WorldWideScience

Sample records for seed coat tissues

  1. Surface coating for prevention of metallic seed migration in tissues

    Lee, Hyunseok; Park, Jong In [Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-742 (Korea, Republic of); Lee, Won Seok; Park, Min [Interdisciplinary Program in Bioengineering, Seoul National University College of Engineering, Seoul 151-742 (Korea, Republic of); Son, Kwang-Jae [Hanaro Applications Research, Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Bang, Young-bong [Advanced Institutes of Convergence Technology, Seoul National University, Suwon 443-270 (Korea, Republic of); Choy, Young Bin, E-mail: ybchoy@snu.ac.kr, E-mail: sye@snu.ac.kr [Interdisciplinary Program in Bioengineering, Seoul National University College of Engineering, Seoul 110-744 (Korea, Republic of); Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of); Institute of Medical and Biological Engineering, Medical Research Center, Seoul National University, Seoul 110-744 (Korea, Republic of); Ye, Sung-Joon, E-mail: ybchoy@snu.ac.kr, E-mail: sye@snu.ac.kr [Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-742 (Korea, Republic of); Advanced Institutes of Convergence Technology, Seoul National University, Suwon 443-270 (Korea, Republic of); Department of Radiation Oncology, Seoul National University Hospital, Seoul 110-744 (Korea, Republic of)

    2015-06-15

    Purpose: In radiotherapy, metallic implants often detach from their deposited sites and migrate to other locations. This undesirable migration could cause inadequate dose coverage for permanent brachytherapy and difficulties in image-guided radiation delivery for patients. To prevent migration of implanted seeds, the authors propose a potential strategy to use a biocompatible and tissue-adhesive material called polydopamine. Methods: In this study, nonradioactive dummy seeds that have the same geometry and composition as commercial I-125 seeds were coated in polydopamine. Using scanning electron microscopy and x-ray photoelectron spectroscopy, the surface of the polydopamine-coated and noncoated seeds was characterized. The detachment stress between the two types of seeds and the tissue was measured. The efficacy of polydopamine-coated seed was investigated through in vitro migration tests by tracing the seed location after tissue implantation and shaking for given times. The cytotoxicity of the polydopamine coating was also evaluated. Results: The results of the coating characterization have shown that polydopamine was successfully coated on the surface of the seeds. In the adhesion test, the polydopamine-coated seeds had 2.1-fold greater detachment stress than noncoated seeds. From the in vitro test, it was determined that the polydopamine-coated seed migrated shorter distances than the noncoated seed. This difference was increased with a greater length of time after implantation. Conclusions: The authors suggest that polydopamine coating is an effective technique to prevent migration of implanted seeds, especially for permanent prostate brachytherapy.

  2. Visualizing tissue molecular structure of a black type of canola (Brassica) seed with a thick seed coat after heat-related processing in a chemical way.

    Yu, Peiqiang

    2013-02-20

    Heat-related processing of cereal grains, legume seeds, and oil seeds could be used to improve nutrient availability in ruminants. However, different types of processing may have a different impact on intrinsic structure of tissues. To date, there is little research on structure changes after processing within intact tissues. The synchrotron-based molecular imaging technique enables us to detect inherent structure change on a molecular level. The objective of this study was to visualize tissue of black-type canola (Brassica) seed with a thick seed coat after heat-related processing in a chemical way using the synchrotron imaging technique. The results showed that the chemical images of protein amides were obtained through the imaging technique for the raw, wet, and dry heated black type of canola seed tissues. It seems that different types of processing have a different impact on the protein spectral profile in the black type of canola tissues. Wet heating had a greater impact on the protein α-helix to β-sheet ratio than dry heating. Both dry and wet heating resulted in different patterns in amide I, the second derivative, and FSD spectra. However, the exact differences in the tissue images are relatively difficult to be obtained through visual comparison. Future studies should focus on (1) comparing the response and sensitivity of canola seeds to various processing methods between the yellow-type and black-type of canola seeds; (2) developing a sensitive method to compare the image difference between tissues and between treatments; (3) developing a method to link images to nutrient digestion, and (4) revealing how structure changes affect nutrient absorption in humans and animals.

  3. Comparative analysis of adherence, viability, proliferation and morphology of umbilical cord tissue-derived mesenchymal stem cells seeded on different titanium-coated expanded polytetrafluoroethylene scaffolds

    Hollweck, Trixi; Marschmann, Michaela; Hartmann, Isabel; Akra, Bassil; Meiser, Bruno; Reichart, Bruno; Eissner, Guenther; Eblenkamp, Markus; Wintermantel, Erich

    2010-01-01

    Umbilical cord tissue comprises an attractive new source for mesenchymal stem cells. Umbilical cord tissue-derived mesenchymal stem cells (UCMSC) exhibit self-renewal, multipotency and immunological naivity, and they can be obtained without medical intervention. The transfer of UCMSC to the ischemic region of the heart may have a favorable impact on tissue regeneration. Benefit from typical cell delivery by injection to the infarcted area is often limited due to poor cell retention and survival. Another route of administration is to use populated scaffolds implanted into the infarcted zone. In this paper, the seeding efficiency of UCMSC on uncoated and titanium-coated expanded polytetrafluoroethylene (ePTFE) scaffolds with different surface structures was determined. Dualmesh (registered) (DM) offers a corduroy-like surface in contrast to the comparatively planar surface of cardiovascular patch (CVP). The investigation of adherence, viability and proliferation of UCMSC demonstrates that titanium-coated scaffolds are superior to uncoated scaffolds, independent of the surface structure. Microscopic images reveal spherical UCMSC seeded on uncoated scaffolds. In contrast, UCMSC on titanium-coated scaffolds display their characteristic spindle-shaped morphology and a homogeneous coverage of CVP. In summary, titanium coating of clinically approved CVP enhances the retention of UCMSC and thus offers a potential cell delivery system for the repair of the damaged myocardium.

  4. Comparative analysis of adherence, viability, proliferation and morphology of umbilical cord tissue-derived mesenchymal stem cells seeded on different titanium-coated expanded polytetrafluoroethylene scaffolds

    Hollweck, Trixi; Marschmann, Michaela; Hartmann, Isabel; Akra, Bassil; Meiser, Bruno; Reichart, Bruno; Eissner, Guenther [Department of Cardiac Surgery, University of Munich, Marchioninistrasse 15, 81377 Munich (Germany); Eblenkamp, Markus; Wintermantel, Erich, E-mail: Guenther.Eissner@med.uni-muenchen.d [Chair of Medical Engineering, Technische Universitaet Muenchen, Boltzmannstrasse 15, 85748 Garching (Germany)

    2010-12-15

    Umbilical cord tissue comprises an attractive new source for mesenchymal stem cells. Umbilical cord tissue-derived mesenchymal stem cells (UCMSC) exhibit self-renewal, multipotency and immunological naivity, and they can be obtained without medical intervention. The transfer of UCMSC to the ischemic region of the heart may have a favorable impact on tissue regeneration. Benefit from typical cell delivery by injection to the infarcted area is often limited due to poor cell retention and survival. Another route of administration is to use populated scaffolds implanted into the infarcted zone. In this paper, the seeding efficiency of UCMSC on uncoated and titanium-coated expanded polytetrafluoroethylene (ePTFE) scaffolds with different surface structures was determined. Dualmesh (registered) (DM) offers a corduroy-like surface in contrast to the comparatively planar surface of cardiovascular patch (CVP). The investigation of adherence, viability and proliferation of UCMSC demonstrates that titanium-coated scaffolds are superior to uncoated scaffolds, independent of the surface structure. Microscopic images reveal spherical UCMSC seeded on uncoated scaffolds. In contrast, UCMSC on titanium-coated scaffolds display their characteristic spindle-shaped morphology and a homogeneous coverage of CVP. In summary, titanium coating of clinically approved CVP enhances the retention of UCMSC and thus offers a potential cell delivery system for the repair of the damaged myocardium.

  5. PHO1 Exports Phosphate from the Chalazal Seed Coat to the Embryo in Developing Arabidopsis Seeds.

    Vogiatzaki, Evangelia; Baroux, Célia; Jung, Ji-Yul; Poirier, Yves

    2017-10-09

    Seed production requires the transfer of nutrients from the maternal seed coat to the filial endosperm and embryo. Because seed coat and filial tissues are symplasmically isolated, nutrients arriving in the seed coat via the phloem must be exported to the apoplast before reaching the embryo. Proteins implicated in the transfer of inorganic phosphate (Pi) from the seed coat to the embryo are unknown despite seed P content being an important agronomic trait. Here we show that the Arabidopsis Pi exporters PHO1 and PHOH1 are expressed in the chalazal seed coat (CZSC) of developing seeds. PHO1 is additionally expressed in developing ovules. Phosphorus (P) content and Pi flux between the seed coat and embryo were analyzed in seeds from grafts between WT roots and scions from either pho1, phoh1, or the pho1 phoh1 double mutant. Whereas P content and distribution between the seed coat and embryo in fully mature dry seeds of these mutants are similar to the WT, at the mature green stage of seed development the seed coat of the pho1 and pho1 phoh1 mutants, but not of the phoh1 mutant, retains approximately 2-fold more P than its WT control. Expression of PHO1 under a CZSC-specific promoter complemented the seed P distribution phenotype of the pho1 phoh1 double mutant. CZSC-specific down-expression of PHO1 also recapitulated the seed P distribution phenotype of pho1. Together, these experiments show that PHO1 expression in the CZSC is important for the transfer of P from the seed coat to the embryo in developing seeds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Transport processes in pea seed coats

    Dongen, Joost Thomas van

    2001-01-01

    The research described in this thesis concerns transport processes in coats of developing pea seeds. The scope of the investigation ranges from seed coat anatomy, via transport studies to the cloning of cDNA encoding proteinaceous membrane pores, and the heterologous expression of these

  7. Seed coat darkening in Cowpea bean

    Seed coat of cowpea bean (Vigna unguiculata L. Walp) slowly browns to a darker color during storage. High temperature and humidity during storage might contribute to this color change. Variation in browning rate among seeds in a lot leads to a mixture of seed colors creating an unacceptable product...

  8. Seed coat development in Velloziaceae: primary homology assessment and insights on seed coat evolution.

    Sousa-Baena, Mariane S; de Menezes, Nanuza L

    2014-09-01

    Seed coat characteristics have historically been used to infer taxonomic relationships and are a potential source of characters for phylogenetic reconstruction. In particular, seed coat morphoanatomy has never been studied in detail in Velloziaceae. One character based on seed surface microsculpture has been used in phylogenies, but was excluded from recent studies owing to problems in primary homology. This work aimed to clarify the origin and general composition of seed coat cell layers in Velloziaceae and to propose hypotheses of primary homology among seed characters.• Seed coat development of 24 Velloziaceae species, comprising nine genera, and one species of Pandanaceae (outgroup) was studied using standard anatomical methods. Developmental data were interpreted in the light of a recently published phylogeny.• Eight types of seed coat were identified. Whereas the most common type has four distinct cell layers (two-layered tegmen and testa), we encountered much more variation in seed coat composition than previously reported, the analysis of which revealed some potential synapomorphies. For instance, an exotesta with spiral thickenings may be a synapomorphy of Barbacenia.• Our results showed that the character states previously used in phylogenies are not based on homologous layers and that the same state was misattributed to species exhibiting quite different seed coats. This study is a first step toward a better understanding of seed coat structure evolution in Velloziaceae. © 2014 Botanical Society of America, Inc.

  9. Colonization of citrus seed coats by 'Candidatus Liberibacter asiaticus': implications for seed transmission of the bacterium.

    Hilf, Mark E

    2011-10-01

    Huanglongbing is an economically damaging disease of citrus associated with infection by 'Candidatus Liberibacter asiaticus'. Transmission of the organism via infection of seeds has not been demonstrated but is a concern since some citrus varieties, particularly those used as rootstocks in commercial plantings are propagated from seed. We compared the incidence of detection of 'Ca. Liberibacter asiaticus' DNA in individual fruit peduncles, seed coats, seeds, and in germinated seedlings from 'Sanguenelli' sweet orange and 'Conners' grapefruit fruits sampled from infected trees. Using real-time quantitative PCR (qPCR) we detected pathogen DNA in nucleic acid extracts of 36 and 100% of peduncles from 'Sanguenelli' and from 'Conners' fruits, respectively. We also detected pathogen DNA in extracts of 37 and 98% of seed coats and in 1.6 and 4% of extracts from the corresponding seeds of 'Sanguenelli' and 'Conners', respectively. Small amounts of pathogen DNA were detected in 10% of 'Sanguenelli' seedlings grown in the greenhouse, but in none of 204 extracts from 'Conners' seedlings. Pathogen DNA was detected in 4.9% and in 89% of seed coats peeled from seeds of 'Sanguenelli' and 'Conners' which were germinated on agar, and in 5% of 'Sanguenelli' but in none of 164 'Conners' seedlings which grew from these seeds on agar. No pathogen DNA was detected in 'Ridge Pineapple' tissue at 3 months post-grafting onto 'Sanguenelli' seedlings, even when pathogen DNA had been detected initially in the 'Sanguenelli' seedling. Though the apparent colonization of 'Conners' seeds was more extensive and nearly uniform compared with 'Sanguenelli' seeds, no pathogen DNA was detected in 'Conners' seedlings grown from these seeds. For either variety, no association was established between the presence of pathogen DNA in fruit peduncles and seed coats and in seedlings.

  10. Inheritance of seed coat color in sesame

    Hernán Laurentin

    2014-04-01

    Full Text Available The objective of this work was to determine the inheritance mode of seed coat color in sesame. Two crosses and their reciprocals were performed: UCLA37 x UCV3 and UCLA90 x UCV3, of which UCLA37 and UCLA90 are white seed, and UCV3 is brown seed. Results of reciprocal crosses within each cross were identical: F1 seeds had the same phenotype as the maternal parent, and F2 resulted in the phenotype brown color. These results are consistent only with the model in which the maternal effect is the responsible for this trait. This model was validated by recording the seed coat color of 100 F2 plants (F3 seeds from each cross with its reciprocal, in which the 3:1 expected ratio for plants producing brown and white seeds was tested with the chi-square test. Sesame seed color is determined by the maternal genotype. Proposed names for the alleles participating in sesame seed coat color are: Sc1, for brown color; and Sc2, for white color; Sc1 is dominant over Sc2.

  11. Programmed cell death during development of cowpea (Vigna unguiculata (L.) Walp.) seed coat.

    Lima, Nathália Bastos; Trindade, Fernanda Gomes; da Cunha, Maura; Oliveira, Antônia Elenir Amâncio; Topping, Jennifer; Lindsey, Keith; Fernandes, Kátia Valevski Sales

    2015-04-01

    The seed coat develops primarily from maternal tissues and comprises multiple cell layers at maturity, providing a metabolically dynamic interface between the developing embryo and the environment during embryogenesis, dormancy and germination of seeds. Seed coat development involves dramatic cellular changes, and the aim of this research was to investigate the role of programmed cell death (PCD) events during the development of seed coats of cowpea [Vigna unguiculata (L.) Walp.]. We demonstrate that cells of the developing cowpea seed coats undergo a programme of autolytic cell death, detected as cellular morphological changes in nuclei, mitochondria, chloroplasts and vacuoles, DNA fragmentation and oligonucleosome accumulation in the cytoplasm, and loss of membrane viability. We show for the first time that classes 6 and 8 caspase-like enzymes are active during seed coat development, and that these activities may be compartmentalized by translocation between vacuoles and cytoplasm during PCD events. © 2014 John Wiley & Sons Ltd.

  12. A legume biofortification quandary: variability and genetic control of seed coat micronutrient accumulation in common beans

    Blair, Matthew W.; Izquierdo, Paulo; Astudillo, Carolina; Grusak, Michael A.

    2013-01-01

    Common beans (Phaseolus vulgaris L.), like many legumes, are rich in iron, zinc, and certain other microelements that are generally found to be in low concentrations in cereals, other seed crops, and root or tubers and therefore are good candidates for biofortification. But a quandary exists in common bean biofortification: namely that the distribution of iron has been found to be variable between the principal parts of seed; namely the cotyledonary tissue, embryo axis and seed coat. The seed coat represents ten or more percent of the seed weight and must be considered specifically as it accumulates much of the anti-nutrients such as tannins that effect mineral bioavailability. Meanwhile the cotyledons accumulate starch and phosphorus in the form of phytates. The goal of this study was to evaluate a population of progeny derived from an advanced backcross of a wild bean and a cultivated Andean bean for seed coat versus cotyledonary minerals to identify variability and predict inheritance of the minerals. We used wild common beans because of their higher seed mineral concentration compared to cultivars and greater proportion of seed coat to total seed weight. Results showed the most important gene for seed coat iron was on linkage group B04 but also identified other QTL for seed coat and cotyledonary iron and zinc on other linkage groups, including B11 which has been important in studies of whole seed. The importance of these results in terms of physiology, candidate genes and plant breeding are discussed. PMID:23908660

  13. Nutrient composition of Dacryodes edulis seed and seed coat mixture

    C.U. OGUNKA-NNOKA

    2017-07-01

    Full Text Available This study investigated the nutrient composition of D. edulis seed and seed coat mixture. Qualitative and quantitative phytochemicals, proximate, and vitamin compositions were evaluated using standard methods. Saponins were very high, alkaloids, flavonoids, and tannins were high, while terpenoids were low, and glycosides, aldehydes, and steroids were absent. The quantitative phytochemical determination followed the order; saponin > kaempferol > rutin > catechin > tannin > sapogenin > lunamarine > phenol > ribalinidine > anthocyanin > oxalate > phytate. For the proximate composition, carbohydrates had the highest concentration, followed by lipids and fibre, while, protein concentration was the lowest. Vitamin E (5.42 mg/100g, vitamin C (3.24 mg/100g, and vitamin A (2.84 mg/100g were the highest occurring constituent vitamins while vitamin B12 (0.035 mg/100g and vitamin B2 (0.075 mg/100g were the least occurring vitamins. This study has shown the rich phytochemical composition of D. edulis seed and seed coat mixture while showing deficiencies in proteins, distinct vitamins, and ash contents.

  14. Genetics of seed coat color in sesame ( Sesamum indicum L ...

    Seed coat colour of sesame is commercially an important trait. Developing white seeded varieties with long lasting luster has received momentous attention in most of the major sesame producing countries including India. The present investigation centered on the genetic control of seed coat colour in sesame. No genetic ...

  15. Morphological and anatomical analyses of the seed coats of sweet granadilla (Passiflora ligularis Juss. seeds

    Cárdenas Hernández Julián

    2011-12-01

    Full Text Available

    The study of histology and morphology of seeds of genus Passiflora has been of high utility for the classification of species. In seeds of sweet granadilla, the histological characteristics and methodologies for their study are unknown. This study was aimed to know the tissue and morphological characteristics of the seed coats of seeds of sweet granadilla and to be able to determine its value in the differentiation of accessions. Five accessions collected in producing zones of the Province of Huila, Colombia, were analyzed. In morphological analysis, all accessions presented falsifoveate ornamentation and entire margin. The seeds presented high change in weight and size for every accession; there stood out the seeds of the accession PmN for presenting major size (7.42 mm long, weight (35.62 mg, homogeneity in these variables and a typical orange color. For the histological analysis, a protocol was adapted to realize sections of seed coats in parafin, by means of which one managed to obtain sections (7 μ that in the optical microscope show clearly three well differentiated layers, belonging, possibly, to exotegmen (internal layer, mesotesta (medium layer and exotesta (external layer. Every layer presented differences in the form of the cells, color and thickness, between the sections of the basal and medium parts of the seeds, but the differences between the analyzed accessions

  16. The Effect of Tempering on Strength Properties and Seed Coat ...

    The effect of tempering on seed coat adhesion strength and mechanical strength of sorghum and millet grain kernels was investigated at different tempering durations. Tempering reduced the kernel breaking strength and had significant effect on seed coat adhesion strength. Tempering the grain for 60 minutes at ambient ...

  17. Proanthocyanidins in seed coat tegmen and endospermic cap inhibit seed germination in Sapium sebiferum.

    Shah, Faheem Afzal; Ni, Jun; Chen, Jing; Wang, Qiaojian; Liu, Wenbo; Chen, Xue; Tang, Caiguo; Fu, Songling; Wu, Lifang

    2018-01-01

    Sapium sebiferum , an ornamental and bio-energetic plant, is propagated by seed. Its seed coat contains germination inhibitors and takes a long time to stratify for germination. In this study, we discovered that the S. sebiferum seed coat (especially the tegmen) and endospermic cap (ESC) contained high levels of proanthocyanidins (PAs). Seed coat and ESC removal induced seed germination, whereas exogenous application with seed coat extract (SCE) or PAs significantly inhibited this process, suggesting that PAs in the seed coat played a major role in regulating seed germination in S. sebiferum . We further investigated how SCE affected the expression of the seed-germination-related genes. The results showed that treatment with SCE upregulated the transcription level of the dormancy-related gene, gibberellins (GAs) suppressing genes, abscisic acid (ABA) biosynthesis and signalling genes. SCE decreased the transcript levels of ABA catabolic genes, GAs biosynthesis genes, reactive oxygen species genes and nitrates-signalling genes. Exogenous application of nordihydroguaiaretic acid, gibberellic acid, hydrogen peroxide and potassium nitrate recovered seed germination in seed-coat-extract supplemented medium. In this study, we highlighted the role of PAs, and their interactions with the other germination regulators, in the regulation of seed dormancy in S. sebiferum .

  18. Proanthocyanidins in seed coat tegmen and endospermic cap inhibit seed germination in Sapium sebiferum

    Faheem Afzal Shah

    2018-04-01

    Full Text Available Sapium sebiferum, an ornamental and bio-energetic plant, is propagated by seed. Its seed coat contains germination inhibitors and takes a long time to stratify for germination. In this study, we discovered that the S. sebiferum seed coat (especially the tegmen and endospermic cap (ESC contained high levels of proanthocyanidins (PAs. Seed coat and ESC removal induced seed germination, whereas exogenous application with seed coat extract (SCE or PAs significantly inhibited this process, suggesting that PAs in the seed coat played a major role in regulating seed germination in S. sebiferum. We further investigated how SCE affected the expression of the seed-germination-related genes. The results showed that treatment with SCE upregulated the transcription level of the dormancy-related gene, gibberellins (GAs suppressing genes, abscisic acid (ABA biosynthesis and signalling genes. SCE decreased the transcript levels of ABA catabolic genes, GAs biosynthesis genes, reactive oxygen species genes and nitrates-signalling genes. Exogenous application of nordihydroguaiaretic acid, gibberellic acid, hydrogen peroxide and potassium nitrate recovered seed germination in seed-coat-extract supplemented medium. In this study, we highlighted the role of PAs, and their interactions with the other germination regulators, in the regulation of seed dormancy in S. sebiferum.

  19. Phenolics in the seed coat of wild soybean (Glycine soja) and their significance for seed hardness and seed germination.

    Zhou, San; Sekizaki, Haruo; Yang, Zhihong; Sawa, Satoko; Pan, Jun

    2010-10-27

    Hardseededness in annual wild soybean (Glycine soja Sieb. Et Zucc.) is a valuable trait that affects the germination, viability, and quality of stored seeds. Two G. soja ecotypes native to Shandong Province of China have been used to identify the phenolics in the seed coat that correlate with the seed hardness and seed germination. Three major phenolics from the seed coat were isolated and identified as epicatechin, cyanidin 3-O-glucoside, and delphinidin 3-O-glucoside. Of the three phenolics, only the change of epicatechin exhibited a significant positive correlation with the change of hard seed percentages both under different water conditions during seed development and under different gas conditions during seed storage. Epicatechin also reveals a hormesis-like effect on the seed germination of G. soja. Epicatechin is suggested to be functionally related to coat-imposed hardseededness in G. soja.

  20. Physical, metabolic and developmental functions of the seed coat

    Radchuk, Volodymyr; Borisjuk, Ljudmilla

    2014-01-01

    The conventional understanding of the role of the seed coat is that it provides a protective layer for the developing zygote. Recent data show that the picture is more nuanced. The seed coat certainly represents a first line of defense against adverse external factors, but it also acts as channel for transmitting environmental cues to the interior of the seed. The latter function primes the seed to adjust its metabolism in response to changes in its external environment. The purpose of this review is to provide the reader with a comprehensive view of the structure and functionality of the seed coat, and to expose its hidden interaction with both the endosperm and embryo. Any breeding and/or biotechnology intervention seeking to increase seed size or modify seed features will have to consider the implications on this tripartite interaction. PMID:25346737

  1. Albizia lebbeck Seed Coat Proteins Bind to Chitin and Act as a Defense against Cowpea Weevil Callosobruchus maculatus.

    Silva, Nadia C M; De Sá, Leonardo F R; Oliveira, Eduardo A G; Costa, Monique N; Ferreira, Andre T S; Perales, Jonas; Fernandes, Kátia V S; Xavier-Filho, Jose; Oliveira, Antonia E A

    2016-05-11

    The seed coat is an external tissue that participates in defense against insects. In some nonhost seeds, including Albizia lebbeck, the insect Callosobruchus maculatus dies during seed coat penetration. We investigated the toxicity of A. lebbeck seed coat proteins to C. maculatus. A chitin-binding protein fraction was isolated from seed coat, and mass spectrometry showed similarity to a C1 cysteine protease. By ELM program an N-glycosylation interaction motif was identified in this protein, and by molecular docking the potential to interact with N-acetylglucosamine (NAG) was shown. The chitin-binding protein fraction was toxic to C. maculatus and was present in larval midgut and feces but not able to hydrolyze larval gut proteins. It did not interfere, though, with the intestinal cell permeability. These results indicate that the toxicity mechanism of this seed coat fraction may be related to its binding to chitin, present in the larvae gut, disturbing nutrient absorption.

  2. A bioplastic-based seed coating improves seedling growth and reduces production of coated seed dust. Journal of Crop Improvement

    Although recently introduced, film-coating of agronomic seeds is now widely accepted in modern agriculture as an effective technology for protecting germinating seeds and seedlings. These experiments explored the possibility of using a bioplastic-based formulation to film-coat corn (maize) and cano...

  3. Anatomical and micromorphological characteristics of the seed coat of field pea (Pisum sativum L. genotypes in relation to cracks and damage of seeds

    Lazarević Jelena

    2017-01-01

    Full Text Available In this paper, we present the morphological characteristics of the seed and micromorphological, anatomical and chemical characteristics of the seed coat of pea (Pisum sativum L. genotypes, Jezero, Javor and NS Junior. Our aim was to investigate whether these genotypes can be differentiated based on seed coat morphoanatomical characteristics, depending on the harvest treatment. The observations and measurements of seed coat cross-sections were performed using light microscopy. The seed coat surface was observed using SEM. A tuberculate seed coat surface characterized all examined pea genotypes, and the average diameter of the tubercle was about 12 μm. Statistical and laboratory analyses revealed that major damage was the most frequent defect type as the result of mechanized harvest in all the examined genotypes. Genotype NS Junior had the shortest seed length (6.1 mm. Micromorphological analysis revealed that the seed surface was tuberculate in all genotypes. The genotype Jezero had the highest number of tubercle ribs (11.0 and a significantly higher proportion of parenchyma tissue (50.6%, while NS Junior was characterized by the greatest share of macrosclereids (49.8%. The highest number of osteosclereids (832/mm2 was counted in genotype Javor. In addition, genotype NS Junior stands out due to the highest percentage of crude fiber (62.75 g/100g in the seed coat. There was a marked difference among the studied genotypes with regard to the seed coat morphoanatomical characteristics, which is confirmed by the results of multivariate discriminant analysis (MDA. These results suggested that the morphological, micromorphological and anatomical characteristics of the seed might have an impact on the seed coat damage level at harvest. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 31024 and Grant no. 173002

  4. Identification of a seed coat-specific promoter fragment from the Arabidopsis MUCILAGE-MODIFIED4 gene.

    Dean, Gillian H; Jin, Zhaoqing; Shi, Lin; Esfandiari, Elahe; McGee, Robert; Nabata, Kylie; Lee, Tiffany; Kunst, Ljerka; Western, Tamara L; Haughn, George W

    2017-09-01

    The Arabidopsis seed coat-specific promoter fragment described is an important tool for basic and applied research in Brassicaceae species. During differentiation, the epidermal cells of the Arabidopsis seed coat produce and secrete large quantities of mucilage. On hydration of mature seeds, this mucilage becomes easily accessible as it is extruded to form a tightly attached halo at the seed surface. Mucilage is composed mainly of pectin, and also contains the key cell wall components cellulose, hemicellulose, and proteins, making it a valuable model for studying numerous aspects of cell wall biology. Seed coat-specific promoters are an important tool that can be used to assess the effects of expressing biosynthetic enzymes and diverse cell wall-modifying proteins on mucilage structure and function. Additionally, they can be used for production of easily accessible recombinant proteins of commercial interest. The MUCILAGE-MODIFIED4 (MUM4) gene is expressed in a wide variety of plant tissues and is strongly up-regulated in the seed coat during mucilage synthesis, implying the presence of a seed coat-specific region in its promoter. Promoter deletion analysis facilitated isolation of a 308 base pair sequence (MUM4 0.3Pro ) that directs reporter gene expression in the seed coat cells of both Arabidopsis and Camelina sativa, and is regulated by the same transcription factor cascade as endogenous MUM4. Therefore, MUM4 0.3Pro is a promoter fragment that serves as a new tool for seed coat biology research.

  5. A combined histology and transcriptome analysis unravels novel questions on Medicago truncatula seed coat

    Abirached-Darmency, Mona

    2013-01-01

    The seed coat is involved in the determination of seed quality traits such as seed size, seed composition, seed permeability, and hormonal regulation. Understanding seed coat structure is therefore a prerequisite to deciphering the genetic mechanisms that govern seed coat functions. By combining histological and transcriptomic data analyses, cellular and molecular events occurring during Medicago truncatula seed coat development were dissected in order to relate structure to function and pinpoint target genes potentially involved in seed coat traits controlling final seed quality traits. The analyses revealed the complexity of the seed coat transcriptome, which contains >30 000 genes. In parallel, a set of genes showing a preferential expression in seed coat that may be involved in more specific functions was identified. The study describes how seed coat anatomy and morphological changes affect final seed quality such as seed size, seed composition, seed permeability, and hormonal regulation. Putative regulator genes of different processes have been identified as potential candidates for further functional genomic studies to improve agronomical seed traits. The study also raises new questions concerning the implication of seed coat endopolyploidy in cell expansion and the participation of the seed coat in de novo abscisic acid biosynthesis at early seed filling. PMID:23125357

  6. Characteristics of Color Development in Seeds of Brown- and Yellow-Seeded Heading Chinese Cabbage and Molecular Analysis of Brsc, the Candidate Gene Controlling Seed Coat Color.

    Ren, Yanjing; He, Qiong; Ma, Xiaomin; Zhang, Lugang

    2017-01-01

    The proanthocyanidin (PA) is the main flavonoids which affect the seed coat color in Brassica species. In this paper, characteristics of color development and accumulation of flavonoids were analyzed in the seeds of brown-seeded (B147) and yellow-seeded (B80) heading Chinese cabbage ( Brassica rapa L. ssp. Pekinensis ). It is found that the content of phenolic compounds in B147 were significantly more than that of B80 by using dimethylaminocinnamaldehyde (DMACA) staining and toluidine blue O (TBO) staining. In previous studies, the locus associated with seed coat color has been mapped. The results of whole genome re-sequencing showed that there are large fragment deletions variation in the mapping region between the brown-seeded parent '92S105' and the yellow-seeded parent '91-125.' Based on the B. rapa genome annotation information, the TRANSPARENT TESTA GLABRA 1 ( TTG1 ), is likely to be the candidate gene controlling seed coat color. A 94-base deletion was found in the 96th base downstream of the initiation codon in the TTG1 of yellow seed, thus, the termination codon TGA was occurred in the 297th base which makes the full length of TTG1 of yellow seed is 300 bp. Based on the differential sequences of TTG1 of brown and yellow seed, a functional marker, Brsc-yettg1, was developed to detect the variation of TTG1 . Quantitative real-time PCR analysis of BrTTG1 in different tissues showed that expression levels of BrTTG1 was not tissue-specific. During the whole seed development period, the expression of BrTTG1 in B147 was higher than that of B80. The expression levels of four structural genes, BrDFR, BrANS, BrANR1 , and BrANR2 in B147 were also higher than those in B80. The co-segregation molecular markers obtained in this report and TTG1 related information provide a basis for further understanding of the molecular mechanism of seed coat color in heading Chinese cabbage.

  7. Assessment of inhibitory substances in the seed coat of some ...

    Laboratory experiment was conducted at the Faculty of Agriculture and Veterinary Medicine, Imo State University, Nigeria to assess the inhibitory substances in the seed coat of 15 cowpea cultivars for resistance against Callosobruchus maculatus. Fifty (50) seeds of the cowpea cultivars were collected from the International ...

  8. Inheritanceof seed coat colour pattern in cowpea [ Vigna ...

    Hybridization experiments were conducted in the screen house to study the inheritance of seed colour pattern in cowpea. Cowpea varieties of varying seed coat colour were used as parents for the investigation. Parental, F1 and segregating F2 populations were raised in the field and the study revealed that self colour ...

  9. Accumulation of primary and secondary metabolites in edible jackfruit seed tissues and scavenging of reactive nitrogen species.

    Fernandes, Fátima; Ferreres, Federico; Gil-Izquierdo, Angel; Oliveira, Andreia P; Valentão, Patrícia; Andrade, Paula B

    2017-10-15

    Studies involving jackfruit tree (Artocarpus heterophyllus Lam.) focus on its fruit. Nevertheless a considerable part of jackfruit weight is represented by its seeds. Despite being consumed in several countries, knowledge about the chemical composition of these seeds is scarce. In this work, the accumulation of primary and secondary metabolites in jackfruit seed kernel and seed coating membrane was studied. Sixty-seven compounds were identified, sixty of them being reported for the first time in jackfruit seed. Both tissues had a similar qualitative profile, but significant quantitative differences were found. The capacity of aqueous extracts from jackfruit seed kernel and seed coating membranes to scavenge nitric oxide radical was also evaluated for the first time, the extract prepared from the seed coating membrane being the most potent. This work increases the potential revenue from a food that is still largely wasted. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Studies on the Vigour of Soybean Seeds : II. Varietal Differences in Seed Coat Quality and Swelling Components of Seed during Moisture Imbibition

    Mugnisjah, Wahju Qamara; Shimano, Itaru; Matsumoto, Shigeo; 島野, 至; 松本, 重男

    1987-01-01

    Laboratory experiment was conducted to elucidate the physiological factor determining the association of seed size and seed coat quality with varietal differences in seed vigour, and to pursue an alternative on the mechanism of varietal differences in seed resistance to field weathering. Results of this study revealed that seed polymer change (seed volume change minus seed weight change during moisture imbibition) was the physiological factor determining the association of seed size and seed ...

  11. MYB52 Negatively Regulates Pectin Demethylesterification in Seed Coat Mucilage.

    Shi, Dachuan; Ren, Angyan; Tang, Xianfeng; Qi, Guang; Xu, Zongchang; Chai, Guohua; Hu, Ruibo; Zhou, Gongke; Kong, Yingzhen

    2018-04-01

    Pectin, which is a major component of the plant primary cell walls, is synthesized and methyl-esterified in the Golgi apparatus and then demethylesterified by pectin methylesterases (PMEs) located in the cell wall. The degree of methylesterification affects the functional properties of pectin, and thereby influences plant growth, development and defense. However, little is known about the mechanisms that regulate pectin demethylesterification. Here, we show that in Arabidopsis ( Arabidopsis thaliana ) seed coat mucilage, the absence of the MYB52 transcription factor is correlated with an increase in PME activity and a decrease in the degree of pectin methylesterification. Decreased methylesterification in the myb52 mutant is also correlated with an increase in the calcium content of the seed mucilage. Chromatin immunoprecipitation analysis and molecular genetic studies suggest that MYB52 transcriptionally activates PECTIN METHYLESTERASE INHIBITOR6 ( PMEI6 ), PMEI14 , and SUBTILISIN-LIKE SER PROTEASE1.7 ( SBT1.7 ) by binding to their promoters. PMEI6 and SBT1.7 have previously been shown to be involved in seed coat mucilage demethylesterification. Our characterization of two PMEI14 mutants suggests that PMEI14 has a role in seed coat mucilage demethylesterification, although its activity may be confined to the seed coat in contrast to PMEI6, which functions in the whole seed. Our demonstration that MYB52 negatively regulates pectin demethylesterification in seed coat mucilage, and the identification of components of the molecular network involved, provides new insight into the regulatory mechanism controlling pectin demethylesterification and increases our understanding of the transcriptional regulation network involved in seed coat mucilage formation. © 2018 American Society of Plant Biologists. All Rights Reserved.

  12. The effects of seed coating treatment on yield and yield components ...

    In this study, coating fuzzy cotton seeds is proposed as an alternative to delintation. Coating makes fuzzy cotton seeds more suitable for the pneumatic spacing planter. Also, unlike delintation, sulphuric acid is not used for coating and this eliminates the problems associated with its usage such as seed loss, pollution and ...

  13. Auxin production in the endosperm drives seed coat development in Arabidopsis

    Figueiredo, Duarte D; Batista, Rita A; Roszak, Pawel J; Hennig, Lars; Köhler, Claudia

    2016-01-01

    In flowering plants, seed development is initiated by the fusion of the maternal egg and central cells with two paternal sperm cells, leading to the formation of embryo and endosperm, respectively. The fertilization products are surrounded by the maternally derived seed coat, whose development prior to fertilization is blocked by epigenetic regulators belonging to the Polycomb Group (PcG) protein family. Here we show that fertilization of the central cell results in the production of auxin and most likely its export to the maternal tissues, which drives seed coat development by removing PcG function. We furthermore show that mutants for the MADS-box transcription factor AGL62 have an impaired transport of auxin from the endosperm to the integuments, which results in seed abortion. We propose that AGL62 regulates auxin transport from the endosperm to the integuments, leading to the removal of the PcG block on seed coat development. DOI: http://dx.doi.org/10.7554/eLife.20542.001 PMID:27848912

  14. Effect of seed coat on the seed germination and seedling development of Calophyllum brasiliense Cambess. (Clusiaceae

    Valquíria Aparecida Mendes de Jesus

    2014-10-01

    Full Text Available This work aimed to study the effect of the Calophyllum brasiliense seed coat on the seed germination process. To this end, three experiments were conducted in laboratory, greenhouse and screenhouse. From a total of six treatments, five are related to the seed coat (mechanical scarification; mechanical scarification followed by 2 hours in water, chemical scarification, hot water immersion and complete seed coat removal and one control. Laboratory and greenhouse experiments were conducted in a completely randomized design (CRD. Screenhouse experiment was conducted in a completely randomized block design (RBD. We evaluated the total percentage, the speed index and the average time of germination or emergence. Data were subjected to analysis of variance and means compared by LSD test, at 5%. Under the conditions of this work, it was possible to infer that, in laboratory, mechanical scarification followed by 2 hours in water increases the proportion and germination speed index (GSI, in the greenhouse, the complete seed coat removal increases the percentage and emergence speed index (ESI, and in the screenhouse, mechanical scarification followed by 2 hours in water and chemical scarification presented the best results. The average germination time was not significantly different in the three experiments evaluated.

  15. Seed coating with a neonicotinoid insecticide negatively affects wild bees.

    Rundlöf, Maj; Andersson, Georg K S; Bommarco, Riccardo; Fries, Ingemar; Hederström, Veronica; Herbertsson, Lina; Jonsson, Ove; Klatt, Björn K; Pedersen, Thorsten R; Yourstone, Johanna; Smith, Henrik G

    2015-05-07

    Understanding the effects of neonicotinoid insecticides on bees is vital because of reported declines in bee diversity and distribution and the crucial role bees have as pollinators in ecosystems and agriculture. Neonicotinoids are suspected to pose an unacceptable risk to bees, partly because of their systemic uptake in plants, and the European Union has therefore introduced a moratorium on three neonicotinoids as seed coatings in flowering crops that attract bees. The moratorium has been criticized for being based on weak evidence, particularly because effects have mostly been measured on bees that have been artificially fed neonicotinoids. Thus, the key question is how neonicotinoids influence bees, and wild bees in particular, in real-world agricultural landscapes. Here we show that a commonly used insecticide seed coating in a flowering crop can have serious consequences for wild bees. In a study with replicated and matched landscapes, we found that seed coating with Elado, an insecticide containing a combination of the neonicotinoid clothianidin and the non-systemic pyrethroid β-cyfluthrin, applied to oilseed rape seeds, reduced wild bee density, solitary bee nesting, and bumblebee colony growth and reproduction under field conditions. Hence, such insecticidal use can pose a substantial risk to wild bees in agricultural landscapes, and the contribution of pesticides to the global decline of wild bees may have been underestimated. The lack of a significant response in honeybee colonies suggests that reported pesticide effects on honeybees cannot always be extrapolated to wild bees.

  16. Seed Nutrition and Quality, Seed Coat Boron and Lignin Are Influenced by Delayed Harvest in Exotically-Derived Soybean Breeding Lines under High Heat.

    Bellaloui, Nacer; Smith, James R; Mengistu, Alemu

    2017-01-01

    The timing of harvest is a major factor affecting seed quality in soybean, particularly in Midsouthern USA, when rain during harvest period is not uncommon. The objective of this research was to evaluate the effects of time of harvest on soybean seed quality (seed composition, germination, seed coat boron, and lignin) in high germinability (HG) breeding lines (50% exotic) developed under high heat. The hypothesis was that seeds of HG lines possess physiological and genetic traits for a better seed quality at harvest maturity and delayed harvest. A 2-year field experiment was conducted under irrigated conditions. Results showed that, at harvest maturity, the exotic HG lines had higher seed protein, oleic acid, sugars, seed coat boron, and seed coat lignin, but lower seed oil compared with the non-exotic checks (Control), confirming our hypothesis. At 28 days after harvest maturity (delayed harvest), the content of seed protein, oleic acid, sugars, seed coat boron, and seed coat lignin were higher in some of the HG lines compared with the checks, indicating a possible involvement of these seed constituents, especially seed coat boron and seed coat lignin, in maintaining seed coat integrity and protecting seed coat against physical damage. Highly significant positive correlations were found between germination and seed protein, oleic acid, sugars, and seed coat boron and seed coat lignin. Highly significant negative correlation was found between germination and oil, linoleic acid, seed coat wrinkling, shattering, and hard seed. Yields of some HG lines were competitive with checks. This research demonstrated that time of harvesting is an important factor influencing seed protein and oil production. Also, since high oleic acid is desirable for oxidative stability, shelf-life and biodiesel properties, using HG lines could positively influence these important traits. This result should suggest to breeders of some of the advantages of selecting for high seed coat boron and

  17. Novel seed coat lignins in the Cactaceae: structure, distribution and implications for the evolution of lignin diversity.

    Chen, Fang; Tobimatsu, Yuki; Jackson, Lisa; Nakashima, Jin; Ralph, John; Dixon, Richard A

    2013-01-01

    We have recently described a hitherto unsuspected catechyl lignin polymer (C-lignin) in the seed coats of Vanilla orchid and in cacti of one genus, Melocactus (Chen et al., Proc. Natl. Acad. Sci. USA. 2012, 109, 1772-1777.). We have now determined the lignin types in the seed coats of 130 different cactus species. Lignin in the vegetative tissues of cacti is of the normal guaiacyl/syringyl (G/S) type, but members of most genera within the subfamily Cactoidae possess seed coat lignin of the novel C-type only, which we show is a homopolymer formed by endwise β-O-4-coupling of caffeyl alcohol monomers onto the growing polymer resulting in benzodioxane units. However, the species examined within the genera Coryphantha, Cumarinia, Escobaria and Mammillaria (Cactoideae) mostly had normal G/S lignin in their seeds, as did all six species in the subfamily Opuntioidae that were examined. Seed coat lignin composition is still evolving in the Cactaceae, as seeds of one Mammillaria species (M. lasiacantha) possess only C-lignin, three Escobaria species (E. dasyacantha, E. lloydii and E. zilziana) contain an unusual lignin composed of 5-hydroxyguaiacyl units, the first report of such a polymer that occurs naturally in plants, and seeds of some species contain no lignin at all. We discuss the implications of these findings for the mechanisms that underlie the biosynthesis of these newly discovered lignin types. © 2012 The Authors The Plant Journal © 2012 Blackwell Publishing Ltd.

  18. Identification of a single gene for seed coat impermeability in soybean PI 594619.

    Kebede, Hirut; Smith, James R; Ray, Jeffery D

    2014-09-01

    Inheritance studies and molecular mapping identified a single dominant gene that conditions seed coat impermeability in soybean PI 594619. High temperatures during seed fill increase the occurrence of soybeans with impermeable seed coat, which is associated with non-uniform and delayed germination and emergence. This can be an issue in soybean production areas with excessively high-temperature environments. The objectives of the present study were to investigate the inheritance of impermeable seed coat under a high-temperature environment in the midsouthern United States and to map the gene(s) that affect this trait in a germplasm line with impermeable seed coat (PI 594619). Crosses were made between PI 594619 and an accession with permeable seed coat at Stoneville, MS in 2008. The parental lines and the segregating populations from reciprocal crosses were grown in Stoneville in 2009. Ninety-nine F2:3 families and parents were also grown at Stoneville, MS in 2011. Seeds were assayed for percent impermeable seed coat using the standard germination test. Genetic analysis of the F2 populations and F2:3 families indicated that seed coat impermeability in PI 594619 is controlled by a single major gene, with impermeable seed coat being dominant to permeable seed coat. Molecular mapping positioned this gene on CHR 2 between markers Sat_202 and Satt459. The designation of Isc (impermeable seed coat) for this single gene has been approved by the Soybean Genetics Committee. Selection of the recessive form (isc) may be important in developing cultivars with permeable seed coat for high-heat production environments. The single-gene nature of impermeable seed coat may also have potential for being utilized in reducing seed damage caused by weathering and mold.

  19. Role of nano-range amphiphilic polymers in seed quality enhancement of soybean and imidacloprid retention capacity on seed coatings.

    Adak, Totan; Kumar, Jitendra; Shakil, Najam A; Pandey, Sushil

    2016-10-01

    Nano-size and wide-range solubility of amphiphilic polymers (having both hydrophilic and hydrophobic blocks) can improve uniformity in seed coatings. An investigation was carried out to assess the positive effect of amphiphilic polymers over hydrophilic or hydrophobic polymers as seed coating agents and pesticide carriers. Amphiphilic polymers with 127.5-354 nm micelle size were synthesized in the laboratory using polyethylene glycols and aliphatic di-acids. After 6 months of storage, germination of uncoated soybean seeds decreased drastically from 97.80 to 81.55%, while polymer-coated seeds showed 89.44-95.92% germination. Similarly, vigour index-1 was reduced from 3841.10 to 2813.06 for control seeds but ranged from 3375.59 to 3844.60 for polymer-coated seeds after 6 months. The developed imidacloprid formulations retained more pesticide on soybean seed coatings than did a commercial formulation (Gaucho(®) 600 FS). The time taken for 50% release of imidacloprid from seed coatings in water was 7.12-9.11 h for the developed formulations and 0.41 h for the commercial formulation. Nano-range amphiphilic polymers can be used to protect soybean seeds from ageing. Formulations as seed treatments may produce improved and sustained efficacy with minimum environmental contamination. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  20. Transcriptome Analysis of a New Peanut Seed Coat Mutant for the Physiological Regulatory Mechanism Involved in Seed Coat Cracking and Pigmentation.

    Wan, Liyun; Li, Bei; Pandey, Manish K; Wu, Yanshan; Lei, Yong; Yan, Liying; Dai, Xiaofeng; Jiang, Huifang; Zhang, Juncheng; Wei, Guo; Varshney, Rajeev K; Liao, Boshou

    2016-01-01

    Seed-coat cracking and undesirable color of seed coat highly affects external appearance and commercial value of peanuts ( Arachis hypogaea L.). With an objective to find genetic solution to the above problems, a peanut mutant with cracking and brown colored seed coat (testa) was identified from an EMS treated mutant population and designated as "peanut seed coat crack and brown color mutant line ( pscb )." The seed coat weight of the mutant was almost twice of the wild type, and the germination time was significantly shorter than wild type. Further, the mutant had lower level of lignin, anthocyanin, proanthocyanidin content, and highly increased level of melanin content as compared to wild type. Using RNA-Seq, we examined the seed coat transcriptome in three stages of seed development in the wild type and the pscb mutant. The RNA-Seq analysis revealed presence of highly differentially expressed phenylpropanoid and flavonoid pathway genes in all the three seed development stages, especially at 40 days after flowering (DAF40). Also, the expression of polyphenol oxidases and peroxidase were found to be activated significantly especially in the late seed developmental stage. The genome-wide comparative study of the expression profiles revealed 62 differentially expressed genes common across all the three stages. By analyzing the expression patterns and the sequences of the common differentially expressed genes of the three stages, three candidate genes namely c36498_g1 (CCoAOMT1), c40902_g2 (kinesin) , and c33560_g1 (MYB3) were identified responsible for seed-coat cracking and brown color phenotype. Therefore, this study not only provided candidate genes but also provided greater insights and molecular genetic control of peanut seed-coat cracking and color variation. The information generated in this study will facilitate further identification of causal gene and diagnostic markers for breeding improved peanut varieties with smooth and desirable seed coat color.

  1. Transcriptome Analysis of a New Peanut Seed Coat Mutant for the Physiological Regulatory Mechanism Involved in Seed Coat Cracking and Pigmentation

    Wan, Liyun; Li, Bei; Pandey, Manish K.; Wu, Yanshan; Lei, Yong; Yan, Liying; Dai, Xiaofeng; Jiang, Huifang; Zhang, Juncheng; Wei, Guo; Varshney, Rajeev K.; Liao, Boshou

    2016-01-01

    Seed-coat cracking and undesirable color of seed coat highly affects external appearance and commercial value of peanuts (Arachis hypogaea L.). With an objective to find genetic solution to the above problems, a peanut mutant with cracking and brown colored seed coat (testa) was identified from an EMS treated mutant population and designated as “peanut seed coat crack and brown color mutant line (pscb).” The seed coat weight of the mutant was almost twice of the wild type, and the germination time was significantly shorter than wild type. Further, the mutant had lower level of lignin, anthocyanin, proanthocyanidin content, and highly increased level of melanin content as compared to wild type. Using RNA-Seq, we examined the seed coat transcriptome in three stages of seed development in the wild type and the pscb mutant. The RNA-Seq analysis revealed presence of highly differentially expressed phenylpropanoid and flavonoid pathway genes in all the three seed development stages, especially at 40 days after flowering (DAF40). Also, the expression of polyphenol oxidases and peroxidase were found to be activated significantly especially in the late seed developmental stage. The genome-wide comparative study of the expression profiles revealed 62 differentially expressed genes common across all the three stages. By analyzing the expression patterns and the sequences of the common differentially expressed genes of the three stages, three candidate genes namely c36498_g1 (CCoAOMT1), c40902_g2 (kinesin), and c33560_g1 (MYB3) were identified responsible for seed-coat cracking and brown color phenotype. Therefore, this study not only provided candidate genes but also provided greater insights and molecular genetic control of peanut seed-coat cracking and color variation. The information generated in this study will facilitate further identification of causal gene and diagnostic markers for breeding improved peanut varieties with smooth and desirable seed coat color. PMID

  2. Preparation and mechanism analysis of an environment-friendly maize seed coating agent.

    Zeng, Defang; Fan, Zhao; Tian, Xu; Wang, Wenjin; Zhou, Mingchun; Li, Haochuan

    2018-06-01

    Traditional seed coating agents often contain toxic ingredients, which contaminate the environment and threaten human health. This paper expounds a method of preparing a novel environment-friendly seed coating agent for maize and researches its mechanism of action. The natural polysaccharide polymer, which is the main active ingredient of this environment-friendly seed coating agent, has the characteristics of innocuity and harmlessness, and it can replace the toxic ingredients used in traditional seed coating agents. This environment-friendly seed coating agent for maize was mainly made up of the natural polysaccharide polymer and other additives. The field trials results showed that the control efficacy of Helminthosporium maydis came to 93.72%, the anti-feeding rate of cutworms came to 81.29%, and the maize yield was increased by 17.75%. Besides, the LD 50 value (half the lethal dose in rats) of this seed coating agent was 10 times higher than that of the traditional seed coating agents. This seed coating agent could improve the activity of plant protective enzymes (peroxidase, catalase and superoxidase dismutase) and increase the chlorophyll content. This seed coating agent has four characteristics of disease prevention, desinsectization, increasing yield and safety. Results of mechanism analyses showed that this seed coating agent could enhance disease control effectiveness by improving plant protective enzymes activity and increase maize yield by improving chlorophyll content. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  3. Physiological and transcriptomic responses in the seed coat of field-grown soybean (Glycine max L. Merr.) to abiotic stress.

    Leisner, Courtney P; Yendrek, Craig R; Ainsworth, Elizabeth A

    2017-12-12

    Understanding how intensification of abiotic stress due to global climate change affects crop yields is important for continued agricultural productivity. Coupling genomic technologies with physiological crop responses in a dynamic field environment is an effective approach to dissect the mechanisms underpinning crop responses to abiotic stress. Soybean (Glycine max L. Merr. cv. Pioneer 93B15) was grown in natural production environments with projected changes to environmental conditions predicted for the end of the century, including decreased precipitation, increased tropospheric ozone concentrations ([O 3 ]), or increased temperature. All three environmental stresses significantly decreased leaf-level photosynthesis and stomatal conductance, leading to significant losses in seed yield. This was driven by a significant decrease in the number of pods per node for all abiotic stress treatments. To understand the underlying transcriptomic response involved in the yield response to environmental stress, RNA-Sequencing analysis was performed on the soybean seed coat, a tissue that plays an essential role in regulating carbon and nitrogen transport to developing seeds. Gene expression analysis revealed 49, 148 and 1,576 differentially expressed genes in the soybean seed coat in response to drought, elevated [O 3 ] and elevated temperature, respectively. Elevated [O 3 ] and drought did not elicit substantive transcriptional changes in the soybean seed coat. However, this may be due to the timing of sampling and does not preclude impacts of those stresses on different tissues or different stages in seed coat development. Expression of genes involved in DNA replication and metabolic processes were enriched in the seed coat under high temperate stress, suggesting that the timing of events that are important for cell division and proper seed development were altered in a stressful growth environment.

  4. Differences in glycosyltransferase family 61 accompany variation in seed coat mucilage composition in Plantago spp.

    Phan, Jana L.; Tucker, Matthew R.; Khor, Shi Fang; Shirley, Neil; Lahnstein, Jelle; Beahan, Cherie; Bacic, Antony; Burton, Rachel A.

    2016-01-01

    Xylans are the most abundant non-cellulosic polysaccharide found in plant cell walls. A diverse range of xylan structures influence tissue function during growth and development. Despite the abundance of xylans in nature, details of the genes and biochemical pathways controlling their biosynthesis are lacking. In this study we have utilized natural variation within the Plantago genus to examine variation in heteroxylan composition and structure in seed coat mucilage. Compositional assays were combined with analysis of the glycosyltransferase family 61 (GT61) family during seed coat development, with the aim of identifying GT61 sequences participating in xylan backbone substitution. The results reveal natural variation in heteroxylan content and structure, particularly in P. ovata and P. cunninghamii, species which show a similar amount of heteroxylan but different backbone substitution profiles. Analysis of the GT61 family identified specific sequences co-expressed with IRREGULAR XYLEM 10 genes, which encode putative xylan synthases, revealing a close temporal association between xylan synthesis and substitution. Moreover, in P. ovata, several abundant GT61 sequences appear to lack orthologues in P. cunninghamii. Our results indicate that natural variation in Plantago species can be exploited to reveal novel details of seed coat development and polysaccharide biosynthetic pathways. PMID:27856710

  5. The effects of seed coating treatment on yield and yield components ...

    GREGORY

    2010-09-13

    Sep 13, 2010 ... 2University of Adnan Menderes, Faculty of Agriculture, Department of Agricultural Mechanization, ... Key words: Fuzzy cotton seed, seed coating, yield components. .... gin turnout (%) characteristics are statistically important.

  6. Multiple loci condition seed transmission of soybean mosaic virus (SMV) and SMV-induced seed coat mottling in soybean.

    Domier, Leslie L; Hobbs, Houston A; McCoppin, Nancy K; Bowen, Charles R; Steinlage, Todd A; Chang, Sungyul; Wang, Yi; Hartman, Glen L

    2011-06-01

    Infection of soybean plants with Soybean mosaic virus (SMV), which is transmitted by aphids and through seed, can cause significant reductions in seed production and quality. Because seedborne infections are the primary sources of inoculum for SMV infections in North America, host-plant resistance to seed transmission can limit the pool of plants that can serve as sources of inoculum. To examine the inheritance of SMV seed transmission in soybean, crosses were made between plant introductions (PIs) with high (PI88799), moderate (PI60279), and low (PI548391) rates of transmission of SMV through seed. In four F(2) populations, SMV seed transmission segregated as if conditioned by two or more genes. Consequently, a recombinant inbred line population was derived from a cross between PIs 88799 and 548391 and evaluated for segregation of SMV seed transmission, seed coat mottling, and simple sequence repeat markers. Chromosomal regions on linkage groups C1 and C2 were significantly associated with both transmission of isolate SMV 413 through seed and SMV-induced seed coat mottling, and explained ≈42.8 and 46.4% of the variability in these two traits, respectively. Chromosomal regions associated with seed transmission and seed coat mottling contained homologues of Arabidopsis genes DCL3 and RDR6, which encode enzymes involved in RNA-mediated transcriptional and posttranscriptional gene silencing.

  7. Isolation of nuclear proteins from flax (Linum usitatissimum L. seed coats for gene expression regulation studies

    Renouard Sullivan

    2012-01-01

    Full Text Available Abstract Background While seed biology is well characterized and numerous studies have focused on this subject over the past years, the regulation of seed coat development and metabolism is for the most part still non-elucidated. It is well known that the seed coat has an essential role in seed development and its features are associated with important agronomical traits. It also constitutes a rich source of valuable compounds such as pharmaceuticals. Most of the cell genetic material is contained in the nucleus; therefore nuclear proteins constitute a major actor for gene expression regulation. Isolation of nuclear proteins responsible for specific seed coat expression is an important prerequisite for understanding seed coat metabolism and development. The extraction of nuclear proteins may be problematic due to the presence of specific components that can interfere with the extraction process. The seed coat is a rich source of mucilage and phenolics, which are good examples of these hindering compounds. Findings In the present study, we propose an optimized nuclear protein extraction protocol able to provide nuclear proteins from flax seed coat without contaminants and sufficient yield and quality for their use in transcriptional gene expression regulation by gel shift experiments. Conclusions Routinely, around 250 μg of nuclear proteins per gram of fresh weight were extracted from immature flax seed coats. The isolation protocol described hereafter may serve as an effective tool for gene expression regulation and seed coat-focused proteomics studies.

  8. Pesticidal seed coats based on azadirachtin-A: release kinetics, storage life and performance.

    Nisar, Keyath; Kumar, Jitendra; Arun Kumar, M B; Walia, Suresh; Shakil, Najam A; Parsad, Rajender; Parmar, Balraj S

    2009-02-01

    Infestation of seeds by pests during storage leads to deterioration in quality. Seed coating is an effective option to overcome the menace. Unlike synthetic fungicidal seed coats, little is known of those based on botanicals. This study aims at developing azadirachtin-A-based pesticidal seed coats to maintain seed quality during storage. Polymer- and clay-based coats containing azadirachtin-A were prepared and evaluated for quality maintenance of soybean seed during storage. Gum acacia, gum tragacanth, rosin, ethyl cellulose, hydroxyethyl cellulose, polyethyl methacrylate, methyl cellulose, polyethylene glycol, polyvinyl chloride, polyvinyl acetate, polyvinyl pyrrolidone and Agrimer VA 6 polymers and the clay bentonite were used as carriers. The time for 50% release (t(1/2)) of azadirachtin-A into water from the seeds coated with the different coats ranged from 8.02 to 21.36 h. The half-life (T(1/2)) of azadirachtin-A in the coats on seed ranged from 4.37 to 11.22 months, as compared with 3.45 months in azadirachtin-A WP, showing an increase by a factor of nearly 1.3-3.3 over the latter. The coats apparently acted as a barrier to moisture to reduce azadirachtin-A degradation and prevented proliferation of storage fungi. Polyethyl methacrylate, polyvinyl acetate and polyvinyl pyrrolidone were significantly superior to the other polymers. Azadirachtin-A showed a significant positive correlation with seed germination and vigour, and negative correlation with moisture content. Effective polymeric carriers for seed coats based on azadirachtin-A are reported. These checked seed deterioration during storage by acting as a barrier to moisture and reduced the degradation of azadirachtin-A.

  9. Perennial soybean seeds coated with high doses of boron and zinc

    Lucas

    2016-09-14

    Sep 14, 2016 ... hot-air blower was switched on at the temperature of 40ºC for 2 min. As stuffing .... not a significant difference in this variable (p<0.05) between ... water content of the seeds after they are coated, and in. Figure 3 it is .... Germ ination / Em ergence (%. ) Germination. Dead seeds. Soaked seeds. Emergence a b.

  10. Increasing Maize Tolerance to Drought and Flood with Seed Coating Treatments

    Bennett, Jacob E; Sanghi, Achint; Kingsly Ambrose, R. P.

    2016-01-01

    The lack of irrigation in regions prone to drought, and flooding due to high rainfall or lack of drainage affects seed viability and the subsequent germination and crop establishment. Seed treatment in the form of coatings shows promise as an effective method to preserve the viability of corn (Zea mays) seeds in drought and flood conditions. Chemical formulations may help improve the seed corn vigor under these stressed conditions. This study examined the efficacy of β-aminobutyric acid [BABA...

  11. SEEDSTICK is a master regulator of development and metabolism in the Arabidopsis seed coat.

    Chiara Mizzotti

    2014-12-01

    Full Text Available The role of secondary metabolites in the determination of cell identity has been an area of particular interest over recent years, and studies strongly indicate a connection between cell fate and the regulation of enzymes involved in secondary metabolism. In Arabidopsis thaliana, the maternally derived seed coat plays pivotal roles in both the protection of the developing embryo and the first steps of germination. In this regard, a characteristic feature of seed coat development is the accumulation of proanthocyanidins (PAs - a class of phenylpropanoid metabolites in the innermost layer of the seed coat. Our genome-wide transcriptomic analysis suggests that the ovule identity factor SEEDSTICK (STK is involved in the regulation of several metabolic processes, providing a strong basis for a connection between cell fate determination, development and metabolism. Using phenotypic, genetic, biochemical and transcriptomic approaches, we have focused specifically on the role of STK in PA biosynthesis. Our results indicate that STK exerts its effect by direct regulation of the gene encoding BANYULS/ANTHOCYANIDIN REDUCTASE (BAN/ANR, which converts anthocyanidins into their corresponding 2,3-cis-flavan-3-ols. Our study also demonstrates that the levels of H3K9ac chromatin modification directly correlate with the active state of BAN in an STK-dependent way. This is consistent with the idea that MADS-domain proteins control the expression of their target genes through the modification of chromatin states. STK might thus recruit or regulate histone modifying factors to control their activity. In addition, we show that STK is able to regulate other BAN regulators. Our study demonstrates for the first time how a floral homeotic gene controls tissue identity through the regulation of a wide range of processes including the accumulation of secondary metabolites.

  12. Seed development and carbohydrates

    Wittich, P.E.

    1998-01-01

    Seeds assure the plant the onset of a next generation and a way of dispersal. They consist of endosperm and an embryo (originating from gametophytic tissue), enveloped by a seed coat (sporophytic tissue). Plants generate different types of seeds. For instance, the endosperm may either be

  13. Leaching and sorption of neonicotinoid insecticides and fungicides from seed coatings

    Smalling, Kelly; Hladik, Michelle; Sanders, Corey; Kuivila, Kathryn

    2018-01-01

    Seed coatings are a treatment used on a variety of crops to improve production and offer protection against pests and fungal outbreaks. The leaching of the active ingredients associated with the seed coatings and the sorption to soil was evaluated under laboratory conditions using commercially available corn and soybean seeds to study the fate and transport of these pesticides under controlled conditions. The active ingredients (AI) included one neonicotinoid insecticide (thiamethoxam) and five fungicides (azoxystrobin, fludioxonil, metalaxyl, sedaxane thiabendazole). An aqueous leaching experiment was conducted with treated corn and soybean seeds. Leaching potential was a function of solubility and seed type. The leaching of fludioxonil, was dependent on seed type with a shorter time to equilibrium on the corn compared to the soybean seeds. Sorption experiments with the treated seeds and a solution of the AIs were conducted using three different soil types. Sorption behavior was a function of soil organic matter as well as seed type. For most AIs, a negative relationship was observed between the aqueous concentration and the log Koc. Sorption to all soils tested was limited for the hydrophilic pesticides thiamethoxam and metalaxyl. However, partitioning for the more hydrophobic fungicides was dependent on both seed type and soil properties. The mobility of fludioxonil in the sorption experiment varied by seed type indicating that the adjuvants associated with the seed coating could potentially play a role in the environmental fate of fludioxonil. This is the first study to assess, under laboratory conditions, the fate of pesticides associated with seed coatings using commercially available treated seeds. This information can be used to understand how alterations in agricultural practices (e.g., increasing use of seed treatments) can impact the exposure (concentration and duration) and potential effects of these chemicals to aquatic and terrestrial organisms.

  14. A Genome-wide Combinatorial Strategy Dissects Complex Genetic Architecture of Seed Coat Color in Chickpea.

    Bajaj, Deepak; Das, Shouvik; Upadhyaya, Hari D; Ranjan, Rajeev; Badoni, Saurabh; Kumar, Vinod; Tripathi, Shailesh; Gowda, C L Laxmipathi; Sharma, Shivali; Singh, Sube; Tyagi, Akhilesh K; Parida, Swarup K

    2015-01-01

    The study identified 9045 high-quality SNPs employing both genome-wide GBS- and candidate gene-based SNP genotyping assays in 172, including 93 cultivated (desi and kabuli) and 79 wild chickpea accessions. The GWAS in a structured population of 93 sequenced accessions detected 15 major genomic loci exhibiting significant association with seed coat color. Five seed color-associated major genomic loci underlying robust QTLs mapped on a high-density intra-specific genetic linkage map were validated by QTL mapping. The integration of association and QTL mapping with gene haplotype-specific LD mapping and transcript profiling identified novel allelic variants (non-synonymous SNPs) and haplotypes in a MATE secondary transporter gene regulating light/yellow brown and beige seed coat color differentiation in chickpea. The down-regulation and decreased transcript expression of beige seed coat color-associated MATE gene haplotype was correlated with reduced proanthocyanidins accumulation in the mature seed coats of beige than light/yellow brown seed colored desi and kabuli accessions for their coloration/pigmentation. This seed color-regulating MATE gene revealed strong purifying selection pressure primarily in LB/YB seed colored desi and wild Cicer reticulatum accessions compared with the BE seed colored kabuli accessions. The functionally relevant molecular tags identified have potential to decipher the complex transcriptional regulatory gene function of seed coat coloration and for understanding the selective sweep-based seed color trait evolutionary pattern in cultivated and wild accessions during chickpea domestication. The genome-wide integrated approach employed will expedite marker-assisted genetic enhancement for developing cultivars with desirable seed coat color types in chickpea.

  15. High-Density Spot Seeding for Tissue Model Formation

    Marquette, Michele L. (Inventor); Sognier, Marguerite A. (Inventor)

    2016-01-01

    A model of tissue is produced by steps comprising seeding cells at a selected concentration on a support to form a cell spot, incubating the cells to allow the cells to partially attach, rinsing the cells to remove any cells that have not partially attached, adding culture medium to enable the cells to proliferate at a periphery of the cell spot and to differentiate toward a center of the cell spot, and further incubating the cells to form the tissue. The cells may be C2C12 cells or other subclones of the C2 cell line, H9c2(2-1) cells, L6 cells, L8 cells, QM7 cells, Sol8 cells, G-7 cells, G-8 cells, other myoblast cells, cells from other tissues, or stem cells. The selected concentration is in a range from about 1 x 10(exp 5) cells/ml to about 1 x 10(exp 6) cells/ml. The tissue formed may be a muscle tissue or other tissue depending on the cells seeded.

  16. 7 CFR 201.51b - Purity procedures for coated seed.

    2010-01-01

    ... ACT FEDERAL SEED ACT REGULATIONS Purity Analysis in the Administration of the Act § 201.51b Purity...). Use of fine mesh sieves is recommended for this procedure, and stirring or shaking the coated units...

  17. Collagen-coated polylactic-glycolic acid (PLGA) seeded with neural-differentiated human mesenchymal stem cells as a potential nerve conduit.

    Sulong, Ahmad Fadzli; Hassan, Nur Hidayah; Hwei, Ng Min; Lokanathan, Yogeswaran; Naicker, Amaramalar Selvi; Abdullah, Shalimar; Yusof, Mohd Reusmaazran; Htwe, Ohnmar; Idrus, Ruszymah Bt Hj; Haflah, Nor Hazla Mohamed

    2014-01-01

    Autologous nerve grafts to bridge nerve gaps pose various drawbacks. Nerve tissue engineering to promote nerve regeneration using artificial neural conduits has emerged as a promising alternative. To develop an artificial nerve conduit using collagen-coated polylactic-glycolic acid (PLGA) and to analyse the survivability and propagating ability of the neuro-differentiated human mesenchymal stem cells in this conduit. The PLGA conduit was constructed by dip-molding method and coated with collagen by immersing the conduit in collagen bath. The ultra structure of the conduits were examined before they were seeded with neural-differentiated human mesenchymal stem cells (nMSC) and implanted sub-muscularly on nude mice thighs. The non-collagen-coated PLGA conduit seeded with nMSC and non-seeded non-collagen-coated PLGA conduit were also implanted for comparison purposes. The survivability and propagation ability of nMSC was studied by histological and immunohistochemical analysis. The collagen-coated conduits had a smooth inner wall and a highly porous outer wall. Conduits coated with collagen and seeded with nMSCs produced the most number of cells after 3 weeks. The best conduit based on the number of cells contained within it after 3 weeks was the collagen-coated PLGA conduit seeded with neuro-transdifferentiated cells. The collagen-coated PLGA conduit found to be suitable for attachment, survival and proliferation of the nMSC. Minimal cell infiltration was found in the implanted conduits where nearly all of the cells found in the cell seeded conduits are non-mouse origin and have neural cell markers, which exhibit the biocompatibility of the conduits. The collagen-coated PLGA conduit is biocompatible, non-cytotoxic and suitable for use as artificial nerve conduits.

  18. The effect of seed coat on the susceptibility of Faba bean to ...

    Twelve faba bean (Vicia faba L.) varieties were tested for their resistance to Kenyan and Indonesian strains of Callosobruchus chinensis under conditions of whole and decorticated seeds. It was evident that the seed coat acts as a barrier both to the penetration of the newly hatched larvae into the cotyledon and emergence ...

  19. Perennial soybean seeds coated with high doses of boron and zinc ...

    The objective of this work was to study combinations of high doses of boron (B) and zinc (Zn) in the recoating of perennial soybean seeds, in order to provide these nutrients to the future plants. The physical, physiological and nutritional characteristics of the coated seeds and initial development of plants in a greenhouse ...

  20. Improved endothelial cell seeding with cultured cells and fibronectin-coated grafts

    Seeger, J.M.; Klingman, N.

    1985-01-01

    A possible approach to the low seeding efficiency of endothelial cells into prosthetic grafts is to increase the number of cells to be seeded in cell culture and improve seeding efficiency by graft precoating with fibronectin. The effect of cell culture on cell adhesion is unknown, however, and fibronectin also binds fibrin, which may increase the thrombogenicity of the graft luminal surface. To investigate these questions, freshly harvested canine jugular vein endothelial cells from six animals and similar cells harvested from six primary and eight secondary cell cultures were labeled with 111 Indium and seeded into 5 cm, 4 mm PTFE grafts coated with fibronectin, using similar uncoated PTFE grafts as controls. Platelet accumulation and distribution on six similar coated and uncoated grafts placed in canine carotid, external jugular arterial venous shunts for 2 hr were also determined using autogenous 111 Indium-labeled platelets. Significant differences between group means were determined using the paired Student's t test. Results reveal that seeding efficiency is significantly better in all groups of coated grafts compared to uncoated grafts (P less than 0.01). Cells derived from cell culture also had significantly higher seeding efficiencies than freshly harvested cells when seeded into coated grafts (P less than 0.05) and tended to have higher seeding efficiencies than harvested cells when seeded into uncoated grafts (P = 0.53). Fibronectin coating increased mean platelet accumulation on the entire graft luminal surface, but not to a statistically significant degree (P greater than 0.1). Whether this increased seeding efficiency will improve graft endothelialization remains to be investigated

  1. Tissue Equivalents Based on Cell-Seeded Biodegradable Microfluidic Constructs

    Sarah L. Tao

    2010-03-01

    Full Text Available One of the principal challenges in the field of tissue engineering and regenerative medicine is the formation of functional microvascular networks capable of sustaining tissue constructs. Complex tissues and vital organs require a means to support oxygen and nutrient transport during the development of constructs both prior to and after host integration, and current approaches have not demonstrated robust solutions to this challenge. Here, we present a technology platform encompassing the design, construction, cell seeding and functional evaluation of tissue equivalents for wound healing and other clinical applications. These tissue equivalents are comprised of biodegradable microfluidic scaffolds lined with microvascular cells and designed to replicate microenvironmental cues necessary to generate and sustain cell populations to replace dermal and/or epidermal tissues lost due to trauma or disease. Initial results demonstrate that these biodegradable microfluidic devices promote cell adherence and support basic cell functions. These systems represent a promising pathway towards highly integrated three-dimensional engineered tissue constructs for a wide range of clinical applications.

  2. Genome-Wide Association Mapping of Seed Coat Color in Brassica napus.

    Wang, Jia; Xian, Xiaohua; Xu, Xinfu; Qu, Cunmin; Lu, Kun; Li, Jiana; Liu, Liezhao

    2017-07-05

    Seed coat color is an extremely important breeding characteristic of Brassica napus. To elucidate the factors affecting the genetic architecture of seed coat color, a genome-wide association study (GWAS) of seed coat color was conducted with a diversity panel comprising 520 B. napus cultivars and inbred lines. In total, 22 single-nucleotide polymorphisms (SNPs) distributed on 7 chromosomes were found to be associated with seed coat color. The most significant SNPs were found in 2014 near Bn-scaff_15763_1-p233999, only 43.42 kb away from BnaC06g17050D, which is orthologous to Arabidopsis thaliana TRANSPARENT TESTA 12 (TT12), an important gene involved in the transportation of proanthocyanidin precursors into the vacuole. Two of eight repeatedly detected SNPs can be identified and digested by restriction enzymes. Candidate gene mining revealed that the relevant regions of significant SNP loci on the A09 and C08 chromosomes are highly homologous. Moreover, a comparison of the GWAS results to those of previous quantitative trait locus (QTL) studies showed that 11 SNPs were located in the confidence intervals of the QTLs identified in previous studies based on linkage analyses or association mapping. Our results provide insights into the genetic basis of seed coat color in B. napus, and the beneficial allele, SNP information, and candidate genes should be useful for selecting yellow seeds in B. napus breeding.

  3. The effects of total mass of seed on distribution of lead in different tissues of bean plant (Phaseolus vulgaris L. Experimentally treated by lead

    Ilić Zoran

    2003-01-01

    Full Text Available In order to establish distribution of lead in different tissues of bean seed (seed coat, endo­sperm, embryo depending on seed mass, treated samples (seed by different concentration of Pb-acetate: 1O-5 M, 10-3M i 2x 10-2M. Depending on seed weight the samples derived in three groups: large (715g, middle (465g and small (280g. Each sample contained the same number of seeds. Concentration was determined by atomic absorber (Unicam 929. At highest Pb-acetate concentration (2x10-2M in seed with small total mass content of Pb was 1139μg/g, white in seed of 1052μg/g; in endosperm 580,6μg/g, middle 290,2μg/g and in second group 79,4μg/g. Similar pattern shows embryo but at die lower level of accumulation. On die basis of above presented results it could be concluded that concentration of Pb-acetate solution. Largest mass seed accumulate respectively less content of Pb in endosperm and embryo. Seed coat accumulated significant die larger amount of land probably embryo, in that way protects embryo. Therefore, larger bean seed are more convenient for planting in cases of potentially contamination by 1, but probably by other metals. .

  4. The perspective effects of various seed coating substances on rice seed variety Khao DAWK Mali 105 storability I: the case study of physiological properties.

    Thobunluepop, P; Pawelzik, E; Vearasilp, S

    2008-10-01

    This study aimed to evaluate the perspective changes of several physiological performances of rice seeds cv. KDML 105 which were coated with various seed coating substances [chemical fungicide, captan (CA) and biological coating polymers; chitosan-lignosulphonate polymer (CL) and eugenol incorporated into chitosan-lignosulphonate polymer (E + CL)] during storage (12 months). CA significantly increased seed moisture content and seed water activity through out the storage period. The qualities and viability of the seeds were seriously declined by this treatment. Moreover, CA inhibited the shoot and root development, seedling dry weight accumulation, delayed the seed germination and seedling growth rate. CA treated seeds were susceptible to stress conditions that declined the seed germination potential under cold, high moisture and temperature stress conditions. Nevertheless, CL and E + CL coating polymer could maintain seed storability, which significantly improved seed germination and seedling performances. These improvements were attributed to maintain the nutritive reserve and dehydrogenase activity in seeds. Moreover, the biological seed treatment stimulated the embryo growth and so speeding up the seedling emergence when compared untreated seeds.

  5. Embryonal Control of Yellow Seed Coat Locus ECY1 Is Related to Alanine and Phenylalanine Metabolism in the Seed Embryo of Brassica napus.

    Wang, Fulin; He, Jiewang; Shi, Jianghua; Zheng, Tao; Xu, Fei; Wu, Guanting; Liu, Renhu; Liu, Shengyi

    2016-04-07

    Seed coat color is determined by the type of pigment deposited in the seed coat cells. It is related to important agronomic traits of seeds such as seed dormancy, longevity, oil content, protein content and fiber content. In Brassica napus, inheritance of seed coat color is related to maternal effects and pollen effects (xenia effects). In this research we isolated a mutation of yellow seeded B. napus controlled by a single Mendelian locus, which is named Embryonal Control of Yellow seed coat 1 (Ecy1). Microscopy of transverse sections of the mature seed show that pigment is deposited only in the outer layer of the seed coat. Using Illumina Hisequation 2000 sequencing technology, a total of 12 GB clean data, 116× coverage of coding sequences of B. napus, was achieved from seeds 26 d after pollination (DAP). It was assembled into 172,238 independent transcripts, and 55,637 unigenes. A total of 139 orthologous genes of Arabidopsis transparent testa (TT) genes were mapped in silico to 19 chromosomes of B. napus Only 49 of the TT orthologous genes are transcribed in seeds. However transcription of all orthologs was independent of embryonal control of seed coat color. Only 55 genes were found to be differentially expressed between brown seeds and the yellow mutant. Of these 55, 50 were upregulated and five were downregulated in yellow seeds as compared to their brown counterparts. By KEGG classification, 14 metabolic pathways were significantly enriched. Of these, five pathways: phenylpropanoid biosynthesis, cyanoamino acid metabolism, plant hormone signal transduction, metabolic pathways, and biosynthesis of secondary metabolites, were related with seed coat pigmentation. Free amino acid quantification showed that Ala and Phe were present at higher levels in the embryos of yellow seeds as compared to those of brown seeds. This increase was not observed in the seed coat. Moreover, the excess amount of free Ala was exactly twice that of Phe in the embryo. The pigment

  6. Embryonal Control of Yellow Seed Coat Locus ECY1 Is Related to Alanine and Phenylalanine Metabolism in the Seed Embryo of Brassica napus

    Fulin Wang

    2016-04-01

    Full Text Available Seed coat color is determined by the type of pigment deposited in the seed coat cells. It is related to important agronomic traits of seeds such as seed dormancy, longevity, oil content, protein content and fiber content. In Brassica napus, inheritance of seed coat color is related to maternal effects and pollen effects (xenia effects. In this research we isolated a mutation of yellow seeded B. napus controlled by a single Mendelian locus, which is named Embryonal Control of Yellow seed coat 1 (Ecy1. Microscopy of transverse sections of the mature seed show that pigment is deposited only in the outer layer of the seed coat. Using Illumina Hisequation 2000 sequencing technology, a total of 12 GB clean data, 116× coverage of coding sequences of B. napus, was achieved from seeds 26 d after pollination (DAP. It was assembled into 172,238 independent transcripts, and 55,637 unigenes. A total of 139 orthologous genes of Arabidopsis transparent testa (TT genes were mapped in silico to 19 chromosomes of B. napus. Only 49 of the TT orthologous genes are transcribed in seeds. However transcription of all orthologs was independent of embryonal control of seed coat color. Only 55 genes were found to be differentially expressed between brown seeds and the yellow mutant. Of these 55, 50 were upregulated and five were downregulated in yellow seeds as compared to their brown counterparts. By KEGG classification, 14 metabolic pathways were significantly enriched. Of these, five pathways: phenylpropanoid biosynthesis, cyanoamino acid metabolism, plant hormone signal transduction, metabolic pathways, and biosynthesis of secondary metabolites, were related with seed coat pigmentation. Free amino acid quantification showed that Ala and Phe were present at higher levels in the embryos of yellow seeds as compared to those of brown seeds. This increase was not observed in the seed coat. Moreover, the excess amount of free Ala was exactly twice that of Phe in the

  7. Evaluation of seed coating formulations of Trichoderma harzianum on cucumber seeds against pre- and post-emergence damping-off caused by Pythium ultimum

    Seed coating formulations of Trichoderma harzianum were evaluated on cucumber seeds to control pre- and post-emergence damping-off caused by Pythium ultimum in greenhouse studies. Results showed that coating formulation H reduced the disease incidence significantly, and had the potential for commer...

  8. Rapid Characterization of Molecular Chemistry, Nutrient Make-Up and Microlocation of Internal Seed Tissue

    Yu, P.; Block, H.; Niu, Z.; Doiron, K.

    2007-01-01

    Wheat differs from corn in biodegradation kinetics and fermentation characteristics. Wheat exhibits a relatively high rate (23% h 01 ) and extent (78% DM) of biodegradation, which can lead to metabolic problems such as acidosis and bloat in ruminants. The objective of this study was to rapidly characterize the molecular chemistry of the internal structure of wheat (cv. AC Barrie) and reveal both its structural chemical make-up and nutrient component matrix by analyzing the intensity and spatial distribution of molecular functional groups within the intact seed using advanced synchrotron-powered Fourier transform infrared (FTIR) microspectroscopy. The experiment was performed at the U2B station of the National Synchrotron Light Source at Brookhaven National Laboratory, New York, USA. The wheat tissue was imaged systematically from the pericarp, seed coat, aleurone layer and endosperm under the peaks at ∼1732 (carbonyl C(double b ond)O ester), 1515 (aromatic compound of lignin), 1650 (amide I), 1025 (non-structural CHO), 1550 (amide II), 1246 (cellulosic material), 1160, 1150, 1080, 930, 860 (all CHO), 3350 (OH and NH stretching), 2928 (CH 2 stretching band) and 2885 cm -1 (CH 3 stretching band). Hierarchical cluster analysis and principal component analysis were applied to analyze the molecular FTIR spectra obtained from the different inherent structures within the intact wheat tissues. The results showed that, with synchrotron-powered FTIR microspectroscopy, images of the molecular chemistry of wheat could be generated at an ultra-spatial resolution. The features of aromatic lignin, structural and non-structural carbohydrates, as well as nutrient make-up and interactions in the seeds, could be revealed. Both principal component analysis and hierarchical cluster analysis methods are conclusive in showing that they can discriminate and classify the different inherent structures within the seed tissue. The wheat exhibited distinguishable differences in the

  9. Physical and Oxidative Stability of Uncoated and Chitosan-Coated Liposomes Containing Grape Seed Extract

    Jochen Weiss

    2013-08-01

    Full Text Available Polyphenol-rich grape seed extract (0.1 w/w% was incorporated in liposomes (1 w/w% soy lecithin by high pressure homogenization (22,500 psi and coated with chitosan (0.1 w/w%. Primary liposomes and chitosan-coated secondary liposomes containing grape seed extract showed good physical stability during 98 days of storage. Most of the polyphenols were incorporated in the shell of the liposomes (85.4%, whereas only 7.6% of the polyphenols of grape seed extract were located in the interior of the liposomes. Coating with chitosan did not change the polyphenol content in the liposomes (86.6%. The uncoated liposomes without grape seed extract were highly prone to lipid oxidation. The cationic chitosan coating, however, improved the oxidative stability to some extent, due to its ability to repel pro-oxidant metals. Encapsulated grape seed extract showed high antioxidant activity in both primary and secondary liposomes, which may be attributed to its polyphenol content. In conclusion, the best chemical stability of liposomes can be achieved using a combination of grape seed extract and chitosan.

  10. Effect of acetic acid on rice seeds coated with rice husk ash

    Lizandro Ciciliano Tavares

    2013-06-01

    Full Text Available Flooded rice cultivation promotes anaerobic conditions, favoring the formation of short chain organic acids such as acetic acid, which may be toxic to the crop. The objective of this study was to evaluate the effect of acetic acid on rice seeds coated with rice husk ash. The experiment was arranged in a 2 x 5 x 5 factorial randomized design, with two cultivars (IRGA 424 and BRS Querência, five doses of coating material (0, 2, 3,4 e 5 g kg-1 seed and five concentrations of acetic acid (0, 3, 6, 9 and 12 mM, with 4 replications, totaling 50 treatments. The variables first count of germination, germination, shoot and root length, dry weight of shoots and roots were recorded. The results showed that coating rice seeds with rice husk ash up to 5 g kg-1 seed does not influence the performance of rice seeds of cultivars IRGA 424 and BRS Querência when exposed to concentrations of 12 mM acetic acid. The presence of acetic acid in the substrates used for seed germination reduced the vigor and viability of seeds of cultivars IRGA 424 and BRS Querência, as well as seedling development, affecting mainly the roots of BRS Querência.

  11. Assessment of pesticide coating on cereal seeds by near infrared hyperspectral imaging

    Ph. Vermeulen

    2017-01-01

    Full Text Available Classical chromatographic methods, such as ultra performance liquid chromatography (UPLC, are used as reference methods to assess seed quality and homogeneous pesticide coating of seeds. These methods have some important drawbacks since they are time consuming, expensive, destructive and require a substantial amount of solvent, among others. Near infrared (NIR spectroscopy seems to be an interesting alternative technique for the determination of the quality of seed treatment and avoids most of these drawbacks. The objective of this study was to assess the quality of pesticide coating treatment by near infrared hyperspectral imaging (NIR-HSI by analysing, on a seed-by-seed basis, several seeds simultaneously in comparison to NIR spectroscopy and UPLC as the reference method. To achieve this goal, discrimination—partial least squares discriminant analysis (PLS-DA—models and regression—partial least squares (PLS—models were developed. The results obtained by NIR-HSI are compared to the results obtained with NIR spectroscopy and UPLC instruments. This study has shown the potential of NIR hyperspectral imaging to assess the quality/homogeneity of the pesticide coating on seeds.

  12. Evaluation of seed priming and coating on emergence, yield and ...

    Bread wheat production is constrained by climate change impacts and diseases in Amhara region. Pre-farming seed treatments are practiced worldwide to avert their effects on wheat. A field experiment was conducted at Adet and Finoteselam research stations in 2014 main cropping season to evaluate the effects of seed ...

  13. Profiling the Phenolic Compounds of the Four Major Seed Coat Types and Their Relation to Color Genes in Lentil.

    Mirali, Mahla; Purves, Randy W; Vandenberg, Albert

    2017-05-26

    Phenolic compounds can provide antioxidant health benefits for humans, and foods such as lentils can be valuable dietary sources of different subclasses of these secondary metabolites. This study used LC-MS analyses to compare the phenolic profiles of lentil genotypes with four seed coat background colors (green, gray, tan, and brown) and two cotyledon colors (red and yellow) grown at two locations. The mean area ratio per mg sample (MARS) values of various phenolic compounds in lentil seeds varied with the different seed coat colors conferred by specific genotypes. Seed coats of lentil genotypes with the homozygous recessive tgc allele (green and gray seed coats) had higher MARS values of flavan-3-ols, proanthocyanidins, and some flavonols. This suggests lentils featuring green and gray seed coats might be more promising as health-promoting foods.

  14. Seed coating with arbuscular mycorrhizal fungi as an ecotechnologicalapproach for sustainable agricultural production of common wheat (Triticum aestivum L.).

    Oliveira, Rui S; Rocha, Inês; Ma, Ying; Vosátka, Miroslav; Freitas, Helena

    2016-01-01

    The exploitation of arbuscular mycorrhizal (AM) fungi has become of great interest in agriculture due to their potential roles in reducing the need for agrochemicals, while improving plant growth and nutrition. Nevertheless, the application of AM fungi by dispersing inocula in granular form to open agricultural fields is not feasible because nontargeted spreading of inocula over large surface areas results in high cost per plant. Seed coating has the potential to significantly reduce the amount of inoculum needed, resulting in cost reduction and increased efficiency. The aim of this study was to assess whether seed coating with AM fungal inoculum is a feasible delivery system for production of common wheat (Triticum aestivum L.). Wheat seeds were coated with inoculum of Rhizophagus irregularis BEG140 and grown under different fertilization conditions: (1) none, (2) partial, or (3) complete. Data indicated that mycorrhizal inoculation via seed coating significantly increased the dry weight of shoot and seed spikes of wheat associated with reduced fertilization. Assessment of nutritional status of wheat showed that plants inoculated with R. irregularis via seed coating displayed enhanced stem concentrations of potassium (K), sulfur (S), and zinc (Zn). There were no significant differences in root colonization between plants conventionally inoculated with R. irregularis in soil and those inoculated via seed coating. Seed coating with AM fungi may be as effective as conventional soil inoculation and may contribute to reduce the utilization of chemical fertilizers. The application of AM via seed coating is proposed as an ecotechnological approach for sustainable agricultural wheat production.

  15. Changes in polyphenols of the seed coat during the after-darkening process in pinto beans (Phaseolus vulgaris L.).

    Beninger, Clifford W; Gu, Liwei; Prior, Ronald L; Junk, Donna C; Vandenberg, Albert; Bett, Kirstin E

    2005-10-05

    Proanthocyanidins and flavonoids were isolated and identified from seed coats of two aged and nonaged pinto bean lines: 1533-15 and CDC Pintium. The seed coat of 1533-15 darkens slowly and never darkens to the same extent as CDC Pintium. Analysis of the overall level of proanthocyanidins using a vanillin assay demonstrated that aged and nonaged seed coats of CDC Pintium had significantly higher levels of proanthocyanidins than aged and nonaged 1533-15 seed coats. Aged and nonaged seed coats of both lines were found to contain one main flavonol monomer, kaempferol, and three minor flavonols, kaempferol 3-O-glucoside, kaempferol 3-O-glucosylxylose, and kaempferol 3-O-acetylglucoside. These compounds were identified by NMR and ESI-MS analysis (except for kaempferol 3-O-acetylglucoside, which was tentatively identified only by ESI-MS analysis) and quantified using HPLC-DAD. The combined concentrations of all the kaempferol compounds in seed coats of CDC Pintium were significantly higher than in seed coats of 1533-15, and the combined contents did not change after aging. The content of kaempferol decreased nearly by half in the seed coats of CDC Pintium after aging, whereas no significant change was observed in the seed coats of 1533-15. Proanthocyanidin fractions from both lines, aged and nonaged, were subjected to LC-MS/MS analysis and found to be composed primarily of procyanidins. Procyanidins in the seed coats were predominantly polymers with the degree of polymers higher than 10. The proportion of these polymers decreased after aging, while that of the low-molecular-weight procyanidins increased. A catechin-kaempferol adduct was tentatively identified in both lines by LC-MS/MS, and the concentration increased in the seed coats after aging.

  16. Seed coat color, weight and eye pattern inheritance in gamma-rays induced cowpea M2-mutant line

    Reda M. Gaafar

    2016-06-01

    Full Text Available Gamma radiation is a very effective tool for inducing genetic variation in characters of many plants. Black seeds of M2 mutant were obtained after exposure of an Egyptian cowpea cultivar (Kaha 1 to a low dose of gamma rays. Segregation of seed coat color, weight of 100 seeds and seed eye pattern of the black seeds of this mutant line were further examined in this study. Four colors were observed for seed coat in the M3 plants ranging from cream to reddish brown and three eye patterns were distinguished from each other. SDS–PAGE of the seed storage proteins showed 18 protein bands; five of these bands disappeared in the seeds of M3 plants compared to M2 and M0 controls while other 5 protein bands were specifically observed in seeds of M3 plants. PCR analysis using twelve ISSR primers showed 47 polymorphic and 8 unique amplicons. The eight unique amplicons were characteristic of the cream coat color and brown wide eye pattern (M03-G10 while the polymorphic bands were shared by 6 coat-color groups. A PCR fragment of 850 bp was amplified, using primer HB-12, in M3-G04 which showed high-100 seed weight. These results demonstrated the mutagenic effects of gamma rays on seed coat color, weight of 100 seeds and eye pattern of cowpea M3 mutant plants.

  17. Separation of Protochlorophylls Esterified with Different Alcohols from Inner Seed Coats of Three Cucurbitaceae

    Yuzo, Shioi; Tsutomu, Sasa; Division of Biology, Miyazaki Medical College; Division of Biology, Miyazaki Medical College

    1982-01-01

    Reversed-phase high-performance liquid chromatography was used to separate protochlorophyllide esters isolated from inner seed coats of three Cucurbitaceae. At least 17 protochlorophylls esterified with different alcohols were separated on an octadecyl silica (ODS) column from purified pigments of pumpkin (Cucurbita moschata) and balsam pear (Momordica charantica) seeds with a single elution using 100% methanol within 22 min. The separation was done according to the numbers of carbon atoms in...

  18. Titania seed layers for PZT thin film growth on copper-coated Kapton films

    Suchaneck, G.; Volkonskiy, O.; Hubička, Zdeněk; Dejneka, Alexandr; Jastrabík, Lubomír; Adolphi, B.; Bertram, M.; Gerlach, G.

    2009-01-01

    Roč. 108, č. 1 (2009), s. 57-66 ISSN 1058-4587 R&D Projects: GA ČR GC202/09/J017; GA AV ČR KJB100100703 Institutional research plan: CEZ:AV0Z10100522 Keywords : copper coated Kapton * seed layer * seed layer * plasma deposition * XPS Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.329, year: 2009

  19. Coating of calcia-doped ceria with amorphous silica shell by seeded polymerization technique

    El-Toni, Ahmed Mohamed; Yin, Shu; Yabe, Shinryo; Sato, Tsugio

    2005-01-01

    Calcia-doped ceria is of potential interest as an ultraviolet (UV) radiation blocking material in personal care products. However, its high catalytic ability for oxidation of organic materials makes it difficult to use as a sunscreen material. Therefore, calcia-doped ceria was coated with amorphous silica by means of seeded polymerization technique in order to depress its oxidation catalytic ability. The catalytic ability as well as UV-shielding ability was investigated for coated particles

  20. Screening Test of Greenhouse Seeding Exercise Matrix for Tissue Culture Seeding of Dendrobium Officinale Kimura et Migo

    Zhou Yuan

    2015-01-01

    Full Text Available The Dendrobium officinale Kimura et Migo has a high demand on planting matrix, while its tissue culture seeding has much more demands on planting matrix. To find out a seeding exercise matrix to enhance the survival rate of tissue culture seeding of Dendrobium officinale Kimura et Migo more efficiently, this article carries out a screening test of greenhouse seeding exercise matrix material for tissue culture seeding of Dendrobium officinale Kimura et Migo. The test adopts full random test design, mainly for screening test of five matrix materials, namely pine bark, camphor tree bark, fern root, peanut shell and longan bark. Compare the impact of prepared seeding exercise matrix on the survival rate and growth trend (including plant height, growth rate and bud growth rate. The test result shows that: The seeding exercise matrix prepared by fern root is the most efficient, and the survival rate, plant height, growth rate and bud growth rate have achieved 100%, 4.5cm, 43.67% and 54.33% respectively. The main reason may be that the seeding exercise matrix C prepared by fern root is fairly loose and has a great water permeability, which is conducive to the growth of Dendrobium officinale Kimura et Migo.

  1. The inhibitory effect of the various seed coating substances against rice seed borne fungi and their shelf-life during storage.

    Thobunluepop, Pitipong

    2009-08-15

    Presently, chemical seed treatments are in discussion due to their directly or indirectly impacts on human health or other living organisms. They may also negatively affect the ecosystem and the food chain. In rice seeds, chemicals may cause phytotoxic effects including seed degradation. Eugenol is the main component of clove (Eugenia caryophillis) oil, which was proved to act simultaneously as bactericide, virocide and especially fungicide. The in vitro study was aimed to compare the inhibitory effect of the following seed treatment substances against seed borne fungi and their shelf-life during 12 months of storage; conventional captan (CA), chitosan-lignosulphonate polymer (CL), eugenol incorporated into chitosan-lignosulphonate polymer (E+CL) and control (CO). The obtained results of fungi inhibition were classified in three groups, which showed at first that CA treatment led to a better, i.e., longer, inhibitory effect on Alternaria padwickii, Rhizoctonia solani, Curvularia sp., Aspergillus flavus and Aspergillus niger than E+CL. Secondly, E+CL coating polymer showed the longest inhibitory effect against Bipolaris oryzae and Nigrospora oryzae compared to CA and CL coating polymer. Finally, both CA and E+CL coating polymer had non-significant difference inhibitory effect on Fusarium moniliforme. The variant of CL coating polymer for seed coating was only during the first 6 months of storage able to inhibit all species of the observed seed borne fungi, whereas CA and E+CL coating polymer were capable to inhibit most of the fungi until 9 months of storage.

  2. Removing seed coat fragments with a lint cleaner grid bar air knife

    Seed coat fragments (SCF) in ginned lint cause spinning problems at the textile mill and undesirable defects in finished goods. Work continued on developing an air knife that may help remove SCF from ginned lint. The air knife is mounted on the 1st lint cleaner grid bar of a saw-type lint cleaner,...

  3. Development of an air knife to remove seed coat fragments during lint cleaning

    An air knife is a tool commonly used to blow off debris in a manufacturing line. The knife may also be used to break the attachment force between a lint cleaner saw and a seed coat fragment (SCF) with attached fiber, and remove them. Work continued on evaluating an auxiliary air knife mounted on t...

  4. Advanced fiber information systems seed coat neps baseline response from diverse mediums

    An extensive literature search has revealed that no papers have been published regarding selectivity calculation of the AFIS seed coat neps (SCN) determination over interfering material in cotton. A prerequisite to selectivity measurements is to identify suitable fiber medium(s) that give baseline ...

  5. Accumulation of proanthocyanidins and/or lignin deposition in buff-pigmented soybean seed coats may lead to frequent defective cracking.

    Senda, Mineo; Yamaguchi, Naoya; Hiraoka, Miho; Kawada, So; Iiyoshi, Ryota; Yamashita, Kazuki; Sonoki, Tomonori; Maeda, Hayato; Kawasaki, Michio

    2017-03-01

    Defective cracking frequently occurs in buff-pigmented soybean seed coats, where proanthocyanidins accumulate and lignin is deposited, suggesting that proanthocyanidins and/or lignin may change physical properties and lead to defective cracking. In the seed production of many yellow soybean (Glycine max) cultivars, very low percentages of self-pigmented seeds are commonly found. This phenomenon is derived from a recessive mutation of the I gene inhibiting seed coat pigmentation. In Japan, most of these self-pigmented seeds are buff-colored, and frequently show multiple defective cracks in the seed coat. However, it is not known why cracking occurs specifically in buff seed coats. In this study, quantitative analysis was performed between yellow and buff soybean seed coats. Compared with yellow soybeans, in which defective cracking rarely occurs, contents of proanthocyanidins (PAs) and lignin were significantly higher in buff seed coats. Histochemical data of PAs and lignin in the seed coats strongly supported this result. Measurements of the physical properties of seed coats using a texture analyzer showed that a hardness value was significantly decreased in the buff seed coats. These results suggest that PA accumulation and/or lignin deposition may affect the physical properties of buff seed coats and lead to the defective cracking. This work contributes to understanding of the mechanism of defective cracking, which decreases the seed quality of soybean and related legumes.

  6. Expression of genes SBP and leginsulin in contrasting soybean seed coats

    Carlos André Bahry

    Full Text Available ABSTRACT: Evaluation of differential candidate gene expression in contrasting soybean seeds is an auxiliary tool in the partial elucidation of processes involved in seeds formation, as well as it contributes to the generation of new information that can be used in future research or in the development of r genetic superior constitutions. The aim of this study was to evaluate the expression of two candidate genes, SBP and leginsulin genes, possibly involved in seed quality, in contrasting coats of four soybean genotypes. Two cultivars of yellow soybeans were used, BMX Potência RR and CD 202, and two lines of black soybean, TP and IAC. Gene expression was evaluated using qPCR in seven stages of development from seed coats for four genotypes, at 25, 30, 35, 40, 45, 50, and 55 days after anthesis. The design was completely randomized, with three replications. Data were subjected to analysis of variance and means compared by Tukey's test at 5% probability. SBP and leginsulin gene have higher expression in the early phases of development from seed coats of BMX Potência RR cultivar, followed by the IAC line. These genotypes are therefore of interest for further research involving these genes.

  7. Identification of Albizia lebbeck seed coat chitin-binding vicilins (7S globulins) with high toxicity to the larvae of the bruchid Callosobruchus maculatus

    Souza, A.J. [Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ (Brazil); Ferreira, A.T.S.; Perales, J.; Beghini, D.G. [Laboratório de Toxinologia, Departamento de Fisiologia e Farmacodinâmica, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ (Brazil); Fernandes, K.V.S.; Xavier-Filho, J.; Venancio, T.M.; Oliveira, A.E.A. [Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ (Brazil)

    2011-01-27

    Seed coat is a specialized maternal tissue that interfaces the embryo and the external environment during embryogenesis, dormancy and germination. In addition, it is the first defensive barrier against penetration by pathogens and herbivores. Here we show that Albizia lebbeck seed coat dramatically compromises the oviposition, eclosion and development of the bruchid Callosobruchus maculatus. Dietary supplementation of bruchid larvae with A. lebbeck seed coat flour causes severe weight loss and reduces survival. By means of protein purification, mass spectrometry and bioinformatic analyses, we show that chitinbinding vicilins are the main source of A. lebbeck tegumental toxicity to C. maculatus. At concentrations as low as 0.1%, A. lebbeck vicilins reduce larval mass from 8.1 ± 1.7 (mass of control larvae) to 1.8 ± 0.5 mg, which corresponds to a decrease of 78%. Seed coat toxicity constitutes an efficient defense mechanism, hindering insect predation and preventing embryo damage. We hypothesize that A. lebbeck vicilins are good candidates for the genetic transformation of crop legumes to enhance resistance to bruchid predation.

  8. Identification of Albizia lebbeck seed coat chitin-binding vicilins (7S globulins) with high toxicity to the larvae of the bruchid Callosobruchus maculatus

    Souza, A.J.; Ferreira, A.T.S.; Perales, J.; Beghini, D.G.; Fernandes, K.V.S.; Xavier-Filho, J.; Venancio, T.M.; Oliveira, A.E.A.

    2011-01-01

    Seed coat is a specialized maternal tissue that interfaces the embryo and the external environment during embryogenesis, dormancy and germination. In addition, it is the first defensive barrier against penetration by pathogens and herbivores. Here we show that Albizia lebbeck seed coat dramatically compromises the oviposition, eclosion and development of the bruchid Callosobruchus maculatus. Dietary supplementation of bruchid larvae with A. lebbeck seed coat flour causes severe weight loss and reduces survival. By means of protein purification, mass spectrometry and bioinformatic analyses, we show that chitinbinding vicilins are the main source of A. lebbeck tegumental toxicity to C. maculatus. At concentrations as low as 0.1%, A. lebbeck vicilins reduce larval mass from 8.1 ± 1.7 (mass of control larvae) to 1.8 ± 0.5 mg, which corresponds to a decrease of 78%. Seed coat toxicity constitutes an efficient defense mechanism, hindering insect predation and preventing embryo damage. We hypothesize that A. lebbeck vicilins are good candidates for the genetic transformation of crop legumes to enhance resistance to bruchid predation

  9. Identification of Albizia lebbeck seed coat chitin-binding vicilins (7S globulins) with high toxicity to the larvae of the bruchid Callosobruchus maculatus.

    Souza, A J; Ferreira, A T S; Perales, J; Beghini, D G; Fernandes, K V S; Xavier-Filho, J; Venancio, T M; Oliveira, A E A

    2012-02-01

    Seed coat is a specialized maternal tissue that interfaces the embryo and the external environment during embryogenesis, dormancy and germination. In addition, it is the first defensive barrier against penetration by pathogens and herbivores. Here we show that Albizia lebbeck seed coat dramatically compromises the oviposition, eclosion and development of the bruchid Callosobruchus maculatus. Dietary supplementation of bruchid larvae with A. lebbeck seed coat flour causes severe weight loss and reduces survival. By means of protein purification, mass spectrometry and bioinformatic analyses, we show that chitin-binding vicilins are the main source of A. lebbeck tegumental toxicity to C. maculatus. At concentrations as low as 0.1%, A. lebbeck vicilins reduce larval mass from 8.1 ± 1.7 (mass of control larvae) to 1.8 ± 0.5 mg, which corresponds to a decrease of 78%. Seed coat toxicity constitutes an efficient defense mechanism, hindering insect predation and preventing embryo damage. We hypothesize that A. lebbeck vicilins are good candidates for the genetic transformation of crop legumes to enhance resistance to bruchid predation.

  10. Identification of Albizia lebbeck seed coat chitin-binding vicilins (7S globulins with high toxicity to the larvae of the bruchid Callosobruchus maculatus

    A.J. Souza

    2012-02-01

    Full Text Available Seed coat is a specialized maternal tissue that interfaces the embryo and the external environment during embryogenesis, dormancy and germination. In addition, it is the first defensive barrier against penetration by pathogens and herbivores. Here we show that Albizia lebbeck seed coat dramatically compromises the oviposition, eclosion and development of the bruchid Callosobruchus maculatus. Dietary supplementation of bruchid larvae with A. lebbeck seed coat flour causes severe weight loss and reduces survival. By means of protein purification, mass spectrometry and bioinformatic analyses, we show that chitin-binding vicilins are the main source of A. lebbeck tegumental toxicity to C. maculatus. At concentrations as low as 0.1%, A. lebbeck vicilins reduce larval mass from 8.1 ± 1.7 (mass of control larvae to 1.8 ± 0.5 mg, which corresponds to a decrease of 78%. Seed coat toxicity constitutes an efficient defense mechanism, hindering insect predation and preventing embryo damage. We hypothesize that A. lebbeck vicilins are good candidates for the genetic transformation of crop legumes to enhance resistance to bruchid predation.

  11. The perspective effects of various seed coating substances on rice seed variety Khao Dawk Mali 105 storability II: the case study of chemical and biochemical properties.

    Thobunluepop, P; Pan-in, W; Pawelzik, E; Vearasilp, S

    2009-04-01

    The aim of this study was to investigate the effects of seed coating substances; chemical fungicide (CA) and biological fungicide polymers [chitosan-lignosulphonate polymer (CL) and eugenol incorporated into chitosan-lignosulphonate polymer (E+CL)] on chemical and biochemical changes of rice seeds cv. KDML 105, which have been studied during storage for 12 months. CA significantly affected the rice seed chemical properties and the associated seed deterioration. After 12 months storage, protein content decreased accompanied by declined of lipid content, increased free fatty acids and activated lipoxygenase enzyme. In the case of biological fungicide coated seeds, the antioxidative scavenging enzymes were ascorbate peroxidase and superoxide dismutase and a high antioxidant activity protected them. Moreover, the sugar content was positive correlated with seed germination and vigor. The biological coated seeds were found to maintain high sugar contents inside the seeds, which resulted high seed storability significantly. In contrast, under fungicide stress (CA), those compounds were lost that directly affected seed vigor during storage.

  12. Do seed VLCFAs trigger spongy tissue formation in Alphonso

    Alphonso mango; cytokinin synthesis; membrane damage; seed germination; ... the inception of germination-associated events during fruit maturation on the tree, ... of cytokinin and gibberellins in ST seed associated with a fall in abscisic acid ...

  13. Cold perception and gene expression differ in Olea europaea seed coat and embryo during drupe cold acclimation.

    D'Angeli, S; Falasca, G; Matteucci, M; Altamura, M M

    2013-01-01

    FAD2 and FAD7 desaturases are involved in cold acclimation of olive (Olea europaea) mesocarp. There is no research information available on cold acclimation of seeds during mesocarp cold acclimation or on differences in the cold response of the seed coat and embryo. How FAD2 and FAD7 affect seed coat and embryo cold responses is unknown. Osmotin positively affects cold acclimation in olive tree vegetative organs, but its role in the seeds requires investigation. OeFAD2.1, OeFAD2.2, OeFAD7 and Oeosmotin were investigated before and after mesocarp acclimation by transcriptomic, lipidomic and immunolabelling analyses, and cytosolic calcium concentration ([Ca(2+)](cyt)) signalling, F-actin changes and seed development were investigated by epifluorescence/histological analyses. Transient [Ca(2+)](cyt) rises and F-actin disassembly were found in cold-shocked protoplasts from the seed coat, but not from the embryo. The thickness of the outer endosperm cuticle increased during drupe exposure to lowering of temperature, whereas the embryo protoderm always lacked cuticle. OeFAD2 transcription increased in both the embryo and seed coat in the cold-acclimated drupe, but linoleic acid (i.e. the product of FAD2 activity) increased solely in the seed coat. Osmotin was immunodetected in the seed coat and endosperm of the cold-acclimated drupe, and not in the embryo. The results show cold responsiveness in the seed coat and cold tolerance in the embryo. We propose a role for the seed coat in maintaining embryo cold tolerance by increasing endosperm cutinization through FAD2 and osmotin activities. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  14. Optimization of permanent breast seed implant dosimetry incorporating tissue heterogeneity

    Mashouf, Shahram

    Seed brachytherapy is currently used for adjuvant radiotherapy of early stage prostate and breast cancer patients. The current standard for calculation of dose around brachytherapy sources is based on the AAPM TG43 formalism, which generates the dose in homogeneous water medium. Recently, AAPM task group no. 186 (TG186) emphasized the importance of accounting for heterogeneities. In this work we introduce an analytical dose calculation algorithm in heterogeneous media using CT images. The advantages over other methods are computational efficiency and the ease of integration into clinical use. An Inhomogeneity Correction Factor (ICF) is introduced as the ratio of absorbed dose in tissue to that in water medium. ICF is a function of tissue properties and independent of the source structure. The ICF is extracted using CT images and the absorbed dose in tissue can then be calculated by multiplying the dose as calculated by the TG43 formalism times ICF. To evaluate the methodology, we compared our results with Monte Carlo simulations as well as experiments in phantoms with known density and atomic compositions. The dose distributions obtained through applying ICF to TG43 protocol agreed very well with those of Monte Carlo simulations and experiments in all phantoms. In all cases, the mean relative error was reduced by at least a factor of two when ICF correction factor was applied to the TG43 protocol. In conclusion we have developed a new analytical dose calculation method, which enables personalized dose calculations in heterogeneous media using CT images. The methodology offers several advantages including the use of standard TG43 formalism, fast calculation time and extraction of the ICF parameters directly from Hounsfield Units. The methodology was implemented into our clinical treatment planning system where a cohort of 140 patients were processed to study the clinical benefits of a heterogeneity corrected dose.

  15. Culture of equine fibroblast-like synoviocytes on synthetic tissue scaffolds towards meniscal tissue engineering: a preliminary cell-seeding study

    Jennifer J. Warnock

    2014-04-01

    Full Text Available Introduction. Tissue engineering is a new methodology for addressing meniscal injury or loss. Synovium may be an ideal source of cells for in vitro meniscal fibrocartilage formation, however, favorable in vitro culture conditions for synovium must be established in order to achieve this goal. The objective of this study was to determine cellularity, cell distribution, and extracellular matrix (ECM formation of equine fibroblast-like synoviocytes (FLS cultured on synthetic scaffolds, for potential application in synovium-based meniscal tissue engineering. Scaffolds included open-cell poly-L-lactic acid (OPLA sponges and polyglycolic acid (PGA scaffolds cultured in static and dynamic culture conditions, and PGA scaffolds coated in poly-L-lactic (PLLA in dynamic culture conditions.Materials and Methods. Equine FLS were seeded on OPLA and PGA scaffolds, and cultured in a static environment or in a rotating bioreactor for 12 days. Equine FLS were also seeded on PGA scaffolds coated in 2% or 4% PLLA and cultured in a rotating bioreactor for 14 and 21 days. Three scaffolds from each group were fixed, sectioned and stained with Masson’s Trichrome, Safranin-O, and Hematoxylin and Eosin, and cell numbers and distribution were analyzed using computer image analysis. Three PGA and OPLA scaffolds from each culture condition were also analyzed for extracellular matrix (ECM production via dimethylmethylene blue (sulfated glycosaminoglycan assay and hydroxyproline (collagen assay. PLLA coated PGA scaffolds were analyzed using double stranded DNA quantification as areflection of cellularity and confocal laser microscopy in a fluorescent cell viability assay.Results. The highest cellularity occurred in PGA constructs cultured in a rotating bioreactor, which also had a mean sulfated glycosaminoglycan content of 22.3 µg per scaffold. PGA constructs cultured in static conditions had the lowest cellularity. Cells had difficulty adhering to OPLA and the PLLA

  16. Comprehensive characterization of phenolic and other polar compounds in the seed and seed coat of avocado by HPLC-DAD-ESI-QTOF-MS.

    Figueroa, Jorge G; Borrás-Linares, Isabel; Lozano-Sánchez, Jesús; Segura-Carretero, Antonio

    2018-03-01

    Avocado seed and seed coat are important by-products from avocado industrialization, with important functional properties. The aim of the present study was to determine the phenolic profile and other polar compounds of avocado seed and seed coat using accelerated solvent extraction (ASE) and liquid chromatography coupled to Ultra-High-Definition Accurate-Mass Q-TOF. In this research 84 compounds were identified, within eight subclass group, among these 45 phenolic compounds were identified for first time in avocado seed. Condensed tannins, phenolic acids and flavonoids were the most representative groups in both samples. As far as we are concerned, this is the first time that avocado seed coat has been studied regarding its phenolic compounds using such a powerful instrumental technique. In addition, the radical-scavenging activities were analysed in order to estimate the antioxidant potential of extracts. These results point out that avocado seed and seed coat constitute a source of bioactive ingredients for its use in the food, cosmetic or pharmaceutical sector. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. The role of seed coat phenolics on water uptake and early protein synthesis during germination of dimorphic seeds of halopyrum mucronatum (L.) staph

    Siddiqui, Z. S.; Khan, M.A.

    2010-01-01

    Role of seed coat phenolics on water uptake and early protein synthesis of Halopyrum mucronatum dimorphic seeds during germination were tested. Scanning electron micrographs (SEM) showed seed texture with differential deposition of secondary metabolites in both morphs. Ability of both seed morphs to retain secondary deposition was dependent on exposure to either saline or non-saline conditions. More phenols leached from the brown seed during the initial hours of soaking when compared to black seeds. Water uptake pattern was slightly different in both seed type particularly during initial hours when imbibition in black seeds showed little water uptake while in brown seeds absorption was quick in the first hour under both saline and non saline condition. Change in total protein was somewhat similar in both seeds morphs showing early increase (4 and 8 h), reaching to the maximum (12 h) and decreasing (24 and 48 h) afterward. The results are discussed in relation to seed coat phenolics, water uptake and early protein synthesis during germination. (author)

  18. Characterization of Anti-bacterial Compounds from the Seed Coat of Chinese Windmill Palm Tree (Trachycarpus fortunei

    Shakeel Ahmed

    2017-10-01

    Full Text Available The increasing of multidrug resistance in bacterial associated infections has impaired the current antimicrobial therapy and it forces the search for other alternatives. In this study, we aimed to find the in vitro antibacterial activity of seed coat of Trachycarpus fortunei against a panel of clinically important bacterial species. Ethanolic extracts of target tissues were fractionated through macro porous resin by column chromatography, using ethanol as an organic solvent with a concentration gradient of 0–100%, each along with 20% concentration increment. The minimum inhibitory (MIC concentrations of all fractions were measured. It is found that 20% ethanolic fraction showed the most significant inhibition against tested bacterial species. All fractions were analyzed by Ultra-Performance Liquid Chromatography/mass spectrometry (UPLC/MS and compounds were identified by comparing mass spectra with standard libraries. By pairing the identified compounds from different fractions with the antibacterial activity of each fraction, it was shown that compounds stearamide (7, 1-(4-Fluorophenyl-2-(methylthio-1H-imidazole-5-carboxylic acid (9 and 2,4,5 triacetoxybiphenyl (10 topped in the list for anti-bacterial activity. Further experiment with pure chemicals verified that compounds 9 and 10 have antibacterial activity against Gram-negative bacteria. Whereas, the lowest MIC value (39.06 μg/mL was obtained by compound 10 against Staphylococcus epidermidis. Hence, the seed coat of T. fortunei with its antimicrobial spectrum could be a good candidate for further bactericidal research.

  19. Characterization of Anti-bacterial Compounds from the Seed Coat of Chinese Windmill Palm Tree (Trachycarpus fortunei).

    Ahmed, Shakeel; Liu, Huimin; Ahmad, Aqeel; Akram, Waheed; Abdelrahman, Eman K N; Ran, Fengming; Ou, Wuling; Dong, Shuang; Cai, Qian; Zhang, Qiyun; Li, Xiaohua; Hu, Sheng; Hu, Xuebo

    2017-01-01

    The increasing of multidrug resistance in bacterial associated infections has impaired the current antimicrobial therapy and it forces the search for other alternatives. In this study, we aimed to find the in vitro antibacterial activity of seed coat of Trachycarpus fortunei against a panel of clinically important bacterial species. Ethanolic extracts of target tissues were fractionated through macro porous resin by column chromatography, using ethanol as an organic solvent with a concentration gradient of 0-100%, each along with 20% concentration increment. The minimum inhibitory (MIC) concentrations of all fractions were measured. It is found that 20% ethanolic fraction showed the most significant inhibition against tested bacterial species. All fractions were analyzed by Ultra-Performance Liquid Chromatography/mass spectrometry (UPLC/MS) and compounds were identified by comparing mass spectra with standard libraries. By pairing the identified compounds from different fractions with the antibacterial activity of each fraction, it was shown that compounds stearamide (7), 1-(4-Fluorophenyl)-2-(methylthio)-1H-imidazole-5-carboxylic acid (9) and 2,4,5 triacetoxybiphenyl (10) topped in the list for anti-bacterial activity. Further experiment with pure chemicals verified that compounds 9 and 10 have antibacterial activity against Gram-negative bacteria. Whereas, the lowest MIC value (39.06 μg/mL) was obtained by compound 10 against Staphylococcus epidermidis . Hence, the seed coat of T. fortunei with its antimicrobial spectrum could be a good candidate for further bactericidal research.

  20. The MADS Box Genes ABS, SHP1, and SHP2 Are Essential for the Coordination of Cell Divisions in Ovule and Seed Coat Development and for Endosperm Formation in Arabidopsis thaliana.

    Ehlers, Katrin; Bhide, Amey S; Tekleyohans, Dawit G; Wittkop, Benjamin; Snowdon, Rod J; Becker, Annette

    2016-01-01

    Seed formation is a pivotal process in plant reproduction and dispersal. It begins with megagametophyte development in the ovule, followed by fertilization and subsequently coordinated development of embryo, endosperm, and maternal seed coat. Two closely related MADS-box genes, SHATTERPROOF 1 and 2 (SHP1 and SHP2) are involved in specifying ovule integument identity in Arabidopsis thaliana. The MADS box gene ARABIDOPSIS BSISTER (ABS or TT16) is required, together with SEEDSTICK (STK) for the formation of endothelium, part of the seed coat and innermost tissue layer formed by the maternal plant. Little is known about the genetic interaction of SHP1 and SHP2 with ABS and the coordination of endosperm and seed coat development. In this work, mutant and expression analysis shed light on this aspect of concerted development. Triple tt16 shp1 shp2 mutants produce malformed seedlings, seed coat formation defects, fewer seeds, and mucilage reduction. While shp1 shp2 mutants fail to coordinate the timely development of ovules, tt16 mutants show less peripheral endosperm after fertilization. Failure in coordinated division of the innermost integument layer in early ovule stages leads to inner seed coat defects in tt16 and tt16 shp1 shp2 triple mutant seeds. An antagonistic action of ABS and SHP1/SHP2 is observed in inner seed coat layer formation. Expression analysis also indicates that ABS represses SHP1, SHP2, and FRUITFUL expression. Our work shows that the evolutionary conserved Bsister genes are required not only for endothelium but also for endosperm development and genetically interact with SHP1 and SHP2 in a partially antagonistic manner.

  1. The MADS Box Genes ABS, SHP1, and SHP2 Are Essential for the Coordination of Cell Divisions in Ovule and Seed Coat Development and for Endosperm Formation in Arabidopsis thaliana.

    Katrin Ehlers

    Full Text Available Seed formation is a pivotal process in plant reproduction and dispersal. It begins with megagametophyte development in the ovule, followed by fertilization and subsequently coordinated development of embryo, endosperm, and maternal seed coat. Two closely related MADS-box genes, SHATTERPROOF 1 and 2 (SHP1 and SHP2 are involved in specifying ovule integument identity in Arabidopsis thaliana. The MADS box gene ARABIDOPSIS BSISTER (ABS or TT16 is required, together with SEEDSTICK (STK for the formation of endothelium, part of the seed coat and innermost tissue layer formed by the maternal plant. Little is known about the genetic interaction of SHP1 and SHP2 with ABS and the coordination of endosperm and seed coat development. In this work, mutant and expression analysis shed light on this aspect of concerted development. Triple tt16 shp1 shp2 mutants produce malformed seedlings, seed coat formation defects, fewer seeds, and mucilage reduction. While shp1 shp2 mutants fail to coordinate the timely development of ovules, tt16 mutants show less peripheral endosperm after fertilization. Failure in coordinated division of the innermost integument layer in early ovule stages leads to inner seed coat defects in tt16 and tt16 shp1 shp2 triple mutant seeds. An antagonistic action of ABS and SHP1/SHP2 is observed in inner seed coat layer formation. Expression analysis also indicates that ABS represses SHP1, SHP2, and FRUITFUL expression. Our work shows that the evolutionary conserved Bsister genes are required not only for endothelium but also for endosperm development and genetically interact with SHP1 and SHP2 in a partially antagonistic manner.

  2. In situ functionalization and PEO coating of iron oxide nanocrystals using seeded emulsion polymerization.

    Kloust, Hauke; Schmidtke, Christian; Feld, Artur; Schotten, Theo; Eggers, Robin; Fittschen, Ursula E A; Schulz, Florian; Pöselt, Elmar; Ostermann, Johannes; Bastús, Neus G; Weller, Horst

    2013-04-16

    Herein we demonstrate that seeded emulsion polymerization is a powerful tool to produce multiply functionalized PEO coated iron oxide nanocrystals. Advantageously, by simple addition of functional surfactants, functional monomers, or functional polymerizable linkers-solely or in combinations thereof-during the seeded emulsion polymerization process, a broad range of in situ functionalized polymer-coated iron oxide nanocrystals were obtained. This was demonstrated by purposeful modulation of the zeta potential of encapsulated iron oxide nanocrystals and conjugation of a dyestuff. Successful functionalization was unequivocally proven by TXRF. Furthermore, the spatial position of the functional groups can be controlled by choosing the appropriate spacers. In conclusion, this methodology is highly amenable for combinatorial strategies and will spur rapid expedited synthesis and purposeful optimization of a broad scope of nanocrystals.

  3. Quinoa seed coats as an expanding and sustainable source of bioactive compounds

    Ruiz, Karina B.; Khakimov, Bekzod; Engelsen, Søren Balling

    2017-01-01

    Saponins (SAPs) are a diverse family of plant secondary metabolites and due to their biological activities, SAPs can be utilised as biopesticides and as therapeutic compounds. Given their widespread industrial use, a search for alternative sources of SAPs is a priority. Quinoa (Chenopodium quinoa...... Willd) is a valuable food source that is gaining importance worldwide for its nutritional and nutraceutical properties. SAPs from quinoa seed coats could represent a new sustainable source to obtain these compounds in high quantities due to the increasing production and worldwide expansion of the crop....... This research aims to characterise saponins of seed coat waste products from six different quinoa varieties for their potential use as a saponin source. Gas chromatography (GC)- and Liquid chromatography (LC)- with mass spectrometry (MS) were applied for qualitative and relative quantitative analysis...

  4. Seed Coat Microsculpturing Is Related to Genomic Components in Wild Brassica juncea and Sinapis arvensis

    Wang, Ying-hao; Wei, Wei; Kang, Ding-ming; Ma, Ke-ping

    2013-01-01

    It has been reported that wild Brassica and related species are widely distributed across Xinjiang, China, and there has been an argument for species identification. Seed coat microsculpturing (SCM) is known to be an excellent character for taxonomic and evolutionary studies. By identifying collections from Xinjiang, China, and combining SCM pattern, flow cytometry, and genome-specific DNA markers as well as sexual compatibility with known species, this study aimed to detect potential relatio...

  5. Cell patch seeding and functional analysis of cellularized scaffolds for tissue engineering

    Kumar, P R Anil [Division of Implant Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012 (India); Varma, H K [Bioceramics Laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012 (India); Kumary, T V [Division of Implant Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012 (India)

    2007-03-01

    Cell seeding has a direct impact on the final structure and function of tissue constructs, especially for applications like tissue engineering and regeneration. In this study seeding cell patches retrieved from the thermoresponsive poly(N-isopropylacrylamide) surface were used to generate in vitro tissue constructs. Porous and dense bone substitute materials were cellularized using osteoblast cells by a patch transfer and a trypsin method. The function and proliferation of cells was analyzed after 7 days of culture. The relative cell growth rate was found to be higher in cellularized porous hydroxyapatite (PHA) than in dense hydroxyapatite. Live-dead staining confirmed viable cells inside the pores of PHA. Increased alkaline phosphatase activity of cells transferred by the cell patch over the trypsin method revealed the significance of cell patch seeding. This novel method of generating tissue constructs by cell patch seeding was successful in cellularizing scaffolds with intact cell function.

  6. Cell patch seeding and functional analysis of cellularized scaffolds for tissue engineering

    Kumar, P R Anil; Varma, H K; Kumary, T V

    2007-01-01

    Cell seeding has a direct impact on the final structure and function of tissue constructs, especially for applications like tissue engineering and regeneration. In this study seeding cell patches retrieved from the thermoresponsive poly(N-isopropylacrylamide) surface were used to generate in vitro tissue constructs. Porous and dense bone substitute materials were cellularized using osteoblast cells by a patch transfer and a trypsin method. The function and proliferation of cells was analyzed after 7 days of culture. The relative cell growth rate was found to be higher in cellularized porous hydroxyapatite (PHA) than in dense hydroxyapatite. Live-dead staining confirmed viable cells inside the pores of PHA. Increased alkaline phosphatase activity of cells transferred by the cell patch over the trypsin method revealed the significance of cell patch seeding. This novel method of generating tissue constructs by cell patch seeding was successful in cellularizing scaffolds with intact cell function

  7. Do seed VLCFAs trigger spongy tissue formation in Alphonso ...

    2015-04-17

    Apr 17, 2015 ... The study of the fat content during fruit growth showed that it increased gradually from 40% fruit maturity. At 70% maturity ... strands (funiculus) between the peduncle and endocarp ...... seed, soft nose and stem end cavity.

  8. Can biochar be used as a seed coating to improve native plant germination and growth in arid conditions?

    Mary I. Williams; R. Kasten Dumroese; Deborah S. Page-Dumroese; Stuart P. Hardegree

    2016-01-01

    Direct seeding is a common large-scale restoration practice for revegetating arid and semi-arid lands, but success can be limited by moisture and temperature. Seed coating technologies that use biochar may have the potential to overcome moisture and temperature limitations on native plant germination and growth. Biochar is a popular agronomic tool for improving soil...

  9. Neonicotinoid insecticide removal by prairie strips in row-cropped watersheds with historical seed coating use

    Hladik, Michelle L.; Bradbury, Steven; Schulte, Lisa A.; Helmers, Matthew; Witte, Christopher; Kolpin, Dana W.; Garrett, Jessica D.; Harris, Mary

    2017-01-01

    Neonicotinoids are a widely used class of insecticides that are commonly applied as seed coatings for agricultural crops. Such neonicotinoid use may pose a risk to non-target insects, including pollinators and natural enemies of crop pests, and ecosystems. This study assessed neonicotinoid residues in groundwater, surface runoff water, soil, and native plants adjacent to corn and soybean crop fields with a history of being planted with neonicotinoid-treated seeds from 2008-2013. Data from six sites with the same crop management history, three with and three without in-field prairie strips, were collected in 2015-2016, 2-3 years after neonicotinoid (clothianidin and imidacloprid) seed treatments were last used. Three of the six neonicotinoids analyzed were detected in at least one environmental matrix: the two applied as seed coatings on the fields (clothianidin and imidacloprid) and another widely used neonicotinoid (thiamethoxam). Sites with prairie strips generally had lower concentrations of neonicotinoids: groundwater and footslope soil neonicotinoid concentrations were significantly lower in the sites with prairie strips than those without; mean concentrations for groundwater were 11 and 20 ng/L (p = 0.048) and <1 and 6 ng/g (p = 0.0004) for soil, respectively. Surface runoff water concentrations were not significantly (p = 0.38) different for control sites (44 ng/L) or sites with prairie strips (140 ng/L). Consistent with the decreased inputs of neonicotinoids, concentrations tended to decrease over the sampling timeframe. Two sites recorded concentration increases, however, potentially due to disturbance of previous applications or influence from nearby fields where use of seed treatments continued. There were no detections (limit of detection: 1 ng/g) of neonicotinoids in the foliage or roots of plants comprising prairie strips, indicating a low likelihood of exposure to pollinators and other insects visiting these plants following the cessation of seed

  10. An investigation into the potential use and sustainability of surfactant coated turfgrass seed for the green industry

    Fidanza, Michael; McMillan, Mica; Kostka, Stan; Madsen, Matthew D.

    2014-05-01

    Turfgrass seed germination and emergence is influenced mostly by water and oxygen availability, temperature, nutrition and biological activity in the rootzone. In many areas globally, seed germination and subsequent turfgrass establishment is greatly diminished due to inadequate irrigation water amount and quality, and the problem is further compound due to water repellent soils. Successful turfgrass seed germination is critical when attempting to establish a more sustainable turfgrass species in place of an existing, high-input required turf stand. Greenhouse research investigations were conducted in 2013 in Pennsylvania (USA), to evaluate surfactant coated perennial ryegrass (Lolium perenne) and Kentucky bluegrass (Poa pratensis) seed for germination and emergence, seedling vigor and overall turfgrass quality. Both turfgrasses tested are cool-season or C3 grasses, and perennial ryegrass has a bunch-type growth habit while Kentucky bluegrass is rhizomatous. Perennial ryegrass is used world-wide as a principal component in sports turf mixes and in overseeding programs, and typically germinates rapidly in 3 to 10 days after seeding. Kentucky bluegrass also is used world-wide for sports turf as well as lawns and landscapes, and germinates slowly in 7 to 28 days. Research results indicate that surfactant coated seed of both species germinated one to three days faster compared to uncoated seed, and that seedling vigor and overall turfgrass quality was better with surfactant coated seed compared to uncoated seed. In a study with only perennial ryegrass, surfactant-coated seed without fertilizer (i.e., N and Ca) applied at time of sowing resulted in seedling vigor and quality considered to be similar or better than uncoated seed with fertilizer applied at time of sowing. Therefore, the potential benefits with seed germination and emergence, and seedling vigor and turfgrass quality also may be attributed to the surfactant coating and not only a fertilizer response. The

  11. Mineral accumulation in vegetative and reproductive tissues during seed development in Medicago truncatula

    Christina B. Garcia

    2015-08-01

    Full Text Available Enhancing nutrient density in legume seeds is one of several strategies being explored to improve the nutritional quality of the food supply. In order to develop crop varieties with increased seed mineral concentration, a more detailed understanding of mineral translocation within the plant is required. By studying mineral accumulation in different organs within genetically diverse members of the same species, it may be possible to identify variable traits that modulate seed mineral concentration. We utilized two ecotypes (A17 and DZA315.16 of the model legume, Medicago truncatula, to study dry mass and mineral accumulation in the leaves, pod walls, and seeds during reproductive development. The pod wall dry mass was significantly different between the two ecotypes beginning at 12 days after pollination, whereas there was no significant difference in the average dry mass of individual seeds between the two ecotypes at any time point. There were also no significant differences in leaf dry mass between ecotypes; however, we observed expansion of A17 leaves during the first 21 days of pod development, while DZA315.16 leaves did not display a significant increase in leaf area. Mineral profiling of the leaves, pod walls, and seeds highlighted differences in accumulation patterns among minerals within each tissue as well as genotypic differences with respect to individual minerals. Because there were differences in the average seed number per pod, the total seed mineral content per pod was generally higher in A17 than DZA315.16. In addition, mineral partitioning to the seeds tended to be higher in A17 pods. These data revealed that mineral retention within leaves and/or pod walls might attenuate mineral accumulation within the seeds. As a result, strategies to increase seed mineral content should include approaches that will enhance export from these tissues.

  12. Mag-seeding of rat bone marrow stromal cells into porous hydroxyapatite scaffolds for bone tissue engineering.

    Shimizu, Kazunori; Ito, Akira; Honda, Hiroyuki

    2007-09-01

    Bone tissue engineering has been investigated as an alternative strategy for autograft transplantation. In the process of tissue engineering, cell seeding into three-dimensional (3-D) scaffolds is the first step for constructing 3-D tissues. We have proposed a methodology of cell seeding into 3-D porous scaffolds using magnetic force and magnetite nanoparticles, which we term Mag-seeding. In this study, we applied this Mag-seeding technique to bone tissue engineering using bone marrow stromal cells (BMSCs) and 3-D hydroxyapatite (HA) scaffolds. BMSCs were magnetically labeled with our original magnetite cationic liposomes (MCLs) having a positive surface charge to improve adsorption to cell surface. Magnetically labeled BMSCs were seeded onto a scaffold, and a 1-T magnet was placed under the scaffold. By using Mag-seeding, the cells were successfully seeded into the internal space of scaffolds with a high cell density. The cell seeding efficiency into HA scaffolds by Mag-seeding was approximately threefold larger than that by static-seeding (conventional method, without a magnet). After a 14-d cultivation period using the osteogenic induction medium by Mag-seeding, the level of two representative osteogenic markers (alkaline phosphatase and osteocalcin) were significantly higher than those by static-seeding. These results indicated that Mag-seeding of BMSCs into HA scaffolds is an effective approach to bone tissue engineering.

  13. Seed defective reduction in automotive Electro-Deposition Coating Process of truck cabin

    Sonthilug, Aekkalag; Chutima, Parames

    2018-02-01

    The case study company is one of players in Thailand’s Automotive Industry who manufacturing truck and bus for both domestic and international market. This research focuses on a product quality problem about seed defects occurred in the Electro-Deposition Coating Process of truck cabin. The 5-phase of Six Sigma methodology including D-Define, M-Measure, A-Analyze, I-Improve, and C-Control is applied to this research to identify root causes of problem for setting new parameters of each significant factor. After the improvement, seed defects in this process is reduced from 9,178 defects per unit to 876 defects per unit (90% improvement)

  14. Rapid expression of transgenes driven by seed-specific constructs in leaf tissue: DHA production

    Zhou Xue-Rong

    2010-03-01

    Full Text Available Abstract Background Metabolic engineering of seed biosynthetic pathways to diversify and improve crop product quality is a highly active research area. The validation of genes driven by seed-specific promoters is time-consuming since the transformed plants must be grown to maturity before the gene function can be analysed. Results In this study we demonstrate that genes driven by seed-specific promoters contained within complex constructs can be transiently-expressed in the Nicotiana benthamiana leaf-assay system by co-infiltrating the Arabidopsis thaliana LEAFY COTYLEDON2 (LEC2 gene. A real-world case study is described in which we first assembled an efficient transgenic DHA synthesis pathway using a traditional N. benthamiana Cauliflower Mosaic Virus (CaMV 35S-driven leaf assay before using the LEC2-extended assay to rapidly validate a complex seed-specific construct containing the same genes before stable transformation in Arabidopsis. Conclusions The LEC2-extended N. benthamiana assay allows the transient activation of seed-specific promoters in leaf tissue. In this study we have used the assay as a rapid preliminary screen of a complex seed-specific transgenic construct prior to stable transformation, a feature that will become increasingly useful as genetic engineering moves from the manipulation of single genes to the engineering of complex pathways. We propose that the assay will prove useful for other applications wherein rapid expression of transgenes driven by seed-specific constructs in leaf tissue are sought.

  15. (Heckel) seeds

    UTILISATEUR

    Garcinia kola seeds to six different hormonal pre-germination treatments. This consisted of ... Thus, seed dormancy in this case is not a coat- imposed .... development of the cultivation of the species. The cause .... Hormonal regulation of seed ...

  16. Sample Preparation of Corn Seed Tissue to Prevent Analyte Relocations for Mass Spectrometry Imaging.

    Kim, Shin Hye; Kim, Jeongkwon; Lee, Young Jin; Lee, Tae Geol; Yoon, Sohee

    2017-08-01

    Corn seed tissue sections were prepared by the tape support method using an adhesive tape, and mass spectrometry imaging (MSI) was performed. The effect of heat generated during sample preparation was investigated by time-of-flight secondary mass spectrometry (TOF-SIMS) imaging of corn seed tissue prepared by the tape support and the thaw-mounted methods. Unlike thaw-mounted sample preparation, the tape support method does not cause imaging distortion because of the absence of heat, which can cause migration of the analytes on the sample. By applying the tape-support method, the corn seed tissue was prepared without structural damage and MSI with accurate spatial information of analytes was successfully performed. Graphical Abstract ᅟ.

  17. Sample Preparation of Corn Seed Tissue to Prevent Analyte Relocations for Mass Spectrometry Imaging

    Kim, Shin Hye; Kim, Jeongkwon; Lee, Young Jin; Lee, Tae Geol; Yoon, Sohee

    2017-08-01

    Corn seed tissue sections were prepared by the tape support method using an adhesive tape, and mass spectrometry imaging (MSI) was performed. The effect of heat generated during sample preparation was investigated by time-of-flight secondary mass spectrometry (TOF-SIMS) imaging of corn seed tissue prepared by the tape support and the thaw-mounted methods. Unlike thaw-mounted sample preparation, the tape support method does not cause imaging distortion because of the absence of heat, which can cause migration of the analytes on the sample. By applying the tape-support method, the corn seed tissue was prepared without structural damage and MSI with accurate spatial information of analytes was successfully performed.

  18. Adsorptive removal of nickel from aqueous solutions by activated carbons from doum seed (Hyphaenethebaica coat

    Manal El-Sadaawy

    2014-06-01

    Full Text Available The present study investigates the possibility of using low cost agriculture waste as doum-palm seed coat for the removal of nickel ions from aqueous solutions. Two activated carbons had been prepared from raw doum-palm seed coat (DACI and DACII; as well, the raw material was used as an adsorbent (RD. Batch adsorption experiments were performed as a function of pH of solution, initial nickel ions concentration, dose of adsorbent and contact time. Adsorption data were modeled using Langmuir, Freundlich, Temkin and D–R Models. Different error analysis conforms that the isotherm data followed Freundlich models for all adsorbents. Adsorption kinetic data were tested using pseudo-first order, pseudo-second order and Elovich model. Adsorption mechanism was investigated using the intra-particle diffusion model. Diffusion coefficients were calculated using the film and intraparticle diffusion models. Kinetic studies showed that the adsorption of Ni2+ ions onto RD, DACI and DACII followed pseudo-second order kinetic model, and indicates that the intra-particle diffusion controls the rate of adsorption but it is not the rate limiting step.

  19. Evidence for pollinator cost and farming benefits of neonicotinoid seed coatings on oilseed rape

    Budge, G. E.; Garthwaite, D.; Crowe, A.; Boatman, N. D.; Delaplane, K. S.; Brown, M. A.; Thygesen, H. H.; Pietravalle, S.

    2015-08-01

    Chronic exposure to neonicotinoid insecticides has been linked to reduced survival of pollinating insects at both the individual and colony level, but so far only experimentally. Analyses of large-scale datasets to investigate the real-world links between the use of neonicotinoids and pollinator mortality are lacking. Moreover, the impacts of neonicotinoid seed coatings in reducing subsequent applications of foliar insecticide sprays and increasing crop yield are not known, despite the supposed benefits of this practice driving widespread use. Here, we combine large-scale pesticide usage and yield observations from oilseed rape with those detailing honey bee colony losses over an 11 year period, and reveal a correlation between honey bee colony losses and national-scale imidacloprid (a neonicotinoid) usage patterns across England and Wales. We also provide the first evidence that farmers who use neonicotinoid seed coatings reduce the number of subsequent applications of foliar insecticide sprays and may derive an economic return. Our results inform the societal discussion on the pollinator costs and farming benefits of prophylactic neonicotinoid usage on a mass flowering crop.

  20. Preparation of Microencapsulated Bacillus subtilis SL-13 Seed Coating Agents and Their Effects on the Growth of Cotton Seedlings

    Liang Tu

    2016-01-01

    Full Text Available Inoculation of the bacterial cells of microbial seed coating agents (SCAs into the environment may result in limited survival and colonization. Therefore, the application efficacy of an encapsulated microbial seed coating agent (ESCA was investigated on potted cotton plants; the agent was prepared with polyvinyl alcohol, sodium dodecyl sulfate, bentonite, and microencapsulated Bacillus subtilis SL-13. Scanning electron micrography revealed that the microcapsules were attached to ESCA membranes. The ESCA film was uniform, bubble-free, and easy to peel. The bacterial contents of seeds coated with each ESCA treatment reached 106 cfu/seed. Results indicated that the germination rate of cotton seeds treated with ESCA4 (1.0% (w/v sodium alginate, 4.0% polyvinyl alcohol, 1.0% sodium dodecyl sulfate, 0.6% acacia, 0.5% bentonite, and 10% (v/v microcapsules increased by 28.74%. Other growth factors of the cotton seedlings, such as plant height, root length, whole plant fresh weight, and whole plant dry weight, increased by 52.70%, 25.13%, 46.47%, and 33.21%, respectively. Further analysis demonstrated that the peroxidase and superoxide dismutase activities of cotton seedlings improved, whereas their malondialdehyde contents decreased. Therefore, the ESCA can efficiently improve seed germination, root length, and growth. The proposed ESCA exhibits great potential as an alternative to traditional SCA in future agricultural applications.

  1. A WD40-repeat protein controls proanthocyanidin and phytomelanin pigmentation in the seed coats of the Japanese morning glory.

    Park, Kyeung-Il; Hoshino, Atsushi

    2012-03-15

    The protein complex composed of the transcriptional regulators containing R2R3-MYB domains, bHLH domains, and WDR in plants controls various epidermal traits, including anthocyanin and proanthocyanidin pigmentation, trichome and root hair formation, and vacuolar pH. In the Japanese morning glory (Ipomoea nil), InMYB1 having R2R3-MYB domains and InWDR1 containing WDR were shown to regulate anthocyanin pigmentation in flowers, and InWDR1 was reported to control dark-brown pigmentation and trichome formation on seed coats. Here, we report that the seed pigments of I. nil mainly comprise proanthocyanidins and phytomelanins and that these pigments are drastically reduced in the ivory seed coats of an InWDR1 mutant. In addition, a transgenic plant of the InWDR1 mutant carrying the active InWDR1 gene produced dark-brown seeds, further confirming that InWDR1 regulates seed pigmentation. Early steps in anthocyanin and proanthocyanidin biosynthetic pathways are thought to be common. In the InWDR1 mutant, none of the structural genes for anthocyanin biosynthesis that showed reduced expression in the white flowers were down-regulated in the ivory seeds, which suggests that InWDR1 may activate different sets of the structural genes for anthocyanin biosynthesis in flowers and proanthocyanidin production in seeds. As in the flowers, however, we noticed that the expression of InbHLH2 encoding a bHLH regulator was down-regulated in the seeds of the InWDR1 mutant. We discuss the implications of these results with respect to the proanthocyanidin biosynthesis in the seed coats. Copyright © 2011 Elsevier GmbH. All rights reserved.

  2. In vivo monitoring of seeds and plant-tissue water absorption using optical coherence tomography and optical coherence microscopy

    Sapozhnikova, Veronika V.; Kutis, Irina S.; Kutis, Sergey D.; Kuranov, Roman V.; Gelikonov, Grigory V.; Shabanov, Dmitry V.; Kamensky, Vladislav A.

    2004-07-01

    First experimental results on OCT imaging of internal structure of plant tissues and in situ OCT monitoring of plant tissue regeneration at different water supply are reported. Experiments for evaluating OCT capabilities were performed on Tradescantia. The investigation of seeds swelling was performed on wheat seeds (Triticum L.), barley seeds (Hordeum L.), long-fibred flax seeds (Linum usitatissimum L.) and cucumber seeds (Cucumis sativus L.). These OCT images correlate with standard microscopy data from the same tissue regions. Seeds were exposed to a low-intensity physical factor-the pulsed gradient magnetic field (GMF) with pulse duration 0.1 s and maximum amplitude 5 mT (4 successive pulses during 0.4 s). OCT and OCM enable effective monitoring of fast reactions in plants and seeds at different water supply.

  3. Proteome analysis of dissected barley seed tissue during germination and radicle elongation

    Bønsager, Birgit Christine

    2007-01-01

    at the protein or the DNA level. In addition, germination of barley seeds is of interest for the brewing industry since this process corresponds to the steeping process that starts the industrial malting. In the present study a proteomics approach was employed to understand the initial changes in the water...... soluble protein composition of the barley seed upon imbibition and the following events that occur until to 72 h post imbibition (PI). 2D gel electrophoresis of proteins extracted from dissected barley seeds tissues during germination (0-24 h) and the subsequent radicle elongation (24-72 h) describes...... spatio-temporal variations in the protein patterns. Seeds from 8 time points (0, 4, 12, 24, 36, 52, 60, and 72 h PI) were dissected into embryo, aleurone layer and endosperm and small scale protein extractions enabled us to obtain good resolution 2D gels. The 2D gels were compared between the time points...

  4. The seed coat of Phaseolus vulgaris interferes with the development of the cowpea weevil [Callosobruchus maculatus (F. (Coleoptera: Bruchidae

    Silva Luciana B.

    2004-01-01

    Full Text Available We have confirmed here that the seeds of the common bean (Phaseolus vulgaris, L. do not support development of the bruchid Callosobruchus maculatus (F., a pest of cowpea [Vigna unguiculata (L. Walp] seeds. Analysis of the testa (seed coat of the bean suggested that neither thickness nor the levels of compounds such as tannic acid, tannins, or HCN are important for the resistance. On the other hand, we have found that phaseolin (vicilin-like 7S storage globulin, detected in the testa by Western blotting and N-terminal amino acid sequencing, is detrimental to the development of C. maculatus. As for the case of other previously studied legume seeds (Canavalia ensiformis and Phaseolus lunatus we suggest that the presence of vicilin-like proteins in the testa of P. vulgaris may have had a significant role in the evolutionary adaptation of bruchids to the seeds of leguminous plants.

  5. Prion-Seeding Activity Is widely Distributed in Tissues of Sporadic Creutzfeldt-Jakob Disease Patients

    Hanae Takatsuki, PhD

    2016-10-01

    Full Text Available Human prion diseases are neurodegenerative disorders caused by abnormally folded prion proteins in the central nervous system. These proteins can be detected using the quaking-induced conversion assay. Compared with other bioassays, this assay is extremely sensitive and was used in the present study to determine prion distribution in sporadic Creutzfeldt-Jakob disease patients at autopsy. Although infectivity of the sporadic form is thought to be restricted within the central nervous system, results showed that prion-seeding activities reach 106/g from a 50% seeding dose in non-neuronal tissues, suggesting that prion-seeding activity exists in non-neural organs, and we suggested that non-neural tissues of 106/g SD50 did not exist the infectivity.

  6. Prion-Seeding Activity Is widely Distributed in Tissues of Sporadic Creutzfeldt-Jakob Disease Patients.

    Takatsuki, Hanae; Fuse, Takayuki; Nakagaki, Takehiro; Mori, Tsuyoshi; Mihara, Ban; Takao, Masaki; Iwasaki, Yasushi; Yoshida, Mari; Murayama, Shigeo; Atarashi, Ryuichiro; Nishida, Noriyuki; Satoh, Katsuya

    2016-10-01

    Human prion diseases are neurodegenerative disorders caused by abnormally folded prion proteins in the central nervous system. These proteins can be detected using the quaking-induced conversion assay. Compared with other bioassays, this assay is extremely sensitive and was used in the present study to determine prion distribution in sporadic Creutzfeldt-Jakob disease patients at autopsy. Although infectivity of the sporadic form is thought to be restricted within the central nervous system, results showed that prion-seeding activities reach 10 6 /g from a 50% seeding dose in non-neuronal tissues, suggesting that prion-seeding activity exists in non-neural organs, and we suggested that non-neural tissues of 10 6 /g SD50 did not exist the infectivity. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Effects of Initial Seeding Density and Fluid Perfusion Rate on Formation of Tissue-Engineered Bone

    GRAYSON, WARREN L.; BHUMIRATANA, SARINDR; CANNIZZARO, CHRISTOPHER; CHAO, P.-H. GRACE; LENNON, DONALD P.; CAPLAN, ARNOLD I.; VUNJAK-NOVAKOVIC, GORDANA

    2008-01-01

    We describe a novel bioreactor system for tissue engineering of bone that enables cultivation of up to six tissue constructs simultaneously, with direct perfusion and imaging capability. The bioreactor was used to investigate the relative effects of initial seeding density and medium perfusion rate on the growth and osteogenic differentiation patterns of bone marrow–derived human mesenchymal stem cells (hMSCs) cultured on three-dimensional scaffolds. Fully decellularized bovine trabecular bon...

  8. Brassica napus seed endosperm - metabolism and signaling in a dead end tissue.

    Lorenz, Christin; Rolletschek, Hardy; Sunderhaus, Stephanie; Braun, Hans-Peter

    2014-08-28

    Oilseeds are an important element of human nutrition and of increasing significance for the production of industrial materials. The development of the seeds is based on a coordinated interplay of the embryo and its surrounding tissue, the endosperm. This study aims to give insights into the physiological role of endosperm for seed development in the oilseed crop Brassica napus. Using protein separation by two-dimensional (2D) isoelectric focusing (IEF)/SDS polyacrylamide gel electrophoresis (PAGE) and protein identification by mass spectrometry three proteome projects were carried out: (i) establishment of an endosperm proteome reference map, (ii) proteomic characterization of endosperm development and (iii) comparison of endosperm and embryo proteomes. The endosperm proteome reference map comprises 930 distinct proteins, including enzymes involved in genetic information processing, carbohydrate metabolism, environmental information processing, energy metabolism, cellular processes and amino acid metabolism. To investigate dynamic changes in protein abundance during seed development, total soluble proteins were extracted from embryo and endosperm fractions at defined time points. Proteins involved in sugar converting and recycling processes, ascorbate metabolism, amino acid biosynthesis and redox balancing were found to be of special importance for seed development in B. napus. Implications for the seed filling process and the function of the endosperm for seed development are discussed. The endosperm is of key importance for embryo development during seed formation in plants. We present a broad study for characterizing endosperm proteins in the oilseed plant B. napus. Furthermore, a project on the biochemical interplay between the embryo and the endosperm during seed development is presented. We provide evidence that the endosperm includes a complete set of enzymes necessary for plant primary metabolism. Combination of our results with metabolome data will further

  9. Edible Coating Using a Chitosan-Based Colloid Incorporating Grapefruit Seed Extract for Cherry Tomato Safety and Preservation.

    Won, Jin Sung; Lee, Seung Jo; Park, Hyeon Hwa; Song, Kyung Bin; Min, Sea C

    2018-01-01

    Grapefruit seed extract (GSE)-containing chitosan-based coating was developed and applied to cherry tomatoes to protect them from Salmonella invasion and improve their storability. The coating colloids were produced by mixing a chitosan colloid (1% [w/w] chitosan) with GSE at various concentrations (0.5%, 0.7%, 1.0%, and 1.2% [w/w]) using high-shear mixing (10000 rpm, 2 min). Coatings with chitosan colloids containing GSE at 0.0%, 0.5%, 0.7%, and 1.0% (w/w) inactivated Salmonella on cherry tomatoes by 1.0 ± 0.3, 1.2 ± 0.3, 1.6 ± 0.1, and 2.0 ± 0.3 log CFU/cherry tomato, respectively. Coatings both with and without GSE (1.0%) effectively inhibited the growth of Salmonella and total mesophilic aerobes, reduced CO 2 generation, and retarded titratable acidity decrease during storage at 10 and 25 °C. The advantage of incorporating GSE in the formulation was demonstrated by delayed microorganism growth and reduced weight loss at 25 °C. The chitosan-GSE coating did not affect lycopene concentration, color, and sensory properties (P > 0.05). Chitosan-GSE coating shows potential for improving the microbiological safety and storability of cherry tomatoes, with stronger efficacy at 25 °C than that of chitosan coating without GSE. A novel chitosan coating containing grape fruit seed extract (GSE) improved the microbiological safety against Salmonella and storability of cherry tomatoes without altering their flavor, demonstrating its strong potential as an effective postharvest technology. Chitosan coating containing GSE might be preferable over chitosan coating without GSE for application to tomatoes that are stored at room temperature in that it more effectively inhibits microbial growth and weight loss than the coating without GSE at 25 °C. © 2017 Institute of Food Technologists®.

  10. Evaluation of silk biomaterials in combination with extracellular matrix coatings for bladder tissue engineering with primary and pluripotent cells.

    Franck, Debra; Gil, Eun Seok; Adam, Rosalyn M; Kaplan, David L; Chung, Yeun Goo; Estrada, Carlos R; Mauney, Joshua R

    2013-01-01

    Silk-based biomaterials in combination with extracellular matrix (ECM) coatings were assessed as templates for cell-seeded bladder tissue engineering approaches. Two structurally diverse groups of silk scaffolds were produced by a gel spinning process and consisted of either smooth, compact multi-laminates (Group 1) or rough, porous lamellar-like sheets (Group 2). Scaffolds alone or coated with collagen types I or IV or fibronectin were assessed independently for their ability to support attachment, proliferation, and differentiation of primary cell lines including human bladder smooth muscle cells (SMC) and urothelial cells as well as pluripotent cell populations, such as murine embryonic stem cells (ESC) and induced pluripotent stem (iPS) cells. AlamarBlue evaluations revealed that fibronectin-coated Group 2 scaffolds promoted the highest degree of primary SMC and urothelial cell attachment in comparison to uncoated Group 2 controls and all Group 1 scaffold variants. Real time RT-PCR and immunohistochemical (IHC) analyses demonstrated that both fibronectin-coated silk groups were permissive for SMC contractile differentiation as determined by significant upregulation of α-actin and SM22α mRNA and protein expression levels following TGFβ1 stimulation. Prominent expression of epithelial differentiation markers, cytokeratins, was observed in urothelial cells cultured on both control and fibronectin-coated groups following IHC analysis. Evaluation of silk matrices for ESC and iPS cell attachment by alamarBlue showed that fibronectin-coated Group 2 scaffolds promoted the highest levels in comparison to all other scaffold formulations. In addition, real time RT-PCR and IHC analyses showed that fibronectin-coated Group 2 scaffolds facilitated ESC and iPS cell differentiation toward both urothelial and smooth muscle lineages in response to all trans retinoic acid as assessed by induction of uroplakin and contractile gene and protein expression. These results

  11. Maternal tissue is involved in stimulant reception by seeds of the parasitic plant Orobanche.

    Plakhine, Dina; Tadmor, Yaakov; Ziadne, Hammam; Joel, Daniel M

    2012-04-01

    A fundamental element in the evolution of obligate root-parasitic angiosperms is their ability to germinate only in response to chemical stimulation by roots, to ensure contact with a nearby nourishing host. The aim of this study was to explore inheritance of the unique germination control in this group of plants. Analysis was made of the segregation of spontaneous (non-induced) germination that appeared in hybrid progenies derived from crosses between Orobanche cernua and O. cumana, which, like all other Orobanche species, are totally dependent on chemical stimulation for the onset of germination, and show negligible spontaneous germination in their natural seed populations. F(1) and F(2) seeds did not germinate in the absence of chemical stimulation, but significant spontaneous germination was found in some F(3) seed families. This indicates that the prevention of non-induced germination in Orobanche seeds, i.e. dependence on an external chemical stimulation for seed germination, is genetically controlled, that this genetic control is expressed in a seed tissue with maternal origin (presumably the perisperm that originates from the nucellus) and that genetic variation for this trait exists in Orobanche species. Similar segregation results were obtained in reciprocal crosses, suggesting that stimulated germination is controlled by nuclear genes.

  12. Modeling Protein Structures in Feed and Seed Tissues Using Novel Synchrotron-Based Analytical Technique

    Yu, P.

    2008-01-01

    Traditional 'wet' chemical analyses usually looks for a specific known component (such as protein) through homogenization and separation of the components of interest from the complex tissue matrix. Traditional 'wet' chemical analyses rely heavily on the use of harsh chemicals and derivatization, therefore altering the native feed protein structures and possibly generating artifacts. The objective of this study was to introduce a novel and non-destructive method to estimate protein structures in feed and seeds within intact tissues using advanced synchrotron-based infrared microspectroscopy (SFTIRM). The experiments were performed at the National Synchrotron Light Source in Brookhaven National Laboratory (US Dept. of Energy, NY). The results show that with synchrotron-based SFTIRM, we are able to localize relatively 'pure' protein without destructions of the feed and seed tissues and qualify protein internal structures in terms of the proportions and ratios of a-helix, β-sheet, random coil and β-turns on a relative basis using multi-peak modeling procedures. These protein structure profile (a-helix, β-sheet, etc.) may influence protein quality and availability in animals. Several examples of feed and seeds were provided. The implications of this study are that we can use this new method to compare internal protein structures between feeds and between seed verities. We can also use this method to detect heat-induced the structural changes of protein in feeds.

  13. [Construction of a capsular tissue-engineered ureteral stent seeded with autologous urothelial cells].

    Tan, Haisong; Fu, Weijun; Li, Jianqiang; Wang, Zhongxin; Li, Gang; Ma, Xin; Dong, Jun; Gao, Jiangping; Wang, Xiaoxiong; Zhang, Xu

    2013-01-01

    To investigate the feasibility of constructing a capsular poly L-lactic acid (PLLA) ureteral stent seeded with autologous urothelial cells using tissue engineering methods. The capsular ureteral stent was constructed by subcutaneously embedding PLLA ureteral stent in the back of beagles for 3 weeks to induce the formation of connective tissue on the surfaces. After decellularization of the stent, the expanded autologous urothelial cells were seeded on the stent. The surface structure and cell adhesion of the stent were observed using HE staining, scanning electron microscope (SEM) and immunocytochemical staining. MTT assay was used to evaluate urothelial cell proliferation on the capsular PLLA ureteral stent and on circumferential small intestinal submucosa graft. HE staining and VIII factor immunohistochemistry revealed numerous capillaries in the connective tissue encapsulating the stent without obvious local inflammatory response. The results of SEM and immunocytochemical staining showed that the capsule contained rich collagenic fibers forming three-dimensional structures, and the seeded autologous urothelial cells could adhere and well aligned on the surface. MTT assay showed normal growth of the cells on the stent as compared with the cells grown on circumferential small intestinal submucosa graft. The capsular PLLA ureteral stent allows adhesion and proliferation of autologous urothelial cells and shows a potential in applications of constructing tissue-engineered ureter.

  14. Maize seed coatings and seedling sprayings with chitosan and hydrogen peroxide:their influence on some phenological and biochemical behaviors

    Eva-Guadalupe LIZ(A)RRAGA-PAUL(I)N; Susana-Patricia MIRANDA-CASTRO; Ernesto MORENO-MART(I)NEZ; Alma-Virginia LARA-SAGAH(O)N; Irineo TORRES-PACHECO

    2013-01-01

    Objective:To evaluate the effect of chitosan(CH)and hydrogen peroxide(H2O2)seed coatings and seedling sprinklings on two different maize varieties by measuring their phenology,the H2O2 presence,the catalase (CAT)activity,and the protein quantity.Methods:Seven groups of ten seeds for each maize variety were treated with CH(2%(20 g/L)and 0.2%(2 g/L))or H2O2(8 mmol/L)by coating,sprinkling,or both.Germination and seedling growth were measured.One month after germination,the presence of H2O2 in seedlings in the coated seed treatments was evaluated.Protein content and CAT activity were determined under all treatments.Results:H2O2 seed coating enhanced the germination rate and increased seedling and stem length in the quality protein maize(QPM)variety.Seedlings had a higher emergence velocity under this treatment in both varieties.CH and H2O2 sprinklings did not have an effect on seedling phenology.Exogenous application of H2O2 promoted an increase of endogenous H2O2.CH and H2O2 seedling sprinkling increased the protein content in both maize varieties,while there was no significant effect on the CAT activity of treated seeds and seedlings.Conclusions:CH and H2O2 enhance some phenological and biochemical features of maize depending on their method of application.

  15. Development of C-lignin with G/S-lignin and lipids in orchid seed coats – an unexpected diversity exposed by ATR-FT-IR spectroscopy

    Barsberg, Søren Talbro; Lee, Y.-I.; Rasmussen, Hanne Nina

    2018-01-01

    Cite this article: Barsberg ST, Lee Y-I, Rasmussen HN. Development of C-lignin with G/S-lignin and lipids in orchid seed coats – an unexpected diversity exposed by ATR-FT-IR spectroscopy. Seed Science Research https:// doi.org/10.1017/S0960258517000344......Cite this article: Barsberg ST, Lee Y-I, Rasmussen HN. Development of C-lignin with G/S-lignin and lipids in orchid seed coats – an unexpected diversity exposed by ATR-FT-IR spectroscopy. Seed Science Research https:// doi.org/10.1017/S0960258517000344...

  16. In vitro evaluation of cell-seeded chitosan films for peripheral nerve tissue engineering

    Wrobel, Sandra; Serra, Sofia Cristina; Samy, S. M.; Sousa, Nuno; Heimann, Claudia; Barwig, Christina; Grothe, Claudia; Salgado, A. J.; Talini, Kirsten Haastert

    2014-01-01

    Natural biomaterials have attracted an increasing interest in the field of tissue-engineered nerve grafts, representing a possible alternative to autologous nerve transplantation. With the prospect of developing a novel entubulation strategy for transected nerves with cell-seeded chitosan films, we examined the biocompatibility of such films in vitro. Different types of rat Schwann cells (SCs)-immortalized, neonatal, and adult-as well as rat bone-marrow-derived mesenchymal stromal cells (BMSC...

  17. Aqueous pathways dominate permeation of solutes across Pisum sativum seed coats and mediate solute transport via diffusion and bulk flow of water.

    Niemann, Sylvia; Burghardt, Markus; Popp, Christian; Riederer, Markus

    2013-05-01

    The permeability of seed coats to solutes either of biological or anthropogenic origin plays a major role in germination, seedling growth and seed treatment by pesticides. An experimental set-up was designed for investigating the mechanisms of seed coat permeation, which allows steady-state experiments with isolated seed coats of Pisum sativum. Permeances were measured for a set of organic model compounds with different physicochemical properties and sizes. The results show that narrow aqueous pathways dominate the diffusion of solutes across pea seed coats, as indicated by a correlation of permeances with the molecular sizes of the compounds instead of their lipophilicity. Further indicators for an aqueous pathway are small size selectivity and a small effect of temperature on permeation. The application of an osmotic water potential gradient across isolated seed coats leads to an increase in solute transfer, indicating that the aqueous pathways form a water-filled continuum across the seed coat allowing the bulk flow of water. Thus, the uptake of organic solutes across pea testae has two components: (1) by diffusion and (2) by bulk water inflow, which, however, is relevant only during imbibition. © 2012 Blackwell Publishing Ltd.

  18. Effect of thermal barrier coating with various blends of pumpkin seed oil methyl ester in DI diesel engine

    Karthickeyan, V.; Balamurugan, P.

    2017-10-01

    The rise in oil prices, dependency on fossil fuels, degradation of non-renewable energy resources and global warming strives to find a low-carbon content alternative fuel to the conventional fuel. In the present work, Partially Stabilized Zirconia (PSZ) was used as a thermal barrier coating in piston head, cylinder head and intake and exhaust valves using plasma spray technique, which provided a rise in combustion chamber temperature. With the present study, the effects of thermal barrier coating on the blends of Pumpkin Seed Oil Methyl Ester (PSOME) were observed in both the coated and uncoated engine. Performance and emission characteristics of the PSOME in coated and uncoated engines were observed and compared. Increased thermal efficiency and reduced fuel consumption were observed for B25 and diesel in coated and uncoated engine. On comparing with the other biodiesel samples, B25 exhibited lower HC, NOx and smoke emissions in thermally coated engine than uncoated engine. After 100 h of operation, no anamolies were found in the thermally coated components except minor cracks were identified in the edges of the piston head.

  19. Antibacterial and antifungal activities of the polyphenolic fractions isolated from the seed coat of Abrus precatorius and Caesalpinia crista.

    Mobin, Lubna; Saeed, Syed Asad; Ali, Rashida; Saeed, Syed Ghufran; Ahmed, Rahil

    2017-09-26

    Crude seed coat extracts from Abrus precatorius and Caesalpinia crista were purified into four different fractions namely phenolic acids, flavonols, flavanols and anthocyanin which were then examined for their polyphenol contents and antimicrobial potentials. The fractions derived from seed coat of A. precatorius were found more potent with high phenolic and flavonoid contents as compared to C. crista fractions. The significant antibacterial activity was observed against all strain tested by the fractions of both samples apart from anthocyanin fraction. It was interesting to note that the phenolic acid fractions of both samples was found more active against gram-negative bacteria, while gram-positive bacteria were found to be more sensitive towards flavonol fractions. The phenolic acid and flavonol fractions being potent antibacterial were selected to demonstrate the antifungal capacity of two samples. Among them, phenolic acid fraction of both samples was found active towards all the fungal strain.

  20. Antibiofilm potential of flavonoids extracted from Moringa oleifera seed coat against Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans.

    Onsare, J G; Arora, D S

    2015-02-01

    The increased microbial drug resistance due to biofilms and the side effects associated with the use of conventional drugs is still a major concern in the medical fraternity. This work evaluates the antibiofilm potential of flavonoids extracted from Moringa oleifera seed coat (SC) in search for green and effective alternatives for overcoming menace of biofilms. The study evaluated the minimum inhibitory concentration (MIC) of flavonoids against respective test organisms, inhibition of initial cell attachment as well as disruption of preformed biofilms and metabolic activity of treated biofilms. Mutagenicity and cytotoxicity as well as characterization of the active component were also carried out. Although Pseudomonas aeruginosa showed the lowest MIC of 0.05 mg ml(-1), the action of flavonoids and gentamicin on initial cell attachment revealed a comparable effect against bacterial biofilms, i.e. Staphylococcus aureus and Pseudomonas aeruginosa with approx. 80% inhibition compared to Candida albicans. Disruption of the preformed biofilms revealed that susceptibility of P. aeruginosa began as early as 4 h of exposure to flavonoids with 88% growth inhibition at the end of 24-h incubation. Encouragingly, t-test analysis on the effect of the extract and the standard antibiotic against each organism indicated no significant variance at P < 0.05. A drastic low metabolic activity exhibited by the treated biofilms as compared to the untreated ones was further supportive of the antibiofilm potential of seed coat flavonoids. The bioactive component from M. oleifera seed coat has exhibited antibiofilm potential against the test organisms belonging to Gram positive, Gram negative and yeast. Antibiofilm potential and biosafety of plant-based flavonoids from M. oleifera seed coat reveal a prospective active principle that could be of use in biofilm-associated menace. © 2014 The Society for Applied Microbiology.

  1. Eco-dyeing using Tamarindus indica L. seed coat tannin as a natural mordant for textiles with antibacterial activity

    Prabhu, K.H.; Teli, M.D.

    2014-01-01

    Tamarind seed coat tannin was extracted and its tannin class was determined. The extracted tannin was employed as a natural mordant alone and in combination with metal mordant namely copper sulphate for cotton, wool and silk fabrics and dyed using natural dyes namely turmeric and pomegranate rind. The colour strength, colour coordinates, wash and light fastness were evaluated and compared for all the three fabrics with and without mordanting. The pre-mordanted fabrics on dyeing gave better co...

  2. Biomimetic composite coating on rapid prototyped scaffolds for bone tissue engineering.

    Arafat, M Tarik; Lam, Christopher X F; Ekaputra, Andrew K; Wong, Siew Yee; Li, Xu; Gibson, Ian

    2011-02-01

    The objective of this present study was to improve the functional performance of rapid prototyped scaffolds for bone tissue engineering through biomimetic composite coating. Rapid prototyped poly(ε-caprolactone)/tri-calcium phosphate (PCL/TCP) scaffolds were fabricated using the screw extrusion system (SES). The fabricated PCL/TCP scaffolds were coated with a carbonated hydroxyapatite (CHA)-gelatin composite via biomimetic co-precipitation. The structure of the prepared CHA-gelatin composite coating was studied by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. Compressive mechanical testing revealed that the coating process did not have any detrimental effect on the mechanical properties of the scaffolds. The cell-scaffold interaction was studied by culturing porcine bone marrow stromal cells (BMSCs) on the scaffolds and assessing the proliferation and bone-related gene and protein expression capabilities of the cells. Confocal laser microscopy and SEM images of the cell-scaffold constructs showed a uniformly distributed cell sheet and accumulation of extracellular matrix in the interior of CHA-gelatin composite-coated PCL/TCP scaffolds. The proliferation rate of BMSCs on CHA-gelatin composite-coated PCL/TCP scaffolds was about 2.3 and 1.7 times higher than that on PCL/TCP scaffolds and CHA-coated PCL/TCP scaffolds, respectively, by day 10. Furthermore, reverse transcription polymerase chain reaction and Western blot analysis revealed that CHA-gelatin composite-coated PCL/TCP scaffolds stimulate osteogenic differentiation of BMSCs the most, compared with PCL/TCP scaffolds and CHA-coated PCL/TCP scaffolds. These results demonstrate that CHA-gelatin composite-coated rapid prototyped PCL/TCP scaffolds are promising for bone tissue engineering. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. Neonicotinoid-Coated Zea mays Seeds Indirectly Affect Honeybee Performance and Pathogen Susceptibility in Field Trials.

    Mohamed Alburaki

    Full Text Available Thirty-two honeybee (Apis mellifera colonies were studied in order to detect and measure potential in vivo effects of neonicotinoid pesticides used in cornfields (Zea mays spp on honeybee health. Honeybee colonies were randomly split on four different agricultural cornfield areas located near Quebec City, Canada. Two locations contained cornfields treated with a seed-coated systemic neonicotinoid insecticide while the two others were organic cornfields used as control treatments. Hives were extensively monitored for their performance and health traits over a period of two years. Honeybee viruses (brood queen cell virus BQCV, deformed wing virus DWV, and Israeli acute paralysis virus IAPV and the brain specific expression of a biomarker of host physiological stress, the Acetylcholinesterase gene AChE, were investigated using RT-qPCR. Liquid chromatography-mass spectrometry (LC-MS was performed to detect pesticide residues in adult bees, honey, pollen, and corn flowers collected from the studied hives in each location. In addition, general hive conditions were assessed by monitoring colony weight and brood development. Neonicotinoids were only identified in corn flowers at low concentrations. However, honeybee colonies located in neonicotinoid treated cornfields expressed significantly higher pathogen infection than those located in untreated cornfields. AChE levels showed elevated levels among honeybees that collected corn pollen from treated fields. Positive correlations were recorded between pathogens and the treated locations. Our data suggests that neonicotinoids indirectly weaken honeybee health by inducing physiological stress and increasing pathogen loads.

  4. Reduced bioavailability of cyclosporine A in rats by mung bean seed coat extract

    Xiping Li

    2014-09-01

    Full Text Available Mung bean seed coat (MBSC is a healthcare product in Asian countries. The aim of this study was to investigate the effect of an MBSC ethanol extract on the bioavailability of cyclosporine A (CsA in rats. Rats were orally dosed with CsA alone or in combination with MBSC ethanol extracts (500 mg/kg, p.o.. The blood levels of CsA were assayed by liquid chromatography with an electrospray ionization source and tandem mass spectrometry (LC-MS/MS. The everted rat intestinal sac technique was used to determine the influence of MBSC on the absorption of CsA. The results reveal that combined CsA intake with MBSC decreased the Cmax, AUC0-t, t1/2z and MRT0-t values of CsA by 24.96%, 47.28%, 34.73% and 23.58%, respectively (P<0.05, and significantly raised the CL/F by 51.97% (P<0.01. The in vitro results demonstrated that significantly less CsA was absorbed (P<0.05. The overall results indicate that after being concomitantly ingested, MBSC reduced the bioavailability of CsA, at least partially, in the absorption phase.

  5. Seed coat microsculpturing is related to genomic components in wild Brassica juncea and Sinapis arvensis.

    Wang, Ying-hao; Wei, Wei; Kang, Ding-ming; Ma, Ke-ping

    2013-01-01

    It has been reported that wild Brassica and related species are widely distributed across Xinjiang, China, and there has been an argument for species identification. Seed coat microsculpturing (SCM) is known to be an excellent character for taxonomic and evolutionary studies. By identifying collections from Xinjiang, China, and combining SCM pattern, flow cytometry, and genome-specific DNA markers as well as sexual compatibility with known species, this study aimed to detect potential relationships between SCM and genomic types in wild Brassica and related species. Three wild collections were found to be tetraploid with a SCM reticulate pattern similar to B. juncea, and containing A and B genome-specific loci, indicating relatively high sexual compatibility with B. juncea. The others were diploid, carrying S-genome-specific DNA markers, and having relatively high sexual compatibility with Sinapis arvensis. Moreover, their SCM was in a rugose pattern similar to that of S. arvensis. It was suggested that SCM, as a morphological characteristic, can reflect genomic type, and be used to distinguish B-genome species such as B. juncea from the related S. arvensis. The relationship between SCM and genomic type can support taxonomic studies of the wild Brassica species and related species.

  6. Seed coat microsculpturing is related to genomic components in wild Brassica juncea and Sinapis arvensis.

    Ying-hao Wang

    Full Text Available It has been reported that wild Brassica and related species are widely distributed across Xinjiang, China, and there has been an argument for species identification. Seed coat microsculpturing (SCM is known to be an excellent character for taxonomic and evolutionary studies. By identifying collections from Xinjiang, China, and combining SCM pattern, flow cytometry, and genome-specific DNA markers as well as sexual compatibility with known species, this study aimed to detect potential relationships between SCM and genomic types in wild Brassica and related species. Three wild collections were found to be tetraploid with a SCM reticulate pattern similar to B. juncea, and containing A and B genome-specific loci, indicating relatively high sexual compatibility with B. juncea. The others were diploid, carrying S-genome-specific DNA markers, and having relatively high sexual compatibility with Sinapis arvensis. Moreover, their SCM was in a rugose pattern similar to that of S. arvensis. It was suggested that SCM, as a morphological characteristic, can reflect genomic type, and be used to distinguish B-genome species such as B. juncea from the related S. arvensis. The relationship between SCM and genomic type can support taxonomic studies of the wild Brassica species and related species.

  7. Delivery of Flavonoids and Saponins from Black Bean (Phaseolus vulgaris) Seed Coats Incorporated into Whole Wheat Bread

    Chávez-Santoscoy, Rocio A.; Lazo-Vélez, Marco A.; Serna-Sáldivar, Sergio O.; Gutiérrez-Uribe, Janet A.

    2016-01-01

    Cereal-based products can be used as vehicles for the delivery of relevant bioactive compounds since they are staple foods for most cultures throughout the world. The health promoting benefits of flavonoids and saponins contained in black bean seed coats have been previously described. In the present work, the effect of adding flavonoids and saponins from black bean seed coat to the typical yeast-leavened whole wheat bread formulation in terms of bread features, organoleptic properties and phytochemical profile was studied. The retention of bioactive compounds was determined and the inhibitory effects of in vitro enzyme digested samples on two colon cancer cell lines (Caco-2 and HT29) was evaluated. The addition of bioactive compounds did not significantly affect baking properties or texture parameters. Among organoleptic properties of enriched breads, only crumb color was affected by the addition of bioactive compounds. However, the use of whole wheat flour partially masked the effect on color. More than 90% of added flavonoids and saponins and 80% of anthocyanins were retained in bread after baking. However, saponins were reduced more than 50% after the in vitro enzyme digestion. The black bean seed coat phytochemicals recovered after in vitro enzyme digestion of enriched breads significantly reduced by 20% the viability of colon cancer cells without affecting standard fibroblast cells (p < 0.05). PMID:26901186

  8. Delivery of Flavonoids and Saponins from Black Bean (Phaseolus vulgaris Seed Coats Incorporated into Whole Wheat Bread

    Rocio A. Chávez-Santoscoy

    2016-02-01

    Full Text Available Cereal-based products can be used as vehicles for the delivery of relevant bioactive compounds since they are staple foods for most cultures throughout the world. The health promoting benefits of flavonoids and saponins contained in black bean seed coats have been previously described. In the present work, the effect of adding flavonoids and saponins from black bean seed coat to the typical yeast-leavened whole wheat bread formulation in terms of bread features, organoleptic properties and phytochemical profile was studied. The retention of bioactive compounds was determined and the inhibitory effects of in vitro enzyme digested samples on two colon cancer cell lines (Caco-2 and HT29 was evaluated. The addition of bioactive compounds did not significantly affect baking properties or texture parameters. Among organoleptic properties of enriched breads, only crumb color was affected by the addition of bioactive compounds. However, the use of whole wheat flour partially masked the effect on color. More than 90% of added flavonoids and saponins and 80% of anthocyanins were retained in bread after baking. However, saponins were reduced more than 50% after the in vitro enzyme digestion. The black bean seed coat phytochemicals recovered after in vitro enzyme digestion of enriched breads significantly reduced by 20% the viability of colon cancer cells without affecting standard fibroblast cells (p < 0.05.

  9. Experimental study and simulation of mass distribution of the covering layer of soybean seeds coated in a spouted bed

    Duarte C. R.

    2004-01-01

    Full Text Available In previous work, it was observed that the covering of soybean seeds with bacteria and micronutrients enhances vigorous growth of the plant thereby avoiding use of ammoniacal fertilizers. In the spouted bed covering can be done by pulverization of the coater slurry on the soybean seeds using a pneumatic atomizer. The optimum thickness of the cover allows the fundamental gaseous interchanges for germination and provides the ideal conditions for bacterium activity. The objective of this work was to study the influence of the process variables on thickness of the cover. A simulation of the mass distribution of seeds was obtained using a population balance model. Through the results obtained the operational conditions under which the coating layer distribution were determined has the greatest uniformity.

  10. Taxonomic evaluation using pollen grain sculpture and seed coat characters of 11 taxa of genus Hibiscus (Malvaceae in Egypt

    M.A. El-Kholy

    2011-06-01

    Full Text Available Pollen grain morphology and seed coat characters of 11 cultivars belonging to two species of genus Hibiscus (Family Malvaceae namely H. esculentus, H. abelmoschus and H. sabdariffa were investigated. This study was carried out using light microscope (LM and scanning electron microscopy (SEM. Pollen morphology of this genus is fairly uniform. Generally radially symmetrical apolar, mostly spheroidal, pantoporate. Seed exomorphic characters revealed four types of ornamentations; reticulate, ocealate, foveolate and ruminate. Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS–PAGE was employed to characterize those taxa. Thirty-one bands of seed protein profiles have been constructed from the gel. The produced dendrograms that were analyzed by STATISCA program using UPGMA clustering method showed a close affinity among the seven H. esculentus cultivars and the four H. sabdariffa cultivars.

  11. Selection of seed lots of Pinus taeda L. for tissue culture

    Diego Pascoal Golle

    2014-06-01

    Full Text Available The aim of this work was to identify the fungi genera associated with three Pinus taeda L. seed lots and to assess the sanitary and physiological quality of these lots for use as selection criteria for tissue culture and evaluate the in vitro establishment of explants from seminal origin in different nutritive media. It was possible to discriminate the lots on the sanitary and physiological quality, as well as to establish in vitro plants of Pinus taeda from cotyledonary nodes obtained from aseptic seed germination of a selected lot by the sanitary and physiological quality higher. The nutritive media MS, ½ MS and WPM were equally suitable for this purpose. For the sanitary analysis the fungal genera Fusarium, Penicillium and Trichoderma were those of the highest sensitivity. For the physiological evaluation were important the variables: abnormal seedlings, strong normal seedlings; length, fresh and dry weight of strong normal seedlings. The analyzes were favorable to choose lots of seeds for in vitro culture and all culture media were adequate for the establishment of this species in tissue culture.

  12. A Novel Seeding Method of Interfacial Polymerization-Assisted Dip Coating for the Preparation of Zeolite NaA Membranes on Ceramic Hollow Fiber Supports.

    Cao, Yue; Wang, Ming; Xu, Zhen-Liang; Ma, Xiao-Hua; Xue, Shuang-Mei

    2016-09-28

    A novel seeding method combining interfacial polymerization (IP) technique with dip-coating operation was designed for directly coating nanosized NaA seed crystals (150 nm) onto the micrometer-sized α-Al2O3 hollow fiber support, in which the polyamide (PA) produced by IP acted as an effective medium to freeze and fix seed crystals at the proper position so that the controlled seed layer could be accomplished. While a coating suspension with only 0.5 wt % seed content was used, a very thin seed layer with high quality and good adhesion was achieved through dip coating twice without drying between, and the whole seeding process was operated at ambient conditions. The resulting zeolite NaA membranes not only exhibited high pervaporation (PV) performance with an average separation factor above 10000 and flux nearly 9.0 kg/m(2)·h in dehydration of 90 wt % ethanol aqueous solution at 348 K but also demonstrated great reproducibility by testing more than eight batches of zeolite membranes. In addition, this seeding strategy could be readily extended to the preparation of other supported zeolite membranes for a wide range of separation applications.

  13. Bioactive and Porous Metal Coatings for Improved Tissue Regeneration

    Campbell, A. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2000-01-01

    Our first objective was to develop the SIM process for the deposition of calcium phosphate films. This process is based on the observation that, in nature, living organisms use macromolecules to control the nucleation and growth of mineral phases. These macromolecules act as templates where various charged functional groups, contained within the molecule, can interact with the ions in the surrounding media, thus stimulating crystal nucleation and growth. Rather than using complex proteins or biopolymers, surface modification schemes were developed to place simple functional groups on the underlying substrate using self-assembling monolayers. Once the substrate was chemically modified, it was then placed into an aqueous solution containing soluble precursors of the desired mineral coating. Solution pH, ionic concentration and temperature is maintained in a regime where the solution is supersaturated with respect to the desired mineral phase, thereby creating the driving force for nucleation and growth.

  14. Functional Coatings or Films for Hard-Tissue Applications

    Guocheng Wang

    2010-07-01

    Full Text Available Metallic biomaterials like stainless steel, Co-based alloy, Ti and its alloys are widely used as artificial hip joints, bone plates and dental implants due to their excellent mechanical properties and endurance. However, there are some surface-originated problems associated with the metallic implants: corrosion and wear in biological environments resulting in ions release and formation of wear debris; poor implant fixation resulting from lack of osteoconductivity and osteoinductivity; implant-associated infections due to the bacterial adhesion and colonization at the implantation site. For overcoming these surface-originated problems, a variety of surface modification techniques have been used on metallic implants, including chemical treatments, physical methods and biological methods. This review surveys coatings that serve to provide properties of anti-corrosion and anti-wear, biocompatibility and bioactivity, and antibacterial activity.

  15. Effects of quince seed, almond, and tragacanth gum coating on the banana slices properties during the process of hot air drying.

    Farahmandfar, Reza; Mohseni, Maedeh; Asnaashari, Maryam

    2017-11-01

    Due to early deterioration of banana in drying process, almond, quince seed, and tragacanth gums as edible coatings were determined. For this purpose, banana slices were coated in 0.7% solution of each gum and one group remained uncoated as the control. The samples were examined at specific times considering the weight loss, color analyzing (a*, b*, and L*) through the method computer vision, color difference index, browning index, and rehydration after the samples being dried. The results showed that the weight loss of the coated samples was significantly ( p  < .05) higher than the uncoated samples which can be due to the alteration or destruction of the cell membrane. The almond gum-coated samples had significantly a lower ultimate browning index and quince seed gum-coated samples showed the highest rehydration. So, the gums coating is an effective way to preserve the quality characteristics of the banana slices.

  16. Coating flexible probes with an ultra fast degrading polymer to aid in tissue insertion.

    Lo, Meng-chen; Wang, Shuwu; Singh, Sagar; Damodaran, Vinod B; Kaplan, Hilton M; Kohn, Joachim; Shreiber, David I; Zahn, Jeffrey D

    2015-04-01

    We report a fabrication process for coating neural probes with an ultrafast degrading polymer to create consistent and reproducible devices for neural tissue insertion. The rigid polymer coating acts as a probe insertion aid, but resorbs within hours post-implantation. Despite the feasibility for short term neural recordings from currently available neural prosthetic devices, most of these devices suffer from long term gliosis, which isolates the probes from adjacent neurons, increasing the recording impedance and stimulation threshold. The size and stiffness of implanted probes have been identified as critical factors that lead to this long term gliosis. Smaller, more flexible probes that match the mechanical properties of brain tissue could allow better long term integration by limiting the mechanical disruption of the surrounding tissue during and after probe insertion, while being flexible enough to deform with the tissue during brain movement. However, these small flexible probes inherently lack the mechanical strength to penetrate the brain on their own. In this work, we have developed a micromolding method for coating a non-functional miniaturized SU-8 probe with an ultrafast degrading tyrosine-derived polycarbonate (E5005(2K)). Coated, non-functionalized probes of varying dimensions were reproducibly fabricated with high yields. The polymer erosion/degradation profiles of the probes were characterized in vitro. The probes were also mechanically characterized in ex vivo brain tissue models by measuring buckling and insertion forces during probe insertion. The results demonstrate the ability to produce polymer coated probes of consistent quality for future in vivo use, for example to study the effects of different design parameters that may affect tissue response during long term chronic intra-cortical microelectrode neural recordings.

  17. Microfluidic monitoring of programmed cell death in living plant seed tissue

    Mark, Christina; Heiskanen, Arto; Zor, Kinga

    , et al., (2006), BioEssays, 28, p. 1091). Microfluidic cell culture enables in vitro experiments to approach in vivo conditions. Combining microfluidics with the Lab-On-a-Chip concept allows implementing a wide range of assays for real-time monitoring of effects in a biological system of factors...... such as concentration of selected compounds, external pH, oxygen consumption, redox state and cell viability. The aleurone layer of the barley seed is a 2-3 single cell type thick tissue that can be dissected from the embryo and starchy endosperm. During incubation in vitro this mechanically very robust maintains...

  18. A Single-Nucleotide Polymorphism in an Endo-1,4-β-Glucanase Gene Controls Seed Coat Permeability in Soybean.

    Seong-Jin Jang

    Full Text Available Physical dormancy, a structural feature of the seed coat known as hard seededness, is an important characteristic for adaptation of plants against unstable and unpredictable environments. To dissect the molecular basis of qHS1, a quantitative trait locus for hard seededness in soybean (Glycine max (L Merr., we developed a near-isogenic line (NIL of a permeable (soft-seeded cultivar, Tachinagaha, containing a hard-seed allele from wild soybean (G. soja introduced by successive backcrossings. The hard-seed allele made the seed coat of Tachinagaha more rigid by increasing the amount of β-1,4-glucans in the outer layer of palisade cells of the seed coat on the dorsal side of seeds, known to be a point of entrance of water. Fine-mapping and subsequent expression and sequencing analyses revealed that qHS1 encodes an endo-1,4-β-glucanase. A single-nucleotide polymorphism (SNP introduced an amino acid substitution in a substrate-binding cleft of the enzyme, possibly reducing or eliminating its affinity for substrates in permeable cultivars. Introduction of the genomic region of qHS1 from the impermeable (hard-seeded NIL into the permeable cultivar Kariyutaka resulted in accumulation of β-1,4-glucan in the outer layer of palisade cells and production of hard seeds. The SNP allele found in the NIL was further associated with the occurrence of hard seeds in soybean cultivars of various origins. The findings of this and previous studies may indicate that qHS1 is involved in the accumulation of β-1,4-glucan derivatives such as xyloglucan and/or β-(1,3(1,4-glucan that reinforce the impermeability of seed coats in soybean.

  19. Simple and high yielding method for preparing tissue specific extracellular matrix coatings for cell culture.

    DeQuach, Jessica A; Mezzano, Valeria; Miglani, Amar; Lange, Stephan; Keller, Gordon M; Sheikh, Farah; Christman, Karen L

    2010-09-27

    The native extracellular matrix (ECM) consists of a highly complex, tissue-specific network of proteins and polysaccharides, which help regulate many cellular functions. Despite the complex nature of the ECM, in vitro cell-based studies traditionally assess cell behavior on single ECM component substrates, which do not adequately mimic the in vivo extracellular milieu. We present a simple approach for developing naturally derived ECM coatings for cell culture that provide important tissue-specific cues unlike traditional cell culture coatings, thereby enabling the maturation of committed C2C12 skeletal myoblast progenitors and human embryonic stem cells differentiated into cardiomyocytes. Here we show that natural muscle-specific coatings can (i) be derived from decellularized, solubilized adult porcine muscle, (ii) contain a complex mixture of ECM components including polysaccharides, (iii) adsorb onto tissue culture plastic and (iv) promote cell maturation of committed muscle progenitor and stem cells. This versatile method can create tissue-specific ECM coatings, which offer a promising platform for cell culture to more closely mimic the mature in vivo ECM microenvironment.

  20. Calcium phosphate coated eletrospun fiber matrices as scaffold for bone tissue engineering

    Nandakumar, A.; Yang, Liang; Habibovic, Pamela; van Blitterswijk, Clemens

    2010-01-01

    Electrospun polymeric scaffolds are used for various tissue engineering applications. In this study, we applied a biomimetic coating method to provide electrospun scaffolds from a block copolymer-poly(ethylene oxide terephthalate)−poly(buthylene terephthalate), with a calcium phosphate layer to

  1. Soy bean seed-coat, potential renewable raw-material for alcohol production

    Kailash Chandra Srivastava

    1984-11-01

    Full Text Available The seed coat was shaken for different periods of time, from 12 hr to 96 hr in sterile distilled water pre-adjusted to pH 8. The contents of the flask filtered and pH adjusted to 4.6. Next the solution was heated for 20 min at 90° C in a water bath, filtered and media prepared from the filtrate. These media were inoculated with 10% volume of a strain of Saccharomyces Cerevisiae. The suspension shaken on a rotary shaker at 250 rpm and 30°C ± 1°C for 48 hr after which the culture filtrate was distilled and the amount of alcohol measured according to the alcoholometry tables of the U.S. Pharmacopeias. Thus up to 1.3% of alcohol could be obtained.Neste trabalho são apresentados os resultados sobre obtenção de álcool a partir de casca de soja. A casca foi agitada por diferentes períodos de tempo de 12h a 96h em água destilada esterilizada, pré-ajustada para pH 8. Os conteúdos do frasco foram filtrados, o pH ajustado para 4,6; os conteúdos cozidos, esfriados e filtrados. Os filtrados com ou sem suplementação com extrato de levedura, peptona e glicose em conjunto ou separadamente foram usados como mosto para fermentação por S. cerevisiae. As suspensões foram agitadas a 250 rpm e 30° C ± l°C48h, e após este período, a quantidade de álcool calcula­da de acordo com a tabela alcoolométrica da Farmacopia dos Estados Unidos, foi de até 1.3%.

  2. Optical properties of Lactuca and Taraxacum seed and fruit coats: Their role as light filters [phytochrome, photoblasty, fiber optics, transmission, spectra

    Widell, K.-O.; Vogelmann, T.C.

    1985-01-01

    The optical properties of seed and fruit coats were examined from several varieties of light-sensitive achenes. Taraxacum vulgare L. and Lactuca sativa L. cv. Grand Rapids achenes with dark fruit coats and L. sativa cvs Huvudsallat and Issallat with white fruit coats were examined. Transmission spectra varied among the different achenes: white fruit coats of Lactuca acted as neutral density filters between 450 and 780 nm, whereas Taraxacum transmitted 2–36% in this region. The ribbed fruit coat structure greatly affected transmission so that at different locations in the same coat, transmission varied between 20 to 80% at 660 and 730 nm. Fruit coats of Grand Rapids lettuce and Taraxacum transmitted more far-red than red light with T 660 /T 730 ratios of 0.8 and 0.4, respectively. The relationship between the optical properties of fruit coats and light-stimulated germination is discussed. (author)

  3. Electrically conductive poly-ɛ-caprolactone/polyethylene glycol/multi-wall carbon nanotube nanocomposite scaffolds coated with fibrin glue for myocardial tissue engineering

    Mehdikhani, Mehdi; Ghaziof, Sharareh

    2018-01-01

    In this research, poly-ɛ-caprolactone (PCL), polyethylene glycol (PEG), multi-wall carbon nanotubes (MWCNTs), and nanocomposite scaffolds containing 0.5 and 1% (w/w) MWCNTs coated with fibrin glue (FG) were prepared via solvent casting and freeze-drying technique for cardiac tissue engineering. Scanning electron microscopy, transmission electron microscopy, Fourier transform-infrared spectroscopy, and X-ray diffraction were used to characterize the samples. Furthermore, mechanical properties, electrical conductivity, degradation, contact angle, and cytotoxicity of the samples were evaluated. Results showed the uniform distribution of the MWCNTs with some aggregates in the prepared nanocomposite scaffolds. The scaffolds containing 1% (w/w) MWCNTs with and without FG coating illustrated optimum modulus of elasticity, high electrical conductivity, and wettability compared with PCL/PEG and PCL/PEG/0.5%(w/w) MWCNTs' scaffolds. FG coating enhanced electrical conductivity and cell response, and increased wettability of the constructs. The prepared scaffolds were degraded significantly after 60 days of immersion in PBS. Meanwhile, the nanocomposite containing 1% (w/w) MWCNTs with FG coating (S3) showed proper spreading and viability of the myoblasts seeded on it after 1, 4, and 7 days of culture. The scaffold containing 1% (w/w) MWCNTs with FG coating demonstrated optimal properties including acceptable mechanical properties, proper wettability, high electrical conductivity, satisfactory degradation, and excellent myoblasts response to it.

  4. seeds

    Owner

    peptidohydrolase (8.0%) from mung bean seedlings. (Baumgartner and Chrispeels, 1977), EP-HG (4.5%) from horse gram seedlings ( Rajeswari, 1997), acidic protease (15%) from germinating winged-bean seeds. (Usha and Singh, 1996) and EP-1 (1.6%) from barley seedlings and GA3-induced cysteine protease (3.38%).

  5. Pulsed laser deposition of YBCO coated conductor using Y2O3 as the seed and cap layer

    Barnes, P N; Nekkanti, R M; Haugan, T J; Campbell, T A; Yust, N A; Evans, J M

    2004-01-01

    Although a variety of buffer layers have been routinely reported, a standard architecture commonly used for the Y Ba 2 Cu 3 O 7-x (YBCO) coated conductor is Y BCO/CeO 2 /Y SZ/CeO 2 /substrate or Y BCO/CeO 2 /Y SZ/Y 2 O 3 /substrate where ceria is typically the cap layer. CeO 2 is generally used as only a seed (or cap layer) since cracking within the film occurs in thicker CeO 2 layers due to the stress of lattice mismatching. Y 2 O 3 has been proposed as a seed and as a cap layer but usually not for both in a given architecture, especially with all layers deposited in situ. Yttrium oxide films grown on nickel by electron beam evaporation processes were found to be dense and crack free with good epitaxy. In this report, pulsed laser deposition (PLD) of Y 2 O 3 is given where Y 2 O 3 serves as both the seed and cap layer in the YBCO architecture. A comparison to PLD CeO 2 is provided. Deposited layers of the YBCO coated conductor are also grown by laser ablation. Initial deposition resulted in specimens on textured Ni substrates with current densities of more than 1 MA cm -2 at 77 K, self-field

  6. In vitro evaluation of whole faba bean and its seed coat as a potential source of functional food components.

    Çalışkantürk Karataş, Selen; Günay, Demet; Sayar, Sedat

    2017-09-01

    In vitro studies were conducted to evaluate the particular nutritional benefits of whole faba bean seed (WFB) and fava bean seed coat (FBSC). Total dietary fiber contents of WFB and FBSC were 27.5% and 82.3%, respectively. FBSC were contained much higher total phenolic substances, condensed tannins, and total antioxidant activity than WFB. Bile acid (BA)-binding capacities of in vitro digested samples and nutritionally important products produced by in vitro fermentation of digestion residues were also studied. The BA-binding capacities of WFB and FBSC were 1.94 and 37.50μmol/100mg, respectively. Total BA bound by FBSC was even higher than the positive standard cholestyramine. Lignin and other constituents of the Klason residue were found to influence BA-binding properties. Moreover, the extent of the in vitro fermentation process showed that, fermentability of FBSC residue was significantly lower than that of WFB residue. Overall, faba bean, especially its seed coat, has great potential as a functional food. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Distribution of nutrients and antinutrients in milled fractions of chickpea and horse gram: seed coat phenolics and their distinct modes of enzyme inhibition.

    Sreerama, Yadahally N; Neelam, Dennis A; Sashikala, Vadakkoot B; Pratape, Vishwas M

    2010-04-14

    Milled fractions of chickpea ( Cicer arietinum L.) and horse gram ( Macrotyloma uniflorum L. Verdc.) were evaluated for their nutritional and antinutritional characteristics. Crude protein content of these fractions ranged from 22.6-23.8 g 100(-1) g in cotyledon to 7.3-9.1 g 100(-1) g in seed coat fractions. The fat content of chickpea fractions (1.6-7.8 g 100(-1) g) was higher than that of horse gram fractions (0.6-2.6 g 100(-1) g). Crude fiber content was higher in seed coat fractions of both legumes than embryonic axe and cotyledon fractions. Seed coat fractions had high dietary fiber content (28.2-36.4 g 100(-1) g), made up of mainly insoluble dietary fiber. Most of the phytic acid and oligosaccharides were located in the cotyledon fractions, whereas phenolic compounds in higher concentrations were found in seed coats. Significantly higher concentrations of proteinaceous and phenolic inhibitors of digestive enzymes were found in cotyledon and seed coat fractions, respectively. The kinetic studies, using Michaelis-Menten and Lineweaver-Burk derivations, revealed that seed coat phenolics inhibit alpha-amylase activity by mixed noncompetitive (chickpea) and noncompetitive (horse gram) inhibition mechanisms. In the case of trypsin, chickpea and horse gram seed coat phenolics showed noncompetitive and uncompetitive modes of inhibition, respectively. These results suggest the wide variability in the nutrient and antinutrient composition in different milled fractions of legumes and potential utility of these fractions as ingredients in functional food product development.

  8. Human umbilical cord mesenchymal stem cells: osteogenesis in vivo as seed cells for bone tissue engineering.

    Diao, Yinze; Ma, Qingjun; Cui, Fuzhai; Zhong, Yanfeng

    2009-10-01

    Mesenchymal stem cells (MSCs) are ideal seed cells for bone tissue engineering. However, intrinsic deficiencies exist for the autologous transplantation strategy of constructing artificial bone with MSCs derived from bone marrow of patients. In this study, MSCs-like cells were isolated from human umbilical cords and were expanded in vitro. Flow cytometric analysis revealed that cells from the fourth passage were positive for CD29, CD44, CD71, CD73, CD90, and CD105 whereas they were negative for CD14, CD34, CD45, and CD117. Furthermore, these cells expressed HLA-A, B, C (MHC-I), but not HLA-DP, DQ, DR (MHC-II), or costimulatory molecules such as CD80 and CD86. Following incubation in specific inductive media for 3 weeks, cultured cells were shown to possess potential to differentiate into adipogenic, osteogenic or chondrogenic lineages in vitro. The umbilical cord-derived MSCs (UC-MSCs) were loaded with a biomimetic artificial bone scaffold material before being implanted subcutaneously in the back of Balb/c nude mice for four to twelve weeks. Our results revealed that UC-MSCs loaded with the scaffold displayed capacity of osteogenic differentiation leading to osteogenesis with human origin in vivo. As a readily available source of seed cells for bone tissue engineering, UC-MSCs should have broad application prospects.

  9. COBRA-LIKE2, a member of the glycosylphosphatidylinositol-anchored COBRA-LIKE family, plays a role in cellulose deposition in arabidopsis seed coat mucilage secretory cells.

    Ben-Tov, Daniela; Abraham, Yael; Stav, Shira; Thompson, Kevin; Loraine, Ann; Elbaum, Rivka; de Souza, Amancio; Pauly, Markus; Kieber, Joseph J; Harpaz-Saad, Smadar

    2015-03-01

    Differentiation of the maternally derived seed coat epidermal cells into mucilage secretory cells is a common adaptation in angiosperms. Recent studies identified cellulose as an important component of seed mucilage in various species. Cellulose is deposited as a set of rays that radiate from the seed upon mucilage extrusion, serving to anchor the pectic component of seed mucilage to the seed surface. Using transcriptome data encompassing the course of seed development, we identified COBRA-LIKE2 (COBL2), a member of the glycosylphosphatidylinositol-anchored COBRA-LIKE gene family in Arabidopsis (Arabidopsis thaliana), as coexpressed with other genes involved in cellulose deposition in mucilage secretory cells. Disruption of the COBL2 gene results in substantial reduction in the rays of cellulose present in seed mucilage, along with an increased solubility of the pectic component of the mucilage. Light birefringence demonstrates a substantial decrease in crystalline cellulose deposition into the cellulosic rays of the cobl2 mutants. Moreover, crystalline cellulose deposition into the radial cell walls and the columella appears substantially compromised, as demonstrated by scanning electron microscopy and in situ quantification of light birefringence. Overall, the cobl2 mutants display about 40% reduction in whole-seed crystalline cellulose content compared with the wild type. These data establish that COBL2 plays a role in the deposition of crystalline cellulose into various secondary cell wall structures during seed coat epidermal cell differentiation. © 2015 American Society of Plant Biologists. All Rights Reserved.

  10. Fungicidal seed coatings exert minor effects on arbuscular mycorrhizal fungi and plant nutrient content

    Aims: Determine if contemporary, seed-applied fungicidal formulations inhibit colonization of plant roots by arbuscular mycorrhizal (AM) fungi, plant development, or plant nutrient content during early vegetative stages of several commodity crops. Methods: We evaluated seed-applied commercial fungic...

  11. Liquid sorting and film coating : techniques for improving tree seed performance

    Derkx, M.P.M.

    2006-01-01

    Tree seed performance has benefited considerably from the development of controlled methods to overcome dormancy. Traditionally tree seeds have often been stratified outdoors. Depending on the types of dormancy, stratification starts before or during summer and continues during winter, or it starts

  12. Physiology and postharvest conservation of ‘Paluma’ guava under coatings using Jack fruit seed-based starch

    Antonio Augusto Marques Rodrigues

    2018-04-01

    Full Text Available Abstract The aim of this work was to evaluate the effect of jackfruit seed starch-based (S coatings, added to chitosan and alginate on the physiology and maintenance of quality of cold stored ‘Paluma’ guavas, followed by transfer to the room condition. The design was the completely randomized, in a 4x2 factorial scheme, in 4 replications, with 4 coatings (dispersion of S - 4%; S 2% + chitosan - 2% (SC; S - 2% + alginate - 2% (SA; and the uncoated control, in 2 environments (refrigerated (10±2 °C e 80±2% RH with transfer to room condition (25±3 °C e 75±4% HR, on the 16th and 20th day of cold storage. The SC and SA coatings were efficient in reducing the respiratory rate in fruits during 10 days at room condition. The SC coating delayed fruit ripening, and maintained firmness and color, with intention of purchasing and appearance higher than the limit of acceptance for another 6 days, following transferring to room condition, at the 16th day of refrigeration.

  13. Proanthocyanidin accumulation and transcriptional responses in the seed coat of cranberry beans (Phaseolus vulgaris L.) with different susceptibility to postharvest darkening.

    Freixas Coutin, José A; Munholland, Seth; Silva, Anjali; Subedi, Sanjeena; Lukens, Lewis; Crosby, William L; Pauls, K Peter; Bozzo, Gale G

    2017-05-25

    Edible dry beans (Phaseolus vulgaris L.) that darken during postharvest storage are graded lower and are less marketable than their non-darkened counterparts. Seed coat darkening in susceptible genotypes is dependent upon the availability of proanthocyanidins, and their subsequent oxidation to reactive quinones. Mature cranberry beans lacking this postharvest darkening trait tend to be proanthocyanidin-deficient, although the underlying molecular and biochemical determinants for this metabolic phenomenon are unknown. Seed coat proanthocyanidin levels increased with plant maturation in a darkening-susceptible cranberry bean recombinant inbred line (RIL), whereas these metabolites were absent in seeds of the non-darkening RIL plants. RNA sequencing (RNA-seq) analysis was used to monitor changes in the seed coat transcriptome as a function of bean development, where transcript levels were measured as fragments per kilobase of exon per million fragments mapped. A total of 1336 genes were differentially expressed between darkening and non-darkening cranberry bean RILs. Structural and regulatory genes of the proanthocyanidin biosynthesis pathway were upregulated in seed coats of the darkening RIL. A principal component analysis determined that changes in transcript levels for two genes of unknown function and three proanthocyanidin biosynthesis genes, FLAVANONE 3-HYDROXYLASE 1, DIHYDROFLAVONOL 4-REDUCTASE 1 and ANTHOCYANIDIN REDUCTASE 1 (PvANR1) were highly correlated with proanthocyanidin accumulation in seed coats of the darkening-susceptible cranberry bean RIL. HPLC-DAD analysis revealed that in vitro activity of a recombinant PvANR1 was NADPH-dependent and assays containing cyanidin yielded epicatechin and catechin; high cyanidin substrate levels inhibited the formation of both of these products. Proanthocyanidin oxidation is a pre-requisite for postharvest-related seed coat darkening in dicotyledonous seeds. In model plant species, the accumulation of

  14. Calcium phosphate coated Keratin-PCL scaffolds for potential bone tissue regeneration.

    Zhao, Xinxin; Lui, Yuan Siang; Choo, Caleb Kai Chuen; Sow, Wan Ting; Huang, Charlotte Liwen; Ng, Kee Woei; Tan, Lay Poh; Loo, Joachim Say Chye

    2015-04-01

    The incorporation of hydroxyapatite (HA) nanoparticles within or on the surface of electrospun polymeric scaffolds is a popular approach for bone tissue engineering. However, the fabrication of osteoconductive composite scaffolds via benign processing conditions still remains a major challenge to date. In this work, a new method was developed to achieve a uniform coating of calcium phosphate (CaP) onto electrospun keratin-polycaprolactone composites (Keratin-PCL). Keratin within PCL was crosslinked to decrease its solubility, before coating of CaP. A homogeneous coating was achieved within a short time frame (~10min) by immersing the scaffolds into Ca(2+) and (PO4)(3-) solutions separately. Results showed that the incorporation of keratin into PCL scaffolds not only provided nucleation sites for Ca(2+) adsorption and subsequent homogeneous CaP surface deposition, but also facilitated cell-matrix interactions. An improvement in the mechanical strength of the resultant composite scaffold, as compared to other conventional coating methods, was also observed. This approach of developing a biocompatible bone tissue engineering scaffold would be adopted for further in vitro osteogenic differentiation studies in the future. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. PIXE characterization of tissues surrounding metallic prostheses coated with biological glasses

    Barbotteau, Y.; Irigaray, J.L.; Moretto, Ph.

    2004-01-01

    Biological glasses can be used as coatings for metallic prostheses in order to prevent corrosion. According to their composition, these glasses have different properties. We studied, in vivo, two glasses referred to as BVA and BVH. They are used as coatings of Ti6Al4V metallic implant. BVA glass disappears after 3 months of implantation and is replaced by bone. Prostheses initially coated by this glass have a larger osseous contact perimeter compared to the uncoated prostheses. This ensures a better anchoring of the implant and limits the micro-motions which cause wear debris. BVH glass keeps a constant composition during implantation and it is used like a layer which isolates metal implant from biological environment. In order to characterize the bony environment surrounding implants, we have used PIXE and RBS methods. This paper shows results of the behavior of bony tissue under micro-beam, the quality tests of new bone which replaces the BVA glass coating and the evaluation of corrosion effects. Titanium release in bony tissues begins when the metal surface of the prosthesis is exposed to biological fluids. After a few months of implantation, the titanium contamination is stabilized and remains localized within the first tens of micrometers of surrounding bone

  16. Production of Basella plants resistant to rust by irradiation of seeds and vegetative tissue

    Makambila, C.

    1997-01-01

    Basella is classified in the family Chenopodiaceae or Basellaceae. Also known as African spinach, this plant is consumed in Central Africa and several other African countries. There are two types of varieties grown in Congo: i. a local variety characterized by red leaves and stalks in which the principal way of propagation is from cuttings; ii. a group of varieties which have green or purple leaves and stalks. These varieties are called Basella alba and Basella rubra. These varieties have sexual reproduction. Among the two groups of varieties, the local variety is propagated vegetatively but is resistant to rust, while varieties with green leaves or with purple leaves (B. alba and B. rubra) that are propagated from seed are susceptible to rust. Since hybrid cannot be made by conventional crossing, the following procedures have been adopted to produce plants with disease tolerance: 1. production of resistant variants by irradiation of Basella alba seeds with Cesium 137; 2. production of resistant variants by irradiation of vegetative tissues obtained by culture of meristematic cells of B alba; and 3. obtaining resistant plants through somaclonal variation. 1 tab

  17. Production of Basella plants resistant to rust by irradiation of seeds and vegetative tissue

    Makambila, C [Laboratory of Phytopathology, Faculty of Sciences, Univ. of Brazzaville, Brazzaville (Congo)

    1997-12-01

    Basella is classified in the family Chenopodiaceae or Basellaceae. Also known as African spinach, this plant is consumed in Central Africa and several other African countries. There are two types of varieties grown in Congo: i. a local variety characterized by red leaves and stalks in which the principal way of propagation is from cuttings; ii. a group of varieties which have green or purple leaves and stalks. These varieties are called Basella alba and Basella rubra. These varieties have sexual reproduction. Among the two groups of varieties, the local variety is propagated vegetatively but is resistant to rust, while varieties with green leaves or with purple leaves (B. alba and B. rubra) that are propagated from seed are susceptible to rust. Since hybrid cannot be made by conventional crossing, the following procedures have been adopted to produce plants with disease tolerance: 1. production of resistant variants by irradiation of Basella alba seeds with Cesium 137; 2. production of resistant variants by irradiation of vegetative tissues obtained by culture of meristematic cells of B alba; and 3. obtaining resistant plants through somaclonal variation. 1 tab.

  18. Dynamic Metabolic Profiles and Tissue-Specific Source Effects on the Metabolome of Developing Seeds of Brassica napus.

    Helin Tan

    Full Text Available Canola (Brassica napus is one of several important oil-producing crops, and the physiological processes, enzymes, and genes involved in oil synthesis in canola seeds have been well characterized. However, relatively little is known about the dynamic metabolic changes that occur during oil accumulation in seeds, as well as the mechanistic origins of metabolic changes. To explore the metabolic changes that occur during oil accumulation, we isolated metabolites from both seed and silique wall and identified and characterized them by using gas chromatography coupled with mass spectrometry (GC-MS. The results showed that a total of 443 metabolites were identified from four developmental stages. Dozens of these metabolites were differentially expressed during seed ripening, including 20 known to be involved in seed development. To investigate the contribution of tissue-specific carbon sources to the biosynthesis of these metabolites, we examined the metabolic changes of silique walls and seeds under three treatments: leaf-detachment (Ld, phloem-peeling (Pe, and selective silique darkening (Sd. Our study demonstrated that the oil content was independent of leaf photosynthesis and phloem transport during oil accumulation, but required the metabolic influx from the silique wall. Notably, Sd treatment resulted in seed senescence, which eventually led to a severe reduction of the oil content. Sd treatment also caused a significant accumulation of fatty acids (FA, organic acids and amino acids. Furthermore, an unexpected accumulation of sugar derivatives and organic acid was observed in the Pe- and Sd-treated seeds. Consistent with this, the expression of a subset of genes involved in FA metabolism, sugar and oil storage was significantly altered in Pe and Sd treated seeds. Taken together, our studies suggest the metabolite profiles of canola seeds dynamically varied during the course of oil accumulation, which may provide a new insight into the mechanisms

  19. MUM ENHANCERS are important for seed coat mucilage production and mucilage secretory cell differentiation in Arabidopsis thaliana.

    Arsovski, Andrej A; Villota, Maria M; Rowland, Owen; Subramaniam, Rajagopal; Western, Tamara L

    2009-01-01

    Pollination triggers not only embryo development but also the differentiation of the ovule integuments to form a specialized seed coat. The mucilage secretory cells of the Arabidopsis thaliana seed coat undergo a complex differentiation process in which cell growth is followed by the synthesis and secretion of pectinaceous mucilage. A number of genes have been identified affecting mucilage secretory cell differentiation, including MUCILAGE-MODIFIED4 (MUM4). mum4 mutants produce a reduced amount of mucilage and cloning of MUM4 revealed that it encodes a UDP-L-rhamnose synthase that is developmentally up-regulated to provide rhamnose for mucilage pectin synthesis. To identify additional genes acting in mucilage synthesis and secretion, a screen for enhancers of the mum4 phenotype was performed. Eight mum enhancers (men) have been identified, two of which result from defects in known mucilage secretory cell genes (MUM2 and MYB61). Our results show that, in a mum4 background, mutations in MEN1, MEN4, and MEN5 lead to further reductions in mucilage compared to mum4 single mutants, suggesting that they are involved in mucilage synthesis or secretion. Conversely, mutations in MEN2 and MEN6 appear to affect mucilage release rather than quantity. With the exception of men4, whose single mutant exhibits reduced mucilage, none of these genes have a single mutant phenotype, suggesting that they would not have been identified outside the compromised mum4 background.

  20. Comparison of sorption capacity and surface area of activated carbon prepared from Jatropha curcas fruit pericarp and seed coat

    O.M. Ameen

    2012-08-01

    Full Text Available Activated carbons were prepared from fruit pericarp and seed coat of Jatropha curcas using KOH and NaCl as activating agents leading to the production of four samples of activated carbons JPS, JPP, JCS and JCP. The adsorption capacity based on adsorption of methylene blue was determined for each sample. A further study of adsorptive properties of the most efficient activated carbon (JPS was made by contacting it with standard solutions of methylene blue, acetic acid and potassium permanganate. The effects of mass of active carbon used, initial concentration of the solute and the pH of the solution on adsorption performance were investigated. Ash content and percentage fixed carbon were determined for two of the activated carbons (JPS and JCS with the highest adsorptive capacity. Equilibrium study on adsorption was carried out and the adsorption data were analyzed using the Langmuir isotherm. The results obtained indicate that activated carbons from the fruit pericarp and the seed coat of J. curcas can be used as high performance adsorbents with the fruit pericarp activated carbon showing the higher adsorption capacity. The adsorption data fitted well to the Langmuir model and adsorptive area of 824–910 m2/g was obtained for the activated carbon.DOI: http://dx.doi.org/10.4314/bcse.v26i2.2

  1. Sticking to cellulose: exploiting Arabidopsis seed coat mucilage to understand cellulose biosynthesis and cell wall polysaccharide interactions.

    Griffiths, Jonathan S; North, Helen M

    2017-05-01

    The cell wall defines the shape of cells and ultimately plant architecture. It provides mechanical resistance to osmotic pressure while still being malleable and allowing cells to grow and divide. These properties are determined by the different components of the wall and the interactions between them. The major components of the cell wall are the polysaccharides cellulose, hemicellulose and pectin. Cellulose biosynthesis has been extensively studied in Arabidopsis hypocotyls, and more recently in the mucilage-producing epidermal cells of the seed coat. The latter has emerged as an excellent system to study cellulose biosynthesis and the interactions between cellulose and other cell wall polymers. Here we review some of the major advances in our understanding of cellulose biosynthesis in the seed coat, and how mucilage has aided our understanding of the interactions between cellulose and other cell wall components required for wall cohesion. Recently, 10 genes involved in cellulose or hemicellulose biosynthesis in mucilage have been identified. These discoveries have helped to demonstrate that xylan side-chains on rhamnogalacturonan I act to link this pectin directly to cellulose. We also examine other factors that, either directly or indirectly, influence cellulose organization or crystallization in mucilage. © 2017 INRA. New Phytologist © 2017 New Phytologist Trust.

  2. Determination of the Elemental Composition of the Pulp, Seed and Fruit Coat of Black Velvet Tamarind (Dialium guineense) using Instrumental Neutron Activation Analysis

    D.O. Ofosu; N.S. Opata; O. Gyampo; G.T. Odamtten

    2013-01-01

    This study sought to provide data on the mineral composition of the fruit pulp, outer coat and seed of Dialiu guineense in an attempt to widen the sources of minerals for the rural population of sub-Saharan Africa. The elemental composition of the pulp, seed and fruit coat of black velvet tamarind (Dialiu guineense) was determined using Neutron Activation Analysis. The fruit pulp contained manganese (23.40±1.57µg/g), chlorine (205.40±37.59 &mu g/g), calcium (5671.00±2132.30 &mug/g), sodium (3...

  3. Precursor-controlled synthesis of hierarchical ZnO nanostructures, using oligoaniline-coated Au nanoparticle seeds

    Krishnan, Deepti; Pradeep, T.

    2009-07-01

    Shape-selected synthesis of a large number of zinc oxide (ZnO) nano- and microstructures was achieved by the seed-mediated growth of oligoaniline-coated gold nanoparticle precursors. Distinctive ZnO structures such as nanoplates, nanospheres, microstars, microflowers, microthorns and micromultipods were synthesized by this method. Slightly different shapes were obtained in the absence of the seed solution. This is a fast, low temperature (60 °C) and biomimetic route to make a wide variety of structures. The structure and morphology of the nanostructures were studied by transmission electron microscopy (TEM) and scanning electron microscopy (SEM), respectively. Raman spectroscopy, Fourier-transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) were utilized for the characterization of the nanostructures. A growth mechanism for these nanostructures was proposed based on these results. The concentrations of the reacting species were the main parameter causing the changes in the morphologies. The variation in morphologies of these structures is believed to be due to the ability of the seed solution as well as polyvinylpyrrolidone (PVP) to selectively suppress/depress the growth of certain planes, allowing growth to occur only in certain specific directions. Changes in the amount of growth nuclei with varying sodium hydroxide (NaOH) concentration is also seen to affect the morphology of these structures.

  4. Automated MALDI Matrix Coating System for Multiple Tissue Samples for Imaging Mass Spectrometry

    Mounfield, William P.; Garrett, Timothy J.

    2012-03-01

    Uniform matrix deposition on tissue samples for matrix-assisted laser desorption/ionization (MALDI) is key for reproducible analyte ion signals. Current methods often result in nonhomogenous matrix deposition, and take time and effort to produce acceptable ion signals. Here we describe a fully-automated method for matrix deposition using an enclosed spray chamber and spray nozzle for matrix solution delivery. A commercial air-atomizing spray nozzle was modified and combined with solenoid controlled valves and a Programmable Logic Controller (PLC) to control and deliver the matrix solution. A spray chamber was employed to contain the nozzle, sample, and atomized matrix solution stream, and to prevent any interference from outside conditions as well as allow complete control of the sample environment. A gravity cup was filled with MALDI matrix solutions, including DHB in chloroform/methanol (50:50) at concentrations up to 60 mg/mL. Various samples (including rat brain tissue sections) were prepared using two deposition methods (spray chamber, inkjet). A linear ion trap equipped with an intermediate-pressure MALDI source was used for analyses. Optical microscopic examination showed a uniform coating of matrix crystals across the sample. Overall, the mass spectral images gathered from tissues coated using the spray chamber system were of better quality and more reproducible than from tissue specimens prepared by the inkjet deposition method.

  5. Recobrimento de sementes de brócolos e salsa com coberturas e filmes biodegradáveis Covering broccoli and parsley seeds with biodegradable films and coatings

    Patrícia Sayuri Tanada-Palmu

    2005-01-01

    Full Text Available O objetivo deste trabalho foi a comparação do desempenho de sementes de brócolos e de salsa cobertas ou aderidas a filmes biodegradáveis de quitosana e gelatina. Inicialmente, determinou-se o número ótimo de camadas de cobertura e a espessura do filme, para não comprometer a germinação das sementes. O desempenho foi avaliado por meio da capacidade de germinação e do vigor, e pelas massas de material fresco e seco de plantas com cerca de 30 dias. Observou-se germinação inferior ao controle nas sementes inseridas às fitas. O recobrimento de sementes obteve bons resultados em termos de vigor e desenvolvimento das plantas. Pelos resultados indicados, verificou-se que o recobrimento de sementes, com coberturas biodegradáveis, pode ser promissor, devido à melhoria na germinação das sementes recobertas e também no desenvolvimento das plantas quando comparadas às sementes sem tratamento.The objective of this work was to compare the performance of broccoli and parsley seeds coated or adhered to biodegradable films of gelatin and chitosan. Initially, the optimum number of coating layers and the thickness of the film were determined in order not to affect the germination of seeds. The performance was evaluated by germination capacity and vigor, and by fresh and dry weight of plants with 30 days. The seeds inserted into the films of gelatin and chitosan showed lower germination results than the control seeds. The coating of the seeds with gelatin and chitosan coatings of had good results in terms of vigor and development of plants. The results indicated that coating the seeds with biodegradable coatings can be promising due to the improvement of the germination of the coated seeds and the development of the plants when compared to the seeds with not treated.

  6. Synthesis of Ag-coated polystyrene colloids by an improved surface seeding and shell growth technique

    Tian Chungui; Wang Enbo; Kang Zhenhui; Mao Baodong; Zhang Chao; Lan Yang; Wang Chunlei; Song Yanli

    2006-01-01

    In this paper, an improved surface seeding and shell growth technique was developed to prepare Ag-polystyrene core shell composite. Polyethyleneimine (PEI) could act as the linker between Ag ions (Ag nanoparticles) and polystyrene (PS) colloids and the reducing agent in the formation of Ag nanoparticles. Due to the multi-functional characteristic of PEI, Ag seeds formed in-situ and were immobilized on the surface of PEI-modified PS colloids and no free Ag clusters coexist with the Ag 'seeding' PS colloids in the system. Then, the additional agents could be added into the resulting dispersions straightly to produce a thick Ag nanoshell. The Ag nanoshell with controllable thickness was formed on the surface of PS by the 'one-pot' surface seeding and shell growth method. The Ag-coverage increased gradually with the increasing of mass ratio of AgNO 3 /PS. The optical properties of the Ag-PS colloids could be tailored by changing the coverage of Ag. - Graphical abstract: An improved surface seeding and shell growth technique was developed to prepare Ag-polystyrene core shell composite. The optical properties of the Ag-PS colloids could be tailored by changing the coverage of Ag. Display Omitted

  7. Local evolution of seed flotation in Arabidopsis.

    Susana Saez-Aguayo

    2014-03-01

    Full Text Available Arabidopsis seeds rapidly release hydrophilic polysaccharides from the seed coat on imbibition. These form a heavy mucilage layer around the seed that makes it sink in water. Fourteen natural Arabidopsis variants from central Asia and Scandinavia were identified with seeds that have modified mucilage release and float. Four of these have a novel mucilage phenotype with almost none of the released mucilage adhering to the seed and the absence of cellulose microfibrils. Mucilage release was modified in the variants by ten independent causal mutations in four different loci. Seven distinct mutations affected one locus, coding the MUM2 β-D-galactosidase, and represent a striking example of allelic heterogeneity. The modification of mucilage release has thus evolved a number of times independently in two restricted geographical zones. All the natural mutants identified still accumulated mucilage polysaccharides in seed coat epidermal cells. Using nuclear magnetic resonance (NMR relaxometry their production and retention was shown to reduce water mobility into internal seed tissues during imbibition, which would help to maintain seed buoyancy. Surprisingly, despite released mucilage being an excellent hydrogel it did not increase the rate of water uptake by internal seed tissues and is more likely to play a role in retaining water around the seed.

  8. Poly(dopamine) coating to biodegradable polymers for bone tissue engineering.

    Tsai, Wei-Bor; Chen, Wen-Tung; Chien, Hsiu-Wen; Kuo, Wei-Hsuan; Wang, Meng-Jiy

    2014-02-01

    In this study, a technique based on poly(dopamine) deposition to promote cell adhesion was investigated for the application in bone tissue engineering. The adhesion and proliferation of rat osteoblasts were evaluated on poly(dopamine)-coated biodegradable polymer films, such as polycaprolactone, poly(l-lactide) and poly(lactic-co-glycolic acid), which are commonly used biodegradable polymers in tissue engineering. Cell adhesion was significantly increased to a plateau by merely 15 s of dopamine incubation, 2.2-4.0-folds of increase compared to the corresponding untreated substrates. Cell proliferation was also greatly enhanced by poly(dopamine) deposition, indicated by shortened cell doubling time. Mineralization was also increased on the poly(dopamine)-deposited surfaces. The potential of poly(dopamine) deposition in bone tissue engineering is demonstrated in this study.

  9. Progress report on understanding AFIS seed coat nep levels in pre-opened slivers on the Advanced Fiber Information System (AFIS)

    The Advanced Fiber Information System (AFIS) is utilized in this segment of the research project to study how seed coat neps are measured. A patent search was conducted, and studied to assist with the understanding of the AFIS measurement of this impurity in raw cotton. The older AFIS 2 is primari...

  10. Seed coat removal improves Fe bioavailability in cooked lentils: studies using an in vitro digestion/Caco-2 cell culture model

    This study examined the range of Fe concentration and relative Fe bioavailability of 24 varieties of cooked lentils, as well as the impact of seed coat removal on lentil Fe nutritional quality. Relative Fe bioavailability was assessed by the in vitro/Caco-2 cell culture method. While Fe concentrat...

  11. Microporous dermal-mimetic electrospun scaffolds pre-seeded with fibroblasts promote tissue regeneration in full-thickness skin wounds.

    Paul P Bonvallet

    Full Text Available Electrospun scaffolds serve as promising substrates for tissue repair due to their nanofibrous architecture and amenability to tailoring of chemical composition. In this study, the regenerative potential of a microporous electrospun scaffold pre-seeded with dermal fibroblasts was evaluated. Previously we reported that a 70% collagen I and 30% poly(Ɛ-caprolactone electrospun scaffold (70:30 col/PCL containing 160 μm diameter pores had favorable mechanical properties, supported fibroblast infiltration and subsequent cell-mediated deposition of extracellular matrix (ECM, and promoted more rapid and effective in vivo skin regeneration when compared to scaffolds lacking micropores. In the current study we tested the hypothesis that the efficacy of the 70:30 col/PCL microporous scaffolds could be further enhanced by seeding scaffolds with dermal fibroblasts prior to implantation into skin wounds. To address this hypothesis, a Fischer 344 (F344 rat syngeneic model was employed. In vitro studies showed that dermal fibroblasts isolated from F344 rat skin were able to adhere and proliferate on 70:30 col/PCL microporous scaffolds, and the cells also filled the 160 μm pores with native ECM proteins such as collagen I and fibronectin. Additionally, scaffolds seeded with F344 fibroblasts exhibited a low rate of contraction (~14% over a 21 day time frame. To assess regenerative potential, scaffolds with or without seeded F344 dermal fibroblasts were implanted into full thickness, critical size defects created in F344 hosts. Specifically, we compared: microporous scaffolds containing fibroblasts seeded for 4 days; scaffolds containing fibroblasts seeded for only 1 day; acellular microporous scaffolds; and a sham wound (no scaffold. Scaffolds containing fibroblasts seeded for 4 days had the best response of all treatment groups with respect to accelerated wound healing, a more normal-appearing dermal matrix structure, and hair follicle regeneration

  12. Technical note: preservation of tissues and gastrointestinal tract portions by plastic coating or plastination.

    Pond, K R; Holladay, S D; Luginbuhl, J M

    1992-04-01

    Two methods to preserve gastrointestinal tract (GIT) organs and tissues, plastic coating (PC) and plastination (PN), were investigated and compared. Specimens to be preserved were removed from animals within 2 h of death and immediately cleaned with water. Digesta contents were removed by flushing desired portions of GIT with water until the exiting water was clear. In the PC method, cleaned specimens were dehydrated by immersion in an isopropanol solution, dried with forced air after positioning and orientation as in situ, and finally coated on the outer and inner surfaces with a clear plastic material. In the PN procedure, specimens were filled with, and submerged in, a low-formaldehyde fixative, then dehydrated by immersion in a cold acetone solution. Dehydrated specimens were immersed in silicone and placed in a freeze drier for impregnation under low vacuum, followed by overnight gas curing with a silicone crosslinker. Finally, viewing windows were cut out with a scalpel in GIT preserved by both methods. Preserved GIT and tissues had an appearance similar to their appearance in vivo. The PC method was simple and inexpensive. Plastinated specimens were more flexible, durable, and lifelike than those preserved by the PC method. In addition, many body parts, such as muscles, nerves, bones, ligaments, and central nervous system specimens, were preserved by PN. Both methods were found to be useful tools for postmortem studies of tissues and GIT organs.

  13. Sorption study of methylene blue on activated carbon prepared from Jatropha curcas and Terminalia catappa seed coats

    Ismaila Olalekan Saheed

    2016-12-01

    Full Text Available This research work targets the effectiveness of the prepared activated carbon from Jatropha curcas and Terminalia catappa seed coats for the sorption of methylene blue (MB from aqueous solution. The prepared Jatropha activated carbon (JAC and Terminalia activated carbon (TAC were characterised using Fourier transform infrared spectroscopy (FTIR, Scanning electron microscopy (SEM and Branauer- Emmett-Teller (BET surface area analysis. Effect of initial concentration, pH, contact time, adsorbent dose and temperature on the sorption experiments were studied and the adsorption capacity of these adsorbents were found to be 37.84 mg/g and 17.44 mg/g for methylene blue uptake by JAC and TAC respectively. The experimental data were analysed using Langmuir, Fruendlich, and Dubinin-Radushkevich isotherms. The data fitted best into Langmuir isotherm for Methylene blue-JAC and Methylene blue-TAC systems. The kinetic studies fitted into pseudo second order kinetics model. The process chemistry was exothermic.

  14. Eco-dyeing using Tamarindus indica L. seed coat tannin as a natural mordant for textiles with antibacterial activity

    K.H. Prabhu

    2014-12-01

    Full Text Available Tamarind seed coat tannin was extracted and its tannin class was determined. The extracted tannin was employed as a natural mordant alone and in combination with metal mordant namely copper sulphate for cotton, wool and silk fabrics and dyed using natural dyes namely turmeric and pomegranate rind. The colour strength, colour coordinates, wash and light fastness were evaluated and compared for all the three fabrics with and without mordanting. The pre-mordanted fabrics on dyeing gave better colour strength, wash and light fastness than those dyeing obtained without mordanting. The total phenolic content of the extract was calculated and minimum inhibition concentration was 1% against both the Staphylococcus aureus and Escherichia coli bacteria. The mordanted and dyed fabrics resulted in good antibacterial activity up to 20 washes, when natural mordant was used along with 0.5% and 1% copper sulphate mordant and dyed with natural dyes.

  15. Structure of soybean seed coat peroxidase: a plant peroxidase with unusual stability and haem-apoprotein interactions

    Henriksen, A; Mirza, O; Indiani, C

    2001-01-01

    Soybean seed coat peroxidase (SBP) is a peroxidase with extraordinary stability and catalytic properties. It belongs to the family of class III plant peroxidases that can oxidize a wide variety of organic and inorganic substrates using hydrogen peroxide. Because the plant enzyme is a heterogeneous...... glycoprotein, SBP was produced recombinant in Escherichia coli for the present crystallographic study. The three-dimensional structure of SBP shows a bound tris(hydroxymethyl)aminomethane molecule (TRIS). This TRIS molecule has hydrogen bonds to active site residues corresponding to the residues that interact...... with the small phenolic substrate ferulic acid in the horseradish peroxidase C (HRPC):ferulic acid complex. TRIS is positioned in what has been described as a secondary substrate-binding site in HRPC, and the structure of the SBP:TRIS complex indicates that this secondary substrate-binding site could...

  16. Removal of Reactive-dyes from Textile Plant Effluents Using Polyvinyl Alcohol-coated Active Carbon obtained from Sesame Seeds

    Sheida Moradi- Nasab

    2016-09-01

    Full Text Available In this study, the adsorption of active carbon derived from waste sesame seeds coated with polyvinyl alcohol (AC/PVA was investigated for removing red 198 and blue 19 reactive dyes from textile effluents. The batch process was carried out to identify such parameters as pH, adsorbent dose, contact time, and initial dye concentration involved in the dye removal adsorption capacity of AC/PVA. Also, batch kinetic and isotherm experiments were conducted. Results indicated that the maximum dye removal was obtained in an acidic pH over 90 min of contact time and that adsorption rates followed the pseudo-second-order kinetics. Blue and red dye concentrations were determined using the spectrophotometric method at 590 and 517 nm, respectively. It may be concluded that AC/PVA is capable of removing blue and red reactive dyes and can be used as an efficient, cheap, and accessible adsorbent for treating textile effluents.

  17. Fabrication and design of bioactive agent coated, highly-aligned electrospun matrices for nerve tissue engineering: Preparation, characterization and application

    Lee, Sang Jin; Heo, Min; Lee, Donghyun; Heo, Dong Nyoung; Lim, Ho-Nam; Kwon, Il Keun

    2017-12-01

    In this study, we designed highly-aligned thermoplastic polycarbonate urethane (PCU) fibrous scaffolds coated with bioactive compounds, such as Poly-L-Lysine (PLL) and Poly-L-Ornithine (PLO), to enhance cellular adhesion and directivity. These products were characterized by scanning electron microscope (SEM) analysis which demonstrated that highly aligned fiber strands were formed without beads when coated onto a mandrel rotating at 1800 rpm. During in vitro cell test, PLO-coated, aligned PCU scaffolds were found to have significantly higher proliferation rates than PLL coated and bare PCU scaffolds. Interestingly, dental pulp stem cells (DPSCs) were observed to stretch along the longitudinal axis parallel to the cell direction on highly aligned scaffolds. These results clearly confirm that our strategy may suggest a useful paradigm by inducing neural tissue repair as a means to remodeling and healing of tissue for restorative procedures in neural tissue engineering.

  18. A Comparative Study on Structural and Optical Properties of ZnO Micro-Nanorod Arrays Grown on Seed Layers Using Chemical Bath Deposition and Spin Coating Methods

    Sibel MORKOÇ KARADENİZ

    2016-11-01

    Full Text Available In this study, Zinc Oxide (ZnO seed layers were prepared on Indium Tin Oxide (ITO substrates by using Chemical Bath Deposition (CBD method and Sol-gel Spin Coating (SC method. ZnO micro-nanorod arrays were grown on ZnO seed layers by using Hydrothermal Synthesis method. Seed layer effects of structural and optical properties of ZnO arrays were characterized. X-ray diffractometer (XRD, Scanning Electron Microscopy (SEM and Ultraviolet Visible (UV-Vis Spectrometer were used for analyses. ZnO micro-nanorod arrays consisted of a single crystalline wurtzite ZnO structure for each seed layer. Besides, ZnO rod arrays were grown smoothly and vertically on SC seed layer, while ZnO rod arrays were grown randomly and flower like structures on CBD seed layer. The optical absorbance peaks found at 422 nm wavelength in the visible region for both ZnO arrays. Optical bandgap values were determined by using UV-Vis measurements at 3.12 and 3.15 eV for ZnO micro-nanorod arrays on CBD seed layer and for ZnO micro-nanorod arrays on SC-seed layer respectively.DOI: http://dx.doi.org/10.5755/j01.ms.22.4.13443

  19. Identification of candidate genes and molecular markers for heat-induced brown discoloration of seed coats in cowpea [Vigna unguiculata (L.) Walp].

    Pottorff, Marti; Roberts, Philip A; Close, Timothy J; Lonardi, Stefano; Wanamaker, Steve; Ehlers, Jeffrey D

    2014-05-01

    Heat-induced browning (Hbs) of seed coats is caused by high temperatures which discolors the seed coats of many legumes, affecting the visual appearance and quality of seeds. The genetic determinants underlying Hbs in cowpea are unknown. We identified three QTL associated with the heat-induced browning of seed coats trait, Hbs-1, Hbs-2 and Hbs-3, using cowpea RIL populations IT93K-503-1 (Hbs positive) x CB46 (hbs negative) and IT84S-2246 (Hbs positive) x TVu14676 (hbs negative). Hbs-1 was identified in both populations, accounting for 28.3% -77.3% of the phenotypic variation. SNP markers 1_0032 and 1_1128 co-segregated with the trait. Within the syntenic regions of Hbs-1 in soybean, Medicago and common bean, several ethylene forming enzymes, ethylene responsive element binding factors and an ACC oxidase 2 were observed. Hbs-1 was identified in a BAC clone in contig 217 of the cowpea physical map, where ethylene forming enzymes were present. Hbs-2 was identified in the IT93K-503-1 x CB46 population and accounted for of 9.5 to 12.3% of the phenotypic variance. Hbs-3 was identified in the IT84S-2246 x TVu14676 population and accounted for 6.2 to 6.8% of the phenotypic variance. SNP marker 1_0640 co-segregated with the heat-induced browning phenotype. Hbs-3 was positioned on BAC clones in contig512 of the cowpea physical map, where several ACC synthase 1 genes were present. The identification of loci determining heat-induced browning of seed coats and co-segregating molecular markers will enable transfer of hbs alleles into cowpea varieties, contributing to higher quality seeds.

  20. The role of the seed coat in the light sensivity in Raphanus sativus L. cv. redondo gigante seeds O papel do tegumento na sensibilidade à luz em sementes de Raphanus sativus L. cv. redondo gigante

    Maura Lúcia Costa Gonçalves

    1997-07-01

    Full Text Available The role of the seed coat in the light sensitivity of seeds of Raphanus sativus L. cv. redondo gigante was analysed by germination tests of intact and naked seeds. Far-red light caused high inhibition of seed germination, while under white and red lights low inhibition was found. Naked seeds presented no light sensitivity with high percentage germination under light and darkness. However, incubation of naked seeds in -0.6MPa polyethylene glycol solution resulted in light inhibition as observed in intact seeds. The analysis of the seed coat transmitted light indicated that the filtered light presented the same photoequilibrium of phytochrome when compared to the white light, with a decrease of only 33% in the light irradiance which reaches the embryo.O papel do tegumento sobre a sensibilidade à luz em sementes de Raphanus sativus L. cv. redondo gigante foi analisado por testes de germinação de sementes intactas e nuas. A luz vermelho-extremo inibiu fortemente a germinação, enquanto as luzes branca e vermelha apresentaram baixa inibição. Por outro lado, sementes nuas não apresentaram sensibilidade à luz, com alta porcentagem de germinação tanto na luz como no escuro. Entretanto, a incubação das sementes nuas em condições de estresse em solução de polietilenoglicol a -0,6MPa, resultou em inibição na luz, como observadas em sementes intactas. A análise da luz transmitida pelo tegumento das sementes indicou que a luz filtrada apresenta o mesmo fotoequilíbrio teórico do fitocromo obtido na luz branca, com um decréscimo em apenas 33% da irradiância que atinge o embrião.

  1. Fate of plutonium intercepted by leaf surfaces: leachability and translocation to seed and root tissues

    Cataldo, D.A.; Klepper, E.L.; Craig, D.K.

    1975-01-01

    A low windspeed plant exposure chamber was employed for the generation and deposition of particulate 238 Pu as nitrate, citrate, and oxide (fresh and aged) onto foliage of Phaseolus vulgaris. Physical deposition characteristics and particle sizing were routinely measured and deposition parameters calculated. At wind speeds of 0.42 cm sec -1 , deposition velocities for these compounds were of the order 10 -3 cm sec -1 with deposition rates onto exposed foliage of 0.26 to 0.52 pg 238 Pu cm -2 sec -1 . The fate of surface deposited Pu compounds with respect to chemical modification and leachability was evaluated by leaching with synthetic rainwater and 0.1 percent HNO 3 solutions. Leaching of contaminated foliage with acidified solutions resulted in a 1-to-9 fold increase in Pu removal from foliar surfaces, depending upon chemical form, as compared to rainwater. Sequential leaching of foliage at 1, 7, 14, or 21 days after contamination indicated a reduced leachability of surface deposits with residence time on the leaf. The extent of leaching and concentration of soluble component was dependent on chemical form supplied (Pu-citrate greater than -nitrate greater than -aged oxide greater than -fresh oxide). The bioavailability of Pu as measured by translocation of foliarly deposited plutonium to root and seed tissue was markedly affected by the presence of a solution vector (i.e., simulated rainfall), and also the timing of its application

  2. Morpho-anatomy, imbibition, viability and germination of the seed of Anadenanthera colubrina var. cebil (Fabaceae).

    Varela, Rodolfo Omar; Albornoz, Patricia Liliana

    2013-09-01

    Seed biology is a relevant aspect of tropical forests because it is central to the understanding of processes of plant establishment, succession and natural regeneration. Anadenanthera colubrina var. cebil is a timber tree from South America that produces large seeds with thin weak teguments, which is uncommon among legumes. This study describes the morphology and anatomy of the seed coat, the viability, imbibition, and germination in this species. Seeds used during the essays came from 10 trees that grow naturally in Horco Molle, province of Tucumán, Argentina. Seed morphology was described from a sample of 20 units. The seed coat surface was examined with a scanning electron microscope. Transverse sections of hydrated and non-hydrated seeds were employed to describe the histological structure of the seed coat. Hydration, viability and germination experiments were performed under laboratory controlled conditions; and the experimental design consisted of 10 replicas of 10 seeds each. Viability and germination tests were conducted using freshly fallen seeds and seeds stored for five months. Morphologically the seeds of A. colubrina var. cebil are circular to subcircular, laterally compressed, smooth, bright brown and have a horseshoe fissure line (= pleurogram) on both sides. The seed coat comprises five tissue layers and a double (external and internal) cuticle. The outer cuticle (on the epidermis) is smooth and interrupted by microcracks and pores of variable depth. The epidermis consists of macroesclereids with non-lignified secondary walls. This layer is separated from the underlying ones during seed hydration. The other layers of internal tissues are comprised of osteosclereids, parenchyma, osteosclereids, and macrosclereids. The percentage of viable seeds was 93%, decreasing to 75% in seeds with five months old. Seed mass increased 76% after the first eight hours of hydration. Germination percentage was 75% after 76 hours. Germination of seeds stored for five

  3. Adhesion, vitality and osteogenic differentiation capacity of adipose derived stem cells seeded on nitinol nanoparticle coatings.

    Sarah Strauss

    Full Text Available Autologous cells can be used for a bioactivation of osteoimplants to enhance osseointegration. In this regard, adipose derived stem cells (ASCs offer interesting perspectives in implantology because they are fast and easy to isolate. However, not all materials licensed for bone implants are equally suited for cell adhesion. Surface modifications are under investigation to promote cytocompatibility and cell growth. The presented study focused on influences of a Nitinol-nanoparticle coating on ASCs. Possible toxic effects as well as influences on the osteogenic differentiation potential of ASCs were evaluated by viability assays, scanning electron microscopy, immunofluorescence and alizarin red staining. It was previously shown that Nitinol-nanoparticles exert no cell toxic effects to ASCs either in soluble form or as surface coating. Here we could demonstrate that a Nitinol-nanoparticle surface coating enhances cell adherence and growth on Nitinol-surfaces. No negative influence on the osteogenic differentiation was observed. Nitinol-nanoparticle coatings offer new possibilities in implantology research regarding bioactivation by autologous ASCs, respectively enhancement of surface attraction to cells.

  4. Synthesis of chitosan/hydroxyapatite membranes coated with hydroxycarbonate apatite for guided tissue regeneration purposes

    Fraga, Alexandre Felix [Federal University of Sao Carlos, Department of Materials Engineering, DEMa, UFSCar, Sao Carlos, SP (Brazil); Almeida Filho, Edson de, E-mail: edsonafilho@yahoo.com.br [University Estadual Paulista, Department of Physical Chemistry - IQ, Araraquara, SP (Brazil); Silva Rigo, Eliana Cristina da [University of Sao Paulo, Department of Basic Science - FZEA-ZAB, Pirassununga, SP (Brazil); Ortega Boschi, Anselmo [Federal University of Sao Carlos, Department of Materials Engineering, DEMa, UFSCar, Sao Carlos, SP (Brazil)

    2011-02-15

    Chitosan, which is a non-toxic, biodegradable and biocompatible biopolymer, has been widely researched for several applications in the field of biomaterials. Calcium phosphate ceramics stand out among the so-called bioceramics for their absence of local or systemic toxicity, their non-response to foreign bodies or inflammations, and their apparent ability to bond to the host tissue. Hydroxyapatite (HA) is one of the most important bioceramics because it is the main component of the mineral phase of bone. The aim of this work was to produce chitosan membranes coated with hydroxyapatite using the modified biomimetic method. Membranes were synthesized from a solution containing 2% of chitosan in acetic acid (weight/volume) via the solvent evaporation method. Specimens were immersed in a sodium silicate solution and then in a 1.5 SBF (simulated body fluid) solution. The crystallinity of the HA formed over the membranes was correlated to the use of the nucleation agent (the sodium silicate solution itself). Coated membranes were characterized by means of scanning electron microscopy - SEM, X-ray diffraction - XRD, and Fourier transform infrared spectroscopy - FTIR. The results indicate a homogeneous coating covering the entire surface of the membrane and the production of a semi-crystalline hydroxyapatite layer similar to the mineral phase of human bone.

  5. Reinforced nanohydroxyapatite/polyamide66 scaffolds by chitosan coating for bone tissue engineering.

    Huang, Di; Zuo, Yi; Zou, Qin; Wang, Yanying; Gao, Shibo; Wang, Xiaoyan; Liu, Haohuai; Li, Yubao

    2012-01-01

    High porosity of scaffold is always accompanied by poor mechanical property; the aim of this study was to enhance the strength and modulus of the highly porous scaffold of nanohydroxyapatite/polyamide66 (n-HA/PA66) by coating chitosan (CS) and to investigate the effect of CS content on the scaffold physical properties and cytological properties. The results show that CS coating can reinforce the scaffold effectively. The compress modulus and strength of the CS coated n-HA/PA66 scaffolds are improved to 32.71 and 2.38 MPa, respectively, being about six times and five times of those of the uncoated scaffolds. Meanwhile, the scaffolds still exhibit a highly interconnected porous structure and the porosity is approximate about 78%, slightly lower than the value (84%) of uncoated scaffold. The cytological properties of scaffolds were also studied in vitro by cocultured with osteoblast-like MG63 cells. The cytological experiments demonstrate that the reinforced scaffolds display favorable cytocompatibility and have no significant difference with the uncoated n-HA/PA66 scaffolds. The CS reinforced n-HA/PA66 scaffolds can meet the basic mechanical requirement of bone tissue engineering scaffold, presenting a potential for biomedical application in bone reconstruction and repair. Copyright © 2011 Wiley Periodicals, Inc.

  6. Development of PLGA-coated β-TCP scaffolds containing VEGF for bone tissue engineering.

    Khojasteh, Arash; Fahimipour, Farahnaz; Eslaminejad, Mohamadreza Baghaban; Jafarian, Mohammad; Jahangir, Shahrbanoo; Bastami, Farshid; Tahriri, Mohammadreza; Karkhaneh, Akbar; Tayebi, Lobat

    2016-12-01

    Bone tissue engineering is sought to apply strategies for bone defects healing without limitations and short-comings of using either bone autografts or allografts and xenografts. The aim of this study was to fabricate a thin layer poly(lactic-co-glycolic) acid (PLGA) coated beta-tricalcium phosphate (β-TCP) scaffold with sustained release of vascular endothelial growth factor (VEGF). PLGA coating increased compressive strength of the β-TCP scaffolds significantly. For in vitro evaluations, canine mesenchymal stem cells (cMSCs) and canine endothelial progenitor cells (cEPCs) were isolated and characterized. Cell proliferation and attachment were demonstrated and the rate of cells proliferation on the VEGF released scaffold was significantly more than compared to the scaffolds with no VEGF loading. A significant increase in expression of COL1 and RUNX2 was indicated in the scaffolds loaded with VEGF and MSCs compared to the other groups. Consequently, PLGA coated β-TCP scaffold with sustained and localized release of VEGF showed favourable results for bone regeneration in vitro, and this scaffold has the potential to use as a drug delivery device in the future. Copyright © 2016. Published by Elsevier B.V.

  7. Comparative study of different seeding methods based on a multilayer SIS scaffold: Which is the optimal procedure for urethral tissue engineering?

    Lv, Xiang-Guo; Feng, Chao; Fu, Qiang; Xie, Hong; Wang, Ying; Huang, Jian-Wen; Xie, Min-Kai; Atala, Anthony; Xu, Yue-Min; Zhao, Wei-Xin

    2016-08-01

    Seeding cells efficiently and uniformly onto three-dimensional scaffolds is key for engineering urological tissue with an ideal histological structure in vitro. Using an optimized seeding technology allows cells to cooperate positively with biomaterials, resulting in successful reconstructive surgery. In this study, we used four different types of seeding methods in a scaffold of small intestinal submucosa (SIS). The efficiency of the sandwich co-culture, layered co-culture, static-agitation seeding, and centrifugation seeding methods were compared. It was demonstrated that dynamic seeding methods, such as static-agitation and centrifugation seeding, had superior cell-matrix infiltration and mechanical properties. The seeding time could be reduced by 5-10 min using the centrifugation method. Furthermore, functional assessment of the barriers revealed that this function was better in the centrifugation seeding method than in any other method. Our study suggests that both the static-agitation and centrifugation methods are suitable for cell seeding on SIS. There is no significant change in surface area of SIS with different seeding methods. These methods reinforce the physiological and mechanical properties of biomaterials and allow for the future in vivo study of tissue-engineered urethral reconstruction. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1098-1108, 2016. © 2015 Wiley Periodicals, Inc.

  8. Design and rapid prototyping of DLC coated fractal surfaces for tissue engineering applications

    Diaz-Lantada, A; Mosquera, A; Endrino, J L; Lafont, P

    2010-01-01

    Several medical devices (both implantable and for in vitro diagnosis) benefit greatly from having microtextured surfaces that help to improve and promote phenomena such as osteointegracion and cell / tissue growth on the surface of a device. Normally, the use of abrasives or chemical attacks are employed for obtaining such surface microtextures, however, it is sometimes difficult to precisely control the final surface characteristics (porosity, roughness, among others) and consequently the related biological aspects. In this work, we propose an alternative process based on the use of fractal surface models for designing special surfaces, which helps controlling the desired contact properties (from the design stage) in multiple applications within biomedical engineering, especially regarding tissue engineering tasks. Manufacturing can be directly accomplished by means of rapid prototyping technologies. This method supposes a focus change from a conventional 'top-down' to a more versatile 'bottom-up' approach. Finally, in order to improve the possible biological response, the surfaces of the designed devices were coated with hydrogen-free amorphous carbon (a-C) thin films, known to be highly biocompatible materials. The films were deposited at room temperature using the vacuum filter cathodic arc technique. Our first prototypes have helped verify the viability of the approach and to validate the design, manufacturing and coating processes.

  9. Design and rapid prototyping of DLC coated fractal surfaces for tissue engineering applications

    Diaz-Lantada, A; Mosquera, A; Endrino, J L; Lafont, P, E-mail: adiaz@etsii.upm.es

    2010-11-01

    Several medical devices (both implantable and for in vitro diagnosis) benefit greatly from having microtextured surfaces that help to improve and promote phenomena such as osteointegracion and cell / tissue growth on the surface of a device. Normally, the use of abrasives or chemical attacks are employed for obtaining such surface microtextures, however, it is sometimes difficult to precisely control the final surface characteristics (porosity, roughness, among others) and consequently the related biological aspects. In this work, we propose an alternative process based on the use of fractal surface models for designing special surfaces, which helps controlling the desired contact properties (from the design stage) in multiple applications within biomedical engineering, especially regarding tissue engineering tasks. Manufacturing can be directly accomplished by means of rapid prototyping technologies. This method supposes a focus change from a conventional 'top-down' to a more versatile 'bottom-up' approach. Finally, in order to improve the possible biological response, the surfaces of the designed devices were coated with hydrogen-free amorphous carbon (a-C) thin films, known to be highly biocompatible materials. The films were deposited at room temperature using the vacuum filter cathodic arc technique. Our first prototypes have helped verify the viability of the approach and to validate the design, manufacturing and coating processes.

  10. Identification of SSR markers closely linked to the yellow seed coat color gene in heading Chinese cabbage (Brassica rapa L. ssp. pekinensis).

    Ren, Yanjing; Wu, Junqing; Zhao, Jing; Hao, Lingyu; Zhang, Lugang

    2017-02-15

    Research on the yellow-seeded variety of heading Chinese cabbage will aid in broadening its germplasm resources and lay a foundation for AA genome research in Brassica crops. Here, an F 2 segregating population of 1575 individuals was constructed from two inbred lines (brown-seeded '92S105' and yellow-seeded '91-125'). This population was used to identify the linkage molecular markers of the yellow seed coat trait using simple sequence repeat (SSR) techniques combined with a bulk segregant analysis (BSA). Of the 144 SSR primer pairs on the A01-A10 chromosomes from the Brassica database (http://brassicadb.org/brad/), two pairs located on the A06 chromosome showed polymorphic bands between the bulk DNA pools of eight brown-seeded and eight yellow-seeded F 2 progeny. Based on the genome sequence, 454 SSR markers were designed to A06 to detect these polymorphic bands and were synthesized. Six SSR markers linked to the seed coat color gene were successfully selected for fine linkage genetic map construction, in which the two closest flanking markers, SSR449a and SSR317, mapped the Brsc-ye gene to a 40.2 kb region with distances of 0.07 and 0.06 cM, respectively. The molecular markers obtained in this report will assist in the marker-assisted selection and breeding of yellow-seeded lines in Brassica rapa L. and other close species. © 2017. Published by The Company of Biologists Ltd.

  11. Faba Bean: Transcriptome Analysis from Etiolated Seedling and Developing Seed Coat of Key Cultivars for Synthesis of Proanthocyanidins, Phytate, Raffinose Family Oligosaccharides, Vicine, and Convicine

    Heather Ray

    2015-03-01

    Full Text Available Faba bean ( L. has been little examined from a genetic or genomic perspective despite its status as an established food and forage crop with some key pharmaceutical factors such as vicine and convicine (VC, which provoke severe haemolysis in genetically susceptible humans. We developed next-generation sequencing libraries to maximize information to elucidate the VC pathway or relevant markers as well as other genes of interest for the species. One selected cultivar, A01155, lacks synthesis of the favism-provoking factors, VC, and is low in tannin, while two cultivars, SSNS-1 and CDC Fatima, are wild-type for these factors. Tissues (5- to 6-d-old root and etiolated shoot and developing seed coat were selected to maximize the utility and breadth of the gene expression profile. Approximately 1.2 × 10 expressed transcripts were sequenced and assembled into contigs. The synthetic pathways for phosphatidylinositol or phytate, the raffinose family oligosaccharides, and proanthocyanidin were examined and found to contain nearly a full complement of the synthetic genes for these pathways. A severe deficiency in anthocyanidin reductase expression was found in the low-tannin cultivar A01155. Approximately 5300 variants, including 234 variants specific to one of the three cultivars, were identified. Differences in expression and variants potentially related to VC synthesis were analyzed using strategies exploiting differences in expression between cultivars and tissues. These sequences should be of high utility for marker-assisted selection for the key traits vicine, convicine, and proanthocyanidin, and should contribute to the scant genetic maps available for this species.

  12. Morphological Characteristics of Flower and Seed Coat of the Endangered Species of Thismia taiwanensis (Burmanniaceae

    Sheng-Zehn Yang

    2010-03-01

    Full Text Available Since insufficient materials of Thismia taiwanensis were collected in the past, the structural details of the annulus, stamens and other characters of this critically endangered species have not been examined. The aim of this study was to determine the characteristics of flowers and fruits, especially those of the perianth tube and stamens, using fresh material. Seed surfaces were photographed by using scanning electron microscopy. The results showed that the flowers of T. taiwanensis were found either without a pedicel or with an elongated pedicel that becomes carnose in the fruit stage. The latter was more common. The perianth is not covered with glands; there are six stamens, which are separate and opposite the perianth lobes, with dilated, ribbon-like connectives, pendulous from annulus. The seeds are ellipsoid to fusiform, with somewhat tapering poles, 0.2-0.4 × 0.1-0.15 mm, and with epidermal cells that are raised, with distinctly longitudinal anticlinal walls and sunken anticlinal boundaries, forming a superficial network pattern.

  13. Adaptive growth factor delivery from a polyelectrolyte coating promotes synergistic bone tissue repair and reconstruction

    Shah, Nisarg J.; Hyder, Md. Nasim; Quadir, Mohiuddin A.; Dorval Courchesne, Noémie-Manuelle; Seeherman, Howard J.; Nevins, Myron; Spector, Myron; Hammond, Paula T.

    2014-01-01

    Traumatic wounds and congenital defects that require large-scale bone tissue repair have few successful clinical therapies, particularly for craniomaxillofacial defects. Although bioactive materials have demonstrated alternative approaches to tissue repair, an optimized materials system for reproducible, safe, and targeted repair remains elusive. We hypothesized that controlled, rapid bone formation in large, critical-size defects could be induced by simultaneously delivering multiple biological growth factors to the site of the wound. Here, we report an approach for bone repair using a polyelectrolye multilayer coating carrying as little as 200 ng of bone morphogenetic protein-2 and platelet-derived growth factor-BB that were eluted over readily adapted time scales to induce rapid bone repair. Based on electrostatic interactions between the polymer multilayers and growth factors alone, we sustained mitogenic and osteogenic signals with these growth factors in an easily tunable and controlled manner to direct endogenous cell function. To prove the role of this adaptive release system, we applied the polyelectrolyte coating on a well-studied biodegradable poly(lactic-co-glycolic acid) support membrane. The released growth factors directed cellular processes to induce bone repair in a critical-size rat calvaria model. The released growth factors promoted local bone formation that bridged a critical-size defect in the calvaria as early as 2 wk after implantation. Mature, mechanically competent bone regenerated the native calvaria form. Such an approach could be clinically useful and has significant benefits as a synthetic, off-the-shelf, cell-free option for bone tissue repair and restoration. PMID:25136093

  14. In vitro corrosion and cytocompatibility properties of nano-whisker hydroxyapatite coating on magnesium alloy for bone tissue engineering applications.

    Yang, Huawei; Yan, Xueyu; Ling, Min; Xiong, Zuquan; Ou, Caiwen; Lu, Wei

    2015-03-17

    We report here the successful fabrication of nano-whisker hydroxyapatite (nHA) coatings on Mg alloy by using a simple one-step hydrothermal process in aqueous solution. The nHA coating shows uniform structure and high crystallinity. Results indicate that nHA coating is promising for improving the in vitro corrosion and cytocompatibility properties of Mg-based implants and devices for bone tissue engineering. In addition, the simple hydrothermal deposition method used in the current study is also applicable to substrates with complex shapes or surface geometries.

  15. In Vitro Corrosion and Cytocompatibility Properties of Nano-Whisker Hydroxyapatite Coating on Magnesium Alloy for Bone Tissue Engineering Applications

    Huawei Yang

    2015-03-01

    Full Text Available We report here the successful fabrication of nano-whisker hydroxyapatite (nHA coatings on Mg alloy by using a simple one-step hydrothermal process in aqueous solution. The nHA coating shows uniform structure and high crystallinity. Results indicate that nHA coating is promising for improving the in vitro corrosion and cytocompatibility properties of Mg-based implants and devices for bone tissue engineering. In addition, the simple hydrothermal deposition method used in the current study is also applicable to substrates with complex shapes or surface geometries.

  16. Tissue-specific extracellular matrix coatings for the promotion of cell proliferation and maintenance of cell phenotype.

    Zhang, Yuanyuan; He, Yujiang; Bharadwaj, Shantaram; Hammam, Nevin; Carnagey, Kristen; Myers, Regina; Atala, Anthony; Van Dyke, Mark

    2009-08-01

    Recent studies have shown that extracellular matrix (ECM) substitutes can have a dramatic impact on cell growth, differentiation and function. However, these ECMs are often applied generically and have yet to be developed for specific cell types. In this study, we developed tissue-specific ECM-based coating substrates for skin, skeletal muscle and liver cell cultures. Cellular components were removed from adult skin, skeletal muscle, and liver tissues, and the resulting acellular matrices were homogenized and dissolved. The ECM solutions were used to coat culture dishes. Tissue matched and non-tissue matched cell types were grown on these coatings to assess adhesion, proliferation, maintenance of phenotype and cell function at several time points. Each cell type showed better proliferation and differentiation in cultures containing ECM from their tissue of origin. Although subtle compositional differences in the three ECM types were not investigated in this study, these results suggest that tissue-specific ECMs provide a culture microenvironment that is similar to the in vivo environment when used as coating substrates, and this new culture technique has the potential for use in drug development and the development of cell-based therapies.

  17. Homologous structure-function relationships between native fibrocartilage and tissue engineered from MSC-seeded nanofibrous scaffolds.

    Nerurkar, Nandan L; Han, Woojin; Mauck, Robert L; Elliott, Dawn M

    2011-01-01

    Understanding the interplay of composition, organization and mechanical function in load-bearing tissues is a prerequisite in the successful engineering of tissues to replace diseased ones. Mesenchymal stem cells (MSCs) seeded on electrospun scaffolds have been successfully used to generate organized tissues that mimic fibrocartilages such as the knee meniscus and the annulus fibrosus of the intervertebral disc. While matrix deposition has been observed in parallel with improved mechanical properties, how composition, organization, and mechanical function are related is not known. Moreover, how this relationship compares to that of native fibrocartilage is unclear. Therefore, in the present work, functional fibrocartilage constructs were formed from MSC-seeded nanofibrous scaffolds, and the roles of collagen and glycosaminoglycan (GAG) in compressive and tensile properties were determined. MSCs deposited abundant collagen and GAG over 120 days of culture, and these extracellular molecules were organized in such a way that they performed similar mechanical functions to their native roles: collagen dominated the tensile response while GAG was important for compressive properties. GAG removal resulted in significant stiffening in tension. A similar stiffening response was observed when GAG was removed from native inner annulus fibrosus, suggesting an interaction between collagen fibers and their surrounding extrafibrillar matrix that is shared by both engineered and native fibrocartilages. These findings strongly support the use of electrospun scaffolds and MSCs for fibrocartilage tissue engineering, and provide insight on the structure-function relations of both engineered and native biomaterials. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Maternal synthesis of abscisic acid controls seed development and yield in Nicotiana plumbaginifolia.

    Frey, Anne; Godin, Béatrice; Bonnet, Magda; Sotta, Bruno; Marion-Poll, Annie

    2004-04-01

    The role of maternally derived abscisic acid (ABA) during seed development has been studied using ABA-deficient mutants of Nicotiana plumbaginifolia Viviani. ABA deficiency induced seed abortion, resulting in reduced seed yield, and delayed growth of the remaining embryos. Mutant grafting onto wild-type stocks and reciprocal crosses indicated that maternal ABA, synthesized in maternal vegetative tissues and translocated to the seed, promoted early seed development and growth. Moreover ABA deficiency delayed both seed coat pigmentation and capsule dehiscence. Mutant grafting did not restore these phenotypes, indicating that ABA synthesized in the seed coat and capsule envelope may have a positive effect on capsule and testa maturation. Together these results shed light on the positive role of maternal ABA during N. plumbaginifolia seed development.

  19. PrPC expression and prion seeding activity in the alimentary tract and lymphoid tissue of deer.

    Davenport, Kristen A; Hoover, Clare E; Bian, Jifeng; Telling, Glenn C; Mathiason, Candace K; Hoover, Edward A

    2017-01-01

    The agent responsible for prion diseases is a misfolded form of a normal protein (PrPC). The prion hypothesis stipulates that PrPC must be present for the disease to manifest. Cervid populations across the world are infected with chronic wasting disease, a horizontally-transmissible prion disease that is likely spread via oral exposure to infectious prions (PrPCWD). Though PrPCWD has been identified in many tissues, there has been little effort to characterize the overall PrPC expression in cervids and its relationship to PrPCWD accumulation. We used immunohistochemistry (IHC), western blot and enzyme-linked immunosorbent assay to describe PrPC expression in naïve white-tailed deer. We used real-time, quaking-induced conversion (RT-QuIC) to detect prion seeding activity in CWD-infected deer. We assessed tissues comprising the alimentary tract, alimentary-associated lymphoid tissue and systemic lymphoid tissue from 5 naïve deer. PrPC was expressed in all tissues, though expression was often very low compared to the level in the CNS. IHC identified specific cell types wherein PrPC expression is very high. To compare the distribution of PrPC to PrPCWD, we examined 5 deer with advanced CWD infection. Using RT-QuIC, we detected prion seeding activity in all 21 tissues. In 3 subclinical deer sacrificed 4 months post-inoculation, we detected PrPCWD consistently in alimentary-associated lymphoid tissue, irregularly in alimentary tract tissues, and not at all in the brain. Contrary to our hypothesis that PrPC levels dictate prion accumulation, PrPC expression was higher in the lower gastrointestinal tissues than in the alimentary-associated lymphoid system and was higher in salivary glands than in the oropharyngeal lymphoid tissue. These data suggest that PrPC expression is not the sole driver of prion accumulation and that alimentary tract tissues accumulate prions before centrifugal spread from the brain occurs.

  20. Preclinical renal chemo-protective potential of Prunus amygdalus Batsch seed coat via alteration of multiple molecular pathways.

    Pandey, Preeti; Bhatt, Prakash Chandra; Rahman, Mahfoozur; Patel, Dinesh Kumar; Anwar, Firoz; Al-Abbasi, Fahad; Verma, Amita; Kumar, Vikas

    2018-02-01

    Prunus amygdalus Batsch (almond) is a classical nutritive traditional Indian medicine. Along with nutritive with anti-oxidant properties, it is, clinically, used in the treatment of various diseases with underlying anti-oxidant mechanism. This study is an effort to scrutinise the renal protective effect of P. amygdalus Batsch or green almond (GA) seed coat extract and its underlying mechanism in animal model of Ferric nitrilotriacetate (Fe-NTA) induced renal cell carcinoma (RCC). RCC was induced in Swiss Albino Wistar rats by intraperitoneal injection of Fe-NTA. The rats were then treated with ethanolic extract of GA (25, 50 and 100 mg/kg per oral) for 22 weeks. Efficacy of GA administration was evaluated by change in biochemical, renal, macroscopical and histopathological parameters and alterations. Additionally, interleukin-6 (IL-6), tumour necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and inflammatory mediator including prostaglandin E2 (PGE 2 ), nuclear factor-kappa B (NF-κB) were also observed to explore the possible mechanisms. The oral administration of GA significantly (p Bowman capsules and inflammatory cells. Hence, it can be concluded that GA possesses observable chemo-protective action and effect on Fe-NTA induced RCC via dual inhibition mechanism one by inhibiting free radical generation and second by inhibiting inflammation.

  1. Repair of segmental bone defect using Totally Vitalized tissue engineered bone graft by a combined perfusion seeding and culture system.

    Lin Wang

    Full Text Available BACKGROUND: The basic strategy to construct tissue engineered bone graft (TEBG is to combine osteoblastic cells with three dimensional (3D scaffold. Based on this strategy, we proposed the "Totally Vitalized TEBG" (TV-TEBG which was characterized by abundant and homogenously distributed cells with enhanced cell proliferation and differentiation and further investigated its biological performance in repairing segmental bone defect. METHODS: In this study, we constructed the TV-TEBG with the combination of customized flow perfusion seeding/culture system and β-tricalcium phosphate (β-TCP scaffold fabricated by Rapid Prototyping (RP technique. We systemically compared three kinds of TEBG constructed by perfusion seeding and perfusion culture (PSPC method, static seeding and perfusion culture (SSPC method, and static seeding and static culture (SSSC method for their in vitro performance and bone defect healing efficacy with a rabbit model. RESULTS: Our study has demonstrated that TEBG constructed by PSPC method exhibited better biological properties with higher daily D-glucose consumption, increased cell proliferation and differentiation, and better cell distribution, indicating the successful construction of TV-TEBG. After implanted into rabbit radius defects for 12 weeks, PSPC group exerted higher X-ray score close to autograft, much greater mechanical property evidenced by the biomechanical testing and significantly higher new bone formation as shown by histological analysis compared with the other two groups, and eventually obtained favorable healing efficacy of the segmental bone defect that was the closest to autograft transplantation. CONCLUSION: This study demonstrated the feasibility of TV-TEBG construction with combination of perfusion seeding, perfusion culture and RP technique which exerted excellent biological properties. The application of TV-TEBG may become a preferred candidate for segmental bone defect repair in orthopedic and

  2. High seeding density of human chondrocytes in agarose produces tissue-engineered cartilage approaching native mechanical and biochemical properties.

    Cigan, Alexander D; Roach, Brendan L; Nims, Robert J; Tan, Andrea R; Albro, Michael B; Stoker, Aaron M; Cook, James L; Vunjak-Novakovic, Gordana; Hung, Clark T; Ateshian, Gerard A

    2016-06-14

    Animal cells have served as highly controllable model systems for furthering cartilage tissue engineering practices in pursuit of treating osteoarthritis. Although successful strategies for animal cells must ultimately be adapted to human cells to be clinically relevant, human chondrocytes are rarely employed in such studies. In this study, we evaluated the applicability of culture techniques established for juvenile bovine and adult canine chondrocytes to human chondrocytes obtained from fresh or expired osteochondral allografts. Human chondrocytes were expanded and encapsulated in 2% agarose scaffolds measuring ∅3-4mm×2.3mm, with cell seeding densities ranging from 15 to 90×10(6)cells/mL. Subsets of constructs were subjected to transient or sustained TGF-β treatment, or provided channels to enhance nutrient transport. Human cartilaginous constructs physically resembled native human cartilage, and reached compressive Young's moduli of up to ~250kPa (corresponding to the low end of ranges reported for native knee cartilage), dynamic moduli of ~950kPa (0.01Hz), and contained 5.7% wet weight (%/ww) of glycosaminoglycans (≥ native levels) and 1.5%/ww collagen. We found that the initial seeding density had pronounced effects on tissue outcomes, with high cell seeding densities significantly increasing nearly all measured properties. Transient TGF-β treatment was ineffective for adult human cells, and tissue construct properties plateaued or declined beyond 28 days of culture. Finally, nutrient channels improved construct mechanical properties, presumably due to enhanced rates of mass transport. These results demonstrate that our previously established culture system can be successfully translated to human chondrocytes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. The healing of bony defects by cell-free collagen-based scaffolds compared to stem cell-seeded tissue engineered constructs.

    Lyons, Frank G

    2010-12-01

    One of the key challenges in tissue engineering is to understand the host response to scaffolds and engineered constructs. We present a study in which two collagen-based scaffolds developed for bone repair: a collagen-glycosaminoglycan (CG) and biomimetic collagen-calcium phosphate (CCP) scaffold, are evaluated in rat cranial defects, both cell-free and when cultured with MSCs prior to implantation. The results demonstrate that both cell-free scaffolds showed excellent healing relative to the empty defect controls and somewhat surprisingly, to the tissue engineered (MSC-seeded) constructs. Immunological analysis of the healing response showed higher M1 macrophage activity in the cell-seeded scaffolds. However, when the M2 macrophage response was analysed, both groups (MSC-seeded and non-seeded scaffolds) showed significant activity of these cells which are associated with an immunomodulatory and tissue remodelling response. Interestingly, the location of this response was confined to the construct periphery, where a capsule had formed, in the MSC-seeded groups as opposed to areas of new bone formation in the non-seeded groups. This suggests that matrix deposited by MSCs during in vitro culture may adversely affect healing by acting as a barrier to macrophage-led remodelling when implanted in vivo. This study thus improves our understanding of host response in bone tissue engineering.

  4. Poly (lactide-co-glycolide nanofibers coated with collagen and nano-hydroxyapatite for bone tissue engineering

    Reza Tavakoli-Darestani

    2013-05-01

    Full Text Available Please cite this article as: Tavakoli-Darestani R, Kazemian GH, Emami M, Kamrani-Rad A. Poly (lactide-co-glycolide nanofibers coated with collagen and nano-hydroxyapatite for bone tissue engineering. Novel Biomed 2013;1:8-15.Background: A combination of polymeric nanofibrous scaffold and bioactive materials is potentially useful in bone regeneration applications.Materials and Methods: In the present study, Poly (lactide-co-glycolide (PLGA nanofibrous scaffolds, fabricated via electrospinning, were initially coated with Type I collagen and then with nano-hydroxyapatite. The prepared scaffolds were then characterized using SEM and their ability for bone regeneration was investigated in a rat critical size bone defect using digital mammography, multislice spiral-computed tomography (MSCT imaging, and histological analysis.Results: Electrospun scaffolds had nanofibrous structure with homogenous distribution of n-HA on collagen-grafted PLGA. After 8 weeks of implantation, no sign of inflammation or complication was observed at the site of surgery. According to digital mammography and MSCT, PLGA nanofibers coated simultaneously with collagen and HA showed the highest regeneration in rat calvarium. In addition, no significant difference was observed in bone repair in the group which received PLGA and the untreated control. This amount was lower than that observed in the group implanted with collagen-coated PLGA. Histological studies confirmed these data and showed osteointegration to the surrounding tissue.Conclusion: Taking all together, it was demonstrated that nanofibrous structures can be used as appropriate support for tissue-engineered scaffolds, and coating them with bioactive materials will provide ideal synthetic grafts. Fabricated PLGA coated with Type I collagen and HA can be used as new bone graft substitutes in orthopaedic surgery and is capable of enhancing bone regeneration via characteristics such as osteoconductivity and

  5. Effect of Fenugreek seed Extract (Trigonella Foenum-graecum on testicular tissue in the embryos of Streptozotocin Induced Diabetic Rats

    M beyzaei

    2015-12-01

    Full Text Available Background and aim: Diabetes mellitus is associated with some of the metabolic dysfunctions represented with chronic hyperglycemia.  This disease can disrupt the function of testicular tissue and decline male sexual ability. Some of the medicinal herbs such as fenugreeks have protective effects on tissues via hypoglycemic and anti-oxidative properties. In the present paper,  the effects of fenugreek seed extract was evaluated on testicular tissue of 20 day-old embryos from diabetic rats. Methods: In the present experimental study, sixty normal female rats were divided into three normal groups: non-diabetic control, glibenclamide and fenugreek groups and three diabetic groups: diabetic control, glibenclamide treatment and fenugreek treatment groups. Single injection of streptozotocin was used for induction of diabetes in these female rats. After detection of pregnancy, 1000 mg/kg fenugreek seed extract was fed to non-diabetic and diabetic fenugreek groups and 5 mg/kg glibenclamide was fed to non-diabetic and diabetic glibenclamide groups. Non-diabetic and diabetic control group was fed with distilled water as the same volume as the fenugreek extract. After 20 days, their embryos were pulled out and fixed at 10% formalin. After tissue processing, five micron sections were stained with Hematoxylin- eosin and evaluated for morphometric changes of testicular tissue. Data were evaluated with One-Way ANOVA test and Duncan post-hoc test. Results: The mean diameter of seminiferous tubules and testis capsule thickness indicated no significant differences between fenugreek treatment and diabetic control groups (P> 0.05. Mean body weight of male embryos was significantly lower in fenugreek treatment group in comparison with the diabetic control group (P&le 0.05. The leydig, sertoli and spermatogonial cells number was significantly higher in fenugreek treatment group in compression with diabetic control group                      (P

  6. Gelatin Tight-Coated Poly(lactide-co-glycolide Scaffold Incorporating rhBMP-2 for Bone Tissue Engineering

    Juan Wang

    2015-03-01

    Full Text Available Surface coating is the simplest surface modification. However, bioactive molecules can not spread well on the commonly used polylactone-type skeletons; thus, the surface coatings of biomolecules are typically unstable due to the weak interaction between the polymer and the bioactive molecules. In this study, a special type of poly(lactide-co-glycolide (PLGA-based scaffold with a loosened skeleton was fabricated by phase separation, which allowed gelatin molecules to more readily diffuse throughout the structure. In this application, gelatin modified both the internal substrate and external surface. After cross-linking with glutaraldehyde, the surface layer gelatin was tightly bound to the diffused gelatin, thereby preventing the surface layer gelatin coating from falling off within 14 days. After gelatin modification, PLGA scaffold demonstrated enhanced hydrophilicity and improved mechanical properties (i.e., increased compression strength and elastic modulus in dry and wet states. Furthermore, a sustained release profile of recombinant human bone morphogenetic protein-2 (rhBMP-2 was achieved in the coated scaffold. The coated scaffold also supported the in vitro attachment, proliferation, and osteogenesis of rabbit bone mesenchymal stem cells (BMSCs, indicating the bioactivity of rhBMP-2. These results collectively demonstrate that the cross-linked-gelatin-coated porous PLGA scaffold incorporating bioactive molecules is a promising candidate for bone tissue regeneration.

  7. Modified n-HA/PA66 scaffolds with chitosan coating for bone tissue engineering: cell stimulation and drug release.

    Zou, Qin; Li, Junfeng; Niu, Lulu; Zuo, Yi; Li, Jidong; Li, Yubao

    2017-09-01

    The dipping-drying procedure and cross-linking method were used to make drug-loaded chitosan (CS) coating on nano-hydroxyapatite/polyamide66 (nHA/PA66) composite porous scaffold, endowing the scaffold controlled drug release functionality. The prefabricated scaffold was immersed into an aqueous drug/CS solution in a vacuum condition and then crosslinked by vanillin. The structure, porosity, composition, compressive strength, swelling ratio, drug release and cytocompatibility of the pristine and coating scaffolds were investigated. After coating, the scaffold porosity and pore interconnection were slightly decreased. Cytocompatibility performance was observed through an in vitro experiment based on cell attachment and the MTT assay by MG63 cells which revealed positive cell viability and increasing proliferation over the 11-day period in vitro. The drug could effectively release from the coated scaffold in a controlled fashion and the release rate was sustained for a long period and highly dependent on coating swelling, suggesting the possibility of a controlled drug release. Our results demonstrate that the scaffold with drug-loaded crosslinked CS coating can be used as a simple technique to render the surfaces of synthetic scaffolds active, thus enabling them to be a promising high performance biomaterial in bone tissue engineering.

  8. Anthocyanin contents in the seed coat of black soya bean and their anti-human tyrosinase activity and antioxidative activity.

    Jhan, J-K; Chung, Y-C; Chen, G-H; Chang, C-H; Lu, Y-C; Hsu, C-K

    2016-06-01

    The seed coat of black soya bean (SCBS) contains high amount of anthocyanins and shows antioxidant and anti-mushroom tyrosinase activities. The objectives of this study were to analyse the anthocyanins in SCBS with different solvents and to find the relationship between anthocyanin profile with anti-human and anti-mushroom tyrosinase activities. SCBS was extracted with hot water, 50 and 80% ethanol, 50 and 80% acetone and 50 and 80% acidified acetone. Total phenol and total flavonoid contents in the extracts were determined. Anthocyanins in the extracts were analysed using HPLC and LC/MS/MS. A genetically engineered human tyrosinase was used to evaluate the anti-tyrosinase potential of the extracts from SCBS. 80% acetone extract from SCBS obtained the highest total phenol, total flavonoid and cyanidin-3-O-glucoside (C3G) contents among all the extracts, whereas the hot water extract showed the lowest antioxidant contents. Three anthocyanin compounds were found in all the extracts from SCBS, and the analysis of HPLC and LC/MS/MS indicated that they were C3G, delphinidin-3-O-glucoside (D3G) and peonidin-3-O-glucoside (P3G). The ratios of C3G (2.84 mg g(-1) ), D3G (0.34 mg g(-1) ) and P3G (0.35 mg g(-1) ) in 80% acidified acetone extract were 76.6, 9.1 and 9.3%, respectively. All the extracts from SCBS possessed anti-human tyrosinase activity. Moreover, a good correlation was found between the anti-human tyrosinase activities and C3G contents in the extracts. Antioxidants in SCBS also possess anti-human and anti-mushroom tyrosinase activities. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  9. Tratamento fungicida e peliculização de sementes de soja submetidas ao armazenamento Fungicide treatment and film coating of soybean seeds submitted to storage

    Carlos Eduardo Pereira

    2011-02-01

    Full Text Available O tratamento de sementes de soja com fungicidas vem sendo utilizado como importante ferramenta no controle de patógenos. Nesse trabalho, objetivou-se estudar o desempenho de sementes de soja tratadas com fungicidas e peliculizadas, antes e após o armazenamento. Foram utilizados cinco lotes de sementes, cultivar Monsoy 6101, submetidos aos tratamentos: thiabendazole+thiram sem polímero, carbendazin+thiram sem polímero, sem fungicida (testemunha sem polímero, além desses tratamentos realizados via peliculização (com polímero. A qualidade fisiológica e sanitária das sementes foi avaliada inicialmente e após seis meses de armazenamento em condições ambientais, pelas seguintes determinações: teor de água, teste de germinação, emergência em bandeja, teste de frio e de sanidade. Conclui-se que a peliculização, em associação com fungicidas, não afeta a qualidade fisiológica das sementes de soja e o tratamento de lotes de sementes de soja com os fungicidas thiabendazole+thiram e carbendazin+thiram melhora seu desempenho e qualidade sanitária.The treatment of soybean seeds by fungicides has been used as an important tool in pathogen control. The objective of this work was to verify the performance of soybean seeds treated with fungicide and film coating, prior and after storage. Five seed lots, cultivar Monsoy 6101, were treated with thiabendazole+thiram without polymer, carbendazin+thiram without polymer, without fungicide (control, without polymer, and treatments by film coating (with polymer. The physiological and sanitary quality of the seeds was evaluated initially and after six months storage, under environmental conditions, according to the following characteristics: water content, test of germination and emergence on tray, blotter test and cold test. The film coating associated with fungicides does not affect the physiological quality of soybean seeds and the soybean seed treatment with the fungicides thiabendazole

  10. Desempenho de sementes de soja peliculizadas em solo com diferentes teores de água Performance of film coated soybean seeds in soil with different water contents

    José Renato Emiliorelli Evangelista

    2007-08-01

    Full Text Available O uso de polímeros hidrofóbicos, tem sido recomendado para tratamento de sementes de espécies que absorvem água rapidamente, causando danos por embebição, como é o caso da soja. Quando a semeadura é realizada em solos com baixa capacidade de infiltração, pode ocorrer redução significativa do estande caso a semeadura coincida com alto índice pluviométrico. Desta forma, o objetivo deste trabalho foi avaliar o desempenho de sementes de soja peliculizadas em solos com diferentes teores de água. As sementes foram tratadas com o fungicida Tegram (thiabendazole + thiram na dosagem de 200 mL/100 kg de sementes associadas aos polímeros. Para peliculização das sementes foram utilizados os polímeros L201 e L204, os quais foram aplicados nas dosagens de 0 mL, 200 mL e 400 mL/100 kg de sementes. Após o tratamento as sementes foram semeadas em solos com 50, 70 e 90% da capacidade de campo para avaliações nos testes de emergência em bandeja e teste de frio. Foram feitas ainda avaliações por meio do teste de germinação, submersão, emergência em canteiro. Verificou-se que a peliculização promove um aumento no índice e no percentual de emergência quando em condições ideais, independente do polímero utilizado. Em condições de estresse a peliculização reduz o vigor das sementes.The use of polymers has been recommended for the treatment of seeds of those species that absorb water quickly, causing seed damage by imbibition, such as the soybean case. When the sowing is accomplished in soils with a low drainage capacity, a significant reduction in the seedling emergence may occur if sowing coincides with the high pluviometric index. The objective of this work was to evaluate the performance of film coated soybean seeds in soils with different water contents. Seeds were treated with the fungicide Tegram (thiabendazole + thiram at a dosage of 200mL/100kg of seeds associated to the polymers. For the film coating of the seeds the

  11. Size-dependent tissue kinetics of PEG-coated gold nanoparticles

    Cho, Wan-Seob; Cho, Minjung; Jeong, Jinyoung; Choi, Mina; Han, Beom Seok; Shin, Hyung-Seon; Hong, Jin; Chung, Bong Hyun; Jeong, Jayoung; Cho, Myung-Haing

    2010-01-01

    Gold nanoparticles (AuNPs) can be used in various biomedical applications, however, very little is known about their size-dependent in vivo kinetics. Here, we performed a kinetic study in mice with different sizes of PEG-coated AuNPs. Small AuNPs (4 or 13 nm) showed high levels in blood for 24 h and were cleared by 7 days, whereas large (100 nm) AuNPs were completely cleared by 24 h. All AuNPs in blood re-increased at 3 months, which correlated with organ levels. Levels of small AuNPs were peaked at 7 days in the liver and spleen and at 1 month in the mesenteric lymph node, and remained high until 6 months, with slow elimination. In contrast, large AuNPs were taken up rapidly (∼ 30 min) into the liver, spleen, and mesenteric lymph nodes with less elimination phase. TEM showed that AuNPs were entrapped in cytoplasmic vesicles and lysosomes of Kupffer cells and macrophages of spleen and mesenteric lymph node. Small AuNPs transiently activated CYP1A1 and 2B, phase I metabolic enzymes, in liver tissues from 24 h to 7 days, which mirrored with elevated gold levels in the liver. Large AuNPs did not affect the metabolic enzymes. Thus, propensity to accumulate in the reticuloendothelial organs and activation of phase I metabolic enzymes, suggest that extensive further studies are needed for practical in vivo applications.

  12. Armazenamento de sementes de braquiária peletizadas e tratadas com fungicida e inseticida Brachiaria coated seed storage treated with fungicide and insecticide

    Carlos Eduardo Pereira

    2011-12-01

    Full Text Available A qualidade de sementes é fundamental para o sucesso da formação de pastagem, de forma que é importante viabilizar tecnologias para elas. Assim, objetivou-se com este trabalho avaliar o desempenho de sementes de Brachiaria decumbens peletizadas e tratadas com fungicida e inseticida, durante o armazenamento. As sementes foram tratadas com thiabendazol na dosagem de 200mL 100kg-1 de sementes, com fipronil na dosagem de 500mL 100kg-1 de sementes e com a mistura de ambos (nas mesmas dosagens e parte não foi submetida a esses tratamentos (testemunha. Posteriormente, as sementes foram peletizadas utilizando-se uma mistura de areia + microcelulose e cola Cascorex - PVA (20%, as quais em seguida foram armazenadas em condições ambientais em armazém convencional (temperatura e umidade relativa do ar média de 21,9°C e 68%, respectivamente, durante 12 meses. As sementes foram avaliadas inicialmente e a cada quatro meses com as seguintes avaliações: teor de água, teste de germinação, índice de velocidade de germinação, teste de emergência e índice de velocidade de emergência. A peletização das sementes de Brachiaria decumbens com areia e microcelulose prejudica a porcentagem e velocidade de germinação, bem como a emergência de plântulas durante o armazenamento. Sementes de Brachiaria decumbens cv. 'Basilisk' tratadas com fipronil, thiabendazol, ou com ambos, não devem ser armazenadas por mais de oito meses.The quality of seed is crucial to the success of pasture formation. Thus the aim of this research was to evaluate the performance of Brachiaria decumbens seeds pelleted and treated with fungicides and insecticides during storage. The seeds were treated with thiabendazole at a dosage of 200mL 100kg-1 of seeds, with fipronil at a dosage of 500mL 100kg-1 of seeds and a mixture of both (in the same dosages and some was not subjected to such treatment (control. Subsequently the seeds were coated using a mixture of sand

  13. Przenoszenie się grzyba Ustilago perennans Bostr. z nasionami rajgrasu wyniosłego [Transmission of Ustilago perennans Rostr. with tall oat grass seeds

    J. W. Tomala-Bednarek

    2015-06-01

    Full Text Available It was established that the mycelium of Ustilago perennans does not grow into the pericarp and seed coat of Arrhenatherum elatius caryopses. The main source of seedling infection at this year .seeds sowing were mycelium and gemmes present in hull tissues whereas ait last-year seeds sowing-the spores wintering on the hull and caryopsis surfaces, as they proved to be more survived. The ability of the fungus to seedling infection was decreasing gradually with the seed ageing.

  14. Bioglass {sup trademark} coated poly(DL-lactide) foams for tissue engineering scaffolds

    Gough, J.E. [Materials Science Centre, UMIST, Manchester M1 7HS (United Kingdom); Arumugam, M. [Department of Materials Science and Metallurgy, University of Cambridge, Cambridge (United Kingdom); Blaker, J. [Department of Materials and Centre for Tissue Engineering and Regenerative Medicine, Imperial College London, London SW7 2BP (United Kingdom); Boccaccini, A.R. [Dept. of Materials and Center for Tissue Engineering and Regenerative Medicine, Imperial College London, London SW7 28P (United Kingdom)

    2003-07-01

    The purpose of this study was to prepare poly(DL-lactic acid) (PDLLA)/Bioglass trademark composites of foam-like structure, to measure the degree of bioactivity of the composites by studying the formation of hydroxyapatite (HA) after immersion in simulated body fluid (SBF) and to test the initial attachment of human osteoblasts within the porous network. It was found that crystalline HA formed on the Bioglass trademark coated PDLLA foams after 7 days of immersion in SBF. HA formed also on the surfaces of non-coated PDLLA foams, however the rate and amount of HA formation were much lower than in the composites. The rapid formation of HA on the Bioglass trademark /PDLLA foam surfaces confirmed the high bioactivity of these materials. Osteoblasts attached within the porous network throughout the depth of the foams. Cell density was found to be higher in the PDLLA/Bioglass trademark composites compared to the pure PDLLA foams. The composite foams developed here exhibit the required bioactivity to be used as scaffolds for bone tissue engineering. (Abstract Copyright [2003], Wiley Periodicals, Inc.) [German] Die vorliegende Arbeit befasst sich mit der Herstellung von poroesen Verbundwerkstoffen bestehend aus Poly(DL-Laktidsaeure) (PDLLA) und Bioglass trademark und der anschliessenden Untersuchung der Bioaktivitaet. Die Bioaktivitaet wurde anhand von In-vitro-Methoden untersucht: Durch Ermittlung der Bildungsrate von Hydroxylapatit (HA) auf der Oberflaeche nach Eintauchen in simulierter Koerperfluessigkeit (SBF) und mittels Zellkulturstudien mit menschlichen Osteoblasten. Nach 7 Tagen in SBF hatte die Bildung von kristallinem HA auf der Oberflaeche von mit Bioglass trademark -beschichteten PDLLA Schaeumen stattgefunden. Auf der Oberflaeche von unbeschichtetem PDLLA konnte ebenfalls die Bildung von HA gezeigt werden, jedoch war die Bildungsrate hier bedeutend langsamer verglichen mit den Verbundwerkstoffen. Die rasche Formung von HA auf der Bioglass trademark /PDLLA

  15. RNAi-mediated pinoresinol lariciresinol reductase gene silencing in flax (Linum usitatissimum L.) seed coat: consequences on lignans and neolignans accumulation.

    Renouard, Sullivan; Tribalatc, Marie-Aude; Lamblin, Frederic; Mongelard, Gaëlle; Fliniaux, Ophélie; Corbin, Cyrielle; Marosevic, Djurdjica; Pilard, Serge; Demailly, Hervé; Gutierrez, Laurent; Hano, Christophe; Mesnard, François; Lainé, Eric

    2014-09-15

    RNAi technology was applied to down regulate LuPLR1 gene expression in flax (Linum usitatissimum L.) seeds. This gene encodes a pinoresinol lariciresinol reductase responsible for the synthesis of (+)-secoisolariciresinol diglucoside (SDG), the major lignan accumulated in the seed coat. If flax lignans biological properties and health benefits are well documented their roles in planta remain unclear. This loss of function strategy was developed to better understand the implication of the PLR1 enzyme in the lignan biosynthetic pathway and to provide new insights on the functions of these compounds. RNAi plants generated exhibited LuPLR1 gene silencing as demonstrated by quantitative RT-PCR experiments and the failed to accumulate SDG. The accumulation of pinoresinol the substrate of the PLR1 enzyme under its diglucosylated form (PDG) was increased in transgenic seeds but did not compensate the overall loss of SDG. The monolignol flux was also deviated through the synthesis of 8-5' linked neolignans dehydrodiconiferyl alcohol glucoside (DCG) and dihydro-dehydrodiconiferyl alcohol glucoside (DDCG) which were observed for the first time in flax seeds. Copyright © 2014 Elsevier GmbH. All rights reserved.

  16. In situ spray deposition of cell-loaded, thermally and chemically gelling hydrogel coatings for tissue regeneration.

    Pehlivaner Kara, Meryem O; Ekenseair, Adam K

    2016-10-01

    In this study, the efficacy of creating cellular hydrogel coatings on warm tissue surfaces through the minimally invasive, sprayable delivery of thermoresponsive liquid solutions was investigated. Poly(N-isopropylacrylamide)-based (pNiPAAm) thermogelling macromers with or without addition of crosslinking polyamidoamine (PAMAM) macromers were synthesized and used to produce in situ forming thermally and chemically gelling hydrogel systems. The effect of solution and process parameters on hydrogel physical properties and morphology was evaluated and compared to poly(ethylene glycol) and injection controls. Smooth, fast, and conformal hydrogel coatings were obtained when pNiPAAm thermogelling macromers were sprayed with high PAMAM concentration at low pressure. Cellular hydrogel coatings were further fabricated by different spraying techniques: single-stream, layer-by-layer, and dual stream methods. The impact of spray technique, solution formulation, pressure, and spray solution viscosity on the viability of fibroblast and osteoblast cells encapsulated in hydrogels was elucidated. In particular, the early formation of chemically crosslinked micronetworks during bulk liquid flow was shown to significantly affect cell viability under turbulent conditions compared to injectable controls. The results demonstrated that sprayable, in situ forming hydrogels capable of delivering cell populations in a homogeneous therapeutic coating on diseased tissue surfaces offer promise as novel therapies for applications in regenerative medicine. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2383-2393, 2016. © 2016 Wiley Periodicals, Inc.

  17. COBRA-LIKE2, a Member of the Glycosylphosphatidylinositol-Anchored COBRA-LIKE Family, Plays a Role in Cellulose Deposition in Arabidopsis Seed Coat Mucilage Secretory Cells1,2[OPEN

    Ben-Tov, Daniela; Abraham, Yael; Stav, Shira; Thompson, Kevin; Loraine, Ann; Elbaum, Rivka; de Souza, Amancio; Pauly, Markus; Kieber, Joseph J.; Harpaz-Saad, Smadar

    2015-01-01

    Differentiation of the maternally derived seed coat epidermal cells into mucilage secretory cells is a common adaptation in angiosperms. Recent studies identified cellulose as an important component of seed mucilage in various species. Cellulose is deposited as a set of rays that radiate from the seed upon mucilage extrusion, serving to anchor the pectic component of seed mucilage to the seed surface. Using transcriptome data encompassing the course of seed development, we identified COBRA-LIKE2 (COBL2), a member of the glycosylphosphatidylinositol-anchored COBRA-LIKE gene family in Arabidopsis (Arabidopsis thaliana), as coexpressed with other genes involved in cellulose deposition in mucilage secretory cells. Disruption of the COBL2 gene results in substantial reduction in the rays of cellulose present in seed mucilage, along with an increased solubility of the pectic component of the mucilage. Light birefringence demonstrates a substantial decrease in crystalline cellulose deposition into the cellulosic rays of the cobl2 mutants. Moreover, crystalline cellulose deposition into the radial cell walls and the columella appears substantially compromised, as demonstrated by scanning electron microscopy and in situ quantification of light birefringence. Overall, the cobl2 mutants display about 40% reduction in whole-seed crystalline cellulose content compared with the wild type. These data establish that COBL2 plays a role in the deposition of crystalline cellulose into various secondary cell wall structures during seed coat epidermal cell differentiation. PMID:25583925

  18. Tissue coverage of a hydrophilic polymer-coated zotarolimus-eluting stent vs. a fluoropolymer-coated everolimus-eluting stent at 13-month follow-up: an optical coherence tomography substudy from the RESOLUTE All Comers trial

    Gutiérrez-Chico, Juan Luis; van Geuns, Robert Jan; Regar, Evelyn

    2011-01-01

    To compare the tissue coverage of a hydrophilic polymer-coated zotarolimus-eluting stent (ZES) vs. a fluoropolymer-coated everolimus-eluting stent (EES) at 13 months, using optical coherence tomography (OCT) in an 'all-comers' population of patients, in order to clarify the mechanism of eventual...

  19. An Integrated “Multi-Omics” Comparison of Embryo and Endosperm Tissue-Specific Features and Their Impact on Rice Seed Quality

    Marc Galland

    2017-11-01

    Full Text Available Although rice is a key crop species, few studies have addressed both rice seed physiological and nutritional quality, especially at the tissue level. In this study, an exhaustive “multi-omics” dataset on the mature rice seed was obtained by combining transcriptomics, label-free shotgun proteomics and metabolomics from embryo and endosperm, independently. These high-throughput analyses provide a new insight on the tissue-specificity related to rice seed quality. Foremost, we pinpointed that extensive post-transcriptional regulations occur at the end of rice seed development such that the embryo proteome becomes much more diversified than the endosperm proteome. Secondly, we observed that survival in the dry state in each seed compartment depends on contrasted metabolic and enzymatic apparatus in the embryo and the endosperm, respectively. Thirdly, it was remarkable to identify two different sets of starch biosynthesis enzymes as well as seed storage proteins (glutelins in both embryo and endosperm consistently with the supernumerary embryo hypothesis origin of the endosperm. The presence of a putative new glutelin with a possible embryonic favored abundance is described here for the first time. Finally, we quantified the rate of mRNA translation into proteins. Consistently, the embryonic panel of protein translation initiation factors is much more diverse than that of the endosperm. This work emphasizes the value of tissue-specificity-centered “multi-omics” study in the seed to highlight new features even from well-characterized pathways. It paves the way for future studies of critical genetic determinants of rice seed physiological and nutritional quality.

  20. A seed coat bedding assay shows that RGL2-dependent release of abscisic acid by the endosperm controls embryo growth in Arabidopsis dormant seeds

    Lee, K. P.; Piskurewicz, U.; Turečková, Veronika; Strnad, Miroslav; Lopez-Molina, L.

    2010-01-01

    Roč. 107, č. 44 (2010), s. 19108-19113 ISSN 0027-8424 R&D Projects: GA ČR GA301/08/1649 Institutional research plan: CEZ:AV0Z50380511 Keywords : gibberellins * seed dormancy * DELLA Subject RIV: EF - Botanics Impact factor: 9.771, year: 2010

  1. Characterization of alendronic- and undecylenic acid coated magnetic nanoparticles for the targeted delivery of rosiglitazone to subcutaneous adipose tissue.

    Saatchi, Katayoun; Tod, Sarah E; Leung, Donna; Nicholson, Kenton E; Andreu, Irene; Buchwalder, Christian; Schmitt, Veronika; Häfeli, Urs O; Gray, Sarah L

    2017-02-01

    Obesity is a state of positive energy balance where excess white adipose tissue accumulates to the detriment of metabolic health. Improving adipocyte function with systemic administration of thiazolidinediones (TZDs) improves metabolic outcomes in obesity, however TZD use is limited clinically due to undesirable side effects. Here we evaluate magnetic nanoparticles (MNPs) as a tool to target rosiglitazone (Rosi) specifically to adipose tissue. Results show Rosi can be adsorbed to MNPs (Rosi-MNPs) with hydrophobic coatings for which we present binding and release kinetics. Rosi adsorbed to MNPs retained the ability to induce PPARγ target gene expression in cells. Biodistribution analysis of radiolabeled Rosi-MNPs revealed a fat-implanted magnet significantly enhanced localization of Rosi to the targeted adipose tissue when administered by subcutaneous injection to obese mice. We propose MNPs for targeted delivery of anti-diabetic agents to superficially located subcutaneous adipose tissue. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Natural stimulus responsive scaffolds/cells for bone tissue engineering: influence of lysozyme upon scaffold degradation and osteogenic differentiation of cultured marrow stromal cells induced by CaP coatings.

    Martins, Ana M; Pham, Quynh P; Malafaya, Patrícia B; Raphael, Robert M; Kasper, F Kurtis; Reis, Rui L; Mikos, Antonios G

    2009-08-01

    This work proposes the use of nonporous, smart, and stimulus responsive chitosan-based scaffolds for bone tissue engineering applications. The overall vision is to use biodegradable scaffolds based on chitosan and starch that present properties that will be regulated by bone regeneration, with the capability of gradual in situ pore formation. Biomimetic calcium phosphate (CaP) coatings were used as a strategy to incorporate lysozyme at the surface of chitosan-based materials with the main objective of controlling and tailoring their degradation profile as a function of immersion time. To confirm the concept, degradation tests with a lysozyme concentration similar to that incorporated into CaP chitosan-based scaffolds were used to study the degradation of the scaffolds and the formation of pores as a function of immersion time. Degradation studies with lysozyme (1.5 g/L) showed the formation of pores, indicating an increase of porosity ( approximately 5-55% up to 21 days) resulting in porous three-dimensional structures with interconnected pores. Additional studies investigated the influence of a CaP biomimetic coating on osteogenic differentiation of rat marrow stromal cells (MSCs) and showed enhanced differentiation of rat MSCs seeded on the CaP-coated chitosan-based scaffolds with lysozyme incorporated. At all culture times, CaP-coated chitosan-based scaffolds with incorporated lysozyme demonstrated greater osteogenic differentiation of MSCs, bone matrix production, and mineralization as demonstrated by calcium deposition measurements, compared with controls (uncoated scaffolds). The ability of these CaP-coated chitosan-based scaffolds with incorporated lysozyme to create an interconnected pore network in situ coupled with the demonstrated positive effect of these scaffolds upon osteogenic differentiation of MSCs and mineralized matrix production illustrates the strong potential of these scaffolds for application in bone tissue engineering strategies.

  3. Effects of grape seed polyphenols on oxidative damage in liver tissue of acutely and chronically exercised rats.

    Belviranlı, Muaz; Gökbel, Hakkı; Okudan, Nilsel; Büyükbaş, Sadık

    2013-05-01

    The objective of the present study was to investigate the effects of grape seed extract (GSE) supplementation on oxidative stress and antioxidant defense markers in liver tissue of acutely and chronically exercised rats. Rats were randomly assigned to six groups: Control (C), Control Chronic Exercise (CE), Control Acute Exercise (AE), GSE-supplemented Control (GC), GSE-supplemented Chronic Exercise(GCE) and GSE-supplemented Acute Exercise (GAE). Rats in the chronic exercise groups were subjected to a six-week treadmill running and in the acute exercise groups performed an exhaustive running. Rats in the GSE supplemented groups received GSE (100 mg.kg(-1) .day(-1) ) in drinking water for 6 weeks. Liver tissues of the rats were taken for the analysis of malondialdehyde (MDA), nitric oxide (NO) levels and total antioxidant activity (AOA) and xanthine oxidase (XO) activities. MDA levels decreased with GSE supplementation in control groups but increased in acute and chronic exercise groups compared to their non-supplemented control. NO levels increased with GSE supplementation. XO activities were higher in AE group compared to the CE group. AOA decreased with GSE supplementation. In conclusion, while acute exercise triggers oxidative stress, chronic exercise has protective role against oxidative stress. GSE has a limited antioxidant effect on exercise-induced oxidative stress in liver tissue.

  4. Differentially Accumulated Proteins in Coffea arabica Seeds during Perisperm Tissue Development and Their Relationship to Coffee Grain Size.

    Alves, Leonardo Cardoso; Magalhães, Diogo Maciel De; Labate, Mônica Teresa Veneziano; Guidetti-Gonzalez, Simone; Labate, Carlos Alberto; Domingues, Douglas Silva; Sera, Tumoru; Vieira, Luiz Gonzaga Esteves; Pereira, Luiz Filipe Protasio

    2016-02-24

    Coffee is one of the most important crops for developing countries. Coffee classification for trading is related to several factors, including grain size. Larger grains have higher market value then smaller ones. Coffee grain size is determined by the development of the perisperm, a transient tissue with a highly active metabolism, which is replaced by the endosperm during seed development. In this study, a proteomics approach was used to identify differentially accumulated proteins during perisperm development in two genotypes with regular (IPR59) and large grain sizes (IPR59-Graudo) in three developmental stages. Twenty-four spots were identified by MALDI-TOF/TOF-MS, corresponding to 15 proteins. We grouped them into categories as follows: storage (11S), methionine metabolism, cell division and elongation, metabolic processes (mainly redox), and energy. Our data enabled us to show that perisperm metabolism in IPR59 occurs at a higher rate than in IPR59-Graudo, which is supported by the accumulation of energy and detoxification-related proteins. We hypothesized that grain and fruit size divergences between the two coffee genotypes may be due to the comparatively earlier triggering of seed development processes in IPR59. We also demonstrated for the first time that the 11S protein is accumulated in the coffee perisperm.

  5. Safety Assessment of a New Pigmented Safflower Seed Coat (A82 by a Feeding Study on Rat

    Soraya Karami

    2017-10-01

    Full Text Available ABSTRACT Safflower (Carthamus tinctorius L. is an annual herbaceous plant, cultivated mainly for the seed which is used for edible oil extraction and bird feeding. This study was designed to evaluate the safety of a new pigmented variety of safflower (A82 seeds. The results showed that oral administration of A82 seeds significantly increased the body weight of male rats in a dose-dependent manner (p<0.05. Biochemical tests showed that A82 seeds significantly increased the serum levels of AST (Aspartate aminotransferase (p<0.05, slightly reduced the serum levels of ALT (Alanine aminotransferase and significantly reduced ALP (p<0.05 levels in a dose dependent manner. BUN (Blood Urea Nitrogen and Cr (Creatinine were not significantly changed in A82 seed treated groups. Also, testosterone levels were not significantly changed by administration of different doses of A82. However, Johnson scoring showed slightly decrease in experimental groups. No organ weight or histological changes were observed in liver, kidney, spleen, heart and brain of A82 seed treated animals. These results indicate that A82 seeds have not any toxic effects in Wistar rats. Future studies are required to clarify the exact mechanism by which A82 seeds alter AST levels and body weight in rat.

  6. A Study on the Application of Fuzzy Information Seeded Region Growing in Brain MRI Tissue Segmentation

    Chuin-Mu Wang

    2014-01-01

    Full Text Available After long-term clinical trials, MRI has been proven to be used in humans harmlessly, and it is popularly used in medical diagnosis. Although MR is highly sensitive, it provides abundant organization information. Therefore, how to transform the multi-spectral images which is easier to be used for doctor’s clinical diagnosis. In this thesis, the fuzzy bidirectional edge detection method is used to solve conventional SRG problem of growing order in the initial seed stages. In order to overcome the problems of the different regions, although it is the same Euclidean distance for region growing and merging process stages, we present the peak detection method to improve them. The standard deviation target generation process (SDTGP is applied to guarantee the regions merging process does not cause over- or undersegmentation. Experimental results reveal that FISRG segments a multispectral MR image much more effectively than FAST and K-means.

  7. Clinical Significance of Accounting for Tissue Heterogeneity in Permanent Breast Seed Implant Brachytherapy Planning

    Mashouf, Shahram [Medical Biophysics Department, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario (Canada); Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, Toronto, Ontario (Canada); Fleury, Emmanuelle [Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, Toronto, Ontario (Canada); Lai, Priscilla [Medical Biophysics Department, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario (Canada); Merino, Tomas [Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, Toronto, Ontario (Canada); Radiotherapy Unit, School of Medicine, Departamento de Hemato-oncologia, Pontificia Universidad Católica de Chile, Santiago (Chile); Lechtman, Eli [Medical Biophysics Department, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario (Canada); Kiss, Alex [Sunnybrook Research Institute, Toronto, Ontario (Canada); McCann, Claire [Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, Toronto, Ontario (Canada); Pignol, Jean-Philippe, E-mail: j.p.pignol@erasmusmc.nl [Medical Biophysics Department, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario (Canada); Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, Toronto, Ontario (Canada); Radiation Oncology Department, Erasmus Medical Center, Cancer Institute, Rotterdam (Netherlands)

    2016-03-15

    Purpose: The inhomogeneity correction factor (ICF) method provides heterogeneity correction for the fast calculation TG43 formalism in seed brachytherapy. This study compared ICF-corrected plans to their standard TG43 counterparts, looking at their capacity to assess inadequate coverage and/or risk of any skin toxicities for patients who received permanent breast seed implant (PBSI). Methods and Materials: Two-month postimplant computed tomography scans and plans of 140 PBSI patients were used to calculate dose distributions by using the TG43 and the ICF methods. Multiple dose-volume histogram (DVH) parameters of clinical target volume (CTV) and skin were extracted and compared for both ICF and TG43 dose distributions. Short-term (desquamation and erythema) and long-term (telangiectasia) skin toxicity data were available on 125 and 110 of the patients, respectively, at the time of the study. The predictive value of each DVH parameter of skin was evaluated using the area under the receiver operating characteristic (ROC) curve for each toxicity endpoint. Results: Dose-volume histogram parameters of CTV, calculated using the ICF method, showed an overall decrease compared to TG43, whereas those of skin showed an increase, confirming previously reported findings of the impact of heterogeneity with low-energy sources. The ICF methodology enabled us to distinguish patients for whom the CTV V{sub 100} and V{sub 90} are up to 19% lower compared to TG43, which could present a risk of recurrence not detected when heterogeneity are not accounted for. The ICF method also led to an increase in the prediction of desquamation, erythema, and telangiectasia for 91% of skin DVH parameters studied. Conclusions: The ICF methodology has the advantage of distinguishing any inadequate dose coverage of CTV due to breast heterogeneity, which can be missed by TG43. Use of ICF correction also led to an increase in prediction accuracy of skin toxicities in most cases.

  8. Effects of protein-coated nanofibers on conformation of gingival fibroblast spheroids: potential utility for connective tissues regeneration.

    Kaufman, Gili; Whitescarver, Ryan; Nunes, Laiz; Palmer, Xavier-Lewis; Skrtic, Drago; Tutak, Wojtek

    2017-10-09

    Deep wounds in the gingiva caused by trauma or surgery require a rapid and robust healing of connective tissues. We propose utilizing gas-brushed nanofibers coated with collagen and fibrin for that purpose. Our hypotheses are that protein-coated nanofibers will: (i) attract and mobilize cells in various spatial orientations, and (ii) regulate the expression levels of specific extracellular matrix (ECM)-associated proteins, determining the initial conformational nature of dense and soft connective tissues. Gingival fibroblast monolayers and 3D spheroids were cultured on ECM substrate and covered with gas-blown poly-(DL-lactide-co-glycolide) (PLGA) nanofibers (uncoated/coated with collagen and fibrin). Cell attraction and rearrangement was followed by F-actin staining and confocal microscopy. Thicknesses of the cell layers, developed within the nanofibers, were quantified by imageJ software. The expression of collagen1α1 chain (Col1α1), fibronectin, and metalloproteinase 2 (MMP2) encoding genes was determined by quantitative reverse transcription analysis. Collagen- and fibrin- coated nanofibers induced cell migration toward fibers and supported cellular growth within the scaffolds. Both proteins affected the spatial rearrangement of fibroblasts by favoring packed cell clusters or intermittent cell spreading. These cell arrangements resembled the structural characteristic of dense and soft connective tissues, respectively. Within 3 days of incubation, fibroblast spheroids interacted with the fibers and grew robustly by increasing their thickness compared to monolayers. While the ECM key components, such as fibronectin and MMP2 encoding genes, were expressed in both protein groups, Col1α1 was predominantly expressed in bundled fibroblasts grown on collagen fibers. This enhanced expression of collagen1 is typical for dense connective tissue. Based on results of this study, our gas-blown, collagen- and fibrin-coated PLGA nanofibers are viable candidates for

  9. Effects of protein-coated nanofibers on conformation of gingival fibroblast spheroids: potential utility for connective tissue regeneration.

    Kaufman, Gili; Whitescarver, Ryan A; Nunes, Laiz; Palmer, Xavier-Lewis; Skrtic, Drago; Tutak, Wojtek

    2018-01-24

    Deep wounds in the gingiva caused by trauma or surgery require a rapid and robust healing of connective tissues. We propose utilizing gas-brushed nanofibers coated with collagen and fibrin for that purpose. Our hypotheses are that protein-coated nanofibers will: (i) attract and mobilize cells in various spatial orientations, and (ii) regulate the expression levels of specific extracellular matrix (ECM)-associated proteins, determining the initial conformational nature of dense and soft connective tissues. Gingival fibroblast monolayers and 3D spheroids were cultured on ECM substrate and covered with gas-blown poly-(DL-lactide-co-glycolide) (PLGA) nanofibers (uncoated/coated with collagen and fibrin). Cell attraction and rearrangement was followed by F-actin staining and confocal microscopy. Thicknesses of the cell layers, developed within the nanofibers, were quantified by ImageJ software. The expression of collagen1α1 chain (Col1α1), fibronectin, and metalloproteinase 2 (MMP2) encoding genes was determined by quantitative reverse transcription analysis. Collagen- and fibrin- coated nanofibers induced cell migration toward fibers and supported cellular growth within the scaffolds. Both proteins affected the spatial rearrangement of fibroblasts by favoring packed cell clusters or intermittent cell spreading. These cell arrangements resembled the structural characteristic of dense and soft connective tissues, respectively. Within three days of incubation, fibroblast spheroids interacted with the fibers, and grew robustly by increasing their thickness compared to monolayers. While the ECM key components, such as fibronectin and MMP2 encoding genes, were expressed in both protein groups, Col1α1 was predominantly expressed in bundled fibroblasts grown on collagen fibers. This enhanced expression of collagen1 is typical for dense connective tissue. Based on results of this study, our gas-blown, collagen- and fibrin-coated PLGA nanofibers are viable candidates for

  10. Effects of environmental variation during seed production on seed dormancy and germination.

    Penfield, Steven; MacGregor, Dana R

    2017-02-01

    The environment during seed production has major impacts on the behaviour of progeny seeds. It can be shown that for annual plants temperature perception over the whole life history of the mother can affect the germination rate of progeny, and instances have been documented where these affects cross whole generations. Here we discuss the current state of knowledge of signal transduction pathways controlling environmental responses during seed production, focusing both on events that take place in the mother plant and those that occur directly as a result of environmental responses in the developing zygote. We show that seed production environment effects are complex, involving overlapping gene networks active independently in fruit, seed coat, and zygotic tissues that can be deconstructed using careful physiology alongside molecular and genetic experiments. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  11. Amelioration of hyperglycaemia and its associated complications by finger millet ( Eleusine coracana L.) seed coat matter in streptozotocin-induced diabetic rats.

    Shobana, Shanmugam; Harsha, Mysore R; Platel, Kalpana; Srinivasan, Krishnapura; Malleshi, Nagappa G

    2010-12-01

    Finger millet (Eleusine coracana) is extensively cultivated and consumed in India and Africa. The millet seed coat is a rich source of dietary fibre and phenolic compounds. The effect of feeding a diet containing 20% finger millet seed coat matter (SCM) was examined in streptozotocin-induced diabetic rats. Diabetic rats maintained on the millet SCM diet (diabetic experimental (DE) group) for 6 weeks exhibited a lesser degree of fasting hyperglycaemia and partial reversal of abnormalities in serum albumin, urea and creatinine compared with the diabetic control (DC) group. The DE group of rats excreted comparatively lesser amounts of glucose, protein, urea and creatinine and was accompanied by improved body weights compared with their corresponding controls. Hypercholesterolaemia and hypertriacylglycerolaemia associated with diabetes were also notably reversed in the DE group. Slit lamp examination of the eye lens revealed an immature subcapsular cataract with mild lenticular opacity in the DE group of rats compared to the mature cataract with significant lenticular opacity and corneal vascularisation in the DC group. Lower activity of lens aldose reductase, serum advanced glycation end products and blood glycosylated Hb levels were observed in the DE group. The millet SCM feeding showed pronounced ameliorating effects on kidney pathology as reflected by near normal glomerular and tubular structures and lower glomerular filtration rate compared with the shrunken glomerulus, tubular vacuolations in the DC group. Thus, the present animal study evidenced the hypoglycaemic, hypocholesterolaemic, nephroprotective and anti-cataractogenic properties of finger millet SCM, suggesting its utility as a functional ingredient in diets for diabetics.

  12. Unidirectional Movement of Cellulose Synthase Complexes in Arabidopsis Seed Coat Epidermal Cells Deposit Cellulose Involved in Mucilage Extrusion, Adherence, and Ray Formation1[OPEN

    Lam, Patricia; Young, Robin; DeBolt, Seth

    2015-01-01

    CELLULOSE SYNTHASE5 (CESA5) synthesizes cellulose necessary for seed mucilage adherence to seed coat epidermal cells of Arabidopsis (Arabidopsis thaliana). The involvement of additional CESA proteins in this process and details concerning the manner in which cellulose is deposited in the mucilage pocket are unknown. Here, we show that both CESA3 and CESA10 are highly expressed in this cell type at the time of mucilage synthesis and localize to the plasma membrane adjacent to the mucilage pocket. The isoxaben resistant1-1 and isoxaben resistant1-2 mutants affecting CESA3 show defects consistent with altered mucilage cellulose biosynthesis. CESA3 can interact with CESA5 in vitro, and green fluorescent protein-tagged CESA5, CESA3, and CESA10 proteins move in a linear, unidirectional fashion around the cytoplasmic column of the cell, parallel with the surface of the seed, in a pattern similar to that of cortical microtubules. Consistent with this movement, cytological evidence suggests that the mucilage is coiled around the columella and unwinds during mucilage extrusion to form a linear ray. Mutations in CESA5 and CESA3 affect the speed of mucilage extrusion and mucilage adherence. These findings imply that cellulose fibrils are synthesized in an ordered helical array around the columella, providing a distinct structure to the mucilage that is important for both mucilage extrusion and adherence. PMID:25926481

  13. Extract of grapefruit-seed reduces acute pancreatitis induced by ischemia/reperfusion in rats: possible implication of tissue antioxidants.

    Dembinski, A; Warzecha, Z; Konturek, S J; Ceranowicz, P; Dembinski, M; Pawlik, W W; Kusnierz-Cabala, B; Naskalski, J W

    2004-12-01

    Grapefruit seed extract (GSE) has been shown to exert antibacterial, antifungal and antioxidant activity possibly due to the presence of naringenin, the flavonoid with cytoprotective action on the gastric mucosa. No study so far has been undertaken to determine whether this GSE is also capable of preventing acute pancreatic damage induced by ischemia/reperfusion (I/R), which is known to result from reduction of anti-oxidative capability of pancreatic tissue, and whether its possible preventive effect involves an antioxidative action of this biocomponent. In this study carried out on rats with acute hemorrhagic pancreatitis induced by 30 min partial pancreatic ischemia followed by 6 h of reperfusion, the GSE or vehicle (vegetable glycerin) was applied intragastrically in gradually increasing amounts (50-500 microl) 30 min before I/R. Pretreatment with GSE decreased the extent of pancreatitis with maximal protective effect of GSE at the dose 250 microl. GSE reduced the pancreatitis-evoked increase in serum lipase and poly-C specific ribonuclease activity, and attenuated the marked fall in pancreatic blood flow and pancreatic DNA synthesis. GSE administered alone increased significantly pancreatic tissue content of lipid peroxidation products, malondialdehyde and 4-hydroxyalkens, and when administered before I/R, GSE reduced the pancreatitis-induced lipid peroxidation. We conclude that GSE exerts protective activity against I/R-induced pancreatitis probably due to the activation of antioxidative mechanisms in the pancreas and the improvement of pancreatic blood flow.

  14. Controllable mineral coatings on scaffolds as carriers for growth factor release for bone tissue engineering

    Saurez-Gonzalez, Darilis

    The work presented in this document, focused on the development and characterization of mineral coatings on scaffold materials to serve as templates for growth factor binding and release. Mineral coatings were formed using a biomimetic approach that consisted in the incubation of scaffolds in modified simulated body fluids (mSBF). To modulate the properties of the mineral coating, which we hypothesized would dictate growth factor release, we used carbonate (HCO3) concentration in mSBF of 4.2 mM, 25mM, and 100mM. Analysis of the mineral coatings formed using scanning electron microscopy indicated growth of a continuous layer of mineral with different morphologies. X-ray diffraction analysis showed peaks associated with hydroxyapatite. FTIR data confirmed the substitution of HCO3 in the mineral. As the extent of HCO3 substitution increased, the coating exhibited more rapid dissolution kinetics in an environment deficient in calcium and phosphate. The mineral coatings provided an effective mechanism for bioactive growth factor binding and release. Peptide versions of vascular endothelial growth factor (VEGF) and bone morphogenetic protein 2 (BMP2) were bound with efficiencies up to 90% to mineral-coated PCL scaffolds. Recombinant human vascular endothelial growth factor (rhVEGF) also bound to mineral coated scaffolds with lower efficiency (20%) and released with faster release kinetics compared to peptides growth factor. Released rhVEGF induced human umbilical vein endothelial cell (HUVEC) proliferation in vitro and enhanced blood vessel formation in vivo in an intramuscular sheep model. In addition to the use the mineral coatings for single growth factor release, we expanded the concept and bound both an angiogenic (rhVEGF) and osteogenic (mBMP2) growth factor by a simple double dipping process. Sustained release of both growth factors was demonstrated for over 60 days. Released rhVEGF enhanced blood vessel formation in vivo in sheep and its biological activity was

  15. SU-F-T-46: The Effect of Inter-Seed Attenuation and Tissue Composition in Prostate 125I Brachytherapy Dose Calculations

    Tamura, K; Araki, F; Ohno, T [Kumamoto University, Kumamoto, Kumamoto (Japan)

    2016-06-15

    Purpose: To investigate the difference of dose distributions with/without the effect of inter-seed attenuation and tissue compositions in prostate {sup 125}I brachytherapy dose calculations, using Monte Carlo simulations of Particle and Heavy Ion Transport code System (PHITS). Methods: The dose distributions in {sup 125}I prostate brachytherapy were calculated using PHITS for non-simultaneous and simultaneous alignments of STM1251 sources in water or prostate phantom for six patients. The PHITS input file was created from DICOM-RT file which includes source coordinates and structures for clinical target volume (CTV) and organs at risk (OARs) of urethra and rectum, using in-house Matlab software. Photon and electron cutoff energies were set to 1 keV and 100 MeV, respectively. The dose distributions were calculated with the kerma approximation and the voxel size of 1 × 1 × 1 mm{sup 3}. The number of incident photon was set to be the statistical uncertainty (1σ) of less than 1%. The effect of inter-seed attenuation and prostate tissue compositions was evaluated from dose volume histograms (DVHs) for each structure, by comparing to results of the AAPM TG-43 dose calculation (without the effect of inter-seed attenuation and prostate tissue compositions). Results: The dose reduction due to the inter-seed attenuation by source capsules was approximately 2% for CTV and OARs compared to those of TG-43. In additions, by considering prostate tissue composition, the D{sub 90} and V{sub 100} of CTV reduced by 6% and 1%, respectively. Conclusion: It needs to consider the dose reduction due to the inter-seed attenuation and tissue composition in prostate {sup 125}I brachytherapy dose calculations.

  16. Effect of Papaya Seed Extract (Carica papaya Linn. on Glucose Transporter 4 (GLUT 4 Expression of Skeletal Muscle Tissue in Diabetic Mice Induced by High Fructose Diet

    Devyani Diah Wulansari

    2017-08-01

    Full Text Available Ethnobotany surveys show that papaya seeds are widely used as herbs for the management of some diseases such as abdominal discomfort, pain, malaria, diabetes, obesity, and infection. This research was conducted to analyze the effect of papaya seed extract on GLUT4 expression on skeletal muscle tissue of DM type II model induced by high fructose diet. This study used 24 animals, divided into 4 groups of negative control group, treated with papaya seed extract 100 mg / kgBB, 200 mg / kgBW and 300 mg / kgBW, was adapted for 14 days then induced by fructose solution 20% Orally with a dose of 1.86 grams / kgBB for 56 days. The treatment group was given papaya seed extract in accordance with the dose of each group for 14 days. GDP levels was measured using a spectrophotometer. Skeletal muscle tissue is used on the gastrocnemius part. GLUT4 expression was measured through a Immunoreactive Score (IRS method with immunohistochemical staining using GLUT4 polyclonal antibodies. Comparative test results showed that there were significant differences between groups (p <0.05 in final GDP variables and GLUT4 expression. Pearson correlation test results show that the value p = 0.001, meaning there is a significant relationship between GLUT4 expression with final GDP levels. The result of simple linear regression analysis showed that p = 0,000 (<0,05, meaning that dose of papaya seed extract had a significant influence on GLUT4 expression.

  17. Combined Effect of a Microporous Layer and Type I Collagen Coating on a Biphasic Calcium Phosphate Scaffold for Bone Tissue Engineering

    Mun-Hwan Lee

    2015-03-01

    Full Text Available In this study, type I collagen was coated onto unmodified and modified microporous biphasic calcium phosphate (BCP scaffolds. Surface characterization using a scanning electron microscope (SEM and a surface goniometer confirmed the modification of the BCP coating. The quantity of the collagen coating was investigated using Sirius Red staining, and quantitative assessment of the collagen coating showed no significant differences between the two groups. MG63 cells were used to evaluate cell proliferation and ALP activity on the modified BCP scaffolds. The modified microporous surfaces showed low contact angles and large surface areas, which enhanced cell spreading and proliferation. Coating of the BCP scaffolds with type I collagen led to enhanced cell-material interactions and improved MG63 functions, such as spreading, proliferation, and differentiation. The micropore/collagen-coated scaffold showed the highest rate of cell response. These results indicate that a combination of micropores and collagen enhances cellular function on bioengineered bone allograft tissue.

  18. The effect of the shape and size of gold seeds irradiated with ultrasound on the bio-heat transfer in tissue.

    Gkigkitzis, Ioannis; Austerlitz, Carlos; Haranas, Ioannis; Campos, Diana

    2015-01-01

    The aim of this report is to propose a new methodology to treat prostate cancer with macro-rod-shaped gold seeds irradiated with ultrasound and develop a new computational method for temperature and thermal dose control of hyperthermia therapy induced by the proposed procedure. A computer code representation, based on the bio-heat diffusion equation, was developed to calculate the heat deposition and temperature elevation patterns in a gold rod and in the tissue surrounding it as a result of different therapy durations and ultrasound power simulations. The numerical results computed provide quantitative information on the interaction between high-energy ultrasound, gold seeds and biological tissues and can replicate the pattern observed in experimental studies. The effect of differences in shapes and sizes of gold rod targets irradiated with ultrasound is calculated and the heat enhancement and the bio-heat transfer in tissue are analyzed.

  19. Fate of Salmonella enterica and Enterohemorrhagic Escherichia coli Cells Artificially Internalized into Vegetable Seeds during Germination.

    Liu, Da; Cui, Yue; Walcott, Ronald; Chen, Jinru

    2018-01-01

    Vegetable seeds contaminated with bacterial pathogens have been linked to fresh-produce-associated outbreaks of gastrointestinal infections. This study was undertaken to observe the physiological behavior of Salmonella enterica and enterohemorrhagic Escherichia coli (EHEC) cells artificially internalized into vegetable seeds during the germination process. Surface-decontaminated seeds of alfalfa, fenugreek, lettuce, and tomato were vacuum-infiltrated with four individual strains of Salmonella or EHEC. Contaminated seeds were germinated at 25°C for 9 days, and different sprout/seedling tissues were microbiologically analyzed every other day. The internalization of Salmonella and EHEC cells into vegetable seeds was confirmed by the absence of pathogens in seed-rinsing water and the presence of pathogens in seed homogenates after postinternalization seed surface decontamination. Results show that 317 (62%) and 343 (67%) of the 512 collected sprout/seedling tissue samples were positive for Salmonella and EHEC, respectively. The average Salmonella populations were significantly larger ( P seed coat tissues, followed by the root tissues, but the mean EHEC populations from all sampled tissue sections were statistically similar, except in pregerminated seeds. Three Salmonella and two EHEC strains had significantly larger cell populations on sprout/seedling tissues than other strains used in the study. Salmonella and EHEC populations from fenugreek and alfalfa tissues were significantly larger than those from tomato and lettuce tissues. The study showed the fate of internalized human pathogens on germinating vegetable seeds and sprout/seedling tissues and emphasized the importance of using pathogen-free seeds for sprout production. IMPORTANCE The internalization of microorganisms into vegetable seeds could occur naturally and represents a possible pathway of vegetable seed contamination by human pathogens. The present study investigated the ability of two important

  20. Effect of implanted radioactive 125I seeds on normal tissue structures of bronchus, esophagus, pulmonary artery, pulmonary vein and alveolus in dogs

    Qi Liangchen; Han Zhenguo; Yang Bin; Heersitai

    2008-01-01

    Objective: To investigate the effect of implanted radioactive 125 I seeds on normal tissue structures of bronchus, esophagus, pulmonary artery, pulmonary vein and alveolus in dogs. Methods: Nine healthy male dogs weighing 17-21 kg were randomly divided into three groups: 30 d, 60 d experimental groups and control group. Radioactive 125 I seeds (3.7 x 10 7 Bg, 1.0 mCi) were implanted into the sides of bronchus, esophagus, pulmonary artery, pulmonary vein respectively, the samples of bronchus, esophagus, pulmonary artery, pulmonary vein were taken 30 and 60 d after transplantation, HE staining was used to observe the pathologic changes of the tissues under light microscope. Results: The damages of normal bronchus, esophagus, pulmonary artery, pulmonary vein and alveolus after radioactive 125 I seeds implantation in 30 d group were weaker than those in control group and 60 d group, there were no complications such as perforation, hemorrhage, necrosis, etc. Histopathological score indicated that the scores of bronchus, esophagus and alveolar in 30 d group and 60 d group were higher than those in control group (P 0.05); there was no significant difference in histopathological score of pulmonary vein among all groups (P>0.05). Conclusion: The implanted radioactive 125 I seeds can damage all kinds of tissues at different degrees, but this kind of damage is reversible, the dog may repair the damage through its own repair ability, its clinical application is safe. (authors)

  1. Microprobing the Molecular Spatial Distribution and Structural Architecture of Feed-type Sorghum Seed Tissue (Sorghum Bicolor L.) using the Synchrotron Radiation Infrared Microspectroscopy Technique

    Yu, P.

    2011-01-01

    Sorghum seed (Sorghum bicolor L.) has unique degradation and fermentation behaviours compared with other cereal grains such as wheat, barley and corn. This may be related to its cell and cell-wall architecture. The advanced synchrotron radiation infrared microspectroscopy (SR-IMS) technique enables the study of cell or living cell biochemistry within cellular dimensions. The objective of this study was to use the SR-IMS imaging technique to microprobe molecular spatial distribution and cell architecture of the sorghum seed tissue comprehensively. High-density mapping was carried out using SR-IMS on beamline U2B at the National Synchrotron Light Source (Brookhaven National Laboratory, NY, USA). Molecular images were systematically recorded from the outside to the inside of the seed tissue under various chemical functional groups and their ratios [peaks at ∼1725 (carbonyl C=O ester), 1650 (amide I), 1657 (protein secondary structure α-helix), 1628 (protein secondary structure β-sheet), 1550 (amide II), 1515 (aromatic compounds of lignin), 1428, 1371, 1245 (cellulosic compounds in plant seed tissue), 1025 (non-structural CHO, starch granules), 1246 (cellulosic material), 1160 (CHO), 1150 (CHO), 1080 (CHO), 930 (CHO), 860 (CHO), 3350 (OH and NH stretching), 2960 (CH 3 anti-symmetric), 2929 (CH 2 anti-symmetric), 2877 (CH 3 symmetric) and 2848 cm -1 (CH 2 asymmetric)]. The relative protein secondary structure α-helix to β-sheet ratio image, protein amide I to starch granule ratio image, and anti-symmetric CH 3 to CH 2 ratio image were also investigated within the intact sorghum seed tissue. The results showed unique cell architecture, and the molecular spatial distribution and intensity in the sorghum seed tissue (which were analyzed through microprobe molecular imaging) were generated using SR-IMS. This imaging technique and methodology has high potential and could be used for scientists to develop specific cereal grain varieties with targeted food and feed

  2. Biomimetic Coating on Porous Alumina for Tissue Engineering: Characterisation by Cell Culture and Confocal Microscopy

    Elizabeth Kolos

    2015-06-01

    Full Text Available In this study porous alumina samples were prepared and then coated using the biomimetic coating technique using a five times Simulated Body Fluid (5.0SBF as the growth solution. A coating was achieved after pre-treatment with concentrated acid. From elemental analysis, the coating contained calcium and phosphorous, but also sodium and chlorine. Halite was identified by XRD, a sodium chloride phase. Sintering was done to remove the halite phase. Once halite was burnt off, the calcium phosphate crystals were not covered with halite and, therefore, the apatite phases can be clearly observed. Cell culturing showed sufficient cell attachment to the less porous alumina, Sample B, that has more calcium phosphate growth, while the porous alumina, Sample A, with minimal calcium phosphate growth attained very little cell attachment. This is likely due to the contribution that calcium phosphate plays in the attachment of bone-like cells to a bioinert ceramic such as alumina. These results were repeated on both SEM and confocal microscopy analysis. Confocal microscopy was a novel characterisation approach which gave useful information and was a visual aid.

  3. Bone tissue engineering on amorphous carbonated apatite and crystalline octacalcium phosphate-coated titanium discs

    Dekker, Robert J.; de Bruijn, Joost Dick; Stigter, Martin; Barrère, F.; Layrolle, Pierre; van Blitterswijk, Clemens

    2005-01-01

    Poor fixation of bone replacement implants, e.g. the artificial hip, in implantation sites with inferior bone quality and quantity may be overcome by the use of implants coated with a cultured living bone equivalent. In this study, we tested, respectively, amorphous carbonated apatite (CA)- and

  4. Two-dimensional patterning of thin coatings for the control of tissue outgrowth

    Thissen, H.; Johnson, G.; Hartley, P.G.

    2006-01-01

    were used to provide evidence of successful surface modifications. Adsorption of the extracellular matrix protein collagen I followed by tissue outgrowth experiments with bovine corneal epithelial tissue for up to 21 days showed that two-dimensional control over tissue outgrowth is achievable with our......Control of the precise location and extent of cellular attachment and proliferation, and of tissue outgrowth is important in a number of biomedical applications, including biomaterials and tissue engineered medical devices. Here we describe a method to control and direct the location and define...... boundaries of tissue growth on surfaces in two dimensions. The method relies on the generation of a spatially defined surface chemistry comprising protein adsorbing and non-adsorbing areas that allow control over the adsorption of cell-adhesive glycoproteins. Surface modification was carried out...

  5. Effect of micronized pea seeds (Pisum sativum L.) as a substitute of soybean meal on tissue fatty acid composition and quality of broiler chicken meat.

    Kiczorowska, Bożena; Samolińska, Wioletta; Andrejko, Dariusz

    2016-11-01

    This study aimed to evaluate the effect of micronized pea seeds introduced into feed mixes for broilers on the slaughter yield, blood lipid parameters, content of fatty acids in selected tissues, and meat quality. The studies involved 150 1-day-old Ross 308 chicks split into three groups (for 42 days). The feed rations differed in terms of the source of proteins: in the control group (C), it was post-extraction soybean meal (SBM) 100%; in group I, SBM 50% and micronized peas 50%; and in group II, micronized peas only, 100%. Irradiated pea seeds added to the feed ration for chicks reduced the fattening grade of carcasses (P seeds in feed mixes decreased the share of saturated fatty acids in the muscles and abdominal fat and had a positive effect on the n-6/n-3 ratio, hypocholesterolemic / hypercholesterolemic ratio, as well as the atherogenic and thrombogenic indices (P < 0.05). © 2016 Japanese Society of Animal Science.

  6. Effect of gamma irradiation on lipoxygenases, trypsin inhibitor, raffinose family oligosaccharides and nutritional factors of different seed coat colored soybean (Glycine max L.)

    Kumar Dixit, Amit [School of Biochemistry, Devi Ahilya University, Khandwa Road, Indore-452017 (India); Kumar, Vineet; Rani, Anita [National Research Centre for Soybean, Khandwa Road, Indore-452017 (India); Manjaya, J.G. [Board of Research in Nuclear Sciences, Bhabha Atomic Research Centre, Trombay, Mumbai (India); Bhatnagar, Deepak, E-mail: bhatnagarbio@yahoo.co [School of Biochemistry, Devi Ahilya University, Khandwa Road, Indore-452017 (India)

    2011-04-15

    Three soybean genotypes Kalitur, Hara soya and NRC37 with black, green and yellow seed coat color, respectively, were gamma irradiated at 0.5, 2.0 and 5.0 kGy and tested for antinutritional and nutritional factors. Gamma irradiation at all doses reduced the level of lipoxygenase isomers, trypsin inhibitor (TI) and ascorbic acid in all the 3 soybean genotypes as compared to the unirradiated control. However, irradiation dose of 5.0 kGy increased the sucrose content of the soybean genotypes. No significant change was observed in oil, protein fatty acids and total tocopherol content of the 3 genotypes at any irradiation dose. It is suggested that inhibition of lipoxygenase, reduction in TI and ascorbic acid may be due to the breakage or oxidation of protein structure by the gamma irradiation. Similarly, gamma irradiation at higher doses may break glycosidic linkages in oligosaccharides to produce more sucrose and decrease the content of flatulence causing oligosaccharides.

  7. Effect of gamma irradiation on lipoxygenases, trypsin inhibitor, raffinose family oligosaccharides and nutritional factors of different seed coat colored soybean (Glycine max L.)

    Kumar Dixit, Amit; Kumar, Vineet; Rani, Anita; Manjaya, J.G.; Bhatnagar, Deepak

    2011-01-01

    Three soybean genotypes Kalitur, Hara soya and NRC37 with black, green and yellow seed coat color, respectively, were gamma irradiated at 0.5, 2.0 and 5.0 kGy and tested for antinutritional and nutritional factors. Gamma irradiation at all doses reduced the level of lipoxygenase isomers, trypsin inhibitor (TI) and ascorbic acid in all the 3 soybean genotypes as compared to the unirradiated control. However, irradiation dose of 5.0 kGy increased the sucrose content of the soybean genotypes. No significant change was observed in oil, protein fatty acids and total tocopherol content of the 3 genotypes at any irradiation dose. It is suggested that inhibition of lipoxygenase, reduction in TI and ascorbic acid may be due to the breakage or oxidation of protein structure by the gamma irradiation. Similarly, gamma irradiation at higher doses may break glycosidic linkages in oligosaccharides to produce more sucrose and decrease the content of flatulence causing oligosaccharides.

  8. Fate and transport of furrow-applied granular tefluthrin and seed-coated clothianidin insecticides: Comparison of field-scale observations and model estimates.

    Huff Hartz, Kara E; Edwards, Tracye M; Lydy, Michael J

    2017-09-01

    The transport of agricultural insecticides to water bodies may create risk of exposure to non-target organisms. Similarly, widespread use of furrow-applied and seed-coated insecticides may increase risk of exposure, yet accessible exposure models are not easily adapted for furrow application, and only a few examples of model validation of furrow-applied insecticides exist using actual field data. The goal of the current project was to apply an exposure model, the Pesticide in Water Calculator (PWC), to estimate the concentrations of two in-furrow insecticides applied to maize: the granular pyrethroid, tefluthrin, and the seed-coated neonicotinoid, clothianidin. The concentrations of tefluthrin and clothianidin in surface runoff water, sampled from a field in central Illinois (USA), were compared to the PWC modeled pesticide concentrations in surface runoff. The tefluthrin concentrations were used to optimize the application method in the PWC, and the addition of particulate matter and guttation droplets improved the models prediction of clothianidin concentrations. Next, the tefluthrin and clothianidin concentrations were calculated for a standard farm pond using both the optimized application method and the application methods provided in PWC. Estimated concentrations in a standard farm pond varied by a factor of 100 for tefluthrin and 50 for clothianidin depending on the application method used. The addition of guttation droplets and particulate matter to the model increased the annual clothianidin concentration in a standard farm pond by a factor of 1.5, which suggested that these transport routes should also be considered when assessing neonicotinoid exposure.

  9. Use of Plantago major seed mucilage as a novel edible coating incorporated with Anethum graveolens essential oil on shelf life extension of beef in refrigerated storage.

    Behbahani, Behrooz Alizadeh; Shahidi, Fakhri; Yazdi, Farideh Tabatabaei; Mortazavi, Seyed Ali; Mohebbi, Mohebbat

    2017-01-01

    In this study, Plantago major seed mucilage (PMSM) was extracted from whole seeds using hot-water extraction (HWE). The dill (D) essential oil components were identified through gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS) and its antioxidant properties were examined through the methods of 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant potential (FRAP) and ß-carotene-linoleic acid assay (B-CL). Total phenolic content (TPC) was characterized through the Folin-Ciocalteu method and the antimicrobial effect was evaluated on 10 pathogenic microorganisms. PMSM edible coating incorporated were prepared in four different concentrations of essential oils, including 0, 0.5, 1 and 1.5% (w/w). The control and the coated beef samples were analyzed periodically for microbiological (total viable count, psychrotrophic count, Escherichia coli, Staphylococcus aureus and fungi), chemical (thiobarbituric acid, peroxide value and pH), and sensory characteristics. The IC 50 , FRAP, B-CL and TPC of the dill essential oil were equal to 11.44μg/ml, 9.45mmol/g, 82.86 and 162.65μg/ml GAE, respectively. PMSM extended the microbial shelf life of beef by 3days, whereas the PMSM+0.5%D, PMSM+1%D and PMSM+1.5%D resulted in a significant shelf life extension of the beef by 6, 9 and 9days, respectively, as compared to the control samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Distribution of Primary and Specialized Metabolites in Nigella sativa Seeds, a Spice with Vast Traditional and Historical Uses

    Efraim Lev

    2012-08-01

    Full Text Available Black cumin (Nigella sativa L., Ranunculaceae is an annual herb commonly used in the Middle East, India and nowadays gaining worldwide acceptance. Historical and traditional uses are extensively documented in ancient texts and historical documents. Black cumin seeds and oil are commonly used as a traditional tonic and remedy for many ailments as well as in confectionery and bakery. Little is known however about the mechanisms that allow the accumulation and localization of its active components in the seed. Chemical and anatomical evidence indicates the presence of active compounds in seed coats. Seed volatiles consist largely of olefinic and oxygenated monoterpenes, mainly p-cymene, thymohydroquinone, thymoquinone, γ-terpinene and α-thujene, with lower levels of sesquiterpenes, mainly longifolene. Monoterpene composition changes during seed maturation. γ-Terpinene and α-thujene are the major monoterpenes accumulated in immature seeds, and the former is gradually replaced by p-cymene, carvacrol, thymo-hydroquinone and thymoquinone upon seed development. These compounds, as well as the indazole alkaloids nigellidine and nigellicine, are almost exclusively accumulated in the seed coat. In contrast, organic and amino acids are primarily accumulated in the inner seed tissues. Sugars and sugar alcohols, as well as the amino alkaloid dopamine and the saponin α-hederin accumulate both in the seed coats and the inner seed tissues at different ratios. Chemical analyses shed light to the ample traditional and historical uses of this plant.

  11. Vigor de sementes de brócolos submetidas a coberturas biodegradáveis e micronutrientes Vigor of broccoli seeds submitted to biodegradable coatings and micronutrients

    Juliana A. Batista

    2005-07-01

    Full Text Available O desenvolvimento e a aplicação de filmes ou coberturas biodegradáveis na horticultura são técnicas praticadas há vários anos, que visam promover melhoria na qualidade do produto. no presente trabalho desenvolveu-se e caracterizou-se biofilmes de pectina, gelatina e ácidos graxos e verificou-se sua eficiência como cobertura para sementes de brócolos (Brassica oleracea L. var. italica. Os filmes foram caracterizados quanto à solubilidade em água. A contagem e a observação de plantas de brócolos, a partir da germinação de sementes cobertas e não cobertas foi realizada em média a cada três dias, aos 27 dias fêz-se a quantificação da matéria fresca e seca. Os filmes de pectina e ácido esteárico foram 100% solúveis em água, enquanto os elaborados com pectina e gelatina (1/1 foram apenas 18%. A aplicação das coberturas filmogênicas nas sementes de brócolos não afetou a emergência das plantas, demonstrando assim sua potencialidade para uso comercial. Os fertilizantes molibdato de sódio (0,2 mg L-1 e ácido bórico (1mg L-1, aplicados juntamente com os biofilmes, também não afetaram a emergência e o desenvolvimento das plantas.The development and application of biodegradable coatings and films have been used for many years in order to improve quality of the coated or packed product. The development and characterization of pectin and pectin/gelatin-based biofilms with fatty acids was evaluated and verified their efficiency as coatings to broccoli seeds (Brassica oleracea L. var. italica. The solubility in water of the films was determined. The counting and visual observations of the germinated broccoli seeds were done each three days and fresh and dried weight of the plants were determined at the end of the experiment. Pectin-based films with stearic acid were 100% soluble in water and composite films of pectin and gelatin were 18%. The application of the biodegradable coatings on broccoli seeds had no effect on the

  12. The role of gibberellins in improving the resistance of tebuconazole-coated maize seeds to chilling stress by microencapsulation.

    Yang, Lijuan; Yang, Daibin; Yan, Xiaojing; Cui, Li; Wang, Zhenying; Yuan, Huizhu

    2016-11-07

    Chilling stress during germination often causes severe injury. In the present study, maize seed germination and shoot growth under chilling stress were negatively correlated with the dose of tebuconazole in an exponential manner as predicted by the model Y = A + B × e (-x/k) . Microencapsulation was an effective means of eliminating potential phytotoxic risk. The gibberellins (GAs) contents were higher after microencapsulation treatment than after conventional treatment when the dose of tebuconazole was higher than 0.12 g AI (active ingredient) kg -1 seed. Further analysis indicated that microencapsulation can stimulate ent-kaurene oxidase (KO) activity to some extent, whereas GA 3-oxidase (GA3ox) and GA 2-oxidase (GA2ox) activities remained similar to those in the control. Genes encoding GA metabolic enzymes exhibited different expression patterns. Transcript levels of ZmKO1 increased in the microcapsule treatments compared to the control. Even when incorporated into microcapsules, tebuconazole led to the upregulation of ZmGA3ox1 at doses of less than 0.12 g AI kg -1 seed and to the upregulation of ZmGA3ox2 when the dose was higher than 0.12 g AI kg -1 seed. With increasing doses of microencapsulated tebuconazole, the transcript levels of ZmGA2ox4, ZmGA2ox5 and ZmGA2ox6 exhibited upward trends, whereas the transcript levels of ZmGA2ox7 exhibited a downward trend.

  13. The metabolism of 32P-CP-PLLA seed implanted in the liver and its damage to the normal liver tissue: a study in the experimental dogs

    Tan Zhongbao; Liu Lu; Guo Jinhe; Zhu Guangyu; Wang Fuan; Nie Qi; Gao Hailin; Teng Gaojun

    2010-01-01

    Objective: To investigate the effects of intratumoral implantation of 32 P -CP-PLLA seeds on the normal canine liver tissue and to explore the metabolism of 32 P-CP-PLLA seeds implanted in the liver of experimental dogs. Methods: Twelve beagles were enrolled in this study. The dogs were randomly and equally divided into four groups: group A (185 MBq), group B (370 MBq), group C (740 MBq) and group D (0 MBq). By using laparotomy procedure 32 P-CP-PLLA seeds were implanted into dog's liver. CT scan was performed before operation as well as before the dog was sacrificed. All dogs were sacrificed three months after the implantation. Before the procedure and 1, 2, 4, 8 and 12 weeks after the procedure the blood tests and serum biochemical tests were conducted. One dog from group B and group C was selected respectively and was fed in a metabolic cage. Within one month after the procedure the cpm in feces and in urine was determined every 24 hours. One dog was picked out from each of the three groups and was punctured to get its liver tissue for pathologic exam each time at 1, 2, 4, 8 and 12 weeks after the implantation, and SPECT imaging was also performed at the same time. Pathologic study, both macroscopic and microscopic (including optical and electronic microscopy) was made to observe the liver damage after the dog was sacrificed. The statistical analysis was processed by using SPSS 13.0 software and the measuring data were expressed with mean ± standard deviation (x ± s). Results: Two months after the procedure, serological examination found that the serum alkaline phosphatase (BKP) in both group B and group C was significantly higher than that in other groups, the difference was statistically significant (P 32 P-CP-PLLA seeds was manifested as a spherical lesion which was encysted by a layer of fibrous tissue with an edematous zone peripherally. Conclusion: The implantation of 32 P-CP-PLLA seeds in dog's liver causes only localized hepatic damage with no general

  14. Inheritance of the characters glossy and mat of the seed coat in beans (Phaseolus Vulgaris L.) in norm and after gamma rays and ethylmethanesulfonate treatment in Fo anf F1

    Rodriges, F.; Rukmanski, G.

    1990-01-01

    Reciprocal crosses were made between the following cultivars: 1) kidney bean cvs. Dobrudzhanski 7, Tyrnovo 13 and Astor, having glossy seeds, and Sataya 425 with mat seeds; 2) string bean cvs. Oreol and Zarya (glossy) and Starozagorski Cheren (glossy). Seeds of F o and F 1 were treated with 10 krad gamma rays and 0.01% ethylmethanesulfonate using the mutagens singly and in combination. Deviations from the expected segregation of the characters were observed in kidney beans, being most pronounced following the consequtive treatment, which may be explaned by arisal of mutations and increased frequencies of recombinatipon in the genetic material. This assumption was confirmed in string beans where post mutagen treatment mat seeds were found in hybrids from parental cultivars with glossy seeds and the mat seeds were presented in the following generation. These changes could be explained by arisal of recessive mutations. It is concluded that the combined application of hybridization and mutagenesis increases genetic diversity of the hybrid progeny in regard to glossy and mat bean seed coat. 4 tabs., 2 refs

  15. genetics and inheritance of seed dormancy inflicted by seed

    Mgina

    ABSTRACT. The study was undertaken to investigate the genetic mode of inheritance of dormancy imposed by the hull (seed coat) in rice seeds. Freshly harvested seeds of parents, F1 and F2 populations of a cross between a dormant cultivar Kisegese and non-dormant strain K2004 were used. Germination test of the ...

  16. Viabilidade de sementes de erva-de-touro, sob diferentes condições de armazenamento Seed viability of coat button under different storage conditions

    S.C. Guimarães

    2004-06-01

    Full Text Available A manutenção da viabilidade das sementes é muito influenciada pelas condições de armazenamento. No caso das plantas daninhas, essa informação pode servir como suporte para a realização de outras pesquisas e também ajudar na compreensão da dinâmica das infestações. Neste trabalho, a viabilidade das sementes da planta daninha erva-de-touro (Tridax procumbens foi monitorada durante dois anos, quando armazenadas em câmara fria (temperatura de 10 ºC e umidade relativa de 50%, em congelador (-18 ºC, em armazém convencional (condições não controladas e no solo. Quando armazenado em câmara fria (em sacos de papel e em congelador (em tubos plásticos herméticos, o lote de sementes mantém a viabilidade inicial (70,5% por no mínimo 730 dias (período experimental. No solo, ocorre perda de viabilidade com o tempo, numa taxa constante de 8,2% para cada 100 dias. Em armazém convencional, a viabilidade das sementes (em sacos de papel é mantida por 200 dias, com redução acentuada entre 300 e 500 dias, chegando ao final de 730 dias com 2,8% de viabilidade. Em nenhuma das formas de armazenamento há indução de dormência secundária nas sementes.Seed viability is strongly influenced by storage conditions. In weeds, this information may serve as support for other research works and help to understand infestation dynamics as well. This work, conducted at Universidade Federal de Lavras, was carried out to evaluate the viability of coat button (Tridax procumbens seeds stored in cold chamber ( temperature of 10 ºC and relative humidity of 50%, in freezer (-18 ºC, conventional warehouse (uncontrolled conditions and soil, over 2 years. Seed lot with 70.5% initial viability, maintained this condition over the experimental period (730 days when stored in cold chamber (in paper bags and in freezer (in airtight plastic tubes. Under soil conditions, viability loss occurred with time, at a constant rate of 8.2% at every 100 days. In a

  17. Biomimetic coatings for bone tissue engineering of critical-sized defects

    Liu, Y.; Wu, G.; de Groot, K.

    2010-01-01

    The repair of critical-sized bone defects is still challenging in the fields of implantology, maxillofacial surgery and orthopaedics. Current therapies such as autografts and allografts are associated with various limitations. Cytokine-based bone tissue engineering has been attracting increasing

  18. A Trifunctional, Modular Biomaterial Coating : Nonadhesive to Bacteria, Chlorhexidine-Releasing and Tissue-Integrating

    Sjollema, Jelmer; Keul, Heidrun; van der Mei, Henny; Dijkstra, Rene; Rustema-Abbing, Minie; de Vries, Joop; Loontjens, Ton; Dirks, Ton; Busscher, Henk

    Various potential anti-infection strategies can be thought of for biomaterial implants and devices. Permanent, tissue-integrated implants such as artificial joint prostheses require a different anti-infection strategy than, for instance, removable urinary catheters. The different requirements set to

  19. Rapid prototyped porous titanium coated with calcium phosphate as a scaffold for bone tissue engineering.

    Lopez, M.A.; Sohier, J.; Gaillard, C.A.J.M.; Quillard, S.; Dorget, M.; Layrolle, P.

    2008-01-01

    High strength porous scaffolds and mesenchymal stem cells are required for bone tissue engineering applications. Porous titanium scaffolds (TiS) with a regular array of interconnected pores of 1000 microm in diameter and a porosity of 50% were produced using a rapid prototyping technique. A calcium

  20. Short and long term modulation of tissue minerals concentrations following oral administration of black cumin (Nigella sativa L.) seed oil to laboratory rats.

    Basheer, Irum; Qureshi, Irfan Zia

    2018-01-15

    Nigella sativa, or commonly called black cumin is a small herb of family Ranunculaceae is a well-known medicinal plant but its effects on tissue mineral concentrations of animal bodies is unknown. To study the effect of oral administration of fixed oil of black cumin seeds on tissues mineral content using laboratory rats as experimental model. Experimental animals were exposed to two oral doses of seed oil (60 and 120 ml kg -1 body weight). Short- and long term experiments lasted 24 h and 60 days respectively, with three replicates each. Oil extracted from black cumin seeds was subjected to GC-MS to identify chemical components. Following the wet digestion in nitric acid, samples of whole blood and organs of rats were subjected to atomic absorption spectrophotometry for determination of elements concentrations. Data were compared statistically at p < .05. Compared to control, Cr, Mn, Ni, Cu, Zn showed decrease, whereas Co, Na, Mg and K demonstrated increase, but Ca showed both increase and decrease in most of the tissues upon short term exposure to low and high doses of black cumin oil. During long term exposure, Cr, Fe, Mn, Cu exhibited decrease; Co, Na, Mg and Ca concentrations demonstrated an upregulation, whereas Ni and Zn showed increase and decrease in most of the tissues. Comparison of short term with long term experiments at low dose revealed increases in Fe, Zn, Cu, Mg, K and Ca, a decrease in Cr, Mn, Ni and Cu in most tissues, but both increase and decrease in Na. At high dose, an increase occurred in Fe, Ni, Zn, K, Ca, Mg, a decrease in Cr, while both increase and decrease in Cu, Co and Na concentrations. Our study demonstrates that oral administration of black cumin seeds oil to laboratory rats significantly alters tissue trace elements and electrolytes concentrations. The study appears beneficial but indicates modulatory role of black cumin oil as regards mineral metabolism with far reaching implications in health and disease. Copyright © 2017

  1. A gold nanoparticle coated porcine cholecyst-derived bioscaffold for cardiac tissue engineering.

    Nair, Reshma S; Ameer, Jimna Mohamed; Alison, Malcolm R; Anilkumar, Thapasimuthu V

    2017-09-01

    Extracellular matrices of xenogeneic origin have been extensively used for biomedical applications, despite the possibility of heterogeneity in structure. Surface modification of biologically derived biomaterials using nanoparticles is an emerging strategy for improving topographical homogeneity when employing these scaffolds for sophisticated tissue engineering applications. Recently, as a tissue engineering scaffold, cholecyst derived extracellular matrix (C-ECM) has been shown to have several advantages over extracellular matrices derived from other organs such as jejunum and urinary bladder. This study explored the possibility of adding gold nanoparticles, which have a large surface area to volume ratio on C-ECM for achieving homogeneity in surface architecture, a requirement for cardiac tissue engineering. In the current study, gold nanoparticles (AuNPs) were synthesized and functionalised for conjugating with a porcine cholecystic extracellular matrix scaffold. The conjugation of nanoparticles to C-ECM was achieved by 1-ethyl-3-(3-dimethyl aminopropyl)-carbodiimide/N-hydroxysuccinimide chemistry and further characterized by Fourier transform infrared spectroscopy, environmental scanning electron microscopy, energy dispersive X-ray spectroscopy and thermogravimetric analysis. The physical properties of the modified scaffold were similar to the original C-ECM. Biological properties were evaluated by using H9c2 cells, a cardiomyoblast cell line commonly used for cellular and molecular studies of cardiac cells. The modified scaffold was found to be a suitable substrate for the growth and proliferation of the cardiomyoblasts. Further, the non-cytotoxic nature of the modified scaffold was established by direct contact cytotoxicity testing and live/dead staining. Thus, the modified C-ECM appears to be a potential biomaterial for cardiac tissue engineering. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Degradation and in vitro cell–material interaction studies on hydroxyapatite-coated biodegradable porous iron for hard tissue scaffolds

    Nurizzati Mohd Daud

    2014-10-01

    Full Text Available This paper describes degradation and cell–material interaction studies on hydroxyapatite (HA-coated biodegradable porous iron proposed for hard tissue scaffolds. Porous iron scaffolds are expected to serve as an ideal platform for bone regeneration. To couple their inherent mechanical strength, pure HA and HA/poly(ε-caprolactone (HA/PCL were coated onto porous iron using dip coating technique. The HA/PCL mixture was prepared to provide a more stable and flexible coating than HA alone. Degradation of the samples was evaluated by weight loss and potentiodynamic polarisation. Human skin fibroblast (HSF and human mesenchymal stem cells (hMSC were put in contact with the samples and their interaction was observed. Results showed that coated samples degraded ∼10 times slower (0.002 mm/year for HA/PCL-Fe, 0.003 mm/year for HA-Fe than the uncoated ones (0.031 mm/year, indicating an inhibition effect of the coating on degradation. Both HSF and hMSC maintained high viability when in contact with the coated samples (100–110% control for hMSC during 2–5 days of incubation, indicating the effect of HA in enhancing cytocompatibility of the surface. This study provided early evidence of the potential translation of biodegradable porous iron scaffolds for clinical use in orthopedic surgery. However, further studies including in vitro and in vivo tests are necessary.

  3. A poly(glycerol sebacate)-coated mesoporous bioactive glass scaffold with adjustable mechanical strength, degradation rate, controlled-release and cell behavior for bone tissue engineering.

    Lin, Dan; Yang, Kai; Tang, Wei; Liu, Yutong; Yuan, Yuan; Liu, Changsheng

    2015-07-01

    Various requirements in the field of tissue engineering have motivated the development of three-dimensional scaffold with adjustable physicochemical properties and biological functions. A series of multiparameter-adjustable mesoporous bioactive glass (MBG) scaffolds with uncrosslinked poly(glycerol sebacate) (PGS) coating was prepared in this article. MBG scaffold was prepared by a modified F127/PU co-templating process and then PGS was coated by a simple adsorption and lyophilization process. Through controlling macropore parameters and PGS coating amount, the mechanical strength, degradation rate, controlled-release and cell behavior of the composite scaffold could be modulated in a wide range. PGS coating successfully endowed MBG scaffold with improved toughness and adjustable mechanical strength covering the bearing range of trabecular bone (2-12MPa). Multilevel degradation rate of the scaffold and controlled-release rate of protein from mesopore could be achieved, with little impact on the protein activity owing to an "ultralow-solvent" coating and "nano-cavity entrapment" immobilization method. In vitro studies indicated that PGS coating promoted cell attachment and proliferation in a dose-dependent manner, without affecting the osteogenic induction capacity of MBG substrate. These results first provide strong evidence that uncrosslinked PGS might also yield extraordinary achievements in traditional MBG scaffold. With the multiparameter adjustability, the composite MBG/PGS scaffolds would have a hopeful prospect in bone tissue engineering. The design considerations and coating method of this study can also be extended to other ceramic-based artificial scaffolds and are expected to provide new thoughts on development of future tissue engineering materials. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Magnetic resonance imaging of folic acid-coated magnetite nanoparticles reflects tissue biodistribution of long-acting antiretroviral therapy.

    Li, Tianyuzi; Gendelman, Howard E; Zhang, Gang; Puligujja, Pavan; McMillan, JoEllyn M; Bronich, Tatiana K; Edagwa, Benson; Liu, Xin-Ming; Boska, Michael D

    2015-01-01

    Regimen adherence, systemic toxicities, and limited drug penetrance to viral reservoirs are obstacles limiting the effectiveness of antiretroviral therapy (ART). Our laboratory's development of the monocyte-macrophage-targeted long-acting nanoformulated ART (nanoART) carriage provides a novel opportunity to simplify drug-dosing regimens. Progress has nonetheless been slowed by cumbersome, but required, pharmacokinetic (PK), pharmacodynamics, and biodistribution testing. To this end, we developed a small magnetite ART (SMART) nanoparticle platform to assess antiretroviral drug tissue biodistribution and PK using magnetic resonance imaging (MRI) scans. Herein, we have taken this technique a significant step further by determining nanoART PK with folic acid (FA) decorated magnetite (ultrasmall superparamagnetic iron oxide [USPIO]) particles and by using SMART particles. FA nanoparticles enhanced the entry and particle retention to the reticuloendothelial system over nondecorated polymers after systemic administration into mice. These data were seen by MRI testing and validated by comparison with SMART particles and direct evaluation of tissue drug levels after nanoART. The development of alendronate (ALN)-coated magnetite thus serves as a rapid initial screen for the ability of targeting ligands to enhance nanoparticle-antiretroviral drug biodistribution, underscoring the value of decorated magnetite particles as a theranostic tool for improved drug delivery.

  5. Morphological Studies of Local Influence of Implants with Coatings Based on Superhard Compounds on Bone Tissue under Conditions of Induced Trauma

    Galimzyan KABIROV

    2015-07-01

    Full Text Available In this paper we analyze the response of bone tissue to a transosseous introduction of implants made of copper (Cu, medical steel 12X18H9T, steel with nitrides of titanium and hafnium coatings (TiN + HfN, as well as steel coated with titanium and zirconium nitrides (TiN + ZrN into the diaphysis of the tibia of experimental rats. The obtained results showed that the restoration of the injured bone and bone marrow in groups with implants made of steel 12X18H9T occurred without the participation of the granulation and cartilaginous tissues, but with implants made of steel coated with titanium and hafnium nitrides (TiN + HfN, this bone recovery also took place in the early term. At the same time, in groups, where the implants were made of copper (Cu, implants were made of steel coated with titanium and zirconium nitrides (TiN + ZrN were used, such phenomena as necrosis, lysis and destruction of the bone were registered and the bone tissue repair went through formation of the cartilaginous tissue.

  6. Electrochromic properties of polyaniline-coated fiber webs for tissue engineering applications.

    Beregoi, Mihaela; Busuioc, Cristina; Evanghelidis, Alexandru; Matei, Elena; Iordache, Florin; Radu, Mihaela; Dinischiotu, Anca; Enculescu, Ionut

    2016-08-30

    By combining the electrospinning method advantages (high surface-to-volume ratio, controlled morphology, varied composition and flexibility for the resulting structures) with the electrical activity of polyaniline, a new core-shell-type material with potential applications in the field of artificial muscles was synthesized. Thus, a poly(methylmethacrylate) solution was electrospun in optimized conditions to obtain randomly oriented polymer fiber webs. Further, a gold layer was sputtered on their surface in order to make them conductive and improve the mechanical properties. The metalized fiber webs were then covered with a PANI layer by in situ electrochemical polymerization starting from aniline and using sulphuric acid as oxidizing agent. By applying a small voltage on PANI-coated fiber webs in the presence of an electrolyte, the oxidation state of PANI changes, which is followed by the device color modification. The morphological, electrical and biological properties of the resulting multilayered material were also investigated. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. The Level of SGOT and SGPT after The Administration of Powdered Colorant Pigment Isolated from Kesumba Keling’s (Bixa Orellana Seed Coats An experimental study in Balb/C Mice

    Suparmi Suparmi

    2011-06-01

    Design and Methods: The research is an experimental research with Factorial Design with 2 factors. Food Colorant Powder was made from bixin, norbixin, and crude extract pigment isolated from B. orellana seed coat’s. A total of 60 male mice were divided into 10 treatment groups. Powdered colorant solution at the concentration of 0% (control, 1%, 5%, and 10% were orally administered using gavage as much as 1 ml a day for 30 days. Results: Kruskal Wallis test results shows a not significant difference SGOT and SGPT level among the groups (p > 0.05, thus consumption of colorant powder of bixin, norbixin, and the crude extract with various concentrations did not affect the SGOT and SGPT. Conclusion: Colorant powder isolated from B. orellana seed coat’s has been shown to have no effect on the liver function, so it is safe as food colorant (Sains Medika, 3(1:69-77.

  8. The potential applications of fibrin-coated electrospun polylactide nanofibers in skin tissue engineering

    Bačáková, Markéta; Musílková, Jana; Riedel, Tomáš; Stránská, D.; Brynda, Eduard; Žaloudková, Margit; Bačáková, Lucie

    2016-01-01

    Roč. 11, č. 2016 (2016), s. 771-789 E-ISSN 1178-2013 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:67985823 ; RVO:61389013 ; RVO:67985891 Keywords : electrospun nanofibers * nanocoating * skin tissue engineering * fibroblasts * fibrin Subject RIV: EI - Biotechnology ; Bionics; CD - Macromolecular Chemistry (UMCH-V); JI - Composite Materials (USMH-B) Impact factor: 4.300, year: 2016

  9. Gene expression analysis of flax seed development

    2011-01-01

    Background Flax, Linum usitatissimum L., is an important crop whose seed oil and stem fiber have multiple industrial applications. Flax seeds are also well-known for their nutritional attributes, viz., omega-3 fatty acids in the oil and lignans and mucilage from the seed coat. In spite of the importance of this crop, there are few molecular resources that can be utilized toward improving seed traits. Here, we describe flax embryo and seed development and generation of comprehensive genomic resources for the flax seed. Results We describe a large-scale generation and analysis of expressed sequences in various tissues. Collectively, the 13 libraries we have used provide a broad representation of genes active in developing embryos (globular, heart, torpedo, cotyledon and mature stages) seed coats (globular and torpedo stages) and endosperm (pooled globular to torpedo stages) and genes expressed in flowers, etiolated seedlings, leaves, and stem tissue. A total of 261,272 expressed sequence tags (EST) (GenBank accessions LIBEST_026995 to LIBEST_027011) were generated. These EST libraries included transcription factor genes that are typically expressed at low levels, indicating that the depth is adequate for in silico expression analysis. Assembly of the ESTs resulted in 30,640 unigenes and 82% of these could be identified on the basis of homology to known and hypothetical genes from other plants. When compared with fully sequenced plant genomes, the flax unigenes resembled poplar and castor bean more than grape, sorghum, rice or Arabidopsis. Nearly one-fifth of these (5,152) had no homologs in sequences reported for any organism, suggesting that this category represents genes that are likely unique to flax. Digital analyses revealed gene expression dynamics for the biosynthesis of a number of important seed constituents during seed development. Conclusions We have developed a foundational database of expressed sequences and collection of plasmid clones that comprise

  10. Gene expression analysis of flax seed development

    Sharpe Andrew

    2011-04-01

    Full Text Available Abstract Background Flax, Linum usitatissimum L., is an important crop whose seed oil and stem fiber have multiple industrial applications. Flax seeds are also well-known for their nutritional attributes, viz., omega-3 fatty acids in the oil and lignans and mucilage from the seed coat. In spite of the importance of this crop, there are few molecular resources that can be utilized toward improving seed traits. Here, we describe flax embryo and seed development and generation of comprehensive genomic resources for the flax seed. Results We describe a large-scale generation and analysis of expressed sequences in various tissues. Collectively, the 13 libraries we have used provide a broad representation of genes active in developing embryos (globular, heart, torpedo, cotyledon and mature stages seed coats (globular and torpedo stages and endosperm (pooled globular to torpedo stages and genes expressed in flowers, etiolated seedlings, leaves, and stem tissue. A total of 261,272 expressed sequence tags (EST (GenBank accessions LIBEST_026995 to LIBEST_027011 were generated. These EST libraries included transcription factor genes that are typically expressed at low levels, indicating that the depth is adequate for in silico expression analysis. Assembly of the ESTs resulted in 30,640 unigenes and 82% of these could be identified on the basis of homology to known and hypothetical genes from other plants. When compared with fully sequenced plant genomes, the flax unigenes resembled poplar and castor bean more than grape, sorghum, rice or Arabidopsis. Nearly one-fifth of these (5,152 had no homologs in sequences reported for any organism, suggesting that this category represents genes that are likely unique to flax. Digital analyses revealed gene expression dynamics for the biosynthesis of a number of important seed constituents during seed development. Conclusions We have developed a foundational database of expressed sequences and collection of plasmid

  11. Thermogel-Coated Poly(ε-Caprolactone Composite Scaffold for Enhanced Cartilage Tissue Engineering

    Shao-Jie Wang

    2016-05-01

    Full Text Available A three-dimensional (3D composite scaffold was prepared for enhanced cartilage tissue engineering, which was composed of a poly(ε-caprolactone (PCL backbone network and a poly(lactide-co-glycolide-block-poly(ethylene glycol-block-poly(lactide-co-glycolide (PLGA–PEG–PLGA thermogel surface. The composite scaffold not only possessed adequate mechanical strength similar to native osteochondral tissue as a benefit of the PCL backbone, but also maintained cell-friendly microenvironment of the hydrogel. The PCL network with homogeneously-controlled pore size and total pore interconnectivity was fabricated by fused deposition modeling (FDM, and was impregnated into the PLGA–PEG–PLGA solution at low temperature (e.g., 4 °C. The PCL/Gel composite scaffold was obtained after gelation induced by incubation at body temperature (i.e., 37 °C. The composite scaffold showed a greater number of cell retention and proliferation in comparison to the PCL platform. In addition, the composite scaffold promoted the encapsulated mesenchymal stromal cells (MSCs to differentiate chondrogenically with a greater amount of cartilage-specific matrix production compared to the PCL scaffold or thermogel. Therefore, the 3D PCL/Gel composite scaffold may exhibit great potential for in vivo cartilage regeneration.

  12. Irradiation effect on the seed vigor, SOD activity and MDA content in germinating seeds of yellow-seeded and black-seeded rape seed (Brassica napus L.)

    Han Jixiang; Hu Danhong; Liu Houli

    1993-01-01

    Seeds of a set of near-isogenic lines (Brassica napus L.) with different seed coat color from yellow to black were irradiated by 60 Co γ-rays of 150 krad. Seed vigor, superoxide dismutase (SOD) and malondialdehyde (MDA) in germinating seeds were analysed. In these characters, no significant difference between yellow-seeded lines (YLs) and black-seeded lines (BLs) showed before irradiation. But after irradiation, SOD activity in YLs was lower than that in BLs. While MDA content in YLs was obviously higher that that in DLs. As a result of irradiation, seed vigor of YLs was lower than that in BLs. these results indicated that the irradiation resistance of rape seed was related to the level of SOD as well as protective structure or substances in seed coat and that the radiosensitivity of YLs was higher than that of DLs

  13. Effect of carboxymethyl cellulose edible coating containing Zataria multiflora essential oil and grape seed extract on chemical attributes of rainbow trout meat

    Mojtaba Raeisi

    2014-06-01

    Full Text Available Meat products, especially fish meat, are very susceptible to lipid oxidation and microbial spoilage. In this study, first, gas chromatography mass spectrometry (GC-MS analysis of Zataria multiflora essential oil (ZEO components was done and then two concentrations of ZEO, (1% and 2% and two concentrations of grape seed extract (GSE, (0.5% and 1% were used in carboxymethyl cellulose coating alone and in combination, and their antioxidant effects on rainbow trout meat were evaluated in a 20-day period using thiobarbituric acid reactive substances (TBARS test. Their effects on total volatile basic nitrogen (TVBN and pH were evaluated as well. The main components of ZEO are thymol and carvacrol. These components significantly decreased production of thio-barbituric acid (TBA, TVBN and pH level of fish meat. The initial pH, TVBN and TBA content was 6.62, 12.67 mg N per 100 g and 0.19 mg kg-1, respectively. In most treatments significant (p < 0.05 effects on aforementioned factors was seen during storage at 4 ˚C. The results indicated that use of ZEO and GSE as a natural antioxidant agents was effective in reducing undesirable chemical reactions in storage of fish meat.

  14. Multifunctional properties of cotton fabrics coated with in situ synthesis of zinc oxide nanoparticles capped with date seed extract.

    El-Naggar, Mehrez E; Shaarawy, S; Hebeish, A A

    2018-02-01

    In situ formation of zinc oxide nanoparticles (ZnO-NPs) was studied within the framework of several factors. variables examined include (i) innovation of a new capping agent; (ii) nature of the cotton fabric related to its processing; (iii) formation of Zinc hydroxide (Zn(OH) 2 ) due to reduction of zinc acetate with sodium hydroxide (iv) treatment of the differently processed cotton fabrics with (Zn(OH) 2 ) functionalized dispersion as per the exhaustion method, (v) further treatment of the cotton fabrics with (Zn(OH) 2 ) dispersion according to the pad-dry-cure method and (Vi) conversion of (Zn(OH) 2 ) to ZnO-NPs during the curing step in the latter method. Results depict that the incorporation of the bio-extract obtained from date seed waste works effectively as capping material which stabilize ZnO-NPs. Mercerized bleached cotton fabric proves to be a better candidate than mercerized loomstate cotton fabric in conferring sustainable bactericidal and UV blocking. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Killing effect of EGFR-TKI combined with 125I seed implantation therapy on ⅢB-Ⅳ stage lung cancer tissue

    Ai-Sheng Xiang

    2016-12-01

    Full Text Available Objective: To analyze the killing effect of EGFR-TKI combined with 125I seed implantation therapy on ⅢB-Ⅳ stage lung cancer tissue. Methods: A total of 78 patients with ⅢB-Ⅳ stage lung cancer were randomly divided into observation group and control group (n=39, control group received EGFR-TKI treatment and observation group received EGFR-TKI combined with 125I seed implantation therapy. Differences in apoptosis gene, invasion gene and autophagy gene expression in lung tissue were compared between two groups after 1 month of treatment. Results: Apoptosis genes PDCD5, bax and bcl-xS mRNA expression levels in lung tissue of observation group after 1 month of treatment were higher than those of control group while Bag-1, survivin and bcl-xL mRNA expression levels were lower than those of control group; invasion genes CD147, EGFR and DDX17 mRNA expression levels were lower than those of control group while Bin1, E-cadherin and Ovol2 mRNA expression levels were higher than those of control group; autophagy genes ARHI, Beclin1, Atg5, LC3B, pULK and PI3KC3 mRNA expression levels were higher than those of control group. Conclusions: EGFR-TKI combined with 125I seed implantation therapy can enhance the tumor killing effect on patients with ⅢB-Ⅳ stage lung cancer, and contribute to the optimization of overall condition and the extension of survival time.

  16. Quantum dot coating of baculoviral vectors enables visualization of transduced cells and tissues

    Zhao, Ying; Lo, Seong Loong; Zheng, Yuangang; Lam, Dang Hoang; Wu, Chunxiao; Han, Ming Yong; Wang, Shu

    2013-01-01

    Highlights: •The use of quantum dot (QD)-labeled viral vectors for in vivo imaging is not well investigated. •A new method to label enveloped baculovirus with glutathione-capped CdTe QDs is developed. •The labeling enables the identification of transduced, cultured cells based on fluorescence. •The labeling also allows evaluation of viral transduction in a real-time manner in living mice. •The method has the potential to assess viral vector-based gene therapy protocols in future. -- Abstract: Imaging of transduced cells and tissues is valuable in developing gene transfer vectors and evaluating gene therapy efficacy. We report here a simple method to use bright and photostable quantum dots to label baculovirus, an emerging gene therapy vector. The labeling was achieved through the non-covalent interaction of glutathione-capped CdTe quantum dots with the virus envelope, without the use of chemical conjugation. The quantum dot labeling was nondestructive to viral transduction function and enabled the identification of baculoviral vector-transduced, living cells based on red fluorescence. When the labeled baculoviral vectors were injected intravenously or intraventricularly for in vivo delivery of a transgene into mice, quantum dot fluorescence signals allow us monitor whether or not the injected tissues were transduced. More importantly, using a dual-color whole-body imaging technology, we demonstrated that in vivo viral transduction could be evaluated in a real-time manner in living mice. Thus, our method of labeling a read-to-use gene delivery vector with quantum dots could be useful towards the improvement of vector design and will have the potential to assess baculovirus-based gene therapy protocols in future

  17. Effects of chitosan-coated fibers as a scaffold for three-dimensional cultures of rabbit fibroblasts for ligament tissue engineering.

    Sarukawa, Junichiro; Takahashi, Masaaki; Abe, Masashi; Suzuki, Daisuke; Tokura, Seiichi; Furuike, Tetsuya; Tamura, Hiroshi

    2011-01-01

    Material selection in tissue-engineering scaffolds is one of the primary factors defining cellular response and matrix formation. In this study, we fabricated chitosan-coated poly(lactic acid) (PLA) fiber scaffolds to test our hypothesis that PLA fibers coated with chitosan highly promoted cell supporting properties compared to those without chitosan. Both PLA fibers (PLA group) and chitosan-coated PLA fibers (PLA-chitosan group) were fabricated for this study. Anterior cruciate ligament (ACL) fibroblasts were isolated from Japanese white rabbits and cultured on scaffolds consisting of each type of fiber. The effects of cell adhesivity, proliferation, and synthesis of the extracellular matrix (ECM) for each fiber were analyzed by cell counting, hydroxyproline assay, scanning electron microscopy and quantitative RT-PCR. Cell adhesivity, proliferation, hydroxyproline content and the expression of type-I collagen mRNA were significantly higher in the PLA-chitosan group than in the PLA group. Scanning electron microscopic observation showed that fibroblasts proliferated with a high level of ECM synthesis around the cells. Chitosan coating improved ACL fibroblast adhesion and proliferation, and had a positive effect on matrix production. Thus, the advantages of chitosan-coated PLA fibers show them to be a suitable biomaterial for ACL tissue-engineering scaffolds.

  18. 7 CFR 201.57 - Hard seeds.

    2010-01-01

    ... REGULATIONS Germination Tests in the Administration of the Act § 201.57 Hard seeds. Seeds which remain hard at the end of the prescribed test because they have not absorbed water, due to an impermeable seed coat... percentage of germination. For flatpea, continue the swollen seed in test for 14 days when germinating at 15...

  19. Synthesis and silica coating of calcia-doped ceria/plate-like titanate (K0.8Li0.27Ti1.73O4) nanocomposite by seeded polymerization technique

    El-Toni, Ahmed Mohamed; Yin, Shu; Sato, Tsugio

    2007-01-01

    Calcia-doped ceria is of potential interest as an ultraviolet (UV) radiation blocking material in personal care products because of the excellent UV light absorption property and low catalytic ability for the oxidation of organic materials superior to undoped ceria. In order to reduce the oxidation catalytic activity further, calcia-doped ceria was coated with amorphous silica by means of seeded polymerization technique. Generally, nanoparticles of inorganic materials do not provide a good coverage for human skin because of the agglomeration of the particles. The plate-like particles are required to enhance the coverage ability of inorganic materials. This can be accomplished by synthesis of calcia-doped ceria/plate-like potassium lithium titanate (K 0.8 Li 0.27 Ti 1.73 O 4 ) nanocomposite with subsequent silica coating to control catalytic activity of calcia-doped ceria. Calcia-doped ceria/plate-like potassium lithium titanate nanocomposite was prepared by soft chemical method followed by silica coating via seeded polymerization technique. Silica coated calcia-doped ceria/plate-like potassium lithium titanate nanocomposite was characterized by X-ray diffraction, SEM, TEM, XPS and FT-IR

  20. Magnetic resonance imaging of folic acid-coated magnetite nanoparticles reflects tissue biodistribution of long-acting antiretroviral therapy

    Li T

    2015-06-01

    Full Text Available Tianyuzi Li,1 Howard E Gendelman,1,2 Gang Zhang,1 Pavan Puligujja,1 JoEllyn M McMillan,1 Tatiana K Bronich,2 Benson Edagwa,1 Xin-Ming Liu,1,2 Michael D Boska3 1Department of Pharmacology and Experimental Neuroscience, 2Department of Pharmaceutical Sciences, 3Department of Radiology, University of Nebraska Medical Center, Omaha, NE, USA Abstract: Regimen adherence, systemic toxicities, and limited drug penetrance to viral reservoirs are obstacles limiting the effectiveness of antiretroviral therapy (ART. Our laboratory’s development of the monocyte-macrophage-targeted long-acting nanoformulated ART (nanoART carriage provides a novel opportunity to simplify drug-dosing regimens. Progress has nonetheless been slowed by cumbersome, but required, pharmacokinetic (PK, pharmacodynamics, and biodistribution testing. To this end, we developed a small magnetite ART (SMART nanoparticle platform to assess antiretroviral drug tissue biodistribution and PK using magnetic resonance imaging (MRI scans. Herein, we have taken this technique a significant step further by determining nanoART PK with folic acid (FA decorated magnetite (ultrasmall superparamagnetic iron oxide [USPIO] particles and by using SMART particles. FA nanoparticles enhanced the entry and particle retention to the reticuloendothelial system over nondecorated polymers after systemic administration into mice. These data were seen by MRI testing and validated by comparison with SMART particles and direct evaluation of tissue drug levels after nanoART. The development of alendronate (ALN-coated magnetite thus serves as a rapid initial screen for the ability of targeting ligands to enhance nanoparticle-antiretroviral drug biodistribution, underscoring the value of decorated magnetite particles as a theranostic tool for improved drug delivery. Keywords: folic acid, decorated nanoparticles, magnetite, theranostics, magnetic resonance imaging

  1. Micromorphology and anatomy of fruits and seeds of bitter melon (Momordica charantia L., Cucurbitaceae

    Claudia Giuliani

    2016-03-01

    Full Text Available The aim of this paper is investigating the micromorphological properties of fruits and seeds in the food and medicinal plant Momordica charantia L. (Cucurbitaceae. A detailed anatomical description on cross-sections of immature fruits and seeds is reported for the first time. The fruit is characterized by a thin epicarp, a multi-layered mesocarp and by an inconspicuous endocarp. The seed-coat displays a pattern of organization in five tissues. These endomorphic features were compared and discussed with the results of previous investigations on other representatives of the genus Momordica. Since the structure of seed-coat is considered diacritical in the taxonomy of the genus, this report may offer a set of additional character useful for the characterization of the genus.

  2. Development of maternal seed tissue in barley is mediated by regulated cell expansion and cell disintegration and coordinated with endosperm growth.

    Radchuk, Volodymyr; Weier, Diana; Radchuk, Ruslana; Weschke, Winfriede; Weber, Hans

    2011-01-01

    After fertilization, filial grain organs are surrounded by the maternal nucellus embedded within the integuments and pericarp. Rapid early endosperm growth must be coordinated with maternal tissue development. Parameters of maternal tissue growth and development were analysed during early endosperm formation. In the pericarp, cell proliferation is accomplished around the time of fertilization, followed by cell elongation predominantly in longitudinal directions. The rapid cell expansion coincides with endosperm cellularization. Distribution of TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling)-positive nuclei reveals distinct patterns starting in the nucellus at anthesis and followed later by the inner cell rows of the pericarp, then spreading to the whole pericarp. The pattern suggests timely and spatially regulated programmed cell death (PCD) processes in maternal seed tissues. When the endosperm is coenocytic, PCD events are only observed within the nucellus. Thereby, remobilization of nucellar storage compounds by PCD could nourish the early developing endosperm when functional interconnections are absent between maternal and filial seed organs. Specific proteases promote PCD events. Characterization of the barley vacuolar processing enzyme (VPE) gene family identified seven gene members specifically expressed in the developing grain. HvVPE2a (known as nucellain) together with closely similar HvVPE2b and HvVPE2d might be involved in nucellar PCD. HvVPE4 is strongly cell specific for pericarp parenchyma. Correlative evidence suggests that HvVPE4 plays a role in PCD events in the pericarp. Possible functions of PCD in the maternal tissues imply a potential nutritive role or the relief of a physical restraint for endosperm growth. PCD could also activate post-phloem transport functions.

  3. Patatin-related phospholipase A, pPLAIIIα, modulates the longitudinal growth of vegetative tissues and seeds in rice.

    Liu, Guangmeng; Zhang, Ke; Ai, Jun; Deng, Xianjun; Hong, Yueyun; Wang, Xuemin

    2015-11-01

    Patatin-related phospholipase A (pPLA) hydrolyses glycerolipids to produce fatty acids and lysoglycerolipids. The Oryza sativa genome has 21 putative pPLAs that are grouped into five subfamilies. Overexpression of OspPLAIIIα resulted in a dwarf phenotype with decreased length of rice stems, roots, leaves, seeds, panicles, and seeds, whereas OspPLAIIIα-knockout plants had longer panicles and seeds. OspPLAIIIα-overexpressing plants were less sensitive than wild-type and knockout plants to gibberellin-promoted seedling elongation. OspPLAIIIα overexpression and knockout had an opposite effect on the expression of the growth repressor SLENDER1 in the gibberellin signalling process. OspPLAIIIα-overexpressing plants had decreased mechanical strength and cellulose content, but exhibited increases in the expression of several cellulose synthase genes. These results indicate that OspPLAIIIα plays a role in rice vegetative and reproductive growth and that the constitutive, high activity of OspPLAIIIα suppresses cell elongation. The decreased gibberellin response in overexpressing plants is probably a result of the decreased ability to make cellulose for anisotropic cell expansion. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  4. Effect of Cell Seeding Density and Inflammatory Cytokines on Adipose Tissue-Derived Stem Cells : an in Vitro Study

    Sukho, Panithi; Kirpensteijn, Jolle; Hesselink, Jan Willem; van Osch, Gerjo J V M; Verseijden, Femke; Bastiaansen-Jenniskens, Yvonne M

    Adipose tissue-derived stem cells (ASCs) are known to be able to promote repair of injured tissue via paracrine factors. However, the effect of cell density and inflammatory cytokines on the paracrine ability of ASCs remains largely unknown. To investigate these effects, ASCs were cultured in 8000

  5. Effect of Cell Seeding Density and Inflammatory Cytokines on Adipose Tissue-Derived Stem Cells: an in Vitro Study

    Sukho, P. (Panithi); J. Kirpensteijn (Jolle); Hesselink, J.W. (Jan Willem); G.J.V.M. van Osch (Gerjo); F. Verseijden (Femke); Y.M. Bastiaansen-Jenniskens (Yvonne)

    2017-01-01

    textabstractAdipose tissue-derived stem cells (ASCs) are known to be able to promote repair of injured tissue via paracrine factors. However, the effect of cell density and inflammatory cytokines on the paracrine ability of ASCs remains largely unknown. To investigate these effects, ASCs were

  6. Significant degradability enhancement in multilayer coating of polycaprolactone-bioactive glass/gelatin-bioactive glass on magnesium scaffold for tissue engineering applications

    Yazdimamaghani, Mostafa [School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078 (United States); School of Materials Science and Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); Razavi, Mehdi [School of Materials Science and Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); Vashaee, Daryoosh [Electrical and Computer Engineering Department, North Carolina State University, Raleigh, NC 27606 (United States); Pothineni, Venkata Raveendra [Biomaterials and Advanced Drug Delivery Laboratory, Stanford University, Palo Alto, CA 94305 (United States); Rajadas, Jayakumar [Biomaterials and Advanced Drug Delivery Laboratory, Stanford University, Palo Alto, CA 94305 (United States); Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Palo Alto, CA 94305 (United States); Stanford Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, CA 94305 (United States); Tayebi, Lobat, E-mail: lobat.tayebi@marquette.edu [School of Materials Science and Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); Biomaterials and Advanced Drug Delivery Laboratory, Stanford University, Palo Alto, CA 94305 (United States); Department of Developmental Sciences, Marquette University School of Dentistry, Milwaukee, WI 53233 (United States)

    2015-05-30

    Highlights: • PCL-BaG/Gel-BaG coating was applied on the surface of Mg scaffolds. • Mg scaffold/PCL-BaG/Gel-BaG presented improved biodegradation resistance. • Mg scaffold coated with the PCL-BaG layer indicated better bioactivity. - Abstract: Magnesium (Mg) is a promising candidate to be used in medical products especially as bone tissue engineering scaffolds. The main challenge for using Mg in biomedical applications is its high degradation rate in the body. For this reason, in this study, a multilayer polymeric layer composed of polycaprolactone (PCL) and gelatin (Gel) reinforced with bioactive glass (BaG) particles has been applied on the surface of Mg scaffolds. The materials characteristics of uncoated Mg scaffold, Mg scaffold coated only with PCL-BaG and Mg scaffold coated with PCL-BaG and Gel-BaG have been analyzed and compared in detail. Scanning electron microscope (SEM) equipped with energy dispersive spectroscopy (EDS), and Fourier transform infrared spectroscopy (FTIR) were utilized for microstructural studies. In vitro bioactivity and biodegradation evaluations were carried out by submerging the scaffolds in simulated body fluid (SBF) at pre-determined time points. The results demonstrated that Mg scaffold coated with PCL-BaG and Gel-BaG exhibited significant improvement in biodegradability.

  7. Significant degradability enhancement in multilayer coating of polycaprolactone-bioactive glass/gelatin-bioactive glass on magnesium scaffold for tissue engineering applications

    Yazdimamaghani, Mostafa; Razavi, Mehdi; Vashaee, Daryoosh; Pothineni, Venkata Raveendra; Rajadas, Jayakumar; Tayebi, Lobat

    2015-01-01

    Highlights: • PCL-BaG/Gel-BaG coating was applied on the surface of Mg scaffolds. • Mg scaffold/PCL-BaG/Gel-BaG presented improved biodegradation resistance. • Mg scaffold coated with the PCL-BaG layer indicated better bioactivity. - Abstract: Magnesium (Mg) is a promising candidate to be used in medical products especially as bone tissue engineering scaffolds. The main challenge for using Mg in biomedical applications is its high degradation rate in the body. For this reason, in this study, a multilayer polymeric layer composed of polycaprolactone (PCL) and gelatin (Gel) reinforced with bioactive glass (BaG) particles has been applied on the surface of Mg scaffolds. The materials characteristics of uncoated Mg scaffold, Mg scaffold coated only with PCL-BaG and Mg scaffold coated with PCL-BaG and Gel-BaG have been analyzed and compared in detail. Scanning electron microscope (SEM) equipped with energy dispersive spectroscopy (EDS), and Fourier transform infrared spectroscopy (FTIR) were utilized for microstructural studies. In vitro bioactivity and biodegradation evaluations were carried out by submerging the scaffolds in simulated body fluid (SBF) at pre-determined time points. The results demonstrated that Mg scaffold coated with PCL-BaG and Gel-BaG exhibited significant improvement in biodegradability

  8. Factors Influencing in Vitro Seed Germination, Morphogenetic Potential and Correlation of Secondary Metabolism with Tissue Development in Prunella Vulgaris L

    Fazal, H.; Shinwari, Z. K.; Abbasi, B. H.; Ahmad, N.

    2016-01-01

    Plant growth regulators (PGRs), polyamines (PAs) and temperature regimes are the key factors that influence morphogenesis and plant architectural development; however, the understanding that how these factors control plant growth and development is still poor and needs further research in Prunella vulgaris. In this study, we monitored the effect of these factors on seed germination, morphogenetic potential and secondary metabolism. Different temperature regimes showed that 25 degree C is the most suitable temperature for seed germination (88.87±1.76 percent) on Murashige and Skoog (MS) basal medium. The synergistic combinations of kinetin (Kn), 6-benzyladenine (BA) and putrescine (PUT; 2.0 mg l/sup -1/) promoted seed germination (90.22±4.51 percent) after 24 days of inoculation. A combination of Kn and PUT (1.0 mg l/sup -1/) encouraged mean shoot length (11.0±1.95 mm) with the optimum amount of chlorophyll content (23.73±1.8 micro g cm/sup -2/). However, maximum mean root length (13±0.65 mm) was observed on medium containing Kn and spermidine (SPD, 2.0 mg l-1). Maximum calli (71.56±2.63 percent) were obtained from root explants on 0.5 MS-medium containing indole butyric acid (IBA) and Alpha-naphthalene acetic acid (NAA; 0.5 mg l/sup -1/). Higher number of shoots (78.5±3.75 percent) was obtained with Kn and PUT (1.0 mg l/sup -1/). IBA concentration of 1.0 mg l/sup -1/ was found effective for root formation (74.71±3.3 percent). Moreover, PGRs and PAs have a significant effect on accumulation of total phenolics, flavonoids and DPPH activity. This protocol is helpful for consistent plantlets and prunellin production in P. vulgaris L. (author)

  9. Non-coating fixation techniques or redundancy of conductive coating, low kV FE-SEM operation and combined SEM/TEM of biological tissues

    Jongebloed, WL; Stokroos, [No Value; Van der Want, JJL; Kalicharan, D

    Non-coating fixation methods, in particular the tannic acid/arginine/osmium tetroxide procedure, are employed for a number of reasons on the guinea-pig organ of Corti hair cell stereocilia glycocalyx and the imprints of the stereocilia at the bottom side of the tectorial membrane, and on the rat and

  10. The effect of pomegranate seed oil and grapeseed oil on cis-9, trans-11 CLA (rumenic acid), n-3 and n-6 fatty acids deposition in selected tissues of chickens.

    Białek, A; Białek, M; Lepionka, T; Kaszperuk, K; Banaszkiewicz, T; Tokarz, A

    2018-04-23

    The aim of this study was to determine whether diet modification with different doses of grapeseed oil or pomegranate seed oil will improve the nutritive value of poultry meat in terms of n-3 and n-6 fatty acids, as well as rumenic acid (cis-9, trans-11 conjugated linoleic acid) content in tissues diversified in lipid composition and roles in lipid metabolism. To evaluate the influence of applied diet modification comprehensively, two chemometric methods were used. Results of cluster analysis demonstrated that pomegranate seed oil modifies fatty acids profile in the most potent way, mainly by an increase in rumenic acid content. Principal component analysis showed that regardless of type of tissue first principal component is strongly associated with type of deposited fatty acid, while second principal component enables identification of place of deposition-type of tissue. Pomegranate seed oil seems to be a valuable feed additive in chickens' feeding. © 2018 Blackwell Verlag GmbH.

  11. Nutritional value OF Bottle Gourd ( Lagenaria siceraria ) Seeds ...

    Whole seeds, dehulled seeds and seed coats of bottle gourd seed (Lagenaria siceraria) were analysed for their proximate, amino acids and mineral compositions. The results of the analysis showed that, whole seed has highest content of moisture (17.5 0.21%) and ash (5.80 0.83%) while dehulled had highest amount ...

  12. Microwave-Assisted Dip Coating of Aloe Vera on Metallocene Polyethylene Incorporated with Nano-Rods of Hydroxyapaptite for Bone Tissue Engineering

    Hairong Wang

    2017-10-01

    Full Text Available Bone tissue engineering widely explores the use of ceramic reinforced polymer-matrix composites. Among the various widely-used ceramic reinforcements, hydroxyapatite is an undisputed choice due to its inherent osteoconductive nature. In this study, a novel nanocomposite comprising metallocene polyethylene (mPE incorporated with nano-hydroxyapaptite nanorods (mPE-nHA was synthesized and dip coated with Aloe vera after subjecting it to microwave treatment. The samples were characterized using contact angle, Fourier transform infrared spectroscopy (FTIR, scanning electron microscope (SEM, atomic force microscopy (AFM and 3D Hirox microscopy scanning. Contact angle results show that the hydrophilicity of mPE-nHA improved notably with the coating of Aloe vera. The surface topology and increase in surface roughness were observed using the SEM, AFM and 3D Hirox microscopy. Blood compatibility assays of pure mPE and the Aloe vera coated nanocomposite were performed. The prothrombin time (PT was delayed by 1.06% for 24 h Aloe-vera-treated mPE-nHA compared to the pristine mPE-nHA. Similarly, the 24 h Aloe-vera-coated mPE-nHA nanocomposite prolonged the activated partial thromboplastin time (APTT by 41 s against the control of pristine mPE-nHA. The hemolysis percentage was also found to be the least for the 24 h Aloe-vera-treated mPE-nHA which was only 0.2449% compared to the pristine mPE-nHA, which was 2.188%. To conclude, this novel hydroxyapatite-reinforced, Aloe-vera-coated mPE with a better mechanical and anti-thrombogenic nature may hold a great potential to be exploited for bone tissue engineering applications.

  13. DELAY OF GERMINATION 1 mediates a conserved coat-dormancy mechanism for the temperature- and gibberellin-dependent control of seed germination

    Graeber, K.; Linkies, A.; Steinbrecher, T.; Tarkowská, D. (Danuše); Turečková, V. (Veronika); Ignatz, M.; Voegele, A.; Urbanová, T. (Terezie); Strnad, M. (Miroslav); Leubner-Metzger, G. (Gerhard)

    2014-01-01

    Seed germination is an important life-cycle transition because it determines subsequent plant survival and reproductive success. To detect optimal spatiotemporal conditions for germination, seeds act as sophisticated environmental sensors integrating information such as ambient temperature. Here we show that the DELAY OF GERMINATION 1 (DOG1) gene, known for providing dormancy adaptation to distinct environments, determines the optimal temperature for seed germination. By reciprocal gene-swapp...

  14. Tissue

    David Morrissey

    2012-01-01

    Full Text Available Purpose. In vivo gene therapy directed at tissues of mesenchymal origin could potentially augment healing. We aimed to assess the duration and magnitude of transene expression in vivo in mice and ex vivo in human tissues. Methods. Using bioluminescence imaging, plasmid and adenoviral vector-based transgene expression in murine quadriceps in vivo was examined. Temporal control was assessed using a doxycycline-inducible system. An ex vivo model was developed and optimised using murine tissue, and applied in ex vivo human tissue. Results. In vivo plasmid-based transgene expression did not silence in murine muscle, unlike in liver. Although maximum luciferase expression was higher in muscle with adenoviral delivery compared with plasmid, expression reduced over time. The inducible promoter cassette successfully regulated gene expression with maximum levels a factor of 11 greater than baseline. Expression was re-induced to a similar level on a temporal basis. Luciferase expression was readily detected ex vivo in human muscle and tendon. Conclusions. Plasmid constructs resulted in long-term in vivo gene expression in skeletal muscle, in a controllable fashion utilising an inducible promoter in combination with oral agents. Successful plasmid gene transfection in human ex vivo mesenchymal tissue was demonstrated for the first time.

  15. Analysis on seed coat trait and physiology characteristics of soybean varieties which was used for sprout production%芽用大豆品种材料的种皮性状及生理特性

    康玉凡; 王丽艳; 肖伶俐; 刘腾飞; 刘红开

    2011-01-01

    Twenty-two soybean varieties which were selected by previous study were used to determine the seed coat traits such as color and weight proportion of seed coat;physical characteristics such as 100-grain weight of seed;physiological characteristics such as the changes of biomass during germination,water absorption and seed vigor;sprouts characteristics such as sprout production,sprout morphological and sensory quality.This article analyzed the seed coat traits and the relationships between the physiological characteristics and the sprouts characteristics.The results showed that the ranges of 100-grain weight were 8.1-22.3 g.The ranges of brightness value were 38.6-55.1.The ranges of seed input-sprout output ratio were 1∶5.12-1∶6.95 and the ranges of hypocotyl length and diameter were 6.60-11.42 and 0.24-0.32 cm respectively.The brightness of seed coat had significant positive correlations with single sprout weight and hypocotyl length(P〈0.05).The sprouts output ratio had an extremely significant negative correlations with 100-grain weight of seeds(P〈0.01) and an extremely significant positive correlation with seed vigor(P〈0.01).The sensory quality had a significant negative correlations with the water absorption(P〈0.05) and a significant positive correlation with hypocotyl length(P〈0.05).The study also selected S-08-93、S-08-97and S-08-145 that were suitable for sprouts production.%测定了前期筛选出的22个芽用大豆品种种皮性状和百粒重等物理特性、种子生理特性以及芽用特性指标,分析了各项物理生理特性指标与芽用特性指标的相关性。结果显示:所用大豆品种种子百粒重为8.1-22.3 g,种皮亮度值为38.6-55.1,种子与豆芽产出比为1∶5.12-1∶6.95,下胚轴长和下胚轴粗分别为6.60-11.42和0.24-0.32 cm。种皮亮度与单根豆芽质量及豆芽下胚轴粗呈正相关(P〈0.05);豆芽产出比与种子百粒重呈极显著负相关(P〈0.01),

  16. Anticholinergic, antihistaminic, and antiserotonergic activity of n-hexane extract of Zanthoxylum alatum seeds on isolated tissue preparations: An ex vivo study.

    Saikia, Beenita; Barua, Chandana Choudhury; Haloi, Prakash; Patowary, Pompy

    2017-01-01

    The aim of this study was to evaluate anticholinergic, antihistaminic, and antiserotonergic activity of the n-hexane extract of the seeds of Zanthoxylum alatum (ZAHE) on isolated ileum of rat and guinea pig and fundus of rat. ZAHE was prepared using soxhlet extraction and cumulative concentration response curves were constructed using various doses on the tissues for acetylcholine (ACh), 5-hydroxytryptamine (5-HT), and histamine with or without n-hexane extract. Atropine, ketanserin, and pheniramine maleate were used as antagonists for ACh, serotonin, and histamine, respectively. ZAHE-induced concentration-dependent inhibition of isolated ileum and fundus in rat and ileum of guinea pig. The half maximal effective concentration (EC 50 ) of ACh in the presence of atropine (10 -6 M; P pheniramine maleate (10 -6 M; P < 0.01) and ZAHE (300 μg/ml; P < 0.01 and 1000 μg/ml; P < 0.05) was also significantly higher than EC 50 of histamine alone. From the study, it was observed that ZAHE shows significant anticholinergic, antiserotonergic, and antihistaminic activity. The study provides sufficient evidence that the seeds can be used in gastric disorders, cough, chest infection, etc., as per folklore claims.

  17. Recobrimento de sementes de milho com ácidos húmicos e bactérias diazotróficas endofíticas Corn seed coating with humic acids and endophytic diazotrophic bacteria

    Patrícia Marluci da Conceição

    2008-04-01

    Full Text Available O objetivo deste trabalho foi avaliar o efeito do recobrimento de sementes de milho com ácidos húmicos (AH, bactérias diazotróficas endofíticas e o uso em conjunto de AH e bactérias diazotróficas endofíticas, na estimulação do crescimento vegetal e na população de bactérias estabelecidas na planta hospedeira. A adição de AH, bactérias e o uso em conjunto estimularam o crescimento vegetal. Os AH utilizados no recobrimento de sementes de milho têm menor capacidade de estimular o crescimento radicular, em comparação ao uso em solução. O recobrimento de sementes é uma opção de inoculação de bactérias diazotróficas endofíticas da espécie Herbaspirillum seropedicae (Z67.The objective of this work was to evaluate the effect of seed coating of maize with humic acid (HA, endophytic diazotrophic bacteria, and the combination of both, on plant growth stimulation and bacteria population establishment in roots of inoculated plant host. The addition of HA, bacteria, and the combined use of bacteria and HA stimulated plant growth. Humic acids used in the coated seed formulation show diminished capacity for stimulation of root growth compared with its use in solution. Seed coat is an option for inoculation of endophytic diazotrophic bacteria like Herbaspirillum seropedicae (Z67.

  18. Antimicrobial polycaprolactone/polyethylene glycol embedded lysozyme coatings of Ti implants for osteoblast functional properties in tissue engineering

    Visan, A.; Cristescu, R.; Stefan, N.; Miroiu, M.; Nita, C.; Socol, M.; Florica, C.; Rasoga, O.; Zgura, I.; Sima, L. E.; Chiritoiu, M.; Chifiriuc, M. C.; Holban, A. M.; Mihailescu, I. N.; Socol, G.

    2017-09-01

    In this study, coatings based on lysozyme embedded into a matrix of polyethylene glycol (PEG) and polycaprolactone (PCL) were fabricated by two different methods (Matrix Assisted Pulsed Laser Evaporation - MAPLE and Dip Coating) for obtaining antimicrobial coatings envisaged for long term medical applications. Coatings with different PEG:PCL compositions (3:1; 1:1; 1:3) were synthesized in order to evaluate the antimicrobial activity of lysozyme embedded into the polymeric matrix. The main surface features, such as roughness and wettability, with impact on the microbial adhesion as well as on the eukaryote cell function were measured. The obtained composite coatings exhibited a significant antibacterial activity against Escherichia coli, Bacillus subtilis, Enterococcus faecalis and Staphylococcus aureus strains. As well, specific blended coatings showed appropriate viability, good spreading and normal cell morphology of SaOs2 human osteoblasts and mesenchymal stem cells (MSCs). These investigations highlight the suitability of biodegradable composites as implant coatings for decreasing the risk of bacterial contamination associated with prosthetic procedures.

  19. Selection and validation of reference genes for quantitative gene expression analyses in various tissues and seeds at different developmental stages in Bixa orellana L.

    Moreira, Viviane S; Soares, Virgínia L F; Silva, Raner J S; Sousa, Aurizangela O; Otoni, Wagner C; Costa, Marcio G C

    2018-05-01

    Bixa orellana L., popularly known as annatto, produces several secondary metabolites of pharmaceutical and industrial interest, including bixin, whose molecular basis of biosynthesis remain to be determined. Gene expression analysis by quantitative real-time PCR (qPCR) is an important tool to advance such knowledge. However, correct interpretation of qPCR data requires the use of suitable reference genes in order to reduce experimental variations. In the present study, we have selected four different candidates for reference genes in B. orellana , coding for 40S ribosomal protein S9 (RPS9), histone H4 (H4), 60S ribosomal protein L38 (RPL38) and 18S ribosomal RNA (18SrRNA). Their expression stabilities in different tissues (e.g. flower buds, flowers, leaves and seeds at different developmental stages) were analyzed using five statistical tools (NormFinder, geNorm, BestKeeper, ΔCt method and RefFinder). The results indicated that RPL38 is the most stable gene in different tissues and stages of seed development and 18SrRNA is the most unstable among the analyzed genes. In order to validate the candidate reference genes, we have analyzed the relative expression of a target gene coding for carotenoid cleavage dioxygenase 1 (CCD1) using the stable RPL38 and the least stable gene, 18SrRNA , for normalization of the qPCR data. The results demonstrated significant differences in the interpretation of the CCD1 gene expression data, depending on the reference gene used, reinforcing the importance of the correct selection of reference genes for normalization.

  20. Mutation induction and isolation in potato through true seed and tuber mutagenesis and use of tissue culture

    Upadhya, M.D.; Abraham, M.J.; Dass, B.; Chandra, R.

    1982-01-01

    Advance MV generation clones from hydrazine-sulphate-treated 'O.T' cultures have been field evaluated and 12 cultures have been selected for yield trials. One culture, DN-31-3, has been found to be day-neutral in its tuberization behaviour. Four JL/RA clones have been selected after a large-scale field trial. These clones are the selections from gamma-irradiated self seeds of Kufri Lauvkar (A-7416) and hybrid A-2235. Similarly 15 MV 3 clones have been selected from the populations raised from EMS- and DES-treated self seeds of A-2235. Day-neutral mutants have been selected from the fourth to seventh sprouts taken from EMS-treated tuber halves of Kufri Jyoti. From the sixth sprout harvest from EMS-treated Kufri Jyoti halves, one mutant, BCN-6-2, has been isolated which showed less than 30 cysts of G. rostochiensis in the MV 2 generation. This clone has been multiplied and made disease-free through apical meristem culture. Through the use of a new medium, PM-32, the plating efficiency of mechanically isolated single callus cells of dihaploid PH-258 is 30-35%. Nitsch's medium has been modified to formulate a new medium for direct embryogenesis in single callus cells of Phulwa. All stages up to the globular stage could be observed after five to six weeks of culture. Efforts were continued for the enzymatic isolation of single-leaf mesophyll cells from dihaploid PH-258. A new cell separation medium has been formulated which gives 80% viable cells. The LD 50 and LD 100 doses of EMS for the single callus cells of dihaploid PH-255 were found to be 500 ppm and 1000 ppm respectively. (author)

  1. Non-crystalline composite tissue engineering scaffolds using boron-containing bioactive glass and poly(d,l-lactic acid) coatings

    Mantsos, T; Chatzistavrou, X; Roether, J A; Boccaccini, A R; Hupa, L; Arstila, H

    2009-01-01

    The aim of this study was the fabrication of three-dimensional, highly porous, bioactive scaffolds using a recently developed bioactive glass powder, denominated '0106', with nominal composition (in wt%): 50 SiO 2 , 22.6 CaO, 5.9 Na 2 O, 4 P 2 O 5 , 12 K 2 O, 5.3 MgO and 0.2 B 2 O 3 . The optimum sintering conditions for the fabrication of scaffolds by the foam-replica method were identified (sintering temperature: 670 deg, C and dwell time: 5 h). Composite samples were also fabricated by applying a biopolymer coating of poly( D,L -lactic acid) (PDLLA) using a dip coating process. The average compressive strength values were 0.4 MPa for uncoated and 0.6 MPa for coated scaffolds. In vitro bioactivity studies in simulated body fluid (SBF) showed that a carbonate hydroxyapatite (HCAp) layer was deposited on uncoated and coated scaffolds after only 4 days of immersion in SBF, demonstrating the high in vitro bioactivity of the scaffolds. It was also confirmed that the scaffold structure remained amorphous (no crystallization) after the specific heat treatment used, with scaffolds exhibiting mechanical properties and bioactivity suitable for use in bone tissue engineering applications.

  2. Non-crystalline composite tissue engineering scaffolds using boron-containing bioactive glass and poly(d,l-lactic acid) coatings

    Mantsos, T; Chatzistavrou, X; Roether, J A; Boccaccini, A R [Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Hupa, L; Arstila, H, E-mail: a.boccaccini@imperial.ac.u [Process Chemistry Centre, Abo Akademi University, Piispankatu 8, FI-20500 Turku (Finland)

    2009-10-15

    The aim of this study was the fabrication of three-dimensional, highly porous, bioactive scaffolds using a recently developed bioactive glass powder, denominated '0106', with nominal composition (in wt%): 50 SiO{sub 2}, 22.6 CaO, 5.9 Na{sub 2}O, 4 P{sub 2}O{sub 5}, 12 K{sub 2}O, 5.3 MgO and 0.2 B{sub 2}O{sub 3}. The optimum sintering conditions for the fabrication of scaffolds by the foam-replica method were identified (sintering temperature: 670 deg, C and dwell time: 5 h). Composite samples were also fabricated by applying a biopolymer coating of poly({sub D,L}-lactic acid) (PDLLA) using a dip coating process. The average compressive strength values were 0.4 MPa for uncoated and 0.6 MPa for coated scaffolds. In vitro bioactivity studies in simulated body fluid (SBF) showed that a carbonate hydroxyapatite (HCAp) layer was deposited on uncoated and coated scaffolds after only 4 days of immersion in SBF, demonstrating the high in vitro bioactivity of the scaffolds. It was also confirmed that the scaffold structure remained amorphous (no crystallization) after the specific heat treatment used, with scaffolds exhibiting mechanical properties and bioactivity suitable for use in bone tissue engineering applications.

  3. Biaxial mechanics and inter-lamellar shearing of stem-cell seeded electrospun angle-ply laminates for annulus fibrosus tissue engineering.

    Driscoll, Tristan P; Nakasone, Ryan H; Szczesny, Spencer E; Elliott, Dawn M; Mauck, Robert L

    2013-06-01

    The annulus fibrosus (AF) of the intervertebral disk plays a critical role in vertebral load transmission that is heavily dependent on the microscale structure and composition of the tissue. With degeneration, both structure and composition are compromised, resulting in a loss of AF mechanical function. Numerous tissue engineering strategies have addressed the issue of AF degeneration, but few have focused on recapitulation of AF microstructure and function. One approach that allows for generation of engineered AF with appropriate (+/-)30° lamellar microstructure is the use of aligned electrospun scaffolds seeded with mesenchymal stem cells (MSCs) and assembled into angle-ply laminates (APL). Previous work indicates that opposing lamellar orientation is necessary for development of near native uniaxial tensile properties. However, most native AF tensile loads are applied biaxially, as the disk is subjected to multi-axial loads and is constrained by its attachments to the vertebral bodies. Thus, the objective of this study was to evaluate the biaxial mechanical response of engineered AF bilayers, and to determine the importance of opposing lamellar structure under this loading regime. Opposing bilayers, which replicate native AF structure, showed a significantly higher modulus in both testing directions compared to parallel bilayers, and reached ∼60% of native AF biaxial properties. Associated with this increase in biaxial properties, significantly less shear, and significantly higher stretch in the fiber direction, was observed. These results provide additional insight into native tissue structure-function relationships, as well as new benchmarks for engineering functional AF tissue constructs. Copyright © 2013 Orthopaedic Research Society.

  4. Iron and ferritin accumulate in separate cellular locations in Phaseolus seeds

    Cvitanich, Cristina; Przybylowicz, Wojciech J; Urbanski, Dorian Fabian

    2010-01-01

    and will assist in the production of staples with increased bioavailable iron. Results Here we reveal the distribution of iron in seeds of three Phaseolus species including thirteen genotypes of P. vulgaris, P. coccineus, and P. lunatus. We showed that high concentrations of iron accumulate in cells surrounding...... the provascular tissue of P. vulgaris and P. coccineus seeds. Using the Perls' Prussian blue method, we were able to detect iron in the cytoplasm of epidermal cells, cells near the epidermis, and cells surrounding the provascular tissue. In contrast, the protein ferritin that has been suggested as the major iron...... to P. vulgaris and P. coccineus, we did not observe iron accumulation in the cells surrounding the provascular tissues of P. lunatus cotyledons. A novel iron-rich genotype, NUA35, with a high concentration of iron both in the seed coat and cotyledons was bred from a cross between an Andean...

  5. Serpins in fruit and vegetative tissues of apple (Malus domestica): expression of four serpins with distinct reactive centres and characterisation of a major inhibitory seed form, MdZ1b

    Hejgaard, Jørn; Laing, W.A.; Marttila, S.

    2005-01-01

    in a wide variety of tissues, including developing and mature fruits, seeds and vegetative buds as well as developing, mature and senescing leaves. Analysis of 46 sequences, most full-length, identified serpins with four distinct reactive centres belonging to two subfamilies (MdZ1 and MdZ2) with similar...

  6. Running title: Water distribution in chickpea seeds

    agriphy20

    2012-07-24

    Jul 24, 2012 ... molecular mobility of cellular water in magnetically exposed seeds as compared to unexposed seeds. Analysis of ... protrusion takes place through the seed coat and absorption .... directly related to water activity (aw) of the cell water. (Gambhir ..... plants, including photosynthesis, respiration and enzymatic ...

  7. Effect of active edible coatings made by basil seed gum and thymol on oil uptake and oxidation in shrimp during deep-fat frying.

    Khazaei, Naimeh; Esmaiili, Mohsen; Emam-Djomeh, Zahra

    2016-02-10

    The effect of active coating treatments on oil uptake, moisture loss, lipid oxidation, texture, color, and sensory evaluation of shrimp after deep-fat frying process was investigated. Compared with the uncoated samples, coating treatments decreased the oil uptake and moisture loss of fried shrimp by 34.50 and 13.9%, respectively. Fried shrimp samples were analyzed for peroxide value (PV) and thiobarbituric acid (TBA). The most reduction in lipid oxidation (46.4% for PV and 40.8% for TBA) was observed when shrimp samples were coated with CS4 (containing 10% thyme), while the control samples had the highest values of PV and TBA after deep-fat frying process. Coated fried samples had significantly lower toughness and stiffness than control samples (P0.05). However, for the texture, juiciness, chewiness, and overall acceptability, coated fried samples had higher scores than control. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Germination, growth rates, and electron microscope analysis of tomato seeds flown on the LDEF

    Hammond, Ernest C., Jr.; Bridgers, Kevin; Brown, Cecelia Wright

    1995-01-01

    The tomato seeds were flown in orbit aboard the Long Duration Exposure Facility (LDEF) for nearly six years. During this time, the tomato seeds received an abundant exposure to cosmic radiation and solar wind. Upon the return of the LDEF to earth, the seeds were distributed throughout the United States and 30 foreign countries for analysis. The purpose of the experiment was to determine the long term effect of cosmic rays on living tissue. Our university analysis included germination and growth rates as well as Scanning Electron Microscopy and X-ray analysis of the control as well as Space-exposed tomato seeds. In analyzing the seeds under the Electron Microscope, usual observations were performed on the nutritional and epidermis layer of the seed. These layers appeared to be more porous in the Space-exposed seeds than on the Earth-based control seeds. This unusual characteristic may explain the increases in the space seeds growth pattern. (Several test results show that the Space-exposed seeds germinate sooner than the Earth-Based seeds. Also, the Space-exposed seeds grew at a faster rate). The porous nutritional region may allow the seeds to receive necessary nutrients and liquids more readily, thus enabling the plant to grow at a faster rate. Roots, leaves and stems were cut into small sections and mounted. After sputter coating the specimens with Argon/Gold Palladium Plasma, they were ready to be viewed under the Electron Microscope. Many micrographs were taken. The X-ray analysis displayed possible identifications of calcium, potassium, chlorine, copper, aluminum, silicon, phosphate, carbon, and sometimes sulfur and iron. The highest concentrations were shown in potassium and calcium. The Space-exposed specimens displayed a high concentration of copper and calcium in the two specimens. There was a significantly high concentration of copper in the Earth-based specimens, whereas there was no copper in the Space-exposed specimens.

  9. Live and let die - the B(sister MADS-box gene OsMADS29 controls the degeneration of cells in maternal tissues during seed development of rice (Oryza sativa.

    Xuelian Yang

    Full Text Available B(sister genes have been identified as the closest relatives of class B floral homeotic genes. Previous studies have shown that B(sister genes from eudicots are involved in cell differentiation during ovule and seed development. However, the complete function of B(sister genes in eudicots is masked by redundancy with other genes and little is known about the function of B(sister genes in monocots, and about the evolution of B(sister gene functions. Here we characterize OsMADS29, one of three MADS-box B(sister genes in rice. Our analyses show that OsMADS29 is expressed in female reproductive organs including the ovule, ovule vasculature, and the whole seed except for the outer layer cells of the pericarp. Knock-down of OsMADS29 by double-stranded RNA-mediated interference (RNAi results in shriveled and/or aborted seeds. Histological analyses of the abnormal seeds at 7 days after pollination (DAP indicate that the symplastic continuity, including the ovular vascular trace and the nucellar projection, which is the nutrient source for the filial tissue at early development stages, is affected. Moreover, degeneration of all the maternal tissues in the transgenic seeds, including the pericarp, ovular vascular trace, integuments, nucellar epidermis and nucellar projection, is blocked as compared to control plants. Our results suggest that OsMADS29 has important functions in seed development of rice by regulating cell degeneration of maternal tissues. Our findings provide important insights into the ancestral function of B(sister genes.

  10. Interactions between seed traits and digestive processes determine the germinability of bird-dispersed seeds.

    Kleyheeg, Erik; Claessens, Mascha; Soons, Merel B

    2018-01-01

    Waterbirds disperse a wide range of plant seeds via their guts, promoting biotic connectivity between isolated habitat patches. However, the intensity of digestive forces encountered by seeds, and therefore their potential to survive digestive tract passage, varies within and between waterbird species. Here, we investigate under controlled conditions how the interaction between seed traits and digestive strategies affect the germinability of seeds following waterbird-mediated dispersal. We exposed seeds of 30 wetland plant species to the main digestive processes in the dabbling duck digestive system: mechanical, chemical and intestinal digestion. These were simulated by 1) a pressure test and scarification treatment, 2) incubation in simulated gastric juice, and 3) incubation in intestinal contents of culled mallards (Anas platyrhynchos). We evaluated their separate and combined effects on seed germination, and identified the role of seed size and seed coat traits in resisting the digestive forces. Seeds were generally resistant to separate digestive processes, but highly sensitive to a combination. Resistance to mechanical break-down was reduced by up to 80% by chemical pre-treatment, especially for seeds with permeable coats. Scarified seeds were 12-17% more vulnerable to chemical and intestinal digestive processes than undamaged seeds. Large seeds and seeds with thin, permeable coats were particularly sensitive to chemical and intestinal digestion. These results indicate that efficient digestion of seeds requires multiple digestive processes. The gizzard, responsible for mechanical digestion, plays a key role in seed survival. Omnivorous birds, which have relatively light gizzards compared to pure herbivores or granivores, are thus most likely to disperse seeds successfully. Regardless of digestive strategy, small seeds with tough seed coats are most resistant to digestion and may be adapted to endozoochorous dispersal by waterbirds.

  11. Interactions between seed traits and digestive processes determine the germinability of bird-dispersed seeds

    Soons, Merel B.

    2018-01-01

    Waterbirds disperse a wide range of plant seeds via their guts, promoting biotic connectivity between isolated habitat patches. However, the intensity of digestive forces encountered by seeds, and therefore their potential to survive digestive tract passage, varies within and between waterbird species. Here, we investigate under controlled conditions how the interaction between seed traits and digestive strategies affect the germinability of seeds following waterbird-mediated dispersal. We exposed seeds of 30 wetland plant species to the main digestive processes in the dabbling duck digestive system: mechanical, chemical and intestinal digestion. These were simulated by 1) a pressure test and scarification treatment, 2) incubation in simulated gastric juice, and 3) incubation in intestinal contents of culled mallards (Anas platyrhynchos). We evaluated their separate and combined effects on seed germination, and identified the role of seed size and seed coat traits in resisting the digestive forces. Seeds were generally resistant to separate digestive processes, but highly sensitive to a combination. Resistance to mechanical break-down was reduced by up to 80% by chemical pre-treatment, especially for seeds with permeable coats. Scarified seeds were 12–17% more vulnerable to chemical and intestinal digestive processes than undamaged seeds. Large seeds and seeds with thin, permeable coats were particularly sensitive to chemical and intestinal digestion. These results indicate that efficient digestion of seeds requires multiple digestive processes. The gizzard, responsible for mechanical digestion, plays a key role in seed survival. Omnivorous birds, which have relatively light gizzards compared to pure herbivores or granivores, are thus most likely to disperse seeds successfully. Regardless of digestive strategy, small seeds with tough seed coats are most resistant to digestion and may be adapted to endozoochorous dispersal by waterbirds. PMID:29614085

  12. Significant degradability enhancement in multilayer coating of polycaprolactone-bioactive glass/gelatin-bioactive glass on magnesium scaffold for tissue engineering applications

    Yazdimamaghani, Mostafa; Razavi, Mehdi; Vashaee, Daryoosh; Pothineni, Venkata Raveendra; Rajadas, Jayakumar; Tayebi, Lobat

    2015-05-01

    Magnesium (Mg) is a promising candidate to be used in medical products especially as bone tissue engineering scaffolds. The main challenge for using Mg in biomedical applications is its high degradation rate in the body. For this reason, in this study, a multilayer polymeric layer composed of polycaprolactone (PCL) and gelatin (Gel) reinforced with bioactive glass (BaG) particles has been applied on the surface of Mg scaffolds. The materials characteristics of uncoated Mg scaffold, Mg scaffold coated only with PCL-BaG and Mg scaffold coated with PCL-BaG and Gel-BaG have been analyzed and compared in detail. Scanning electron microscope (SEM) equipped with energy dispersive spectroscopy (EDS), and Fourier transform infrared spectroscopy (FTIR) were utilized for microstructural studies. In vitro bioactivity and biodegradation evaluations were carried out by submerging the scaffolds in simulated body fluid (SBF) at pre-determined time points. The results demonstrated that Mg scaffold coated with PCL-BaG and Gel-BaG exhibited significant improvement in biodegradability.

  13. Coating electrospun poly(epsilon-caprolactone) fibers with gelatin and calcium phosphate and their use as biomimetic scaffolds for bone tissue engineering.

    Li, Xiaoran; Xie, Jingwei; Yuan, Xiaoyan; Xia, Younan

    2008-12-16

    Electrospinning was employed to fabricate fibrous scaffolds of poly(epsilon-caprolactone) in the form of nonwoven mats. The surfaces of the fibers were then coated with gelatin through layer-by-layer self-assembly, followed by functionalization with a uniform coating of bonelike calcium phosphate by mineralization in the 10 times concentrated simulated body fluid for 2 h. Transmission electron microscopy, water contact angle, and scanning electron microscopy measurements confirmed the presence of gelatin and calcium phosphate coating layers, and X-ray diffraction results suggested that the deposited mineral phase was a mixture of dicalcium phosphate dehydrate (a precursor to apatite) and apatite. It was also demonstrated that the incorporation of gelatin promoted nucleation and growth of calcium phosphate. The porous scaffolds could mimic the structure, composition, and biological function of bone extracellular matrix. It was found that the preosteoblastic MC3T3-E1 cells attached, spread, and proliferated well with a flat morphology on the mineralized scaffolds. The proliferation rate of the cells on the mineralized scaffolds was significantly higher (by 1.9-fold) than that on the pristine fibrous scaffolds after culture for 7 days. These results indicated that the hybrid system containing poly(epsilon-caprolactone), gelatin, and calcium phosphate could serve as a new class of biomimetic scaffolds for bone tissue engineering.

  14. Characterization of Bone Marrow Mononuclear Cells on Biomaterials for Bone Tissue Engineering In Vitro

    Verboket, René; Kontradowitz, Kerstin; Oppermann, Elsie; Brune, Jan C.; Nau, Christoph; Meier, Simon; Bonig, Halvard; Marzi, Ingo; Seebach, Caroline

    2015-01-01

    Bone marrow mononuclear cells (BMCs) are suitable for bone tissue engineering. Comparative data regarding the needs of BMC for the adhesion on biomaterials and biocompatibility to various biomaterials are lacking to a large extent. Therefore, we evaluated whether a surface coating would enhance BMC adhesion and analyze the biocompatibility of three different kinds of biomaterials. BMCs were purified from human bone marrow aspirate samples. Beta tricalcium phosphate (β-TCP, without coating or coated with fibronectin or human plasma), demineralized bone matrix (DBM), and bovine cancellous bone (BS) were assessed. Seeding efficacy on β-TCP was 95% regardless of the surface coating. BMC demonstrated a significantly increased initial adhesion on DBM and β-TCP compared to BS. On day 14, metabolic activity was significantly increased in BMC seeded on DBM in comparison to BMC seeded on BS. Likewise increased VEGF-synthesis was observed on day 2 in BMC seeded on DBM when compared to BMC seeded on BS. The seeding efficacy of BMC on uncoated biomaterials is generally high although there are differences between these biomaterials. Beta-TCP and DBM were similar and both superior to BS, suggesting either as suitable materials for spatial restriction of BMC used for regenerative medicine purposes in vivo. PMID:25802865

  15. Characterization of bone marrow mononuclear cells on biomaterials for bone tissue engineering in vitro.

    Henrich, Dirk; Verboket, René; Schaible, Alexander; Kontradowitz, Kerstin; Oppermann, Elsie; Brune, Jan C; Nau, Christoph; Meier, Simon; Bonig, Halvard; Marzi, Ingo; Seebach, Caroline

    2015-01-01

    Bone marrow mononuclear cells (BMCs) are suitable for bone tissue engineering. Comparative data regarding the needs of BMC for the adhesion on biomaterials and biocompatibility to various biomaterials are lacking to a large extent. Therefore, we evaluated whether a surface coating would enhance BMC adhesion and analyze the biocompatibility of three different kinds of biomaterials. BMCs were purified from human bone marrow aspirate samples. Beta tricalcium phosphate (β-TCP, without coating or coated with fibronectin or human plasma), demineralized bone matrix (DBM), and bovine cancellous bone (BS) were assessed. Seeding efficacy on β-TCP was 95% regardless of the surface coating. BMC demonstrated a significantly increased initial adhesion on DBM and β-TCP compared to BS. On day 14, metabolic activity was significantly increased in BMC seeded on DBM in comparison to BMC seeded on BS. Likewise increased VEGF-synthesis was observed on day 2 in BMC seeded on DBM when compared to BMC seeded on BS. The seeding efficacy of BMC on uncoated biomaterials is generally high although there are differences between these biomaterials. Beta-TCP and DBM were similar and both superior to BS, suggesting either as suitable materials for spatial restriction of BMC used for regenerative medicine purposes in vivo.

  16. Characterization of Bone Marrow Mononuclear Cells on Biomaterials for Bone Tissue Engineering In Vitro

    Dirk Henrich

    2015-01-01

    Full Text Available Bone marrow mononuclear cells (BMCs are suitable for bone tissue engineering. Comparative data regarding the needs of BMC for the adhesion on biomaterials and biocompatibility to various biomaterials are lacking to a large extent. Therefore, we evaluated whether a surface coating would enhance BMC adhesion and analyze the biocompatibility of three different kinds of biomaterials. BMCs were purified from human bone marrow aspirate samples. Beta tricalcium phosphate (β-TCP, without coating or coated with fibronectin or human plasma, demineralized bone matrix (DBM, and bovine cancellous bone (BS were assessed. Seeding efficacy on β-TCP was 95% regardless of the surface coating. BMC demonstrated a significantly increased initial adhesion on DBM and β-TCP compared to BS. On day 14, metabolic activity was significantly increased in BMC seeded on DBM in comparison to BMC seeded on BS. Likewise increased VEGF-synthesis was observed on day 2 in BMC seeded on DBM when compared to BMC seeded on BS. The seeding efficacy of BMC on uncoated biomaterials is generally high although there are differences between these biomaterials. Beta-TCP and DBM were similar and both superior to BS, suggesting either as suitable materials for spatial restriction of BMC used for regenerative medicine purposes in vivo.

  17. The calmodulin-like protein, CML39, is involved in regulating seed development, germination, and fruit development in Arabidopsis.

    Midhat, Ubaid; Ting, Michael K Y; Teresinski, Howard J; Snedden, Wayne A

    2018-03-01

    We show that the calcium sensor, CML39, is important in various developmental processes from seeds to mature plants. This study bridges previous work on CML39 as a stress-induced gene and highlights the importance of calcium signalling in plant development. In addition to the evolutionarily-conserved Ca 2+ sensor, calmodulin (CaM), plants possess a large family of CaM-related proteins (CMLs). Using a cml39 loss-of-function mutant, we investigated the roles of CML39 in Arabidopsis and discovered a range of phenotypes across developmental stages and in different tissues. In mature plants, loss of CML39 results in shorter siliques, reduced seed number per silique, and reduced number of ovules per pistil. We also observed changes in seed development, germination, and seed coat properties in cml39 mutants in comparison to wild-type plants. Using radicle emergence as a measure of germination, cml39 mutants showed more rapid germination than wild-type plants. In marked contrast to wild-type seeds, the germination of developing, immature cml39 seeds was not sensitive to cold-stratification. In addition, germination of cml39 seeds was less sensitive than wild-type to inhibition by ABA or by treatments that impaired gibberellic acid biosynthesis. Tetrazolium red staining indicated that the seed-coat permeability of cml39 seeds is greater than that of wild-type seeds. RNA sequencing analysis of cml39 seedlings suggests that changes in chromatin modification may underlie some of the phenotypes associated with cml39 mutants, consistent with previous reports that orthologs of CML39 participate in gene silencing. Aberrant ectopic expression of transcripts for seed storage proteins in 7-day old cml39 seedlings was observed, suggesting mis-regulation of early developmental programs. Collectively, our data support a model where CML39 serves as an important Ca 2+ sensor during ovule and seed development, as well as during germination and seedling establishment.

  18. Fabrication of novel high performance ductile poly(lactic acid) nanofiber scaffold coated with poly(vinyl alcohol) for tissue engineering applications

    Abdal-hay, Abdalla, E-mail: abda_55@jbnu.ac.kr [Dept of Engineering Materials and Mechanical Design, Faculty of Engineering, South Valley of University, Qena 83523 (Egypt); Hussein, Kamal Hany [Stem Cell Institute and College of Veterinary Medicine, Kangwon National University, Chuncheon, Gangwon 200-701 (Korea, Republic of); Casettari, Luca [Department of Biomolecular Sciences, University of Urbino, Piazza Rinascimento, 6, Urbino, PU 61029 (Italy); Khalil, Khalil Abdelrazek [Dept. of Mechanical Engineering, College of Engineering, King Saud University, 800, Riyadh 11421 (Saudi Arabia); Dept. of Mechanical Engineering, Faculty of Energy Engineering, Aswan University, Aswan (Egypt); Hamdy, Abdel Salam [Dept. of Manufacturing and Industrial Engineering, College of Engineering and Computer Science, University of Texas Rio Grande Valley, 1201 West University Dr., Edinburg, TX 78541-2999 (United States)

    2016-03-01

    Poly(lactic acid) (PLA) nanofiber scaffold has received increasing interest as a promising material for potential application in the field of regenerative medicine. However, the low (hydrophilicity) and poor ductility restrict its practical application. Integration of hydrophilic elastic polymer onto the surface of the nanofiber scaffold may help to overcome the drawbacks of PLA material. Herein, we successfully optimized the parameters for in situ deposition of poly(vinyl alcohol), (PVA) onto post-electrospun PLA nanofibers using a simple hydrothermal approach. Our results showed that the average fiber diameter of coated nanofiber mat is about 1265 ± 222 nm, which is remarkably higher than its pristine counterpart (650 ± 180 nm). The hydrophilicity of PLA nanofiber scaffold coated with a PVA thin layer improved dramatically (36.11 ± 1.5°) compared to that of pristine PLA (119.7 ± 1.5°) scaffold. The mechanical testing showed that the PLA nanofiber scaffold could be converted from rigid to ductile with enhanced tensile strength, due to maximizing the hydrogen bond interaction during the heat treatment and in the presence of PVA. Cytocompatibility performance of the pristine and coated PLA fibers with PVA was observed through an in vitro experiment based on cell attachment and the MTT assay by EA.hy926 human endothelial cells. The cytocompatibility results showed that human cells induced more favorable attachment and proliferation behavior on hydrophilic PLA composite scaffold than that of pristine PLA. Hence, PVA coating resulted in an increase in initial human cell attachment and proliferation. We believe that the novel PVA-coated PLA nanofiber scaffold developed in this study, could be a promising high performance biomaterial in regeneration medicine. - Highlights: • Novel PVA-coated PLA nanofibers were prepared by a simple hydrothermal route. • This in situ treatment strategy for PLA fibers induced polymer chain conformation. • Bonding interaction

  19. Fabrication of novel high performance ductile poly(lactic acid) nanofiber scaffold coated with poly(vinyl alcohol) for tissue engineering applications

    Abdal-hay, Abdalla; Hussein, Kamal Hany; Casettari, Luca; Khalil, Khalil Abdelrazek; Hamdy, Abdel Salam

    2016-01-01

    Poly(lactic acid) (PLA) nanofiber scaffold has received increasing interest as a promising material for potential application in the field of regenerative medicine. However, the low (hydrophilicity) and poor ductility restrict its practical application. Integration of hydrophilic elastic polymer onto the surface of the nanofiber scaffold may help to overcome the drawbacks of PLA material. Herein, we successfully optimized the parameters for in situ deposition of poly(vinyl alcohol), (PVA) onto post-electrospun PLA nanofibers using a simple hydrothermal approach. Our results showed that the average fiber diameter of coated nanofiber mat is about 1265 ± 222 nm, which is remarkably higher than its pristine counterpart (650 ± 180 nm). The hydrophilicity of PLA nanofiber scaffold coated with a PVA thin layer improved dramatically (36.11 ± 1.5°) compared to that of pristine PLA (119.7 ± 1.5°) scaffold. The mechanical testing showed that the PLA nanofiber scaffold could be converted from rigid to ductile with enhanced tensile strength, due to maximizing the hydrogen bond interaction during the heat treatment and in the presence of PVA. Cytocompatibility performance of the pristine and coated PLA fibers with PVA was observed through an in vitro experiment based on cell attachment and the MTT assay by EA.hy926 human endothelial cells. The cytocompatibility results showed that human cells induced more favorable attachment and proliferation behavior on hydrophilic PLA composite scaffold than that of pristine PLA. Hence, PVA coating resulted in an increase in initial human cell attachment and proliferation. We believe that the novel PVA-coated PLA nanofiber scaffold developed in this study, could be a promising high performance biomaterial in regeneration medicine. - Highlights: • Novel PVA-coated PLA nanofibers were prepared by a simple hydrothermal route. • This in situ treatment strategy for PLA fibers induced polymer chain conformation. • Bonding interaction

  20. Seed dormancy and germination.

    Penfield, Steven

    2017-09-11

    Reproduction is a critical time in plant life history. Therefore, genes affecting seed dormancy and germination are among those under strongest selection in natural plant populations. Germination terminates seed dispersal and thus influences the location and timing of plant growth. After seed shedding, germination can be prevented by a property known as seed dormancy. In practise, seeds are rarely either dormant or non-dormant, but seeds whose dormancy-inducing pathways are activated to higher levels will germinate in an ever-narrower range of environments. Thus, measurements of dormancy must always be accompanied by analysis of environmental contexts in which phenotypes or behaviours are described. At its simplest, dormancy can be imposed by the formation of a simple physical barrier around the seed through which gas exchange and the passage of water are prevented. Seeds featuring this so-called 'physical dormancy' often require either scarification or passage through an animal gut (replete with its associated digestive enzymes) to disrupt the barrier and permit germination. In other types of seeds with 'morphological dormancy' the embryo remains under-developed at maturity and a dormant phase exists as the embryo continues its growth post-shedding, eventually breaking through the surrounding tissues. By far, the majority of seeds exhibit 'physiological dormancy' - a quiescence program initiated by either the embryo or the surrounding endosperm tissues. Physiological dormancy uses germination-inhibiting hormones to prevent germination in the absence of the specific environmental triggers that promote germination. During and after germination, early seedling growth is supported by catabolism of stored reserves of protein, oil or starch accumulated during seed maturation. These reserves support cell expansion, chloroplast development and root growth until photoauxotrophic growth can be resumed. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  1. DETERMINATION OF INHIBITORS, DORMANCY BREAKING AND SEED HEALTH IN CUTIEIRA

    José Maria Gomes Neves2

    2013-12-01

    was completely randomized, factorial 2 x 5, with two types of seed from freshly harvested fruits and remnants and five pre-germination treatments. The seed coat removal promotes increased germination and seed vigor derived from harvested fruits. Fungi identified in the cutieira seeds were Aspergillus niger, Aspergillus flavus, Penicillium sp. and Rhizopus sp.

  2. Isolation and characterization of gallic acid and methyl gallate from the seed coats of Givotia rottleriformis Griff. and their anti-proliferative effect on human epidermoid carcinoma A431 cells

    Samuel Kamatham

    2015-01-01

    Full Text Available Gallic acid (GA and its derivative methyl gallate (MG are well studied plant phenolics. They have exhibited anticancer effects in several cancer cell lines. However, the presence of GA/MG in the seed coats of Givotia rottleriformis and their inhibitory effect on human epidermoid carcinoma (A431 skin cancer cells were not reported. In this study we have isolated and chemically characterized the bioactive compounds GA and MG from the bioassay guided methanolic (MeOH seed coat extracts of G. rottleriformis. The fractions obtained from open silica column chromatography were subjected to in vitro enzymatic assays. Among seven fractions we found that only fractions 5 and 6 showed significant inhibition activity toward COX-1 with an IC50 value of 28 μg/mL and 9.3 μg/mL and COX-2 with an IC50 value of 35 μg/mL and 7.0 μg/mL respectively. However, we could not find 5-LOX enzyme inhibition activity. MG (10 mg/g DW and GA (6 mg/g DW were the major compounds of seed coats. Cell viability was analyzed by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyl tetrazolium bromide (MTT assay, which showed that GA/MG significantly reduced the growth of A431 cells with an IC50 value of 25 μg/mL and 53 μg/mL and 11 μg/mL and 43 μg/mL at 24 h and 48 h, respectively. However the cytotoxic effect of GA/MG on HaCaT normal skin keratinocyte cell line was found to be less. Western blot analysis has shown that GA/MG treatment down regulated Bcl-2 and up regulated cleaved caspase-3 with respect to increasing doses. Our results conclude that GA and MG have potential anticancer effects and can be used as therapeutic agents for skin cancers.

  3. Poly(dopamine) coating of 3D printed poly(lactic acid) scaffolds for bone tissue engineering

    Kao, Chia-Tze [School of Dentistry, Chung Shan Medical University, Taichung City, Taiwan (China); Department of Stomatology, Chung Shan Medical University Hospital, Taichung City, Taiwan (China); Lin, Chi-Chang [Department of Chemical and Materials Engineering, Tunghai University, Taichung City, Taiwan (China); Chen, Yi-Wen; Yeh, Chia-Hung [3D Printing Medical Research Center, China Medical University Hospital, Taichung City, Taiwan (China); Fang, Hsin-Yuan [3D Printing Medical Research Center, China Medical University Hospital, Taichung City, Taiwan (China); Department of Thoracic Surgery, China Medical University Hospital, Taichung City, Taiwan (China); School of Medicine, College of Medicine, College of Public Health, Taichung City, Taiwan (China); Shie, Ming-You, E-mail: eviltacasi@gmail.com [3D Printing Medical Research Center, China Medical University Hospital, Taichung City, Taiwan (China)

    2015-11-01

    3D printing is a versatile technique to generate large quantities of a wide variety of shapes and sizes of polymer. The aim of this study is to develop functionalized 3D printed poly(lactic acid) (PLA) scaffolds and use a mussel-inspired surface coating to regulate cell adhesion, proliferation and differentiation of human adipose-derived stem cells (hADSCs). We prepared PLA 3D scaffolds coated with polydopamine (PDA). The chemical composition and surface properties of PDA/PLA were characterized by XPS. PDA/PLA modulated hADSCs' responses in several ways. Firstly, adhesion and proliferation, and cell cycle of hADSCs cultured on PDA/PLA were significantly enhanced relative to those on PLA. In addition, the collagen I secreted from cells was increased and promoted cell attachment and cell cycle progression were depended on the PDA content. In osteogenesis assay, the ALP activity and osteocalcin of hADSCs cultured on PDA/PLA were significantly higher than seen in those cultured on pure PLA scaffolds. Moreover, hADSCs cultured on PDA/PLA showed up-regulation of the ang-1 and vWF proteins associated with angiogenic differentiation. Our results demonstrate that the bio-inspired coating synthetic PLA polymer can be used as a simple technique to render the surfaces of synthetic scaffolds active, thus enabling them to direct the specific responses of hADSCs. - Highlights: • A simple method of 3D printed poly(lactic acid) scaffold coated with PDA • Promoted proliferation of hADSCs on PDA/PLA scaffolds • Increased collagen I, cell cycle, and cell adhesion with a high PDA content • Up-regulation of angiogenic and osteogenic of hADSCs • A promising method for bioinspired surface modification on PLA using PDA.

  4. Poly(dopamine) coating of 3D printed poly(lactic acid) scaffolds for bone tissue engineering

    Kao, Chia-Tze; Lin, Chi-Chang; Chen, Yi-Wen; Yeh, Chia-Hung; Fang, Hsin-Yuan; Shie, Ming-You

    2015-01-01

    3D printing is a versatile technique to generate large quantities of a wide variety of shapes and sizes of polymer. The aim of this study is to develop functionalized 3D printed poly(lactic acid) (PLA) scaffolds and use a mussel-inspired surface coating to regulate cell adhesion, proliferation and differentiation of human adipose-derived stem cells (hADSCs). We prepared PLA 3D scaffolds coated with polydopamine (PDA). The chemical composition and surface properties of PDA/PLA were characterized by XPS. PDA/PLA modulated hADSCs' responses in several ways. Firstly, adhesion and proliferation, and cell cycle of hADSCs cultured on PDA/PLA were significantly enhanced relative to those on PLA. In addition, the collagen I secreted from cells was increased and promoted cell attachment and cell cycle progression were depended on the PDA content. In osteogenesis assay, the ALP activity and osteocalcin of hADSCs cultured on PDA/PLA were significantly higher than seen in those cultured on pure PLA scaffolds. Moreover, hADSCs cultured on PDA/PLA showed up-regulation of the ang-1 and vWF proteins associated with angiogenic differentiation. Our results demonstrate that the bio-inspired coating synthetic PLA polymer can be used as a simple technique to render the surfaces of synthetic scaffolds active, thus enabling them to direct the specific responses of hADSCs. - Highlights: • A simple method of 3D printed poly(lactic acid) scaffold coated with PDA • Promoted proliferation of hADSCs on PDA/PLA scaffolds • Increased collagen I, cell cycle, and cell adhesion with a high PDA content • Up-regulation of angiogenic and osteogenic of hADSCs • A promising method for bioinspired surface modification on PLA using PDA

  5. Poly(dopamine) coating of 3D printed poly(lactic acid) scaffolds for bone tissue engineering.

    Kao, Chia-Tze; Lin, Chi-Chang; Chen, Yi-Wen; Yeh, Chia-Hung; Fang, Hsin-Yuan; Shie, Ming-You

    2015-11-01

    3D printing is a versatile technique to generate large quantities of a wide variety of shapes and sizes of polymer. The aim of this study is to develop functionalized 3D printed poly(lactic acid) (PLA) scaffolds and use a mussel-inspired surface coating to regulate cell adhesion, proliferation and differentiation of human adipose-derived stem cells (hADSCs). We prepared PLA 3D scaffolds coated with polydopamine (PDA). The chemical composition and surface properties of PDA/PLA were characterized by XPS. PDA/PLA modulated hADSCs' responses in several ways. Firstly, adhesion and proliferation, and cell cycle of hADSCs cultured on PDA/PLA were significantly enhanced relative to those on PLA. In addition, the collagen I secreted from cells was increased and promoted cell attachment and cell cycle progression were depended on the PDA content. In osteogenesis assay, the ALP activity and osteocalcin of hADSCs cultured on PDA/PLA were significantly higher than seen in those cultured on pure PLA scaffolds. Moreover, hADSCs cultured on PDA/PLA showed up-regulation of the ang-1 and vWF proteins associated with angiogenic differentiation. Our results demonstrate that the bio-inspired coating synthetic PLA polymer can be used as a simple technique to render the surfaces of synthetic scaffolds active, thus enabling them to direct the specific responses of hADSCs. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Mannans and endo-β-mannanase transcripts are located in different seed compartments during Brassicaceae germination.

    Carrillo-Barral, Néstor; Matilla, Angel J; Rodríguez-Gacio, María Del Carmen; Iglesias-Fernández, Raquel

    2018-03-01

    Mannans but not endo-β-mannanases are mainly found in the mucilage layer of two Brassicaceae seeds. Nonetheless, mannanase mobilization from inner to outer seed layers cannot be ruled out. The contribution of endo-β-mannanase (MAN) genes to the germination of the wild-type Sisymbrium officinale and cultivated Brassica rapa (Brassicaceae) species has been explored. In both species, mannans have been localized to the imbibed external seed coat layer (mucilage) by fluorescence immunolocalization and MAN enzymatic activity increases in seeds as imbibition progresses, reaching a peak before 100% germination is achieved. The MAN gene families have been annotated and the expression of their members analyzed in vegetative and reproductive organs. In S. officinale and B. rapa, MAN2, MAN5, MAN6, and MAN7 transcripts accumulate upon seed imbibition. SoMAN7 is the most expressed MAN gene in S. officinale germinating seeds, as occurs with its ortholog in Arabidopsis thaliana, but in B. rapa, the most abundant transcripts are BrMAN2 and BrMAN5. These genes (MAN2, MAN5, MAN6, and MAN7) are localized, by mRNA in situ hybridization, to the micropylar at the endosperm layer and to the radicle in S. officinale, but in B. rapa, these mRNAs are faintly found to the micropylar living seed coat layer and are mainly present at the radicle tip and the vascular bundles. If the domestication process undergone by B. rapa is responsible for these different MAN expression patterns, upon germination remains to be elucidated. Since mannans and MAN genes are not spatially distributed in the same seed tissues, a movement of MAN enzymes that are synthesized with typical signal peptides from the embryo tissues to the mucilage layer (via apoplastic space) is necessary for the mannans to be hydrolyzed.

  7. Chemical Composition of Kapok (Ceibapentandra) Seed and ...

    -5 years. ... with a sharp steel knife from which healthy seeds were selected. ... Total carbohydrate was determined by difference. .... resistance to microbial attack of plant tissue (Taiz and. Zeiger, 1991 ... Maintenance of soybean seed quality in ...

  8. Expression Studies of Gibberellin Oxidases in Developing Pumpkin Seeds1

    Frisse, Andrea; Pimenta, Maria João; Lange, Theo

    2003-01-01

    Two cDNA clones, 3-ox and 2-ox, have been isolated from developing pumpkin (Cucurbita maxima) embryos that show significant amino acid homology to gibberellin (GA) 3-oxidases and 2-oxidases, respectively. Recombinant fusion protein of clone 3-ox converted GA12-aldehyde, GA12, GA15, GA24, GA25, and GA9 to GA14-aldehyde, GA14, GA37, GA36, GA13, and GA4, respectively. Recombinant 2-ox protein oxidized GA9, GA4, and GA1 to GA51, GA34, and GA8, respectively. Previously cloned GA 7-oxidase revealed additional 3β-hydroxylation activity of GA12. Transcripts of this gene were identified in endosperm and embryo of the developing seed by quantitative reverse transcriptase-polymerase chain reaction and localized in protoderm, root apical meristem, and quiescent center by in situ hybridization. mRNA of the previously cloned GA 20-oxidase from pumpkin seeds was localized in endosperm and in tissues of protoderm, ground meristem, and cotyledons of the embryo. However, transcripts of the recently cloned GA 20-oxidase from pumpkin seedlings were found all over the embryo, and in tissues of the inner seed coat at the micropylar end. Previously cloned GA 2β,3β-hydroxylase mRNA molecules were specifically identified in endosperm tissue. Finally, mRNA molecules of the 3-ox and 2-ox genes were found in the embryo only. 3-ox transcripts were localized in tissues of cotyledons, protoderm, and inner cell layers of the root apical meristem, and 2-ox transcripts were found in all tissues of the embryo except the root tips. These results indicate tissue-specific GA-biosynthetic pathways operating within the developing seed. PMID:12644672

  9. The Importance of the KR-Rich Region of the Coat Protein of Ourmia melon virus for Host Specificity, Tissue Tropism, and Interference With Antiviral Defense.

    Rossi, Marika; Vallino, Marta; Abbà, Simona; Ciuffo, Marina; Balestrini, Raffaella; Genre, Andrea; Turina, Massimo

    2015-01-01

    The N-terminal region of the Ourmia melon virus (OuMV) coat protein (CP) contains a short lysine/arginine-rich (KR) region. By alanine scanning mutagenesis, we showed that the KR region influences pathogenicity and virulence of OuMV without altering viral particle assembly. A mutant, called OuMV6710, with three basic residue substitutions in the KR region, was impaired in the ability to maintain the initial systemic infection in Nicotiana benthamiana and to infect both cucumber and melon plants systemically. The integrity of this protein region was also crucial for encapsidation of viral genomic RNA; in fact, certain mutations within the KR region partially compromised the RNA encapsidation efficiency of the CP. In Arabidopsis thaliana Col-0, OuMV6710 was impaired in particle accumulation; however, this phenotype was abolished in dcl2/dcl4 and dcl2/dcl3/dcl4 Arabidopsis mutants defective for antiviral silencing. Moreover, in contrast to CPwt, in situ immunolocalization experiments indicated that CP6710 accumulates efficiently in the spongy mesophyll tissue of infected N. benthamiana and A. thaliana leaves but only occasionally infects palisade tissues. These results provided strong evidence of a crucial role for OuMV CP during viral infection and highlighted the relevance of the KR region in determining tissue tropism, host range, pathogenicity, and RNA affinity, which may be all correlated with a possible CP silencing-suppression activity.

  10. Coating with fungicide and different doses of fertilizer in vinhatico ...

    Thus, the aim of this study was to evaluate and identify the physical and physiological quality of mahogany seeds that are coated with fertilizer and fungicide. The treatments were: seed coating with sand + lime + fungicide with different doses of fertilizers. The seeds were evaluated in the laboratory and in a greenhouse.

  11. Surface biofunctionalization of three-dimensional porous poly(lactic acid) scaffold using chitosan/OGP coating for bone tissue engineering.

    Zeng, Sen; Ye, Jianhua; Cui, Zhixiang; Si, Junhui; Wang, Qianting; Wang, Xiaofeng; Peng, Kaiping; Chen, Wenzhe

    2017-08-01

    As one of the stimulators on bone formation, osteogenic growth peptide (OGP) improves both proliferation and differentiation of the bone cells in vitro and in vivo. The aim of this work was the preparation of three dimensional porous poly(lactic acid) (PLA) scaffold with high porosity from PLA-dioxane-water ternary system with the use of vacuum-assisted solvent casting, phase separation, solvent extraction and particle leaching methods. Then, by surface coating of PLA scaffold with chitosan (CS)/OGP solution, biofunctionalization of PLA scaffold had been completed for application in bone regeneration. The effects of frozen temperature (-20, -50, -80°C) and PLA solution concentration (10, 12, 14wt%) on the microstructure, water absorption, porosity, hydrophilicity, mechanical properties, and biocompatibility of PLA and CS/OGP/PLA scaffold were investigated. Results showed that both PLA and CS/OGP/PLA scaffolds have an interconnected network structure and a porosity of up to 96.1% and 91.5%, respectively. The CS/OGP/PLA scaffold exhibited better hydrophilicity and mechanical properties than that of uncoated PLA scaffold. Moreover, the results of cell culture test showed that CS/OGP coating could stimulate the proliferation and growth of osteoblast cells on CS/OGP/PLA scaffold. These finding suggested that the surface biofunctionalization by CS/OGP coating layer could be an effective method on enhancing cell adhesion to synthetic polymer-based scaffolds in tissue engineering application and the developed porous CS/OGP/PLA scaffold should be considered as alternative biomaterials for bone regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Effect of ethanolic extract of seeds of Linum usitatissimum (Linn. in hyperglycaemia associated ROS production in PBMNCs and pancreatic tissue of alloxan induced diabetic rats

    Arvindkumar E Ghule

    2012-10-01

    Full Text Available Objective: To evaluate the effect of ethanolic extract of seeds of Linum usitatissimum (EELU in hyperglycemia associated reactive oxygen species (ROS production in peripheral blood mononuclear cells (PBMNCs and pancreatic antioxidant enzymes in alloxan induced diabetic rat. Methods: Diabetes was induced in male Wistar rats by alloxan (120 mg/kg, i.p. . After acute and subacute treatment serum glucose was determined. Oral glucose tolerance test (OGTT was performed in EELU pretreated animals. ROS production in PBMNCs and pancreatic antioxidant enzymes were measured in alloxan induced diabetic rat. Results: Our results showed that, treatment of EELU (200 and 400 mg/kg significantly reduced serum glucose level in acute and subacute study. The antihyperglycaemic effects of EELU showed onset at 4th h (P<0.001 and peak effect at 6th h (P<0.001. The effect was sustained until 24th h with 400 mg/kg. In subacute study, significant antihyperglycaemic effect was observed from 14th day (P<0.001 onwards. In EELU treated rat the body weight was significantly (P<0.001 increased as compared to diabetic group on 21st day onwards. In OGTT, increased glucose utilization was observed. Treatment of EELU 400 mg/kg showed significant reversal in pancreatic GSH (P<0.01 and SOD (P<0.05 indicating antioxidant nature of EELU. Flow cytometric estimation of total ROS production in PBMNCs in diabetic rats was significantly increased (P<0.001, whereas EELU treatment showed significant (P<0.001 decrease in PBMNCs ROS. Conclusions: It is concluded from the investigation that EELU showed antihyperglycaemic effect mediated through inhibition of ROS level in PBMNCs and preservation of endogenous antioxidant enzymes in pancreatic tissue in alloxan induced diabetic rat.

  13. Observation of Biological Tissues Using Common Path Optical Coherence Tomography with Gold Coated Conical Tip Lens Fiber

    Taguchi, K; Sugiyama, J; Totsuka, M; Imanaka, S

    2012-01-01

    In this paper, we proposed a high lateral resolution common-path Fourier domain optical coherence tomography(OCT) system with the use of a chemically etched single mode fiber. In our experiments, single mode optical fiber for 1310nm was used for preparing the tapered tips. Our system used a conical microlens that was chemically etched by selective chemical etching technique using an etching solution of buffered hydrofluoric acid (BHF). From experimental results, we verified that our proposed optical coherence tomography system could operate as a common-path Fourier domain OCT system and conical tip lens fiber was very useful for a high lateral resolution common-path Fourier domain OCT system. Furthermore, we could observe a surface of paramecium bursaria and symbiotic chlorella in the paramecium bursaria using gold coated conical-tip fiber in the water.

  14. The role of nanocrystalline titania coating on nanostructured austenitic stainless steel in enhancing osteoblasts functions for regeneration of tissue

    Shah, J.S.; Venkatsurya, P.K.C.; Thein-Han, W.W. [Biomaterials and Biomedical Engineering Research Laboratory, Center for Structural and Functional Materials, University of Louisiana at Lafayette, P.O. Box 44130, Lafayette, LA 70504 (United States); Misra, R.D.K., E-mail: dmisra@louisiana.edu [Biomaterials and Biomedical Engineering Research Laboratory, Center for Structural and Functional Materials, University of Louisiana at Lafayette, P.O. Box 44130, Lafayette, LA 70504 (United States); Pesacreta, T.C. [Department of Biology, University of Louisiana at Lafayette, P.O. Box 42451, Lafayette, LA 70504 (United States); Somani, M.C.; Karjalainen, L.P. [Department of Mechanical Engineering, University of Oulu, P.O. Box 4200, 90014 Oulu (Finland)

    2011-03-12

    In the context of osseointegration of metallic implants, while nanostructuring the surface favorably modulates cellular response, the disinfective attributes required during the healing process are not available. Thus, in the present study, we demonstrate that nanocrystalline titania provides cumulative benefit of enhancing osteoblasts functions to promote the efficacy of metal implants together with the disinfective attributes. To this end, the primary objective here is to examine the select functions of bone forming cells (osteoblasts) on electrocrystallized nanonodular titania-coated nanograined/ultrafine grained (NG/UFG) austenitic stainless steel. The accompanying objective is to study the disinfective/antimicrobial activity. To the best of our understanding this is the first study of nanophase titania on a non-titanium substrate. The osteoblasts functions were investigated in terms of cell attachment, proliferation, and quantitative analysis of proteins, actin and vinculin. In comparison to the bare NG/UFG substrate, the nanophase titania-coated substrate exhibited higher degree of cell attachment and proliferation which are regulated via cellular and molecular interactions with proteins, actin and vinculin. The enhanced functions of osteoblasts suggest that nanophase titania adsorbs extracellular matrix proteins, fibronectin and vitronectin from serum enhancing protein, with subsequent binding of integrins and osteoblasts precursor to titania. The antimicrobial attributes assessed in terms of degradation of methyl orange and effectiveness in killing E. coli supports the viewpoint that large surface area of titania would be instrumental in reducing the detrimental effect of biologically reactive oxygen species produced by macrophages in the vicinity of the metal bone/implant interface. In summary, the study provides some new insights concerning nanostructuring of metallic substrates with specific physical and surface properties for medical devices with

  15. Seed Anatomy and Water Uptake in Relation to Seed Dormancy in Opuntia tomentosa (Cactaceae, Opuntioideae)

    Orozco-Segovia, A.; Márquez-Guzmán, J.; Sánchez-Coronado, M. E.; Gamboa de Buen, A.; Baskin, J. M.; Baskin, C. C.

    2007-01-01

    Background and Aims There is considerable confusion in the literature concerning impermeability of seeds with ‘hard’ seed coats, because the ability to take up (imbibe) water has not been tested in most of them. Seeds of Opuntia tomentosa were reported recently to have a water-impermeable seed coat sensu lato (i.e. physical dormancy), in combination with physiological dormancy. However, physical dormancy is not known to occur in Cactaceae. Therefore, the aim of this study was to determine if seeds of O. tomentosa are water-permeable or water-impermeable, i.e. if they have physical dormancy. Methods The micromorphology of the seed coat and associated structures were characterized by SEM and light microscopy. Permeability of the seed-covering layers was assessed by an increase in mass of seeds on a wet substrate and by dye-tracking and uptake of tritiated water by intact versus scarified seeds. Key Results A germination valve and a water channel are formed in the hilum–micropyle region during dehydration and ageing in seeds of O. tomentosa. The funicular envelope undoubtedly plays a role in germination of Opuntia seeds via restriction of water uptake and mechanical resistance to expansion of the embryo. However, seeds do not exhibit any of three features characteristic of those with physical dormancy. Thus, they do not have a water-impermeable layer(s) of palisade cells (macrosclereids) or a water gap sensu stricto and they imbibe water without the seed coat being disrupted. Conclusions Although dormancy in seeds of this species can be broken by scarification, they have physiological dormancy only. Further, based on information in the literature, it is concluded that it is unlikely that any species of Opuntia has physical dormancy. This is the first integrative study of the anatomy, dynamics of water uptake and dormancy in seeds of Cactaceae subfamily Opuntioideae. PMID:17298989

  16. Poly (dopamine) coated superparamagnetic iron oxide nanocluster for noninvasive labeling, tracking, and targeted delivery of adipose tissue-derived stem cells

    Liao, Naishun; Wu, Ming; Pan, Fan; Lin, Jiumao; Li, Zuanfang; Zhang, Da; Wang, Yingchao; Zheng, Youshi; Peng, Jun; Liu, Xiaolong; Liu, Jingfeng

    2016-01-01

    Tracking and monitoring of cells in vivo after transplantation can provide crucial information for stem cell therapy. Magnetic resonance imaging (MRI) combined with contrast agents is believed to be an effective and non-invasive technique for cell tracking in living bodies. However, commercial superparamagnetic iron oxide nanoparticles (SPIONs) applied to label cells suffer from shortages such as potential toxicity, low labeling efficiency, and low contrast enhancing. Herein, the adipose tissue-derived stem cells (ADSCs) were efficiently labeled with SPIONs coated with poly (dopamine) (SPIONs cluster@PDA), without affecting their viability, proliferation, apoptosis, surface marker expression, as well as their self-renew ability and multi-differentiation potential. The labeled cells transplanted into the mice through tail intravenous injection exhibited a negative enhancement of the MRI signal in the damaged liver-induced by carbon tetrachloride, and subsequently these homed ADSCs with SPIONs cluster@PDA labeling exhibited excellent repair effects to the damaged liver. Moreover, the enhanced target-homing to tissue of interest and repair effects of SPIONs cluster@PDA-labeled ADSCs could be achieved by use of external magnetic field in the excisional skin wound mice model. Therefore, we provide a facile, safe, noninvasive and sensitive method for external magnetic field targeted delivery and MRI based tracking of transplanted cells in vivo.

  17. Nanosized Mesoporous Bioactive Glass/Poly(lactic-co-glycolic Acid Composite-Coated CaSiO3 Scaffolds with Multifunctional Properties for Bone Tissue Engineering

    Mengchao Shi

    2014-01-01

    Full Text Available It is of great importance to prepare multifunctional scaffolds combining good mechanical strength, bioactivity, and drug delivery ability for bone tissue engineering. In this study, nanosized mesoporous bioglass/poly(lactic-co-glycolic acid composite-coated calcium silicate scaffolds, named NMBG-PLGA/CS, were successfully prepared. The morphology and structure of the prepared scaffolds were characterized by scanning electron microscopy and X-ray diffraction. The effects of NMBG on the apatite mineralization activity and mechanical strength of the scaffolds and the attachment, proliferation, and alkaline phosphatase activity of MC3T3 cells as well as drug ibuprofen delivery properties were systematically studied. Compared to pure CS scaffolds and PLGA/CS scaffolds, the prepared NMBG-PLGA/CS scaffolds had greatly improved apatite mineralization activity in simulated body fluids, much higher mechanical property, and supported the attachment of MC3T3 cells and enhanced the cell proliferation and ALP activity. Furthermore, the prepared NMBG-PLGA/CS scaffolds could be used for delivering ibuprofen with a sustained release profile. Our study suggests that the prepared NMBG-PLGA/CS scaffolds have improved physicochemical, biological, and drug-delivery property as compared to conventional CS scaffolds, indicating that the multifunctional property of the prepared scaffolds for the potential application of bone tissue engineering.

  18. Poly (dopamine) coated superparamagnetic iron oxide nanocluster for noninvasive labeling, tracking, and targeted delivery of adipose tissue-derived stem cells.

    Liao, Naishun; Wu, Ming; Pan, Fan; Lin, Jiumao; Li, Zuanfang; Zhang, Da; Wang, Yingchao; Zheng, Youshi; Peng, Jun; Liu, Xiaolong; Liu, Jingfeng

    2016-01-05

    Tracking and monitoring of cells in vivo after transplantation can provide crucial information for stem cell therapy. Magnetic resonance imaging (MRI) combined with contrast agents is believed to be an effective and non-invasive technique for cell tracking in living bodies. However, commercial superparamagnetic iron oxide nanoparticles (SPIONs) applied to label cells suffer from shortages such as potential toxicity, low labeling efficiency, and low contrast enhancing. Herein, the adipose tissue-derived stem cells (ADSCs) were efficiently labeled with SPIONs coated with poly (dopamine) (SPIONs cluster@PDA), without affecting their viability, proliferation, apoptosis, surface marker expression, as well as their self-renew ability and multi-differentiation potential. The labeled cells transplanted into the mice through tail intravenous injection exhibited a negative enhancement of the MRI signal in the damaged liver-induced by carbon tetrachloride, and subsequently these homed ADSCs with SPIONs cluster@PDA labeling exhibited excellent repair effects to the damaged liver. Moreover, the enhanced target-homing to tissue of interest and repair effects of SPIONs cluster@PDA-labeled ADSCs could be achieved by use of external magnetic field in the excisional skin wound mice model. Therefore, we provide a facile, safe, noninvasive and sensitive method for external magnetic field targeted delivery and MRI based tracking of transplanted cells in vivo.

  19. Orthodox seeds and resurrection plants

    Costa, Maria Cecília Dias; Cooper, Keren; Hilhorst, Henk W.M.; Farrant, Jill M.

    2017-01-01

    Although staple crops do not survive extended periods of drought, their seeds possess desiccation tolerance (DT), as they survive almost complete dehydration (desiccation) during the late maturation phase of development. Resurrection plants are plant species whose seeds and vegetative tissues are

  20. Seed oil content and fatty acid composition of annual halophyte ...

    ajl yemi

    2011-12-19

    Dec 19, 2011 ... 1State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of. Sciences, Urumqi 830011, China. 2Graduate University of ... of S. acuminata: brown with soft coarse seed coat and black with rigid smooth seed coat (Ding et al., 2010). Brown and black ...

  1. Imazapyr (herbicide) seed dressing increases yield, suppresses ...

    from damage. In 1998/99 season, a trial was initiated at Chitedze Research Station under artificial infection, to evaluate the effects of seed dressing with imazapyr (an acetolactate synthase {ALS} inhibiting herbicide) using three seed treatment methods (coating, priming or drenching) and three herbicide rates (15, 30 and 45 ...

  2. Combined Effect of a Microporous Layer and Type I Collagen Coating on a Biphasic Calcium Phosphate Scaffold for Bone Tissue Engineering

    Mun-Hwan Lee; Changkook You; Kyo-Han Kim

    2015-01-01

    In this study, type I collagen was coated onto unmodified and modified microporous biphasic calcium phosphate (BCP) scaffolds. Surface characterization using a scanning electron microscope (SEM) and a surface goniometer confirmed the modification of the BCP coating. The quantity of the collagen coating was investigated using Sirius Red staining, and quantitative assessment of the collagen coating showed no significant differences between the two groups. MG63 cells were used to evaluate cell p...

  3. Simultaneous qualitative assessment and quantitative analysis of flavonoids in various tissues of lotus (Nelumbo nucifera) using high performance liquid chromatography coupled with triple quad mass spectrometry.

    Chen, Sha; Fang, Linchuan; Xi, Huifen; Guan, Le; Fang, Jinbao; Liu, Yanling; Wu, Benhong; Li, Shaohua

    2012-04-29

    Flavonoid composition and concentration were investigated in 12 different tissues of 'Ti-1' lotus (Nelumbo nucifera) by high performance liquid chromatography equipped with photodiode array detection tandem electrospray ionization mass spectrometry (HPLC-DAD-ESI-MS(n)). A total of 20 flavonoids belonging to six groups (myricetin, quercetin, kaempferol, isohamnetin, diosmetin derivatives) were separated and identified. Myricetin 3-O-galactoside, myricetin 3-O-glucuronide, isorhamnetin 3-O-glucuronide and free aglycone diometin (3',5,7-trihydroxy-4'-methoxyflavone) were first reported in lotus. Flavonoid composition varied largely with tissue type, and diverse compounds (5-15) were found in leaf and flower stalks, flower pistils, seed coats and embryos. Flower tissues including flower petals, stamens, pistils, and, especially, reproductive tissue fruit coats had more flavonoid compounds (15-17) than leaves (12), while no flavonoids were detectable in seed kernels. The flavonoid content of seed embryos was high, 730.95 mg 100g(-1) DW (dry weight). As regards the other tissues, mature leaf pulp (771.79 mg 100 g(-1) FW (fresh weight)) and young leaves (650.67 mg 100 g(-1) FW) had higher total flavonoid amount than flower stamens (359.45 mg 100 g(-1) FW) and flower petals (342.97 mg 100g(-1) FW), while leaf stalks, flower stalks and seed coats had much less total flavonoid (less than 40 mg 100 g(-1) FW). Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Embryo Localization Enhances the Survival of Acidovorax citrulli in Watermelon Seeds.

    Dutta, Bhabesh; Schneider, Raymond W; Robertson, Clark L; Walcott, Ronald R

    2016-04-01

    Acidovorax citrulli, the causal agent of bacterial fruit blotch (BFB) of cucurbits has been observed to survive for >34 years in stored melon and watermelon seeds. To better understand this remarkable longevity, we investigated the bacterium's tolerance to desiccation and the effect of bacterial localization in different watermelon seed tissues on its survival. We compared the ability of A. citrulli to tolerate desiccation on filter paper discs and on host (watermelon) and nonhost (cabbage, corn and tomato) seeds to two seedborne (Xanthomonas campestris pv. campestris and Pantoea stewartii subsp. stewartii) and one soilborne (Ralstonia solanacearum) plant-pathogenic bacteria. A. citrulli survival on dry filter paper (>12 weeks) was similar to that of X. campestris pv. campestris but longer than P. stewartii subsp. stewartii. Ralstonia solanacearum survived longer than all other bacteria tested. On all seeds tested, A. citrulli and X. campestris pv. campestris populations declined by 5 orders of magnitude after 12 weeks of incubation at 4°C and 50% relative humidity, while R. solanacearum populations declined by 3 orders. P. stewartii subsp. stewartii was not recovered after 12 weeks of incubation. To determine the effect of tissue localization on bacterial survival, watermelon seeds infested with A. citrulli by flower stigma inoculation (resulting in bacterial localization in the embryo/endosperm) or by ovary pericarp inoculations (resulting in bacterial localization under the testa) were treated with peroxyacetic acid or chlorine (Cl2) gas. Following these treatments, a significantly higher reduction in BFB seed-to-seedling transmission was observed for seeds generated by ovary pericarp inoculation (≥89.5%) than for those generated by stigma inoculation (≤76.5%) (Pseed coat, suggesting that tissue localization is important for bacterial survival in seed. This observation was confirmed when P. stewartii subsp. stewartii survived significantly longer in stigma

  5. Evaluation of different methods to overcome in vitro seed dormancy ...

    SAM

    2014-09-03

    Sep 3, 2014 ... Seeds from yellow passion fruit (Passiflora edulis Sims) present dormancy imposed by the seed-coat. The present study aimed to evaluate some methods to overcome dormancy of seeds from P. edulis grown under in vitro conditions. The experimental design was completely randomized in factorial scheme ...

  6. Conditions Affecting Shelf-Life of Inoculated Legume Seed

    Greg Gemell

    2012-02-01

    Full Text Available Microbial inoculants are becoming more available as sustainable alternatives to fertilizers and other agrichemicals in broad-acre cropping. However, with the exception of legume inoculants little is understood about effective delivery and survival of the inoculum. Legume inoculants are applied to both seed and soil but seed inoculation is the most economical technique. Large quantities of pasture seed in Australia are inoculated by commercial seed coating companies, but the long-term survival of seed-applied inoculum is variable and monitoring of viability requires specialist microbiology skills and facilities. The aim of our research was to define optimum storage conditions for survival of rhizobia on legume seed and evaluate water activity as a means of monitoring shelf-life. The relationship between survival and water activity varied according to seed species, inoculum preparation, coating ingredients, initial water activity and time suggesting that storage conditions would need to be defined for each different combination. Although drying seeds after coating significantly reduced viable numbers of rhizobia, survival of rhizobia on dried commercially coated lucerne seed after 11 weeks was less variable than seeds that had not been dried. The highest numbers were maintained when seeds remained dry with water activities of between 0.47 and 0.38. The quality of inoculated seed could be improved by reducing the death rate of inoculum during preparation and providing optimum storage conditions for long-term survival.

  7. 7 CFR 201.58a - Indistinguishable seeds.

    2010-01-01

    ...) Calculation of results: Count the number of seeds which stain dark brown or black and divide by the total... Brown. (4) Brown. (5) Brown Black. (d) Soybean. In determining the varietal purity, the peroxidase test... enough test solution to cover the seeds. Seeds coats of yellow sweetclover will begin to stain dark brown...

  8. Seed propagation of Allanblackia floribunda by mechanical pre ...

    Mechanical pre-germination treatments were given to the viable seeds: total removal of seed coat, sand-paper scarification and laceration. These were sown in forest topsoil and washed river sand media respectively in completely Randomized Design in the Nursery. Seeds with testa totally removed and sown in forest ...

  9. Maturation, temperature and breaking dormancy of Comanthera seeds

    Andréa Santos Oliveira; Maria Laene Moreira Carvalho; Cláudio das Neves Vieira Bárbara; Tanismare Tatiana Almeida; Marcela Carlota Nery

    2016-01-01

    Given the importance of “everlasting” plants for their ornamental value and vulnerability to extractive practices, studies to ensure the propagation of the species are indispensable. The aim of this study was to assess whether there is an association between seed coat color and the quality of everlasting seeds, in the presence or absence of dormancy. Four species (Comanthera elegans, C. nitida, C. bisculata, and Comanthera sp.) were separated with respect to seed coat color and underwent germ...

  10. Female Longitudinal Anal Muscles or Conjoint Longitudinal Coats Extend into the Subcutaneous Tissue along the Vaginal Vestibule: A Histological Study Using Human Fetuses

    Arakawa, Takashi; Abe, Hiroshi; Rodríguez-Vízquez, Jose Francisco; Murakami, Gen; Sugihara, Kenichi

    2013-01-01

    Purpose It is still unclear whether the longitudinal anal muscles or conjoint longitudinal coats (CLCs) are attached to the vagina, although such an attachment, if present, would appear to make an important contribution to the integrated supportive system of the female pelvic floor. Materials and Methods Using immunohistochemistry for smooth muscle actin, we examined semiserial frontal sections of 1) eleven female late-stage fetuses at 28-37 weeks of gestation, 2) two female middle-stage fetus (2 specimens at 13 weeks), and, 3) six male fetuses at 12 and 37 weeks as a comparison of the morphology. Results In late-stage female fetuses, the CLCs consistently (11/11) extended into the subcutaneous tissue along the vaginal vestibule on the anterior side of the external anal sphincter. Lateral to the CLCs, the external anal sphincter also extended anteriorly toward the vaginal side walls. The anterior part of the CLCs originated from the perimysium of the levator ani muscle without any contribution of the rectal longitudinal muscle layer. However, in 2 female middle-stage fetuses, smooth muscles along the vestibulum extended superiorly toward the levetor ani sling. In male fetuses, the CLCs were separated from another subcutaneous smooth muscle along the scrotal raphe (posterior parts of the dartos layer) by fatty tissue. Conclusion In terms of topographical anatomy, the female anterior CLCs are likely to correspond to the lateral extension of the perineal body (a bulky subcutaneous smooth muscle mass present in adult women), supporting the vaginal vestibule by transmission of force from the levator ani. PMID:23549829

  11. Pharmacokinetics, tissue distribution, and metabolites of a polyvinylpyrrolidone-coated norcantharidin chitosan nanoparticle formulation in rats and mice, using LC-MS/MS

    Ding XY

    2012-04-01

    Full Text Available Xin-Yuan Ding1, Cheng-Jiao Hong2, Yang Liu1, Zong-Lin Gu1, Kong-Lang Xing1, Ai-Jun Zhu1, Wei-Liang Chen1, Lin-Seng Shi1, Xue-Nong Zhang1, Qiang Zhang31Department of Pharmaceutics, College of Pharmaceutical science, Soochow University, Suzhou, 2Jiang Su Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, 3Department of Pharmaceutics, School of Pharmaceutical Science, Peking University, Beijing, People’s Republic of ChinaAbstract: A novel formulation containing polyvinylpyrrolidone (PVP K30-coated norcantharidin (NCTD chitosan nanoparticles (PVP–NCTD–NPs was prepared by ionic gelation between chitosan and sodium tripolyphosphate. The average particle size of the PVP–NCTD–NPs produced was 140.03 ± 6.23 nm; entrapment efficiency was 56.33% ± 1.41%; and drug-loading efficiency was 8.38% ± 0.56%. The surface morphology of NCTD nanoparticles (NPs coated with PVP K30 was characterized using various analytical techniques, including X-ray diffraction and atomic force microscopy. NCTD and its metabolites were analyzed using a sensitive and specific liquid chromatography-tandem mass spectrometry method with samples from mice and rats. The results indicated the importance of the PVP coating in controlling the shape and improving the entrapment efficiency of the NPs. Pharmacokinetic profiles of the NCTD group and PVP–NCTD–NP group, after oral and intravenous administration in rats, revealed that relative bioavailabilities were 173.3% and 325.5%, respectively. The elimination half-life increased, and there was an obvious decrease in clearance. The tissue distribution of NCTD in mice after the intravenous administration of both formulations was investigated. The drug was not quantifiable at 6 hours in all tissues except for the liver and kidneys. The distribution of the drug in the liver and bile was notably improved in the PVP–NCTD–NP group. The metabolites and excretion properties of NCTD were investigated by analyzing

  12. Seed quality in informal seed systems

    Biemond, P.C.

    2013-01-01

    Keywords: informal seed systems, seed recycling, seed quality, germination, seed pathology, seed health, seed-borne diseases, mycotoxigenic fungi, Fusarium verticillioides, mycotoxins, Vigna unguiculata, Zea mays, Nigeria.

    Seed is a crucial input for agricultural production.

  13. Cellular composition and expression of potential stem cell markers in mammary tissue of cows consuming endophyte-infected fescue seed during the dry period and early lactation

    We evaluated the impact of consuming endophyte-infected fescue during late pregnancy on parameters of mammary development in Holstein cows. Cows (N = 16) were fed 10% of their ration as tall fescue seed that was free from (CON) or infected with endophyte (INF) from 90d before expected calving until ...

  14. Mucuna pruriens seed extract reduces oxidative stress in nigrostriatal tissue and improves neurobehavioral activity in paraquat-induced Parkinsonian mouse model.

    Yadav, Satyndra Kumar; Prakash, Jay; Chouhan, Shikha; Singh, Surya Pratap

    2013-06-01

    Parkinson's disease (PD) is a neurodegenerative disease which causes rigidity, resting tremor and postural instability. Treatment for this disease is still under investigation. Mucuna pruriens (L.), is a traditional herbal medicine, used in India since 1500 B.C., as a neuroprotective agent. In this present study, we evaluated the therapeutic effects of aqueous extract of M. pruriens (Mp) seed in Parkinsonian mouse model developed by chronic exposure to paraquat (PQ). Results of our study revealed that the nigrostriatal portion of Parkinsonian mouse brain showed significantly increased levels of nitrite, malondialdehyde (MDA) and reduced levels of catalase compared to the control. In the Parkinsonian mice hanging time was decreased, whereas narrow beam walk time and foot printing errors were increased. Treatment with aqueous seed extract of Mp significantly increased the catalase activity and decreased the MDA and nitrite level, compared to untreated Parkinsonian mouse brain. Mp treatment also improved the behavioral abnormalities. It increased hanging time, whereas it decreased narrow beam walk time and foot printing error compared to untreated Parkinsonian mouse brain. Furthermore, we observed a significant reduction in tyrosine hydroxylase (TH) immunoreactivity in the substantia nigra (SN) and striatum region of the brain, after treatment with PQ which was considerably restored by the use of Mp seed extract. Our result suggested that Mp seed extract treatment significantly reduced the PQ induced neurotoxicity as evident by decrease in oxidative damage, physiological abnormalities and immunohistochemical changes in the Parkinsonian mouse. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Antioxidant and Anti-Fatigue Activities of Phenolic Extract from the Seed Coat of Euryale ferox Salisb. and Identification of Three Phenolic Compounds by LC-ESI-MS/MS

    Qinan Wu

    2013-09-01

    Full Text Available This study investigated the antioxidant potential and anti-fatigue effects of phenolics extracted from the seed coat of Euryale ferox Salisb. The in vitro antioxidant potentials, including scavenging DPPH, hydroxyl radical activities and reducing power were evaluated. Antioxidant status in vivo was analyzed by SOD, CAT, GSH-Px activities and the MDA content in liver and kidneys of D-galactose-induced aging mice. The anti-fatigue effect was evaluated using an exhaustive swimming test, along with the determination of LDH, BUN and HG content. The phenolic extract possessed notable antioxidant effects on DPPH, hydroxyl radical scavenging and reducing power. The mice which received the phenolic extract showed significant increases of SOD, CAT (except for in the kidney, GSH-Px activities, and a decrease of MDA content. The average exhaustive swimming time was obviously prolonged. Meanwhile, increase of LDH content and decrease of BUN content were observed after mice had been swimming for 15 min. The HG storage of mice was improved in the high and middle dose extract groups compared with the normal group. The contents of total phenols and gallic acid of the extract were determined. Three compounds in the extract were identified as 5,7-dihydroxy-2-(3,4,5-trihydroxyphenyl-chroman-4-one, 5,7,4-trihydroxyflavanone and buddlenol E. These results suggest that the extract of E. ferox is a promising source of natural antioxidants and anti-fatigue material for use in functional foods and medicines.

  16. seed oils

    Timothy Ademakinwa

    processes, production of biodiesel, as lubricant and in deep-frying purposes. They could ... for its juice, nectars and fruit while its seeds are ... Malaysia. The fine seed powder was stored in a plastic container inside a refrigerator at between 4 o.

  17. seed flour

    ONOS

    2010-09-06

    Sep 6, 2010 ... and with a nice taste, used for cooking or as lamp oil. The fatty acid ... Pra seeds were obtained from a local market in Nakhon Si Thammarat. Page 2. Table 1. Proximate composition of pra seed flour. Constituent. Percentage ...

  18. Robotic seeding

    Pedersen, Søren Marcus; Fountas, Spyros; Sørensen, Claus Aage Grøn

    2017-01-01

    Agricultural robotics has received attention for approximately 20 years, but today there are only a few examples of the application of robots in agricultural practice. The lack of uptake may be (at least partly) because in many cases there is either no compelling economic benefit......, or there is a benefit but it is not recognized. The aim of this chapter is to quantify the economic benefits from the application of agricultural robots under a specific condition where such a benefit is assumed to exist, namely the case of early seeding and re-seeding in sugar beet. With some predefined assumptions...... with regard to speed, capacity and seed mapping, we found that among these two technical systems both early seeding with a small robot and re-seeding using a robot for a smaller part of the field appear to be financially viable solutions in sugar beet production....

  19. Smoke-induced seed germination in California chaparral

    Keeley, J.E.; Fotheringham, C.J.

    1998-01-01

    The California chaparral community has a rich flora of species with different mechanisms for cuing germination to postfire conditions. Heat shock triggers germination of certain species but has no stimulatory effect on a great many other postfire species that are chemically stimulated by combustion products. Previous reports have shown that charred wood will induce germination, and here we report that smoke also induces germination in these same species. Smoke is highly effective, often inducing 100% germination in deeply dormant seed populations with 0% control germination. Smoke induces germination both directly and indirectly by aqueous or gaseous transfer from soil to seeds. Neither nitrate nor ammonium ions were effective in stimulating germination of smoke-stimulated species, nor were most of the quantitatively important gases generated by biomass smoke. Nitrogen dioxide, however, was very effective at inducing germination in Caulanthus heterophyllus (Brassicaceae), Emmenanthe penduliflora (Hydrophyllaceae), Phacelia grandiflora (Hydrophyllaceae), and Silene multinervia (Caryophyllaceae). Three species, Dendromecon rigida (Papaveraceae), Dicentra chrysantha, and Trichostema lanatum (Lamiaceae), failed to germinate unless smoke treatment was coupled with prior treatment of 1 yr soil storage. Smoke-stimulated germination was found in 25 chaparral species, representing 11 families, none of which were families known for heat-shock-stimulated germination. Seeds of smoke-stimulated species have many analogous characteristics that separate them from most heat-shock-stimulated seeds, including: (1) outer seed coats that are highly textured, (2) a poorly developed outer cuticle, (3) absence of a dense palisade tissue in the seed coat, and (4) a subdermal membrane that is semipermeable, allowing water passage but blocking entry of large (molecular mass > 500) solutes. Tentative evidence suggests that permeability characteristics of this subdermal layer are altered by

  20. Estimates of genetic parameters of late seed-coat darkening of carioca type dry beans Estimativas de parâmetros genéticos do caráter escurecimento tardio dos grãos de feijão carioca

    Lilian Cristina Andrade de Araújo

    2012-04-01

    Full Text Available In order to facilitate commercialization of cultivars of carioca type dry beans, the grains must have the lightest possible cream color and this phenotype must be persistent (late seed-coat darkening. There are reports of genetic variability for this trait. The objectives of this study were to obtain information regarding genetic control of the trait, with emphasis on the estimate of heritability and if it varies according to days after harvest, to verify the effect of locations and/or crop season on seed-coat darkening of the grains and to estimate the genetic and phenotypic correlations of the trait with cooking time, tannin content and grain yield. F2:3 and F2:4 progenies derived from crossing of the cultivar BRSMG Madrepérola (late seed-coat darkening and the line RP-2 (early seed-coat darkening were used. It is concluded that seed-coat darkening is influenced by the environment, crop season or locations; nevertheless, the interaction progenies x environments and progenies x locations is predominantly simple, not expressively changing classification of the progenies. Although the heritability of the darkening scores tends to increase with the storage time of the grain, the interaction progenies x time periods of assessment was not observed. Grains with late seed-coat darkening present a lower tannin content and require less cooking time. The genetic correlation between a dark seed-coat and grain yield was practically null.Para facilitar a comercialização das cultivares de feijão carioca, estas devem possuir cor creme dos grãos o mais claro possível e esse fenótipo deve ser persistente (escurecimento tardio. Há relatos de variabilidade genética para esse caráter. Os objetivos deste trabalho foram obter informações sobre o controle genético do caráter, com ênfase na estimativa da herdabilidade e se ela varia com os dias após a colheita, verificar o efeito de locais e/ou safras sobre o escurecimento dos grãos e estimar as

  1. Adhesion profile and differentiation capacity of human adipose tissue derived mesenchymal stem cells grown on metal ion (Zn, Ag and Cu) doped hydroxyapatite nano-coated surfaces.

    Bostancioglu, R Beklem; Gurbuz, Mevlut; Akyurekli, Ayse Gul; Dogan, Aydin; Koparal, A Savas; Koparal, A Tansu

    2017-07-01

    Accelerated Mesenchymal Stem Cells (MSCs) condensation and robust MSC-matrix and MSC-MSC interactions on nano-surfaces may provide critical factors contributing to such events, likely through the orchestrated signal cascades and cellular events modulated by the extracellular matrix. In this study, human adipose tissue derived mesenchymal stem cells (hMSC)', were grown on metal ion (Zn, Ag and Cu) doped hydroxyapatite (HAP) nano-coated surfaces. These metal ions are known to have different chemical and surface properties; therefore we investigated their respective contributions to cell viability, cellular behavior, osteogenic differentiation capacity and substrate-cell interaction. Nano-powders were produced using a wet chemical process. Air spray deposition was used to accumulate the metal ion doped HAP films on a glass substrate. Cell viability was determined by MTT, LDH and DNA quantitation methods Osteogenic differentiation capacity of hMSCs was analyzed with Alizarin Red Staining and Alkaline Phosphatase Specific Activity. Adhesion of the hMSCs and the effect of cell adhesion on biomaterial biocompatibility were explored through cell adhesion assay, immunofluorescence staining for vinculin and f-actin cytoskeleton components, SEM and microarray including 84 known extracellular matrix proteins and cell adhesion pathway genes, since, adhesion is the first step for good biocompability. The results demonstrate that the viability and osteogenic differentiation of the hMSCs (in growth media without osteogenic stimulation) and cell adhesion capability are higher on nanocoated surfaces that include Zn, Ag and/or Cu metal ions than commercial HAP. These results reveal that Zn, Ag and Cu metal ions contribute to the biocompatibility of exogenous material. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Seed regulations and local seed systems

    Louwaars, N.

    2000-01-01

    Seed regulations have been introduced in most countries based on the development of formal seed production. Concerns about seed quality and about the varietal identity of the seeds have commonly led to seed laws. However, formal regulations are often inappropriate for informal seed systems, which

  3. Synthesis and characterization of nanocrystalline forsterite coated poly(L-lactide-co-β-malic acid) scaffolds for bone tissue engineering applications.

    Mozafari, M; Gholipourmalekabadi, M; Chauhan, N P S; Jalali, N; Asgari, S; Caicedoa, J C; Hamlekhan, A; Urbanska, A M

    2015-05-01

    In this research, after synthesizing poly(L-lactide-co-β-malic acid) (PLMA) copolymer, hybrid particles of ice and nanocrystalline forsterite (NF) as coating carriers were used to prepare NF-coated PLMA scaffolds. The porous NF-coated scaffolds were directly fabricated by a combined technique using porogen leaching and freeze-drying methods. The obtained results indicate that the scaffolds were structurally porous with NF particles on their surfaces. When compared to the uncoated scaffolds, the NF coating improved both mechanical properties as well as enhanced bioactivity of the scaffolds. In addition, in vitro biological response of the rat bone marrow stromal cells indicated that NF significantly increased the biocompatibility of NF-coated scaffolds compared with PLMA. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. The Seed Semipermeable Layer and Its Relation to Seed Quality Assessment in Four Grass Species

    Yan Y. Lv

    2017-07-01

    Full Text Available The existence of a semipermeable layer in grass seeds has been extensively reported, yet knowledge of its influence on tests for seed viability and vigor that depend upon measurement of electrical conductivity (EC is limited. This study determined the presence and location of the semipermeable layer, and its relation to seed viability and vigor assessment, in seeds of four important grass species-Elymus nutans Griseb., Lolium perenne L., Leymus chinensis (Trin. Tzvel., and Avena sativa L. Intact seeds of E. nutans, Lolium perenne, and Leymus chinensis exhibited little staining with triphenyl tetrazolium chloride (TTC, and there were no differences in EC between seeds with different germination percentage (GP (P > 0.05. After piercing the seed coat, however, all three species displayed positive staining with TTC, along with a significant negative correlation between EC and GP (E. nutans: R2 = 0.7708; Lolium perenne: R2= 0.8414; Leymus chinensis: R2 = 0.859; P < 0.01. In contrast, both intact and pierced seeds of A. sativa possessed a permeable seed coat that showed positive staining with TTC and EC values that were significantly negatively correlated with GP [R2 = 0.9071 (intact and 0.9597 (pierced; P < 0.01]. In commercial seed lots of A. sativa, a field emergence test indicated that EC showed a significant negative correlation with field emergence at two sowing dates (R2= 0.6069, P < 0.01 and 0.5316, P < 0.05. Analysis of seed coat permeability revealed the presence of a semipermeable layer located in the seed coat adjacent to the endosperm in E. nutans, Lolium perenne, and Leymus chinensis; however, no semipermeable layer was observed in A. sativa. This is the first report of the absence of a semipermeable layer in a grass species. The existence of a semipermeable layer is one of the most important factors affecting seed viability and vigor testing (based on EC measurement in E. nutans, Lolium perenne, and Leymus chinensis. Increasing the

  5. Identification of seed-related QTL in Brassica rapa

    H. Bagheri

    2013-10-01

    Full Text Available To reveal the genetic variation, and loci involved, for a range of seed-related traits, a new F2 mapping population was developed by crossing Brassica rapa ssp. parachinensis L58 (CaiXin with B. rapa ssp. trilocularis R-o-18 (spring oil seed, both rapid flowering and self-compatible. A linkage map was constructed using 97 AFLPs and 21 SSRs, covering a map distance of 757 cM with an average resolution of 6.4 cM, and 13 quantitative trait loci (QTL were detected for nine traits. A strong seed colour QTL (LOD 26 co-localized with QTL for seed size (LOD 7, seed weight (LOD 4.6, seed oil content (LOD 6.6, number of siliques (LOD 3 and number of seeds per silique (LOD 3. There was only a significant positive correlation between seed colour and seed oil content in the yellow coloured classes. Seed coat colour and seed size were controlled by the maternal plant genotype. Plants with more siliques tended to have more, but smaller, seeds and higher seed oil content. Seed colour and seed oil content appeared to be controlled by two closely linked loci in repulsion phase. Thus, it may not always be advantageous to select for yellow-seededness when breeding for high seed oil content in Brassicas.

  6. Bone repair by periodontal ligament stem cell-seeded nanohydroxyapatite-chitosan scaffold

    Ge S

    2012-10-01

    Full Text Available Shaohua Ge,1 Ning Zhao,1 Lu Wang,1 Meijiao Yu,1 Hong Liu,2 Aimei Song,1 Jing Huang,1 Guancong Wang,2 Pishan Yang11Key Laboratory of Oral Biomedicine of Shandong Province, Department of Periodontology, School of Stomatology, 2Center of Bio and Micro/Nano Functional Materials, State Key Laboratory of Crystal Materials, Shandong University, Jinan, ChinaBackground: A nanohydroxyapatite-coated chitosan scaffold has been developed in recent years, but the effect of this composite scaffold on the viability and differentiation of periodontal ligament stem cells (PDLSCs and bone repair is still unknown. This study explored the behavior of PDLSCs on a new nanohydroxyapatite-coated genipin-chitosan conjunction scaffold (HGCCS in vitro as compared with an uncoated genipin-chitosan framework, and evaluated the effect of PDLSC-seeded HGCCS on bone repair in vivo.Methods: Human PDLSCs were cultured and identified, seeded on a HGCCS and on a genipin-chitosan framework, and assessed by scanning electron microscopy, confocal laser scanning microscopy, MTT, alkaline phosphatase activity, and quantitative real-time polymerase chain reaction at different time intervals. Moreover, PDLSC-seeded scaffolds were used in a rat calvarial defect model, and new bone formation was assessed by hematoxylin and eosin staining at 12 weeks postoperatively.Results: PDLSCs were clonogenic and positive for STRO-1. They had the capacity to undergo osteogenic and adipogenic differentiation in vitro. When seeded on HGCCS, PDLSCs exhibited significantly greater viability, alkaline phosphatase activity, and upregulated the bone-related markers, bone sialoprotein, osteopontin, and osteocalcin to a greater extent compared with PDLSCs seeded on the genipin-chitosan framework. The use of PDLSC-seeded HGCCS promoted calvarial bone repair.Conclusion: This study demonstrates the potential of HGCCS combined with PDLSCs as a promising tool for bone regeneration.Keywords: periodontal ligament, stem

  7. The potential of 3-dimensional construct engineered from poly(lactic-co-glycolic acid)/fibrin hybrid scaffold seeded with bone marrow mesenchymal stem cells for in vitro cartilage tissue engineering.

    Abdul Rahman, Rozlin; Mohamad Sukri, Norhamiza; Md Nazir, Noorhidayah; Ahmad Radzi, Muhammad Aa'zamuddin; Zulkifly, Ahmad Hafiz; Che Ahmad, Aminudin; Hashi, Abdurezak Abdulahi; Abdul Rahman, Suzanah; Sha'ban, Munirah

    2015-08-01

    Articular cartilage is well known for its simple uniqueness of avascular and aneural structure that has limited capacity to heal itself when injured. The use of three dimensional construct in tissue engineering holds great potential in regenerating cartilage defects. This study evaluated the in vitro cartilaginous tissue formation using rabbit's bone marrow mesenchymal stem cells (BMSCs)-seeded onto poly(lactic-co-glycolic acid) PLGA/fibrin and PLGA scaffolds. The in vitro cartilaginous engineered constructs were evaluated by gross inspection, histology, cell proliferation, gene expression and sulphated glycosaminoglycan (sGAG) production at week 1, 2 and 3. After 3 weeks of culture, the PLGA/fibrin construct demonstrated gross features similar to the native tissue with smooth, firm and glistening appearance, superior histoarchitectural and better cartilaginous extracellular matrix compound in concert with the positive glycosaminoglycan accumulation on Alcian blue. Significantly higher cell proliferation in PLGA/fibrin construct was noted at day-7, day-14 and day-21 (ptissue engineered cartilage. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Biocomposite coatings based on Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/calcium phosphates obtained by MAPLE for bone tissue engineering

    Raşoga, O.; Sima, L.; Chiriţoiu, M.; Popescu-Pelin, G.; Fufǎ, O.; Grumezescu, V.; Socol, M.; Stǎnculescu, A.; Zgurǎ, I.; Socol, G.

    2017-09-01

    The aim of our research was to synthesize and investigate the physico-chemical and biological features of composite coatings based on poly(3-hydroxybutyrate-co-hydroxyvalerate) (PHBV) and commercial calcium phosphates (CaPs), hydroxyapatite and β-tricalcium phosphate, obtained by means of matrix assisted pulsed laser evaporation (MAPLE) technique. In this respect, laser fluence and dropcast studies were performed for pristine polymer and PHBV-CaPs composites. The microstructure of the synthesized coatings was investigated by scanning electron microscopy, while for the chemical structure and functional integrity we performed Fourier transform infrared spectroscopy comparative analysis. By using the X-ray diffraction measurements we experimentally evaluated the crystalline nature of the obtained composite materials, while relevant data regarding the hydrophilic/hydrophobic behavior of the synthesized coatings were obtained by performing static CA measurements. The biocompatibility of PHBV/CaPs coatings was evaluated by performing cellular adhesion and differentiation in vitro assays on mesenchymal stem cells.

  9. Ectopic overexpression of castor bean LEAFY COTYLEDON2 (LEC2 in Arabidopsis triggers the expression of genes that encode regulators of seed maturation and oil body proteins in vegetative tissues

    Hyun Uk Kim

    2014-01-01

    Full Text Available The LEAFY COTYLEDON2 (LEC2 gene plays critically important regulatory roles during both early and late embryonic development. Here, we report the identification of the LEC2 gene from the castor bean plant (Ricinus communis, and characterize the effects of its overexpression on gene regulation and lipid metabolism in transgenic Arabidopsis plants. LEC2 exists as a single-copy gene in castor bean, is expressed predominantly in embryos, and encodes a protein with a conserved B3 domain, but different N- and C-terminal domains to those found in LEC2 from Arabidopsis. Ectopic overexpression of LEC2 from castor bean under the control of the cauliflower mosaic virus (CaMV 35S promoter in Arabidopsis plants induces the accumulation of transcripts that encodes five major transcription factors (the LEAFY COTYLEDON1 (LEC1, LEAFY COTYLEDON1-LIKE (L1L, FUSCA3 (FUS3, and ABSCISIC ACID INSENSITIVE 3 (ABI3 transcripts for seed maturation, and WRINKELED1 (WRI1 transcripts for fatty acid biosynthesis, as well as OLEOSIN transcripts for the formation of oil bodies in vegetative tissues. Transgenic Arabidopsis plants that express the LEC2 gene from castor bean show a range of dose-dependent morphological phenotypes and effects on the expression of LEC2-regulated genes during seedling establishment and vegetative growth. Expression of castor bean LEC2 in Arabidopsis increased the expression of fatty acid elongase 1 (FAE1 and induced the accumulation of triacylglycerols, especially those containing the seed-specific fatty acid, eicosenoic acid (20:1Δ11, in vegetative tissues.

  10. Ectopic overexpression of castor bean LEAFY COTYLEDON2 (LEC2) in Arabidopsis triggers the expression of genes that encode regulators of seed maturation and oil body proteins in vegetative tissues.

    Kim, Hyun Uk; Jung, Su-Jin; Lee, Kyeong-Ryeol; Kim, Eun Ha; Lee, Sang-Min; Roh, Kyung Hee; Kim, Jong-Bum

    2013-01-01

    The LEAFY COTYLEDON2 (LEC2) gene plays critically important regulatory roles during both early and late embryonic development. Here, we report the identification of the LEC2 gene from the castor bean plant (Ricinus communis), and characterize the effects of its overexpression on gene regulation and lipid metabolism in transgenic Arabidopsis plants. LEC2 exists as a single-copy gene in castor bean, is expressed predominantly in embryos, and encodes a protein with a conserved B3 domain, but different N- and C-terminal domains to those found in LEC2 from Arabidopsis. Ectopic overexpression of LEC2 from castor bean under the control of the cauliflower mosaic virus (CaMV) 35S promoter in Arabidopsis plants induces the accumulation of transcripts that encodes five major transcription factors (the LEAFY COTYLEDON1 (LEC1), LEAFY COTYLEDON1-LIKE (L1L), FUSCA3 (FUS3), and ABSCISIC ACID INSENSITIVE 3 (ABI3) transcripts for seed maturation, and WRINKELED1 (WRI1) transcripts for fatty acid biosynthesis), as well as OLEOSIN transcripts for the formation of oil bodies in vegetative tissues. Transgenic Arabidopsis plants that express the LEC2 gene from castor bean show a range of dose-dependent morphological phenotypes and effects on the expression of LEC2-regulated genes during seedling establishment and vegetative growth. Expression of castor bean LEC2 in Arabidopsis increased the expression of fatty acid elongase 1 (FAE1) and induced the accumulation of triacylglycerols, especially those containing the seed-specific fatty acid, eicosenoic acid (20:1(Δ11)), in vegetative tissues.

  11. Partial dehydration and cryopreservation of Citrus seeds.

    Graiver, Natalia; Califano, Alicia; Zaritzky, Noemí

    2011-11-01

    Three categories of seed storage behavior are generally recognized among plant species: orthodox, intermediate and recalcitrant. Intermediate seeds cannot be stored in liquid nitrogen (LN) without a previous partial dehydration process. The water content (WC) of the seeds at the moment of immersion in LN must be regarded as the most critical factor in cryopreservation. The purpose of this study was to investigate the basis of the optimal hydration status for cryopreservation of Citrus seeds: C. sinensis (sweet orange), C. paradisi (grapefruit), C. reticulata (mandarin) in LN. To study the tolerance to dehydration and LN exposure, seeds were desiccated by equilibration at relative humidities between 11 and 95%. Sorption isotherms were determined and modeled; lipid content of the seeds was measured. Seed desiccation sensitivity was quantified by the quantal response model. Differential scanning calorimetry (DSC) thermograms were determined on cotyledon tissue at different moisture contents to measure ice melting enthalpies and unfrozen WC. Samples of total seed lipid extract were also analyzed by DSC to identify lipid transitions in the thermograms. The limit of hydration for LN Citrus seeds treatment corresponded to the unfrozen WC in the tissue, confirming that seed survival strictly depended on avoidance of intracellular ice formation. Copyright © 2011 Society of Chemical Industry.

  12. Quality assessments of untreated and washed quinoa (Chenopodium quinoa) seeds based on histlogical and foaming capacity investigations

    Raamsdonk, van L.W.D.; Pinckaers, V.G.Z.; Ossenkoppele, J.S.; Houben, R.; Lotgering, M.; Groot, M.J.

    2010-01-01

    Quinoa seed has a high nutritional value, but has a coating of bitter-tasting saponins, making it unpalatable. Therefore the seeds are usually processed in order to remove the naturally occurring saponins from the seeds. To investigate the impact of processing, untreated and washed seeds of the

  13. seed oil

    Wara

    Neem seed oil from the neem tree (Azadiracta indica) finds wide usage one of which is its utilization for cosmetics particularly .... obtained which is higher than that of olive oil 17. mgKOH/g (Davine ... The skin tolerance of shea fat employed as ...

  14. Biodegradable electrospun nanofibers coated with platelet-rich plasma for cell adhesion and proliferation

    Diaz-Gomez, Luis; Alvarez-Lorenzo, Carmen; Concheiro, Angel; Silva, Maite; Dominguez, Fernando; Sheikh, Faheem A.; Cantu, Travis; Desai, Raj; Garcia, Vanessa L.; Macossay, Javier

    2014-01-01

    Biodegradable electrospun poly(ε-caprolactone) (PCL) scaffolds were coated with platelet-rich plasma (PRP) to improve cell adhesion and proliferation. PRP was obtained from human buffy coat, and tested on human adipose-derived mesenchymal stem cells (MSCs) to confirm cell proliferation and cytocompatibility. Then, PRP was adsorbed on the PCL scaffolds via lyophilization, which resulted in a uniform sponge-like coating of 2.85 (S.D. 0.14) mg/mg. The scaffolds were evaluated regarding mechanical properties (Young's modulus, tensile stress and tensile strain), sustained release of total protein and growth factors (PDGF-BB, TGF-β1 and VEGF), and hemocompatibility. MSC seeded on the PRP–PCL nanofibers showed an increased adhesion and proliferation compared to pristine PCL fibers. Moreover, the adsorbed PRP enabled angiogenesis features observed as neovascularization in a chicken chorioallantoic membrane (CAM) model. Overall, these results suggest that PRP–PCL scaffolds hold promise for tissue regeneration applications. - Highlights: • Platelet-rich plasma (PRP) can be adsorbed on electrospun fibers via lyophilization. • PRP coating enhanced mesenchymal stem cell adhesion and proliferation on scaffolds. • PRP-coated scaffolds showed sustained release of growth factors. • Adsorbed PRP provided angiogenic features. • PRP-poly(ε-caprolactone) scaffolds hold promise for tissue regeneration applications

  15. Biodegradable electrospun nanofibers coated with platelet-rich plasma for cell adhesion and proliferation

    Diaz-Gomez, Luis [Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15872 Santiago de Compostela (Spain); Instituto de Ortopedia y Banco de Tejidos Musculoesqueléticos, Universidad de Santiago de Compostela, 15872 Santiago de Compostela (Spain); Alvarez-Lorenzo, Carmen, E-mail: carmen.alvarez.lorenzo@usc.es [Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15872 Santiago de Compostela (Spain); Concheiro, Angel [Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15872 Santiago de Compostela (Spain); Silva, Maite [Instituto de Ortopedia y Banco de Tejidos Musculoesqueléticos, Universidad de Santiago de Compostela, 15872 Santiago de Compostela (Spain); Dominguez, Fernando [Fundación Publica Galega de Medicina Xenómica, Santiago de Compostela (Spain); Sheikh, Faheem A.; Cantu, Travis; Desai, Raj; Garcia, Vanessa L. [Department of Chemistry, University of Texas Pan American, Edinburg, TX 78541 (United States); Macossay, Javier, E-mail: jmacossay@utpa.edu [Department of Chemistry, University of Texas Pan American, Edinburg, TX 78541 (United States)

    2014-07-01

    Biodegradable electrospun poly(ε-caprolactone) (PCL) scaffolds were coated with platelet-rich plasma (PRP) to improve cell adhesion and proliferation. PRP was obtained from human buffy coat, and tested on human adipose-derived mesenchymal stem cells (MSCs) to confirm cell proliferation and cytocompatibility. Then, PRP was adsorbed on the PCL scaffolds via lyophilization, which resulted in a uniform sponge-like coating of 2.85 (S.D. 0.14) mg/mg. The scaffolds were evaluated regarding mechanical properties (Young's modulus, tensile stress and tensile strain), sustained release of total protein and growth factors (PDGF-BB, TGF-β1 and VEGF), and hemocompatibility. MSC seeded on the PRP–PCL nanofibers showed an increased adhesion and proliferation compared to pristine PCL fibers. Moreover, the adsorbed PRP enabled angiogenesis features observed as neovascularization in a chicken chorioallantoic membrane (CAM) model. Overall, these results suggest that PRP–PCL scaffolds hold promise for tissue regeneration applications. - Highlights: • Platelet-rich plasma (PRP) can be adsorbed on electrospun fibers via lyophilization. • PRP coating enhanced mesenchymal stem cell adhesion and proliferation on scaffolds. • PRP-coated scaffolds showed sustained release of growth factors. • Adsorbed PRP provided angiogenic features. • PRP-poly(ε-caprolactone) scaffolds hold promise for tissue regeneration applications.

  16. Assessment of Seed Germination and Dormancy of Thirty Seeds Lots of

    H.R Ehyaee

    2012-06-01

    Full Text Available Most seeds of medicinal plants due to ecological adaptation to environmental conditions have several types of dormancy. Hence, it's necessary to recognize ecological factors that affect dormancy and provide optimum conditions for germination in medicinal plant species. Thirty seed lots were used to estimate germination and dormancy of medicinal plants. Treatments were KNO3, (2% and scarification of seeds by sand paper, hypochlorite sodium and removing the seed coat with four replicates of 25 seeds. Maximum and minimum germination observed in H2O for Digitalis purpure 100% and Saponaria officinalis 0%. In KNO3 treatment, Portulaca oleracea had the highest germination of 91% and Hyocyamus niger had no any germinated seeds. In sand paper treatment, the Saponaria officinalis and Datura stramonium had maximum, 33% and minimum 0% germination respectively.

  17. Activation of Arabidopsis seed hair development by cotton fiber-related genes.

    Xueying Guan

    Full Text Available Each cotton fiber is a single-celled seed trichome or hair, and over 20,000 fibers may develop semi-synchronously on each seed. The molecular basis for seed hair development is unknown but is likely to share many similarities with leaf trichome development in Arabidopsis. Leaf trichome initiation in Arabidopsis thaliana is activated by GLABROUS1 (GL1 that is negatively regulated by TRIPTYCHON (TRY. Using laser capture microdissection and microarray analysis, we found that many putative MYB transcription factor and structural protein genes were differentially expressed in fiber and non-fiber tissues. Gossypium hirsutum MYB2 (GhMYB2, a putative GL1 homolog, and its downstream gene, GhRDL1, were highly expressed during fiber cell initiation. GhRDL1, a fiber-related gene with unknown function, was predominately localized around cell walls in stems, sepals, seed coats, and pollen grains. GFP:GhRDL1 and GhMYB2:YFP were co-localized in the nuclei of ectopic trichomes in siliques. Overexpressing GhRDL1 or GhMYB2 in A. thaliana Columbia-0 (Col-0 activated fiber-like hair production in 4-6% of seeds and had on obvious effects on trichome development in leaves or siliques. Co-overexpressing GhRDL1 and GhMYB2 in A. thaliana Col-0 plants increased hair formation in ∼8% of seeds. Overexpressing both GhRDL1 and GhMYB2 in A. thaliana Col-0 try mutant plants produced seed hair in ∼10% of seeds as well as dense trichomes inside and outside siliques, suggesting synergistic effects of GhRDL1 and GhMYB2 with try on development of trichomes inside and outside of siliques and seed hair in A. thaliana. These data suggest that a different combination of factors is required for the full development of trichomes (hairs in leaves, siliques, and seeds. A. thaliana can be developed as a model a system for discovering additional genes that control seed hair development in general and cotton fiber in particular.

  18. Seed germination and seedling emergence of Scotch broom (Cytisus scoparius)

    Timothy B. Harrington

    2009-01-01

    Scotch broom is a large, leguminous shrub that has invaded 27 U.S. states. The species produces seeds with a hard coat that remain viable in the soil for years. Growth-chamber studies were conducted to determine effects of temperature regime and cold-stratification period on seed germination. Seedling emergence, mortality, and biomass also were studied in response to...

  19. empirical study of the characteristics of afzelia africana seed under

    HP

    significant probably because of the thick seed coat. True density did not show a consistent variation with change in moisture content. 3.2 Mechanical Properties. The mechanical properties study was conducted using the data obtained from the compressive loading of the. Afzelia Africana seeds in a monsan to tensiometer.

  20. Substitution Value of toasted Pigeon pea ( Cajanus cajan ) seed ...

    One hundred and eighty 7-day old broilers were used in a 28-day feeding trial to determine the substitution value of toasted pigeon pea seeds meal (TPSM) for soybean meal and maize in boiler starter diet. The brown coat coloured pigeon pea seeds were toasted at 100oC for 15minutes and milled. The inclusion levels of ...

  1. Effect of seed collection times and pretreatment methods on ...

    STORAGESEVER

    2008-08-18

    Aug 18, 2008 ... Several basic methods are used to overcome seed- coat dormancy in ... The experiment on seed pretreatment were conducted at Forestry. Research ..... applicability to rural areas where these trees are planted may be limited. .... Forestry. Research News: Indicators and Tools for Restoration & Sustainable.

  2. Changes in seed water status as characterized by NMR in developing soybean seed grown under moisture stress conditions

    Krishnan, P.; Singh, Ravender; Verma, A.P.S.; Joshi, D.K.; Singh, Sheoraj

    2014-01-01

    Highlights: • In developing soybean seeds, moisture stress resulted in more proportion of water to bound state. • These changes are further corroborated by concomitant changes in seed metabolites. • Thus there exists a moisture stress and development stage dependence of seed tissue water status. - Abstract: Changes in water status of developing seeds of Soybean (Glycine max L. Merrill.) grown under different moisture stress conditions were characterized by proton nuclear magnetic resonance (NMR)- spin–spin relaxation time (T 2 ). A comparison of the seed development characteristics, composition and physical properties indicated that, characteristics like seed weight, seed number/ear, rate of seed filling increased with development stages but decreased with moisture stress conditions. The NMR- spin–spin relaxation (T 2 ) component like bound water increased with seed maturation (40–50%) but decreased with moisture stress conditions (30–40%). The changes in seed water status to increasing levels of moisture stress and seed maturity indicates that moisture stress resulted in more proportion of water to bound state and intermediate state and less proportion of water in free-state. These changes are further corroborated by significant changes in protein and starch contents in seeds under high moisture stress treatments. Thus seed water status during its development is not only affected by development processes but also by moisture stress conditions. This study strongly indicated a clear moisture stress and development stage dependence of seed tissue water status in developing soybean seeds

  3. Changes in seed water status as characterized by NMR in developing soybean seed grown under moisture stress conditions

    Krishnan, P., E-mail: pkrishnan@iari.res.in; Singh, Ravender; Verma, A.P.S.; Joshi, D.K.; Singh, Sheoraj

    2014-02-21

    Highlights: • In developing soybean seeds, moisture stress resulted in more proportion of water to bound state. • These changes are further corroborated by concomitant changes in seed metabolites. • Thus there exists a moisture stress and development stage dependence of seed tissue water status. - Abstract: Changes in water status of developing seeds of Soybean (Glycine max L. Merrill.) grown under different moisture stress conditions were characterized by proton nuclear magnetic resonance (NMR)- spin–spin relaxation time (T{sub 2}). A comparison of the seed development characteristics, composition and physical properties indicated that, characteristics like seed weight, seed number/ear, rate of seed filling increased with development stages but decreased with moisture stress conditions. The NMR- spin–spin relaxation (T{sub 2}) component like bound water increased with seed maturation (40–50%) but decreased with moisture stress conditions (30–40%). The changes in seed water status to increasing levels of moisture stress and seed maturity indicates that moisture stress resulted in more proportion of water to bound state and intermediate state and less proportion of water in free-state. These changes are further corroborated by significant changes in protein and starch contents in seeds under high moisture stress treatments. Thus seed water status during its development is not only affected by development processes but also by moisture stress conditions. This study strongly indicated a clear moisture stress and development stage dependence of seed tissue water status in developing soybean seeds.

  4. A comparison of the effects of Portulaca oleracea seeds hydro-alcoholic extract and Vitamin C on biochemical, hemodynamic and functional parameters in cardiac tissue of rats with subclinical hyperthyroidism

    Khodadadi, Hadi; Pakdel, Roghayeh; Khazaei, Majid; Niazmand, Said; Bavarsad, Kowsar; Hadjzadeh, Mousa AL-Reza

    2018-01-01

    Objective: The present study was performed to evaluate the effects of hydro-alcoholic extract of Portulaca oleracea (P. oleracea) seeds and Vitamin C on biochemical and hemodynamic parameters in cardiac tissue of rats with subclinical hyperthyroidism. Materials and Methods: Forty eight male rats were divided into six groups of 8 and treated for 4 weeks. T4 group received daily injection of levothyroxine sodium (20 μg/kg) and control group was given daily injection of saline. T4-Po groups were given T4 plus 100, 200, and 400 mg/kg of P. oleracea seeds extract in drinking water daily. T4-Vit C group received T4 plus daily injection of Vitamin C (100 mg/kg). At the end of the experiment, body weight, serum free T4 level, left ventricular developed pressure (LVDP), malondialdehyde (MDA) and total thiol levels were measured. Results: Free T4 levels were increased in all groups that were treated with T4. Weight gain was decreased in T4 and T4-Po100 groups compared to control group (p<0.001 and p<0.05). However, body weight was increased in T4-Po (200 and 400) and T4-Vit C groups compared to T4 group. LVDP was increased in T4 group compared to control group but, LVDP was decreased in T4-Po and T4-Vit C groups. Malondialdehyde was decreased in T4-Po groups and T4-Vit C group compared to T4 group. Total thiol groups were increased in T4-Po (200 and 400) and T4-Vit C groups compared to T4 group. Conclusion: The results showed that P. oleracea extract has a protective effect on cardiac dysfunction due to subclinical hyperthyroidism induced by levothyroxine sodium in rats. PMID:29632847

  5. Fabrication of novel high performance ductile poly(lactic acid) nanofiber scaffold coated with poly(vinyl alcohol) for tissue engineering applications.

    Abdal-Hay, Abdalla; Hussein, Kamal Hany; Casettari, Luca; Khalil, Khalil Abdelrazek; Hamdy, Abdel Salam

    2016-03-01

    Poly(lactic acid) (PLA) nanofiber scaffold has received increasing interest as a promising material for potential application in the field of regenerative medicine. However, the low hydrophilicity and poor ductility restrict its practical application. Integration of hydrophilic elastic polymer onto the surface of the nanofiber scaffold may help to overcome the drawbacks of PLA material. Herein, we successfully optimized the parameters for in situ deposition of poly(vinyl alcohol), (PVA) onto post-electrospun PLA nanofibers using a simple hydrothermal approach. Our results showed that the average fiber diameter of coated nanofiber mat is about 1265±222 nm, which is remarkably higher than its pristine counterpart (650±180 nm). The hydrophilicity of PLA nanofiber scaffold coated with a PVA thin layer improved dramatically (36.11±1.5°) compared to that of pristine PLA (119.7±1.5°) scaffold. The mechanical testing showed that the PLA nanofiber scaffold could be converted from rigid to ductile with enhanced tensile strength, due to maximizing the hydrogen bond interaction during the heat treatment and in the presence of PVA. Cytocompatibility performance of the pristine and coated PLA fibers with PVA was observed through an in vitro experiment based on cell attachment and the MTT assay by EA.hy926 human endothelial cells. The cytocompatibility results showed that human cells induced more favorable attachment and proliferation behavior on hydrophilic PLA composite scaffold than that of pristine PLA. Hence, PVA coating resulted in an increase in initial human cell attachment and proliferation. We believe that the novel PVA-coated PLA nanofiber scaffold developed in this study, could be a promising high performance biomaterial in regeneration medicine. Copyright © 2015. Published by Elsevier B.V.

  6. A Novel Pulsatile Bioreactor for Mechanical Stimulation of Tissue Engineered Cardiac Constructs

    Günther Eissner

    2011-07-01

    Full Text Available After myocardial infarction, the implantation of stem cell seeded scaffolds on the ischemic zone represents a promising strategy for restoration of heart function. However, mechanical integrity and functionality of tissue engineered constructs need to be determined prior to implantation. Therefore, in this study a novel pulsatile bioreactor mimicking the myocardial contraction was developed to analyze the behavior of mesenchymal stem cells derived from umbilical cord tissue (UCMSC colonized on titanium-coated polytetrafluorethylene scaffolds to friction stress. The design of the bioreactor enables a simple handling and defined mechanical forces on three seeded scaffolds at physiological conditions. The compact system made of acrylic glass, Teflon®, silicone, and stainless steel allows the comparison of different media, cells and scaffolds. The bioreactor can be gas sterilized and actuated in a standard incubator. Macroscopic observations and pressure-measurements showed a uniformly sinusoidal pulsation, indicating that the bioreactor performed well. Preliminary experiments to determine the adherence rate and morphology of UCMSC after mechanical loadings showed an almost confluent cellular coating without damage on the cell surface. In summary, the bioreactor is an adequate tool for the mechanical stress of seeded scaffolds and offers dynamic stimuli for pre-conditioning of cardiac tissue engineered constructs in vitro.

  7. Evidence for Non-Transmission of Rice Yellow Mottle Virus (RYMV through Rice Seed

    Sy, AA.

    2004-01-01

    Full Text Available An indexing of the organs (radicle and plumule and components (husk, endosperm and embryo of rice seeds using Enzyme Linked Immunosorbent Assay (ELISA was carried out to detect Rice yellow mottle virus (RYMV and establish the exact location of the virus in the rice seed. RYMV was detected only in the husk (seed coat but not in the endosperm, plumule, radicle, nor embryo. None of the seedlings raised from the seeds expressed RYMV symptoms. No virus particle was detected by the ELISA test in the leaves of the screenhouse-reared plants obtained from seeds of infected plants. The results indicate that RYMV is apparently not transmitted through rice seed probably because the virus is seed-borne in the husk (seed coat of mature rice seeds.

  8. Mathematical modelling of tissue formation in chondrocyte filter cultures.

    Catt, C J; Schuurman, W; Sengers, B G; van Weeren, P R; Dhert, W J A; Please, C P; Malda, J

    2011-12-17

    In the field of cartilage tissue engineering, filter cultures are a frequently used three-dimensional differentiation model. However, understanding of the governing processes of in vitro growth and development of tissue in these models is limited. Therefore, this study aimed to further characterise these processes by means of an approach combining both experimental and applied mathematical methods. A mathematical model was constructed, consisting of partial differential equations predicting the distribution of cells and glycosaminoglycans (GAGs), as well as the overall thickness of the tissue. Experimental data was collected to allow comparison with the predictions of the simulation and refinement of the initial models. Healthy mature equine chondrocytes were expanded and subsequently seeded on collagen-coated filters and cultured for up to 7 weeks. Resulting samples were characterised biochemically, as well as histologically. The simulations showed a good representation of the experimentally obtained cell and matrix distribution within the cultures. The mathematical results indicate that the experimental GAG and cell distribution is critically dependent on the rate at which the cell differentiation process takes place, which has important implications for interpreting experimental results. This study demonstrates that large regions of the tissue are inactive in terms of proliferation and growth of the layer. In particular, this would imply that higher seeding densities will not significantly affect the growth rate. A simple mathematical model was developed to predict the observed experimental data and enable interpretation of the principal underlying mechanisms controlling growth-related changes in tissue composition.

  9. Seeded amplification of chronic wasting disease prions in nasal brushings and recto-anal mucosal associated lymphoid tissues from elk by real time quaking-induced conversion

    Haley, Nicholas J.; Siepker, Chris; Hoon-Hanks , Laura L.; Mitchell, Gordon; Walter, W. David; Manca, Matteo; Monello, Ryan J.; Powers, Jenny G.; Wild, Margaret A.; Hoover, Edward A.; Caughey, Byron; Richt, Jürgen a.; Fenwick, B.W.

    2016-01-01

    Chronic wasting disease (CWD), a transmissible spongiform encephalopathy of cervids, was first documented nearly 50 years ago in Colorado and Wyoming and has since been detected across North America and the Republic of Korea. The expansion of this disease makes the development of sensitive diagnostic assays and antemortem sampling techniques crucial for the mitigation of its spread; this is especially true in cases of relocation/reintroduction or prevalence studies of large or protected herds, where depopulation may be contraindicated. This study evaluated the sensitivity of the real-time quaking-induced conversion (RT-QuIC) assay of recto-anal mucosa-associated lymphoid tissue (RAMALT) biopsy specimens and nasal brushings collected antemortem. These findings were compared to results of immunohistochemistry (IHC) analysis of ante- and postmortem samples. RAMALT samples were collected from populations of farmed and free-ranging Rocky Mountain elk (Cervus elaphus nelsoni; n = 323), and nasal brush samples were collected from a subpopulation of these animals (n = 205). We hypothesized that the sensitivity of RT-QuIC would be comparable to that of IHC analysis of RAMALT and would correspond to that of IHC analysis of postmortem tissues. We found RAMALT sensitivity (77.3%) to be highly correlative between RT-QuIC and IHC analysis. Sensitivity was lower when testing nasal brushings (34%), though both RAMALT and nasal brush test sensitivities were dependent on both the PRNP genotype and disease progression determined by the obex score. These data suggest that RT-QuIC, like IHC analysis, is a relatively sensitive assay for detection of CWD prions in RAMALT biopsy specimens and, with further investigation, has potential for large-scale and rapid automated testing of antemortem samples for CWD.

  10. Maturation, temperature and breaking dormancy of Comanthera seeds

    Andréa Santos Oliveira

    2016-09-01

    Full Text Available Given the importance of “everlasting” plants for their ornamental value and vulnerability to extractive practices, studies to ensure the propagation of the species are indispensable. The aim of this study was to assess whether there is an association between seed coat color and the quality of everlasting seeds, in the presence or absence of dormancy. Four species (Comanthera elegans, C. nitida, C. bisculata, and Comanthera sp. were separated with respect to seed coat color and underwent germination first count, germination, and germination speed index testing in a substrate moistened with water or 0.1% fluridone solution, in alternating temperatures of 10/25°C and 15/25°C. A completely randomized experimental design was used in a 4 x 2 x 2 factorial arrangement [seed coat color (green, beige, red, brown × temperature (10/25°C and 15/25°C × dormancy breaking (with or without]. In general, the alternating 15/25°C temperature is favorable for germination of everlasting plants. The use of fluridone is favorable to germination and seed vigor, especially when using the alternating temperature of 10/25°C. The effect of seed coat color varies among species; higher germination and vigor values are seen in green seeds for Comanthera sp. and lower values in C. bisculata. For C. nitida and C. elegans, seed coat color does not influence seed quality. Direct relationships between fluoridone efficiency in breaking dormancy of seeds of different species of everlasting plants and classification in different colors are not observed.

  11. Enamel matrix derivative enhances tissue formation around scaffolds used for tissue engineering of ligaments.

    Messenger, Michael P; Raïf, El M; Seedhom, Bahaa B; Brookes, Steven J

    2010-02-01

    The following in vitro translational study investigated whether enamel matrix derivative (EMD), an approved biomimetic treatment for periodontal disease (Emdogain) and hard-to-heal wounds (Xelma), enhanced synovial cell colonization and protein synthesis around a scaffold used clinically for in situ tissue engineering of the torn anterior cruciate ligament (ACL). Synovial cells were enzymatically extracted from bovine synovium and dynamically seeded onto polyethylene terephthalate (PET) scaffolds. The cells were cultured in low-serum medium (0.5% FBS) for 4 weeks with either a single administration of EMD at the start of the 4 week period or multiple administrations of EMD at regular intervals throughout the 4 weeks. Samples were harvested and evaluated using the Hoechst DNA assay, BCA protein assay, cresolphthalein complexone calcium assay, SDS-PAGE, ELISA and electron microscopy. A significant increase in cell number (DNA) (p < 0.01), protein content (p < 0.01) and TGFbeta1 synthesis (p < 0.01) was observed with multiple administrations of EMD. Additionally, SDS-PAGE showed an increase in high molecular weight proteins, characteristic of the fibril-forming collagens. Electron microscopy supported these findings, showing that scaffolds treated with multiple administrations of EMD were heavily coated with cells and extracellular matrix (ECM) that enveloped the fibres. Multiple administrations of EMD to synovial cell-seeded scaffolds enhanced the formation of tissue in vitro. Additionally, it was shown that EMD enhanced TGFbeta1 synthesis of synovial cells, suggesting a potential mode of action for EMD's capacity to stimulate tissue regeneration.

  12. Qualidade fisiológica e teor de lignina no tegumento de sementes de soja convencional e transgênica RR submetidas a diferentes épocas de colheita Physiological quality and lignin content in the coat seeds of conventional and RR transgenic soybean submitted to different harvest periods

    Cristiane Fortes Gris

    2010-04-01

    Full Text Available Têm-se levantado à hipótese de que cultivares de soja RR possuem teores de lignina superiores aos convencionais, o que proporciona maior resistência a danos mecânicos e maior impermeabilidade do tegumento das sementes. Objetivou-se avaliar a qualidade fisiológica e o teor de lignina no tegumento das sementes de soja convencional e RR colhidas em três épocas, em Lavras-MG. Para tanto, as sementes colhidas nos estádios R7, R8 e após 20 dias de retardamento da colheita (R8+20, foram submetidas aos testes para avaliação da qualidade fisiológica e teor de lignina. As cultivares convencionais e RR avaliadas foram: BRS 133 vs BRS 245 RR, BRS 134 vs BRS 247 RR, Conquista vs Valiosa RR, Celeste vs Baliza RR e Jataí vs Silvânia RR. Foram realizados os testes de peso de mil sementes, germinação, envelhecimento acelerado, condutividade elétrica, dano mecânico, índice de velocidade de emergência, germinação após a imersão das sementes em água e teor de lignina no tegumento de sementes. Com exceção do teor de lignina no tegumento de sementes para o contraste Jataí vs Silvânia RR, não foram observadas diferenças entre os materiais RR e convencional, tendo, neste caso, a cv Silvânia RR apresentado resultados superiores aos da convencional. No entanto, houve diferença de comportamento entre os cultivares quanto à tolerância ao retardamento da colheita. Observou-se redução significativa na porcentagem de germinação e vigor das sementes avaliadas com o retardamento da colheita.One has raised the hypothesis that the RR soybean cultivars posses lignin contents higher than those of the conventional ones. The present work was conducted with the purpose of evaluating the physiological quality and lignin content in the coat of the conventional and RR soybean seeds collected in three times in Lavras-MG. To that end, the seeds collected at stages R7, R8 and after 20 days of collection delay (R8+20 were submitted to the tests for

  13. Effect of space flight factors on alfalfa seeds | Ren | African Journal ...

    Abstract. To explore the effect of space flight factors on the early development of alfalfa seedling, dry seeds were placed onboard a satellite for a 15-day flight. After retrieval, the ultra structure of seed coat and the chemical content of seed were tested, followed by tests for germinate ability, seedling growth, and mitotic and ...

  14. Studies on soft centered coated snacks.

    Pavithra, A S; Chetana, Ramakrishna; Babylatha, R; Archana, S N; Bhat, K K

    2013-04-01

    Roasted groundnut seeds, amaranth and dates pulp formed the center filling which was coated with sugar, breadings, desiccated coconut and roasted Bengalgram flour (BGF) to get 4 coated snacks. Physicochemical characteristics, microbiological profile, sorption behaviour and sensory quality of 4 coated snacks were determined. Centre filling to coating ratio of the products were in the range of 3:2-7:1, the product having BGF coating had the thinnest coating. Center filling had soft texture and the moisture content was 10.2-16.2% coating had lower moisture content (4.4-8.6%) except for Bengal gram coating, which had 11.1% moisture. Sugar coated snack has lowest fat (11.6%) and protein (7.2%) contents. Desiccated coconut coated snack has highest fat (25.4%) and Bengal gram flour coated snack had highest protein content (15.4%). Sorption studies showed that the coated snack had critical moisture content of 11.2-13.5%. The products were moisture sensitive and hence require packaging in films having higher moisture barrier property. In freshly prepared snacks coliforms, yeast and mold were absent. Mesophillic aerobes count did not show significant change during 90 days of storage at 27 °C and 37 °C. Sensory analysis showed that products had a unique texture due to combined effect of fairly hard coating and soft center. Flavour and overall quality of all the products were rated as very good.

  15. A method for seedling recovery in Jatropha curcas after cryogenic exposure of the seeds.

    Silva, Rafael de C; Camillo, Julcéia; Scherwinski-Pereira, Jonny E

    2012-03-01

    Actually, the germplasm of Jatropha spp. is conserved as whole plants in field collections. Under this storage method, the genetic resources are exposed to disease, pest and natural hazards such as human error, drought and weather damage. Besides, field genebanks are costly to maintain and with important requirements of trained personnel. Thus, the development of efficient techniques to ensure its safe conservation and regeneration is therefore of paramount importance. In this work we describe a method for Jatropha curcas seeds cryoexposure and seedling recovery after thawed. In a first experiment, an efficient protocol for in vitro plant recovery was carried out using zygotic embryo or seeds with or without coat. In a second experiment, desiccated seeds with or without coat were exposed to liquid nitrogen and evaluated after cryoexposure. Germination percentages were variable among treatments, and seeds demonstrated tolerance to liquid nitrogen exposure under certain conditions. Seeds of J. curcas presented up to 99.6% germination after seed coat removal. Seeds with coat cultured in vitro did not germinate, and were 60% contaminated. The germination of the zygotic embryos was significantly higher in the 1/2 MS medium (93.1%) than in WPM medium (76.2%), but from zygotic embryo, abnormal seedlings reached up to 99%. Seeds with coat exposed to liquid nitrogen showed 60% germination in culture after coat removal with good plant growth, and seeds cryopreserved without coat presented 82% germination, but seedlings showed a reduced vigor and a significant increase in abnormal plants. Seeds cultured in vitro with coat did not germinate, independently of cryoexposure or not. This study reports the first successful in vitro seedling recovery methodology for Jatropha curcas seeds, after a cryopreservation treatment, and is recommended as an efficient procedure for in vitro plant recovery, when seeds are conserved in germplasm banks by low or cryotemperatures.

  16. A method for seedling recovery in Jatropha curcas after cryogenic exposure of the seeds

    Rafael de C. Silva

    2012-03-01

    Full Text Available Actually, the germplasm of Jatropha spp. is conserved as whole plants in field collections. Under this storage method, the genetic resources are exposed to disease, pest and natural hazards such as human error, drought and weather damage. Besides, field genebanks are costly to maintain and with important requirements of trained personnel. Thus, the development of efficient techniques to ensure its safe conservation and regeneration is therefore of paramount importance. In this work we describe a method for Jatropha curcas seeds cryoexposure and seedling recovery after thawed. In a first experiment, an efficient protocol for in vitro plant recovery was carried out using zygotic embryo or seeds with or without coat. In a second experiment, desiccated seeds with or without coat were exposed to liquid nitrogen and evaluated after cryoexposure. Germination percentages were variable among treatments, and seeds demonstrated tolerance to liquid nitrogen exposure under certain conditions. Seeds of J. curcas presented up to 99.6% germination after seed coat removal. Seeds with coat cultured in vitro did not germinate, and were 60% contaminated. The germination of the zygotic embryos was significantly higher in the ½ MS medium (93.1% than in WPM medium (76.2%, but from zygotic embryo, abnormal seedlings reached up to 99%. Seeds with coat exposed to liquid nitrogen showed 60% germination in culture after coat removal with good plant growth, and seeds cryopreserved without coat presented 82% germination, but seedlings showed a reduced vigor and a significant increase in abnormal plants. Seeds cultured in vitro with coat did not germinate, independently of cryoexposure or not. This study reports the first successful in vitro seedling recovery methodology for Jatropha curcas seeds, after a cryopreservation treatment, and is recommended as an efficient procedure for in vitro plant recovery, when seeds are conserved in germplasm banks by low or cryotemperatures.

  17. Soybean roots retain the seed urease isozyme synthesized during embryo development

    Torisky, R.S.; Polacco, J.C.

    1990-01-01

    Roots of young soybean plants contain two urease isozymes which are separable by hydroxyapatite chromatography. These two urease species (HAP1 and HAP2) differ in: (1) native gel electrophoretic mobility, (2) pH optima, and (3) recognition by a monoclonal antibody specific for the embryo-specific urease. By these parameters HAP1 is similar to the abundant embryo-specific urease isozyme while HAP2 resembles the ubiquitous urease, found in all soybean tissues previously examined (embryo, seed coat, cultured cells). Roots of mutant soybean plants lacking the seed urease contain no HAP1 urease activity, whereas roots of mutants lacking the ubiquitous urease contain no HAP2 urease activity. However, adventitious roots generated from cuttings of any urease genotype lack HAP1 urease activity. Furthermore, [ 35 S] methionine labelling shows no de novo synthesis of the HAP1 urease in the root, and total root HAP1 urease activity decreases sharply following germination. We conclude: (1) HAP1 is a remnant of the seed urease accumulated in the embryonic root axis during seed development, and (2) HAP2 is ubiquitous urease synthesized de novo in the root

  18. Radioactive seed immobilization techniques for interstitial brachytherapy

    Yan, K.; Podder, T.; Buzurovic, I.; Hu, Y.; Dicker, A.; Valicenti, R.; Yu, Y.; Messing, E.; Rubens, D.; Sarkar, N.; Ng, W.

    2008-01-01

    In prostate brachytherapy, seeds can detach from their deposited sites and move locally in the pelvis or migrate to distant sites including the pulmonary and cardiac regions. Undesirable consequences of seed migration include inadequate dose coverage of the prostate and tissue irradiation effects at the site of migration. Thus, it is clinically important to develop seed immobilization techniques. We first analyze the possible causes for seed movement, and propose three potential techniques for seed immobilization: (1) surgical glue, (2) laser coagulation and (3) diathermy coagulation. The feasibility of each method is explored. Experiments were carried out using fresh bovine livers to investigate the efficacy of seed immobilization using surgical glue. Results have shown that the surgical glue can effectively immobilize the seeds. Evaluation of the radiation dose distribution revealed that the non-immobilized seed movement would change the planned isodose distribution considerably; while by using surgical glue method to immobilize the seeds, the changes were negligible. Prostate brachytherapy seed immobilization is necessary and three alternative mechanisms are promising for addressing this issue. Experiments for exploring the efficacy of the other two proposed methods are ongoing. Devices compatible with the brachytherapy procedure will be designed in future. (orig.)

  19. Impact of heat stress during seed development on soybean seed metabolome

    Seed development is a temperature-sensitive process that is much more vulnerable than vegetative tissues to abiotic stresses. Climate change is expected to increase the incidence and severity of summer heatwaves, and the impact of heat stress on seed development is expected to become more widespread...

  20. Molecular characterization of a GA-inducible gene, Cvsus1, in developing watermelon seeds.

    Kim, Joonyul; Jun, Sung-Hoon; Kang, Hong-Gyu; Lee, Jinwon; An, Gynheung

    2002-10-31

    To understand the molecular mechanisms that control seed development, we isolated a seed-preferential gene from ESTs of developing watermelon seeds. The gene Cvsus1 encodes a protein that is 86% identical to the Vicia faba sucrose synthase expressed in developing seeds. RNA blot analysis showed that Cvsus1 was preferentially expressed in watermelon seeds. We also investigated gene expression levels both in pollinated seeds and in parthenocarpic seeds, which lack zygotic tissues. Whereas the transcript level of Cvsus1 was rapidly increased during normal seed development, the expression was not significantly increased in the parthenocarpic seeds. However, treating the parthenocarpic fruits with GA3 strongly induced Cvsus1 expression, up to the level accumulated in pollinated seeds. These results suggest that Cvsus1 is induced in maternal tissues via signals from the zygotic tissues, and that GA may be one of those signals.

  1. Seed Germination of selected Taxa from Kachchh Desert, India

    Vinay Madhukar RAOLE

    2010-06-01

    Full Text Available The district of Kachchh contains many culturally important plants. However, their conservation status is little known due to direct and indirect human activities. This study was undertaken with the aim of contributing to the conservation of the native species of these semi-arid regions through germination trials under laboratory conditions. Mature fruits of ten selected species were collected randomly from the known habitats to obtain viable seeds. These seeds were pre-treated with growth regulators singly or in combination after acid scarification or without scarification. Seeds were found to be dormant due to presence of thick seed coat or due to low level of endogenous hormonal level. Most of these seeds required different storage period to mature. Only seeds of Capparis cartilaginea germinated without treatment while the other species required treatments. Addition of growth regulators has enhanced seed germination in few taxa singly and in some plant cases in combination.

  2. Organic leek seed production - securing seed quality

    Deleuran, Lise Christina; Boelt, Birte

    2011-01-01

    To maintain integrity in organic farming, availability of organically produced GM-free seed of varieties adapted to organic production systems is of vital impor-tance. Despite recent achievements, organic seed supply for a number of vegetable species is insufficient. Still, in many countries...... seeds. Tunnel production is a means of securing seed of high genetic purity and quality, and organic leek (Allium porrum L.) seed production was tested in tunnels in Denmark. The present trial focused on steckling size and in all years large stecklings had a positive effect on both seed yield...

  3. Organic Leek Seed Production - Securing Seed Quality

    Deleuran, L C; Boelt, B

    2011-01-01

    To maintain integrity in organic farming, availability of organically produced GM-free seed of varieties adapted to organic production systems is of vital impor-tance. Despite recent achievements, organic seed supply for a number of vegetable species is insufficient. Still, in many countries...... seeds. Tunnel production is a means of securing seed of high genetic purity and quality, and organic leek (Allium porrum L.) seed production was tested in tunnels in Denmark. The present trial focused on steckling size and in all years large stecklings had a positive effect on both seed yield...

  4. Seed Characteristics Diversity in Sponge Gourd (Luffa aegyptiaca Mill. Germplasms from Hatay Region in Turkey

    Kazım MAVİ

    2018-05-01

    Full Text Available The objective of this study was to evaluate seed characteristics of sponge gourd, to establish a core collection of sponge gourd with the germplasm collected throughout the Hatay region. A mini-core collection was assessed for morphological performance and some seed traits. Substantial variations of seed characteristics: seed length, seed width, seed thickness (mm, seed index (length/width, seed size (length × width, mm2, seed colour, seed-coat surface, seed shape, seed wing, and 100-seed weight were investigated. Seed length, width and thickness were varied as 15.12-8.97 mm, 9.71-6.25 mm and 2.86-2.16 mm respectively. The seed sizes were determined from small (31 DÖ 06 to big (31 DE 04. Seed colours were ranged from black to white, even a brown colour like 07 MA 01. A hundred seed weights were observed as 16.43 g (31 AL 02 and 7.41 (31 DÖ 06. The results of dendrogram indicated that seed traits of the sponge gourd genotypes were separating in five groups. This collection of sponge gourds will be useful for the gene pools and a wide range of phenotypic variations to provide a good source of diversity for developing of sponge gourd cultivars in breeding programs.

  5. Coating of Bio-mimetic Minerals-Substituted Hydroxyapatite on Surgical Grade Stainless Steel 316L by Electrophoretic Deposition for Hard tissue Applications

    Govindaraj, Dharman; Rajan, Mariappan

    2018-02-01

    Third-era bio-implant materials intend to empower particular live cell reactions at the atomic level, these materials represented with a resorbable and biocompatibility that bodies recuperate once they have been embedded. Necessitate to decrease expenses in public health services has required the utilization of surgical grade stainless steel (SS 316L) as the most inexpensive choice for orthodontic and orthopaedic implants. 316L SS is one of the broadly used implant biomaterials in orthodontic and orthopaedic surgeries. Yet, frequently those discharge for toxic metal ions is confirm from the implants and hence a second surgery is required will remove those implant material. One approach to managing the discharge of toxic metal ions is to coat the implant substance with bio-mimetic minerals in hydroxyapatite (HA). Bio-mimetic minerals such as magnesium (Mg), strontium (Sr), also zinc (Zn) were revealed with animate bone growth furthermore restrain bone resorption both in vitro and in vivo. The present work deals with the electrophoretic deposition (EPD) for multi minerals substituted hydroxyapatite (M-HA) on the surface treated 316L SS under distinctive temperatures (27°C, (room temperature), 60 and 80°C). The resultant coatings were characterized by FT-IR, XRD, SEM-EDX, adhesion strength and leach out analysis.

  6. Biocompatibility of Niobium Coatings

    René Olivares-Navarrete

    2011-09-01

    Full Text Available Niobium coatings deposited by magnetron sputtering were evaluated as a possible surface modification for stainless steel (SS substrates in biomedical implants. The Nb coatings were deposited on 15 mm diameter stainless steel substrates having an average surface roughness of 2 mm. To evaluate the biocompatibility of the coatings three different in vitro tests, using human alveolar bone derived cells, were performed: cellular adhesion, proliferation and viability. Stainless steel substrates and tissue culture plastic were also studied, in order to give comparative information. No toxic response was observed for any of the surfaces, indicating that the Nb coatings act as a biocompatible, bioinert material. Cell morphology was also studied by immune-fluorescence and the results confirmed the healthy state of the cells on the Nb surface. X-ray diffraction analysis of the coating shows that the film is polycrystalline with a body centered cubic structure. The surface composition and corrosion resistance of both the substrate and the Nb coating were also studied by X-ray photoelectron spectroscopy and potentiodynamic tests. Water contact angle measurements showed that the Nb surface is more hydrophobic than the SS substrate.

  7. Coating with fungicide and different doses of fertilizer in vinhatico ...

    Lucas

    2016-09-21

    Sep 21, 2016 ... The treatments were: seed coating with sand + lime + fungicide with different doses of .... The index was calculated based on the formula of Maguire (1962). ..... Ludwig EJ, Nunes UR, Mertz LM, Silva JR, Nunes SCP (2014).

  8. Tomato seeds maturity detection system based on chlorophyll fluorescence

    Li, Cuiling; Wang, Xiu; Meng, Zhijun

    2016-10-01

    Chlorophyll fluorescence intensity can be used as seed maturity and quality evaluation indicator. Chlorophyll fluorescence intensity of seed coats is tested to judge the level of chlorophyll content in seeds, and further to judge the maturity and quality of seeds. This research developed a detection system of tomato seeds maturity based on chlorophyll fluorescence spectrum technology, the system included an excitation light source unit, a fluorescent signal acquisition unit and a data processing unit. The excitation light source unit consisted of two high power LEDs, two radiators and two constant current power supplies, and it was designed to excite chlorophyll fluorescence of tomato seeds. The fluorescent signal acquisition unit was made up of a fluorescence spectrometer, an optical fiber, an optical fiber scaffolds and a narrowband filter. The data processing unit mainly included a computer. Tomato fruits of green ripe stage, discoloration stage, firm ripe stage and full ripe stage were harvested, and their seeds were collected directly. In this research, the developed tomato seeds maturity testing system was used to collect fluorescence spectrums of tomato seeds of different maturities. Principal component analysis (PCA) method was utilized to reduce the dimension of spectral data and extract principal components, and PCA was combined with linear discriminant analysis (LDA) to establish discriminant model of tomato seeds maturity, the discriminant accuracy was greater than 90%. Research results show that using chlorophyll fluorescence spectrum technology is feasible for seeds maturity detection, and the developed tomato seeds maturity testing system has high detection accuracy.

  9. Magnetic nanoparticle-loaded alginate beads for local micro-actuation of in vitro tissue constructs.

    Alshehri, Awatef M; Wilson, Otto C; Dahal, Bishnu; Philip, John; Luo, Xiaolong; Raub, Christopher B

    2017-11-01

    Magnetic nanoparticles (MNPs) self-align and transduce magnetic force, two properties which lead to promising applications in cell and tissue engineering. However, the toxicity of MNPs to cells which uptake them is a major impediment to applications in engineered tissue constructs. To address this problem, MNPs were embedded in millimeter-scale alginate beads, coated with glutaraldehyde cross-linked chitosan, and loaded in acellular and MDA-MB-231 cancer cell-seeded collagen hydrogels, providing local micro-actuation under an external magnetic field. Brightfield microscopy was used to assess nanoparticle diffusion from the bead. Phase contrast microscopy and digital image correlation were used to track collagen matrix displacement and estimate intratissue strain under magnetic actuation. Coating the magnetic alginate beads with glutaraldehyde-chitosan prevents bulk diffusion of nanoparticles into the surrounding microenvironment. Further, the beads exert force on the surrounding collagen gel and cells, resulting in intratissue strains of 0-10% tunable with bead dimensions, collagen density, and distance from the bead. Cells seeded adjacent to the embedded beads are subjected to strain gradients without loss of cell viability over two days culture. This study describes a simple way to fabricate crosslinked magnetic alginate beads to load in a collagen tissue construct without direct exposure of the construct to nanoparticles. The findings are significant to in vitro studies of mechanobiology in enabling precise control over dynamic mechanical loading of tissue constructs. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Identification of imprinted genes subject to parent-of-origin specific expression in Arabidopsis thaliana seeds

    McKeown, Peter C

    2011-08-12

    Abstract Background Epigenetic regulation of gene dosage by genomic imprinting of some autosomal genes facilitates normal reproductive development in both mammals and flowering plants. While many imprinted genes have been identified and intensively studied in mammals, smaller numbers have been characterized in flowering plants, mostly in Arabidopsis thaliana. Identification of additional imprinted loci in flowering plants by genome-wide screening for parent-of-origin specific uniparental expression in seed tissues will facilitate our understanding of the origins and functions of imprinted genes in flowering plants. Results cDNA-AFLP can detect allele-specific expression that is parent-of-origin dependent for expressed genes in which restriction site polymorphisms exist in the transcripts derived from each allele. Using a genome-wide cDNA-AFLP screen surveying allele-specific expression of 4500 transcript-derived fragments, we report the identification of 52 maternally expressed genes (MEGs) displaying parent-of-origin dependent expression patterns in Arabidopsis siliques containing F1 hybrid seeds (3, 4 and 5 days after pollination). We identified these MEGs by developing a bioinformatics tool (GenFrag) which can directly determine the identities of transcript-derived fragments from (i) their size and (ii) which selective nucleotides were added to the primers used to generate them. Hence, GenFrag facilitates increased throughput for genome-wide cDNA-AFLP fragment analyses. The 52 MEGs we identified were further filtered for high expression levels in the endosperm relative to the seed coat to identify the candidate genes most likely representing novel imprinted genes expressed in the endosperm of Arabidopsis thaliana. Expression in seed tissues of the three top-ranked candidate genes, ATCDC48, PDE120 and MS5-like, was confirmed by Laser-Capture Microdissection and qRT-PCR analysis. Maternal-specific expression of these genes in Arabidopsis thaliana F1 seeds was

  11. Identification of imprinted genes subject to parent-of-origin specific expression in Arabidopsis thaliana seeds

    Wennblom Trevor J

    2011-08-01

    Full Text Available Abstract Background Epigenetic regulation of gene dosage by genomic imprinting of some autosomal genes facilitates normal reproductive development in both mammals and flowering plants. While many imprinted genes have been identified and intensively studied in mammals, smaller numbers have been characterized in flowering plants, mostly in Arabidopsis thaliana. Identification of additional imprinted loci in flowering plants by genome-wide screening for parent-of-origin specific uniparental expression in seed tissues will facilitate our understanding of the origins and functions of imprinted genes in flowering plants. Results cDNA-AFLP can detect allele-specific expression that is parent-of-origin dependent for expressed genes in which restriction site polymorphisms exist in the transcripts derived from each allele. Using a genome-wide cDNA-AFLP screen surveying allele-specific expression of 4500 transcript-derived fragments, we report the identification of 52 maternally expressed genes (MEGs displaying parent-of-origin dependent expression patterns in Arabidopsis siliques containing F1 hybrid seeds (3, 4 and 5 days after pollination. We identified these MEGs by developing a bioinformatics tool (GenFrag which can directly determine the identities of transcript-derived fragments from (i their size and (ii which selective nucleotides were added to the primers used to generate them. Hence, GenFrag facilitates increased throughput for genome-wide cDNA-AFLP fragment analyses. The 52 MEGs we identified were further filtered for high expression levels in the endosperm relative to the seed coat to identify the candidate genes most likely representing novel imprinted genes expressed in the endosperm of Arabidopsis thaliana. Expression in seed tissues of the three top-ranked candidate genes, ATCDC48, PDE120 and MS5-like, was confirmed by Laser-Capture Microdissection and qRT-PCR analysis. Maternal-specific expression of these genes in Arabidopsis thaliana F1

  12. Effect of Different Seed Solutions on the Morphology and Electrooptical Properties of ZnO Nanorods

    Kashif, M.; Hashim, U.; Ali, M. E.; Usman Ali, Syed M.; Rusop, M.; Ibupoto, Zafar Hussain; Willander, Magnus

    2012-01-01

    The morphology and electrooptical properties of ZnO nanorods synthesized on monoethanolamine-based seed layer and KOH-based seed layer were compared. The seed solutions were prepared in monoethanolamine in 2-methoxyethanol and potassium hydroxide in methanol, respectively. Zinc acetate dihydrate was as a common precursor in both solutions. The nanorod-ZnOs were synthesized via the spin coating of two different seed solutions on silicon substrates followed by their hydrothermal growth. The sca...

  13. HIGHLY METHYL ESTERIFIED SEEDS is a pectin methyl esterase involved in embryo development.

    Levesque-Tremblay, Gabriel; Müller, Kerstin; Mansfield, Shawn D; Haughn, George W

    2015-03-01

    Homogalacturonan pectin domains are synthesized in a highly methyl-esterified form that later can be differentially demethyl esterified by pectin methyl esterase (PME) to strengthen or loosen plant cell walls that contain pectin, including seed coat mucilage, a specialized secondary cell wall of seed coat epidermal cells. As a means to identify the active PMEs in seed coat mucilage, we identified seven PMEs expressed during seed coat development. One of these, HIGHLY METHYL ESTERIFIED SEEDS (HMS), is abundant during mucilage secretion, peaking at 7 d postanthesis in both the seed coat and the embryo. We have determined that this gene is required for normal levels of PME activity and homogalacturonan methyl esterification in the seed. The hms-1 mutant displays altered embryo morphology and mucilage extrusion, both of which are a consequence of defects in embryo development. A significant decrease in the size of cells in the embryo suggests that the changes in embryo morphology are a consequence of lack of cell expansion. Progeny from a cross between hms-1 and the previously characterized PME inhibitor5 overexpression line suggest that HMS acts independently from other cell wall-modifying enzymes in the embryo. We propose that HMS is required for cell wall loosening in the embryo to facilitate cell expansion during the accumulation of storage reserves and that its role in the seed coat is masked by redundancy. © 2015 American Society of Plant Biologists. All Rights Reserved.

  14. Fabrication of electrospun silk fibroin scaffolds coated with graphene oxide and reduced graphene for applications in biomedicine.

    Aznar-Cervantes, Salvador; Martínez, Jose G; Bernabeu-Esclapez, Antonia; Lozano-Pérez, A Abel; Meseguer-Olmo, Luis; Otero, Toribio F; Cenis, Jose L

    2016-04-01

    Silk fibroin and graphene are both promising biomaterials described in the bibliography. Hybrid scaffolds combining their properties could be attractive for tissue engineering applications. In this work, a new methodology to produce electrospun fibroin scaffolds coated with graphene materials is provided. The mechanical, electrical and electrochemical properties of the materials attained were characterised. The fibre diameters were measured (from 3.9 to 5.2 μm). The samples coated with reduced grapheme were electronic conductors and electroactive in liquid electrolytes, showing maximum oxidation and reduction (around−0.4 V peak). The chronoamperometric responses showed a reduction shoulder, pointing to the entrance of balancing cations from the solution by nucleation–relaxation: the reaction induced structural changes in the graphene. In order to check the biocompatibility of the materials, they were seeded with L929 fibroblasts. The excellent biocompatibility of silk fibroin meshes was maintained after coating with graphene, being the proliferation results equal in all the treatments 7 days after the seeding (Tukey, p N 0.05).The conductive and electroactive properties of meshes coated with reduced graphene allow the potential application of local electric fields or local ionic currents to cell cultures, biological interfaces or animal models without host response.

  15. The biomechanics of seed germination.

    Steinbrecher, Tina; Leubner-Metzger, Gerhard

    2017-02-01

    From a biomechanical perspective, the completion of seed (and fruit) germination depends on the balance of two opposing forces: the growth potential of the embryonic axis (radicle-hypocotyl growth zone) and the restraint of the seed-covering layers (endosperm, testa, and pericarp). The diverse seed tissues are composite materials which differ in their dynamic properties based on their distinct cell wall composition and water uptake capacities. The biomechanics of embryo cell growth during seed germination depend on irreversible cell wall loosening followed by water uptake due to the decreasing turgor, and this leads to embryo elongation and eventually radicle emergence. Endosperm weakening as a prerequisite for radicle emergence is a widespread phenomenon among angiosperms. Research into the biochemistry and biomechanics of endosperm weakening has demonstrated that the reduction in puncture force of a seed's micropylar endosperm is environmentally and hormonally regulated and involves tissue-specific expression of cell wall remodelling proteins such as expansins, diverse hydrolases, and the production of directly acting apoplastic reactive oxygen. The endosperm-weakening biomechanics and its underlying cell wall biochemistry differ between the micropylar (ME) and chalazal (CE) endosperm domains. In the ME, they involve cell wall loosening, cell separation, and programmed cell death to provide decreased and localized ME tissue resistance, autolysis, and finally the formation of an ME hole required for radicle emergence. Future work will further unravel the molecular mechanisms, environmental regulation, and evolution of the diverse biomechanical cell wall changes underpinning the control of germination by endosperm weakening. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  16. Quantitative Trait Loci Analysis of Seed Quality Characteristics in Lentil using Single Nucleotide Polymorphism Markers

    Michael J. Fedoruk

    2013-11-01

    Full Text Available Seed shape, color, and pattern of lentil ( Medik. subsp. are important quality traits as they determine market class and possible end uses. A recombinant inbred line population was phenotyped for seed dimensions over multiple site–years and classified according to cotyledon and seed coat color and pattern. The objectives were to determine the heritability of seed dimensions, identify genomic regions controlling these dimensions, and map seed coat and cotyledon color genes. A genetic linkage map consisting of 563 single nucleotide polymorphisms, 10 simple sequence repeats, and four seed color loci was developed for quantitative trait loci (QTL analysis. Loci for seed coat color and pattern mapped to linkage groups 2 (, 3 (, and 6 ( while the cotyledon color locus ( mapped to linkage group 1. The broad sense heritability estimates were high for seed diameter (broad-sense heritability [] = 0.92 and seed plumpness ( = 0.94 while seed thickness ( = 0.60 and days to flowering ( = 0.45 were more moderate. There were significant seed dimension QTL on six of the seven linkage groups. The most significant QTL for diameter and plumpness was found at the cotyledon color locus (. The markers identified in this study can be used to help enrich breeding populations for desired seed quality characteristics, thereby increasing efficiency in the lentil breeding program.

  17. Preliminary report into the effects of nitrogen ion bombardment treatment on mustard seeds

    Smith, C.W.; Al-Hashmi, S.A.R.; Ahmed, N.A.G.; Pollard, M.

    1988-01-01

    Mustard seeds have been subjected to nitrogen ion bombardment. A range of conditions was found within which there was an enhancement in the growth of seedlings from the ion bombardment treated seeds relative to those grown from control seeds. Scanning electron microscopy was used to examine seeds after treatment. It appeared that there had been an etching of the seed coating by the ion bombardment. This view was supported by experiments which showed that the rate of capillary water uptake by the treated seeds had been enhanced. (author)

  18. Fundamentals of bladder tissue engineering | Mahfouz | African ...

    Fundamentals of bladder tissue engineering. ... could affect the bladder and lead to eventual loss of its integrity, with the need for replacement or repair. ... Tissue engineering relies upon three essential pillars; the scaffold, the cells seeded on ...

  19. Role of Heavy Metal Pumps in Transport of Zinc from Soil to Seeds of Plants

    Olsen, Lene Irene

    . In Arabidopsis roots, the heavy metal ATPases AtHMA2 and AtHMA4 are localized to the pericycle cells and are important for the export of zinc, in order for zinc to enter the xylem and get to the shoot. I have identified a new novel role for AtHMA2 and AtHMA4 in the developing seed. The Arabidopsis seed consists...... at this location actively export zinc from the mother plant seed coat. Mutant plants that lack AtHMA2 and AtHMA4 accumulate zinc in the seed coat, and consequently have vastly reduced amounts of zinc inside the seed. The finding that AtHMA2 and AtHMA4 are involved in pumping zinc out of the mother plant seed coat...

  20. Adipose Stem Cell Coating of Biomimetic β-TCP Macrospheres by Use of Laboratory Centrifuge.

    Chou, Joshua; Green, David W; Singh, Krishneel; Hao, Jia; Ben-Nissan, Besim; Milthorpe, Bruce

    2013-02-01

    Biomimetic materials such as coral exoskeletons possess unique architectural structures with a uniform and interconnected porous network that can be beneficial as a scaffold material. In addition, these marine structures can be hydrothermally converted to calcium phosphates, while retaining the original structural properties. The ability of biomaterials to stimulate the local microenvironment is one of the main focuses in tissue engineering, and directly coating the scaffold with stem cells facilitates future potential applications in therapeutics and regenerative medicine. In this article we describe a new and simple method that uses a laboratory centrifuge to coat hydrothermally derived beta-tricalcium phosphate macrospheres from coral exoskeleton with stem cells. In this research the optimal seeding duration and speed were determined to be 1 min and 700 g. Scanning electron micrographs showed complete surface coverage by stem cells within 7 days of seeding. This study constitutes an important step toward achieving functional tissue-engineered implants by increasing our understanding of the influence of dynamic parameters on the efficiency and distribution of stem cell attachment to biomimetic materials and how stem cells interact with biomimetic materials.

  1. Barley seed proteomics from spots to structures

    Finnie, Christine; Svensson, Birte

    2009-01-01

    forms on 2D-gels. Specific protein families, including peroxidases and alpha-amylases have been subjected to in-depth analysis resulting in characterisation of different isozymes, post-translational. modifications and processing. A functional proteomics study focusing on the seed thioredoxin system has...... with information from rice and other cereals facilitate identification of barley proteins. Several hundred barley seed proteins are identified and lower abundance proteins including membrane proteins are now being analysed. In the present review we focus on variation in protein profiles of seed tissues during...

  2. Seed dormancy and germination - Emerging mechanisms and new hypotheses

    Hiroyuki eNonogaki

    2014-05-01

    Full Text Available Seed dormancy has played a significant role in adaptation and evolution of seed plants. While its biological significance is clear, molecular mechanisms underlying seed dormancy induction, maintenance and alleviation still remain elusive. Intensive efforts have been made to investigate gibberellin and abscisic acid metabolism in seeds, which greatly contributed to the current understanding of seed dormancy mechanisms. Other mechanisms, which might be independent of hormones, or specific to the seed dormancy pathway, are also emerging from genetic analysis of seed dormancy mutants. These studies suggest that chromatin remodeling through histone ubiquitination, methylation and acetylation, which could lead to transcription elongation or gene silencing, may play a significant role in seed dormancy regulation. Small interfering RNA and/or long non-coding RNA might be a trigger of epigenetic changes at the seed dormancy or germination loci, such as DELAY OF GERMINATION1. While new mechanisms are emerging from genetic studies of seed dormancy, novel hypotheses are also generated from seed germination study with high throughput gene expression analysis. Recent studies on tissue-specific gene expression in tomato and Arabidopsis seeds, which suggested possible mechanosensing in the regulatory mechanisms, advanced our understanding of embryo-endosperm interaction and have potential to re-draw the traditional hypotheses or integrate them into a comprehensive scheme. The progress in basic seed science will enable knowledge translation, another frontier of research to be expanded for food and fuel production.

  3. Germination of dimorphic seeds of the desert annual halophyte Suaeda aralocaspica (Chenopodiaceae), a C4 plant without Kranz anatomy.

    Wang, Lei; Huang, Zhenying; Baskin, Carol C; Baskin, Jerry M; Dong, Ming

    2008-11-01

    Suaeda aralocaspica is a C4 summer annual halophyte without Kranz anatomy that is restricted to the deserts of central Asia. It produces two distinct types of seeds that differ in colour, shape and size. The primary aims of the present study were to compare the dormancy and germination characteristics of dimorphic seeds of S. aralocaspica and to develop a conceptual model of their dynamics. Temperatures simulating those in the natural habitat of S. aralocaspica were used to test for primary dormancy and germination behaviour of fresh brown and black seeds. The effects of cold stratification, gibberellic acid, seed coat scarification, seed coat removal and dry storage on dormancy breaking were tested in black seeds. Germination percentage and recovery responses of brown seeds, non-treated black seeds and 8-week cold-stratified black seeds to salt stress were tested. Brown seeds were non-dormant, whereas black seeds had non-deep Type 2 physiological dormancy (PD). Germination percentage and rate of germination of brown seeds and of variously pretreated black seeds were significantly higher than those of non-pretreated black seeds. Exposure of seeds to various salinities had significant effects on germination, germination recovery and induction into secondary dormancy. A conceptual model is presented that ties these results together and puts them into an ecological context. The two seed morphs of S. aralocaspica exhibit distinct differences in dormancy and germination characteristics. Suaeda aralocaspica is the first cold desert halophyte for which non-deep Type 2 PD has been documented.

  4. Modified sol-gel coatings for biotechnological applications

    Beganskiene, A [Department of General and Inorganic Chemistry, Vilnius University, Vilnius LT-03225 (Lithuania); Raudonis, R [Department of General and Inorganic Chemistry, Vilnius University, Vilnius LT-03225 (Lithuania); Jokhadar, S Zemljic [Faculty of Medicine, Institute of Biophysics, Lipiceva 2, Ljubljana SI-1000 (Slovenia); Batista, U [Faculty of Medicine, Institute of Biophysics, Lipiceva 2, Ljubljana SI-1000 (Slovenia); Kareiva, A [Department of General and Inorganic Chemistry, Vilnius University, Vilnius LT-03225 (Lithuania)

    2007-12-15

    The modified sol-gel derived silica coatings were prepared and characterized. The amino and methyl groups were introduced onto the colloidal silica. The silica coatings with different wettability properties: coloidal silica (water contact angle 17 deg.), polysiloxane (61 deg.), methyl-modified (158 deg. and 46 deg.) coatings samples were tested for CaCo-2 cells proliferation. Methyl-modified coating (46 deg.) proved to be the best substrate for cell proliferation. CaCo-2 cell proliferation two days post seeding was significantly faster on almost laminine, fibronectin and collagen-1 coated samples compared to corresponding controls.

  5. Synthetic scaffold coating with adeno-associated virus encoding BMP2 to promote endogenous bone repair.

    Dupont, Kenneth M; Boerckel, Joel D; Stevens, Hazel Y; Diab, Tamim; Kolambkar, Yash M; Takahata, Masahiko; Schwarz, Edward M; Guldberg, Robert E

    2012-03-01

    Biomaterial scaffolds functionalized to stimulate endogenous repair mechanisms via the incorporation of osteogenic cues offer a potential alternative to bone grafting for the treatment of large bone defects. We first quantified the ability of a self-complementary adeno-associated viral vector encoding bone morphogenetic protein 2 (scAAV2.5-BMP2) to enhance human stem cell osteogenic differentiation in vitro. In two-dimensional culture, scAAV2.5-BMP2-transduced human mesenchymal stem cells (hMSCs) displayed significant increases in BMP2 production and alkaline phosphatase activity compared with controls. hMSCs and human amniotic-fluid-derived stem cells (hAFS cells) seeded on scAAV2.5-BMP2-coated three-dimensional porous polymer Poly(ε-caprolactone) (PCL) scaffolds also displayed significant increases in BMP2 production compared with controls during 12 weeks of culture, although only hMSC-seeded scaffolds displayed significantly increased mineral formation. PCL scaffolds coated with scAAV2.5-BMP2 were implanted into critically sized immunocompromised rat femoral defects, both with or without pre-seeding of hMSCs, representing ex vivo and in vivo gene therapy treatments, respectively. After 12 weeks, defects treated with acellular scAAV2.5-BMP2-coated scaffolds displayed increased bony bridging and had significantly higher bone ingrowth and mechanical properties compared with controls, whereas defects treated with scAAV2.5-BMP2 scaffolds pre-seeded with hMSCs failed to display significant differences relative to controls. When pooled, defect treatment with scAAV2.5-BMP2-coated scaffolds, both with or without inclusion of pre-seeded hMSCs, led to significant increases in defect mineral formation at all time points and increased mechanical properties compared with controls. This study thus presents a novel acellular bone-graft-free endogenous repair therapy for orthotopic tissue-engineered bone regeneration.

  6. Iodine-125 seeds for cancer treatment

    Rostelato, Maria E.C.M.; Zeituni, Carlos A.; Feher, Anselmo; Moura, Joao A.; Moura, Eduardo S.; Nagatomi, Helio R.; Manzoli, Jose E.; Souza, Carla D., E-mail: elisaros@ipen.b, E-mail: czeituni@pobox.co, E-mail: afeher@ipen.b, E-mail: jmoura31@yahoo.com.b, E-mail: esmoura@ipen.b, E-mail: hrnagato@ipen.b, E-mail: jemanzoli@ipen.b, E-mail: cdsouza@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Karam, Dib, E-mail: dib.karan@usp.b [Universidade de Sao Paulo (USP), SP (Brazil). Escola de Artes, Ciencias e Humanidades

    2009-07-01

    In Brazil, cancer has become one of the major public health problems. An estimate by the Health Ministry showed that 466,430 people had the disease in the country in 2008. The prostate cancer is the second largest death cause among men. The National Institute of Cancer estimated the occurrence of 50,000 new cases for 2009. Some of these patients are treated with Brachytherapy, using Iodine-125 seeds. By this technique, small seeds with Iodine-125, a radioactive material, are implanted in the prostate. The advantages of radioactive seed implants are the preservation of healthy tissues and organs near the prostate, besides the low rate of impotence and urinary incontinence. The Energy and Nuclear Research Institute - IPEN, which belongs to the Nuclear Energy National Commission - CNEN, established a program for the development of the technique and production of Iodine-125 seeds in Brazil. The estimate for the 125-Iodine seeds demand is of 8,000 seeds/month and the laboratory to be implanted will need this production capacity. The purpose of this paper is to explain the project status and show some data about the seeds used in the country. The project will be divided in two phases: technological development of a prototype and a laboratory implementation for the seeds production. (author)

  7. 3D-fibroblast tissues constructed by a cell-coat technology enhance tight-junction formation of human colon epithelial cells.

    Matsusaki, Michiya; Hikimoto, Daichi; Nishiguchi, Akihiro; Kadowaki, Koji; Ohura, Kayoko; Imai, Teruko; Akashi, Mitsuru

    2015-02-13

    Caco-2, human colon carcinoma cell line, has been widely used as a model system for intestinal epithelial permeability because Caco-2 cells express tight-junctions, microvilli, and a number of enzymes and transporters characteristic of enterocytes. However, the functional differentiation and polarization of Caco-2 cells to express sufficient tight-junctions (a barrier) usually takes over 21 days in culture. This may be due to the cell culture environment, for example inflammation induced by plastic petri dishes. Three-dimensional (3D) sufficient cell microenvironments similar to in vivo natural conditions (proteins and cells), will promote rapid differentiation and higher functional expression of tight junctions. Herein we report for the first time an enhancement in tight-junction formation by 3D-cultures of Caco-2 cells on monolayered (1L) and eight layered (8L) normal human dermal fibroblasts (NHDF). Trans epithelial electric resistance (TEER) of Caco-2 cells was enhanced in the 3D-cultures, especially 8L-NHDF tissues, depending on culture times and only 10 days was enough to reach the same TEER value of Caco-2 monolayers after a 21 day incubation. Relative mRNA expression of tight-junction proteins of Caco-2 cells on 3D-cultures showed higher values than those in monolayer structures. Transporter gene expression patterns of Caco-2 cells on 3D-constructs were almost the same as those of Caco-2 monolayers, suggesting that there was no effect of 3D-cultures on transporter protein expression. The expression correlation between carboxylesterase 1 and 2 in 3D-cultures represented similar trends with human small intestines. The results of this study clearly represent a valuable application of 3D-Caco-2 tissues for pharmaceutical applications. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Translocation of the neonicotinoid seed treatment clothianidin in maize.

    Alford, Adam; Krupke, Christian H

    2017-01-01

    Neonicotinoid seed treatments, typically clothianidin or thiamethoxam, are routinely applied to >80% of maize (corn) seed grown in North America where they are marketed as a targeted pesticide delivery system. Despite this widespread use, the amount of compound translocated into plant tissue from the initial seed treatment to provide protection has not been reported. Our two year field study compared concentrations of clothianidin seed treatments in maize to that of maize without neonicotinoid seed treatments and found neonicotinoids present in root tissues up to 34 days post planting. Plant-bound clothianidin concentrations followed an exponential decay pattern with initially high values followed by a rapid decrease within the first ~20 days post planting. A maximum of 1.34% of the initial seed treatment was successfully recovered from plant tissues in both study years and a maximum of 0.26% was recovered from root tissue. Our findings show neonicotinoid seed treatments may provide protection from some early season secondary maize pests. However, the proportion of the neonicotinoid seed treatment clothianidin translocated into plant tissues throughout the growing season is low overall and this observation may provide a mechanism to explain reports of inconsistent efficacy of this pest management approach and increasing detections of environmental neonicotinoids.

  9. Translocation of the neonicotinoid seed treatment clothianidin in maize.

    Adam Alford

    Full Text Available Neonicotinoid seed treatments, typically clothianidin or thiamethoxam, are routinely applied to >80% of maize (corn seed grown in North America where they are marketed as a targeted pesticide delivery system. Despite this widespread use, the amount of compound translocated into plant tissue from the initial seed treatment to provide protection has not been reported. Our two year field study compared concentrations of clothianidin seed treatments in maize to that of maize without neonicotinoid seed treatments and found neonicotinoids present in root tissues up to 34 days post planting. Plant-bound clothianidin concentrations followed an exponential decay pattern with initially high values followed by a rapid decrease within the first ~20 days post planting. A maximum of 1.34% of the initial seed treatment was successfully recovered from plant tissues in both study years and a maximum of 0.26% was recovered from root tissue. Our findings show neonicotinoid seed treatments may provide protection from some early season secondary maize pests. However, the proportion of the neonicotinoid seed treatment clothianidin translocated into plant tissues throughout the growing season is low overall and this observation may provide a mechanism to explain reports of inconsistent efficacy of this pest management approach and increasing detections of environmental neonicotinoids.

  10. Skylarks trade size and energy content in weed seeds to maximize total ingested lipid biomass.

    Gaba, Sabrina; Collas, Claire; Powolny, Thibaut; Bretagnolle, François; Bretagnolle, Vincent

    2014-10-01

    The trade-off between forage quality and quantity has been particularly studied in herbivore organisms, but much less for seed eating animals, in particular seed-eating birds which constitute the bulk of wintering passerines in European farmlands. The skylark is one of the commonest farmland birds in winter, mainly feeding on seeds. We focus on weed seeds for conservation and management purposes. Weed seeds form the bulk of the diet of skylarks during winter period, and although this is still a matter for discussion, weed seed predation by granivorous has been suggested as an alternative to herbicides used to regulate weed populations in arable crops. Our objectives were to identify whether weed seed traits govern foraging decisions of skylarks, and to characterize key seed traits with respect to size, which is related to searching and handling time, and lipid content, which is essential for migratory birds. We combined a single-offer experiment and a multiple-offer one to test for feeding preferences of the birds by estimating seed intake on weed seed species differing in their seed size and seed lipid content. Our results showed (1) a selective preference for smaller seeds above a threshold of seed size or seed size difference in the pair and, (2) a significant effect of seed lipid biomass suggesting a trade-off between foraging for smaller seeds and selecting seeds rich in lipids. Skylarks foraging decision thus seems to be mainly based on seed size, that is presumably a 'proxy' for weed seed energy content. However, there are clearly many possible combinations of morphological and physiological traits that must play crucial role in the plant-bird interaction such as toxic compound or seed coat. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Towards an ideal polymer scaffold for tendon/ligament tissue engineering

    Sahoo, Sambit; Ouyang, Hong Wei; Goh, James Cho-Hong; Tay, Tong-Earn; Toh, Siew Lok

    2005-04-01

    Tissue engineering holds promise in treating injured tendons and ligaments by replacing the injured tissues with "engineered tissues" with identical mechanical and functional characteristics. A biocompatible, biodegradable, porous scaffold with optimized architecture, sufficient surface area for cell attachment, growth and proliferation, faborable mechanical properties, and suitable degradation rate is a pre-requisite to achieve success with this aproach. Knitted poly(lactide-co-glycolide) (PLGA) scaffolds comprising of microfibers of 25 micron diameter were coated with PLGA nanofibers on their surfaces by electrospinning technique. A cell suspension of pig bone marrow stromal cells (BMSC) was seeded on the scaffolds by pipetting, and the cell-scaffold constructs were cultured in a CO2 incubator, at 37°C for 1-2 weeks. The "engineered tissues" were then assessed for cell attachment and proliferation, tissue formation, and mechanical properties. Nanofibers, of diameter 300-900 nm, were spread randomly over the knitted scaffold. The reduction in pore-size from about 1 mm (in the knitted scaffold) to a few micrometers (in the nano-microscaffold) allowed cell seeding by direct pipetting, and eliminated the need of a cell-delivery system like fibrin gel. BMSCs were seen to attach and proliferate well on the nano-microscaffold, producing abundant extracellular matrix. Mechanical testing revealed that the cell-seeded nano-microscaffolds possessed slightly higher values of failure load, elastic-region stiffness and toe-region stiffness, than the unseeded scaffolds. The combination of superior mechanical strength and integrity of knitted microfibers, with the large surface area and improved hydrophilicity of the electrospun nanofibers facilitated cell attachment and new tissue formation. This holds promise in tissue engineering of tendon/ligament.

  12. Ectopic bone formation in nude rats using human osteoblasts seeded poly(3)hydroxybutyrate embroidery and hydroxyapatite-collagen tapes constructs.

    Mai, Ronald; Hagedorn, Manolo Gunnar; Gelinsky, Michael; Werner, Carsten; Turhani, Dritan; Späth, Heike; Gedrange, Tomas; Lauer, Günter

    2006-09-01

    The aim of this study was to evaluate the ectopic bone formation using tissue engineered cell-seeded constructs with two different scaffolds and primary human maxillary osteoblasts in nude rats over an implantation period of up to 96 days. Collagen I-coated Poly(3)hydroxybutyrate (PHB) embroidery and hydroxyapatite (HAP) collagen tapes were seeded with primary human maxillary osteoblasts (hOB) and implanted into athymic rnu/run rats. A total of 72 implants were placed into the back muscles of 18 rats. 24, 48 and 96 days after implantation, histological and histomorphometric analyses were made. The osteoblastic character of the cells was confirmed by immunocytochemistry and RT-PCR for osteocalcin. Histological analysis demonstrated that all cell-seeded constructs induced ectopic bone formation after 24, 48 and 96 days of implantation. There was more mineralized tissue in PHB constructs than in HAP-collagen tapes (at day 24; p embroidery or HAP-collagen tapes can induce ectopic bone formation. However, the amount of bone formed decreased with increasing length of implantation.

  13. Phylogenetic diversification of Early Cretaceous seed plants: The compound seed cone of Doylea tetrahedrasperma.

    Rothwell, Gar W; Stockey, Ruth A

    2016-05-01

    Discovery of cupulate ovules of Doylea tetrahedrasperma within a compact, compound seed cone highlights the rich diversity of fructification morphologies, pollination biologies, postpollination enclosure of seeds, and systematic diversity of Early Cretaceous gymnosperms. Specimens were studied using the cellulose acetate peel technique, three-dimensional reconstructions (in AVIZO), and morphological phylogenetic analyses (in TNT). Doylea tetrahedrasperma has bract/fertile short shoot complexes helically arranged within a compact, compound seed cone. Complexes diverge from the axis as a single unit and separate distally into a free bract tip and two sporophylls. Each sporophyll bears a single, abaxial seed, recurved toward the cone axis, that is enveloped after pollinaton by sporophyll tissue, forming a closed cupule. Ovules are pollinated by bisaccate grains captured by micropylar pollination horns. The unique combination of characters shown by D. tetrahedrasperma includes the presence of cupulate seeds borne in conifer-like compound seed cones, an ovuliferous scale analogue structurally equivalent to the ovulate stalk of Ginkgo biloba, gymnospermous pollination, and nearly complete enclosure of mature seeds. These features characterize the Doyleales ord. nov., clearly distinguish it from the seed fern order Corystospermales, and allow for recognition of another recently described Early Cretaceous seed plant as a second species in genus Doylea. A morphological phylogenetic analysis highlights systematic relationships of the Doyleales ord. nov. and emphasizes the explosive phylogenetic diversification of gymnosperms that was underway at the time when flowering plants may have originated and/or first began to radiate. © 2016 Botanical Society of America.

  14. Dormancy-breaking requirements of Sophora tomentosa and Erythrina speciosa (Fabaceae seeds

    Carolina Maria Luzia Delgado

    2015-03-01

    Full Text Available The physical dormancy of seeds has been poorly studied in species from tropical forests, such as the Atlantic Forest. This study aimed to examine the effect of moderate alternating temperatures on breaking the physical dormancy of seeds, the morphoanatomy and histochemistry of seed coats, and to locate the structure/region responsible for water entrance into the seed, after breaking the physical dormancy of seeds of two woody Fabaceae (subfamily Faboideae species that occur in the Brazilian Atlantic Forest: Sophora tomentosa and Erythrina speciosa. To assess temperature effect, seeds were incubated in several temperature values that occur in the Atlantic Forest. For morphological and histochemical studies, sections of fixed seeds were subjected to different reagents, and were observed using light or epifluorescence microscopy, to analyze the anatomy and histochemistry of the seed coat. Treated and non-treated seeds were also analyzed using a scanning electron microscope (SEM to observe the morphology of the seed coat. To localize the specific site of water entrance, the seeds were blocked with glue in different regions and also immersed in ink. In the present work a maximum temperature fluctuation of 15ºC was applied during a period of 20 days and these conditions did not increase the germination of S. tomentosa or E. speciosa. These results may indicate that these seeds require larger fluctuation of temperature than the applied or/and longer period of exposition to the temperature fluctuation. Blocking experiments water inlet combined with SEM analysis of the structures of seed coat for both species showed that besides the lens, the hilum and micropyle are involved in water absorption in seeds scarified with hot water. In seeds of E. speciosa the immersion of scarified seeds into an aniline aqueous solution showed that the solution first entered the seed through the hilum. Both species showed seed morphological and anatomical features for seed

  15. Genome-wide survey of flavonoid biosynthesis genes and gene expression analysis between black- and yellow-seeded Brassica napus

    Cunmin Qu

    2016-12-01

    Full Text Available Flavonoids, the compounds that impart color to fruits, flowers, and seeds, are the most widespread secondary metabolites in plants. However, a systematic analysis of these loci has not been performed in Brassicaceae. In this study, we isolated 649 nucleotide sequences related to flavonoid biosynthesis, i.e., the Transparent Testa (TT genes, and their associated amino acid sequences in 17 Brassicaceae species, grouped into Arabidopsis or Brassicaceae subgroups. Moreover, 36 copies of 21 genes of the flavonoid biosynthesis pathway were identified in A. thaliana, 53 were identified in B. rapa, 50 in B. oleracea, and 95 in B. napus, followed the genomic distribution, collinearity analysis and genes triplication of them among Brassicaceae species. The results showed that the extensive gene loss, whole genome triplication, and diploidization that occurred after divergence from the common ancestor. Using qRT-PCR methods, we analyzed the expression of eighteen flavonoid biosynthesis genes in 6 yellow- and black-seeded B. napus inbred lines with different genetic background, found that 12 of which were preferentially expressed during seed development, whereas the remaining genes were expressed in all B. napus tissues examined. Moreover, fourteen of these genes showed significant differences in expression level during seed development, and all but four of these (i.e., BnTT5, BnTT7, BnTT10, and BnTTG1 had similar expression patterns among the yellow- and black-seeded B. napus. Results showed that the structural genes (BnTT3, BnTT18 and BnBAN, regulatory genes (BnTTG2 and BnTT16 and three encoding transfer proteins (BnTT12, BnTT19, and BnAHA10 might play an crucial roles in the formation of different seed coat colors in B. napus. These data will be helpful for illustrating the molecular mechanisms of flavonoid biosynthesis in Brassicaceae species.

  16. Effect of seed treatment with milk powder and mustard flour in control of common bunt (Tilletia tritici) in wheat and stem smut (Urocystis occulta) in rye

    Borgen, Anders; Kristensen, Lars

    2001-01-01

    In field trials mustard flour was able to control seed borne infection by common bunt (Tilletia tritici) in wheat without decreasing the germination vigour of the treated seeds. Full control of common bunt by coating the seeds with milk powder could only be achieved at doses which reduced germination vigour of the seeds. Mustard flour can be recommended as a seed treatment in organic agriculture while a treatment based on milk powder should be developed in combination with biological control....

  17. Freezing tolerance of conifer seeds and germinants.

    Hawkins, B J; Guest, H J; Kolotelo, D

    2003-12-01

    Survival after freezing was measured for seeds and germinants of four seedlots each of interior spruce (Picea glauca x engelmannii complex), lodgepole pine (Pinus contorta Dougl. ex Loud.), Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) and western red cedar (Thuja plicata Donn ex D. Donn). Effects of eight seed treatments on post-freezing survival of seeds and germinants were tested: dry, imbibed and stratified seed, and seed placed in a growth chamber for 2, 5, 10, 15, 20 or 30 days in a 16-h photoperiod and a 22/17 degrees C thermoperiod. Survival was related to the water content of seeds and germinants, germination rate and seedlot origin. After freezing for 3 h at -196 degrees C, dry seed of most seedlots of interior spruce, Douglas-fir and western red cedar had 84-96% germination, whereas lodgepole pine seedlots had 53-82% germination. Freezing tolerance declined significantly after imbibition in lodgepole pine, Douglas-fir and interior spruce seed (western red cedar was not tested), and mean LT50 of imbibed seed of these species was -30, -24.5 and -20 degrees C, respectively. Freezing tolerance continued to decline to a minimum LT50 of -4 to -7 degrees C after 10 days in a growth chamber for interior spruce, Douglas-fir and lodgepole pine, or after 15 days for western red cedar. Minimum freezing tolerance was reached at the stage of rapid hypocotyl elongation. In all species, a slight increase in freezing tolerance of germinants was observed once cotyledons emerged from the seed coat. The decrease in freezing tolerance during the transition from dry to germinating seed correlated with increases in seed water content. Changes in freezing tolerance between 10 and 30 days in the growth chamber were not correlated with seedling water content. Within a species, seedlots differed significantly in freezing tolerance after 2 or 5 days in the growth chamber. Because all seedlots of interior spruce and lodgepole pine germinated quickly, there was no correlation

  18. Kinetics of solute leachate from imbibing Caesalpinia echinata Lam. (Brazilwood seeds

    Nestor Martini Neto

    2014-02-01

    Full Text Available The electrical conductivity of leachates from imbibing seeds has been used as a vigor test for several species. The adaptation of this methodology to different species requires knowledge on the leaching kinetics of electrolytes. For Brazilwood seeds, the classic method was not satisfactory and rapid tests are essential because they have low storage capacity at room temperature. Leaching kinetics during seed imbibition is a function of physiological quality, presence or absence of seed coat, imbibing temperature and the initial moisture content of seed. In this study, the electrolyte leaching rate of six different categories of seeds, from two regions, was evaluated in seeds with and without seed coat and incubated with different moisture contents and at different temperatures. The results showed that the electrolyte leaching rate in Brazilwood seeds is independent of the physiological quality, the presence or absence of seed coat and imbibition temperature, but these factors changed the total amount of electrolytes leached. The leaching rate increased in the first few minutes of imbibition, suggesting that the adjustment of the methodology must consider the reduction in imbibition time, reduction in temperature, use of a controlled and slower pre-imbibition, and replacement of the imbibition solution after the first few minutes.

  19. What Are Chia Seeds?

    ... your diet? Chia seeds come from the desert plant Salvia hispanica , a member of the mint family. ... ancient Aztec diet. The seeds of a related plant, Salvia columbariae (golden chia), were used primarily by ...

  20. Seeds and Synergies

    'Seeds and Synergies presents inspiring evidence of change in practice and policy ... Seeds of inspiration: breathing new life into the formal agricultural research .... and Urban Development and Poverty Alleviation and Agricultural Commodity ...

  1. Seeds as biosocial commons

    Patnaik, Archana

    2016-01-01

    This research investigates and describes the conservation and use of Plant Genetic Resources (PGRs), especially seeds through processes of commonisation. Seeds form an important element for sustaining human life (through food production) and social relations (by maintaining agricultural

  2. Seed dispersal in fens

    Middleton, Beth; van Diggelen, Rudy; Jensen, Kai

    Question: How does seed dispersal reduce fen isolation and contribute to biodiversity? Location: European and North American fens. Methods: This paper reviews the literature on seed dispersal to fens. Results: Landscape fragmentation may reduce dispersal opportunities thereby isolating fens and

  3. Labeling and in vivo visualization of transplanted adipose tissue-derived stem cells with safe cadmium-free aqueous ZnS coating of ZnS-AgInS2 nanoparticles

    Ogihara, Yusuke; Yukawa, Hiroshi; Kameyama, Tatsuya; Nishi, Hiroyasu; Onoshima, Daisuke; Ishikawa, Tetsuya; Torimoto, Tsukasa; Baba, Yoshinobu

    2017-01-01

    The facile synthesis of ZnS-AgInS2 (ZAIS) as cadmium-free QDs and their application, mainly in solar cells, has been reported by our groups. In the present study, we investigated the safety and the usefulness for labeling and in vivo imaging of a newly synthesized aqueous ZnS-coated ZAIS (ZnS-ZAIS) carboxylated nanoparticles (ZZC) to stem cells. ZZC shows the strong fluorescence in aqueous solutions such as PBS and cell culture medium, and a complex of ZZC and octa-arginine (R8) peptides (R8-ZZC) can achieve the highly efficient labeling of adipose tissue-derived stem cells (ASCs). The cytotoxicity of R8-ZZC to ASCs was found to be extremely low in comparison to that of CdSe-based QDs, and R8-ZZC was confirmed to have no influence on the proliferation rate or the differentiation ability of ASCs. Moreover, R8-ZZC was not found to induce the production of major inflammatory cytokines (TNF-α, IFN-γ, IL-12p70, IL-6 and MCP-1) in ASCs. Transplanted R8-ZZC-labeled ASCs could be quantitatively detected in the lungs and liver mainly using an in vivo imaging system. In addition, high-speed multiphoton confocal laser microscopy revealed the presence of aggregates of transplanted ASCs at many sites in the lungs, whereas individual ASCs were found to have accumulated in the liver.

  4. Seed characters and their usefulness in the separation of Asteraceae species

    Michelli Fernandes Batista

    2015-10-01

    Full Text Available Studies on seed structure of Asteraceae have received little attention of botanists. Seed structure in Asteraceae is analyzed to evaluate the usefulness of characters in the separation of species through the analysis of nine weedy species. Seeds originate from anatropous, unitegmic and tenuinucellate ovules. The partial collapse of the developing seed coat is a common characteristic in the Asteraceae species studied. The testa consists of crushed and thin-walled cells in almost all of the species studied herein, except for Elephantopus mollis and Parthenium hysterophorus, which showed exotesta cells with U-shaped thickening. The analysis revealed high uniformity in seed characters.

  5. Aspects of the barley seed proteome during development and germination

    Finnie, Christine; Maeda, K.; Østergaard, O.

    2004-01-01

    Analysis of the water-soluble barley seed proteome has led to the identification of proteins by MS in the major spots on two-dimensional gels covering the pi ranges 4-7 and 6-11. This provides the basis for in-depth studies of proteome changes during seed development and germination, tissue...

  6. Viabilidade de sementes de acerola (Malpighia emarginata DC: avaliação da vitalidade dos tecidos Seed viability of acerola (Malpighia emarginata DC.: evaluation of the tissue vitality

    Luciana Claudia Costa

    2003-12-01

    Full Text Available A morfologia interna e a viabilidade de sementes de acerola (Malpighia emarginata DC. foram estudadas utilizando-se o tetrazólio (cloreto de 2, 3, 5 trifenil tetrazólio. Dos clones testados, o Flórida Sweet foi o que apresentou a menor percentagem de sementes com embriões normais (10% como também em reação às sementes sem embriões (8% e o maior percentagem de sementes com embriões deformados (81%. O clone 07-OS apresentou maior percentagem de sementes com embriões normais (51% e um número considerado elevado de sementes sem embriões (34%. Os demais clones apresentaram valores intermediários. Para todos os clones avaliados, as sementes com embriões normais apresentaram 100% de embriões viáveis. Essas sementes submetidas ao teste de tetrazólio por um período de 12 horas, apresentaram-se com uma coloração vermelha intensa, considerada ideal para a avaliação positiva da viabilidade das sementes. Estes resultados não podem, entretanto, ser tomados para prognóstico e o cálculo da taxa de germinação e dormência, apenas indicando que as sementes estão vivas.The morphology and seed viability of acerola (Malpighia emarginata DC. were evaluated using the tetrazolium (2, 3, 5 triphenyl tetrazolium chloride. From all clones tested, Florida Sweet presented the smallest percentage of seeds with normal embryos (10% or without them (8% and the greatest percentage of seeds with malformed embryos, (81%. The clone 07-0S had the greatest percentage of seeds with normal embryos (5 l% and an elevated number of seeds without embryos (34%. For all other clones evaluated, the seeds with normal embryos were 100% viable. The seeds subjected to the tetrazolium test for 12 hours, had a deep red color, considered ideal for viability positive evaluation. These tests cannot be taken as prognosis to calculate the germination and dormancy rates, only indicating that the seeds are alive.

  7. Hard coatings

    Dan, J.P.; Boving, H.J.; Hintermann, H.E.

    1993-01-01

    Hard, wear resistant and low friction coatings are presently produced on a world-wide basis, by different processes such as electrochemical or electroless methods, spray technologies, thermochemical, CVD and PVD. Some of the most advanced processes, especially those dedicated to thin film depositions, basically belong to CVD or PVD technologies, and will be looked at in more detail. The hard coatings mainly consist of oxides, nitrides, carbides, borides or carbon. Over the years, many processes have been developed which are variations and/or combinations of the basic CVD and PVD methods. The main difference between these two families of deposition techniques is that the CVD is an elevated temperature process (≥ 700 C), while the PVD on the contrary, is rather a low temperature process (≤ 500 C); this of course influences the choice of substrates and properties of the coating/substrate systems. Fundamental aspects of the vapor phase deposition techniques and some of their influences on coating properties will be discussed, as well as the very important interactions between deposit and substrate: diffusions, internal stress, etc. Advantages and limitations of CVD and PVD respectively will briefly be reviewed and examples of applications of the layers will be given. Parallel to the development and permanent updating of surface modification technologies, an effort was made to create novel characterisation methods. A close look will be given to the coating adherence control by means of the scratch test, at the coating hardness measurement by means of nanoindentation, at the coating wear resistance by means of a pin-on-disc tribometer, and at the surface quality evaluation by Atomic Force Microscopy (AFM). Finally, main important trends will be highlighted. (orig.)

  8. Anatomy and cell wall polysaccharides of almond (Prunus dulcis D. A. Webb) seeds.

    Dourado, Fernando; Barros, António; Mota, Manuel; Coimbra, Manuel A; Gama, Francisco M

    2004-03-10

    The anatomy of Prunus dulcis was analyzed by applying several differential staining techniques and light microscopy. Prunus dulcis seed has a thin and structurally complex seed coat, with lignified cellulosic tissue. The embryo has two voluminous cotyledons. Cotyledon cells have a high number of protein and lipid bodies, some of which have phytin. The provascular tissue, located in the cotyledons, is oriented in small bundles perpendicular to the transverse embryonic axis. Prunus dulcis cell wall material is very rich in arabinose (45 mol %). Glucose (23%), uronic acids (12%), and xylose (12%) are also major sugar components. The polymers obtained from the imidazole and Na(2)CO(3) extracts contain mainly pectic substances rich in arabinose, but the sugar content of these extracts was very low. The majority of the pectic substances (also rich in arabinose) was recovered with the KOH extracts. These extracts, with high sugar content, yielded also xyloglucans and acidic xylans. The 4 M KOH + H(3)BO(3) extracts yielded polysaccharides rich in uronic acids and xylose and very rich in arabinose, accounting for 27% of the cell wall material.

  9. SEED, SEEDLINGS AND GERMINATION MORPHOLOGY OF Copaifera langsdorfii Desf. (Leguminosae-Caesalpinioideae

    Maria Elane de Carvalho Guerra

    2006-12-01

    Full Text Available The knowledge of seed and seedling morphology are extremely important to the identification and preservation of plant species. In order to studying seed and seedling morphology and seed germination of copaiba (Copaifera langsdorfii Desf seeds, experiments were conducted at the Laboratory of Seed Analysis and Laboratory of Botany of the Federal University of Ceará. In copaíba seeds the characteristics studied were shape, size (length, width, thickness and morphology. The kind of germination, the root systems, hypocotyls, epicotyls and first leaves were the characteristics evaluated in copaiba seedlings. Ruler and pachimeter were used to make the measurements, as well as optical microscope and magnifying glass. The seeds are exalbumin kind, have neuter photoblastism and epigeous germination. Seed coat shows a palisade cell layer with a conspicuous light line. The seedlings have compound first leaves and axial root system.

  10. Image-Analysis Based on Seed Phenomics in Sesame

    Prasad R.

    2014-10-01

    Full Text Available The seed coat (testa structure of twenty-three cultivated (Sesamum indicum L. and six wild sesame (s. occidentale Regel & Heer., S. mulayanum Nair, S. prostratum Retz., S. radiatum Schumach. & Thonn., S. angustifolium (Oliv. Engl. and S. schinzianum Asch germplasm was analyzed from digital and Scanning Electron Microscopy (SEM images with dedicated software using the descriptors for computer based seed image analysis to understand the diversity of seed morphometric traits, which later on can be extended to screen and evaluate improved genotypes of sesame. Seeds of wild sesame species could conveniently be distinguished from cultivated varieties based on shape and architectural analysis. Results indicated discrete ‘cut off values to identify definite shape and contour of seed for a desirable sesame genotype along with the con-ventional practice of selecting lighter colored testa.

  11. Lack of divergence in seed ecology of two Amphicarpaea (Fabaceae) species disjunct between eastern Asia and eastern North America.

    Zhang, Keliang; Baskin, Jerry M; Baskin, Carol C; Yang, Xuejun; Huang, Zhenying

    2015-06-01

    Many congeneric species are disjunct between eastern Asia and eastern North America. No previous study has compared the seed biology of closely related disjunct taxa of legumes or of a diaspore-heteromorphic species. Our objective was to compare seed dormancy in two such sister species in the genus Amphicarpaea (Fabaceae). We investigated the ecology and ecophysiology of aerial and subterranean seeds of the amphicarpic species Amphicarpaea edgeworthii from China and compared the results to those published for its sister species A. bracteata from eastern North America. The seed coat of aerial seeds of A. edgeworthii is well developed, whereas the seed coat of subterranean seeds is not. Aerial seeds have combinational dormancy (physical dormancy [PY] + physiological dormancy [PD]) broken by scarification followed by cold stratification or by after-ripening and scarification; whereas subterranean seeds have PD broken by cold stratification. Aerial seeds formed a persistent soil seed bank, and subterranean seeds a transient soil seed bank. Aerial seeds of A. bracteata also have PY+PD and subterranean seeds PD. Subterranean seeds of both species are desiccation intolerant. Dormancy in neither aerial nor subterranean seeds of both species has diverged over geological time. Compared to subterranean seeds, aerial seeds of both species dispersed over longer distances. Seed dispersal ability and degree of dormancy of neither species fits the high-risk/low-risk (H-H/L-L) strategy found in many diaspore-dimorphic species. Rather, both species have an H-L/L-H strategy for these two life history traits. © 2015 Botanical Society of America, Inc.

  12. Physicochemical properties of peptide-coated microelectrode arrays and their in vitro effects on neuroblast cells

    Ghane-Motlagh, Bahareh, E-mail: bahar.ghane@gmail.com [Polystim Neurotechnologies Laboratory, Department of Electrical Engineering, Polytechnique Montreal, QC H3C 3A7 (Canada); Javanbakht, Taraneh; Shoghi, Fatemeh; Wilkinson, Kevin J.; Martel, Richard [Department of Chemistry, University of Montreal, QC H3C 3J7 (Canada); Sawan, Mohamad [Polystim Neurotechnologies Laboratory, Department of Electrical Engineering, Polytechnique Montreal, QC H3C 3A7 (Canada)

    2016-11-01

    Silicon micromachined neural electrode arrays, which act as an interface between bioelectronic devices and neural tissues, play an important role in chronic implants, in vivo. The biological compatibility of chronic microelectrode arrays (MEA) is an essential factor that must be taken into account in their design and fabrication. In order to improve biocompatibility of the MEAs, the surface of the electrodes was coated with polyethylene glycol (PEG) and parylene-C, which are biocompatible polymers. An in vitro study was performed to test the capacity of poly-D-lysine (PDL) to improve neural-cell adhesion and proliferation. Increased proliferation of the neuroblast cells on the microelectrodes was observed in the presence of the PDL. The presence of the peptide on the electrode surface was confirmed using Fourier transform infrared spectroscopy and scanning electron micr