B

    2011-01-01

    To maintain integrity in organic farming, availability of organically produced GM-free seed of varieties adapted to organic production systems is of vital impor-tance. Despite recent achievements, organic seed supply for a number of vegetable species is insufficient. Still, in many countries...... seeds. Tunnel production is a means of securing seed of high genetic purity and quality, and organic leek (Allium porrum L.) seed production was tested in tunnels in Denmark. The present trial focused on steckling size and in all years large stecklings had a positive effect on both seed yield...

  7. Effects of pre-treatment technologies on quantity and quality of source-sorted municipal organic waste for biogas recovery

    DEFF Research Database (Denmark)

    Hansen, Trine Lund; Jansen, J.l.C.; Davidsson, Å.

    2007-01-01

    , collection bag material (plastic or paper) and easily degradable organic matter. Furthermore, the particle size of the biomass was related to the pre-treatment technology. The content of plastic in the biomass depended both on the actual collection bag material used in the system and the pre......Source-sorted municipal organic waste collected from different dwelling types in five Danish cities and pre-treated at three different plants was sampled and characterized several times during one year to investigate the origin of any differences in composition of the pre-treated waste introduced...... by city, pre-treatment technology, dwelling type or annual season. The investigated pre-treatment technologies were screw press, disc screen and shredder + magnet. The average quantity of pre-treated organic waste (biomass) produced from the incoming waste varied between the investigated pre...

  8. Bird Perches Increase Forest Seeds on Puerto Rican Landslides.

    Science.gov (United States)

    Aaron B. Shiels; Lawrence R. Walker

    2003-01-01

    Landslides result in the loss of vertical vegetative structure, soil nutrients, and the soil seed bank. These losses impede timely recovery of tropical forest communities. In this study we added bird perches to six Puerto Rican landslides with three types of surfaces (bare, climbing fern, grass) in an effort to facilitate inputs of forest seeds through bird dispersal...

  9. Post-marathon wearing of Masai Barefoot Technology shoes facilitates recovery from race-induced fatigue: an evaluation utilizing a visual analog scale

    Directory of Open Access Journals (Sweden)

    Nakagawa K

    2014-12-01

    Full Text Available Kento Nakagawa, Takashi Obu, Kazuyuki KanosueFaculty of Sport Sciences, Waseda University, Tokorozawa, Saitama, Japan Purpose: To investigate the potential benefit of post-race wearing of unstable shoes (Masai Barefoot Technology [MBT] on recovery from marathon race–induced fatigue.Patients and methods: Forty-five runners who participated in a full marathon race were divided into three groups: 1 MBT shoes, 2 trail running shoes, and 3 control (CON. Participants ran a full marathon with their own running shoes, and then put on the assigned shoes immediately after the race. They continued to wear the assigned shoes for the ensuing 3 days. The CON group wore their usual shoes. Estimates of post-race fatigue were made by the participants on questionnaires that utilized a visual analog scale. Estimates were made just after the race, as well as for the next 3 days.Results: The subjective fatigue of the MBT group was lower than that of the CON (P<0.05 or trail running shoe groups (P<0.05 on day 3.Conclusion: MBT shoe intervention can promote recovery from the fatigue induced by running a full marathon.Keywords: footwear, VAS, full marathon

  10. Characterisation of metals in the electronic waste of complex mixtures of end-of-life ICT products for development of cleaner recovery technology

    International Nuclear Information System (INIS)

    Sun, Z.H.I.; Xiao, Y.; Sietsma, J.; Agterhuis, H.; Visser, G.; Yang, Y.

    2015-01-01

    Highlights: • New characterisation methodology has been established to understand an industrially processed ICT waste. • Particle size distribution, composition, thermal–chemical behaviour and occurrence of metals were considered. • The characterisation provides direct guidelines for values recovery from the waste. - Abstract: Recycling of valuable metals from electronic waste, especially complex mixtures of end-of-life information and communication technology (ICT) products, is of great difficulty due to their complexity and heterogeneity. One of the important reasons is the lack of comprehensive characterisation on such materials, i.e. accurate compositions, physical/chemical properties. In the present research, we focus on developing methodologies for the characterisation of metals in an industrially processed ICT waste. The morphology, particle size distribution, compositional distribution, occurrence, liberation as well as the thermo-chemical properties of the ICT waste were investigated with various characterisation techniques, including X-ray Fluorescence Spectrometry (XRF), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) with energy dispersed spectroscopy (EDS). Due to the high heterogeneity of the material, special sample preparation procedures were introduced to minimise the discrepancies during compositional analyses. As a result, a clearer overview of the ICT waste has been reached. This research provides better understanding of the extractability of each metal and improves the awareness of potential obstacles for extraction. It will lead to smarter decisions during further development of a clean and effective recovery process

  11. Characterisation of metals in the electronic waste of complex mixtures of end-of-life ICT products for development of cleaner recovery technology

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Z.H.I. [Department of Materials Science and Engineering, TU Delft, 2628 CD Delft (Netherlands); Xiao, Y. [Ironmaking Department, R and D, Tata Steel, 1970 CA IJmuiden (Netherlands); Sietsma, J. [Department of Materials Science and Engineering, TU Delft, 2628 CD Delft (Netherlands); Agterhuis, H.; Visser, G. [Business Development, Van Gansewinkel Groep BV, 5657 DH Eindhoven (Netherlands); Yang, Y. [Department of Materials Science and Engineering, TU Delft, 2628 CD Delft (Netherlands)

    2015-01-15

    Highlights: • New characterisation methodology has been established to understand an industrially processed ICT waste. • Particle size distribution, composition, thermal–chemical behaviour and occurrence of metals were considered. • The characterisation provides direct guidelines for values recovery from the waste. - Abstract: Recycling of valuable metals from electronic waste, especially complex mixtures of end-of-life information and communication technology (ICT) products, is of great difficulty due to their complexity and heterogeneity. One of the important reasons is the lack of comprehensive characterisation on such materials, i.e. accurate compositions, physical/chemical properties. In the present research, we focus on developing methodologies for the characterisation of metals in an industrially processed ICT waste. The morphology, particle size distribution, compositional distribution, occurrence, liberation as well as the thermo-chemical properties of the ICT waste were investigated with various characterisation techniques, including X-ray Fluorescence Spectrometry (XRF), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) with energy dispersed spectroscopy (EDS). Due to the high heterogeneity of the material, special sample preparation procedures were introduced to minimise the discrepancies during compositional analyses. As a result, a clearer overview of the ICT waste has been reached. This research provides better understanding of the extractability of each metal and improves the awareness of potential obstacles for extraction. It will lead to smarter decisions during further development of a clean and effective recovery process.

  12. RECOVERY ACT - Methods for Decision under Technological Change Uncertainty and Risk Assessment for Integrated Assessment of Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Webster, Mort D. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Energy and Mineral Engineering

    2015-11-30

    This report presents the final outcomes and products of the project as performed both at the Massachusetts Institute of Technology and subsequently at Pennsylvania State University. The research project can be divided into three main components: methodology development for decision-making under uncertainty, improving the resolution of the electricity sector to improve integrated assessment, and application of these methods to integrated assessment.

  13. RECOVERY ACT - Methods for Decision under Technological Change Uncertainty and Risk Assessment for Integrated Assessment of Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Webster, Mort David [MIT

    2015-03-10

    This report presents the final outcomes and products of the project as performed at the Massachusetts Institute of Technology. The research project consists of three main components: methodology development for decision-making under uncertainty, improving the resolution of the electricity sector to improve integrated assessment, and application of these methods to integrated assessment. Results in each area is described in the report.

  14. International joint research project of venture seeds excavating type in fiscal 1999 (revised) - venture seeds No.3. Report on achievements in developing bump forming technologies for high-density semiconductor connection; 1999 nendo (hosei) venture seeds hakkutsugata kokusai kyodo kenkyu jigyo - venture seeds No.3. Komitsudo handotai setsuzokuyo bump gata keisei gijutsu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Development has been advanced on a new flip chip technology with high efficiency and reliability to mount on lead frames and substrates the semiconductor devices that have been made higher in density and function and smaller in size. Specifically, discussions were given on a bump forming technology using micro balls with high accuracy and sphericity. With this technology, bumps are formed with high accuracy and efficiency by transferring and bonding the micro balls onto electrodes. Activities were taken in the following five areas: 1) discussions on the micro ball arranging technology, 2) optimization and evaluation on bed films, 3) manufacture and evaluation on micro balls, 4) overall evaluation and improvement discussion on quality and cost, and 5) analysis of thermal stress on soldered balls. In Item 1), micro balls are transferred onto pads after removing excess balls by sucking them into a suction head while having the micro balls float in a container by means of vibration. The suction arrangement plates were discussed and the suction system was optimized, whereas it was verified that balls with diameter of 100 {mu} m can be transferred and bonded onto pads of the chips without excess and insufficiency. (NEDO)

  15. Scenario comparisons of gasification technology using energy life cycle assessment for bioenergy recovery from rice straw in Taiwan

    International Nuclear Information System (INIS)

    Shie, J.L.; Lee, C.H.; Chen, C.S.; Lin, K.L.; Chang, C.Y.

    2014-01-01

    Highlights: • The energy balances of potential gasification technology and limitation boundary are evaluated. • The transportation and pre-treatment are the greatest parts of energy use. • Every technology process has positive energy benefits at all on-site pre-treatment cases. • The optimal ranges of transportation distance and treatment capacity are suggested. • The optimal technology from the tendency model is addressed. - Abstract: This study uses different scenarios to evaluate, by means of energy life-cycle assessments (ELCAs), the energy balance of potential gasification technology and limitation boundaries in Taiwan. Rice straw is chosen as the target material in this study because it is the most significant agriculture waste in Taiwan. Energy products include syngas (CO + H 2 ), methane, carbon dioxide and carbon black residue. The scenarios simulate capacities of 50,000–200,000 tons/year. The distances of collection and transportation are calculated by a circular area 50–100 km in diameter. Also, the on-site and off-site pretreatments of rice straw are evaluated. For this optimum scenario case, the average of the total input energy for the assessed systems is about 15.9% of the average output energy; the value of the net energy balance (NEB) is 0.841. Every technological process has positive energy benefits at all on-site scenario cases. As the capacity is increased, the energy consumption required for transportation increases and the values of the energy indicators decrease. According to the limitation boundaries from the tendency model at on-site cases, the suggested transportation distance and treatment capacity are below 114.72 km and 251,533 tons/year, respectively, while the energy return on investment (EROI) value is greater than 1

  16. Membrane System for the Recovery of Volatile Organic Compounds from Remediation Off-Gases. Innovative Technology Summary Report

    International Nuclear Information System (INIS)

    2001-01-01

    Membrane Technology and Research, Inc.'s (MTR's) membrane-based off-gas treatment technology separates the organic components from the off-gas stream, producing a VOC-free air stream that can be discharged or recycled to the gas-generating process. The membrane system produces a constant, high-quality air discharge stream irrespective of the feed-air composition. The system also produces a concentrated liquid VOC stream for disposal. Any water vapor present in the off-gas is removed as condensed dischargeable water. Benefits: Applicable to a broad range of off-gas generating sources. Target streams are off-gas from soil remediation by in situ vacuum extraction or air and steam sparging, and soil vitrification Suitable for remote sites: systems require minimal site preparation, little operator attention once installed, electrical power but no other utilities, and no expendable chemicals Minimizes waste volume: dischargeable air and water are produced, and VOCs removed from the feed gas ar e concentrated into a condensed liquid. No other waste streams result Treats off-gases containing both flammable and nonflammable and chlorinated and nonchlorinated VOCs Cost competitive with other technologies in the VOC concentration range 100-1,000 ppm and offers significant cost reduction at higher VOC concentrations Systems are easily moved and transported to new sites with a minimum of refurbishing or modification Generates no air emissions, minimizing permitting issues and speeding up the start of a clean-up operation Technology: Removal of VOCs from air streams with membranes is a relatively new technology

  17. Research on Heat Recovery Technology for Reducing the Energy Consumption of Dedicated Ventilation Systems: An Application to the Operating Model of a Laboratory

    Directory of Open Access Journals (Sweden)

    Lian Zhang

    2016-01-01

    Full Text Available In this research, the application of heat pipes in the air handler dedicated to decoupling dehumidification from cooling to reduce energy consumption was simulated and investigated by simulations and experimental studies. The cooling load profiles and heat pipes with effectiveness of 0.45 and 0.6, respectively, were evaluated in achieving the desired space conditions and calculated hour by hour. The results demonstrated that for all examined cases, a heat pipe heat exchanger (HPHX can be used to save over 80% of the energy during the hours of operation of air conditioning. The overall energy reduction rate was from 3.2% to 4.5% under air conditioning system conditions. It was found that the energy saving potential of a laboratory was higher than for other kinds of buildings. Therefore, the dedicated ventilation system combined with heat recovery technology can be efficiently applied to buildings, especially for laboratories in subtropical areas.

  18. Energy Recovery Using Micro-Hydropower Technology in Water Supply Systems: The Case Study of the City of Fribourg

    Directory of Open Access Journals (Sweden)

    Irene Samora

    2016-08-01

    Full Text Available Water supply systems (WWSs are one of the main manmade water infrastructures presenting potential for micro-hydropower. Within urban networks, local decentralized micro-hydropower plants (MHPs may be inserted in the regional electricity grid or used for self-consumption at the local grid level. Nevertheless, such networks are complex and the quantification of the potential for micro-hydropower other than that achieved by replacing pressure reducing valves (PRVs is difficult. In this work, a methodology to quantify the potential for hydropower based on the excess energy in a network is proposed and applied to a real case. A constructive solution is presented based on the use of a novel micro-turbine for energy conversion, the five blade tubular propeller (5BTP. The location of the MHP within the network is defined with an optimization algorithm that maximizes the net present value after 20 years of operation. These concepts are tested for the WSS in the city of Fribourg, Switzerland. The proposed solution captures 10% of the city’s energy potential and represents an economic interest. The results confirm the location of PRVs as potential sites for energy recovery and stress the need for careful sensitivity analysis of the consumption. Finally, an expedited method is derived to estimate the costs and energy that one 5BTP can produce in a given network.

  19. Evaluation of integrated ammonia recovery technology and nutrient status with an in-vessel composting process for swine manure.

    Science.gov (United States)

    Kim, Jung Kon; Lee, Dong Jun; Ravindran, Balsubramani; Jeong, Kwang-Hwa; Wong, Jonathan Woon-Chung; Selvam, Ammaiyappan; Karthikeyan, Obuli P; Kwag, Jung-Hoon

    2017-12-01

    The study investigated the effect of different initial moisture (IM) content (55, 60, 65, and 70%) of composting mixtures (swine manure and sawdust) for the production of nutrient rich manure, and the recovery of ammonia through a condensation process using a vertical cylindrical in-vessel composter for 56days. The composting resulted in a significant reduction in C:N ratio and electrical conductivity (EC), with a slight increase in pH in all products. The NH 3 were emitted notably, and at the same time the NO 3 - -N concentration gradually increased with the reduction of NH 4 + -N in the composting mixtures. The overall results confirmed, the 65% IM showed the maximum nutritional yield, maturity and non-phytotoxic effects (Lycopersicon esculentum L.), with the results of ideal compost product in the following order of IM: 65%>60%>70%>55%. Finally, the recovered condensed ammonia contained considerable ammonium nitrogen concentrations and could be used as fertilizer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Venezuela-MEM/USA-DOE Fossil Energy Report XIII-1, Supporting Technology for Enhanced Oil Recovery, Microbial EOR; FINAL

    International Nuclear Information System (INIS)

    Ziritt, Jose Luis

    1999-01-01

    The results from Annex XIII of the Cooperative Agreement between the United States Department of Energy (DOE) and the Ministry of Energy and Mines of the Republic of Venezuela (MEMV) have been documented and published with many researchers involved. Integrate comprehensive research programs in the area of Microbial Enhanced Oil Recovery (MEOR) ranged from feasibility laboratory studies to full-scale multi-well field pilots. The objective, to cooperate in a technical exchange of ideas and information was fully met throughout the life of the Annex. Information has been exchanged between the two countries through published reports and technical meetings between experts in both country's research communities. The meetings occurred every two years in locations coincident with the International MEOR conferences and workshops sponsored by DOE (June 1990, University of Oklahoma, September 1992, Brookhaven, September 1995, National Institute of Petroleum and Energy Research). Reports and publications produced during these years are listed in Appendix B. Several Annex managers have guided the exchange through the years. They included Luis Vierma, Jose Luis Zirritt, representing MEMV and E. B. Nuckols, Edith Allison, and Rhonda Lindsey, representing the U.S. DOE. Funding for this area of research remained steady for a few years but decreased in recent years. Because both countries have reduced research programs in this area, future exchanges on this topic will occur through ANNEX XV. Informal networks established between researchers through the years should continue to function between individuals in the two countries

  1. Venezuela-MEM/USA-DOE Fossil Energy Report IV-11: Supporting technology for enhanced oil recovery - EOR thermal processes

    Energy Technology Data Exchange (ETDEWEB)

    Venezuela

    2000-04-06

    This report contains the results of efforts under the six tasks of the Tenth Amendment anti Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Energy Agreement. This report is presented in sections (for each of the six Tasks) and each section contains one or more reports that were prepared to describe the results of the effort under each of the Tasks. A statement of each Task, taken from the Agreement Between Project Managers, is presented on the first page of each section. The Tasks are numbered 68 through 73. The first through tenth report on research performed under Annex IV Venezuela MEM/USA-DOE Fossil Energy Report Number IV-1, IV-2, IV-3, IV-4, IV-5, IV-6, IV-7, IV-8, IV-9, IV-10 contain the results of the first 67 Tasks. These reports are dated April 1983, August 1984, March 1986, July 1987, November 1988, December 1989, October 1991, February 1993, March 1995, and December 1997, respectively.

  2. Venezuela-MEM/USA-DOE Fossil Energy Report XIII-1, Supporting Technology for Enhanced Oil Recovery, Microbial EOR

    Energy Technology Data Exchange (ETDEWEB)

    Ziritt, Jose Luis

    1999-11-03

    The results from Annex XIII of the Cooperative Agreement between the United States Department of Energy (DOE) and the Ministry of Energy and Mines of the Republic of Venezuela (MEMV) have been documented and published with many researchers involved. Integrate comprehensive research programs in the area of Microbial Enhanced Oil Recovery (MEOR) ranged from feasibility laboratory studies to full-scale multi-well field pilots. The objective, to cooperate in a technical exchange of ideas and information was fully met throughout the life of the Annex. Information has been exchanged between the two countries through published reports and technical meetings between experts in both country's research communities. The meetings occurred every two years in locations coincident with the International MEOR conferences & workshops sponsored by DOE (June 1990, University of Oklahoma, September 1992, Brookhaven, September 1995, National Institute of Petroleum and Energy Research). Reports and publications produced during these years are listed in Appendix B. Several Annex managers have guided the exchange through the years. They included Luis Vierma, Jose Luis Zirritt, representing MEMV and E. B. Nuckols, Edith Allison, and Rhonda Lindsey, representing the U.S. DOE. Funding for this area of research remained steady for a few years but decreased in recent years. Because both countries have reduced research programs in this area, future exchanges on this topic will occur through ANNEX XV. Informal networks established between researchers through the years should continue to function between individuals in the two countries.

  3. What evidence exists for new strategies or technologies in the diagnosis of sports concussion and assessment of recovery?

    Science.gov (United States)

    Kutcher, Jeffrey Scott; McCrory, Paul; Davis, Gavin; Ptito, Alain; Meeuwisse, Willem H; Broglio, Steven P

    2013-04-01

    The purpose of this critical review is to summarise the evidence for the following technologies/strategies related to diagnosing or managing sports-related concussion: quantitative EEG, functional neuroimaging, head impact sensors, telemedicine and mobile devices. MEDLINE, PubMed, Cochrane Controlled Trials Registers, SportDiscus, EMBASE, Web of Science and ProQuest databases. Primary search keywords were concussion, sports concussion and mild traumatic brain injury. The keywords used for secondary, topic specific searches were quantitative electroencephalography, qEEG, functionalMRI, magnetoencephalography, near-infrared spectroscopy, positron emission tomography, single photon emissionCT, accelerometer, impact sensor, telemetry, remote monitoring, robotic medicine, telemedicine, mobile device, mobile phone, smart phone and tablet computer. The primary search produced 8567 publications. The secondary searches produced nine publications that presented original data, included a comparison group in the study design and involved sports-related concussion. Four studies spoke to the potential of qEEG as a diagnostic or management tool, while five studies addressed the potential of fMRI to be used in the same capacity. Emerging technologies and novel approaches that aid in sports concussion diagnosis and management are being introduced at a rapid rate. While some technologies show promise, their clinical utility remains to be established.

  4. Photoinhibition influences protein utilisation during seed ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-05-16

    May 16, 2008 ... Seed storage proteins are mobilised during germination, especially at ... of this study was to examine changes in protein expression during ... MATERIALS AND METHODS ... System (Pharmacia) were 500V for 4.5 h in Phase I and II and 2000 .... characterisation of photoinhibition and recovery during cold.

  5. Disaster Debris Recovery Database - Recovery

    Data.gov (United States)

    U.S. Environmental Protection Agency — The US EPA Disaster Debris Recovery Database (DDRD) promotes the proper recovery, recycling, and disposal of disaster debris for emergency responders at the federal,...

  6. Application of FTA technology for sampling, recovery and molecular characterization of viral pathogens and virus-derived transgenes from plant tissues

    Science.gov (United States)

    Ndunguru, Joseph; Taylor, Nigel J; Yadav, Jitender; Aly, Haytham; Legg, James P; Aveling, Terry; Thompson, Graham; Fauquet, Claude M

    2005-01-01

    Background Plant viral diseases present major constraints to crop production. Effective sampling of the viruses infecting plants is required to facilitate their molecular study and is essential for the development of crop protection and improvement programs. Retaining integrity of viral pathogens within sampled plant tissues is often a limiting factor in this process, most especially when sample sizes are large and when operating in developing counties and regions remote from laboratory facilities. FTA is a paper-based system designed to fix and store nucleic acids directly from fresh tissues pressed into the treated paper. We report here the use of FTA as an effective technology for sampling and retrieval of DNA and RNA viruses from plant tissues and their subsequent molecular analysis. Results DNA and RNA viruses were successfully recovered from leaf tissues of maize, cassava, tomato and tobacco pressed into FTA® Classic Cards. Viral nucleic acids eluted from FTA cards were found to be suitable for diagnostic molecular analysis by PCR-based techniques and restriction analysis, and for cloning and nucleotide sequencing in a manner equivalent to that offered by tradition isolation methods. Efficacy of the technology was demonstrated both from sampled greenhouse-grown plants and from leaf presses taken from crop plants growing in farmer's fields in East Africa. In addition, FTA technology was shown to be suitable for recovery of viral-derived transgene sequences integrated into the plant genome. Conclusion Results demonstrate that FTA is a practical, economical and sensitive method for sampling, storage and retrieval of viral pathogens and plant genomic sequences, when working under controlled conditions and in the field. Application of this technology has the potential to significantly increase ability to bring modern analytical techniques to bear on the viral pathogens infecting crop plants. PMID:15904535

  7. Application of FTA technology for sampling, recovery and molecular characterization of viral pathogens and virus-derived transgenes from plant tissues.

    Science.gov (United States)

    Ndunguru, Joseph; Taylor, Nigel J; Yadav, Jitender; Aly, Haytham; Legg, James P; Aveling, Terry; Thompson, Graham; Fauquet, Claude M

    2005-05-18

    Plant viral diseases present major constraints to crop production. Effective sampling of the viruses infecting plants is required to facilitate their molecular study and is essential for the development of crop protection and improvement programs. Retaining integrity of viral pathogens within sampled plant tissues is often a limiting factor in this process, most especially when sample sizes are large and when operating in developing counties and regions remote from laboratory facilities. FTA is a paper-based system designed to fix and store nucleic acids directly from fresh tissues pressed into the treated paper. We report here the use of FTA as an effective technology for sampling and retrieval of DNA and RNA viruses from plant tissues and their subsequent molecular analysis. DNA and RNA viruses were successfully recovered from leaf tissues of maize, cassava, tomato and tobacco pressed into FTA Classic Cards. Viral nucleic acids eluted from FTA cards were found to be suitable for diagnostic molecular analysis by PCR-based techniques and restriction analysis, and for cloning and nucleotide sequencing in a manner equivalent to that offered by tradition isolation methods. Efficacy of the technology was demonstrated both from sampled greenhouse-grown plants and from leaf presses taken from crop plants growing in farmer's fields in East Africa. In addition, FTA technology was shown to be suitable for recovery of viral-derived transgene sequences integrated into the plant genome. Results demonstrate that FTA is a practical, economical and sensitive method for sampling, storage and retrieval of viral pathogens and plant genomic sequences, when working under controlled conditions and in the field. Application of this technology has the potential to significantly increase ability to bring modern analytical techniques to bear on the viral pathogens infecting crop plants.

  8. Application of FTA technology for sampling, recovery and molecular characterization of viral pathogens and virus-derived transgenes from plant tissues

    Directory of Open Access Journals (Sweden)

    Aveling Terry

    2005-05-01

    Full Text Available Abstract Background Plant viral diseases present major constraints to crop production. Effective sampling of the viruses infecting plants is required to facilitate their molecular study and is essential for the development of crop protection and improvement programs. Retaining integrity of viral pathogens within sampled plant tissues is often a limiting factor in this process, most especially when sample sizes are large and when operating in developing counties and regions remote from laboratory facilities. FTA is a paper-based system designed to fix and store nucleic acids directly from fresh tissues pressed into the treated paper. We report here the use of FTA as an effective technology for sampling and retrieval of DNA and RNA viruses from plant tissues and their subsequent molecular analysis. Results DNA and RNA viruses were successfully recovered from leaf tissues of maize, cassava, tomato and tobacco pressed into FTA® Classic Cards. Viral nucleic acids eluted from FTA cards were found to be suitable for diagnostic molecular analysis by PCR-based techniques and restriction analysis, and for cloning and nucleotide sequencing in a manner equivalent to that offered by tradition isolation methods. Efficacy of the technology was demonstrated both from sampled greenhouse-grown plants and from leaf presses taken from crop plants growing in farmer's fields in East Africa. In addition, FTA technology was shown to be suitable for recovery of viral-derived transgene sequences integrated into the plant genome. Conclusion Results demonstrate that FTA is a practical, economical and sensitive method for sampling, storage and retrieval of viral pathogens and plant genomic sequences, when working under controlled conditions and in the field. Application of this technology has the potential to significantly increase ability to bring modern analytical techniques to bear on the viral pathogens infecting crop plants.

  9. Demonstration of Air-Power-Assist Engine Technology for Clean Combustion and Direct Energy Recovery in Heavy Duty Application

    Energy Technology Data Exchange (ETDEWEB)

    Hyungsuk Kang; Chun Tai

    2010-05-01

    The first phase of the project consists of four months of applied research, starting from September 1, 2005 and was completed by December 31, 2005. During this time, the project team heavily relied on highly detailed numerical modeling techniques to evaluate the feasibility of the APA technology. Specifically, (i) A GT-Power{sup TM}engine simulation model was constructed to predict engine efficiency at various operating conditions. Efficiency was defined based on the second-law thermodynamic availability. (ii) The engine efficiency map generated by the engine simulation was then fed into a simplified vehicle model, which was constructed in the Matlab/Simulink environment, to predict fuel consumption of a refuse truck on a simple collection cycle. (iii) Design and analysis work supporting the concept of retrofitting an existing Sturman Industries Hydraulic Valve Actuation (HVA) system with the modifications that are required to run the HVA system with Air Power Assist functionality. A Matlab/Simulink model was used to calculate the dynamic response of the HVA system. Computer aided design (CAD) was done in Solidworks for mechanical design and hydraulic layout. At the end of Phase I, 11% fuel economy improvement was predicted. During Phase II, the engine simulation group completed the engine mapping work. The air handling group made substantial progress in identifying suppliers and conducting 3D modelling design. Sturman Industries completed design modification of the HVA system, which was reviewed and accepted by Volvo Powertrain. In Phase II, the possibility of 15% fuel economy improvement was shown with new EGR cooler design by reducing EGR cooler outlet temperature with APA engine technology from Air Handling Group. In addition, Vehicle Simulation with APA technology estimated 4 -21% fuel economy improvement over a wide range of driving cycles. During Phase III, the engine experimental setup was initiated at VPTNA, Hagerstown, MD. Air Handling system and HVA

  10. Technology for the Recovery of Fuel and Adsorbent Carbons from Coal Burning Utility Ash Ponds and Landfills

    Energy Technology Data Exchange (ETDEWEB)

    J.G. Groppo; T.L. Robl

    2005-09-30

    Several sampling techniques were evaluated to recover representative core samples from the ash ponds at Western Kentucky Energy's Coleman Station. The most successful was a combination of continuous-flight augers and specially designed soft-sediment sampling tubes driven by a Hammerhead drill mounted on an amphibious ARGO vehicle. A total of 51 core samples were recovered and analyzed in 3 ft sections and it was determined that there are 1,354,974 tons of ash in Pond C. Of the over 1.35M tons of ash present, 14% or 190K tons can be considered as coarse (+100 mesh). Pond C contains approximately 88K tons of carbon, nearly half of which is coarse and potentially recoverable with spiral concentration while the fine carbon (-100 mesh) is recoverable with froth flotation. There are 1.27M tons of carbon-free ash, 12% of which is coarse and potentially usable as block sand. Spiral concentration testing on bulk samples showed that product grade of 30 to 38% C (4200 to 5500 Btu/lb) was obtainable. When this product was cleaned again in an additional stage of spiral concentration, the product grade was improved to 7200 to 8200 Btu/lb with an accompanying 13 to 29% decrease in yield. Release analysis of hydraulically classified pond ash showed that froth flotation could provide froth products with as high a grade as 9000 Btu/lb with a yield of 5%. Increasing yield to 10% reduced froth grade to 7000 Btu/lb. Batch flotation provided froth grades as high as 6500 Btu/lb with yields of 7% with 1.5 lb/ton SPP and 1 lb/ton frother. Column flotation test results were similar to those achieved in batch flotation in terms of both grade and yield, however, carbon recoveries were lower (<70%). High airflow rate was required to achieve >50% carbon recovery and using wash water improved froth grade. Bottom ash samples were recovered from each of the units at Coleman Station. Characterization confirmed that sufficient quantity and quality of material is generated to produce a

  11. Mapping QTL for Seed Germinability under Low Temperature Using a New High-Density Genetic Map of Rice

    Directory of Open Access Journals (Sweden)

    Ningfei Jiang

    2017-07-01

    Full Text Available Mapping major quantitative trait loci (QTL responsible for rice seed germinability under low temperature (GULT can provide valuable genetic source for improving cold tolerance in rice breeding. In this study, 124 rice backcross recombinant inbred lines (BRILs derived from a cross indica cv. Changhui 891 and japonica cv. 02428 were genotyped through re-sequencing technology. A bin map was generated which includes 3057 bins covering distance of 1266.5 cM with an average of 0.41 cM between markers. On the basis of newly constructed high-density genetic map, six QTL were detected ranging from 40 to 140 kb on Nipponbare genome. Among these, two QTL qCGR8 and qGRR11 alleles shared by 02428 could increase GULT and seed germination recovery rate after cold stress, respectively. However, qNGR1 and qNGR4 may be two major QTL affecting indica Changhui 891germination under normal condition. QTL qGRR1 and qGRR8 affected the seed germination recovery rate after cold stress and the alleles with increasing effects were shared by the Changhui 891 could improve seed germination rate after cold stress dramatically. These QTL could be a highly valuable genetic factors for cold tolerance improvement in rice lines. Moreover, the BRILs developed in this study will serve as an appropriate choice for mapping and studying genetic basis of rice complex traits.

  12. Improved Oil Recovery from Upper Jurassic Smackover Carbonates through the Application of Advanced Technologies at Womack Hill Oil Field, Choctaw and Clarke Counties, Eastern Gulf Coastal Plain

    Energy Technology Data Exchange (ETDEWEB)

    Ernest A. Mancini

    2003-12-31

    Pruet Production Co. and the Center for Sedimentary Basin Studies at the University of Alabama, in cooperation with Texas A&M University, Mississippi State University, University of Mississippi, and Wayne Stafford and Associates proposed a three-phase, focused, comprehensive, integrated and multidisciplinary study of Upper Jurassic Smackover carbonates (Class II Reservoir), involving reservoir characterization and 3-D modeling (Phase I) and a field demonstration project (Phases II and III) at Womack Hill Field Unit, Choctaw and Clarke Counties, Alabama, eastern Gulf Coastal Plain. Phase I of the project has been completed. The principal objectives of the project are: increasing the productivity and profitability of the Womack Hill Field Unit, thereby extending the economic life of this Class II Reservoir and transferring effectively and in a timely manner the knowledge gained and technology developed from this project to producers who are operating other domestic fields with Class II Reservoirs. The major tasks of the project included reservoir characterization, recovery technology analysis, recovery technology evaluation, and the decision to implement a demonstration project. Reservoir characterization consisted of geoscientific reservoir characterization, petrophysical and engineering property characterization, microbial characterization, and integration of the characterization data. Recovery technology analysis included 3-D geologic modeling, reservoir simulation, and microbial core experiments. Recovery technology evaluation consisted of acquiring and evaluating new high quality 2-D seismic data, evaluating the existing pressure maintenance project in the Womack Hill Field Unit, and evaluating the concept of an immobilized enzyme technology project for the Womack Hill Field Unit. The decision to implement a demonstration project essentially resulted in the decision on whether to conduct an infill drilling project in Womack Hill Field. Reservoir performance

  13. Improved Oil Recovery from Upper Jurassic Smackover Carbonates through the Application of Advanced Technologies at Womack Hill Oil Field, Choctaw and Clarke Counties, Eastern Gulf Costal Plain

    Energy Technology Data Exchange (ETDEWEB)

    Ernest A. Mancini

    2006-05-31

    Pruet Production Co. and the Center for Sedimentary Basin Studies at the University of Alabama, in cooperation with Texas A&M University, Mississippi State University, University of Mississippi, and Wayne Stafford and Associates proposed a three-phase, focused, comprehensive, integrated and multidisciplinary study of Upper Jurassic Smackover carbonates (Class II Reservoir), involving reservoir characterization and 3-D modeling (Phase I) and a field demonstration project (Phases II and III) at Womack Hill Field Unit, Choctaw and Clarke Counties, Alabama, eastern Gulf Coastal Plain. Phase I of the project has been completed. The principal objectives of the project are: increasing the productivity and profitability of the Womack Hill Field Unit, thereby extending the economic life of this Class II Reservoir and transferring effectively and in a timely manner the knowledge gained and technology developed from this project to producers who are operating other domestic fields with Class II Reservoirs. The major tasks of the project included reservoir characterization, recovery technology analysis, recovery technology evaluation, and the decision to implement a demonstration project. Reservoir characterization consisted of geoscientific reservoir characterization, petrophysical and engineering property characterization, microbial characterization, and integration of the characterization data. Recovery technology analysis included 3-D geologic modeling, reservoir simulation, and microbial core experiments. Recovery technology evaluation consisted of acquiring and evaluating new high quality 2-D seismic data, evaluating the existing pressure maintenance project in the Womack Hill Field Unit, and evaluating the concept of an immobilized enzyme technology project for the Womack Hill Field Unit. The decision to implement a demonstration project essentially resulted in the decision on whether to conduct an infill drilling project in Womack Hill Field. Reservoir performance

  14. Key technology for treating slack coal blockage in CBM recovery: A case study from multi-lateral horizontal wells in the Qinshui Basin

    Directory of Open Access Journals (Sweden)

    Yong Yang

    2016-01-01

    Full Text Available Due to the nature of coal bed, slack coal production is inevitable in gas recovery sby water drainage. When coalbed methane (CBM wells are reentered after low energy exploitation and shut-in, the negative effect of slack coal production on productivity of CBM is irreversible. In this paper, the CBM occurrence characteristics and multi-lateral horizontal well trajectory in the Qinshui Basin, Shanxi Province, were analyzed. In the multi-lateral horizontal wells, the expected gas production rate could not be reached and the production rate after shut-in maintenance could not restore to the level before shut-in. The reason for these issues is that migration pathways in the reservoirs are blocked by slack coal deposits, while formation water and slack coal deposit accumulated at the troughs of horizontal sections enlarge the resistance for gas to flow into the bottom hole. Furthermore, three key technologies to deal with slack coal blockage were proposed. Firstly, CBM horizontal well trajectory should follow the principle of keeping the wellbores smooth and updip instead of being “wavy”, on the premise of guaranteeing CBM drilling rate. Secondly, the cavities of production wells, as an important part of multi-lateral horizontal wells, are capable of settling sand, and can be used for gas–liquid–solid separation. And thirdly, a tree-like horizontal well with its main hole set on stable seam top or floor, provides a stable well flushing passage for coal powder. This research provides a useful attempt in solving the problem of slack coal production in gas recovery by water drainage.

  15. Seeding Solutions

    International Development Research Centre (IDRC) Digital Library (Canada)

    The Crucible Group operates on the basis of good faith –– producing best effort non-consensus texts. ..... science and technology-based solutions to agricultural production constraints, it is ...... In 1997 researchers at Case Western Reserve Medical School in Ohio (US) ...... Is there a need to update the system-wide IP audit?

  16. Review of thermal recovery technologies for the Clearwater and lower Grand Rapids formations in the Cold Lake area in Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Q.; Thornton, B.; Houston, J.R.; Spence, S. [OSUM Oil Sands Corp., Calgary, AB (Canada)

    2009-07-01

    This paper described a performance review conducted to assess steam assisted gravity drainage (SAGD) and cyclic steam stimulation (CSS) projects in the Cold Lake region. Commercial and pilot plant projects in the region were discussed. The aim of the study was to design a development plan for achieving bitumen production rates of 35,000 barrels per day in the Taiga region. While relatively high pressure drawdowns are created between the wellbore and formation during CSS production phases, the CSS process has limited applications in fine grain sands reservoirs, or in reservoirs with thick bottom water. SAGD processes require a minimum pressure drawdown to drive reservoir fluids to the wellbore, making them ideal for reservoirs with top gas, or in formations with fine grain sands and bottom water. Selection criteria for CSS and SAGD technologies were reviewed. Simulations were conducted to assess the impacts of well placement, reservoir heterogeneity, and operating parameters on SAGD and CSS performance. Well configurations for optimal SAGD performance were also presented. 19 refs., 3 tabs., 20 figs.

  17. Environmental quality assessment of reservoirs impacted by Hg from chlor-alkali technologies: case study of a recovery.

    Science.gov (United States)

    Le Faucheur, Séverine; Vasiliu, Dan; Catianis, Irina; Zazu, Mariana; Dranguet, Perrine; Beauvais-Flück, Rebecca; Loizeau, Jean-Luc; Cosio, Claudia; Ungureanu, Costin; Ungureanu, Viorel Gheorghe; Slaveykova, Vera I

    2016-11-01

    Mercury (Hg) pollution legacy of chlor-alkali plants will be an important issue in the next decades with the planned phase out of Hg-based electrodes by 2025 within the Minamata convention. In such a context, the present study aimed to examine the extent of Hg contamination in the reservoirs surrounding the Oltchim plant and to evaluate the possible improvement of the environmental quality since the closure of its chlor-alkali unit. This plant is the largest chlor-alkali plant in Romania, which partly switched to Hg-free technology in 1999 and definitely stopped the use of Hg electrolysis in May 2012. Total Hg (THg) and methylmercury (CH 3 Hg) concentrations were found to decrease in the surface waters and sediments of the reservoirs receiving the effluents of the chlor-alkali platform since the closure of Hg units. Hence, calculated risk quotients (RQ) indicated no adverse effect of Hg for aquatic organisms from the ambient water exposure. RQ of Hg in sediments were mostly all higher than 1, showing important risks for benthic organisms. However, ecotoxicity testing of water and sediments suggest possible impact of other contaminants and their mixtures. Hg hotspots were found in soils around the platform with RQ values much higher than 1. Finally, THg and CH 3 Hg concentrations in fish were below the food safety limit set by the WHO, which contrasts with previous measurements made in 2007 revealing that 92 % of the studied fish were of high risk of consumption. Discontinuing the use of Hg electrodes greatly improved the surrounding environment of chlor-alkali plants within the following years and led to the decrease environmental exposure to Hg through fish consumption. However, sediment and soil still remained highly contaminated and problematic for the river reservoir management. The results of this ecological risk assessment study have important implications for the evaluation of the benefits as well as limits of the Minamata Convention implementation.

  18. A Novel, Safe, and Environmentally Friendly Technology for Water Production Through Recovery of Rejected Thermal Energy From Nuclear Power Plants

    International Nuclear Information System (INIS)

    Khalil, Yehia F.; Elimelech, Menachem

    2006-01-01

    In this work, we describe a novel design that utilizes seawater and a portion of rejected heat from a nuclear plant's steam cycle to operate a water desalination system using forward osmosis technology. Water produced from this process is of sufficient quality to be readily used to supply plant demands for continuous makeup water. The proposed process minimizes the environmental concerns associated with thermal pollution of public waters and the resulting adverse impact on marine ecology. To demonstrate the technical feasibility of this conceptual design of a water treatment process, we discuss a case study as an example to describe how the proposed design can be implemented in a nuclear power station with a once--through cooling system that discharges rejected heat to an open sound seawater as its ultimate heat sink. In this case study, the station uses a leased (vendor owned and operated) onsite water treatment system that demineralizes and polishes up to 500-gpm of city water (at 100 ppm TDS) to supply high-quality makeup water (< 0.01 ppm TDS) to the plant steam system. The objectives of implementing the new design are three fold: 1) forego current practice of using city water as the source of plant makeup water, thereby reducing the nuclear station's impact on the region's potable water supply by roughly 100 million gallons/year, 2) minimize the adverse impact of discharging rejected heat into the open sound seawater and, hence, protect the marine ecology, and 3) eliminate the reliance on external vendor that owns and operates the onsite water treatment system, thereby saving an annual fixed cost of $600 K plus 6 cents per 1,000 gallons of pure water. The design will also eliminate the need for using two double-path reverse osmosis (RO) units that consume 425 kW/h of electric power to operate two RO pumps (480 V, 281.6 HP, and 317.4 amps). (authors)

  19. Microbial Heat Recovery Cell (MHRC) System Concept

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-09-01

    This factsheet describes a project that aimed to develop a microbial heat recovery cell (MHRC) system that combines a microbial reverse electrodialysis technology with waste heat recovery to convert industrial effluents into electricity and hydrogen.

  20. Tomato seeds maturity detection system based on chlorophyll fluorescence

    Science.gov (United States)

    Li, Cuiling; Wang, Xiu; Meng, Zhijun

    2016-10-01

    Chlorophyll fluorescence intensity can be used as seed maturity and quality evaluation indicator. Chlorophyll fluorescence intensity of seed coats is tested to judge the level of chlorophyll content in seeds, and further to judge the maturity and quality of seeds. This research developed a detection system of tomato seeds maturity based on chlorophyll fluorescence spectrum technology, the system included an excitation light source unit, a fluorescent signal acquisition unit and a data processing unit. The excitation light source unit consisted of two high power LEDs, two radiators and two constant current power supplies, and it was designed to excite chlorophyll fluorescence of tomato seeds. The fluorescent signal acquisition unit was made up of a fluorescence spectrometer, an optical fiber, an optical fiber scaffolds and a narrowband filter. The data processing unit mainly included a computer. Tomato fruits of green ripe stage, discoloration stage, firm ripe stage and full ripe stage were harvested, and their seeds were collected directly. In this research, the developed tomato seeds maturity testing system was used to collect fluorescence spectrums of tomato seeds of different maturities. Principal component analysis (PCA) method was utilized to reduce the dimension of spectral data and extract principal components, and PCA was combined with linear discriminant analysis (LDA) to establish discriminant model of tomato seeds maturity, the discriminant accuracy was greater than 90%. Research results show that using chlorophyll fluorescence spectrum technology is feasible for seeds maturity detection, and the developed tomato seeds maturity testing system has high detection accuracy.

  1. Report on surveys and researches in fiscal 2000 for directionality of technological needs and seeds in IT zone; IT ryoiki ni okeru gijutsu needs to seeds no hokosei ni kansuru chosa kenkyu hokoku

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    In order to put the assignments in the electronics and information technology fields into order, and to search elementary technologies and system technologies to become the focus of the future research and development, an IT workshop was held where researchers in the industrial, academic and governmental areas can meet together in one room. The social needs toward IT may include, as the correspondence to families with smaller number of children and greater number of persons of advanced age, the correspondence to digital devices, assurance of openness of information contents, enhancement of levels in medical technologies, enhancement of levels in medical services using remote medical systems, enhancement of welfare services, efficiency improvement in welfare services, and reduction of burdens therein. Enumerated in the use of educational information are the enlightenment and proliferation of IT literacy, development of user-friendly information terminals, education open to everybody, enhancement of the education contents, and enhancement of research activities. With regard to elimination of concentration into large urban areas, activation of local economies, homogenization of living environments, dissolution of traffic congestion, and strengthening of disaster preventing functions were pointed out. Also indicated is the assurance of security including the electronic trading, unjust invasion, and privacy protection. (NEDO)

  2. ASSESSING AND FORECASTING, BY PLAY, NATURAL GAS ULTIMATE RECOVERY GROWTH AND QUANTIFYING THE ROLE OF TECHNOLOGY ADVANCEMENTS IN THE TEXAS GULF COAST BASIN AND EAST TEXAS

    Energy Technology Data Exchange (ETDEWEB)

    William L. Fisher; Eugene M. Kim

    2000-12-01

    A detailed natural gas ultimate recovery growth (URG) analysis of the Texas Gulf Coast Basin and East Texas has been undertaken. The key to such analysis was determined to be the disaggregation of the resource base to the play level. A play is defined as a conceptual geologic unit having one or more reservoirs that can be genetically related on the basis of depositional origin of the reservoir, structural or trap style, source rocks and hydrocarbon generation, migration mechanism, seals for entrapment, and type of hydrocarbon produced. Plays are the geologically homogeneous subdivision of the universe of petroleum pools within a basin. Therefore, individual plays have unique geological features that can be used as a conceptual model that incorporates geologic processes and depositional environments to explain the distribution of petroleum. Play disaggregation revealed important URG trends for the major natural gas fields in the Texas Gulf Coast Basin and East Texas. Although significant growth and future potential were observed for the major fields, important URG trends were masked by total, aggregated analysis based on a broad geological province. When disaggregated by plays, significant growth and future potential were displayed for plays that were associated with relatively recently discovered fields, deeper reservoir depths, high structural complexities due to fault compartmentalization, reservoirs designated as tight gas/low-permeability, and high initial reservoir pressures. Continued technology applications and advancements are crucial in achieving URG potential in these plays.

  3. Characterisation of metals in the electronic waste of complex mixtures of end-of-life ICT products for development of cleaner recovery technology.

    Science.gov (United States)

    Sun, Z H I; Xiao, Y; Sietsma, J; Agterhuis, H; Visser, G; Yang, Y

    2015-01-01

    Recycling of valuable metals from electronic waste, especially complex mixtures of end-of-life information and communication technology (ICT) products, is of great difficulty due to their complexity and heterogeneity. One of the important reasons is the lack of comprehensive characterisation on such materials, i.e. accurate compositions, physical/chemical properties. In the present research, we focus on developing methodologies for the characterisation of metals in an industrially processed ICT waste. The morphology, particle size distribution, compositional distribution, occurrence, liberation as well as the thermo-chemical properties of the ICT waste were investigated with various characterisation techniques, including X-ray Fluorescence Spectrometry (XRF), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) with energy dispersed spectroscopy (EDS). Due to the high heterogeneity of the material, special sample preparation procedures were introduced to minimise the discrepancies during compositional analyses. As a result, a clearer overview of the ICT waste has been reached. This research provides better understanding of the extractability of each metal and improves the awareness of potential obstacles for extraction. It will lead to smarter decisions during further development of a clean and effective recovery process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Theoretical and experimental fundamentals of designing promising technological equipment to improve efficiency and environmental safety of highly viscous oil recovery from deep oil reservoirs

    Science.gov (United States)

    Moiseyev, V. A.; Nazarov, V. P.; Zhuravlev, V. Y.; Zhuykov, D. A.; Kubrikov, M. V.; Klokotov, Y. N.

    2016-12-01

    The development of new technological equipment for the implementation of highly effective methods of recovering highly viscous oil from deep reservoirs is an important scientific and technical challenge. Thermal recovery methods are promising approaches to solving the problem. It is necessary to carry out theoretical and experimental research aimed at developing oil-well tubing (OWT) with composite heatinsulating coatings on the basis of basalt and glass fibers. We used the method of finite element analysis in Nastran software, which implements complex scientific and engineering calculations, including the calculation of the stress-strain state of mechanical systems, the solution of problems of heat transfer, the study of nonlinear static, the dynamic transient analysis of frequency characteristics, etc. As a result, we obtained a mathematical model of thermal conductivity which describes the steady-state temperature and changes in the fibrous highly porous material with the heat loss by Stefan-Boltzmann's radiation. It has been performed for the first time using the method of computer modeling in Nastran software environments. The results give grounds for further implementation of the real design of the OWT when implementing thermal methods for increasing the rates of oil production and mitigating environmental impacts.

  5. Variation in Weed Seed Fate Fed to Different Holstein Cattle Groups.

    Directory of Open Access Journals (Sweden)

    Salman Rahimi

    Full Text Available Weed seeds may maintain their viability when passing through the digestive tract of cattle and can be therefore dispersed by animal movement or the application of manure. Whether different cattle types of the same species can cause differential weed seed fate is largely unknown to us particularly under non-grazed systems similar to Holstein-Friesian dairy farming. We investigated the effect on the seed survival of four weed species in the digestive tracts of four groups of Holstein cattle: lactating cows, feedlot male calves, dry cows and growing heifers. The weed species used were Cuscuta campestris, Polygonum aviculare, Rumex crispus and Sorghum halepense. Cattle excretion was sampled for recovery and viability of seeds at four 24 hourly intervals after seed intake. The highest seed recovery occurred two days after seed intake in all cattle groups. Averaged over weed species, dry and lactating cows had the lowest and highest seed recovery of 36.4% and 74.4% respectively. No significant differences were observed in seed recovery of the four weed species when their seeds were fed to dry cows. Based on a power model fitted to seed viability data, the estimated time to 50% viability loss after seed intake, over all cattle groups ranged from 65 h (R. crispus to 76 h (P. aviculare. Recovered seeds from the dung of feedlot male calves showed the highest mortality among cattle groups. Significant correlation was found between seed viability and ruminal pH (r = 0.86; P<0.05. This study shows that management programs aiming to minimize weed infestation caused by livestock should account for the variation amongst cattle groups in seed persistence. Our findings can be used as a guideline for evaluating the potential risk of the spread of weeds via the application of cattle manure.

  6. Variation in Weed Seed Fate Fed to Different Holstein Cattle Groups.

    Science.gov (United States)

    Rahimi, Salman; Mashhadi, Hamid Rahimian; Banadaky, Mehdi Dehghan; Mesgaran, Mohsen Beheshtian

    2016-01-01

    Weed seeds may maintain their viability when passing through the digestive tract of cattle and can be therefore dispersed by animal movement or the application of manure. Whether different cattle types of the same species can cause differential weed seed fate is largely unknown to us particularly under non-grazed systems similar to Holstein-Friesian dairy farming. We investigated the effect on the seed survival of four weed species in the digestive tracts of four groups of Holstein cattle: lactating cows, feedlot male calves, dry cows and growing heifers. The weed species used were Cuscuta campestris, Polygonum aviculare, Rumex crispus and Sorghum halepense. Cattle excretion was sampled for recovery and viability of seeds at four 24 hourly intervals after seed intake. The highest seed recovery occurred two days after seed intake in all cattle groups. Averaged over weed species, dry and lactating cows had the lowest and highest seed recovery of 36.4% and 74.4% respectively. No significant differences were observed in seed recovery of the four weed species when their seeds were fed to dry cows. Based on a power model fitted to seed viability data, the estimated time to 50% viability loss after seed intake, over all cattle groups ranged from 65 h (R. crispus) to 76 h (P. aviculare). Recovered seeds from the dung of feedlot male calves showed the highest mortality among cattle groups. Significant correlation was found between seed viability and ruminal pH (r = 0.86; Pweed infestation caused by livestock should account for the variation amongst cattle groups in seed persistence. Our findings can be used as a guideline for evaluating the potential risk of the spread of weeds via the application of cattle manure.

  7. Iodine-125 seeds for cancer treatment

    Energy Technology Data Exchange (ETDEWEB)

    Rostelato, Maria E.C.M.; Zeituni, Carlos A.; Feher, Anselmo; Moura, Joao A.; Moura, Eduardo S.; Nagatomi, Helio R.; Manzoli, Jose E.; Souza, Carla D., E-mail: elisaros@ipen.b, E-mail: czeituni@pobox.co, E-mail: afeher@ipen.b, E-mail: jmoura31@yahoo.com.b, E-mail: esmoura@ipen.b, E-mail: hrnagato@ipen.b, E-mail: jemanzoli@ipen.b, E-mail: cdsouza@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Karam, Dib, E-mail: dib.karan@usp.b [Universidade de Sao Paulo (USP), SP (Brazil). Escola de Artes, Ciencias e Humanidades

    2009-07-01

    In Brazil, cancer has become one of the major public health problems. An estimate by the Health Ministry showed that 466,430 people had the disease in the country in 2008. The prostate cancer is the second largest death cause among men. The National Institute of Cancer estimated the occurrence of 50,000 new cases for 2009. Some of these patients are treated with Brachytherapy, using Iodine-125 seeds. By this technique, small seeds with Iodine-125, a radioactive material, are implanted in the prostate. The advantages of radioactive seed implants are the preservation of healthy tissues and organs near the prostate, besides the low rate of impotence and urinary incontinence. The Energy and Nuclear Research Institute - IPEN, which belongs to the Nuclear Energy National Commission - CNEN, established a program for the development of the technique and production of Iodine-125 seeds in Brazil. The estimate for the 125-Iodine seeds demand is of 8,000 seeds/month and the laboratory to be implanted will need this production capacity. The purpose of this paper is to explain the project status and show some data about the seeds used in the country. The project will be divided in two phases: technological development of a prototype and a laboratory implementation for the seeds production. (author)

  8. What Are Chia Seeds?

    Science.gov (United States)

    ... your diet? Chia seeds come from the desert plant Salvia hispanica , a member of the mint family. ... ancient Aztec diet. The seeds of a related plant, Salvia columbariae (golden chia), were used primarily by ...

  9. Seeds and Synergies

    International Development Research Centre (IDRC) Digital Library (Canada)

    'Seeds and Synergies presents inspiring evidence of change in practice and policy ... Seeds of inspiration: breathing new life into the formal agricultural research .... and Urban Development and Poverty Alleviation and Agricultural Commodity ...

  10. Seeds as biosocial commons

    NARCIS (Netherlands)

    Patnaik, Archana

    2016-01-01

    This research investigates and describes the conservation and use of Plant Genetic Resources (PGRs), especially seeds through processes of commonisation. Seeds form an important element for sustaining human life (through food production) and social relations (by maintaining agricultural

  11. Seed dispersal in fens

    NARCIS (Netherlands)

    Middleton, Beth; van Diggelen, Rudy; Jensen, Kai

    Question: How does seed dispersal reduce fen isolation and contribute to biodiversity? Location: European and North American fens. Methods: This paper reviews the literature on seed dispersal to fens. Results: Landscape fragmentation may reduce dispersal opportunities thereby isolating fens and

  12. Germination of dimorphic seeds of the desert annual halophyte Suaeda aralocaspica (Chenopodiaceae), a C4 plant without Kranz anatomy.

    Science.gov (United States)

    Wang, Lei; Huang, Zhenying; Baskin, Carol C; Baskin, Jerry M; Dong, Ming

    2008-11-01

    Suaeda aralocaspica is a C4 summer annual halophyte without Kranz anatomy that is restricted to the deserts of central Asia. It produces two distinct types of seeds that differ in colour, shape and size. The primary aims of the present study were to compare the dormancy and germination characteristics of dimorphic seeds of S. aralocaspica and to develop a conceptual model of their dynamics. Temperatures simulating those in the natural habitat of S. aralocaspica were used to test for primary dormancy and germination behaviour of fresh brown and black seeds. The effects of cold stratification, gibberellic acid, seed coat scarification, seed coat removal and dry storage on dormancy breaking were tested in black seeds. Germination percentage and recovery responses of brown seeds, non-treated black seeds and 8-week cold-stratified black seeds to salt stress were tested. Brown seeds were non-dormant, whereas black seeds had non-deep Type 2 physiological dormancy (PD). Germination percentage and rate of germination of brown seeds and of variously pretreated black seeds were significantly higher than those of non-pretreated black seeds. Exposure of seeds to various salinities had significant effects on germination, germination recovery and induction into secondary dormancy. A conceptual model is presented that ties these results together and puts them into an ecological context. The two seed morphs of S. aralocaspica exhibit distinct differences in dormancy and germination characteristics. Suaeda aralocaspica is the first cold desert halophyte for which non-deep Type 2 PD has been documented.

  13. EVALUACIÓN DE TECNOLOGÍAS PARA LA RECUPERACIÓN DE SUELOS DEGRADADOS POR SALINIDAD EVALUATION OF TECHNOLOGIES FOR THE RECOVERY OF SOILS DEGRADED BY SALINITY

    Directory of Open Access Journals (Sweden)

    Orlando Zúñiga Escobar

    2011-06-01

    Full Text Available La presencia de salinidad y sodio en los suelos interfiere en el crecimiento adecuado de la mayoría de los cultivos y por lo tanto constituye uno de los problemas más serios que enfrenta la agricultura sostenible. Se evaluaron una serie de tecnologías no convencionales utilizadas en recuperación de suelos afectados por salinidad según la respuesta agronómica de un cultivo de maíz. Se planteó la aplicación de 3 tratamientos alternativos: 1 Biofertilizantes, 2 Biopolimeros y 3 Electromagnetismo comparados frente a la propuesta: 4 Convencional con base en la teoría del USDA (United States Departament of Agriculture de enmiendas químicas (yeso - azufre. Además de un testigo absoluto (Sólo drenaje. Los tratamientos más efectivos en cuanto respuesta fisiológica y productividad fueron los biológicos con uso de microorganismos (biofertlizantes y electromagnetismo, se incluyó la estimulación electromagnética la cual acelera la actividad microbiana para disminuir el tiempo de recuperación de suelos afectados por salinidad del suelo.Salinity and sodium content in soils interferes with proper growth of most crops and therefore constitutes a serious problem facing sustainable agriculture. The objective of this research was to evaluate a series of unconventional technologies used in recovery of salt-affected soils according to the agronomic response of a maize crop. The application of three alternative treatments with Biofertilizers, Biopolymers and Electromagnetism were proposed to make a comparison with the USDA-based conventional theory approach (United States Department of Agriculture of chemical amendments (gypsum - sulfur. In addition to an absolute control (drainage only. The most effective treatments in terms of physiological response and productivity were the biological using microorganisms (biofertilizers and electromagnetism, clarifying that electromagnetic stimulation was included to accelerate microbial activity and lower soil

  14. Soil, Seeds, and the Pumpkin Patch!

    Science.gov (United States)

    Phillips, Marianne; Vowell, Julie

    2013-01-01

    "Soil, Seeds, and the Pumpkin Patch!" is an integrated unit designed to provide elementary school teachers with ideas for using hands-on activities, fostering inquiry and valuable discussion, and using technology as a learning tool. This unit integrates science with language arts, mathematics, literature, and technology. During this unit, students…

  15. Seed development and carbohydrates

    NARCIS (Netherlands)

    Wittich, P.E.

    1998-01-01

    Seeds assure the plant the onset of a next generation and a way of dispersal. They consist of endosperm and an embryo (originating from gametophytic tissue), enveloped by a seed coat (sporophytic tissue). Plants generate different types of seeds. For instance, the endosperm may either be

  16. Induction of 9-cis-epoxycarotenoid dioxygenase in Arabidopsis thaliana seeds enhances seed dormancy.

    Science.gov (United States)

    Martínez-Andújar, Cristina; Ordiz, M Isabel; Huang, Zhonglian; Nonogaki, Mariko; Beachy, Roger N; Nonogaki, Hiroyuki

    2011-10-11

    Full understanding of mechanisms that control seed dormancy and germination remains elusive. Whereas it has been proposed that translational control plays a predominant role in germination, other studies suggest the importance of specific gene expression patterns in imbibed seeds. Transgenic plants were developed to permit conditional expression of a gene encoding 9-cis-epoxycarotenoid dioxygenase 6 (NCED6), a rate-limiting enzyme in abscisic acid (ABA) biosynthesis, using the ecdysone receptor-based plant gene switch system and the ligand methoxyfenozide. Induction of NCED6 during imbibition increased ABA levels more than 20-fold and was sufficient to prevent seed germination. Germination suppression was prevented by fluridone, an inhibitor of ABA biosynthesis. In another study, induction of the NCED6 gene in transgenic seeds of nondormant mutants tt3 and tt4 reestablished seed dormancy. Furthermore, inducing expression of NCED6 during seed development suppressed vivipary, precocious germination of developing seeds. These results indicate that expression of a hormone metabolism gene in seeds can be a sole determinant of dormancy. This study opens the possibility of developing a robust technology to suppress or promote seed germination through engineering pathways of hormone metabolism.

  17. Resource Recovery Technology Application Document.

    Science.gov (United States)

    1982-06-01

    B-6 Electrostatic Precipitator (APC-C) ......................B-1O Venturi Scrubber (APC D) B-15 C Combustion Equipment (CE) C-1 Modular... Scrubber APC-D P. 1 of 4 CONTROLIII COMPONENT DESCRIPTION Types Available - Competing Components Type a. Venturi e. Moving bed Venturi b. Flooded disc f...Clean Gas to Demister (Used Separate Liquid from Gas Stream) / F C Scrubber Wall Liquid Inlet D Scrubber Liquid at Venturi Throat Inlet B E Venturi

  18. Seed population dynamics on abandoned slopes in the hill and gully Loess Plateau region of China

    Science.gov (United States)

    Yu, Weijie; Jiao, Juying

    2017-04-01

    Recovery of natural vegetation is an effective but slow approach to control the soil erosion in the Chinese hill and gully Loess Plateau region. As seed stage is particularly vulnerable to environmental conditions, characteristics of seed population should be needed to study for determining whether the recovery of natural vegetation is limited during this stage on the abandoned slopes in this region. The study was performed on three abandoned slopes in a watershed with an area of 8.27 km2in the Shaanxi province of China. The differences in soil seed banks were investigated in two different points in time, late March2011 and early April 2013. Main factors of seed population dynamics, such as seed yield of dominant species, seed inputs by seed rain as well as seed outputs through seed loss by overland flow and seedling emergence, were monitored from late March 2011 to early April 2013. In this study, seed rain densities of the main later successional species, i.e., Lespedeza davurica, Stipa bungeana and Artemisia gmelinii accounted for 51.5-71.6% of their own seed yields. The soil seed bank density in early April 2013 was larger than that in late March 2011. The density of seed inputs by seed rain was 10186 seeds•m-2, and the total seed bank, including seed rain and seeds present in the soil seed bank in late March 2011, reached a density of 15018 seeds•m-2 during the study period. Seed densities of loss due to overland flow and seedling emergence were 79 seeds•m-2 from 20 species and 938 seedlings•m-2 that belonged to 38 species during a study period, and the seed output through them accounted for 0.5% and 6.3% of the total seed bank, respectively. The study concluded that overland flow could not result in large numbers of seeds loss and seeds were accumulating in the soil seed bank due to seed rain, and vegetation succession might be limited by curbed spatial seed dispersal and seedling establishment.

  19. A new technology for separation and recovery of materials from waste printed circuit boards by dissolving bromine epoxy resins using ionic liquid

    International Nuclear Information System (INIS)

    Zhu, P.; Chen, Y.; Wang, L.Y.; Qian, G.Y.; Zhou, M.; Zhou, J.

    2012-01-01

    Highlights: ► WPCBs were heated in [EMIM + ][BF 4 − ] for recovering solider at 240 °C. ► The bromine epoxy resins in WPCBs were all dissolved in [EMIM + ][BF 4 − ] at 260 °C. ► Used [EMIM + ][BF 4 − ] is treated by water to obtain regeneration. - Abstract: Recovery of valuable materials from waste printed circuit boards (WPCBs) is quite difficult because WPCBs is a heterogeneous mixture of polymer materials, glass fibers, and metals. In this study, WPCBs was treated using ionic liquid (1-ethyl-3-methylimizadolium tetrafluoroborate [EMIM + ][BF 4 − ]). Experimental results showed that the separation of the solders went to completion, and electronic components (ECs) were removed in WPCBs when [EMIM + ][BF 4 − ] solution containing WPCBs was heated to 240 °C. Meanwhile, metallographic observations verified that the WPCBs had an initial delamination. When the temperature increased to 260 °C, the separation of the WPCBs went to completion, and coppers and glass fibers were obtained. The used [EMIM + ][BF 4 − ] was treated by water to generate a solid–liquid suspension, which was separated completely to obtain solid residues by filtration. Thermal analyses combined with infrared ray spectra (IR) observed that the solid residues were bromine epoxy resins. NMR (nuclear magnetic resonance) showed that hydrogen bond played an important role for [EMIM + ][BF 4 − ] dissolving bromine epoxy resins. This clean and non-polluting technology offers a new way to recycle valuable materials from WPCBs and prevent environmental pollution from WPCBs effectively.

  20. Seeds of hope, seeds of despair: towards a political economy of the seed industry in southern Africa.

    Science.gov (United States)

    Zerbe, N

    2001-01-01

    The seed industry in Southern Africa has been radically transformed by a policy of liberalisation and privatisation started under structural adjustment. Traditionally under the domain of parastatals, seed research, production and distribution has been criticised for failing to provide modern variety seed to smallholder farmers. However, the private companies which have stepped in to replace seed parastatals in southern Africa have proven no more effective in meeting the demands of smallholders. The Trade Related Intellectual Property Rights (TRIPs) Agreement, concluded in 1994 as part of the Uruguay Rounds of GATT negotiations, as well as certain biotechnological innovations such as Terminator or Traitor technologies, threaten to further undermine local seed production and consumption by destroying the informal seed sector so central to agricultural production in the region. What alternatives exist? The success of Zimbabwe's maize seed network offers some insight. Resting on a unique relationship between government and nationally based producer co-operatives, Zimbabwe's maize programme was able to provide nearly every farmer in the country with hybrid maize suited for local growing conditions.

  1. Hot seeding using large Y-123 seeds

    International Nuclear Information System (INIS)

    Scruggs, S J; Putman, P T; Zhou, Y X; Fang, H; Salama, K

    2006-01-01

    There are several motivations for increasing the diameter of melt textured single domain discs. The maximum magnetic field produced by a trapped field magnet is proportional to the radius of the sample. Furthermore, the availability of trapped field magnets with large diameter could enable their use in applications that have traditionally been considered to require wound electromagnets, such as beam bending magnets for particle accelerators and electric propulsion. We have investigated the possibility of using large area epitaxial growth instead of the conventional point nucleation growth mechanism. This process involves the use of large Y123 seeds for the purpose of increasing the maximum achievable Y123 single domain size. The hot seeding technique using large Y-123 seeds was employed to seed Y-123 samples. Trapped field measurements indicate that single domain samples were indeed grown by this technique. Microstructural evaluation indicates that growth can be characterized by a rapid nucleation followed by the usual peritectic grain growth which occurs when large seeds are used. Critical temperature measurements show that no local T c suppression occurs in the vicinity of the seed. This work supports the suggestion of using an iterative method for increasing the size of Y-123 single domains that can be grown

  2. Oil palm seed distribution

    Directory of Open Access Journals (Sweden)

    Durand-Gasselin Tristan

    2005-03-01

    Full Text Available For a tropical plant, the oil palm commodity chain has the peculiarity of possessing a major seed production sector for reasons that are primarily genetic. This seed sector has numerous original aspects. Breeders are also propagators and usually also distribute their seeds. Oil palm seeds are semi-recalcitrant: they display pseudo-dormancy. Achieving seed germination is difficult and requires lengthy treatments and special installations. This restriction greatly influences seed distribution and the role of the different stakeholders in the commodity chain. It was only once it had been discovered how the “sh” gene functioned, which controls shell thickness, and when it became necessary to produce “tenera” seeds derived from exclusively “dura x pisifera” crosses, that a true seed market developed. In addition it is difficult to organize seed distribution to smallholders. This is partly due to difficulties that the profession, or a State-run organization, has in controlling middlemen networks, and partly to the absence of any protective systems (UPOV, plant breeder certificate, etc. that generally oblige breeders to preserve and propagate parents in their own installations. In fact there are major inequalities in the access to seeds between agroindustry and smallholders. Another peculiarity of the oil palm seed market is the virtually total absence of guarantees for buyers: the quality of the research conducted by breeders, the seed production strategies necessary for transferring genetic progress, and the technical quality of production. The only guarantee today comes from the relations of confidence established year after year between breeders/distributors and growers. In this fields, research can lead to some proposals: molecular biology offers some interesting prospects for certifying seed quality and social science develop effective communication methods.

  3. Recovery Spirituality

    Directory of Open Access Journals (Sweden)

    Ernest Kurtz

    2015-01-01

    Full Text Available There is growing interest in Alcoholics Anonymous (A.A. and other secular, spiritual, and religious frameworks of long-term addiction recovery. The present paper explores the varieties of spiritual experience within A.A., with particular reference to the growth of a wing of recovery spirituality promoted within A.A. It is suggested that the essence of secular spirituality is reflected in the experience of beyond (horizontal and vertical transcendence and between (connection and mutuality and in six facets of spirituality (Release, Gratitude, Humility, Tolerance, Forgiveness, and a Sense of Being-at-home shared across religious, spiritual, and secular pathways of addiction recovery. The growing varieties of A.A. spirituality (spanning the “Christianizers” and “Seculizers” reflect A.A.’s adaptation to the larger diversification of religious experience and the growing secularization of spirituality across the cultural contexts within which A.A. is nested.

  4. Does the informal seed system threaten cowpea seed health?

    NARCIS (Netherlands)

    Biemond, P.C.; Oguntade, O.; Lava Kumar, P.; Stomph, T.J.; Termorshuizen, A.J.; Struik, P.C.

    2013-01-01

    Most smallholder farmers in developing countries depend on an informal Seed System (SS) for their seed. The informal SS is often criticized because farmer-produced seed samples are not tested for seed health, thus accepting the risk of planting infected seeds. Here we aimed at assessing the quality

  5. Chemical Technology Division annual technical report 1989

    International Nuclear Information System (INIS)

    1990-03-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1989 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including high-performance batteries (mainly lithium/iron sulfide and sodium/metal chloride), aqueous batteries (lead-acid and nickel/iron), and advanced fuel cells with molten carbonate and solid oxide electrolytes: (2) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants and the technology for fluidized-bed combustion; (3) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (4) nuclear technology related to a process for separating and recovering transuranic elements from nuclear waste and for producing 99 Mo from low-enriched uranium targets, the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor (the Integral Fast Reactor), and waste management; and (5) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for superconducting oxides and associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be administratively responsible for and the major user of the Analytical Chemistry Laboratory at Argonne National Laboratory (ANL)

  6. Standardized Method for High-throughput Sterilization of Arabidopsis Seeds.

    Science.gov (United States)

    Lindsey, Benson E; Rivero, Luz; Calhoun, Chistopher S; Grotewold, Erich; Brkljacic, Jelena

    2017-10-17

    Arabidopsis thaliana (Arabidopsis) seedlings often need to be grown on sterile media. This requires prior seed sterilization to prevent the growth of microbial contaminants present on the seed surface. Currently, Arabidopsis seeds are sterilized using two distinct sterilization techniques in conditions that differ slightly between labs and have not been standardized, often resulting in only partially effective sterilization or in excessive seed mortality. Most of these methods are also not easily scalable to a large number of seed lines of diverse genotypes. As technologies for high-throughput analysis of Arabidopsis continue to proliferate, standardized techniques for sterilizing large numbers of seeds of different genotypes are becoming essential for conducting these types of experiments. The response of a number of Arabidopsis lines to two different sterilization techniques was evaluated based on seed germination rate and the level of seed contamination with microbes and other pathogens. The treatments included different concentrations of sterilizing agents and times of exposure, combined to determine optimal conditions for Arabidopsis seed sterilization. Optimized protocols have been developed for two different sterilization methods: bleach (liquid-phase) and chlorine (Cl2) gas (vapor-phase), both resulting in high seed germination rates and minimal microbial contamination. The utility of these protocols was illustrated through the testing of both wild type and mutant seeds with a range of germination potentials. Our results show that seeds can be effectively sterilized using either method without excessive seed mortality, although detrimental effects of sterilization were observed for seeds with lower than optimal germination potential. In addition, an equation was developed to enable researchers to apply the standardized chlorine gas sterilization conditions to airtight containers of different sizes. The protocols described here allow easy, efficient, and

  7. Levitation and guidance force relaxations of the single-seeded and multi-seeded YBCO superconductors

    Science.gov (United States)

    Abdioglu, M.; Ozturk, K.; Kabaer, M.; Ekici, M.

    2018-01-01

    The stable levitation and guidance forces at higher force levels are important parameters for technological applicability of high temperature superconductors (HTSs) in Maglev and Flywheel energy storage systems. In this study, we have investigated the levitation and guidance force relaxation of both the single-seeded and multi-seeded YBCOs for different (HTS)-permanent magnetic guideway (PMG) arrangements in different cooling heights (CH). The measured saturated force values of Halbach PMG arrangements are bigger than the maximum force values of other PMGs. It is determined that the normalized magnetic levitation force (MLF) and normalized guidance force (GF) relaxation rate values decrease while the relaxation rates increase with increasing magnetic pole number and the effective external magnetic field area for both the single-seeded and multi-seeded YBCO. Also it can be said that the force stability at the higher force value of Halbach PMG arrangement indicates that the relaxation quality of Halbach PMG is better than that of the others. Additionally, it can be said that both the MLF and GF relaxation qualities of the multi-seeded YBCOs are better than that of the single-seeded ones. This magnetic force and relaxation results of the single-seeded and multi-seeded YBCOs are useful to optimize the loading capacity and lateral reliability of HTS Maglev and similar magnetic bearing systems.

  8. MHD (Magnetohydrodynamics) recovery and regeneration

    Energy Technology Data Exchange (ETDEWEB)

    McIlroy, R. A. [Babcock and Wilcox Co., Alliance, OH (United States). Research Center; Probert, P. B. [Babcock and Wilcox Co., Alliance, OH (United States). Research Center; Lahoda, E. J. [Westinghouse Electric Corp., Pittsburgh, PA (United States); Swift, W. M. [Argonne National Lab. (ANL), Argonne, IL (United States); Jackson, D. M. [Univ. of Tennessee Space Inst. (UTSI), Tullahoma, TN (United States); Prasad, J. [Univ. of Tennessee Space Inst. (UTSI), Tullahoma, TN (United States); Martin, J. [Hudson Engineering (United States); Rogers, C. [Hudson Engineering (United States); Ho, K. K. [Babcock and Wilcox Co., Alliance, OH (United States). Research Center; Senary, M. K. [Babcock and Wilcox Co., Alliance, OH (United States). Research Center; Lee, S. [Univ. of Akron, OH (United States)

    1988-10-01

    A two-phase program investigating MHD seed regeneration is described. In Phase I, bench scale experiments were carried out to demonstrate the technical feasibility of a proposed Seed Regeneration Process. The Phase I data has been used for the preliminary design of a Proof-of-Concept (POC) plant which will be built and tested in Phase II. The Phase I data will also be used to estimate the costs of a 300 Mw(t) demonstration plant for comparison with other processes. The Seed Regeneration Process consists of two major subprocesses; a Westinghouse Dry Reduction process and a modified Tampella (sulfur) Recovery process. The Westinghouse process reduces the recovered spent seed (i.e., potassium sulfate) to potassium polysulfide in a rotary kiln. The reduction product is dissolved in water to form green liquor, clarified to remove residual coal ash, and sent to the Tampella sulfur release system. The sulfur is released using carbon dioxide from flue gas in a two stage reaction. The sulfur is converted to elemental sulfur as a marketable by product. The potassium is crystallized from the green liquor and dried to the anhydrous form for return to the MHD unit.

  9. Phytoalexin Elicitation- Potency As A Novel Technology for Biological Control and Protection Digitalis purpurea L. plants from Pre-Sowing Seed Treatment with Gamma Ray and Electric Current

    International Nuclear Information System (INIS)

    Bosila, H.A.; Lila, M.; Ahmed, T.E.S.

    2012-01-01

    Digitalis purpurea L seeds treated with gamma ray, (G) 0, 2.5, 5, 7.5 KR, and electric current (E), 0, 100, 150, 200 mA, then planted in splite-splite plot design for 3 replicates (R) and 2 successive seasons, in sandy soil irrigated with brackish water (900ppm) through surface drip irrigation system (SDI).The formed plants were foliar sprayed with manganese (M),0,3ppm-The formed Phytoalexin (PA) was bioassayed and chemically quantified.M3ppm could induce sistemic resistance (ISR) which initiate to farm 0.064, 0.070 mg PA 100mg fresh leaves. The formed PA exhibited PA-glycosidal structure wherefore, achieve therapeutic potency. (G) depress significantlly PA 73-91% of control while (E) activated (PA) significantly 134-154% of control. At (GE) interaction, such (G) dose PA increased significantlly by increasing (E) dose up to E200mA. Hence (E) efface a serious depression of (G). At (GEM) interaction, (G) 2.5, 5, 7.5 KR EO mA, M3ppm the formed. (PA) were; 91, 75, 63 were increased significantlly by increasing (E) dose up to E200mA M3ppm 128, 119, 109 – 129, 117, 107% of control for first and second season, respectively. Therefore, M elicitor application, in GEM combination, could be considered as a novel strategy for biological control and plant protection, from economic and environmental benefit point of view. It would occur by decreasing the cost of fungicides, bactericides and pesticides in Digitalis purpurea L biomass production, grown in extended agriculture area.

  10. combining high seed number and weight to improve seed yield

    African Journals Online (AJOL)

    ACSS

    ABSTRACT. Increasing seed size and seed weight is an important trait for trade, yield component and adaptation of chickpea ... determining yield or quality, and the development of rapid and ..... C.G. 1981. Control of seed growth in soybeans.

  11. Restoring Eelgrass (Zostera marina) from Seed: A Comparison of Planting Methods for Large-Scale Projects

    National Research Council Canada - National Science Library

    Orth, Robert; Marion, Scott; Granger, Steven; Traber, Michael

    2008-01-01

    Eelgrass (Zostera marina) seeds are being used in a variety of both small- and large-scale restoration activities and have been successfully used to initiate recovery of eelgrass in the Virginia seaside coastal lagoons...

  12. Decision Point 3 of Statement of Project Objectives (SOPO) “Recovery Act: Development of ITM Oxygen Technology for Integration with Advanced Industrial Systems”

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Phillip

    2012-03-01

    Air Products is carrying out a scope of work under Phase 5 of the ITM Oxygen Cooperative Agreement to design, build, and operate a ceramic membrane fabrication facility (the -CerFabII) to enable production of membrane modules to supply a conceptual 2000 ton per day (TPD) ITM Oxygen facility (the -ITM Oxygen Development FacilityII), and to perform supporting development tasks in materials development and engineering development toward industrial, carbon capture and sequestration applications. Air Products is executing this project under the American Recovery and Reinvestment Act (ARRA) with the objective to accelerate the adoption of ITM Oxygen technology to help meet the country’s goals for deploying clean power plants. The objective of this Topical Report is to address the requirements of Decision Point 3 (DP3), which pertains to the status of all Tasks within Phase 5 and most notably the project status of the CerFab (Task 30) prior to authorization of funds for equipment purchase and construction of the facility. The intent of the DP3 is to provide the opportunity for DOE-NETL to review the status of these tasks and to make recommendations on forward project direction, including a recommendation to pass into Budget Period 8. In the area of Materials Development, Air Products has specified a high pressure dilatometer system which will enable measurements of material expansion of ITM ceramic compounds at very high oxygen partial pressures consistent with CCS applications. Under Task 28.2, subcontractor Ceramatec has made significant progress since DP2 in materials selection and process development and improvement for advanced architecture module fabrication. Ceramatec has determined a materials specification, and has selected a process for making the material. Ceramatec has further developed and selected the process for applying the membrane to unsintered advanced architecture wafers with a Two Step process. Ceramatec has built submodules meeting leak rate

  13. Efficiency of alfalfa seed processing with different seed purity

    OpenAIRE

    Đokić, Dragoslav; Stanisavljević, Rade; Terzić, Dragan; Milenković, Jasmina; Radivojević, Gordana; Koprivica, Ranko; Štrbanović, Ratibor

    2015-01-01

    The work was carried out analysis of the impact of the initial purity of raw alfalfa seed on the resulting amount of processed seed in the processing. Alfalfa is very important perennial forage legume which is used for fodder and seed production. Alfalfa seed is possible to achieve high yields and very good financial effects. To obtain the seed material with good characteristics complex machines for cleaning and sorting seeds are used. In the processing center of the Institute for forage crop...

  14. Paper (essay on seed

    Directory of Open Access Journals (Sweden)

    Mirić Mladen

    2013-01-01

    Full Text Available Based on detailed studies of the past of the agrarian thought of the world (evolution of agro-innovation, and within it, the relationship of man and seed, the author has selected key data for Table 1. In addition, more or less known folk sayings, proverbs, curses and allegories in which the seed is the key word have been collected. Then, religious books, folk art and literature works (sayings of prominent individuals and experts and observations of the author himself have been studied. According to the collected opus, it can be concluded that the vast importance of seed meaningfully entwined into all spheres of folk life and cultural heritage. Seed is directly tied to the following eight key (revolutionary milestones in the food and economic life of mankind: 1. the first and for the longest time, the seed used to be the main food of the people and the first food reserve; 2. Neolithic Revolution was simply caused by the sowing of seeds; 3. for the sake of sowing man began to develop more complex processing techniques; 4. everywhere and forever, especially since the late 15th century, the seed has been a carrier of (rescuing plants between Europe and the New World, that is, between continents; 5. seed was the first product that has been chemically treated since the mid-18th century; 6. standard operation procedures and quality are promoted on seed by which it became the first product to have prescribed (compulsory methods, but it also became a good whose quality has to be tested before sale; 7. hybrid seed is a 'perpetrator' of the green revolution in the mid-20th century and at last there is disputable seed of genetically modified organisms that are spreading with certain reactions. The author proposes that the United Nations Standard International Trade Classification includes a special section (division which would classify the seed for sowing, while beyond this Classification terms such as seed, plant seed should be replaced with non-seed

  15. Seed dormancy and germination.

    Science.gov (United States)

    Penfield, Steven

    2017-09-11

    Reproduction is a critical time in plant life history. Therefore, genes affecting seed dormancy and germination are among those under strongest selection in natural plant populations. Germination terminates seed dispersal and thus influences the location and timing of plant growth. After seed shedding, germination can be prevented by a property known as seed dormancy. In practise, seeds are rarely either dormant or non-dormant, but seeds whose dormancy-inducing pathways are activated to higher levels will germinate in an ever-narrower range of environments. Thus, measurements of dormancy must always be accompanied by analysis of environmental contexts in which phenotypes or behaviours are described. At its simplest, dormancy can be imposed by the formation of a simple physical barrier around the seed through which gas exchange and the passage of water are prevented. Seeds featuring this so-called 'physical dormancy' often require either scarification or passage through an animal gut (replete with its associated digestive enzymes) to disrupt the barrier and permit germination. In other types of seeds with 'morphological dormancy' the embryo remains under-developed at maturity and a dormant phase exists as the embryo continues its growth post-shedding, eventually breaking through the surrounding tissues. By far, the majority of seeds exhibit 'physiological dormancy' - a quiescence program initiated by either the embryo or the surrounding endosperm tissues. Physiological dormancy uses germination-inhibiting hormones to prevent germination in the absence of the specific environmental triggers that promote germination. During and after germination, early seedling growth is supported by catabolism of stored reserves of protein, oil or starch accumulated during seed maturation. These reserves support cell expansion, chloroplast development and root growth until photoauxotrophic growth can be resumed. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  16. INFLUENCE OF TREATMENT ON MAIZE SEED QUALITY

    Directory of Open Access Journals (Sweden)

    Ivica Beraković

    2012-12-01

    Full Text Available Due to the increasing occurrence of major pests ON corn, hybrid seed is necessary to be protected against pests and seed corn should be treated with appropriately insecticides. Choosing better technological solutions and choosing and appropriate insecticide seed treatment for corn can significantly reduce pest attack and thus enhance the production of corn. The aim of this research was to obtain based upon result information on the impact of treatment on quality of maize seed as well as the means to improve the conditions of storage and preservation of semen quality. Investigation and checking if insecticide treated seed adverse phytotoxic effect on plant growth and development in field conditions. The results indicate a significant effect of insecticide seed treatments on germination energy and non standard germination. A very significant influence of treated seed storage was also found on quality seeds. Looking at the impact of the treated hybrid on germination vigor and standard germination, a very significant hybrid impact was found out. The highest quality of the seed semen during the study was noticed with the seed of hybrid “H2”, followed by hybrid “H1”, while the hybrids “H3” and “H4” possessed less. The research shows that hybrids “H2” and “H1” are more suitable for seed treatment with insecticides than “H3” and “H4” hybrids. The field observations and research results obtained indicate a very significant impact of the treated seed on the above ground parts of plants, above ground mass, stem thickness and a very significant impact on plant spacing. The positive effect of treatment with “T1” and “T3” insecticides is visible in all conducted field researches. Plants treated with common fungicides and insecticides “T1” and “T3” had a greater height of the above ground plant parts, a larger mass of the above ground stems, greater stem thickness and better plant density treatments, compared to

  17. A bioplastic-based seed coating improves seedling growth and reduces production of coated seed dust. Journal of Crop Improvement

    Science.gov (United States)

    Although recently introduced, film-coating of agronomic seeds is now widely accepted in modern agriculture as an effective technology for protecting germinating seeds and seedlings. These experiments explored the possibility of using a bioplastic-based formulation to film-coat corn (maize) and cano...

  18. Artificial Seeds and their Applications

    Indian Academy of Sciences (India)

    currently working on ... heterozygosity of seed, minute seed size, presence of reduced ... Advantages of Artificial or Synthetic Seeds over Somatic Embryos for Propagation .... hour gives optimum bead hardness and rigidity for the produc-.

  19. FY1998 research report on the R and D on high- temperature CO{sub 2} separation, recovery and recycling technologies; 1998 nendo nisanka tanso koon bunri kaishu sairiyo gijutsu kekyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This project aims to develop high-temperature (over 300 degrees C) CO{sub 2} separation, recovery and recycling technologies. For separation membranes, control technology of micro-pore structure using templates, and that of a permeation gas affinity by metal ion exchange and metallic element addition to separation membrane textures were developed. The result gave the guide to control, design and evaluation of permeation and separation properties. The prototype module was prepared, and improvement of joining technology and evaluation of material fatigue property were also carried out. As for optimization of the developed system and research on its marketability, study was mainly made on the ripple effect of inorganic membranes. The current state and trend of technologies were studied also for power plants. In the concept design of the module, further study was made on high-temperature sealing technology and inorganic membrane technology for H{sub 2} gas separation. Use of CO{sub 2} gas separation technology for steelmaking process was newly studied. The ripple effect was studied for future important fields. (NEDO)

  20. Proteomics of Rice Seed Germination

    Directory of Open Access Journals (Sweden)

    Dongli eHe

    2013-07-01

    Full Text Available Seed is a condensed form of plant. Under suitable environmental conditions, it can resume the metabolic activity from physiological quiescent status, and mobilize the reserves, biosynthesize new proteins, regenerate organelles and cell membrane, eventually protrude the radicle and enter into seedling establishment. So far, how these activities are regulated in a coordinated and sequential manner is largely unknown. With the availability of more and more genome sequence information and the development of mass spectrometry (MS technology, proteomics has been widely applied in analyzing the mechanisms of different biological processes, and proved to be very powerful. Regulation of rice seed germination is critical for rice cultivation. In recent years, a lot of proteomic studies have been conducted in exploring the gene expression regulation, reserves mobilization and metabolisms reactivation, which brings us new insights on the mechanisms of metabolism regulation during this process. Nevertheless, it also invokes a lot of questions. In this mini-review, we summarized the progress in the proteomic studies of rice seed germination. The current challenges and future perspectives were also discussed, which might be helpful for the following studies.

  1. Seed thioredoxin h

    DEFF Research Database (Denmark)

    Hägglund, Per; Finnie, Christine; Yano, Hiroyuki

    2016-01-01

    , for example chloroplastic f- and m-type thioredoxins involved in regulation of the Calvin-Benson cycle. The cytosolic h-type thioredoxins act as key regulators of seed germination and are recycled by NADPH-dependent thioredoxin reductase. The present review on thioredoxin h systems in plant seeds focuses...

  2. Saving Seed Microbiomes

    NARCIS (Netherlands)

    Berg, Gabriele; Raaijmakers, J.M.

    2018-01-01

    Plant seeds are home to diverse microbial communities whose composition is determined by plant genotype, environment, and management practices. Plant domestication is now recognized as an important driver of plant-associated microbial diversity. To what extent and how domestication affects seed

  3. Seed and seedling traits affecting critical life stage transitions and recruitment outcomes in dryland grasses

    Science.gov (United States)

    1. Seeding native plants is a key management practice to counter land degradation across the globe, yet the majority of seeding efforts fail, limiting the ability of this tool to accelerate ecosystem recovery. 2. Seedling recruitment requires transitions through several life stages, some of which ma...

  4. Biorefinery methods for separation of protein and oil fractions from rubber seed kernel

    NARCIS (Netherlands)

    Widyarani, R.; Ratnaningsih, E.; Sanders, J.P.M.; Bruins, M.E.

    2014-01-01

    Biorefinery of rubber seeds can generate additional income for farmers, who already grow rubber trees for latex production. The aim of this study was to find the best method for protein and oil production from rubber seed kernel, with focus on protein recovery. Different pre-treatments and oil

  5. Biological opportunities for metal recovery

    International Nuclear Information System (INIS)

    Holmes, D.S.; Debus, S.H.

    1991-01-01

    An overview is presented of existing biological technologies for the recovery of copper and uranium. Engineering and biological challenges and opportunities in these areas are discussed. New opportunities for the bio oxidation of refractory goal ore are described. Techniques for the development of new strains of microorganisms for commercial metal recovery applications are discussed with special reference to the use of genetic manipulation for bacterial strain improvement. (author)

  6. Chemical Technology Division annual technical report, 1985

    International Nuclear Information System (INIS)

    1986-04-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1985 are presented. In this period, CMT conducted research and development in areas that include the following: (1) advanced batteries - mainly lithium-alloy/metal sulfide and sodium/sulfur; (2) advanced fuel cells with molten carbonate or solid oxide electrolytes; (3) corrosion-protective coatings for high-strength steel; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants and the technology for fluidized-bed combustion; (5) methodologies for recovery of energy from municipal waste; (6) nuclear technology related to waste management, the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor, and proof of breeding in a light water breeder reactor; and (7) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of catalytic hydrogenation and catalytic oxidation; materials chemistry for associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, surface science, and catalysis; the thermochemistry of zeolites and related silicates; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be the major user of the technical support provided by the Analytical Chemistry Laboratory at ANL

  7. Efficiency of application of instantaneous radiation of seeds by plasma

    International Nuclear Information System (INIS)

    Tsyganov, A.R.; Gordeev, Yu.A.; Poddubnaya, O.V.

    2009-01-01

    The efficiency of application of instantaneous (impulse) radiation of seeds of spring wheat (Triticum aestivum) and oat (Avena sativa) by plasma was analyzed. Research results showed that presowing treatment of seeds with instantaneous helium radiation in course of 0,01 seconds (the total duration of seed treatment with plasmatron ion source impulses – one second). In course of the practical experiments there was proved possibility of application impulse radiation technologies in modern agricultural production. Seed germination capacity exceeded the control variants on 14%. Results of influence of applied irradiation on length of sprouts, length of roots and their germinating ability were presented. Irradiation efficiency developed in course of plant vegetation. In accordance with research results and accumulated experimental material on presowing seed treatment with impulses of low temperature helium plasma could make it possible to obtain yields with higher capacity and quality with the minimal expenses for seed treatment

  8. Heat recovery from UPS units - Analysis of a first unit and technology assessment; Waermerueckgewinnung in USV-Anlagen. Analyse einer Erstanlage und Potentialabschaetzung

    Energy Technology Data Exchange (ETDEWEB)

    Stahl, S.; Schlegel, A.

    2009-11-15

    UPS units (uninterruptible power supply) generate large heat losses, which have to be dissipated with cooling units. awtec has developed a unique UPS system with integrated heat recovery which was installed in 2001 (Building Gretag/SAP in Regensdorf) and which is still running error-free. With this system the waste heat can be recovered and electrical energy for the refrigeration system can be saved likewise. The measured data shows that during the heating season, the unit transfers virtually all heat loss (about 20 MWh/year) to the space heating system. The building's refrigeration system, however, has its own heat recovery system, so the actual annual energy savings can be estimated to be only about 4 MWh of electricity. The prototype shows that awtec built a robust unit which - given an appropriate cooling and heating system - has the potential for high energy savings (without central heat recovery system: 4 MWh electric + 20 MWh thermal) without increased investment. Based on the UPS heat recovery development, previous projects of the Swiss Federal Office of Energy and a market survey, scenarios for the cooling and heat recovery from UPS units were developed. Since the same concepts also apply to the cooling of servers and other IT components, they were also included in the analysis. The scenario analysis shows that a high potential for savings of electric energy and heat exists in this area. In particular, the direct cooling of the IT components with cooling water offers big benefits for heat recovery and free cooling (cooling without the use of the refrigeration system) compared to conventional air cooling. These direct cooling systems are currently mainly used for special applications or as a fallback in case of overheating problems. Passive cooling through geothermal probes, which are now mainly used for buildings with small heat pump systems, provides an interesting approach to the cooling of IT equipment in accordance with the temperature level. It

  9. Antibacterial activity of watermelon (Citrullus lanatus) seed against ...

    African Journals Online (AJOL)

    Engr Akande

    2015-04-08

    Apr 8, 2015 ... Also, saponins which have been implicated in antimicrobial activity were found to be ... Key words: Watermelon seed, antibacterial, Soxhlet extraction, cold ..... International Centre for Science and High Technology, Trieste, pp.

  10. Immunogenic Properties of Ricinus Communis Var Minor Seed on ...

    African Journals Online (AJOL)

    Prof. Ogunji

    1College of Health Technology, Zawan, Plateau State.2Department of ... Ricinus communis var minor seed included in their feed (5g/100g body weight). ... White Blood cell Count (WBC) count and lymphocytosis in the differential count.

  11. Glioblastoma with spinal seeding

    International Nuclear Information System (INIS)

    Fakhrai, N.; Fazeny-Doerner, B.; Marosi, C.; Czech, T.; Diekmann, K.; Birner, P.; Hainfellner, J.A.; Prayer, D.

    2004-01-01

    Background: extracranial seeding of glioblastoma multiforme (GBM) is very rare and its development depends on several factors. This case report describes two patients suffering from GBM with spinal seeding. In both cases, the anatomic localization of the primary tumor close to the cerebrospinal fluid (CSF) was the main factor for spinal seeding. Case reports: two patients with GBM and spinal seeding are presented. After diagnosis of spinal seeding, both patients were highly symptomatic from their spinal lesions. Case 1 experienced severe pain requiring opiates, and case 2 had paresis of lower limbs as well as urinary retention/incontinence. Both patients were treated with spinal radiation therapy. Nevertheless, they died 3 months after diagnosis of spinal seeding. Results: in both patients the diagnosis of spinal seeding was made at the time of cranial recurrence. Both tumors showed close contact to the CSF initially. Even though the patients underwent intensive treatment, it was not possible to keep them in a symptom-free state. Conclusion: because of short survival periods, patients deserve optimal pain management and dedicated palliative care. (orig.)

  12. Glioblastoma with spinal seeding

    Energy Technology Data Exchange (ETDEWEB)

    Fakhrai, N.; Fazeny-Doerner, B.; Marosi, C. [Clinical Div. of Oncology, Dept. of Medicine I, Univ. of Vienna (Austria); Czech, T. [Dept. of Neurosurgery, Univ. of Vienna (Austria); Diekmann, K. [Dept. of Radiooncology, Univ. of Vienna (Austria); Birner, P.; Hainfellner, J.A. [Clinical Inst. for Neurology, Univ. of Vienna (Austria); Prayer, D. [Dept. of Neuroradiology, Univ. of Vienna (Austria)

    2004-07-01

    Background: extracranial seeding of glioblastoma multiforme (GBM) is very rare and its development depends on several factors. This case report describes two patients suffering from GBM with spinal seeding. In both cases, the anatomic localization of the primary tumor close to the cerebrospinal fluid (CSF) was the main factor for spinal seeding. Case reports: two patients with GBM and spinal seeding are presented. After diagnosis of spinal seeding, both patients were highly symptomatic from their spinal lesions. Case 1 experienced severe pain requiring opiates, and case 2 had paresis of lower limbs as well as urinary retention/incontinence. Both patients were treated with spinal radiation therapy. Nevertheless, they died 3 months after diagnosis of spinal seeding. Results: in both patients the diagnosis of spinal seeding was made at the time of cranial recurrence. Both tumors showed close contact to the CSF initially. Even though the patients underwent intensive treatment, it was not possible to keep them in a symptom-free state. Conclusion: because of short survival periods, patients deserve optimal pain management and dedicated palliative care. (orig.)

  13. Physalis peruviana seed storage

    Directory of Open Access Journals (Sweden)

    Cíntia L. M. de Souza

    2016-03-01

    Full Text Available ABSTRACT Physalis peruviana belongs to Solanaceae family and has a high nutritional and nutraceutical potential. The production is intended for fruit consumption and the propagation is mainly by seeds. This study aimed to evaluate the influence of priming on the kinetics of germination of P. peruviana seeds stored at different temperatures. The seeds were stored at 5 and 25 °C in a chamber saturated with zinc chloride solution and in liquid nitrogen (-196 °C. Every 4 months, the seeds were removed from storage for evaluation of germination and moisture content in the laboratory and emergence and development of seedlings in greenhouse. During the last evaluation at 16 months, the seeds under the same conditions were subjected to salt stress. The moisture content varied during the storage period, but was always higher for seeds kept at -196 ºC. These seeds kept high germination percentage in water until 16 months, regardless of the tested temperature; however, in salt solution the germination percentage was significantly reduced.

  14. Effects of Mulching, Fertilizer, Seeding and Seedling Treatments on ...

    African Journals Online (AJOL)

    Effects of Mulching, Fertilizer, Seeding and Seedling Treatments on Plant Species Recovery in Kondoa Irangi Hills, Tanzania. ... There were high significant correlations of 0.85 and 0.87 between seedling recruitment and mortality in both sites, indicating that other factors, probably aridity, rather than prevailing site conditions ...

  15. Effects of seed fermentation method on seed germination and vigor ...

    African Journals Online (AJOL)

    The present study was conducted to examine the influence of Lagenaria siceraria seed fermentation method on seed germination and vigor. Three seed fermentation methods (fermented in ambient air, plastic bag stored in ambient or in plastic bag buried) were tested on two cultivars during two years. Seed germination and ...

  16. Effects of salinity, temperature, light and dormancy regulating chemicals on seed germination of salsola drummondii ulbr

    International Nuclear Information System (INIS)

    Rasheed, A.; Hameed, A.; Khan, M.A.; Gul, B.

    2015-01-01

    Salsola drummondii Ulbr. is a perennial halophyte found in salt deserts of southern Balochistan, Pakistan. Experiments were conducted to study the effects of salinity (0, 200, 400, 600, 800 and 1000 mM NaCl), thermoperiod (10/20, 15/25, 20/30 and 25/35 degree C), light (12-h photoperiod and dark) and dormancy regulating chemicals (DRCs) on germination, recovery and viability of the seeds of S. drummondii. Seeds of S. drummondii germinated quickly in distilled water at different temperature regimes and increases in salinity decreased seed germination. Interestingly, few seeds could even germinate in 1000 mM NaCl treatment, which is about twice as high as seawater salinity. Seeds were partially photoblastic and showed relatively higher germination under 12-h photoperiod than in dark. Seeds showed poor recovery of germination from salinity and particularly when germinated in dark. Germination inhibition at high salinity (800 mM NaCl) under 12-h photoperiod was partially alleviated by the exogenous application of different DRCs, particularly fusicoccin. Moreover, all the DRCs, except GA4+7, ameliorated germination of salt stressed seeds under complete darkness and GA4 and fusicoccin were most effective. Our study shows that seeds of S. drummondii are highly tolerant to salinity and variation in temperature but partially photoblastic nature indicate that seeds will not germinate if buried under the soil. Seed germination under saline conditions can be improved by the use of DRCs particularly by application of fusicoccin. (author)

  17. ASSESSMENT OF CACAO SEEDS OF “GAPOKTAN” AT LINTAS SEKAYAM SANGGAU WEST KALIMANTAN

    OpenAIRE

    Azri

    2015-01-01

    Cacao seeds price at farmers level in 2013 is IDR 800 per kg. Expected by implementing technology cacao seeds be processed products such as cocoa powder can increase added value for cacao farmers. From aspect of expected processing most cacao must fermented with Indonesian cacao quality standard requirements in accordance with SNI 01-2323-2002 so that quality of cacao Indonesia can be accepted in international market. Cacao seeds done after fermented cacao seeds for three up to...

  18. Central sorting and recovery of MSW recyclable materials: A review of technological state-of-the-art, cases, practice and implications for materials recycling

    DEFF Research Database (Denmark)

    Cimpan, Ciprian; Maul, Anja; Jansen, Michael

    2015-01-01

    Today's waste regulation in the EU comprises stringent material recovery targets and calls for comprehensive programs in order to achieve them. A similar movement is seen in the US where more and more states and communities commit to high diversion rates from landfills. The present paper reviews...... scientific literature, case studies and results from pilot projects, on the topic of central sorting of recyclable materials commonly found in waste from households. The study contributes, inter alia, with background understanding on the development of materials recovery, both in a historical...... sorting of residual MSW is found for areas where source separation and separate collection is difficult, such as urban agglomerations, and can in such areas contribute to increasing recycling rates, either complementary to- or as a substitute for source separation of certain materials, such as plastics...

  19. Water extraction from high moisture lignite by means of efficient integration of waste heat and water recovery technologies with flue gas pre-drying system

    International Nuclear Information System (INIS)

    Han, Xiaoqu; Yan, Junjie; Karellas, Sotirios; Liu, Ming; Kakaras, Emmanuel; Xiao, Feng

    2017-01-01

    Highlights: • Energy-saving potential of FPLPS in different cold-ends and lignite types is evaluated. • Water-saving of FPLPS is realized through recovery of water extracted from lignite. • Integrations of low pressure economizer and spray tower with FPLPS are proposed. • Thermodynamic and economic performances of different schemes are investigated. - Abstract: The flue gas pre-dried lignite-fired power system (FPLPS) integrates the fan mill flue gas dryer with an open pulverizing system and yields an increase of the boiler efficiency. Particularly, the dryer exhaust gas contains a large amount of vapor removed from high moisture lignite, which exhibits great potential for waste heat and water recovery. Two available options are considered to realize the extraction of water from lignite: the low pressure economizer (LPE) for water-cooled units and the spray tower (SPT) integrated with heat pump for air-cooled units. This paper aims at evaluating the energy saving and water recovery potentials of the FPLPS integrated with both schemes. Results showed that the plant efficiency improvement of the FPLPS at base case varied from 1.14% to 1.47% depending on the moisture content of raw lignite. The water recovery ratio and plant efficiency improvement in the optimal LPE scheme were 39.4% and 0.20%, respectively. In contrast, 83.3% of water recover ratio and 110.6 MW_t_h heat supply were achieved in the SPT system. Both schemes were economically feasible with discounted payback periods of around 3 years. Moreover, parametric analysis was conducted to examine the economic viability of both schemes with different lignite types and market factors.

  20. Improved NGL recovery designs maximize operating flexibility and product recoveries

    International Nuclear Information System (INIS)

    Wilkinson, J.D.; Hudson, H.M.

    1992-01-01

    This paper reports that the historically cyclical nature in the market for ethane and propane has demonstrated the need for flexible natural gas liquids (NGL) recovery plants. NEwly developed and patented processes are now available which can provide ultra-high recovery of ethane (95%+) when demand for ethane is high and provide essentially complete ethane rejection without the normally concomitant reduction in propane recovery. This provides plant operators the flexibility to respond more readily to NGL market conditions, thus maximizing plant operating profits. The new process designs provide this flexibility without increasing utility requirements. In fact, utility consumption is often lower when compared to conventional designs. This same process technology can also be easily retrofit into existing plants with relatively quick payout of the modifications from both recovery and efficiency improvements

  1. Prosopis Africana SEEDS (OKPEYE)

    African Journals Online (AJOL)

    User

    Keywords: Prosopis africana, okpeye seeds, thermal heat conductivity, specific heat capacity, thermal heat diffusivity, .... 2.3 Determination of Thermal Properties of Prosopis. Africana .... and the guard ring was filled with fiber glass at both the.

  2. Oil seed marketing prospects

    International Nuclear Information System (INIS)

    Ceroni, G.

    1992-01-01

    With its 100 million tonnes annual production, the American continent is by far the world's biggest producer of oil seed, followed by Asia - 52 million, and Europe - 27 million tonnes. The Italian and European Communities have the farming capacity to double their production, but international agreements currently prohibit such initiatives. After first providing a panorama of the world oil seed market, this paper discusses new reforms in European Communities internal agricultural policies which currently limit production. These reforms, intended to encourage the production of oil seed for use as an ecological automotive fuel alternative, call for an obligatory set-aside of 15% of producing farm-land in exchange for the compensatory removal of oil seed production limits

  3. Technology.

    Science.gov (United States)

    Online-Offline, 1998

    1998-01-01

    Focuses on technology, on advances in such areas as aeronautics, electronics, physics, the space sciences, as well as computers and the attendant progress in medicine, robotics, and artificial intelligence. Describes educational resources for elementary and middle school students, including Web sites, CD-ROMs and software, videotapes, books,…

  4. Genetics and Forest Seed Handling

    DEFF Research Database (Denmark)

    Schmidt, Lars Holger

    2016-01-01

    High genetic quality seed is obtained from seed sources that match the planting site, have a good outcrossing rate, and are superior in some desirable characters. Non-degraded natural forests and plantations may be used as untested seed sources, which can sometimes be managed to promote outbreeding...... and increase seed production. Planted seed orchards aim at capturing large genetic variation and are planted in a design that facilitates genetic evaluation and promotes outbred seed production. Good seed production relies upon success of the whole range of reproductive events from flower differentiation...

  5. Green Quantification Strategy Combined with Chemometric Analysis for Triglycerides in Seeds Used in Traditional Chinese Medicine.

    Science.gov (United States)

    Hou, Jin-Jun; Guo, Ji-Ling; Cao, Chun-Mei; Yao, Shuai; Long, Hua-Li; Cai, Lu-Ying; Da, Juan; Wu, Wan-Ying; Guo, De-An

    2018-04-01

    Triglycerides are the primary constituents of some seed kernels used in traditional Chinese medicine. Quality control of seed kernels containing multiple components with an environmentally friendly method is indispensable for establishing their quality standards (called monographs) in pharmacopeia. Using coix seeds (Semen Coicis) as an example, a green quantification strategy was proposed by combining C 8 core-shell particles with single standard to determine multicomponent technologies to quantify seven triglycerides simultaneously. A core-shell column, namely, Halo C 8 (3.0 × 100 mm, 2.7 µm), was used. Methanol was used as the mobile phase at a flow rate of 0.3 mL/min, enabling UV detection of the elutes. Seven triglycerides were well separated in 20 min, and simultaneously quantified using triolein as a single standard. The conversion factor for each standard was set as 1.0 on ELSD, while for the conversion factors at 203 nm, the values increased with the reduction of linoleate. The recovery values were all in the range of 97 - 107% (RSD < 3.0%). The RSD values of precision, including intraday and intermediate precision, were < 3.0% when the total content of triglycerides was calculated. The linearity reached r ≥ 0.9990, and the limit of quantitation reached 40 - 70 ng. Forty-nine batches of coix seeds from four different places of origins and eight batches of adulterants were evaluated and differentiated using principal component analysis. In addition, the validated method was used successfully to quantity seven triglycerides in Semen Persicae, Semen Armeniacae Amarum, and Semen Pruni. Georg Thieme Verlag KG Stuttgart · New York.

  6. Seeds of impurity

    Directory of Open Access Journals (Sweden)

    Andrea Pavoni

    2015-06-01

    Full Text Available Ai Weiwei’s art installation Kui Hua Zi [Sunflower Seeds] took place between 2010 and 2011 in the gigantic Turbine Hall of the Tate Modern Gallery, in London. It consisted of 100 millions hand-crafted porcelain seeds made in Jingdezhen, China.1 An uneven surface to dive into, a haptic space of undulating vision, rustling steps, unusual horizontality, a meaningless quicksand where the separation between artwork and spectator is engulfed, the immunity of distant contemplation denied.

  7. Storage of sunflower seeds

    Directory of Open Access Journals (Sweden)

    Denise de Castro Lima

    Full Text Available The sunflower is among the top five crops in the world for the production of edible vegetable oil. The species displays rustic behavior, with an excellent edaphic and climatic adaptability index, being able to be cultivated throughout Brazil. Seed quality is the key to increasing production and productivity in the sunflower. The objective of this work was to monitor the viability of sunflower seeds with a view to their conservation when stored in different environments and packaging. The seeds were packed in paper bags, multilayered paper, black polyethylene and PET bottles; and stored for a period of twelve months in the following environments: dry cold room (10 ºC and 55% RH, the ambient conditions of Fortaleza, Ceará, Brazil (30-32 ºC and 75% RH, refrigerator (4 ºC and 38-43% RH and freezer (-20 ºC. Every three months, the water content of the seeds was determined and germination, accelerated ageing, speed of emergence index, and seedling dry weight were evaluated. The experimental design was completely randomized, in a scheme of split-lots, with four replications. It can be concluded that the natural environment is not suitable for the storage of sunflower seeds. Sunflower seeds remain viable for 12 months when stored in a dry cold room, refrigerator or freezer, irrespective of the type of packaging used.

  8. Seed dispersal in fens

    Science.gov (United States)

    Middleton, B.; Van Diggelen, R.; Jensen, K.

    2006-01-01

    Question: How does seed dispersal reduce fen isolation and contribute to biodiversity? Location: European and North American fens. Methods: This paper reviews the literature on seed dispersal to fens. Results: Landscape fragmentation may reduce dispersal opportunities thereby isolating fens and reducing genetic exchange. Species in fragmented wetlands may have lower reproductive success, which can lead to biodiversity loss. While fens may have always been relatively isolated from each other, they have become increasingly fragmented in modern times within agricultural and urban landscapes in both Europe and North America. Dispersal by water, animals and wind has been hampered by changes related to development in landscapes surrounding fens. Because the seeds of certain species are long-lived in the seed bank, frequent episodes of dispersal are not always necessary to maintain the biodiversity of fens. However, of particular concern to restoration is that some dominant species, such as the tussock sedge Carex stricta, may not disperse readily between fens. Conclusions: Knowledge of seed dispersal can be used to maintain and restore the biodiversity of fens in fragmented landscapes. Given that development has fragmented landscapes and that this situation is not likely to change, the dispersal of seeds might be enhanced by moving hay or cattle from fens to damaged sites, or by reestablishing lost hydrological connections. ?? IAVS; Opulus Press.

  9. Chemical Technology Division annual technical report 1984

    International Nuclear Information System (INIS)

    1985-02-01

    In this period, CMT conducted research and development in the following areas: (1) advanced batteries - mainly lithium alloy/metal sulfide and sodium/sulfur for electric vehicles; (2) aqueous batteries - mainly improved lead-acid and nickel/iron for electric vehicles; (3) advanced fuel cells with molten carbonate or solid oxide electrolytes; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamic plants and the technology for pressurized fluidized-bed combustors; (5) methodologies for recovery of energy from municipal waste; (6) solid and liquid desiccants that allow moisture to be removed with a minium of energy; (7) nuclear technology related to waste management, proof of breeding for a light water reactor, and the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor; and (8) physical chemistry of selected materials in environments simulating those of fission, fusion, and other energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting abundant raw materials to desired products; materials chemistry of liquids and vapors at high temperatures; interfacial processes of importance to corrosion science, surface science, and catalysis; atmospheric chemistry, most notably SO 2 oxidation mechanisms; and the thermochemistry of zeolites, related silicates, and inorganic compounds

  10. Development of a Field Demonstration for Cost-Effective Low-Grade Heat Recovery and Use Technology Designed to Improve Efficiency and Reduce Water Usage Rates for a Coal-Fired Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Noble, Russell [Southern Company Services, Incorporated, Birmingham, AL (United States); Dombrowski, K. [AECOM Technical Services, Austin, TX (United States); Bernau, M. [AECOM Technical Services, Austin, TX (United States); Morett, D. [AECOM Technical Services, Austin, TX (United States); Maxson, A. [EPRI, Palo Alto, CA (United States); Hume, S. [EPRI, Palo Alto, CA (United States)

    2016-06-30

    Coal-based power generation systems provide reliable, low-cost power to the domestic energy sector. These systems consume large amounts of fuel and water to produce electricity and are the target of pending regulations that may require reductions in water use and improvements in thermal efficiency. While efficiency of coal-based generation has improved over time, coal power plants often do not utilize the low-grade heat contained in the flue gas and require large volumes of water for the steam cycle make-up, environmental controls, and for process cooling and heating. Low-grade heat recovery is particularly challenging for coal-fired applications, due in large part to the condensation of acid as the flue gas cools and the resulting potential corrosion of the heat recovery materials. Such systems have also not been of significant interest as recent investments on coal power plants have primarily been for environmental controls due to more stringent regulations. Also, in many regions, fuel cost is still a pass-through to the consumer, reducing the motivation for efficiency improvements. Therefore, a commercial system combining low-grade heat-recovery technologies and associated end uses to cost effectively improve efficiency and/or reduce water consumption has not yet been widely applied. However, pressures from potential new regulations and from water shortages may drive new interest, particularly in the U.S. In an effort to address this issue, the U.S. Department of Energy (DOE) has sought to identify and promote technologies to achieve this goal.

  11. Peasant seeds in Europe: stakes and prospects

    Directory of Open Access Journals (Sweden)

    Riccardo Bocci

    2011-11-01

    Full Text Available The myth of technological progress in agriculture and then modern plant breeding have resulted in a separation of farming from breeding activities. Seed laws have also contributed to this outcome (e.g. by imposing strict rules for the entry of varieties in the official catalogue. Nowadays, some pioneers, among them farmers rejecting industrialized agriculture and more often practising organic agriculture, are proposing a different option. In Europe, since the beginning of this century, they have been organizing themselves in networks: the Réseau Semences Paysannes in France, the Red de Semillas in Spain and the Rete Semi Rurali in Italy. Their members are farmers, consumers and scientists working together in order to reconsider the scientific, technical and legal aspects of seed production. These new varieties are designated ‘peasant varieties’, a concept that encompasses two main aspects: the seed, the reproductive part of the plant linked to its terroir, and the variety, shaped by history and coevolved with farmers. Scientists working with these networks are developing participatory plant breeding projects, which aim to broaden agrobiodiversity by creating so called new peasant varieties. The basis of these projects comes from old local varieties and landraces conserved in seed banks. In Europe, the legal framework has evolved since the establishment of ‘conservation varieties’ by directive 98/95. The European research project Farm Seed Opportunities is under way to support new seed policies, in the light also of the different national contexts. The debate in Europe now offers a range of seed systems models. It is time to enlarge this debate to southern countries through the sharing of knowledge between farmers of the North and the South, aiming at conserving agrobiodiversity and promoting rural innovation.

  12. Seed quality and optimal spatial arrangement of fodder radish

    Directory of Open Access Journals (Sweden)

    Andréa dos Santos Oliveira

    2011-08-01

    Full Text Available Besides the use of fodder radish (Raphanus sativus var. oleiferus Metzg. as green manure plant cover crops and animal feed, the seeds have high oil content and low viscosity, ideal characteristics for the production of biodiesel. Studies related to the technology of seed production for this species are insufficient to define the best spatial arrangement of plants in the field that provides higher yields associated with high-quality seeds. Thus, we investigated the space and density between plants that would be ideal for the production of high quality fodder radish seeds. We evaluated the agronomic characteristics and physical, physiological and seed health quality in recently harvested fodder radish in row spacings of 0.2, 0.4, 0.6, and 0.8 m and densities of 10, 30, 50 and 70 seeds m-2. The quality and productivity of the fodder radish's seeds were affected by the spatial arrangement of plants in the field. Seeds harvested under the spacing of 0.2 m and density of 30 seeds m-2 had better performance and physical, physiological and health quality. Alternaria sp. incidence increased with greater spacing, while Fusarium sp. incidence decreased.

  13. Seed-borne pathogens and electrical conductivity of soybean seeds

    Directory of Open Access Journals (Sweden)

    Adriana Luiza Wain-Tassi

    2012-02-01

    Full Text Available Adequate procedures to evaluate seed vigor are important. Regarding the electrical conductivity test (EC, the interference in the test results caused by seed-borne pathogens has not been clarified. This research was carried out to study the influence of Phomopsis sojae (Leh. and Colletotrichum dematium (Pers. ex Fr. Grove var. truncata (Schw. Arx. fungi on EC results. Soybean seeds (Glycine max L. were inoculated with those fungi using potato, agar and dextrose (PDA medium with manitol (-1.0 MPa and incubated for 20 h at 25 °C. The colony diameter, index of mycelial growth, seed water content, occurrence of seed-borne pathogens, physiological potential of the seeds, measured by germination and vigor tests (seed germination index, cold test, accelerated aging and electrical conductivity, and seedling field emergence were determined. The contents of K+, Ca2+, and Mg2+ in the seed and in the soaking solution were also determined. A complete 2 × 4 factorial design with two seed sizes (5.5 and 6.5 mm and four treatments (control, seeds incubated without fungi, seeds incubated with Phomopsis and seeds incubated with Colletotrichum were used with eight (5.5 mm large seeds and six (6.5 mm large seeds replications. All seeds submitted to PDA medium had their germination reduced in comparison to the control seeds. This reduction was also observed when seed vigor and leached ions were considered. The presence of Phomopsis sojae fungus in soybean seed samples submitted to the EC test may be the cause of misleading results.

  14. PRICING OF BT COTTON SEEDS IN INDIA: THE DEBATE BEHIND

    Directory of Open Access Journals (Sweden)

    Anchal ARORA

    2014-11-01

    Full Text Available In 2006 the state government of Andhra Pradesh reduced the Bt cotton seed prices from Indian Rs1600 to Rs750 in order to make the technology affordable and accessible to small and marginal farmers in the state and also to prevent the monopolistic market structure in the seed market. The drastic reduction in seed prices, on the other hand could affect the profitability of seed providing companies and curb their incentives to innovate in future. Recent literature has also examined the impact of price controls on diffusion of technology, revenue and profitability of seed providers. It suggests that price controls have positively impacted the diffusion of technology in India, and were also successful in increasing the revenue of seed providers in the short run. However, the impact of price controls on profitability would depend on cost conditions. In the light of the above discussion, this article attempts to discuss the debate behind price controls and draws certain policy implications pertaining to pricing of Bt seeds, which has an international policy relevance.

  15. Systems Analysis of Technologies for Energy Recovery from Waste. Part I. Gasification followed by Catalytic Combustion, PEM Fuel Cells and Solid Oxide Fuel Cells for Stationary Applications in Comparison with Incineration. Part - II. Catalytic combustion - Experimental part

    Energy Technology Data Exchange (ETDEWEB)

    Assefa, Getachew; Frostell, Bjoern [Royal Inst. of Technology, Stockholm (Sweden). Div. of Industrial Ecology; Jaeraas, Sven; Kusar, Henrik [Royal Inst. of Technology, Stockholm (Sweden). Div. of Chemical Technology

    2005-02-01

    This project is entitled 'Systems Analysis: Energy Recovery from waste, catalytic combustion in comparison with fuel cells and incineration'. Some of the technologies that are currently developed by researchers at the Royal Institute of Technology include catalytic combustion and fuel cells as downstream units in a gasification system. The aim of this project is to assess the energy turnover as well as the potential environmental impacts of biomass/waste-to-energy technologies. In second part of this project economic analyses of the technologies in general and catalytic combustion and fuel cell technologies in particular will be carried out. Four technology scenarios are studied: (1) Gasification followed by Low temperature fuel cells (Proton Exchange Membrane (PEM) fuel cells) (2) Gasification followed by high temperature fuel cells (Solid Oxide Fuel Cells (SOFC) (3) Gasification followed by catalytic combustion and (4) Incineration with energy recovery. The waste used as feedstock is an industrial waste containing parts of household waste, paper waste, wood residues and poly ethene. In the study compensatory district heating is produced by combustion of biofuel. The power used for running the processes in the scenarios will be supplied by the waste-to-energy technologies themselves while compensatory power is assumed to be produced from natural gas. The emissions from the system studied are classified and characterised using methodology from Life Cycle Assessment in to the following environmental impact categories: Global Warming Potential, Acidification Potential, Eutrophication Potential and finally Formation of Photochemical Oxidants. Looking at the result of the four technology chains in terms of the four impact categories with impact per GWh electricity produced as a unit of comparison and from the perspective of the rank each scenario has in all the four impact categories, SOFC appears to be the winner technology followed by PEM and CC as second

  16. Systems Analysis of Technologies for Energy Recovery from Waste. Part I. Gasification followed by Catalytic Combustion, PEM Fuel Cells and Solid Oxide Fuel Cells for Stationary Applications in Comparison with Incineration. Part - II. Catalytic combustion - Experimental part

    International Nuclear Information System (INIS)

    Assefa, Getachew; Frostell, Bjoern; Jaeraas, Sven; Kusar, Henrik

    2005-02-01

    This project is entitled 'Systems Analysis: Energy Recovery from waste, catalytic combustion in comparison with fuel cells and incineration'. Some of the technologies that are currently developed by researchers at the Royal Institute of Technology include catalytic combustion and fuel cells as downstream units in a gasification system. The aim of this project is to assess the energy turnover as well as the potential environmental impacts of biomass/waste-to-energy technologies. In second part of this project economic analyses of the technologies in general and catalytic combustion and fuel cell technologies in particular will be carried out. Four technology scenarios are studied: (1) Gasification followed by Low temperature fuel cells (Proton Exchange Membrane (PEM) fuel cells) (2) Gasification followed by high temperature fuel cells (Solid Oxide Fuel Cells (SOFC) (3) Gasification followed by catalytic combustion and (4) Incineration with energy recovery. The waste used as feedstock is an industrial waste containing parts of household waste, paper waste, wood residues and poly ethene. In the study compensatory district heating is produced by combustion of biofuel. The power used for running the processes in the scenarios will be supplied by the waste-to-energy technologies themselves while compensatory power is assumed to be produced from natural gas. The emissions from the system studied are classified and characterised using methodology from Life Cycle Assessment in to the following environmental impact categories: Global Warming Potential, Acidification Potential, Eutrophication Potential and finally Formation of Photochemical Oxidants. Looking at the result of the four technology chains in terms of the four impact categories with impact per GWh electricity produced as a unit of comparison and from the perspective of the rank each scenario has in all the four impact categories, SOFC appears to be the winner technology followed by PEM and CC as second and third

  17. Report on the survey in fiscal 1998. Systematic arrangement of environment technologies. 5 (Application of advanced technologies to environmental measures); 1998 nendo chosa hokokusho. Kankyo gijutsu ni kansuru taikeiteki seiri. 5 (sentan gijutsu no kankyo taisaku eno oyo)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Global environment handling technologies were investigated and put into order. Universities often make research and development on themes that can be handled at laboratory levels or by simulations. Development at a practical application level is few. Technological seeds may include manufacture of hydrogen by water and steam decomposition using solar energy, and new synthesizing reactions utilizing solar energy. Included may also be urban type wind power generation, superconductive energy storage systems, biomass utilization, and natural energy utilization. Furthermore, CO2 recovery and utilization by liquefaction, alkaline metal heat power generation, and pulse power technologies can also be found. Studies on applying advanced technologies to environmental measures include composite materials, membrane separation, photo-catalysts, optical elements, porous bodies, functional polymers, bio-reactors, electron beams, and aeration. Private corporations are working noticeably on prevention of fluorocarbon and dioxin emission, PCB treatment and waste water treatment technologies, catalyst application technologies, recycling technologies, and incineration ash treatment and utilization technologies. (NEDO)

  18. The novel approach to enhance seed security: dual anti-counterfeiting methods applied on tobacco pelleted seeds.

    Science.gov (United States)

    Guan, Yajing; Wang, Jianchen; Tian, Yixin; Hu, Weimin; Zhu, Liwei; Zhu, Shuijin; Hu, Jin

    2013-01-01

    Seed security is of prime importance for agriculture. To protect true seeds from being faked, more secure dual anti-counterfeiting technologies for tobacco (Nicotiana tabacum L.) pelleted seed were developed in this paper. Fluorescein (FR), rhodamine B (RB), and magnetic powder (MP) were used as anti-counterfeiting labels. According to their different properties and the special seed pelleting process, four dual-labeling treatments were conducted for two tobacco varieties, MS Yunyan85 (MSYY85) and Honghua Dajinyuan (HHDJY). Then the seed germination and seedling growth status were investigated, and the fluorescence in cracked pellets and developing seedlings was observed under different excitation lights. The results showed that FR, RB, and MP had no negative effects on the germination, seedling growth, and MDA content of the pelleted seeds, and even some treatments significantly enhanced seedling dry weight, vigor index, and shoot height in MS YY85, and increased SOD activity and chlorophyll content in HHDJY as compared to the control. In addition, the cotyledon tip of seedlings treated with FR and MP together represented bright green fluorescence under illumination of blue light (478 nm). And the seedling cotyledon vein treated with RB and MP together showed red fluorescence under green light (546 nm). All seeds pelleted with magnetic powder of proper concentration could be attracted by a magnet. Thus, it indicated that those new dual-labeling methods that fluorescent compound and magnetic powder simultaneously applied in the same seed pellets definitely improved anti-counterfeiting technology and enhanced the seed security. This technology will ensure that high quality seed will be used in the crop production.

  19. The novel approach to enhance seed security: dual anti-counterfeiting methods applied on tobacco pelleted seeds.

    Directory of Open Access Journals (Sweden)

    Yajing Guan

    Full Text Available Seed security is of prime importance for agriculture. To protect true seeds from being faked, more secure dual anti-counterfeiting technologies for tobacco (Nicotiana tabacum L. pelleted seed were developed in this paper. Fluorescein (FR, rhodamine B (RB, and magnetic powder (MP were used as anti-counterfeiting labels. According to their different properties and the special seed pelleting process, four dual-labeling treatments were conducted for two tobacco varieties, MS Yunyan85 (MSYY85 and Honghua Dajinyuan (HHDJY. Then the seed germination and seedling growth status were investigated, and the fluorescence in cracked pellets and developing seedlings was observed under different excitation lights. The results showed that FR, RB, and MP had no negative effects on the germination, seedling growth, and MDA content of the pelleted seeds, and even some treatments significantly enhanced seedling dry weight, vigor index, and shoot height in MS YY85, and increased SOD activity and chlorophyll content in HHDJY as compared to the control. In addition, the cotyledon tip of seedlings treated with FR and MP together represented bright green fluorescence under illumination of blue light (478 nm. And the seedling cotyledon vein treated with RB and MP together showed red fluorescence under green light (546 nm. All seeds pelleted with magnetic powder of proper concentration could be attracted by a magnet. Thus, it indicated that those new dual-labeling methods that fluorescent compound and magnetic powder simultaneously applied in the same seed pellets definitely improved anti-counterfeiting technology and enhanced the seed security. This technology will ensure that high quality seed will be used in the crop production.

  20. Disaster Debris Recovery Database - Recovery

    Science.gov (United States)

    The US EPA Region 5 Disaster Debris Recovery Database includes public datasets of over 6,000 composting facilities, demolition contractors, transfer stations, landfills and recycling facilities for construction and demolition materials, electronics, household hazardous waste, metals, tires, and vehicles in the states of Illinois, Indiana, Iowa, Kentucky, Michigan, Minnesota, Missouri, North Dakota, Ohio, Pennsylvania, South Dakota, West Virginia and Wisconsin.In this update, facilities in the 7 states that border the EPA Region 5 states were added to assist interstate disaster debris management. Also, the datasets for composters, construction and demolition recyclers, demolition contractors, and metals recyclers were verified and source information added for each record using these sources: AGC, Biocycle, BMRA, CDRA, ISRI, NDA, USCC, FEMA Debris Removal Contractor Registry, EPA Facility Registry System, and State and local listings.

  1. Technology development for recovery of individual rare earth elements at high purity from Dong-Pao rare earth concentrated ore of Vietnam

    International Nuclear Information System (INIS)

    Hoang Nhuan; Le Ba Thuan; Luu Xuan Dinh; Tran Hoang Mai; Tran Thi Hong Thai; Yoshiuyki Aiba; Hiroaki Nishimura

    2015-01-01

    In this work, the research results on RE processing process at laboratory scale and pilot scale was reported and discussed. Experimental research on thermal decomposition and sulfate process of bastnaesite ore with sulfuric acid in electric furnace was carried out, the different roasting conditions, mass transfer rate, reactions and RE and/or non-RE behaviors during roasting and leaching were investigated. The roasting temperatures were 450"oC and 550"oC. With higher roasting temperature and longer roasting time, the RE recovery yield reduced. The RE recovery yield reached the highest (over 94%) at roasting temperature of 550"oC for 2 hrs. The different extracting conditions for separation of REEs were investigated in laboratory scale as well as pilot scale. At pilot scale, the separation of REEs was performed on 120-stage extraction system produced by Japan, using PC88A solvent dissolved in IP2028. The volume of each stage was 20 L. The results showed that REEs were separated from RE resource of Vietnam and individual RE elements such as La, Ce, Pr, and Nd were obtained at high purity. The parameters for each extraction stage were reported in this work. The results indicated that in order to obtain highly purified Nd (>99%), it needs to use an extraction system with higher stage number, about 200 stages. The extraction data at pilot scale of this investigation was used as basic data for calculating parameters for extraction system in industrial scale. (author)

  2. The importance of using certified seed

    OpenAIRE

    Bogdanović Sandra; Mladenov Velimir; Balešević-Tubić Svetlana

    2015-01-01

    Certified seed is produced from the seed of known genetic origin and genetic purity with controlled and tested production, processed and declared in accordance with the Law on Seeds. Production of certified seed is carried out under the supervision of the Ministry of Agriculture and Environmental Protection, by seed producers formally listed in the Seed Register. Seed is processed in registered seed processing centres and quality is tested in laboratories accredited for seed testing. The orga...

  3. Integrated Resource Management and Recovery

    DEFF Research Database (Denmark)

    Astrup, Thomas Fruergaard

    2014-01-01

    , depends on the quality of these resources and technological abilities to extract resources from mixed materials, e.g. mobile phones, solar cells, or mixed domestic waste. The "effort" invested in recovery of secondary resources should not be more than the "benefit" associated with the secondary resources...

  4. Optimization of induced crystallization reaction in a novel process of nutrients removal coupled with phosphorus recovery from domestic wastewater

    Directory of Open Access Journals (Sweden)

    Zou Haiming

    2017-12-01

    Full Text Available Phosphorus removal and recovery from domestic wastewater is urgent nowadays. A novel process of nutrients removal coupled with phosphorus recovery from domestic sewage was proposed and optimization of induced crystallization reaction was performed in this study. The results showed that 92.3% of phosphorus recovery via induced Hydroxyapatite crystallization was achieved at the optimum process parameters: reaction time of 80 min, seed crystal loads of 60 g/L, pH of 8.5, Ca/P mole ratio of 2.0 and 4.0 L/min aeration rate when the PO43--P concentration was 10 mg/L in the influent, displaying an excellent phosphorus recovery performance. Importantly, it was found that the effect of reaction temperature on induced Hydroxyapatite crystallization was slight, thus favoring practical application of phosphorus recovery method described in this study. From these results, the proposed method of induced HAP crystallization to recover phosphorus combined with nutrients removal can be an economical and effective technology, probably favoring the water pollution control and phosphate rock recycle.

  5. Technology

    Directory of Open Access Journals (Sweden)

    Xu Jing

    2016-01-01

    Full Text Available The traditional answer card reading method using OMR (Optical Mark Reader, most commonly, OMR special card special use, less versatile, high cost, aiming at the existing problems proposed a method based on pattern recognition of the answer card identification method. Using the method based on Line Segment Detector to detect the tilt of the image, the existence of tilt image rotation correction, and eventually achieve positioning and detection of answers to the answer sheet .Pattern recognition technology for automatic reading, high accuracy, detect faster

  6. Post-dispersal seed removal by ground-feeding rodents in tropical peatlands, Central Kalimantan, Indonesia

    Science.gov (United States)

    Blackham, Grace V.; Corlett, Richard T.

    2015-01-01

    Forested tropical peatlands in Southeast Asia are being rapidly converted to agriculture or degraded into non-forest vegetation. Although large areas have been abandoned, there is little evidence for subsequent forest recovery. As part of a study of forest degradation and recovery, we used seed removal experiments and rodent surveys to investigate the potential role of post-dispersal seed predation in limiting the regeneration of woody plants. Two 14-day seed removal trials were done in deforested and forested peatland habitat in Central Kalimantan, Indonesia. Seeds of Nephelium lappaceum, Syzygium muelleri, Artocarpus heterophyllus (all animal-dispersed) and Combretocarpus rotundatus (wind-dispersed) were tested. Significantly more seeds (82.8%) were removed in forest than non-forest (38.1%) and Combretocarpus had the lowest removal in both habitats. Most handled seeds were eaten in situ and little caching was observed. Six species of rodents were captured in forest and five in non-forest. The most trapped taxa were three Maxomys spp. in forest (85.5% of individuals) and Rattus tiomanicus in non-forest (74.8%). Camera traps confirmed that rodents were responsible for seed removal. Seed predation in deforested areas, which have a much lower seed rain than forest, may contribute to the low density and diversity of regenerating forest. PMID:26369444

  7. Magnetic-seeding filtration

    International Nuclear Information System (INIS)

    Ying, T.Y.; Chin, C.J.; Lu, S.C.; Yiacoumi, S.

    1997-10-01

    Magnetic-seeding filtration consists of two steps: heterogeneous particle flocculation of magnetic and nonmagnetic particles in a stirred tank and high-gradient magnetic filtration (HGMF). The effects of various parameters affecting magnetic-seeding filtration (HGMF). The effects of various parameters affecting magnetic seeding filtration are theoretically and experimentally investigated. A trajectory model that includes hydrodynamic resistance, van der Waals, and electrostatic forces is developed to calculate the flocculation frequency in a turbulent-shear regime. Fractal dimension is introduced to simulate the open structure of aggregates. A magnetic-filtration model that consists of trajectory analysis, a particle build-up model, a breakthrough model, and a bivariate population-balance model is developed to predict the breakthrough curve of magnetic-seeding filtration. A good agreement between modeling results and experimental data is obtained. The results show that the model developed in this study can be used to predict the performance of magnetic-seeding filtration without using empirical coefficients or fitting parameters. 35 refs., 7 figs., 1 tab

  8. Molecular physiology of seeds

    International Nuclear Information System (INIS)

    Hajduch, M.

    2014-05-01

    Plant development is well described. However, full understanding of the regulation of processes associated with plant development is still missing. Present Dr.Sc. thesis advances our understanding of the regulation of plant development by quantitative proteomics analyses of seed development of soybean, canola, castor, flax, and model plant arabidopsis in control and environmentally challenged environments. The analysis of greenhouse-grown soybean, canola, castor, and arabidospis provided complex characterization of metabolic processes during seed development, for instance, of carbon assimilation into fatty acids. Furthermore, the analyses of soybean and flax grown in Chernobyl area provided in-depth characterization of seed development in radio-contaminated environment. Soybean and flax were altered by radio-contaminated environment in different way. However, these alterations resulted into modifications in seed oil content. Further analyses showed that soybean and flax possess alterations of carbon metabolism in cytoplasm and plastids along with increased activity of photosynthetic apparatus. Our present experiments are focused on further characterization of molecular bases that might be responsible for alterations of seed oil content in Chernobyl grown plants. (author)

  9. Viewing Reading Recovery as a Restructuring Phenomenon

    Science.gov (United States)

    Rinehart, James S.; Short, Paula Myrick

    2010-01-01

    This study investigated components of Reading Recovery that relate to a restructuring paradigm. Specifically, Reading Recovery was analyzed as a way to redesign teachers' work, empower teachers, and affect the core technology of teaching. Data were collected by a survey that consisted of open-ended questions and of categorical response items.…

  10. 77 FR 17498 - Recovery Plan for the Endangered Spigelia gentianoides (Gentian Pinkroot)

    Science.gov (United States)

    2012-03-26

    ... managed without fire. Variety alabamensis is a narrow endemic, restricted to the Bibb County Glades (open... biology, and seed ecology is accomplished; and Collect viable seeds from at least 50 percent of the... scientific data and information become available and recovery actions are implemented. Authority The...

  11. Rare vascular plant species at risk : recovery by seeding?

    NARCIS (Netherlands)

    Pegtel, Dick M.

    . Rare vascular plant species are endangered worldwide. Population losses are most commonly caused by human-related factors. Conservation management seeks to halt this adverse trend and if possible, to enhance long-lasting self-sustainable populations. In general, rare species are poorly recruited

  12. Seed irradiation with continuously increasing doses of thermal neutrons

    International Nuclear Information System (INIS)

    Uhlik, J.; Pfeifer, M.; Pittermann, P.

    1977-01-01

    In the 'Raman' pea cv. the biological activity of thermal neutrons was investigated after irradiation of a 780 mm column of seeds for 3000 and 4167 seconds with a flux of 5.607 x 10 9 n.cm -2 per second. For different fractions of the seed column the average density of the neutron flux was calculated. It was proved that for the described method of seed irradiation it was sufficient to determine only the dose approaching the lethal dose. If a sufficiently high column of seeds is used part of the column of seeds will be irradiated with the optimum range of doses. The advantages of the suggested method of irradiation are not only smaller time and technological requirements resulting from the need for the determination of only the critical lethal dose of radiation by means of inhibition tests performed with seedlings, but also a simpler irradiation procedure. The suggested method of irradiation is at least nine times cheaper. (author)

  13. 7 CFR 201.33 - Seed in bulk or large quantities; seed for cleaning or processing.

    Science.gov (United States)

    2010-01-01

    ... quantities; seed for cleaning or processing. (a) In the case of seed in bulk, the information required under... seeds. (b) Seed consigned to a seed cleaning or processing establishment, for cleaning or processing for... pertaining to such seed show that it is “Seed for processing,” or, if the seed is in containers and in...

  14. Alternatives to improve technological and environmentally the miner-metallurgic processes of recovery of gold in Vetas and California (Santander, Colombia)

    International Nuclear Information System (INIS)

    Pedraza Rosas, Julio Elias; Yanez Traslavina, Jose Julian

    2004-01-01

    With the purpose of improving the recovery of gold, to eliminate the use of the mercury and to diminish the contamination with cyanide in the Mining District of Vetas and Californian, the concentration processes were studied in a machine knelson and the intensive cyanidation of the concentrate. As fundamental part of this work, it was carried out the characterization of the samples, determining and quantifying the most influential characteristics in the processes of gravimetric concentration and of cyanidation, as well as the necessary for the design of plants. Of the mineralogical characterization it concluded that the ore of the two municipalities present significant differences that bear to think of the necessity of using different extractive processes. In general, the ore of California, bigger tenors of gold contain and of silver and they are poly-sulphurated; while those of Vetas are of pyritic type, except for that of the Golden Mine that presents similarity with those of California. The minerals of California presented a high percentage of gold (40-60%), fine coming from the alteration of the mineral; a high lixiviability in bottle; especially the samples of the Sinues Mine, with dissolutions of gold of the order of 95%, while of the Vetas was of the order of 60%. The experimental results in the knelson equipment, allowed to check the applicability of this concentration type for the case of the minerals of Vetas, obtaining under controlled operative conditions, concentrated with high tenors of gold, 421.16 g/t; significant enrichment reasons, 29.5 (tenor of the concentrate / tenor of the mineral head), with recoveries of gold notables, bigger to 80%. On the contrary, with those of Californian ores, satisfactory results were not obtained, accountable for the presence of the high percentage of gold in the fines. The application of the intensive cyanidation to the obtained concentrates, it was evaluated in presence and absence of the catalytic Leachwell and Pb

  15. Minimal recovery time needed to return to social engagement following nasolabial fold correction with hyaluronic acid fillers produced with XpresHAn technology.

    Science.gov (United States)

    Swift, Arthur; von Grote, Erika; Jonas, Brandie; Nogueira, Alessandra

    2017-01-01

    The appeal of hyaluronic acid fillers for facial soft tissue augmentation is attributable to both an immediate aesthetic effect and relatively short recovery time. Although recovery time is an important posttreatment variable, as it impacts comfort with appearance and perceived treatment benefit, it is not routinely evaluated. Natural-looking aesthetic outcomes are also a primary concern for many patients. A single-center, noncomparative study evaluated the time (in hours) until subjects return to social engagement (RtSE) following correction of moderate and severe nasolabial folds (NLFs) with R R (Restylane ® Refyne) ® and R D (Restylane Defyne), respectively. Twenty subjects (aged 35-57 years) who received bilateral NLF correction documented their RtSE and injection-related events posttreatment. Treatment efficacy was evaluated by improvements in Wrinkle Severity Rating Scale (WSRS) and subject satisfaction questionnaire at days 14 and 30, and by Global Aesthetic Improvement Scale (GAIS) at day 30. Safety was evaluated by injection-related events and treatment-emergent adverse events. Fifty percent of subjects reported RtSE within 2 hours posttreatment. WSRS for the R R group improved significantly from baseline at day 14 (-1.45±0.42) and day 30 (-1.68±0.46) ( P experienced 3 related treatment-emergent adverse events; 1 R R subject experienced severe bruising, and 1 R D subject experienced severe erythema and mild telangiectasia. Subject satisfaction was high regarding aesthetic outcomes and natural-looking results. Optimal correction of moderate NLFs with R R and severe NLFs with R D involved minimal time to RtSE for most subjects. Treatments that significantly improved WSRS and GAIS, were generally well-tolerated, and provided natural-looking aesthetic outcomes.

  16. Study On Beneficiation Technology Of Dong Pao Rare-Earth-Barite-Fluorite With Two Product Plans About Content And Recovery Of Rare-Earth Fine Ores

    International Nuclear Information System (INIS)

    Duong Van Su; Truong Thi Ai; Bui Ba Duy; Bui Thi Bay; Nguyen Hong Ha; Le Thi Hong Ha; Doan Thi Mo; Doan Dac Ban; Nguyen Hoang Son

    2014-01-01

    The ore sample used in the research was taken from the F3 ore bodies and the sample of the F7, F9 and F16 ore bodies which contain the average of 5.98% TR 2 O 3 ; they are multi-metals ore which is difficult to enrich, highly weather with very complex ingredients. The process of the experiment is the ore is crushed, ground, screened and classified reasonably to -0.1 mm and divided into 3 particle size with the following technique: (1) -0.020 mm is primary sludge and the rare-earth fine ore; (2) 0.075-1 mm is gotten through the sludge concentrating table with the output is the 2 parts: the heavy part which is dried magnetic separator with high magnetism to get the rare-earth fine ore and the light one; (3) Light minerals, non-magnetic and ferromagnetic minerals group are ground together to 85% of them get size within -0.075 mm then mix it with 0.020-0.075 mm group. Using flotation separator, get barite-rare earth mixture and fluorite. After that, we separate this mixture by secondary flotation and get refined rare earth, barite and fluorite mineral. The result of the theme: (1) product plan A-rare-earth fine ore has TR 2 O 3 content archive 42.07% with recovery is 69.70%; (2) product plan B-rare-earth fine ore has TR 2 O 3 content archive 29.64% with recovery is 80.01%. (author)

  17. DEVELOPMENT OF MELON F1 SEEDS BASED ON LINES WITH GENIC MALE STERILITY

    Directory of Open Access Journals (Sweden)

    A. S. Sokolov

    2014-01-01

    Full Text Available The perspective technology of development of melon of F1hybrids seeds by use maternal lines with an original form of genic mail sterility and marker trait (lobed leaves was studied. Elements of technology allow developing hybrid seeds of melon with hybridity of 90-95%.

  18. Life Support Systems: Oxygen Generation and Recovery

    Data.gov (United States)

    National Aeronautics and Space Administration — The Advanced Exploration Systems (AES) Life Support Systems project Oxygen Generation and Recovery technology development area encompasses several sub-tasks in an...

  19. Chemical Technology Division annual technical report, 1986

    Energy Technology Data Exchange (ETDEWEB)

    1987-06-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1986 are presented. In this period, CMT conducted research and development in areas that include the following: (1) high-performance batteries - mainly lithium-alloy/metal sulfide and sodium/sulfur; (2) aqueous batteries (lead-acid, nickel/iron, etc.); (3) advanced fuel cells with molten carbonate or solid oxide electrolytes; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants, the technology for fluidized-bed combustion, and a novel concept for CO/sub 2/ recovery from fossil fuel combustion; (5) methods for recovery of energy from municipal waste; (6) methods for the electromagnetic continuous casting of steel sheet; (7) techniques for treatment of hazardous waste such as reactive metals and trichloroethylenes; (8) nuclear technology related to waste management, a process for separating and recovering transuranic elements from nuclear waste, and the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor; and (9) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of catalytic hydrogenation and catalytic oxidation; materials chemistry for associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, surface science, and catalysis; the thermochemistry of zeolites and related silicates; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be the major user of the technical support provided by the Analytical Chemistry Laboratory at ANL. 127 refs., 71 figs., 8 tabs.

  20. Chemical Technology Division annual technical report, 1986

    International Nuclear Information System (INIS)

    1987-06-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1986 are presented. In this period, CMT conducted research and development in areas that include the following: (1) high-performance batteries - mainly lithium-alloy/metal sulfide and sodium/sulfur; (2) aqueous batteries (lead-acid, nickel/iron, etc.); (3) advanced fuel cells with molten carbonate or solid oxide electrolytes; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants, the technology for fluidized-bed combustion, and a novel concept for CO 2 recovery from fossil fuel combustion; (5) methods for recovery of energy from municipal waste; (6) methods for the electromagnetic continuous casting of steel sheet; (7) techniques for treatment of hazardous waste such as reactive metals and trichloroethylenes; (8) nuclear technology related to waste management, a process for separating and recovering transuranic elements from nuclear waste, and the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor; and (9) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of catalytic hydrogenation and catalytic oxidation; materials chemistry for associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, surface science, and catalysis; the thermochemistry of zeolites and related silicates; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be the major user of the technical support provided by the Analytical Chemistry Laboratory at ANL. 127 refs., 71 figs., 8 tabs

  1. Water-soluble metal-binding polymers with ultrafiltration: A technology for the removal, concentration, and recovery of metal ions from aqueous streams

    International Nuclear Information System (INIS)

    Smith, B.F.; Robison, T.W.; Jarvinen, G.D.

    1997-01-01

    The use of water-soluble metal-binding polymers coupled with ultrafiltration (UF) is a technology under development to selectively concentrate and recover valuable or regulated metal-ions from dilute process or waste waters. The polymers have a sufficiently large molecular size that they can be separated and concentrated using commercially available UF technology. The polymers can then be reused by changing the solution conditions to release the metal-ions, which are recovered in a concentrated form for recycle or disposal. Pilot-scale demonstrations have been completed for a variety of waste streams containing low concentrations of metal ions including electroplating wastes (zinc and nickel) and nuclear waste streams (plutonium and americium). Many other potential commercial applications exist including remediation of contaminated solids. An overview of both the pilot-scale demonstrated applications and small scale testing of this technology are presented

  2. Water-soluble metal-binding polymers with ultrafiltration: A technology for the removal, concentration, and recovery of metal ions from aqueous streams

    Energy Technology Data Exchange (ETDEWEB)

    Smith, B.F.; Robison, T.W.; Jarvinen, G.D.

    1997-12-31

    The use of water-soluble metal-binding polymers coupled with ultrafiltration (UF) is a technology under development to selectively concentrate and recover valuable or regulated metal-ions from dilute process or waste waters. The polymers have a sufficiently large molecular size that they can be separated and concentrated using commercially available UF technology. The polymers can then be reused by changing the solution conditions to release the metal-ions, which are recovered in a concentrated form for recycle or disposal. Pilot-scale demonstrations have been completed for a variety of waste streams containing low concentrations of metal ions including electroplating wastes (zinc and nickel) and nuclear waste streams (plutonium and americium). Many other potential commercial applications exist including remediation of contaminated solids. An overview of both the pilot-scale demonstrated applications and small scale testing of this technology are presented.

  3. Improving Soil Seed Bank Management.

    Science.gov (United States)

    Haring, Steven C; Flessner, Michael L

    2018-05-08

    Problems associated with simplified weed management motivate efforts for diversification. Integrated weed management uses fundamentals of weed biology and applied ecology to provide a framework for diversified weed management programs; the soil seed bank comprises a necessary part of this framework. By targeting seeds, growers can inhibit the propagule pressure on which annual weeds depend for agricultural invasion. Some current management practices affect weed seed banks, such as crop rotation and tillage, but these tools are often used without specific intention to manage weed seeds. Difficulties quantifying the weed seed bank, understanding seed bank phenology, and linking seed banks to emerged weed communities challenge existing soil seed bank management practices. Improved seed bank quantification methods could include DNA profiling of the soil seed bank, mark and recapture, or 3D LIDAR mapping. Successful and sustainable soil seed bank management must constrain functionally diverse and changing weed communities. Harvest weed seed controls represent a step forward, but over-reliance on this singular technique could make it short-lived. Researchers must explore tools inspired by other pest management disciplines, such as gene drives or habitat modification for predatory organisms. Future weed seed bank management will combine multiple complementary practices that enhance diverse agroecosystems. This article is protected by copyright. All rights reserved.

  4. Glucose metabolism in gamma-irradiated rice seeds

    International Nuclear Information System (INIS)

    Inoue, M.; Hasegawa, H.; Hori, S.

    1980-01-01

    Gamma-irradiation of 30 kR in rice seeds caused marked inhibition in seedling growth, and prevented the release of reduced sugar during the period of 25 to 76hr after soaking. The C 6 /C 1 ratio following irradiation continued to decrease up to the 76th hour of soaking; the control's ratio tended to increase with comparable soaking time. The percentage recovery of 14 C in carbon dioxide from glucose -1- 14 C was lower in irradiated than in control seeds. These results indicate that gamma-irradiation reduces the participation of the pentose phosphate pathway in glucose catabolism during an early period of germination. (author)

  5. genetics and inheritance of seed dormancy inflicted by seed

    African Journals Online (AJOL)

    Mgina

    ABSTRACT. The study was undertaken to investigate the genetic mode of inheritance of dormancy imposed by the hull (seed coat) in rice seeds. Freshly harvested seeds of parents, F1 and F2 populations of a cross between a dormant cultivar Kisegese and non-dormant strain K2004 were used. Germination test of the ...

  6. Effects of seed collecting date and storage duration on seed ...

    African Journals Online (AJOL)

    The objective of this study was to determine the effect of seed collecting dates (5 to 6 times from mid-November to early January, 10 days intervals) and seed storage duration (4, 8, and 12 months) at room temperature on seed germination of four Artemisia species (Artemisia sieberi, A. diffusa, A. kupetdaghensis, and A.

  7. Cone and seed yields in white spruce seed production areas

    Science.gov (United States)

    John A. Pitcher

    1966-01-01

    The source of seed is an important consideration in the reforestation program on the National Forests in the North Central Region. Thirty-five seed production areas have been set up in the Region, along the lines proposed by the North Central Forest Experiment Station, to provide control of seed source. Red pine, white pine, shortleaf and loblolly pine, and white...

  8. Impact of accelerated plant growth on seed variety development

    Science.gov (United States)

    Christophersen, Eric

    1998-01-01

    The commercial lives of agricultural seed products have steadily declined in recent years. The introduction of genetically engineered crop seeds in 1966 has accentuated that trend. Widespread grower demand for genetically engineered seed requires competitive response by industry followers in order to avert market share losses to the industry leaders. Limitations on plant transformation technology, regulatory requirements and patent impediments require companies to rapidly convert transformed lines into elite commercial products. Massive multigenerational backcrossing efforts are required to distribute genetically engineered traits into a broad product mix. Significant incidents of expression failures, or ``gene silencing,'' have occurred unexpectedly, requiring product substitution strategies. First-to-market strategies, competitive response, broad germplasm conversion and rescue of product failures all share the element of urgency. Technologies which reliably accelerate product development rates can expect favorable reception by commercial seed developers. A growth chamber which dramatically accelerates the rate of plant growth is described.

  9. Evaluating the potential for weed seed dispersal based on waterfowl consumption and seed viability.

    Science.gov (United States)

    Farmer, Jaime A; Webb, Elisabeth B; Pierce, Robert A; Bradley, Kevin W

    2017-12-01

    Migratory waterfowl have often been implicated in the movement of troublesome agronomic and wetland weed species. However, minimal research has been conducted to investigate the dispersal of agronomically important weed species by waterfowl. The two objectives for this project were to determine what weed species are being consumed by ducks and snow geese, and to determine the recovery rate and viability of 13 agronomic weed species after passage through a duck's digestive system. Seed recovered from digestive tracts of 526 ducks and geese harvested during a 2-year field study had 35 020 plants emerge. A greater variety of plant species emerged from ducks each year (47 and 31 species) compared to geese (11 and 3 species). Viable seed from 11 of 13 weed species fed to ducks in a controlled feeding study were recovered. Viability rate and gut retention times indicated potential dispersal up to 2900 km from the source depending on seed characteristics and variability in waterfowl dispersal distances. Study results confirm that waterfowl are consuming seeds from a variety of agronomically important weed species, including Palmer amaranth, which can remain viable after passage through digestive tracts and have potential to be dispersed over long distances by waterfowl. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  10. [Advances in research on mechanisms of seed pre-treatments.

    Science.gov (United States)

    Liu, Xu; Liu, Juan; Liu, Qian; Gao, Ya Ni; Wang, Quan Zhen

    2016-11-18

    Seeds play a vital role in nature and agro-ecosystems. The success of seed germination and the establishment of a normal seedling determine the propagation and survival of a plant species, but seed vigor is often seriously damaged because of seed aging, dormancy and the deterioration of natural habitat. Thus, exploring methods for improving germination quality is of great significance to ecology and the economy. Based on the latest international reports, seed pre-treatments are the most practical and effective methods for improving plant performance, increasing yields and enhancing stress resistance. This review provided a summary of the current pre-sowing treatment technologies and the physiological and biochemical responses of plants to these methods by addressing gene expression, cytological effects, enzyme system activities, material and energy metabolism, antioxidation mechanisms and signal transduction pathways. We also interpreted the mechanisms of the seed pre-treatment methods from aspects of seed germination acceleration and stress resistance enhancement. The bottleneck in seed pre-treatments at the cytological and molecular levels and the problems involved in their application were also discussed. Thus far, most studies had largely focused on the partial reaction alterations of plant biochemistry and enzyme activities, and they had generally been characterized by a lack of systematic and holistic study for applications to crop production. Finally, we proposed an outlook for further study in an attempt to provide a prospective and scientific reference for plant germplasm conservation, high-efficiency organic agriculture development and ecological environment re-construction.

  11. FY 2000 report on the survey of the freon recovery/treatment technology for construction use heat insulating materials; 2000 nendo chosa hokokusho. Kenchiku yo dannetsuzai furon kaishu shori gijutsu chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-03-01

    An investigational study was made of the quantity of the specified freon remaining in the construction use heat insulating material, the rational method for the recovery/treatment, etc. As to the standardization of the method to analyze the remaining freon quantity, the tube furnace - GC method and the MS method were proposed, and the basic items that can be developed to JIS (Japanese Industrial Standard) were standardized. In the estimation of the remaining freon quantity, the actual state of the use of heat insulating materials was surveyed from the statistics on the start of construction work, survey of the heat insulating area in actual buildings and listening to heat insulation workers/cold store construction companies, etc. Further, the remaining quantity was analyzed of samples collected from various buildings nationwide and by years of completion. As a result, it was found out that, even in samples before 1995, HCFC is used in about 10% and that, in case of limiting to the specified freon (CFC), the freon remaining quantity was more than 1-4 wt% even after a lapse of 30 years. The paper arranged subjects on the freon recovery/treatment in each stage of the life cycle and the required conditions for technology/equipment. (NEDO)

  12. seed germination and seedlings growth

    African Journals Online (AJOL)

    STORAGESEVER

    2007-12-17

    Dec 17, 2007 ... The role of 20E in plant physiology including seed germination is not studied. ..... GA3, ABA and CKs on lettuce Lactuca sativa seed germination are ..... Practical uses for ecdysteroids in mammals and humans: an update. J.

  13. High-recovery visual identification and single-cell retrieval of circulating tumor cells for genomic analysis using a dual-technology platform integrated with automated immunofluorescence staining

    International Nuclear Information System (INIS)

    Campton, Daniel E; Ramirez, Arturo B; Nordberg, Joshua J; Drovetto, Nick; Clein, Alisa C; Varshavskaya, Paulina; Friemel, Barry H; Quarre, Steve; Breman, Amy; Dorschner, Michael; Blau, Sibel; Blau, C Anthony; Sabath, Daniel E; Stilwell, Jackie L; Kaldjian, Eric P

    2015-01-01

    Circulating tumor cells (CTCs) are malignant cells that have migrated from solid cancers into the blood, where they are typically present in rare numbers. There is great interest in using CTCs to monitor response to therapies, to identify clinically actionable biomarkers, and to provide a non-invasive window on the molecular state of a tumor. Here we characterize the performance of the AccuCyte® – CyteFinder® system, a comprehensive, reproducible and highly sensitive platform for collecting, identifying and retrieving individual CTCs from microscopic slides for molecular analysis after automated immunofluorescence staining for epithelial markers. All experiments employed a density-based cell separation apparatus (AccuCyte) to separate nucleated cells from the blood and transfer them to microscopic slides. After staining, the slides were imaged using a digital scanning microscope (CyteFinder). Precisely counted model CTCs (mCTCs) from four cancer cell lines were spiked into whole blood to determine recovery rates. Individual mCTCs were removed from slides using a single-cell retrieval device (CytePicker™) for whole genome amplification and subsequent analysis by PCR and Sanger sequencing, whole exome sequencing, or array-based comparative genomic hybridization. Clinical CTCs were evaluated in blood samples from patients with different cancers in comparison with the CellSearch® system. AccuCyte – CyteFinder presented high-resolution images that allowed identification of mCTCs by morphologic and phenotypic features. Spike-in mCTC recoveries were between 90 and 91%. More than 80% of single-digit spike-in mCTCs were identified and even a single cell in 7.5 mL could be found. Analysis of single SKBR3 mCTCs identified presence of a known TP53 mutation by both PCR and whole exome sequencing, and confirmed the reported karyotype of this cell line. Patient sample CTC counts matched or exceeded CellSearch CTC counts in a small feasibility cohort. The AccuCyte

  14. (Lupinus albus) SEEDS

    African Journals Online (AJOL)

    user

    2010-08-08

    Aug 8, 2010 ... lupin samples indicated that lupins can be used as a raw material for various food ... lupin seeds can be utilized for milk and meat imitation products. ... estimated by multiplying the percentage of crude protein, crude fat and ...

  15. Managing Stress. Project Seed.

    Science.gov (United States)

    Muto, Donna; Wilk, Jan

    One of eight papers from Project Seed, this paper describes a stress management project undertaken with high school sophomores. Managing Stress is described as an interactive workshop that offers young people an opportunity to examine specific areas of stress in their lives and to learn effective ways to deal with them. The program described…

  16. Grape Seed Extract

    Science.gov (United States)

    ... Greece people have used grapes, grape leaves, and sap for health purposes. Grape seed extract was developed ... sharing research results, and educating the public. Its resources include publications (such as Dietary ... Department of Health & Human Services, National Institutes of Health, National Center for ...

  17. The SEED Initiative

    Science.gov (United States)

    Teich, Carolyn R.

    2011-01-01

    Committed to fulfilling the promise of the green economy, the American Association of Community Colleges (AACC) launched the Sustainability Education and Economic Development (SEED) initiative (www.theseedcenter.org) in October 2010. The project advances sustainability and clean energy workforce development practices at community colleges by…

  18. Dormancy in Plant Seeds

    NARCIS (Netherlands)

    Hilhorst, H.W.M.; Finch-Savage, W.E.; Buitink, J.; Bolingue, W.; Leubner-Metzger, G.

    2010-01-01

    Seed dormancy has been studied intensely over the past decades and, at present, knowledge of this plant trait is at the forefront of plant biology. The main model species is Arabidopsis thaliana, an annual weed, possessing nondeep physiological dormancy. This overview presents the state-of-the-art

  19. [Study on seed testing for Salvia miltiorrhiza].

    Science.gov (United States)

    Dan, Hong-mei; Qi, Jian-jun; Zhou, Li-li; Li, Xian-en

    2008-09-01

    To establish a seed testing methods for Salvia miltiorrhiza. Referring to the International Seed Testing Rules made by ISTA and the Seed Testing for Crops (GB/T3543. 1-1995) issued by China. The seeds are selected by winnowing; the seed purity is about 50%-60%; 100 grain weight is used to determine the quality of the seed; the seed moisture content is determined by air drying, the drying hour is 3 h. Seed viability is tested by TFC method.

  20. Germination of red alder seed.

    Science.gov (United States)

    M.A. Radwan; D.S. DeBell

    1981-01-01

    Red alder seeds were collected from six locations throughout the natural range of the species. Each seed lot was obtained from a single tree, and the seeds were used to determine germination with and without stratification treatment. Irrespective of treatment, germination varied significantly (P

  1. Nest-mediated seed dispersal

    Science.gov (United States)

    Robert J. Warren; Jason P. Love; Mark A. Bradford

    2017-01-01

    Many plant seeds travel on the wind and through animal ingestion or adhesion; however, an overlooked dispersal mode may lurk within those dispersal modes. Viable seeds may remain attached or embedded within materials birds gather for nest building. Our objective was to determine if birds inadvertently transport seeds when they forage for plant materials to...

  2. Seed systems support in Kenya

    NARCIS (Netherlands)

    Munyi, Peter; Jonge, De Bram

    2015-01-01

    The threats of climate change and rising food prices have stirred renewed attention for seed and food security in Africa, inviting new thinking on the role of seed sector development in coping with these concerns. One conceptual framework that has gained attention is the Integrated Seed Sector

  3. Research and development of technologies for safe and environmentally optimal recovery and disposal of explosive wastes. Task 10, Impact assessment for environment, health and safety (EIA)

    Energy Technology Data Exchange (ETDEWEB)

    Duijm, N.J.; Markert, F. [Forskningscenter Risoe (Denmark)

    2000-03-01

    Modern technologies like high-pressure water washout and Fluidised Bed Combustion provide safe and environmentally acceptable solutions for demilitarisation. The environmental impact from the traditional techniques Open Burning and Open Detonation can be drastically reduced. High-pressure water washout in combination with Fluidised Bed Combustion and NO{sub x}-reduction using urea-injection is the best well-demonstrated technology considered in this study. This technology can be used for large/medium sized calibre munitions, but additional removal of NO{sub x} from the flue gases is required in order to comply with European emission standards. It has been made credible at existing Rotary Kilns used for hazardous waste in general can be used also for incineration of de-sensitised, down sized munitions (slurries), with a similar performance with respect to environmental and safety aspects as Fluidised Bed Combustion. Using a Closed Detonation chamber with flue-gas cleaning has important environmental advantages compared to Open Burning and Open Detonation, especially for small munitions (e.g. fuzes, antipersonnel mines, pyrotechnics). However, because Closed Detonation is labour-intensive and requires operation of complex, pressurised systems, it poses more risk on the personnel. For that reason, it is recommended to develop other systems to demilitarise small munitions. It appears that the air pollution emissions from transport of munitions to disposal facilities is significant compared to the process emissions of the 'cleanest' technologies. Similarly, risks related to transport (due to ordinary accidents involving trucks) are not dominating, but cannot be ignored compared to process risks. These considerations need to be included when comparing less sophisticated local or mobile facilities with central facilities having advanced flue gas cleaning. (au)

  4. Office of Electricity Delivery and Energy Reliability (OE) National Energy Technology Laboratory (NETL) American Recovery and Reinvestment Act 2009 United States Department of Energy

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mohit [Seeo, Incorporated, Hayward, CA (United States); Grape, Ulrik [Seeo, Incorporated, Hayward, CA (United States)

    2014-07-29

    The purpose of this project was for Seeo to deliver the first ever large-scale or grid-scale prototype of a new class of advanced lithium-ion rechargeable batteries. The technology combines unprecedented energy density, lifetime, safety, and cost. The goal was to demonstrate Seeo’s entirely new class of lithium-based batteries based on Seeo’s proprietary nanostructured polymer electrolyte. This technology can enable the widespread deployment in Smart Grid applications and was demonstrated through the development and testing of a 10 kilowatt-hour (kWh) prototype battery system. This development effort, supported by the United States Department of Energy (DOE) enabled Seeo to pursue and validate the transformational performance advantages of its technology for use in grid-tied energy storage applications. The focus of this project and Seeo’s goal as demonstrated through the efforts made under this project is to address the utility market needs for energy storage systems applications, especially for residential and commercial customers tied to solar photovoltaic installations. In addition to grid energy storage opportunities Seeo’s technology has been tested with automotive drive cycles and is seen as equally applicable for battery packs for electric vehicles. The goals of the project were outlined and achieved through a series of specific tasks, which encompassed materials development, scaling up of cells, demonstrating the performance of the cells, designing, building and demonstrating a pack prototype, and providing an economic and environmental assessment. Nearly all of the tasks were achieved over the duration of the program, with only the full demonstration of the battery system and a complete economic and environmental analysis not able to be fully completed. A timeline over the duration of the program is shown in figure 1.

  5. 7 CFR 201.15 - Weed seeds.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Weed seeds. 201.15 Section 201.15 Agriculture... REGULATIONS Labeling Agricultural Seeds § 201.15 Weed seeds. The percentage of weed seeds shall include seeds of plants considered weeds in the State into which the seed is offered for transportation or...

  6. Influence of diesel fuel on seed germination

    International Nuclear Information System (INIS)

    Adam, Gillian; Duncan, Harry

    2002-01-01

    The volatile fraction of diesel fuel played a major role in delaying seed emergence and reducing percentage germination. - The use of plant-based systems to remediate contaminated soils has become an area of intense scientific study in recent years and it is apparent that plants which grow well in contaminated soils need to be identified and screened for use in phytoremediation technologies. This study investigated the effect of diesel fuel on germination of selected plant species. Germination response varied greatly with plant species and was species specific, as members of the same plant family showed differential sensitivity to diesel fuel contamination. Differences were also seen within plant subspecies. At relatively low levels of diesel fuel contamination, delayed seed emergence and reduced percentage germination was observed for the majority of plant species investigated. Results suggest the volatile fraction of diesel fuel played an influential role in delaying seed emergence and reducing percentage germination. In addition, the remaining diesel fuel in the soil added to this inhibitory effect on germination by physically impeding water and oxygen transfer between the seed and the surrounding soil environment, thus hindering the germination response

  7. Fiscal 1996 international research cooperation project. Feasibility study of finding out the seeds of international joint research (technology for effective use of saturated hydrocarbon, technology for reducing excess of aromatic hydrocarbon, high-grade treatment technology of petroleum coke); 1996 nendo kokusai kenkyu kyoryoku jigyo. Kokusai kyodo kenkyu seeds hakkutsu no tame no FS chosa (howa tanka suiso no yuko riyo gijutsu, hokozoku tanka suiso no yojo taisaku gijutsu, sekiyu cokes no kodo shori gijutsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This project is aimed at internationally cooperating in the R and D of industrial technology and improving industrial technology of Japan. For it, the following three technologies were investigated: (1) technology for effective use of saturated hydrocarbon, (2) technology for reducing excess of aromatic hydrocarbon, (3) high-grade treatment technology of petroleum coke. In (1), surveys were conducted of technologies of effective use of natural gas and effective use of C4 saturated hydrocarbon. Surveyed were a method for producing synthesis gas from natural gas, a technology to liquefy natural gas into fuel following the synthesis gas production process, a technology to liquefy natural gas into fuel without the synthesis gas production process, and the trend of effective use of C4 saturated hydrocarbon. In (2), surveys were made of process to reduce production of aromatic hydrocarbon as much as possible, process to effectively separate aromatic hydrocarbon, and process to convert excess aromatic hydrocarbon into polymer, etc. In (3), surveys were conducted on petroleum coke and pitch in terms of production methods, the supply/demand situation, property characteristics, usability to new fields, etc. 170 refs., 114 figs., 65 tabs.

  8. THE INFLUENCE OF BUSH FORMATION IN RED BEET ON SEED PRODUCTIVITY AND SOWING QUALITIES

    Directory of Open Access Journals (Sweden)

    L. A. Yusupova

    2017-01-01

    Full Text Available It is necessary not only to possess the technology to grow seeds but also to have knowledge of plant biology in particular crop, and sowing qualities of its seeds. The particular place where seeds are forming on the mother plant has much influence on qualities of sowing seed material. The influence of the development of red beet plant bush on seed productivity, monogermity and sowing qualities of seeds was estimated in Rostov oblast. The main stalk pruning and application of plant growth retardants had an effect on the structure of red beet bush. In variants given in seed plants, the third type of branching prevailed due to lack or oppression of main stalk. Consequently, the seed yield and proportion of single fruit formation rose. It was also shown that due to treatment of plants with growth retardant ‘Floron’ at the stage of waxen maturity significantly improved the seed germination as compared with control variant. As a result of the study it was shown that the mechanical pruning of main stalk and application of growth retardants had affected on the structure of seed red beet bush increasing the yield mono-seed compounds as well as had improved the yield and seed quality of monogerm red beet. 

  9. Chemical Technology Division annual technical report 1989

    Energy Technology Data Exchange (ETDEWEB)

    1990-03-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1989 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including high-performance batteries (mainly lithium/iron sulfide and sodium/metal chloride), aqueous batteries (lead-acid and nickel/iron), and advanced fuel cells with molten carbonate and solid oxide electrolytes: (2) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants and the technology for fluidized-bed combustion; (3) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (4) nuclear technology related to a process for separating and recovering transuranic elements from nuclear waste and for producing {sup 99}Mo from low-enriched uranium targets, the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor (the Integral Fast Reactor), and waste management; and (5) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for superconducting oxides and associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be administratively responsible for and the major user of the Analytical Chemistry Laboratory at Argonne National Laboratory (ANL).

  10. Development of Carbon-14 Waste Destruction and Recovery System Using AC Plasma Torch Technology Final Report CRADA No. TC02108.0

    Energy Technology Data Exchange (ETDEWEB)

    Althouse, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McKannay, R. H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-08-15

    This was a collaborative effort between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and ISOFLEX USA (ISOFLEX), to 1) develop and test a prototype waste destruction system ("System") using AC plasma torch technology to break down and drastically reduce the volume of Carbon-14 (C-14) contaminated medical laboratory wastes while satisfying all environmental regulations, and 2) develop and demonstrate methods for recovering 99%+ of the carbon including the C-14 allowing for possible re-use as a tagging and labeling tool in the biomedical industry.

  11. Laser Scanner Technology, Ground-Penetrating Radar and Augmented Reality for the Survey and Recovery of Artistic, Archaeological and Cultural Heritage

    Science.gov (United States)

    Barrile, V.; Bilotta, G.; Meduri, G. M.; De Carlo, D.; Nunnari, A.

    2017-11-01

    In this study, using technologies such as laser scanner and GPR it was desired to see their potential in the cultural heritage. Also with regard to the processing part we are compared the results obtained by the various commercial software and algorithms developed and implemented in Matlab. Moreover, Virtual Reality and Augmented Reality allow integrating the real world with historical-artistic information, laser scanners and georadar (GPR) data and virtual objects, virtually enriching it with multimedia elements, graphic and textual information accessible through smartphones and tablets.

  12. High speed measurement of corn seed viability using hyperspectral imaging

    Science.gov (United States)

    Ambrose, Ashabahebwa; Kandpal, Lalit Mohan; Kim, Moon S.; Lee, Wang-Hee; Cho, Byoung-Kwan

    2016-03-01

    Corn is one of the most cultivated crops all over world as food for humans as well as animals. Optimized agronomic practices and improved technological interventions during planting, harvesting and post-harvest handling are critical to improving the quantity and quality of corn production. Seed germination and vigor are the primary determinants of high yield notwithstanding any other factors that may play during the growth period. Seed viability may be lost during storage due to unfavorable conditions e.g. moisture content and temperatures, or physical damage during mechanical processing e.g. shelling, or over heating during drying. It is therefore vital for seed companies and farmers to test and ascertain seed viability to avoid losses of any kind. This study aimed at investigating the possibility of using hyperspectral imaging (HSI) technique to discriminate viable and nonviable corn seeds. A group of corn samples were heat treated by using microwave process while a group of seeds were kept as control group (untreated). The hyperspectral images of corn seeds of both groups were captured between 400 and 2500 nm wave range. Partial least squares discriminant analysis (PLS-DA) was built for the classification of aged (heat treated) and normal (untreated) corn seeds. The model showed highest classification accuracy of 97.6% (calibration) and 95.6% (prediction) in the SWIR region of the HSI. Furthermore, the PLS-DA and binary images were capable to provide the visual information of treated and untreated corn seeds. The overall results suggest that HSI technique is accurate for classification of viable and non-viable seeds with non-destructive manner.

  13. Irradiation effect on the seed vigor, SOD activity and MDA content in germinating seeds of yellow-seeded and black-seeded rape seed (Brassica napus L.)

    International Nuclear Information System (INIS)

    Han Jixiang; Hu Danhong; Liu Houli

    1993-01-01

    Seeds of a set of near-isogenic lines (Brassica napus L.) with different seed coat color from yellow to black were irradiated by 60 Co γ-rays of 150 krad. Seed vigor, superoxide dismutase (SOD) and malondialdehyde (MDA) in germinating seeds were analysed. In these characters, no significant difference between yellow-seeded lines (YLs) and black-seeded lines (BLs) showed before irradiation. But after irradiation, SOD activity in YLs was lower than that in BLs. While MDA content in YLs was obviously higher that that in DLs. As a result of irradiation, seed vigor of YLs was lower than that in BLs. these results indicated that the irradiation resistance of rape seed was related to the level of SOD as well as protective structure or substances in seed coat and that the radiosensitivity of YLs was higher than that of DLs

  14. Breeding for Grass Seed Yield

    DEFF Research Database (Denmark)

    Boelt, Birte; Studer, Bruno

    2010-01-01

    Seed yield is a trait of major interest for many fodder and amenity grass species and has received increasing attention since seed multiplication is economically relevant for novel grass cultivars to compete in the commercial market. Although seed yield is a complex trait and affected...... by agricultural practices as well as environmental factors, traits related to seed production reveal considerable genetic variation, prerequisite for improvement by direct or indirect selection. This chapter first reports on the biological and physiological basics of the grass reproduction system, then highlights...... important aspects and components affecting the seed yield potential and the agronomic and environmental aspects affecting the utilization and realization of the seed yield potential. Finally, it discusses the potential of plant breeding to sustainably improve total seed yield in fodder and amenity grasses....

  15. Electron beam irradiation: laboratory and field studies of cowpea seeds

    International Nuclear Information System (INIS)

    Srinivasan, K.; Chauhan, S.K.; Prasad, T.V.; Pramod, R.; Verma, V.P.; Petwal, V.; Dwivedi, J.; Bhalla, S.

    2015-01-01

    Cowpea (Vigna unguiculata) rich in protein and vitamins is emerging as one of the most important food legumes to tackle malnutrition. Pulse beetles (Callosobruchus chinensis and C. maculatus) are the pests of economic importance causing enormous losses during storage. Although various pest management strategies exist for the control of these pests, environmental concerns necessitate developing ecofriendly strategies. Electron beam (EB) irradiation has the potential to be a viable, non-chemical, residue-free strategy for management of pulse beetles during storage, but higher doses affect seed germination and viability. Hence, the present investigation was taken up to analyse the dosage effect of the irradiation on seed attributes of cowpea. Healthy cowpea seeds were irradiated with low energy electrons at different doses viz., 180, 360, 540, 720, 900, 1080, 1260, 1440 and 1620 Gy at 500 keV using the EB Accelerator facility at Raja Ramanna Centre for Advanced Technology, Indore. EB irradiated seeds were tested for physiological viz., germination, seedling vigour and vigour index and biochemical parameters viz., electrical conductivity of seed leachate, seed viability/tetrazolium test and dehydrogenase activity. Germination and vigour of the irradiated seeds were evaluated as per the ISTA Rules (ISTA, 1996). Vigour index was calculated as the product of germination percentage and seedling vigour. About 3,000 irradiated seeds from each dose were grown in the field at the Experimental farm, National Bureau of Plant Genetic Resources, New Delhi. Seeds harvested from 1500 individual plants of M 1 generation from each dose (50 seeds from each plant individually) were sown in next season and observed for chlorophyll mutations, if any. Results revealed that doses upto 1080 Gy (88%) did not affect the germination of cowpea seeds drastically as compared to untreated seeds (98%). Lower doses viz., 180 and 360 Gy had no impact on vigour components while higher doses (1080 Gy

  16. Description of recovery method used for curdlan produced by Agrobacterium sp. IFO 13140 and its relation to the morphology and physicochemical and technological properties of the polysaccharide.

    Science.gov (United States)

    Mangolim, Camila Sampaio; Silva, Thamara Thaiane da; Fenelon, Vanderson Carvalho; Koga, Luciana Numata; Ferreira, Sabrina Barbosa de Souza; Bruschi, Marcos Luciano; Matioli, Graciette

    2017-01-01

    Curdlan is a linear polysaccharide considered a dietary fiber and with gelation properties. This study evaluated the structure, morphology and the physicochemical and technological properties of curdlan produced by Agrobacterium sp. IFO 13140 recovered by pre-gelation and precipitation methods. Commercial curdlan submitted or otherwise to the pre-gelation process was also evaluated. The data obtained from structural analysis revealed a similarity between the curdlan produced by Agrobacterium sp. IFO 13140 (recovered by both methods) and the commercial curdlans. The results showed that the curdlans evaluated differed significantly in terms of dispersibility and gelation, and only the pre-gelled ones had significant potential for food application, because this method influence on the size of the particles and in the presence of NaCl. In terms of technological properties, the curdlan produced by Agrobacterium sp. IFO 13140 (pre-gelation method) had a greater water and oil holding capacity (64% and 98% greater, respectively) and a greater thickening capacity than the pre-gelled commercial curdlan. The pre-gelled commercial curdlan displayed a greater gelling capacity at 95°C than the others. When applied to food, only the pre-gelled curdlans improved the texture parameters of yogurts and reduced syneresis. The curdlan gels, which are rigid and stable in structure, demonstrated potential for improving the texture of food products, with potential industrial use.

  17. Fiscal 1993 international research cooperation project. Feasibility study of finding out the seeds of international joint research (technology for environmental preservation using biotechnology, technology for effective use of unused hydrocarbon resource, technology for development of environmental harmony type catalyst); 1995 nendo kokusai kyoryoku jigyo. Kokusai kyodo kenkyu seeds hakkutsu no tame no FS chosa (biotechnology ni yoru kankyo taisaku gijutsu, miriyo tanka suiso shigen no yuko riyo gijutsu, kankyo chowagata shokubai kaihatsu gijutsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This project is aimed at internationally cooperating in the R and D of industrial technology and improving industrial technology of Japan. For it, the following three technologies were investigated: 1) environmental preservation technology using biotechnology, 2) technology for effective use of unused hydrocarbon resource, 3) technology for development of environmental harmony type catalyst. In 1), a survey was conducted of applicability of biological surfactant to prevention measures of pollution by heavy distillate. It showed that part of the biological surfactants is reaching a stage of its being industrially produced by gene recombination bacteria, but as a whole, biosynthetic genes have hardly been elucidated. In 2), a survey of high-grade treatment technology of petroleum coke was made. It pointed out that it is necessary to develop a technology which makes the most of features of petroleum coke and allows defects. In 3), scientists and engineers of Japan and Europe searched for themes on which they can jointly study in the fields of NOx removal catalyst, up-grading of fuel, and development of catalyst combustion of fuel. 287 refs., 136 figs., 128 tabs.

  18. Embryonal Control of Yellow Seed Coat Locus ECY1 Is Related to Alanine and Phenylalanine Metabolism in the Seed Embryo of Brassica napus.

    Science.gov (United States)

    Wang, Fulin; He, Jiewang; Shi, Jianghua; Zheng, Tao; Xu, Fei; Wu, Guanting; Liu, Renhu; Liu, Shengyi

    2016-04-07

    Seed coat color is determined by the type of pigment deposited in the seed coat cells. It is related to important agronomic traits of seeds such as seed dormancy, longevity, oil content, protein content and fiber content. In Brassica napus, inheritance of seed coat color is related to maternal effects and pollen effects (xenia effects). In this research we isolated a mutation of yellow seeded B. napus controlled by a single Mendelian locus, which is named Embryonal Control of Yellow seed coat 1 (Ecy1). Microscopy of transverse sections of the mature seed show that pigment is deposited only in the outer layer of the seed coat. Using Illumina Hisequation 2000 sequencing technology, a total of 12 GB clean data, 116× coverage of coding sequences of B. napus, was achieved from seeds 26 d after pollination (DAP). It was assembled into 172,238 independent transcripts, and 55,637 unigenes. A total of 139 orthologous genes of Arabidopsis transparent testa (TT) genes were mapped in silico to 19 chromosomes of B. napus Only 49 of the TT orthologous genes are transcribed in seeds. However transcription of all orthologs was independent of embryonal control of seed coat color. Only 55 genes were found to be differentially expressed between brown seeds and the yellow mutant. Of these 55, 50 were upregulated and five were downregulated in yellow seeds as compared to their brown counterparts. By KEGG classification, 14 metabolic pathways were significantly enriched. Of these, five pathways: phenylpropanoid biosynthesis, cyanoamino acid metabolism, plant hormone signal transduction, metabolic pathways, and biosynthesis of secondary metabolites, were related with seed coat pigmentation. Free amino acid quantification showed that Ala and Phe were present at higher levels in the embryos of yellow seeds as compared to those of brown seeds. This increase was not observed in the seed coat. Moreover, the excess amount of free Ala was exactly twice that of Phe in the embryo. The pigment

  19. Embryonal Control of Yellow Seed Coat Locus ECY1 Is Related to Alanine and Phenylalanine Metabolism in the Seed Embryo of Brassica napus

    Directory of Open Access Journals (Sweden)

    Fulin Wang

    2016-04-01

    Full Text Available Seed coat color is determined by the type of pigment deposited in the seed coat cells. It is related to important agronomic traits of seeds such as seed dormancy, longevity, oil content, protein content and fiber content. In Brassica napus, inheritance of seed coat color is related to maternal effects and pollen effects (xenia effects. In this research we isolated a mutation of yellow seeded B. napus controlled by a single Mendelian locus, which is named Embryonal Control of Yellow seed coat 1 (Ecy1. Microscopy of transverse sections of the mature seed show that pigment is deposited only in the outer layer of the seed coat. Using Illumina Hisequation 2000 sequencing technology, a total of 12 GB clean data, 116× coverage of coding sequences of B. napus, was achieved from seeds 26 d after pollination (DAP. It was assembled into 172,238 independent transcripts, and 55,637 unigenes. A total of 139 orthologous genes of Arabidopsis transparent testa (TT genes were mapped in silico to 19 chromosomes of B. napus. Only 49 of the TT orthologous genes are transcribed in seeds. However transcription of all orthologs was independent of embryonal control of seed coat color. Only 55 genes were found to be differentially expressed between brown seeds and the yellow mutant. Of these 55, 50 were upregulated and five were downregulated in yellow seeds as compared to their brown counterparts. By KEGG classification, 14 metabolic pathways were significantly enriched. Of these, five pathways: phenylpropanoid biosynthesis, cyanoamino acid metabolism, plant hormone signal transduction, metabolic pathways, and biosynthesis of secondary metabolites, were related with seed coat pigmentation. Free amino acid quantification showed that Ala and Phe were present at higher levels in the embryos of yellow seeds as compared to those of brown seeds. This increase was not observed in the seed coat. Moreover, the excess amount of free Ala was exactly twice that of Phe in the

  20. Physiological quality and seed respiration of primed Jatropha curcas seeds

    Directory of Open Access Journals (Sweden)

    Micheli Angelica Horbach

    2017-11-01

    Full Text Available ABSTRACT Seed deterioration is a natural and irreversible process. Nevertheless, seed priming with water and antioxidants can minimize oxidative damage in oilseeds, resulting in attenuation of seed deterioration. The objective of this assay was to evaluate seed priming on respiratory activity of Jatropha curcas submitted to accelerated aging. Seeds from two provenances (Janauba and Pedro J. Caballero were submitted to three priming treatments (control, immersion in deionized water, and with 750 µmol L-1 of ascorbic acid and treated for accelerated aging at 41 °C for 72 h. The results showed that the priming of J. curcas seeds promoted tolerance to accelerated aging. Primed seeds, with ascorbic acid from Janauba and deionized water from Pedro J. Caballero, resulted in a higher percentage of normal seedlings, and increased germination speed index and seed respiration. The decline of physiological quality of J. curcas seeds after accelerated aging is directly associated with a reduction in respiratory activity that is related to seed moisture content.

  1. Tecnologia alternativa para a quebra de dormência das sementes de pau-de-balsa (Ochroma lagopus Sw., Bombacaceae Alternative technology for breaking dormancy of balsa wood (Ochroma lagopus Sw., Bombacaceae seeds

    Directory of Open Access Journals (Sweden)

    Antenor P. Barbosa

    2004-01-01

    Full Text Available Este trabalho, teve como objetivo estudar a germinação das sementes de pau-de-balsa (Ochroma lagopus Sw., Bombacaceae em diferentes estágios de maturação aparente dos frutos; a germinação das sementes provenientes de árvores com diferentes diâmetros a altura do peito (DAP e a germinação das sementes tratadas para quebra de dormência. No primeiro experimento, avaliou-se a germinação das sementes dos frutos verdes, verdosos (verde amarelado, negros (fruto fechado e negros deiscentes (fruto aberto com painas expostas. No segundo, a germinação das sementes de árvores da mesma idade e com diferentes DAP's: pequeno (5,4 cm, médio (9,1 cm e grande (13,2 cm. No terceiro, a germinação das sementes com diferentes quebra de dormência: testemunha; água por 24 e 48 horas; água a 80ºC até esfriar; H2SO4 por ½ e 1 minuto com e sem paina; queima da paina em peneira metálica; e semeio de sementes com a paina. As sementes germinaram em gerbox sobre papel de filtro, em câmara de germinação, nas temperaturas de 20ºC, 30ºC e 25ºC, no primeiro, segundo e terceiro experimentos, respectivamente. As sementes de pau-de-balsa germinaram melhor e mais rápido quando coletadas de frutos negros a negros deiscentes, ou quando coletadas de árvores com menor e médio diâmetros, ou quando tratadas com água quente a 80ºC até esfriar, ou com ácido sulfúrico por ½ ou 1 minuto com ou sem paina. Os tratamentos com ácido tem a vantagem de quebrar a dormência da semente e dissolver a paina. As sementes recém colhidas e germinadas não apresentaram dormência tegumentar.The objective of this study was to evaluate the germination of "pau-de-balsa" (Ochroma lagopus Sw., Bombacaceae seed as a function of maturation stages of fruits, the germination of seeds harvested from trees with different diameters at height breast (DBH, and the germination of seed with different treatments to break dormancy. In the first experiment, the germination of seeds

  2. Empty seeds are not always bad: simultaneous effect of seed emptiness and masting on animal seed predation.

    Directory of Open Access Journals (Sweden)

    Ramón Perea

    Full Text Available Seed masting and production of empty seeds have often been considered independently as different strategies to reduce seed predation by animals. Here, we integrate both phenomena within the whole assemblage of seed predators (both pre and post-dispersal and in two contrasting microsites (open vs. sheltered to improve our understanding of the factors controlling seed predation in a wind-dispersed tree (Ulmus laevis. In years with larger crop sizes more avian seed predators were attracted with an increase in the proportion of full seeds predated on the ground. However, for abundant crops, the presence of empty seeds decreased the proportion of full seeds predated. Empty seeds remained for a very long period in the tree, making location of full seeds more difficult for pre-dispersal predators and expanding the overall seed drop period at a very low cost (in dry biomass and allocation of C, N and P. Parthenocarpy (non-fertilized seeds was the main cause of seed emptiness whereas seed abortion was produced in low quantity. These aborted seeds fell prematurely and, thus, could not work as deceptive seeds. A proportion of 50% empty seeds significantly reduced ground seed predation by 26%. However, a high rate of parthenocarpy (beyond 50% empty seeds did not significantly reduce seed predation in comparison to 50% empty seeds. We also found a high variability and unpredictability in the production of empty seeds, both at tree and population level, making predator deception more effective. Open areas were especially important to facilitate seed survival since rodents (the main post-dispersal predators consumed seeds mostly under shrub cover. In elm trees parthenocarpy is a common event that might work as an adaptive strategy to reduce seed predation. Masting per se did not apparently reduce the overall proportion of seeds predated in this wind-dispersed tree, but kept great numbers of seeds unconsumed.

  3. Can salvage logging affect seed dispersal by birds into burned forests?

    Science.gov (United States)

    Rost, J.; Pons, P.; Bas, J. M.

    2009-09-01

    The recovery of vegetation in Mediterranean ecosystems after wildfire is mostly a result of direct regeneration, since the same species existing before the fire regenerate on-site by seeding or resprouting. However, the possibility of plant colonization by dispersal of seeds from unburned areas remains poorly studied. We addressed the role of the frugivorous, bird-dependent seed dispersal (seed rain) of fleshy-fruited plants in a burned and managed forest in the second winter after a fire, before on-site fruit production had begun. We also assessed the effect on seed rain of different microhabitats resulting from salvage logging (erosion barriers, standing snags, open areas), as well as the microhabitats of unlogged patches and an unburned control forest, taking account of the importance of perches as seed rain sites. We found considerable seed rain by birds in the burned area. Seeds, mostly from Olive trees Olea europaea and Evergreen pistaches Pistacia lentiscus, belonged to plants fruiting only in surrounding unburned areas. Seed rain was heterogeneous, and depended on microhabitat, with the highest seed density in the unburned control forest but closely followed by the wood piles of erosion barriers. In contrast, very low densities were found under perches of standing snags. Furthermore, frugivorous bird richness seemed to be higher in the erosion barriers than elsewhere. Our results highlight the importance of this specific post-fire management in bird-dependent seed rain and also may suggest a consequent heterogeneous distribution of fleshy-fruited plants in burned and managed areas. However, there needs to be more study of the establishment success of dispersed seeds before an accurate assessment can be made of the role of bird-mediated seed dispersal in post-fire regeneration.

  4. Seeds of the Future

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    Five of the global issues most frequently debated today are the decline of biodiversity in general and of agrobiodiversity in particular, climate change, hunger and malnutrition, poverty and water. These issues are connected with each other, and should be dealt with as such. Most of our food comes from seeds (even when we eat meat, we indirectly eat plants, which come from seeds) and food affects our health. The evolution of plant breeding, the science which is responsible for the type and the diversity of seed that farmers plant, and hence for the diversity of food that we eat, helps us understand how agrobiodiversity has decreased. An agro-ecological model of agriculture could be solution to the most important problems affecting the planet, but is often criticized for not being able to produce enough food for a growing population casting doubts on whether food security and food safety can be compatible objectives. Participatory and evolutionary plant breeding, while benefiting from advances in molecular g...

  5. Emission characteristics of biodiesel obtained from jatropha seeds and fish wastes in a diesel engine

    OpenAIRE

    Bhaskar Kathirvelu; Sendilvelan Subramanian; Nagarajan Govindan; Sampath Santhanam

    2017-01-01

    The concept of waste recycling and energy recovery plays a vital role for the development of any economy. The reuse of fish waste and use of wasteland for cultivation of jatropha seeds have led to resource conservation and their use as blend with diesel as an alternative fuel to diesel engines has contributed to pollution reduction. In this work, the results of using blends of biodiesel obtained from jatropha seeds, fish wastes and diesel in constant speed diesel engines are presented. The ex...

  6. Fiscal 1993 international research cooperation project. Feasibility study of finding out the seeds of international joint research (technology for environmental preservation using biotechnology, technology for effective use unused hydrocarbon resource, technology of solid electrolyte fuel cells for high-efficient electric vehicles); 1993 nendo kokusai kenkyu kyoryoku jigyo. Kokusai kyodo kenkyu seeds hakkutsu no tame no FS chosa (biotechnology ni yoru kankyo taisaku gijutsu, miriyo tanka suiso shigen no yuko riyo gijutsu, kokoritsu denki jidosha no kotai denkaishitsu nenryo denchi gijutsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-01

    This project is aimed at internationally cooperating in the R and D of industrial technology and improving industrial technology of Japan. For it, the following three technologies were investigated: 1) environmental preservation technology using biotechnology, 2) technology for effective use of unused hydrocarbon resource, 3) solid electrolyte fuel cell (SOFC) technology for high-efficient electric vehicles. In 1), bio-remediation is a choice as the result of trially using technologies for remediation of the environment polluted by pollutant, but it is not a technically completed one, but one which will be improved by trial and error. By the application of gene engineering, the use of gene recombination enables wide spread of decomposition genes. In 2), technical subjects were studied such as superheavy distillate, oil shale, coalhead methane and methane hydrate. In 3), designed were cylinder type and planar type SOFC of 850degC operation and 10kW output. Accumulation and weight of a total SOFC system are 81 liters and 100 kg in cylinder type and 136 liters and 200 kg in planar type. The vehicle can be equipped with the SOFC. 171 refs., 72 figs., 54 tabs.

  7. Recent advance on the antitumor and antioxidant activity of grape seed extracts

    Directory of Open Access Journals (Sweden)

    Zhu FM

    2015-05-01

    Full Text Available Fengmei Zhu, Bin Du, Jun Li College of Food Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei Province, People's Republic of China Abstract: The grape pomace (including seeds and stems poses potential disposal and pollution problems along with loss of valuable biomass and nutrients. The utilization of grape seeds processing as a source of functional ingredients is a promising field. Grape seed extract provides a concentrated source of polyphenols. Grape seed extract is known as an effective antioxidant that protects the body from premature aging and disease. A number of phytochemicals including resveratrol, proanthocyanidins, etc, have demonstrated significant benefits in cancer chemoprevention. In this review, we summarize the existing knowledge on the antitumor and antioxidant activity of grape seeds polyphenols. Keywords: grape seed, antitumor activity, antioxidant activity, polyphenol, proanthocyanidin

  8. Biodegraded polymers as materials for sowing of grain crops seeds

    Directory of Open Access Journals (Sweden)

    L. S. Shibryaeva

    2015-01-01

    Full Text Available Increase of efficiency of grain production, solution of problems of food security demand search and development of innovative technologies at all stages. One of ways of environmentally friendly production is sowing of seeds on an excipient located in the soil, for example, nonwoven fabric made of eco- decomposable decomposed biodegraded polymer. Biodegraded polymeric materials influence on sowing properties of grain crops seeds and provide realization of their potential productivity. The authors used an electroforming method with chloroform and a dichloroethane application to receive nonwoven fabric from poly-3-hydroxybutyrate (PHB and its compositions together with synthetic nitrile rubber (PHB-SNR. Polymeric material influences on energy of germination and viability of wheat seeds. Germination index is calculated, heat physical parameters are determined for the polymeric excipient. The major factor influencing seeds germination is a structure of nonwoven fabric. Water diffusion, its supply to seeds and their viability depend on morphological features of polymeric material. Polymer excipient structure influence on speed of development of root system on which, in turn, intensity of destruction of polymer depends. The best indicators of energy of germination and viability of seeds correspond to the greatest value of decrease of melting heat of PHB in mix PHB-SNR. In addition, among the studied samples of PHB-SNR the material received from blend of solvents is most effective. The cause is in feature of its structure favorable for a seed germination.

  9. Physicochemical Evaluation of Seeds and Oil of Nontraditional Oil Seeds

    Directory of Open Access Journals (Sweden)

    Adam Ismail Ahmed

    2015-08-01

    Full Text Available The present work was conducted in the Laboratory of Biochemistry and Food science department, Faculty of Natural Resources and Environmental Studies, University of Kordofan, in order to evaluate some nontraditional oil seeds these are i.e. Marula (Sclerocarya birrea, Roselle (Hibiscus sabdariffa L. seeds and Christ’s thorn (Zizyphus spina-christi seeds. The seeds of the roselle and Christ’s thorn fruits were procured from Elobeid local market, North Kordofan State, while marula fruits were obtained from Elnuhod, West Kordofan State. The proximate composition of the seeds, cake and christ’s thorn pulp was done. Some chemical and physical properties were performed for the extracted oil. The results revealed that proximate composition of the seeds and cake differ statistically among the studied materials. Significant differences were observed among the oil extracted from these species; moreover, these oils differ significantly in color and viscosity only.

  10. Sunflower seed allergy

    Science.gov (United States)

    Ukleja-Sokołowska, Natalia; Gawrońska-Ukleja, Ewa; Żbikowska-Gotz, Magdalena; Bartuzi, Zbigniew; Sokołowski, Łukasz

    2016-01-01

    Sunflower seeds are a rare source of allergy, but several cases of occupational allergies to sunflowers have been described. Sunflower allergens on the whole, however, still await precise and systematic description. We present an interesting case of a 40-year-old male patient, admitted to hospital due to shortness of breath and urticaria, both of which appeared shortly after the patient ingested sunflower seeds. Our laryngological examination revealed swelling of the pharynx with retention of saliva and swelling of the mouth and tongue. During diagnostics, 2 months later, we found that skin prick tests were positive to mugwort pollen (12/9 mm), oranges (6/6 mm), egg protein (3/3 mm), and hazelnuts (3/3 mm). A native prick by prick test with sunflower seeds was strongly positive (8/5 mm). Elevated concentrations of specific IgE against weed mix (inc. lenscale, mugwort, ragweed) allergens (1.04 IU/mL), Artemisia vulgaris (1.36 IU/mL), and Artemisia absinthium (0.49 IU/mL) were found. An ImmunoCap ISAC test found an average level of specific IgE against mugwort pollen allergen component Art v 1 - 5,7 ISU-E, indicating an allergy to mugwort pollen and low to medium levels of specific IgE against lipid transfer proteins (LTP) found in walnuts, peanuts, mugwort pollen, and hazelnuts. Through the ISAC inhibition test we proved that sunflower seed allergen extracts contain proteins cross-reactive with patients’ IgE specific to Art v 1, Art v 3, and Jug r 3. Based on our results and the clinical pattern of the disease we confirmed that the patient is allergic to mugwort pollen and that he had an anaphylactic reaction as a result of ingesting sunflower seeds. We suspected that hypersensitivity to sunflower LTP and defensin-like proteins, both cross-reactive with mugwort pollen allergens, were the main cause of the patient’s anaphylactic reaction. PMID:27222528

  11. Study of the processes resulting from the use of alkaline seed in natural gas-fired MHD facilities

    International Nuclear Information System (INIS)

    Styrikovich, M.A.; Mostinskii, I.L.

    1977-01-01

    Various ways of ionizing seed injection and recovery, applicable to open-cycle magnetohydrodynamic (MHD) power generation facilities, operating on sulfur-free gaseous fossil fuel, are discussed and experimentally verified. The physical and chemical changes of the seed and the heat and mass transfer processes resulting from seed application are investigated using the U-02 experimental MHD facility and laboratory test facilities. Engineering methods for calculating the processes of seed droplet vaporization, condensation and the precipitation of submicron particles of K 2 CO 3 on the heat exchange surface are also included

  12. Recovery from schizophrenia and the recovery model.

    Science.gov (United States)

    Warner, Richard

    2009-07-01

    The recovery model refers to subjective experiences of optimism, empowerment and interpersonal support, and to a focus on collaborative treatment approaches, finding productive roles for user/consumers, peer support and reducing stigma. The model is influencing service development around the world. This review will assess whether optimism about outcome from serious mental illness and other tenets of the recovery model are borne out by recent research. Remission of symptoms has been precisely defined, but the definition of 'recovery' is a more diffuse concept that includes such factors as being productive and functioning independently. Recent research and a large, earlier body of data suggest that optimism about outcome from schizophrenia is justified. A substantial proportion of people with the illness will recover completely and many more will regain good social functioning. Outcome is better for people in the developing world. Mortality for people with schizophrenia is increasing but is lower in the developing world. Working appears to help people recover from schizophrenia, and recent advances in vocational rehabilitation have been shown to be effective in countries with differing economies and labor markets. A growing body of research supports the concept that empowerment is an important component of the recovery process. Key tenets of the recovery model - optimism about recovery from schizophrenia, the importance of access to employment and the value of empowerment of user/consumers in the recovery process - are supported by the scientific research. Attempts to reduce the internalized stigma of mental illness should enhance the recovery process.

  13. Moringa oleifera Seed Derivatives as Potential Bio-Coagulant for Microalgae Chlorella sp. Harvesting

    International Nuclear Information System (INIS)

    Azizah Endut; Azizah Endut; Siti Hajar Abdul Hamid; Fathurrahman Lananan; Helena Khatoon

    2016-01-01

    Microalgae is an economical and potential raw material of biomass energy, which offer a wide range of commercial potential to produce valuable substances for applications in aquaculture feed, pharmaceutical purposes and bio fuels production. However, lack of an economical, efficient and convenient method to harvest microalgae is a bottleneck to boost their full-scale application. Hence, this study was performed to investigate the potentialities of Moringa oleifera seed derivatives as an environmentally bio-coagulant to harvest microalgae Chlorella sp. biomass from the water column, which acts as a binder to coagulate particulate impurities to form larger aggregates. Results shown M. oleifera to have better biomass recovery of 122.51 % as compared to 37.08 % of alum at similar dosages of 10 mgL"-"1. In addition, it was found that the zeta potential values of mixed microalgae-coagulant suspension shows positive correlation on the flocculation parameters. For biomass recovery, the correlation for M. oleifera protein powder showed the R"2-value of 0.9565 whereas the control chemical flocculant, alum with the R"2-value of 0.7920. It was evidence that M. oleifera has a great potential in efficient and economical for environmentally microalgae harvesting and the adaptation of biological harvesting technology especially for the purpose of aquaculture feed in Malaysia. (author)

  14. Application of plasma shield technology to the reduction, treatment, and disposal of hazardous organic and/or mixed wastes with actinide recovery

    International Nuclear Information System (INIS)

    Adams, B.T.; Vaughan, L.L.; Joyce, E.L. Jr.; Bieniewski, T.M.

    1990-01-01

    Los Alamos research activities are currently directed at the application of the shielded hydrogen plasma torch to the direct production of actinide metals from a UF 6 feedstock. Two broad classes of thermal plasma reactors are currently in widespread use: the direct current (dc) arc jet system and the radio frequency (rf) inductively coupled system. Los Alamos has improved upon the basic rf plasma tube design using the concept of a transformer. The unique feature of the Los Alamos tube is a segmented, cooled, internal radiation shield. The Los Alamos shielded plasma torch routinely achieves temperatures exceeding 10,000 K and electron densities of 10 16 /cm 3 when operated continuously at one atmosphere of argon. These highly energetic conditions are sufficient to dissociate most chemical compounds into their constituent atoms. Based upon these characteristics, Los Alamos is currently investigating the application of the shielded plasma torch technology to the destruction of organic and mixed hazardous wastes, as well as the direct production of actinide metals from the halides and oxides, without the cogeneration of contaminated wastes. 5 refs., 4 figs

  15. CONSERVATION OF THE VIABILITY AND VIGOR OF Araucaria angustifolia (Bert. O. Kuntze SEEDS DURING THE STORAGE

    Directory of Open Access Journals (Sweden)

    Cristhyane Garcia

    2014-12-01

    Full Text Available The conservation of Araucaria seeds is widely compromised in function of their recalcitrant feature, which hampers the planning of recovery actions of the degraded populations. Therefore, the objective of this study was to monitor the physiological changes in Araucaria seeds under controlled storage conditions, in order to get insights as to the viability and vigor conservation. The physiological quality of freshly harvested seeds was evaluated and every 60 days throughout the 180 days-storage period in laboratory ambient without thermal control, refrigerator (5 ° C, and freezer (-18 ° C until the final period of 180 days. After each sampling period, the seed viability (germination and tetrazolium tests and vigor (artificial aging, germination speed index – IVG and electrical conductivity were assessed. A reduction in the normal seedlings percentage was noticed over the period of storage of Araucaria seeds. The conservation in freezer and the lack of thermal control caused a complete loss of the seed viability at 60 and 180 days of storage, respectively. However, the refrigerator storage promoted the conservation of seed viability, with 64% germination after 180 days of storage, an event associated with the reduction of the metabolic activity of seeds. Based on the viability and vigor tests, it was concluded that storage in refrigerator provided longer storage periods to Araucaria seeds in comparison to the other storage conditions herein studied.

  16. A Spectrophotometric Assay for Robust Viability Testing of Seed Batches Using 2,3,5-Triphenyl Tetrazolium Chloride: Using Hordeum vulgare L. as a Model

    Directory of Open Access Journals (Sweden)

    Laura Lopez Del Egido

    2017-05-01

    Full Text Available A comparative analysis was carried out of published methods to assess seed viability using 2,3,5-triphenyltetrazolium chloride (TTC based assays of seed batches. The tests were carried out on seeds of barley (Hordeum vulgare cv. Optic as a model. We established that 10% [w/v] trichloroacetic acid (TCA/methanol is superior to the acetone and methanol-only based methods: allowing the highest recovery of formazan and the lowest background optical density (OD readings, across seed lots comprising different ratios of viable and dead seeds. The method allowed a linear-model to accurately capture the statistically significant relationship between the quantity of formazan that could be extracted using the method we developed and the seed temperature-response, and seed viability as a function of artificially aged seed lots. Other quality control steps are defined to help ensure the assay is robust and these are reported in a Standard Operating Procedure.

  17. Chemical technology division: Annual technical report 1987

    Energy Technology Data Exchange (ETDEWEB)

    1988-05-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1987 are presented. In this period, CMT conducted research and development in the following areas: (1) high-performance batteries--mainly lithium-alloy/metal sulfide and sodium/sulfur; (2) aqueous batteries (lead-acid, nickel/iron, etc.); (3) advanced fuel cells with molten carbonate or solid oxide electrolytes; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants and the technology for fluidized-bed combustion; (5) methods for the electromagnetic continuous casting of steel sheet and for the purification of ferrous scrap; (6) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (7) nuclear technology related to a process for separating and recovering transuranic elements from nuclear waste, the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor, and waste management; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for liquids and vapors at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; the thermochemistry of various minerals; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be the major user of the technical support provided by the Analytical Chemistry Laboratory at ANL. 54 figs., 9 tabs.

  18. Chemical technology division: Annual technical report 1987

    International Nuclear Information System (INIS)

    1988-05-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1987 are presented. In this period, CMT conducted research and development in the following areas: (1) high-performance batteries--mainly lithium-alloy/metal sulfide and sodium/sulfur; (2) aqueous batteries (lead-acid, nickel/iron, etc.); (3) advanced fuel cells with molten carbonate or solid oxide electrolytes; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants and the technology for fluidized-bed combustion; (5) methods for the electromagnetic continuous casting of steel sheet and for the purification of ferrous scrap; (6) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (7) nuclear technology related to a process for separating and recovering transuranic elements from nuclear waste, the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor, and waste management; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products