WorldWideScience

Sample records for seed implant brachytherapy

  1. Seed Placement in Permanent Breast Seed Implant Brachytherapy: Are Concerns Over Accuracy Valid?

    Energy Technology Data Exchange (ETDEWEB)

    Morton, Daniel, E-mail: dmorton@bccancer.bc.ca [Department of Medical Physics, BC Cancer Agency, Centre for the Southern Interior, Kelowna, British Columbia (Canada); Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia (Canada); Hilts, Michelle [Department of Medical Physics, BC Cancer Agency, Centre for the Southern Interior, Kelowna, British Columbia (Canada); Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia (Canada); Batchelar, Deidre [Department of Medical Physics, BC Cancer Agency, Centre for the Southern Interior, Kelowna, British Columbia (Canada); Crook, Juanita [Department of Radiation Oncology, BC Cancer Agency, Centre for the Southern Interior, Kelowna, British Columbia (Canada)

    2016-07-01

    Purpose: To evaluate seed placement accuracy in permanent breast seed implant brachytherapy (PBSI), to identify any systematic errors and evaluate their effect on dosimetry. Methods and Materials: Treatment plans and postimplant computed tomography scans for 20 PBSI patients were spatially registered and used to evaluate differences between planned and implanted seed positions, termed seed displacements. For each patient, the mean total and directional seed displacements were determined in both standard room coordinates and in needle coordinates relative to needle insertion angle. Seeds were labeled according to their proximity to the anatomy within the breast, to evaluate the influence of anatomic regions on seed placement. Dosimetry within an evaluative target volume (seroma + 5 mm), skin, breast, and ribs was evaluated to determine the impact of seed placement on the treatment. Results: The overall mean (±SD) difference between implanted and planned positions was 9 ± 5 mm for the aggregate seed population. No significant systematic directional displacements were observed for this whole population. However, for individual patients, systematic displacements were observed, implying that intrapatient offsets occur during the procedure. Mean displacements for seeds in the different anatomic areas were not found to be significantly different from the mean for the entire seed population. However, small directional trends were observed within the anatomy, potentially indicating some bias in the delivery. Despite observed differences between the planned and implanted seed positions, the median (range) V{sub 90} for the 20 patients was 97% (66%-100%), and acceptable dosimetry was achieved for critical structures. Conclusions: No significant trends or systematic errors were observed in the placement of seeds in PBSI, including seeds implanted directly into the seroma. Recorded seed displacements may be related to intrapatient setup adjustments. Despite observed seed

  2. Effect of implanted brachytherapy seeds on optical fluence distribution: preliminary ex vivo study

    Science.gov (United States)

    Hetzel, Fred W.; Chen, Qun; Ding, Meisong; Newman, Francis; Dole, Kenneth C.; Huang, Zheng; Blanc, Dominique

    2007-02-01

    Photodynamic therapy (PDT) has gradually found its place in the treatment of malignant and non-malignant human diseases. Currently, interstitial PDT is being explored as an alternative modality for newly diagnosed and recurrent organ-confined prostate cancer. The interstitial PDT for the treatment of prostate cancer might be considered to treat prostates with permanent radioactive seeds implantation. However, the effect of implanted brachytherapy seeds on the optical fluence distribution of PDT light has not been studied before. This study investigated, for the first time, the effect of brachytherapy seed on the optical fluence distribution of 760 nm light in ex vivo models (meat and canine prostate).

  3. Radiological response of lanthanum guiding seeds in brachytherapy implants; Resposta radiologica de sementes guia de lantanio em implantes braquiterapicos

    Energy Technology Data Exchange (ETDEWEB)

    Silva, L.S.R.; Machado, E.D.P., E-mail: lais26@globo.com [Centro Federal de Educacao Tecnologica de Minas Gerais, Belo Horizonte, MG (Brazil). Departamento de Engenharia de Materiais; Campos, T.P.R. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Roberto, W.S. [Centro Federal de Educacao Tecnologica de Minas Gerais, Belo Horizonte, MG (Brazil). Departamento de Fisica e Matematica

    2013-08-15

    Ceramic seeds with La-139 incorporated were synthesized to be used as radiological guides in brachytherapy implants. The synthesis was performed based on the sol-gel method. The seeds were subjected to characterization by Scanning Electron Microscopy, X-ray diffraction and Energy-Dispersive X-ray Spectroscopy. Furthermore, the contrast from a radiographic film was evaluated to lanthanum, samarium and holmium seeds. Radiological response on a phantom at different depths with lanthanum seeds and metal seeds was also investigated. Based on the values of contrast, the synthesized lanthanum seeds can be considered efficient as radiological guides when implanted together with pure Ho-165 and Sm-152 seeds. (author)

  4. Survival of patients with advanced pancreatic cancer after iodine125 seeds implantation brachytherapy: A meta-analysis.

    Science.gov (United States)

    Han, Quanli; Deng, Muhong; Lv, Yao; Dai, Guanghai

    2017-02-01

    Brachytherapy with iodine-labeled seeds (I-seeds) implantation is increasingly being used to treat tumors because of its positional precision, minimal invasion, least damage to noncancerous tissue due to slow and continuous release of radioactivity and facilitation with modern medical imaging technologies. This study evaluates the survival and pain relief outcomes of the I-seeds implantation brachytherapy in advanced pancreatic cancer patients. Literature search was carried out in multiple electronic databases (Google Scholar, Embase, Medline/PubMed, and Ovid SP) and studies reporting I seeds implantation brachytherapy in pancreatic cancer patients with unresectable tumor were selected by following predetermined eligibility criteria. Random effects meta-analysis was performed to achieve inverse variance weighted effect size of the overall survival rate after the intervention. Sensitivity and subgroups analyses were also carried out. Twenty-three studies (824 patients' data) were included in the meta-analysis. I-seeds implantation brachytherapy alone was associated with 8.98 [95% confidence interval (CI): 6.94, 11.03] months (P cancer patients, overall survival was 7.13 [95% CI: 4.75, 9.51] months (P cancer patients after I-seeds implantation brachytherapy is found to be 9 months, whereas a combined treatment with I-seeds brachytherapy and other therapies was associated with approximately 12 months' survival. The majority of patients who underwent I-seeds brachytherapy had their pain relieved.

  5. Mathematical formulation of (125)I seed dosimetry parameters and heterogeneity correction in lung permanent implant brachytherapy.

    Science.gov (United States)

    Mostaghimi, Hesameddin; Mehdizadeh, Ali Reza; Darvish, Leili; Akbari, Sadegh; Rezaei, Hadi

    2017-01-01

    Precise determination of dose distribution around low-energy brachytherapy sources as well as considering tissue heterogeneity is crucial for optimized treatment planning. This study is aimed at determination and mathematically formulation of American Association of Physicists in Medicine Task Group No. 43 (AAPM TG-43) dosimetry parameters of 125I seed (model 6711) and calculation of dose difference caused by neglecting lung heterogeneity in permanent implant brachytherapy. Using MCNPX 2.6.0 code, 125I seed (model 6711) was simulated in a cubic water environment, and its dosimetry parameters mentioned in AAPM TG-43 protocol were obtained. After benchmarking of parameters and comparison with prior studies, mathematical equations were fitted to the data, and a specific set of 125I seeds was simulated on a plane in simulated lung and water environments. Appropriate photon histories were considered to achieve data with maximum accuracy (max error 1%). In the end, isodose curves, profiles, depth dose, and dose difference between lung and water environments were obtained. For 125I seed (model 6711), radial dose function and anisotropy functions were obtained precisely with R2 > 0.99, all in good agreement with previous studies and protocol. In addition, percentage dose difference between inhomogeneous lung and homogenous water environments in a 5 cm distance was calculated and presented as D (r) function with R2 > 0.99. Considering practical difficulties in dose calculations, 125I seed dosimetry parameters and lung heterogeneity corrections can be obtained precisely by MCNPX. Equations presented in this study are recommended to be considered in future studies based on lung permanent implantation.

  6. Conventional Versus Automated Implantation of Loose Seeds in Prostate Brachytherapy: Analysis of Dosimetric and Clinical Results

    Energy Technology Data Exchange (ETDEWEB)

    Genebes, Caroline, E-mail: genebes.caroline@claudiusregaud.fr [Radiation Oncology Department, Institut Claudius Regaud, Toulouse (France); Filleron, Thomas; Graff, Pierre [Radiation Oncology Department, Institut Claudius Regaud, Toulouse (France); Jonca, Frédéric [Department of Urology, Clinique Ambroise Paré, Toulouse (France); Huyghe, Eric; Thoulouzan, Matthieu; Soulie, Michel; Malavaud, Bernard [Department of Urology and Andrology, CHU Rangueil, Toulouse (France); Aziza, Richard; Brun, Thomas; Delannes, Martine; Bachaud, Jean-Marc [Radiation Oncology Department, Institut Claudius Regaud, Toulouse (France)

    2013-11-15

    Purpose: To review the clinical outcome of I-125 permanent prostate brachytherapy (PPB) for low-risk and intermediate-risk prostate cancer and to compare 2 techniques of loose-seed implantation. Methods and Materials: 574 consecutive patients underwent I-125 PPB for low-risk and intermediate-risk prostate cancer between 2000 and 2008. Two successive techniques were used: conventional implantation from 2000 to 2004 and automated implantation (Nucletron, FIRST system) from 2004 to 2008. Dosimetric and biochemical recurrence-free (bNED) survival results were reported and compared for the 2 techniques. Univariate and multivariate analysis researched independent predictors for bNED survival. Results: 419 (73%) and 155 (27%) patients with low-risk and intermediate-risk disease, respectively, were treated (median follow-up time, 69.3 months). The 60-month bNED survival rates were 95.2% and 85.7%, respectively, for patients with low-risk and intermediate-risk disease (P=.04). In univariate analysis, patients treated with automated implantation had worse bNED survival rates than did those treated with conventional implantation (P<.0001). By day 30, patients treated with automated implantation showed lower values of dose delivered to 90% of prostate volume (D90) and volume of prostate receiving 100% of prescribed dose (V100). In multivariate analysis, implantation technique, Gleason score, and V100 on day 30 were independent predictors of recurrence-free status. Grade 3 urethritis and urinary incontinence were observed in 2.6% and 1.6% of the cohort, respectively, with no significant differences between the 2 techniques. No grade 3 proctitis was observed. Conclusion: Satisfactory 60-month bNED survival rates (93.1%) and acceptable toxicity (grade 3 urethritis <3%) were achieved by loose-seed implantation. Automated implantation was associated with worse dosimetric and bNED survival outcomes.

  7. SU-E-T-123: Anomalous Altitude Effect in Permanent Implant Brachytherapy Seeds

    Energy Technology Data Exchange (ETDEWEB)

    Watt, E; Spencer, DP; Meyer, T [University of Calgary and Tom Baker Cancer Centre, Calgary, AB (Canada)

    2015-06-15

    Purpose: Permanent seed implant brachytherapy procedures require the measurement of the air kerma strength of seeds prior to implant. This is typically accomplished using a well-type ionization chamber. Previous measurements (Griffin et al., 2005; Bohm et al., 2005) of several low-energy seeds using the air-communicating HDR 1000 Plus chamber have demonstrated that the standard temperature-pressure correction factor, P{sub TP}, may overcompensate for air density changes induced by altitude variations by up to 18%. The purpose of this work is to present empirical correction factors for two clinically-used seeds (IsoAid ADVANTAGE™ {sup 103}Pd and Nucletron selectSeed {sup 125}I) for which empirical altitude correction factors do not yet exist in the literature when measured with the HDR 1000 Plus chamber. Methods: An in-house constructed pressure vessel containing the HDR 1000 Plus well chamber and a digital barometer/thermometer was pumped or evacuated, as appropriate, to a variety of pressures from 725 to 1075 mbar. Current measurements, corrected with P{sub TP}, were acquired for each seed at these pressures and normalized to the reading at ‘standard’ pressure (1013.25 mbar). Results: Measurements in this study have shown that utilization of P{sub TP} can overcompensate in the corrected current reading by up to 20% and 17% for the IsoAid Pd-103 and the Nucletron I-125 seed respectively. Compared to literature correction factors for other seed models, the correction factors in this study diverge by up to 2.6% and 3.0% for iodine (with silver) and palladium respectively, indicating the need for seed-specific factors. Conclusion: The use of seed specific altitude correction factors can reduce uncertainty in the determination of air kerma strength. The empirical correction factors determined in this work can be applied in clinical quality assurance measurements of air kerma strength for two previously unpublished seed designs (IsoAid ADVANTAGE™ {sup 103}Pd and

  8. Computed tomography-guided implantation of 125 I seeds brachytherapy for recurrent multiple pulmonary oligometastases: initial experience and results

    Directory of Open Access Journals (Sweden)

    Jie Li

    2017-04-01

    Full Text Available Purpose : To retrospectively evaluate the efficacy and safety of computed tomography (CT-guided percutaneous interstitial brachytherapy using 125 I radioactive seeds for multiple pulmonary metastatic tumors. Material and methods : Between September 2013 and December 2015, 22 patients with multiple pulmonary metastases, who after conventional chemotherapy and trans-arterial chemoembolization (TACE therapy were considered unable to withstand stereotactic body radiation therapy (SBRT, received CT-guided 125 I brachytherapy. Clinical data were studied retrospectively. A planning target volume of 90% (D90 was 120-160 Gy for 125 I seeds with an activity of 25.9 MBq. A CT-based evaluation performed 1, 2, and 6 months’ post-implantation enabled review of local control of tumors. Results : Twenty-two patients with 65 pulmonary metastases successfully completed treatment. The mean value for D90 for implantation for 125 I seeds was 132 Gy. Complete response (CR + partial response (PR was documented in 81.54%, 78.46%, and 78.46% of patients at 1, 2, and 6 months after implantation, respectively. Fourteen out of 22 patients had CR, 3 had PR, 2 had stable disease (SD, and 3 had progressive disease (PD. Most of the metastases (CR + PR + SD; 87.69% after 6 months were controlled by implantation. Conclusions : CT-guided 125 I brachytherapy is a safe and effective treatment for multiple pulmonary metastatic tumors, and can achieve good short-term local control, so long as the radiation dose is sufficient.

  9. Incorporating three-dimensional ultrasound into permanent breast seed implant brachytherapy treatment planning.

    Science.gov (United States)

    Morton, Daniel; Batchelar, Deidre; Hilts, Michelle; Berrang, Tanya; Crook, Juanita

    Planning permanent breast seed implant (PBSI) brachytherapy using CT alone may reduce treatment accuracy because of differences in seroma visualization compared with ultrasound (US). This study evaluates dosimetric effects of seroma delineation in PBSI and the potential impact of incorporating three-dimensional (3D) US into PBSI treatment planning. Spatially coregistered CT and 3D US images from 10 patients were retrospectively analyzed to simulate the PBSI procedure. Seromas contoured on CT and US defined clinical target volumes, CTVCT and CTVUS, which were expanded to create planning target volumes (PTVs). PBSI plans were generated using PTVCT alone, and the resulting coverage to PTVUS was evaluated. To assess the potential impact of transferring to an US-guided procedure, the CT-based plans were centered on CTVUS. The volume encompassed by both PTVs was used to evaluate how 3D US can affect the planning procedure. Median (range) PTVCTV100 was 95.6% (93.3-97.3%), resulting in PTVUS coverage of 91.5% (80.5-97.9%). Centering plans on CTVUS decreased PTVCTV100 by a mean of 10 ± 8%, and increased PTVUSV100 by 5 ± 4%. The combined PTVs were a mean 9±6% larger than PTVCT. Acceptable dosimetry to the combined PTVs resulted in sufficient coverage to individual PTVs but with a mean 11 ± 24% increase to skin dose and 6 ± 8% increase in breast V200. Differences in seroma visualization have dosimetric effects in PBSI. CT-based plans can underdose US-defined volumes and may not adequately translate to an US-guided procedure. Implementing 3D US into planning can potentially compensate for differences in delineation. Copyright © 2016 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  10. Clinical Significance of Accounting for Tissue Heterogeneity in Permanent Breast Seed Implant Brachytherapy Planning.

    Science.gov (United States)

    Mashouf, Shahram; Fleury, Emmanuelle; Lai, Priscilla; Merino, Tomas; Lechtman, Eli; Kiss, Alex; McCann, Claire; Pignol, Jean-Philippe

    2016-03-15

    The inhomogeneity correction factor (ICF) method provides heterogeneity correction for the fast calculation TG43 formalism in seed brachytherapy. This study compared ICF-corrected plans to their standard TG43 counterparts, looking at their capacity to assess inadequate coverage and/or risk of any skin toxicities for patients who received permanent breast seed implant (PBSI). Two-month postimplant computed tomography scans and plans of 140 PBSI patients were used to calculate dose distributions by using the TG43 and the ICF methods. Multiple dose-volume histogram (DVH) parameters of clinical target volume (CTV) and skin were extracted and compared for both ICF and TG43 dose distributions. Short-term (desquamation and erythema) and long-term (telangiectasia) skin toxicity data were available on 125 and 110 of the patients, respectively, at the time of the study. The predictive value of each DVH parameter of skin was evaluated using the area under the receiver operating characteristic (ROC) curve for each toxicity endpoint. Dose-volume histogram parameters of CTV, calculated using the ICF method, showed an overall decrease compared to TG43, whereas those of skin showed an increase, confirming previously reported findings of the impact of heterogeneity with low-energy sources. The ICF methodology enabled us to distinguish patients for whom the CTV V100 and V90 are up to 19% lower compared to TG43, which could present a risk of recurrence not detected when heterogeneity are not accounted for. The ICF method also led to an increase in the prediction of desquamation, erythema, and telangiectasia for 91% of skin DVH parameters studied. The ICF methodology has the advantage of distinguishing any inadequate dose coverage of CTV due to breast heterogeneity, which can be missed by TG43. Use of ICF correction also led to an increase in prediction accuracy of skin toxicities in most cases. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. {sup 125}I seed implant brachytherapy for the treatment of parotid gland cancers in children and adolescents

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, L.; Zhang, J.; Song, T.; Zhang, J.; Yu, G.; Zhang, Y. [Peking University School and Hospital of Stomatology, Beijing (China). Dept. of Oral and Maxillofacial Surgery

    2013-05-15

    Background and purpose: There is a lack of optimal treatment strategies for managing salivary gland cancers in children and adolescents. This study is aimed at assessing the effect of {sup 125}I seed implantation for the treatment of parotid cancers in children and adolescents. Patients and methods: A total of 12 patients younger than 16 years with parotid gland malignant tumors underwent {sup 125}I seed implant brachytherapy between October 2003 and November 2008. All patients were assessed after treatment and at the local tumor control appointments. Facial nerve function, maxillofacial development, and radioactive side-effects were assessed. Results: The follow-up period ranged from 41-104 months. One patient with T4b died of pulmonary metastasis. The other patients were alive during the follow-up period. There were no serious radiation-related complications. The treatment did not affect facial nerve function and dentofacial growth in any of the children. Conclusion: For parotid gland cancers in children, {sup 125}I seed implant brachytherapy may be an acceptable treatment without serious complications and with satisfactory short-term effects. (orig.)

  12. Mathematical formulation of 125I seed dosimetry parameters and heterogeneity correction in lung permanent implant brachytherapy

    Directory of Open Access Journals (Sweden)

    Hesameddin Mostaghimi

    2017-01-01

    Conclusions: Considering practical difficulties in dose calculations, 125I seed dosimetry parameters and lung heterogeneity corrections can be obtained precisely by MCNPX. Equations presented in this study are recommended to be considered in future studies based on lung permanent implantation.

  13. A comparative study of seed localization and dose calculation on pre- and post-implantation ultrasound and CT images for low-dose-rate prostate brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Imad; Algan, Ozer; Thompson, Spencer; Sindhwani, Puneet; Herman, Terence; Cheng, C.-Y.; Ahmad, Salahuddin [Department of Radiation Oncology, University of Oklahoma Health Sciences Center, 825 NE 10th Street, OUPB 1430, Oklahoma City, OK 73104 (United States)], E-mail: iali@ouhsc.edu

    2009-09-21

    This work investigates variation in the volume of the prostate measured at different stages through the prostate brachytherapy procedure for 30 patients treated with I-125 radioactive seeds. The implanted seeds were localized on post-implantation ultrasound (US) images and the effect of prostate enlargement due to edema on dose coverage for 15 patients was studied. The volume of the prostate was measured at four stages as follows: (a) 2-3 weeks prior to implantation using US imaging, (b) then at the start of the intra-operative prostate brachytherapy procedure on the day of the implant, (c) immediately post-implantation using US imaging in the operating room and (d) finally by CT imaging at nearly 4 weeks post-implantation. Comparative prostate volume studies were performed using US imaging stepper and twister modes. For the purpose of this study, the implanted seeds were localized successfully on post-implant ultrasound twister images, retrospectively. The plans using post-implant US imaging were compared with intra-operative plans on US and plans created on CT images. The prostate volume increases about 10 cm{sup 3} on average due to edema induced by needle insertion and seed loading during implantation. The visibility of the implanted seeds on US twister images acquired post-implantation is as good as those on CT images and can be localized and used for dose calculation. The dose coverage represented by parameters such as D90 (dose covering 90% of the volume) and V100 (volume covered by 100% dose) is poorer on plans performed on post-implantation twister US studies than on the intra-operative live plan or the CT scan performed 4 weeks post-operatively. For example, the mean D90 difference on post-implantation US is lower by more than 15% than that on pre-implantation US. The volume enlargement of the prostate due to edema induced by needle insertion and seed placement has a significant effect on the quality of dosimetric coverage in brachytherapy prostate seed

  14. A comparative study of seed localization and dose calculation on pre- and post-implantation ultrasound and CT images for low-dose-rate prostate brachytherapy

    Science.gov (United States)

    Ali, Imad; Algan, Ozer; Thompson, Spencer; Sindhwani, Puneet; Herman, Terence; Cheng, Chih-Yao; Ahmad, Salahuddin

    2009-09-01

    This work investigates variation in the volume of the prostate measured at different stages through the prostate brachytherapy procedure for 30 patients treated with I-125 radioactive seeds. The implanted seeds were localized on post-implantation ultrasound (US) images and the effect of prostate enlargement due to edema on dose coverage for 15 patients was studied. The volume of the prostate was measured at four stages as follows: (a) 2-3 weeks prior to implantation using US imaging, (b) then at the start of the intra-operative prostate brachytherapy procedure on the day of the implant, (c) immediately post-implantation using US imaging in the operating room and (d) finally by CT imaging at nearly 4 weeks post-implantation. Comparative prostate volume studies were performed using US imaging stepper and twister modes. For the purpose of this study, the implanted seeds were localized successfully on post-implant ultrasound twister images, retrospectively. The plans using post-implant US imaging were compared with intra-operative plans on US and plans created on CT images. The prostate volume increases about 10 cm3 on average due to edema induced by needle insertion and seed loading during implantation. The visibility of the implanted seeds on US twister images acquired post-implantation is as good as those on CT images and can be localized and used for dose calculation. The dose coverage represented by parameters such as D90 (dose covering 90% of the volume) and V100 (volume covered by 100% dose) is poorer on plans performed on post-implantation twister US studies than on the intra-operative live plan or the CT scan performed 4 weeks post-operatively. For example, the mean D90 difference on post-implantation US is lower by more than 15% than that on pre-implantation US. The volume enlargement of the prostate due to edema induced by needle insertion and seed placement has a significant effect on the quality of dosimetric coverage in brachytherapy prostate seed

  15. WE-AB-BRA-11: Improved Imaging of Permanent Prostate Brachytherapy Seed Implants by Combining an Endorectal X-Ray Sensor with a CT Scanner

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, J; Matthews, K; Jia, G [Louisiana State University, Baton Rouge, LA (United States)

    2016-06-15

    Purpose: To test feasibility of the use of a digital endorectal x-ray sensor for improved image resolution of permanent brachytherapy seed implants compared to conventional CT. Methods: Two phantoms simulating the male pelvic region were used to test the capabilities of a digital endorectal x-ray sensor for imaging permanent brachytherapy seed implants. Phantom 1 was constructed from acrylic plastic with cavities milled in the locations of the prostate and the rectum. The prostate cavity was filled a Styrofoam plug implanted with 10 training seeds. Phantom 2 was constructed from tissue-equivalent gelatins and contained a prostate phantom implanted with 18 strands of training seeds. For both phantoms, an intraoral digital dental x-ray sensor was placed in the rectum within 2 cm of the seed implants. Scout scans were taken of the phantoms over a limited arc angle using a CT scanner (80 kV, 120–200 mA). The dental sensor was removed from the phantoms and normal helical CT and scout (0 degree) scans using typical parameters for pelvic CT (120 kV, auto-mA) were collected. A shift-and add tomosynthesis algorithm was developed to localize seed plane location normal to detector face. Results: The endorectal sensor produced images with improved resolution compared to CT scans. Seed clusters and individual seed geometry were more discernable using the endorectal sensor. Seed 3D locations, including seeds that were not located in every projection image, were discernable using the shift and add algorithm. Conclusion: This work shows that digital endorectal x-ray sensors are a feasible method for improving imaging of permanent brachytherapy seed implants. Future work will consist of optimizing the tomosynthesis technique to produce higher resolution, lower dose images of 1) permanent brachytherapy seed implants for post-implant dosimetry and 2) fine anatomic details for imaging and managing prostatic disease compared to CT images. Funding: LSU Faculty Start-up Funding

  16. SU-E-J-215: Towards MR-Only Image Guided Identification of Calcifications and Brachytherapy Seeds: Application to Prostate and Breast LDR Implant Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Elzibak, A; Fatemi-Ardekani, A; Soliman, A; Mashouf, S; Safigholi, H; Ravi, A; Morton, G; Song, WY [Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario (Canada); Han, D [Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario (Canada); University of California, San Diego, La Jolla, CA (United States)

    2015-06-15

    Purpose: To identify and analyze the appearance of calcifications and brachytherapy seeds on magnitude and phase MRI images and to investigate whether they can be distinguished from each other on corrected phase images for application to prostate and breast low dose rate (LDR) implant dosimetry. Methods: An agar-based gel phantom containing two LDR brachytherapy seeds (Advantage Pd-103, IsoAid, 0.8mm diameter, 4.5mm length) and two spherical calcifications (large: 7mm diameter and small: 4mm diameter) was constructed and imaged on a 3T Philips MR scanner using a 16-channel head coil and a susceptibility weighted imaging (SWI) sequence (2mm slices, 320mm FOV, TR/ TE= 26.5/5.3ms, 15 degree flip angle). The phase images were unwrapped and corrected using a 32×32, 2D Hanning high pass filter to remove background phase noise. Appearance of the seeds and calcifications was assessed visually and quantitatively using Osirix (http://www.osirix-viewer.com/). Results: As expected, calcifications and brachytherapy seeds appeared dark (hypointense) relative to the surrounding gel on the magnitude MRI images. The diameter of each seed without the surrounding artifact was measured to be 0.1 cm on the magnitude image, while diameters of 0.79 and 0.37 cm were measured for the larger and smaller calcifications, respectively. On the corrected phase images, the brachytherapy seeds and the calcifications appeared bright (hyperintense). The diameter of the seeds was larger on the phase images (0.17 cm) likely due to the dipole effect. Conclusion: MRI has the best soft tissue contrast for accurate organ delineation leading to most accurate implant dosimetry. This work demonstrated that phase images can potentially be useful in identifying brachytherapy seeds and calcifications in the prostate and breast due to their bright appearance, which helps in their visualization and quantification for accurate dosimetry using MR-only. Future work includes optimizing phase filters to best identify

  17. Expert consensus workshop report: Guideline for three-dimensional printing template-assisted computed tomography-guided 125I seeds interstitial implantation brachytherapy

    Directory of Open Access Journals (Sweden)

    Junjie Wang

    2017-01-01

    Full Text Available Radioactive 125I seeds (RIS interstitial implantation brachytherapy has been a first-line treatment for early-stage cancer of the prostate gland. However, its poor accuracy and homogeneity has limited its indication and hampered its popularization for a long time. Intriguingly, scholars based in China introduced computed tomography (CT-guided technology to improve the accuracy and homogeneity of RIS implantation and broadened the indications. Then, they creatively designed and introduced three-dimensional printing coplanar template (3D-PCT and 3D printing noncoplanar template (3D-PNCT into the practice of RIS implantation. Use of such templates makes RIS implantation more precise and efficacious and aids preoperative planning, real-time dose optimization, and postoperative planning. However, studies on the standard workflow for 3D-PT-assisted CT-guided RIS implantation have not been published. Therefore, the China Northern Radioactive Seeds Brachytherapy Group organized multidisciplinary experts to formulate the guideline for this emerging treatment modality. This guideline aims at standardizing 3D-PT-assisted CT-guided RIS implantation procedures and criteria for selecting treatment candidates and assessing outcomes and for preventing and managing postoperative complications.

  18. An analysis of brachytherapy with computed tomography-guided permanent implantation of Iodine-125 seeds for recurrent nonkeratin nasopharyngeal carcinoma

    Directory of Open Access Journals (Sweden)

    Shen X

    2015-05-01

    Full Text Available Xinying Shen,1,2 Yong Li,2 Yanfang Zhang,2 Jian Kong,2 Yanhao Li1 1Department of Interventional Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, 2Department of Interventional Radiology, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, People’s Republic of China Background: 125I seed implantation is a new method in treatment of nasopharyngeal carcinoma (NPC, and it is worthwhile to evaluate its feasibility. In this study, we performed brachytherapy with computed tomography (CT-guided permanent implantation of 125I seeds in the treatment of patients with the recurrence of NPC.Methods: A total 30 patients (20 male and ten female at the median age of 55 (range 25–80 years were diagnosed with recurrent nonkeratin NPC, with a total 38 lesions and a short disease-free interval (median ~11 months after primary radiotherapy alone or combined with chemotherapy. Patients received CT scan, starting from 2 months after the treatment. Follow-up was conducted for ~2–38 months to observe the local control rate and overall survival rate. We also analyzed the possible correlation between survival periods and the status of recurrent tumors.Results: The local control rates at 6, 12, 24, 30, and 36 months after the procedure of 125I seed implantation were 86.8%, 73.7%, 26.3%, 15.8%, and 5.3%, respectively. The overall 1-, 2-, and 3-year survival rates were 80.0% (24/30, 30.0% (9/30, and 6.7% (2/30, respectively, with a median survival period of 18 months (17.6±8.6 months. Interestingly, the survival periods of the patients who had primary radiotherapy with or without chemotherapy were 15.8±7.9 and 24.3±7.9 months, respectively. Kaplan–Meier survival analysis demonstrated that χ2 (log rank was 7.555, with very significant difference (P<0.01. The survival periods of patients in tumor stages I, II, III, and IV were 25.4±8.7, 19.8±9.4, 16.1±4.5, and 12.8±7.8 months, respectively, with

  19. Robot-assisted thoracoscopic brachytherapy for lung cancer: comparison of the ZEUS robot, VATS, and manual seed implantation.

    Science.gov (United States)

    Ma, Guo-Wei; Pytel, Martin; Trejos, Ana Luisa; Hornblower, Victoria; Smallwood, Jennifer; Patel, Rajni; Fenster, Aaron; Malthaner, Richard A

    2007-09-01

    Interstitial brachytherapy is becoming an accepted treatment option for lung cancer patients for whom surgery poses a high risk. Robotic surgery has the potential to deliver brachytherapy seeds into tumors while keeping surgeons at a safe distance from the radioactive source. Our aim was to compare the accuracy, number of attempts, and time needed to place seeds next to a target when using a manual technique, video-assisted thoracoscopic surgery (VATS), and the ZEUS robot for minimally invasive surgery (MIS). A brachytherapy seed injector was developed and attached to one of the ZEUS robotic arms. Four subjects each inserted inactive dummy brachytherapy seeds into clear agar-gelatin cubes containing a 1.6-mm stainless steel ball target. Two orthogonal radiographs were taken of each agar cube, and the corresponding distances were measured in triplicate using ImageJ processing software. The mean distance between the center of each seed and the corresponding target was calculated using the Pythagorean theorem. Comparisons were made using analysis of variance, t-tests, and Kruskal-Wallis tests, as appropriate. A total of 384 tests (128 for each technique) were performed. The median accuracies for the manual technique, VATS, and ZEUS were 1.8 mm (range: 0.9-6.7 mm), 2.4 mm (range: 1.0-11.3 mm), and 3.6 mm (range: 1.3-16.7 mm), respectively (p ZEUS were 1 (range: 1-5), 4 (range: 1-14), and 3 (range: 1-20), respectively (p ZEUS were 3.0 s (range: 1-43 s), 86.5 s (range: 6-372 s), and 64.5 s (range: 5-356 s), respectively (p ZEUS robotic platform was able to place seeds beside a target within a clinically acceptable distance, with an acceptable amount of trauma and time required. It achieved results equal to or better than those obtained with VATS.

  20. Radioactive seed migration following parotid gland interstitial brachytherapy.

    Science.gov (United States)

    Fan, Yi; Huang, Ming-Wei; Zhao, Yi-Jiao; Gao, Hong; Zhang, Jian-Guo

    2017-09-15

    To evaluate the incidence and associated factors of pulmonary seed migration after parotid brachytherapy using a novel migrated seed detection technique. Patients diagnosed with parotid cancer who underwent permanent parotid brachytherapy from January 2006 to December 2011 were reviewed retrospectively. Head and neck CT scans and chest X-rays were evaluated during routine follow-up. Mimics software and Geomagic Studio software were used for seed reconstruction and migrated seed detection from the original implanted region, respectively. Postimplant dosimetry analysis was performed after seeds migration if the seeds were still in their emitting count. Adverse clinical sequelae from seed embolization to the lung were documented. The radioactive seed implants were identified on chest X-rays in 6 patients. The incidence rate of seed migration in 321 parotid brachytherapy patients was 1.87% (6/321) and that of individual seed migration was 0.04% (6/15218 seeds). All migrated seeds were originally from the retromandibular region. No adverse dosimetric consequences were found in the target region. Pulmonary symptoms were not reported by any patient in this study. In our patient set, migration of radioactive seeds with an initial radioactivity of 0.6-0.7 mCi to the chest following parotid brachytherapy was rare. Late migration of a single seed from the central target region did not affect the dosimetry significantly, and patients did not have severe short-term complications. This study proposed a novel technique to localize the anatomical origin of the migrated seeds during brachytherapy. Our evidence suggested that placement of seeds adjacent to blood vessels was associated with an increased likelihood of seed migration to the lungs. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  1. Epoxy resins used to seal brachytherapy seed

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Natalia Carolina Camargos; Ferraz, Wilmar Barbosa; Reis, Sergio Carneiro dos; Santos, Ana Maria Matildes dos, E-mail: nccf@cdtn.br, E-mail: ferrazw@cdtn.br, E-mail: reissc@cdtn.br, E-mail: amms@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, BH (Brazil)

    2013-07-01

    Prostate cancer treatment with brachytherapy is recommended for patients with cancer at an early stage. In this treatment, small radioactive seeds are implanted directly in the prostate gland. These seeds are composed at least of one radionuclide carrier and an X-ray marker enclosed within a metallic tube usually sealed by laser process. This process is expensive and, furthermore, it can provoke a partial volatilization of the radionuclide and change the isotropy in dose distribution around the seed. In this paper, we present a new sealing process using epoxy resin. Three kinds of resins were utilized and characterized by scanning electron microscopy (SEM), energy dispersive X ray (EDS) and by differential scanning calorimetry (DSC) after immersion in simulated body fluid (SBF) and in sodium iodine solution (NaI). The sealing process showed excellent potential to replace the sealing laser usually employed. (author)

  2. Incidence and prediction of seed migration to the chest after iodine-125 brachytherapy for hepatocellular carcinoma.

    Science.gov (United States)

    Lin, Junqing; Yang, Weizhu; Jiang, Na; Zheng, Qubin; Huang, Jingyao; Huang, Ning; Li, Ang; Jiang, Han

    2017-08-08

    The aims were to determine the incidence of seed migration to the chest and to analyze the predictive factors after iodine-125 brachytherapy for hepatocellular carcinoma. Three hundred ninety-nine patients with hepatocellular carcinoma underwent iodine-125 seed brachytherapy. After seed implantation, chest X-ray radiograph or computerized tomography were undertaken to assess the occurrence and location of seed migration at 3 months after brachytherapy. The incidence of seed migration to the lung and heart was calculated. A statistical analysis of the influences of seed loss to the chest was performed between patients with and without seed migration. A total of 13,977 seeds were implanted in 399 patients. One hundred fifty of the 13,977 (1.07%) seeds migrated to the chest in 81 of the 399 (20.30%) patients. Of all the migrated seeds, 112 (74.67%) migrated to the lungs in 59 (67.82%) patients, and 38 (25.33%) seeds migrated to the heart in 28 (47.46%) patients. No case exhibited clinical symptoms related to the migrated seeds. The number of seeds implanted and the number of seed implantations were significantly associated with seed migration. The occurrence of seed migration to the lungs and heart was evaluated. Furthermore, the number of seeds implanted and the number of seed implantation procedures are significant predictors of seed migration. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  3. Dosimetric and radiobiological comparison of volumetric modulated arc therapy, high-dose rate brachytherapy, and low-dose rate permanent seeds implant for localized prostate cancer.

    Science.gov (United States)

    Yang, Ruijie; Zhao, Nan; Liao, Anyan; Wang, Hao; Qu, Ang

    2016-01-01

    To investigate the dosimetric and radiobiological differences among volumetric modulated arc therapy (VMAT), high-dose rate (HDR) brachytherapy, and low-dose rate (LDR) permanent seeds implant for localized prostate cancer. A total of 10 patients with localized prostate cancer were selected for this study. VMAT, HDR brachytherapy, and LDR permanent seeds implant plans were created for each patient. For VMAT, planning target volume (PTV) was defined as the clinical target volume plus a margin of 5mm. Rectum, bladder, urethra, and femoral heads were considered as organs at risk. A 78Gy in 39 fractions were prescribed for PTV. For HDR and LDR plans, the dose prescription was D90 of 34Gy in 8.5Gy per fraction, and 145Gy to clinical target volume, respectively. The dose and dose volume parameters were evaluated for target, organs at risk, and normal tissue. Physical dose was converted to dose based on 2-Gy fractions (equivalent dose in 2Gy per fraction, EQD2) for comparison of 3 techniques. HDR and LDR significantly reduced the dose to rectum and bladder compared with VMAT. The Dmean (EQD2) of rectum decreased 22.36Gy in HDR and 17.01Gy in LDR from 30.24Gy in VMAT, respectively. The Dmean (EQD2) of bladder decreased 6.91Gy in HDR and 2.53Gy in LDR from 13.46Gy in VMAT. For the femoral heads and normal tissue, the mean doses were also significantly reduced in both HDR and LDR compared with VMAT. For the urethra, the mean dose (EQD2) was 80.26, 70.23, and 104.91Gy in VMAT, HDR, and LDR brachytherapy, respectively. For localized prostate cancer, both HDR and LDR brachytherapy were clearly superior in the sparing of rectum, bladder, femoral heads, and normal tissue compared with VMAT. HDR provided the advantage in sparing of urethra compared with VMAT and LDR. Copyright © 2016 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  4. Dosimetric results in implant and post-implant and low rate in brachytherapy prostate cancer with loose seeds and attached; Resultados dosimetricos en el implante y post-impante en braquiterapia de baja tasa en cancer de prostata con semillas sueltas y unidas

    Energy Technology Data Exchange (ETDEWEB)

    Juan-Senabre, X. J.; Albert Antequera, M.; Lopez-Tarjuelo, J.; Santos Serra, A.; Perez-Mestre, M.; Sanchez Iglesias, A. L.; Conde Moreno, A. J.; Gonzalez Vidal, V.; Beltran Persiva, J.; Muelas Soria, R.; Ferrer Albiach, C.

    2015-07-01

    The objective is determine differences dosimetry statistics on the dosimetry of the implant and post-implant in brachytherapy of low rate with implants permanent in prostate using seed of 125-I loose and attached Both in lives and in the post-prostatic plans dosimetric coverage is good and restrictions in urethra and rectum for both groups of patients are met. Not migrating with joined is evident, as well as better dosimetric homogeneity. (Author)

  5. 1{sup 25I} brachytherapy seeds implantation for inoperable low-grade leiomyosarcoma of inferior vena cava

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuliang; Wang, Yongzheng; Liu, Bin; Li, Zheng; Wang, Wujie [The Second Hospital of Shandong Univ., Jinan (China)

    2013-04-15

    A 60-year-old female presented with abdominal pain and tenderness of five-day duration. Contrast enhanced CT showed a mass of 9 x 6 x 5.5 cm in size with almost complete obliteration of the inferior vena cava and massive extension to the extravascular space. CT-guided biopsy demonstrated a low-grade leiomyosarcoma. The patient underwent 1{sup 25I}odine seeds implantation in two sessions, and another balloon cavoplasty. Abdominal pain and tenderness gradually improved and the patient continues to remain as disease free state for three years after the procedures.

  6. Refining prostate seed brachytherapy: Comparing high-, intermediate-, and low-activity seeds for I-125 permanent seed prostate brachytherapy.

    Science.gov (United States)

    Delouya, Guila; Bahary, Pascal; Carrier, Jean-François; Larouche, Renée-Xavière; Hervieux, Yannick; Béliveau-Nadeau, Dominic; Donath, David; Taussky, Daniel

    2015-01-01

    To analyze the difference in prostate coverage and dose to the rectum in men with prostate carcinoma treated with permanent seed brachytherapy with different seed activities. Forty-nine patients treated with iodine-125 permanent seed prostate brachytherapy with low-activity seeds of 0.30-0.37 mCi were identified. For each of these patients, 2 patients with similar prostate volume (±2 cc) were paired: one treated with intermediate seed activity (0.44-0.46 mCi) and one with high seed activity (0.60-0.66 mCi). The doses to prostate and rectum were compared using CT on Day 30. A total of 147 patients divided into the three seed activity groups were analyzed. Mean prostate volume was 35.7 cc (standard deviation [SD], 11.70). Compared with low-activity seeds, implants with high-activity seeds consisted of an average of 22 seeds and 4.7 needles less. The dose to the prostate (prostate volume receiving 100% of the prescribed dose [V100], prostate volume receiving 150% of the prescribed dose, and minimal dose covering 90% of the prostate volume expressed in Gy) was not higher on Day 30 (p = 0.58-0.97). The mean volume (in cubic centimeters) of rectal wall receiving 100% of the prescribed dose (V100) increased with activity: low activity, 0.34 cc (SD, 0.49), intermediate activity, 0.47 cc (SD, 0.48), and high activity, 0.72 cc (SD, 0.79) (p = 0.009). There was a trend (p = 0.073) toward a higher frequency of clinically unfavorable rectal dosimetry (V100 > 1.3 cc) in patients with high-activity seeds (16.7%) compared with low-activity (6.3%) or intermediate-activity (4.2%) seeds. High-activity seeds do not result in a higher dose to the prostate but in a higher dose to the rectum. Copyright © 2015 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  7. Nuclear characterization of radioactive bioglass seed for brachytherapy studies

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, L.B.; Campos, T.P.R., E-mail: Lucibn19@yahoo.com.br, E-mail: Campos@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear

    2011-07-01

    This paper aims to analyze the isotopic compositions of the radioactive bioglass seeds for brachytherapy studies. Bioglass seeds were synthesized by sol-gel process, distributed in the seed samples, such as [Si: Ca: Ho], [Si: Ca: Ho: Zr], [Si: Ca: Ho: Ba], [Si: Ca: Sm] and [Si: Ca: Sm: Ba]. The bioglass seeds were irradiated at the TRIGA nuclear reactor - CDTN for a period of eight hours on a turntable around the reactor core for nuclear characterization studies. Nuclear characterization of the radioactive bioglass seeds by gamma spectrometry provided the gamma signatures of Sm-153 and Ho-166 followed by the Ba and Zr contrast agents. The gamma and X-ray spectra were plotted for analysis of the isotopic compositions of bioglass seeds. Gamma spectrum from the Ho-166 radioisotope and the X-ray spectrum of the Ba and Zr elements for [Si: Ca: Ho: Ba] and [Si: Ca: Ho: Zr] were showed. The particle ranges on ceramic; water and tissue were also analyzed using gamma and beta particle evaluations. The beta particle is absorbed around the seed, whereas the gamma particle can travel far from the seed position. Therefore, for small volume and consequentially small mass, the absorbed dose of beta particles close to the seed is very high. These results complement the study of the characterization and monitoring of bioglass seeds for brachytherapy implants. (author)

  8. Methodology of quality control for brachytherapy {sup 125}I seeds

    Energy Technology Data Exchange (ETDEWEB)

    Moura, Eduardo S.; Zeituni, Carlos A.; Manzoli, Jose E.; Rostelato, Maria Elisa C.M. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mail: esmoura@ipen.br

    2007-07-01

    This paper presents the methodology of quality control of {sup 125}I seeds used for brachytherapy. The {sup 125}I seeds are millimeter titanium capsules widely used in permanent implants of prostate cancer, allowing a high dose within the tumour and a low dose on the surrounding tissues, with very low harm to the other tissues. Besides, with this procedure, the patients have a low impotence rate and a small incidence of urinary incontinence. To meet the medical standards, an efficient quality control is necessary, showing values with the minimum uncertainness possible, concerning the seeds dimensions and their respective activities. The medical needles are used to insert the seeds inside the prostate. The needles used in brachytherapy have an internal diameter of 1.0 mm, so it is necessary {sup 125}I seeds with an external maximum diameter of 0.85 mm. For the seeds and the spacer positioning on the planning sheet, the seeds must have a length between 4.5 and 5.0 mm. The activities must not vary more than 5% in each batch of {sup 125}I seeds. For this methodology, we used two ionization chamber detectors and one caliper. In this paper, the methodology using one control batch with 75 seeds manufactured by GE Health care Ltd is presented. (author)

  9. Iodine-125 orbital brachytherapy with a prosthetic implant in situ.

    Science.gov (United States)

    Stannard, Clare; Maree, Gert; Munro, Roger; Lecuona, Karin; Sauerwein, Wolfgang

    2011-05-01

    Brachytherapy is one method of irradiating the orbit after enucleation of an eye with a malignant tumor that has a potential to recur. It consists of 6 trains of I-125 seeds placed around the periphery of the orbit, a shorter central train, and a metal disc, loaded with seeds, placed beneath the eyelids. The presence of a prosthetic orbital implant requires omission of the central train and adjustment of the activity of the seeds in the anterior orbit around the prosthesis. This is a retrospective review of the technical modifications and outcome of 12 patients treated in this manner: 6 with retinoblastoma, 5 with malignant melanoma, and 1 with an intraocular rhabdomyosarcoma. The median dose was 35.5 Gy in 73 hours for retinoblastoma and 56 Gy in 141 hours for malignant melanoma. Patients with retinoblastoma and rhabdomyosarcoma also received chemotherapy. The tubes can be placed satisfactorily around the prosthesis. The increased activity in the anterior half of the tubes produced comparable dose distributions. There have been no orbital recurrences, no extrusion of the prosthesis, and cosmesis is good. Insertion of a prosthetic implant at the time of enucleation greatly enhances the subsequent cosmetic appearance. This should be encouraged unless there is frank tumor in the orbit. Orbital brachytherapy without the central train continues to give excellent local control. The short treatment time and good cosmesis are added advantages. The patient is spared the expense and inconvenience of removing and replacing the prosthetic implant.

  10. Iodine-125 orbital brachytherapy with a prosthetic implant in situ

    Energy Technology Data Exchange (ETDEWEB)

    Stannard, Clare [Groote Schuur Hospital and Cape Town Univ. (South Africa). Dept. of Radiation Oncology; Maree, Gert; Munro, Roger [Groote Schuur Hospital and Cape Town Univ. (South Africa). Dept. of Medical Physics; Lecuona, Karin [Groote Schuur Hospital and Cape Town Univ. (South Africa). Dept. of Ophthalmology; Sauerwein, Wolfgang [Universitaetsklinikum Essen (Germany). Strahlenklinik, NCTeam

    2011-05-15

    Purpose: Brachytherapy is one method of irradiating the orbit after enucleation of an eye with a malignant tumor that has a potential to recur. It consists of 6 trains of I-125 seeds placed around the periphery of the orbit, a shorter central train, and a metal disc, loaded with seeds, placed beneath the eyelids. The presence of a prosthetic orbital implant requires omission of the central train and adjustment of the activity of the seeds in the anterior orbit around the prosthesis. Patients and Methods: This is a retrospective review of the technical modifications and outcome of 12 patients treated in this manner: 6 with retinoblastoma, 5 with malignant melanoma, and 1 with an intraocular rhabdomyosarcoma. The median dose was 35.5 Gy in 73 hours for retinoblastoma and 56 Gy in 141 hours for malignant melanoma. Patients with retinoblastoma and rhabdomyosarcoma also received chemotherapy. Results: The tubes can be placed satisfactorily around the prosthesis. The increased activity in the anterior half of the tubes produced comparable dose distributions. There have been no orbital recurrences, no extrusion of the prosthesis, and cosmesis is good. Conclusion: Insertion of a prosthetic implant at the time of enucleation greatly enhances the subsequent cosmetic appearance. This should be encouraged unless there is frank tumor in the orbit. Orbital brachytherapy without the central train continues to give excellent local control. The short treatment time and good cosmesis are added advantages. The patient is spared the expense and inconvenience of removing and replacing the prosthetic implant. (orig.)

  11. Intraoperative localization of brachytherapy implants using intensity-based registration

    Science.gov (United States)

    KarimAghaloo, Z.; Abolmaesumi, P.; Ahmidi, N.; Chen, T. K.; Gobbi, D. G.; Fichtinger, G.

    2009-02-01

    In prostate brachytherapy, a transrectal ultrasound (TRUS) will show the prostate boundary but not all the implanted seeds, while fluoroscopy will show all the seeds clearly but not the boundary. We propose an intensity-based registration between TRUS images and the implant reconstructed from fluoroscopy as a means of achieving accurate intra-operative dosimetry. The TRUS images are first filtered and compounded, and then registered to the fluoroscopy model via mutual information. A training phantom was implanted with 48 seeds and imaged. Various ultrasound filtering techniques were analyzed, and the best results were achieved with the Bayesian combination of adaptive thresholding, phase congruency, and compensation for the non-uniform ultrasound beam profile in the elevation and lateral directions. The average registration error between corresponding seeds relative to the ground truth was 0.78 mm. The effect of false positives and false negatives in ultrasound were investigated by masking true seeds in the fluoroscopy volume or adding false seeds. The registration error remained below 1.01 mm when the false positive rate was 31%, and 0.96 mm when the false negative rate was 31%. This fully automated method delivers excellent registration accuracy and robustness in phantom studies, and promises to demonstrate clinically adequate performance on human data as well.

  12. Radiation exposure to operating room staff during prostate brachytherapy using iodine-125 seeds; Exposition radiologique de l'equipe operatoire au cours de curietherapies de prostate par implants permanents d'iode-125

    Energy Technology Data Exchange (ETDEWEB)

    Gagna, G.; Amabile, J.C.; Laroche, P. [Service de protection radiologique des armees (SPRA), 1 bis rue du Lieutenant Raoul Batany, 92141 Clamart Cedex (France); Gauron, C. [Institut national de recherche et de securite (INRS), Departement Etudes et Assistance Medicales, 30 rue Olivier Noyer, 75680 Paris Cedex 14 (France)

    2011-04-15

    The French defense radiation protection service (SPRA) and the French national institute for research and safety (INRS) conducted a joint study to assess the radiation exposure to operating room staff during prostate brachytherapy using iodine-125 seeds at the Val-de-Grace military hospital. The purpose of the study was the assessment of the effective doses, the equivalent doses to the extremities and lens received by a novice team, the different ambient dose equivalent rates measurements and the delineation of areas. After six brachy-therapies, all the recorded doses with whole-body InLight{sup R} OSL and nanoDot{sup R} dosimeters remained below the detection limit for the whole staff. The dose rate measured at the end of implantation by an AT1123{sup R} survey meter is about 170 {mu}Sv/h at the perineum of the patient. The controlled area limit is estimated to be about 20 cm from the patient perineum. From these results, the authors propose recommendations for the categorization of workers, the delineation of areas and the dose monitoring procedures. This study demonstrates that real-time ultrasound-guided trans-perineal prostate brachytherapy delivers low dose to the operators because of the radioactive source characteristics and the instrumentation providing an effective radiation protection for the surgical team. (authors)

  13. Prostate brachytherapy - discharge

    Science.gov (United States)

    Implant therapy - prostate cancer - discharge; Radioactive seed placement - discharge ... You had a procedure called brachytherapy to treat prostate cancer. Your treatment lasted 30 minutes or more, ...

  14. Incidence of seed migration to the chest, abdomen, and pelvis after transperineal interstitial prostate brachytherapy with loose 125I seeds

    Directory of Open Access Journals (Sweden)

    Shiraishi Yutaka

    2011-10-01

    Full Text Available Abstract Background The aim was to determine the incidence of seed migration not only to the chest, but also to the abdomen and pelvis after transperineal interstitial prostate brachytherapy with loose 125I seeds. Methods We reviewed the records of 267 patients who underwent prostate brachytherapy with loose 125I seeds. After seed implantation, orthogonal chest radiographs, an abdominal radiograph, and a pelvic radiograph were undertaken routinely to document the occurrence and sites of seed migration. The incidence of seed migration to the chest, abdomen, and pelvis was calculated. All patients who had seed migration to the abdomen and pelvis subsequently underwent a computed tomography scan to identify the exact location of the migrated seeds. Postimplant dosimetric analysis was undertaken, and dosimetric results were compared between patients with and without seed migration. Results A total of 19,236 seeds were implanted in 267 patients. Overall, 91 of 19,236 (0.47% seeds migrated in 66 of 267 (24.7% patients. Sixty-nine (0.36% seeds migrated to the chest in 54 (20.2% patients. Seven (0.036% seeds migrated to the abdomen in six (2.2% patients. Fifteen (0.078% seeds migrated to the pelvis in 15 (5.6% patients. Seed migration occurred predominantly within two weeks after seed implantation. None of the 66 patients had symptoms related to the migrated seeds. Postimplant prostate D90 was not significantly different between patients with and without seed migration. Conclusion We showed the incidence of seed migration to the chest, abdomen and pelvis. Seed migration did not have a significant effect on postimplant prostate D90.

  15. Dosimetric influence of seed spacers and end-weld thickness for permanent prostate brachytherapy.

    Science.gov (United States)

    Melhus, Christopher S; Mikell, Justin K; Frank, Steven J; Mourtada, Firas; Rivard, Mark J

    2014-01-01

    The aim of this study was to analyze the dosimetric influence of conventional spacers and a cobalt chloride complex contrast (C4) agent, a novel marker for MRI that can also serve as a seed spacer, adjacent to (103)Pd, (125)I, and (131)Cs sources for permanent prostate brachytherapy. Monte Carlo methods for radiation transport were used to estimate the dosimetric influence of brachytherapy end-weld thicknesses and spacers near the three sources. Single-source assessments and volumetric conditions simulating prior patient treatments were computed. Volume-dose distributions were imported to a treatment planning system for dose-volume histogram analyses. Single-source assessment revealed that brachytherapy spacers primarily attenuated the dose distribution along the source long axis. The magnitude of the attenuation at 1 cm on the long axis ranged from -10% to -5% for conventional spacers and approximately -2% for C4 spacers, with the largest attenuation for (103)Pd. Spacer perturbation of dose distributions was less than manufacturing tolerances for brachytherapy sources as gleaned by an analysis of end-weld thicknesses. Volumetric Monte Carlo assessment demonstrated that TG-43 techniques overestimated calculated doses by approximately 2%. Specific dose-volume histogram metrics for prostate implants were not perturbed by inclusion of conventional or C4 spacers in clinical models. Dosimetric perturbations of single-seed dose distributions by brachytherapy spacers exceeded 10% along the source long axes adjacent to the spacers. However, no dosimetric impact on volumetric parameters was noted for brachytherapy spacers adjacent to (103)Pd, (125)I, or (131)Cs sources in the context of permanent prostate brachytherapy implants. Copyright © 2014 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  16. Real-time photoacoustic imaging of prostate brachytherapy seeds using a clinical ultrasound system

    Science.gov (United States)

    Kuo, Nathanael; Kang, Hyun Jae; Song, Danny Y.; Kang, Jin U.; Boctor, Emad M.

    2012-06-01

    Prostate brachytherapy is a popular prostate cancer treatment option that involves the permanent implantation of radioactive seeds into the prostate. However, contemporary brachytherapy procedure is limited by the lack of an imaging system that can provide real-time seed-position feedback. While many other imaging systems have been proposed, photoacoustic imaging has emerged as a potential ideal modality to address this need, since it could easily be incorporated into the current ultrasound system used in the operating room. We present such a photoacoustic imaging system built around a clinical ultrasound system to achieve the task of visualizing and localizing seeds. We performed several experiments to analyze the effects of various parameters on the appearance of brachytherapy seeds in photoacoustic images. We also imaged multiple seeds in an ex vivo dog prostate phantom to demonstrate the possibility of using this system in a clinical setting. Although still in its infancy, these initial results of a photoacoustic imaging system for the application of prostate brachytherapy seed localization are highly promising.

  17. SU-G-JeP1-10: Feasibility of CyberKnife Tracking Using the Previously-Implanted Permanent Brachytherapy Seed Cloud

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, J; Cunha, J; Sudhyadhom, A; McGuinness, C; Roach, M; Descovich, M [University of California San Francisco, San Francisco, CA (United States)

    2016-06-15

    Purpose: Robotic radiosurgery is a salvage treatment option for patients with recurrent prostate cancer. We explored the feasibility of tracking the bolus of permanent prostate implants (PPI) using image recognition software optimized to track spinal anatomy. Methods: Forty-five inert iodine seeds were implanted into a gelatin-based prostate phantom. Four superficial gold seeds were inserted to provide ground-truth alignment. A CT scan of the phantom (120 kVp, 1 mm slice thickness) was acquired and a single-energy iterative metal artifact reduction (MAR) algorithm was used to enhance the quality of the DRR used for tracking. CyberKnife treatment plans were generated from the MAR CT and regular CT (no-MAR) using spine tracking. The spine-tracking grid was centered on the bolus of seeds and resized to encompass the full seed cloud. A third plan was created from the regular CT scan, using fiducial tracking based on the 4 superficial gold seeds with identical align-center coordinates. The phantom was initially aligned using the fiducial-tracking plan. Then the MAR and no-MAR spine-tracking plans were loaded without moving the phantom. Differences in couch correction parameters were recorded in the case of perfect alignment and after the application of known rotations and translations (roll/pitch of 2 degrees; translations XYZ of 2 cm). Results: The spine tracking software was able to lock on to the bolus of seeds and provide couch corrections both in the MAR and no-MAR plans. In all cases, differences in the couch correction parameters from fiducial alignment were <0.5 mm in translations and <1 degree in rotations. Conclusion: We were able to successfully track the bolus of seeds with the spine-tracking grid in phantom experiments. For clinical applications, further investigation and developments to adapt the spine-tracking algorithm to optimize for PPI seed cloud tracking is needed to provide reliable tracking in patients. One of the authors (MD) has received research

  18. Identification and removal of reflection artifacts in minimally invasive photoacoustic imaging for accurate visualization of brachytherapy seeds

    Science.gov (United States)

    Kuniyil Ajith Singh, Mithun; Parameshwarappa, Vinay; Hendriksen, Ellen; Steenbergen, Wiendelt; Manohar, Srirang

    2017-03-01

    Reflection artifacts caused by the high signal from the optical fiber/ needle tip reflecting off the seed is an important problem in minimally invasive photoacoustic imaging of brachytherapy seeds. The presence of these artifacts confounds the interpretation of images and reduces contrast. We apply a new method called PAFUSion (Photoacoustic-guided focused ultrasound) to identify and reduce reflection artifacts generated in interstitial illumination imaging of brachytherapy seeds. We present the system comprising of a US imager and linear array, with illumination provided via a cutting needle. Non-radioactive brachytherapy seeds are implanted in a tissue mimicking phantom and ex vivo porcine tissue. The PAFUSion-corrected imaging results successfully demonstrate that our approach can identify and strongly reduce reflection artifacts in the context of photoacoustic needle. The phantom result also shows that multi-spectral photoacoustics can separate signals between the seeds and other optical absorbers.

  19. 78 FR 41125 - Interim Enforcement Policy for Permanent Implant Brachytherapy Medical Event Reporting

    Science.gov (United States)

    2013-07-09

    ... COMMISSION Interim Enforcement Policy for Permanent Implant Brachytherapy Medical Event Reporting AGENCY...'s permanent implant brachytherapy program. This interim policy affects NRC licensees that are authorized to perform permanent implant brachytherapy. DATES: This policy revision is effective July 9, 2013...

  20. Dosimetry accuracy as a function of seed localization uncertainty in permanent prostate brachytherapy: increased seed number correlates with less variability in prostate dosimetry

    Science.gov (United States)

    Su, Yi; Davis, Brian J.; Furutani, Keith M.; Herman, Michael G.; Robb, Richard A.

    2007-06-01

    The variation of permanent prostate brachytherapy dosimetry as a function of seed localization uncertainty was investigated for I-125 implants with seed activities commonly employed in contemporary practice. Post-implant imaging and radiation dosimetry data from nine patients who underwent permanent prostate brachytherapy served as the source of clinical data for this simulation study. Gaussian noise with standard deviations ranging from 0.5 to 10 mm was applied to the seed coordinates for each patient dataset and 1000 simulations were performed at each noise level. Dose parameters, including D90, were computed for each case and compared with the actual dosimetry data. A total of 81 000 complete sets of post-brachytherapy dose volume statistics were computed. The results demonstrated that less than 5% deviation of prostate D90 can be expected when the seed localization uncertainty is 2 mm, whereas a seed localization uncertainty of 10 mm yielded an average decrease in D90 of 33 Gy. The mean normalized decrement in the prostate V100 was 10% at 5 mm uncertainty. Implants with greater seed number and larger prostate volume correlated with less sensitivity of D90 and V100 to seed localization uncertainty. Estimated target volume dose parameters tended to decrease with increasing seed localization uncertainty. The bladder V100 varied more significantly both in mean and standard deviation as compared to the urethra V100. A larger number of implanted seeds also correlated to less sensitivity of the bladder V100 to seed localization uncertainty. In contrast, the deviation of urethra V100 did not correlate with the number of implanted seeds or prostate volume.

  1. Späte Seed-Migration nach LDR-Brachytherapie der Prostata mit I125-Permanentimplantaten

    Directory of Open Access Journals (Sweden)

    Maletzki P

    2015-01-01

    Full Text Available Hintergrund: Nach einer „Lowdose-rate“- (LDR Brachytherapie der Prostata kommt es häufig zu einer Seed-Migration. Trotz mehrerer Arbeiten über eine Seed-Migration in der frühen postoperativen Phase nach Seed-Implantation gibt es bisher nur wenige Daten über eine Seed-Migration mehrere Jahre nach erfolgter Intervention. Unser Ziel war eine Datenerhebung zur Inzidenz, Lokalisation, Symptomatik und therapeutischen Konsequenz einer späten Seed-Migration 3 Jahre nach Seed-Implantation. Methoden: Wir untersuchten retrospektiv 63 unselektionierte Patienten, die mittels transrektaler, Ultraschall-gesteuerter, transperinealer interstitieller LDR-Brachytherapie der Prostata zwischen 2001 und 2010 behandelt wurden. Es wurden hierbei verknüpfte („stranded“ Seeds verwendet. Am ersten Tag nach der Intervention erfolgte eine Symphysenzielaufnahme und 6 Wochen postoperativ eine erneute Symphysenzielaufnahme in Kombination mit einem CT/MRI des Beckens mit Bildfusionstechnik zur dosimetrischen Untersuchung. Die radiologische Spätkontrolle wurde mehr als 3 Jahre postoperativ mittels einer Symphysenzielaufnahme und eines Thorax-Röntgens durchgeführt. Ergebnisse: Mehr als 3 Jahre nach Brachytherapie zeigten 36 der 63 Patienten (57 % einen Seed-Verlust. Die Anzahl fehlender Seeds lag zwischen 1 und 9. Neben einer frühen Seed-Migration zeigte sich eine späte Seed-Migration bei 2 der 36 Patienten (6 % mit Migration in die Lunge, Leber und das kleine Becken. Alle Spätmigrationen waren asymptomatisch und ohne therapeutische Konsequenz. Diskussion: Neben häufig auftretenden Seed-Verlusten scheint eine Seed-Migration mehrere Jahre nach erfolgter Implantation eine seltene Erscheinung zu sein. Langzeitkontrollen mit ergänzenden radiologischen Nachuntersuchungen könnten dennoch hilfreich zur Dokumentation einer relevanten Seed-Migration sein.

  2. Image fusion techniques in permanent seed implantation

    Directory of Open Access Journals (Sweden)

    Alfredo Polo

    2010-10-01

    image fusion for permanent seed implantation.

  3. The surgical viability and radiological monitoring of brain implants of bioactive micro-seeds in an animal model

    OpenAIRE

    Silva, Giane X. O.; Campos, Tarcisio Passos Ribeiro de; Siqueira, Sávio Lana; Maciel, Marcelo B.

    2005-01-01

    The interstitial implant is a therapeutic modality in brachytherapy of the head and neck. Presently, the seeds implanted in tumors in the central nervous system are metallic I-125. After the full emission of the radionuclide, the seed remains inert in the implanted area. Bioactive ceramic seeds have been prepared for this research group incorporating Sm-152 to be active in Sm-153. The main goal of the present study is the development of a the surgical technique for implanting the biodegradabl...

  4. In vivo dosimetry with a linear MOSFET array to evaluate the urethra dose during permanent implant brachytherapy using iodine-125.

    Science.gov (United States)

    Bloemen-van Gurp, Esther J; Haanstra, Björk K C; Murrer, Lars H P; van Gils, Francis C J M; Dekker, Andre L A J; Mijnheer, Ben J; Lambin, Philippe

    2009-11-15

    To develop a technique to monitor the dose rate in the urethra during permanent implant brachytherapy using a linear MOSFET array, with sufficient accuracy and without significantly extending the implantation time. Phantom measurements were performed to determine the optimal conditions for clinical measurements. In vivo measurements were performed in 5 patients during the (125)I brachytherapy implant procedure. To evaluate if the urethra dose obtained in the operating room with the ultrasound transducer in the rectum and the patient in treatment position is a reference for the total accumulated dose; additional measurements were performed after the implantation procedure, in the recovery room. In vivo measurements during and after the implantation procedure agree very well, illustrating that the ultrasound transducer in the rectum and patient positioning do not influence the measured dose in the urethra. In vivo dose values obtained during the implantation are therefore representative for the total accumulated dose in the urethra. In 5 patients, the dose rates during and after the implantation were below the maximum dose rate of the urethra, using the planned seed distribution. In vivo dosimetry during the implantation, using a MOSFET array, is a feasible technique to evaluate the dose in the urethra during the implantation of (125)I seeds for prostate brachytherapy.

  5. Validation of GPUMCD for low-energy brachytherapy seed dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Hissoiny, Sami; Ozell, Benoit; Despres, Philippe; Carrier, Jean-Francois [Ecole polytechnique de Montreal, Departement de genie informatique et genie logiciel, 2500 chemin de Polytechnique, Montreal, QC, H3T 1J4 (Canada); Departement de radio-oncologie, Centre hospitalier universitaire de Quebec (CHUQ), 11 Cote du Palais, Quebec, QC, G1R 2J6 (Canada); Departement de physique, Universite de Montreal, Montreal, QC (Canada) and Departement de radio-oncologie and Centre de recherche du CHUM, Centre hospitalier de l' Universite de Montreal (CHUM), Montreal, QC, H2L 4M1 (Canada)

    2011-07-15

    Purpose: To validate GPUMCD, a new package for fast Monte Carlo dose calculations based on the GPU (graphics processing unit), as a tool for low-energy single seed brachytherapy dosimetry for specific seed models. As the currently accepted method of dose calculation in low-energy brachytherapy computations relies on severe approximations, a Monte Carlo based approach would result in more accurate dose calculations, taking in to consideration the patient anatomy as well as interseed attenuation. The first step is to evaluate the capability of GPUMCD to reproduce low-energy, single source, brachytherapy calculations which could ultimately result in fast and accurate, Monte Carlo based, brachytherapy dose calculations for routine planning. Methods: A mixed geometry engine was integrated to GPUMCD capable of handling parametric as well as voxelized geometries. In order to evaluate GPUMCD for brachytherapy calculations, several dosimetry parameters were computed and compared to values found in the literature. These parameters, defined by the AAPM Task-Group No. 43, are the radial dose function, the 2D anisotropy function, and the dose rate constant. These three parameters were computed for two different brachytherapy sources: the Amersham OncoSeed 6711 and the Imagyn IsoStar IS-12501. Results: GPUMCD was shown to yield dosimetric parameters similar to those found in the literature. It reproduces radial dose functions to within 1.25% for both sources in the 0.5< r <10 cm range. The 2D anisotropy function was found to be within 3% at r = 5 cm and within 4% at r = 1 cm. The dose rate constants obtained were within the range of other values reported in the literature.Conclusion: GPUMCD was shown to be able to reproduce various TG-43 parameters for two different low-energy brachytherapy sources found in the literature. The next step is to test GPUMCD as a fast clinical Monte Carlo brachytherapy dose calculations with multiple seeds and patient geometry, potentially providing

  6. Seed loss in prostate brachytherapy. Operator dependency and impact on dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    El-Bared, Nancy; Sebbag, Natanel; Beliveau-Nadeau, Dominic; Hervieux, Yannick; Larouche, Renee; Taussky, Daniel; Delouya, Guila [Centre hospitalier de l' Universite de Montreal - Hopital Notre-Dame, Departement de Radio-Oncologie, Montreal, QC (Canada)

    2016-05-15

    The aim of our study was to review seed loss and its impact on dosimetry as well as the influence of the treating physician on seed loss and dosimetry in patients treated with prostate brachytherapy using permanent loose {sup 125}I implant. We analyzed 1087 consecutive patients treated by two physicians between July 2005 and April 2015 at a single institution. Pelvic fluoroscopic imaging was done 30 days post implant and a chest X-ray when seed loss was observed. Seed loss occurred in 19.4 % of patients: in 20.0 % of implants done by the most experienced physician and in 17.2 % by the less experienced physician (p = 0.4) and migration to the thorax occurred in 5.9 % (6.9 vs. 2.2 %, p = 0.004). The mean seed loss rate was 0.57 % [standard deviation (SD) 1.39] and the mean rate of seeds in the thorax was 0.14 % (SD 0.65). The most experienced physician had a higher mean number of seeds lost: 0.36 versus 0.25 (p = 0.055), and a higher mean number of seed migration to the thorax: 0.1 versus 0.02 (p < 0.001). When at least one seed was lost, a decrease of 4.2 Gy (p < 0.001) in the D90 and a decrease of 3.5 % (p = 0.002) in the V150 was observed. We found a significant decrease in V150 and D90 with the occurrence of seed loss. Furthermore, we found a difference in seed migration among the physicians demonstrating that seed loss is operator dependant. (orig.) [German] Wir analysierten den Prozentsatz des Seed-Verlusts sowie den Einfluss von Arzterfahrung und Seed-Abgang auf die Dosimetrie bei Patienten, die mit einer Prostata-Brachytherapie mit permanent beweglichen {sup 125}I-Implantaten behandelt wurden. Eingeschlossen in diese Studie wurden alle zwischen Juli 2005 und April 2015 an unserem Krankenhaus von zwei Aerzten konsekutiv behandelten 1087 Patienten. Anhand fluoroskopischer Bilder wurden noch vorhandene Seeds 30 Tage nach dem Eingriff gezaehlt. Bei unvollstaendiger Seed-Anzahl wurde ein Thorax-Roentgenbild angefertigt. In 19% der Patienten ging mindestens ein

  7. Photoacoustic imaging of brachytherapy seeds using a channel-domain ultrasound array system

    Science.gov (United States)

    Harrison, Tyler; Zemp, Roger J.

    2011-03-01

    Brachytherapy is a technique commonly used in the treatment of prostate cancer that relies on the precise placement of small radioactive seeds near the tumor location. The advantage of this technique over traditional radiation therapies is that treatment can be continuous and uniform, resulting in fewer clinic visits and a shorter treatment duration. Two important phases of this treatment are needle guidance for implantation, and post-placement verification for dosimetry. Ultrasound is a common imaging modality used for these purposes, but it can be difficult to distinguish the seeds from surrounding tissues, often requiring other imaging techniques such as MRI or CT. Photoacoustic imaging may offer a viable alternative. Using a photoacoustic system based on an L7- 4 array transducer and a realtime ultrasound array system capable of parallel channel data acquisition streamed to a multi-core computer via PCI-express, we have demonstrated imaging of these seeds at an ultrasound depth of 16 mm and laser penetration depths ranging up to 50 mm in chicken tissue with multiple optical wavelengths. Ultrasound and photoacoustic images are coregistered via an interlaced pulse sequence. Two laser pulses are used to form a photoacoustic image, and at these depths, the brachytherapy seeds are detected with a signal-to-noise ratio of over 26dB. To obtain this result, 1064nm light was used with a fluence of 100mJ/cm2, the ANSI limit for human skin exposure at this wavelength. This study demonstrates the potential for photoacoustic imaging as a candidate technology for brachytherapy seed placement guidance and verification.

  8. Computational and Experimental Evaluations of a Novel Thermo-Brachytherapy Seed for Treatment of Solid Tumors

    Science.gov (United States)

    Warrell, Gregory R.

    Hyperthermia has long been known as a radiation therapy sensitizer of high potential; however successful delivery of this modality and integrating it with radiation have often proved technically difficult. We present the dual-modality thermobrachytherapy (TB) seed, based on the ubiquitous low dose-rate (LDR) brachytherapy permanent implant, as a simple and effective combination of hyperthermia and radiation therapy. Heat is generated from a ferromagnetic or ferrimagnetic core within the seed, which produces Joule heating by eddy currents. A strategically-selected Curie temperature provides thermal self-regulation. In order to obtain a uniform and sufficiently high temperature distribution, additional hyperthermia-only (HT-only) seeds are proposed to be used in vacant spots within the needles used to implant the TB seeds; this permits a high seed density without the use of additional needles. Experimental and computational studies were done both to optimize the design of the TB and HT-only seeds and to quantitatively assess their ability to heat and irradiate defined, patient-specific targets. Experiments were performed with seed-sized ferromagnetic samples in tissue-mimicking phantoms heated by an industrial induction heater. The magnetic and thermal properties of the seeds were studied computationally in the finite element analysis (FEA) solver COMSOL Multiphysics, modelling realistic patient-specific seed distributions. These distributions were derived from LDR permanent prostate implants previously conducted at our institution; various modifications of the seeds' design were studied. The calculated temperature distributions were analyzed by generating temperature-volume histograms, which were used to quantify coverage and temperature homogeneity for a range of blood perfusion rates, as well as for a range of seed Curie temperatures and thermal power production rates. The impact of the interseed attenuation and scatter (ISA) effect on radiation dose distributions

  9. CT-Guided 125I Seed Interstitial Brachytherapy as a Salvage Treatment for Recurrent Spinal Metastases after External Beam Radiotherapy

    Directory of Open Access Journals (Sweden)

    Lihong Yao

    2016-01-01

    Full Text Available The aim of this study is to evaluate the feasibility, safety, and clinical efficacy of CT-guided 125I seed interstitial brachytherapy in patients with recurrent spinal metastases after external beam radiotherapy (EBRT. Between August 2003 and September 2015, 26 spinal metastatic lesions (24 patients were reirradiated by this salvage therapy modality. Treatment for all patients was preplanned using a three-dimensional treatment planning system 3–5 days before 125I seed interstitial brachytherapy; dosimetry verification was performed immediately after seed implantation. Median actual D90 was 99 Gy (range, 90–176, and spinal cord median Dmax was 39 Gy (range, 6–110. Median local control (LC was 12 months (95% CI: 7.0–17.0. The 6- and 12-month LC rates were 52% and 40%, respectively. Median overall survival (OS was 11 months (95% CI: 7.7–14.3; 6-month and 1-, 2-, and 3-year OS rates were 65%, 37%, 14%, and 9%, respectively. Pain-free survival ranged from 2 to 42 months (median, 6; 95% CI: 4.6–7.4. Treatment was well-tolerated, with no radiation-induced vertebral compression fractures or myelopathy reported. Reirradiation with CT-guided 125I seed interstitial brachytherapy appears to be feasible, safe, and effective as pain relief or salvage treatment for patients with recurrent spinal metastases after EBRT.

  10. Comparative dosimetry of prostate brachytherapy with I-125 and Pd-103 seeds via SISCODES/MCNP

    Energy Technology Data Exchange (ETDEWEB)

    Trindade, Bruno Machado; Falcao, Patricia Lima, E-mail: bmtrindade@yahoo.com [Nucleo de Radiacoes Ionizantes - Universidade Federal de Minas Gerais (NRI/UFMG), Belo Horizonte, MG (Brazil); Christovao, Marilia Tavares [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Trindade, Daniela de Fatima Maia [Centro Universitario Una, Belo Horizonte, MG (Brazil); Campos, Tarcisio Passos Ribeiro de [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)

    2012-09-15

    Objective: The present paper is aimed at presenting a comparative dosimetric study of prostate brachytherapy with I-125 and Pd-103 seeds. Materials and Methods: A protocol for both implants with 148 seeds was simulated on a heterogeneous three-dimensional pelvic phantom by means of the SISCODES/MCNP5 codes. Dose-volume histograms on prostate, rectum and bladder, dose indexes D10, D30, D90, D0.5cc, D2cc and D7cc, and representations of the spatial dose distribution were evaluated. Results: For a D90 index equivalent to the prescription dose, the initial activity of each I-125 seed was calculated as 0.42 mCi and of Pd-103 as 0.94 mCi. The maximum dose on the urethra was 90% and 108% of the prescription dose for I-125 and Pd-103, respectively. The D2cc for I-125 was 30 Gy on the rectum and 127 Gy on the bladder; for Pd-103 was 29 Gy on the rectum and 189 Gy on the bladder. The D10 on the pubic bone was 144 Gy for I-125 and 66 Gy for Pd-103. Conclusion: The results indicate that Pd-103 and I-125 implants could deposit the prescribed dose on the target volume. Among the findings of the present study, there is an excessive radiation exposure of the pelvic bones, particularly with the I-125 protocol. (author)

  11. Embolized prostatic brachytherapy seeds mimicking acute chest pain syndromes

    Directory of Open Access Journals (Sweden)

    Nirmal Guragai

    2017-01-01

    Full Text Available A 59-year-old male with a history of nonobstructive coronary artery disease, diabetes mellitus, hypertension, and prostate cancer presented to the hospital with 1-day history of pleuritic chest pain. Initial workup for acute coronary event was unremarkable. Chest X-ray revealed multiple small radial densities which were linear and hyperdense, consistent with embolization of metallic seeds to the pulmonary circulation. The patient was noted to have had radioactive metallic seeds implanted for prostate cancer 6 months ago. Diagnosis of pulmonary embolization of prostatic seeds is challenging as they frequently present with chest pain mimicking acute coronary syndromes.

  12. A pilot study of intraluminal brachytherapy using (125)I seed strand for locally advanced pancreatic ductal adenocarcinoma with obstructive jaundice.

    Science.gov (United States)

    Yang, MinJie; Yan, ZhiPing; Luo, JianJun; Liu, QingXin; Zhang, Wen; Ma, JinQing; Zhang, ZiHan; Yu, TianZhu; Zhao, Qian; Liu, LingXiao

    To investigate the safety and feasibility of intraluminal brachytherapy using (125)I seed strand for locally advanced pancreatic ductal adenocarcinoma with obstructive jaundice. From January 2010 to February 2015, 18 consecutive patients diagnosed with locally advanced, nonmetastatic, inoperable pancreatic ductal adenocarcinoma with obstructive jaundice were enrolled and underwent intraluminal brachytherapy using (125)I seed strand. Dose calculation was performed using a software. The procedure-related and radiation complications were assessed. Obstruction-free survival and overall survival were calculated using the Kaplan-Meier method. The technique successful rate of (125)I seed strand implantation was 100%. Successful bile drainage was achieved in all patients. The estimated mean accumulating dose (R = 5 mm, z = 0, 240 days) was 167.2 Gy, from 164.19 to 170.05 Gy. Two patients had adverse event of Grade 3, one of Grade 4. Stent dysfunction occurred in 1/18 (5.6%) patients. The mean and median obstruction-free survival time were 10.61 months (95% confidence interval [CI]: 7.04, 14.18) and 7.26 months (95% CI: 2.14, 12.38). The mean and median overall survival time were 11.91 months (95% CI: 7.39, 16.43) and 7.26 months (95% CI: 2.14, 12.38). Intraluminal brachytherapy using (125)I seed strand may be consider as a safe treatment option for the therapy of locally advanced pancreatic duct adenocarcinoma complicated by obstructive jaundice with acceptable complication rates. Copyright © 2016 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  13. Complementary method of analyzing the quality of the implant I-125 seeds for prostate brachytherapy using ultrasound imaging post-implant; Metodo complementario de analisis de la calidad del implante de semillas de I-125 para braquiterapia de prostata mediante la adquisicion de imagenes ecograficas post-implante

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez Dominguez, M.; Carrasco Herrera, M.; Baeza Trujillo, M.; Herrador Cordoba, M.

    2011-07-01

    In this paper we propose a complementary method based on Longitudinal mode ultrasound images acquired the same day of surgery, at the end of the implant. This option will allow us to evaluate the dosimetry end of treatment with the patient in the same position he was planning and to the rectum and bladder just as full. This will permit the identification of bodies and the seeds of interest more easily and will have a reference with which to compare one month later, when the CT images can also detect whether there has been some migration.

  14. Development of irradiation support devices for production of brachytherapy seeds

    Energy Technology Data Exchange (ETDEWEB)

    Mattos, Fabio R.; Rostelato, Maria Elisa C.M.; Zeituni, Carlos A.; Souza, Carla D.; Moura, Joao A.; Peleias Junior, Fernando S.; Karan Junior, Dib; Feher, Anselmo; Oliveira, Tiago B.; Benega, Marcos A.G., E-mail: tiagooliveira298@gmail.com, E-mail: mattos.fr@gmail.com, E-mail: elisaros@ipen.br, E-mail: czeituni@ipen.br, E-mail: carladdsouza@yahoo.com.br, E-mail: jamoura@ipen.br, E-mail: ernandopeleias@gmail.com, E-mail: s, E-mail: dib.karan@usp.br, E-mail: afeher@ipen.br, E-mail: marcosagbenega@gmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Ophthalmic tumors treatment with brachytherapy sources has been widely used as a primary or secondary therapy for non-malignant or malignant tumors, for example, choroid melanoma, and retinoblastoma. Ruthenium-106, Iodine-125, Palladium -103, Gold-198 and Iridium-192, are some radionuclides that can be applied for treatment of ocular tumors. These sources are in small sizes (a few millimeters) and different shapes (rods, wires, disks). To ensure high accuracy during treatment, they are positioned in eye applicators, specially designed to fit on the surface of tumor. The Nuclear and Energy Research Institute (IPEN/CNEN) in a partnership with Paulista Medicine School (UNIFESP) created a project that aims to develop a prototype of Iridium-192 seeds for treatment of eye cancer. This seed consists in a core of Ir -Pt alloy (20%-80%) with a length of 3 mm, to be activated in IPEN's IEA-R1 Reactor, and a titanium capsule sealing the core. It was imperative to develop a sustainer device for irradiation. This piece is used to avoid overlapping of one cores and, therefore, avoiding the 'shadow effect' that does not allow full activation of each core due to the high density. (author)

  15. Development of an encapsulation method using plasma arc welding to produce iodine-125 seeds for brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Feher, Anselmo; Calvo, Wilson A.P.; Rostelato, Maria E.C.M.; Zeituni, Carlos A.; Somessari, Samir L.; Costa, Osvaldo L.; Moura, Joao A.; Moura, Eduardo S.; Souza, Carla D.; Rela, Paulo R., E-mail: afeher@ipen.b, E-mail: wapcalvo@ipen.b, E-mail: elisaros@ipen.b, E-mail: somessar@ipen.b, E-mail: olcosta@ipen.b, E-mail: esmoura@ipen.b, E-mail: cdsouza@ipen.b, E-mail: prela@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    The prostate cancer, which is the second cause of death by cancer in men, overcome only by lung cancer is public health problem in Brazil. Brachytherapy is among the possible available treatments for prostate cancer, in which small seeds containing Iodine-125 radioisotope are implanted into the prostate gland. The seed consists of a titanium sealed capsule with 0.8 mm external diameter and 4.5 mm length, containing a central silver wire with adsorbed Iodine-125. The Plasma Arc Welding (PAW) is one of the viable techniques for sealing process. The equipment used in this technique is less costly than in other processes, such as, Laser Beam Welding (LBW). The main purpose of this work was the development of an encapsulation method using PAW. The development of this work has presented the following phases: cutting and cleaning titanium tube, determination of the welding parameters, development of a titanium tube holding device for PAW, sealed sources validation according to ISO 2919 - Sealed Radioactive Sources - General Requirements and Classification, and metallographic assays. The developed procedure to seal Iodine-125 seeds using PAW has shown high efficiency, satisfying all the established requirements of ISO 2919. The results obtained in this work will give the possibility to establish a routine production process according to the orientations presented in resolution RDC 17 - Good Manufacturing Practices to Medical Products defined by the ANVISA - National Agency of Sanitary Surveillance. (author)

  16. SU-F-BRA-03: Integrating Novel Electromagnetic Tracking Hollow Needle Assistance in Permanent Implant Brachytherapy Procedures

    Energy Technology Data Exchange (ETDEWEB)

    Racine, E; Hautvast, G; Binnekamp, D [Philips Group Innovation - Biomedical Systems, Eindhoven (Netherlands); Beaulieu, L [Centre Hospitalier Univ de Quebec, Quebec, QC (Canada)

    2015-06-15

    Purpose: To report on the results of a complete permanent implant brachytherapy procedure assisted by an electromagnetic (EM) hollow needle possessing both 3D tracking and seed drop detection abilities. Methods: End-to-end in-phantom EM-assisted LDR procedures were conducted. The novel system consisted of an EM tracking apparatus (NDI Aurora V2, Planar Field Generator), a 3D US scanner (Philips CX50), a hollow needle prototype allowing 3D tracking and seed drop detection and a specially designed treatment planning software (Philips Healthcare). A tungsten-doped 30 cc spherical agarose prostate immersed in gelatin was used for the treatment. A cylindrical shape of 0.8 cc was carved along its diameter to mimic the urethra. An initial plan of 26 needles and 47 seeds was established with the system. The plan was delivered with the EM-tracked hollow needle, and individual seed drop locations were recorded on the fly. The phantom was subsequently imaged with a CT scanner from which seed positions and contour definitions were obtained. The DVHs were then independently recomputed and compared with those produced by the planning system, both before and after the treatment. Results: Of the 47 seeds, 45 (96%) were detected by the EM technology embedded in the hollow needle design. The executed plan (from CT analysis) differed from the initial plan by 2%, 14% and 8% respectively in terms of V100, D90 and V150 for the prostate, and by 8%, 7% and 10% respectively in terms of D5, V100 and V120 for the urethra. Conclusion: The average DVH deviations between initial and executed plans were within a 5% tolerance imposed for this proof-of-concept assessment. This relatively good concordance demonstrates the feasibility and potential benefits of combining EM tracking and seed drop detection for real-time dosimetry validation and assistance in permanent implant brachytherapy procedures. This project has been entirely funded by Philips Healthcare.

  17. Photoacoustic-guided focused ultrasound for accurate visualization of brachytherapy seeds with the photoacoustic needle

    NARCIS (Netherlands)

    Kuniyil Ajith Singh, M.; Parameshwarappa, Vinay; Hendriksen, E.; Steenbergen, Wiendelt; Manohar, Srirang

    2016-01-01

    An important problem in minimally invasive photoacoustic (PA) imaging of brachytherapy seeds is reflection artifacts caused by the high signal from the optical fiber/needle tip reflecting off the seed. The presence of these artifacts confounds interpretation of images. In this letter, we demonstrate

  18. A novel curvilinear approach for prostate seed implantation

    Energy Technology Data Exchange (ETDEWEB)

    Podder, Tarun K.; Dicker, Adam P.; Hutapea, Parsaoran; Darvish, Kurosh; Yu Yan [Department of Radiation Oncology, Leo Jenkins Cancer Center, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834 (United States); Department of Radiation Oncology, Kimmel Cancer Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107 (United States); Department of Mechanical Engineering, Temple University, Philadelphia, Pennsylvania 19122 (United States); Department of Radiation Oncology, Kimmel Cancer Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107 (United States)

    2012-04-15

    Purpose: A new technique called ''curvilinear approach'' for prostate seed implantation has been proposed. The purpose of this study is to evaluate the dosimetric benefit of curvilinear distribution of seeds for low-dose-rate (LDR) prostate brachytherapy. Methods: Twenty LDR prostate brachytherapy cases planned intraoperatively with VariSeed planning system and I-125 seeds were randomly selected as reference rectilinear cases. All the cases were replanned by using curved-needle approach keeping the same individual source strength and the volume receiving 100% of prescribed dose 145 Gy (V{sub 100}). Parameters such as number of needles, seeds, and the dose coverage of the prostate (D{sub 90}, V{sub 150}, V{sub 200}), urethra (D{sub 30}, D{sub 10}) and rectum (D{sub 5}, V{sub 100}) were compared for the rectilinear and the curvilinear methods. Statistical significance was assessed using two-tailed student's t-test. Results: Reduction of the required number of needles and seeds in curvilinear method were 30.5% (p < 0.001) and 11.8% (p < 0.49), respectively. Dose to the urethra was reduced significantly; D{sub 30} reduced by 10.1% (p < 0.01) and D{sub 10} reduced by 9.9% (p < 0.02). Reduction in rectum dose D{sub 5} was 18.5% (p < 0.03) and V{sub 100} was also reduced from 0.93 cc in rectilinear to 0.21 cc in curvilinear (p < 0.001). Also the V{sub 150} and V{sub 200} coverage of prostate reduced by 18.8% (p < 0.01) and 33.9% (p < 0.001), respectively. Conclusions: Significant improvement in the relevant dosimetric parameters was observed in curvilinear needle approach. Prostate dose homogeneity (V{sub 150}, V{sub 200}) improved while urethral dose was reduced, which might potentially result in better treatment outcome. Reduction in rectal dose could potentially reduce rectal toxicity and complications. Reduction in number of needles would minimize edema and thereby could improve postimplant urinary incontinence. This study indicates that the

  19. Radiobiologically based treatment plan evaluation for prostate seed implants

    Directory of Open Access Journals (Sweden)

    Sotirios Stathakis

    2011-07-01

    Full Text Available Purpose: Accurate prostate low dose-rate brachytherapy treatment plan evaluation is important for future care decisions. Presently, an evaluation is based on dosimetric quantifiers for the tumor and organs at risk. However, these do not account for effects of varying dose-rate, tumor repopulation and other biological effects. In this work, incorporation of the biological response is used to obtain more clinically relevant treatment plan evaluation.Material and methods: Eleven patients were evaluated. Each patient received a 145 Gy implant. Iodine-125 seeds were used and the treatment plans were created on the Prowess system. Based on CT images the post-implant plan was created. In the post-plan, the tumor, urethra, bladder and rectum were contoured. The biologically effective dose was used to determine the tumor control probability and the normal tissue complication probabilities for the urethra, bladder, rectum and surrounding tissue. Results: The average tumor control probability and complication probabilities for the urethra, bladder, rectum and surrounding tissue were 99%, 29%, 0%, 12% and 6%, respectively. These measures provide a simpler means for evaluation and since they include radiobiological factors, they provide more reliable estimation of the treatment outcome. Conclusions: The goal of this work was to create more clinically relevant prostate seed-implant evaluation by incorporating radiobiological measures. This resulted in a simpler descriptor of treatment plan quality and was consistent with patient outcomes.

  20. Radiobiologically based treatment plan evaluation for prostate seed implants.

    Science.gov (United States)

    Knaup, Courtney; Mavroidis, Panayiotis; Esquivel, Carlos; Baltas, Dimos; Stathakis, Sotirios; Swanson, Gregory; Papanikolaou, Nikos

    2011-06-01

    Accurate prostate low dose-rate brachytherapy treatment plan evaluation is important for future care decisions. Presently, an evaluation is based on dosimetric quantifiers for the tumor and organs at risk. However, these do not account for effects of varying dose-rate, tumor repopulation and other biological effects. In this work, incorporation of the biological response is used to obtain more clinically relevant treatment plan evaluation. Eleven patients were evaluated. Each patient received a 145 Gy implant. Iodine-125 seeds were used and the treatment plans were created on the Prowess system. Based on CT images the post-implant plan was created. In the post-plan, the tumor, urethra, bladder and rectum were contoured. The biologically effective dose was used to determine the tumor control probability and the normal tissue complication probabilities for the urethra, bladder, rectum and surrounding tissue. The average tumor control probability and complication probabilities for the urethra, bladder, rectum and surrounding tissue were 99%, 29%, 0%, 12% and 6%, respectively. These measures provide a simpler means for evaluation and since they include radiobiological factors, they provide more reliable estimation of the treatment outcome. The goal of this work was to create more clinically relevant prostate seed-implant evaluation by incorporating radiobiological measures. This resulted in a simpler descriptor of treatment plan quality and was consistent with patient outcomes.

  1. Permanent 125I-seed prostate brachytherapy: early prostate specific antigen value as a predictor of PSA bounce occurrence

    Science.gov (United States)

    2012-01-01

    Purpose To evaluate predictive factors for PSA bounce after 125I permanent seed prostate brachytherapy and identify criteria that distinguish between benign bounces and biochemical relapses. Materials and methods Men treated with exclusive permanent 125I seed brachytherapy from November 1999, with at least a 36 months follow-up were included. Bounce was defined as an increase ≥ 0.2 ng/ml above the nadir, followed by a spontaneous return to the nadir. Biochemical failure (BF) was defined using the criteria of the Phoenix conference: nadir +2 ng/ml. Results 198 men were included. After a median follow-up of 63.9 months, 21 patients experienced a BF, and 35.9% had at least one bounce which occurred after a median period of 17 months after implantation (4-50). Bounce amplitude was 0.6 ng/ml (0.2-5.1), and duration was 13.6 months (4.0-44.9). In 12.5%, bounce magnitude exceeded the threshold defining BF. Age at the time of treatment and high PSA level assessed at 6 weeks were significantly correlated with bounce but not with BF. Bounce patients had a higher BF free survival than the others (100% versus 92%, p = 0,007). In case of PSA increase, PSA doubling time and velocity were not significantly different between bounce and BF patients. Bounces occurred significantly earlier than relapses and than nadir + 0.2 ng/ml in BF patients (17 vs 27.8 months, p brachytherapy and young age were significantly associated to a higher risk of bounces but not to BF. Long delays between brachytherapy and PSA increase are more indicative of BF. PMID:22449081

  2. Permanent 125I-seed prostate brachytherapy: early prostate specific antigen value as a predictor of PSA bounce occurrence

    Directory of Open Access Journals (Sweden)

    Mazeron Renaud

    2012-03-01

    Full Text Available Abstract Purpose To evaluate predictive factors for PSA bounce after 125I permanent seed prostate brachytherapy and identify criteria that distinguish between benign bounces and biochemical relapses. Materials and methods Men treated with exclusive permanent 125I seed brachytherapy from November 1999, with at least a 36 months follow-up were included. Bounce was defined as an increase ≥ 0.2 ng/ml above the nadir, followed by a spontaneous return to the nadir. Biochemical failure (BF was defined using the criteria of the Phoenix conference: nadir +2 ng/ml. Results 198 men were included. After a median follow-up of 63.9 months, 21 patients experienced a BF, and 35.9% had at least one bounce which occurred after a median period of 17 months after implantation (4-50. Bounce amplitude was 0.6 ng/ml (0.2-5.1, and duration was 13.6 months (4.0-44.9. In 12.5%, bounce magnitude exceeded the threshold defining BF. Age at the time of treatment and high PSA level assessed at 6 weeks were significantly correlated with bounce but not with BF. Bounce patients had a higher BF free survival than the others (100% versus 92%, p = 0,007. In case of PSA increase, PSA doubling time and velocity were not significantly different between bounce and BF patients. Bounces occurred significantly earlier than relapses and than nadir + 0.2 ng/ml in BF patients (17 vs 27.8 months, p Conclusion High PSA value assessed 6 weeks after brachytherapy and young age were significantly associated to a higher risk of bounces but not to BF. Long delays between brachytherapy and PSA increase are more indicative of BF.

  3. SU-F-T-03: Radiobiological Evaluation of a Directional Brachytherapy Device Surgically Implanted Following EBRT

    Energy Technology Data Exchange (ETDEWEB)

    Rivard, MJ [Tufts University School of Medicine, Boston, MA (United States); Emrich, JG; Poli, J [Drexel University College of Medicine, Philadelphia, PA (United States)

    2016-06-15

    Purpose: Preceding surgical implantation following external-beam radiotherapy (EBRT) delivery, a radiobiological evaluation was performed for a new LDR Pd-103 directional brachytherapy device (CivaSheet). As this was the first case with the device used in combination with EBRT, there was concern to determine the appropriate prescription dose. Methods: The radiobiological model of Dale (1985, 1989) was used for a permanent LDR implant including radioactive decay. The biological effective dose (BED) was converted to the equivalent dose in 2 Gy fractions (EQD2) for comparison with EBRT prescription expectations. Given IMRT delivery of 50.4 Gy, an LDR brachytherapy dose of approximately 15–20 Gy EQD2 was desired. To be specific to the treatment site (leiomyosarcoma T2bN0M0, grade 2 with R1 surgical margin), the radiobiological model required several radiobiological parameters with values taken from the literature. A sensitivity analysis was performed to determine their relative importance on the calculated BED and subsequent EQD2. The Pd-103 decay constant (λ=0.0017 h{sup −1}) was also used. DVHs were prepared for pre- and post-surgical geometries to glean the possible and realized implant geometric configuration. DVHs prepared in VariSeed9 were converted to BEDVHs and subsequently EQD2 values for each volume-element. Results: For a physical dose of 28 Gy to a 0.5 cm depth, BED=21.7 Gy and EQD2=17.6 Gy, which was near the center of the desired EQD2 range. Tumor bed (CTV=4 cm{sup 3}) coverage was 99.2% with 48 sources implanted. In order of decreasing importance from the sensitivity analysis, the radiobiological parameters were α=0.25 Gy{sup −1}, T{sub POT}=23 days, α/β=8.6 Gy, and T=1.5 h. Percentage variations in these values produced EQD2 variations of 40%, 20%, 18%, and 1%, respectively. Conclusion: This radiobiological evaluation indicated that prescription dose may be determined for comparison with the desired EQD2, and that radiobiologicalparameter

  4. WE-AB-BRA-12: Post-Implant Dosimetry in Prostate Brachytherapy by X-Ray and MRI Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Park, S; Song, D; Lee, J [Johns Hopkins University, Baltimore, MD (United States); Le, Y [Indiana University, Indianapolis, IN (United States)

    2016-06-15

    Purpose: For post-implant dosimetric assessment after prostate brachytherapy, CT-MR fusion approach has been advocated due to the superior accuracy on both seeds localization and soft tissue delineation. However, CT deposits additional radiation to the patient, and seed identification in CT requires manual review and correction. In this study, we propose an accurate, low-dose, and cost-effective post-implant dosimetry approach based on X-ray and MRI. Methods: Implanted seeds are reconstructed using only three X-ray fluoroscopy images by solving a combinatorial optimization problem. The reconstructed seeds are then registered to MR images using an intensity-based points-to-volume registration. MR images are first pre-processed by geometric and Gaussian filtering, yielding smooth candidate seed-only images. To accommodate potential soft tissue deformation, our registration is performed in two steps, an initial affine followed by local deformable registrations. An evolutionary optimizer in conjunction with a points-to-volume similarity metric is used for the affine registration. Local prostate deformation and seed migration are then adjusted by the deformable registration step with external and internal force constraints. Results: We tested our algorithm on twenty patient data sets. For quantitative evaluation, we obtained ground truth seed positions by fusing the post-implant CT-MR images. Seeds were semi-automatically extracted from CT and manually corrected and then registered to the MR images. Target registration error (TRE) was computed by measuring the Euclidean distances from the ground truth to the closest registered X-ray seeds. The overall TREs (mean±standard deviation in mm) are 1.6±1.1 (affine) and 1.3±0.8 (affine+deformable). The overall computation takes less than 1 minute. Conclusion: It has been reported that the CT-based seed localization error is ∼1.6mm and the seed localization uncertainty of 2mm results in less than 5% deviation of prostate D

  5. Coregistered photoacoustic-ultrasound imaging applied to brachytherapy

    Science.gov (United States)

    Harrison, Tyler; Zemp, Roger J.

    2011-08-01

    Brachytherapy is a form of radiation therapy commonly used in the treatment of prostate cancer wherein sustained radiation doses can be precisely targeted to the tumor area by the implantation of small radioactive seeds around the treatment area. Ultrasound is a popular imaging mode for seed implantation, but the seeds are difficult to distinguish from the tissue structure. In this work, we demonstrate the feasibility of photoacoustic imaging for identifying brachytherapy seeds in a tissue phantom, comparing the received intensity to endogenous contrast. We have found that photoacoustic imaging at 1064 nm can identify brachytherapy seeds uniquely at laser penetration depths of 5 cm in biological tissue at the ANSI limit for human exposure with a contrast-to-noise ratio of 26.5 dB. Our realtime combined photoacoustic-ultrasound imaging approach may be suitable for brachytherapy seed placement and post-placement verification, potentially allowing for realtime dosimetry assessment during implantation.

  6. Brachytherapy optimization using radiobiological-based planning for high dose rate and permanent implants for prostate cancer treatment

    Science.gov (United States)

    Seeley, Kaelyn; Cunha, J. Adam; Hong, Tae Min

    2017-01-01

    We discuss an improvement in brachytherapy--a prostate cancer treatment method that directly places radioactive seeds inside target cancerous regions--by optimizing the current standard for delivering dose. Currently, the seeds' spatiotemporal placement is determined by optimizing the dose based on a set of physical, user-defined constraints. One particular approach is the ``inverse planning'' algorithms that allow for tightly fit isodose lines around the target volumes in order to reduce dose to the patient's organs at risk. However, these dose distributions are typically computed assuming the same biological response to radiation for different types of tissues. In our work, we consider radiobiological parameters to account for the differences in the individual sensitivities and responses to radiation for tissues surrounding the target. Among the benefits are a more accurate toxicity rate and more coverage to target regions for planning high-dose-rate treatments as well as permanent implants.

  7. Palliative interstitial HDR brachytherapy for recurrent rectal cancer. Implantation techniques and results

    Energy Technology Data Exchange (ETDEWEB)

    Kolotas, C. [Dept. of Radiation Oncology, Offenbach Hospital, Offenbach (Germany); Dept. of Radio-Oncology, Univ. of Bern, Inselspital, Bern (Switzerland); Roeddiger, S.; Martin, T.; Tselis, N.; Baltas, D.; Zamboglou, N. [Dept. of Radiation Oncology, Offenbach Hospital, Offenbach (Germany); Strassmann, G. [Dept. of Radiotherapy, Univ. Hospital, Philipps Univ., Marburg (Germany); Aebersold, D.M. [Dept. of Radio-Oncology, Univ. of Bern, Inselspital, Bern (Switzerland)

    2003-07-01

    Purpose: To report the methods and clinical results of CT-based interstitial high-dose-rate (HDR) brachytherapy procedures for the palliative treatment of recurrent rectal cancer. Patients and Methods: A total of 44 brachytherapy implants were performed in 38 patients. CT-guided catheter implants were performed in 34 patients under local anesthesia and sedation, and four patients were implanted intraoperatively. Of 40 CT-guided implants, 20 were done using metallic needles introduced via the sacrum and 20 were transperineal implants of plastic tubes in the presacral region. Postimplant CT scans were used for three-dimensional (3-D) conformal brachytherapy planning. Patients implanted with metallic needles were given a single fraction of 10-15 Gy using HDR {sup 192}Ir, and those who received transperineal implants of plastic catheters were given fractionated brachytherapy, 5 Gy twice daily to a total dose of 30-40 Gy. The median tumor volume was 225 cm{sup 3} with a range of 41-2,103 cm{sup 3}. Results: After a median follow-up of 23.4 months, a total of 13/38 patients were alive. The median postbrachytherapy survival was 15 months with 18 of the 25 deaths due to distant metastases. Tumor response was as follows: 6/38 partial remission, 28/38 stable disease, and 4/38 local progression. A planning target volume (PTV) coverage > 85% was achieved in 42/44 implants. The treatment was well tolerated, and no acute complications were observed. One patient developed a fistula after 8 months. Pain relief was recorded in 34 patients (89.5%), and the median duration of this palliative effect was 5 months with a range of 1-13 months. Conclusions: Interstitial HDR brachytherapy is a valuable tool for the delivery of high doses and achieves effective palliation in recurrent rectal carcinoma. (orig.)

  8. The surgical viability and radiological monitoring of brain implants of bioactive micro-seeds in an animal model

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Giane X.O.; Campos, Tarcisio Passos Ribeiro de; Siqueira, Savio Lana; Maciel, Marcelo B. [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Programa de Pos-graduacao em Ciencias e Tecnicas Nucleares

    2005-10-15

    The interstitial implant is a therapeutic modality in brachytherapy of the head and neck. Presently, the seeds implanted in tumors in the central nervous system are metallic I-125. After the full emission of the radionuclide, the seed remains inert in the implanted area. Bioactive ceramic seeds have been prepared for this research group incorporating Sm-152 to be active in Sm-153. The main goal of the present study is the development of a the surgical technique for implanting the biodegradable radioactive micro-seeds in the brains of rabbits, as well as the observation of the clinical reactions of the animal after implantation of two sets of three seeds. The surgical procedure consisted of performing two separate perforations 10 mm from each other in the skull, permitting the implantation of two groups of three seeds, totaling six seeds. The results of the pilot study showed the effectiveness of the surgical procedure and of the biocompatibility of the seeds and the lack of presence of adverse reactions, functional sequels, or inflammation in a follow up 50 days post-surgery. Such seeds of reduced volume, 0.2 x 1.6 mm, could be monitored by computerized tomography 30 days after implanting. (author)

  9. Assessment of the implant geometry in fractionated interstitial HDR breast brachytherapy using an electromagnetic tracking system.

    Science.gov (United States)

    Kellermeier, Markus; Fietkau, Rainer; Strnad, Vratislav; Bert, Christoph

    During the partial-breast treatment course by interstitial brachytherapy, electromagnetic tracking (EMT) was applied to measure the implant geometry. Implant-geometry variation, choice of reference data, and three registration methods were assessed. The implant geometry was measured in 28 patients after catheter implantation (EMTbed), during CT imaging (EMTCT), and in each of up to n = 9 treatment fractions (EMTF(k), k = 1, 2,… n). EMTF(k) were registered to the planned implant reconstruction (CTplan) by using all dwell positions (DPs), the button centers, or three fiducial sensors on the patient's skin. Variation in implant geometry obtained from EMTF(k) was assessed for EMTbed, EMTCT, and CTplan. EMT was used to measure 3932 catheters. A duration of 6.5 ± 1.7 min was needed for each implant measurement (mean, 17 catheters) plus setup of the EMT system. Data registration based on the DP deviated significantly lower than registration on button centers or fiducial sensors. Within a registration group, there was a geometry in high-dose-rate interstitial brachytherapy breast treatments. EMTbed, EMTCT, and CTplan data can serve as reference for assessment of implant changes. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  10. Preimplant factors affecting postimplant CT-determined prostate volume and the CT/TRUS volume ratio after transperineal interstitial prostate brachytherapy with 125I free seeds

    Directory of Open Access Journals (Sweden)

    Asakura Hirotaka

    2010-09-01

    Full Text Available Abstract Background The aim was to identify preimplant factors affecting postimplant prostate volume and the increase in prostate volume after transperineal interstitial prostate brachytherapy with 125I free seeds. Methods We reviewed the records of 180 patients who underwent prostate brachytherapy with 125I free seeds for clinical T1/T2 prostate cancer. Eighty-one (45% of the 180 patients underwent neoadjuvant hormonal therapy. No patient received supplemental external beam radiotherapy. Postimplant computed tomography was undertaken, and postimplant dosimetric analysis was performed. Univariate and multivariate analyses were performed to identify preimplant factors affecting postimplant prostate volume by computed tomography and the increase in prostate volume after implantation. Results Preimplant prostate volume by transrectal ultrasound, serum prostate-specific antigen, number of needles, and number of seeds implanted were significantly correlated with postimplant prostate volume by computed tomography. The increase in prostate volume after implantation was significantly higher in patients with neoadjuvant hormonal therapy than in those without. Preimplant prostate volume by transrectal ultrasound, number of needles, and number of seeds implanted were significantly correlated with the increase in prostate volume after implantation. Stepwise multiple linear regression analysis showed that preimplant prostate volume by transrectal ultrasound and neoadjuvant hormonal therapy were significant independent factors affecting both postimplant prostate volume by computed tomography and the increase in prostate volume after implantation. Conclusions The results of the present study show that preimplant prostate volume by transrectal ultrasound and neoadjuvant hormonal therapy are significant preimplant factors affecting both postimplant prostate volume by computed tomography and the increase in prostate volume after implantation.

  11. Metallic artifact mitigation and organ-constrained tissue assignment for Monte Carlo calculations of permanent implant lung brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, J. G. H.; Miksys, N.; Thomson, R. M., E-mail: rthomson@physics.carleton.ca [Carleton Laboratory for Radiotherapy Physics, Department of Physics, Carleton University, Ottawa, Ontario K1S 5B6 (Canada); Furutani, K. M. [Department of Radiation Oncology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905 (United States)

    2014-01-15

    assignment within lung contours are employed in generated phantoms, this erroneous assignment is reduced, generally resulting in higher doses. Lung-constrained tissue assignment also results in increased doses in regions of interest due to a reduction in the erroneous assignment of adipose to voxels within lung contours. Differences in dose metrics calculated for different computational phantoms are sensitive to radionuclide photon spectra with the largest differences for{sup 103}Pd seeds and smallest but still considerable differences for {sup 131}Cs seeds. Conclusions: Despite producing differences in CT images, dose metrics calculated using the STR, fan beam + STR, and 3D median filter techniques produce similar dose metrics. Results suggest that the accuracy of dose distributions for permanent implant lung brachytherapy is improved by applying lung-constrained tissue assignment schemes to metallic artifact corrected images.

  12. Development of an automation system for iodine-125 brachytherapy seed production by ND:YAG laser welding

    Energy Technology Data Exchange (ETDEWEB)

    Somessari, Samir L.; Feher, Anselmo; Sprenger, Francisco E.; Rostellato, Maria Elisa C.M.; Costa, Fabio E.; Calvo, Wilson A.P., E-mail: somessar@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP) Sao Paulo, SP (Brazil)

    2009-07-01

    The aim of this work is to develop an automation system for iodine-125 radioactive seed production by Nd:YAG laser welding, which has been used successfully in low dose rate brachytherapy treatment. This small seed consists of a welded titanium capsule, with 0.8 mm in diameter and 4.5 mm in length, containing iodine-125 adsorbed onto a silver rod. The iodine-125 seeds are implanted into the human prostate to irradiate the tumor for cancer treatment. Nowadays, the Radiation Technology Center, at IPEN-CNEN/SP imports and distributes 36,000 iodine-125 seeds per year, for the clinics and hospitals in the country. However, the Brazilian market potential is now over 8,000 iodine-125 seeds per month. The local production of these iodine-125 radioactive sources became a priority for the Institute, in order to reduce the price and the problems of prostate cancer management. It will permit to spread their use to a larger number of patients in Brazil. On the other hand, the industrial automation plays an important role for iodine-125 seeds in order to increase the productivity, with high quality and assurance, avoiding human factors, implementing and operating with good manufacturing practices. The technology consists of appliance electronic and electro-mechanical parts and components to control machines and processes. The automation system technology for iodine-125 seed production developed in this work was mainly assembled employing a Programmable Logic Controller, a stepper motor, an Nd:YAG laser welding machine and a supervisory. (author)

  13. Pathological impairments induced by interstitial implantation of 125I Seeds in spinal canal of banna mini-pigs

    Directory of Open Access Journals (Sweden)

    Yang Zuozhang

    2012-03-01

    Full Text Available Abstract Background Use a banna mini-pig to set up 125I implantation model, and investigate the consequence of radiation-related impairments. Methods In present study, 125I seeds were implanted into spinal canal of T13 level of spine in banna mini-pigs. After operation, the pigs were raised up to 8 months, behavior changes were recorded within this period. After 8 months, spinal cords were collected for pathological analysis. Results In this study, a 125I brachytherapy animal model had been successfully established, in the model group, the banna pigs' Tarlov scale decreased from 5 to 2.57 ± 0.36, significant cellular impairments were noted by pathological analysis. Conclusions Without any protection and operation improvement, 125I implantation can cause serious histological impairments and moving difficulty for banna mini-pigs; this present research provides an alternative tool to study spinal 125I brachytherapy.

  14. [Ultrastructural study on the facial nerve of rabbit after (125)I seed implantation].

    Science.gov (United States)

    Zuo, Jian; Song, Tie-li; Ju, Xiang-qun; Zheng, Lei; Cai, Zhi-gang; Zhang, Jian-guo

    2011-08-01

    To investigate the ultrastructural variation of the facial nerve of rabbit with different dosage of (125)I seed brachytherapy. Fifty-four big ear rabbits were divided into 3 groups randomly and given 40 Gy, 80 Gy, 120 Gy respectively. Radioactive seeds were implanted in one side of parotid gland, the other side was implanted with vacant shell as a control group. The facial nerves were obtained 2, 4, 6 months respectively after operation and the histological ultrastructural changes observed by electromicroscope. In the control group, epineurium was continuous, there was slight pitting edema under the epineurium, and axonal myelin was loose. In the test groups, there was slight pitting edema under the epineurium, and axonal myelin sheath was loose at 4th month. Macrophage and regenerated fibers were found in the 80 Gy group and myelin sheath lamellar separation, regeneration of nerve in the 120 Gy dosage. The myelin sheath lamellar was separated and axonal myelin loose in the test group at 6th month. Myelin sheath amellar separation and edema under the epineurium were found in the group of 80 Gy and 120 Gy. The ultrastructure of the facial nerve is damaged by the dosage of 40 Gy, 80 Gy brachytherapy with (125)I seeds. The higher dosage the nerve receives, the more serious the damage will be. Both of the epineurium and axonal myelin sheath are integral and continuous 6 months after operation with dosage of 120 Gy.

  15. An algorithm for efficient metal artifact reductions in permanent seed implants

    Energy Technology Data Exchange (ETDEWEB)

    Xu Chen; Verhaegen, Frank; Laurendeau, Denis; Enger, Shirin A.; Beaulieu, Luc [Departement de Radio-Oncologie et Centre de Recherche en Cancerologie, Universite Laval, Centre Hospitalier Universitaire de Quebec, 11 Cote du Palais, Quebec, Quebec G1R 2J6 (Canada) and Departement de Genie Electrique et Genie Informatique, Laboratoire de Vision et Systemes Numeriques, Universite Laval, Quebec, Quebec G1K 7P4 (Canada); Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6201 BN (Netherlands) and Oncology Department, Montreal General Hospital, McGill University, 1650 Cedar Avenue, Montreal, Quebec H3G 1A4 (Canada); Departement de Genie Electrique et Genie Informatique, Laboratoire de Vision et Systemes Numeriques, Universite Laval, Quebec, Quebec G1K 7P4 (Canada); Departement de Radio-Oncologie et Centre de Recherche en Cancerologie, Universite Laval, Centre Hospitalier Universitaire de Quebec, 11 Co circumflex te du Palais, Quebec, Quebec G1R 2J6 (Canada); Departement de Radio-Oncologie et Centre de Recherche en Cancerologie, Universite Laval, Centre Hospitalier Universitaire de Quebec, 11 Cote du Palais, Quebec, Quebec G1R 2J6 (Canada) and Departement de Physique, de Genie Physique et d' Optique, Universite Laval, Quebec, Quebec G1K 7P4 (Canada)

    2011-01-15

    Purpose: In permanent seed implants, 60 to more than 100 small metal capsules are inserted in the prostate, creating artifacts in x-ray computed tomography (CT) imaging. The goal of this work is to develop an automatic method for metal artifact reduction (MAR) from small objects such as brachytherapy seeds for clinical applications. Methods: The approach for MAR is based on the interpolation of missing projections by directly using raw helical CT data (sinogram). First, an initial image is reconstructed from the raw CT data. Then, the metal objects segmented from the reconstructed image are reprojected back into the sinogram space to produce a metal-only sinogram. The Steger method is used to determine precisely the position and edges of the seed traces in the raw CT data. By combining the use of Steger detection and reprojections, the missing projections are detected and replaced by interpolation of non-missing neighboring projections. Results: In both phantom experiments and patient studies, the missing projections have been detected successfully and the artifacts caused by metallic objects have been substantially reduced. The performance of the algorithm has been quantified by comparing the uniformity between the uncorrected and the corrected phantom images. The results of the artifact reduction algorithm are indistinguishable from the true background value. Conclusions: An efficient algorithm for MAR in seed brachytherapy was developed. The test results obtained using raw helical CT data for both phantom and clinical cases have demonstrated that the proposed MAR method is capable of accurately detecting and correcting artifacts caused by a large number of very small metal objects (seeds) in sinogram space. This should enable a more accurate use of advanced brachytherapy dose calculations, such as Monte Carlo simulations.

  16. Photoacoustic-guided focused ultrasound for accurate visualization of brachytherapy seeds with the photoacoustic needle

    Science.gov (United States)

    Singh, Mithun Kuniyil Ajith; Parameshwarappa, Vinay; Hendriksen, Ellen; Steenbergen, Wiendelt; Manohar, Srirang

    2016-12-01

    An important problem in minimally invasive photoacoustic (PA) imaging of brachytherapy seeds is reflection artifacts caused by the high signal from the optical fiber/needle tip reflecting off the seed. The presence of these artifacts confounds interpretation of images. In this letter, we demonstrate a recently developed concept called photoacoustic-guided focused ultrasound (PAFUSion) for the first time in the context of interstitial illumination PA imaging to identify and remove reflection artifacts. In this method, ultrasound (US) from the transducer is focused on the region of the optical fiber/needle tip identified in a first step using PA imaging. The image developed from the US diverging from the focus zone at the tip region visualizes only the reflections from seeds and other acoustic inhomogeneities, allowing identification of the reflection artifacts of the first step. These artifacts can then be removed from the PA image. Using PAFUSion, we demonstrate reduction of reflection artifacts and thereby improved interstitial PA visualization of brachytherapy seeds in phantom and ex vivo measurements on porcine tissue.

  17. Permanent Breast Seed Implant Dosimetry Quality Assurance

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Brian M., E-mail: Brian.Keller@sunnybrook.ca [Department of Medical Physics, Sunnybrook Health Sciences Center, Toronto, ON (Canada); Department of Radiation Oncology, University of Toronto, Sunnybrook Health Sciences Center, Toronto, ON (Canada); Ravi, Ananth [Department of Medical Physics, Sunnybrook Health Sciences Center, Toronto, ON (Canada); Sankreacha, Raxa [Carlo Fidani Regional Cancer Center, Mississauga, ON (Canada); Pignol, Jean-Philippe [Department of Radiation Oncology, University of Toronto, Sunnybrook Health Sciences Center, Toronto, ON (Canada)

    2012-05-01

    Purpose: A permanent breast seed implant is a novel method of accelerated partial breast irradiation for women with early-stage breast cancer. This article presents pre- and post-implant dosimetric data, relates these data to clinical outcomes, and makes recommendations for those interested in starting a program. Methods and Materials: A total of 95 consecutive patients were accrued into one of three clinical trials after breast-conserving surgery: a Phase I/II trial (67 patients with infiltrating ductal carcinoma); a Phase II registry trial (25 patients with infiltrating ductal carcinoma); or a multi-center Phase II trial for patients with ductal carcinoma in situ (3 patients). Contouring of the planning target volume (PTV) was done on a Pinnacle workstation and dosimetry calculations, including dose-volume histograms, were done using a Variseed planning computer. Results: The mean pre-implant PTV coverage for the V{sub 90}, V{sub 100}, V{sub 150}, and V{sub 200} were as follows: 98.8% {+-} 1.2% (range, 94.5-100%); 97.3% {+-} 2.1% (range, 90.3-99.9%), 68.8% {+-} 14.3% (range, 32.7-91.5%); and 27.8% {+-} 8.6% (range, 15.1-62.3%). The effect of seed motion was characterized by post-implant dosimetry performed immediately after the implantation (same day) and at 2 months after the implantation. The mean V{sub 100} changed from 85.6% to 88.4% (p = 0.004) and the mean V{sub 200} changed from 36.2% to 48.3% (p < 0.001). Skin toxicity was associated with maximum skin dose (p = 0.014). Conclusions: Preplanning dosimetry should aim for a V{sub 90} of approximately 100%, a V{sub 100} between 95% and 100%, and a V{sub 200} between 20% and 30%, as these numbers are associated with no local recurrences to date and good patient tolerance. In general, the target volume coverage improved over the duration of the seed therapy. The maximum skin dose, defined as the average dose over the hottest 1 Multiplication-Sign 1-cm{sup 2} surface area, should be limited to 90% of the

  18. Clinical efficacy of CT-guided iodine-125 seed implantation therapy in patients with advanced pancreatic cancer

    Energy Technology Data Exchange (ETDEWEB)

    Zhongmin, Wang [Soochow University, School of Radiation Medicine and Public Health, Suzhou (China); Shanghai Ruijin Hospital Luwan Branch, Shanghai (China); Yu, Liu; Kemin, Chen [Shanghai Ruijin Hospital, Department of Radiology, Shanghai (China); Fenju, Liu [Soochow University, School of Radiation Medicine and Public Health, Suzhou (China); Suzhou Industrial Park, Suzhou (China); Gang, Huang [Shanghai Jiao Tong University, Nuclear Medicine, School of Medicine, Shanghai (China)

    2010-07-15

    To examine the clinical efficacy of CT-guided radioactive iodine-125 (125I) seeds implantation treatment in patients with unresectable pancreatic cancer. Thirty-one patients with inoperable pancreatic cancer were enrolled in this study. The 125I seeds were implanted into pancreatic tumor under CT guidance. In addition, 10 patients received routine gemcitabine and 5-fluorouracil chemotherapy 1 week after brachytherapy. Median diameter of the tumor was 5.8 cm. Follow-up period was 2 to 25 months. Symptoms of refractory pain were significantly resolved post-interventionally (P < 0.05), and Karnofsky physical score increased dramatically (P < 0.05). Tumor response which was demonstrated on repeated CT film 2 months post-treatment revealed complete response (CR) in 3 cases, partial response (PR) in 16 cases, stable disease (SD) in 9 cases, and progressive disease (PD) in 3 cases. Overall responding rate (CR+PR) was 61.3%. Median survival time for all patients was 10.31 months. Two seeds of radioactive 125I migrated to the liver in 2 patients. There were no serious complications detected during the follow-up period. This study suggests that CT-guided brachytherapy using 125I seeds implantation appears to be safe, effective, uncomplicated, and could produce adequate pain relief for treating unresectable pancreatic cancer. (orig.)

  19. An orthodontic device for retaining implanted radioactive sources during brachytherapy for cancer of the oral cavity

    Energy Technology Data Exchange (ETDEWEB)

    Masuko, Noriko; Katsura, Kouji [Niigata Univ. (Japan). School of Dentistry; Sugita, Tadashi; Sakai, Kunio; Sato, Katsurou; Kawana, Masahiro; Nonomura, Naobumi

    2000-03-01

    An orthodontic retainer was devised to keeping implanted radioactive sources in position and improve the quality of life during brachytherapy for cancer of the oral cavity. The retainer was used in 3 patients with oral cancer, one with cancer of the hard palate, one with cancer of the soft palate, and one with cancer of the floor of mouth, during brachytherapy using {sup 198}Au grains and {sup 137}Cs needles. These patients could speak freely. One with cancer of the hard palate could drink water and ingest semi-liquid food during treatment instead of nasal tube feeding. The plaster dental model obtained while making the retainer proved to be useful for training radiation oncologists. (author)

  20. Robot-assisted Laparoscopic Implantation of Brachytherapy Catheters in Bladder Cancer.

    Science.gov (United States)

    Bosschieter, Judith; Vis, André N; van der Poel, Henk G; Moonen, Luc M; Horenblas, Simon; van Rhijn, Bas W G; Pieters, Bradley R; Nieuwenhuijzen, Jakko A; Hendricksen, Kees

    2017-06-12

    Robot-assisted laparoscopic (RAL) implantation of brachytherapy catheters (BTCs) can be a minimally invasive alternative to open retropubic implantation. Descriptions of the surgical technique and outcomes are sparse. To describe our technique and perioperative outcomes for RAL BTC implantation in urothelial carcinoma (UC) and urachal carcinoma (UraC). Between June 2011 and May 2016, 26 patients with cN0M0 solitary T1G3 or T2G1-3 UC of ≤5cm or cN0M0 UraC were scheduled for external beam radiotherapy (20×2Gy), RAL BTC implantation, and pulsed-dose (29×1.04Gy) or high-dose rate brachytherapy (10×2.50Gy). Median follow-up was 12 mo (interquartile range 4-20). RAL BTC implantation with or without pelvic lymph node dissection and/or partial cystectomy. Perioperative data, complications, disease-free-survival (DFS), local recurrence-free survival (LRFS), and cystectomy-free survival (CFS) were evaluated as well as the feasibility of the technique. BTC implantation was successful in 92% of the patients. Median hospitalisation was 5 d (interquartile range 4-7) and blood loss 50ml in all cases. DFS was 74% at 1 yr and 63% at 2 yr. LRFS was 80% at 1 and 2 yr, and CFS was 87% at 1 and 2 yr. Early (≤30 d) high-grade complications (Clavien-Dindo ≥3) occurred in 8% of the patients. The study is limited by the small sample size and short follow-up time. RAL BTC implantation is technically feasible and could serve as safe, minimally invasive alternative to open surgery in selected patients. The results of this study should be confirmed in larger studies. Brachytherapy catheter (BTC) implantation is traditionally carried out via open retropubic surgery. We describe robot-assisted laparoscopic BTC implantation as a minimally invasive alternative. Perioperative outcomes are described and confirm the safety and feasibility of this procedure. Copyright © 2017 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  1. Brachytherapy

    Science.gov (United States)

    ... type of energy, called ionizing radiation, to kill cancer cells and shrink tumors. External beam radiation therapy (EBRT) involves high-energy ... a grain of rice) in or near the tumor and leaving them there permanently. ... the radioactivity level of the implants eventually diminishes to nothing. ...

  2. Dose optimization of intra-operative high dose rate interstitial brachytherapy implants for soft tissue sarcoma

    Directory of Open Access Journals (Sweden)

    Jamema Swamidas

    2009-01-01

    Full Text Available Objective : A three dimensional (3D image-based dosimetric study to quantitatively compare geometric vs. dose-point optimization in combination with graphical optimization for interstitial brachytherapy of soft tissue sarcoma (STS. Materials and Methods : Fifteen consecutive STS patients, treated with intra-operative, interstitial Brachytherapy, were enrolled in this dosimetric study. Treatment plans were generated using dose points situated at the "central plane between the catheters", "between the catheters throughout the implanted volume", at "distances perpendicular to the implant axis" and "on the surface of the target volume" Geometrically optimized plans had dose points defined between the catheters, while dose-point optimized plans had dose points defined at a plane perpendicular to the implant axis and on the target surface. Each plan was graphically optimized and compared using dose volume indices. Results : Target coverage was suboptimal with coverage index (CI = 0.67 when dose points were defined at the central plane while it was superior when the dose points were defined at the target surface (CI=0.93. The coverage of graphically optimized plans (GrO was similar to non-GrO with dose points defined on surface or perpendicular to the implant axis. A similar pattern was noticed with conformity index (0.61 vs. 0.82. GrO were more conformal and less homogeneous compared to non-GrO. Sum index was superior for dose points defined on the surface of the target and relatively inferior for plans with dose points at other locations (1.35 vs. 1.27. Conclusions : Optimization with dose points defined away from the implant plane and on target results in superior target coverage with optimal values of other indices. GrO offer better target coverage for implants with non-uniform geometry and target volume.

  3. The incidence of radioepidermitis and the dose-response relationship in parotid gland cancer patients treated with 125I seed brachytherapy. Incidence of radioepidermitis and the dose-response relationship

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Ming-Hui; Zheng, Lei; Gao, Hong; Zhang, Jie; Liu, Shu-ming; Huang, Ming-wei; Shi, Yan [Peking University School and Hospital of Stomatology, Department of Oral and Maxillofacial Surgery, Beijing (China); Zhang, Jian-Guo [Peking University School and Hospital of Stomatology, Department of Oral and Maxillofacial Surgery, Beijing (China); Fujian Provincial Hospital, Fujian (China)

    2014-09-09

    We studied the incidence and dose-response relationship of radioepidermitis in parotid gland carcinoma patients treated with [{sup 125}I] seed brachytherapy in the hopes of designing an optimized pre-implant treatment plan that would reduce the incidence and severity of radioepidermitis in patients receiving this therapy. Between January 2007 and May 2010, 100 parotid gland cancer patients were treated postoperatively with [{sup 125}I] seed brachytherapy. The matched peripheral dose (MPD) was 80-140 Gy, and [{sup 125}I] seed activity was 0.7-0.8 mCi. The mean dose delivered to the skin was calculated in the post-implant CT on day 0 following implantation. Grades of acute and late dermatitis were evaluated at 2, 6, 12, and 18 months post-implantation. Most patients experienced grade 0-2 acute and late skin side effects (86 and 97 %, respectively), though a small subset developed severe complications. Most grade 1-3 effects resolved within 6 months of implantation, though some grade 1-3 effects and all grade 4 effects remained unchanged throughout the 18-month follow-up period. Grade 3 and 4 effects were most prominent (75 and 25 %, respectively) with doses of 110-140 Gy; doses higher than 140 Gy produced only grade 4 effects. [{sup 125}I] seed brachytherapy produced acceptable levels of acute and late radioepidermitis with a good clinical outcome. A mean dose under 100 Gy delivered to the skin was safe, though doses of 110-140 Gy should be given with caution and extra monitoring; doses greater than 140 Gy are dangerous and likely to produce grade 4-5 effects. (orig.) [German] Wir untersuchten die Inzidenz und die Dosis-Wirkung-Beziehung bei Patienten mit Ohrspeicheldruesenkrebs, die mit [{sup 125}I]-Seed-Brachytherapie behandelt wurden, in der Hoffnung, eine optimierte praeimplantologische Behandlung zu entwickeln, welche die Inzidenz und Schwere der Radioepidermitis bei Patienten, die diese Therapie erhalten haben, reduziert. Zwischen Januar 2007 und Mai 2010

  4. The effect of loose versus stranded seeds on biochemical no evidence of disease in patients with carcinoma of the prostate treated with iodine-125 brachytherapy.

    Science.gov (United States)

    Herbert, Christopher; Morris, W James; Hamm, Jeremy; Lapointe, Vincent; McKenzie, Michael; Pickles, Tom; Spadinger, Ingrid; Keyes, Mira

    2011-01-01

    The British Columbia Cancer Agency has been performing iodine-125 prostate brachytherapy since 1998, initially using loose seeds and phasing into the exclusive use of RAPIDStrand (RS) (Oncura Inc., Plymouth Meeting, PA) by November 2000. The aim of this study was to investigate rates of biochemical no evidence of disease (bNED) in patients treated with loose seeds compared with RS from this population-based cohort. Between July 1998 and February 2006, 1500 implants were performed (327 loose and 1173 RS). Biochemical failure is reported using the Phoenix definition and prostate-specific antigen (PSA) >0.4ng/mL at ≥48 months postimplant. Actuarial estimates were calculated by the Kaplan-Meier method. Analysis was repeated with the first 100 loose and stranded implants excluded to assess the learning curve effect. Log-rank test was used to evaluate differences in bNED. Variables showing association with bNED were included in a multivariate model. There was no difference between loose and stranded seeds. Estimated rate of bNED was 93.5% (95% confidence interval [CI], 90.6-96.4) at 7 years for patients treated with loose seeds and 94.0% (95% CI, 91.8-96.2) for patients treated with RS according to Phoenix definition (p=0.846). Using the PSA >0.4ng/mL definition, estimated rates were 91.3% (95% CI, 88.0-94.6) and 91.9% (95% CI, 89.7-94.1) for loose and stranded seeds, respectively (p=0.871). Exclusion of the first 100 loose and stranded implants also revealed no difference in bNED. This study of 1500 patients treated with iodine-125 brachytherapy demonstrates no difference in bNED between loose and stranded seeds, using either Phoenix or PSA >0.4ng/mL definitions of biochemical failure. Crown Copyright © 2011. Published by Elsevier Inc. All rights reserved.

  5. SU-E-J-233: Effect of Brachytherapy Seed Artifacts in T2 and Proton Density Maps in MR Images

    Energy Technology Data Exchange (ETDEWEB)

    Mashouf, S [Sunnybrook Odette Cancer Centre, Toronto, Ontario (Canada); University of Toronto, Dept of Radiation Oncology, Toronto, Ontario (Canada); Fatemi-Ardekani, A [Sunnybrook Odette Cancer Centre, Toronto, Ontario (Canada); Sunnybrook Research Institute, Toronto, Ontario (Canada); Song, W [Sunnybrook Odette Cancer Centre, Toronto, Ontario (Canada); University of Toronto, Dept of Radiation Oncology, Toronto, Ontario (Canada); Sunnybrook Research Institute, Toronto, Ontario (Canada)

    2015-06-15

    Purpose: This study aims at investigating the influence of brachytherapy seeds on T2 and proton density (PD) maps generated from MR images. Proton density maps can be used to extract water content. Since dose absorbed in tissue surrounding low energy brachytherapy seeds are highly influenced by tissue composition, knowing the water content is a first step towards implementing a heterogeneity correction algorithm using MR images. Methods: An LDR brachytherapy (IsoAid Advantage Pd-103) seed was placed in the middle of an agar-based gel phantom and imaged using a 3T Philips MR scanner with a 168-channel head coil. A multiple echo sequence with TE=20, 40, 60, 80, 100 (ms) with large repetition time (TR=6259ms) was used to extract T2 and PD maps. Results: Seed artifacts were considerably reduced on T2 maps compared to PD maps. The variation of PD around the mean was obtained as −97% to 125% (±1%) while for T2 it was recorded as −71% to 24% (±1%). Conclusion: PD maps which are required for heterogeneity corrections are susceptible to artifacts from seeds. Seed artifacts on T2 maps, however, are significantly reduced due to not being sensitive to B0 field variation.

  6. SU-F-T-09: In Phantom Full-Implant Validation of Plastic Scintillation Detectors for in Vivo Dosimetry During Low Dose Rate Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Therriault-Proulx, F; Bruno, T; Beddar, S [UT MD Anderson Cancer Center, Houston, TX (United States); Beaulieu, L [CHU de Quebec, Quebec, QC, CA (Canada)

    2016-06-15

    Purpose: To validate in a water phantom the use of plastic scintillation detectors to measure dose to the urethra and the rectal wall during a clinically realistic low dose rate (LDR) brachytherapy implant. Methods: A template was designed to replicate a clinically realistic LDR brachytherapy prostate implant inside a water phantom. Twenty-two catheters were inserted, including one mimicking the urethra and another the rectal wall. The needles inserted in the remaining 20 catheters were composed of thin-walled nylon tubes in which I-125 radioactive seeds (Air Kerma Strengths of (0.328±0.020)U) were abutted together with plastic spacers to replicate a typical loading. A plastic scintillation detector (PSD) with a 5-mm long × 1-mm diameter sensitive element was first placed inside the urethra and 1-second measurements were performed for 60s after each needle implant. Measurements were also performed at multiple positions along the urethra once all the needles were inserted. The procedure was then repeated with the PSD placed at the rectal wall. Results: Individual dose-rates ranging from 0.07µGy/s to 1.5µGy/s were measured after each needle implant. The average absolute relative differences were (6.2±3.6)% and (6.9±6.5)% to the values calculated with the TG-43 formalism, for the urethra and rectal wall respectively. These results are within expectations from the error uncertainty budget once accounting for uncertainties in seeds’ strength and positioning. Interestingly, the PSD allowed for unplanned error detection as the study was performed. Finally, the measured dose after the full implant at different positions along the mimicked organs at risk were in agreement with TG-43 values for all of the positions tested. Conclusion: Plastic scintillation detectors could be used as in vivo detectors for LDR brachytherapy as they would provide accurate dose information after each needle implant as well as along the organs at risk at the end of the implant.

  7. Twelve-Month Prostate-Specific Antigen Values and Perineural Invasion as Strong Independent Prognostic Variables of Long-Term Biochemical Outcome After Prostate Seed Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Ding, William, E-mail: billyding888@gmail.com [Department of Radiation Oncology, California Pacific Medical Center, San Francisco, California (United States); Lee, John [Department of Radiation Oncology, California Pacific Medical Center, San Francisco, California (United States); Chamberlain, David [Department of Radiation Oncology, St. Mary' s Regional Medical Center, Reno, Nevada (United States); Cunningham, James [Carson Urology, Carson City, Nevada (United States); Yang Lixi [Department of Radiation Oncology, California Pacific Medical Center, San Francisco, California (United States); Tay, Jonathan [Department of Radiation Oncology, St. Mary' s Regional Medical Center, Reno, Nevada (United States)

    2012-11-15

    Purpose: To determine whether post-treatment prostate-specific antigen (ptPSA) values at 12 months and other clinical parameters predict long-term PSA relapse-free survival (PRFS) following prostate seed brachytherapy. Methods and Materials: Records of 204 hormone-naieve patients with localized adenocarcinoma of the prostate treated at St. Mary's Regional Medical Center in Reno, NV, and at Carson Tahoe Regional Medical Center in Carson City, NV, between 1998 and 2003, using I-125 or Pd-103 seed brachytherapy, were retrospectively analyzed. Treatment planning was done using a preplanned, modified peripheral loading technique. A total of 185 of 204 patients had PSA records at 12 months after implant. Variables included were age, initial pretreatment PSA, Gleason score, T stage, National Comprehensive Cancer Network (NCCN) risk group (RG), perineural invasion (PNI), external beam boost, dose, and ptPSA levels at 12 months with cutpoints at {<=}1, 1.01 to 2.00, 2.01 to 3.00, and >3.00 ng/ml. Results: Median follow-up was 80 months, and median age was 69 years. The numbers of patients stratified by NCCN low, intermediate, and high RG were 110:65:10, respectively. Monotherapy and boost prescription doses were 145 Gy and 110 Gy for I-125, and 125 Gy and 100 Gy for Pd-103 seeds, respectively. The median dose (D90) was 95.4% of the prescribed dose. The 5-year PRFS at the 12-months ptPSA levels of {<=}1, 1.01 to 2.00, 2.01 to 3.00, and >3.00 ng/ml were 98.5%, 85.7%, 61.5%, and 22.2%, respectively. The 10-year PRFS at the 12-months ptPSA levels of {<=}1 and 1.01 to 2.00 ng/ml were 90.5% and 85.7%, respectively. In multivariate analysis, both ptPSA and PNI were significant independent predictors of PRFS. Hazard ratios (HR) for ptPSA levels at {<=}1, 1.01 to 2.00, 2.01 to 3.00, and >3.00 ng/ml at 12 months were 1, 4.96, 27.57, and 65.10, respectively. PNI had an HR of 6.1 (p = 0.009). Conclusions: Presence of PNI and ptPSA values at 12 months are strong prognostic

  8. Stereotactic iodine-125 brachytherapy for brain tumors: temporary versus permanent implantation

    Directory of Open Access Journals (Sweden)

    Ruge Maximilian I

    2012-06-01

    Full Text Available Abstract Stereotactic brachytherapy (SBT has been described in several publications as an effective, minimal invasive and safe highly focal treatment option in selected patients with well circumscribed brain tumors 40 cGy/h in combination with adjuvant external beam radiation and/or chemotherapy for the treatment of malignant gliomas and metastases resulted in increased rates of radiation induced adverse tissue changes requiring surgical intervention. Vice versa, such effects have been only minimally observed in numerous studies applying low dose rate (LDR regiments (3–8 cGy/h for low grade gliomas, metastases and other rare indications. Besides these observations, there are, however, no data available directly comparing the long term incidences of tissue changes after HDR and LDR and there is, furthermore, no evidence regarding a difference between temporary or permanent LDR implantation schemes. Thus, recommendations for effective and safe implantation schemes have to be investigated and compared in future studies.

  9. Intravascular brachytherapy with radioactive stents produced by ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Golombeck, M.-A.; Heise, S.; Schloesser, K. E-mail: schloesser@hzy.fzk.de; Schuessler, B.; Schweickert, H

    2003-05-01

    About 1 million patients are treated for stenosis of coronary arteries by percutaneous balloon angioplasty annually worldwide. In many cases a so called stent is inserted into the vessel to keep it mechanically open. Restenosis is observed in about 20-30% of these cases, which can be treated by irradiating the stented vessel segment. In our approach, we utilized the stent itself as radiation source by ion implanting {sup 32}P. Investigations of the surface properties were performed with special emphasis on activity retention. Clinical data of about 400 patients showed radioactive stents can suppress instent restenosis, but a so called edge effect appeared, which can be avoided by the new 'drug eluting stents'.

  10. Intravascular brachytherapy with radioactive stents produced by ion implantation

    Science.gov (United States)

    Golombeck, M.-A.; Heise, S.; Schloesser, K.; Schuessler, B.; Schweickert, H.

    2003-05-01

    About 1 million patients are treated for stenosis of coronary arteries by percutaneous balloon angioplasty annually worldwide. In many cases a so called stent is inserted into the vessel to keep it mechanically open. Restenosis is observed in about 20-30% of these cases, which can be treated by irradiating the stented vessel segment. In our approach, we utilized the stent itself as radiation source by ion implanting 32P. Investigations of the surface properties were performed with special emphasis on activity retention. Clinical data of about 400 patients showed radioactive stents can suppress instent restenosis, but a so called edge effect appeared, which can be avoided by the new "drug eluting stents".

  11. Dosimetric characteristics and a standard for the (198)gold seed used in interstitial brachytherapy

    Science.gov (United States)

    Dauffy, Lucile S.

    Cancer of the prostate can be treated in different ways. One of them, brachytherapy, is an internal irradiation method consisting of the placement of radioactive sources, called seeds, into the tumor. This work deals with the dosimetry of the 198Au interstitial brachytherapy source. In order to facilitate its clinical use and to obtain the data to be employed in the latest treatment planning systems, new quantities and a potential calibration standard are studied. These quantities, based on dose rates, were recommended in 1995 by the American Association of Physicists in Medicine Task Group 43, AAPM TG-43, and have not previously been obtained for 198Au. They are measured in a solid water phantom using thermoluminescent detectors, and calculated using the Monte Carlo N-Particle code, MCNP, and simple analytic models. In the last part of this work, the "198Au equivalent" activity of 137Cs and 192Ir surrogate seeds is calculated since the National Institute of Standards and Technology, NIST, does not provide a standard for the short half-life 198Au source that would allow checking the activity of the seeds before use on patients. This calculation is done by simulating the response of the Sun Nuclear ionization chamber, model 1008, with MCNP 4C. The air kerma strength, Sk, per unit apparent activity is found equal to 2.0627 (MCNP) and 2.0889 U mCi-1 (measured). Sk per unit activity is 1.8050 U mCi-1 (MCNP). The dose rate constant per unit apparent activity, Λ/Aapp, is equal to 2.3099 (MCNP) and 2.2878 cGy h-1 mCi -1 (measured). This same quantity per unit air kerma strength is 1.1198 (MCNP) and 1.0952 cGy h-1 U-1 (measured). The values of the radial dose function, g(r), the anisotropy function, F(r,θ), the anisotropy factor, φan(r), and the anisotropy constant are also given. Finally, the "198Au equivalent" activity for the 192Ir surrogate seed is equal to 1.9549 times the real activity of the 192Ir seed, and that for the 137Cs surrogate seed is 1.4895 times its

  12. Poster - Thur Eve - 06: Comparison of an open source genetic algorithm to the commercially used IPSA for generation of seed distributions in LDR prostate brachytherapy.

    Science.gov (United States)

    McGeachy, P; Khan, R

    2012-07-01

    In early stage prostate cancer, low dose rate (LDR) prostate brachytherapy is a favorable treatment modality, where small radioactive seeds are permanently implanted throughout the prostate. Treatment centres currently rely on a commercial optimization algorithm, IPSA, to generate seed distributions for treatment plans. However, commercial software does not allow the user access to the source code, thus reducing the flexibility for treatment planning and impeding any implementation of new and, perhaps, improved clinical techniques. An open source genetic algorithm (GA) has been encoded in MATLAB to generate seed distributions for a simplified prostate and urethra model. To assess the quality of the seed distributions created by the GA, both the GA and IPSA were used to generate seed distributions for two clinically relevant scenarios and the quality of the GA distributions relative to IPSA distributions and clinically accepted standards for seed distributions was investigated. The first clinically relevant scenario involved generating seed distributions for three different prostate volumes (19.2 cc, 32.4 cc, and 54.7 cc). The second scenario involved generating distributions for three separate seed activities (0.397 mCi, 0.455 mCi, and 0.5 mCi). Both GA and IPSA met the clinically accepted criteria for the two scenarios, where distributions produced by the GA were comparable to IPSA in terms of full coverage of the prostate by the prescribed dose, and minimized dose to the urethra, which passed straight through the prostate. Further, the GA offered improved reduction of high dose regions (i.e hot spots) within the planned target volume. © 2012 American Association of Physicists in Medicine.

  13. The surgical viability and radiological monitoring of brain implants of bioactive micro-seeds in an animal model

    Directory of Open Access Journals (Sweden)

    Giane X. O. Silva

    2005-10-01

    Full Text Available The interstitial implant is a therapeutic modality in brachytherapy of the head and neck. Presently, the seeds implanted in tumors in the central nervous system are metallic I-125. After the full emission of the radionuclide, the seed remains inert in the implanted area. Bioactive ceramic seeds have been prepared for this research group incorporating Sm-152 to be active in Sm-153. The main goal of the present study is the development of a the surgical technique for implanting the biodegradable radioactive micro-seeds in the brains of rabbits, as well as the observation of the clinical reactions of the animal after implantation of two sets of three seeds. The surgical procedure consisted of performing two separate perforations 10 mm from each other in the skull, permitting the implantation of two groups of three seeds, totaling six seeds. The results of the pilot study showed the effectiveness of the surgical procedure and of the biocompatibility of the seeds and the lack of presence of adverse reactions, functional sequels, or inflammation in a follow up 50 days post-surgery. Such seeds of reduced volume, 0.2 x 1.6 mm, could be monitored by computerized tomography 30 days after implanting.Os implantes intersticiais podem ser utilizados em braquiterapia de cabeça e pescoço. Atualmente as sementes implantadas no CNS são de I-125 metálicas. Após o decaimento do radioisótopo, a semente fica inerte na região implantada. Sementes cerâmicas bioativas tem sido preparadas pelo grupo de pesquisa incorporando Sm-152. O presente estudo tem o objetivo de viabilizar a técnica cirúrgica de implantes de microsementes biodegradáveis não radioativas no cérebro de coelhos, bem como verificar as reações clínicas e funcionais do animal ao corpo estranho implantado. O procedimento cirúrgico compreendeu em proceder duas perfurações separadas em 10mm na calota craniana onde foi possível a implantação de dois conjuntos de três sementes

  14. Monte Carlo investigation of I-125 interseed attenuation for standard and thinner seeds in prostate brachytherapy with phantom validation using a MOSFET.

    Science.gov (United States)

    Mason, J; Al-Qaisieh, B; Bownes, P; Henry, A; Thwaites, D

    2013-03-01

    In permanent seed implant prostate brachytherapy the actual dose delivered to the patient may be less than that calculated by TG-43U1 due to interseed attenuation (ISA) and differences between prostate tissue composition and water. In this study the magnitude of the ISA effect is assessed in a phantom and in clinical prostate postimplant cases. Results are compared for seed models 6711 and 9011 with 0.8 and 0.5 mm diameters, respectively. A polymethyl methacrylate (PMMA) phantom was designed to perform ISA measurements in a simple eight-seed arrangement and at the center of an implant of 36 seeds. Monte Carlo (MC) simulation and experimental measurements using a MOSFET dosimeter were used to measure dose rate and the ISA effect. MC simulations of 15 CT-based postimplant prostate treatment plans were performed to compare the clinical impact of ISA on dose to prostate, urethra, rectum, and the volume enclosed by the 100% isodose, for 6711 and 9011 seed models. In the phantom, ISA reduced the dose rate at the MOSFET position by 8.6%-18.3% (6711) and 7.8%-16.7% (9011) depending on the measurement configuration. MOSFET measured dose rates agreed with MC simulation predictions within the MOSFET measurement uncertainty, which ranged from 5.5% to 7.2% depending on the measurement configuration (k = 1, for the mean of four measurements). For 15 clinical implants, the mean ISA effect for 6711 was to reduce prostate D90 by 4.2 Gy (3%), prostate V100 by 0.5 cc (1.4%), urethra D10 by 11.3 Gy (4.4%), rectal D2cc by 5.5 Gy (4.6%), and the 100% isodose volume by 2.3 cc. For the 9011 seed the mean ISA effect reduced prostate D90 by 2.2 Gy (1.6%), prostate V100 by 0.3 cc (0.7%), urethra D10 by 8.0 Gy (3.2%), rectal D2cc by 3.1 Gy (2.7%), and the 100% isodose volume by 1.2 cc. Differences between the MC simulation and TG-43U1 consensus data for the 6711 seed model had a similar impact, reducing mean prostate D90 by 6 Gy (4.2%) and V100 by 0.6 cc (1.8%). ISA causes the delivered dose

  15. An open-source genetic algorithm for determining optimal seed distributions for low-dose-rate prostate brachytherapy.

    Science.gov (United States)

    McGeachy, P; Madamesila, J; Beauchamp, A; Khan, R

    2015-01-01

    An open source optimizer that generates seed distributions for low-dose-rate prostate brachytherapy was designed, tested, and validated. The optimizer was a simple genetic algorithm (SGA) that, given a set of prostate and urethra contours, determines the optimal seed distribution in terms of coverage of the prostate with the prescribed dose while avoiding hotspots within the urethra. The algorithm was validated in a retrospective study on 45 previously contoured low-dose-rate prostate brachytherapy patients. Dosimetric indices were evaluated to ensure solutions adhered to clinical standards. The SGA performance was further benchmarked by comparing solutions obtained from a commercial optimizer (inverse planning simulated annealing [IPSA]) with the same cohort of 45 patients. Clinically acceptable target coverage by the prescribed dose (V100) was obtained for both SGA and IPSA, with a mean ± standard deviation of 98 ± 2% and 99.5 ± 0.5%, respectively. For the prostate D90, SGA and IPSA yielded 177 ± 8 Gy and 186 ± 7 Gy, respectively, which were both clinically acceptable. Both algorithms yielded reasonable dose to the rectum, with V100 open source SGA was validated that provides a research tool for the brachytherapy community. Copyright © 2015 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  16. RADIOLOGICAL CRITERIA FOR PATIENT RELEASE FROM CLINIC AFTER RADIONUCLIDE THERAPY OF BRACHYTHERAPY WITH SEALED SOURCE IMPLANTATION

    Directory of Open Access Journals (Sweden)

    M. I. M.I. Balonov

    2009-01-01

    Full Text Available Dose criteria for limitation of exposure incurred by persons helping the patients or living with patients discharged from hospitals following radionuclide therapy or brachytherapy with implanted sealed radionuclide sources have been proposed for national Russian regulation. By means of a conservative dosimetry model, the values of operational radiological criteria for patient discharge from hospital are substantiated, i.e. whole body activity for radionuclides 125I,131I,153Sm and 188Re as well as dose rate near patient body. Observance of suggested criteria included in the new Russian Standards for Radiation Safety (RSS-99/2009 will ensure radiation safety of people in near environment (family, close friends et ah.

  17. American brachytherapy society recommends no change for prostate permanent implant dose prescriptions using iodine-125 or palladium-103

    Energy Technology Data Exchange (ETDEWEB)

    Rivard, M.J. [Tufts-New England Medical Center, Dept. of Radiation Oncology and Medical Physics, Boston, MA (United States); Butler, W.M.; Merrick, G.S. [Wheeling Jesuit Univ., Schiffler Cancer Center, WV (United States); Devlin, P.M. [Brigham and Women' s Hospital, Dept. of Radiation Oncology, Boston, MA (United States); Hayes, J.K. [Brigham and Women' s Hospital, Dept. of Radiation Oncology, Boston, MA (United States); Hearn, R.A. [Gamma West Brachytherapy, Salt Lake City, UT (United States); Lief, E.P. [Mount Sinai Medical Center, Dept. of Radiation Oncology, New York, NY (United States); Meigooni, A.S. [Kentucky Univ., Dept. of Radiation Medicine, Lexington, KY (United States); Williamson, J.F. [Medical College of Virginia, Dept. of Radiation Oncology, Richmond, VA (United States)

    2008-01-15

    Purpose - In 2004, the American Association of Physicists in Medicine (AAPM) issued a report outlining recommended {sup 125}I and {sup 103}Pd datasets for consistency in calculating brachytherapy dose distributions. In 2005, to aid evaluating the clinical impact of implementing these datasets, the AAPM assessed the historical dependence of how prescribed doses differed from administered doses for {sup 125}I and {sup 103}Pd for permanent implantation of the prostate. Consequently, the American Brachytherapy Society (ABS) considered the nature of these changes towards issuing recommended dose prescriptions for {sup 125}I and {sup 103}Pd interstitial brachytherapy implants for mono-therapy and standard boosts. Methods and materials - An investigation was performed of the 2005 AAPM analysis to determine changes in administered dose while affixing prescribed dose using 2004 AAPM {sup 125}I and {sup 103}Pd brachytherapy dosimetry datasets for prostate implants. For {sup 125}I and {sup 103}Pd, administered dose would change by +1.4% and +4.2%, respectively. The biological and societal impact of changing prescribed dose was considered. Results - Based on the need for clinical constancy and in recognition of overall uncertainties, the ABS recommends immediate implementation of the 2004 AAPM consensus brachytherapy dosimetry datasets and no changes to {sup 125}I and {sup 103}Pd dose prescriptions at this time. Conclusions - Radiation oncologists should continue to prescribe mono-therapy doses of 145 Gy and 125 Gy for {sup 125}I and {sup 105}Pd, respectively, and standard boost doses of 100-110 Gy and 90-100 Gy for {sup 125}I and {sup 103}Pd, respectively. (authors)

  18. MAGNETIC RESONANCE IMAGING COMPATIBLE ROBOTIC SYSTEM FOR FULLY AUTOMATED BRACHYTHERAPY SEED PLACEMENT

    Science.gov (United States)

    Muntener, Michael; Patriciu, Alexandru; Petrisor, Doru; Mazilu, Dumitru; Bagga, Herman; Kavoussi, Louis; Cleary, Kevin; Stoianovici, Dan

    2011-01-01

    Objectives To introduce the development of the first magnetic resonance imaging (MRI)-compatible robotic system capable of automated brachytherapy seed placement. Methods An MRI-compatible robotic system was conceptualized and manufactured. The entire robot was built of nonmagnetic and dielectric materials. The key technology of the system is a unique pneumatic motor that was specifically developed for this application. Various preclinical experiments were performed to test the robot for precision and imager compatibility. Results The robot was fully operational within all closed-bore MRI scanners. Compatibility tests in scanners of up to 7 Tesla field intensity showed no interference of the robot with the imager. Precision tests in tissue mockups yielded a mean seed placement error of 0.72 ± 0.36 mm. Conclusions The robotic system is fully MRI compatible. The new technology allows for automated and highly accurate operation within MRI scanners and does not deteriorate the MRI quality. We believe that this robot may become a useful instrument for image-guided prostate interventions. PMID:17169653

  19. Radiation protection procedures and dose to the staff in brachytherapy with permanent implant of the sources

    Energy Technology Data Exchange (ETDEWEB)

    Tosi, G.; Cattani, F.

    2002-07-01

    The treatment of intra capsular prostate cancers with the permanent implantation of low energy sealed radioactive sources (''103 Pd-''125I) offers the same probability of curing the tumours as surgery and external-beam radiotherapy with a minimum incidence of unwanted side-effects. The first attempts of using sealed sources for treating prostate cancers go back to 1917, when Barringer reported the results obtained with the implant of ''236Ra needles. Beginning from that period the interest for prostate brachytherapy has shown a fluctuating trend, due especially to the technological possibilities and to the status of the alternative treatment modalities (surgery, external radiotherapy). The main reason of the substantial failure of brachytherapy as compared to the two other treatment modalities had two main causes: the energy, too high ( E{approx_equal} 840 keV), of {gamma}-radiation emitted by ''226 Ra in equilibrium with its decay products and the lack of imaging techniques able to visualize with sufficient accuracy both the prostate and the arrangement, inside it, of the radioactive sources. The employ of low energy {gamma}-emitting radionuclides began in 1974, when Whitmore et al. working at the Sloan Kettering Memorial Cancer Hospital of New York suggested the use of ''125 I sealed sources for the realisation of interstitial permanent implants. Also this attempt, though reducing the side effects typical of the surgical intervention (incontinence, impotence), did non give the expected results in terms of local control of the disease and, as a consequence, of the survival's length. This partial failure was attributed to the fact that, in most cases the dose distribution inside the target volume was not homogeneous, due to the inadequacy of the available imaging techniques used for checking the real position of the sources, during their manual insertion in the tissues. In the last ten years,however, great

  20. [Study on effect of seed vigor and agronomic characters of Cassia seeds implanted with low energy nitrogen ion beans].

    Science.gov (United States)

    Song, Mei; Wang, Xiang-Yang

    2012-07-01

    To study the effect of low energy nitrogen ion implantation on seed germination and agronomic characters. Different doses of low energy nitrogen ion implantation were implanted into fresh Cassia seed embryos. Seed germination, seedling growth and field agronomic characters were observed. The seeds after ion implantation showed significant reduction in germination energy, germination percentage and germination index, besides the significant decreasement in root length, fresh weight and vigor index of seedling. Plant height decreased despite the increase in grain size and grain weight. The low energy nitrogen ion implantation have significant effect on Cassia seeds, and being of great significance on Cassia artificial cultivation.

  1. Tumor Localization Using Radio Frequency Implants

    Science.gov (United States)

    2006-09-01

    the implant size. With respect to implant size, the size should be comparable to brachytherapy seed implants. Therefore, an estimate for the size of...conductors is described by (7) where z is the propagation distance, δ is the skin depth, ω is the angular frequency, σ is the conductivity, and µ is the

  2. Prostate brachytherapy

    Science.gov (United States)

    Implant therapy - prostate cancer; Radioactive seed placement; Internal radiation therapy - prostate; High dose radiation (HDR) ... place the seeds that deliver radiation into your prostate. The seeds are placed with needles or special ...

  3. Brazilian demand for Iodine-125 seeds in cancer treatment after a decade of medical procedures

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Osvaldo L. da; Souza, Daiane C.B. de; Feher, Anselmo; Moura, João A.; Souza, Carla D.; Oliveira, Henrique B. de; Peleiras Junior, Fernando S.; Zeituni, CArlos A.; Rostelaro, Maria E.C.M., E-mail: olcosta@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-07-01

    Iodine-125 and palladium-103 are radionuclides employed to made medical devices used in cancer treatment known as brachytherapy seeds. These radioactive sealed sources are applied in brain and ophthalmic cancer as a temporary implant to irradiate the tumor and in permanent implants to prostatic cancer. Brazilian Nuclear Energy Commission (CNEN) has the monopoly in Brazil of iodine-125 brachytherapy seeds distribution which is executed for Nuclear and Energy Research Institute (IPEN-CNEN/SP). Along a decade of use in Brazil more than 240 thousand seeds were implanted in patients or used to treat cancer tumors. In this article the Brazilian demand for iodine-125 brachytherapy seeds is analyzed. The demand behavior along a decade of using loose, strand, ophthalmic and brain brachytherapy seeds are shown. The annual quantity of seeds demanded by Brazil has dropped since 2012. The loose seeds which represented until 30% from total brachytherapy seeds used in Brazil decreased to less than 3%. The brain brachytherapy seeds had low demand along the decade and presented zero demand in several years. Concurrent treatment techniques are listed and main trends are discussed. The influence of Brazilian economic crisis and the demand behavior of the main hospitals and clinics that use Iodine-125 brachytherapy are shown. (author)

  4. ALGEBRA: ALgorithm for the heterogeneous dosimetry based on GEANT4 for BRAchytherapy.

    Science.gov (United States)

    Afsharpour, H; Landry, G; D'Amours, M; Enger, S; Reniers, B; Poon, E; Carrier, J-F; Verhaegen, F; Beaulieu, L

    2012-06-07

    Task group 43 (TG43)-based dosimetry algorithms are efficient for brachytherapy dose calculation in water. However, human tissues have chemical compositions and densities different than water. Moreover, the mutual shielding effect of seeds on each other (interseed attenuation) is neglected in the TG43-based dosimetry platforms. The scientific community has expressed the need for an accurate dosimetry platform in brachytherapy. The purpose of this paper is to present ALGEBRA, a Monte Carlo platform for dosimetry in brachytherapy which is sufficiently fast and accurate for clinical and research purposes. ALGEBRA is based on the GEANT4 Monte Carlo code and is capable of handling the DICOM RT standard to recreate a virtual model of the treated site. Here, the performance of ALGEBRA is presented for the special case of LDR brachytherapy in permanent prostate and breast seed implants. However, the algorithm is also capable of handling other treatments such as HDR brachytherapy.

  5. Development of computational models for the simulation of isodose curves on dosimetry films generated by iodine-125 brachytherapy seeds

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Adriano M.; Meira-Belo, Luiz C.; Reis, Sergio C.; Grynberg, Suely E., E-mail: amsantos@cdtn.b [Center for Development of Nuclear Technology (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The interstitial brachytherapy is one modality of radiotherapy in which radioactive sources are placed directly in the region to be treated or close to it. The seeds that are used in the treatment of prostate cancer are generally cylindrical radioactive sources, consisting of a ceramic or metal matrix, which acts as the carrier of the radionuclide and as the X-ray marker, encapsulated in a sealed titanium tube. This study aimed to develop a computational model to reproduce the film-seed geometry, in order to obtain the spatial regions of the isodose curves produced by the seed when it is put over the film surface. The seed modeled in this work was the OncoSeed 6711, a sealed source of iodine-125, which its isodose curves were obtained experimentally in previous work with the use of dosimetric films. For the films modeling, compositions and densities of the two types of dosimetric films were used: Agfa Personal Monitoring photographic film 2/10, manufactured by Agfa-Geavaert; and the model EBT radiochromic film, by International Specialty Products. The film-seed models were coupled to the Monte Carlo code MCNP5. The results obtained by simulations showed to be in good agreement with experimental results performed in a previous work. This indicates that the computational model can be used in future studies for other seeds models. (author)

  6. TU-AB-201-11: A Novel Theoretical Framework for MRI-Only Image Guided LDR Prostate and Breast Brachytherapy Implant Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Soliman, A; Elzibak, A; Fatemi, A; Safigholi, H; Ravi, A; Morton, G; Song, W [Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario (Canada); Han, D [Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario (Canada); University of California, San Diego, La Jolla, CA (United States)

    2015-06-15

    Purpose: To propose a novel framework for accurate model-based dose calculations using only MR images for LDR prostate and breast seed implant brachytherapy. Methods: Model-based dose calculation methodologies recommended by TG-186 require further knowledge about specific tissue composition, which is challenging with MRI. However, relying on MRI-only for implant dosimetry would reduce the soft tissue delineation uncertainty, costs, and uncertainties associated with multi-modality registration and fusion processes. We propose a novel framework to address this problem using quantitative MRI acquisitions and reconstruction techniques. The framework includes three steps: (1) Identify the locations of seeds(2) Identify the presence (or absence) of calcification(s)(3) Quantify the water and fat content in the underlying tissueSteps (1) and (2) consider the sources that limit patient dosimetry, particularly the inter-seed attenuation and the calcified regions; while step (3) targets the quantification of the tissue composition to consider the heterogeneities in the medium. Our preliminary work has shown that the seeds and the calcifications can be identified with MRI using both the magnitude and the phase images. By employing susceptibility-weighted imaging with specific post-processing techniques, the phase images can be further explored to distinguish the seeds from the calcifications. Absolute quantification of tissue, water, and fat content is feasible and was previously demonstrated in phantoms and in-vivo applications, particularly for brain diseases. The approach relies on the proportionality of the MR signal to the number of protons in an image volume. By employing appropriate correction algorithms for T1 - and T2*-related biases, B1 transmit and receive field inhomogeneities, absolute water/fat content can be determined. Results: By considering calcification and interseed attenuation, and through the knowledge of water and fat mass density, accurate patient

  7. SU-E-T-12: A Comparative Dosimetric Study of Pre and Post Prostate Iodine-125 Permanent Seed Implants

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X; Rahimian, J; Goy, B; Cosmatos, H; Qian, Y [Kaiser Permanente, Los Angeles, CA (United States)

    2015-06-15

    Purpose: Post-implant dosimetry has become the gold standard for prostate implant evaluation. The goal of this research is to compare the dosimetry between pre-plan and post-plan in permanent prostate seed implant brachytherapy. Methods: A retrospective study of 91 patients treated with Iodine-125 prostate seed implant between year 2012∼2014 were performed. All plans were created using a VariSeed 8.0 planning system. Pre-plan ultrasound images were acquired using 0.5 cm slice thickness. Post-plan CT images acquired about 1–4 weeks after implant, fused with the preplan ultrasound images. The prostate and urethra contours were generated using the fusion of ultrasound and CT images. Iodine-125 seed source activities varied between 0.382 to 0.414 mCi per seed. The loading patterns varied slightly between patients depending on the prostate size. Statistical analysis of pre and post plans for prostate and urethra volumes, V100%, V150% and D90, and urethra D10 were performed and reported. Results: The pre and post implant average prostate size was 36.90cc vs. 38.58cc; V100% was 98.33% vs. 96.89%; V150% was 47.09% vs. 56.95%; D90 was 116.35Gy vs. 116.12Gy, urethra volume was 1.72cc vs. 1.85cc, urethra D10% was 122.0% vs. 135.35%, respectively. There was no statistically significant difference between the pre and post-plan values for D90(p-value=0.43). However, there are significant differences between other parameters most likely due to post surgical edema; prostate size (p-value= 0.00015); V100% (p-value=3.7803E-07); V150% (p-value=1.49E-09); urethra volume (p-value= 2.77E-06); Urethra D10 (p-value=7.37E-11). Conclusion: The post-plan dosimetry using CT image set showed similar D90 dose coverage to the pre-plan using the ultrasound image dataset. The study showed that our prostate seed implants have consistently delivered adequate therapeutic dose to the prostate while sparing urethra. Future studies to correlate dose versus biochemical response using patients’ PSA

  8. [Application of (125)I seeds combined with biliary stent implantation in the treatment of malignant obstructive jaundice].

    Science.gov (United States)

    Wang, T; Liu, S; Zheng, Y B; Song, X P; Jiang, W J; Sun, B L; Wang, L G

    2016-03-23

    To study the feasibility and therapeutic effect of the application of (125)I seeds combined with biliary stent implantation on the treatment of malignant obstructive jaundice. Fifty patients with malignant obstructive jaundice treated from September 2010 to February 2013 in Yantai Yuhuangding Hospital were included in this study. Among them, 24 patients received biliary stent implantation combined with (125)I seeds intraluminal brachytherapy as experimental group, and 26 were treated by biliary stent implantation as control group.The total bilirubin, direct bilirubin and tumor markers (CA-199, CA-242, CEA) before and after surgery, the biliary stent patency status was assessed, and the survival time was evaluated. The 24 patients in experimental group were implanted with 30 (125)I seeds successfully in a total of 450 seeds. Jaundice was improved greatly in both groups. The CA-199 and CA-242 after treatment in the experimental group were significantly decreased than that before treatment (P=0.003 and P=0.004). CEA was also decreased, but showed no statistical significance (P>0.05). There were no significant improvement comparing the CA-199, CA-242 and CEA before and 2 months after surgery in the control group (P>0.05). The rate of biliary stent patency was 83.3% (20/24) in the experimental group and 57.7% (15/26) in the control group (P=0.048). The mean biliary stent patency time in the experimental group was 9.84 months (range 1-15.5 months). The mean biliary stent patency time in the control group was 5.57 months (range 0.8-9 months). There was a significant difference between the two groups (P=0.018). The median survival time was 10.2 months in the experimental group and 5.4 months in the control group (Pjaundice, therefore, is a safe and effective treatment in this malignancy.

  9. In vitro antimicrobial effects of grape seed extract on peri-implantitis microflora in craniofacial implants.

    Science.gov (United States)

    Shrestha, Binit; Theerathavaj, M L Srithavaj; Thaweboon, Sroisiri; Thaweboon, Boonyanit

    2012-10-01

    To determine the antimicrobial effects of grape seed on peri-implantitis microflora. The grape seed extract was tested against peri-implantitis microflora most commonly found in craniofacial implants including reference strains of Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), Candida albicans (C. albicans) and clinical strains of S. aureus, Klebsiella pneumonia (K. pneumonia) and Candida parapsilosis (C. parapsilosis) by disk diffusion test. Minimum inhibitory concentrations (MIC) and minimum cidal concentrations (MCC) were determined using modified agar dilution millpore method. The extract was further combined with polyethylene glycol and propylene glycol, and was tested for antimicrobial effects. Grape seed extract showed positive inhibitory effects with S. aureus at MIC of 0.625 mg/mL and MCC of 1.25 mg/mL respectively. However the extracts showed minimal or no reactivity against strains of E. coli, K. pneumonia, C. parapsilosis and C. albicans. The use of grape seed extract in combination with polyethylene glycol and propylene glycol also showed dose dependent inhibitory effect on S. aureus. The results of the study showed that grape seed has potential antimicrobial effects which can be further studied and developed to be used in the treatment of infected skin-abutment interface of craniofacial implants.

  10. Urethra-Sparing, Intraoperative, Real-Time Planned, Permanent-Seed Prostate Brachytherapy: Toxicity Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Zilli, Thomas [Department of Radiation Oncology, Centre hospitalier de l' Universite de Montreal-Hopital Notre-Dame, Montreal, QC (Canada); Taussky, Daniel, E-mail: daniel.taussky.chum@ssss.gouv.qc.ca [Department of Radiation Oncology, Centre hospitalier de l' Universite de Montreal-Hopital Notre-Dame, Montreal, QC (Canada); Donath, David; Le, Hoa Phong; Larouche, Renee-Xaviere; Beliveau-Nadeau, Dominique; Hervieux, Yannick; Delouya, Guila [Department of Radiation Oncology, Centre hospitalier de l' Universite de Montreal-Hopital Notre-Dame, Montreal, QC (Canada)

    2011-11-15

    Purpose: To report the toxicity outcome in patients with localized prostate cancer undergoing {sup 125}I permanent-seed brachytherapy (BT) according to a urethra-sparing, intraoperative (IO), real-time planned conformal technique. Methods and Materials: Data were analyzed on 250 patients treated consecutively for low- or intermediate-risk prostate cancer between 2005 and 2009. The planned goal was urethral V{sub 150} = 0. Acute and late genitourinary (GU), gastrointestinal (GI), and erectile toxicities were scored with the International Prostate Symptom Score (IPSS) questionnaire and Common Terminology Criteria for Adverse Events (version 3.0). Median follow-up time for patients with at least 2 years of follow-up (n = 130) was 34.4 months (range, 24-56.9 months). Results: Mean IO urethra V{sub 150} was 0.018% {+-} 0.08%. Mean prostate D{sub 90} and V{sub 100} on day-30 computed tomography scan were 158.0 {+-} 27.0 Gy and 92.1% {+-} 7.2%, respectively. Mean IPSS peak was 9.5 {+-} 6.3 1 month after BT (mean difference from baseline IPSS, 5.3). No acute GI toxicity was observed in 86.8% of patients. The 3-year probability of Grade {>=}2 late GU toxicity-free survival was 77.4% {+-} 4.0%, with Grade 3 late GU toxicity encountered in only 3 patients. Three-year Grade 1 late GI toxicity-free survival was 86.1% {+-} 3.2%. No patient presented Grade {>=}2 late GI toxicity. Of patients with normal sexual status at baseline, 20.7% manifested Grade {>=}2 erectile dysfunction after BT. On multivariate analysis, elevated baseline IPSS (p = 0.016) and high-activity sources (median 0.61 mCi) (p = 0.033) predicted increased Grade {>=}2 late GU toxicity. Conclusions: Urethra-sparing IO BT results in low acute and late GU toxicity compared with the literature. High seed activity and elevated IPSS at baseline increased long-term GU toxicity.

  11. TU-AB-201-04: Optimizing the Number of Catheter Implants and Their Tracks for Prostate HDR Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Riofrio, D; Luan, S [University of New Mexico, Albuquerque, New Mexico (United States); Zhou, J [William Beaumont Hospital, Royal Oak, MI (United States); Ma, L [UCSF Comprehensive Cancer Center, San Francisco, CA (United States)

    2015-06-15

    Purpose: In prostate HDR brachytherapy, interstitial implants are placed manually on the fly. The aim for this research is to develop a computer algorithm to find optimal and reliable implant trajectories using minimal number of implants. Methods: Our new algorithm mainly uses these key ideas: (1) positive charged static particles are uniformly placed on the surface of prostate and critical structures such as urethra, bladder, and rectum. (2) Positive charged kinetic particles are placed at a cross-section of the prostate with an initial velocity parallel to the principal implant direction. (3) The kinetic particles move through the prostate, interacting with each other, spreading out, while staying away from the prostate surface and critical structures. The initial velocity ensures that the trajectories observe the curvature constraints of typical implant procedures. (4) The finial trajectories of kinetic particles are smoothed using a third-degree polynomial regression, which become the implant trajectories. (5) The dwelling times and final dose distribution are calculated using least-distance programming. Results: (1) We experimented with previously treated cases. Our plan achieves all prescription goals while reducing the number of implants by 41%! Our plan also has less uniform target dose, which implies a higher dose is delivered to the prostate. (2) We expect future implant procedures will be performed under the guidance of such pre-calculated trajectories. To assess the applicability, we randomly perturb the tracks to mimic the manual implant errors. Our studies showed the impact of these perturbations are negligible, which is compensated by the least distance programming. Conclusions: We developed a new inverse planning system for prostate HDR therapy that can find optimal implant trajectories while minimizing the number of implants. For future work, we plan to integrate our new inverse planning system with an existing needle tracking system.

  12. Initial clinical experience with the Strut-Adjusted Volume Implant brachytherapy applicator for accelerated partial breast irradiation.

    Science.gov (United States)

    Yashar, Catheryn M; Blair, Sarah; Wallace, Anne; Scanderbeg, Dan

    2009-01-01

    Accelerated partial breast irradiation is becoming increasingly popular. The Cianna single-entry high-dose-rate applicator, Strut-Adjusted Volume Implant (SAVI, Cianna Medical, Aliso Viejo, CA), contains peripheral struts allowing greater planning flexibility for small-breasted women, technically easier insertion, and normal tissue exposure minimization. This study evaluates early clinical experience. Thirty patients treated with the SAVI with a median followup of 12 months were evaluated. The median age was 59.5. Tumor size averaged 0.9cm. Fifteen cancers were ductal carcinoma in situ (50%), 1 was invasive lobular (3.3%), 4 were tubular (6.7%), and the rest infiltrating ductal (40%). Most of them were estrogen receptor (ER) positive (90%). Nine women (30%) were premenopausal. Dosimetry was outstanding with median V90, V150, and V200 of 96.2%, 24.8, and 12.8cc. There were no symptomatic seromas, and one report of asymptomatic fat necrosis seen on mammogram at 1 year. In patients who had skin spacing of less than 1cm, the median skin dose was 245cGy/fraction. The median rib and lung dose per fraction for those patients with either structure less than 1cm was 340 and 255cGy (75% of prescribed dose), respectively. There have been no local recurrences to date. Early clinical experience with the SAVI demonstrates the ease of placement of a single-entry brachytherapy device combined with the increased dose modulation of interstitial brachytherapy. Dose to normal structures has remained exceedingly low. Almost half of evaluated patients were not candidates for other single-entry brachytherapy devices because of skin spacing or breast size, demonstrating an expansion of candidates for single-entry partial breast brachytherapy.

  13. New spacing material for interstitial implantation of radioactive seeds

    Energy Technology Data Exchange (ETDEWEB)

    Hammer, J.; Hawliczek, R.; Kaercher, K.H.R.; Riccabona, M.

    1989-01-01

    Poly-p-dioxanon sutures (PDS) have been common in surgery as an absorbable material for years. After hardening by a particular procedure we use PDS pins as spacer material in interstitial I-125 implantations. The advantages of PDS are the mechanical qualities in contrast to catgut which causes hazards because of its soft consistency. PDS supports the efforts in optimization of seed distribution and dose application in interstitial radiotherapy.

  14. Therapeutic value of 3-D printing template-assisted 125I-seed implantation in the treatment of malignant liver tumors

    Directory of Open Access Journals (Sweden)

    Han T

    2017-07-01

    Full Text Available Tao Han,1,* Xiaodan Yang,1,* Ying Xu,2,* Zhendong Zheng,1,* Ying Yan,2 Ning Wang2 1Department of Oncology, 2Department of Radiotherapy, General Hospital of Shenyang Military Region, Shenyang, China *These authors contributed equally to this work Objective: To explore the therapeutic value of 3-D printing template-assisted 125I-seed implantation in the treatment of malignant liver tumors.Materials and methods: Fifteen liver cancer patients with 47 total lesions were treated with 3-D printing template-assisted radioactive seed implantation (group A, and 25 liver-tumor patients with 66 total lesions were treated with 125I-seed implantation without a template auxiliary (group B. Operation time, in-hospital time, operation complications, dose distribution, and response rate (number were compared between the two groups. Results: Shorter operation times and better dose distribution were observed in group A than in group B, and the differences were statistically significant. The response rate after 2 months was 86.7% (13 of 15 in group A and 84% (21 of 25 in group B; differences between the two groups were not significant.Conclusion: Application of 3-D printing template-assisted radioactive seed implantation in the treatment of malignant liver tumors can help shorten operation time and optimize radiation-dose distribution, is worthy of further study, and has clinical significance. Keywords: brachytherapy, stereotactic techniques, iodine isotopes, liver, carcinoma 

  15. Obtention of brachytherapy seeds by sealing process using polymer; Obtencao de sementes de braquiterapia pelo processo de selagem com polimero

    Energy Technology Data Exchange (ETDEWEB)

    Lana, Diogo Alberto P.D.; Ferraz, Wilmar B.; Santos, Ana Maria M., E-mail: amms@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Carvalho, Luiz Claudio F.M. Garcia [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)

    2012-08-15

    Brachytherapy is an advanced cancer treatment where radioactive seeds or sources are placed near or directly into the tumor thus reducing the radiation exposure in the surrounding healthy tissues. Several kinds of seeds have been developed in order to obtain a better dose distribution around them and with a lower cost manufacturing. These seeds consist of an encapsulation (titanium or stainless steel tube), a radionuclide carrier, and X-ray marker. The usual sealing process of the seeds is done with laser welding, but this process can promote radionuclide volatilization. In this paper, we present a new sealing process using epoxy resin and characterizations of two epoxy resins. These resins were characterized by Fourier transform infrared spectroscopic (FTIR), ultraviolet-visible spectroscopy (UV-vis) and differential scanning calorimetry (DSC). Interactions of the resins and of the sealed seeds in a simulated body fluid (SBF) were evaluated by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and by a counting gamma-rays. (author)

  16. [A preliminary result of radioactivity ¹²⁵I seed implants with micropuncture technique combined with chemotherapy in the treatment of stage III and IV lung cancer].

    Science.gov (United States)

    Fu, Gaifa; Lei, Guangyan; Bai, Xinkuan; Zhao, Zhulian; Song, Yangrong; Zhao, Xuewu

    2005-12-20

    Brachytherapy offers an innovative method of delivering conformal high-dose radiation to a defining target tumor. The aim of this study is to investigate the value and effect of using radioactivity ¹²⁵I seed permanent implants combined with chemotherapy in the management of stage III or IV lung cancer. Forty-two lung cancer patients in stage III and IV (15 center lung cancer) who couldn't be relieved by routine methods were treated with ¹²⁵I seed permanent micropuncture implant brachytherapy and chemotherapy. The dose and distribution of seeds was decided by treatment planning system, and CT was used during ¹²⁵I seed permanent implant treatment. Distribution of seeds and complication was reviewed by CT scan after treatment. Chemotherapy was performed in 3 to 7 days after implanting. The effect was observed by X-ray, CT and MRI every 3 or 4 weeks. The satisfaction rate of seed distribution was 83.3% (35/42). The response rate of treatment was 85.7% (36/42), including complete response rate 26.2% (11/42), partial response rate 59.5% (25/42), no change rate 14.3% (6/42). Effective rate of pain relief was 83.3% (15/18). Thirteen patients (31.0%) had complication of mild hemothorax, 8 (19.0%) with bleeding in lung and 5 (11.9%) with hemoptysis. Three patients (7.1%) had mild pneumothorax and 1 patient (2.4%) had a malposition seed. Leucopenia and radiation pneumonia didn't occurred. ¹²⁵I seed micropuncture implant has less trauma and complication, and is a safe and effective method. This method might be helpful in the treatment of lung cancer and can be selectively used in clinic.

  17. Implant strategies for endocervical and interstitial ultrasound hyperthermia adjunct to HDR brachytherapy for the treatment of cervical cancer

    Energy Technology Data Exchange (ETDEWEB)

    Wootton, Jeffery H; Prakash, Punit; Hsu, I-Chow Joe; Diederich, Chris J, E-mail: CDiederich@radonc.ucsf.edu [Department of Radiation Oncology, University of California, San Francisco, CA 94115 (United States)

    2011-07-07

    Catheter-based ultrasound devices provide a method to deliver 3D conformable heating integrated with HDR brachytherapy delivery. Theoretical characterization of heating patterns was performed to identify implant strategies for these devices which can best be used to apply hyperthermia to cervical cancer. A constrained optimization-based hyperthermia treatment planning platform was used for the analysis. The proportion of tissue {>=}41 deg. C in a hyperthermia treatment volume was maximized with constraints T{sub max} {<=} 47 deg. C, T{sub rectum} {<=} 41.5 deg. C, and T{sub bladder} {<=} 42.5 deg. C. Hyperthermia treatment was modeled for generalized implant configurations and complex configurations from a database of patients (n = 14) treated with HDR brachytherapy. Various combinations of endocervical (360{sup 0} or 2 x 180{sup 0} output; 6 mm OD) and interstitial (180{sup 0}, 270{sup 0}, or 360{sup 0} output; 2.4 mm OD) applicators within catheter locations from brachytherapy implants were modeled, with perfusion constant (1 or 3 kg m{sup -3} s{sup -1}) or varying with location or temperature. Device positioning, sectoring, active length and aiming were empirically optimized to maximize thermal coverage. Conformable heating of appreciable volumes (>200 cm{sup 3}) is possible using multiple sectored interstitial and endocervical ultrasound devices. The endocervical device can heat >41 deg. C to 4.6 cm diameter compared to 3.6 cm for the interstitial. Sectored applicators afford tight control of heating that is robust to perfusion changes in most regularly spaced configurations. T{sub 90} in example patient cases was 40.5-42.7 deg. C (1.9-39.6 EM{sub 43deg.C}) at 1 kg m{sup -3} s{sup -1} with 10/14 patients {>=}41 deg. C. Guidelines are presented for positioning of implant catheters during the initial surgery, selection of ultrasound applicator configurations, and tailored power schemes for achieving T{sub 90} {>=} 41 deg. C in clinically practical implant

  18. SU-E-T-301: Dosimetric Comparison Between Adaptive and Rectilinear Template-Based Prostate Seed Implants

    Energy Technology Data Exchange (ETDEWEB)

    Sugar, E Neubauer; Buzurovic, I; O’Farrell, D; Hansen, J; Devlin, P; Cormack, R; Nguyen, P [Brigham and Women’s Hospital, Boston, MA (United States)

    2015-06-15

    Purpose: To compare the dosimetry of a standard rectilinear and an adaptive technique used in I125 prostate seed implants. Methods: To achieve favorable dosimetry in prostate implants we used adaptive needle updates to match actual positions in real-time. The seed locations were optimized based on actual needle locations. The seeds were delivered automatically with a robotic device seedSelectron™ (Elekta Brachytherapy). In this study, we evaluated the former approach against the standard rectilinear technique in which the needles have a parallel distribution. The treatment plans for 10 patients were analyzed. For comparison, the actual treatment plans were revised so each needle was repositioned to its original parallel location through the template. The analysis was performed by comparing the target coverage and dose to the organs at risk. The comparison was done using the following planning goals: the target D90> 90%, V100% > 90%, V50% <70% and V200% <30%; the urethra V125% < 1cm3 and V150%= 0cm3; and the Rectum V100%<1cm3 and V69% < 8cm3. The prescription dose to the target was 145Gy. Results: The average target volume and number of seeds were 44.39cm3(SD=11.14) and 74(SD=12), respectively. The D90 for adaptive and rectilinear plans was 159.9Gy(SD=2.99) and 155.53Gy(SD=4.04) resulting in a 2.74% difference for the average target coverage. A similar difference (1.75%) was noticed in the target V100[%]. No significant difference was noticed in the dose to the urethra and rectum. All planning goals were met with both the adaptive and rectilinear approach for each plan. Conclusion: The study reveals enhanced coverage of the target when using the adaptive needle adjustments as compared to the rectilinear approach for the analyzed cases. However, the differences in dosimetry did not translate to meaningful clinical outcomes.

  19. Postoperative [{sup 125}I] seed brachytherapy in the treatment of acinic cell carcinoma of the parotid gland. With associated risk factors

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Ming-hui; Zhang, Jian-Guo; Zhang, Jie; Zheng, Lei; Liu, Shu-ming; Huang, Ming-wei; Shi, Yan [Peking Univ. School and Hospital of Stomatology, Beijing (China). Dept. of Oral and Maxillofacial Surgery

    2014-11-15

    This retrospective study was undertaken to analyze data from patients receiving iodine-125 ([{sup 125}I]) seed brachytherapy postoperatively for the treatment of acinic cell carcinoma (ACC) of the parotid gland along with the following risk factors: residual tumor, recurrent tumor, facial nerve invasion, positive resection margins, advanced tumor stage, or tumor spillage. Twenty-nine patients with ACC (17 females, 12 males; age range, 13-73 years; median age, 37.3 years) were included. Median follow-up was 58.2 months (range, 14-122 months). Patients received [{sup 125}I] seed brachytherapy (median actuarial D90, 177 Gy) 3-41 days (median, 14 days) following surgery. Radioactivity was 18.5-33.3 MBq per seed, and the prescription dose was 80-120 Gy. The 3-, 5-, and 10-year rates of local control were 93.1, 88.7, and 88.7 %, respectively; overall survival was 96.6, 92, and 92 %; disease-free survival was 93.1, 88.4, and 88.4 %; and freedom from distant metastasis was 96.6, 91.2, and 91.2 %. Lymph node metastases were absent in all patients, although two patients died with distant metastases. Facial nerve recovery was quick, and no severe radiotherapy-related complications were noted. Recurrence history, local recurrence, and distant metastasis significantly affected overall survival. Postoperative [{sup 125}I] seed brachytherapy is effective in treating ACC and has minor complications. Patients with a history of recurrence showed poor prognosis and were more likely to experience disease recurrence and develop metastases. (orig.) [German] Diese retrospektive Studie wurde durchgefuehrt, um die Daten von Patienten zu analysieren, die postoperativ eine Seed-Brachytherapie mit Iod-125 ([{sup 125}I]) zur Behandlung von Azinuszellkarzinomen der Ohrspeicheldruese mit begleitenden Risikofaktoren, wie Residualtumor, Rezidivtumor, Invasion in den N. facialis, positive (= nicht tumorfreie) Resektionsraender, fortgeschrittenes Tumorstadium oder lokale Verbreitung von Tumorzellen

  20. Intensity-based fluoroscopy and ultrasound registration for prostate brachytherapy

    Science.gov (United States)

    Aghaloo, Zahra Karim

    Prostate cancer continues to be the most commonly diagnosed cancer among men. Brachytherapy has emerged as one of the definitive treatment options for early stage prostate cancer which entails permanent implantation of radioactive seeds into the prostate to eradicate the cancer with ionizing radiation. Successful brachytherapy requires the ability to perform dosimetry -which requires seed localization- during the procedure but such function is not available today. If dosimetry could be performed intraoperatively, physicians could implant additional seeds into the under-dosed portions of the prostate while the patient is still on the operating table. This thesis addresses the brachytherapy seed localization problem with introducing intensity based registration between transrectal ultrasound (TRUS) that shows only the prostate and a 3D seed model drawn from fluoroscopy that shows only the implanted seeds. The TRUS images are first filtered and compounded, and then registered to the seed model by using mutual information. A training phantom was implanted with 48 seeds and imaged. Various ultrasound filtering techniques were analyzed. The effect of false positives and false negatives in ultrasound was investigated by randomly masking seeds from the fluoroscopy volume or adding seeds to that in random locations. Furthermore, the effect of sparse and dense ultrasound data was analyzed by running the registration for ultrasound data with different spacing. The registration error remained consistently below clinical threshold and capture range was significantly larger than the initial guess guaranteed by the clinical workflow. This fully automated method provided excellent registration accuracy and robustness in phantom studies and promises to demonstrate clinically adequate performance on human data.

  1. Dose optimization in simulated permanent interstitial implant of prostate brachytherapy; Otimizacao de dose em implantes intersticiais permanentes simulados de braquiterapia de prostata

    Energy Technology Data Exchange (ETDEWEB)

    Faria, Fernando Pereira de

    2006-07-01

    Any treatment of cancer that uses some modality of radiotherapy is planned before being executed. In general the goal in radiotherapy is to irradiate the target to be treated minimizing the incidence of radiation in healthy surrounding tissues. The planning differ among themselves according to the modality of radiotherapy, the type of cancer and where it is located. This work approaches the problem of dose optimization for the planning of prostate cancer treatment through the modality of low dose-rate brachytherapy with Iodine 125 or Palladium 103 seeds. An algorithm for dose calculation and optimization was constructed to find the seeds configuration that better fits the relevant clinical criteria such as as the tolerated dose by the urethra and rectum and the desired dose for prostate. The algorithm automatically finds this configuration from the prostate geometry established in two or three dimensions by using images of ultrasound, magnetic resonance or tomography and from the establishment of minimum restrictions to the positions of the seeds in the prostate and needles in a template. Six patterns of seeds distribution based on clinical criteria were suggested and tested in this work. Each one of these patterns generated a space of possible seeds configurations for the prostate tested by the dose calculation and optimization algorithm. The configurations that satisfied the clinical criteria were submitted to a test according to an optimization function suggested in this work. The configuration that produced maximum value for this function was considered the optimized one. (author)

  2. A three-dimensional CT assisted Monte Carlo evaluation of intracavitary brachytherapy implants

    Science.gov (United States)

    Gifford, Kent A.

    Intracavitary brachytherapy (ICB) combined with external beam irradiation for treatment of cervical cancer is highly successful in achieving local control. The M.D. Anderson Cancer Center employs Fletcher Suit Delclos (FSD) applicators. FSD applicators contain shields to limit dose to critical structures. Dosimetric evaluation of ICB implants is limited to assessing dose at reference points. These points serve as surrogates for treatment intensity and critical structure dose. Several studies have mentioned that the ICRU38 reference points inadequately characterize the dose distribution. Also, the ovoid shields are rarely considered in dosimetry. The goal of this dissertation was to ascertain the influence of the ovoid shields on patient dose distributions. Monte Carlo dosimetry (MCD) was applied to patient computed tomography(CT) scans. These data were analyzed to determine the effect of the shields on dose to standard reference points and the bladder and rectum. The hypothesis of this work is that the ICRU38 bladder and rectal points computed conventionally are not clinically acceptable surrogates for the maximum dose points as determined by MCD. MCD was applied to the tandem and ovoids. The FSD ovoids and tandem were modeled in a single input file that allowed dose to be calculated for any patient. Dose difference surface histograms(DDSH) were computed for the bladder and rectum. Reference point doses were compared between shielded and unshielded ovoids, and a commercial treatment planning system. The results of this work showed the tandem tip screw caused a 33% reduction in dose. The ovoid shields reduced the dose by a maximum of 48.9%. DDSHs revealed on average 5% of the bladder surface area was spared 53 cGy and 5% of the rectal surface area was spared 195 cGy. The ovoid shields on average reduced the dose by 18% for the bladder point and 25% for the rectal point. The Student's t-test revealed the ICRU38 bladder and rectal points do not predict the maximum

  3. Which modality for prostate brachytherapy; Quelle modalite de curietherapie prostatique?

    Energy Technology Data Exchange (ETDEWEB)

    Bossi, A. [Departement de radiotherapie, institut Gustave-Roussy, 94 - Villejuif (France)

    2010-10-15

    Brachytherapy techniques by permanent implant of radioactive sources or by temporary high-dose-rate (HDR) fractions are nowadays extensively used for the treatment of prostatic carcinoma. Long-term results (at 20 years) concerning large amount of patients have been published by major centers confirming both in terms of efficacy and toxicities that permanent implant of radioactive iodine-125 seeds yields at least the same good results of surgery and of external beam irradiation when proposed to patients affected by low-risk disease. For intermediate to high-risk tumors, HDR temporary implants are proposed as a boost for dose escalation. For both techniques, several topics still need to be clarified dealing with a recent enlargement of indications (HDR alone for low-risk, iodine-125 seeds boost for intermediate-high-risk cancers), or with technical aspects (loose seeds versus linked ones, number of fractions and dose for HDR protocols), while dosimetric issues have only recently been addressed by cooperatives groups. Last but not least, there is a real need to address and clearly characterize the correct definition of biochemical disease control both for iodine permanent implant and for HDR implant. New challenges are facing the prostate-brachytherapy community in the near future: local relapse after external beam radiotherapy are currently managed by several salvage treatments (prostatectomy, cryo, high intensity focused ultrasounds [HIFU]) but the role of reirradiation by brachytherapy is also actively investigated. Focal therapy has gained considerable interest in the last 5 years aiming at treating only the area of cancer foci inside the prostate and preserving nearby healthy tissues. Encouraging results have been obtained with the so-called 'minimally invasive' approaches and both permanent seed implantation and HDR brachytherapy techniques may be worthwhile testing in this setting because of their capability of exactly sculpting the dose inside the

  4. Hysteroscopic Subendometrial Embryo Delivery (SEED,Mechanical Embryo Implantation

    Directory of Open Access Journals (Sweden)

    Michael Kamrava

    2010-01-01

    Full Text Available Background: A major hurdle to improved in vitro fertilization (IVF success rate is defectiveendometrial receptivity and implantation. Various techniques have been advocated to increaseimplantation while reducing side effects. Currently, embryo transfer (ET is performed blindlywithout direct visualization. As such, we sought to develop a technique utilizing a flexible minihysteroscopewith a flexible catheter for direct implantation of the blastocyst(s.Materials and Methods: This was a case study performed at West Coast IVF Clinic, Inc., BeverlyHills, California 90212. A total of 15 IVF Cycles in 13 patients (average age = 29 underwentvisually directed ET and endometrial implantation. All women received luteal support.The main outcome measure in this study, both clinically and procedurally, was the relevantdevelopment and assessment of a novel surgical technology.Results: In this study, eight (60% pregnancies ensued [5 (62.5% clinical and 3 (37.5%biochemical]. Of note, there was no uterine scratching, uterine bleeding, or ectopic pregnancies.Significantly, high-order pregnancies were decreased; only one twin was conceived.Conclusion: Preliminary data suggest mechanically assisting implantation with a hysteroscopicblastocyst ET (SEED offers a viable option for improving pregnancy outcome.

  5. SU-E-T-41: A Method for Performing An In-House Batch Assay of I-125 Seeds Used for Prostate Implants

    Energy Technology Data Exchange (ETDEWEB)

    Muryn, J [Cleveland State University, Cleveland, OH (United States); Wilkinson, D [Cleveland Clinic Foundation, Cleveland, OH (United States)

    2015-06-15

    Purpose: The purpose of this work is to evaluate a method for confirming source strength of I-125 seeds in a bulk assay while maintaining sterility and time efficiency. Methods: The I-125 seeds used in this study (STM 1251, Bard Brachytherapy, Inc.) were available as loose seeds or linked in 3, 4, or 5 seed configurations. A third party 10% assay (NIST traceable) is provided. Source strengths ranging from 0.395 to 0.504 U were available for this study. A stand was built out of aluminum to hold an exposure meter (Inovision (Fluke) 451P) at 25 cm above the I-125 sources to measure the exposure rate. Three different seed configurations were measured: loose, linked, and loaded needles (Bard FastFil Seed Implant Needle). The measurements were made in an operating room, and a sterile sheet was used under the non-sterile aluminum stand. Seeds and needles were placed in a sterile tray. Results: One hundred forty-two loose seeds in 5 batches (0.395, 0.395, 0.409, 0.444, 0.444 U/seed) and 902 seeds in 7 batches containing various strands (0.444, 0.444,.0444, 0.466, 0.466, 0.504, 0.504 U/seed) were measured. The average exposure rate per unit activity was measured to be 0.593 mR per hr per U with a standard deviation of 0.016. The Result for loaded needles was 0.261 mR per hr per U with a standard deviation of 0.014. Once the apparatus is set up, measurements of 180 linked sources as supplied in the Bard package requires only a few minutes. Conclusion: The proposed method can confirm the activity of a batch of loose or stranded I-125 seeds within a range of 5%.

  6. 3D vision on robot assisted brachytherapy catheter implantation in bladder cancer

    NARCIS (Netherlands)

    Smits, G.A.H.J.; Steen-Banasik, E. van der; Wieringa F.P.

    2012-01-01

    Using strict criteria, solitary muscle invasive bladder cancer can be managed favorably in a bladder sparing manner with brachytherapy. Hollow catheters for afterloading radiotherapy are placed in the bladder wall. Until now, this is performed by open surgery. We replaced open surgery by laparoscopy

  7. Canadian prostate brachytherapy in 2012

    Science.gov (United States)

    Keyes, Mira; Crook, Juanita; Morris, W. James; Morton, Gerard; Pickles, Tom; Usmani, Nawaid; Vigneault, Eric

    2013-01-01

    Prostate brachytherapy can be used as a monotherapy for low- and intermediate-risk patients or in combination with external beam radiation therapy (EBRT) as a form of dose escalation for selected intermediate- and high-risk patients. Prostate brachytherapy with either permanent implants (low dose rate [LDR]) or temporary implants (high dose rate [HDR]) is emerging as the most effective radiation treatment for prostate cancer. Several large Canadian brachytherapy programs were established in the mid- to late-1990s. Prostate brachytherapy is offered in British Columbia, Alberta, Manitoba, Ontario, Quebec and New Brunswick. We anticipate the need for brachytherapy services in Canada will significantly increase in the near future. In this review, we summarize brachytherapy programs across Canada, contemporary eligibility criteria for the procedure, toxicity and prostate-specific antigen recurrence free survival (PRFS), as published from Canadian institutions for both LDR and HDR brachytherapy. PMID:23671495

  8. Clinical Study on Using (125)I Seeds Articles Combined with Biliary Stent Implantation in the Treatment of Malignant Obstructive Jaundice.

    Science.gov (United States)

    Wang, Tao; Liu, Sheng; Zheng, Yan-Bo; Song, Xue-Peng; Sun, Bo-Lin; Jiang, Wen-Jin; Wang, Li-Gang

    2017-08-01

    Aim: To study the feasibility and curative effect of(125)I seeds articles combined with biliary stent implantation in the treatment of malignant obstructive jaundice. Patients and Methods: Fifty patients with malignant obstructive jaundice were included. Twenty-four were treated by biliary stent implantation combined with intraluminal brachytherapy by (125)I seeds articles as the experimental group, while the remaining 26 were treated by biliary stent implantation only as the control group. The goal of this study was to evaluate total bilirubin, direct bilirubin and tumor markers (cancer antigen (CA)-199, CA-242 and carcinoembryonic antigen (CEA)), as well as biliary stent patency status and survival time before and after surgery. Results: Jaundice improved greatly in both groups. The decreases of CA-199 and CA-242 had statistical significance (p=0.003 and p=0.004) in the experimental group. The ratio of biliary stent patency was 83.3% (20/24) in the experimental group and 57.7% (15/26) in the control group (p=0.048). The biliary stent patency time in the experimental group was 1~15.5 (mean=9.84) months. The biliary stent patency time in the control group was 0.8~9 (mean=5.57) months, which was statistically significant (p=0.018). The median survival time was 10.2 months in the experimental group, while 5.4 months in control group (pjaundice possibly by inhibiting the proliferation of vascular endothelial cells and the growth of tumor. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  9. Surface coating for prevention of metallic seed migration in tissues

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyunseok; Park, Jong In [Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-742 (Korea, Republic of); Lee, Won Seok; Park, Min [Interdisciplinary Program in Bioengineering, Seoul National University College of Engineering, Seoul 151-742 (Korea, Republic of); Son, Kwang-Jae [Hanaro Applications Research, Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Bang, Young-bong [Advanced Institutes of Convergence Technology, Seoul National University, Suwon 443-270 (Korea, Republic of); Choy, Young Bin, E-mail: ybchoy@snu.ac.kr, E-mail: sye@snu.ac.kr [Interdisciplinary Program in Bioengineering, Seoul National University College of Engineering, Seoul 110-744 (Korea, Republic of); Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of); Institute of Medical and Biological Engineering, Medical Research Center, Seoul National University, Seoul 110-744 (Korea, Republic of); Ye, Sung-Joon, E-mail: ybchoy@snu.ac.kr, E-mail: sye@snu.ac.kr [Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-742 (Korea, Republic of); Advanced Institutes of Convergence Technology, Seoul National University, Suwon 443-270 (Korea, Republic of); Department of Radiation Oncology, Seoul National University Hospital, Seoul 110-744 (Korea, Republic of)

    2015-06-15

    Purpose: In radiotherapy, metallic implants often detach from their deposited sites and migrate to other locations. This undesirable migration could cause inadequate dose coverage for permanent brachytherapy and difficulties in image-guided radiation delivery for patients. To prevent migration of implanted seeds, the authors propose a potential strategy to use a biocompatible and tissue-adhesive material called polydopamine. Methods: In this study, nonradioactive dummy seeds that have the same geometry and composition as commercial I-125 seeds were coated in polydopamine. Using scanning electron microscopy and x-ray photoelectron spectroscopy, the surface of the polydopamine-coated and noncoated seeds was characterized. The detachment stress between the two types of seeds and the tissue was measured. The efficacy of polydopamine-coated seed was investigated through in vitro migration tests by tracing the seed location after tissue implantation and shaking for given times. The cytotoxicity of the polydopamine coating was also evaluated. Results: The results of the coating characterization have shown that polydopamine was successfully coated on the surface of the seeds. In the adhesion test, the polydopamine-coated seeds had 2.1-fold greater detachment stress than noncoated seeds. From the in vitro test, it was determined that the polydopamine-coated seed migrated shorter distances than the noncoated seed. This difference was increased with a greater length of time after implantation. Conclusions: The authors suggest that polydopamine coating is an effective technique to prevent migration of implanted seeds, especially for permanent prostate brachytherapy.

  10. A radiobiological investigation on dose and dose rate for permanent implant brachytherapy of breast using I125 or P103d sources.

    Science.gov (United States)

    Baltas, Dimos; Lymperopoulou, Georgia; Löffler, Edgar; Mavroidis, Panayiotis

    2010-06-01

    The present report addresses the question of what could be the appropriate dose and dose rate for I125 and P103d permanent seed implants for breast cancer as monotherapy for early stage breast cancer. This is addressed by employing a radiobiological methodology, which is based on the linear quadratic model, to identify a biologically effective dose (BED) to the prescription point of the brachytherapy implant, which would produce equivalent cell killing (or same cell survival) when compared to a specified external radiotherapy scheme. In the present analysis, the tumor and normal tissue BED ratios of brachytherapy and external radiotherapy are examined for different combinations of tumor proliferation constant (K), α/β ratios, initial dose rate (R0), and reference external radiotherapy scheme (50 or 60 Gy in 2 Gy per fraction). The results of the radiobiological analysis are compared against other reports and clinical protocols in order to examine possible opportunities of improvement. The analysis indicates that physical doses of approximately 100-110 Gy delivered with an initial dose rate of around 0.05Gyh-1 and 78-80 Gy delivered at 0.135Gyh-1 for I125 and P103d permanent implants, respectively, are equivalent to 50 Gy external beam radiotherapy (EBRT) in 2 Gy per fraction. Similarly, for physical doses of approximately 115-127 Gy delivered with an initial dose rate of around 0.059Gyh-1 and 92 Gy delivered at 0.157Gyh-1 for I125 and P103d, respectively, are equivalent to 60 Gy EBRT in 2 Gy per fraction. It is shown that the initial dose rate required to produce isoeffective tumor response with 50 or 60 Gy EBRT in 2 Gy per fraction increases as the repopulation factor K increases, even though repopulation is also considered in EBRT. Also, the initial dose rate increases as the value of the α/β ratio decreases. The impact of the different α/β ratios on the ratio of the tumor BEDs is significantly large for both the I125 and P103d implants with the deviation

  11. SU-G-IeP1-01: A Novel MRI Post-Processing Algorithm for Visualization of the Prostate LDR Brachytherapy Seeds and Calcifications Based On B0 Field Inhomogeneity Correction and Hough Transform

    Energy Technology Data Exchange (ETDEWEB)

    Nosrati, R [Reyrson University, Toronto, Ontario (Canada); Sunnybrook Health Sciences Centre, Toronto, Ontario (Canada); Soliman, A; Owrangi, A [Sunnybrook Research Institute, Toronto, Ontario (Canada); Sunnybrook Health Sciences Centre, Toronto, Ontario (Canada); Ghugre, N [Sunnybrook Research Institute, Toronto, Ontario (Canada); University of Toronto, Toronto, ON (Canada); Morton, G [Sunnybrook Health Sciences Centre, Toronto, Ontario (Canada); University of Toronto, Toronto, ON (Canada); Pejovic-Milic, A [Reyrson University, Toronto, Ontario (Canada); Song, W [Reyrson University, Toronto, Ontario (Canada); Sunnybrook Research Institute, Toronto, Ontario (Canada); Sunnybrook Health Sciences Centre, Toronto, Ontario (Canada); University of Toronto, Toronto, ON (Canada)

    2016-06-15

    Purpose: This study aims at developing an MRI-only workflow for post-implant dosimetry of the prostate LDR brachytherapy seeds. The specific goal here is to develop a post-processing algorithm to produce positive contrast for the seeds and prostatic calcifications and differentiate between them on MR images. Methods: An agar-based phantom incorporating four dummy seeds (I-125) and five calcifications of different sizes (from sheep cortical bone) was constructed. Seeds were placed arbitrarily in the coronal plane. The phantom was scanned with 3T Philips Achieva MR scanner using an 8-channel head coil array. Multi-echo turbo spin echo (ME-TSE) and multi-echo gradient recalled echo (ME-GRE) sequences were acquired. Due to minimal susceptibility artifacts around seeds, ME-GRE sequence (flip angle=15; TR/TE=20/2.3/2.3; resolution=0.7×0.7×2mm3) was further processed.The induced field inhomogeneity due to the presence of titaniumencapsulated seeds was corrected using a B0 field map. B0 map was calculated using the ME-GRE sequence by calculating the phase difference at two different echo times. Initially, the product of the first echo and B0 map was calculated. The features corresponding to the seeds were then extracted in three steps: 1) the edge pixels were isolated using “Prewitt” operator; 2) the Hough transform was employed to detect ellipses approximately matching the dimensions of the seeds and 3) at the position and orientation of the detected ellipses an ellipse was drawn on the B0-corrected image. Results: The proposed B0-correction process produced positive contrast for the seeds and calcifications. The Hough transform based on Prewitt edge operator successfully identified all the seeds according to their ellipsoidal shape and dimensions in the edge image. Conclusion: The proposed post-processing algorithm successfully visualized the seeds and calcifications with positive contrast and differentiates between them according to their shapes. Further

  12. Y-configured metallic stent combined with 125 I seed strands cavity brachytherapy for a patient with type IV Klatskin tumor

    Directory of Open Access Journals (Sweden)

    Jiao Dechao

    2016-08-01

    Full Text Available We report a case in an inoperable patient with type IV Klatskin tumor treated by the use of a novel, two piece, Y-configured self-expandable metallic stent (SEMS combined with two 125 I seed strands via bilateral approach. The placement of the Y-shaped SEMS was successful and resulted in adequate biliary drainage. After 2 months of intraluminal brachytherapy (ILBT, both 125 I seed strands and temporary drainage catheter were removed after patency of the expanded stents was confirmed by the cholangiogram. This technique was feasible and could be considered for the treatment of patients with Bismuth type IV Klatskin tumors.

  13. SU-F-T-46: The Effect of Inter-Seed Attenuation and Tissue Composition in Prostate 125I Brachytherapy Dose Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, K; Araki, F; Ohno, T [Kumamoto University, Kumamoto, Kumamoto (Japan)

    2016-06-15

    Purpose: To investigate the difference of dose distributions with/without the effect of inter-seed attenuation and tissue compositions in prostate {sup 125}I brachytherapy dose calculations, using Monte Carlo simulations of Particle and Heavy Ion Transport code System (PHITS). Methods: The dose distributions in {sup 125}I prostate brachytherapy were calculated using PHITS for non-simultaneous and simultaneous alignments of STM1251 sources in water or prostate phantom for six patients. The PHITS input file was created from DICOM-RT file which includes source coordinates and structures for clinical target volume (CTV) and organs at risk (OARs) of urethra and rectum, using in-house Matlab software. Photon and electron cutoff energies were set to 1 keV and 100 MeV, respectively. The dose distributions were calculated with the kerma approximation and the voxel size of 1 × 1 × 1 mm{sup 3}. The number of incident photon was set to be the statistical uncertainty (1σ) of less than 1%. The effect of inter-seed attenuation and prostate tissue compositions was evaluated from dose volume histograms (DVHs) for each structure, by comparing to results of the AAPM TG-43 dose calculation (without the effect of inter-seed attenuation and prostate tissue compositions). Results: The dose reduction due to the inter-seed attenuation by source capsules was approximately 2% for CTV and OARs compared to those of TG-43. In additions, by considering prostate tissue composition, the D{sub 90} and V{sub 100} of CTV reduced by 6% and 1%, respectively. Conclusion: It needs to consider the dose reduction due to the inter-seed attenuation and tissue composition in prostate {sup 125}I brachytherapy dose calculations.

  14. SU-F-I-19: MRI Positive Contrast Visualization of Prostate Brachytherapy Seeds Using An Integrated Laplacian-Based Phase Processing

    Energy Technology Data Exchange (ETDEWEB)

    Soliman, A; Safigholi, H [Sunnybrook Research Institute, Toronto, ON (Canada); Sunnybrook Health Sciences Center, Toronto, ON (Canada); Nosrati, R [Sunnybrook Health Sciences Center, Toronto, ON (Canada); Ryerson University, Toronto, ON (Canada); Owrangi, A; Morton, G [Sunnybrook Health Sciences Center, Toronto, ON (Canada); University of Toronto, Toronto, ON (Canada); Song, W [Sunnybrook Research Institute, Toronto, ON (Canada); Sunnybrook Health Sciences Center, Toronto, ON (Canada); Ryerson University, Toronto, ON (Canada); University of Toronto, Toronto, ON (Canada)

    2016-06-15

    Purpose: To propose a new method that provides a positive contrast visualization of the prostate brachytherapy seeds using the phase information from MR images. Additionally, the feasibility of using the processed phase information to distinguish seeds from calcifications is explored. Methods: A gel phantom was constructed using 2% agar dissolved in 1 L of distilled water. Contrast agents were added to adjust the relaxation times. Four iodine-125 (Eckert & Ziegler SML86999) dummy seeds were placed at different orientations with respect to the main magnetic field (B0). Calcifications were obtained from a sheep femur cortical bone due to its close similarity to human bone tissue composition. Five samples of calcifications were shaped into different dimensions with lengths ranging between 1.2 – 6.1 mm.MR imaging was performed on a 3T Philips Achieva using an 8-channel head coil. Eight images were acquired at eight echo-times using a multi-gradient echo sequence. Spatial resolution was 0.7 × 0.7 × 2 mm, TR/TE/dTE = 20.0/2.3/2.3 ms and BW = 541 Hz/pixel. Complex images were acquired and fed into a two-step processing pipeline: the first includes phase unwrapping and background phase removal using Laplacian operator (Wei et al. 2013). The second step applies a specific phase mask on the resulting tissue phase from the first step to provide the desired positive contrast of the seeds and to, potentially, differentiate them from the calcifications. Results: The phase-processing was performed in less than 30 seconds. The proposed method has successfully resulted in a positive contrast of the brachytherapy seeds. Additionally, the final processed phase image showed difference between the appearance of seeds and calcifications. However, the shape of the seeds was slightly distorted compared to the original dimensions. Conclusion: It is feasible to provide a positive contrast of the seeds from MR images using Laplacian operator-based phase processing.

  15. Implant strategies for endocervical and interstitial ultrasound hyperthermia adjunct to HDR brachytherapy for the treatment of cervical cancer

    Science.gov (United States)

    Wootton, Jeffery H.; Prakash, Punit; Hsu, I.-Chow Joe; Diederich, Chris J.

    2011-07-01

    Catheter-based ultrasound devices provide a method to deliver 3D conformable heating integrated with HDR brachytherapy delivery. Theoretical characterization of heating patterns was performed to identify implant strategies for these devices which can best be used to apply hyperthermia to cervical cancer. A constrained optimization-based hyperthermia treatment planning platform was used for the analysis. The proportion of tissue >=41 °C in a hyperthermia treatment volume was maximized with constraints Tmax 200 cm3) is possible using multiple sectored interstitial and endocervical ultrasound devices. The endocervical device can heat >41 °C to 4.6 cm diameter compared to 3.6 cm for the interstitial. Sectored applicators afford tight control of heating that is robust to perfusion changes in most regularly spaced configurations. T90 in example patient cases was 40.5-42.7 °C (1.9-39.6 EM43 °C) at 1 kg m-3 s-1 with 10/14 patients >=41 °C. Guidelines are presented for positioning of implant catheters during the initial surgery, selection of ultrasound applicator configurations, and tailored power schemes for achieving T90 >= 41 °C in clinically practical implant configurations. Catheter-based ultrasound devices, when adhering to the guidelines, show potential to generate conformal therapeutic heating ranging from a single endocervical device targeting small volumes local to the cervix (directional interstitial applicators in the lateral periphery to target much larger volumes (6 cm radial), while preferentially limiting heating of the bladder and rectum.

  16. The Effect of Scattering from Leg Region on Organ Doses in Prostate Brachytherapy for 103Pd, 125I and 131Cs Seeds

    Directory of Open Access Journals (Sweden)

    Seyed Milad Vahabi

    2016-09-01

    Full Text Available Introduction Dose calculation of tumor and surrounding tissues is essential during prostate brachytherapy. Three radioisotopes, namely, 125I, 103Pd, and 131Cs, are extensively used in this method. In this study, we aimed to calculate the received doses by the prostate and critical organs using the aforementioned radioactive seeds and to investigate the effect of scattering contribution for the legs on dose calculations. Materials and Methods The doses to organs of interest were calculated using MCNPX code and ORNL (Oak Ridge National Laboratory phantom. Results Doses to the prostate as a source of radiation for 125I, 103Pd, and 131Cs were approximately 108.9, 97.7, and 81.5 Gy, respectively. Bladder, sigmoid colon, and testes received higher doses than other organs due to proximity to the prostate. Differences between the doses when tallying with the legs intact and with the legs voided were significant for testes, sigmoid colon contents, and sigmoid colon wall because of their proximity to the prostate. There was also a good consistency between our results and the data published by Montefiore Medical Center and Albert Einstein College of Medicine for the prostate. Conclusion Scattering from leg region had a significant effect on doses to testes, sigmoid colon contents, and sigmoid colon wall in the pelvic region, and prostate and the other organs were unaffected. Brachytherapy treatment plans using 131Cs seeds allow for better sparing of critical tissues, with a comparable number of, or fewer, seeds required, compared to 125I seeds.

  17. Design and optimization of a brachytherapy robot

    Science.gov (United States)

    Meltsner, Michael A.

    Trans-rectal ultrasound guided (TRUS) low dose rate (LDR) interstitial brachytherapy has become a popular procedure for the treatment of prostate cancer, the most common type of non-skin cancer among men. The current TRUS technique of LDR implantation may result in less than ideal coverage of the tumor with increased risk of negative response such as rectal toxicity and urinary retention. This technique is limited by the skill of the physician performing the implant, the accuracy of needle localization, and the inherent weaknesses of the procedure itself. The treatment may require 100 or more sources and 25 needles, compounding the inaccuracy of the needle localization procedure. A robot designed for prostate brachytherapy may increase the accuracy of needle placement while minimizing the effect of physician technique in the TRUS procedure. Furthermore, a robot may improve associated toxicities by utilizing angled insertions and freeing implantations from constraints applied by the 0.5 cm-spaced template used in the TRUS method. Within our group, Lin et al. have designed a new type of LDR source. The "directional" source is a seed designed to be partially shielded. Thus, a directional, or anisotropic, source does not emit radiation in all directions. The source can be oriented to irradiate cancerous tissues while sparing normal ones. This type of source necessitates a new, highly accurate method for localization in 6 degrees of freedom. A robot is the best way to accomplish this task accurately. The following presentation of work describes the invention and optimization of a new prostate brachytherapy robot that fulfills these goals. Furthermore, some research has been dedicated to the use of the robot to perform needle insertion tasks (brachytherapy, biopsy, RF ablation, etc.) in nearly any other soft tissue in the body. This can be accomplished with the robot combined with automatic, magnetic tracking.

  18. Accelerated partial breast irradiation using the strut-adjusted volume implant single-entry hybrid catheter in brachytherapy for breast cancer in the setting of breast augmentation.

    Science.gov (United States)

    Bloom, Elizabeth S; Kirsner, Steve; Mason, Bryan E; Nelson, Chris L; Hunt, Kelly K; Baumann, Donald P; Gifford, Kent A

    2011-01-01

    Accelerated partial breast irradiation (APBI) has gained popularity as an alternative to adjuvant whole breast irradiation; however, owing to limitations of delivery devices for brachytherapy, APBI has not been a suitable option for all the patients. This report evaluates APBI using the strut-adjusted volume implant (SAVI) single-entry catheter to deliver brachytherapy for breast cancer in the setting of an augmented breast. The patient previously had placed bilateral subpectoral saline implants; stereotactic core biopsy revealed estrogen receptor- and progesterone receptor-positive ductal carcinoma in situ of intermediate nuclear grade. The patient underwent needle-localized segmental mastectomy of her left breast; pathologic specimen revealed no residual malignancy. An SAVI 8-1 device was placed within the segmental resection cavity. Treatment consisted of 3.4 Gy delivered twice a day for 5 days for a total dose of 34 Gy. Treatments were delivered with a high-dose-rate (192)Ir remote afterloader. Conformance of the device to the lumpectomy cavity was excellent at 99.2%. Dosimetric values of percentage of the planning target volume for evaluation receiving 90% of the prescribed dose, percentage of the planning target volume for evaluation receiving 95% of the prescribed dose, volume receiving 150% of the prescribed dose, and volume receiving 200% of the prescribed dose were 97.1%, 94.6%, 22.7 cc, and 11.6 cc, respectively. Maximum skin dose was 115% of the prescribed dose. The patient tolerated treatment well with excellent cosmetic results, and limited acute and late toxicity at 8 weeks and 6 months, respectively. Breast augmentation should not be an exclusion criterion for the option of APBI. The SAVI single-entry catheter is another option to successfully complete APBI using brachytherapy for breast cancer in the setting of an augmented breast. Copyright © 2011 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  19. Radiobiological evaluation of the influence of dwell time modulation restriction in HIPO optimized HDR prostate brachytherapy implants.

    Science.gov (United States)

    Mavroidis, Panayiotis; Katsilieri, Zaira; Kefala, Vasiliki; Milickovic, Natasa; Papanikolaou, Nikos; Karabis, Andreas; Zamboglou, Nikolaos; Baltas, Dimos

    2010-09-01

    One of the issues that a planner is often facing in HDR brachytherapy is the selective existence of high dose volumes around some few dominating dwell positions. If there is no information available about its necessity (e.g. location of a GTV), then it is reasonable to investigate whether this can be avoided. This effect can be eliminated by limiting the free modulation of the dwell times. HIPO, an inverse treatment plan optimization algorithm, offers this option. In treatment plan optimization there are various methods that try to regularize the variation of dose non-uniformity using purely dosimetric measures. However, although these methods can help in finding a good dose distribution they do not provide any information regarding the expected treatment outcome as described by radiobiology based indices. The quality of 12 clinical HDR brachytherapy implants for prostate utilizing HIPO and modulation restriction (MR) has been compared to alternative plans with HIPO and free modulation (without MR). All common dose-volume indices for the prostate and the organs at risk have been considered together with radiobiological measures. The clinical effectiveness of the different dose distributions was investigated by calculating the response probabilities of the tumors and organs-at-risk (OARs) involved in these prostate cancer cases. The radiobiological models used are the Poisson and the relative seriality models. Furthermore, the complication-free tumor control probability, P+ and the biologically effective uniform dose ([Formula: see text]) were used for treatment plan evaluation and comparison. Our results demonstrate that HIPO with a modulation restriction value of 0.1-0.2 delivers high quality plans which are practically equivalent to those achieved with free modulation regarding the clinically used dosimetric indices. In the comparison, many of the dosimetric and radiobiological indices showed significantly different results. The modulation restricted clinical

  20. Radiobiological evaluation of the influence of dwell time modulation restriction in HIPO optimized HDR prostate brachytherapy implants

    Directory of Open Access Journals (Sweden)

    Dimos Baltas

    2010-10-01

    Full Text Available Purpose: One of the issues that a planner is often facing in HDR brachytherapy is the selective existence of high dose volumes around some few dominating dwell positions. If there is no information available about its necessity (e.g. location of a GTV, then it is reasonable to investigate whether this can be avoided. This effect can be eliminated by limiting the free modulation of the dwell times. HIPO, an inverse treatment plan optimization algorithm, offers this option.In treatment plan optimization there are various methods that try to regularize the variation of dose non-uniformity using purely dosimetric measures. However, although these methods can help in finding a good dose distribution they do not provide any information regarding the expected treatment outcome as described by radiobiology based indices.Material and methods: The quality of 12 clinical HDR brachytherapy implants for prostate utilizing HIPO and modulation restriction (MR has been compared to alternative plans with HIPO and free modulation (without MR.All common dose-volume indices for the prostate and the organs at risk have been considered together with radiobiological measures. The clinical effectiveness of the different dose distributions was investigated by calculating the response probabilities of the tumors and organs-at-risk (OARs involved in these prostate cancer cases. The radiobiological models used are the Poisson and the relative seriality models. Furthermore, the complication-free tumor control probability, P+ and the biologically effective uniform dose (D = were used for treatment plan evaluation and comparison.Results: Our results demonstrate that HIPO with a modulation restriction value of 0.1-0.2 delivers high quality plans which are practically equivalent to those achieved with free modulation regarding the clinically used dosimetric indices.In the comparison, many of the dosimetric and radiobiological indices showed significantly different results. The

  1. Iodine-125 brachytherapy for brain tumours - a review

    Science.gov (United States)

    2012-01-01

    Iodine-125 brachytherapy has been applied to brain tumours since 1979. Even though the physical and biological characteristics make these implants particularly attractive for minimal invasive treatment, the place for stereotactic brachytherapy is still poorly defined. An extensive review of the literature has been performed, especially concerning indications, results and complications. Iodine-125 seeds have been implanted in astrocytomas I-III, glioblastomas, metastases and several other tumour entities. Outcome data given in the literature are summarized. Complications are rare in carefully selected patients. All in all, for highly selected patients with newly diagnosed or recurrent primary or metastatic tumours, this method provides encouraging survival rates with relatively low complication rates and a good quality of life. PMID:22394548

  2. Monte Carlo calculation of dosimetric parameters of a {sup 125}I brachytherapy seed encapsulation with biocompatible polymer and a ceramic matrix as radiographic marker

    Energy Technology Data Exchange (ETDEWEB)

    Reis, Lucas P.; Santos, Adriano M.; Grynberg, Suely E., E-mail: lpr@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Lab. de Dosimetria e Simulacao Computacional; Facure, Alessandro, E-mail: facure@cnen.gov.b [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    For prostate cancer treatments, there is an increasing interest in the permanent radioactive seeds implant technique. Currently, in Brazil, the seeds are imported at high prices, which prohibit their use in public hospitals. One of the seed models that have been developed at CDTN has a ceramic matrix as a radioisotope carrier and a radiographic marker; the seed is encapsulated with biocompatible polymer. In this work, Monte Carlo simulations were performed in order to assess the dose distributions generated by the prototype seed model. The obtained data was assessed as described in the TG-43U1 report by the AAPM. The dosimetric parameters dose rate constant, {Lambda}, radial dose function, g{sub L}(r), and anisotropy function, F(r,{theta}), were derived from simulations using the MCNP5 code. The function g(r) shows that the seed has a lower decrease in dose rate on its transverse axis when compared to the 6711 model (one of the most used seeds in permanent prostate implants). F(r,{theta}) shows that CDTN's seed anisotropy curves are smoother than the 6711 model curves for {theta}{<=}20 deg and 0.25{<=}r{<=}1 cm. As well, the {Lambda} value is 15% lower than the {Lambda} value of 6711. The results show that CDTN's seed model can deposit a more isotropic dose. Because of the model's characteristics, the seeds can be impregnated with iodine of lower specific activity which would help reducing costs. (author)

  3. Prostate brachytherapy in Ghana: our initial experience.

    Science.gov (United States)

    Mensah, James Edward; Yarney, Joel; Vanderpuye, Verna; Akpakli, Evans; Tagoe, Samuel; Sasu, Evans

    2016-10-01

    This study presents the experience of a brachytherapy team in Ghana with a focus on technology transfer and outcome. The team was initially proctored by experienced physicians from Europe and South Africa. A total of 90 consecutive patients underwent either brachytherapy alone or brachytherapy in combination with external beam radiotherapy for prostate carcinoma between July 2008 and February 2014 at Korle Bu Teaching Hospital, Accra, Ghana. Patients were classified as low-risk, intermediate, and high-risk according to the National Comprehensive Cancer Network (NCCN) criteria. All low-risk and some intermediate risk group patients were treated with seed implantation alone. Some intermediate and all high-risk group patients received brachytherapy combined with external beam radiotherapy. The median patient age was 64.0 years (range 46-78 years). The median follow-up was 58 months (range 18-74 months). Twelve patients experienced biochemical failure including one patient who had evidence of metastatic disease and died of prostate cancer. Freedom from biochemical failure rates for low, intermediate, and high-risk cases were 95.4%, 90.9%, and 70.8%, respectively. Clinical parameters predictive of biochemical outcome included: clinical stage, Gleason score, and risk group. Pre-treatment prostate specific antigen (PSA) was not a statistically significant predictor of biochemical failure. Sixty-nine patients (76.6%) experienced grade 1 urinary symptoms in the form of frequency, urgency, and poor stream. These symptoms were mostly self-limiting. Four patients needed catheterization for urinary retention (grade 2). One patient developed a recto urethral fistula (grade 3) following banding for hemorrhoids. Our results compare favorably with those reported by other institutions with more extensive experience. We believe therefore that, interstitial permanent brachytherapy can be safely and effectively performed in a resource challenged environment if adequate training

  4. Prostate brachytherapy in Ghana: our initial experience

    Directory of Open Access Journals (Sweden)

    James Edward Mensah

    2016-10-01

    Full Text Available Purpose: This study presents the experience of a brachytherapy team in Ghana with a focus on technology transfer and outcome. The team was initially proctored by experienced physicians from Europe and South Africa. Material and methods : A total of 90 consecutive patients underwent either brachytherapy alone or brachytherapy in combination with external beam radiotherapy for prostate carcinoma between July 2008 and February 2014 at Korle Bu Teaching Hospital, Accra, Ghana. Patients were classified as low-risk, intermediate, and high-risk according to the National Comprehensive Cancer Network (NCCN criteria. All low-risk and some intermediate risk group patients were treated with seed implantation alone. Some intermediate and all high-risk group patients received brachytherapy combined with external beam radiotherapy. Results: The median patient age was 64.0 years (range 46-78 years. The median follow-up was 58 months (range 18-74 months. Twelve patients experienced biochemical failure including one patient who had evidence of metastatic disease and died of prostate cancer. Freedom from biochemical failure rates for low, intermediate, and high-risk cases were 95.4%, 90.9%, and 70.8%, respectively. Clinical parameters predictive of biochemical outcome included: clinical stage, Gleason score, and risk group. Pre-treatment prostate specific antigen (PSA was not a statistically significant predictor of biochemical failure. Sixty-nine patients (76.6% experienced grade 1 urinary symptoms in the form of frequency, urgency, and poor stream. These symptoms were mostly self-limiting. Four patients needed catheterization for urinary retention (grade 2. One patient developed a recto urethral fistula (grade 3 following banding for hemorrhoids. Conclusions : Our results compare favorably with those reported by other institutions with more extensive experience. We believe therefore that, interstitial permanent brachytherapy can be safely and effectively

  5. Comparing the RTOG/EORTC and LENT-SOMA scoring systems for the evaluation of late skin toxicity after (125)I seed brachytherapy for parotid gland cancer.

    Science.gov (United States)

    Mao, Ming-Hui; Feng, Zhien; Li, Hua; Qin, Li-Zheng; Li, Jian-Hua; Huang, Xin; Xing, Ru-Dong; Zhang, Jie; Zhang, Jian-Guo; Han, Zheng-Xue

    The Radiation Therapy Oncology Group (RTOG) and Late Effects Normal Tissue Task Force-Subjective, Objective, Management and Analytic (LENT-SOMA) scoring systems were compared for grading late skin effects after iodine-125 seed brachytherapy in parotid gland cancer patients. A total of 109 patients diagnosed with parotid gland carcinoma were treated postoperatively with iodine-125 seed brachytherapy at a dose of 100-120 Gy. After 6-24 months of followup, telangiectasia, skin pigmentation, atrophy, fibrosis, and ulceration were scored according to both RTOG and LENT-SOMA scale criteria. The strength of correlation between the scores and the interobserver variability were calculated. Of 109 patients, 22.9% had telangiectasia; 78.9%, pigmentation; 28.4%, fibrosis; 4.6%, edema; 0.9%, ulceration; 37.6%, retraction and/or atrophy; 22.9%, sensation change; and 11%, scaliness and/or roughness. Compared with RTOG, LENT-SOMA criteria resulted in the upgrading of pigmentation in 17% of cases, the downgrading of all instances of telangiectasia and the downgrading of one instance of Grade 4 ulceration to Grade 3. Between the two scales, fibrosis and atrophy correlated well (Spearman ρ, 0.992, 0.986). An additional 229 side effects were observed using LENT-SOMA criteria. The LENT-SOMA scale was more accurate than the RTOG scale for the evaluation of late skin and subcutaneous toxicity. The downgrading of telangiectasia and upgrading of pigmentation with the LENT-SOMA scale reflected the patients' conditions better than the scores obtained with the RTOG scale. The assessment of fibrosis and atrophy correlated well between the two scales. The use of the sum of the individual scores of the LENT-SOMA is therefore advocated. The addition of decreased sweating and the removal of the alopecia (scalp) metric should be considered to standardize the reporting of late radiation morbidity. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  6. SU-F-T-61: Treatment Planning Observations for the CivaSheet Directional Brachytherapy Device Using VariSeed 9.0

    Energy Technology Data Exchange (ETDEWEB)

    Rivard, MJ [Tufts University School of Medicine, Boston, MA (United States); Rothley, DJ [Cancer Treatment Centers of America, Newnan, GA (United States)

    2016-06-15

    Purpose: The VariSeed 9.0 brachytherapy TPS is recently available and has new features such as ability to rotate a brachytherapy source away from normal to the imaging plane. Consequently, a dosimetric analysis was performed for a directional brachytherapy source (CivaSheet) with tests of this functionality and experiences from clinical treatment planning were documented. These observations contribute to safe, practical, and accurate use of such new software features. Methods: Several tests were established to evaluate the new rotational feature, specific to the CivaSheet for the first patients treated using this new brachytherapy device. These included suitability of imaging slice-thickness and in-plane resolution, window/level adjustments for brachytherapy source visualization, commissioning the source physical length for performing rotations, and using different planar and 3D window views to identify source orientation. Additional CivaSheet-specific tests were performed to determine the dosimetric influence on target coverage: changing the source tilt angle, source positioning in the treatment plan based on the CivaSheet rectangular array of CivaDots, and influence of prescription depth on the necessary treatment margin for adequate target coverage. Results: Higher imaging-resolution produced better accuracy for source orientation and positioning, with sub-millimeter CT slice-thickness and in-plane resolution preferred. Source rotation was possible only in sagittal or coronal views. The process for validating source orientation required iteratively altering rotations then checking them in the 3D view, which was cumbersome given the absence of quantitative plan documentation to indicate orientation. Given the small Pd-103 source size, influence of source tilt within 30° was negligible for <1.0 cm. Influence of source position was important when the source was positioned in/out of the adjacent source plane, causing changes of 15%, 7%, and 3% at depths of 0.5, 0

  7. AAPM and GEC-ESTRO guidelines for image-guided robotic brachytherapy: Report of Task Group 192

    Energy Technology Data Exchange (ETDEWEB)

    Podder, Tarun K., E-mail: tarun.podder@uhhospitals.org [Department of Radiation Oncology, University Hospitals, Case Western Reserve University, Cleveland, Ohio 44122 (United States); Beaulieu, Luc [Department of Radiation Oncology, Centre Hospitalier Univ de Quebec, Quebec G1R 2J6 (Canada); Caldwell, Barrett [Schools of Industrial Engineering and Aeronautics and Astronautics, Purdue University, West Lafayette, Indiana 47907 (United States); Cormack, Robert A. [Department of Radiation Oncology, Harvard Medical School, Boston, Massachusetts 02115 (United States); Crass, Jostin B. [Department of Radiation Oncology, Vanderbilt University, Nashville, Tennessee 37232 (United States); Dicker, Adam P.; Yu, Yan [Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107 (United States); Fenster, Aaron [Department of Imaging Research, Robarts Research Institute, London, Ontario N6A 5K8 (Canada); Fichtinger, Gabor [School of Computer Science, Queen’s University, Kingston, Ontario K7L 3N6 (Canada); Meltsner, Michael A. [Philips Radiation Oncology Systems, Fitchburg, Wisconsin 53711 (United States); Moerland, Marinus A. [Department of Radiotherapy, University Medical Center Utrecht, Utrecht, 3508 GA (Netherlands); Nath, Ravinder [Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut 06520 (United States); Rivard, Mark J. [Department of Radiation Oncology, Tufts University School of Medicine, Boston, Massachusetts 02111 (United States); Salcudean, Tim [Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z4 (Canada); Song, Danny Y. [Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231 (United States); Thomadsen, Bruce R. [Department of Medical Physics, University of Wisconsin, Madison, Wisconsin 53705 (United States)

    2014-10-15

    In the last decade, there have been significant developments into integration of robots and automation tools with brachytherapy delivery systems. These systems aim to improve the current paradigm by executing higher precision and accuracy in seed placement, improving calculation of optimal seed locations, minimizing surgical trauma, and reducing radiation exposure to medical staff. Most of the applications of this technology have been in the implantation of seeds in patients with early-stage prostate cancer. Nevertheless, the techniques apply to any clinical site where interstitial brachytherapy is appropriate. In consideration of the rapid developments in this area, the American Association of Physicists in Medicine (AAPM) commissioned Task Group 192 to review the state-of-the-art in the field of robotic interstitial brachytherapy. This is a joint Task Group with the Groupe Européen de Curiethérapie-European Society for Radiotherapy and Oncology (GEC-ESTRO). All developed and reported robotic brachytherapy systems were reviewed. Commissioning and quality assurance procedures for the safe and consistent use of these systems are also provided. Manual seed placement techniques with a rigid template have an estimated in vivo accuracy of 3–6 mm. In addition to the placement accuracy, factors such as tissue deformation, needle deviation, and edema may result in a delivered dose distribution that differs from the preimplant or intraoperative plan. However, real-time needle tracking and seed identification for dynamic updating of dosimetry may improve the quality of seed implantation. The AAPM and GEC-ESTRO recommend that robotic systems should demonstrate a spatial accuracy of seed placement ≤1.0 mm in a phantom. This recommendation is based on the current performance of existing robotic brachytherapy systems and propagation of uncertainties. During clinical commissioning, tests should be conducted to ensure that this level of accuracy is achieved. These tests

  8. Accelerated Partial Breast Irradiation With Low-Dose-Rate Interstitial Implant Brachytherapy After Wide Local Excision: 12-Year Outcomes From a Prospective Trial

    Energy Technology Data Exchange (ETDEWEB)

    Hattangadi, Jona A. [Harvard Radiation Oncology Program, Boston, MA (United States); Powell, Simon N. [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); MacDonald, Shannon M.; Mauceri, Thomas; Ancukiewicz, Marek [Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA (United States); Freer, Phoebe [Department of Radiology, Massachusetts General Hospital, Boston, MA (United States); Lawenda, Brian [21st Century Oncology, Las Vegas, NV (United States); Alm El-Din, Mohamed A. [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Department of Clinical Oncology, Tanta University Hospital, Tanta (Egypt); Gadd, Michele A.; Smith, Barbara L. [Department of Surgical Oncology, Massachusetts General Hospital, Boston, MA (United States); Taghian, Alphonse G., E-mail: ataghian@partners.org [Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA (United States)

    2012-07-01

    Purpose: To evaluate the long-term toxicity, cosmesis, and local control of accelerated partial breast irradiation with implant brachytherapy after wide local excision for Stage T1N0 breast cancer (BCa). Materials and Methods: Between 1997 and 2001, 50 patients with Stage T1N0M0 BCa were treated in a Phase I-II protocol using low-dose-rate accelerated partial breast irradiation with implant brachytherapy after wide local excision and lymph node surgery. The total dose was escalated in three groups: 50 Gy (n = 20), 55 Gy (n = 17), and 60 Gy (n = 13). Patient- and physician-assessed breast cosmesis, patient satisfaction, toxicity, mammographic abnormalities, repeat biopsies, and disease status were prospectively evaluated at each visit. Kendall's tau ({tau}{sub {beta}}) and logistic regression analyses were used to correlate outcomes with dose, implant volume, patient age, and systemic therapy. Results: The median follow-up period was 11.2 years (range, 4-14). The patient satisfaction rate was 67%, 67% reported good-excellent cosmesis, and 54% had moderate-severe fibrosis. Higher dose was correlated with worse cosmetic outcome ({tau}{sub {beta}} 0.6, p < .0001), lower patient satisfaction ({tau}{sub {beta}} 0.5, p < .001), and worse fibrosis ({tau}{sub {beta}} 0.4, p = .0024). Of the 50 patients, 35% had fat necrosis and 34% developed telangiectasias {>=}1 cm{sup 2}. Grade 3-4 late skin and subcutaneous toxicities were seen in 4 patients (9%) and 6 patients (13%), respectively, and both correlated with higher dose ({tau}{sub {beta}} 0.3-0.5, p {<=} .01). One patient had Grade 4 skin ulceration and fat necrosis requiring surgery. Mammographic abnormalities were seen in 32% of the patients, and 30% underwent repeat biopsy, of which 73% were benign. Six patients had ipsilateral breast recurrence: five elsewhere in the breast, and one at the implant site. One patient died of metastatic BCa after recurrence. The 12-year actuarial local control, recurrence

  9. Use of brachytherapy with permanent implants of iodine-125 in localized prostate cancer; La curietherapie par implants permanents d'I-125 dans le cancer localise de la prostate

    Energy Technology Data Exchange (ETDEWEB)

    Bladou, F.; Serment, G. [Hopital Salvador, Service d' Urologie, 13 - Marseille (France); Salem, N.; Simonian, M. [Hopital Salvador, Dept. de Radiotherapie, 13 - Marseille (France); Rosello, R.; Ternier, F. [Institut Paoli-Calmettes, Dept. de Radiologie, 13 - Marseille (France)

    2002-07-01

    Approximately 15,000 cases of early stage prostate cancer T1 and T2 are diagnosed every year in France by testing for PSA and performing prostatic biopsies. The treatment of these localized forms is based in most cases on radical prostatectomy or nn external beam radiotherapy. Although the ontological results obtained by these two therapeutic methods are satisfactory and equivalent in the long term, the side effects can be important. For a number of years, trans-perineal brachytherapy using permanent implants of iodine -125 or palladium-103 has proved itself as an alternative therapy with equivalent medium to long-term results. The low urinary, digestive and sexual side effects of prostate brachytherapy are important reasons for the enthusiasm among patients and the medical community for this therapy and the growing number of applications and centres which practice it. In September 1998 we started the prostate brachytherapy programmes- in Marseilles with close collaboration between the department of urology of the Hopital Salvator, and the departments of radiotherapy, medical imaging and medical physics of the Institut Paoli-Calmettes. To date, around 250 patients with localized adenocarcinoma of the prostate have benefited from this alternative therapy in our centre. Preliminary results, with a 3 year-follow-up, are comparable to results published in the literature by pioneer teams. (authors)

  10. Evaluation of failure modes of computerized planning phase of interstitial implants with high dose rate brachytherapy using HFMEA; Avaliacao dos modos de falha do planejamento computadorizado em implantes intersticiais com braquiterapia de alta taxa de dose usando HFMEA

    Energy Technology Data Exchange (ETDEWEB)

    Biazotto, Bruna; Tokarski, Marcio, E-mail: bruna@ceb.unicamp.br [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Centro de Engenharia Biomedica

    2014-08-15

    This paper evaluates the failure modes of the computerized planning step in interstitial implants with high dose rate brachytherapy. The prospective tool of risk management Health Care Failure Mode and Effects Analysis (HFMEA) was used. Twelve subprocesses were identified, and 33 failure modes of which 21 justified new safety actions, and 9 of them were intolerable risks. The method proved itself useful in identifying failure modes, but laborious and subjective in their assessment. The main risks were due to human factors, which require training and commitment of management to their mitigation. (author)

  11. Carcinological results at five years of the prostate brachytherapy by iodine 125 implants. About 327 cases; Resultats carcinologiques a cinq ans de la curietherapie de prostate par implants d'iode 125. A propos de 327 cas

    Energy Technology Data Exchange (ETDEWEB)

    Peiffert, D.; Bernier, V.; Aletti, P.; Noela, A.; Marchesi, V. [Centre Alexis-Vautrin, 54 - Vandoeuvre-les-Nancy (France); Cormier, L.; Moreau, J.L. [CHU, Service d' Urologie, 54 - Nancy (France)

    2006-11-15

    The prostate brachytherapy by iodine 125 implants is reserved to patients damaged by a favourable prognosis cancer. The objective of this study is to present the carcinological results at five years in these indications with a technique keeping urethra. The achieving of a P.S.A. nadir inferior to 0.5 ng/ml is long. the technique used in this study keeping urethra and respecting the inclusion criteria recommended allows to get results as less equivalent as these ones of big series previously published with a low failure rate. (N.C.)

  12. Volume study pre and post-implant brachytherapy prostate for establishment of PTV margins; Estudio de volumenes pre y post-implante en braquiterapia de prostata para establecimiento de margenes del PTV

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez Dominguez, M.; Carrasco Herrera, M.; Baeza Trujillo, M.; Herrador Cordoba, M.

    2011-07-01

    Treatment of prostate cancer by permanent implantation of radioactive seeds is now a good alternative to radical surgery or radiotherapy, as it provides a good tumor control while the risk is reduced by a lower complication irradiation of adjacent healthy organs. The large volume change during seed implantation occurs in the prostate of the patient, makes it important to consider margins around the organs of interest both to ensure optimal coverage and minimal tumor irradiation of healthy tissue. Analyze how the volume varies during and after implantation and establish a margin around the prostate to the practice of our hospital are the two objectives of this work.

  13. CT-guided 125I Radioactive Seed Implantation on Regional Lymph Node Metastasis after Gastrectomy

    Directory of Open Access Journals (Sweden)

    Liangrong Shi

    2013-09-01

    Full Text Available Objective: To evaluate the safety and short-term effect of CT-guided 125I radioactive seed implantation on regional lymph node metastasis after gastrectomy. Methods: Twenty-three patients with regional lymph node metastasis after gastrectomy received CT-guided 125I radioactive seed implantation from June, 2007 to July, 2011 in our hospital. The overall activity and amount of radioactive seeds were calculated by simulating source distribution of radioactive seed implantation plan system before operation. 125I seeds were implanted under the guidance of CT. Effective rate was evaluated according to RECIST criterion, 1, 2 and 3 years of survival rates were calculated by life table method, the effect of relative factors on survival was tested by univariate COX model, and the survival differences between subgroups were compared to draw survival curve by log-rank method. Additionally, systemic therapies were given to 20 patients based on fluorouracil drugs. Results: No severe complications was observed in all study subjects with 14 complete remission (60.9 % , 5 particle remission (21.7 % and 4 progressive diseases (17.4 % , while 1, 2 and 3 years of survival rates as well as median survival time being (87±7 %,(47±11 % , (13±9 % and (22.1±5.1 months, respectively. Univariate COX analysis showed that the maximum diameter of tumor could badly influence the prognosis (χ2 = 9.752, P = 0.002, and the subgroups analysis relieved the significant difference (χ2 = 5.828, P = 0.016, log-rank test with 3 cm being the cut-off value. Conclusion: CT-guided 125I radioactive seed implantation has high local control rate with small trauma and slight complications.

  14. Design and experimental study of joint torque balance mechanism of seed implantation articulated robot

    Directory of Open Access Journals (Sweden)

    Zhang Yongde

    2015-06-01

    Full Text Available This article discusses several new mechanisms that may be used in prostate cancer seed implant robotics. We have developed relatively simple but effective mathematical models of multi-needle puncture prostate using nonlinear spring–damper model; based on Automatic Dynamic Analysis of Mechanical Systems or dynamics module, displacement simulation for prostate is performed, and simulation results indicate that the multi-needle puncture mechanism could reduce prostate displacement in the y- or z-direction. Then aiming at the limitation of human body structure space and seed implant needle insertion path, a revolute-revolute-translational-type prostate seed implantation robot with three-dimensional transrectal ultrasound navigation is designed. It is noteworthy that drive torque fluctuation is caused by the center of gravity change of revolute-revolute tandem cantilever structure; an elastic balance mechanism is designed to realize the complete balance of cantilever weight. Based on Automatic Dynamic Analysis of Mechanical Systems or dynamics module, static drive torque simulation of 2-revolute tandem cantilever structure is performed. Finally, we manufacture the robot prototype and make verification experiment to the cantilever balancing device, and the experiment results provide evidence that elastic balance mechanism can realize the complete balance of cantilever weight, improve the fluctuation in the amplitude value of driving torque, and increase its operation stationary of seed implantation robot system.

  15. An approach to using conventional brachytherapy software for clinical treatment planning of complex, Monte Carlo-based brachytherapy dose distributions

    Energy Technology Data Exchange (ETDEWEB)

    Rivard, Mark J.; Melhus, Christopher S.; Granero, Domingo; Perez-Calatayud, Jose; Ballester, Facundo [Department of Radiation Oncology, Tufts University School of Medicine, Boston, Massachusetts 02111 (United States); Radiation Oncology Department, Physics Section, ' ' La Fe' ' University Hospital, Avenida Campanar 21, E-46009 Valencia (Spain); Department of Atomic, Molecular, and Nuclear Physics, University of Valencia, C/Dr. Moliner 50, E-46100 Burjassot, Spain and IFIC (University of Valencia-CSIC), C/Dr. Moliner 50, E-46100 Burjassot (Spain)

    2009-06-15

    Certain brachytherapy dose distributions, such as those for LDR prostate implants, are readily modeled by treatment planning systems (TPS) that use the superposition principle of individual seed dose distributions to calculate the total dose distribution. However, dose distributions for brachytherapy treatments using high-Z shields or having significant material heterogeneities are not currently well modeled using conventional TPS. The purpose of this study is to establish a new treatment planning technique (Tufts technique) that could be applied in some clinical situations where the conventional approach is not acceptable and dose distributions present cylindrical symmetry. Dose distributions from complex brachytherapy source configurations determined with Monte Carlo methods were used as input data. These source distributions included the 2 and 3 cm diameter Valencia skin applicators from Nucletron, 4-8 cm diameter AccuBoost peripheral breast brachytherapy applicators from Advanced Radiation Therapy, and a 16 mm COMS-based eye plaque using {sup 103}Pd, {sup 125}I, and {sup 131}Cs seeds. Radial dose functions and 2D anisotropy functions were obtained by positioning the coordinate system origin along the dose distribution cylindrical axis of symmetry. Origin:tissue distance and active length were chosen to minimize TPS interpolation errors. Dosimetry parameters were entered into the PINNACLE TPS, and dose distributions were subsequently calculated and compared to the original Monte Carlo-derived dose distributions. The new planning technique was able to reproduce brachytherapy dose distributions for all three applicator types, producing dosimetric agreement typically within 2% when compared with Monte Carlo-derived dose distributions. Agreement between Monte Carlo-derived and planned dose distributions improved as the spatial resolution of the fitted dosimetry parameters improved. For agreement within 5% throughout the clinical volume, spatial resolution of

  16. Measurement of the absorbed dose distribution near an 192Ir intravascular brachytherapy seed using a high-spatial-resolution gel dosimetry system

    Science.gov (United States)

    Massillon-JL, G.; Minniti, R.; Mitch, M. G.; Soares, C. G.

    2012-06-01

    The absorbed dose distribution at sub-millimeter distances from the Best single 192Ir intravascular brachytherapy seed was measured using a high-spatial-resolution gel dosimetry system. Two gel phantoms from the same batch were used; one for the seed irradiation and one for calibration. Since the response of this gel is energy independent for photons between 20 and 1250 keV, the gel was calibrated using a narrowly collimated 60Co gamma-ray beam (cross-sectional area ˜1 cm2). A small format laser computed tomography scanner was used to acquire the data. The measurements were carried out with a spatial resolution of 100 µm in all dimensions. The seed was calibrated at NIST in terms of air-kerma strength. The absorbed dose rate as well as the radial dose function, gL(r), was measured for radial distances between 0.6 and 12.6 mm from the seed center. The dose rate constant was measured, yielding a value of Λ = (1.122 ± 0.032) cGy h-1 U-1, which agrees with published data within the measurement uncertainty. For distances between 0.6 and 1.5 mm, gL(r) decreases from a maximum value of 1.06 down to 1.00; between 1.5 and 6.7 mm, an enhancement is clearly observed with a maximum value around 1.24 and beyond 6.7 mm, gL(r) has an approximately constant value around 1.0, which suggests that this seed can be considered as a point source only at distances larger than 6.7 mm. This latter observation agrees with data for the same seed reported previously using Gafchromic film MD-55-2. Additionally, published Monte Carlo (MC) calculations have predicted the observed behavior of the radial dose function resulting from the absorbed dose contributions of beta particles and electrons emitted by the 192Ir seed. Nonetheless, in the enhancement region, MC underestimates the dose by approximately 20%. This work suggests that beta particles and electrons emitted from the seed make a significant contribution to the total absorbed dose delivered at distances near the seed center (less

  17. 10 CFR 35.2406 - Records of brachytherapy source accountability.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Records of brachytherapy source accountability. 35.2406... Records of brachytherapy source accountability. (a) A licensee shall maintain a record of brachytherapy source accountability required by § 35.406 for 3 years. (b) For temporary implants, the record must...

  18. Low-dose-rate brachytherapy for patients with transurethral resection before implantation in prostate cancer: long-term results

    Energy Technology Data Exchange (ETDEWEB)

    Prada, Pedro J.; Anchuelo, Javier; Blanco, Ana Garcia; Paya, Gema; Cardenal, Juan; Acuña, Enrique; Ferri, Maria [Department of Radiation Oncology, Hospital Universitario Marqués de Valdecilla, Santander, Cantabria (Spain); Vazquez, Andres; Pacheco, Maite; Sanchez, Jesica [Department of Radiation Physics, Hospital Universitario Marqués de Valdecilla, Santander, Cantabria (Spain)

    2016-01-15

    Objectives: We analyzed the long-term oncologic outcome for patients with prostate cancer and transurethral resection who were treated using low-dose-rate (LDR) prostate brachytherapy. Methods and Materials: From January 2001 to December 2005, 57 consecutive patients were treated with clinically localized prostate cancer. No patients received external beam radiation. All of them underwent LDR prostate brachytherapy. Biochemical failure was defined according to the 'Phoenix consensus'. Patients were stratified as low and intermediate risk based on The Memorial Sloan Kettering group definition. Results: The median follow-up time for these 57 patients was 104 months. The overall survival according to Kaplan-Meier estimates was 88% (±6%) at 5 years and 77% (±6%) at 12 years. The 5 and 10 years for failure in tumour-free survival (TFS) was 96% and respectively (±2%), whereas for biochemical control was 94% and respectively (±3%) at 5 and 10 years, 98% (±1%) of patients being free of local recurrence. A patient reported incontinence after treatment (1.7%). The chronic genitourinary complains grade I were 7% and grade II, 10%. At six months 94% of patients reported no change in bowel function. Conclusions: The excellent long-term results and low morbidity presented, as well as the many advantages of prostate brachytherapy over other treatments, demonstrates that brachytherapy is an effective treatment for patients with transurethral resection and clinical organ-confined prostate cancer. (author)

  19. 1251 seed calibration using afterloading equipment Seed Selectron. Practical solution to meet the recommendations of the AAPM; Calibracion de semillas de {sup 1}25I usando el equipo de carga difereida SeedSelectron. Solucion practica para cumplir las recomendaciones de la AAPM

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Calatayud, J.; Richart, J.; Perez-Garcia, J.; Guirado, D.; Ballester, F.; Rodriguez, S.; Santos, M.; Depiaggio, M.; Carmona, V.; Lliso, F.; Camacho, C.; Pujades, M. C.

    2011-07-01

    Seed Selectron is a system used in the after loader permanent implant brachytherapy seeds 1-125 interstitial prostate. Two aspects are critical when you can meet the recommendations of the AAPM: a practical difficulty to check the quantity of seed required, and the great uncertainty of all measured diodes. The purpose of this paper is to present a practical solution that has been adopted to implement the recommendations of the AAPM.

  20. The correlation between D90 and outcome for I-125 seed implant monotherapy for localised prostate cancer.

    Science.gov (United States)

    Ash, Dan; Al-Qaisieh, Bashar; Bottomley, David; Carey, Brendan; Joseph, Joji

    2006-05-01

    In 1998 Stock and Stone demonstrated a dose response relationship correlating D90 with probability of biochemical control and showed that a D90 of 140 Gy is a highly significant factor in predicting PSA relapse free survival (PSA-RFS). Although, a mean D90 of over 140 Gy was achieved in our series, there is nevertheless a normal distribution with 20% of patients achieving a D90 of less than 120 Gy. We have analysed the possible causes for the low D90 and the impact on outcome. Prospective data from 667 patients treated between 1995 and 2001 by I-125 seeds prostate implant as monotherapy were analysed. Post-implant dosimetry was performed on 413 patients. D90 and other indices were calculated for each patient. Statistical analysis was performed on D90 dose to identify the correlation that would predict the 8.2 years PSA relapse free survival as defined by the American Society for Therapeutic Radiology and Oncology (ASTRO). Correlation between D90 and outcome shows no significant difference for the whole population between those who receive greater or less than 140 Gy (P=0.43) and there was also no difference for those receiving more or less than 130 Gy (P=0.14). Subgroup analysis by risk group, however, showed that for low risk patients there was a significant correlation between D90 and PSA control (P<0.01). Although, post-implant dosimetry was performed 6-8 weeks after brachytherapy, post-implant CT still showed variable levels of oedema compared with the pre-implant ultrasound. A statistically significant relationship was shown between D90 and the ratio between CT and ultrasound volume (P<0.01) which suggests that some low D90s may be related to persistent oedema at the time of calculation. Segmental analysis of a subgroup of 32 patients showed that the dose was most often deficient in the anterior basal segment of the gland. D90 was found to be a good discriminator for those with low risk where failure to achieve local control is likely to be the dominant cause

  1. Radiation Protection in Brachytherapy. Report of the SEFM Task Group on Brachytherapy; Proteccion radiologica en Braquiterapia. Informe del grupo de trabajo de Braquiterapia de la SEFM

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Calatayud, J.; Corredoira Silva, E.; Crispin Contreras, V.; Eudaldo Puell, T.; Frutos Baraja, J. de; Pino Sorroche, F.; Pujades Claumarchirant, M. C.; Richart Sancho, J.

    2015-07-01

    This document presents the report of the Brachytherapy Task Group of the Spanish Society of Medical Physics. It is dedicated to the radiation protection aspects involved in brachytherapy. The aim of this work is to include the more relevant aspects related to radiation protection issues that appear in clinical practice, and for the current equipment in Spain. Basically this report focuses on the typical contents associated with high dose rate brachytherapy with {sup 1}92Ir and {sup 6}0Co sources, and permanent seed implants with {sup 1}25I, {sup 1}03Pd and {sup 1}31Cs, which are the most current and widespread modalities. Ophthalmic brachytherapy (COMS with {sup 1}25I, {sup 1}06Ru, {sup 9}0Sr) is also included due to its availability in a significant number of spanish hospitals. The purpose of this report is to assist to the medical physicist community in establishing a radiation protection program for brachytherapy procedures, trying to solve some ambiguities in the application of legal requirements and recommendations in clinical practice. (Author)

  2. Biological effects of low energy nitrogen ion implantation on Jatropha curcas L. seed germination

    Science.gov (United States)

    Xu, Gang; Wang, Xiao-teng; Gan, Cai-ling; Fang, Yan-qiong; Zhang, Meng

    2012-09-01

    To explore the biological effects of nitrogen ion beam implantation on dry Jatropha curcas seed, a beam of N+ with energy of 25 keV was applied to treat the dry seed at six different doses. N+ beam implantation greatly decreased germination rate and seedling survival rate. The doses within the range of 12 × 1016 to 15 × 1016 ions cm-2 severely damaged the seeds: total antioxidant capacity (TAC), germination rate, seedling survival rate, reduced ascorbate acid (HAsA) and reduced glutathione (GSH) contents, and most of the tested antioxidases activity (i.e. catalase (CAT), ascorbate peroxidase (APX) and superoxide dismutase (SOD)) reached their lowest levels. At a dose of 18 × 1016 ion cm-2, biological repair took place: moderate increases were found in TAC, germination rate, seedling survival rate, HAsA and GSH contents, and some antioxidant enzyme activities (i.e. CAT, APX, SOD and GPX). The dose of 18 × 1016 ions cm-2 may be the optimum dose for use in dry J. curcas seed mutation breeding. CAT, HAsA and GSH contributed to the increase of TAC, but CAT was the most important. POD performed its important role as seed was severely damaged. The main role of the HAsA-GSH cycle appeared to be for regeneration of HAsA.

  3. Brachytherapy catheter spacing and stabilization technique.

    Science.gov (United States)

    Demanes, D Jeffrey; Friedman, Jeffrey M; Park, Sang-June; Steinberg, Michael L; Hayes, John K; Kamrava, Mitchell R

    2012-01-01

    To facilitate catheter spacing, implant stability, and patient comfort during multicatheter interstitial brachytherapy. Uniform and consistent spacing of multiple interstitial implant catheters can be difficult because individual catheters may become displaced during the course of treatment. The authors have developed a brachytherapy catheter fixation method using Jackson-Pratt (JP) drains that can be used within wounds to maintain catheter spacing or on the skin surface for applicator fixation. JP drains are threaded over the implant needles to space and stabilize the implant geometry. The needles are then replaced with the usual brachytherapy catheters. Surgically directed ("open") placement of implant catheters is less prone to displacement when a drain connects and spaces the catheters in the wound. Fixation on the skin surface can also be achieved with the JP drains, which make the friction buttons optional. The soft drain material helps avoid discomfort and pressure injury sometimes associated with hard plastic buttons. Small (10 French) round JP drains are suitable for breast, and head and neck sites and larger 7×10-mm flat JP drains for extremity sarcomas, abdominal, or thoracic tumors. The complex brachytherapy devices fashioned from widely available surgical drains effectively guide and maintain geometry for multicatheter interstitial implants. Stable implant geometry leads to more reliable implementation of brachytherapy dosimetry. Patient comfort is improved and soft tissue injury from hard-edged buttons is avoided. Copyright © 2012 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  4. (106)Ruthenium brachytherapy for retinoblastoma.

    Science.gov (United States)

    Abouzeid, Hana; Moeckli, Raphaël; Gaillard, Marie-Claire; Beck-Popovic, Maja; Pica, Alessia; Zografos, Leonidas; Balmer, Aubin; Pampallona, Sandro; Munier, Francis L

    2008-07-01

    To evaluate the efficacy of (106)Ru plaque brachytherapy for the treatment of retinoblastoma. We reviewed a retrospective, noncomparative case series of 39 children with retinoblastoma treated with (106)Ru plaques at the Jules-Gonin Eye Hospital between October 1992 and July 2006, with 12 months of follow-up. A total of 63 tumors were treated with (106)Ru brachytherapy in 41 eyes. The median patient age was 27 months. (106)Ru brachytherapy was the first-line treatment for 3 tumors (4.8%), second-line treatment for 13 (20.6%), and salvage treatment for 47 tumors (74.6%) resistant to other treatment modalities. Overall tumor control was achieved in 73% at 1 year. Tumor recurrence at 12 months was observed in 2 (12.5%) of 16 tumors for which (106)Ru brachytherapy was used as the first- or second-line treatment and in 15 (31.9%) of 47 tumors for which (106)Ru brachytherapy was used as salvage treatment. Eye retention was achieved in 76% of cases (31 of 41 eyes). Univariate and multivariate analyses revealed no statistically significant risk factors for tumor recurrence. Radiation complications included retinal detachment in 7 (17.1%), proliferative retinopathy in 1 (2.4%), and subcapsular cataract in 4 (9.7%) of 41 eyes. (106)Ru brachytherapy is an effective treatment for retinoblastoma, with few secondary complications. Local vitreous seeding can be successfully treated with (106)Ru brachytherapy.

  5. Biological effects of low energy nitrogen ion implantation on Jatropha curcas L. seed germination

    Energy Technology Data Exchange (ETDEWEB)

    Xu Gang, E-mail: xg335300@yahoo.com.cn [Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025 (China); Institute of Entomology, Guizhou University, Guiyang 550025 (China); Wang Xiaoteng [Department of Agricultural Resources and Environment, College of Agricultural, Guizhou University, Guiyang 550025 (China); Gan Cailing; Fang Yanqiong; Zhang Meng [College of Life Sciences, Guizhou University, Guiyang 550025 (China)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer We analyzed biological effects of N{sup +} implantation on dry Jatropha curcas seed. Black-Right-Pointing-Pointer N{sup +} implantation greatly decreased seedling survival rate. Black-Right-Pointing-Pointer At doses beyond 15 Multiplication-Sign 10{sup 16} ion cm{sup -2}, biological repair took place. Black-Right-Pointing-Pointer CAT was essential for H{sub 2}O{sub 2} removal. POD mainly functioned as seed was severely hurt. Black-Right-Pointing-Pointer HAsA-GSH cycle mainly contributed to the regeneration of HAsA. - Abstract: To explore the biological effects of nitrogen ion beam implantation on dry Jatropha curcas seed, a beam of N{sup +} with energy of 25 keV was applied to treat the dry seed at six different doses. N{sup +} beam implantation greatly decreased germination rate and seedling survival rate. The doses within the range of 12 Multiplication-Sign 10{sup 16} to 15 Multiplication-Sign 10{sup 16} ions cm{sup -2} severely damaged the seeds: total antioxidant capacity (TAC), germination rate, seedling survival rate, reduced ascorbate acid (HAsA) and reduced glutathione (GSH) contents, and most of the tested antioxidases activity (i.e. catalase (CAT), ascorbate peroxidase (APX) and superoxide dismutase (SOD)) reached their lowest levels. At a dose of 18 Multiplication-Sign 10{sup 16} ion cm{sup -2}, biological repair took place: moderate increases were found in TAC, germination rate, seedling survival rate, HAsA and GSH contents, and some antioxidant enzyme activities (i.e. CAT, APX, SOD and GPX). The dose of 18 Multiplication-Sign 10{sup 16} ions cm{sup -2} may be the optimum dose for use in dry J. curcas seed mutation breeding. CAT, HAsA and GSH contributed to the increase of TAC, but CAT was the most important. POD performed its important role as seed was severely damaged. The main role of the HAsA-GSH cycle appeared to be for regeneration of HAsA.

  6. [Radiation injury of interstitial implantation 125I seeds on normal trachea tissue of rabbits].

    Science.gov (United States)

    Wang, Haiyan; Chen, Hongxin; Jia, Haiying; Rong, Dongxiu; Lin, Xiuxian; Zhang, Tao

    2015-07-01

    To study the radition injury of tracheal mucous membrane tissue after interstitial implanted radioactive 125I in normal rabbit,improve the safety of clinical application. Sixty New Zealand rabbits, weighing 2.15-2.30 kg, were randomly divided into 1 w, 1 m, 2 m, 4 m and the control group, the control group was further divided into four subgroups. The 0.8mCi 125I seeds were implanted into the tissue by the first tracheal ring in the treatment groups and nonradioactive seeds were implanted in the control group. Taking the tracheal mucous membrane tissue for pathological examination by HE staining to observe the mucosal injury and VEGF, Pan-Cadherin immunohistochemical staining to observe the expression in differernt time. Immunohistochemical staining: VEGF and Pan-Cadherin have statistically significant differences in the expression on different time, the expression is dynamic. The expression of VEGF and Pan-Cadherin reflect the radioactive 125I seed has little influence on normal trachea tissue and the damage can be repaired by the regeneration of the basal cell.

  7. SLM Produced Porous Titanium Implant Improvements for Enhanced Vascularization and Osteoblast Seeding

    Directory of Open Access Journals (Sweden)

    Julia Matena

    2015-04-01

    Full Text Available To improve well-known titanium implants, pores can be used for increasing bone formation and close bone-implant interface. Selective Laser Melting (SLM enables the production of any geometry and was used for implant production with 250-µm pore size. The used pore size supports vessel ingrowth, as bone formation is strongly dependent on fast vascularization. Additionally, proangiogenic factors promote implant vascularization. To functionalize the titanium with proangiogenic factors, polycaprolactone (PCL coating can be used. The following proangiogenic factors were examined: vascular endothelial growth factor (VEGF, high mobility group box 1 (HMGB1 and chemokine (C-X-C motif ligand 12 (CXCL12. As different surfaces lead to different cell reactions, titanium and PCL coating were compared. The growing into the porous titanium structure of primary osteoblasts was examined by cross sections. Primary osteoblasts seeded on the different surfaces were compared using Live Cell Imaging (LCI. Cross sections showed cells had proliferated, but not migrated after seven days. Although the cell count was lower on titanium PCL implants in LCI, the cell count and cell spreading area development showed promising results for titanium PCL implants. HMGB1 showed the highest migration capacity for stimulating the endothelial cell line. Future perspective would be the incorporation of HMGB1 into PCL polymer for the realization of a slow factor release.

  8. SLM Produced Porous Titanium Implant Improvements for Enhanced Vascularization and Osteoblast Seeding

    Science.gov (United States)

    Matena, Julia; Petersen, Svea; Gieseke, Matthias; Kampmann, Andreas; Teske, Michael; Beyerbach, Martin; Murua Escobar, Hugo; Haferkamp, Heinz; Gellrich, Nils-Claudius; Nolte, Ingo

    2015-01-01

    To improve well-known titanium implants, pores can be used for increasing bone formation and close bone-implant interface. Selective Laser Melting (SLM) enables the production of any geometry and was used for implant production with 250-µm pore size. The used pore size supports vessel ingrowth, as bone formation is strongly dependent on fast vascularization. Additionally, proangiogenic factors promote implant vascularization. To functionalize the titanium with proangiogenic factors, polycaprolactone (PCL) coating can be used. The following proangiogenic factors were examined: vascular endothelial growth factor (VEGF), high mobility group box 1 (HMGB1) and chemokine (C-X-C motif) ligand 12 (CXCL12). As different surfaces lead to different cell reactions, titanium and PCL coating were compared. The growing into the porous titanium structure of primary osteoblasts was examined by cross sections. Primary osteoblasts seeded on the different surfaces were compared using Live Cell Imaging (LCI). Cross sections showed cells had proliferated, but not migrated after seven days. Although the cell count was lower on titanium PCL implants in LCI, the cell count and cell spreading area development showed promising results for titanium PCL implants. HMGB1 showed the highest migration capacity for stimulating the endothelial cell line. Future perspective would be the incorporation of HMGB1 into PCL polymer for the realization of a slow factor release. PMID:25849656

  9. SU-G-TeP1-01: A Simulation Study to Investigate Maximum Allowable Deformations of Implant Geometry Before Plan Objectives Are Violated in Prostate HDR Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Babier, A [Department of Physics, Engineering Physics and Astronomy, Queens University, Kingston, Ontario (Canada); Joshi, C [Department of Physics, Engineering Physics and Astronomy, Queens University, Kingston, Ontario (Canada); Cancer Center of Southeastern Ontario, Kingston General Hospital, Kingston, Ontario (Canada)

    2016-06-15

    Purpose: In prostate HDR brachytherapy dose distributions are highly sensitive to changes in prostate volume and catheter displacements. We investigate the maximum deformations in implant geometry before planning objectives are violated. Methods: A typical prostate Ir-192 HDR brachytherapy reference plan was calculated on the Oncentra planning system, which used CT images from a tissue equivalent prostate phantom (CIRS Model 053S) embedded inside a pelvis wax phantom. The prostate was deformed and catheters were displaced in simulations using a code written in MATLAB. For each deformation dose distributions were calculated, based on TG43 methods, using the MATLAB code. The calculations were validated through comparison with Oncentra calculations for the reference plan, and agreed within 0.12%SD and 0.3%SD for dose and volume, respectively. Isotropic prostate volume deformations of up to +34% to −27% relative to its original volume, and longitudinal catheter displacements of 7.5 mm in superior and inferior directions were simulated. Planning objectives were based on American Brachytherapy Society guidelines for prostate and urethra volumes. A plan violated the planning objectives when less than 90% of the prostate volume received the prescribed dose or higher (V{sub 100}), or the urethral volume receiving 125% of prescribed dose or higher was more than 1 cc (U{sub 125}). Lastly, the dose homogeneity index (DHI=1-V{sub 150}/V{sub 100}) was evaluated; a plan was considered sub-optimal when the DHI fell below 0.62. Results and Conclusion: Planning objectives were violated when the prostate expanded by 10.7±0.5% or contracted by 11.0±0.2%; objectives were also violated when catheters were displaced by 4.15±0.15 mm and 3.70±0.15 mm in the superior and inferior directions, respectively. The DHI changes did not affect the plan optimality, except in the case of prostate compression. In general, catheter displacements have a significantly larger impact on plan

  10. Long-term results of ultrasonically guided implantation of 125-I seeds combined with external irradiation in localized prostatic cancer

    DEFF Research Database (Denmark)

    Iversen, P; Rasmussen, F; Holm, H H

    1991-01-01

    Transperineal 125-iodine seed implantation guided by transrectal ultrasonography and subsequent external beam irradiation was employed in the treatment of 32 patients with localized prostatic carcinoma (16 poorly differentiated). Follow-up is currently 35-98 months with a median of 65 months. Dis....... The future role of ultrasonically guided implantation in the management of prostatic cancer is discussed....

  11. CT-Guided Radioactive {sup 125}I Seed Implantation Therapy of Symptomatic Retroperitoneal Lymph Node Metastases

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhongmin, E-mail: wzm0722@hotmail.com [Shanghai Jiaotong University School of Medicine, Department of Nuclear Medicine, Renji Hospital (China); Lu, Jian; Gong, Ju; Zhang, Liyun [Shanghai Jiaotong University School of Medicine, Department of Radiology, Ruijin Hospital Luwan Branch (China); Xu, Yingjia [Shanghai Jiao Tong University, Department of Cardiology, Shanghai Chest Hospital (China); Song, Shaoli [Shanghai Jiaotong University School of Medicine, Department of Nuclear Medicine, Renji Hospital (China); Chen, Kemin [Shanghai Jiaotong University School of Medicine, Department of Radiology, Ruijin Hospital (China); Liu, Fenju [Soochow University, School of Radiation Medicine and Public Health (China); Gang, Huang, E-mail: huanggang0722@hotmail.com [Shanghai Jiaotong University School of Medicine, Department of Nuclear Medicine, Renji Hospital (China)

    2013-04-12

    PurposeThis study explored the clinical efficacy of CT-guided radioactive {sup 125}I seed implantation in treating patients with symptomatic retroperitoneal lymph node metastases.MethodsTwenty-five patients with pathologically confirmed malignant tumors received CT-guided radioactive {sup 125}I seed implantation to treat metastatic lymph nodes. The diameter of the metastatic lymph nodes ranged from 1.5 to 4.5 cm. Treatment planning system (TPS) was used to reconstruct the three-dimensional image of the tumor and then calculate the corresponding quantity and distribution of {sup 125}I seeds.ResultsFollow-up period for this group of patients was 2–30 months, and median time was 16 months. Symptoms of refractory pain were significantly resolved postimplantation (P < 0.05), and Karnofsky score rose dramatically (P < 0.05). Most patients reported pain relief 2–5 days after treatment. Follow-up imaging studies were performed 2 months later, which revealed CR in 7 patients, PR in 13 patients, SD in 3 patients, and PD in 2 patients. The overall effective rate (CR + PR) was 80 %. Median survival time was 25.5 months. Seven patients died of recurrent tumor; 16 patients died of multiorgan failure or other metastases. Two patients survived after 30 months follow-up. Two patients reported localized skin erythema 1 week postimplantation, which disappeared after topical treatment.ConclusionsCT-guided radioactive {sup 125}I seed implantation, which showed good palliative pain relief with acceptable short-term effects, has proved in our study to be a new, safe, effective, and relatively uncomplicated treatment option for symptomatic retroperitoneal metastatic lymph nodes.

  12. The use of nomograms in LDR-HDR prostate brachytherapy

    Directory of Open Access Journals (Sweden)

    Ma Carmen Pujades

    2011-09-01

    Full Text Available Purpose: The common use of nomograms in Low Dose Rate (LDR permanent prostate brachytherapy (BT allowsto estimate the number of seeds required for an implant. Independent dosimetry verification is recommended for eachclinical dosimetry in BT. Also, nomograms can be useful for dose calculation quality assurance and they could be adaptedto High Dose Rate (HDR. This work sets nomograms for LDR and HDR prostate-BT implants, which are applied tothree different institutions that use different implant techniques. Material and methods: Patients treated throughout 2010 till April 2011 were considered for this study. This examplewas chosen to be the representative of the latest implant techniques and to ensure consistency in the planning. A sufficientnumber of cases for both BT modalities, prescription dose and different work methodology (depending on theinstitution were taken into account. The specific nomograms were built using the correlation between the prostatevo lume and some characteristic parameters of each BT modality, such as the source Air Kerma Strength, numberof implanted seeds in LDR or total radiation time in HDR. Results: For each institution and BT modality, nomograms normalized to the prescribed dose were obtained andfitted to a linear function. The parameters of the adjustment show a good agreement between data and the fitting.It should be noted that for each institution these linear function parameters are different, indicating that each centreshould construct its own nomograms. Conclusions: Nomograms for LDR and HDR prostate brachytherapy are simple quality assurance tools, specific foreach institution. Nevertheless, their use should be complementary to the necessary independent verification.

  13. SU-F-T-653: Radiation Exposure from Cs-131 Permanent Seed Implants

    Energy Technology Data Exchange (ETDEWEB)

    Giaddui, T; Hardin, M; To, D; Kremmel, E; Peng, C; Hann, P; Richardson, S; Yu, Y; Harrison, A; Doyle, L [Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA (United States)

    2016-06-15

    Purpose: Permanent seed implants have traditionally been used to treat prostate, lung and head or neck cancers using I-125 and Pd-103. Cs-131, which has higher dose rate is being used to treat brain, head and/or neck cancers in our clinic, therefore, we chose to monitor the dose received by surgeons during the extensive procedure. The aims of this work are to assess the level of radiation exposure to surgeons and the instantaneous exposure at bedside and 1 m from patients. Methods: Ten patients received Cs-131 implants for recurrent brain,head and/or neck cancer; the median implanted activity, number of implanted seeds and prescription dose at 0.5 cm from the perpendicular plane of the implant were: 54.3 mCi (14.52 – 77); 19 (4 – 24) and 60 Gy (range 42 – 60) respectively. Radiation exposure was recorded at bedside and 1 m from the patient using Victoreen ion chamber (Fluke Biomedical, Cleveland, OH). Exposure to surgeons was measured using TLD (Mirion Technologies (GDS), Inc., USA). Results: The median equivalent dose rate at 1 m and bedside immediately following implantation were 1.49×10-2 mSv/h (8.77×10-3–2.63×10-2) and 7.76×10-2 mSv/h (3.1×10-2– 1.53×10-1) respectively. Median equivalent dose to surgeons’ hands was 0.60 mSv (0.33 – 1.48) and no doses were detected for whole-body. Surgical reconstruction for one patient was performed 71 days post-implant and resulted in zero exposure to surgeons. Conclusion: The recorded exposure rates were low when compared with the literature. Post procedure surveys at bed site and 1 m indicated that all patients were within safe limits for discharge (< 0.05 mSv/h at 1 m). However, as a precautionary measure, patients were advised to avoid direct contact with children and pregnant women within four weeks of the implant and stay at least at 3 ft from other people. Surgeons doses were well within occupational dose limits.

  14. Seeding of silicon by copper ion implantation for selective electroless copper plating

    Energy Technology Data Exchange (ETDEWEB)

    Bhansali, S.; Sood, D.K.; Zmood, R.B. [Microelectronic and Materials Technology Centre, Royal Melbourne Institute of Technolgy, Melbourne, VIC (Australia)

    1993-12-31

    We report on the successful use of copper(self) ion implantation into silicon to seed the electroless plating of copper on silicon (100) surfaces. Copper ions have been implanted to doses of 5E14-6.4E16 ions/cm{sup 2} using a MEEVA ion implanter at extraction voltage of 40kV. Dose was varied in fine steps to determine the threshold dose of 2E15 Cu ions/cm{sup 2} for `seed` formation of copper films on silicon using a commercial electroless plating solution. Plated films were studied with Rutherford backscattering spectrometry, scanning electron microscopy, EDX and profilometry . The adhesion of films was measured by `scotch tape test`. The adhesion was found to improve with increasing dose. However thicker films exhibited rather poor adhesion and high internal stress. SEM results show that the films grow first as isolated islands which become larger and eventually impinge into a continuous film as the plating time is increased. (authors). 5 refs., 1 tab., 3 figs.

  15. Dosimetric response of radioactive bio glass seeds implants on rabbit brain; Resposta radiodosimetrica de implantes de sementes de biovidros radioativos no cerebro de coelhos

    Energy Technology Data Exchange (ETDEWEB)

    Costa, I.T.; Campos, T.P.R., E-mail: itemponi@yahoo.com.br, E-mail: campos@nuclear.ufmg.br [Programa de Pos-Graduacao em Ciencias e Tecnicas Nucleares - Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil)

    2007-07-01

    Interstitial implants of radioactive seeds are used as an efficient way of treating brain tumors. Bio glasses is an interesting alternative to the metallic implanted materials, because they can be absorbed by the organism, reducing the possibilities of side effects. The present paper investigates the dosimetry by the implants performed on rabbit's brain on the NRI/UFMG research group. The spatial distribution of the specific ionizing energy deposited per unit of mass generated by Sm-153 seeds were evaluated. A computational model of the brain's region was built using the software SISCODES produced by the research group. The sections of the computer tomography of a rabbit, which was included on the experiment, were digitalized. Those were converted in a three dimensional voxel model, including the tissues, its chemical composition and density. A simulation of the particles transport is performed by the stochastic code MCNP5. The implants consist of 15 ceramic Ca-Si-Sm seeds enriched with Sm-153, with 1.1.6 mm of length and 0.3 mm diameter, implanted on the rabbit's brain. It was predicted on the model three ribbons of 5 seeds each, spaced by 1.1.2 mm, since the ribbons were in a triangular topology whose vertices were spaced by 8 mm. The activities were 120 MBq/seed. The results show isodose regions superposed over the rabbits' model, reproducing the spatial energy deposition on the brain region. The absorbed dose predicted was 3.2 Gy per 15 seed; however it was not enough to tumor control. The authors suggest to increase the number of seeds and activity, reduction of the space to 5-6 mm among ribbons, improving dose with the beta emitting. (author)

  16. Effect of edema, relative biological effectiveness, and dose heterogeneity on prostate brachytherapy.

    Science.gov (United States)

    Wang, Jian Z; Mayr, Nina A; Nag, Subir; Montebello, Joseph; Gupta, Nilendu; Samsami, Nina; Kanellitsas, Christos

    2006-04-01

    Many factors influence response in low-dose-rate (LDR) brachytherapy of prostate cancer. Among them, edema, relative biological effectiveness (RBE), and dose heterogeneity have not been fully modeled previously. In this work, the generalized linear-quadratic (LQ) model, extended to account for the effects of edema, RBE, and dose heterogeneity, was used to assess these factors and their combination effect. Published clinical data have shown that prostate edema after seed implant has a magnitude (ratio of post- to preimplant volume) of 1.3-2.0 and resolves exponentially with a half-life of 4-25 days over the duration of the implant dose delivery. Based on these parameters and a representative dose-volume histogram (DVH), we investigated the influence of edema on the implant dose distribution. The LQ parameters (alpha=0.15 Gy(-1) and alpha/beta=3.1 Gy) determined in earlier studies were used to calculate the equivalent uniform dose in 2 Gy fractions (EUD2) with respect to three effects: edema, RBE, and dose heterogeneity for 125I and 103Pd implants. The EUD2 analysis shows a negative effect of edema and dose heterogeneity on tumor cell killing because the prostate edema degrades the dose coverage to tumor target. For the representative DVH, the V100 (volume covered by 100% of prescription dose) decreases from 93% to 91% and 86%, and the D90 (dose covering 90% of target volume) decrease from 107% to 102% and 94% of prescription dose for 125I and 103Pd implants, respectively. Conversely, the RBE effect of LDR brachytherapy [versus external-beam radiotherapy (EBRT) and high-dose-rate (HDR) brachytherapy] enhances dose effect on tumor cell kill. In order to balance the negative effects of edema and dose heterogeneity, the RBE of prostate brachytherapy was determined to be approximately 1.2-1.4 for 125I and 1.3-1.6 for 103Pd implants. These RBE values are consistent with the RBE data published in the literature. These results may explain why in earlier modeling studies

  17. Iodine-125 seeds for cancer treatment

    Energy Technology Data Exchange (ETDEWEB)

    Rostelato, Maria E.C.M.; Zeituni, Carlos A.; Feher, Anselmo; Moura, Joao A.; Moura, Eduardo S.; Nagatomi, Helio R.; Manzoli, Jose E.; Souza, Carla D., E-mail: elisaros@ipen.b, E-mail: czeituni@pobox.co, E-mail: afeher@ipen.b, E-mail: jmoura31@yahoo.com.b, E-mail: esmoura@ipen.b, E-mail: hrnagato@ipen.b, E-mail: jemanzoli@ipen.b, E-mail: cdsouza@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Karam, Dib, E-mail: dib.karan@usp.b [Universidade de Sao Paulo (USP), SP (Brazil). Escola de Artes, Ciencias e Humanidades

    2009-07-01

    In Brazil, cancer has become one of the major public health problems. An estimate by the Health Ministry showed that 466,430 people had the disease in the country in 2008. The prostate cancer is the second largest death cause among men. The National Institute of Cancer estimated the occurrence of 50,000 new cases for 2009. Some of these patients are treated with Brachytherapy, using Iodine-125 seeds. By this technique, small seeds with Iodine-125, a radioactive material, are implanted in the prostate. The advantages of radioactive seed implants are the preservation of healthy tissues and organs near the prostate, besides the low rate of impotence and urinary incontinence. The Energy and Nuclear Research Institute - IPEN, which belongs to the Nuclear Energy National Commission - CNEN, established a program for the development of the technique and production of Iodine-125 seeds in Brazil. The estimate for the 125-Iodine seeds demand is of 8,000 seeds/month and the laboratory to be implanted will need this production capacity. The purpose of this paper is to explain the project status and show some data about the seeds used in the country. The project will be divided in two phases: technological development of a prototype and a laboratory implementation for the seeds production. (author)

  18. Establishing High-Quality Prostate Brachytherapy Using a Phantom Simulator Training Program

    Energy Technology Data Exchange (ETDEWEB)

    Thaker, Nikhil G. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Kudchadker, Rajat J. [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Swanson, David A. [Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Albert, Jeffrey M. [Department of Radiation Oncology, Banner Health, Loveland/Greeley, Colorado (United States); Mahmood, Usama; Pugh, Thomas J.; Boehling, Nicholas S. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Bruno, Teresa L. [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Prestidge, Bradley R. [Department of Radiation Oncology, Bon Secours Health System, Norfolk, Virginia (United States); Crook, Juanita M. [Department of Radiation Oncology, Cancer Center for the Southern Interior, Kelowna, British Columbia (Canada); Cox, Brett W.; Potters, Louis [Department of Radiation Medicine, North Shore-LIJ Health System, New Hyde Park, New York (United States); Moran, Brian J. [Chicago Prostate Center, Westmont, Illinois (United States); Keyes, Mira [Department of Radiation Oncology, British Columbia Cancer Agency, Vancouver Center, Vancouver, British Columbia (Canada); Kuban, Deborah A. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Frank, Steven J., E-mail: sjfrank@mdanderson.org [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2014-11-01

    Purpose: To design and implement a unique training program that uses a phantom-based simulator to teach the process of prostate brachytherapy (PB) quality assurance and improve the quality of education. Methods and Materials: Trainees in our simulator program were practicing radiation oncologists, radiation oncology residents, and fellows of the American Brachytherapy Society. The program emphasized 6 core areas of quality assurance: patient selection, simulation, treatment planning, implant technique, treatment evaluation, and outcome assessment. Using the Iodine 125 ({sup 125}I) preoperative treatment planning technique, trainees implanted their ultrasound phantoms with dummy seeds (ie, seeds with no activity). Pre- and postimplant dosimetric parameters were compared and correlated using regression analysis. Results: Thirty-one trainees successfully completed the simulator program during the period under study. The mean phantom prostate size, number of seeds used, and total activity were generally consistent between trainees. All trainees met the V100 >95% objective both before and after implantation. Regardless of the initial volume of the prostate phantom, trainees' ability to cover the target volume with at least 100% of the dose (V100) was not compromised (R=0.99 pre- and postimplant). However, the V150 had lower concordance (R=0.37) and may better reflect heterogeneity control of the implant process. Conclusions: Analysis of implants from this phantom-based simulator shows a high degree of consistency between trainees and uniformly high-quality implants with respect to parameters used in clinical practice. This training program provides a valuable educational opportunity that improves the quality of PB training and likely accelerates the learning curve inherent in PB. Prostate phantom implantation can be a valuable first step in the acquisition of the required skills to safely perform PB.

  19. Development of prostate voxel models for brachytherapy treatment

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Adriano M.; Reis, Lucas P.; Grynberg, Suely E., E-mail: amsantos@cdtn.b [Center for Development of Nuclear Technology (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The tools developed recently in the areas of computer graphics and animation movies to computer games allow the creation of new voxel anthropomorphic phantoms with better resolution and thus, more anatomical details. These phantoms can be used in nuclear applications, especially in radiation protection for estimating doses in cases of occupational or accidental radioactive incidents, and in medical and biological applications. For dose estimates, the phantoms are coupled to a Monte Carlo code, which will be responsible for the transport of radiation in this environment. This study aimed to develop a computational tool to estimate the isodose curves in the prostate after brachytherapy seed implants. For this, we have created a model called FANTPROST in the shape of a 48 mm side cube, with a standard prostate inserted in the center of this cube with different distributions of brachytherapy seeds in this volume. The prostate, according to this model, was obtained from the phantom voxels MASH2 developed by Numerical Dosimetry Group, Department of Nuclear Energy - Federal University of Pernambuco. The modeling of the seeds, added to FANTPROST, was done through the use of geometric information of Iodine-125 Amersham 6711 commercial seed. The simulations were performed by the code MCNP5 for spatial distributions containing different amounts of seeds within the FANTPROST. The obtained curves allowed an estimation of the behavior of the maximum dose that decreases with distance, showing that this tool can be used for a more accurate analysis of the effects produced by the presence of such seeds in the prostate and its vicinity. (author)

  20. The Curie-Da Vinci Connection: 5-Years' Experience With Laparoscopic (Robot-Assisted) Implantation for High-Dose-Rate Brachytherapy of Solitary T2 Bladder Tumors.

    Science.gov (United States)

    van der Steen-Banasik, Elzbieta M; Smits, Geert A H J; Oosterveld, Bernard J; Janssen, Theo; Visser, Andries G

    2016-08-01

    To report experience and early results of laparoscopic implantation for interstitial brachytherapy (BT) of solitary bladder tumors and the feasibility of a high-dose-rate (HDR) schedule. From December 2009 to April 2015, 57 patients with a T2 solitary bladder tumor were treated in Arnhem with transurethral bladder resection followed by external beam irradiation, applied to the bladder and regional iliac lymph nodes, 40 Gy in 20 fractions, 5 fractions per week, and within 1 week interstitial HDR BT, in selected cases combined with partial cystectomy and lymph node dissection. The BT catheters were placed via a transabdominal approach with robotic assistance from a Da Vinci robot after a successful initial experience with a nonrobotic laparoscopic approach. The fraction schedule for HDR was 10 fractions of 2.5 Gy, 3 fractions per day. This was calculated to be equivalent to a reference low-dose-rate schedule of 30 Gy in 60 hours. Data for oncologic outcomes and toxicity (Common Toxicity Criteria version 4) were prospectively collected. These modifications resulted in an average postoperative hospitalization of 6 days, minimal blood loss, and no wound healing problems. Two patients had severe acute toxicity: 1 pulmonary embolism grade 4 and 1 cardiac death. Late toxicity was mild (n=2 urogenital grade 3 toxicity). The median follow-up was 2 years. Using cumulative incidence competing risk analysis, the 2-year overall, disease-free, and disease-specific survival and local control rates were 59%, 71%, 87%, and 82%, respectively. The benefits of minimally invasive surgery for implantation of BT catheters and the feasibility of HDR BT in bladder cancer are documented. The patient outcome and adverse events are comparable to the best results published for a bladder-sparing approach. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Cold spot mapping inferred from MRI at time of failure predicts biopsy-proven local failure after permanent seed brachytherapy in prostate cancer patients: Implications for focal salvage brachytherapy

    Science.gov (United States)

    Crehange, Gilles; Krishnamurthy, Devan; Cunha, J. Adam; Pickett, Barby; Kurhanewicz, John; Hsu, I-Chow; Gottschalk, Alexander R.; Shinohara, Katsuto; Roach, Mack; Pouliot, Jean

    2014-01-01

    Background and purpose To establish a method to evaluate dosimetry at the time of primary prostate permanent implant (pPPI) using MRI of the shrunken prostate at the time of failure (tf). To compare cold spot mapping with sextant-biopsy mapping at tf. Material and methods Twenty-four patients were referred for biopsy-proven local failure (LF) after pPPI. Multiparametric MRI and combined-sextant biopsy with a central review of the pathology at tf were systematically performed. A model of the shrinking pattern was defined as a Volumetric Change Factor (VCF) as a function of time from time of pPPI (t0). An isotropic expansion to both prostate volume (PV) and seed position (SP) coordinates determined at tf was performed using a validated algorithm using the VCF. Results pPPI CT-based evaluation (at 4 weeks) vs. MR-based evaluation: Mean D90% was 145.23 ± 19.16 Gy [100.0–167.5] vs. 85.28 ± 27.36 Gy [39–139] (p = 0.001), respectively. Mean V100% was 91.6 ± 7.9% [70–100%] vs. 73.1 ± 13.8% [55–98%] (p = 0.0006), respectively. Seventy-seven per cent of the pathologically positive sextants were classified as cold. Conclusions Patients with biopsy-proven LF had poorer implantation quality when evaluated by MRI several years after implantation. There is a strong relationship between microscopic involvement at tf and cold spots. PMID:24231238

  2. Implants quality in HDR prostate brachytherapy related to the number of needles used;Qualidade de implantes de prostata com BATD em funcao do numero de agulhas usadas

    Energy Technology Data Exchange (ETDEWEB)

    Moura, Dayanne E.E.S; Martins, Homero L. [Hospital A.C. Camargo, Sao Paulo, SP (Brazil). Servico de Fisica Medica

    2009-07-01

    This paper aims to relate the quality of prostate implants (HDR) with the amount of needles used. 51 needle insertions performed in the institution were analyzed. The maximum diameter, the maximum height and target volume delineated by radiation oncologist were measured and this compared with the prostate volume obtained by the radiologist. It was concluded that the prostate volume measured by the radiologist is not a reliable indication to determine how the implant will be done and that the increase in the number of needles implanted did not necessarily ensure a better dose distribution. (author)

  3. Plastic optical fibre sensor for in-vivo radiation monitoring during brachytherapy

    Science.gov (United States)

    Woulfe, P.; Sullivan, F. J.; Lewis, E.; O'Keeffe, S.

    2015-09-01

    An optical fibre sensor is presented for applications in real-time in-vivo monitoring of the radiation dose a cancer patient receives during seed implantation in Brachytherapy. The sensor is based on radioluminescence whereby radiation sensitive scintillation material is embedded in the core of a 1mm plastic optical fibre. Three scintillation materials are investigated: thallium-doped caesium iodide (CsI:Tl), terbium-doped gadolinium oxysulphide (Gd2O2S:Tb) and europium-doped lanthanum oxysulphide (La2O2S:Eu). Terbium-doped gadolinium oxysulphide was identified as being the most suitable scintillator and further testing demonstrates its measureable response to different activities of Iodine-125, the radio-active source commonly used in Brachytherapy for treating prostate cancer.

  4. Efficacy and Feasibility of Low-Dose Rate Brachytherapy for Prostate Cancer in Renal Transplant Recipients.

    Science.gov (United States)

    Iizuka, J; Hashimoto, Yas; Hashimoto, Yai; Kondo, T; Takagi, T; Nozaki, T; Shimizu, T; Akimoto, T; Ishida, H; Karasawa, K; Tanabe, K

    2016-04-01

    In young patients with localized prostate cancer, radical prostatectomy is the treatment of choice in the general population. Radiotherapy, such as low-dose rate (LDR) brachytherapy or intensity-modulated radiotherapy, is a viable alternative as well. However, in transplant patients, irradiation is not proposed as often as it is in healthy adults because of the risk of post-radiation ureteral stenosis and gastrointestinal toxicity as the result of fragile tissue. The objective of the study was to assess the efficacy and feasibility of LDR brachytherapy for prostate cancer in renal transplant recipients (RTRs). Between May 2007 and December 2014, all patients who had undergone LDR brachytherapy for clinically localized prostate cancer at our institution were retrospectively identified (n = 203). Of these patients, 2 had a history of renal transplantation. We reviewed all available clinical data retrospectively. One patient had a functioning graft and the other had re-started hemodialysis 7 years after the transplantation. The mean time from renal transplantation to prostate cancer diagnosis was 16 years. The mean follow-up after seed implantation was 45 months. There were no peri-operative complications after seed implantation. The 2 patients remained free of prostate-specific antigen progression during the follow-up period. The renal function of the patient with a functioning graft, as measured by serum creatinine, was stable during and after the operation. LDR brachytherapy is technically feasible and acceptable as a minimally invasive treatment in carefully selected RTRs with localized prostate cancer. This treatment should be considered a suitable option for RTRs with localized prostate cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Data fusion for planning target volume and isodose prediction in prostate brachytherapy

    Science.gov (United States)

    Nouranian, Saman; Ramezani, Mahdi; Mahdavi, S. Sara; Spadinger, Ingrid; Morris, William J.; Salcudean, Septimiu E.; Abolmaesumi, Purang

    2015-03-01

    In low-dose prostate brachytherapy treatment, a large number of radioactive seeds is implanted in and adjacent to the prostate gland. Planning of this treatment involves the determination of a Planning Target Volume (PTV), followed by defining the optimal number of seeds, needles and their coordinates for implantation. The two major planning tasks, i.e. PTV determination and seed definition, are associated with inter- and intra-expert variability. Moreover, since these two steps are performed in sequence, the variability is accumulated in the overall treatment plan. In this paper, we introduce a model based on a data fusion technique that enables joint determination of PTV and the minimum Prescribed Isodose (mPD) map. The model captures the correlation between different information modalities consisting of transrectal ultrasound (TRUS) volumes, PTV and isodose contours. We take advantage of joint Independent Component Analysis (jICA) as a linear decomposition technique to obtain a set of joint components that optimally describe such correlation. We perform a component stability analysis to generate a model with stable parameters that predicts the PTV and isodose contours solely based on a new patient TRUS volume. We propose a framework for both modeling and prediction processes and evaluate it on a dataset of 60 brachytherapy treatment records. We show PTV prediction error of 10:02+/-4:5% and the V100 isodose overlap of 97+/-3:55% with respect to the clinical gold standard.

  6. Study and methodologies for fixing epoxy resin in radioactive sources used for brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Bruna T.; Rostelato, Maria E.C.M.; Souza, Carla D.; Tozetti, Cíntia A.; Zeituni, Carlos A.; Nogueira, Beatriz R.; Silva, José T.; Júnior, Dib K.; Fernandes, Vagner; Souza, Raquel V.; Abreu, Rodrigo T., E-mail: bteigarodrigues@gmail.com, E-mail: elisaros@ipen.br, E-mail: carladdsouza@yahoo.com.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Universidade de São Paulo (USP), SP (Brazil)

    2017-07-01

    The World Health Organization (WHO) estimates that the number of new cancer cases worldwide will reach 15 million by 2020. The disease is already the second leading cause of death worldwide, being behind only cardiovascular disease. It is unquestionable that it is a public health problem, especially among developing countries. Prostate cancer is the most common among men, approximately 28.6%. The choice of type of treatment for prostate cancer should consider several factors such as: tumor size and extent, apparent aggressiveness (pathological characteristics), age, health. Among the methods applied, brachytherapy has been used in the initial and intermediate stages of the disease. Brachytherapy is a safe and effective treatment for localized prostate cancer. Brachytherapy is a form of radiotherapy in which radioactive seeds are placed in contact with or within the organ being treated. This technique allows a large dose of radiation to be released only on the target tumor that protects healthy surrounding tissues. Sources may have different shapes and sizes, but the one used for prostate cancer is usually 4.5 mm in length and 0.8 mm in diameter. About 80 to 120 seeds can be used per patient. Iodine-125 is the radioisotope most used in brachytherapy of the prostate, it emits 35,49keV X-rays in 100% of the decays, with average energy of 29 keV. The treatment of prostate cancer with permanent implantation of iodine-125 seeds has grown dramatically in the world in recent years. Most patients can return to normal life within three days with little or no pain. (author)

  7. Intravascular brachytherapy for peripheral vascular disease

    Directory of Open Access Journals (Sweden)

    Hagen, Anja

    2008-09-01

    Full Text Available Scientific background: Percutaneous transluminal angioplasties (PTA through balloon dilatation with or without stenting, i.e. vessel expansion through balloons with or without of implantation of small tubes, called stents, are used in the treatment of peripheral artery occlusive disease (PAOD. The intravascular vessel irradiation, called intravascular brachytherapy, promises a reduction in the rate of repeated stenosis (rate of restenosis after PTA. Research questions: The evaluation addresses questions on medical efficacy, cost-effectiveness as well as ethic, social and legal implications in the use of brachytherapy in PAOD patients. Methods: A systematic literature search was conducted in August 2007 in the most important medical electronic databases for publications beginning from 2002. The medical evaluation included randomized controlled trials (RCT. The information synthesis was performed using meta-analysis. Health economic modeling was performed with clinical assumptions derived from the meta-analysis and economical assumptions derived from the German Diagnosis Related Groups (G-DRG-2007. Results: Medical evaluation: Twelve publications about seven RCT on brachytherapy vs. no brachytherapy were included in the medical evaluation. Two RCT showed a significant reduction in the rate of restenosis at six and/or twelve months for brachytherapy vs. no brachytherapy after successful balloon dilatation, the relative risk in the meta-analysis was 0.62 (95% CI: 0.46 to 0.84. At five years, time to recurrence of restenosis was significantly delayed after brachytherapy. One RCT showed a significant reduction in the rate of restenosis at six months for brachytherapy vs. no brachytherapy after PTA with optional stenting, the relative risk in the meta-analysis was 0.76 (95% CI: 0.61 to 0.95. One RCT observed a significantly higher rate of late thrombotic occlusions after brachytherapy in the subgroup of stented patients. A single RCT for brachytherapy

  8. Study of dose deposition for different configurations of OncoSeed 6711 seeds; Estudo da deposicao de dose para diferentes configuracoes de sementes OncoSeed 6711

    Energy Technology Data Exchange (ETDEWEB)

    Tomaz, Lucas Crusoe

    2013-07-01

    Prostate cancer is the second most common cancer among men. Iodine-125 brachytherapy seeds are presented as a form of treatment. In prostate cancer therapy 80-120 iodine-125 seeds are implanted in the organ following a previous planning. During positioning and after it, the implanted seeds can undergo slight displacements relative to the original position. These deviations may cause changes in dose distribution in the tumor volume. This work has made a dosimetry study for iodine-125 seeds used in low dose rate brachytherapy. In the first stage, we performed a one seed dosimetric parameters study following the TG-43 protocol recommendations with the objective of validating our methodology. Then a quantitative study of the variation in dose distribution for three configurations of four seeds OncoSeed 6711 was conducted with two configurations using the seeds in symmetrical positions and the other presenting small displacements. A soft tissue phantom and TLD dosimeters were used. Then a qualitative study of isodose curves of the configurations was performed using radiochromic film, Gafchromic model. This method was used to complement the study of the crystals. The seed´s dosimetric parameters obtained in this work showed excellent agreement with the TG-43 consensual values, thus validating the methodology used in this work. The results obtained with radiochromic film and thermoluminescent dosimeters have shown that there is a significant difference in dose distribution when there is a change in the positioning of the seeds. The use of these two methods simultaneously is efficient since the crystals bring a point view and the film has a global view of the dose distribution. (author)

  9. Study of dose deposition for different configurations of seeds OncoSeed 6711; Estudo da deposicao de dose para diferentes configuracoes de sementes OncoSeed 6711

    Energy Technology Data Exchange (ETDEWEB)

    Tomaz, Lucas Crusoe

    2013-08-01

    Prostate cancer is the second most common cancer among men. lodine-125 brachytherapy seeds are presented as a form of treatment. In prostate cancer therapy 80-120 iodine-125 seeds are implanted in the organ following a previous planning. During positioning and after it, the implanted seeds can undergo slight displacements relative to the original position. These deviations may cause changes in dose distribution in the tumor volume. This work has made a dosimetry study for iodine-125 seeds used in low dose rate brachytherapy. In the first stage, we performed a one seed dosimetric parameters study following the TG-43 protocol recommendations with the objective of validating our methodology. Then a quantitative study of the variation in dose distribution for three configurations of four seeds OncoSeed 6711 was conducted with two configurations using the seeds in symmetrical positions and the other presenting small displacements. A soft tissue phantom and TLD dosimeters were used. Then a qualitative study of isodose curves of the configurations was performed using radiochromic film, Gafchromic model. This method was used to complement the study of the crystals. The seed's dosimetric parameters obtained in this work showed excellent agreement with the TG-43 consensual values, thus validating the methodology used in this work. The results obtained with radiochromic film and thermoluminescent dosimeters have shown that there is a significant difference in dose distribution when there is a change in the positioning of the seeds. The use of these two methods simultaneously is efficient since the crystals bring a point view and the film has a global view of the dose distribution. (author)

  10. The difference of scoring dose to water or tissues in Monte Carlo dose calculations for low energy brachytherapy photon sources.

    Science.gov (United States)

    Landry, Guillaume; Reniers, Brigitte; Pignol, Jean-Philippe; Beaulieu, Luc; Verhaegen, Frank

    2011-03-01

    The goal of this work is to compare D(m,m) (radiation transported in medium; dose scored in medium) and D(w,m) (radiation transported in medium; dose scored in water) obtained from Monte Carlo (MC) simulations for a subset of human tissues of interest in low energy photon brachytherapy. Using low dose rate seeds and an electronic brachytherapy source (EBS), the authors quantify the large cavity theory conversion factors required. The authors also assess whether ap plying large cavity theory utilizing the sources' initial photon spectra and average photon energy induces errors related to spatial spectral variations. First, ideal spherical geometries were investigated, followed by clinical brachytherapy LDR seed implants for breast and prostate cancer patients. Two types of dose calculations are performed with the GEANT4 MC code. (1) For several human tissues, dose profiles are obtained in spherical geometries centered on four types of low energy brachytherapy sources: 125I, 103Pd, and 131Cs seeds, as well as an EBS operating at 50 kV. Ratios of D(w,m) over D(m,m) are evaluated in the 0-6 cm range. In addition to mean tissue composition, compositions corresponding to one standard deviation from the mean are also studied. (2) Four clinical breast (using 103Pd) and prostate (using 125I) brachytherapy seed implants are considered. MC dose calculations are performed based on postimplant CT scans using prostate and breast tissue compositions. PTV D90 values are compared for D(w,m) and D(m,m). (1) Differences (D(w,m)/D(m,m)-1) of -3% to 70% are observed for the investigated tissues. For a given tissue, D(w,m)/D(m,m) is similar for all sources within 4% and does not vary more than 2% with distance due to very moderate spectral shifts. Variations of tissue composition about the assumed mean composition influence the conversion factors up to 38%. (2) The ratio of D90(w,m) over D90(m,m) for clinical implants matches D(w,m)/D(m,m) at 1 cm from the single point sources, Given

  11. Treatment of Metastatic Spinal Tumors by Percutaneous Vertebroplasty versus Percutaneous Vertebroplasty Combined with Interstitial Implantation of 125I Seeds

    Energy Technology Data Exchange (ETDEWEB)

    Zuozhang Yang; Lin Xie; Yunchao Huang; Hongpu Sun; Pengjie Liu; Zhongxiong Wu (Dept. of Orthopedics, Tumor Hospital of Yunnan Province, Third Affiliated Hospital of Kunming Medical College, Kunming, Yunnan (China)). e-mail. yangzuozhang@163.com; Dakuan Yang (Second Affiliated Hospital of Kunming Medical College, Kunming Yunnan (China)); Yuqing Sun (Dept. of Orthopedic Oncology, Beijing Jishuitan Hospital, Beijing (China))

    2009-12-15

    Background: As the most frequent bone metastasis, spinal metastases cause severe pain and damage to vertebral bodies such as spinal osteolytic destruction and compression fractures. To avoid the trauma and complications of open surgery, a minimally invasive procedure, percutaneous vertebroplasty (PVP), has recently been developed to treat metastatic spinal tumors. Purpose: To analyze the treatment outcomes of metastatic spinal tumors by percutaneous vertebroplasty (PVP) alone or PVP combined with interstitial implantation of 125I seeds. Material and Methods: 80 patients with metastatic spinal tumors were randomized to receive PVP alone (40 cases) or PVP combined with 125I seed implantation (40 cases). Digital subtraction angiography (DSA)-guided vertebroplasty was performed under local anesthesia, and acrylic bone cement was injected into the vertebra through a bone trocar to the center of the lesion, with or without simultaneous interstitial implantation of 125I seeds. Results: At 6-month follow-up, PVP combined with 125I seed implantation resulted in zero cases with complete relief (CR), 36 with partial relief (PR), four with no changes (NC), and zero with progression of disease (PD), while PVP alone without seed implantation resulted in 0 CR, 31 PR, 7 NC, and 2 PD. While the combined-treatment group and the single-PVP group showed overall clinical benefit rates without significant difference (100% and 95.0%, respectively), their visual analogue pain scales (VAS; 2.26+-1.05 and 5.41+-0.94, respectively) and Karnofsky performance scores (KPS; 92.5+-7.1 and 87.7+-7.3, respectively) were significantly different after treatment (P = 0.028 and P = 0.009, respectively). Patients in both groups had 1-year follow-up, and the mean time to tumor progression (TTP) was 9.0 and 8.9 months, respectively (not significant). Conclusion: PVP is a minimally invasive procedure with small wounds and minor complications. It is effective in the alleviation of pain in metastatic spinal

  12. Histological changes induced by Polyglycolic-Acid (PGA) scaffolds seeded with autologous adipose or muscle-derived stem cells when implanted on rabbit bladder.

    Science.gov (United States)

    Zambon, Joao Paulo; de Sá Barretto, Letícia Siqueira; Nakamura, Ahy Nathally Sawaki E; Duailibi, Silvio; Leite, Kátia; Magalhaes, Renata S; Orlando, Giuseppe; Ross, Christina L; Peloso, Andrea; Almeida, Fernando G

    2014-01-01

    To evaluate the morphological and histological changes induced by PGA scaffold seeded with autologous adipose or muscle derived stem cells implanted on rabbit bladder wall. Adipose derived stem cells (ADSCs) were obtained from the inguinal fat of eight rabbits and muscle derived stem cells (MDSCs) from the anterior tibial muscle of other eight rabbits. After culture and isolation, the cells were stained with Vybrant Red CM DiI and then implanted at third passage. Two PGA scaffolds were implanted on the bladder submucosa of each animal. On the right bladder side was implanted unseeded PGA scaffold while on the left side was implanted ADSCs or skeletal MDSCs seeded PGA scaffold. ADSCs were implanted in eight animals and MDSC in other eight animals. The animals were sacrificed at four and eight weeks. Histological evaluation was performed with Hematoxylin and Eosin, Masson's Trichrome and smooth muscle α-actin. We observed a mild inflammatory response in all the three groups. Seeded scaffolds induced higher lymphocytes and lower polimorphonuclear migration than controls. Fibrosis was more pronounced in the control groups. Smooth muscle α-actin was positive only in ADSC and MDSC seeded scaffolds. At four and eight weeks ADCSs and skeletal MDSCs labeled cells were found at the implant sites. The implantation of PGA scaffolds seeded with ADSC and MDSC induced less fibrosis than control and smooth muscle regeneration.

  13. Brachytherapy dosimeter with silicon photomultipliers

    Energy Technology Data Exchange (ETDEWEB)

    Moutinho, L.M., E-mail: moutinho@ua.pt [i3N, Physics Department, University of Aveiro (Portugal); Castro, I.F.C. [i3N, Physics Department, University of Aveiro (Portugal); Peralta, L. [Faculdade de Ciências da Universidade de Lisboa (Portugal); Laboratório de Instrumentação e Física Experimental de Partículas (LIP), Lisboa (Portugal); Abreu, M.C. [Laboratório de Instrumentação e Física Experimental de Partículas (LIP), Lisboa (Portugal); Veloso, J.F.C.A. [i3N, Physics Department, University of Aveiro (Portugal)

    2015-07-01

    In-vivo and in-situ measurement of the radiation dose administered during brachytherapy faces several technical challenges, requiring a very compact, tissue-equivalent, linear and highly sensitive dosimeter, particularly in low-dose rate brachytherapy procedures, which use radioactive seeds with low energy and low dose deposition rate. In this work we present a scintillating optical fiber dosimeter composed of a flexible sensitive probe and a dedicated electronic readout system based on silicon photomultiplier photodetection, capable of operating both in pulse and current modes. The performance of the scintillating fiber optic dosimeter was evaluated in low energy regimes, using an X-ray tube operating at voltages of 40–50 kV and currents below 1 mA, to assess minimum dose response of the scintillating fiber. The dosimeter shows a linear response with dose and is capable of detecting mGy dose variations like an ionization chamber. Besides fulfilling all the requirements for a dosimeter in brachytherapy, the high sensitivity of this device makes it a suitable candidate for application in low-dose rate brachytherapy. According to Peralta and Rego [1], the BCF-10 and BCF-60 scintillating optical fibers used in dosimetry exhibit high variations in their sensitivity for photon beams in the 25–100 kVp energy range. Energy linearity for energies below 50 keV needs to be further investigated, using monochromatic X-ray photons.

  14. Skin dose in breast brachytherapy: Defining a robust metric.

    Science.gov (United States)

    Hilts, Michelle; Halperin, Heather; Morton, Dan; Batchelar, Deidre; Bachand, Francois; Chowdhury, Rezwan; Crook, Juanita

    2015-01-01

    To define a simple, robust, and relevant metric for measuring skin dose in breast brachytherapy. Postoperative treatment plans (Day 0) for 15 permanent breast seed implant (PBSI) and 10 multicatheter high-dose-rate (MC-HDR) brachytherapy patients were included. Retrospectively, three skin structures were contoured: 2 mm external from the body; and subsurface layers 2 mm and 4 mm thick. Maximum point dose (Dmax), doses to small volumes (e.g., D0.2cc), and the volumes receiving a percentage of the prescription dose (V%, e.g., V66) were calculated. D0.2cc was investigated as a surrogate to the dose given to 1 cm(2) of skin (D1cm(2)). Pearson product-moment correlation (R(2)) was computed between metrics. Observed trends were consistent across brachytherapy technique. V% did not correlate well with any other metrics: median (range) R(2), 0.63 (0.43, 0.77) and 0.69 (0.3, 0.89) for PBSI and MC-HDR, respectively. Dmax was inconsistently correlated across contours and not well correlated with doses to small volumes: median (range) R(2), 0.85 (0.76, 0.93) and 0.88 (0.83, 0.93) for PBSI and MC-HDR, respectively. In contrast, doses to small volumes were consistently well correlated, even across skin layers: D0.1cc vs. D0.2cc median (range) R(2), 0.98 (0.97, 0.99) and 0.97 (0.94, 0.99) for PBSI and MC-HDR, respectively. Doses to small volumes are robust measures of breast skin dose and given skin's strong area effect, D0.2cc for a 2 mm thick skin layer, a simple surrogate of D1cm(2), is recommended for recording skin dose in any breast brachytherapy. Dmax is not robust and should be avoided. Copyright © 2015 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  15. Computed tomography (CT)-guided interstitial permanent implantation of (125)I seeds for refractory chest wall metastasis or recurrence.

    Science.gov (United States)

    Jiang, Ping; Liu, Chen; Wang, Junjie; Yang, Ruijie; Jiang, Yuliang; Tian, Suqing

    2015-02-01

    To evaluate the efficacy and safety of 125I seeds implantation for refractory chest wall (CW) metastasis or recurrence under CT guidance. In addition we assessed initial data obtained on the therapeutic response for refractory CW metastasis or recurrence. Twenty consecutive patients underwent permanent implantation of 125I seeds (from Jul. 2004 to Jan. 2011) under computed tomography (CT) guidance. Postoperative dosimetry was routinely performed for all patients. The actuarial D90 of the implanted 125I seeds ranged from 100 Gy to 160 Gy (median: 130 Gy). The activity of 125I seeds ranged from 0.5 mCi to 0.78 mCi (median: 0.71 mCi). The total number of seeds implanted ranged from 8 to 269 (median: 53). The follow-up period ranged from 3 to 54 months (median: 11.5 months). The survival and local control probabilities were calculated by the Kaplan-Meier method. Among all the 20 patients, 3 patients had complete remission CR (15%), 12 patients had partial remission PR (60%), 5 patients had stable disease SD. The 1-, 2-, 3- and 4-year tumor control rates were all 88.7% respectively. The 1- and 2-, 3-, 4-year cancer specific survival rates were 56.5% and 47.1%, 47.1%, 47.1% respectively. The 1- and 2-, 3-, 4-year overall survival rates were 53.3% and 35.6%, 35.6%, 35.6% respectively, with a median survival of 15 months (95% CI, 7.0-22.9). Mild brachial plexus injury was seen in one patient; grade 1 or 2 skin reactions were seen in 6 patients (30%) who had received external beam radiation therapy (EBRT) before. No grade 3 and 4 skin side effects were found. Rib fracture, ulceration, pneumothorax or hemopneumothorax were not seen. Interstitial permanent implantation of 125I seeds under CT guidance is feasible, efficacious and safe for refractory CW metastasis or recurrence. © The Author(s) 2014.

  16. Initial clinical experience with the Strut-Adjusted Volume Implant (SAVI) breast brachytherapy device for accelerated partial-breast irradiation (APBI): first 100 patients with more than 1 year of follow-up.

    Science.gov (United States)

    Yashar, Catheryn M; Scanderbeg, Daniel; Kuske, Robert; Wallace, Anne; Zannis, Victor; Blair, Sarah; Grade, Emily; Swenson, Virginia H; Quiet, Coral

    2011-07-01

    The Strut-Adjusted Volume Implant (SAVI; Cianna Medical, Aliso Viejo, CA) is a multichannel single-entry brachytherapy device designed to allow dose modulation to minimize normal tissue dose while simultaneously maximizing target coverage. This is the first report on the initial 102 patients with nearly 2 years of median follow-up. One hundred two patients were treated at two institutions. Data were collected on eligibility and dosimetry and followed for toxicity and recurrence. The median follow-up is 21 months. Overall dosimetry is outstanding (median percent of target volume receiving 90% of the prescription dose was 95.9%, volume of target receiving 150% of the prescription dose was 27.8 mL, and volume of target receiving 200% of the prescription dose was 14.0 cm(3)). No devices were pulled prior to treatment completion. For patients with a skin bridge of less than 7 mm, the maximum median skin dose was 280 cGy (median percent of target volume receiving 90% of the prescription dose was 95.2%, volume of target receiving 150% of the prescription dose was 25.8 cm(3) and volume of target receiving 200% of the prescription dose was 12.7 mL). For patients with both chest wall and skin of less than 7 mm, the maximum median lung dose was 205 cGy with simultaneous skin dose of 272 cGy. The rate of telangiectasia was 1.9%. Grade 1 hyperpigmentation developed in 10 patients (9.8%) and Grade 2 fibrosis in 2 patients (1.9%). There were 2 symptomatic seromas and 2 cases of asymptomatic fat necrosis (1.9%). Of the patients, 27% were not eligible for MammoSite balloon brachytherapy (Hologic, Inc., Marlborough, MA) and 5% were not eligible for any balloon brachytherapy. The recurrence rate was 1%. The SAVI appears to safely allow an increase in eligibility for APBI over balloon brachytherapy or three-dimensional conformal radiation, highlighting the outstanding device flexibility to maximize the target dose and minimize the normal tissue dose. The device was well tolerated by

  17. Dosimetry consequences of the accuracy at the position of the seeds in a seeds implant of I-125 in prostate; Consecuencias dosimetricas de la exactitud en la posicion de las semilla en un implante de semillas de I-125 en prostata

    Energy Technology Data Exchange (ETDEWEB)

    Luquero Llopis, N.; Ferrer Gracia, C.; Huertas Martinez, C.; Huerga Cabrerizo, C.; Corredoira Silva, E.; Serrada Hierro, A.

    2013-07-01

    The quality control of equipment used to carry out implants of seeds of low rate in prostate, van destined to watch, the activity of seeds and the calculation of planning both positioning them on the inside of the patient. The objective of this work is, using the Nucletron Spot Pro and SeedSelectron, rating dosimetry possible consequences related to the position of the seeds. (Author)

  18. Adjuvant iodine-125 brachytherapy for hepatocellular carcinoma after complete hepatectomy: a randomized controlled trial.

    Directory of Open Access Journals (Sweden)

    Kaiyun Chen

    Full Text Available BACKGROUND: Tumor recurrence is a major problem after curative resection of hepatocellular carcinoma (HCC. The current study evaluated the effects of adjuvant iodine-125 ((125I brachytherapy on postoperative recurrence of HCC. METHODOLOGY/PRINCIPAL FINDINGS: From July 2000 to June 2004, 68 HCC patients undergoing curative hepatectomy were randomly assigned into a (125I adjuvant brachytherapy group (n = 34 and a group of best care (n = 34. Patients in the (125I adjuvant brachytherapy group received (125I seed implantation on the raw surface of resection. Patients in the best care control group received identical treatments except for the (125I seed implantation. Time to recurrence (TTR and 1-, 3- and 5-year overall survival (OS were compared between the two groups. The follow-up ended in January 2010, and lasted for 7.7-106.4 months with a median of 47.6 months. TTR was significantly longer in the (125I group (mean of 60.0 months vs. 36.7 months in the control. The 1-, 3- and 5-year recurrence-free rates of the (125I group were 94.12%, 76.42%, and 73.65% vs. 88.24%, 50.00%, and 29.41% compared with the control group, respectively. The 1-, 3- and 5-year OS rates of the (125I group were 94.12%, 73.53%, and 55.88% vs. 88.24%, 52.94%, and 29.41% compared with the control group, respectively. The (125I brachytherapy decreased the risk of recurrence (HR = 0.310 and the risk of death (HR = 0.364. Most frequent adverse events in the (125I group included nausea, vomiting, arrhythmia, decreased white blood cell and/or platelet counts, and were generally mild and manageable. CONCLUSIONS/SIGNIFICANCE: Adjuvant (125I brachytherapy significantly prolonged TTR and increased the OS rate after curative resection of HCC. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry ACTRN12610000081011.

  19. Biochemical control and toxicity for favorable- and intermediate-risk patients using real-time intraoperative inverse optimization prostate seed implant: Less is more!

    Science.gov (United States)

    Shukla, G; Sarkar, A; Hanlon, A; Crockett, E; Chen, H C; Martelli-Raben, J; Glick, A; Benge, B; Lobis, M; Terranova, S; Desperito, T; Cozzolino, D; Kemmerer, E; Mourtada, F; Raben, A

    To report the biochemical control rate and clinical outcomes with real-time inverse planning (inverse optimization prostate seed implant [IO-PSI]) for favorable-risk (FR) and intermediate-risk (IR) prostate adenocarcinoma in a community practice setting. This analysis is an extended followup of our initial report, with favorable early biochemical control rate (biochemical nonevidence of disease) of 97% at 4 years. Three hundred fifty-seven evaluable patients with FR and IR prostate cancer underwent real-time IO-PSI (iodine-125/145 Gy or palladium-103/120 Gy) between 2001 and 2013. With a median followup of 54 months (range, 24-110 months), the absolute biochemical failure free survival of disease was 96%. The 8-year actuarial probability of prostate-specific antigen failure-free survival for FR and IR cohorts was 92.4% and 87%, respectively. Late genitourinary and gastrointestinal toxicity remained low. Late Grade 2 and Grade 3 genitourinary toxicity was 19% and 1%, respectively. Late Grade 2 and 3 rectal bleeding rates were 1% and 0%, respectively. No difference in biochemical control was observed with preimplant short course androgen deprivation or between Gleason score 3 + 4 vs. 4 + 3 patients. No dosimetric parameter was predictive of biochemical failure. Patients with FR had a significantly decreased risk of failure (hazard ratio = 0.26; 95% confidence interval = 0.09-0.78; p = 0.02) compared with those with IR. Patients with a prostate-specific antigen nadir >0.4 ng/mL had an increased risk of failure (hazard ratio = 1.37; 95% confidence interval = 1.27-1.47; p biochemical and clinical outcomes using real-time IO-PSI persisted with extended followup and support our original hypothesis for use of a reduced number of sources, needles, and total activity, suggesting that with IO, less is more. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  20. The biocompatibility of titanium cardiovascular devices seeded with autologous blood-derived endothelial progenitor cells: EPC-seeded antithrombotic Ti implants.

    Science.gov (United States)

    Achneck, Hardean E; Jamiolkowski, Ryan M; Jantzen, Alexandra E; Haseltine, Justin M; Lane, Whitney O; Huang, Jessica K; Galinat, Lauren J; Serpe, Michael J; Lin, Fu-Hsiung; Li, Madison; Parikh, Amar; Ma, Liqiao; Chen, Tao; Sileshi, Bantayehu; Milano, Carmelo A; Wallace, Charles S; Stabler, Thomas V; Allen, Jason D; Truskey, George A; Lawson, Jeffrey H

    2011-01-01

    Implantable and extracorporeal cardiovascular devices are commonly made from titanium (Ti) (e.g. Ti-coated Nitinol stents and mechanical circulatory assist devices). Endothelializing the blood-contacting Ti surfaces of these devices would provide them with an antithrombogenic coating that mimics the native lining of blood vessels and the heart. We evaluated the viability and adherence of peripheral blood-derived porcine endothelial progenitor cells (EPCs), seeded onto thin Ti layers on glass slides under static conditions and after exposure to fluid shear stresses. EPCs attached and grew to confluence on Ti in serum-free medium, without preadsorption of proteins. After attachment to Ti for 15 min, less than 5% of the cells detached at a shear stress of 100 dyne / cm(2). Confluent monolayers of EPCs on smooth Ti surfaces (Rq of 10 nm), exposed to 15 or 100 dyne/cm(2) for 48 h, aligned and elongated in the direction of flow and produced nitric oxide dependent on the level of shear stress. EPC-coated Ti surfaces had dramatically reduced platelet adhesion when compared to uncoated Ti surfaces. These results indicate that peripheral blood-derived EPCs adhere and function normally on Ti surfaces. Therefore EPCs may be used to seed cardiovascular devices prior to implantation to ameliorate platelet activation and thrombus formation. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Defining the rectal dose constraint for permanent radioactive seed implantation of the prostate.

    Science.gov (United States)

    Albert, Michele; Song, Jun S; Schultz, Delray; Cormack, Robert A; Tempany, Clare M; Haker, Steve; Devlin, Phillip M; Beard, Clair; Hurwitz, Mark D; Suh, Wonsuk W; Jolesz, Ferenc; D'Amico, Anthony V

    2008-01-01

    This study was performed to define the rectal dose constraint that would predict late rectal bleeding requiring argon plasma coagulation (APC) following prostate brachy mono-therapy. Between February 1999 and April 2002, 91 patients with low risk prostate cancer underwent permanent I(125) radioactive seed implantation without the use of supplemental external beam radiation or androgen suppression therapy. Patients received both CT and MRI scans 6 weeks postimplant for evaluation of dosimetry. The CT and MRI scans were fused. Rectal volumes were contoured on the T2 weighted MR images. For those patients requiring APC, the date on which a patient reported rectal bleeding was recorded. A Cox regression analysis was performed to assess whether there was a significant association between the rectal volume (continuous) exceeding 100 Gy time rectal bleeding. Comparisons of estimates of rectal bleeding requiring APC were made using a 2-sided log rank test. There was a significant association (hazard ratio = 5.6 [95% confidence interval: 1.3, 23.8]; P = 0.002) between the rectal volume exceeding 100 Gy and rectal bleeding requiring APC. After a median follow-up of 4.25 (1-6) years, no patient with less than a median value of 8 cc of rectum exceeding 100 Gy required APC, whereas 20% (P = 0.004) were estimated to require APC within 3 years following treatment. Keeping the rectal volume receiving more than 100 Gy below 8 cc will minimize the risk of rectal bleeding requiring APC following I(125) permanent prostate brachy mono-therapy.

  2. Role of brachytherapy in the treatment of localized prostate cancer

    Directory of Open Access Journals (Sweden)

    A. D. Kaprin

    2015-01-01

    Full Text Available The review is devoted to application of brachytherapy for treating the localized prostate cancer (PC. Statistics for incidence and detectability of this pathology and its dynamics for recent years are represented. Brief analysis of other methods which are conveniently used for treatment of PC, such as radical prostatectomy and external-beam radiotherapy, was performed. Advantages and disadvantages of these methods have been discussed. Brief history about the development of brachytherapy from first experience to wide-spread use in clinical practice is reported. The detailed review of series of large trials from Russia and other countries for efficiency and safety of brachytherapy in patients with prostate cancer for recent 15 years is also represented. Two types of brachytherapy in current clinical oncology i.e. low-dose technique with permanent implantation of microsources and high-dose temporary isotope implantation, specifics of its application in different groups of patients have been described. The procedure of brachytherapy and its three main steps i.e. planning, implantation and control assessment after implantation have been characterized in details. The conclusion about benefits of using of brachytherapy in the treatment of prostate cancer as minimally invasive and efficient method was made. 

  3. Patterns of care study for brachytherapy: results of the questionnaire for the years 2002 and 2007 in The Netherlands

    Directory of Open Access Journals (Sweden)

    Bradley Londres

    2010-01-01

    Full Text Available Purpose: The goal of the ESTRO Patterns of Care study for Brachytherapy in Europe (PCBE 2002 was to develop an aid to analyse brachytherapy practices. A 2nd version of the PCB questionnaire was created for 2007. Data over 2007 were collected at the radiotherapy institutions in The Netherlands and compared with those from 2002. The aim of this study is to describe national brachytherapy practices, to demonstrate trends, and to provide data for rational health care planning.Material and methods: Data were collected using a web-based questionnaire. For each centre, a local coordinator, responsible for coordinating the questionnaires and support of the further analysis was assigned. Data from the national cancer incidence registry was used for comparison with the data from the 21 Dutch departments.Results: There was a decrease in low-dose rate equipment in parallel to an increase in both pulsed-dose rate and high-dose rate equipment. The use of 3D CT and MR based imaging techniques showed a slow rise. The most common clinical procedures were for prostate, gynaecological, and oesophageal tumours. A large increase (146% in permanent implant prostate applications using 125I seeds was observed. The numbers of oesophageal and gynaecological treatmentsremained stable. There is concern on the low numbers of cases treated in some institutions for a few complex treatment sites. For head and neck, anal canal, paediatrics, bladder and eye interventions it ranged from 3-20 patients per year per institution.Conclusions: The increase in number of patient treated with brachytherapy is in accordance with the increases in cancer incidence. The percentage of all radiotherapy patients treated with brachytherapy (approximately 5% remained stable. The survey identified certain trends in resources and techniques, as well as areas of expected improvement and possible gain in clinical outcome. Data reported from this survey can be used for further planning of resources

  4. Influence of breast composition and interseed attenuation in dose calculations for post-implant assessment of permanent breast {sup 103}Pd seed implant

    Energy Technology Data Exchange (ETDEWEB)

    Afsharpour, Hossein; Beaulieu, Luc [Departement de Radio-Oncologie et Centre de recherche en cancerologie de l' Universite Laval, Centre Hospitalier Universitaire de Quebec, 11 Cote du Palais, Quebec, QC G1R 2J6 (Canada); Pignol, Jean-Philippe; Keller, Brian [Department of Radiation Oncology, Sunnybrook and Women' s Health Sciences Centre, University of Toronto, Toronto, Ontario (Canada); Carrier, Jean-Francois [Departement de Radiologie, Radio-Oncologie et Medecine Nucleaire, Hopital Notre-Dame de CHUM, 1560 Sherbrooke E, Montreal, QC H2L 4M1 (Canada); Reniers, Brigitte; Verhaegen, Frank, E-mail: beaulieu@phy.ulaval.c [Department of Radiation Oncology (MAASTRO), GROW, University Hospital Maastricht, Maastricht (Netherlands)

    2010-08-21

    The impact of tissue heterogeneity and interseed attenuation is studied in post-implant evaluation of five clinical permanent breast {sup 103}Pd seed implants using the Monte Carlo (MC) dose calculation method. Dose metrics for the target (PTV) as well as an organ at risk (skin) are used to visualize the differences between a TG43-like MC method and more accurate MC methods capable of considering the breast tissue heterogeneity as well as the interseed attenuation. PTV dose is reduced when using a breast tissue model instead of water in MC calculations while the dose to the skin is increased. Furthermore, we investigate the effect of varying the glandular/adipose proportion of the breast tissue on dose distributions. The dose to the PTV (skin) decreases (increases) with the increasing adipose proportion inside the breast. In a complete geometry and compared to a TG43-like situation, the average PTV D{sub 90} reduction varies from 3.9% in a glandular breast to 35.5% when the breast consists entirely of adipose. The skin D{sub 10} increases by 28.2% in an entirely adipose breast. The results of this work show the importance of an accurate and patient-dependent breast tissue model to be used in the dosimetry for this kind of low energy implant.

  5. Lung-conserving treatment of a pulmonary oligometastasis with a wedge resection and 131Cs brachytherapy.

    Science.gov (United States)

    Wernicke, A Gabriella; Parikh, Apurva; Yondorf, Menachem; Trichter, Samuel; Gupta, Divya; Port, Jeffrey; Parashar, Bhupesh

    2013-01-01

    Soft-tissue sarcomas most frequently metastasize to the lung. Surgical resection of pulmonary metastases is the primary treatment modality. Although lobectomy is widely acknowledged as the standard procedure to treat primary pulmonary tumors, the standard for pulmonary metastases is not well defined; furthermore, compromised lung function may tip the scales in favor of a less invasive approach. Here, we report the results of a patient treated with wedge resection and intraoperative cesium-131 ((131)Cs). A 58-year-old African American female was diagnosed with the American Joint Committee on Cancer Stage IIA mixed uterine leiomyosarcoma and underwent total abdominal hysterectomy and bilateral salpingo-oophorectomy followed by adjuvant external beam radiotherapy to a total dose of 45 Gy and vaginal brachytherapy to a total dose of 20 Gy. At 2 years, a routine CT scan of the chest revealed metastasis to right upper lobe of the lung. The patient's poor pulmonary function, related to a 45 pack-year smoking history and chronic emphysema, precluded a lobectomy. After the patient underwent a lung-sparing wedge resection of the pulmonary right upper lobe metastasis and intraoperative brachytherapy with (131)Cs seeds to a total dose of 80 Gy, she remained disease free in the implanted area. At a 2-year followup, imaging continued to reveal 100% local control of the area treated with wedge resection and intraoperative (131)Cs brachytherapy. The patient had no complications from this treatment. Such treatment approach may become an attractive option in patients with oligometastatic disease and compromised pulmonary function. Copyright © 2013 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  6. Electromagnetic tracking for treatment verification in interstitial brachytherapy.

    Science.gov (United States)

    Bert, Christoph; Kellermeier, Markus; Tanderup, Kari

    2016-10-01

    Electromagnetic tracking (EMT) is used in several medical fields to determine the position and orientation of dedicated sensors, e.g., attached to surgical tools. Recently, EMT has been introduced to brachytherapy for implant reconstruction and error detection. The manuscript briefly summarizes the main issues of EMT and error detection in brachytherapy. The potential and complementarity of EMT as treatment verification technology will be discussed in relation to in vivo dosimetry and imaging.

  7. Electromagnetic tracking for treatment verification in interstitial brachytherapy

    Directory of Open Access Journals (Sweden)

    Christoph Bert

    2016-11-01

    Full Text Available Electromagnetic tracking (EMT is used in several medical fields to determine the position and orientation of dedicated sensors, e.g., attached to surgical tools. Recently, EMT has been introduced to brachytherapy for implant reconstruction and error detection. The manuscript briefly summarizes the main issues of EMT and error detection in brachytherapy. The potential and complementarity of EMT as treatment verification technology will be discussed in relation to in vivo dosimetry and imaging.

  8. Electromagnetic tracking for treatment verification in interstitial brachytherapy

    OpenAIRE

    Christoph Bert; Markus Kellermeier; Kari Tanderup

    2016-01-01

    Electromagnetic tracking (EMT) is used in several medical fields to determine the position and orientation of dedicated sensors, e.g., attached to surgical tools. Recently, EMT has been introduced to brachytherapy for implant reconstruction and error detection. The manuscript briefly summarizes the main issues of EMT and error detection in brachytherapy. The potential and complementarity of EMT as treatment verification technology will be discussed in relation to in vivo dosimetry and imaging.

  9. [Dosimetry verification of radioactive seed implantation with 3D printing template and CT guidance for paravertebral/retroperitoneal malignant tumor].

    Science.gov (United States)

    Ji, Z; Jiang, Y L; Guo, F X; Peng, R; Sun, H T; Fan, J H; Wang, J J

    2017-04-04

    Objective: To compare the dose distributions of postoperative plans with preoperative plans for seeds implantations of paravertebral/retroperitoneal tumors assisted by 3D printing guide template and CT guidance, explore the effects of the technology for seeds implantations in dosimetry level and provide data support for the optimization and standardization in seeds implantation. Methods: Between December 2015 and July 2016, a total of 10 patients with paravertebral/retroperitoneal tumors (12 lesions) received 3D printing template assist radioactive seeds implantations in department of radiation oncology of Peking University Third Hospital, and included in the study. The diseases included cervical cancer, kidney cancer, abdominal stromal tumor, leiomyosarcoma of kidney, esophageal cancer and carcinoma of ureter. The prescribed doses was 110-150 Gy. All patients received preoperative planning design, individual template design and production, and the dose distribution of postoperative plan was compared with preoperative plan. Dose parameters including D(90), MPD, V(100), V(150,)conformal index(CI), EI of target volume and D(2cc) of organs at risk (spinal cord, aorta, kidney). Statistical software was SPSS 19.0 and statistical method was non-parameters Wilcoxon symbols test. Results: A total of 10 3D printing templates were designed and produced which were including 12 treatment areas.The mean D(90) of postoperative target area (GTV) was 131.1 (97.8-167.4 Gy) Gy. The actual seeds number of post operation increased by 3 to 12 in 5 cases (42.0%). The needle was well distributed. For postoperative plans, the mean D(90,)MPD, V(100,)V(150) was 131.1 Gy, 69.3 Gy, 90.2% and 65.2%, respectively, and which was 140.2 Gy, 65.6 Gy, 91.7% and 26.8%, respectively, in preoperative plans. This meant that the actual dose of target volume was slightly lower than preplanned dose, and the high dose area of target volume was larger than preplanned range, but there was no statistical

  10. A simplified analytical dose calculation algorithm accounting for tissue heterogeneity for low-energy brachytherapy sources

    Science.gov (United States)

    Mashouf, Shahram; Lechtman, Eli; Beaulieu, Luc; Verhaegen, Frank; Keller, Brian M.; Ravi, Ananth; Pignol, Jean-Philippe

    2013-09-01

    The American Association of Physicists in Medicine Task Group No. 43 (AAPM TG-43) formalism is the standard for seeds brachytherapy dose calculation. But for breast seed implants, Monte Carlo simulations reveal large errors due to tissue heterogeneity. Since TG-43 includes several factors to account for source geometry, anisotropy and strength, we propose an additional correction factor, called the inhomogeneity correction factor (ICF), accounting for tissue heterogeneity for Pd-103 brachytherapy. This correction factor is calculated as a function of the media linear attenuation coefficient and mass energy absorption coefficient, and it is independent of the source internal structure. Ultimately the dose in heterogeneous media can be calculated as a product of dose in water as calculated by TG-43 protocol times the ICF. To validate the ICF methodology, dose absorbed in spherical phantoms with large tissue heterogeneities was compared using the TG-43 formalism corrected for heterogeneity versus Monte Carlo simulations. The agreement between Monte Carlo simulations and the ICF method remained within 5% in soft tissues up to several centimeters from a Pd-103 source. Compared to Monte Carlo, the ICF methods can easily be integrated into a clinical treatment planning system and it does not require the detailed internal structure of the source or the photon phase-space.

  11. MO-B-BRC-01: Introduction [Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Prisciandaro, J. [University of Michigan (United States)

    2016-06-15

    Brachytherapy has proven to be an effective treatment option for prostate cancer. Initially, prostate brachytherapy was delivered through permanently implanted low dose rate (LDR) radioactive sources; however, high dose rate (HDR) temporary brachytherapy for prostate cancer is gaining popularity. Needle insertion during prostate brachytherapy is most commonly performed under ultrasound (U/S) guidance; however, treatment planning may be performed utilizing several imaging modalities either in an intra- or post-operative setting. During intra-operative prostate HDR, the needles are imaged during implantation, and planning may be performed in real time. At present, the most common imaging modality utilized for intra-operative prostate HDR is U/S. Alternatively, in the post-operative setting, following needle implantation, patients may be simulated with computed tomography (CT) or magnetic resonance imaging (MRI). Each imaging modality and workflow provides its share of benefits and limitations. Prostate HDR has been adopted in a number of cancer centers across the nation. In this educational session, we will explore the role of U/S, CT, and MRI in HDR prostate brachytherapy. Example workflows and operational details will be shared, and we will discuss how to establish a prostate HDR program in a clinical setting. Learning Objectives: Review prostate HDR techniques based on the imaging modality Discuss the challenges and pitfalls introduced by the three imagebased options for prostate HDR brachytherapy Review the QA process and learn about the development of clinical workflows for these imaging options at different institutions.

  12. Continuous and low-energy 125I seed irradiation changes DNA methyltransferases expression patterns and inhibits pancreatic cancer tumor growth

    Directory of Open Access Journals (Sweden)

    Gong Yan-fang

    2011-04-01

    Full Text Available Abstract Background Iodine 125 (125I seed irradiation is an effective treatment for unresectable pancreatic cancers. However, the radiobiological mechanisms underlying brachytherapy remain unclear. Therefore, we investigated the influence of continuous and low-energy 125I irradiation on apoptosis, expression of DNA methyltransferases (DNMTs and cell growth in pancreatic cancers. Materials and methods For in vitro 125I seed irradiation, SW-1990 cells were divided into three groups: control (0 Gy, 2 Gy, and 4 Gy. To create an animal model of pancreatic cancer, the SW 1990 cells were surgically implanted into the mouse pancreas. At 10 d post-implantation, the 30 mice with pancreatic cancer underwent 125I seed implantation and were separated into three groups: 0 Gy, 2 Gy, and 4 Gy group. At 48 or 72 h after irradiation, apoptosis was detected by flow cytometry; changes in DNMTs mRNA and protein expression were assessed by real-time PCR and western blotting analysis, respectively. At 28 d after 125I seed implantation, in vivo apoptosis was evaluated with TUNEL staining, while DNMTs protein expression was detected with immunohistochemical staining. The tumor volume was measured 0 and 28 d after 125I seed implantation. Results 125I seed irradiation induced significant apoptosis, especially at 4 Gy. DNMT1 and DNMT3b mRNA and protein expression were substantially higher in the 2 Gy group than in the control group. Conversely, the 4 Gy cell group exhibited significantly decreased DNMT3b mRNA and protein expression relative to the control group. There were substantially more TUNEL positive in the 125I seed implantation treatment group than in the control group, especially at 4 Gy. The 4 Gy seed implantation group showed weaker staining for DNMT1 and DNMT3b protein relative to the control group. Consequently, 125I seed implantation inhibited cancer growth and reduced cancer volume. Conclusion 125I seed implantation kills pancreatic cancer cells, especially

  13. The American Brachytherapy Society consensus guidelines for plaque brachytherapy of uveal melanoma and retinoblastoma.

    Science.gov (United States)

    2014-01-01

    To present the American Brachytherapy Society (ABS) guidelines for plaque brachytherapy of choroidal melanoma and retinoblastoma. An international multicenter Ophthalmic Oncology Task Force (OOTF) was assembled to include 47 radiation oncologists, medical physicists, and ophthalmic oncologists from 10 countries. The ABS-OOTF produced collaborative guidelines, based on their eye cancer-specific clinical experience and knowledge of the literature. This work was reviewed and approved by the ABS Board of Directors as well as within the journal's peer-reivew process. The ABS-OOTF reached consensus that ophthalmic plaque radiation therapy is best performed in subspecialty brachytherapy centers. Quality assurance, methods of plaque construction, and dosimetry should be consistent with the 2012 joint guidelines of the American Association of Physicists in Medicine and ABS. Implantation of plaque sources should be performed by subspecialty-trained surgeons. Although there exist select restrictions related to tumor size and location, the ABS-OOTF agreed that most melanomas of the iris, ciliary body, and choroid could be treated with plaque brachytherapy. The ABS-OOTF reached consensus that tumors with gross orbital extension and blind painful eyes and those with no light perception vision are unsuitable for brachytherapy. In contrast, only select retinoblastomas are eligible for plaque brachytherapy. Prescription doses, dose rates, treatment durations, and clinical methods are described. Plaque brachytherapy is an effective eye and vision-sparing method to treat patients with intraocular tumors. Practitioners are encouraged to use ABS-OOTF guidelines to enhance their practice. Copyright © 2014 American Brachytherapy Society. All rights reserved.

  14. Sensitivity of low energy brachytherapy Monte Carlo dose calculations to uncertainties in human tissue composition

    Energy Technology Data Exchange (ETDEWEB)

    Landry, Guillaume; Reniers, Brigitte; Murrer, Lars; Lutgens, Ludy; Bloemen-Van Gurp, Esther; Pignol, Jean-Philippe; Keller, Brian; Beaulieu, Luc; Verhaegen, Frank [Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6201 BN (Netherlands); Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario M4N 3M5 (Canada); Departement de Radio-Oncologie et Centre de Recherche en Cancerologie, de l' Universite Laval, CHUQ, Pavillon L' Hotel-Dieu de Quebec, Quebec G1R 2J6 (Canada) and Departement de Physique, de Genie Physique et d' Optique, Universite Laval, Quebec G1K 7P4 (Canada); Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6201 BN (Netherlands) and Medical Physics Unit, McGill University, Montreal General Hospital, Montreal, Quebec H3G 1A4 (Canada)

    2010-10-15

    Purpose: The objective of this work is to assess the sensitivity of Monte Carlo (MC) dose calculations to uncertainties in human tissue composition for a range of low photon energy brachytherapy sources: {sup 125}I, {sup 103}Pd, {sup 131}Cs, and an electronic brachytherapy source (EBS). The low energy photons emitted by these sources make the dosimetry sensitive to variations in tissue atomic number due to the dominance of the photoelectric effect. This work reports dose to a small mass of water in medium D{sub w,m} as opposed to dose to a small mass of medium in medium D{sub m,m}. Methods: Mean adipose, mammary gland, and breast tissues (as uniform mixture of the aforementioned tissues) are investigated as well as compositions corresponding to one standard deviation from the mean. Prostate mean compositions from three different literature sources are also investigated. Three sets of MC simulations are performed with the GEANT4 code: (1) Dose calculations for idealized TG-43-like spherical geometries using point sources. Radial dose profiles obtained in different media are compared to assess the influence of compositional uncertainties. (2) Dose calculations for four clinical prostate LDR brachytherapy permanent seed implants using {sup 125}I seeds (Model 2301, Best Medical, Springfield, VA). The effect of varying the prostate composition in the planning target volume (PTV) is investigated by comparing PTV D{sub 90} values. (3) Dose calculations for four clinical breast LDR brachytherapy permanent seed implants using {sup 103}Pd seeds (Model 2335, Best Medical). The effects of varying the adipose/gland ratio in the PTV and of varying the elemental composition of adipose and gland within one standard deviation of the assumed mean composition are investigated by comparing PTV D{sub 90} values. For (2) and (3), the influence of using the mass density from CT scans instead of unit mass density is also assessed. Results: Results from simulation (1) show that variations

  15. Assessment of microseeds biodegradability of Sm and Sm:Ba splenic implants in rabbits

    Energy Technology Data Exchange (ETDEWEB)

    Siqueira, Savio Lana; Barroso, Thiago Vinicius Villar [Faculdade de Ciencias Medicas de Minas Gerais, Belo Horizonte, MG (Brazil). Dept. de Anatomia; Campos, Tarcisio P.R., E-mail: campos@nuclear.ufmg.b [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Programa de Ciencias e Tecnicas Nucleares

    2009-07-01

    The radioactive interstitial implants have applications in controlling neoplasm in several regions of the human body. Currently the permanent brachytherapy seeds implanted in the spleen and other organs are made of I-125 seeds. After the total emission of radiation, the metal encapsulated seed remains inert in the implanted area. Seeds of bioactive ceramics have been prepared with Sm-152 incorporation to be activated in Sm-153. This study aimed to develop surgical technique for implanting biodegradable micro-seeds in the spleen of the rabbit. Three micro-seeds were introduced by hypodermic needle in the spleen in eight rabbits by median laparotomy. Subsequently, there were clinical and functional reactions of the animal to the implanted foreign body. The other objective was to perform the animal monitoring by radiography, produced in time sequence, and pathological studies of a fragment of the spleens of rabbits. The results show the effectiveness of surgery, the identification of the implanted material by radiography in vivo, and the biocompatibility of micro-seeds most of Sm and Sm:Ba. These seeds of reduced volume, 0.3x 1.6 mm, could be monitored for radiological studies in 2 periods: early and later implant. On the later studies, radiography was taken at 60d post-implant. Biopsies were taken and radiographs of the samples were also performed for evidencing the degradation state of the seeds. The results of the two groups of four rabbits are presented. They show partial degradation of the seed verified by radiographic contrast which is related to the atomic number of the elements and mass density in the seed. The biopsy showed that the ceramic is clearly absorbed by the spleen tissue and form tissue-implant interface. The histological slides showed an inflammatory reaction with presence of fibrosis of the giant cell foreign body. In conclusion, the radiograph shows a suitable noninvasive technique for monitoring the degradation of micro-seed ceramics in vivo

  16. Urinary and Rectal Toxicity Profiles After Permanent Iodine-125 Implant Brachytherapy in Japanese Men: Nationwide J-POPS Multi-institutional Prospective Cohort Study

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, Toshio, E-mail: ohashi@rad.med.keio.ac.jp [Keio University School of Medicine, Tokyo (Japan); Yorozu, Atsunori; Saito, Shiro [National Hospital Organization Tokyo Medical Center, Tokyo (Japan); Tanaka, Nobumichi [Nara Medical University School of Medicine, Nara (Japan); Katayama, Norihisa [Okayama University School of Medicine, Okayama (Japan); Kojima, Shinsuke; Maruo, Shinichiro; Kikuchi, Takashi [Translational Research Informatics Center, Hyogo (Japan); Dokiya, Takushi [Kyoundo Hospital, Tokyo (Japan); Fukushima, Masanori [Translational Research Informatics Center, Hyogo (Japan); Yamanaka, Hidetoshi [Institutes of Preventive Medicine, Kurosawa Hospital, Gunma (Japan)

    2015-09-01

    Purpose: To assess, in a nationwide multi-institutional cohort study begun in 2005 and in which 6927 subjects were enrolled by 2010, the urinary and rectal toxicity profiles of subjects who enrolled during the first 2 years, and evaluate the toxicity profiles for permanent seed implantation (PI) and a combination therapy with PI and external beam radiation therapy (EBRT). Methods and Materials: Baseline data for 2339 subjects out of 2354 patients were available for the analyses. Toxicities were evaluated using the National Cancer Institute's Common Terminology Criteria for Adverse Events, and the International Prostate Symptom Scores were recorded prospectively until 36 months after radiation therapy. Results: Grade 2+ acute urinary toxicities developed in 7.36% (172 of 2337) and grade 2+ acute rectal toxicities developed in 1.03% (24 of 2336) of the patients. Grade 2+ late urinary and rectal toxicities developed in 5.75% (133 of 2312) and 1.86% (43 of 2312) of the patients, respectively. A higher incidence of grade 2+ acute urinary toxicity occurred in the PI group than in the EBRT group (8.49% vs 3.66%; P<.01). Acute rectal toxicity outcomes were similar between the treatment groups. The 3-year cumulative incidence rates for grade 2+ late urinary toxicities were 6.04% versus 4.82% for the PI and the EBRT groups, respectively, with no significant differences between the treatment groups. The 3-year cumulative incidence rates for grade 2+ late rectal toxicities were 0.90% versus 5.01% (P<.01) for the PI and the EBRT groups, respectively. The mean of the postimplant International Prostate Symptom Score peaked at 3 months, but it decreased to a range that was within 2 points of the baseline score, which was observed in 1625 subjects (69.47%) at the 1-year follow-up assessment. Conclusions: The acute urinary toxicities observed were acceptable given the frequency and retention, and the late rectal toxicities were more favorable than those of other

  17. Automation system for quality control in manufacture of iodine-125 sealed sources used in brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Somessari, Samir L.; Feher, Anselmo; Sprenger, Francisco E.; Rostellato, Maria E.C.M.; Moura, Joao A.; Costa, Osvaldo L.; Calvo, Wilson A.P., E-mail: somessar@ipen.b, E-mail: afeher@ipen.b, E-mail: sprenger@ipen.b, E-mail: elisaros@ipen.b, E-mail: olcosta@ipen.b, E-mail: wapcalvo@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    The objective of this work is to develop an automation system for Quality Control in the production of Iodine-125 sealed sources, after undergoing the process of laser beam welding. These sources, also known as Iodine-125 seeds are used, successfully, in the treatment of cancer by brachytherapy, with low-dose rates. Each small seed is composed of a welded titanium capsule with 0.8 mm diameter and 4.5 mm in length, containing Iodine-125 adsorbed on an internal silver wire. The seeds are implanted in the human prostate to irradiate the tumor and treat the cancerous cells. The technology to automate the quality control system in the manufacture of Iodine-125 seeds consists in developing and associate mechanical parts, electronic components and pneumatic circuits to control machines and processes. The automation technology for Iodine-125 seed production developed in this work employs programmable logic controller, step motors, drivers of control, electrical-electronic interfaces, photoelectric sensors, interfaces of communication and software development. Industrial automation plays an important role in the production of Iodine-125 seeds, with higher productivity and high standard of quality, facilitating the implementation and operation of processes with good manufacturing practices. Nowadays, the Radiation Technology Center at IPEN-CNEN/SP imports and distributes 36,000 Iodine-125 seeds per year for clinics and hospitals in the whole country. However, the Brazilian potential market is of 8,000 Iodine-125 seeds per month. Therefore, the local production of these radioactive seeds has become a priority for the Institute, aiming to reduce the price and increase the supply to the population in Brazil. (author)

  18. Advancements in brachytherapy

    DEFF Research Database (Denmark)

    Tanderup, Kari; Ménard, Cynthia; Polgar, Csaba

    2017-01-01

    Brachytherapy is a radiotherapy modality associated with a highly focal dose distribution. Brachytherapy treats the cancer tissue from the inside, and the radiation does not travel through healthy tissue to reach the target as with external beam radiotherapy techniques. The nature of brachytherap...... in terms of controlling dose and demonstrating excellent clinical outcome. Interests in focal, hypofractionated and adaptive treatments are increasing, and brachytherapy has significant potential to develop further in these directions with current and new treatment indications....

  19. SU-F-J-163: In Vivo Quantification of Sequence Parameter Effect On Geometric Distortion Caused by Implanted Titanium Brachytherapy Applicator

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, T; Diak, A; Surucu, M; Yacoub, J; Harkenrider, M; Shea, S [Loyola University Chicago, Maywood, IL (United States)

    2016-06-15

    Purpose: The use of MR to plan and evaluate brachytherapy treatment for cervical cancer is increasing given the availability of MR conditional or safe applicators and MRI’s proven superiority to CT for characterizing soft tissue lesions. The titanium applicators, however, cause geometric distortions or imaging artifacts, which reduce the utility of MRI for dosimetry. We sought to quantify the observed volume of the same applicator on a previously optimized T2 sequence in comparison to the conventional T2 sequence and CT obtained for brachytherapy planning. Methods: Prior work with testing in phantoms showed that increases in readout bandwidth yielded reductions in artifact area and distortion measurements even with voxel increases. Following IRB approval, nine patients with titanium tandem & ovoid applicator (Varian Medical Systems) in place were scanned with a standard periprocedural protocol which included sagittal T2 fast spin echo (FSE) acquisition (res 0.98×0.78×4.0 mm{sup 3}; BW 200Hz). An additional T2-weighted FSE sequence (res 0.98×0.98×3–4 mm{sup 3}; BW500Hz) with increased readout bandwidth, readout voxel size, and echo train length was added to the protocol. Volume measurements of the applicator (from tip to cervical stop) were hand-segmented in Velocity AI 3.1 (Velocity Medical Solutions) for the two T2 FSE sequences and a planning CT obtained shortly after MRI. Differences were analyzed using a paired t-test. Results: Average apparent volumes of the applicator on standard T2 sequence, decreased bandwidth T2 sequence and CT were 5.922±1.283 cm{sup 3}, 4.544±1.524 cm3, and 2.304±0.509 cm{sup 3} respectively. Conclusion: Apparent volumes of a brachytherapy applicator can be compared in vivo. The modified sequence results in decreased apparent size of the cervical applicator. Both MR sequence volumes were larger than the planning CT, which was expected. Future work will focus on the diagnostic quality of the new sequence and quantifying any

  20. Experimental iodine-125 seed irradiation of intracerebral brain tumors in nude mice

    Directory of Open Access Journals (Sweden)

    Haveman Jaap

    2007-09-01

    Full Text Available Abstract Background High-dose radiotherapy is standard treatment for patients with brain cancer. However, in preclinical research external beam radiotherapy is limited to heterotopic murine models– high-dose radiotherapy to the murine head is fatal due to radiation toxicity. Therefore, we developed a stereotactic brachytherapy mouse model for high-dose focal irradiation of experimental intracerebral (orthotopic brain tumors. Methods Twenty-one nude mice received a hollow guide-screw implanted in the skull. After three weeks, 5 × 105 U251-NG2 human glioblastoma cells were injected. Five days later, a 2 mCi iodine-125 brachytherapy seed was inserted through the guide-screw in 11 randomly selected mice; 10 mice received a sham seed. Mice were euthanized when severe neurological or physical symptoms occurred. The cumulative irradiation dose 5 mm below the active iodine-125 seeds was 23.0 Gy after 13 weeks (BEDtumor = 30.6 Gy. Results In the sham group, 9/10 animals (90% showed signs of lethal tumor progression within 6 weeks. In the experimental group, 2/11 mice (18% died of tumor progression within 13 weeks. Acute side effects in terms of weight loss or neurological symptoms were not observed in the irradiated animals. Conclusion The intracerebral implantation of an iodine-125 brachytherapy seed through a stereotactic guide-screw in the skull of mice with implanted brain tumors resulted in a significantly prolonged survival, caused by high-dose irradiation of the brain tumor that is biologically comparable to high-dose fractionated radiotherapy– without fatal irradiation toxicity. This is an excellent mouse model for testing orthotopic brain tumor therapies in combination with radiation therapy.

  1. The impact of body mass index on dosimetric quality in low-dose-rate prostate brachytherapy

    Directory of Open Access Journals (Sweden)

    Michelle I. Echevarria

    2016-11-01

    Full Text Available Purpose : Low-dose-rate (LDR brachytherapy has been established as an effective and safe treatment option for men with low and intermediate risk prostate cancer. In this retrospective analysis, we sought to study the effect of body mass index (BMI on post-implant dosimetric quality. Material and methods : After institutional approval, records of patients with non-metastatic prostate cancer treated in Puerto Rico with LDR brachytherapy during 2008-2013 were reviewed. All patients were implanted with 125I seeds to a prescription dose of 145 Gy. Computed tomography (CT based dosimetry was performed 1 month after implant. Patients with at least 1 year of prostate-specific antigen (PSA follow-up were included. Factors predictive of adequate D90 coverage (≥ 140 Gy were compared via the Pearson χ2 or Wilcoxon rank-sum test as appropriate. Results : One-hundred and four patients were included in this study, with 53 (51% patients having a D90 ≥ 140 Gy. The only factor associated with a dosimetric coverage detriment (D90 < 140 Gy was BMI ≥ 25 kg/m2 (p = 0.03. Prostate volume (p = 0.26, initial PSA (p = 0.236, age (p = 0.49, hormone use (p = 0.93, percent of cores positive (p = 0.95, risk group (p = 0.24, tumor stage (p = 0.66, and Gleason score (p = 0.61 did not predict D90. Conclusions : In this study we show that BMI is a significant pre-implant predictor of D90 (< 140 Gy vs. ≥ 140 Gy. Although other studies have reported that prostate volume also affects D90, our study did not find this correlation to be statistically significant, likely because all of our patients had a prostate volume 140 Gy.

  2. Transperineal prostate brachytherapy, using I-125 seed with or without adjuvant androgen deprivation, in patients with intermediate-risk prostate cancer: study protocol for a phase III, multicenter, randomized, controlled trial

    Directory of Open Access Journals (Sweden)

    Miyakoda Keiko

    2010-10-01

    Full Text Available Abstract Background The optimal protocol for 125I-transperineal prostatic brachytherapy (TPPB in intermediate-risk prostate cancer (PCa patients remains controversial. Data on the efficacy of combining androgen-deprivation therapy (ADT with 125I-TPPB in this group remain limited and consequently the guidelines of the American Brachytherapy Society (ABS provide no firm recommendations. Methods/Design Seed and Hormone for Intermediate-risk Prostate Cancer (SHIP 0804 is a phase III, multicenter, randomized, controlled study that will investigate the impact of adjuvant ADT following neoadjuvant ADT and 125I-TPPB. Prior to the end of March, 2011, a total of 420 patients with intermediate-risk, localized PCa will be enrolled and randomized to one of two treatment arms. These patients will be recruited from 20 institutions, all of which have broad experience of 125I-TPPB. Pathological slides will be centrally reviewed to confirm patient eligibility. The patients will initially undergo 3-month ADT prior to 125I-TPPB. Those randomly assigned to adjuvant therapy will subsequently undergo 9 months of adjuvant ADT. All participants will be assessed at baseline and at the following intervals: every 3 months for the first 24 months following 125I-TPPB, every 6 months during the 24- to 60-month post-125I-TPPB interval, annually between 60 and 84 months post-125I-TPPB, and on the 10th anniversary of treatment. The primary endpoint is biochemical progression-free survival (BPFS. Secondary endpoints are overall survival (OS, clinical progression-free survival, disease-specific survival, salvage therapy non-adaptive interval, acceptability (assessed using the international prostate symptom score [IPSS], quality of life (QOL evaluation, and adverse events. In the correlative study (SHIP36B, we also evaluate biopsy results at 36 months following treatment to examine the relationship between the results and the eventual recurrence after completion of radiotherapy

  3. Quality control of system of imaging for rectal ultrasound for implants seed prostate low rate; Control de calidad del sistem de imagen por ecografia rectal para implantes de semillas de prostata de baja tasa

    Energy Technology Data Exchange (ETDEWEB)

    Luquero Llopis, N.; Ferrer Gracia, C.; Huertas Martinez, C.; Huerga Cabrerizo, C.; Corredoira Silva, E.; Serrada Hierro, A.

    2013-07-01

    In this work, the objective is the evaluation of the image system used in implants of prostate of low rate held at our hospital, for maximum control on the placement of the seeds in the patient and therefore carried out dosimetry. (Author)

  4. Modern head and neck brachytherapy: from radium towards intensity modulated interventional brachytherapy

    Science.gov (United States)

    2014-01-01

    Intensity modulated brachytherapy (IMBT) is a modern development of classical interventional radiation therapy (brachytherapy), which allows the application of a high radiation dose sparing severe adverse events, thereby further improving the treatment outcome. Classical indications in head and neck (H&N) cancers are the face, the oral cavity, the naso- and oropharynx, the paranasal sinuses including base of skull, incomplete resections on important structures, and palliation. The application type can be curative, adjuvant or perioperative, as a boost to external beam radiation as well as without external beam radiation and with palliative intention. Due to the frequently used perioperative application method (intraoperative implantation of inactive applicators and postoperative performance of radiation), close interdisciplinary cooperation between surgical specialists (ENT-, dento-maxillary-facial-, neuro- and orbital surgeons), as well interventional radiotherapy (brachytherapy) experts are obligatory. Published results encourage the integration of IMBT into H&N therapy, thereby improving the prognosis and quality of life of patients. PMID:25834586

  5. Partial breast irradiation: high dose rate per-operative brachytherapy technique using the MammoSite; Irradiation partielle du sein: technique de curietherapie de haut debit de dose apres l'implantation peroperatoire du dispositif MammoSite

    Energy Technology Data Exchange (ETDEWEB)

    Belkacemi, Y.; Poupon, L.; Castellanos, M.E.; Villette, S.; Lartigau, E. [Centre de Lutte Contre le Cancer Oscar-Lambret, Dept. de Radiotherapie, 59 - Lille (France); Chauvet, M.P.; Giard, S. [Centre de Lutte Contre le Cancer Oscar-Lambret, Dept. de Chirurgie Senologique, 59 - Lille (France); Bonodeau, F. [de Lutte Contre le Cancer Oscar-Lambret, Dept. de Radiologie, 59 - Lille (France); Cabaret, V. [de Lutte Contre le Cancer Oscar-Lambret, Dept. d' Anatomopathologie, 59 - Lille (France)

    2003-11-01

    In the conservative management of breast cancer, radiation therapy delivering 45 to 50 Gy to the whole breast, in 4.5 to 5 weeks, followed by a booster dose of 10 to 20 Gy is the standard of care. Based on the numerous studies which have reported that the local recurrences occurs within and surrounding the primary tumor site and in order to decrease the treatment duration and its morbidity, partial breast irradiation using several techniques has been developed. Partial irradiation may be considered as an alternative local adjuvant treatment for selected patients with favorable prognostic factors. Using external beam radiation therapy, the 3D-conformal technique is appropriate to deliver the whole dose to a limited volume. In UK, an intraoperative technique using a miniature beam of low energy of X-ray (50 kV) has been developed (Targit). Milan's team have developed an intraoperative electrons beam radiotherapy using a dedicated linear accelerator in the operative room. In USA and Canada the MammoSite has been advised for clinical use in per-operative brachytherapy of the breast. These two last techniques are currently compared in phase III randomized studies to the standard whole breast irradiation followed by a tumour bed booster dose. In this review we will focus on the MammoSite technique and will describe the per-operative implantation procedure. radiological controls ad dosimetric aspects. (author)

  6. Evaluation of the effect of prostate volume change on tumor control probability in LDR brachytherapy

    Directory of Open Access Journals (Sweden)

    Courtney Knaup

    2011-09-01

    Full Text Available Purpose: This study evaluates low dose-rate brachytherapy (LDR prostate plans to determine the biological effectof dose degradation due to prostate volume changes. Material and methods: In this study, 39 patients were evaluated. Pre-implant prostate volume was determinedusing ultrasound. These images were used with the treatment planning system (Nucletron Spot Pro 3.1® to create treatmentplans using 103Pd seeds. Following the implant, patients were imaged using CT for post-implant dosimetry. Fromthe pre and post-implant DVHs, the biologically equivalent dose and the tumor control probability (TCP were determinedusing the biologically effective uniform dose. The model used RBE = 1.75 and α/β = 2 Gy. Results: The prostate volume changed between pre and post implant image sets ranged from –8% to 110%. TCP andthe mean dose were reduced up to 21% and 56%, respectively. TCP is observed to decrease as the mean dose decreasesto the prostate. The post-implant tumor dose was generally observed to decrease, compared to the planned dose.A critical uniform dose of 130 Gy was established. Below this dose, TCP begins to fall-off. It was also determined thatpatients with a small prostates were more likely to suffer TCP decrease. Conclusions: The biological effect of post operative prostate growth due to operative trauma in LDR was evaluatedusing the concept. The post-implant dose was lower than the planned dose due to an increase of prostate volumepost-implant. A critical uniform dose of 130 Gy was determined, below which TCP begun to decline.

  7. Evaluation of the effect of prostate volume change on tumor control probability in LDR brachytherapy.

    Science.gov (United States)

    Knaup, Courtney; Mavroidis, Panayiotis; Stathakis, Sotirios; Smith, Mark; Swanson, Gregory; Papanikolaou, Niko

    2011-09-01

    This study evaluates low dose-rate brachytherapy (LDR) prostate plans to determine the biological effect of dose degradation due to prostate volume changes. In this study, 39 patients were evaluated. Pre-implant prostate volume was determined using ultrasound. These images were used with the treatment planning system (Nucletron Spot Pro 3.1(®)) to create treatment plans using (103)Pd seeds. Following the implant, patients were imaged using CT for post-implant dosimetry. From the pre and post-implant DVHs, the biologically equivalent dose and the tumor control probability (TCP) were determined using the biologically effective uniform dose. The model used RBE = 1.75 and α/β = 2 Gy. The prostate volume changed between pre and post implant image sets ranged from -8% to 110%. TCP and the mean dose were reduced up to 21% and 56%, respectively. TCP is observed to decrease as the mean dose decreases to the prostate. The post-implant tumor dose was generally observed to decrease, compared to the planned dose. A critical uniform dose of 130 Gy was established. Below this dose, TCP begins to fall-off. It was also determined that patients with a small prostates were more likely to suffer TCP decrease. The biological effect of post operative prostate growth due to operative trauma in LDR was evaluated using the concept. The post-implant dose was lower than the planned dose due to an increase of prostate volume post-implant. A critical uniform dose of 130 Gy was determined, below which TCP begun to decline.

  8. The American College of Radiology and the American Brachytherapy Society practice parameter for transperineal permanent brachytherapy of prostate cancer.

    Science.gov (United States)

    Bittner, Nathan H J; Orio, Peter F; Merrick, Gregory S; Prestidge, Bradley R; Hartford, Alan Charles; Rosenthal, Seth A

    Transperineal permanent brachytherapy is a safe and effective treatment option for patients with organ-confined prostate cancer. Careful adherence to established brachytherapy standards has been shown to improve the likelihood of procedural success and reduce the incidence of treatment-related morbidity. A collaborative effort of the American College of Radiology (ACR) and the American Brachytherapy Society (ABS) has produced practice parameters for LDR prostate brachytherapy. These practice parameters define the qualifications and responsibilities of all the involved personnel, including the radiation oncologist, physicist and dosimetrist. Factors with respect to patient selection and appropriate use of supplemental treatment modalities such as external beam radiation and androgen suppression therapy are discussed. Logistics with respect to the brachytherapy implant procedure, the importance of dosimetric guidelines, and attention to radiation safety procedures and documentation are presented. Adherence to these parameters can be part of ensuring quality and safety in a successful prostate brachytherapy program. Copyright © 2016 American Brachytherapy Society and American College of Radiology. Published by Elsevier Inc. All rights reserved.

  9. The Curie–Da Vinci Connection: 5-Years' Experience With Laparoscopic (Robot-Assisted) Implantation for High-Dose-Rate Brachytherapy of Solitary T2 Bladder Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Steen-Banasik, Elzbieta M. van der, E-mail: E.vanderSteen-Banasik@radiotherapiegroep.nl [Radiotherapiegroep, Arnhem (Netherlands); Smits, Geert A.H.J. [Department of Urology, Rijnstate Hospital, Arnhem (Netherlands); Oosterveld, Bernard J.; Janssen, Theo; Visser, Andries G. [Radiotherapiegroep, Arnhem (Netherlands)

    2016-08-01

    Purpose: To report experience and early results of laparoscopic implantation for interstitial brachytherapy (BT) of solitary bladder tumors and the feasibility of a high-dose-rate (HDR) schedule. Methods and Materials: From December 2009 to April 2015, 57 patients with a T2 solitary bladder tumor were treated in Arnhem with transurethral bladder resection followed by external beam irradiation, applied to the bladder and regional iliac lymph nodes, 40 Gy in 20 fractions, 5 fractions per week, and within 1 week interstitial HDR BT, in selected cases combined with partial cystectomy and lymph node dissection. The BT catheters were placed via a transabdominal approach with robotic assistance from a Da Vinci robot after a successful initial experience with a nonrobotic laparoscopic approach. The fraction schedule for HDR was 10 fractions of 2.5 Gy, 3 fractions per day. This was calculated to be equivalent to a reference low-dose-rate schedule of 30 Gy in 60 hours. Data for oncologic outcomes and toxicity (Common Toxicity Criteria version 4) were prospectively collected. Results: These modifications resulted in an average postoperative hospitalization of 6 days, minimal blood loss, and no wound healing problems. Two patients had severe acute toxicity: 1 pulmonary embolism grade 4 and 1 cardiac death. Late toxicity was mild (n=2 urogenital grade 3 toxicity). The median follow-up was 2 years. Using cumulative incidence competing risk analysis, the 2-year overall, disease-free, and disease-specific survival and local control rates were 59%, 71%, 87%, and 82%, respectively. Conclusions: The benefits of minimally invasive surgery for implantation of BT catheters and the feasibility of HDR BT in bladder cancer are documented. The patient outcome and adverse events are comparable to the best results published for a bladder-sparing approach.

  10. Advancements in brachytherapy.

    Science.gov (United States)

    Tanderup, Kari; Ménard, Cynthia; Polgar, Csaba; Lindegaard, Jacob Christian; Kirisits, Christian; Pötter, Richard

    2017-01-15

    Brachytherapy is a radiotherapy modality associated with a highly focal dose distribution. Brachytherapy treats the cancer tissue from the inside, and the radiation does not travel through healthy tissue to reach the target as with external beam radiotherapy techniques. The nature of brachytherapy makes it attractive for boosting limited size target volumes to very high doses while sparing normal tissues. Significant developments over the last decades have increased the use of 3D image guided procedures with the utilization of CT, MRI, US and PET. This has taken brachytherapy to a new level in terms of controlling dose and demonstrating excellent clinical outcome. Interests in focal, hypofractionated and adaptive treatments are increasing, and brachytherapy has significant potential to develop further in these directions with current and new treatment indications. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Evaluation of resins for use in brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Luiz Claudio F.M. Garcia; Ferraz, Wilmar Barbosa; Chrcanovic, Bruno Ramos; Santos, Ana Maria M., E-mail: ferrazw@cdtn.b, E-mail: amms@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    Brachytherapy is an advanced cancer treatment where radioactive seeds or sources are placed near or directly into the tumor thus reducing the radiation exposure in the surrounding healthy tissues. Prostate cancer can be treated with interstitial brachytherapy in initial stage of the disease in which tiny radioactive seeds with cylindrical geometry are used. Several kinds of seeds have been developed in order to obtain a better dose distribution around them and with a lower cost manufacturing. These seeds consist of an encapsulation, a radionuclide carrier, and X-ray marker. Among the materials that have potential for innovation in the construction of seeds, biocompatible resins appear as an important option. In this paper, we present some characterization results with Fourier transform infrared spectroscopic (FTIR) and ultraviolet-visible spectroscopy (UV-vis) performed on two types of resins in which curing temperatures for each one were varied as also the results of coatings with these resins under titanium substrates. Interactions of these resins in contact with the simulated body fluid were evaluated by atomic force microscopy, scanning electron microscopy, and energy dispersive X-ray spectroscopy. (author)

  12. System for radiation delivery applied to brachytherapy using a polymeric vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa Junior, Iorque L.; Campos, Tarcisio P.R. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). PCA 1 - Anexo Engenharia]. E-mail: iorque@eng-nucl.mest.ufmg.br; campos@nuclear.ufmg.br

    2007-07-01

    This work describes a system for radiation delivery applied to brachytherapy using radioactive macroaggregate produced by sol-gel route incorporating Samarium-153 loaded in a polymeric vehicle. The polymer Poly Vinyl Alcohol, PVA, was selected as vehicle. It presents high biocompatibility and is suitable for low temperature handling. The PVA is the water-soluble synthetic resin more produced in the world being used in several applications including controlled drugs delivery. The developed polymeric delivery system is presented as flexible flat surface with a load of macroaggregate in the form of micro seeds or dispersed dust. Such device fits in various brachytherapy applications, especially in interstitial or intracavitary implants and intraoperative radiation therapy. These systems provide mechanical sustainment for the radioactive macroaggregates in well defined spatial distribution improving the conformation of the absorbed dose in the organ or tumor and it can be set up during surgery quickly and safely, reducing the radiation exposition of the medical crew. The degradation time in physiological solution are presented. (author)

  13. SU-E-T-635: Process Mapping of Eye Plaque Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Huynh, J; Kim, Y [University of Arizona, Tucson, AZ (United States)

    2015-06-15

    Purpose: To apply a risk-based assessment and analysis technique (AAPM TG 100) to eye plaque brachytherapy treatment of ocular melanoma. Methods: The role and responsibility of personnel involved in the eye plaque brachytherapy is defined for retinal specialist, radiation oncologist, nurse and medical physicist. The entire procedure was examined carefully. First, major processes were identified and then details for each major process were followed. Results: Seventy-one total potential modes were identified. Eight major processes (corresponding detailed number of modes) are patient consultation (2 modes), pretreatment tumor localization (11), treatment planning (13), seed ordering and calibration (10), eye plaque assembly (10), implantation (11), removal (11), and deconstruction (3), respectively. Half of the total modes (36 modes) are related to physicist while physicist is not involved in processes such as during the actual procedure of suturing and removing the plaque. Conclusion: Not only can failure modes arise from physicist-related procedures such as treatment planning and source activity calibration, but it can also exist in more clinical procedures by other medical staff. The improvement of the accurate communication for non-physicist-related clinical procedures could potentially be an approach to prevent human errors. More rigorous physics double check would reduce the error for physicist-related procedures. Eventually, based on this detailed process map, failure mode and effect analysis (FMEA) will identify top tiers of modes by ranking all possible modes with risk priority number (RPN). For those high risk modes, fault tree analysis (FTA) will provide possible preventive action plans.

  14. Brachytherapy in lip cancer.

    Science.gov (United States)

    Rovirosa-Casino, Angeles; Planas-Toledano, Isabel; Ferre-Jorge, Jorge; Oliva-Díez, José María; Conill-Llobet, Carlos; Arenas-Prat, Meritxell

    2006-05-01

    Lip cancer is one of the most prevalent skin tumours of the head and neck. The characteristics of the tumour relate to their exophyitic growth in an area of easy visual acces which allows their diagnosis in early stages. As a result, there is a better prognosis with the present treatments. In early stages the treatment can be performed by surgery or by brachytherapy, and the results are similar on local control; nevertheless brachytherapy offers the best functional and esthetic results. We are reporting on a review of the literature in relation to indications, techniques and results of brachytherapy for lip cancer.

  15. Brachytherapy optimal planning with application to intravascular radiation therapy

    DEFF Research Database (Denmark)

    Sadegh, Payman; Mourtada, Firas A.; Taylor, Russell H.

    1999-01-01

    . Dose rate calculations are based on the sosimetry formulation of the American Association of Physicists in Medicine, Task Group 43. We apply the technique to optimal planning for intravascular brachytherapy of intimal hyperplasia using ultrasound data and 192Ir seeds. The planning includes...

  16. Examining the relationship between pre- and postimplant geometry in prostate low-dose-rate brachytherapy and its correlation with dosimetric quality using the similarity concept.

    Science.gov (United States)

    Todor, Dorin A; Anscher, Mitchell S; Karlin, Jeremy D; Hagan, Michael P

    2014-01-01

    This is a retrospective study in which we define multiple metrics for similarity and then inquire on the relationship between similarity and currently used dosimetric quantities describing preimplant and postimplant plans. We analyzed a unique cohort of 94 consecutively performed prostate seed implant patients, associated with excellent dosimetric and clinical outcomes. For each patient, an ultrasound (US) preimplant and two CT postimplant (Day 0 and Day 30) studies were available. Measures for similarity were created and computed using feature vectors based on two classes of moments: first, invariant to rotation and translation, and the second polar-radius moments invariant to rotation, translation, and scaling. Both similarity measures were calibrated using controlled perturbations (random and systematic) of seed positions and contours in different size implants, thus producing meaningful numerical threshold values used in the clinical analysis. An important finding is that similarity, for both seed distributions and contours, improves significantly when scaling invariance is added to translation and rotation. No correlation between seed and contours similarity was found. In the setting of preplanned prostate seed implants using preloaded needles, based on our data, similarity between preimplant and postimplant plans does not correlate with either minimum dose to 90% of the volume of the prostate or analogous similarity metrics for prostate contours. We have developed novel tools and metrics, which will allow practitioners to better understand the relationship between preimplant and postimplant plans. Geometrical similarity between a preplan and an actual implant, although useful, does not seem to be necessary to achieve minimum dose to 90% of the volume of the prostate-good dosimetric implants. Copyright © 2014 American Brachytherapy Society. All rights reserved.

  17. Electromagnetic tracking for treatment verification in interstitial brachytherapy

    DEFF Research Database (Denmark)

    Bert, Christoph; Kellermeier, Markus; Tanderup, Kari

    2016-01-01

    Electromagnetic tracking (EMT) is used in several medical fields to determine the position and orientation of dedicated sensors, e.g., attached to surgical tools. Recently, EMT has been introduced to brachytherapy for implant reconstruction and error detection. The manuscript briefly summarizes...

  18. Calculation of the Transit Dose in HDR Brachytherapy Based on ...

    African Journals Online (AJOL)

    The Monte Carlo method, which is the gold standard for accurate dose calculations in radiotherapy, was used to obtain the transit doses around a high dose rate (HDR) brachytherapy implant with thirteen dwell points. The midpoints of each of the inter-dwell separations, of step size 0.25 cm, were representative of the ...

  19. Radioactive Seed Implantation for the Treatment of Mediastinal Malignant Tumors and Lymph Node Metastases in 43 Cases

    Directory of Open Access Journals (Sweden)

    Lingfei LUO

    2011-12-01

    Full Text Available Background and objective The locations of mediastinal malignant tumor lesions are deep and occult, and are close to the pericardium, trachea, or major vessels. Therefore, the possibility of surgical resection is slim, and cryoablation and thermal ablation are restricted. In current study, image and life quality data were compared before and after 125I seeding therapy to investigate its safety and clinical effects. Methods From July 2010 to July 2011, a 43-patient follow-up of pathologically confirmed cancers, including 21 cases of primary mediastinal squamous lung cancer, 9 cases of primary esophagus cancer, and 13 cases of lymph node metastases were completed. Among these, 18 cases presented with tracheal stenosis >50%, 9 cases had esophageal obstruction, and 9 cases had superior vena cava reflux disorder. Each lesion was implanted with 10 to 60 pieces of 125I particles, with an average of 30.79±14.23. CT data at 2, 4, 6, and 12 months after therapy were obtained to evaluate the local lesion outcome. The quality of life of the patients as well as survival data was also recorded. Results The overall success rate of the operation was 100%. The longest time of follow-up was 12 months. At 6 months, 37 patients were alive, and the half-year survival rate was 85.0%. In terms of local lesions, 30 cases of PR and 7 cases of NC were found. The clinical effective rate was 81.08%, and the clinical beneficial rate was 100%. At 12 months after therapy, 31 patients were alive, and the one-year survival rate was 60.5%. In terms of local lesions, 16 cases of CR, 7 cases of PR, 2 cases of NC, and 6 cases of PD were found. The clinical effective rate was 74.19%, and the clinical beneficial rate was 80.65%. The KPS score increased after the treatment (P=0.000. Three cases of pneumothorax presented after treatment, and no severe complications, such as vessel, trachea, recurrent laryngeal nerve, or pericardiocentesis injuries, were found. Conclusion Radiation seed

  20. A preliminary result of radioactivity ¹²⁵I seed implants with micropuncture technique combined with chemotherapy in the treatment of stage III and IV lung cancer

    National Research Council Canada - National Science Library

    Fu, Gaifa; Lei, Guangyan; Bai, Xinkuan; Zhao, Zhulian; Song, Yangrong; Zhao, Xuewu

    2005-01-01

    .... The aim of this study is to investigate the value and effect of using radioactivity ¹²⁵I seed permanent implants combined with chemotherapy in the management of stage III or IV lung cancer...

  1. The difference of scoring dose to water or tissues in Monte Carlo dose calculations for low energy brachytherapy photon sources

    Energy Technology Data Exchange (ETDEWEB)

    Landry, Guillaume; Reniers, Brigitte; Pignol, Jean-Philippe; Beaulieu, Luc; Verhaegen, Frank [Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6201 BN (Netherlands); Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario M4N 3M5 (Canada); Departement de Radio-Oncologie et Centre de Recherche en Cancerologie, Universite Laval, CHUQ Pavillon L' Hotel-Dieu de Quebec, Quebec G1R 2J6 (Canada) and Departement de Physique, de Genie Physique et d' Optique, Universite Laval, Quebec G1K 7P4 (Canada); Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6201 BN (Netherlands) and Department of Oncology, McGill University, Montreal General Hospital, Montreal, Quebec H3G 1A4 (Canada)

    2011-03-15

    Purpose: The goal of this work is to compare D{sub m,m} (radiation transported in medium; dose scored in medium) and D{sub w,m} (radiation transported in medium; dose scored in water) obtained from Monte Carlo (MC) simulations for a subset of human tissues of interest in low energy photon brachytherapy. Using low dose rate seeds and an electronic brachytherapy source (EBS), the authors quantify the large cavity theory conversion factors required. The authors also assess whether applying large cavity theory utilizing the sources' initial photon spectra and average photon energy induces errors related to spatial spectral variations. First, ideal spherical geometries were investigated, followed by clinical brachytherapy LDR seed implants for breast and prostate cancer patients. Methods: Two types of dose calculations are performed with the GEANT4 MC code. (1) For several human tissues, dose profiles are obtained in spherical geometries centered on four types of low energy brachytherapy sources: {sup 125}I, {sup 103}Pd, and {sup 131}Cs seeds, as well as an EBS operating at 50 kV. Ratios of D{sub w,m} over D{sub m,m} are evaluated in the 0-6 cm range. In addition to mean tissue composition, compositions corresponding to one standard deviation from the mean are also studied. (2) Four clinical breast (using {sup 103}Pd) and prostate (using {sup 125}I) brachytherapy seed implants are considered. MC dose calculations are performed based on postimplant CT scans using prostate and breast tissue compositions. PTV D{sub 90} values are compared for D{sub w,m} and D{sub m,m}. Results: (1) Differences (D{sub w,m}/D{sub m,m}-1) of -3% to 70% are observed for the investigated tissues. For a given tissue, D{sub w,m}/D{sub m,m} is similar for all sources within 4% and does not vary more than 2% with distance due to very moderate spectral shifts. Variations of tissue composition about the assumed mean composition influence the conversion factors up to 38%. (2) The ratio of D

  2. Ceramic and polymeric devices for breast brachytherapy - Mammographic and CT response

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, Luciana B.; Campos, Tarcisio P.R. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Programa de Pos-Graduacao em Ciencias e Tecnicas Nucleares], e-mail: campos@nuclear.ufmg.br

    2009-07-01

    The present research investigates the radiological visibility of ceramic and polymeric devices implanted in breast phantom (in vitro) for future applications in brachytherapy treatments. The main research goal is to investigate the viability of monitoring ceramic and polymeric devices, in vitro based on simple methods of radiological diagnostic, maintaining the easiest access to the population, represented by the conventional X-ray and mammography. The methodology involves the processing of ceramic devices constituted by bioglasses of Sm, SmBa, Ho, HoBa and the production of polymeric devices, such as polymeric membranes incorporating Ho e HoBa. Contrast agent of Barium was introduced in the syntheses of those devices to improve the radiological visibility in breast equivalent-tissue (TE) phantom. The breast phantom is constituted of glandular, adipose and skin TE, reproducing a 5 cm compressed real breast. In the compressed breast phantom, all types of ceramic and polymeric devices were implanted side by side. Radiological images were generated through X-ray equipment, mammography and computerized tomography (TC), for the samples implanted in the compressed breast phantom. The results show that SmBa and HoBa seeds on breast phantom presented suitable radiological visibility, on all the radiological diagnostic methods. However, the X-rays radiological visibility of Sm seeds without contrast was discreet. On mammography and TC images, it was not possible to identify those seeds, because the same ones were degraded after two months immersed in the glandular TE, after placed on the phantom. The Ho seeds were identified on all radiological diagnostic images, although non contrast agent in its constitution was added. However, the holmium polymeric membranes in direct contact with TE did not show Xray radiological visibility. However, the polymeric membranes of HoBa in the same conditions presented efficient X-rays radiological response. For mammography and TC methods

  3. Edema-induced increase in tumour cell survival for {sup 125}I and {sup 103}Pd prostate permanent seed implants - a bio-mathematical model

    Energy Technology Data Exchange (ETDEWEB)

    Yue Ning; Chen Zhe; Nath, Ravinder [Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT (United States)

    2002-04-01

    Edema caused by the surgical procedure of prostate seed implantation expands the source-to-point distances within the prostate and hence decreases the dose coverage. The decrease of dose coverage results in an increase in tumour cell survival. To investigate the effects of edema on tumour cell survival, a bio-mathematical model of edema and the corresponding cell killing by continuous low dose rate irradiation (CLDRI) was developed so that tumour cell surviving fractions can be estimated in an edematous prostate for both {sup 125}I and {sup 103}Pd seed implants. The dynamic nature of edema and its resolution were modelled with an exponential function V(T)=V{sub p} (1+M exp(-0.693T/T{sub e})) where V{sub p} is the prostate volume before implantation, M is the edema magnitude and T{sub e} is edema half-life (EHL). The dose rate of a radioactive seed was calculated according to AAPM TG43, i.e. D radical S{sub k}{delta}g(r) {phi}-bar{sub an}/r{sup 2}, where r is the distance between a seed and a given point. The distance r is now a function of time because of edema. The g(r) was approximated as 1/r{sup 0.4} and 1/r{sup 0.8} for {sup 125}I and {sup 103}Pd, respectively. By expanding the mathematical expression of the resultant dose rate in a Taylor series of exponential functions of time, the dose rate was made equivalent to that produced from multiple fictitious radionuclides of different decay constants and strengths. The biologically effective dose (BED) for an edematous prostate implant was then calculated using a generalized Dale equation. The cell surviving fraction was computed as exp(-{alpha}BED), where {alpha} is the linear coefficient of the survival curve. The tumour cell survival was calculated for both {sup 125}I and {sup 103}Pd seed implants and for different tumour potential doubling time (TPDT) (from 5 days to 30 days) and for edemas of different magnitudes (from 0% to 95%) and edema half-lives (from 4 days to 30 days). Tumour cell survival increased

  4. [CT guidance (125)I seed implantation for pelvic recurrent rectal cancer assisted by 3D printing individual non-coplanar template].

    Science.gov (United States)

    Wang, H; Wang, J J; Jiang, Y L; Tian, S Q; Ji, Z; Guo, F X; Sun, H T; Fan, J H; Xu, Y P

    2016-12-20

    Objective: To analyze the difference of dosimetric parameters between pre-plan and post-plan of (125)I radioactive seed implantation assisted by 3D printing individual non-coplanar template (3D printing template) for locally recurrent rectal cancer (LRRC). Methods: From February 2016 to April 2016, a total of 10 patients with locally recurrent rectal cancer received (125)I seeds implantation under CT guidance assisted by 3D printing template in Department of Radiation Oncology, Peking University Third Hospital.Each patient underwent CT simulation, three-dimentional treatment planning pre-implantation, 3D printing template design, radioactive seed implantation assisted by 3D printing template and dosimetric verification post implantation. The median activity of seed was 0.63 mCi (0.58 to 0.7 mCi) (2.15- 2.59×10(7) Bq), and the median number of seeds was 80 (19 to 192). D90, D100, V100, V150, CI, EI, HI, D5cc, D2cc of bladder and bowel of pre-plan and post-plan were calculated, respectively.Paired t test was used to evaluate the difference of dosimetric parameters between pre-plan and post-plan. Results: The median D90 of pre-plan and post-plan were 13 761.0 and 12 798.8 cGy, respectively.The median D100 of pre-plan and post-plan were 5 293.6 and 5 397.9 cGy, respectively.The median V100 of pre-plan and post-plan were 90.0% and 90.0%, respectively.The median V150 of pre-plan and post-plan were 63.8% and 62.4%, respectively.The median CI of pre-plan and post-plan were 0.73 and 0.67.The median EI of pre-plan and post-plan were 0.22 and 0.30, respectively. The median HI of pre-plan and post-plan were 0.29 and 0.31.The median bladder D2cc of pre-plan and post-plan were 3 088.8 and 4 240.4 cGy, respectively.The median bowel D2cc of pre-plan and post-plan were 7 051.6 and 7 903.9 cGy, respectively. Conclusions: 3D printing template might be helpful for locally recurrent rectal cancer patients who received (125)I radioactive seed implantation assisted by 3D printing

  5. Imaging method for monitoring delivery of high dose rate brachytherapy

    Science.gov (United States)

    Weisenberger, Andrew G; Majewski, Stanislaw

    2012-10-23

    A method for in-situ monitoring both the balloon/cavity and the radioactive source in brachytherapy treatment utilizing using at least one pair of miniature gamma cameras to acquire separate images of: 1) the radioactive source as it is moved in the tumor volume during brachytherapy; and 2) a relatively low intensity radiation source produced by either an injected radiopharmaceutical rendering cancerous tissue visible or from a radioactive solution filling a balloon surgically implanted into the cavity formed by the surgical resection of a tumor.

  6. Permanent interstitial low-dose-rate brachytherapy for patients with low risk prostate cancer. An interim analysis of 312 cases

    Energy Technology Data Exchange (ETDEWEB)

    Badakhshi, Harun; Graf, Reinhold; Budach, Volker; Wust, Peter [University Hospital Berlin, Department for Radiation Oncology of Charite School of Medicine, Berlin (Germany)

    2015-04-01

    The biochemical relapse-free survival (bRFS) rate after treatment with permanent iodine-125 seed implantation (PSI) or combined seeds and external beam radiotherapy (COMB) for clinical stage T1-T2 localized prostate cancer is a clinically relevant endpoint. The goal of this work was to evaluate the influence of relevant patient- and treatment-related factors. The study population comprised 312 consecutive patients treated with permanent seed implantation. All patients were evaluable for analysis of overall survival (OS) and disease-specific survival (DSS), 230 for bRFS, of which 192 were in the PSI group and 38 in the COMB group. The prescribed minimum peripheral dose was 145 Gy for PSI, for COMB 110 Gy implant and external beam radiotherapy of 45 Gy. The median follow-up time was 33 months (range 8-66 months). bRFS was defined as a serum prostate-specific antigen (PSA) level ≤ 0.2 ng/ml at last follow-up. Overall, the actuarial bRFS at 50 months was 88.4 %. The 50-month bRFS rate for PSI and COMB was 90.9 %, and 77.2 %, respectively. In the univariate analysis, age in the categories ≤ 63 and > 63 years (p < 0.00), PSA nadir (≤ 0.5 ng/ml and > 0.5 ng/ml) and PSA bounce (yes/no) were the significant predicting factors for bRFS. None of the other patient and treatment variables (treatment modality, stage, PSA, Gleason score, risk group, number of risk factors, D90 and various other dose parameters) were found to be a statistically significant predictor of 50-month bRFS. The biochemical failure rates were low in this study. As a proof of principle, our large monocenteric analysis shows that low-dose-rate brachytherapy is an effective and safe procedure for patients with early stage prostate cancer. (orig.) [German] Das biochemisch rezidivfreie Ueberleben (bRFS) nach der Brachytherapie mit permanenter Iod-125-Seed-Implantation (PSI) oder in Kombination mit externer Radiotherapie (COMB) ist beim Patienten mit fruehem Prostatakarzinom (T1/T2) ein relevanter

  7. Brachytherapy optimal planning with application to intravascular radiation therapy.

    Science.gov (United States)

    Sadegh, P; Mourtada, F A; Taylor, R H; Anderson, J H

    1999-09-01

    We have been studying brachytherapy planning with the objective of minimizing the maximum deviation of the delivered dose from prescribed dose bounds for treatment volumes. A general framework for optimal treatment planning is presented and the minmax optimization is formulated as a linear program. Dose rate calculations are based on the dosimetry formulation of the American Association of Physicists in Medicine, Task Group 43. We apply the technique to optimal planning for intravascular brachytherapy of intimal hyperplasia using ultrasound data and 192Ir seeds. The planning includes determination of an optimal dwell-time sequence for a train of seeds that deliver radiation while stepping through the vessel lesion. The results illustrate the advantage of this strategy over the common approach of delivering radiation by positioning a single train of seeds along the whole lesion.

  8. Long-term outcome of magnetic resonance spectroscopic image–directed dose escalation for prostate brachytherapy

    Science.gov (United States)

    King, Martin T.; Nasser, Nicola J.; Mathur, Nitin; Cohen, Gil’ad N.; Kollmeier, Marisa A.; Yuen, Jasper; Vargas, Hebert A.; Pei, Xin; Yamada, Yoshiya; Zakian, Kristen L.; Zaider, Marco; Zelefsky, Michael J.

    2017-01-01

    PURPOSE To report the long-term control and toxicity outcomes of patients with clinically localized prostate cancer, who underwent low-dose-rate prostate brachytherapy with magnetic resonance spectroscopic image (MRSI)–directed dose escalation to intraprostatic regions. METHODS AND MATERIALS Forty-seven consecutive patients between May 2000 and December 2003 were analyzed retrospectively. Each patient underwent a preprocedural MRSI, and MRS-positive voxels suspicious for malignancy were identified. Intraoperative planning was used to determine the optimal seed distribution to deliver a standard prescription dose to the entire prostate, while escalating the dose to MRS-positive voxels to 150% of prescription. Each patient underwent transperineal implantation of radioactive seeds followed by same-day CT for postimplant dosimetry. RESULTS The median prostate D90 (minimum dose received by 90% of the prostate) was 125.7% (interquartile range [IQR], 110.3–136.5%) of prescription. The median value for the MRS-positive mean dose was 229.9% (IQR, 200.0–251.9%). Median urethra D30 and rectal D30 values were 142.2% (137.5–168.2%) and 56.1% (40.1–63.4%), respectively. Median followup was 86.4 months (IQR, 49.8–117.6). The 10-year actuarial prostate-specific antigen relapse–free survival was 98% (95% confidence interval, 93–100%). Five patients (11%) experienced late Grade 3 urinary toxicity (e.g., urethral stricture), which improved after operative intervention. Four of these patients had dose-escalated voxels less than 1.0 cm from the urethra. CONCLUSIONS Low-dose-rate brachytherapy with MRSI-directed dose escalation to suspicious intraprostatic regions exhibits excellent long-term biochemical control. Patients with dose-escalated voxels close to the urethra were at higher risk of late urinary stricture. PMID:27009848

  9. MRI-guided brachytherapy

    Science.gov (United States)

    Tanderup, Kari; Viswanathan, Akila; Kirisits, Christian; Frank, Steven J.

    2014-01-01

    The application of MRI-guided brachytherapy has demonstrated significant growth during the last two decades. Clinical improvements in cervix cancer outcomes have been linked to the application of repeated MRI for identification of residual tumor volumes during radiotherapy. This has changed clinical practice in the direction of individualized dose administration, and mounting evidence of improved clinical outcome with regard to local control, overall survival as well as morbidity. MRI-guided prostate HDR and LDR brachytherapy has improved the accuracy of target and organs-at-risk (OAR) delineation, and the potential exists for improved dose prescription and reporting for the prostate gland and organs at risk. Furthermore, MRI-guided prostate brachytherapy has significant potential to identify prostate subvolumes and dominant lesions to allow for dose administration reflecting the differential risk of recurrence. MRI-guided brachytherapy involves advanced imaging, target concepts, and dose planning. The key issue for safe dissemination and implementation of high quality MRI-guided brachytherapy is establishment of qualified multidisciplinary teams and strategies for training and education. PMID:24931089

  10. Dosimetric audit in brachytherapy

    Science.gov (United States)

    Bradley, D A; Nisbet, A

    2014-01-01

    Dosimetric audit is required for the improvement of patient safety in radiotherapy and to aid optimization of treatment. The reassurance that treatment is being delivered in line with accepted standards, that delivered doses are as prescribed and that quality improvement is enabled is as essential for brachytherapy as it is for the more commonly audited external beam radiotherapy. Dose measurement in brachytherapy is challenging owing to steep dose gradients and small scales, especially in the context of an audit. Several different approaches have been taken for audit measurement to date: thimble and well-type ionization chambers, thermoluminescent detectors, optically stimulated luminescence detectors, radiochromic film and alanine. In this work, we review all of the dosimetric brachytherapy audits that have been conducted in recent years, look at current audits in progress and propose required directions for brachytherapy dosimetric audit in the future. The concern over accurate source strength measurement may be essentially resolved with modern equipment and calibration methods, but brachytherapy is a rapidly developing field and dosimetric audit must keep pace. PMID:24807068

  11. Carcinoma of the prostate treated by pelvic node dissection, iodine-125 seed implant and external irradiation; a study of rectal complications

    Energy Technology Data Exchange (ETDEWEB)

    Abadir, R.; Ross, G. Jr.; Weinstein, S.H. (Missouri Univ., Columbia (USA). Hospital and Clinics)

    1984-09-01

    The University of Missouri-Columbia protocol for localised cancer of the prostate calls for pelvic node dissection, 10 000 cGy at the periphery of the prostate from /sup 125/I and 4000 cGy in 20 fractions to the whole pelvis using supervoltage X-ray therapy. Rectal complications were studied in 104 patients; acute and chronic reactions were defined. During external irradiation 54% did not develop diarrhoea, 43% had mild diarrhoea and 3% had severe diarrhoea. In the chronic stage 77% did not have diarrhoea, 12% had delayed, non-distressing rectal bleeding which did not need specific treatment or needed only simple treatment, 7% had prolonged distressing proctitis and 4% had rectal ulceration or recto-urethral fistula necessitating colostomy. Each of the four patients who had colostomy had an additional aetiological factor (arterial disease, pelvic inflammation, additional radiation, pelvic malignancy or second operation). None of the patients entered in the combined brachytherapy and teletherapy programme, and in whom 0.5 cm space was maintained between the closest seed and the rectal mucosa, developed prolonged proctitis.

  12. SU-E-J-232: Feasibility of MRI-Based Preplan On Low Dose Rate Prostate Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Y; Tward, J; Rassiah-Szegedi, P; Zhao, H; Sarkar, V; Huang, L; Szegedi, M; Kokeny, K; Salter, B [University of Utah Huntsman Cancer Institute, Salt Lake City, UT (United States)

    2015-06-15

    Purpose: To investigate the feasibility of using MRI-based preplan for low dose rate prostate brachytherapy. Methods: 12 patients who received transrectal ultrasound (TRUS) guided prostate brachytherapy with Pd-103 were retrospectively studied. Our care-standard of the TRUS-based preplan served as the control. One or more prostate T2-weighted wide and/or narrow-field of view MRIs obtained within the 3 months prior to the implant were imported into the MIM Symphony software v6.3 (MIM Software Inc., Cleveland, OH) for each patient. In total, 37 MRI preplans (10 different image sequences with average thickness of 4.8mm) were generated. The contoured prostate volume and the seed counts required to achieve adequate dosimetric coverage from TRUS and MRI preplans were compared for each patient. The effects of different MRI sequences and image thicknesses were also investigated statistically using Student’s t-test. Lastly, the nomogram from the MRI preplan and TRUS preplan from our historical treatment data were compared. Results: The average prostate volume contoured on the TRUS and MRI were 26.6cc (range: 12.6∼41.3cc), and 27.4 cc (range: 14.3∼50.0cc), respectively. Axial MRI thicknesses (range: 3.5∼8.1mm) did not significantly affect the contoured volume or the number of seeds required on the preplan (R2 = 0.0002 and 0.0012, respectively). Four of the MRI sequences (AX-T2, AX-T2-Whole-Pelvis, AX-T2-FSE, and AXIALT2- Hi-Res) showed statistically significant better prostate volume agreement with TRUS than the other seven sequences (P <0.01). Nomogram overlay between the MRI and TRUS preplans showed good agreement; indicating volumes contoured on MRI preplan scan reliably predict how many seeds are needed for implant. Conclusion: Although MRI does not allow for determination of the actual implant geometry, it can give reliable volumes for seed ordering purposes. Our future work will investigate if MRI is sufficient to reliably replace TRUS preplanning in patients

  13. Leakage test evaluation used for qualification of iodine-125 seeds sealing

    Energy Technology Data Exchange (ETDEWEB)

    Feher, Anselmo; Rostelato, Maria E.C.M.; Zeituni, Carlos A.; Calvo, Wilson A.P.; Somessari, Samir L.; Moura, Joao A.; Moura, Eduardo S.; Souza, Carla D.; Rela, Paulo R. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)], e-mail: afeher@ipen.br, e-mail: elisaros@ipen.br, e-mail: czeituni@pobox.com, e-mail: wapcalco@ipen.br, e-mail: somessar@ipen.br, e-mail: jmoura31@yahoo.com.br, e-mail: esmoura@ipen.br, e-mail: cdsouza@ipen.br, e-mail: prela@ipen.br

    2009-07-01

    The prostate cancer is a problem of public health in Brazil, and the second cause of cancer deaths in men, exceeded only by lung cancer. Among the possible treatments available for prostate cancer is brachytherapy, in which small seeds containing Iodine-125 radioisotope are implanted in the prostate. The seed consists of a sealed titanium tube measuring 0.8 mm external diameter and 4.5 mm in length, containing a central silver wire with adsorbed Iodine-125. The tube sealing is made with titanium at the ends, using electric arc welding or laser process. This sealing must be leakage-resistant and free of cracks, therefore avoiding the Iodine-125 to deposit in the silver wire to escape and spread into the human body. To ensure this problem does not occur, rigorous leakage tests, in accordance with the standard Radiation protection - Sealed Radioactive Sources - leakage Test Methods - ISO 9978, should be applied. The aim of this study is to determine, implement and evaluate the leakage test to be used in the Iodine-125 seeds production, in order to qualify the sealing procedure. The standard ISO 9978 presents a list of tests to be carried out according to the type of source. The preferential methods for brachytherapy sources are soaking and helium. To assess the seeds leakage, the method of immersion test at room temperature was applied. The seeds are considered leakage-free if the detected activity does not exceed the 185 Bq (5 nCi). An Iodine standard was prepared and its value determined in a sodium iodide detector. A liquid scintillation counter was calibrated with the standard for seeds leakage tests. Forty-eight seeds were welded for these tests. (author)

  14. Long-term tumor control after brachytherapy for base-of-prostate cancer

    Directory of Open Access Journals (Sweden)

    Seungtaek Choi

    2011-12-01

    Full Text Available Purpose: To evaluate the outcomes of patients presenting with cancer at the base of the prostate after brachytherapyas monotherapy. Material and methods: We retrospectively reviewed the medical records of all patients who had undergone transpe -ri neal ultrasound-guided implantation with 125I or 103Pd seeds as monotherapy between March 1998 and December2006, at our institution. A minimum follow-up interval of 2 years was required for inclusion in our analysis. Dosimetrywas assessed using computed tomography 30 days after the implant. Treatment failure was defined as the appearanceof biopsy-proved tumor after seed implantation, radiographic evidence of metastases, receipt of salvage therapy,or elevation of the prostate-specific antigen level beyond the nadir value plus 2 ng/mL. Results: With a median follow-up interval of 89 months (range 25-128 months, all 52 of the identified patients hadno evidence of disease progression or biochemical failure. The mean number of cores sampled at the prostate base was2.84 (median 2; Gleason scores assigned at central review were 6-8 in all patients. Of the 30 patients (58% for whomdosimetric data were available at day 30, the median V100 values of the right and left base were 92.0% and 93.5%, respectively,and the median D90 values of the right and left base were 148 Gy and 151 Gy, respectively. Conclusion: Permanent prostate brachytherapy as monotherapy results in a high probability of disease-free survivalfor men with cancer at the base of the prostate.

  15. Optimization in Radiation Therapy: Applications in Brachytherapy and Intensity Modulated Radiation Therapy

    Science.gov (United States)

    McGeachy, Philip David

    Over 50% of cancer patients require radiation therapy (RT). RT is an optimization problem requiring maximization of the radiation damage to the tumor while minimizing the harm to the healthy tissues. This dissertation focuses on two main RT optimization problems: 1) brachytherapy and 2) intensity modulated radiation therapy (IMRT). The brachytherapy research involved solving a non-convex optimization problem by creating an open-source genetic algorithm optimizer to determine the optimal radioactive seed distribution for a given set of patient volumes and constraints, both dosimetric- and implant-based. The optimizer was tested for a set of 45 prostate brachytherapy patients. While all solutions met the clinical standards, they also benchmarked favorably with those generated by a standard commercial solver. Compared to its compatriot, the salient features of the generated solutions were: slightly reduced prostate coverage, lower dose to the urethra and rectum, and a smaller number of needles required for an implant. Historically, IMRT requires modulation of fluence while keeping the photon beam energy fixed. The IMRT-related investigation in this thesis aimed at broadening the solution space by varying photon energy. The problem therefore involved simultaneous optimization of photon beamlet energy and fluence, denoted by XMRT. Formulating the problem as convex, linear programming was applied to obtain solutions for optimal energy-dependent fluences, while achieving all clinical objectives and constraints imposed. Dosimetric advantages of XMRT over single-energy IMRT in the improved sparing of organs at risk (OARs) was demonstrated in simplified phantom studies. The XMRT algorithm was improved to include clinical dose-volume constraints and clinical studies for prostate and head and neck cancer patients were investigated. Compared to IMRT, XMRT provided improved dosimetric benefit in the prostate case, particularly within intermediate- to low-dose regions (≤ 40 Gy

  16. MO-E-BRD-03: Intra-Operative Breast Brachytherapy: Is One Stop Shopping Best? [Non-invasive Image-Guided Breast Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Libby, B. [University of Virginia (United States)

    2015-06-15

    Is Non-invasive Image-Guided Breast Brachytherapy Good? – Jess Hiatt, MS Non-invasive Image-Guided Breast Brachytherapy (NIBB) is an emerging therapy for breast boost treatments as well as Accelerated Partial Breast Irradiation (APBI) using HDR surface breast brachytherapy. NIBB allows for smaller treatment volumes while maintaining optimal target coverage. Considering the real-time image-guidance and immobilization provided by the NIBB modality, minimal margins around the target tissue are necessary. Accelerated Partial Breast Irradiation in brachytherapy: is shorter better? - Dorin Todor, PhD VCU A review of balloon and strut devices will be provided together with the origins of APBI: the interstitial multi-catheter implant. A dosimetric and radiobiological perspective will help point out the evolution in breast brachytherapy, both in terms of devices and the protocols/clinical trials under which these devices are used. Improvements in imaging, delivery modalities and convenience are among the factors driving the ultrashort fractionation schedules but our understanding of both local control and toxicities associated with various treatments is lagging. A comparison between various schedules, from a radiobiological perspective, will be given together with a critical analysis of the issues. to review and understand the evolution and development of APBI using brachytherapy methods to understand the basis and limitations of radio-biological ‘equivalence’ between fractionation schedules to review commonly used and proposed fractionation schedules Intra-operative breast brachytherapy: Is one stop shopping best?- Bruce Libby, PhD. University of Virginia A review of intraoperative breast brachytherapy will be presented, including the Targit-A and other trials that have used electronic brachytherapy. More modern approaches, in which the lumpectomy procedure is integrated into an APBI workflow, will also be discussed. Learning Objectives: To review past and current

  17. Clinical outcomes after cell-seeded autologous chondrocyte implantation of the knee: when can success or failure be predicted?

    Science.gov (United States)

    Pestka, Jan M; Bode, Gerrit; Salzmann, Gian; Steinwachs, Mathias; Schmal, Hagen; Südkamp, Norbert P; Niemeyer, Philipp

    2014-01-01

    Autologous chondrocyte implantation (ACI) has been associated with satisfying results. Still, it remains unclear when success or failure after ACI can be estimated. To evaluate the clinical outcomes of cell-seeded collagen matrix-supported ACI (ACI-Cs) for the treatment of cartilage defects of the knee at 36 months and to determine a time point after ACI-Cs at which success or failure can be estimated. Cohort study; Level of evidence, 3. A total of 80 patients with isolated full-thickness cartilage defects of the knee joint treated with ACI-Cs were prospectively assessed before surgery as well as postoperatively by use of the International Knee Documentation Committee (IKDC) score and Lysholm knee score. Preoperative IKDC and Lysholm scores increased from 49.6 and 59.5, respectively, to 79.1 and 83.5, respectively, at 36 months. Only half the patients (46.6%) with poor IKDC scores (ie, <70) at 6 months postoperatively showed continued poor or fair scores at 36 months' follow-up. The probability of poor scores at 36 months after surgery further increased to 0.61 and 0.81, respectively, when scores were persistent at 12 and 24 months. All 3 patients (100%) with good IKDC scores (ie, 81-90) at 6 months after surgery showed constant or even improved scores at 36 months' follow-up. Ninety-one percent of patients with good and excellent scores at 12 months and 83% of patients with good and excellent scores at 24 months (a total of 23 and 37 patients, respectively) were able to maintain these scores at 36 months' follow-up. Similar results were obtained for the Lysholm score. With regard to the improvements in functional outcomes after ACI-Cs at 36 months after surgery, the technique described here appears to lead to satisfying and stable clinical results. This study helps the treating physician to predict the likeliness of further clinical improvements or constant unsatisfactory results after ACI. In patients with good/excellent scores shortly after surgery

  18. Dosimetry Modeling for Focal Low-Dose-Rate Prostate Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Al-Qaisieh, Bashar [Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds (United Kingdom); Mason, Josh, E-mail: joshua.mason@nhs.net [Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds (United Kingdom); Bownes, Peter; Henry, Ann [Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds (United Kingdom); Dickinson, Louise [Division of Surgery and Interventional Science, University College London, London (United Kingdom); Department of Radiology, Northwick Park Hospital, London North West NHS Trust, London (United Kingdom); Ahmed, Hashim U. [Division of Surgery and Interventional Science, University College London, London (United Kingdom); University College London Hospital, London (United Kingdom); Emberton, Mark [University College London Hospital, London (United Kingdom); Langley, Stephen [St Luke' s Cancer Centre, Guildford (United Kingdom)

    2015-07-15

    Purpose: Focal brachytherapy targeted to an individual lesion(s) within the prostate may reduce side effects experienced with whole-gland brachytherapy. The outcomes of a consensus meeting on focal prostate brachytherapy were used to investigate optimal dosimetry of focal low-dose-rate (LDR) prostate brachytherapy targeted using multiparametric magnetic resonance imaging (mp-MRI) and transperineal template prostate mapping (TPM) biopsy, including the effects of random and systematic seed displacements and interseed attenuation (ISA). Methods and Materials: Nine patients were selected according to clinical characteristics and concordance of TPM and mp-MRI. Retrospectively, 3 treatment plans were analyzed for each case: whole-gland (WG), hemi-gland (hemi), and ultra-focal (UF) plans, with 145-Gy prescription dose and identical dose constraints for each plan. Plan robustness to seed displacement and ISA were assessed using Monte Carlo simulations. Results: WG plans used a mean 28 needles and 81 seeds, hemi plans used 17 needles and 56 seeds, and UF plans used 12 needles and 25 seeds. Mean D90 (minimum dose received by 90% of the target) and V100 (percentage of the target that receives 100% dose) values were 181.3 Gy and 99.8% for the prostate in WG plans, 195.7 Gy and 97.8% for the hemi-prostate in hemi plans, and 218.3 Gy and 99.8% for the focal target in UF plans. Mean urethra D10 was 205.9 Gy, 191.4 Gy, and 92.4 Gy in WG, hemi, and UF plans, respectively. Mean rectum D2 cm{sup 3} was 107.5 Gy, 77.0 Gy, and 42.7 Gy in WG, hemi, and UF plans, respectively. Focal plans were more sensitive to seed displacement errors: random shifts with a standard deviation of 4 mm reduced mean target D90 by 14.0%, 20.5%, and 32.0% for WG, hemi, and UF plans, respectively. ISA has a similar impact on dose-volume histogram parameters for all plan types. Conclusions: Treatment planning for focal LDR brachytherapy is feasible. Dose constraints are easily met with a notable

  19. Interstitial brachytherapy in carcinoma of the penis

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhary, A.J.; Ghosh, S.; Bhalavat, R.L. [Tata Memorial Hospital, Mumbai (India). Dept. of Radiation Oncology; Kulkarni, J.N. [Tata Memorial Hospital, Mumbai (India). Dept. of Surgery; Sequeira, B.V.E. [Tata Memorial Hospital, Mumbai (India). Dept. of Medical Physics

    1999-01-01

    Aim: Keeping in line with the increasing emphasis on organ preservation, we at the Tata Memorial Hospital have evaluated the role of Ir-192 interstitial implant as regards local control, functional and cosmetic outcome in early as well as locally recurrent carcinoma of the distal penis. Patients and Methods: From October 1988 to December 1996, 23 patients with histopathologically proven cancer of the penis were treated with radical radiation therapy using Ir-192 temporary interstitial implant. Our patients were in the age group of 20 to 60 years. The primary lesions were T1 and 7, T2 in 7 and recurrent in 9 patients. Only 7 patients had palpable groin nodes at presentation, all of which were pathologically negative. The median dose of implant was 50 Gy (range 40 to 60 Gy), using the LDR afterloading system and the Paris system of implant rules for dosimetry. Follow-up ranged from 4 to 117 months (median 24 months). Results: At last follow-up 18 of the 23 patients remained locally controlled with implant alone. Three patients failed only locally, 2 locoregionally and 1 only at the groin. Of the 5 patients who failed locally, 4 were successfully salvaged with partial penectomy and remained controlled when last seen. Local control with implant alone at 8 years was 70% by life table analysis. The patients had excellent functional and cosmetic outcome. We did not record any case of skin or softtissue necrosis. Only 2 patients developed meatal stenosis, both of which were treated endoscopically. Conclusion: Our results lead us to interpret that interstitial brachytherapy with Ir-192 offers excellent local control rates with preservation of organ and function. Penectomy can be reserved as a means for effective salvage. (orig.) [Deutsch] Ziel: Das Prinzip des Organerhalts gewinnt in der Onkologie zunehmend an Bedeutung. Ziel dieser Untersuchung war es, die Rolle der interstitiellen Brachytherapie mit Ir-192 zur Behandlung des fruehen und rezidivierten Peniskarzinoms zu

  20. SU-E-J-181: Effect of Prostate Motion On Combined Brachytherapy and External Beam Dose Based On Daily Motion of the Prostate

    Energy Technology Data Exchange (ETDEWEB)

    Narayana, V; McLaughlin, P [Providence Cancer Center, Southfield, MI (United States); University of Michigan, Ann Arbor, MI (United States); Ealbaj, J [University of Michigan, Ann Arbor, MI (United States)

    2015-06-15

    Purpose: In this study, the adequacy of target expansions on the combined external beam and implant dose was examined based on the measured daily motion of the prostate. Methods: Thirty patients received an I–125 prostate implant prescribed to dose of 90Gy. This was followed by external beam to deliver a dose of 90Gyeq (external beam equivalent) to the prostate over 25 to 30 fractions. An ideal IMRT plan was developed by optimizing the external beam dose based on the delivered implant dose. The implant dose was converted to an equivalent external beam dose using the linear quadratic model. Patients were set up on the treatment table by daily orthogonal imaging and aligning the marker seeds in the prostate. Orthogonal images were obtained at the end of treatment to assess prostate intrafraction motion. Based on the observed motion of the markers between the initial and final images, 5 individual plans showing the actual dose delivered to the patient were calculated. A final true dose distribution was established based on summing the implant dose and the 5 external beam plans. Dose to the prostate, seminal vesicles, lymphnodes and normal tissues, rectal wall, urethra and lower sphincter were calculated and compared to ideal. On 18 patients who were sexually active, dose to the corpus cavernosum and internal pudendal artery was also calculated. Results: The average prostate motion in 3 orthogonal directions was less than 1 mm with a standard deviation of less than +2 mm. Dose and volume parameters showed that there was no decrease in dose to the targets and a marginal decrease in dose to in normal tissues. Conclusion: Dose delivered by seed implant moves with the prostate, decreasing the impact of intrafractions dose movement on actual dose delivered. Combined brachytherapy and external beam dose delivered to the prostate was not sensitive to prostate motion.

  1. New era of electronic brachytherapy.

    Science.gov (United States)

    Ramachandran, Prabhakar

    2017-04-28

    Traditional brachytherapy refers to the placement of radioactive sources on or inside the cancer tissues. Based on the type of sources, brachytherapy can be classified as radionuclide and electronic brachytherapy. Electronic brachytherapy uses miniaturized X-ray sources instead of radionuclides to deliver high doses of radiation. The advantages of electronic brachytherapy include low dose to organs at risk, reduced dose to treating staff, no leakage radiation in off state, less shielding, and no radioactive waste. Most of these systems operate between 50 and 100 kVp and are widely used in the treatment of skin cancer. Intrabeam, Xoft and Papillon systems are also used in the treatment of intra-operative radiotherapy to breast in addition to other treatment sites. The rapid fall-off in the dose due to its low energy is a highly desirable property in brachytherapy and results in a reduced dose to the surrounding normal tissues compared to the Ir-192 source. The Xoft Axxent brachytherapy system uses a 2.25 mm miniaturized X-ray tube and the source almost mimics the high dose rate Ir-192 source in terms of dose rate and it is the only electronic brachytherapy system specifically used in the treatment of cervical cancers. One of the limiting factors that impede the use of electronic brachytherapy for interstitial application is the source dimension. However, it is highly anticipated that the design of miniaturized X-ray tube closer to the dimension of an Ir-192 wire is not too far away, and the new era of electronic brachytherapy has just begun.

  2. New era of electronic brachytherapy

    Science.gov (United States)

    Ramachandran, Prabhakar

    2017-01-01

    Traditional brachytherapy refers to the placement of radioactive sources on or inside the cancer tissues. Based on the type of sources, brachytherapy can be classified as radionuclide and electronic brachytherapy. Electronic brachytherapy uses miniaturized X-ray sources instead of radionuclides to deliver high doses of radiation. The advantages of electronic brachytherapy include low dose to organs at risk, reduced dose to treating staff, no leakage radiation in off state, less shielding, and no radioactive waste. Most of these systems operate between 50 and 100 kVp and are widely used in the treatment of skin cancer. Intrabeam, Xoft and Papillon systems are also used in the treatment of intra-operative radiotherapy to breast in addition to other treatment sites. The rapid fall-off in the dose due to its low energy is a highly desirable property in brachytherapy and results in a reduced dose to the surrounding normal tissues compared to the Ir-192 source. The Xoft Axxent brachytherapy system uses a 2.25 mm miniaturized X-ray tube and the source almost mimics the high dose rate Ir-192 source in terms of dose rate and it is the only electronic brachytherapy system specifically used in the treatment of cervical cancers. One of the limiting factors that impede the use of electronic brachytherapy for interstitial application is the source dimension. However, it is highly anticipated that the design of miniaturized X-ray tube closer to the dimension of an Ir-192 wire is not too far away, and the new era of electronic brachytherapy has just begun. PMID:28529679

  3. Sexual Function and the Use of Medical Devices or Drugs to Optimize Potency After Prostate Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Whaley, J. Taylor; Levy, Lawrence B. [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX (United States); Swanson, David A. [Department of Urology, University of Texas MD Anderson Cancer Center, Houston, TX (United States); Pugh, Thomas J. [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX (United States); Kudchadker, Rajat J.; Bruno, Teresa L. [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX (United States); Frank, Steven J., E-mail: sjfrank@mdnaderson.org [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX (United States)

    2012-04-01

    Purpose: Prospective evaluation of sexual outcomes after prostate brachytherapy with iodine-125 seeds as monotherapy at a tertiary cancer care center. Methods and Materials: Subjects were 129 men with prostate cancer with I-125 seed implants (prescribed dose, 145 Gy) without supplemental hormonal or external beam radiation therapy. Sexual function, potency, and bother were prospectively assessed at baseline and at 1, 4, 8, and 12 months using validated quality-of-life self-assessment surveys. Postimplant dosimetry values, including dose to 10% of the penile bulb (D10), D20, D33, D50, D75, D90, and penile volume receiving 100% of the prescribed dose (V100) were calculated. Results: At baseline, 56% of patients recorded having optimal erections; at 1 year, 62% of patients with baseline erectile function maintained optimal potency, 58% of whom with medically prescribed sexual aids or drugs. Variables associated with pretreatment-to-posttreatment decline in potency were time after implant (p = 0.04) and age (p = 0.01). Decline in urinary function may have been related to decline in potency. At 1 year, 69% of potent patients younger than 70 years maintained optimal potency, whereas 31% of patients older than 70 maintained optimal potency (p = 0.02). Diabetes was related to a decline in potency (p = 0.05), but neither smoking nor hypertension were. For patients with optimal potency at baseline, mean sexual bother scores had declined significantly at 1 year (p < 0.01). Sexual potency, sexual function, and sexual bother scores failed to correlate with any dosimetric variable tested. Conclusions: Erections firm enough for intercourse can be achieved at 1 year after treatment, but most men will require medical aids to optimize potency. Although younger men were better able to maintain erections firm enough for intercourse than older men, there was no correlation between potency, sexual function, or sexual bother and penile bulb dosimetry.

  4. MO-E-BRD-00: Breast Brachytherapy: The Phoenix of Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    Is Non-invasive Image-Guided Breast Brachytherapy Good? – Jess Hiatt, MS Non-invasive Image-Guided Breast Brachytherapy (NIBB) is an emerging therapy for breast boost treatments as well as Accelerated Partial Breast Irradiation (APBI) using HDR surface breast brachytherapy. NIBB allows for smaller treatment volumes while maintaining optimal target coverage. Considering the real-time image-guidance and immobilization provided by the NIBB modality, minimal margins around the target tissue are necessary. Accelerated Partial Breast Irradiation in brachytherapy: is shorter better? - Dorin Todor, PhD VCU A review of balloon and strut devices will be provided together with the origins of APBI: the interstitial multi-catheter implant. A dosimetric and radiobiological perspective will help point out the evolution in breast brachytherapy, both in terms of devices and the protocols/clinical trials under which these devices are used. Improvements in imaging, delivery modalities and convenience are among the factors driving the ultrashort fractionation schedules but our understanding of both local control and toxicities associated with various treatments is lagging. A comparison between various schedules, from a radiobiological perspective, will be given together with a critical analysis of the issues. to review and understand the evolution and development of APBI using brachytherapy methods to understand the basis and limitations of radio-biological ‘equivalence’ between fractionation schedules to review commonly used and proposed fractionation schedules Intra-operative breast brachytherapy: Is one stop shopping best?- Bruce Libby, PhD. University of Virginia A review of intraoperative breast brachytherapy will be presented, including the Targit-A and other trials that have used electronic brachytherapy. More modern approaches, in which the lumpectomy procedure is integrated into an APBI workflow, will also be discussed. Learning Objectives: To review past and current

  5. Tumor hypoxia - A confounding or exploitable factor in interstitial brachytherapy? Effects of tissue trauma in an experimental rat tumor model

    NARCIS (Netherlands)

    van den Berg, AP; van Geel, CAJF; van Hooije, CMC; van der Kleij, AJ; Visser, AG

    2000-01-01

    Purpose: To evaluate the potential effects of tumor hypoxia induced by afterloading catheter implantation on the effectiveness of brachytherapy in a rat tumor model. Methods and Materials: Afterloading catheters (4) Here implanted in subcutaneously growing R1M rhabdomyosarcoma in female Wag/Rij

  6. Practical considerations for maximizing heat production in a novel thermobrachytherapy seed prototype.

    Science.gov (United States)

    Gautam, Bhoj; Warrell, Gregory; Shvydka, Diana; Subramanian, Manny; Ishmael Parsai, E

    2014-02-01

    A combination of hyperthermia and radiation in the treatment of cancer has been proven to provide better tumor control than radiation administered as a monomodality, without an increase in complications or serious toxicities. Moreover, concurrent administration of hyperthermia and radiation displays synergistic enhancement, resulting in greater tumor cell killing than hyperthermia and radiation delivered separately. The authors have designed a new thermobrachytherapy (TB) seed, which serves as a source of both radiation and heat for concurrent brachytherapy and hyperthermia treatments when implanted in solid tumors. This innovative seed, similar in size and geometry to conventional seeds, will have self-regulating thermal properties. The new seed's geometry is based on the standard BEST Model 2301(125)I seed, resulting in very similar dosimetric properties. The TB seed generates heat when placed in an oscillating magnetic field via induction heating of a ferromagnetic Ni-Cu alloy core that replaces the tungsten radiographic marker of the standard Model 2301. The alloy composition is selected to undergo a Curie transition near 50 °C, drastically decreasing power production at higher temperatures and providing for temperature self-regulation. Here, the authors present experimental studies of the magnetic properties of Ni-Cu alloy material, the visibility of TB seeds in radiographic imaging, and the ability of seed prototypes to uniformly heat tissue to a desirable temperature. Moreover, analyses are presented of magnetic shielding and thermal expansion of the TB seed, as well as matching of radiation dose to temperature distributions for a short interseed distance in a given treatment volume. Annealing the Ni-Cu alloy has a significant effect on its magnetization properties, increasing the sharpness of the Curie transition. The TB seed preserves the radiographic properties of the BEST 2301 seed in both plain x rays and CT images, and a preliminary experiment

  7. A comparison study on various low energy sources in interstitial prostate brachytherapy.

    Science.gov (United States)

    Bakhshabadi, Mahdi; Ghorbani, Mahdi; Khosroabadi, Mohsen; Knaup, Courtney; Meigooni, Ali S

    2016-02-01

    Low energy sources are routinely used in prostate brachytherapy. (125)I is one of the most commonly used sources. Low energy (131)Cs source was introduced recently as a brachytherapy source. The aim of this study is to compare dose distributions of (125)I, (103)Pd, and (131)Cs sources in interstitial brachytherapy of prostate. ProstaSeed (125)I brachytherapy source was simulated using MCNPX Monte Carlo code. Additionally, two hypothetical sources of (103)Pd and (131)Cs were simulated with the same geometry as the ProstaSeed (125)I source, while having their specific emitted gamma spectra. These brachytherapy sources were simulated with distribution of forty-eight seeds in a phantom including prostate. The prostate was considered as a sphere with radius of 1.5 cm. Absolute and relative dose rates were obtained in various distances from the source along the transverse and longitudinal axes inside and outside the tumor. Furthermore, isodose curves were plotted around the sources. Analyzing the initial dose profiles for various sources indicated that with the same time duration and air kerma strength, (131)Cs delivers higher dose to tumor. However, relative dose rate inside the tumor is higher and outside the tumor is lower for the (103)Pd source. The higher initial absolute dose in cGy/(h.U) of (131)Cs brachytherapy source is an advantage of this source over the others. The higher relative dose inside the tumor and lower relative dose outside the tumor for the (103)Pd source are advantages of this later brachytherapy source. Based on the total dose the (125)I source has advantage over the others due to its longer half-life.

  8. A comparison study on various low energy sources in interstitial prostate brachytherapy

    Directory of Open Access Journals (Sweden)

    Mahdi Bakhshabadi

    2016-02-01

    Full Text Available Purpose: Low energy sources are routinely used in prostate brachytherapy. 125 I is one of the most commonly used sources. Low energy 131 Cs source was introduced recently as a brachytherapy source. The aim of this study is to compare dose distributions of 125 I, 103 Pd, and 131 Cs sources in interstitial brachytherapy of prostate. Material and methods: ProstaSeed 125 I brachytherapy source was simulated using MCNPX Monte Carlo code. Additionally, two hypothetical sources of 103 Pd and 131 Cs were simulated with the same geometry as the ProstaSeed 125 I source, while having their specific emitted gamma spectra. These brachytherapy sources were simulated with distribution of forty-eight seeds in a phantom including prostate. The prostate was considered as a sphere with radius of 1.5 cm. Absolute and relative dose rates were obtained in various distances from the source along the transverse and longitudinal axes inside and outside the tumor. Furthermore, isodose curves were plotted around the sources. Results : Analyzing the initial dose profiles for various sources indicated that with the same time duration and air kerma strength, 131 Cs delivers higher dose to tumor. However, relative dose rate inside the tumor is higher and outside the tumor is lower for the 103 Pd source. Conclusions : The higher initial absolute dose in cGy/(h.U of 131 Cs brachytherapy source is an advantage of this source over the others. The higher relative dose inside the tumor and lower relative dose outside the tumor for the 103 Pd source are advantages of this later brachytherapy source. Based on the total dose the 125 I source has advantage over the others due to its longer half-life.

  9. A method for confirming a third-party assay of I-125 seeds used for prostate implants.

    Science.gov (United States)

    Muryn, John S; Wilkinson, D Allan

    2017-01-01

    The purpose of this work is to describe a method and apparatus that can be used to confirm the source strength of a large number of I-125 seeds while maintaining sterility, accuracy, reproducibility, and time efficiency. Source strengths ranging from 0.395 to 0.504 U/seed were available for this study. Three different seed configurations were measured: loose, linked, and loaded needles. A third-party 10% assay (NIST traceable) was provided. A custom stand was built out of aluminum to hold an exposure meter [Inovision (Fluke) 451P pressurized ion chamber] at 25 cm above the I-125 sources to measure the exposure rate. The measurements were made in an operating room, and a sterile sheet was placed under the nonsterile aluminum stand on a sterile loading table. Seeds and needles were placed in a sterile tray for these measurements. Two hundred and six loose seeds in six batches (0.395, 0.395, 0.409, 0.444, 0.444, and 0.444 U/seed) and 1434 seeds in 10 batches containing various strands (0.444, 0.444, 0.444, 0.444, .0444, 0.466, 0.466, 0.504, and 0.504 U/seed) were measured. For the loose and stranded seeds, the average exposure rate per unit activity was measured to be 0.589 mR/h·U with a standard deviation of 0.017. Loaded needles were measured with an average exposure rate per unit activity to be 0.269 mR/h·U with a standard deviation of 0.014. We conclude that the method described here is capable of confirming a third-party assay when performed on a large number of loose or stranded seeds in bulk. It is less reliable for preloaded needles. © 2016 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  10. Pulsed dose rate brachytherapy – is it the right way?

    Directory of Open Access Journals (Sweden)

    Janusz Skowronek

    2010-10-01

    Full Text Available Pulsed dose rate (PDR-BT treatment is a brachytherapy modality that combines physical advantages of high-doserate (HDR-BT technology (isodose optimization, radiation safety with the radiobiological advantages of low-dose-rate (LDR-BT brachytherapy. Pulsed brachytherapy consists of using stronger radiation source than for LDR-BT and producing series of short exposures of 10 to 30 minutes in every hour to approximately the same total dose in the sameoverall time as with the LDR-BT. Modern afterloading equipment offers certain advantages over interstitial or intracavitaryinsertion of separate needles, tubes, seeds or wires. Isodose volumes in tissues can be created flexibly by a combinationof careful placement of the catheter and the adjustment of the dwell times of the computerized stepping source.Automatic removal of the radiation sources into a shielded safe eliminates radiation exposures to staff and visitors.Radiation exposure is also eliminated to the staff who formerly loaded and unloaded multiplicity of radioactive sources into the catheters, ovoids, tubes etc. This review based on summarized clinical investigations, analyses the feasibility and the background to introduce this brachytherapy technique and chosen clinical applications of PDR-BT.

  11. Predictors of Metastatic Disease After Prostate Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Forsythe, Kevin [Department of Radiation Oncology, Mount Sinai School of Medicine, New York, NY (United States); Burri, Ryan [Department of Radiation Oncology, New York-Presbyterian Hospital, New York, NY (United States); Stone, Nelson [Department of Urology, Mount Sinai School of Medicine, New York, NY (United States); Stock, Richard G., E-mail: richard.stock@moutsinai.org [Department of Radiation Oncology, Mount Sinai School of Medicine, New York, NY (United States)

    2012-06-01

    Purpose: To identify predictors of metastatic disease after brachytherapy treatment for prostate cancer. Methods and Materials: All patients who received either brachytherapy alone (implant) or brachytherapy in combination with external beam radiation therapy for treatment of localized prostate cancer at The Mount Sinai Hospital between June 1990 and March 2007 with a minimum follow-up of 2 years were included. Univariate and multivariable analyses were performed on the following variables: risk group, Gleason score (GS), clinical T stage, pretreatment prostate-specific antigen level, post-treatment prostate-specific antigen doubling time (PSA-DT), treatment type (implant vs. implant plus external beam radiation therapy), treatment era, total biological effective dose, use of androgen deprivation therapy, age at diagnosis, and race. PSA-DT was analyzed in the following ordinate groups: 0 to 90 days, 91 to 180 days, 180 to 360 days, and greater than 360 days. Results: We included 1,887 patients in this study. Metastases developed in 47 of these patients. The 10-year freedom from distant metastasis (FFDM) rate for the entire population was 95.1%. Median follow-up was 6 years (range, 2-15 years). The only two significant predictors of metastatic disease by multivariable analyses were GS and PSA-DT (p < 0.001 for both variables). Estimated 10-year FFDM rates for GS of 6 or less, GS of 7, and GS of 8 or greater were 97.9%, 94.3%, and 76.1%, respectively (p < 0.001). Estimated FFDM rates for PSA-DT of 0 to 90 days, 91 to 180 days, 181 to 360 days, and greater than 360 days were 17.5%, 67.9%, 74%, and 94.8%, respectively (p < 0.001). Estimated 10-year FFDM rates for the low-, intermediate-, and high-risk groups were 98.6%, 96.2%, and 86.7%, respectively. A demographic shift to patients presenting with higher-grade disease in more recent years was observed. Conclusions: GS and post-treatment PSA-DT are both statistically significant independent predictors of metastatic

  12. A study of brachytherapy for intraocular tumor

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Yung Hoon; Lee, Dong Han; Ko, Kyung Hwan; Lee, Tae Won; Lee, Sung Koo; Choi, Moon Sik [Korea Cancer Center Hospital of Korea Atomic Energy Research Institute, Seoul (Korea, Republic of)

    1994-12-01

    Our purpose of this study is to perform brachytherapy for intraocular tumor. The result were as followed. 1. Eye model was determined as a 25 mm diameter sphere. Ir-192 was considered the most appropriate as radioisotope for brachytherapy, because of the size, half, energy and availability. 2. Considering the biological response with human tissue and protection of exposed dose, we made the plaques with gold, of which size were 15 mm, 17 mm and 20 mm in diameter, and 1.5 mm in thickness. 3. Transmission factor of plaques are all 0.71 with TLD and film dosimetry at the surface of plaques and 0.45, 0.49 at 1.5 mm distance of surface, respectively. 4. As compared the measured data for the plaque with Ir-192 seeds to results of computer dose calculation model by Gary Luxton et al. and CAP-PLAN (Radiation Treatment Planning System), absorbed doses are within {+-}10% and distance deviations are within 0.4 mm. Maximum error is -11.3% and 0.8 mm, respectively. 7 figs, 2 tabs, 28 refs. (Author).

  13. Survival benefit of chemoembolization plus Iodine125 seed implantation in unresectable hepatitis B-related hepatocellular carcinoma with PVTT: a retrospective matched cohort study

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Mingsheng; Wang, Haofan; Chen, Junwei; Bai, Mingjun; Wang, Long; Zhu, Kangshun; Jiang, Zaibo; Guan, Shouhai; Li, Zhengran; Qian, Jiesheng; Li, Mingan; Pang, Pengfei; Shan, Hong [Sun Yat-sen University, Department of Radiology, the Third Affiliated Hospital, Guangzhou (China); Sun Yat-Sen University, Department of Interventional Radiology, Ling-nan Hospital, Guangzhou (China); Sun Yat-sen University, Interventional Radiology Institute, Guangzhou (China); Lin, Qu [Sun Yat-sen University, Department of Oncology, the Third Affiliated Hospital, Guangzhou (China)

    2016-10-15

    To investigate the survival benefit of transarterial chemoembolization (TACE) plus Iodine125 seed implantation (TACE-Iodine125) in hepatitis B-related HCC patients with portal vein tumour thrombus (PVTT) and the underlying prognostic factors. A retrospective matched cohort study was performed on consecutive HCC patients with PVTT from January 2011 to June 2014. Seventy patients (TACE-Iodine125 group) who underwent TACE-Iodine125 were compared with a historical case-matched control group of 140 patients (TACE group) who received TACE alone. The survival of patients and the underlying prognostic factors were analysed. The median survival times of the TACE-Iodine125 and TACE groups were 11.0 and 7.5 months, respectively (p < 0.001). The survival probability at 12, 24, and 36 months was 50 %, 14.5 %, and 14.5 % vs. 25 %, 9 %, and 5 % in the TACE-Iodine125 and TACE groups, respectively (p < 0.001). The PVTT responders had better survival than the PVTT non-responders (p < 0.001). For the PVTT non-responders, there were no differences in the survival curves between the groups (p = 0.353). Multivariate analysis showed that type III PVTT (p < 0.001) and APS (p < 0.001) were independent predictors of poor prognosis. In contrast, the treatment modality of TACE-Iodine125 (p < 0.001) and PVTT response (p = 0.001) were favourable prognostic features. TACE combined with Iodine125 seed implantation may be a good choice for selected HB-HCC patients with PVTT. (orig.)

  14. Individualised 3D printed vaginal template for MRI guided brachytherapy in locally advanced cervical cancer.

    Science.gov (United States)

    Lindegaard, Jacob Christian; Madsen, Mikkel Lænsø; Traberg, Anders; Meisner, Bjarne; Nielsen, Søren Kynde; Tanderup, Kari; Spejlborg, Harald; Fokdal, Lars Ulrik; Nørrevang, Ole

    2016-01-01

    Intracavitary-interstitial applicators for MRI guided brachytherapy are becoming increasingly important in locally advanced cervical cancer. The 3D printing technology enables a versatile method for obtaining a high degree of individualisation of the implant. Our clinical workflow is presented and exemplified by a stage IVA cervical cancer with superior dose distribution. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Individualised 3D printed vaginal template for MRI guided brachytherapy in locally advanced cervical cancer

    DEFF Research Database (Denmark)

    Lindegaard, Jacob Christian; Lænsø Madsen, Mads; Hansen, Anders Traberg

    2016-01-01

    Intracavitary–interstitial applicators for MRI guided brachytherapy are becoming increasingly important in locally advanced cervical cancer. The 3D printing technology enables a versatile method for obtaining a high degree of individualisation of the implant. Our clinical workflow is presented...

  16. Low-dose-rate brachytherapy as salvage treatment of local prostate cancer recurrence after radical prostatectomy.

    Science.gov (United States)

    Traudt, Krystyna; Ciezki, Jay; Klein, Eric A

    2011-06-01

    To present our initial experience with brachytherapy used as a salvage procedure for local recurrence of prostate cancer in the prostatic fossa after radical prostatectomy. The patients included 5 consecutive men who underwent brachytherapy as a salvage procedure after radical prostatectomy from December 2006 to March 2008. We used a technique of implanting the local recurrences similar to the American Brachytherapy Society Guidelines for implanting an intact prostate as definitive therapy. Two modifications were made related to the recurrence location: a rare need to manage urethral doses because the recurrence was typically perirectal, and more aggressive management of the dose to the rectum because of this proximity. All patients tolerated the brachytherapy procedure well and showed a decline in the prostate-specific antigen level, with a median nadir of 0.72 ng/mL at a median follow-up of 13 months. The postprocedural symptoms were minor and included limited new-onset urgency. At the last follow-up visit, all patients had prostate-specific antigen doubling times, which have been associated with long median survival times. Salvage brachytherapy for biopsy-proven local recurrence of prostate cancer is a technically feasible alternative to external beam radiotherapy for local control of recurrences in the prostatic fossa in selected patients after radical prostatectomy. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Iodine-125 brachytherapy in the management of squamous cell carcinoma of the oral cavity and oropharynx.

    Science.gov (United States)

    Stannard, Clare; Maree, Gerrie; Tovey, Susan; Hunter, Alistair; Wetter, Julie

    2014-01-01

    Brachytherapy is an acknowledged modality for treating head and neck cancers and has moved from low-dose-rate (LDR) to high-dose-rate remote afterloading to reduce staff exposure. Iodine-125 ((125)I) is a low-energy source and can be used for LDR brachytherapy with minimal staff exposure. The results of treating with this isotope at Groote Schuur Hospital, Cape Town, are reported here. (125)I brachytherapy was used to treat 114 tumors from 1994 to 2010. Brachytherapy alone was used for 72 tumors, 39 postsurgery and 33 de novo. A brachytherapy boost together with external beam radiotherapy was used for 42 tumors, eight postsurgery and 34 de novo. Tumors were in the tongue, floor of mouth, soft palate, and tonsil, and mainly T1 or T2 classification. Brachytherapy was administered via an applicator or in plastic tubes implanted into the soft tissues or through the submandibular region. Local control rates of 80.7% at 5 years and 80% at 10 years were comparable to LDR, pulsed-dose-rate, and high-dose-rate results with iridium-192, likewise the 5- and 10-year disease-specific survival rate of 74.3%. Complications of soft tissue ulceration occurred in 21 patients (18.4%) and healed spontaneously in 20 patients. There was no mandibular necrosis. (125)I can be used as the sole treatment or as a boost to external beam radiotherapy, with or without surgery for early mouth cancer. It combines the radiobiological advantages of LDR brachytherapy with minimum staff exposure. It is a flexible system. Local control is excellent with acceptable morbidity, and the treatment time is short. Copyright © 2014 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  18. Photon energy-fluence correction factor in low energy brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Antunes, Paula C.G.; Yoriyaz, Hélio [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Vijande, Javier; Giménez-Alventosa, Vicent; Ballester, Facundo, E-mail: pacrisguian@gmail.com [Department of Atomic, Molecular, and Nuclear Physics and Instituto de Física Corpuscular (UV-CSIC), University of Valencia (Spain)

    2017-07-01

    The AAPM TG-43 brachytherapy dosimetry formalism has become a standard for brachytherapy dosimetry worldwide; it implicitly assumes that charged-particle equilibrium (CPE) exists for the determination of absorbed dose to water at different locations. At the time of relating dose to tissue and dose to water, or vice versa, it is usually assumed that the photon fluence in water and in tissues are practically identical, so that the absorbed dose in the two media can be related by their ratio of mass energy-absorption coefficients. The purpose of this work is to study the influence of photon energy-fluence in different media and to evaluate a proposal for energy-fluence correction factors for the conversion between dose-to-tissue (D{sub tis}) and dose-to-water (D{sub w}). State-of-the art Monte Carlo (MC) calculations are used to score photon fluence differential in energy in water and in various human tissues (muscle, adipose and bone) in two different codes, MCNP and PENELOPE, which in all cases include a realistic modeling of the {sup 125}I low-energy brachytherapy seed in order to benchmark the formalism proposed. A correction is introduced that is based on the ratio of the water-to-tissue photon energy-fluences using the large-cavity theory. In this work, an efficient way to correlate absorbed dose to water and absorbed dose to tissue in brachytherapy calculations at clinically relevant distances for low-energy photon emitting seed is proposed. The energy-fluence based corrections given in this work are able to correlate absorbed dose to tissue and absorbed dose to water with an accuracy better than 0.5% in the most critical cases. (author)

  19. Dose optimisation in single plane interstitial brachytherapy.

    Science.gov (United States)

    Tanderup, Kari; Hellebust, Taran Paulsen; Honoré, Henriette Benedicte; Nielsen, Søren Kynde; Olsen, Dag Rune; Grau, Cai; Lindegaard, Jacob Christian

    2006-10-01

    Brachytherapy dose distributions can be optimised by modulation of source dwell times. In this study dose optimisation in single planar interstitial implants was evaluated in order to quantify the potential benefit in patients. In 14 patients, treated for recurrent rectal and cervical cancer, flexible catheters were sutured intra-operatively to the tumour bed in areas with compromised surgical margin. Both non-optimised, geometrically and graphically optimised CT -based dose plans were made. The overdose index (OI), homogeneity index (HI), conformal index (COIN), minimum target dose, and high dose volumes were evaluated. The dependence of OI, HI, and COIN on target volume and implant regularity was evaluated. In addition, 12 theoretical implant configurations were analyzed. Geometrical and graphical optimisation improved the dose plans significantly with graphical optimisation being superior. Graphically optimised dose plans showed a significant decrease of 18%+/-9% in high dose volume (p<0.001). HI, COIN, and OI were significantly improved from 0.50+/-0.05 to 0.60+/-0.05, from 0.65+/-0.04 to 0.71+/-0.04, and from 0.19+/-0.03 to 0.15+/-0.03, respectively (p<0.001 for all). Moreover, minimum target dose increased significantly from 71%+/-5% to 80%+/-5% (p<0.001). The improvement in OI and HI obtained by optimisation depended on the regularity of the implant, such that the benefit of optimisation was larger for irregular implants. OI and HI correlated strongly with target volume limiting the usability of these parameters for comparison of dose plans between patients. Dwell time optimisation significantly improved the dose distribution regarding homogeneity, conformity, minimum target dose, and size of high dose volumes. Graphical optimisation is fast, reproducible and superior to geometric optimisation.

  20. Organ-confined prostate carcinoma radiation brachytherapy compared with external either photon- or hadron-beam radiation therapy. Just a short up-to-date.

    Science.gov (United States)

    Alberti, C

    2011-07-01

    Both low dose rate (LDR) permanent either 1251 or 103Pd seed implant and high dose rate (HDR) 1921r temporary implant are an excellent way to release high dose of ionizing radiations to cancerous lesions while significantly sparing the surrounding healthy tissues. Therefore, the radiation brachytherapy, among the established treatment options of organ-confined prostate carcinoma--interstitial radiofrequency, high intensity focused ultrasound, cryotherapy--has gained large acceptance in the last decades. The LDR permanent interstitial radioactive seed implantation is often used as monotherapy for low risk prostate carcinoma whereas the HDR temporary implant may useful to treat intermediate-to-high risk prostate tumors as a radiation boost to combined external beam radiation therapy (EBRT). On the other hand, with recent refinement of EBRT techniques--either three-dimensional conformal- or intensity-modulated radiotherapy, cyber-knife radiosurgery with even 4D-high resolution image-guided tracking--high doses of X-rays may be precisely delivered to prostate malignant lesions without increasing toxicity for surrounding normal structures. Also hadron therapy is an increasingly successful technique that allows the release of effective energy of protons (H+), neutrons or carbon ions (6(12)C) to the limited extent of the cancerous target site, thus destroying malignant lesion with millimetric precision--just as bloodless surgery--while less damaging the neighbouring healthy tissues. Looking to the near future, even more effective oncotherapy modality appears to be the use of antiprotons because of their highly confined energy deposition at well defined body dept around the annihilation point in contact with protons of the ordinary matter, so targeting only a very limited body volume.

  1. Photon Sources for Brachytherapy

    Science.gov (United States)

    Rijnders, Alex

    As introduction a short overview of the history of brachytherapy (BT) is given, with a focus on the evolution in the photon sources that have been used over the years. A major step in this evolution was the introduction of the automatic afterloading devices, which could be compared to the introduction of linear accelerators in external beam radiotherapy (EBRT). The modern afterloaders allow for optimization of the dose delivery and the use of different dose rates (low dose rate, high dose rate and pulsed dose rate) in function of tumor biology and patient comfort. Still today new sources are under investigation, and these developments together with the improvements in treatment planning and treatment techniques will enforce the role and place of BT as a valuable alternative for or supplementary to EBRT.

  2. American Society for Radiation Oncology (ASTRO) and American College of Radiology (ACR) practice guideline for the performance of high-dose-rate brachytherapy.

    Science.gov (United States)

    Erickson, Beth A; Demanes, D Jeffrey; Ibbott, Geoffrey S; Hayes, John K; Hsu, I-Chow J; Morris, David E; Rabinovitch, Rachel A; Tward, Jonathan D; Rosenthal, Seth A

    2011-03-01

    High-Dose-Rate (HDR) brachytherapy is a safe and efficacious treatment option for patients with a variety of different malignancies. Careful adherence to established standards has been shown to improve the likelihood of procedural success and reduce the incidence of treatment-related morbidity. A collaborative effort of the American College of Radiology (ACR) and American Society for Therapeutic Radiation Oncology (ASTRO) has produced a practice guideline for HDR brachytherapy. The guideline defines the qualifications and responsibilities of all the involved personnel, including the radiation oncologist, physicist and dosimetrists. Review of the leading indications for HDR brachytherapy in the management of gynecologic, thoracic, gastrointestinal, breast, urologic, head and neck, and soft tissue tumors is presented. Logistics with respect to the brachytherapy implant procedures and attention to radiation safety procedures and documentation are presented. Adherence to these practice guidelines can be part of ensuring quality and safety in a successful HDR brachytherapy program. Copyright © 2011. Published by Elsevier Inc.

  3. Magnetic resonance spectroscopy-guided transperineal prostate biopsy and brachytherapy for recurrent prostate cancer.

    Science.gov (United States)

    Barnes, Agnieszka Szot; Haker, Steven J; Mulkern, Robert V; So, Minna; D'Amico, Anthony V; Tempany, Clare M

    2005-12-01

    Brachytherapy targeted to the peripheral zone with magnetic resonance imaging (MRI) guidance is a prostate cancer treatment option with potentially fewer complications than other treatments. Follow-up MRI when failure is suspected is, however, difficult because of radiation-induced changes. Furthermore, MR spectroscopy (MRS) is compromised by susceptibility artifacts from radioactive seeds in the peripheral zone. We report a case in which combined MRI/MRS was useful for the detection of prostate cancer in the transitional zone in patients previously treated with MR-guided brachytherapy. We propose that MRI/MRS can help detect recurrent prostate cancer, guide prostate biopsy, and help manage salvage treatment decisions.

  4. In vivo dosimetry using a linear Mosfet-array dosimeter to determine the urethra dose in 125I permanent prostate implants.

    Science.gov (United States)

    Bloemen-van Gurp, Esther J; Murrer, Lars H P; Haanstra, Björk K C; van Gils, Francis C J M; Dekker, Andre L A J; Mijnheer, Ben J; Lambin, Philippe

    2009-01-01

    In vivo dosimetry during brachytherapy of the prostate with (125)I seeds is challenging because of the high dose gradients and low photon energies involved. We present the results of a study using metal-oxide-semiconductor field-effect transistor (MOSFET) dosimeters to evaluate the dose in the urethra after a permanent prostate implantation procedure. Phantom measurements were made to validate the measurement technique, determine the measurement accuracy, and define action levels for clinical measurements. Patient measurements were performed with a MOSFET array in the urinary catheter immediately after the implantation procedure. A CT scan was performed, and dose values, calculated by the treatment planning system, were compared to in vivo dose values measured with MOSFET dosimeters. Corrections for temperature dependence of the MOSFET array response and photon attenuation in the catheter on the in vivo dose values are necessary. The overall uncertainty in the measurement procedure, determined in a simulation experiment, is 8.0% (1 SD). In vivo dose values were obtained for 17 patients. In the high-dose region (> 100 Gy), calculated and measured dose values agreed within 1.7% +/- 10.7% (1 SD). In the low-dose region outside the prostate (MOSFET detectors are suitable for in vivo dosimetry during (125)I brachytherapy of prostate cancer. An action level of +/- 16% (2 SD) for detection of errors in the implantation procedure is achievable after validation of the detector system and measurement conditions.

  5. Magnetic resonance image guided brachytherapy.

    Science.gov (United States)

    Tanderup, Kari; Viswanathan, Akila N; Kirisits, Christian; Frank, Steven J

    2014-07-01

    The application of magnetic resonance image (MRI)-guided brachytherapy has demonstrated significant growth during the past 2 decades. Clinical improvements in cervix cancer outcomes have been linked to the application of repeated MRI for identification of residual tumor volumes during radiotherapy. This has changed clinical practice in the direction of individualized dose administration, and resulted in mounting evidence of improved clinical outcome regarding local control, overall survival as well as morbidity. MRI-guided prostate high-dose-rate and low-dose-rate brachytherapies have improved the accuracy of target and organs-at-risk delineation, and the potential exists for improved dose prescription and reporting for the prostate gland and organs at risk. Furthermore, MRI-guided prostate brachytherapy has significant potential to identify prostate subvolumes and dominant lesions to allow for dose administration reflecting the differential risk of recurrence. MRI-guided brachytherapy involves advanced imaging, target concepts, and dose planning. The key issue for safe dissemination and implementation of high-quality MRI-guided brachytherapy is establishment of qualified multidisciplinary teams and strategies for training and education. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. The Effect of Pro-Qura Case Volume on Post-Implant Prostate Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Merrick, Gregory S., E-mail: gmerrick@urologicresearchinstitute.org [Schiffler Cancer Center Wheeling Jesuit University, Wheeling, WV (United States); Lief, Jonathan H. [Schiffler Cancer Center Wheeling Jesuit University, Wheeling, WV (United States); Grimm, Peter [Prostate Cancer Treatment Center, Seattle, WA (United States); Sylvester, John [Lakewood Ranch Oncology, Bradenton, FL (United States); Butler, Wayne M.; Allen, Zachariah A. [Schiffler Cancer Center Wheeling Jesuit University, Wheeling, WV (United States)

    2011-12-01

    Purpose: To evaluate the effect of prostate brachytherapy case volume on postimplant dosimetric quality in Pro-Qura proctored programs. Methods and Materials: From August 1999 to December 2008, the computed tomography datasets for 6,600 prostate implants performed by 129 brachytherapists were submitted to Pro-Qura for dosimetric analysis. Brachytherapists were divided into three roughly equal-sized terciles based on total case volume. Postimplant computed tomography scans were obtained at a median of 30 days. Excellent target coverage was defined by a V100 {>=}90% and D90 {>=}100% minimum prescribed peripheral dose. To determine if the number of excellent implants improved with increasing case numbers, each brachytherapist's series of implants was bisected into early and late experience by a moveable critical point. Results: For the entire cohort, the mean V100 and D90 were 89.2% and 102.8%, respectively, with 47.7% of the implants scored as excellent. Brachytherapists in the highest-case tercile had a significantly greater fraction of excellent target coverage (57.9%) than did those in the two lower terciles (39.5% and 45.7%, p = 0.015). Twenty-one (25.6%) of the 82 brachytherapists with sufficient case volume for dosimetric improvement analyses demonstrated quality improvement over time. Although there was no significant difference between prostate volume and seed strength, the number of seeds used was significantly greater in adequate implants. Conclusions: The highest-volume brachytherapists were most likely to obtain excellent target coverage. We are encouraged that in general practice, nearly 48% of all implants were scored excellent. It is conceivable that with greater expert third-party involvement, an even greater percentage of cases with excellent target coverage will become reality.

  7. Brachytherapy in France in 2002: results of the ESTRO-PCBE questionnaire; La curietherapie en France en 2002: resultats de l'enquete PCBE de l'ESTRO

    Energy Technology Data Exchange (ETDEWEB)

    Peiffert, D. [Centre Alexis-Vautrin, Dept. de Radiotherapie, 54 - Vandoeuvre-les-Nancy (France); Mazeron, J.J. [Hopital de la Pitie-Salpetriere, Centre des Tumeurs, 75 - Paris (France); Guedea, F. [Institut Catala d' Oncologia Idibell, L' hospitalet del Llobregat, Barcelone (Spain); Nisin, R. [ESTRO office, Bruxelles (Belgium)

    2007-05-15

    The authors report the results of the Patterns of Care for Brachytherapy in Europe (PCBE) throughout France. Responses were obtained for 91% of the Radiation Oncology departments, which have declared using brachytherapy for 67, and gave detailed data for 49 ones. The equipments and treated tumours were recorded. LDR brachytherapy remained the most often used (53.5 ), followed by HDR (28%). PDR represented 5.5% and permanent implants 11%. The authors discuss the development of new equipment, with an aggregation of the structures, and an increase of the PDR and prostate implants use. (authors)

  8. Determination of the intrinsic energy dependence of LiF:Mg,Ti thermoluminescent dosimeters for 125I and 103Pd brachytherapy sources relative to 60Co.

    Science.gov (United States)

    Reed, J L; Rasmussen, B E; Davis, S D; Micka, J A; Culberson, W S; DeWerd, L A

    2014-12-01

    To determine the intrinsic energy dependence of LiF:Mg,Ti thermoluminescent dosimeters (TLD-100) for (125)I and (103)Pd brachytherapy sources relative to (60)Co. LiF:Mg,Ti TLDs were irradiated with low-energy brachytherapy sources and with a (60)Co teletherapy source. The brachytherapy sources measured were the Best 2301 (125)I seed, the OncoSeed 6711 (125)I seed, and the Best 2335 (103)Pd seed. The TLD light output per measured air-kerma strength was determined for the brachytherapy source irradiations, and the TLD light output per air kerma was determined for the (60)Co irradiations. Monte Carlo (MC) simulations were used to calculate the dose-to-TLD rate per air-kerma strength for the brachytherapy source irradiations and the dose to TLD per air kerma for the (60)Co irradiations. The measured and MC-calculated results for all irradiations were used to determine the TLD intrinsic energy dependence for (125)I and (103)Pd relative to (60)Co. The relative TLD intrinsic energy dependences (relative to (60)Co) and associated uncertainties (k = 1) were determined to be 0.883 ± 1.3%, 0.870 ± 1.4%, and 0.871 ± 1.5% for the Best 2301 seed, OncoSeed 6711 seed, and Best 2335 seed, respectively. The intrinsic energy dependence of TLD-100 is dependent on photon energy, exhibiting changes of 13%-15% for (125)I and (103)Pd sources relative to (60)Co. TLD measurements of absolute dose around (125)I and (103)Pd brachytherapy sources should explicitly account for the relative TLD intrinsic energy dependence in order to improve dosimetric accuracy.

  9. Calibration of Photon Sources for Brachytherapy

    Science.gov (United States)

    Rijnders, Alex

    Source calibration has to be considered an essential part of the quality assurance program in a brachytherapy department. Not only it will ensure that the source strength value used for dose calculation agrees within some predetermined limits to the value stated on the source certificate, but also it will ensure traceability to international standards. At present calibration is most often still given in terms of reference air kerma rate, although calibration in terms of absorbed dose to water would be closer to the users interest. It can be expected that in a near future several standard laboratories will be able to offer this latter service, and dosimetry protocols will have to be adapted in this way. In-air measurement using ionization chambers (e.g. a Baldwin—Farmer ionization chamber for 192Ir high dose rate HDR or pulsed dose rate PDR sources) is still considered the method of choice for high energy source calibration, but because of their ease of use and reliability well type chambers are becoming more popular and are nowadays often recommended as the standard equipment. For low energy sources well type chambers are in practice the only equipment available for calibration. Care should be taken that the chamber is calibrated at the standard laboratory for the same source type and model as used in the clinic, and using the same measurement conditions and setup. Several standard laboratories have difficulties to provide these calibration facilities, especially for the low energy seed sources (125I and 103Pd). Should a user not be able to obtain properly calibrated equipment to verify the brachytherapy sources used in his department, then at least for sources that are replaced on a regular basis, a consistency check program should be set up to ensure a minimal level of quality control before these sources are used for patient treatment.

  10. Outcome and toxicity profile after brachytherapy for squamous cell carcinoma of the nasal vestibule.

    Science.gov (United States)

    Lipman, Djoeri; Verhoef, Lia C; Takes, Robert P; Kaanders, Johannes H; Janssens, Geert O

    2015-09-01

    The purpose of this study was to evaluate outcome and toxicity profile after primary brachytherapy for squamous cell carcinoma of the nasal vestibule. A retrospective study was conducted for patients with Wang classification T1 to 2 cN0 squamous cell carcinoma of the nasal vestibule who received primary treatment with brachytherapy between 1992 and 2010. Tumor control, acute skin, mucosal, and late cartilage toxicity were scored. Of 60 patients (T1, 50; T2, 10), 38 were treated with an interstitial implant and 22 by a mold technique. The 3-year local, regional, and locoregional control rates were 91%, 93%, and 84%, respectively. Tumor diameter skin desquamation and confluent mucositis was 64% and 82%, respectively. The actuarial incidence of chondritis and/or chondronecrosis was 19%. Primary brachytherapy for Wang T1 to 2 squamous cell carcinoma of the nasal vestibule offers excellent tumor control rates with acceptable toxicity and preservation of anatomy. © 2014 Wiley Periodicals, Inc.

  11. Implante subcutáneo de un carcinoma hepatocelular tras la punción aspiración con aguja fina Subcutaneous seeding of hepatocellular carcinoma after fine-needle percutaneous biopsy

    Directory of Open Access Journals (Sweden)

    D. Martínez Ramos

    2007-06-01

    Full Text Available Los implantes subcutáneos son una complicación rara tras la punción aspiración con aguja fina de los carcinomas hepatocelulares. Los autores describen un caso de implante subcutáneo neoplásico en una mujer de 70 años con cirrosis hepática por virus C complicada con un carcinoma hepatocelular. Se efectuó una punción aspiración con aguja fina en el segmento II hepático. El implante tumoral se desarrolló en el trayecto de la punción aspiración. La tumoración subcutánea fue extirpada quirúrgicamente y el estudio anatomopatológico confirmó que se trataba de un carcinoma hepatocelular bien diferenciado.Subcutaneous tumor seeding after fine-needle percutaneous biopsy for hepatocellular carcinoma is a rarely seen complication. The authors describe a case of subcutaneous neoplastic seeding in a 70-year-old woman with chronic hepatitis C virus complicated by hepatocellular carcinoma. Ultrasonically guided fine-needle aspiration biopsy was performed in segment II of the liver. The neoplastic seeding developed along the needle track used to carry out the fine-needle biopsy. The subcutaneous tumor was excised, and histological examination revealed a well-differentiated hepatocellular carcinoma.

  12. Five year biochemical recurrence free survival for intermediate risk prostate cancer after radical prostatectomy, external beam radiation therapy or permanent seed implantation.

    Science.gov (United States)

    Vassil, Andrew D; Murphy, Erin S; Reddy, Chandana A; Angermeier, Kenneth W; Altman, Andrew; Chehade, Nabil; Ulchaker, James; Klein, Eric A; Ciezki, Jay P

    2010-11-01

    To compare biochemical recurrence-free survival (bRFS) for patients with intermediate-risk prostate cancer treated by retropubic radical prostatectomy (RRP), laparoscopic radical prostatectomy (LRP), external beam radiation therapy (RT), or permanent seed implantation (PI). Patients treated for intermediate-risk prostate cancer per National Comprehensive Cancer Network guidelines from 1996 to 2005 were studied. Variables potentially affecting bRFS were examined using univariate and multivariate Cox regression analysis. Five-year bRFS rates were calculated by actuarial methods; bRFS was calculated using Kaplan-Meier analysis. Nadir +2 definition of biochemical failure was used for RT and PI patients; a PSA ≥ 0.4 ng/mL was used for radical prostatectomy (RP) patients. Time to initiation of salvage therapy was compared for each treatment group using the Kruskal-Wallis test. Nine-hundred seventy-nine patients were analyzed with a median follow-up of 65 months. Five years bRFS rate was 82.8% for all patients (89.5% PI, 85.7% RT, 79.9% RRP, and 60.2% LRP). Patients treated by LRP had significantly worse bRFS than RT (P PI (P PSA tests per year (P PI, 47.8 RT; P PI, RT, or RRP appear to have improved 5-year bRFS and delayed salvage therapy compared with LRP. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. Study of two different radioactive sources for prostate brachytherapy treatment

    Energy Technology Data Exchange (ETDEWEB)

    Pereira Neves, Lucio; Perini, Ana Paula [Instituto de Fisica, Universidade Federal de Uberlandia, Caixa Postal 593, 38400-902, Uberlandia, MG (Brazil); Souza Santos, William de; Caldas, Linda V.E. [Instituto de Pesquisas Energeticas e Nucleares, Comissao Nacional de Energia Nuclear, IPENCNEN/SP, Av. Prof. Lineu Prestes, 2242, Cidade Universitaria, 05508-000 Sao Paulo, SP (Brazil); Belinato, Walmir [Departamento de Ensino, Instituto Federal de Educacao, Ciencia e Tecnologia da Bahia, Campus Vitoria da Conquista, Zabele, Av. Amazonas 3150, 45030-220 Vitoria da Conquista, BA (Brazil)

    2015-07-01

    In this study we evaluated two radioactive sources for brachytherapy treatments. Our main goal was to quantify the absorbed doses on organs and tissues of an adult male patient, submitted to a brachytherapy treatment with two radioactive sources. We evaluated a {sup 192}Ir and a {sup 125}I radioactive sources. The {sup 192}Ir radioactive source is a cylinder with 0.09 cm in diameter and 0.415 cm long. The {sup 125}I radioactive source is also a cylinder, with 0.08 cm in diameter and 0.45 cm long. To evaluate the absorbed dose distribution on the prostate, and other organs and tissues of an adult man, a male virtual anthropomorphic phantom MASH, coupled in the radiation transport code MCNPX 2.7.0, was employed.We simulated 75, 90 and 102 radioactive sources of {sup 125}I and one of {sup 192}Ir, inside the prostate, as normally used in these treatments, and each treatment was simulated separately. As this phantom was developed in a supine position, the displacement of the internal organs of the chest, compression of the lungs and reduction of the sagittal diameter were all taken into account. For the {sup 192}Ir, the higher doses values were obtained for the prostate and surrounding organs, as the colon, gonads and bladder. Considering the {sup 125}I sources, with photons with lower energies, the doses to organs that are far from the prostate were lower. All values for the dose rates are in agreement with those recommended for brachytherapy treatments. Besides that, the new seeds evaluated in this work present usefulness as a new tool in prostate brachytherapy treatments, and the methodology employed in this work may be applied for other radiation sources, or treatments. (authors)

  14. Serum Testosterone Kinetics After Brachytherapy for Clinically Localized Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Taira, Al V. [Western Radiation Oncology, Mountain View, CA (United States); Merrick, Gregory S., E-mail: gmerrick@urologicresearchinstitute.org [Schiffler Cancer Center, Wheeling Jesuit University, Wheeling, WV (United States); Galbreath, Robert W.; Butler, Wayne M.; Lief, Jonathan H.; Allen, Zachariah A. [Schiffler Cancer Center, Wheeling Jesuit University, Wheeling, WV (United States); Wallner, Kent E. [Puget Sound Healthcare Corporation Group Health Cooperative, University of Washington, Seattle, WA (United States)

    2012-01-01

    Purpose: To evaluate temporal changes in testosterone after prostate brachytherapy and investigate the potential impact of these changes on response to treatment. Methods and Materials: Between January 2008 and March 2009, 221 consecutive patients underwent Pd-103 brachytherapy without androgen deprivation for clinically localized prostate cancer. Prebrachytherapy prostate-specific antigen (PSA) and serum testosterone were obtained for each patient. Repeat levels were obtained 3 months after brachytherapy and at least every 6 months thereafter. Multiple clinical, treatment, and dosimetric parameters were evaluated to determine an association with temporal testosterone changes. In addition, analysis was conducted to determine if there was an association between testosterone changes and treatment outcomes or the occurrence of a PSA spike. Results: There was no significant difference in serum testosterone over time after implant (p = 0.57). 29% of men experienced an increase {>=}25%, 23% of men experienced a decrease {>=}25%, and the remaining 48% of men had no notable change in testosterone over time. There was no difference in testosterone trends between men who received external beam radiotherapy and those who did not (p = 0.12). On multivariate analysis, preimplant testosterone was the only variable that consistently predicted for changes in testosterone over time. Men with higher than average testosterone tended to experience drop in testosterone (p < 0.001), whereas men with average or below average baseline testosterone had no significant change. There was no association between men who experienced PSA spike and testosterone temporal trends (p = 0.50) nor between initial PSA response and testosterone trends (p = 0.21). Conclusion: Prostate brachytherapy does not appear to impact serum testosterone over time. Changes in serum testosterone do not appear to be associated with PSA spike phenomena nor with initial PSA response to treatment; therefore, PSA response

  15. Brachytherapy in oesophageal carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Leung, J.T.; Kuan, R. [Royal Prince Alfred Hospital, Camperdown, NSW (Australia)

    1995-11-01

    Patients with recurrent or locally advanced oesophageal carcinoma have a poor prognosis. Relief of dysphagia is often the goal of any further treatment. Several methods, including laser re-canalization, prosthetic intubation, dilatation, external beam irradiation (EBI) and intraluminal brachytherapy (IBT) can be used to alleviate dysphagia. In this retrospective review of 11 patients, eight with recurrent tumour and three newly diagnosed patients were treated with low dose rate IBT. Relief of dysphagia was achieved in nine patients, all of whom were able to maintain swallowing of at least a semi-solid diet until death or last follow-up. Toxicity was minimal, but survival was poor, with a median survival of only 3 months. IBT presents several advantages over other palliative methods, especially in recurrent tumours where re-treatment with EBI is often difficult because of normal tissue tolerance. Low dose rate IBT takes only 1-2 days to deliver, is highly effective, has little morbidity and the palliation achieved is relatively durable. 19 refs., 2 tabs., 1 fig.

  16. High-dose-rate interstitial brachytherapy for the treatment of penile carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Petera, J.; Odrazka, K.; Zouhar, M.; Bedrosova, J.; Dolezel, M. [Dept. of Oncology and Radiotherapy, Charles Univ. Medical School and Teaching Hospital, Hradec Kralove (Czech Republic)

    2004-02-01

    Background: interstitial low-dose-rate (LDR) brachytherapy allows conservative treatment of T1-T2 penile carcinoma. High-dose-rate (HDR) is often considered to be dangerous for interstitial implants because of a higher risk of complications, but numerous reports suggest that results may be comparable to LDR. Nevertheless, there are no data in the literature available regarding HDR interstitial brachytherapy for carcinoma of the penis. Case report: a 64-year-old man with T1 NO MO epidermoid carcinoma of the glans is reported. Interstitial HDR brachytherapy was performed using the stainless hollow needle technique and a breast template for fixation and good geometry. The dose delivered was 18 x 3 Gy twice daily. Results: after 232 days from brachytherapy, the patient was without any evidence of the tumor, experienced no serious radiation-induced complications, and had a fully functional organ. Conclusion: HDR interstitial brachytherapy is feasible in selected case of penis carcinoma, when careful planning and small single fractions are used. (orig.)

  17. Tolerance of the carotid-sheath contents to brachytherapy: an experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Werber, J.L.; Sood, B.; Alfieri, A.; McCormick, S.A.; Vikram, B. (Department of Otolaryngology--Head and Neck Surgery, New York Medical College, Beth Israel (USA))

    1991-06-01

    Tumor invasion of the carotid artery is a potential indication for brachytherapy, which delivers a high dose of irradiation to residual tumor while limiting the dose to adjacent healthy tissues. The tolerance of carotid-sheath contents to varying doses of brachytherapy, however, has not been clearly established. In order to evaluate brachytherapy effects on carotid-sheath contents, after-loading catheters were implanted bilaterally in 3 groups of 6 rabbits each (18 rabbits). Iridium 192 brachytherapy doses of either 5000 cGy (rad), 9000 cGy, or 13,000 cGy were delivered unilaterally, with the contralateral neck serving as a nonirradiated control in each animal. There were no carotid ruptures and wound healing was normal. Two animals from each group were killed at 6, 20, and 48 weeks. Even at the highest dose (13,000 cGy), nerve conduction studies performed on the vagus nerve prior to sacrifice revealed no increased latency, histologic changes were minimal, and carotid arteries were patent. These observations suggest that the carotid-sheath contents in healthy rabbits could tolerate high doses (up to 13,000 cGy) of low-dose-rate interstitial brachytherapy without complications.

  18. Toward adaptive stereotactic robotic brachytherapy for prostate cancer: Demonstration of an adaptive workflow incorporating inverse planning and an MR stealth robot

    Science.gov (United States)

    CUNHA, J. ADAM; HSU, I-CHOW; POULIOT, JEAN; ROACH, MACK; SHINOHARA, KATSUTO; KURHANEWICZ, JOHN; REED, GALEN; STOIANOVICI, DAN

    2011-01-01

    To translate any robot into a clinical environment, it is critical that the robot can seamlessly integrate with all the technology of a modern clinic. MRBot, an MR-stealth brachytherapy delivery device, was used in a closed-bore 3T MRI and a clinical brachytherapy cone beam CT suite. Targets included ceramic dummy seeds, MR-Spectroscopy-sensitive metabolite, and a prostate phantom. Acquired DICOM images were exported to planning software to register the robot coordinates in the imager’s frame, contour and verify target locations, create dose plans, and export needle and seed positions to the robot. The coordination of each system element (imaging device, brachytherapy planning system, robot control, robot) was validated with a seed delivery accuracy of within 2 mm in both a phantom and soft tissue. An adaptive workflow was demonstrated by acquiring images after needle insertion and prior to seed deposition. This allows for adjustment if the needle is in the wrong position. Inverse planning (IPSA) was used to generate a seed placement plan and coordinates for ten needles and 29 seeds were transferred to the robot. After every two needles placed, an image was acquired. The placed seeds were identified and validated prior to placing the seeds in the next two needles. The ability to robotically deliver seeds to locations determined by IPSA and the ability of the system to incorporate novel needle patterns were demonstrated. Shown here is the ability to overcome this critical step. An adaptive brachytherapy workflow is demonstrated which integrates a clinical anatomy-based seed location optimization engine and a robotic brachytherapy device. Demonstration of this workflow is a key element of a successful translation to the clinic of the MRI stealth robotic delivery system, MRBot. PMID:20642386

  19. American Brachytherapy Society Task Group Report: Combination of brachytherapy and external beam radiation for high-risk prostate cancer.

    Science.gov (United States)

    Spratt, Daniel E; Soni, Payal D; McLaughlin, Patrick W; Merrick, Gregory S; Stock, Richard G; Blasko, John C; Zelefsky, Michael J

    To review outcomes for high-risk prostate cancer treated with combined modality radiation therapy (CMRT) utilizing external beam radiation therapy (EBRT) with a brachytherapy boost. The available literature for high-risk prostate cancer treated with combined modality radiation therapy was reviewed and summarized. At this time, the literature suggests that the majority of high-risk cancers are curable with multimodal treatment. Several large retrospective studies and three prospective randomized trials comparing CMRT to dose-escalated EBRT have demonstrated superior biochemical control with CMRT. Longer followup of the randomized trials will be required to determine if this will translate to a benefit in metastasis-free survival, disease-specific survival, and overall survival. Although greater toxicity has been associated with CMRT compared to EBRT, recent studies suggest that technological advances that allow better definition and sparing of critical adjacent structures as well as increasing experience with brachytherapy have improved implant quality and the toxicity profile of brachytherapy. The role of androgen deprivation therapy is well established in the external beam literature for high-risk disease, but there is controversy regarding the applicability of these data in the setting of dose escalation. At this time, there is not sufficient evidence for the omission of androgen deprivation therapy with dose escalation in this population. Comparisons with surgery remain limited by differences in patient selection, but the evidence would suggest better disease control with CMRT compared to surgery alone. Due to a series of technological advances, modern combination series have demonstrated unparalleled rates of disease control in the high-risk population. Given the evidence from recent randomized trials, combination therapy may become the standard of care for high-risk cancers. Copyright © 2016 American Brachytherapy Society. Published by Elsevier Inc. All

  20. Salvage/Adjuvant Brachytherapy After Ophthalmic Artery Chemosurgery for Intraocular Retinoblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Francis, Jasmine H., E-mail: francij1@mskcc.org [Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Barker, Christopher A.; Wolden, Suzanne L.; McCormick, Beryl; Segal, Kira; Cohen, Gil [Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Gobin, Y. Pierre; Marr, Brian P. [Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Weill-Cornell Medical College, New York-Presbyterian Hospital, New York, New York (United States); Brodie, Scott E. [Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Mount Sinai School of Medicine, New York, New York (United States); Dunkel, Ira J.; Abramson, David H. [Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Weill-Cornell Medical College, New York-Presbyterian Hospital, New York, New York (United States)

    2013-11-01

    Purpose: To evaluate the efficacy and toxicity of brachytherapy after ophthalmic artery chemosurgery (OAC) for retinoblastoma. Methods and Materials: This was a single-arm, retrospective study of 15 eyes in 15 patients treated with OAC followed by brachytherapy at (blinded institution) between May 1, 2006, and December 31, 2012, with a median 19 months' follow-up from plaque insertion. Outcome measurements included patient and ocular survival, visual function, and retinal toxicity measured by electroretinogram (ERG). Results: Brachytherapy was used as adjuvant treatment in 2 eyes and as salvage therapy in 13 eyes of which 12 had localized vitreous seeding. No patients developed metastasis or died of retinoblastoma. The Kaplan-Meier estimate of ocular survival was 79.4% (95% confidence interval 48.7%-92.8%) at 18 months. Three eyes were enucleated, and an additional 6 eyes developed out-of-target volume recurrences, which were controlled with additional treatments. Patients with an ocular complication had a mean interval between last OAC and plaque of 2.5 months (SD 2.3 months), which was statistically less (P=.045) than patients without ocular complication who had a mean interval between last OAC and plaque of 6.5 months (SD 4.4 months). ERG responses from pre- versus postplaque were unchanged or improved in more than half the eyes. Conclusions: Brachytherapy following OAC is effective, even in the presence of vitreous seeding; the majority of eyes maintained stable or improved retinal function following treatment, as assessed by ERG.

  1. Recommendations of the Spanish brachytherapy group (GEB) of Spanish Society of Radiation Oncology (SEOR) and the Spanish Society of Medical Physics (SEFM) for high-dose rate (HDR) non melanoma skin cancer brachytherapy.

    Science.gov (United States)

    Rodríguez, S; Arenas, M; Gutierrez, C; Richart, J; Perez-Calatayud, J; Celada, F; Santos, M; Rovirosa, A

    2017-08-14

    Clinical indications of brachytherapy in non-melanoma skin cancers, description of applicators and dosimetry recommendations are described based on the literature review, clinical practice and experience of Spanish Group of Brachytherapy and Spanish Society of Medical Physics reported in the XIV Annual Consensus Meeting on Non Melanoma Skin Cancer Brachytherapy held in Benidorm, Alicante (Spain) on October 21st, 2016. All the recommendations for which consensus was achieved are highlighted in blue. Regular and small surfaces may be treated with Leipzig, Valencia, flap applicators or electronic brachytherapy (EBT). For irregular surfaces, customized molds or interstitial implants should be employed. The dose is prescribed at a maximum depth of 3-4 mm of the clinical target volume/planning target volume (CTV/PTV) in all cases except in flaps or molds in which 5 mm is appropriate. Interstitial brachytherapy should be used for CTV/PTV >5 mm. Different total doses and fraction sizes are used with very similar clinical and toxicity results. Hypofractionation is very useful twice or 3 times a week, being comfortable for patients and practical for Radiotherapy Departments. In interstitial brachytherapy 2 fractions twice a day are applied.

  2. A gEUD-based inverse planning technique for HDR prostate brachytherapy: feasibility study.

    Science.gov (United States)

    Giantsoudi, D; Baltas, D; Karabis, A; Mavroidis, P; Zamboglou, N; Tselis, N; Shi, C; Papanikolaou, N

    2013-04-01

    The purpose of this work was to study the feasibility of a new inverse planning technique based on the generalized equivalent uniform dose for image-guided high dose rate (HDR) prostate cancer brachytherapy in comparison to conventional dose-volume based optimization. The quality of 12 clinical HDR brachytherapy implants for prostate utilizing HIPO (Hybrid Inverse Planning Optimization) is compared with alternative plans, which were produced through inverse planning using the generalized equivalent uniform dose (gEUD). All the common dose-volume indices for the prostate and the organs at risk were considered together with radiobiological measures. The clinical effectiveness of the different dose distributions was investigated by comparing dose volume histogram and gEUD evaluators. Our results demonstrate the feasibility of gEUD-based inverse planning in HDR brachytherapy implants for prostate. A statistically significant decrease in D10 or/and final gEUD values for the organs at risk (urethra, bladder, and rectum) was found while improving dose homogeneity or dose conformity of the target volume. Following the promising results of gEUD-based optimization in intensity modulated radiation therapy treatment optimization, as reported in the literature, the implementation of a similar model in HDR brachytherapy treatment plan optimization is suggested by this study. The potential of improved sparing of organs at risk was shown for various gEUD-based optimization parameter protocols, which indicates the ability of this method to adapt to the user's preferences.

  3. A gEUD-based inverse planning technique for HDR prostate brachytherapy: Feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Giantsoudi, D. [Department of Radiological Sciences, University of Texas Health Sciences Center, San Antonio, Texas 78229 (United States); Department of Radiation Oncology, Francis H. Burr Proton Therapy Center, Boston, Massachusetts 02114 (United States); Baltas, D. [Department of Medical Physics and Engineering, Strahlenklinik, Klinikum Offenbach GmbH, 63069 Offenbach (Germany); Nuclear and Particle Physics Section, Physics Department, University of Athens, 15701 Athens (Greece); Karabis, A. [Pi-Medical Ltd., Athens 10676 (Greece); Mavroidis, P. [Department of Radiological Sciences, University of Texas Health Sciences Center, San Antonio, Texas 78299 and Department of Medical Radiation Physics, Karolinska Institutet and Stockholm University, 17176 (Sweden); Zamboglou, N.; Tselis, N. [Strahlenklinik, Klinikum Offenbach GmbH, 63069 Offenbach (Germany); Shi, C. [St. Vincent' s Medical Center, 2800 Main Street, Bridgeport, Connecticut 06606 (United States); Papanikolaou, N. [Department of Radiological Sciences, University of Texas Health Sciences Center, San Antonio, Texas 78299 (United States)

    2013-04-15

    Purpose: The purpose of this work was to study the feasibility of a new inverse planning technique based on the generalized equivalent uniform dose for image-guided high dose rate (HDR) prostate cancer brachytherapy in comparison to conventional dose-volume based optimization. Methods: The quality of 12 clinical HDR brachytherapy implants for prostate utilizing HIPO (Hybrid Inverse Planning Optimization) is compared with alternative plans, which were produced through inverse planning using the generalized equivalent uniform dose (gEUD). All the common dose-volume indices for the prostate and the organs at risk were considered together with radiobiological measures. The clinical effectiveness of the different dose distributions was investigated by comparing dose volume histogram and gEUD evaluators. Results: Our results demonstrate the feasibility of gEUD-based inverse planning in HDR brachytherapy implants for prostate. A statistically significant decrease in D{sub 10} or/and final gEUD values for the organs at risk (urethra, bladder, and rectum) was found while improving dose homogeneity or dose conformity of the target volume. Conclusions: Following the promising results of gEUD-based optimization in intensity modulated radiation therapy treatment optimization, as reported in the literature, the implementation of a similar model in HDR brachytherapy treatment plan optimization is suggested by this study. The potential of improved sparing of organs at risk was shown for various gEUD-based optimization parameter protocols, which indicates the ability of this method to adapt to the user's preferences.

  4. Monte Carlo simulation of radiation transport and dose deposition from locally released gold nanoparticles labeled with 111In, 177Lu or 90Y incorporated into tissue implantable depots

    Science.gov (United States)

    Lai, Priscilla; Cai, Zhongli; Pignol, Jean-Philippe; Lechtman, Eli; Mashouf, Shahram; Lu, Yijie; Winnik, Mitchell A.; Jaffray, David A.; Reilly, Raymond M.

    2017-11-01

    Permanent seed implantation (PSI) brachytherapy is a highly conformal form of radiation therapy but is challenged with dose inhomogeneity due to its utilization of low energy radiation sources. Gold nanoparticles (AuNP) conjugated with electron emitting radionuclides have recently been developed as a novel form of brachytherapy and can aid in homogenizing dose through physical distribution of radiolabeled AuNP when injected intratumorally (IT) in suspension. However, the distribution is unpredictable and precise placement of many injections would be difficult. Previously, we reported the design of a nanoparticle depot (NPD) that can be implanted using PSI techniques and which facilitates controlled release of AuNP. We report here the 3D dose distribution resulting from a NPD incorporating AuNP labeled with electron emitters (90Y, 177Lu, 111In) of different energies using Monte Carlo based voxel level dosimetry. The MCNP5 Monte Carlo radiation transport code was used to assess differences in dose distribution from simulated NPD and conventional brachytherapy sources, positioned in breast tissue simulating material. We further compare these dose distributions in mice bearing subcutaneous human breast cancer xenografts implanted with 177Lu-AuNP NPD, or injected IT with 177Lu-AuNP in suspension. The radioactivity distributions were derived from registered SPECT/CT images and time-dependent dose was estimated. Results demonstrated that the dose distribution from NPD reduced the maximum dose 3-fold when compared to conventional seeds. For simulated NPD, as well as NPD implanted in vivo, 90Y delivered the most homogeneous dose distribution. The tumor radioactivity in mice IT injected with 177Lu-AuNP redistributed while radioactivity in the NPD remained confined to the implant site. The dose distribution from radiolabeled AuNP NPD were predictable and concentric in contrast to IT injected radiolabeled AuNP, which provided irregular and temporally variant dose distributions

  5. Dose determination in high dose-rate brachytherapy.

    Science.gov (United States)

    Houdek, P V; Schwade, J G; Wu, X; Pisciotta, V; Fiedler, J A; Serago, C F; Markoe, A M; Abitbol, A A; Lewin, A A; Braunschweiger, P G

    1992-01-01

    Although high dose-rate brachytherapy with a single, rapidly moving radiation source is becoming a common treatment modality, a suitable formalism for determination of the dose delivered by a moving radiation source has not yet been developed. At present, brachytherapy software simulates high dose-rate treatments using only a series of stationary sources, and consequently fails to account for the dose component delivered while the source is in motion. We now describe a practical model for determination of the true, total dose administered. The algorithm calculates both the dose delivered while the source is in motion within and outside of the implanted volume (dynamic component), and the dose delivered while the source is stationary at a series of fixed dwell points. It is shown that the dynamic dose element cannot be ignored because it always increases the dose at the prescription points and, in addition, distorts the dose distribution within and outside of the irradiated volume. Failure to account for the dynamic dose component results in dosimetric errors that range from significant (> 10%) to negligible (source activity, and source speed as defined by the implant geometry.

  6. Cochlear Implants

    Science.gov (United States)

    ... implant procedure Welcome to the Food and Drug Administration (FDA) website on cochlear implants. Cochlear implants are electronic hearing devices. Doctors implant cochlear implants into people ...

  7. Rectal complications after prostate brachytherapy.

    Science.gov (United States)

    Shah, Shimul A; Cima, Robert R; Benoit, Eric; Breen, Elizabeth L; Bleday, Ronald

    2004-09-01

    Prostate brachytherapy is gaining wide popularity as an alternative to resection for the treatment of locally advanced prostate cancer. Rectal-urethral fistula after prostate brachytherapy is a rare but serious complication, and its incidence, presentation, risk factors, and clinical management have not been well described. From January 1997 to October 2002, seven patients with rectal-urethral fistulas were referred to two institutions (Brigham and Women's Hospital and West Roxbury Veteran's Administration Hospital) of a major teaching referral center. Clinical presentation, risk factors, prostate staging, and clinical management were examined in a retrospective fashion. Seven rectal-urethral fistulas developed from roughly 700 (1 percent) patients treated with prostate brachytherapy for prostate cancer. The average patient age was 67.7 years, preimplant prostate-specific antigen was 7.1, and Gleason score was 3+3. Symptoms occurred at a mean of 27.3 months after prostate brachytherapy was started and included anorectal pain (57 percent), clear mucous discharge (57 percent), diarrhea (43 percent), and rectal ulceration (43 percent). Coronary artery disease was a common comorbidity (71 percent). Previous transurethral resection of prostate (28 percent) and pelvic irradiation or external beam radiation therapy (14 percent) were not associated with increased risk of rectal-urethral fistula. All patients underwent a diverting colostomy (86 percent) or ileostomy (14 percent), and four patients went on to have definitive therapy. Definitive resection was performed between 5 and 43 months after diverting ostomy and was chosen on the basis of comorbid disease, quality of life, and degree of operation. Two patients required a second diversion after definitive resection because of anorectal pain and a colocutaneous fistula. Postoperative complications included myocardial infarction (14 percent), blood transfusion (14 percent), and bowel perforation (14 percent). Patients

  8. Bladder wall recurrence of prostate cancer after high-dose-rate brachytherapy.

    Science.gov (United States)

    Raleigh, David R; Hsu, I-Chow; Braunstein, Steve; Chang, Albert J; Simko, Jeffry P; Roach, Mack

    2015-01-01

    Prostate cancer seeding after needle biopsy has been reported in the perineum, rectal wall, and periprostatic soft tissue. In this article, we report the results of a localized prostate cancer recurrence in the bladder following protrusion of a single high-dose-rate brachytherapy catheter through the bladder wall at the ultimate site of failure. A 62-year-old man with high-risk prostate adenocarcinoma was treated with long-term androgen deprivation therapy, intensity-modulated radiation, and high-dose-rate brachytherapy boost. He developed biochemical recurrence 4 years after treatment, and a CT scan of the pelvis revealed a nodule in the posterior, inferior bladder wall. Surgical pathology following transurethral resection of tumor within the bladder was consistent with high-grade prostate adenocarcinoma. The patient's prostate-specific antigen level fell to the range of normal postoperatively, and whole body imaging, including a multi-parametric MRI of the prostate with diffusion and spectroscopy, failed to reveal any other sites of disease. Review of the CT scan obtained for dosimetry at the time of brachytherapy demonstrated a lone catheter protruding through the bladder wall at the site of eventual recurrence. The tumor recurred in the bladder 12 months later, once more without evidence of disease within the prostate itself or distantly, and the patient was started on salvage androgen deprivation therapy. This case is the first report of prostate cancer recurrence in the bladder wall after brachytherapy and raises questions about prostate cancer biology, brachytherapy technique, and the timing of brachytherapy boost relative to whole pelvic radiotherapy for prostate cancer. Published by Elsevier Inc.

  9. Afterloading: The Technique That Rescued Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Aronowitz, Jesse N., E-mail: jesse.aronowitz@umassmemorial.org

    2015-07-01

    Although brachytherapy had been established as a highly effective modality for the treatment of cancer, its application was threatened by mid-20th century due to appreciation of the radiation hazard to health care workers. This review examines how the introduction of afterloading eliminated exposure and ushered in a brachytherapy renaissance.

  10. Intraoperative HDR Brachytherapy: Present and Future

    NARCIS (Netherlands)

    I.-K.K. Kolkman-Deurloo (Inger-Karina)

    2007-01-01

    textabstractRadiotherapy is one of the most effective modalities in cancer treatment, and can be applied either by external beam radiotherapy or by brachytherapy. Brachytherapy is a treatment modality in which tumors are irradiated by positioning radioactive sources very close to or in the tumor

  11. Brachytherapy in breast cancer: an effective alternative

    Science.gov (United States)

    Chicheł, Adam

    2014-01-01

    Breast conserving surgery (BCS) with following external beam radiation therapy (EBRT) of the conserved breast has become widely accepted in the last decades for the treatment of early invasive breast cancer. The standard technique of EBRT after BCS is to treat the whole breast up to a total dose of 42.5 to 50 Gy. An additional dose is given to treated volume as a boost to a portion of the breast. In the early stage of breast cancer, research has shown that the area requiring radiation treatment to prevent the cancer from local recurrence is the breast tissue that surrounds the area where the initial cancer was removed. Accelerated partial breast irradiation (APBI) is an approach that treats only the lumpectomy bed plus a 1-2 cm margin rather than the whole breast and as a result allows accelerated delivery of the radiation dose in four to five days. There has been a growing interest for APBI and various approaches have been developed under phase I-III clinical studies; these include multicatheter interstitial brachytherapy, balloon catheter brachytherapy, conformal external beam radiation therapy (3D-EBRT) and intra-operative radiation therapy (IORT). Balloon-based brachytherapy approaches include MammoSite, Axxent electronic brachytherapy, Contura, hybrid brachytherapy devices. Another indication for breast brachytherapy is reirradiation of local recurrence after mastectomy. Published results of brachytherapy are very promising. We discuss the current status, indications, and technical aspects of breast cancer brachytherapy. PMID:26327829

  12. Dynamic rotating-shield brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yunlong [Department of Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center, Iowa City, Iowa 52242 (United States); Flynn, Ryan T.; Kim, Yusung [Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 (United States); Yang, Wenjun [Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705 (United States); Wu, Xiaodong [Department of Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center, Iowa City, Iowa 52242 and Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 (United States)

    2013-12-15

    Purpose: To present dynamic rotating shield brachytherapy (D-RSBT), a novel form of high-dose-rate brachytherapy (HDR-BT) with electronic brachytherapy source, where the radiation shield is capable of changing emission angles during the radiation delivery process.Methods: A D-RSBT system uses two layers of independently rotating tungsten alloy shields, each with a 180° azimuthal emission angle. The D-RSBT planning is separated into two stages: anchor plan optimization and optimal sequencing. In the anchor plan optimization, anchor plans are generated by maximizing the D{sub 90} for the high-risk clinical-tumor-volume (HR-CTV) assuming a fixed azimuthal emission angle of 11.25°. In the optimal sequencing, treatment plans that most closely approximate the anchor plans under the delivery-time constraint will be efficiently computed. Treatment plans for five cervical cancer patients were generated for D-RSBT, single-shield RSBT (S-RSBT), and {sup 192}Ir-based intracavitary brachytherapy with supplementary interstitial brachytherapy (IS + ICBT) assuming five treatment fractions. External beam radiotherapy doses of 45 Gy in 25 fractions of 1.8 Gy each were accounted for. The high-risk clinical target volume (HR-CTV) doses were escalated such that the D{sub 2cc} of the rectum, sigmoid colon, or bladder reached its tolerance equivalent dose in 2 Gy fractions (EQD2 with α/β= 3 Gy) of 75 Gy, 75 Gy, or 90 Gy, respectively.Results: For the patients considered, IS + ICBT had an average total dwell time of 5.7 minutes/fraction (min/fx) assuming a 10 Ci{sup 192}Ir source, and the average HR-CTV D{sub 90} was 78.9 Gy. In order to match the HR-CTV D{sub 90} of IS + ICBT, D-RSBT required an average of 10.1 min/fx more delivery time, and S-RSBT required 6.7 min/fx more. If an additional 20 min/fx of delivery time is allowed beyond that of the IS + ICBT case, D-RSBT and S-RSBT increased the HR-CTV D{sub 90} above IS + ICBT by an average of 16.3 Gy and 9.1 Gy, respectively

  13. Health-related quality of life after permanent interstitial brachytherapy for prostate cancer. Correlation with postimplant CT scan parameters

    Energy Technology Data Exchange (ETDEWEB)

    Pinkawa, M.; Fischedick, K.; Piroth, M.D.; Gagel, B.; Eble, M.J. [RWTH Aachen (Germany). Dept. of Radiotherapy; Borchers, H.; Jakse, G. [RWTH Aachen (Germany). Dept. of Urology

    2006-11-15

    Purpose: To determine dosimetric risk factors for increased toxicity after permanent interstitial brachytherapy for prostate cancer. Patients and Methods: Quality of life questionnaires (Expanded Prostate Cancer Index Composite) of 60 and 56 patients were analyzed after a median posttreatment time of 6 weeks (A - acute) and 16 months (L - late). The corresponding CT scans were performed 30 days after the implant. The prostate, rectal wall, and base of seminal vesicles were contoured. Prostate volume, number of seeds and needles as well as dosimetric parameters were correlated with the morbidity scores. Results: For a prostate volume of 38{+-}12 cm{sup 3} (mean{+-}standard deviation), 54{+-}7 {sup 125}I sources (Rapid Strands {sup registered}, activity of 22.6{+-}3.0 MBq [0.61{+-}0.08 mCi]) were implanted using 20{+-}6 needles. Improved late urinary function scores resulted from a higher number sources per cm{sup 3} ({>=}1.35). A prostate D{sub 90}<170 Gy (A)/<185 Gy (L) and base of seminal vesicle D{sub 10}<190 Gy (A and L) were associated with higher urinary function scores. Late rectal function scores were significantly higher for patients with a prostate V{sub 200}<50% and V{sub 150}<75%. Patients with a prostate volume <40 cm{sup 3} reached better sexual function scores (A and L). A higher number of needles per cm{sup 3} ({>=}0.5) resulted in improved late urinary, bowel and sexual function scores. Conclusion: Quality of life after a permanent implant can be improved by using an adequate amount of sources and needles. With an increasing number of seeds per cm{sup 3}, dose homogeneity is improving. A prostate D{sub 90}<170 Gy and a base of seminal vesicle D{sub 10}<190 Gy (as an indicator of the dose to the bladder neck and urethral sphincter) can be recommended to maintain a satisfactory urinary function. (orig.)

  14. High dose rate brachytherapy for oral cancer

    Science.gov (United States)

    YamazakI, Hideya; Yoshida, Ken; Yoshioka, Yasuo; Shimizutani, Kimishige; Furukawa, Souhei; Koizumi, Masahiko; Ogawa, Kazuhiko

    2013-01-01

    Brachytherapy results in better dose distribution compared with other treatments because of steep dose reduction in the surrounding normal tissues. Excellent local control rates and acceptable side effects have been demonstrated with brachytherapy as a sole treatment modality, a postoperative method, and a method of reirradiation. Low-dose-rate (LDR) brachytherapy has been employed worldwide for its superior outcome. With the advent of technology, high-dose-rate (HDR) brachytherapy has enabled health care providers to avoid radiation exposure. This therapy has been used for treating many types of cancer such as gynecological cancer, breast cancer, and prostate cancer. However, LDR and pulsed-dose-rate interstitial brachytherapies have been mainstays for head and neck cancer. HDR brachytherapy has not become widely used in the radiotherapy community for treating head and neck cancer because of lack of experience and biological concerns. On the other hand, because HDR brachytherapy is less time-consuming, treatment can occasionally be administered on an outpatient basis. For the convenience and safety of patients and medical staff, HDR brachytherapy should be explored. To enhance the role of this therapy in treatment of head and neck lesions, we have reviewed its outcomes with oral cancer, including Phase I/II to Phase III studies, evaluating this technique in terms of safety and efficacy. In particular, our studies have shown that superficial tumors can be treated using a non-invasive mold technique on an outpatient basis without adverse reactions. The next generation of image-guided brachytherapy using HDR has been discussed. In conclusion, although concrete evidence is yet to be produced with a sophisticated study in a reproducible manner, HDR brachytherapy remains an important option for treatment of oral cancer. PMID:23179377

  15. Study of dose calculation on breast brachytherapy using prism TPS

    Energy Technology Data Exchange (ETDEWEB)

    Fendriani, Yoza; Haryanto, Freddy [Nuclear Physics and Biophysics Research Division, FMIPA Institut Teknologi Bandung, Physics Buildings, Jl. Ganesha 10, Bandung 40132 (Indonesia)

    2015-09-30

    PRISM is one of non-commercial Treatment Planning System (TPS) and is developed at the University of Washington. In Indonesia, many cancer hospitals use expensive commercial TPS. This study aims to investigate Prism TPS which been applied to the dose distribution of brachytherapy by taking into account the effect of source position and inhomogeneities. The results will be applicable for clinical Treatment Planning System. Dose calculation has been implemented for water phantom and CT scan images of breast cancer using point source and line source. This study used point source and line source and divided into two cases. On the first case, Ir-192 seed source is located at the center of treatment volume. On the second case, the source position is gradually changed. The dose calculation of every case performed on a homogeneous and inhomogeneous phantom with dimension 20 × 20 × 20 cm{sup 3}. The inhomogeneous phantom has inhomogeneities volume 2 × 2 × 2 cm{sup 3}. The results of dose calculations using PRISM TPS were compared to literature data. From the calculation of PRISM TPS, dose rates show good agreement with Plato TPS and other study as published by Ramdhani. No deviations greater than ±4% for all case. Dose calculation in inhomogeneous and homogenous cases show similar result. This results indicate that Prism TPS is good in dose calculation of brachytherapy but not sensitive for inhomogeneities. Thus, the dose calculation parameters developed in this study were found to be applicable for clinical treatment planning of brachytherapy.

  16. Using matrix summation method for three dimensional dose calculation in brachytherapy.

    Science.gov (United States)

    Zibandeh-Gorji, Mahmoud; Mowlavi, Ali Asghar; Mohammadi, Saeed

    2012-01-01

    The purpose of this study is to calculate radiation dose around a brachytherapy source in a water phantom for different seed locations or rotation the sources by the matrix summation method. Monte Carlo based codes like MCNP are widely used for performing radiation transport calculations and dose evaluation in brachytherapy. But for complicated situations, like using more than one source, moving or rotating the source, the routine Monte Carlo method for dose calculation needs a long time running. The MCNPX code has been used to calculate radiation dose around a (192)Ir brachytherapy source and saved in a 3D matrix. Then, we used this matrix to evaluate the absorbed dose in any point due to some sources or a source which shifted or rotated in some places by the matrix summation method. Three dimensional (3D) dose results and isodose curves were presented for (192)Ir source in a water cube phantom shifted for 10 steps and rotated for 45 and 90° based on the matrix summation method. Also, we applied this method for some arrays of sources. The matrix summation method can be used for 3D dose calculations for any brachytherapy source which has moved or rotated. This simple method is very fast compared to routine Monte Carlo based methods. In addition, it can be applied for dose optimization study.

  17. Novel Use of the Contura for High Dose Rate Cranial Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Scanderbeg, Daniel J., E-mail: dscanderbeg@ucsd.edu [Department of Radiation Oncology, University of California at San Diego, La Jolla, CA (United States); Center for Advanced Radiotherapy Technologies, Rebecca and John Moores Comprehensive Cancer Center, University of California at San Diego, La Jolla, CA (United States); Alksne, John F. [Division of Neurological Surgery, University of California at San Diego, La Jolla, CA (United States); Lawson, Joshua D. [Department of Radiation Oncology, University of California at San Diego, La Jolla, CA (United States); Center for Advanced Radiotherapy Technologies, Rebecca and John Moores Comprehensive Cancer Center, University of California at San Diego, La Jolla, CA (United States); Murphy, Kevin T. [Department of Radiation Oncology, University of California at San Diego, La Jolla, CA (United States)

    2011-01-01

    A popular choice for treatment of recurrent gliomas was cranial brachytherapy using the GliaSite Radiation Therapy System. However, this device was taken off the market in late 2008, thus leaving a treatment void. This case study presents our experience treating a cranial lesion for the first time using a Contura multilumen, high-dose-rate (HDR) brachytherapy balloon applicator. The patient was a 47-year-old male who was diagnosed with a recurrent right frontal anaplastic oligodendroglioma. Previous radiosurgery made him a good candidate for brachytherapy. An intracavitary HDR balloon brachytherapy device (Contura) was placed in the resection cavity and treated with a single fraction of 20 Gy. The implant, treatment, and removal of the device were all completed without incident. Dosimetry of the device was excellent because the dose conformed very well to the target. V90, V100, V150, and V200 were 98.9%, 95.7%, 27.2, and 8.8 cc, respectively. This patient was treated successfully using the Contura multilumen balloon. Contura was originally designed for deployment in a postlumpectomy breast for treatment by accelerated partial breast irradiation. Being an intracavitary balloon device, its similarity to the GliaSite system makes it a viable replacement candidate. Multiple lumens in the device also make it possible to shape the dose delivered to the target, something not possible before with the GliaSite applicator.

  18. A fully actuated robotic assistant for MRI-guided prostate biopsy and brachytherapy

    Science.gov (United States)

    Li, Gang; Su, Hao; Shang, Weijian; Tokuda, Junichi; Hata, Nobuhiko; Tempany, Clare M.; Fischer, Gregory S.

    2013-03-01

    Intra-operative medical imaging enables incorporation of human experience and intelligence in a controlled, closed-loop fashion. Magnetic resonance imaging (MRI) is an ideal modality for surgical guidance of diagnostic and therapeutic procedures, with its ability to perform high resolution, real-time, high soft tissue contrast imaging without ionizing radiation. However, for most current image-guided approaches only static pre-operative images are accessible for guidance, which are unable to provide updated information during a surgical procedure. The high magnetic field, electrical interference, and limited access of closed-bore MRI render great challenges to developing robotic systems that can perform inside a diagnostic high-field MRI while obtaining interactively updated MR images. To overcome these limitations, we are developing a piezoelectrically actuated robotic assistant for actuated percutaneous prostate interventions under real-time MRI guidance. Utilizing a modular design, the system enables coherent and straight forward workflow for various percutaneous interventions, including prostate biopsy sampling and brachytherapy seed placement, using various needle driver configurations. The unified workflow compromises: 1) system hardware and software initialization, 2) fiducial frame registration, 3) target selection and motion planning, 4) moving to the target and performing the intervention (e.g. taking a biopsy sample) under live imaging, and 5) visualization and verification. Phantom experiments of prostate biopsy and brachytherapy were executed under MRI-guidance to evaluate the feasibility of the workflow. The robot successfully performed fully actuated biopsy sampling and delivery of simulated brachytherapy seeds under live MR imaging, as well as precise delivery of a prostate brachytherapy seed distribution with an RMS accuracy of 0.98mm.

  19. A comparison of postimplant dosimetry for {sup 103}Pd versus {sup 131}Cs seeds on a retrospective series of PBSI patients

    Energy Technology Data Exchange (ETDEWEB)

    Ravi, Ananth; Keller, Brian M.; Pignol, Jean-Philippe [Department of Medical Physics, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada); Departments of Medical Physics and Radiation Oncology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada); Department of Radiation Oncology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada)

    2011-11-15

    Purpose: Permanent breast seed implantation (PBSI) is an accelerated partial breast irradiation technique performed using stranded {sup 103}Pd radioactive seeds (average energy of 21 keV, 16.97 day half-life). Since 2004, {sup 131}Cs brachytherapy sources have become clinically available. The {sup 131}Cs radionuclide has a higher energy (average energy of 30 keV) and a shorter half-life (9.7 days) than {sup 103}Pd. The purpose of this study was to determine whether or not there are dosimetric benefits to using {sup 131}Cs brachytherapy seeds for PBSI. Methods: The prescribed dose for PBSI using {sup 103}Pd is 90 Gy, which was adjusted for {sup 131}Cs implants to account for the shorter half-life. A retrospective cohort of 30 patients, who have already undergone a {sup 103}Pd implant, was used for this study. The treatments were planned using the Variseed treatment planning system. The air kerma strength of the {sup 131}Cs seeds was adjusted in all preimplantation treatment plans so that the V{sub 100} (the volume within the target that receives 100% or more of the prescribed dose) were equivalent at time of implantation. Two month follow-up CT scans were available for all 30 patients and each patient was reevaluated using {sup 131}Cs seeds. The postimplant dosimetric parameters were compared using a two tailed t-test. Results: The prescribed dose for {sup 131}Cs was calculated to be 77 Gy; this dose would have the same biological effect as a PBSI implant with {sup 103}Pd of 90 Gy. The activities of the {sup 131}Cs sources were adjusted to an average of 2.2 {+-} 0.8 U for {sup 131}Cs compared to 2.5 {+-} 1.1 U for {sup 103}Pd in order to get an equivalent V{sub 100} as the {sup 103}Pd preimplants. While the use of {sup 131}Cs significantly reduces the preimplant V{sub 200} (the volume within the target that receives 200% or more of the prescribed dose) compared to {sup 103}Pd by 13.5 {+-} 9.0%, the reduction observed on the 2 month postimplant plan was 12.4 {+-} 5

  20. Fast patient-specific Monte Carlo brachytherapy dose calculations via the correlated sampling variance reduction technique

    Energy Technology Data Exchange (ETDEWEB)

    Sampson, Andrew; Le Yi; Williamson, Jeffrey F. [Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298 (United States)

    2012-02-15

    Purpose: To demonstrate potential of correlated sampling Monte Carlo (CMC) simulation to improve the calculation efficiency for permanent seed brachytherapy (PSB) implants without loss of accuracy. Methods: CMC was implemented within an in-house MC code family (PTRAN) and used to compute 3D dose distributions for two patient cases: a clinical PSB postimplant prostate CT imaging study and a simulated post lumpectomy breast PSB implant planned on a screening dedicated breast cone-beam CT patient exam. CMC tallies the dose difference, {Delta}D, between highly correlated histories in homogeneous and heterogeneous geometries. The heterogeneous geometry histories were derived from photon collisions sampled in a geometrically identical but purely homogeneous medium geometry, by altering their particle weights to correct for bias. The prostate case consisted of 78 Model-6711 {sup 125}I seeds. The breast case consisted of 87 Model-200 {sup 103}Pd seeds embedded around a simulated lumpectomy cavity. Systematic and random errors in CMC were unfolded using low-uncertainty uncorrelated MC (UMC) as the benchmark. CMC efficiency gains, relative to UMC, were computed for all voxels, and the mean was classified in regions that received minimum doses greater than 20%, 50%, and 90% of D{sub 90}, as well as for various anatomical regions. Results: Systematic errors in CMC relative to UMC were less than 0.6% for 99% of the voxels and 0.04% for 100% of the voxels for the prostate and breast cases, respectively. For a 1 x 1 x 1 mm{sup 3} dose grid, efficiency gains were realized in all structures with 38.1- and 59.8-fold average gains within the prostate and breast clinical target volumes (CTVs), respectively. Greater than 99% of the voxels within the prostate and breast CTVs experienced an efficiency gain. Additionally, it was shown that efficiency losses were confined to low dose regions while the largest gains were located where little difference exists between the homogeneous and

  1. Cochlear implant

    Science.gov (United States)

    Hearing loss - cochlear implant; Sensorineural - cochlear; Deaf - cochlear; Deafness - cochlear ... of the cochlear implant. WHO USES A COCHLEAR IMPLANT? Cochlear implants allow deaf people to receive and process ...

  2. Development of a high-precision xyz-measuring table for the determination of the 3D dose rate distributions of brachytherapy sources.

    Science.gov (United States)

    Eichmann, M; Krause, T; Flühs, D; Spaan, B

    2012-11-21

    An xyz-measuring table with a modular design has been developed for the determination of the individual 3D dose rate distributions of different brachytherapy sources requiring a high spatial resolution and reproducibility. The instrumental setup consists of a plastic scintillator detector system and the xyz-measuring table for guiding the detector across the radioactive sources. For this purpose, a micro positioning system with piezo inertial drives is chosen, providing a step width of 450 nm. To ensure a high reproducibility and accuracy better than 1 μm, an exposed linear encoder controls the positioning. The successful operation of the xyz-measuring table is exemplarily shown by measurements of dose profiles of two brachytherapy sources, an ophthalmic plaque and a radioactive seed. The setup allows a fully automated quality assurance of ophthalmic plaques and radioactive seeds under clinical conditions and can be extended to other (brachytherapy) sources of similar dimensions.

  3. Clinical implementation of a new electronic brachytherapy system for skin brachytherapy

    OpenAIRE

    Pons-Llanas, Olga; Ballester-S?nchez, Rosa; Celada-?lvarez, Francisco Javier; Candela-Juan, Cristian; Garc?a-Mart?nez, Teresa; Llavador-Ros, Margarita; Botella-Estrada, Rafael; Barker, Christopher A.; Ballesta, Antonio; Tormo-Mic?, Alejandro; Rodr?guez, Silvia; Perez-Calatayud, Jose

    2014-01-01

    Although surgery is usually the first-line treatment for nonmelanoma skin cancers, radiotherapy (RT) may be indicated in selected cases. Radiation therapy as primary therapy can result in excellent control rates, cosmetics, and quality of life. Brachytherapy is a radiation treatment modality that offers the most conformal option to patients. A new modality for skin brachytherapy is electronic brachytherapy. This involves the placement of a high dose rate X-ray source directly in a skin applic...

  4. Influence of source batch Sk dispersion on dosimetry for prostate cancer treatment with permanent implants

    DEFF Research Database (Denmark)

    Nunez-Cumplido, Eduardo; Perez-Calatayud, J; Casares-Magaz, O

    2015-01-01

    PURPOSE: In clinical practice, specific air kerma strength (SK) value is used in treatment planning system (TPS) permanent brachytherapy implant calculations with (125)I and (103)Pd sources; in fact, commercial TPS provide only one SK input value for all implanted sources and the certified shipment...

  5. Vivo dosimetry using TLD detectors in prostate seed implants of I-125: preliminary results; Dosimetria in vivo mediante detectores de TLD en implantes de prostata con semillas de I-125: resultados preliminares

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Reyes, A.; Pedro, A.; Bassas, P.; Duch, M. A.; Cros, M.; Mane, S.

    2011-07-01

    We present preliminary results of a new in vivo dosimetry technique that could allow to know immediately after implantation of the prostate if the dose distribution determined by the scheduler is similar to the actual dose measured with TLD detectors.

  6. Hypofractionated image guided radiation therapy followed by prostate seed implant boost for men with newly diagnosed intermediate and high risk adenocarcinoma of the prostate: Preliminary results of a phase 2 prospective study

    Directory of Open Access Journals (Sweden)

    Steven Gresswell, MD

    2016-10-01

    Conclusions: Early results on the toxicity and efficacy of the combination of hypofractionated IG-IMRT and low-dose-rate brachytherapy boost are favorable. Longer follow-up is needed to confirm safety and effectiveness.

  7. A hybrid deformable model for simulating prostate brachytherapy

    Science.gov (United States)

    Levin, David; Fenster, Aaron; Ladak, Hanif M.

    2006-03-01

    Ultrasound (US) guided prostate brachytherapy is a minimally invasive form of cancer treatment during which a needle is used to insert radioactive seeds into the prostate at pre-planned positions. Interaction with the needle can cause the prostate to deform and this can lead to inaccuracy in seed placement. Virtual reality (VR) simulation could provide a way for surgical residents to practice compensating for these deformations. To facilitate such a tool, we have developed a hybrid deformable model that combines ChainMail distance constraints with mass-spring physics to provide realistic, yet customizable deformations. Displacements generated by the model were used to warp a baseline US image to simulate an acquired US sequence. The algorithm was evaluated using a gelatin phantom with a Young's modulus approximately equal to that of the prostate (60 kPa). A 2D US movie was acquired while the phantom underwent needle insertion and inter-frame displacements were calculated using normalized cross correlation. The hybrid model was used to simulate the same needle insertion and the two sets of displacements were compared on a frame-by-frame basis. The average perpixel displacement error was 0.210 mm. A simulation rate of 100 frames per second was achieved using a 1000 element triangular mesh while warping a 300x400 pixel US image on an AMD Athlon 1.1 Ghz computer with 1 GB of RAM and an ATI Radeon 9800 Pro graphics card. These results show that this new deformable model can provide an accurate solution to the problem of simulating real-time prostate brachytherapy.

  8. Iodine-125 Seeds Strand for Treatment of Tumor Thrombus in Inferior Vena Cava: An Experimental Study in a Rabbit Model

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wen, E-mail: wenzhangxiao@126.com; Yan, Zhiping, E-mail: Yan.zhiping@zs-hospital.sh.cn; Luo, Jianjun, E-mail: luo.jianjun@zs-hospital.sh.cn; Fang, Zhuting, E-mail: 470389481@qq.com; Wu, Linlin, E-mail: linlinzhifubao@126.com; Liu, QingXin, E-mail: liu.qingxin@zs-hospital.sh.cn; Qu, Xudong, E-mail: qu.xudong@zs-hospital.sh.cn; Liu, Lingxiao, E-mail: liu.lingxiao@zs-hospital.sh.cn; Wang, Jianhua, E-mail: wang.jianhua@zs-hospital.sh.cn [Fudan University, Department of Interventional Radiology, Zhongshan Hospital (China)

    2013-10-15

    Objective: The purpose of this study was to establish an animal model of implanted inferior vena cava tumor thrombus (IVCTT) and to evaluate the effect of linear iodine-125 seeds strand in treating implanted IVCTT. Methods: Tumor cell line VX{sub 2} was inoculated subcutaneously into New Zealand rabbit to develop the parent tumor. The tumor strip was inoculated into inferior vena cava (IVC) to establish the IVCTT model. The IVCTT was confirmed by multidetector computed tomography (MDCT) after 2 weeks. Twelve rabbits with IVCTT were randomly divided into two groups. Treatment group (group T; n = 6) underwent Iodine-125 seeds brachytherapy, and the control group (group C; n = 6) underwent blank seeds strand. The blood laboratory examination (including blood routine examination, hepatic and renal function), body weight, survival time, and IVCTT volume by MDCT were monitored. All rabbits were dissected postmortem, and the therapeutic effects were evaluated on the basis of histopathology. The proliferating cell nuclear antigen index (PI) and apoptosis index (AI) of IVCTT were compared between two groups. T test, Wilcoxon rank test, and Kaplan-Meier survival curve analysis were used. Results: The success rate of establishing IVCTT was 100 %. The body weight loss and cachexia of rabbits in group C appeared earlier than in group T. Body weight in the third week, the mean survival time, PI, AI in groups T and C were 2.23 {+-} 0.12 kg, 57.83 {+-} 8.68 days, (16.73 {+-} 5.18 %), (29.47 {+-} 7.18 %), and 2.03 {+-} 0.13 kg, 43.67 {+-} 5.28 days, (63.01 {+-} 2.01 %), (6.02 {+-} 2.93 %), respectively. There were statistically significant differences between group T and group C (P < 0.05). The IVCTT volume of group T was remarkably smaller than that of group C. Conclusions: Injecting and suspensory fixing VX2 tumor strip into IVC is a reliable method to establish IVCTT animal model. The linear Iodine-125 seeds strand brachytherapy was a safe and effective method for treating IVCTT

  9. Distant metastases following permanent interstitial brachytherapy for patients with clinically localized prostate cancer.

    Science.gov (United States)

    Taira, Al V; Merrick, Gregory S; Galbreath, Robert W; Butler, Wayne M; Lief, Jonathan; Adamovich, Edward; Wallner, Kent E

    2012-02-01

    Recent publications have suggested high-risk patients undergoing radical prostatectomy have a lower risk of distant metastases and improved cause-specific survival (CSS) than patients receiving definitive external beam radiation therapy (XRT). To date, none of these studies has compared distant metastases and CSS in brachytherapy patients. In this study, we evaluate such parameters in a consecutive cohort of brachytherapy patients. From April 1995 to June 2007, 1,840 consecutive patients with clinically localized prostate cancer were treated with brachytherapy. Risk groups were stratified according to National Comprehensive Cancer Network (www.nccn.org) guidelines. Subgroups of 658, 893, and 289 patients were assigned to low, intermediate, and high-risk categories. Median follow-up was 7.2 years. Along with brachytherapy implantation, 901 (49.0%) patients received supplemental XRT, and 670 (36.4%) patients received androgen deprivation therapy (median duration, 4 months). The mode of failure (biochemical, local, or distant) was determined for each patient for whom therapy failed. Cause of death was determined for each deceased patient. Multiple parameters were evaluated for impact on outcome. For the entire cohort, metastases-free survival (MFS) and CSS at 12 years were 98.1% and 98.2%, respectively. When rates were stratified by low, intermediate, and high-risk groups, the 12-year MFS was 99.8%, 98.1%, and 93.8% (p treatment, whereas CSS was most closely associated with Gleason score. Excellent CSS and MFS rates are achievable with high-quality brachytherapy for low, intermediate, and high-risk patients. These results compare favorably to alternative treatment modalities. In particular, our MFS and CSS rates for high-risk patients appear superior to those of published radical prostatectomy series. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Evaluation of a Machine-Learning Algorithm for Treatment Planning in Prostate Low-Dose-Rate Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Nicolae, Alexandru [Department of Physics, Ryerson University, Toronto, Ontario (Canada); Department of Medical Physics, Odette Cancer Center, Sunnybrook Health Sciences Centre, Toronto, Ontario (Canada); Morton, Gerard; Chung, Hans; Loblaw, Andrew [Department of Radiation Oncology, Odette Cancer Center, Sunnybrook Health Sciences Centre, Toronto, Ontario (Canada); Jain, Suneil; Mitchell, Darren [Department of Clinical Oncology, The Northern Ireland Cancer Centre, Belfast City Hospital, Antrim, Northern Ireland (United Kingdom); Lu, Lin [Department of Radiation Therapy, Odette Cancer Center, Sunnybrook Health Sciences Centre, Toronto, Ontario (Canada); Helou, Joelle; Al-Hanaqta, Motasem [Department of Radiation Oncology, Odette Cancer Center, Sunnybrook Health Sciences Centre, Toronto, Ontario (Canada); Heath, Emily [Department of Physics, Carleton University, Ottawa, Ontario (Canada); Ravi, Ananth, E-mail: ananth.ravi@sunnybrook.ca [Department of Medical Physics, Odette Cancer Center, Sunnybrook Health Sciences Centre, Toronto, Ontario (Canada)

    2017-03-15

    Purpose: This work presents the application of a machine learning (ML) algorithm to automatically generate high-quality, prostate low-dose-rate (LDR) brachytherapy treatment plans. The ML algorithm can mimic characteristics of preoperative treatment plans deemed clinically acceptable by brachytherapists. The planning efficiency, dosimetry, and quality (as assessed by experts) of preoperative plans generated with an ML planning approach was retrospectively evaluated in this study. Methods and Materials: Preimplantation and postimplantation treatment plans were extracted from 100 high-quality LDR treatments and stored within a training database. The ML training algorithm matches similar features from a new LDR case to those within the training database to rapidly obtain an initial seed distribution; plans were then further fine-tuned using stochastic optimization. Preimplantation treatment plans generated by the ML algorithm were compared with brachytherapist (BT) treatment plans in terms of planning time (Wilcoxon rank sum, α = 0.05) and dosimetry (1-way analysis of variance, α = 0.05). Qualitative preimplantation plan quality was evaluated by expert LDR radiation oncologists using a Likert scale questionnaire. Results: The average planning time for the ML approach was 0.84 ± 0.57 minutes, compared with 17.88 ± 8.76 minutes for the expert planner (P=.020). Preimplantation plans were dosimetrically equivalent to the BT plans; the average prostate V150% was 4% lower for ML plans (P=.002), although the difference was not clinically significant. Respondents ranked the ML-generated plans as equivalent to expert BT treatment plans in terms of target coverage, normal tissue avoidance, implant confidence, and the need for plan modifications. Respondents had difficulty differentiating between plans generated by a human or those generated by the ML algorithm. Conclusions: Prostate LDR preimplantation treatment plans that have equivalent quality to plans created

  11. Comprehensive brachytherapy physical and clinical aspects

    CERN Document Server

    Baltas, Dimos; Meigooni, Ali S; Hoskin, Peter J

    2013-01-01

    Modern brachytherapy is one of the most important oncological treatment modalities requiring an integrated approach that utilizes new technologies, advanced clinical imaging facilities, and a thorough understanding of the radiobiological effects on different tissues, the principles of physics, dosimetry techniques and protocols, and clinical expertise. A complete overview of the field, Comprehensive Brachytherapy: Physical and Clinical Aspects is a landmark publication, presenting a detailed account of the underlying physics, design, and implementation of the techniques, along with practical guidance for practitioners. Bridging the gap between research and application, this single source brings together the technological basis, radiation dosimetry, quality assurance, and fundamentals of brachytherapy. In addition, it presents discussion of the most recent clinical practice in brachytherapy including prostate, gynecology, breast, and other clinical treatment sites. Along with exploring new clinical protocols, ...

  12. Calculation of Changes in RadiationExposure due to Prostate Displacement inPermanent Prostate Brachytherapy

    Directory of Open Access Journals (Sweden)

    Zahra Siavashpour

    2010-07-01

    Full Text Available Background: Limited studies are available on the calculation of radiation exposure and its associated risks for people in contact with patients who have been treated with permanent prostate brachytherapy. In this study the changes in the radiation exposure were calculated in different stages of the bladder fullness in prostate seed brachytherapy.Methods:Magnetic resonance images of three patients with full and empty bladders and different prostate sizes (32-71 mL; mean 54.6 mL were used for Monte-Carlo dose calculations. Dose rate to skin for each patient was calculated using MCNP4c, MCNPX.Results:There were no significant differences between dose distribution in the skin relative to the changes in the prostate position due to bladder filling (P=0.05.Conclusion:Our results showed a negligible change in radiation exposure around the patient due to prostate displacement after bladder filling.

  13. Brachytherapy Application With In Situ Dose Painting Administered by Gold Nanoparticle Eluters

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Neeharika [Department of Sciences, Wentworth Institute of Technology, Boston, Massachusetts (United States); Cifter, Gizem [Department of Physics and Applied Physics, University of Massachusetts, Lowell, Massachusetts (United States); Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women' s Hospital and Harvard Medical School, Boston, Massachusetts (United States); Sajo, Erno [Department of Physics and Applied Physics, University of Massachusetts, Lowell, Massachusetts (United States); Kumar, Rajiv; Sridhar, Srinivas [Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women' s Hospital and Harvard Medical School, Boston, Massachusetts (United States); Electronic Materials Research Institute and Department of Physics, Northeastern University, Boston, Massachusetts (United States); Nguyen, Paul L.; Cormack, Robert A.; Makrigiorgos, G. Mike [Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women' s Hospital and Harvard Medical School, Boston, Massachusetts (United States); Ngwa, Wilfred, E-mail: wngwa@lroc.harvard.edu [Department of Physics and Applied Physics, University of Massachusetts, Lowell, Massachusetts (United States); Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women' s Hospital and Harvard Medical School, Boston, Massachusetts (United States)

    2015-02-01

    Purpose: Recent studies show promise that administering gold nanoparticles (GNP) to tumor cells during brachytherapy could significantly enhance radiation damage to the tumor. A new strategy proposed for sustained administration of the GNP in prostate tumors is to load them into routinely used brachytherapy spacers for customizable in situ release after implantation. This in silico study investigated the intratumor biodistribution and corresponding dose enhancement over time due to GNP released from such GNP-loaded brachytherapy spacers (GBS). Method and Materials: An experimentally determined intratumoral diffusion coefficient (D) for 10-nm nanoparticles was used to estimate D for other sizes by using the Stokes-Einstein equation. GNP concentration profiles, obtained using D, were then used to calculate the corresponding dose enhancement factor (DEF) for each tumor voxel, using dose painting-by-numbers approach, for times relevant to the considered brachytherapy sources' lifetimes. The investigation was carried out as a function of GNP size for the clinically applicable low-dose-rate brachytherapy sources iodine-125 (I-125), palladium-103 (Pd-103), and cesium-131 (Cs-131). Results: Results showed that dose enhancement to tumor voxels and subvolumes during brachytherapy can be customized by varying the size of GNP released or eluted from the GBS. For example, using a concentration of 7 mg/g GNP, significant DEF (>20%) could be achieved 5 mm from a GBS after 5, 12, 25, 46, 72, 120, and 195 days, respectively, for GNP sizes of 2, 5, 10, 20, 30, and 50 nm and for 80 nm when treating with I-125. Conclusions: Analyses showed that using Cs-131 provides the highest dose enhancement to tumor voxels. However, given its relatively longer half-life, I-125 presents the most flexibility for customizing the dose enhancement as a function of GNP size. These findings provide a useful reference for further work toward development of potential new brachytherapy application

  14. Clinical implementation of a new electronic brachytherapy system for skin brachytherapy.

    Science.gov (United States)

    Pons-Llanas, Olga; Ballester-Sánchez, Rosa; Celada-Álvarez, Francisco Javier; Candela-Juan, Cristian; García-Martínez, Teresa; Llavador-Ros, Margarita; Botella-Estrada, Rafael; Barker, Christopher A; Ballesta, Antonio; Tormo-Micó, Alejandro; Rodríguez, Silvia; Perez-Calatayud, Jose

    2015-01-01

    Although surgery is usually the first-line treatment for nonmelanoma skin cancers, radiotherapy (RT) may be indicated in selected cases. Radiation therapy as primary therapy can result in excellent control rates, cosmetics, and quality of life. Brachytherapy is a radiation treatment modality that offers the most conformal option to patients. A new modality for skin brachytherapy is electronic brachytherapy. This involves the placement of a high dose rate X-ray source directly in a skin applicator close to the skin surface, and therefore combines the benefits of brachytherapy with those of low energy X-ray radiotherapy. The Esteya electronic brachytherapy system is specifically designed for skin surface brachytherapy procedures. The purpose of this manuscript is to describe the clinical implementation of the new Esteya electronic brachytherapy system, which may provide guidance for users of this system. The information covered includes patient selection, treatment planning (depth evaluation and margin determination), patient marking, and setup. The justification for the hypofractionated regimen is described and compared with others protocols in the literature. Quality assurance (QA) aspects including daily testing are also included. We emphasize that these are guidelines, and clinical judgment and experience must always prevail in the care of patients, as with any medical treatment. We conclude that clinical implementation of the Esteya brachytherapy system is simple for patients and providers, and should allow for precise and safe treatment of nonmelanoma skin cancers.

  15. Dose volume uniformity index: a simple tool for treatment plan evaluation in brachytherapy

    Directory of Open Access Journals (Sweden)

    Ramachandran Prabhakar

    2010-07-01

    Full Text Available Purpose: In radiotherapy treatment planning, dose homogeneity inside the target volume plays a significant role in the final treatment outcome. Especially in brachytherapy where there is a steep dose gradient in the dose distribution inside the target volume, comparing the plans based on the dose homogeneity helps in assessing the high dose volume inside the final treatment plan. In brachytherapy, the dose inhomogeneity inside the target volume depends on many factors such as the type of sources, placement of these radioactive sources, distance between the applicators/implanttubes, dwell time of the source, etc. In this study, a simple index, the dose volume uniformity index (DVUI, has been proposed to study the dose homogeneity inside the target volume. This index gives the total dose volume inhomogeneity inside a given prescription isoline.Material and methods: To demonstrate the proposed DVUI in this study, a single plane implant (breast: 6 catheters, a double plane implant (breast: 9 catheters and a tongue implant (5 catheters were selected. The catheters were reconstructed from the CT image datasets in the Plato treatment planning system. The doses for the single, double and tongue implants were prescribed to the reference dose rate as per the Paris technique. DVUI was computed from the cumulative dose volume histogram.Results: For a volume receiving a uniform dose inside the prescription isoline, the DVUI is 1. Any value of DVUI > 1 shows the presence of a relatively high dose volume inside the prescription isoline. In addition to the concept of DVUI, a simple conformality index, the dose volume conformality index (DVCI, has also been proposed in this study based on the DVUI.Conclusion: The DVUI and the proposed DVCI in this study provide an easy way of comparing the rival plans in brachytherapy.

  16. Characterization of Low-Energy Photon-Emitting Brachytherapy Sources with Modified Strengths for Applications in Focal Therapy

    Science.gov (United States)

    Reed, Joshua L.

    Permanent implants of low-energy photon-emitting brachytherapy sources are used to treat a variety of cancers. Individual source models must be separately characterized due to their unique geometry, materials, and radionuclides, which all influence their dose distributions. Thermoluminescent dosimeters (TLDs) are often used for dose measurements around low-energy photon-emitting brachytherapy sources. TLDs are typically calibrated with higher energy sources such as 60Co, which requires a correction for the change in the response of the TLDs as a function of photon energy. These corrections have historically been based on TLD response to x ray bremsstrahlung spectra instead of to brachytherapy sources themselves. This work determined the TLD intrinsic energy dependence for 125I and 103Pd sources relative to 60Co, which allows for correction of TLD measurements of brachytherapy sources with factors specific to their energy spectra. Traditional brachytherapy sources contain mobile internal components and large amounts of high-Z material such as radio-opaque markers and titanium encapsulations. These all contribute to perturbations and uncertainties in the dose distribution around the source. The CivaString is a new elongated 103Pd brachytherapy source with a fixed internal geometry, polymer encapsulation, and lengths ranging from 1 to 6 cm, which offers advantages over traditional source designs. This work characterized the CivaString source and the results facilitated the formal approval of this source for use in clinical treatments. Additionally, the accuracy of a superposition technique for dose calculation around the sources with lengths >1 cm was verified. Advances in diagnostic techniques are paving the way for focal brachytherapy in which the dose is intentionally modulated throughout the target volume to focus on subvolumes that contain cancer cells. Brachytherapy sources with variable longitudinal strength (VLS) are a promising candidate for use in focal

  17. Metal artifact reduction in MRI-based cervical cancer intracavitary brachytherapy

    Science.gov (United States)

    Rao, Yuan James; Zoberi, Jacqueline E.; Kadbi, Mo; Grigsby, Perry W.; Cammin, Jochen; Mackey, Stacie L.; Garcia-Ramirez, Jose; Goddu, S. Murty; Schwarz, Julie K.; Gach, H. Michael

    2017-04-01

    Magnetic resonance imaging (MRI) plays an increasingly important role in brachytherapy planning for cervical cancer. Yet, metal tandem, ovoid intracavitary applicators, and fiducial markers used in brachytherapy cause magnetic susceptibility artifacts in standard MRI. These artifacts may impact the accuracy of brachytherapy treatment and the evaluation of tumor response by misrepresenting the size and location of the metal implant, and distorting the surrounding anatomy and tissue. Metal artifact reduction sequences (MARS) with high bandwidth RF selective excitations and turbo spin-echo readouts were developed for MRI of orthopedic implants. In this study, metal artifact reduction was applied to brachytherapy of cervical cancer using the orthopedic metal artifact reduction (O-MAR) sequence. O-MAR combined MARS features with view angle tilting and slice encoding for metal artifact correction (SEMAC) to minimize in-plane and through-plane susceptibility artifacts. O-MAR improved visualization of the tandem tip on T2 and proton density weighted (PDW) imaging in phantoms and accurately represented the diameter of the tandem. In a pilot group of cervical cancer patients (N  =  7), O-MAR significantly minimized the blooming artifact at the tip of the tandem in PDW MRI. There was no significant difference observed in artifact reduction between the weak (5 kHz, 7 z-phase encodes) and medium (10 kHz, 13 z-phase encodes) SEMAC settings. However, the weak setting allowed a significantly shorter acquisition time than the medium setting. O-MAR also reduced susceptibility artifacts associated with metal fiducial markers so that they appeared on MRI at their true dimensions.

  18. SU-G-201-02: Application of RayStretch in Clinical Cases: A Calculation for Heterogeneity Corrections in LDR Permanent I-125 Prostate Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Hueso-Gonzalez, F [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology, Dresden (Germany); Vijande, J [University of Valencia, Burjassot and IFIC (CSIC-UV) (Spain); Ballester, F [University of Valencia, Burjassot (Spain); Perez-Calatayud, J [Hospital Clinica Benidorm, Benidorm, and Hospital Universitari i Politecnic La Fe, Valencia (Spain); Siebert, F [Clinic of Radiotherapy (Radiooncology), Kiel (Germany)

    2016-06-15

    Purpose: Tissue heterogeneities and calcifications have significant impact on the dosimetry of low energy brachytherapy (BT). RayStretch is an analytical algorithm developed in our institution to incorporate heterogeneity corrections in LDR prostate brachytherapy. The aim of this work is to study its application in clinical cases by comparing its predictions with the results obtained with TG-43 and Monte Carlo (MC) simulations. Methods: A clinical implant (71 I-125 seeds, 15 needles) from a real patient was considered. On this patient, different volumes with calcifications were considered. Its properties were evaluated in three ways by i) the Treatment planning system (TPS) (TG-43), ii) a MC study using the Penelope2009 code, and iii) RayStretch. To analyse the performance of RayStretch, calcifications located in the prostate lobules covering 11% of the total prostate volume and larger calcifications located in the lobules and underneath the urethra for a total occupied volume of 30% were considered. Three mass densities (1.05, 1.20, and 1.35 g/cm3) were explored for the calcifications. Therefore, 6 different scenarios ranging from small low density calcifications to large high density ones have been discussed. Results: DVH and D90 results given by RayStretch agree within 1% with the full MC simulations. Although no effort has been done to improve RayStretch numerical performance, its present implementation is able to evaluate a clinical implant in a few seconds to the same level of accuracy as a detailed MC calculation. Conclusion: RayStretch is a robust method for heterogeneity corrections in prostate BT supported on TG-43 data. Its compatibility with commercial TPSs and its high calculation speed makes it feasible for use in clinical settings for improving treatment quality. It will allow in a second phase of this project, its use during intraoperative ultrasound planning. This study was partly supported by a fellowship grant from the Spanish Ministry of

  19. 10 CFR 35.432 - Calibration measurements of brachytherapy sources.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Calibration measurements of brachytherapy sources. 35.432 Section 35.432 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Manual Brachytherapy § 35.432 Calibration measurements of brachytherapy sources. (a) Before the first medical use of a...

  20. 21 CFR 892.5730 - Radionuclide brachytherapy source.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radionuclide brachytherapy source. 892.5730... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5730 Radionuclide brachytherapy source. (a) Identification. A radionuclide brachytherapy source is a device that consists of a...

  1. 10 CFR 35.406 - Brachytherapy sources accountability.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Brachytherapy sources accountability. 35.406 Section 35....406 Brachytherapy sources accountability. (a) A licensee shall maintain accountability at all times... area. (c) A licensee shall maintain a record of the brachytherapy source accountability in accordance...

  2. In vivo dosimetry in brachytherapy.

    Science.gov (United States)

    Tanderup, Kari; Beddar, Sam; Andersen, Claus E; Kertzscher, Gustavo; Cygler, Joanna E

    2013-07-01

    In vivo dosimetry (IVD) has been used in brachytherapy (BT) for decades with a number of different detectors and measurement technologies. However, IVD in BT has been subject to certain difficulties and complexities, in particular due to challenges of the high-gradient BT dose distribution and the large range of dose and dose rate. Due to these challenges, the sensitivity and specificity toward error detection has been limited, and IVD has mainly been restricted to detection of gross errors. Given these factors, routine use of IVD is currently limited in many departments. Although the impact of potential errors may be detrimental since treatments are typically administered in large fractions and with high-gradient-dose-distributions, BT is usually delivered without independent verification of the treatment delivery. This Vision 20/20 paper encourages improvements within BT safety by developments of IVD into an effective method of independent treatment verification.

  3. In vivo dosimetry in brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Tanderup, Kari [Department of Oncology, Aarhus University Hospital, Aarhus 8000 (Denmark); Department of Clinical Medicine, Aarhus University, Aarhus 8000 (Denmark); Beddar, Sam [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States); Andersen, Claus E.; Kertzscher, Gustavo [Center of Nuclear Technologies, Technical University of Denmark, Roskilde 4000 (Denmark); Cygler, Joanna E. [Department of Physics, Ottawa Hospital Cancer Centre, Ottawa, Ontario K1H 8L6 (Canada)

    2013-07-15

    In vivo dosimetry (IVD) has been used in brachytherapy (BT) for decades with a number of different detectors and measurement technologies. However, IVD in BT has been subject to certain difficulties and complexities, in particular due to challenges of the high-gradient BT dose distribution and the large range of dose and dose rate. Due to these challenges, the sensitivity and specificity toward error detection has been limited, and IVD has mainly been restricted to detection of gross errors. Given these factors, routine use of IVD is currently limited in many departments. Although the impact of potential errors may be detrimental since treatments are typically administered in large fractions and with high-gradient-dose-distributions, BT is usually delivered without independent verification of the treatment delivery. This Vision 20/20 paper encourages improvements within BT safety by developments of IVD into an effective method of independent treatment verification.

  4. MO-FG-210-03: Intraoperative Ultrasonography-Guided Positioning of Plaque Brachytherapy in the Treatment of Choroidal Melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Lamb, J. [University of California, Los Angeles (United States)

    2015-06-15

    Ultrasound (US) is one of the most widely used imaging modalities in medical practice. Since US imaging offers real-time imaging capability, it has becomes an excellent option to provide image guidance for brachytherapy (IGBT). (1) The physics and the fundamental principles of US imaging are presented, and the typical steps required to commission an US system for IGBT is provided for illustration. (2) Application of US for prostate HDR brachytherapy, including partial prostate treatments using MR-ultrasound co-registration to enable a focused treatment on the disease within the prostate is also presented. Prostate HDR with US image guidance planning can benefit from real time visualization of the needles, and fusion of the ultrasound images with T2 weighted MR allows the focusing of the treatment to the specific areas of disease within the prostate, so that the entire gland need not be treated. Finally, (3) ultrasound guidance for an eye plaque program is presented. US can be a key component of placement and QA for episcleral plaque brachytherapy for ocular cancer, and the UCLA eye plaque program with US for image guidance is presented to demonstrate the utility of US verification of plaque placement in improving the methods and QA in episcleral plaque brachytherapy. Learning Objectives: To understand the physics of an US system and the necessary aspects of commissioning US for image guided brachytherapy (IGBT). To understand real time planning of prostate HDR using ultrasound, and its application in partial prostate treatments using MR-ultrasound fusion to focus treatment on disease within the prostate. To understand the methods and QA in applying US for localizing the target and the implant during a episcleral plaque brachytherapy procedures.

  5. Intracranial ependymoma: long-term results in a series of 21 patients treated with stereotactic (125iodine brachytherapy.

    Directory of Open Access Journals (Sweden)

    Faycal El Majdoub

    Full Text Available BACKGROUND: We evaluated the long-term outcome in patients harboring intracranial ependymomas treated with interstitial brachytherapy (IBT. METHODS: Twenty-one patients (M/F = 9/12; median age: 29 years; range: 8-70 years, diagnosed with intracranial ependymoma (1 WHO I, 11 WHO II, 9 WHO III were treated with IBT using stereotactically implanted (125Iodine seeds between 1987 and 2010, either primarily, as adjuvant therapy following incomplete resection, or as salvage treatment upon tumor recurrence. Sixteen of 21 patients underwent microsurgical resection prior to IBT; in 5 patients, IBT was performed primarily after stereotactic biopsy for histological diagnosis. The cumulative tumor surface dose ranged from 50-65 Gy treating a median tumor volume of 3.6 ml (range, 0.3-11.6 ml. A median follow-up period of 105.3 months (range, 12.7-286.2 months was evaluated. RESULTS: Actuarial 2-, 5- and 10-years overall- and disease-specific survival rates after IBT were each 90% and 100% at all times for ependymomas WHO I/II, for anaplastic ependymomas WHO III 100%, 100%, 70% and 100%, 100%, 86%, respectively. The neurological status of seven patients improved, while there was no change in 12 and deterioration in 2 patients, respectively. Follow-up MR images disclosed a complete tumor remission in 3, a partial remission in 12 and a stable disease in 6 patients. Treatment-associated morbidity only occurred in a single patient. CONCLUSIONS: This study shows that stereotactic IBT for intracranial ependymomas is safe and can provide a high degree of local tumor control. Due to the low rate of side effects, IBT may evolve into an attractive alternative to microsurgery in ependymomas located in eloquent areas or as a salvage treatment.

  6. High-dose-rate brachytherapy as a monotherapy for prostate cancer--Single-institution results of the extreme fractionation regimen.

    Science.gov (United States)

    Kukiełka, Andrzej Marek; Dąbrowski, Tomasz; Walasek, Tomasz; Olchawa, Agnieszka; Kudzia, Roksana; Dybek, Dorota

    2015-01-01

    We report a single-institution retrospective analysis of the outcomes, disease control, and toxicity of high-dose-rate (HDR) brachytherapy used as the only treatment modality (monotherapy) for localized prostate cancer. Between 2006 and 2012, 77 patients with diagnosed prostate cancer were treated with HDR brachytherapy as a monotherapy. The prescribed dose was 45 Gy in three separate implants 21 days apart, with single fraction per implant. Of the 77 patients, 67 (87%) received hormonal therapy. Prostate-specific antigen failure was defined according to Phoenix consensus, as nadir + 2 ng/mL. Toxicity was scored according to Common Terminology Criteria for Adverse Events, version 4.03. The median followup time was 57 months (4.75 years). The 5-year actuarial overall survival was 98.7%, biochemical control 96.7%, local control 96.9%, and metastasis-free survival 98.4%. Younger age at the beginning of brachytherapy predicted the onset of bounce phenomenon. There were no Grade 3 or higher acute toxicities detected, and Grade 2 genitourinary acute toxicity developed in 19 patients (24.6%). There were no Grade 2 gastrointestinal complications. No Grade 4 or 5 late toxicity was detected. There were also no Grade 3 gastrointestinal toxicities detected. One patient (1.3%) underwent transurethral resection of the prostate because of Grade 3 urethral stenosis and urinary retention. A total of 26 patients (33.8%) developed Grade 2 late toxicity. HDR brachytherapy as monotherapy for localized prostate cancer was feasible, effective, and had acceptable toxicity profile. Copyright © 2015 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  7. Sci—Fri PM: Topics — 02: Evaluation of Dosimetric Variations in Partial Breast Seed Implant (PBSI) due to Patient Arm Position (Up vs. Down)

    Energy Technology Data Exchange (ETDEWEB)

    Watt, E [Department of Physics and Astronomy, University of Calgary, Calgary, AB (Canada); Tom Baker Cancer Centre, Calgary, AB (Canada); Long, K [Tom Baker Cancer Centre, Calgary, AB (Canada); Husain, S [Tom Baker Cancer Centre, Calgary, AB (Canada); Department of Oncology, University of Calgary, Calgary, AB (Canada); Meyer, T [Department of Physics and Astronomy, University of Calgary, Calgary, AB (Canada); Tom Baker Cancer Centre, Calgary, AB (Canada); Department of Oncology, University of Calgary, Calgary, AB (Canada)

    2014-08-15

    The planning for PBSI is done with the patient's ipsilateral arm raised, however, anatomical changes and variations are unavoidable as the patient resumes her daily activities, potentially resulting in significant deviations in implant geometry from the treatment plan. This study aims to quantify the impact of the ipsilateral arm position on the geometry and dosimetry of the implant at eight weeks, evaluated on post-plans using the MIM Symphony™ software (MIM Software, Cleveland, OH). The average dose metrics for the three patients treated at the TBCC thus far using rigid fusion and contour transfer for the arms up position were 76% for the CTV V100, 61% for the PTV V100, and 37% for the PTV V200; and for the arms down position 81% for the CTV V100, 64% for the PTV V100, and 42% for the PTV V200. Qualitative analysis of the post-implant CT for one of the three patients showed poor agreement between the seroma contour transferred from the pre-implant CT and the seroma visible on the post-implant CT. To obtain a clinically accurate plan for that patient, contour modifications were used, yielding improved dose metric averages for the arms-up position for all three patients of 87% for the CTV V100, 68% for the PTV V100, and 39% for the PTV V200. Overall, the data available shows that dosimetric parameters increase with the patient's arm down, both in terms of coverage and in terms of the hot spot, and accrual of more patients may confirm this in a larger population.

  8. Seed quality in informal seed systems

    NARCIS (Netherlands)

    Biemond, P.C.

    2013-01-01

    Keywords:     informal seed systems, seed recycling, seed quality, germination, seed pathology, seed health, seed-borne diseases, mycotoxigenic fungi, Fusarium verticillioides, mycotoxins, Vigna unguiculata, Zea mays, Nigeria.   Seed is a crucial input for agricultural

  9. Gold marker displacement due to needle insertion during HDR-brachytherapy for treatment of prostate cancer: A prospective cone beam computed tomography and kilovoltage on-board imaging (kV-OBI study

    Directory of Open Access Journals (Sweden)

    Herrmann Markus KA

    2012-02-01

    Full Text Available Abstract Purpose To evaluate gold marker displacement due to needle insertion during HDR-brachytherapy for therapy of prostate cancer. Patients and methods 18 patients entered into this prospective evaluation. Three gold markers were implanted into the prostate during the first HDR-brachytherapy procedure after the irradiation was administered. Three days after marker implantation all patients had a CT-scan for planning purpose of the percutaneous irradiation. Marker localization was defined on the digitally-reconstructed-radiographs (DRR for daily (VMAT technique or weekly (IMRT set-up error correction. Percutaneous therapy started one week after first HDR-brachytherapy. After the second HDR-brachytherapy, two weeks after first HDR-brachtherapy, a cone-beam CT-scan was done to evaluate marker displacement due to needle insertion. In case of marker displacement, the actual positions of the gold markers were adjusted on the DRR. Results The value of the gold marker displacement due to the second HDR-brachytherapy was analyzed in all patients and for each gold marker by comparison of the marker positions in the prostate after soft tissue registration of the prostate of the CT-scans prior the first and second HDR-brachytherapy. The maximum deviation was 5 mm, 7 mm and 12 mm for the anterior-posterior, lateral and superior-inferior direction. At least one marker in each patient showed a significant displacement and therefore new marker positions were adjusted on the DRRs for the ongoing percutaneous therapy. Conclusions Needle insertion in the prostate due to HDR-brachytherapy can lead to gold marker displacements. Therefore, it is necessary to verify the actual position of markers after the second HDR-brachytherapy. In case of significant deviations, a new DRR with the adjusted marker positions should be generated for precise positioning during the ongoing percutaneous irradiation.

  10. Iodine-125 brachytherapy as upfront and salvage treatment for brain metastases. A comparative analysis

    Energy Technology Data Exchange (ETDEWEB)

    Romagna, Alexander; Schwartz, Christoph; Tonn, Joerg-Christian; Kreth, Friedrich-Wilhelm [Ludwig-Maximilians-University, Department of Neurosurgery, Munich (Germany); Egensperger, Rupert [Ludwig-Maximilians-University, Center for Neuropathology and Prion Research, Munich (Germany); Watson, Juliana; Belka, Claus; Nachbichler, Silke Birgit [Ludwig-Maximilians-University, Department of Radiation-Oncology, Munich (Germany)

    2016-11-15

    Outcome and toxicity profiles of salvage stereotactic ablative radiation strategies for recurrent pre-irradiated brain metastases are poorly defined. This study compared risk-benefit profiles of upfront and salvage iodine-125 brachytherapy (SBT) for small brain metastases. As the applied SBT treatment algorithm required histologic proof of metastatic brain disease in all patients, we additionally aimed to elucidate the value of biopsy before SBT. Patients with small untreated (n = 20) or pre-irradiated (n =28) suspected metastases intended for upfront or salvage SBT, respectively, were consecutively included. Temporary iodine-125 implants were used (median reference dose: 50 Gy, median dose rate: 15 cGy/h). Cumulative biologically effective doses (BED) were calculated and used for risk assessment. Treatment toxicity was classified according to Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer (RTOG/EORTC) criteria. Upfront SBT was initiated in 20 patients and salvage SBT in 23. In 5 patients, salvage SBT was withheld because of proven radiation-induced lesions. Treatment groups exhibited similar epidemiologic data except for tumor size (which was slightly smaller in the salvage group). One-year local/distant tumor control rates after upfront and salvage SBT were similar (94 %/65 % vs. 87 %/57 %, p = 0.45, respectively). Grade I/II toxicity was suffered by 2 patients after salvage SBT (cumulative BED: 192.1 Gy{sub 3} and 249.6 Gy{sub 3}). No toxicity-related risk factors were identified. SBT combines diagnostic yield with effective treatment in selected patients. The low toxicity rate in the salvage group points to protective radiobiologic characteristics of continuous low-dose rate irradiation. Upfront and salvage SBT are similarly effective and safe. Histologic reevaluation should be reconsidered after previous radiotherapy to avoid under- or overtreatment. (orig.) [German] Daten zu Risiko und Effizienz ablativer

  11. Perioperative high-dose-rate interstitial brachytherapy boost for patients with early breast cancer.

    Science.gov (United States)

    Sharma, Daya Nand; Deo, S V S; Rath, Goura Kisor; Shukla, Nootan Kumar; Thulkar, Sanjay; Madan, Renu; Julka, Pramod Kumar

    2013-01-01

    To evaluate the clinical results of perioperative high-dose-rate interstitial brachytherapy boost treatment preceding whole breast external beam radiation therapy in patients with early breast cancer. From 2005-2010, 100 patients with early breast cancer who met the eligibility criteria were enrolled in the study. Brachytherapy implant was performed during the breast-conserving surgery procedure. The boost treatment was started on the 3rd postoperative day to deliver a dose of 15 Gy in 6 fractions over 3 days. Three weeks later, external beam radiation therapy to the whole breast was started for a prescription dose of 50 Gy. The study end points were local recurrence, acute toxicity and cosmetic outcome. Median age of the patients was 46 years, and median follow-up was 52 months. No patient developed a local recurrence but 5 patients developed distant metastases. The 5-year overall survival and disease-free survival were 86% and 77%, respectively. Eleven patients had acute toxicity; 4 wound complications and 7 grade III skin toxicity. Nine of the 11 patients had breast size of more than 1500 cc. Except for the breast volume (>1500 cc), there was no statistically significant correlation between any of the patient or dosimetry-related factors and acute toxicity. Good-excellent cosmesis was observed in 87% of patients. Perioperative high-dose-rate interstitial brachytherapy boost followed by whole breast external beam radiation therapy provides excellent local control, acceptable acute toxicity and good-excellent breast cosmesis in patients with early breast cancer.

  12. Adaptive cone-beam CT planning improves long-term biochemical disease-free survival for (125)I prostate brachytherapy.

    Science.gov (United States)

    Peters, M; Smit Duijzentkunst, D A; Westendorp, H; van de Pol, S M G; Kattevilder, R; Schellekens, A; van der Voort van Zyp, J R N; Moerland, M A; van Vulpen, M; Hoekstra, C J

    Determining the independent effect of additional intraoperative adaptive C-arm cone-beam CT (CBCT) planning vs. transrectal ultrasound (TRUS)-guided interactive planning alone in (125)I brachytherapy for prostate cancer (PCa) on biochemical disease-free survival (BDFS). T1/T2-stage PCa patients receiving TRUS-guided brachytherapy from 2000 to 2014 were analyzed. From October 2006, patients received additional intraoperative adaptive CBCT planning for dosimetric evaluation and subsequent remedial seed placement in underdosed areas. Patients were stratified according to the National Comprehensive Cancer Network (NCCN) risk classification. Kaplan-Meier analysis was used to estimate BDFS (primary outcome), overall survival, and PCa-specific survival (secondary outcomes). Cox regression was used to assess the relation between CBCT use and biochemical failure (BF) and overall mortality. In all, 1623 patients were included. Median followup was 99 months (interquartile range 70-115) for TRUS patients (n = 613) and 51 months (interquartile range 29-70) for CBCT patients (n = 1010). BF occurred 203 times and 206 patients died, 26 from PCa. For TRUS and CBCT patients, 7-year BDFS was 87.2% vs. 93.5% (log rank: p = 0.04) for low, 75.9% vs. 88.5% (p brachytherapy leads to a significant increase in BDFS in all NCCN risk groups. Copyright © 2016 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  13. Interstitial high-dose-rate brachytherapy in eyelid cancer.

    Science.gov (United States)

    Mareco, Virgínia; Bujor, Laurentiu; Abrunhosa-Branquinho, André N; Ferreira, Miguel Reis; Ribeiro, Tiago; Vasconcelos, Ana Luisa; Ferreira, Cidalina Reis; Jorge, Marília

    2015-01-01

    To report the experience and the outcomes of interstitial high-dose-rate (HDR) brachytherapy (BT) of eyelid skin cancer at the Department of Radiotherapy of Hospital de Santa Maria in Lisbon. Seventeen patients (pts; mean age, 73.75 years) who underwent eyelid interstitial HDR BT with an (192)Ir source between January 2011 and February 2013 were analyzed. Lesions were basal (94%) and squamous (6%) cell carcinomas, on lower (88%) or upper (6%) eyelids, and on inner canthus (6%). T-stage was Tis (6%), T1 (46%), T2 (36%), and T3a (12%). The purpose of BT was radical (12%), adjuvant to surgery (71%), or salvage after surgery (18%). The BT implant and treatment planning were based on the Stepping Source Dosimetry System. The median total dose was 42.75 Gy (range, 32-50 Gy), with a median of 10 fractions (range, 9-11 fractions), twice daily, 6 h apart. The median V100 was 2.38 cm(3) (range, 0.83-5.59 cm(3)), and the median V150 was 1.05 cm(3) (range, 0.24-3.12 cm(3)). At a median followup of 40 months (range, 7-43 months), the local control was 94.1%. There was one local recurrence and one non-related death. The BT was well tolerated. Madarosis was the most common late effect (65% of pts) and was related with higher values of V100 (p = 0.027). Cosmetic outcomes were good and excellent in 70% of pts. Interstitial HDR BT is a feasible and safe technique for eyelid skin cancers, with good local control. Recurrent lesions and higher volumes receiving the prescribed dose were associated with worse outcomes. Copyright © 2015 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  14. Retrospective analysis of role of interstitial brachytherapy using template (MUPIT in locally advanced gynecological malignancies

    Directory of Open Access Journals (Sweden)

    Nandwani Pooja

    2007-01-01

    disease after external beam radiotherapy. Time of gap between EBRT and implant also had an impact on the outcome. Conclusion : Interstitial template brachytherapy by MUPIT is a good alternative to deliver high dose radiation in locally advanced gynecological malignancies where conventional brachytherapy application is either not feasible or likely to give optimal dose distribution. Loco regional control obtained is definitely better than EBRT alone and within the accepted range of complications.

  15. SU-F-BRA-02: Electromagnetic Tracking in Brachytherapy as An Advanced Modality for Treatment Quality Assurance

    Energy Technology Data Exchange (ETDEWEB)

    Kellermeier, M; Herbolzheimer, J; Kreppner, S; Lotter, M; Strnad, V [University Clinic Erlangen, Department of Radiation Oncology, Erlangen, DE (Germany); Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, DE (Germany); Bert, C [University Clinic Erlangen, Department of Radiation Oncology, Erlangen, DE (Germany); Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, DE (Germany); GSI Helmholtz Centre for Heavy Ion Research, Darmstadt, DE (Germany)

    2015-06-15

    Purpose: To present the use of Electromagnetic Tracking (EMT) for quality assurance in brachytherapy by means of phantom studies and to assess the clinical applicability of EMT during HDR breast brachytherapy. Methods: An EMT system was investigated to examine its suitability for clinical applications in brachytherapy. A field generator served as electromagnetic field emitter. Sensors (magnetic sensitive only), connected to a control unit, were used and their respective position and orientation inside a pre-defined measurement volume (500 mm cube length) determined. Up to three 6DoF sensors were placed on the phantom’s surface to obtain additional reference coordinates used to derive relative measured positions of a smaller 5DoF sensor inserted in the 6F catheters of the implant. The catheters were successively measured by manual displacement of the sensor at ∼40 mm/s. The measured catheter tracks, acquired multiple times at various locations (CT and treatment room), were smoothed, divided into intervals (2.5 mm dwell step size), registered (rigid Iterative Closest Point transformation) and compared against the known phantom geometry. Results: The reference coordinates were used to exclude the influence of external (e.g., respiratory-induced) motion. Precision tests in a clinical setting showed variances below 1 mm (translational) and 1° (rotational), respectively. Our method for catheter reconstruction preserved the length of the tracked catheter (within 1 mm). The measured tracking accuracy was 1±0.3 mm (maximum: 2 mm). The results are less accurate in environments potentially interfering with the magnetic field, e.g., in the vicinity of ferromagnetic table components. Conclusion: Our EMT system is able to perform reproducible and accurate catheter tracking and reconstruction. Currently, measurements of the implant geometry in HDR breast treatments are initiated. Online implant monitoring by means of EM tracking may be a first step towards advanced

  16. The investigation of prostatic calcifications using μ-PIXE analysis and their dosimetric effect in low dose rate brachytherapy treatments using Geant4.

    Science.gov (United States)

    Pope, D J; Cutajar, D L; George, S P; Guatelli, S; Bucci, J A; Enari, K E; Miller, S; Siegele, R; Rosenfeld, A B

    2015-06-07

    Low dose rate brachytherapy is a widely used modality for the treatment of prostate cancer. Most clinical treatment planning systems currently in use approximate all tissue to water, neglecting the existence of inhomogeneities, such as calcifications. The presence of prostatic calcifications may perturb the dose due to the higher photoelectric effect cross section in comparison to water. This study quantitatively evaluates the effect of prostatic calcifications on the dosimetric outcome of brachytherapy treatments by means of Monte Carlo simulations and its potential clinical consequences.Four pathological calcification samples were characterised with micro-particle induced x-ray emission (μ-PIXE) to determine their heavy elemental composition. Calcium, phosphorus and zinc were found to be the predominant heavy elements in the calcification composition. Four clinical patient brachytherapy treatments were modelled using Geant4 based Monte Carlo simulations, in terms of the distribution of brachytherapy seeds and calcifications in the prostate. Dose reductions were observed to be up to 30% locally to the calcification boundary, calcification size dependent. Single large calcifications and closely placed calculi caused local dose reductions of between 30-60%. Individual calculi smaller than 0.5 mm in diameter showed minimal dosimetric impact, however, the effects of small or diffuse calcifications within the prostatic tissue could not be determined using the methods employed in the study. The simulation study showed a varying reduction on common dosimetric parameters. D90 showed a reduction of 2-5%, regardless of calcification surface area and volume. The parameters V100, V150 and V200 were also reduced by as much as 3% and on average by 1%. These reductions were also found to relate to the surface area and volume of calcifications, which may have a significant dosimetric impact on brachytherapy treatment, however, such impacts depend strongly on specific factors

  17. Study of encapsulated {sup 170}Tm sources for their potential use in brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Ballester, Facundo; Granero, Domingo; Perez-Calatayud, Jose; Venselaar, Jack L. M.; Rivard, Mark J. [Department of Atomic, Molecular and Nuclear Physics, University of Valencia, E-46100 Burjassot (Spain) and IFIC, CSIC, University of Valencia, E-46100 Burjassot (Spain); Department of Radiation Oncology, ERESA, Hospital General Universitario, E-46014 Valencia (Spain); Department of Radiation Oncology, La Fe University Hospital, E-46009 Valencia (Spain); Department of Medical Physics, Instituut Verbeeten, Tilburg 5000LA (Netherlands); Department of Radiation Oncology, Tufts University School of Medicine, Boston, Massachusetts 02111 (United States)

    2010-04-15

    Purpose: High dose-rate (HDR) brachytherapy is currently performed with {sup 192}Ir sources, and {sup 60}Co has returned recently into clinical use as a source for this kind of cancer treatment. Both radionuclides have mean photon energies high enough to require specific shielded treatment rooms. In recent years, {sup 169}Yb has been explored as an alternative for HDR-brachytherapy implants. Although it has mean photon energy lower than {sup 192}Ir, it still requires extensive shielding to deliver treatment. An alternative radionuclide for brachytherapy is {sup 170}Tm (Z=69) because it has three physical properties adequate for clinical practice: (a) 128.6 day half-life, (b) high specific activity, and (c) mean photon energy of 66.39 keV. The main drawback of this radionuclide is the low photon yield (six photons per 100 electrons emitted). The purpose of this work is to study the dosimetric characteristics of this radionuclide for potential use in HDR-brachytherapy. Methods: The authors have assumed a theoretical {sup 170}Tm cylindrical source encapsulated with stainless steel and typical dimensions taken from the currently available HDR {sup 192}Ir brachytherapy sources. The dose-rate distribution was calculated for this source using the GEANT4 Monte Carlo (MC) code considering both photon and electron {sup 170}Tm spectra. The AAPM TG-43 U1 brachytherapy dosimetry parameters were derived. To study general properties of {sup 170}Tm encapsulated sources, spherical sources encapsulated with stainless steel and platinum were also studied. Moreover, the influence of small variations in the active core and capsule dimensions on the dosimetric characteristics was assessed. Treatment times required for a {sup 170}Tm source were compared to those for {sup 192}Ir and {sup 169}Yb for the same contained activity. Results: Due to the energetic beta spectrum and the large electron yield, the bremsstrahlung contribution to the dose was of the same order of magnitude as from the

  18. Evaluation of PC-ISO for customized, 3D Printed, gynecologic 192-Ir HDR brachytherapy applicators.

    Science.gov (United States)

    Cunha, J Adam M; Mellis, Katherine; Sethi, Rajni; Siauw, Timmy; Sudhyadhom, Atchar; Garg, Animesh; Goldberg, Ken; Hsu, I-Chow; Pouliot, Jean

    2015-01-08

    The purpose of this study was to evaluate the radiation attenuation properties of PC-ISO, a commercially available, biocompatible, sterilizable 3D printing material, and its suitability for customized, single-use gynecologic (GYN) brachytherapy applicators that have the potential for accurate guiding of seeds through linear and curved internal channels. A custom radiochromic film dosimetry apparatus was 3D-printed in PC-ISO with a single catheter channel and a slit to hold a film segment. The apparatus was designed specifically to test geometry pertinent for use of this material in a clinical setting. A brachytherapy dose plan was computed to deliver a cylindrical dose distribution to the film. The dose plan used an 192Ir source and was normalized to 1500 cGy at 1 cm from the channel. The material was evaluated by comparing the film exposure to an identical test done in water. The Hounsfield unit (HU) distributions were computed from a CT scan of the apparatus and compared to the HU distribution of water and the HU distribution of a commercial GYN cylinder applicator. The dose depth curve of PC-ISO as measured by the radiochromic film was within 1% of water between 1 cm and 6 cm from the channel. The mean HU was -10 for PC-ISO and -1 for water. As expected, the honeycombed structure of the PC-ISO 3D printing process created a moderate spread of HU values, but the mean was comparable to water. PC-ISO is sufficiently water-equivalent to be compatible with our HDR brachytherapy planning system and clinical workflow and, therefore, it is suitable for creating custom GYN brachytherapy applicators. Our current clinical practice includes the use of custom GYN applicators made of commercially available PC-ISO when doing so can improve the patient's treatment. 

  19. American Society for Radiation Oncology (ASTRO) and American College of Radiology (ACR) practice guideline for the transperineal permanent brachytherapy of prostate cancer.

    Science.gov (United States)

    Rosenthal, Seth A; Bittner, Nathan H J; Beyer, David C; Demanes, D Jeffrey; Goldsmith, Brian J; Horwitz, Eric M; Ibbott, Geoffrey S; Lee, W Robert; Nag, Subir; Suh, W Warren; Potters, Louis

    2011-02-01

    Transperineal permanent prostate brachytherapy is a safe and efficacious treatment option for patients with organ-confined prostate cancer. Careful adherence to established brachytherapy standards has been shown to improve the likelihood of procedural success and reduce the incidence of treatment-related morbidity. A collaborative effort of the American College of Radiology (ACR) and American Society for Therapeutic Radiation Oncology (ASTRO) has produced a practice guideline for permanent prostate brachytherapy. The guideline defines the qualifications and responsibilities of all the involved personnel, including the radiation oncologist, physicist and dosimetrist. Factors with respect to patient selection and appropriate use of supplemental treatment modalities such as external beam radiation and androgen suppression therapy are discussed. Logistics with respect to the brachytherapy implant procedure, the importance of dosimetric parameters, and attention to radiation safety procedures and documentation are presented. Adherence to these practice guidelines can be part of ensuring quality and safety in a successful prostate brachytherapy program. Copyright © 2011 American Society for Radiation Oncology and American College of Radiology. Published by Elsevier Inc. All rights reserved.

  20. A comparison of preplan MRI and preplan CT-based prostate volume with intraoperative ultrasound-based prostate volume in real-time permanent brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hye Li; Kim, Ja Young; Lee, Bo Mi; Chang, Sei Kyung; Ko, Seung Young; Kim, Sung Jun; Park, Dong Soo; Shin, Hyun Soo [CHA Bundang Medical Center, CHA University, Seougnam (Korea, Republic of)

    2011-09-15

    The present study compared the difference between intraoperative transrectal ultrasound (iTRUS)-based prostate volume and preplan computed tomography (CT), preplan magnetic resonance imaging (MRI)-based prostate volume to estimate the number of seeds needed for appropriate dose coverage in permanent brachytherapy for prostate cancer. Between March 2007 and March 2011, among 112 patients who underwent permanent brachytherapy with 125I, 60 image scans of 56 patients who underwent preplan CT (pCT) or preplan MRI (pMRI) within 2 months before brachytherapy were retrospectively reviewed. Twenty-four cases among 30 cases with pCT and 26 cases among 30 cases with pMRI received neoadjuvant hormone therapy (NHT). In 34 cases, NHT started after acquisition of preplan image. The median duration of NHT after preplan image acquisition was 17 and 21 days for cases with pCT and pMRI, respectively. The prostate volume calculated by different modalities was compared. And retrospective planning with iTRUS image was performed to estimate the number of 125I seed required to obtain recommended dose distribution according to prostate volume. The mean difference in prostate volume was 9.05 mL between the pCT and iTRUS and 6.84 mL between the pMRI and iTRUS. The prostate volume was roughly overestimated by 1.36 times with pCT and by 1.33 times with pMRI. For 34 cases which received NHT after image acquisition, the prostate volume was roughly overestimated by 1.45 times with pCT and by 1.37 times with pMRI. A statistically significant difference was found between preplan image-based volume and iTRUS-based volume (p<0.001). The median number of wasted seeds is approximately 13, when the pCT or pMRI volume was accepted without modification to assess the required number of seeds for brachytherapy. pCT-based volume and pMRI-based volume tended to overestimate prostate volume in comparison to iTRUS-based volume. To reduce wasted seeds and cost of the brachytherapy, we should take the volume

  1. The American Brachytherapy Society Treatment Recommendations for Locally Advanced Carcinoma of the Cervix Part II: High Dose-Rate Brachytherapy

    Science.gov (United States)

    Viswanathan, Akila N.; Beriwal, Sushil; De Los Santos, Jennifer; Demanes, D. Jeffrey; Gaffney, David; Hansen, Jorgen; Jones, Ellen; Kirisits, Christian; Thomadsen, Bruce; Erickson, Beth

    2012-01-01

    Purpose This report presents the 2011 update to the American Brachytherapy Society (ABS) high-dose-rate (HDR) brachytherapy guidelines for locally advanced cervical cancer. Methods Members of the American Brachytherapy Society (ABS) with expertise in cervical cancer brachytherapy formulated updated guidelines for HDR brachytherapy using tandem and ring, ovoids, cylinder or interstitial applicators for locally advanced cervical cancer were revised based on medical evidence in the literature and input of clinical experts in gynecologic brachytherapy. Results The Cervical Cancer Committee for Guideline Development affirms the essential curative role of tandem-based brachytherapy in the management of locally advanced cervical cancer. Proper applicator selection, insertion, and imaging are fundamental aspects of the procedure. Three-dimensional imaging with magnetic resonance or computed tomography or radiographic imaging may be used for treatment planning. Dosimetry must be performed after each insertion prior to treatment delivery. Applicator placement, dose specification and dose fractionation must be documented, quality assurance measures must be performed, and follow-up information must be obtained. A variety of dose/fractionation schedules and methods for integrating brachytherapy with external-beam radiation exist. The recommended tumor dose in 2 Gray (Gy) per fraction radiobiologic equivalence (EQD2) is 80–90 Gy, depending on tumor size at the time of brachytherapy. Dose limits for normal tissues are discussed. Conclusion These guidelines update those of 2000 and provide a comprehensive description of HDR cervical cancer brachytherapy in 2011. PMID:22265437

  2. Late coronary occlusion after intracoronary brachytherapy

    NARCIS (Netherlands)

    M.A. Costa (Marco); M. Sabaté (Manel); I.P. Kay (Ian Patrick); P. Cervinka; J.M.R. Ligthart (Jürgen); P. Serrano (Pedro); V.L.M.A. Coen (Veronique); P.W.J.C. Serruys (Patrick); P.C. Levendag (Peter); W.J. van der Giessen (Wim)

    1999-01-01

    textabstractBACKGROUND: Intracoronary brachytherapy appears to be a promising technology to prevent restenosis. Presently, limited data are available regarding the late safety of this therapeutic modality. The aim of the study was to determine the incidence of late (>1 month)

  3. Concomitant chemoradiotherapy with high dose rate brachytherapy ...

    African Journals Online (AJOL)

    Purpose: This study aims to report the incidence of treatment-induced acute toxicities, local control and survival of patients with cervix cancer treated by external beam radiotherapy (EBR) and high-dose-rate (HDR) brachytherapy concomitant with weekly Cisplatin chemotherapy. Methods: Forty patients with FIGO Stages IB2 ...

  4. In vivo dose verification method in catheter based high dose rate brachytherapy.

    Science.gov (United States)

    Jaselskė, Evelina; Adlienė, Diana; Rudžianskas, Viktoras; Urbonavičius, Benas Gabrielis; Inčiūra, Arturas

    2017-12-01

    In vivo dosimetry is a powerful tool for dose verification in radiotherapy. Its application in high dose rate (HDR) brachytherapy is usually limited to the estimation of gross errors, due to inability of the dosimetry system/ method to record non-uniform dose distribution in steep dose gradient fields close to the radioactive source. In vivo dose verification in interstitial catheter based HDR brachytherapy is crucial since the treatment is performed inserting radioactive source at the certain positions within the catheters that are pre-implanted into the tumour. We propose in vivo dose verification method for this type of brachytherapy treatment which is based on the comparison between experimentally measured and theoretical dose values calculated at well-defined locations corresponding dosemeter positions in the catheter. Dose measurements were performed using TLD 100-H rods (6 mm long, 1 mm diameter) inserted in a certain sequences into additionally pre-implanted dosimetry catheter. The adjustment of dosemeter positioning in the catheter was performed using reconstructed CT scans of patient with pre-implanted catheters. Doses to three Head&Neck and one Breast cancer patient have been measured during several randomly selected treatment fractions. It was found that the average experimental dose error varied from 4.02% to 12.93% during independent in vivo dosimetry control measurements for selected Head&Neck cancer patients and from 7.17% to 8.63% - for Breast cancer patient. Average experimental dose error was below the AAPM recommended margin of 20% and did not exceed the measurement uncertainty of 17.87% estimated for this type of dosemeters. Tendency of slightly increasing average dose error was observed in every following treatment fraction of the same patient. It was linked to the changes of theoretically estimated dosemeter positions due to the possible patient's organ movement between different treatment fractions, since catheter reconstruction was

  5. MO-D-BRD-00: Electronic Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    Electronic brachytherapy (eBT) has seen an insurgence of manufacturers entering the US market for use in radiation therapy. In addition to the established interstitial, intraluminary, and intracavitary applications of eBT, many centers are now using eBT to treat skin lesions. It is important for medical physicists working with electronic brachytherapy sources to understand the basic physics principles of the sources themselves as well as the variety of applications for which they are being used. The calibration of the sources is different from vendor to vendor and the traceability of calibrations has evolved as new sources came to market. In 2014, a new air-kerma based standard was introduced by the National Institute of Standards and Technology (NIST) to measure the output of an eBT source. Eventually commercial treatment planning systems should accommodate this new standard and provide NIST traceability to the end user. The calibration and commissioning of an eBT system is unique to its application and typically entails a list of procedural recommendations by the manufacturer. Commissioning measurements are performed using a variety of methods, some of which are modifications of existing AAPM Task Group protocols. A medical physicist should be familiar with the different AAPM Task Group recommendations for applicability to eBT and how to properly adapt them to their needs. In addition to the physical characteristics of an eBT source, the photon energy is substantially lower than from HDR Ir-192 sources. Consequently, tissue-specific dosimetry and radiobiological considerations are necessary when comparing these brachytherapy modalities and when making clinical decisions as a radiation therapy team. In this session, the physical characteristics and calibration methodologies of eBt sources will be presented as well as radiobiology considerations and other important clinical considerations. Learning Objectives: To understand the basic principles of electronic

  6. Malignant soft tissue sarcoma of the shoulder treated by surface mould brachytherapy boost in an adjuvant setting

    Directory of Open Access Journals (Sweden)

    Ashutosh Mukherji

    2017-04-01

    Full Text Available Purpose : Soft tissue sarcomas of the extremities account for half of all soft tissue sarcomas. Radiotherapy and surgery have been the standard modalities in the treatment of this type of cancer. Brachytherapy can be used as the sole therapy, if the target volume is localized and easily accessible. This work reports three cases of shoulder soft tissue sarcomas with positive deep resected margins, treated with a combination of external beam radiotherapy and surface mould brachytherapy boost technique. Material and methods : Between January and June 2014, three patients received brachytherapy with sites close to the shoulder, and post-surgery involved deep resected margins. Each mould was made on a base of thermoplastic, over which dental wax was coated and catheters implanted. The target volume was defined as the tissue covering the tumor bed with lateral margins of 2-2.5 cm and depth of 1-1.5 cm. Treatment planning was computed tomography- based and dose prescribed was 85-100% isodose. Treatments has been delivered twice daily, six hours interval, and a review of reactions evaluated. Results : Volume receiving more than 150% of the prescribed dose has been limited to less than 2%, and that above 200% to be inside the mould. Brachytherapy equivalent dose at 2 Gy per fraction (EQD2 of these patients was 24 and 28.6 Gy. Maximum dose to organ at risk (OAR (2 cc of OAR ranged between 55-87% of prescribed dose, with a median dose being 80%. All cases had only grade 1 post-radiotherapy skin immediate reactions, which resolved within four weeks. In all patients, no treatment failures were noted at nearly 2-years post-irradiation. Conclusions : Surface mould brachytherapy in soft tissue sarcomas could be a useful alternative to interstitial bra­chytherapy, especially where the target volume is superficially extensive with underlying critical structures, and where catheter placement may be difficult, such as the shoulder.

  7. Modern prostate brachytherapy. Prostate specific antigen results in 219 patients with up to 12 years of observed follow-up.

    Science.gov (United States)

    Ragde, H; Korb, L J; Elgamal, A A; Grado, G L; Nadir, B S

    2000-07-01

    The purported lack of long term modern prostate brachytherapy outcome data continues to lead many physicians to recommend other, more traditional treatments. This concern for long term results has encouraged the authors to supplement their earlier 10-year follow-up of patients receiving brachytherapy; in the process, an additional 77 patients (> 50%) were added to the original cohort, and the follow-up time was increased by 2 years. Between January 1987 and September 1989, 229 patients with T1-T3 prostate carcinoma underwent transperineal prostate brachytherapy using iodine-125 (I-125). No patient received adjuvant hormone therapy. The median Gleason sum was 5 (range, 2-10). Of these patients, 147 were determined to have a high probability of organ-confined disease and were treated solely with an I-125 implant. The remaining 82 patients were determined to be at increased risk for extracapsular disease and received pelvic external beam radiation in addition to brachytherapy. All patients were followed continuously. Failure was defined as a positive biopsy, radiographic evidence of metastases, or three consecutive rises in prostate specific antigen (PSA) levels as defined by the American Society for Therapeutic Radiology and Oncology (ASTRO) consensus article. Excluding deaths from intercurrent disease, the median follow-up was 122 months (range, 18-144 months). Fourteen patients were excluded from analysis due to insufficient follow-up. Adopting the ASTRO definition of failure resulted in minimal change in survival when compared with the authors' previous study, which used a PSA level > 0.5 ng/mL as the failure point. Observed 10-year disease free survival (DFS) for the entire cohort was 70%. In the brachytherapy only group, the observed 10-year DFS was 66%, whereas those patients treated with the addition of external pelvic radiation achieved a DFS of 79%. None of the patients who were followed for the full 12 years failed between Years 10 and 12. Only 25% of the

  8. Five-year biochemical outcome after prostate brachytherapy for hormone-naive men < or = 62 years of age.

    Science.gov (United States)

    Merrick, G S; Butler, W M; Lief, J H; Galbreath, R W

    2001-08-01

    To evaluate 5-year biochemical disease-free outcome for hormone naïve men 62 years of age or less who underwent transperineal ultrasound-guided permanent prostate brachytherapy. 76 patients underwent transperineal ultrasound guided prostate brachytherapy using either (103)Pd or (125)I for clinical T1b--T2b NxM0 (1997 AJCC) adenocarcinoma of the prostate gland from April 1995 to October 1999. No patient was lost to follow-up, and no patient underwent pathologic lymph-node staging. 47 patients were implanted with either (103)Pd or (125)I monotherapy, and 29 patients received moderate-dose external-beam radiation therapy followed by a prostate brachytherapy boost. No patient received hormonal manipulation. The median patient age was 58 years (range, 48--62 years). The median follow-up was 37 months (range, 14--70 months). Follow-up was calculated from the day of implantation. Biochemical disease-free survival was defined by the American Society of Therapeutic Radiation and Oncology (ASTRO) consensus definition. The actuarial 5-year biochemical disease-free survival rate was 98.7%. For patients with low-, intermediate-, and high-risk disease, 97.7%, 100%, and 100%, respectively, were free of biochemical failure. The median posttreatment prostate-specific antigen (PSA) for the entire group was 0.2 ng/mL. When stratified by risk group, the median posttreatment PSA was 0.2, 0.15, and 0.1 for patients with low-, intermediate-, and high-risk disease, respectively. With a median follow-up of 37 months, hormone naïve patients probability of 5-year biochemical disease-free survival following permanent prostate brachytherapy with an apparent plateau on the PSA curve.

  9. Interstitial pulsed-dose-rate brachytherapy for the treatment of squamous cell anal carcinoma: A retrospective single institution analysis.

    Science.gov (United States)

    Boukhelif, W; Ferri-Molina, M; Mazeron, R; Maroun, P; Duhamel-Oberlander, A S; Dumas, I; Martinetti, F; Guemnie-Tafo, A; Chargari, C; Haie-Meder, C

    2015-01-01

    To examine the outcome of patients receiving interstitial pulsed-dose-rate brachytherapy (PDR-BT) after pelvic radiation therapy for treatment of an anal squamous cell carcinoma. Twenty-one patients were identified: 13, six, and two with stages I, II, and III tumors, respectively. After receiving received pelvic irradiation +/- concurrent chemotherapy, patients were delivered a PDR-BT boost to the residual tumor, with intention to deliver a minimal total dose of 60 Gy. The greatest dimension of residual tumor at the time of brachytherapy procedure was 12.5 mm (range: 0-20 mm). Brachytherapy implantation was performed according to the Paris system, only one plane implant being used. Median dose delivered through BT was 20 Gy (range: 10-30 Gy). Median number of pulses was 48 (range: 20-80 pulses). Median treated volume was 9 cm(3) (range: 5-16 cm(3)). Median dose per pulse was 40 cGy (range: 37.5-50 cGy). No Grade 3 or more acute toxicity was reported. No Grade 3 or more delayed toxicity was seen among 18 patients with more than 6 months follow-up. Median followup was 47 months (range: 6-73 months). Twenty patients (95%) were alive at last follow-up. Tumor relapses were experienced in four patients (19%), including local relapse in three patients (14%). With almost 4 years median followup, this study confirms previous data suggesting that PDR-BT is effective and safe in this indication. Local control rate and toxicity were in the range of what was seen with continuous low-dose-rate BT. Copyright © 2015 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  10. Review of clinical brachytherapy uncertainties: Analysis guidelines of GEC-ESTRO and the AAPM☆

    Science.gov (United States)

    Kirisits, Christian; Rivard, Mark J.; Baltas, Dimos; Ballester, Facundo; De Brabandere, Marisol; van der Laarse, Rob; Niatsetski, Yury; Papagiannis, Panagiotis; Hellebust, Taran Paulsen; Perez-Calatayud, Jose; Tanderup, Kari; Venselaar, Jack L.M.; Siebert, Frank-André

    2014-01-01

    Background and purpose A substantial reduction of uncertainties in clinical brachytherapy should result in improved outcome in terms of increased local control and reduced side effects. Types of uncertainties have to be identified, grouped, and quantified. Methods A detailed literature review was performed to identify uncertainty components and their relative importance to the combined overall uncertainty. Results Very few components (e.g., source strength and afterloader timer) are independent of clinical disease site and location of administered dose. While the influence of medium on dose calculation can be substantial for low energy sources or non-deeply seated implants, the influence of medium is of minor importance for high-energy sources in the pelvic region. The level of uncertainties due to target, organ, applicator, and/or source movement in relation to the geometry assumed for treatment planning is highly dependent on fractionation and the level of image guided adaptive treatment. Most studies to date report the results in a manner that allows no direct reproduction and further comparison with other studies. Often, no distinction is made between variations, uncertainties, and errors or mistakes. The literature review facilitated the drafting of recommendations for uniform uncertainty reporting in clinical BT, which are also provided. The recommended comprehensive uncertainty investigations are key to obtain a general impression of uncertainties, and may help to identify elements of the brachytherapy treatment process that need improvement in terms of diminishing their dosimetric uncertainties. It is recommended to present data on the analyzed parameters (distance shifts, volume changes, source or applicator position, etc.), and also their influence on absorbed dose for clinically-relevant dose parameters (e.g., target parameters such as D90 or OAR doses). Publications on brachytherapy should include a statement of total dose uncertainty for the entire

  11. Review of clinical brachytherapy uncertainties: analysis guidelines of GEC-ESTRO and the AAPM.

    Science.gov (United States)

    Kirisits, Christian; Rivard, Mark J; Baltas, Dimos; Ballester, Facundo; De Brabandere, Marisol; van der Laarse, Rob; Niatsetski, Yury; Papagiannis, Panagiotis; Hellebust, Taran Paulsen; Perez-Calatayud, Jose; Tanderup, Kari; Venselaar, Jack L M; Siebert, Frank-André

    2014-01-01

    A substantial reduction of uncertainties in clinical brachytherapy should result in improved outcome in terms of increased local control and reduced side effects. Types of uncertainties have to be identified, grouped, and quantified. A detailed literature review was performed to identify uncertainty components and their relative importance to the combined overall uncertainty. Very few components (e.g., source strength and afterloader timer) are independent of clinical disease site and location of administered dose. While the influence of medium on dose calculation can be substantial for low energy sources or non-deeply seated implants, the influence of medium is of minor importance for high-energy sources in the pelvic region. The level of uncertainties due to target, organ, applicator, and/or source movement in relation to the geometry assumed for treatment planning is highly dependent on fractionation and the level of image guided adaptive treatment. Most studies to date report the results in a manner that allows no direct reproduction and further comparison with other studies. Often, no distinction is made between variations, uncertainties, and errors or mistakes. The literature review facilitated the drafting of recommendations for uniform uncertainty reporting in clinical BT, which are also provided. The recommended comprehensive uncertainty investigations are key to obtain a general impression of uncertainties, and may help to identify elements of the brachytherapy treatment process that need improvement in terms of diminishing their dosimetric uncertainties. It is recommended to present data on the analyzed parameters (distance shifts, volume changes, source or applicator position, etc.), and also their influence on absorbed dose for clinically-relevant dose parameters (e.g., target parameters such as D90 or OAR doses). Publications on brachytherapy should include a statement of total dose uncertainty for the entire treatment course, taking into account the

  12. Distant Metastases Following Permanent Interstitial Brachytherapy for Patients With Clinically Localized Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Taira, Al V. [Western Radiation Oncology, Mountain View, California (United States); Merrick, Gregory S., E-mail: gmerrick@urologicresearchinstitute.org [Schiffler Cancer Center, Wheeling Jesuit University, Wheeling, West Virginia (United States); Galbreath, Robert W.; Butler, Wayne M.; Lief, Jonathan [Schiffler Cancer Center, Wheeling Jesuit University, Wheeling, West Virginia (United States); Adamovich, Edward [Department of Pathology, Wheeling Hospital, Wheeling, West Virginia (United States); Wallner, Kent E. [Puget Sound Healthcare Corporation, Group Health Cooperative, University of Washington, Seattle, Washington (United States)

    2012-02-01

    Purpose: Recent publications have suggested high-risk patients undergoing radical prostatectomy have a lower risk of distant metastases and improved cause-specific survival (CSS) than patients receiving definitive external beam radiation therapy (XRT). To date, none of these studies has compared distant metastases and CSS in brachytherapy patients. In this study, we evaluate such parameters in a consecutive cohort of brachytherapy patients. Methods and Materials: From April 1995 to June 2007, 1,840 consecutive patients with clinically localized prostate cancer were treated with brachytherapy. Risk groups were stratified according to National Comprehensive Cancer Network ( (www.nccn.org)) guidelines. Subgroups of 658, 893, and 289 patients were assigned to low, intermediate, and high-risk categories. Median follow-up was 7.2 years. Along with brachytherapy implantation, 901 (49.0%) patients received supplemental XRT, and 670 (36.4%) patients received androgen deprivation therapy (median duration, 4 months). The mode of failure (biochemical, local, or distant) was determined for each patient for whom therapy failed. Cause of death was determined for each deceased patient. Multiple parameters were evaluated for impact on outcome. Results: For the entire cohort, metastases-free survival (MFS) and CSS at 12 years were 98.1% and 98.2%, respectively. When rates were stratified by low, intermediate, and high-risk groups, the 12-year MFS was 99.8%, 98.1%, and 93.8% (p < 0.001), respectively. CSS rates were 99.8%, 98.0%, and 95.3% (p < 0.001) for low, intermediate, and high-risk groups, respectively. Biochemical progression-free survival was 98.7%, 95.9% and 90.4% for low, intermediate, and high-risk patients, respectively (p < 0.001). In multivariate Cox-regression analysis, MFS was mostly closely related to Gleason score and year of treatment, whereas CSS was most closely associated with Gleason score. Conclusions: Excellent CSS and MFS rates are achievable with high

  13. Synthesis of phosphosilicate matrix for application to brachytherapy sources

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, Aline B.F., E-mail: linebfs@gmail.co [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. of Chemical Engineering; Santos, Ana M.M.; Ferraz, Wilmar B., E-mail: amms@cdtn.b, E-mail: ferrazw@cdtn.b [Center of Nuclear Technology Development (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2009-07-01

    Brachytherapy with beta sources can be useful for in situ radiotherapy of cancers where tiny radioactive seeds are injected directly into the tumor. Phosphorus {sup 31}P can be activated to b-emitter {sup 32}P by neutron activation with a half-life of 14.3 days. In this work, phosphosilicate matrices were synthesized through sol-gel process by hydrolysis and condensation of the tetraethylorthosilicate (TEOS) under two different conditions of synthesis. In both conditions the phosphoric acid and drying control chemical additives (DCCA's) were the same. Three drying control chemical additives were utilized: propylene carbonate, N,N-dimethylformamide and ethylene glycol. The casting solutions were prepared with phosphorus content of 3.2 wt.% and xerogels were thermally treated at 900 deg C. Different microstructures were observed under different conditions of synthesis. The microstructures of phosphosilicate matrices obtained with ethylene glycol and without DCCA's have shown the presence of a globular structure regions with large amount of phosphorous. (author)

  14. 10 CFR 35.400 - Use of sources for manual brachytherapy.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Use of sources for manual brachytherapy. 35.400 Section 35.400 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Manual Brachytherapy § 35.400 Use of sources for manual brachytherapy. A licensee shall use only brachytherapy sources for...

  15. 10 CFR 35.67 - Requirements for possession of sealed sources and brachytherapy sources.

    Science.gov (United States)

    2010-01-01

    ... brachytherapy sources. 35.67 Section 35.67 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT... brachytherapy sources. (a) A licensee in possession of any sealed source or brachytherapy source shall follow... brachytherapy sources, except for gamma stereotactic radiosurgery sources, shall conduct a semi-annual physical...

  16. Gracilis muscle interposition with primary rectal without urethral repair for moderate sized rectourethral fistula caused by brachytherapy for prostate cancer: a case report.

    Science.gov (United States)

    Samalavicius, Narimantas Evaldas; Lunevicius, Raimundas; Gupta, Rakesh Kumar; Poskus, Tomas; Ulys, Albertas

    2012-09-25

    There is a 0.16% chance of a rectourethral fistula after prostate brachytherapy monotherapy using Palladium-103 or Iodine-125 implants. We present an unusual case report of a rectourethral fistula following brachyradiotherapy monotherapy for prostate adenocarcinoma. It was also associated with unusual management of the fistula. A 58-year-old Caucasian man underwent brachyradiotherapy monotherapy as definitive treatment for verified intracapsular prostate adenocarcinoma receiving 56 Iodine-125 implants using a transrectal ultrasound-guided technique. The patient started to complain of severe perineal pain and mild rectal bleeding 15Â months after brachyradiotherapy. A biopsy of mucosa of his anterior rectal wall was performed. A moderate sized rectourethral fistula was confirmed 23Â months after implantation of Iodine-125 seeds. Laparoscopic sigmoidostomy and suprapubic cystostomy were then performed. Long-term cortisone applications in combination with 30 sessions of hyperbaric oxygen therapy, and antibacterial therapies were initiated due to necrotic infection. A gracilis muscle interposition to create a partition between the patient's rectum and urethra in conjunction with primary rectal repair but without urethral repair were performed 6 months later. The 3cm rectal defect was repaired via a 3cm-long horizontal perineal incision. The 1.5cm urethral defect just below the prostate was not repaired. The patient underwent an optic internal urethrotomy 3Â months later for a 1.5cm-long urethral stricture. Several planned preventive urethral buginages were performed to avoid urethral stricture recurrence. At 12Â months postoperatively, there were no signs of a fistula and cancer recurrence. He now has a normal voiding and anal continence. Severe rectal pain, bleeding, and local anterior necrotic proctitis are predictors of a rectourethral fistula. Urinary and fecal diversion is the first-step operation. Gracilis muscle interposition in conjunction with primary

  17. Gracilis muscle interposition with primary rectal without urethral repair for moderate sized rectourethral fistula caused by brachytherapy for prostate cancer: a case report

    Directory of Open Access Journals (Sweden)

    Samalavicius Narimantas

    2012-09-01

    Full Text Available Abstract Introduction There is a 0.16% chance of a rectourethral fistula after prostate brachytherapy monotherapy using Palladium-103 or Iodine-125 implants. We present an unusual case report of a rectourethral fistula following brachyradiotherapy monotherapy for prostate adenocarcinoma. It was also associated with unusual management of the fistula. Case presentation A 58-year-old Caucasian man underwent brachyradiotherapy monotherapy as definitive treatment for verified intracapsular prostate adenocarcinoma receiving 56 Iodine-125 implants using a transrectal ultrasound-guided technique. The patient started to complain of severe perineal pain and mild rectal bleeding 15Â months after brachyradiotherapy. A biopsy of mucosa of his anterior rectal wall was performed. A moderate sized rectourethral fistula was confirmed 23Â months after implantation of Iodine-125 seeds. Laparoscopic sigmoidostomy and suprapubic cystostomy were then performed. Long-term cortisone applications in combination with 30 sessions of hyperbaric oxygen therapy, and antibacterial therapies were initiated due to necrotic infection. A gracilis muscle interposition to create a partition between the patient's rectum and urethra in conjunction with primary rectal repair but without urethral repair were performed 6 months later. The 3cm rectal defect was repaired via a 3cm-long horizontal perineal incision. The 1.5cm urethral defect just below the prostate was not repaired. The patient underwent an optic internal urethrotomy 3Â months later for a 1.5cm-long urethral stricture. Several planned preventive urethral buginages were performed to avoid urethral stricture recurrence. At 12Â months postoperatively, there were no signs of a fistula and cancer recurrence. He now has a normal voiding and anal continence. Conclusion Severe rectal pain, bleeding, and local anterior necrotic proctitis are predictors of a rectourethral fistula. Urinary and fecal diversion is the first

  18. Limitations of the TG-43 formalism for skin high-dose-rate brachytherapy dose calculations

    Energy Technology Data Exchange (ETDEWEB)

    Granero, Domingo, E-mail: dgranero@eresa.com [Department of Radiation Physics, ERESA, Hospital General Universitario, 46014 Valencia (Spain); Perez-Calatayud, Jose [Radiotherapy Department, La Fe University and Polytechnic Hospital, Valencia 46026 (Spain); Vijande, Javier [Department of Atomic, Molecular and Nuclear Physics, University of Valencia, Burjassot 46100, Spain and IFIC (UV-CSIC), Paterna 46980 (Spain); Ballester, Facundo [Department of Atomic, Molecular and Nuclear Physics, University of Valencia, Burjassot 46100 (Spain); Rivard, Mark J. [Department of Radiation Oncology, Tufts University School of Medicine, Boston, Massachusetts 02111 (United States)

    2014-02-15

    Purpose: In skin high-dose-rate (HDR) brachytherapy, sources are located outside, in contact with, or implanted at some depth below the skin surface. Most treatment planning systems use the TG-43 formalism, which is based on single-source dose superposition within an infinite water medium without accounting for the true geometry in which conditions for scattered radiation are altered by the presence of air. The purpose of this study is to evaluate the dosimetric limitations of the TG-43 formalism in HDR skin brachytherapy and the potential clinical impact. Methods: Dose rate distributions of typical configurations used in skin brachytherapy were obtained: a 5 cm × 5 cm superficial mould; a source inside a catheter located at the skin surface with and without backscatter bolus; and a typical interstitial implant consisting of an HDR source in a catheter located at a depth of 0.5 cm. Commercially available HDR{sup 60}Co and {sup 192}Ir sources and a hypothetical {sup 169}Yb source were considered. The Geant4 Monte Carlo radiation transport code was used to estimate dose rate distributions for the configurations considered. These results were then compared to those obtained with the TG-43 dose calculation formalism. In particular, the influence of adding bolus material over the implant was studied. Results: For a 5 cm × 5 cm{sup 192}Ir superficial mould and 0.5 cm prescription depth, dose differences in comparison to the TG-43 method were about −3%. When the source was positioned at the skin surface, dose differences were smaller than −1% for {sup 60}Co and {sup 192}Ir, yet −3% for {sup 169}Yb. For the interstitial implant, dose differences at the skin surface were −7% for {sup 60}Co, −0.6% for {sup 192}Ir, and −2.5% for {sup 169}Yb. Conclusions: This study indicates the following: (i) for the superficial mould, no bolus is needed; (ii) when the source is in contact with the skin surface, no bolus is needed for either {sup 60}Co and {sup 192}Ir. For

  19. Limitations of the TG-43 formalism for skin high-dose-rate brachytherapy dose calculations.

    Science.gov (United States)

    Granero, Domingo; Perez-Calatayud, Jose; Vijande, Javier; Ballester, Facundo; Rivard, Mark J

    2014-02-01

    In skin high-dose-rate (HDR) brachytherapy, sources are located outside, in contact with, or implanted at some depth below the skin surface. Most treatment planning systems use the TG-43 formalism, which is based on single-source dose superposition within an infinite water medium without accounting for the true geometry in which conditions for scattered radiation are altered by the presence of air. The purpose of this study is to evaluate the dosimetric limitations of the TG-43 formalism in HDR skin brachytherapy and the potential clinical impact. Dose rate distributions of typical configurations used in skin brachytherapy were obtained: a 5 cm × 5 cm superficial mould; a source inside a catheter located at the skin surface with and without backscatter bolus; and a typical interstitial implant consisting of an HDR source in a catheter located at a depth of 0.5 cm. Commercially available HDR(60)Co and (192)Ir sources and a hypothetical (169)Yb source were considered. The Geant4 Monte Carlo radiation transport code was used to estimate dose rate distributions for the configurations considered. These results were then compared to those obtained with the TG-43 dose calculation formalism. In particular, the influence of adding bolus material over the implant was studied. For a 5 cm × 5 cm(192)Ir superficial mould and 0.5 cm prescription depth, dose differences in comparison to the TG-43 method were about -3%. When the source was positioned at the skin surface, dose differences were smaller than -1% for (60)Co and (192)Ir, yet -3% for (169)Yb. For the interstitial implant, dose differences at the skin surface were -7% for (60)Co, -0.6% for (192)Ir, and -2.5% for (169)Yb. This study indicates the following: (i) for the superficial mould, no bolus is needed; (ii) when the source is in contact with the skin surface, no bolus is needed for either (60)Co and (192)Ir. For lower energy radionuclides like (169)Yb, bolus may be needed; and (iii) for the interstitial case, at

  20. Seed quality in informal seed systems

    OpenAIRE

    Biemond, P.C.

    2013-01-01

    Keywords:     informal seed systems, seed recycling, seed quality, germination, seed pathology, seed health, seed-borne diseases, mycotoxigenic fungi, Fusarium verticillioides, mycotoxins, Vigna unguiculata, Zea mays, Nigeria.   Seed is a crucial input for agricultural production. Approximately 80% of the smallholder farmers in Africa depend for their seed on the informal seed system, consisting of farmers involved in selection, production and dissemination of seed. The la...

  1. Development of a brachytherapy audit checklist tool.

    Science.gov (United States)

    Prisciandaro, Joann; Hadley, Scott; Jolly, Shruti; Lee, Choonik; Roberson, Peter; Roberts, Donald; Ritter, Timothy

    2015-01-01

    To develop a brachytherapy audit checklist that could be used to prepare for Nuclear Regulatory Commission or agreement state inspections, to aid in readiness for a practice accreditation visit, or to be used as an annual internal audit tool. Six board-certified medical physicists and one radiation oncologist conducted a thorough review of brachytherapy-related literature and practice guidelines published by professional organizations and federal regulations. The team members worked at two facilities that are part of a large, academic health care center. Checklist items were given a score based on their judged importance. Four clinical sites performed an audit of their program using the checklist. The sites were asked to score each item based on a defined severity scale for their noncompliance, and final audit scores were tallied by summing the products of importance score and severity score for each item. The final audit checklist, which is available online, contains 83 items. The audit scores from the beta sites ranged from 17 to 71 (out of 690) and identified a total of 7-16 noncompliance items. The total time to conduct the audit ranged from 1.5 to 5 hours. A comprehensive audit checklist was developed which can be implemented by any facility that wishes to perform a program audit in support of their own brachytherapy program. The checklist is designed to allow users to identify areas of noncompliance and to prioritize how these items are addressed to minimize deviations from nationally-recognized standards. Copyright © 2015 American Brachytherapy Society. All rights reserved.

  2. An Active Mammosite For Breast Brachytherapy

    Science.gov (United States)

    Cudjoe, Thomas

    2006-03-01

    Brachytherapy is an advanced cancer treatment that uses radioactive sources inside or in close proximity to cancerous tumors, thus minimizing exposure to neighboring healthy cells. This radiation oncology treatment unlike many others is localized and precise. The latest involvement of the Brachytherapy research group of the medical physics program at Hampton University is in the development of a scintillator fiber based detector for the breast cancer specific Mammosite (balloon device) from Cytyc Inc. Radioactive sources are inserted into a small plastic catheter (shaft) and pushed at the end of the tube. At that location, a water filled balloon surrounds the source and allow uniform gamma emission into cancer tumors. There is presently no capability for this device to provide measurements of the location of the source, as well as the radiation emitted from the source. Recent data were acquired to evaluate the possibility of measuring the dose distribution during breast Brachytherapy cancer treatments with this device. A high activity ^192Ir radioactive source and a 0.5 and 1 mm^2 scintillating fibers were used. Results will be presented and discussed.

  3. Experimental dosimetry of Ho-166 bioglass seed polymer-protected

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, Luciana B.; Campos, Tarcisio P.R. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Nuclear. Programa de Pos-Graduacao em Ciencias e Tecnicas Nucleares

    2011-07-01

    This study aims to develop experimental dosimetry of Ho-166 bio glass seed for brachytherapy studies using GAFCHROMIC EBT2 radio chromium films. The methodology consists of placement of radio chromium films in a compressed breast phantom, along with bio glass polymer-protected seeds of [Si: Ca: Ho] and [Si: Ca: Ho: Zr]. The bio glass seeds were encapsulated with polyvinyl alcohol, before being activated and used in the study. The bio glass seeds were introduced into the breast phantom, along with radio chromium films for a period of 2 hours. After the exposure time, radio chromium films were removed from phantom and digitized for analysis in ImageDIG 2.0 program, which quantifies the intensity of RGB (Red, Green, Blue). The dose calculation was evaluated by Monte Carlo technique. Experimental and theoretical data were used to calibrate the dose distribution. The results were plotted on graphs and dose iso curves were obtained. As conclusion it is possible to perform dosimetry in Ho-166 seed brachytherapy using radio chromium films, limited to a short exposure time and small activity. (author)

  4. Brachytherapy in the treatment of cervical cancer: a review

    Directory of Open Access Journals (Sweden)

    Banerjee R

    2014-05-01

    Full Text Available Robyn Banerjee,1 Mitchell Kamrava21Department of Radiation Oncology, Tom Baker Cancer Centre, Calgary, Alberta, Canada; 2Department of Radiation Oncology, University of California Los Angeles, Los Angeles, CA, USAAbstract: Dramatic advances have been made in brachytherapy for cervical cancer. Radiation treatment planning has evolved from two-dimensional to three-dimensional, incorporating magnetic resonance imaging and/or computed tomography into the treatment paradigm. This allows for better delineation and coverage of the tumor, as well as improved avoidance of surrounding organs. Consequently, advanced brachytherapy can achieve very high rates of local control with a reduction in morbidity, compared with historic approaches. This review provides an overview of state-of-the-art gynecologic brachytherapy, with a focus on recent advances and their implications for women with cervical cancer.Keywords: cervical cancer, brachytherapy, image-guided brachytherapy

  5. Improving the efficiency of image guided brachytherapy in cervical cancer

    Directory of Open Access Journals (Sweden)

    Sophie Otter

    2016-12-01

    Full Text Available Brachytherapy is an essential component of the treatment of locally advanced cervical cancers. It enables the dose to the tumor to be boosted whilst allowing relative sparing of the normal tissues. Traditionally, cervical brachytherapy was prescribed to point A but since the GEC-ESTRO guidelines were published in 2005, there has been a move towards prescribing the dose to a 3D volume. Image guided brachytherapy has been shown to reduce local recurrence, and improve survival and is optimally predicated on magnetic resonance imaging. Radiological studies, patient workflow, operative parameters, and intensive therapy planning can represent a challenge to clinical resources. This article explores the ways, in which 3D conformal brachytherapy can be implemented and draws findings from recent literature and a well-developed hospital practice in order to suggest ways to improve the efficiency and efficacy of a brachytherapy service. Finally, we discuss relatively underexploited translational research opportunities.

  6. MRI-based treatment planning and dose delivery verification for intraocular melanoma brachytherapy.

    Science.gov (United States)

    Zoberi, Jacqueline Esthappan; Garcia-Ramirez, Jose; Hedrick, Samantha; Rodriguez, Vivian; Bertelsman, Carol G; Mackey, Stacie; Hu, Yanle; Gach, H Michael; Rao, P Kumar; Grigsby, Perry W

    2017-08-14

    Episcleral plaque brachytherapy (EPB) planning is conventionally based on approximations of the implant geometry with no volumetric imaging following plaque implantation. We have developed an MRI-based technique for EPB treatment planning and dose delivery verification based on the actual patient-specific geometry. MR images of 6 patients, prescribed 85 Gy over 96 hours from Collaborative Ocular Melanoma Study-based EPB, were acquired before and after implantation. Preimplant and postimplant scans were used to generate "preplans" and "postplans", respectively. In the preplans, a digital plaque model was positioned relative to the tumor, sclera, and nerve. In the postplans, the same plaque model was positioned based on the imaged plaque. Plaque position, point doses, percentage of tumor volume receiving 85 Gy (V100), and dose to 100% of tumor volume (Dmin) were compared between preplans and postplans. All isodose plans were computed using TG-43 formalism with no heterogeneity corrections. Shifts and tilts of the plaque ranged from 1.4 to 8.6 mm and 1.0 to 3.8 mm, respectively. V100 was ≥97% for 4 patients. Dmin for preplans and postplans ranged from 83 to 118 Gy and 45 to 110 Gy, respectively. Point doses for tumor apex and base were all found to decrease from the preimplant to the postimplant plan, with mean differences of 16.7 ± 8.6% and 30.5 ± 11.3%, respectively. By implementing MRI for EPB, we eliminate reliance on approximations of the eye and tumor shape and the assumption of idealized plaque placement. With MRI, one can perform preimplant as well as postimplant imaging, facilitating EPB treatment planning based on the actual patient-specific geometry and dose-delivery verification based on the imaged plaque position. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  7. Dosimetry evaluation of SAVI-based HDR brachytherapy for partial breast irradiation

    Directory of Open Access Journals (Sweden)

    Manoharan Sivasubramanian

    2010-01-01

    Full Text Available Accelerated partial breast irradiation (APBI with high dose rate (HDR brachytherapy offers an excellent compact course of radiation due to its limited number of fractions for early-stage carcinoma of breast. One of the recent devices is SAVI (strut-adjusted volume implant, which has 6, 8 or 10 peripheral source channels with one center channel. Each channel can be differentially loaded. This paper focuses on the treatment planning, dosimetry and quality assurance aspects of HDR brachytherapy implant with GammaMed Plus HDR afterloader unit. The accelerated PBI balloon devices normally inflate above 35 cc range, and hence these balloon type devices cannot be accommodated in small lumpectomy cavity sizes. CT images were obtained and 3-D dosimetric plans were done with Brachyvision planning system. The 3-D treatment planning and dosimetric data were evaluated with planning target volume (PTV_eval V90, V95, V150, V200 skin dose and minimum distance to skin. With the use of the SAVI 6-1 mini device, we were able to accomplish an excellent coverage - V90, V95, V150 and V200 to 98%, 95%, 37 cc (<50 cc volume and 16 cc (<20 cc volume, respectively. Maximum skin dose was between 73% and 90%, much below the prescribed dose of 34 Gy. The minimum skin distance achieved was 5 to 11 mm. The volume that received 50% of the prescribed radiation dose was found to be lower with SAVI. The multi-channel SAVI-based implants reduced the maximum skin dose to markedly lower levels as compared to other modalities, simultaneously achieving best dose coverage to target volume. Differential-source dwell-loading allows modulation of the radiation dose distribution in symmetric or asymmetric opening of the catheter shapes and is also advantageous in cavities close to chest wall.

  8. Endovascular brachytherapy to prevent restenosis after angioplasty; Endovaskulaere Brachytherapie in der Restenoseprophylaxe nach Angioplastie und Stentimplantation: Eine Uebersicht

    Energy Technology Data Exchange (ETDEWEB)

    Wohlgemuth, W.A.; Bohndorf, K. [Klinikum Augsburg (Germany). Klinik fuer Diagnostische Radiologie und Neuroradiologie

    2003-02-01

    Endovascular radiotherapy is the first effective prophylaxis of restenosis after percutaneous transluminal angioplasty (PTA) and stenting. The FDA recently approved two devices for the delivery of intracoronary radiation following coronary artery stenting. Published multicenter, double-blind, randomized trials of intracoronary radiation therapy report good results for preventing in-stent restenosis, while the data for the peripheral circulation are still inconclusive. Beta-emitters are easier applicable and probably also safer, whereas gamma-emitters have been more extensively evaluated clinically so far. Primary indication for endovascular brachytherapy are patients at high risk for restenosis, such as previous restenoses, in-stent hyperplasia, long stented segment, long PTA lesion, narrow residual vascular lumen and diabetes. Data from coronary circulation suggest a safety margin of at least 4 to 10 mm at both ends of the angioplastic segment to avoid edge restenosis. To prevent late thrombosis of the treated coronary segment, antiplatelet therapy with clopidogrel and aspirin are recommended for at least 6 months after PTA and for 12 months after a newly implanted stent. An established medication regimen after radiotherapy of peripheral arteries is still lacking. (orig.) [German] Die endovaskulaere Radiotherapie stellt das erste erfolgreiche Therapiekonzept in der Restenoseprophylaxe nach PTA und Stentimplantation dar. Am 3.11.2000 hat die amerikanische Food and Drug Administration erstmalig zwei Brachytherapiegeraete zur Restenoseprophylaxe nach Koronararterien-Stenting zugelassen. Grosse multizentrische, kontrollierte Studien wurden fuer das koronare Stromgebiet mit positiven Ergebnissen publiziert, die Datenlage im peripheren Stromgebiet ist noch ungenuegend. Beta-Strahler bieten Vorteile in der Anwendung, moeglicherweise auch in der Sicherheit, Gamma-Strahler dagegen sind besser klinisch evaluiert. Die primaere Indikation zur endovaskulaeren Brachytherapie

  9. Conformal treatment planning for interstitial brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kovacs, G. [Kiel Univ. (Germany). Klinik fuer Strahlentherapie (Radioonkologie); Hebbinghaus, D. [Kiel Univ. (Germany). Klinik fuer Strahlentherapie (Radioonkologie); Dennert, P. [Kiel Univ. (Germany). Klinik fuer Strahlentherapie (Radioonkologie); Kohr, P. [Kiel Univ. (Germany). Klinik fuer Strahlentherapie (Radioonkologie); Wilhelm, R. [Kiel Univ. (Germany). Klinik fuer Strahlentherapie (Radioonkologie); Kimmig, B. [Kiel Univ. (Germany). Klinik fuer Strahlentherapie (Radioonkologie)

    1996-09-01

    Quality of a brachytherapy application depends on the choice of the target volume, on the dose distribution homogeneity and radiation injury on critical tissue, which should be postulated by advanced brachytherapy treatment planning systems. Basic imaging method for conformal treatment planning is the cross-sectional imaging. The clinical applicatibility of a new type 3D planning system using CT and/or MRT-simulation or US-simulation for planning purposes was studied. The planning system developed at Kiel University differs from usual brachytherapy planning systems because of the obligatory use of cross-sectional imaging as basic imaging method for reconstruction of structures of interest. Dose distribution and normal anatomy can be visualized on each CT/MRT/US slice as well as coronal, sagittal, axial and free chosen reconstructions (3D), as well as dose-volume histogram curves and special colour-coded visualization of dose homogeneity in the target can be analyzed. Because of the experience in the clinical routine, as well as on the base of 30 simultaneous planning procedures on both 2D (semi-3D) and 3D planning systems we observed similar time consumption. Advantages of 3D planning were the better interpretation of target delineation, delineation of critical structures as well as dose distribution, causing more accurate volume optimisation of dose distribution. Conformal brachytherapy treatment planning for interstitial brachytherapy means significant advantages for the clinical routine compared to 2D or semi-3D methods. (orig.) [Deutsch] Die Qualitaet einer Brachytherapieapplikation ist abhaengig von der Zielvolumenwahl, der homogenen Dosisverteilung und der Schonung kritischer Organe. Diese Voraussetzungen koennen am besten mit Hilfe eines 3D-Planungssystem erfuellt werden. Als Planungsvorlage fuer die Konformationstherapieplanung sind am besten Schnittbilder (CT, MRT, US) geeignet. Es wurde die Anwendbarkeit eines auf CT- (oder MRT-)Simulation oder geeignete

  10. An ultrasound image navigation robotic prostate brachytherapy system based on US to MRI deformable image registration method.

    Science.gov (United States)

    Zhang, Shihui; Jiang, Shan; Yang, Zhiyong; Liu, Ranlu; Yang, Yunpeng; Liang, Honghua

    2016-01-01

    This paper describes an ultrasound image navigation robotic prostate brachytherapy system. It uses a 2D ultrasound (US) probe rigidly fixed to a robotic needle insertion mechanism. Combined with the US probe registration and image registration, this system will help to navigate the prostate brachytherapy to increase the inserting accuracy. The novelty of the system is that after the US probe registration using an improved iterative closest point (ICP) registration method, the initial registration for the magnetic resonance imaging (MRI) and US image can be completely automatically. Moreover, a deformable registration method based on statistical measurement was proposed to register US to MRI images intra-operatively. The 6-degree of freedom (6-DOF) of robot and ultrasound probe are calibrated together with an accuracy of 0.9mm, allowing the needles to be precisely inserted to the seed targets after the image registration. Experiments were conducted by using US/MRI images, capturing from patients. Results showed that the accuracies of probe registration and US-MRI registration were: 0.44±0.12mm and 2.30±0.41mm, respectively. With the help of this robotic system, the accuracy and the costing of time for prostate brachytherapy will greatly improve.

  11. CT-guided brachytherapy of prostate cancer: reduction of effective dose from X-ray examination

    Science.gov (United States)

    Sanin, Dmitriy B.; Biryukov, Vitaliy A.; Rusetskiy, Sergey S.; Sviridov, Pavel V.; Volodina, Tatiana V.

    2014-03-01

    Computed tomography (CT) is one of the most effective and informative diagnostic method. Though the number of CT scans among all radiographic procedures in the USA and European countries is 11% and 4% respectively, CT makes the highest contribution to the collective effective dose from all radiographic procedures, it is 67% in the USA and 40% in European countries [1-5]. Therefore it is necessary to understand the significance of dose value from CT imaging to a patient . Though CT dose from multiple scans and potential risk is of great concern in pediatric patients, this applies to adults as well. In this connection it is very important to develop optimal approaches to dose reduction and optimization of CT examination. International Commission on Radiological Protection (ICRP) in its publications recommends radiologists to be aware that often CT image quality is higher than it is necessary for diagnostic confidence[6], and there is a potential to reduce the dose which patient gets from CT examination [7]. In recent years many procedures, such as minimally invasive surgery, biopsy, brachytherapy and different types of ablation are carried out under guidance of computed tomography [6;7], and during a procedures multiple CT scans focusing on a specific anatomic region are performed. At the Clinics of MRRC different types of treatment for patients with prostate cancer are used, incuding conformal CT-guided brachytherapy, implantation of microsources of I into the gland under guidance of spiral CT [8]. So, the purpose of the study is to choose optimal method to reduce radiation dose from CT during CT-guided prostate brachytherapy and to obtain the image of desired quality.

  12. Four-year biochemical outcome after radioimmunoguided transperineal brachytherapy for patients with prostate adenocarcinoma.

    Science.gov (United States)

    Ellis, Rodney J; Vertocnik, Amy; Kim, Edward; Zhou, Hang; Young, Benjamin; Sodee, Bruce; Fu, Pingfu; Beddar, Sam; Colussi, Valdir; Spirnak, John P; Dinchman, Kurt H; Resnick, Martin; Kinsella, Timothy J

    2003-10-01

    To evaluate 4-year biochemical outcomes for patients with prostate adenocarcinoma who underwent radioimmunoguided (Prostascint) permanent prostate brachytherapy. Eighty patients with clinical T1C-T3A NxM0 prostate cancer underwent ProstaScint-guided prostate brachytherapy using either (103)Pd or (125)I between February 1997 and December 2000. Sixty-seven patients underwent prostate brachytherapy alone, whereas 13 patients received neoadjuvant hormonal manipulation before implantation. Risk factors (RF) included PSA >10, Stage >or=T2b, and Gleason grade >or=7. Sixty patients had low-risk disease (0 RF), 17 were intermediate risk (1 RF), and 3 were high risk (2 RF). Biochemical disease-free survival (bDFS) was calculated using the American Society for Therapeutic Radiology and Oncology (ASTRO) consensus criteria, a PSA cutoff of 1.0 ng/mL, and a PSA cutoff of 0.5 ng/mL. Four-year bDFS for the entire cohort was 97.4% using the ASTRO consensus criteria. Low-risk patients (60) had a 4-year bDFS of 100%; intermediate- and high-risk patients (20 patients) were 89.2%. The hormonally naïve group (67 patients) had a 4-year bDFS of 96.9% and a median PSA nadir of 0.2 ng/mL. Median time to nadir was 19.8 months (range: 1.9-53.2 months). For the neoadjuvant hormonal therapy group (13 patients), ASTRO-defined bDFS was 100%. Overall, 85.2% of patients had a posttreatment PSA probability of actuarial 4-year biochemical disease-free survival for patients with localized prostate cancer.

  13. Prognostic Importance of Small Prostate Size in Men Receiving Definitive Prostate Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Taira, Al V. [Western Radiation Oncology, Mountain View, California (United States); Merrick, Gregory S., E-mail: gmerrick@urologicresearchinstitute.org [Schiffler Cancer Center, Wheeling Jesuit University, Wheeling, West Virginia (United States); Galbreath, Robert W.; Butler, Wayne M. [Schiffler Cancer Center, Wheeling Jesuit University, Wheeling, West Virginia (United States); Adamovich, Edward [Department of Pathology, Wheeling Hospital, Wheeling, West Virginia (United States); Wallner, Kent E. [Puget Sound Healthcare Corporation, Group Health Cooperative, University of Washington, Seattle, Washington (United States)

    2012-10-01

    Purpose: To assess whether small prostate size is an adverse prognostic factor in men undergoing brachytherapy in the same manner in which it seems to be for men undergoing radical prostatectomy. Methods and Materials: From April 1995 to June 2008, 2024 patients underwent brachytherapy by a single brachytherapist. Median follow-up was 7.4 years. The role of small prostate size ({<=}20 cm{sup 3}) as a prognostic factor for biochemical progression-free survival, cause-specific survival, and all-cause mortality was investigated. The differences in survival between men with small and larger prostates were compared using Kaplan-Meier curves and log-rank tests. Results: Median prostate size for the entire cohort was 32.7 cm{sup 3}. For the 167 men with small prostates, median prostate size was 17.4 cm{sup 3}. There was no difference in biochemical progression-free survival (95.2% vs 96.2%, P=.603), cause-specific survival (97.7% vs 98.3%, P=.546), or all-cause mortality (78.0% vs 77.2%, P=.838) at 10 years for men with small prostates compared with men with larger prostates. On univariate and multivariate analysis, small prostate size was not associated with any of the primary outcome measures. Conclusion: Men with small prostates treated with brachytherapy have excellent outcomes and are at no higher risk of treatment failure than men with larger glands. High-quality implants with adequate margins seem sufficient to address the increased adverse risk factors associated with small prostate size.

  14. American Brachytherapy Society consensus report for accelerated partial breast irradiation using interstitial multicatheter brachytherapy.

    Science.gov (United States)

    Hepel, Jaroslaw T; Arthur, Douglas; Shaitelman, Simona; Polgár, Csaba; Todor, Dorin; Zoberi, Imran; Kamrava, Mitchell; Major, Tibor; Yashar, Catheryn; Wazer, David E

    To develop a consensus report for the quality practice of accelerated partial breast irradiation (APBI) using interstitial multicatheter brachytherapy (IMB). The American Brachytherapy Society Board appointed an expert panel with clinical and research experience with breast brachytherapy to provide guidance for the current practice of IMB. This report is based on a comprehensive literature review with emphasis on randomized data and expertise of the panel. Randomized trials have demonstrated equivalent efficacy of APBI using IMB compared with whole breast irradiation for select patients with early-stage breast cancer. Several techniques for placement of interstitial catheters are described, and importance of three-dimensional planning with appropriate optimization is reviewed. Optimal target definition is outlined. Commonly used dosing schemas include 50 Gy delivered in pulses of 0.6-0.8 Gy/h using pulsed-dose-rate technique and 34 Gy in 10 fractions, 32 Gy in eight fractions, or 30 Gy in seven fractions using high-dose-rate technique. Potential toxicities and strategies for toxicity avoidance are described in detail. Dosimetric constraints include limiting whole breast volume that receives ≥50% of prescription dose to skin dose to ≤100% of prescription dose (≤60-70% preferred), chest wall dose to ≤125% of prescription dose, Dose Homogeneity Index to >0.75 (>0.85 preferred), V150 Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  15. Adaptation of the CVT algorithm for catheter optimization in high dose rate brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Poulin, Eric; Fekete, Charles-Antoine Collins; Beaulieu, Luc [Département de Physique, de Génie Physique et d’Optique et Centre de recherche sur le cancer de l’Université Laval, Université Laval, Québec, Québec G1V 0A6, Canada and Département de Radio-Oncologie et Axe oncologie du Centre de Recherche du CHU de Québec, CHU de Québec, 11 Côte du Palais, Québec, Québec G1R 2J6 (Canada); Létourneau, Mélanie [Département de Radio-Oncologie, CHU de Québec, 11 Côte du Palais, Québec, Québec G1R 2J6 (Canada); Fenster, Aaron [Imaging Research Laboratories, Robarts Research Institute, 100 Perth Drive, London, Ontario N6A 5K8 (United Kingdom); Pouliot, Jean [Department of Radiation Oncology, University of California San Francisco, Helen Diller Family Comprehensive Cancer Center, 1600 Divisadero Street, San Francisco, California 94143-1708 (United States)

    2013-11-15

    Purpose: An innovative, simple, and fast method to optimize the number and position of catheters is presented for prostate and breast high dose rate (HDR) brachytherapy, both for arbitrary templates or template-free implants (such as robotic templates).Methods: Eight clinical cases were chosen randomly from a bank of patients, previously treated in our clinic to test our method. The 2D Centroidal Voronoi Tessellations (CVT) algorithm was adapted to distribute catheters uniformly in space, within the maximum external contour of the planning target volume. The catheters optimization procedure includes the inverse planning simulated annealing algorithm (IPSA). Complete treatment plans can then be generated from the algorithm for different number of catheters. The best plan is chosen from different dosimetry criteria and will automatically provide the number of catheters and their positions. After the CVT algorithm parameters were optimized for speed and dosimetric results, it was validated against prostate clinical cases, using clinically relevant dose parameters. The robustness to implantation error was also evaluated. Finally, the efficiency of the method was tested in breast interstitial HDR brachytherapy cases.Results: The effect of the number and locations of the catheters on prostate cancer patients was studied. Treatment plans with a better or equivalent dose distributions could be obtained with fewer catheters. A better or equal prostate V100 was obtained down to 12 catheters. Plans with nine or less catheters would not be clinically acceptable in terms of prostate V100 and D90. Implantation errors up to 3 mm were acceptable since no statistical difference was found when compared to 0 mm error (p > 0.05). No significant difference in dosimetric indices was observed for the different combination of parameters within the CVT algorithm. A linear relation was found between the number of random points and the optimization time of the CVT algorithm. Because the

  16. Validation and comparison of the two Kattan nomograms in patients with prostate cancer treated with (125) iodine brachytherapy.

    Science.gov (United States)

    Kaplan, Alan; German, Larissa; Chen, Juza; Matzkin, Haim; Mabjeesh, Nicola J

    2012-06-01

    Study Type - Prognostic (cohort) Level of Evidence 2b What's known on the subject? and What does the study add? Nomograms are based on large patient population. Their applicability should be externally validated. Among 747 brachytherapy patients we evaluated two Kattan nonograms and conclude that they have limited value to predict PSA-free survival. To validate and compare the preoperative and postoperative Kattan prediction nonograms for prostate cancer recurrence after brachytherapy. Patients (n= 747) treated with (125) I-brachytherapy were evaluated. Both nomograms were used to calculate the prediction of 5-year biochemical-freedom from failure (BFFF) based on clinical stage, Gleason score, prostate-specific antigen (PSA) level, receipt of androgen deprivation therapy and the post-implant dosimetry variable D90 (values of the minimal dose received by 90% of the prostate volume). The predicted values using the Kattan nomograms and the observed values were compared. Predictive accuracy was determined using the concordance index. The 5-year BFFF probability was 94% (95% confidence interval [CI], 92-96%) for the modified American Society for Radiation Oncology (ASTRO) definition and 97% (95% CI, 95-98%) for the Phoenix definition using Kaplan-Meier analysis. The predicted values of BFFF using both Kattan nomograms were lower than the observed rates in our cohort. The concordance index values were 0.51 and 0.52 for preoperative and postoperative nomograms, respectively. Concordance correlation coefficient between the two nomograms was 0.15. In our population, the 5-year BFFF outcomes rates were superior to nomogram predictions. Neither nomogram predicted outcomes after (125) I-brachytherapy in this non-US cohort. The postoperative nomogram was also a poor predictor, although it included D90 dosimetry values, as a variable of treatment quality. Strict inclusion criteria, perhaps more favourable than the ones on which the Kattan nomograms were based, could be the

  17. Assessment of the risks associated with Iodine-125 handling production sources for brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Daiane C.B.; Rostelato, Maria Elisa C.; Vicente, Roberto; Zeituni, Carlos A.; Tiezzi, Rodrigo; Costa, Osvaldo L.; Souza, Carla D.; Peleias Junior, Fernando S.; Rodrigues, Bruna T.; Souza, Anderson S.; Batista, Talita Q.; Melo, Emerson R.; Camargo, Anderson R., E-mail: dcsouza@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Karam Junior, Dib, E-mail: dib.karam@usp.br [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil)

    2015-07-01

    In Brazil, prostate cancer is the second most frequent disease, with an estimated 68,800 new cases in 2013. This type of cancer can be treated with brachytherapy, which uses sealed sources of Iodine-125 implanted permanently in the prostate. These sources are currently imported at a high cost, making public treatment in large scale impractical. To reduce costs and to meet domestic demand, the laboratory for production of brachytherapy sources at the Nuclear and Energy Research Institute (IPEN) is currently nationalizing the production of this radioisotope. Iodine is quite volatile making the handling of its radioactive isotopes potentially dangerous. The aim of this paper is to evaluate the risks to which workers are exposed during the production and handling of the sources. The research method consisted initially of a literature review on the toxicity of iodine, intake limits, related physical risks, handling of accidents, generation of radioactive wastes, etc. The results allowed for establishing safety and radioprotection policies in order to ensure efficient and safe production in all stages and the implementation of good laboratory practices. (author)

  18. Multihelix rotating shield brachytherapy for cervical cancer

    Energy Technology Data Exchange (ETDEWEB)

    Dadkhah, Hossein [Department of Biomedical Engineering, University of Iowa, 1402 Seamans Center for the Engineering Arts and Sciences, Iowa City, Iowa 52242 (United States); Kim, Yusung; Flynn, Ryan T., E-mail: ryan-flynn@uiowa.edu [Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 (United States); Wu, Xiaodong [Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 and Department of Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center for the Engineering Arts and Sciences, Iowa City, Iowa 52242 (United States)

    2015-11-15

    Purpose: To present a novel brachytherapy technique, called multihelix rotating shield brachytherapy (H-RSBT), for the precise angular and linear positioning of a partial shield in a curved applicator. H-RSBT mechanically enables the dose delivery using only linear translational motion of the radiation source/shield combination. The previously proposed approach of serial rotating shield brachytherapy (S-RSBT), in which the partial shield is rotated to several angular positions at each source dwell position [W. Yang et al., “Rotating-shield brachytherapy for cervical cancer,” Phys. Med. Biol. 58, 393