WorldWideScience

Sample records for sediment transport processes

  1. Contemporary sediment-transport processes in submarine canyons.

    Science.gov (United States)

    Puig, Pere; Palanques, Albert; Martín, Jacobo

    2014-01-01

    Submarine canyons are morphological incisions into continental margins that act as major conduits of sediment from shallow- to deep-sea regions. However, the exact mechanisms involved in sediment transfer within submarine canyons are still a subject of investigation. Several studies have provided direct information about contemporary sedimentary processes in submarine canyons that suggests different modes of transport and various triggering mechanisms. Storm-induced turbidity currents and enhanced off-shelf advection, hyperpycnal flows and failures of recently deposited fluvial sediments, dense shelf-water cascading, canyon-flank failures, and trawling-induced resuspension largely dominate present-day sediment transfer through canyons. Additionally, internal waves periodically resuspend ephemeral deposits within canyons and contribute to dispersing particles or retaining and accumulating them in specific regions. These transport processes commonly deposit sediments in the upper- and middle-canyon reaches for decades or centuries before being completely or partially flushed farther down-canyon by large sediment failures.

  2. Sediment transport processes in the Pearl River Estuary as revealed by grain-size end-member modeling and sediment trend analysis

    Science.gov (United States)

    Li, Tao; Li, Tuan-Jie

    2018-04-01

    The analysis of grain-size distribution enables us to decipher sediment transport processes and understand the causal relations between dynamic processes and grain-size distributions. In the present study, grain sizes were measured from surface sediments collected in the Pearl River Estuary and its adjacent coastal areas. End-member modeling analysis attempts to unmix the grain sizes into geologically meaningful populations. Six grain-size end-members were identified. Their dominant modes are 0 Φ, 1.5 Φ, 2.75 Φ, 4.5 Φ, 7 Φ, and 8 Φ, corresponding to coarse sand, medium sand, fine sand, very coarse silt, silt, and clay, respectively. The spatial distributions of the six end-members are influenced by sediment transport and depositional processes. The two coarsest end-members (coarse sand and medium sand) may reflect relict sediments deposited during the last glacial period. The fine sand end-member would be difficult to transport under fair weather conditions, and likely indicates storm deposits. The three remaining fine-grained end-members (very coarse silt, silt, and clay) are recognized as suspended particles transported by saltwater intrusion via the flood tidal current, the Guangdong Coastal Current, and riverine outflow. The grain-size trend analysis shows distinct transport patterns for the three fine-grained end-members. The landward transport of the very coarse silt end-member occurs in the eastern part of the estuary, the seaward transport of the silt end-member occurs in the western part, and the east-west transport of the clay end-member occurs in the coastal areas. The results show that grain-size end-member modeling analysis in combination with sediment trend analysis help to better understand sediment transport patterns and the associated transport mechanisms.

  3. Sediment transport processes and their resulting stratigraphy: informing science and society

    Science.gov (United States)

    Nittrouer, J. A.

    2013-12-01

    Sediment transport physically shapes planetary surfaces by producing patterns of erosion and deposition, with the relative magnitudes of geomorphic actions varying according to environmental conditions. Where sediment fills accommodation space and generates accumulation, a stratigraphic archive develops that potentially harbors a trove of information documenting dynamic conditions during the periods of sediment production, transport and deposition. By investigating the stratigraphic record, it is possible to describe changes in surface environments, as well as hypothesize about the development of regional tectonic and climate regimes. Ultimately, information contained within the stratigraphic record is critical for evaluating the geological history of terrestrial planets. The enigma of stratigraphy, however, is that sediment deposition is finicky, there is no uninterrupted record, and while deposits may reflect only a brief temporal window, they may still be used to infer about conditions that encompass much longer periods of time. Consider a case where meter-scale dune foresets, deposited in a matter of minutes to hours, are in contact with sediments above and below that reflect entirely different depositional circumstances and are separated in time by a hiatus of thousands or perhaps millions of years. To effectively unlock the scientific trove bound in stratigraphy, it is first necessary to identify where such unconformities exist and the conditions that lead to their development. This challenge is made much simpler through scientific advances in understanding sediment transport processes -- the examination of how fluid and solids interact under modern conditions -- because this is precisely where sediment patterns first emerge to produce accumulation that builds a stratigraphic record. By advancing an understanding of process-based sedimentology, it is possible to enhance diagnostic evaluations of the stratigraphic record. Fortunately, over the past several

  4. Modeling chemical accumulation in sediment of small waterbodies accounting for sediment transport and water-sediment exchange processes over long periods.

    Science.gov (United States)

    Patterson, David Albert; Strehmel, Alexander; Erzgräber, Beate; Hammel, Klaus

    2017-12-01

    In a recent scientific opinion of the European Food Safety Authority it is argued that the accumulation of plant protection products in sediments over long time periods may be an environmentally significant process. Therefore, the European Food Safety Authority proposed a calculation to account for plant protection product accumulation. This calculation, however, considers plant protection product degradation within sediment as the only dissipation route, and does not account for sediment dynamics or back-diffusion into the water column. The hydraulic model Hydrologic Engineering Center-River Analysis System (HEC-RAS; US Army Corps of Engineers) was parameterized to assess sediment transport and deposition dynamics within the FOrum for Co-ordination of pesticide fate models and their USe (FOCUS) scenarios in simulations spanning 20 yr. The results show that only 10 to 50% of incoming sediment would be deposited. The remaining portion of sediment particles is transported across the downstream boundary. For a generic plant protection product substance this resulted in deposition of only 20 to 50% of incoming plant protection product substance. In a separate analysis, the FOCUS TOXSWA model was utilized to examine the relative importance of degradation versus back-diffusion as loss processes from the sediment compartment for a diverse range of generic plant protection products. In simulations spanning 20 yr, it was shown that back-diffusion was generally the dominant dissipation process. The results of the present study show that sediment dynamics and back-diffusion should be considered when calculating long-term plant protection product accumulation in sediment. Neglecting these may lead to a systematic overestimation of accumulation. Environ Toxicol Chem 2017;36:3223-3231. © 2017 SETAC. © 2017 SETAC.

  5. Sediment Transport

    DEFF Research Database (Denmark)

    Liu, Zhou

    Flow and sediment transport are important in relation to several engineering topics, e.g. erosion around structures, backfilling of dredged channels and nearshore morphological change. The purpose of the present book is to describe both the basic hydrodynamics and the basic sediment transport...... mechanics. Chapter 1 deals with fundamentals in fluid mechanics with emphasis on bed shear stress by currents, while chapter 3 discusses wave boundary layer theory. They are both written with a view to sediment transport. Sediment transport in rivers, cross-shore and longshore are dealt with in chapters 2......, 4 and 5, respectively. It is not the intention of the book to give a broad review of the literature on this very wide topic. The book tries to pick up information which is of engineering importance. An obstacle to the study of sedimentation is the scale effect in model tests. Whenever small...

  6. Numerical Modelling Approaches for Sediment Transport in Sewer Systems

    DEFF Research Database (Denmark)

    Mark, Ole

    A study of the sediment transport processes in sewers has been carried out. Based on this study a mathematical modelling system has been developed to describe the transport processes of sediments and dissolved matter in sewer systems. The modelling system consists of three sub-models which...... constitute the basic modelling system necessary to give a discription of the most dominant physical transport processes concerning particles and dissolved matter in sewer systems: A surface model. An advection-dispersion model. A sediment transport model....

  7. A New Measure for Transported Suspended Sediment

    Science.gov (United States)

    Yang, Q.

    2017-12-01

    Non-uniform suspended sediment plays an important role in many geographical and biological processes. Despite extensive study, understanding to it seems to stagnate when times to consider non-uniformity and non-equilibrium scenarios comes. Due to unsatisfactory reproducibility, large-scaled flume seems to be incompetent to conduct more fundamental research in this area. To push the realm a step further, experiment to find how suspended sediment exchanges is conducted in a new validated equipment, in which turbulence is motivated by oscillating grids. Analysis shows that 1) suspended sediment exchange is constrained by ωS invariance, 2) ωS of the suspended sediment that certain flow regime could support is unique regardless of the sediment gradation and 3) the more turbulent the flow, the higher ωS of the suspension the flow could achieve. A new measure for suspended sediment ωS, the work required to sustain sediment in suspension transport mode if multiplied by gravitational acceleration, is thus proposed to better describe the dynamics of transported suspended sediment. Except for the further understanding towards suspended sediment transportation mechanics, with this energy measure, a strategy to distribute total transport capacity to different fractions could be derived and rational calculation of non-uniform sediment transport capacity under non-equilibrium conditions be possible.

  8. Numerical modelling of near-bottom sediment transport: turbulence modulation, new process models and application to the Scheldt and the Belgian coast

    OpenAIRE

    Bi, Q.

    2015-01-01

    Sediment transport due to fluid motion is a crucial process in many environmental and engineered systems. Therefore, understanding sediment transport is critical for predicting sediment movements and evaluating the short and/or long-term influence to the surface water systems. Despite the importance of sediment transport, the fundamental aspects involved are far from being completely understood. At the core of the problem is the complex interaction between a turbulent flow field and sediment ...

  9. Sediment Transport Capacity and Channel Processes in a Humid Tropical Montane River - Rio Pacuare, Costa Rica

    Science.gov (United States)

    Lind, P.; McDowell, P. F.

    2017-12-01

    Investigating sediment transport capacity as well as the spatial and temporal variations of sediment flux are critical component of river research, especially for applications in resource management and conservation, hazards assessment and planning, and riverine ecology. The bedload fraction of sediment transported through montane rivers often defines channel and bed form processes. It is understood that humid tropical montane rivers are capable of producing some of the largest quantities of sediment per unit drainage area. Bedload flux reported on a few Southeast Asian humid tropical montane rivers show that bedload constituted 16-75% of the total sediment load - this is notably higher than the generally accepted 10% of a channel's sediment load. However, to date almost all of the research done on sediment transport in humid tropical systems has focused on suspended load. This study presents annual bedload transport rate estimates for six field sites distributed within 45 river kilometers (Rkm) of the montane portion of the Rio Pacuare, located in the Talamanca Mountains of Costa Rica. This research reveals that flows capable of mobilizing the D84 occur on average at least once but often multiple times a year in this river system. The Rio Pacuare has a sufficient supply of sediment to meet its high transport capacity needs. As a result, large active bars composed of imbricated boulders define channel form at moderate and low flows throughout the study area. Differences in the magnitude, as well as the spatial and temporal variations of sediment flux at each field site are discussed in relation to stream power, and annual/inter-annual precipitation patterns. A unique mix of field and remote sensing techniques were applied to address these questions and to overcome some of the challenges of tropical river research. For example, due to the large grain size and high stream energy, grain mobilization and validation of modeled shear stress requirements for transport

  10. Understanding processes controlling sediment transports at the mouth of a highly energetic inlet system (San Francisco Bay, CA)

    Science.gov (United States)

    Elias, Edwin P.L.; Hansen, Jeff E.; Barnard, P.L.; Jaffee, B.E.; Schoellhamer, D.H.

    2013-01-01

    San Francisco Bay is one of the largest estuaries along the U.S. West Coast and is linked to the Pacific Ocean through the Golden Gate, a 100 m deep bedrock inlet. A coupled wave, flow and sediment transport model is used to quantify the sediment linkages between San Francisco Bay, the Golden Gate, and the adjacent open coast. Flow and sediment transport processes are investigated using an ensemble average of 24 climatologically derived wave cases and a 24.8 h representative tidal cycle. The model simulations show that within the inlet, flow and sediment transport is tidally dominated and driven by asymmetry of the ebb and flood tides. Peak ebb velocities exceed the peak flood velocities in the narrow Golden Gate channel as a result of flow convergence and acceleration. Persistent flow and sediment gyres at the headland tips are formed that limit sediment transfer from the ebb-tidal delta to the inlet and into the bay. The residual transport pattern in the inlet is dominated by a lateral segregation with a large ebb-dominant sediment transport (and flow) prevailing along the deeper north side of the Golden Gate channel, and smaller flood dominant transports along the shallow southern margin. The seaward edge of the ebb-tidal delta largely corresponds to the seaward extent of strong tidal flows. On the ebb-tidal delta, both waves and tidal forcing govern flow and sediment transport. Wave focusing by the ebb-tidal delta leads to strong patterns of sediment convergence and divergence along the adjacent Ocean Beach.

  11. The relative contribution of near-bed vs. intragravel horizontal transport to fine sediment accumulation processes in river gravel beds

    Science.gov (United States)

    Casas-Mulet, Roser; Lakhanpal, Garima; Stewardson, Michael J.

    2018-02-01

    Understanding flow-sediment interactions is important for comprehending river functioning. Fine sediment accumulation processes, in particular, have key implications for ecosystem health. However, the amount of fines generated by intragravel flows and later accumulated in gravel streambeds may have been underestimated, as the hydraulic-related driving transport mechanisms in play are not clearly identified. Specifically, the relative contribution of fines from upper vs. lower sediment layers in gravel beds is not well understood. By recreating flooded and dewatered conditions in an experimental flume filled with natural sediment, we estimated such contributions by observing and collecting intragravel transported fines that were later accumulated into a void in the middle of the sediment matrix. Near-bed transport in the upper sediment layers (named Brinkman load) during flooded conditions accounted for most (90%) of the accumulated fines. Intragravel transport in the lower sediment layers (named Interstitial load) was the sole source of transport and accumulation during dewatered conditions with steeper hydraulic gradients. Interstitial load accounted for 10% of the total transport during flooded conditions. Although small, such estimations demonstrate that hydraulic-gradient transport in the lower sediment layers occurs in spite of the contradicting analytical assessments. We provide a case study to challenge the traditional approaches of assessing intragravel transport, and a useful framework to understand the origin and relative contribution of fine sediment accumulation in gravel beds. Such knowledge will be highly useful for the design of monitoring programs aiding river management, particularly in regulated rivers.

  12. Reconstructing Sediment Supply, Transport and Deposition Behind the Elwha River Dams

    Science.gov (United States)

    Beveridge, C.

    2017-12-01

    The Elwha River watershed in Olympic National Park of Washington State, USA is predominantly a steep, mountainous landscape where dominant geomorphic processes include landslides, debris flows and gullying. The river is characterized by substantial variability of channel morphology and fluvial processes, and alternates between narrow bedrock canyons and wider alluvial reaches for much of its length. Literature suggests that the Elwha watershed is topographically and tectonically in steady state. The removal of the two massive hydropower dams along the river in 2013 marked the largest dam removal in history. Over the century long lifespan of the dams, approximately 21 million cubic meters of sediment was impounded behind them. Long term erosion rates documented in this region and reservoir sedimentation data give unprecedented opportunities to test watershed sediment yield models and examine dominant processes that control sediment yield over human time scales. In this study, we aim to reconstruct sediment supply, transport and deposition behind the Glines Canyon Dam (most upstream dam) over its lifespan using a watershed modeling approach. We developed alternative models of varying complexity for sediment production and transport at the network scale driven by hydrologic forcing. We simulate sediment supply and transport in tributaries upstream of the dam. The modeled sediment supply and transport dynamics are based on calibrated formulae (e.g., bedload transport is simulated using Wilcock-Crowe 2003 with modification based on observed bedload transport in the Elwha River). Observational data that aid in our approach include DEM, channel morphology, meteorology, and streamflow and sediment (bedload and suspended load) discharge. We aim to demonstrate how the observed sediment yield behind the dams was influenced by upstream transport supply and capacity limitations, thereby demonstrating the scale effects of flow and sediment transport processes in the Elwha River

  13. Size graded sediment dynamics: from the processes characterization to the transport modelling in the English Channel

    International Nuclear Information System (INIS)

    Blanpain, O.

    2009-10-01

    The purpose of this work is the implementation of a sediment transport model in the English Channel. The design of such a model requires the identification of the physical processes, their modelling and their in-situ validation. Because of the sedimentary particularities of the study area, modelling of the mechanical behaviour of a non uniform mixture of sediments and particularly of the fine grains within a coarse matrix is required. This study focused on the characterization of the relevant processes by acquisition of experimental and in-situ data. Data acquired in hydro-sedimentary conditions comparable to those found in the English Channel are scarce. A new instrument and image processing technique were specifically conceived and implemented in-situ to observe and measure, with a high temporal resolution, the dynamics of a strongly heterogeneous mixture of particles in a grain-size scale. The data collected compared well with several existing formulations. One of these formulations was chosen to be adapted. The transfer dynamics of fine grains in coarse sediments and their depth of penetration were acquired from stratigraphic samples. The sediment transport model deals with multi-size grains and multi sedimentary layers, it is forced by swell and currents, and accounts for bead load and suspended load transports. It was applied to realistic scenarios for the English Channel. (author)

  14. Prediction of bedload sediment transport for heterogeneous sediments in shape

    Science.gov (United States)

    Durafour, Marine; Jarno, Armelle; Le Bot, Sophie; Lafite, Robert; Marin, François

    2015-04-01

    Key words: Particle shape, in-situ measurements, bedload transport, heterogeneous sediments Bedload sediment transport in the coastal area is a dynamic process mainly influenced by the type of hydrodynamic forcings involved (current and/or waves), the flow properties (velocity, viscosity, depth) and sediment heterogeneity (particle size, density, shape). Although particle shape is recognized to be a significant factor in the hydrodynamic behavior of grains, this parameter is not currently implemented in bedload transport formulations: firstly because the mechanisms of initiation of motion according to particle shape are still not fully understood, and secondly due to the difficulties in defining common shape parameters. In March 2011, a large panel of in-situ instruments was deployed on two sites in the Eastern English Channel, during the sea campaign MESFLUX11. Samples of the sediment cover available for transport are collected, during a slack period, per 2cm thick strata by divers and by using a Shipeck grab. Bedload discharges along a tidal cycle are also collected with a Delft Nile Sampler (DNS; Gaweesh and Van Rijn, 1992, 1994) on both sites. The first one is characterized by a sandy bed with a low size dispersion, while the other study area implies graded sediments from fine sands to granules. A detailed analysis of the data is performed to follow the evolution of in-situ bedload fluxes on the seabed for a single current. In-situ measurements are compared to existing formulations according to a single fraction approach, using the median diameter of the mixture, and a fractionwise approach, involving a discretization of the grading curve. Results emphasize the interest to oscillate between these two methods according to the dispersion in size of the site considered. The need to apply a hiding/exposure coefficient (Egiazaroff, 1965) and a hindrance factor (Kleinhans and Van Rijn, 2002) for size heterogeneous sediments is also clearly highlighted. A really good

  15. Incorporation of Fine-Grained Sediment Erodibility Measurements into Sediment Transport Modeling, Capitol Lake, Washington

    Science.gov (United States)

    Stevens, Andrew W.; Gelfenbaum, Guy; Elias, Edwin; Jones, Craig

    2008-01-01

    Capitol Lake was created in 1951 with the construction of a concrete dam and control gate that prevented salt-water intrusion into the newly formed lake and regulated flow of the Deschutes River into southern Puget Sound. Physical processes associated with the former tidally dominated estuary were altered, and the dam structure itself likely caused an increase in retention of sediment flowing into the lake from the Deschutes River. Several efforts to manage sediment accumulation in the lake, including dredging and the construction of sediment traps upriver, failed to stop the lake from filling with sediment. The Deschutes Estuary Feasibility Study (DEFS) was carried out to evaluate the possibility of removing the dam and restoring estuarine processes as an alternative ongoing lake management. An important component of DEFS was the creation of a hydrodynamic and sediment transport model of the restored Deschutes Estuary. Results from model simulations indicated that estuarine processes would be restored under each of four restoration alternatives, and that over time, the restored estuary would have morphological features similar to the predam estuary. The model also predicted that after dam-removal, a large portion of the sediment eroded from the lake bottom would be deposited near the Port of Olympia and a marina located in lower Budd Inlet seaward of the present dam. The volume of sediment transported downstream was a critical piece of information that managers needed to estimate the total cost of the proposed restoration project. However, the ability of the model to predict the magnitude of sediment transport in general and, in particular, the volume of sediment deposition in the port and marina was limited by a lack of information on the erodibility of fine-grained sediments in Capitol Lake. Cores at several sites throughout Capitol Lake were collected between October 31 and November 1, 2007. The erodibility of sediments in the cores was later determined in the

  16. Conceptual Site Model for Newark Bay—Hydrodynamics and Sediment Transport

    Directory of Open Access Journals (Sweden)

    Parmeshwar L. Shrestha

    2014-02-01

    Full Text Available A conceptual site model (CSM has been developed for the Newark Bay Study Area (NBSA as part of the Remedial Investigation/Feasibility Study (RI/FS for this New Jersey site. The CSM is an evolving document that describes the influence of physical, chemical and biological processes on contaminant fate and transport. The CSM is initiated at the start of a project, updated during site activities, and used to inform sampling and remediation planning. This paper describes the hydrodynamic and sediment transport components of the CSM for the NBSA. Hydrodynamic processes are influenced by freshwater inflows, astronomical forcing through two tidal straits, meteorological conditions, and anthropogenic activities such as navigational dredging. Sediment dynamics are driven by hydrodynamics, waves, sediment loading from freshwater sources and the tidal straits, sediment size gradation, sediment bed properties, and particle-to-particle interactions. Cohesive sediment transport is governed by advection, dispersion, aggregation, settling, consolidation, and erosion. Noncohesive sediment transport is governed by advection, dispersion, settling, armoring, and transport in suspension and along the bed. The CSM will inform the development and application of a numerical model that accounts for all key variables to adequately describe the NBSA’s historical, current, and future physical conditions.

  17. Unusual Sediment Transportation Processes Under Low Pressure Environments and Implications For Gullies and Recurring Slope Lineae (RSL)

    Science.gov (United States)

    Raack, J.; Herny, C.; Conway, S. J.; Balme, M. R.; Carpy, S.; Patel, M.

    2017-12-01

    Recently and presently active mass wasting features such as gullies and recurring slope lineae (RSL) are common on the surface of Mars, but their origin and triggering mechanisms are under intense debate. While several active mass wasting features have been linked to sublimation of CO2ice, dry granular flows (avalanches), or a combination of both effects, others have been more closely linked to liquid water or briny outflows (e.g. for RSL). However, liquid water on the surface of Mars is unstable under present-day low pressures and surface temperatures. Nevertheless, numerical modeling and remote sensing data have shown that maximum surface temperatures can exceed the frost point of water and that liquid water could exist on the surface of actual Mars in a transient state. But to explain the observed spatial extent of RSL and recent modification of gullies, it is estimated that relatively large amounts of liquid water are necessary. It is proving challenging to generate such quantities from the atmosphere. In this contribution we explore the potential effects of boiling water (boiling occurs at martian pressures slightly above the frost point of 273 K) on sediment transport. We will present the outcomes of a series of experiments under low surface and water temperatures (between 278 and 297 K, analogous to surface temperatures observed near RSL) and low pressures (between 8 and 11 mbar). We simulate sediment transport by boiling liquid water over a sloping bed of unconsolidated sediment. Our results reveal a suite of unusual and very reactive sediment transportation processes, which are not produced under terrestrial pressures. We will discuss the impact of these unusual sediment transport processes on estimates of water budgets for active mass wasting processes.

  18. Managing erosion, sediment transport and water quality in drained peatland catchments

    Energy Technology Data Exchange (ETDEWEB)

    Marttila, H.

    2010-07-01

    Peatland drainage changes catchment conditions and increases the transport of suspended solids (SS) and nutrients. New knowledge and management methods are needed to reduce SS loading from these areas. This thesis examines sediment delivery and erosion processes in a number of peatland drainage areas and catchments in order to determine the effects of drainage on sediment and erosion dynamics and mechanics. Results from studies performed in peat mining, peatland forestry and disturbed headwater catchments in Finland are presented and potential sediment load management methods are discussed for drainage areas and headwater brooks. Particular attention is devoted to erosion of organic peat, sediment transport and methods to reduce the impacts of peatland drainage in boreal headwaters. This thesis consists of six articles. The first and second papers focus on the erosion and sediment transport processes at peat harvesting and peatland forestry drainage networks. The results indicate that in-channel processes are important in drained peatland, since the drainage network often constitutes temporary inter-storm storage for eroding and transporting material. Sediment properties determine the bed sediment erosion sensitivity, as fluffy organic peat sediment consolidates over time. As flashiness and peak runoff control sediment entrainment and transport from drained peatland areas, water quality management should include peak runoff management. The third, fourth and fifth papers studies use and application of peak runoff control (PRC) method to the peat harvesting and peatland forestry conditions for water protection. Results indicate that effective water quality management in drained peatland areas can be achieved using this method. Installation of the PRC structures is a useful and cost-effective way of storing storm runoff waters temporarily in the ditch system and providing a retention time for eroded sediment to settle to the ditch bed and drainage network. The main

  19. Performance testing of the sediment-contaminant transport model, SERATRA, at different rivers

    International Nuclear Information System (INIS)

    Onishi, Y.; Yabusaki, S.B.; Kincaid, C.T.

    1982-04-01

    Mathematical models of sediment-contaminant migration in surface water must account for transport, intermedia transfer, decay and degradation, and transformation processes. The unsteady, two dimensional, sediment-contaminant transport code, SERATRA (Onishi, Schreiber and Codell 1980) includes these mechanisms. To assess the accuracy of SERATRA to simulate the sediment-contaminant transport and fate processes, the code was tested against one-dimensional analytical solutions, checked for its mass balance, and applied to field sites. The field application cases ranged from relatively simple, steady conditions to unsteady, nonuniform conditions for large, intermediate, and small rivers. It was found that SERATRA is capable of simulating sediment-contaminant transport under a wide range of conditions

  20. Observations of coastal sediment dynamics of the Tijuana Estuary Fine Sediment Fate and Transport Demonstration Project, Imperial Beach, California

    Science.gov (United States)

    Warrick, Jonathan A.; Rosenberger, Kurt J.; Lam, Angela; Ferreiera, Joanne; Miller, Ian M.; Rippy, Meg; Svejkovsky, Jan; Mustain, Neomi

    2012-01-01

    Coastal restoration and management must address the presence, use, and transportation of fine sediment, yet little information exists on the patterns and/or processes of fine-sediment transport and deposition for these systems. To fill this information gap, a number of State of California, Federal, and private industry partners developed the Tijuana Estuary Fine Sediment Fate and Transport Demonstration Project ("Demonstration Project") with the purpose of monitoring the transport, fate, and impacts of fine sediment from beach-sediment nourishments in 2008 and 2009 near the Tijuana River estuary, Imperial Beach, California. The primary purpose of the Demonstration Project was to collect and provide information about the directions, rates, and processes of fine-sediment transport along and across a California beach and nearshore setting. To achieve these goals, the U.S. Geological Survey monitored water, beach, and seafloor properties during the 2008–2009 Demonstration Project. The project utilized sediment with ~40 percent fine sediment by mass so that the dispersal and transport of fine sediment would be easily recognizable. The purpose of this report is to present and disseminate the data collected during the physical monitoring of the Demonstration Project. These data are available online at the links noted in the "Additional Digital Information" section. Synthesis of these data and results will be provided in subsequent publications.

  1. Mg/Ca and Sr/Ca as novel geochemical proxies for understanding sediment transport processes within coral reefs

    Science.gov (United States)

    Gacutan, J.; Vila-Concejo, A.; Nothdurft, L. D.; Fellowes, T. E.; Cathey, H. E.; Opdyke, B. N.; Harris, D. L.; Hamylton, S.; Carvalho, R. C.; Byrne, M.; Webster, J. M.

    2017-10-01

    Sediment transport is a key driver of reef zonation and biodiversity, where an understanding of sediment dynamics gives insights into past reef processes and allows the prediction of geomorphic responses to changing environmental conditions. However, modal conditions within the back-reef seldom promote sediment transport, hence direct observation is inherently difficult. Large benthic foraminifera (LBF) have previously been employed as 'tracers' to infer sediment transport pathways on coral reefs, as their habitat is largely restricted to the algal flat and post-mortem, their calcium carbonate test is susceptible to sediment transport forces into the back-reef. Foraminiferal test abundance and post-depositional test alteration have been used as proxies for sediment transport, although the resolution of these measures becomes limited by low test abundance and the lack of variation within test alteration. Here we propose the novel use of elemental ratios as a proxy for sediment transport. Two species, Baculogypsina sphaerulata and Calcarina capricornia, were analysed using a taphonomic index within One Tree and Lady Musgrave reefs, Great Barrier Reef (Australia). Inductively coupled plasma-atomic emission spectrometry (ICP-AES) was used to determine Mg/Ca and Sr/Ca and these ratios were compared with taphonomic data. Decreases in test Mg/Ca accompany increases in Sr/Ca in specimens from algal-flat to lagoonal samples in both species, mirroring trends indicated by taphonomic values, therefore indicating a relationship with test alteration. To delineate mechanisms driving changes in elemental ratios, back-scattered electron (BSE) images, elemental mapping and in situ quantitative spot analyses by electron microprobe microanalysis (EPMA) using wavelength dispersive X-ray spectrometers (WDS) were performed on un-altered algal flat and heavily abraded tests for both species. EPMA analyses reveal heterogeneity in Mg/Ca between spines and the test wall, implying the loss of

  2. A Sediment Transport Model for Sewers

    DEFF Research Database (Denmark)

    Mark, Ole; Larsson, Johan; Larsen, Torben

    1993-01-01

    This paper describes a mathematical model for transport processes in sewers. The model consists of three sub models, a surface model for the description of the buildup and the washoff of sediment particles from the surface area, a morphological model and an advection-dispersion model. The model i...... is being developed as a part of a study being carried out at the University of Aalborg, Denmark and VBB VIAK, Sweden. The project is funded by the Swedish Water and Waste Water Works Association and the Nordic Industrial Foundation.......This paper describes a mathematical model for transport processes in sewers. The model consists of three sub models, a surface model for the description of the buildup and the washoff of sediment particles from the surface area, a morphological model and an advection-dispersion model. The model...

  3. Significance of flow clustering and sequencing on sediment transport: 1D sediment transport modelling

    Science.gov (United States)

    Hassan, Kazi; Allen, Deonie; Haynes, Heather

    2016-04-01

    . Results illustrate that clustered flood events generated sediment loads up to an order of magnitude greater than that of individual events of the same flood volume. Correlations were significant for sediment volume compared to both maximum flow discharge (R2<0.8) and number of events (R2 -0.5 to -0.7) within the cluster. The strongest correlations occurred for clusters with a greater number of flow events only slightly above-threshold. This illustrates that the numerical model can capture a degree of the non-linear morphological response to flow magnitude. Analysis of the relationship between morphological change and the skewness of flow events within each cluster was also determined, illustrating only minor sensitivity to cluster peak distribution skewness. This is surprising and discussion is presented on model limitations, including the capability of sediment transport formulae to effectively account for temporal processes of antecedent flow, hysteresis, local supply etc.

  4. Storm-driven sediment transport in Massachusetts Bay

    Science.gov (United States)

    Warner, J.C.; Butman, B.; Dalyander, P.S.

    2008-01-01

    Massachusetts Bay is a semi-enclosed embayment in the western Gulf of Maine about 50 km wide and 100 km long. Bottom sediment resuspension is controlled predominately by storm-induced surface waves and transport by the tidal- and wind-driven circulation. Because the Bay is open to the northeast, winds from the northeast ('Northeasters') generate the largest surface waves and are thus the most effective in resuspending sediments. The three-dimensional oceanographic circulation model Regional Ocean Modeling System (ROMS) is used to explore the resuspension, transport, and deposition of sediment caused by Northeasters. The model transports multiple sediment classes and tracks the evolution of a multilevel sediment bed. The surficial sediment characteristics of the bed are coupled to one of several bottom-boundary layer modules that calculate enhanced bottom roughness due to wave-current interaction. The wave field is calculated from the model Simulating WAves Nearshore (SWAN). Two idealized simulations were carried out to explore the effects of Northeasters on the transport and fate of sediments. In one simulation, an initially spatially uniform bed of mixed sediments exposed to a series of Northeasters evolved to a pattern similar to the existing surficial sediment distribution. A second set of simulations explored sediment-transport pathways caused by storms with winds from the northeast quadrant by simulating release of sediment at selected locations. Storms with winds from the north cause transport southward along the western shore of Massachusetts Bay, while storms with winds from the east and southeast drive northerly nearshore flow. The simulations show that Northeasters can effectively transport sediments from Boston Harbor and the area offshore of the harbor to the southeast into Cape Cod Bay and offshore into Stellwagen Basin. This transport pattern is consistent with Boston Harbor as the source of silver found in the surficial sediments of Cape Cod Bay and

  5. Suspended sediment transport trough a large fluvial-tidal channel network

    Science.gov (United States)

    Wright, Scott A.; Morgan-King, Tara L.

    2015-01-01

    The confluence of the Sacramento and San Joaquin Rivers, CA, forms a large network of interconnected channels, referred to as the Sacramento-San Joaquin Delta (the Delta). The Delta comprises the transition zone from the fluvial influences of the upstream rivers and tidal influences of San Francisco Bay downstream. Formerly an extensive tidal marsh, the hydrodynamics and geomorphology of Delta have been substantially modified by humans to support agriculture, navigation, and water supply. These modifications, including construction of new channels, diking and draining of tidal wetlands, dredging of navigation channels, and the operation of large pumping facilities for distribution of freshwater from the Delta to other parts of the state, have had a dramatic impact on the physical and ecological processes within the Delta. To better understand the current physical processes, and their linkages to ecological processes, the USGS maintains an extensive network of flow, sediment, and water quality gages in the Delta. Flow gaging is accomplished through use of the index-velocity method, and sediment monitoring uses turbidity as a surrogate for suspended-sediment concentration. Herein, we present analyses of the transport and dispersal of suspended sediment through the complex network of channels in the Delta. The primary source of sediment to the Delta is the Sacramento River, which delivers pulses of sediment primarily during winter and spring runoff events. Upon reaching the Delta, the sediment pulses move through the fluvial-tidal transition while also encountering numerous channel junctions as the Sacramento River branches into several distributary channels. The monitoring network allows us to track these pulses through the network and document the dominant transport pathways for suspended sediment. Further, the flow gaging allows for an assessment of the relative effects of advection (the fluvial signal) and dispersion (from the tides) on the sediment pulses as they

  6. Multi-scale interactions affecting transport, storage, and processing of solutes and sediments in stream corridors (Invited)

    Science.gov (United States)

    Harvey, J. W.; Packman, A. I.

    2010-12-01

    Surface water and groundwater flow interact with the channel geomorphology and sediments in ways that determine how material is transported, stored, and transformed in stream corridors. Solute and sediment transport affect important ecological processes such as carbon and nutrient dynamics and stream metabolism, processes that are fundamental to stream health and function. Many individual mechanisms of transport and storage of solute and sediment have been studied, including surface water exchange between the main channel and side pools, hyporheic flow through shallow and deep subsurface flow paths, and sediment transport during both baseflow and floods. A significant challenge arises from non-linear and scale-dependent transport resulting from natural, fractal fluvial topography and associated broad, multi-scale hydrologic interactions. Connections between processes and linkages across scales are not well understood, imposing significant limitations on system predictability. The whole-stream tracer experimental approach is popular because of the spatial averaging of heterogeneous processes; however the tracer results, implemented alone and analyzed using typical models, cannot usually predict transport beyond the very specific conditions of the experiment. Furthermore, the results of whole stream tracer experiments tend to be biased due to unavoidable limitations associated with sampling frequency, measurement sensitivity, and experiment duration. We recommend that whole-stream tracer additions be augmented with hydraulic and topographic measurements and also with additional tracer measurements made directly in storage zones. We present examples of measurements that encompass interactions across spatial and temporal scales and models that are transferable to a wide range of flow and geomorphic conditions. These results show how the competitive effects between the different forces driving hyporheic flow, operating at different spatial scales, creates a situation

  7. Sediment transport via needle ice: a new method for diffusive transport on laboratory-scale hillslopes

    Science.gov (United States)

    Sweeney, K. E.; Roering, J. J.; Rempel, A. W.

    2012-12-01

    controlled by systematically varying the frequency and/or duration of temperature perturbations. The rate of sediment transport on soil mantled hillslopes depends on topographic slope and transport occurs in an "active layer", i.e., the soil mantle. We show that needle ice transports sediment diffusively and has great potential as a method for laboratory simulation of a soil-mantled hillslope since transport is confined to a layer only a few millimeters from the surface. Furthermore, while past experiments are limited to modeling landscape response to precipitation or uplift, our method to systematically control the vigor of hillslope processes will enable us to model potential climate-driven changes in hillslope transport efficiency.

  8. Interplay between spatially explicit sediment sourcing, hierarchical river-network structure, and in-channel bed material sediment transport and storage dynamics

    Science.gov (United States)

    Czuba, Jonathan A.; Foufoula-Georgiou, Efi; Gran, Karen B.; Belmont, Patrick; Wilcock, Peter R.

    2017-05-01

    Understanding how sediment moves along source to sink pathways through watersheds—from hillslopes to channels and in and out of floodplains—is a fundamental problem in geomorphology. We contribute to advancing this understanding by modeling the transport and in-channel storage dynamics of bed material sediment on a river network over a 600 year time period. Specifically, we present spatiotemporal changes in bed sediment thickness along an entire river network to elucidate how river networks organize and process sediment supply. We apply our model to sand transport in the agricultural Greater Blue Earth River Basin in Minnesota. By casting the arrival of sediment to links of the network as a Poisson process, we derive analytically (under supply-limited conditions) the time-averaged probability distribution function of bed sediment thickness for each link of the river network for any spatial distribution of inputs. Under transport-limited conditions, the analytical assumptions of the Poisson arrival process are violated (due to in-channel storage dynamics) where we find large fluctuations and periodicity in the time series of bed sediment thickness. The time series of bed sediment thickness is the result of dynamics on a network in propagating, altering, and amalgamating sediment inputs in sometimes unexpected ways. One key insight gleaned from the model is that there can be a small fraction of reaches with relatively low-transport capacity within a nonequilibrium river network acting as "bottlenecks" that control sediment to downstream reaches, whereby fluctuations in bed elevation can dissociate from signals in sediment supply.

  9. Sediment Transport Over Run-of-River Dams

    Science.gov (United States)

    O'Brien, M.; Magilligan, F. J.; Renshaw, C. E.

    2016-12-01

    Dams have numerous documented effects that can degrade river habitat downstream. One significant effect of large dams is their ability to trap sediment delivered from upstream. This trapping can alter sediment transport and grain size downstream - effects that often motivate dam removal decisions. However, recent indirect observations and modeling studies indicate that small, run-of-river (ROR) dams, which do not impede discharge, may actually leak sediment downstream. However, there are no direct measurements of sediment flux over ROR dams. This study investigates flow and sediment transport over four to six different New England ROR dams over a summer-fall field season. Sediment flux was measured using turbidity meters and tracer (RFID) cobbles. Sediment transport was also monitored through an undammed control site and through a river where two ROR dams were recently removed. These data were used to predict the conditions that contribute to sediment transport and trapping. Year 1 data show that tracer rocks of up to 61 mm were transported over a 3 m ROR dam in peak flows of 84% of bankfull stage. These tracer rocks were transported over and 10 m beyond the dam and continue to move downstream. During the same event, comparable suspended sediment fluxes of up to 81 g/s were recorded both upstream and downstream of the dam at near-synchronous timestamps. These results demonstrate the potential for sediment transport through dammed rivers, even in discharge events that do not exceed bankfull. This research elucidates the effects of ROR dams and the controls on sediment transport and trapping, contributions that may aid in dam management decisions.

  10. Sediment transport under breaking waves

    DEFF Research Database (Denmark)

    Christensen, Erik Damgaard; Hjelmager Jensen, Jacob; Mayer, Stefan

    2000-01-01

    The sediment transport in the surf zone is modelled by combining a Navier-Stokes solver, a free surface model, a turbulence model, and a sediment transport model. The flow solver is based on the finite volume technique for non-orthogonal grids. The model is capable of simulating the turbulence...... generated at the surface where the wave breaks as well as the turbulence generated near the bed due to the wave-motion and the undertow. In general, the levels of turbulent kinetic energy are found to be higher than experiments show. This results in an over prediction of the sediment transport. Nevertheless...

  11. Earth Surface Processes, Landforms and Sediment Deposits

    Science.gov (United States)

    Bridge, John; Demicco, Robert

    Earth surface processes, landforms and sediment deposits are intimately related - involving erosion of rocks, generation of sediment, and transport and deposition of sediment through various Earth surface environments. These processes, and the landforms and deposits that they generate, have a fundamental bearing on engineering, environmental and public safety issues; on recovery of economic resources; and on our understanding of Earth history. This unique textbook brings together the traditional disciplines of sedimentology and geomorphology to explain Earth surface processes, landforms and sediment deposits in a comprehensive and integrated way. It is the ideal resource for a two-semester course in sedimentology, stratigraphy, geomorphology, and Earth surface processes from the intermediate undergraduate to beginning graduate level. The book is also accompanied by a website hosting illustrations and material on field and laboratory methods for measuring, describing and analyzing Earth surface processes, landforms and sediments.

  12. Transport processes near coastal ocean outfalls

    Science.gov (United States)

    Noble, M.A.; Sherwood, C.R.; Lee, Hooi-Ling; Xu, Jie; Dartnell, P.; Robertson, G.; Martini, M.

    2001-01-01

    The central Southern California Bight is an urbanized coastal ocean where complex topography and largescale atmospheric and oceanographic forcing has led to numerous sediment-distribution patterns. Two large embayments, Santa Monica and San Pedro Bays, are connected by the short, very narrow shelf off the Palos Verdes peninsula. Ocean-sewage outfalls are located in the middle of Santa Monica Bay, on the Palos Verdes shelf and at the southeastern edge of San Pedro Bay. In 1992, the US Geological Survey, together with allied agencies, began a series of programs to determine the dominant processes that transport sediment and associated pollutants near the three ocean outfalls. As part of these programs, arrays of instrumented moorings that monitor currents, waves, water clarity, water density and collect resuspended materials were deployed on the continental shelf and slope information was also collected on the sediment and contaminant distributions in the region. The data and models developed for the Palos Verdes shelf suggest that the large reservoir of DDT/DDE in the coastal ocean sediments will continue to be exhumed and transported along the shelf for a long time. On the Santa Monica shelf, very large internal waves, or bores, are generated at the shelf break. The near-bottom currents associated with these waves sweep sediments and the associated contaminants from the shelf onto the continental slope. A new program underway on the San Pedro shelf will determine if water and contaminants from a nearby ocean outfall are transported to the local beaches by coastal ocean processes. The large variety of processes found that transport sediments and contaminants in this small region of the continental margin suggest that in regions with complex topography, local processes change markedly over small spatial scales. One cannot necessarily infer that the dominant transport processes will be similar even in adjacent regions.

  13. A field experiment on the controls of sediment transport on bedrock erosion

    Science.gov (United States)

    Beer, A. R.; Turowski, J. M.; Fritschi, B.; Rieke-Zapp, D.; Campana, L.; Lavé, J.

    2012-12-01

    The earth`s surface is naturally shaped by interactions of physical and chemical processes. In mountainous regions with steep topography river incision fundamentally controls the geomorphic evolution of the whole landscape. There, erosion of exposed bedrock sections by fluvial sediment transport is an important mechanism forming mountain river channels. The links between bedload transport and bedrock erosion has been firmly established using laboratory experiments. However, there are only few field datasets linking discharge, sediment transport, impact energy and erosion that can be used for process understanding and model evaluation. To fill this gap, a new measuring setup has been commissioned to raise an appropriate simultaneous dataset of hydraulics, sediment transport and bedrock erosion at high temporal and spatial resolution. Two natural stone slabs were installed flush with the streambed of the Erlenbach, a gauged stream in the Swiss Pre-Alps. They are mounted upon force sensors recording vertical pressure und downstream shear caused by passing sediment particles. The sediment transport rates can be assessed using geophone plates and an automated moving basket system taking short-term sediment samples. These devices are located directly downstream of the stone slabs. Bedrock erosion rates are measured continuously with erosion sensors at sub-millimeter accuracy at three points on each slab. In addition, the whole slab topography is surveyed with photogrammetry and a structured-light 3D scanner after individual flood events. Since the installation in 2011, slab bedrock erosion has been observed during several transport events. We discuss the relation between hydraulics, bedload transport, resulting pressure forces on the stone slabs and erosion rates. The aim of the study is the derivation of an empirical process law for fluvial bedrock erosion driven by moving sediment particles.

  14. Erosion and Sediment Transport Modelling in Shallow Waters: A Review on Approaches, Models and Applications

    Directory of Open Access Journals (Sweden)

    Mohammad Hajigholizadeh

    2018-03-01

    Full Text Available The erosion and sediment transport processes in shallow waters, which are discussed in this paper, begin when water droplets hit the soil surface. The transport mechanism caused by the consequent rainfall-runoff process determines the amount of generated sediment that can be transferred downslope. Many significant studies and models are performed to investigate these processes, which differ in terms of their effecting factors, approaches, inputs and outputs, model structure and the manner that these processes represent. This paper attempts to review the related literature concerning sediment transport modelling in shallow waters. A classification based on the representational processes of the soil erosion and sediment transport models (empirical, conceptual, physical and hybrid is adopted, and the commonly-used models and their characteristics are listed. This review is expected to be of interest to researchers and soil and water conservation managers who are working on erosion and sediment transport phenomena in shallow waters. The paper format should be helpful for practitioners to identify and generally characterize the types of available models, their strengths and their basic scope of applicability.

  15. Erosion and Sediment Transport Modelling in Shallow Waters: A Review on Approaches, Models and Applications.

    Science.gov (United States)

    Hajigholizadeh, Mohammad; Melesse, Assefa M; Fuentes, Hector R

    2018-03-14

    The erosion and sediment transport processes in shallow waters, which are discussed in this paper, begin when water droplets hit the soil surface. The transport mechanism caused by the consequent rainfall-runoff process determines the amount of generated sediment that can be transferred downslope. Many significant studies and models are performed to investigate these processes, which differ in terms of their effecting factors, approaches, inputs and outputs, model structure and the manner that these processes represent. This paper attempts to review the related literature concerning sediment transport modelling in shallow waters. A classification based on the representational processes of the soil erosion and sediment transport models (empirical, conceptual, physical and hybrid) is adopted, and the commonly-used models and their characteristics are listed. This review is expected to be of interest to researchers and soil and water conservation managers who are working on erosion and sediment transport phenomena in shallow waters. The paper format should be helpful for practitioners to identify and generally characterize the types of available models, their strengths and their basic scope of applicability.

  16. Sediment processes and mercury transport in a frozen freshwater fluvial lake (Lake St. Louis, QC, Canada).

    Science.gov (United States)

    Canário, João; Poissant, Laurier; O'Driscoll, Nelson; Vale, Carlos; Pilote, Martin; Lean, David

    2009-04-01

    An open-bottom and a closed-bottom mesocosm were developed to investigate the release of mercury from sediments to the water column in a frozen freshwater lake. The mesoscosms were deployed in a hole in the ice and particulate mercury (Hg(P)) and total dissolved mercury (TDHg) were measured in sediments and in water column vertical profiles. In addition, dissolved gaseous mercury (DGM) in water and mercury water/airflux were quantified. Concentrations of TDHg, DGM, and mercury flux were all higher in the open-bottom mesocosm than in the closed-bottom mesocosm. In this paper we focus on the molecular diffusion of mercury from the sediment in comparison with the TDHg accumulation in the water column. We conclude that the molecular diffusion and sediment resuspension play a minor role in mercury release from sediments suggesting that solute release during ebullition is an important transport process for mercury in the lake.

  17. RANS-based simulation of turbulent wave boundary layer and sheet-flow sediment transport processes

    DEFF Research Database (Denmark)

    Fuhrman, David R.; Schløer, Signe; Sterner, Johanna

    2013-01-01

    A numerical model coupling the horizontal component of the incompressible Reynolds-averaged Navier–Stokes (RANS) equationswith two-equation k−ω turbulence closure is presented and used to simulate a variety of turbulent wave boundary layer processes. The hydrodynamic model is additionally coupled...... with bed and suspended load descriptions, the latter based on an unsteady turbulent-diffusion equation, for simulation of sheet-flow sediment transport processes. In addition to standard features common within such RANS-based approaches, the present model includes: (1) hindered settling velocities at high...

  18. Fluvial sediment transport: Analytical techniques for measuring sediment load

    International Nuclear Information System (INIS)

    2005-07-01

    Sediment transport data are often used for the evaluation of land surface erosion, reservoir sedimentation, ecological habitat quality and coastal sediment budgets. Sediment transport by rivers is usually considered to occur in two major ways: (1) in the flow as a suspended load and (2) along the bed as a bed load. This publication provides guidance on selected techniques for the measurement of particles moving in both modes in the fluvial environment. The relative importance of the transport mode is variable and depends on the hydraulic and sedimentary conditions. The potential user is directed in the selection of an appropriate technique through the presentation of operating principles, application guidelines and estimated costs. Techniques which require laboratory analysis are grab sample, pump sample, depth sample, point integrated and radioactive tracers. Techniques which will continuously record data are optical backscattering, nuclear transmission, single frequency acoustic and laser diffraction

  19. Radiotracer and Sealed Source Applications in Sediment Transport Studies

    International Nuclear Information System (INIS)

    2014-01-01

    The investigation of sediment transport in seas and rivers is crucial for civil engineering and littoral protection and management. Coastlines and seabeds are dynamic regions, with sediments undergoing periods of erosion, transport, sedimentation and consolidation. The main causes for erosion in beaches include storms and human actions such as the construction of seawalls, jetties and the dredging of stream mouths. Each of these human actions disrupts the natural flow of sand. Current policies and practices are accelerating the beach erosion process. However, there are viable options available to mitigate this damage and to provide for sustainable coastlines. Radioactive methods can help in investigating sediment dynamics, providing important parameters for better designing, maintaining and optimizing civil engineering structures. Radioisotopes as tracers and sealed sources have been useful and often irreplaceable tools for sediment transport studies. The training course material is based on lecture notes and practical works delivered by many experts in IAEA supported activities. Lectures and case studies were reviewed by a number of specialists in this field

  20. Contaminated sediment transport during floods

    International Nuclear Information System (INIS)

    Fontaine, T.A.

    1992-01-01

    Over the past 48 years, operations and waste disposal activities at Oak Ridge National Laboratory have resulted in the contamination of parts of the White Oak Creek catchment. The contaminants presenting the highest risk to human health and the environment are particle reactive and are associated with the soils and sediments in the White Oak Creek drainage system. The erosion of these sediments during floods can result in the transport of contaminants both within the catchment and off-site into the Clinch River. A data collection program and a modeling investigation are being used to evaluate the probability of contaminated sediment transport during floods and to develop strategies for controlling off-site transport under present and future conditions

  1. Longshore sediment transport at Golden Sands (Bulgaria

    Directory of Open Access Journals (Sweden)

    Hristo Nikolov

    2006-09-01

    Full Text Available The paper presents the results of studies on the qualitative and quantitative features of the littoral drift at Golden Sands (Bulgaria, carried out jointly by Polish and Bulgarian researchers. The mathematical modelling of physical coastal processes took wave transformation (wave diffraction and refraction; the effects of shoaling and wave breaking and longshore sediment transport into account. The computations were carried out for the mean statistical annual wave climate, determined on the basis of IO BAS wave data, simulated using the WAM method from long-term Black Sea wind data. The results of sediment transport computations clearly show that its direction off the Golden Sands shore is from north to south.

  2. Transport processes for Chernobyl-labelled sediments: preliminary evidence from upland mid-Wales

    International Nuclear Information System (INIS)

    Bonnett, P.J.P.; Leeks, G.J.L.; Cambray, R.S.

    1989-01-01

    The nuclear accident at Chernobyl in April 1986 resulted in a significant increase in the inventory of radiocaesium retained in the soil in many regions of the United Kingdom. The deposition of 134 Cs provides a convenient tool for the examination of erosional processes in upland systems. Detailed soil sampling has been undertaken within the Plynlimon experimental catchments to establish the pattern of deposition of Chernobyl-derived radionuclides. The preliminary results of a combined radiometric and mineral magnetic approach to the study of the transport of Chernobyl-labelled sediments and their source areas on these upland catchments in mid-Wales are described. (author)

  3. Sediment transport dynamics in steep, tropical volcanic catchments

    Science.gov (United States)

    Birkel, Christian; Solano Rivera, Vanessa; Granados Bolaños, Sebastian; Brenes Cambronero, Liz; Sánchez Murillo, Ricardo; Geris, Josie

    2017-04-01

    How volcanic landforms in tropical mountainous regions are eroded, and how eroded materials move through these mostly steep landscapes from the headwaters to affect sediment fluxes are critical to water resources management in their downstream rivers. Volcanic landscapes are of particular importance because of the short timescales (transform. Owing to volcanism and seismic activity, landslides and other mass movements frequently occur. These processes are amplified by high intensity precipitation inputs resulting in significant, but natural runoff, erosion and sediment fluxes. Sediment transport is also directly linked to carbon and solute export. However, knowledge on the sediment sources and transport dynamics in the humid tropics remains limited and their fluxes largely unquantified. In order to increase our understanding of the dominant erosion and sediment transport dynamics in humid tropical volcanic landscapes, we conducted an extensive monitoring effort in a pristine and protected (biological reserve Alberto Manuel Brenes, ReBAMB) tropical forest catchment (3.2 km2), located in the Central Volcanic Cordillera of Costa Rica (Figure 1A). Typical for tropical volcanic and montane regions, deeply incised V-form headwaters (Figure 1B) deliver the majority of water (>70%) and sediments to downstream rivers. At the catchment outlet (Figure 1C) of the San Lorencito stream, we established high temporal resolution (5min) water quantity and sediment monitoring (turbidity). We also surveyed the river network on various occasions to characterize fluvial geomorphology including material properties. We could show that the rainfall-runoff-sediment relationships and their characteristic hysteresis patterns are directly linked to variations in the climatic input (storm intensity and duration) and the size, form and mineralogy of the transported material. Such a relationship allowed us to gain the following insights: (i) periodic landslides contribute significant volumes of

  4. Application of radiometric analysis in the study of provenance and transport processes of Brazilian coastal sediments

    International Nuclear Information System (INIS)

    Carvalho, C.; Anjos, R.M.; Veiga, R.; Macario, K.

    2011-01-01

    Natural gamma radiation of beach sand deposits was measured along the south coast of Rio de Janeiro State, Brazil, with the aim of studying the provenance and transport processes of sediments in this area. Concentrations of thorium, uranium and potassium were evaluated using γ-ray spectrometry and a behavioral study of eTh/eU and eTh/K cross plots was performed, reflecting the mineralogical properties of beach sands, as well as their history of transport and sorting processes. The results show that such technique can be efficiently used to map heavy mineral distributions and to distinguish the different origins of coastal sediments disclosing the influence of nearby rivers. - Research highlights: → Based on the natural γ-ray analyses of beach sand, high concentrations of heavy minerals have been found around the Mambucaba River deltaic complex, located in the South of Rio de Janeiro State, Brazil. → Concentrations of thorium, uranium and potassium concentration can give information on the mineral composition and provenance of beach sands and consequently investigate heavy mineral deposits.

  5. Application of radiometric analysis in the study of provenance and transport processes of Brazilian coastal sediments

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, C. [Laboratorio de Radioecologia (LARA), Instituto de Fisica, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza, s/no, Gragoata, 24210-346 Niteroi, RJ (Brazil); Anjos, R.M., E-mail: meigikos@if.uff.b [Laboratorio de Radioecologia (LARA), Instituto de Fisica, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza, s/no, Gragoata, 24210-346 Niteroi, RJ (Brazil); Veiga, R.; Macario, K. [Laboratorio de Radioecologia (LARA), Instituto de Fisica, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza, s/no, Gragoata, 24210-346 Niteroi, RJ (Brazil)

    2011-02-15

    Natural gamma radiation of beach sand deposits was measured along the south coast of Rio de Janeiro State, Brazil, with the aim of studying the provenance and transport processes of sediments in this area. Concentrations of thorium, uranium and potassium were evaluated using {gamma}-ray spectrometry and a behavioral study of eTh/eU and eTh/K cross plots was performed, reflecting the mineralogical properties of beach sands, as well as their history of transport and sorting processes. The results show that such technique can be efficiently used to map heavy mineral distributions and to distinguish the different origins of coastal sediments disclosing the influence of nearby rivers. - Research highlights: {yields} Based on the natural {gamma}-ray analyses of beach sand, high concentrations of heavy minerals have been found around the Mambucaba River deltaic complex, located in the South of Rio de Janeiro State, Brazil. {yields} Concentrations of thorium, uranium and potassium concentration can give information on the mineral composition and provenance of beach sands and consequently investigate heavy mineral deposits.

  6. Transport of cohesive sediments : Classification and requirements for turbulence modelling

    NARCIS (Netherlands)

    Bruens, A.W.

    1999-01-01

    This report describes a classification of sediment-laden flows, which gives an overview of the different transport forms of fine sediment and the interactions of the different processes as acting in an estuary. At the outs et of the proposed classification a distinction in physical states of

  7. Process-based distributed modeling approach for analysis of sediment dynamics in a river basin

    Directory of Open Access Journals (Sweden)

    M. A. Kabir

    2011-04-01

    Full Text Available Modeling of sediment dynamics for developing best management practices of reducing soil erosion and of sediment control has become essential for sustainable management of watersheds. Precise estimation of sediment dynamics is very important since soils are a major component of enormous environmental processes and sediment transport controls lake and river pollution extensively. Different hydrological processes govern sediment dynamics in a river basin, which are highly variable in spatial and temporal scales. This paper presents a process-based distributed modeling approach for analysis of sediment dynamics at river basin scale by integrating sediment processes (soil erosion, sediment transport and deposition with an existing process-based distributed hydrological model. In this modeling approach, the watershed is divided into an array of homogeneous grids to capture the catchment spatial heterogeneity. Hillslope and river sediment dynamic processes have been modeled separately and linked to each other consistently. Water flow and sediment transport at different land grids and river nodes are modeled using one dimensional kinematic wave approximation of Saint-Venant equations. The mechanics of sediment dynamics are integrated into the model using representative physical equations after a comprehensive review. The model has been tested on river basins in two different hydro climatic areas, the Abukuma River Basin, Japan and Latrobe River Basin, Australia. Sediment transport and deposition are modeled using Govers transport capacity equation. All spatial datasets, such as, Digital Elevation Model (DEM, land use and soil classification data, etc., have been prepared using raster "Geographic Information System (GIS" tools. The results of relevant statistical checks (Nash-Sutcliffe efficiency and R–squared value indicate that the model simulates basin hydrology and its associated sediment dynamics reasonably well. This paper presents the

  8. Sediment transport modelling in a distributed physically based hydrological catchment model

    Directory of Open Access Journals (Sweden)

    M. Konz

    2011-09-01

    Full Text Available Bedload sediment transport and erosion processes in channels are important components of water induced natural hazards in alpine environments. A raster based distributed hydrological model, TOPKAPI, has been further developed to support continuous simulations of river bed erosion and deposition processes. The hydrological model simulates all relevant components of the water cycle and non-linear reservoir methods are applied for water fluxes in the soil, on the ground surface and in the channel. The sediment transport simulations are performed on a sub-grid level, which allows for a better discretization of the channel geometry, whereas water fluxes are calculated on the grid level in order to be CPU efficient. Several transport equations as well as the effects of an armour layer on the transport threshold discharge are considered. Flow resistance due to macro roughness is also considered. The advantage of this approach is the integrated simulation of the entire basin runoff response combined with hillslope-channel coupled erosion and transport simulation. The comparison with the modelling tool SETRAC demonstrates the reliability of the modelling concept. The devised technique is very fast and of comparable accuracy to the more specialised sediment transport model SETRAC.

  9. Simulation of contaminated sediment transport in White Oak Creek basin

    International Nuclear Information System (INIS)

    Bao, Y.; Clapp, R.B.; Brenkert, A.L.; Moore, T.D.; Fontaine, T.A.

    1995-01-01

    This paper presents a systematic approach to management of the contaminated sediments in the White Oak Creek watershed at Oak Ridge National Laboratory near Oak Ridge, Tennessee. The primary contaminant of concern is radioactive cesium-137 ( 137 Cs), which binds to soil and sediment particles. The key components in the approach include an intensive sampling and monitoring system for flood events; modeling of hydrological processes, sediment transport, and contaminant flux movement; and a decision framework with a detailed human health risk analysis. Emphasis is placed on modeling of watershed rainfall-runoff and contaminated sediment transport during flooding periods using the Hydrologic Simulation Program- Fortran (HSPF) model. Because a large number of parameters are required in HSPF modeling, the major effort in the modeling process is the calibration of model parameters to make simulation results and measured values agree as closely as possible. An optimization model incorporating the concepts of an expert system was developed to improve calibration results and efficiency. Over a five-year simulation period, the simulated flows match the observed values well. Simulated total amount of sediment loads at various locations during storms match with the observed values within a factor of 1.5. Simulated annual releases of 137 Cs off-site locations match the data within a factor of 2 for the five-year period. The comprehensive modeling approach can provide a valuable tool for decision makers to quantitatively analyze sediment erosion, deposition, and transport; exposure risk related to radionuclides in contaminated sediment; and various management strategies

  10. Post-eruptive sediment transport and surface processes on unvegetated volcanic hillslopes - A case study of Black Tank scoria cone, Cima Volcanic Field, California

    Science.gov (United States)

    Kereszturi, Gábor; Németh, Károly

    2016-08-01

    Conical volcanic edifices that are made up from lapilli to block/bomb pyroclastic successions, such as scoria cones, are widespread in terrestrial and extraterrestrial settings. Eruptive processes responsible for establishing the final facies architecture of a scoria cone are not well linked to numerical simulations of their post-eruptive sediment transport. Using sedimentological, geomorphic and 2D fragment morphology data from a 15-ky-old scoria cone from the Cima Volcanic Field, California, this study provides field evidence of the various post-eruptive sediment transport and degradation processes of scoria cones located in arid to semi-arid environments. This study has revealed that pyroclast morphologies vary downslope due to syn-eruptive granular flows, along with post-eruptive modification by rolling, bouncing and sliding of individual particles down a slope, and overland flow processes. The variability of sediment transport rates on hillslopes are not directly controlled by local slope angle variability and the flank length but rather by grain size, and morphological characteristics of particles, such as shape irregularity of pyroclast fragments and block/lapilli ratio. Due to the abundance of hillslopes degrading in unvegetated regions, such as those found in the Southwestern USA, granulometric influences should be accounted for in the formulation of sediment transport laws for geomorphic modification of volcanic terrains over long geologic time.

  11. Longshore Sediment Transport on a Macrotidal Mixed Sediment Beach, Birling Gap, United Kingdom.

    Science.gov (United States)

    Curoy, J.; Moses, C. A.; Robinson, D. A.

    2012-04-01

    Mixed beaches (MBs), with sediment sizes ranging over three orders of magnitude, are an increasingly important coastal defence on > 1/3 of the shoreline of England and Wales. In East Sussex, the combined effect of coastal defence management schemes (extensive groyning and sea wall construction) has reduced beach sediment supply. Local authorities counteract the increased flood risk by recycling or artificially recharging beaches on the most vulnerable and populated areas. Beaches lose sediment predominantly via longshore transport (LST) whose accurate quantification is critical to calculating recharge amounts needed for effective beach management. Industry does this by using sediment transport modelling which depends on reliable input data and modelling assumptions. To improve understanding of processes and quantification of LST on MBs, this study has accurately measured sediment transport on a natural, macrotidal, MB. The 1.2 km natural MB at Birling Gap, East Sussex here is located on the downdrift end of an 80 km long sub-sedimentary cell and is oriented WNW-ESE. The beach lies on a low gradient chalk shore platform backed by sub-vertical chalk cliffs. It is composed primarily of flint gravel with a peak grain size distribution of 30 to 50 mm, and a sand content of up to 30%. Sediment transport was measured using pebble tracers and GPS surface surveys during three survey periods of three to five consecutive days in March, May and December 2006. Tracer pebbles, matching the beach pebbles' D50, were made of an epoxy resin with a copper core allowing their detection and recovery to a depth of 40 cm using a metal detector. Tracers were deployed on the upper, middle and lower beach, from the surface into the beach to depths of up to 40 cm. They were collected on the low tide following deployment. The wave conditions were recorded on a Valeport DWR wave recorder located seaward of the beach on the chalk platform. Over the three study periods a large spectrum of wave

  12. Morphodynamics and Sediment Transport on the Huanghe (Yellow River) Delta: Work in Progress

    Science.gov (United States)

    Kineke, G. C.; Calson, B.; Chadwick, A. J.; Chen, L.; Hobbs, B. F.; Kumpf, L. L.; Lamb, M. P.; Ma, H.; Moodie, A. J.; Mullane, M.; Naito, K.; Nittrouer, J. A.; Parker, G.

    2017-12-01

    Deltas are perhaps the most dynamic of coastal landforms with competing processes that deliver and disperse sediment. As part of the NSF Coastal SEES program, an interdisciplinary team of scientists from the US and China are investigating processes that link river and coastal sediment transport responsible for morphodynamic change of the Huanghe delta- an excellent study site due to its high sediment load and long history of natural and engineered avulsions, that is, abrupt shifts in the river course. A fundamental component of the study is a better understanding of sediment transport physics in a river system that transports mostly silt. Through theory and data analysis, we find that fine-grained rivers fail to develop full scale dunes, which results in faster water flow and substantially larger sediment fluxes as compared to sandy rivers (e.g. the Mississippi River). We also have developed new models for sediment-size dependent entrainment that are needed to make longer term predictions of river sedimentation patterns. On the delta front, we are monitoring the high sediment flux to the coast, which results in steep foresets and ideal conditions for off-shore sediment delivery via gravity flows. These constraints on sediment transport are being used to develop new theory for where and when rivers avulse - including the effects of variable flood discharge, sediment supply, and sea level rise -and how deltas ultimately grow through repeated cycles of lobe development. Flume experiments and field observations are being used to test these models, both in the main channel of the Huanghe and in channels abandoned after historic avulsions. Abandoned channels and floodplains are now dominated by coastal sediment transport through a combination of wave resuspension and tidal transport, settling lag and reverse estuarine circulation. Finally, the field and laboratory tested numerical models are being used as inputs to define a cost curve for efficient avulsion management of

  13. Interactive 4D Visualization of Sediment Transport Models

    Science.gov (United States)

    Butkiewicz, T.; Englert, C. M.

    2013-12-01

    Coastal sediment transport models simulate the effects that waves, currents, and tides have on near-shore bathymetry and features such as beaches and barrier islands. Understanding these dynamic processes is integral to the study of coastline stability, beach erosion, and environmental contamination. Furthermore, analyzing the results of these simulations is a critical task in the design, placement, and engineering of coastal structures such as seawalls, jetties, support pilings for wind turbines, etc. Despite the importance of these models, there is a lack of available visualization software that allows users to explore and perform analysis on these datasets in an intuitive and effective manner. Existing visualization interfaces for these datasets often present only one variable at a time, using two dimensional plan or cross-sectional views. These visual restrictions limit the ability to observe the contents in the proper overall context, both in spatial and multi-dimensional terms. To improve upon these limitations, we use 3D rendering and particle system based illustration techniques to show water column/flow data across all depths simultaneously. We can also encode multiple variables across different perceptual channels (color, texture, motion, etc.) to enrich surfaces with multi-dimensional information. Interactive tools are provided, which can be used to explore the dataset and find regions-of-interest for further investigation. Our visualization package provides an intuitive 4D (3D, time-varying) visualization of sediment transport model output. In addition, we are also integrating real world observations with the simulated data to support analysis of the impact from major sediment transport events. In particular, we have been focusing on the effects of Superstorm Sandy on the Redbird Artificial Reef Site, offshore of Delaware Bay. Based on our pre- and post-storm high-resolution sonar surveys, there has significant scour and bedform migration around the

  14. Sediment transport processes at the head of Halibut Canyon, Eastern Canada margin: An interplay between internal tides and dense shelf water cascading.

    Science.gov (United States)

    Puig, Pere; Greenan, Blair J. W.; Li, Michael Z.; Prescott, Robert H.; Piper, David J. W.

    2013-04-01

    To investigate the processes by which sediment is transported through a submarine canyon incised in a glaciated margin, the bottom boundary layer quadrapod RALPH was deployed at 276-m depth in the West Halibut Canyon (off Newfoundland) during winter 2008-2009. Two main sediment transport processes were identified throughout the deployment. Firstly, periodic increases of near-bottom suspended-sediment concentrations (SSC) were recorded associated with the up-canyon propagation of the semidiurnal internal tidal bore along the canyon axis, carrying fine sediment particles resuspended from deeper canyon regions. The recorded SSC peaks, lasting less than one hour, were observed sporadically and were linked to bottom intensified up-canyon flows concomitant with sharp drops in temperature. Secondly, sediment transport was also observed during events of intensified down-canyon current velocities that occurred during periods of sustained heat loss from surface waters, but were not associated with large storms. High-resolution velocity profiles throughout the water column during these events revealed that the highest current speeds (~1 m s-1) were centered several meters above the sea floor and corresponded to the region of maximum velocities of a gravity flow. Such flows had associated low SSC and cold water temperatures and have been interpreted as dense shelf water cascading events channelized along the canyon axis. Sediment transport during these events was largely restricted to bedload and saltation, producing winnowing of sands and fine sediments around larger gravel particles. Analysis of historical hydrographic data suggests that the origin of such gravity flows is not related to the formation of coastal dense waters advected towards the canyon head. Rather, the dense shelf waters appear to be generated around the outer shelf, where convection during winter is able to reach the sea floor and generate a pool of near-bottom dense water that cascades into the canyon

  15. Mathematical simulation of sediment and radionuclide transport in estuaries

    International Nuclear Information System (INIS)

    Onishi, Y.; Trent, D.S.

    1982-11-01

    The finite element model LFESCOT (Flow, Energy, Salinity, Sediment and Contaminant Transport Model) was synthesized under this study to simulate radionuclide transport in estuaries to obtain accurate radionuclide distributions which are affected by these factors: time variance, three-dimensional flow, temperature, salinity, and sediments. Because sediment transport and radionuclide adsorption/desorption depend strongly on sizes or types of sediments, FLESCOT simulates sediment and a sediment-sorbed radionuclide for the total of three sediment-size fractions (or sediment types) of both cohesive and noncohesive sediments. It also calculates changes of estuarine bed conditions, including bed elevation changes due to sediment erosion/deposition, and three-dimensional distributions of three bed sediment sizes and sediment-sorbed radionuclides within the bed. Although the model was synthesized for radionuclide transport, it is general enough to also handle other contaminants such as heavy metals, pesticides, or toxic chemicals. The model was checked for its capability for flow, water surface elevation change, salinity, sediment and radionuclide transport under various simple conditions first, confirming the general validity of the model's computational schemes. These tests also revealed that FLESCOT can use large aspect ratios of computational cells, which are necessary in handling long estuarine study areas. After these simple tests, FLESCOT was applied to the Hudson River estuary between Chelsea and the mouth of the river to examine how well the model can predict radionuclide transport through simulating tidally influenced three-dimensional flow, salinity, sediment and radionuclide movements with their interactions

  16. Input-variable sensitivity assessment for sediment transport relations

    Science.gov (United States)

    Fernández, Roberto; Garcia, Marcelo H.

    2017-09-01

    A methodology to assess input-variable sensitivity for sediment transport relations is presented. The Mean Value First Order Second Moment Method (MVFOSM) is applied to two bed load transport equations showing that it may be used to rank all input variables in terms of how their specific variance affects the overall variance of the sediment transport estimation. In sites where data are scarce or nonexistent, the results obtained may be used to (i) determine what variables would have the largest impact when estimating sediment loads in the absence of field observations and (ii) design field campaigns to specifically measure those variables for which a given transport equation is most sensitive; in sites where data are readily available, the results would allow quantifying the effect that the variance associated with each input variable has on the variance of the sediment transport estimates. An application of the method to two transport relations using data from a tropical mountain river in Costa Rica is implemented to exemplify the potential of the method in places where input data are limited. Results are compared against Monte Carlo simulations to assess the reliability of the method and validate its results. For both of the sediment transport relations used in the sensitivity analysis, accurate knowledge of sediment size was found to have more impact on sediment transport predictions than precise knowledge of other input variables such as channel slope and flow discharge.

  17. Runoff and sediment transport in a degraded area

    Directory of Open Access Journals (Sweden)

    Edivaldo Lopes Thomaz

    2012-02-01

    Full Text Available Gully erosion occurs by the combined action of splash, sheetwash and rill-wash (interrill and rill erosion. These erosion processes have a great capacity for both sediment production and sediment transport. The objectives of this experiment were to evaluate hydrological and sediment transport in a degraded area, severely dissected by gullies; to assess the hydraulic flow characteristics and their aggregate transport capacity; and to measure the initial splash erosion rate. In the study area in Guarapuava, State of Paraná, Brazil (lat 25º 24' S; long 51º24' W; 1034 m asl, the soil was classified as Cambissolo Húmico alumínico, with the following particle-size composition: sand 0.116 kg kg-1; silt 0.180 kg kg-1; and clay 0.704 kg kg-1. The approach of this research was based on microcatchments formed in the ground, to study the hydrological response and sediment transport. A total of eight rill systems were simulated with dry and wet soil. An average rainfall of 33.7 ± 4.0 mm was produced for 35 to 54 min by a rainfall simulator. The equipment was installed, and a trough was placed at the end of the rill to collect sediments and water. During the simulation, the following variables were measured: time to runoff, time to ponding, time of recession, flow velocity, depth, ratio of the initial splash and grain size. The rainsplash of dry topsoil was more than twice as high as under moist conditions (5 g m-2 min-1 and 2 g m-2 min-1, respectively. The characteristics of the flow hydraulics indicate transition from laminar to turbulent flow [Re (Reynolds number 1000-2000]. In addition, it was observed that a flow velocity of 0.12 m s-1 was the threshold for turbulent flow (Re > 2000, especially at the end of the rainfall simulation. The rill flow tended to be subcritical [Fr (Froude Number < 1.0]. The variation in hydrological attributes (infiltration and runoff was lower, while the sediment yield was variable. The erosion in the rill systems was

  18. Sediment Transport Model for a Surface Irrigation System

    Directory of Open Access Journals (Sweden)

    Damodhara R. Mailapalli

    2013-01-01

    Full Text Available Controlling irrigation-induced soil erosion is one of the important issues of irrigation management and surface water impairment. Irrigation models are useful in managing the irrigation and the associated ill effects on agricultural environment. In this paper, a physically based surface irrigation model was developed to predict sediment transport in irrigated furrows by integrating an irrigation hydraulic model with a quasi-steady state sediment transport model to predict sediment load in furrow irrigation. The irrigation hydraulic model simulates flow in a furrow irrigation system using the analytically solved zero-inertial overland flow equations and 1D-Green-Ampt, 2D-Fok, and Kostiakov-Lewis infiltration equations. Performance of the sediment transport model was evaluated for bare and cropped furrow fields. The results indicated that the sediment transport model can predict the initial sediment rate adequately, but the simulated sediment rate was less accurate for the later part of the irrigation event. Sensitivity analysis of the parameters of the sediment module showed that the soil erodibility coefficient was the most influential parameter for determining sediment load in furrow irrigation. The developed modeling tool can be used as a water management tool for mitigating sediment loss from the surface irrigated fields.

  19. Numerical simulation of sediment transport from Ba Lat Mouth and the process of coastal morphology

    International Nuclear Information System (INIS)

    Chung, Dang Huu

    2008-01-01

    This paper presents an application of a 3D numerical model to simulate one vertical layer sediment transport and coastal morphodynamical process for the Hai Hau coastal area located in the north of Vietnam, where a very large amount of suspended sediment is carried into the sea from Ba Lat Mouth every year. Four simulations are based on the real data of waves supplied by the observation station close to Ba Lat Mouth. The conditions of wind and suspended sand concentration at Ba Lat Mouth are basically assumed from practice. The computed results show that the hydrodynamic factors strongly depend on the wind condition and these factors govern the direction and the range of suspended sand transport, especially in the shallow-water region. In the deep-water region this influence is not really clear when the wind force is not strong enough to modify the tidal current. In the area close to Ba Lat Mouth the flow velocity is very large with the maximum flood flow about 2.6 m s −1 and the maximum ebb flow about 1 m s −1 at the mouth, and this is one of the reasons for strong erosion. In the case of tidal flow only, the suspended sand concentration decreases resulting in local deposition. Therefore, the area influenced by suspended transport is small, about 12 km from the mouth. In the condition of wind and waves, the suspended sand transport reaches the end of the computation area within a few days, especially the cases with wind from the north-east-north. Through these simulation results, a common tendency of sediment movement from the north to the south is specified for the Hai Hau coastal area. In addition, the results also show that the coast suffers from strong erosion, especially the region near Ba Lat Mouth. From the simulation results it can be seen that the movement of the Red River sand along the Vietnamese coast is quite possible, which is an answer to a long-standing question. Furthermore, although the suspended sediment concentration is quite large, it is

  20. California coast nearshore processes study. [nearshore currents, sediment transport, estuaries, and river discharge

    Science.gov (United States)

    Pirie, D. M.; Steller, D. D. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Large scale sediment plumes from intermittent streams and rivers form detectable seasonal patterns on ERTS-1 imagery. The ocean current systems, as plotted from three California coast ERTS mosaics, were identified. Offshore patterns of sediment in areas such as the Santa Barbara Channel are traceable. These patterns extend offshore to heretofore unanticipated ranges as shown on the ERTS-1 imagery. Flying spot scanner enhancements of NASA tapes resulted in details of subtle and often invisible (to the eye) nearshore features. The suspended sediments off San Francisco and in Monterey Bay are emphasized in detail. These are areas of extremely changeable offshore sediment transport patterns. Computer generated contouring of radiance levels resulted in maps that can be used in determining surface and nearsurface suspended sediment distribution. Tentative calibrations of ERTS-1 spectral brightness against sediment load have been made using shipboard measurements. Information from the combined enhancement and interpretation techniques is applicable to operational coastal engineering programs.

  1. Development of regional scale soil erosion and sediment transport model; its calibration and validations

    International Nuclear Information System (INIS)

    Rehman, M.H.; Akhtar, M.N.

    2005-01-01

    Despite of the fact that many soil erosion models have been developed in the past more than 5 decades including empirical based models like USLE and RUSLE and many process based soil erosion and sediment transport models like WEPP, EUROSEM and SHETRAN, the application of these models to regional scales remained questionable. To address the problem, a process-based soil erosion and sediment transport model has been developed to estimate the soil erosion, deposition, transport and sediment yield at regional scale. The soil erosion processes are modeled as the detachment of soil by the raindrop impact over the entire grid and detachment of soil due to overland flow only within the equivalent channels, whereas sediment is routed to the forward grid considering the transport capacity of the flow. The loss of heterogeneity in the spatial information of the topography due to slope averaging effect is reproduced by adapting a Fractal analysis approach. The model has been calibrated for Nan river basin (N.13A) and validated to the Yom river basin (Y.6) and Nam Mae Klang river basin (P.24A) of Thailand, simulated results show good agreements with the observed sediment discharge data. The developed model with few new components can also be applied for predicting the sediment discharges of the river Indus. (author)

  2. Sediment transport drives tidewater glacier periodicity.

    Science.gov (United States)

    Brinkerhoff, Douglas; Truffer, Martin; Aschwanden, Andy

    2017-07-21

    Most of Earth's glaciers are retreating, but some tidewater glaciers are advancing despite increasing temperatures and contrary to their neighbors. This can be explained by the coupling of ice and sediment dynamics: a shoal forms at the glacier terminus, reducing ice discharge and causing advance towards an unstable configuration followed by abrupt retreat, in a process known as the tidewater glacier cycle. Here we use a numerical model calibrated with observations to show that interactions between ice flow, glacial erosion, and sediment transport drive these cycles, which occur independent of climate variations. Water availability controls cycle period and amplitude, and enhanced melt from future warming could trigger advance even in glaciers that are steady or retreating, complicating interpretations of glacier response to climate change. The resulting shifts in sediment and meltwater delivery from changes in glacier configuration may impact interpretations of marine sediments, fjord geochemistry, and marine ecosystems.The reason some of the Earth's tidewater glaciers are advancing despite increasing temperatures is not entirely clear. Here, using a numerical model that simulates both ice and sediment dynamics, the authors show that internal dynamics drive glacier variability independent of climate.

  3. Diffusive smoothing of surfzone bathymetry by gravity-driven sediment transport

    Science.gov (United States)

    Moulton, M. R.; Elgar, S.; Raubenheimer, B.

    2012-12-01

    Gravity-driven sediment transport often is assumed to have a small effect on the evolution of nearshore morphology. Here, it is shown that down-slope gravity-driven sediment transport is an important process acting to smooth steep bathymetric features in the surfzone. Gravity-driven transport can be modeled as a diffusive term in the sediment continuity equation governing temporal (t) changes in bed level (h): ∂h/∂t ≈ κ ▽2h, where κ is a sediment diffusion coefficient that is a function of the bed shear stress (τb) and sediment properties, such as the grain size and the angle of repose. Field observations of waves, currents, and the evolution of large excavated holes (initially 10-m wide and 2-m deep, with sides as steep as 35°) in an energetic surfzone are consistent with diffusive smoothing by gravity. Specifically, comparisons of κ estimated from the measured bed evolution with those estimated with numerical model results for several transport theories suggest that gravity-driven sediment transport dominates the bed evolution, with κ proportional to a power of τb. The models are initiated with observed bathymetry and forced with observed waves and currents. The diffusion coefficients from the measurements and from the model simulations were on average of order 10-5 m2/s, implying evolution time scales of days for features with length scales of 10 m. The dependence of κ on τb varies for different transport theories and for high and low shear stress regimes. The US Army Corps of Engineers Field Research Facility, Duck, NC provided excellent logistical support. Funded by a National Security Science and Engineering Faculty Fellowship, a National Defense Science and Engineering Graduate Fellowship, and the Office of Naval Research.

  4. Modelling of sediment transport at Muria peninsula coastal, Jepara

    International Nuclear Information System (INIS)

    Heni Susiati; Yarianto SBS; Wahyu Pandoe; Eko Kusratmoko; Aris Poniman

    2010-01-01

    Modelling of transport sediment modelling at Muria Peninsula have been done. In this study we had been used mathematical model that consist of hydrodynamics and sediment transport . Data input for modelling has been used tidal, monsoon wind, and river debit. Simulation result of sediment transport modelling showed that tides pattern and seasonal variations are the main causes of variations in the suspended sediment distribution in Muria Peninsula. (author)

  5. Aeolian sediment transport on a beach: Surface moisture, wind fetch, and mean transport

    Science.gov (United States)

    Bauer, B. O.; Davidson-Arnott, R. G. D.; Hesp, P. A.; Namikas, S. L.; Ollerhead, J.; Walker, I. J.

    2009-04-01

    speed, unsteadiness, approach angle, flow compression, boundary layer development). Moisture content is widely acknowledged as an important factor in controlling release of sediment from the beach surface. All other things being equal, the rate of sediment transport over a wet surface is lesser than over a dry surface. On this beach, the moisture effect has two important influences: (a) in a temporal sense, the rate of sediment transport typically decreases in association with rainfall and increases when surface drying takes place; and (b) in a spatio-temporal sense, shoreline excursions associated with nearshore processes (such as wave run-up, storm surge, and tidal excursions) have the effect of constraining the fetch geometry of the beach—i.e., narrowing the width of the beach. Because saturated sand surfaces, such as found in the swash zone, will only reluctantly yield sediments to aeolian entrainment, the available beach surface across which aeolian transport can occur becomes narrower as the sea progressively inundates the beach. Under these constrained conditions, the transport system begins to shut down unless wind angle becomes highly oblique (thereby increasing fetch distance). In this study, maximum sediment transport was usually measured on the mid-beach rather than the upper beach (i.e., closer to the foredunes). This unusual finding is likely because of internal boundary layer development across the beach, which yields a decrease in near-surface wind speed (and hence, transport capacity) in the landward direction. Although widely recognized in the fluid mechanics literature, this decrease in near-surface shear stress as a by-product of a developing boundary layer in the downwind direction has not been adequately investigated in the context of coastal aeolian geomorphology.

  6. Influence of particle sorting in transport of sediment-associated contaminants

    International Nuclear Information System (INIS)

    Lane, L.J.; Hakonson, T.E.

    1982-01-01

    Hydrologic and sediment transport models are developed to route the flow of water and sediment (by particle size classes) in alluvial stream channels. A simplified infiltration model is used to compute runoff from upland areas and flow is routed in ephemeral stream channels to account for infiltration or transmission losses in the channel alluvium. Hydraulic calculations, based on the normal flow assumption and an approximating hydrograph, are used to compute sediment transport by particle size classes. Contaminants associated with sediment particles are routed in the stream channels to predict contaminatant transport by particle size classes. An empirical adjustment factor, the enrichment ratio, is shown to be a function of the particle size distribution of stream bed sediments, contaminant concentrations by particle size, differential sediment transport rates, and the magnitude of the runoff event causing transport of sediment and contaminants. This analysis and an example application in a liquid effluent-receiving area illustrate the significance of particle sorting in transport of sediment associated contaminants

  7. The Influence of Turbulent Coherent Structure on Suspended Sediment Transport

    Science.gov (United States)

    Huang, S. H.; Tsai, C.

    2017-12-01

    The anomalous diffusion of turbulent sedimentation has received more and more attention in recent years. With the advent of new instruments and technologies, researchers have found that sediment behavior may deviate from Fickian assumptions when particles are heavier. In particle-laden flow, bursting phenomena affects instantaneous local concentrations, and seems to carry suspended particles for a longer distance. Instead of the pure diffusion process in an analogy to Brownian motion, Levy flight which allows particles to move in response to bursting phenomena is suspected to be more suitable for describing particle movement in turbulence. And the fractional differential equation is a potential candidate to improve the concentration profile. However, stochastic modeling (the Differential Chapmen-Kolmogorov Equation) also provides an alternative mathematical framework to describe system transits between different states through diffusion/the jump processes. Within this framework, the stochastic particle tracking model linked with advection diffusion equation is a powerful tool to simulate particle locations in the flow field. By including the jump process to this model, a more comprehensive description for suspended sediment transport can be provided with a better physical insight. This study also shows the adaptability and expandability of the stochastic particle tracking model for suspended sediment transport modeling.

  8. Investigations of grain size dependent sediment transport phenomena on multiple scales

    Science.gov (United States)

    Thaxton, Christopher S.

    Sediment transport processes in coastal and fluvial environments resulting from disturbances such as urbanization, mining, agriculture, military operations, and climatic change have significant impact on local, regional, and global environments. Primarily, these impacts include the erosion and deposition of sediment, channel network modification, reduction in downstream water quality, and the delivery of chemical contaminants. The scale and spatial distribution of these effects are largely attributable to the size distribution of the sediment grains that become eligible for transport. An improved understanding of advective and diffusive grain-size dependent sediment transport phenomena will lead to the development of more accurate predictive models and more effective control measures. To this end, three studies were performed that investigated grain-size dependent sediment transport on three different scales. Discrete particle computer simulations of sheet flow bedload transport on the scale of 0.1--100 millimeters were performed on a heterogeneous population of grains of various grain sizes. The relative transport rates and diffusivities of grains under both oscillatory and uniform, steady flow conditions were quantified. These findings suggest that boundary layer formalisms should describe surface roughness through a representative grain size that is functionally dependent on the applied flow parameters. On the scale of 1--10m, experiments were performed to quantify the hydrodynamics and sediment capture efficiency of various baffles installed in a sediment retention pond, a commonly used sedimentation control measure in watershed applications. Analysis indicates that an optimum sediment capture effectiveness may be achieved based on baffle permeability, pond geometry and flow rate. Finally, on the scale of 10--1,000m, a distributed, bivariate watershed terain evolution module was developed within GRASS GIS. Simulation results for variable grain sizes and for

  9. Reactive transport modeling of nitrogen in Seine River sediments

    Science.gov (United States)

    Akbarzadeh, Z.; Laverman, A.; Raimonet, M.; Rezanezhad, F.; Van Cappellen, P.

    2016-02-01

    Biogeochemical processes in sediments have a major impact on the fate and transport of nitrogen (N) in river systems. Organic matter decomposition in bottom sediments releases inorganic N species back to the stream water, while denitrification, anammox and burial of organic matter remove bioavailable N from the aquatic environment. To simulate N cycling in river sediments, a multi-component reactive transport model has been developed in MATLAB®. The model includes 3 pools of particulate organic N, plus pore water nitrate, nitrite, nitrous oxide and ammonium. Special attention is given to the production and consumption of nitrite, a N species often neglected in early diagenetic models. Although nitrite is usually considered to be short-lived, elevated nitrite concentrations have been observed in freshwater streams, raising concerns about possible toxic effects. We applied the model to sediment data sets collected at two locations in the Seine River, one upstream, the other downstream, of the largest wastewater treatment plant (WWTP) of the Paris conurbation. The model is able to reproduce the key features of the observed pore water depth profiles of the different nitrogen species. The modeling results show that the presence of oxygen in the overlying water plays a major role in controlling the exchanges of nitrite between the sediments and the stream water. In August 2012, sediments upstream of the WWTP switch from being a sink to a source of nitrite as the overlying water becomes anoxic. Downstream sediments remain a nitrite sink in oxic and anoxic conditions. Anoxic bottom waters at the upstream location promote denitrification, which produces nitrite, while at the downstream site, anammox and DNRA are important removal processes of nitrite.

  10. [Sediment transport characteristics at different erosion stages for non-hardened roads of the Shenfu Coalfield, west China].

    Science.gov (United States)

    Guo, Ming-ming; Wang, Wen-long; Li, Jian-ming; Huang, Peng-fei; Zhu, Bao-cai; Wang, Zhen; Luo, Ting

    2015-02-01

    Non-hardened roads formed in the production of the Shenfu Coalfield have a unique condition of underlying surface. The road surface is composed of a regolith layer with a certain thickness resulted from long-term rolling and thus, is characterized by weakened anti-scourabilty and anti-erodibility. In contrast, soil layer below the regolith has a higher bulk density and anti-erodibility. The processes of soil erosion on the non-hardened roads exhibit some differences under rainfall condition. The process of sediment transport and the relationship between sediment transport rate and erosion factors at different erosion stages were studied on non-hardened roads with slope degrees ranging from 3° to 12° (3°, 6°, 9°, 12°) by a field experiment under artificial rainfall. Results showed that the first peak of sediment transport on the regolith surface was observed at the sheet erosion stage. Sheet erosion occurred only at 3° slope degree, with an average variation coefficient of 0.07 for sediment transport rate. Rills in every testing began to develop at slope degrees of 6° to 12° about 15 min after runoff initiation. At the sheet erosion stage, the process of sediment transport fluctuated considerably at rainfall intensities of > 1.5 mm · min(-1), but the differences in its variation were little at the three slope degrees, with average variation coefficients of 0.20, 0.19 and 0.16, respectively. Rainfall intensity had a more significant impact on sediment transport rate than slope degree. The process of sediment transport at the rill erosion stage fluctuated, but the fluctuation was obviously smaller than that at the sheet erosion stage, with average variation coefficients of 0.05, 0.09 and 0.10 at the three slope degrees. Many wide and shallow rills evolved at the rill erosion stage. The sediment transport rate could be well predicted by a power function of rainfall intensity and slope degree at the sheet and rill erosion stages. The stable sediment transport

  11. Critical review: Radionuclide transport, sediment transport, and water quality mathematical modeling; and radionuclide adsorption/desorption mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Onishi, Y.; Serne, R.J.; Arnold, E.M.; Cowan, C.E.; Thompson, F.L. [Pacific Northwest Lab., Richland, WA (United States)

    1981-01-01

    This report describes the results of a detailed literature review of radionuclide transport models applicable to rivers, estuaries, coastal waters, the Great Lakes, and impoundments. Some representatives sediment transport and water quality models were also reviewed to evaluate if they can be readily adapted to radionuclide transport modeling. The review showed that most available transport models were developed for dissolved radionuclide in rivers. These models include the mechanisms of advection, dispersion, and radionuclide decay. Since the models do not include sediment and radionuclide interactions, they are best suited for simulating short-term radionuclide migration where: (1) radionuclides have small distribution coefficients; (2) sediment concentrations in receiving water bodies are very low. Only 5 of the reviewed models include full sediment and radionuclide interactions: CHMSED developed by Fields; FETRA SERATRA, and TODAM developed by Onishi et al, and a model developed by Shull and Gloyna. The 5 models are applicable to cases where: (1) the distribution coefficient is large; (2) sediment concentrations are high; or (3) long-term migration and accumulation are under consideration. The report also discusses radionuclide absorption/desorption distribution ratios and addresses adsorption/desorption mechanisms and their controlling processes for 25 elements under surface water conditions. These elements are: Am, Sb, C, Ce, Cm, Co, Cr, Cs, Eu, I, Fe, Mn, Np, P, Pu, Pm, Ra, Ru, Sr, Tc, Th, {sup 3}H, U, Zn and Zr.

  12. Sediment transport-storage relations for degrading, gravel bed channels

    Science.gov (United States)

    Thomas E. Lisle; Michael Church

    2002-01-01

    In a drainage network,sediment is transferred through a series of channel/valley segments (natural sediment storage reservoirs) that are distinguished from their neighbors by their particular capacity to store and transport sediment. We propose that the sediment transport capacity of each reservoir is a unique positive function of storage volume, which influences...

  13. Shelf sediment transport during hurricanes Katrina and Rita

    Science.gov (United States)

    Xu, Kehui; Mickey, Rangley C.; Chen, Qin; Harris, Courtney K.; Hetland, Robert D.; Hu, Kelin; Wang, Jiaze

    2016-05-01

    Hurricanes can greatly modify the sedimentary record, but our coastal scientific community has rather limited capability to predict hurricane-induced sediment deposition. A three-dimensional sediment transport model was developed in the Regional Ocean Modeling System (ROMS) to study seabed erosion and deposition on the Louisiana shelf in response to Hurricanes Katrina and Rita in the year 2005. Sensitivity tests were performed on both erosional and depositional processes for a wide range of erosional rates and settling velocities, and uncertainty analysis was done on critical shear stresses using the polynomial chaos approximation method. A total of 22 model runs were performed in sensitivity and uncertainty tests. Estimated maximum erosional depths were sensitive to the inputs, but horizontal erosional patterns seemed to be controlled mainly by hurricane tracks, wave-current combined shear stresses, seabed grain sizes, and shelf bathymetry. During the passage of two hurricanes, local resuspension and deposition dominated the sediment transport mechanisms. Hurricane Katrina followed a shelf-perpendicular track before making landfall and its energy dissipated rapidly within about 48 h along the eastern Louisiana coast. In contrast, Hurricane Rita followed a more shelf-oblique track and disturbed the seabed extensively during its 84-h passage from the Alabama-Mississippi border to the Louisiana-Texas border. Conditions to either side of Hurricane Rita's storm track differed substantially, with the region to the east having stronger winds, taller waves and thus deeper erosions. This study indicated that major hurricanes can disturb the shelf at centimeter to meter levels. Each of these two hurricanes suspended seabed sediment mass that far exceeded the annual sediment inputs from the Mississippi and Atchafalaya Rivers, but the net transport from shelves to estuaries is yet to be determined. Future studies should focus on the modeling of sediment exchange between

  14. Sediment and radionuclide transport in rivers: radionuclide transport modeling for Cattaraugus and Buttermilk Creeks, New York

    International Nuclear Information System (INIS)

    Onishi, Y.; Yabusaki, S.B.; Kincaid, C.T.; Skaggs, R.L.; Walters, W.H.

    1982-12-01

    SERATRA, a transient, two-dimensional (laterally-averaged) computer model of sediment-contaminant transport in rivers, satisfactorily resolved the distribution of sediment and radionuclide concentrations in the Cattaraugus Creek stream system in New York. By modeling the physical processes of advection, diffusion, erosion, deposition, and bed armoring, SERATRA routed three sediment size fractions, including cohesive soils, to simulate three dynamic flow events. In conjunction with the sediment transport, SERATRA computed radionuclide levels in dissolved, suspended sediment, and bed sediment forms for four radionuclides ( 137 Cs, 90 Sr, 239 240 Pu, and 3 H). By accounting for time-dependent sediment-radionuclide interaction in the water column and bed, SERATA is a physically explicit model of radionuclide fate and migration. Sediment and radionuclide concentrations calculated by SERATA in the Cattaraugus Creek stream system are in reasonable agreement with measured values. SERATRA is in the field performance phase of an extensive testing program designed to establish the utility of the model as a site assessment tool. The model handles not only radionuclides but other contaminants such as pesticides, heavy metals and other toxic chemicals. Now that the model has been applied to four field sites, including the latest study of the Cattaraugus Creek stream system, it is recommended that a final model be validated through comparison of predicted results with field data from a carefully controlled tracer test at a field site. It is also recommended that a detailed laboratory flume be tested to study cohesive sediment transport, deposition, and erosion characteristics. The lack of current understanding of these characteristics is one of the weakest areas hindering the accurate assessment of the migration of radionuclides sorbed by fine sediments of silt and clay

  15. Aeolian particle transport inferred using a ~150-year sediment record from Sayram Lake, arid northwest China

    Directory of Open Access Journals (Sweden)

    Long Ma

    2015-05-01

    Full Text Available We studied sediment cores from Sayram Lake in the Tianshan Mountains of northwest China to evaluate variations in aeolian transport processes over the past ~150 years. Using an end-member modeling algorithm of particle size data, we interpreted end members with a strong bimodal distribution as having been transported by aeolian processes, whereas other end members were interpreted to have been transported by fluvial processes. The aeolian fraction accounted for an average of 27% of the terrigenous components in the core. We used the ratio of aeolian to fluvial content in the Sayram Lake sediments as an index of past intensity of aeolian transport in the Tianshan Mountains. During the interval 1910-1930, the index was high, reflecting the fact that dry climate provided optimal conditions for aeolian dust transport. From 1930-1980, the intensity of aeolian transport was weak. From the 1980s to the 2000s, aeolian transport to Sayram Lake increased. Although climate in northwest China became more humid in the mid-1980s, human activity had by that time altered the impact of climate on the landscape, leading to enhanced surface erosion, which provided more transportable material for dust storms. Comparison of the Lake Sayram sediment record with sediment records from other lakes in the region indicates synchronous intervals of enhanced aeolian transport from 1910 to 1930 and 1980 to 2000.

  16. Influence of turbulence on bed load sediment transport

    DEFF Research Database (Denmark)

    Sumer, B. Mutlu; Chua, L.; Cheng, N. S.

    2003-01-01

    This paper summarizes the results of an experimental study on the influence of an external turbulence field on the bedload sediment transport in an open channel. The external turbulence was generated by: (1) with a horizontal pipe placed halfway through the depth, h; (2) with a series of grids......-bed experiments and the ripple-covered-bed experiments. In the former case, the flow in the presence of the turbulence generator was adjusted so that the mean bed shear stress was the same as in the case without the turbulence generator in order to single out the effect of the external turbulence on the sediment...... correlated with the sediment transport rate. The sediment transport increases markedly with increasing turbulence level....

  17. Modeling sediment transport with an integrated view of the biofilm effects

    Science.gov (United States)

    Fang, H. W.; Lai, H. J.; Cheng, W.; Huang, L.; He, G. J.

    2017-09-01

    Most natural sediment is invariably covered by biofilms in reservoirs and lakes, which have significant influence on bed form dynamics and sediment transport, and also play a crucial role in natural river evolution, pollutant transport, and habitat changes. However, most models for sediment transport are based on experiments using clean sediments without biological materials. In this study, a three-dimensional mathematical model of hydrodynamics and sediment transport is presented with a comprehensive consideration of the biofilm effects. The changes of the bed resistance mainly due to the different bed form dynamics of the biofilm-coated sediment (biosediment), which affect the hydrodynamic characteristics, are considered. Moreover, the variations of parameters related to sediment transport after the biofilm growth are integrated, including the significant changes of the incipient velocity, settling velocity, reference concentration, and equilibrium bed load transport rate. The proposed model is applied to evaluate the effects of biofilms on the hydrodynamic characteristics and sediment transport in laboratory experiments. Results indicate that the mean velocity increases after the biofilm growth, and the turbulence intensity near the river bed decreases under the same flow condition. Meanwhile, biofilm inhibits sediment from moving independently. Thus, the moderate erosion is observed for biosediment resulting in smaller suspended sediment concentrations. The proposed model can reasonably reflect these sediment transport characteristics with biofilms, and the approach to integration of the biological impact could also be used in other modeling of sediment transport, which can be further applied to provide references for the integrated management of natural aqueous systems.

  18. Capabilities of the Large-Scale Sediment Transport Facility

    Science.gov (United States)

    2016-04-01

    pump flow meters, sediment trap weigh tanks , and beach profiling lidar. A detailed discussion of the original LSTF features and capabilities can be...ERDC/CHL CHETN-I-88 April 2016 Approved for public release; distribution is unlimited. Capabilities of the Large-Scale Sediment Transport...describes the Large-Scale Sediment Transport Facility (LSTF) and recent upgrades to the measurement systems. The purpose of these upgrades was to increase

  19. Sediment transport on the Palos Verdes shelf, California

    Science.gov (United States)

    Ferre, B.; Sherwood, C.R.; Wiberg, P.L.

    2010-01-01

    Sediment transport and the potential for erosion or deposition have been investigated on the Palos Verdes (PV) and San Pedro shelves in southern California to help assess the fate of an effluent-affected deposit contaminated with DDT and PCBs. Bottom boundary layer measurements at two 60-m sites in spring 2004 were used to set model parameters and evaluate a one-dimensional (vertical) model of local, steady-state resuspension, and suspended-sediment transport. The model demonstrated skill (Brier scores up to 0.75) reproducing the magnitudes of bottom shear stress, current speeds, and suspended-sediment concentrations measured during an April transport event, but the model tended to underpredict observed rotation in the bottom-boundary layer, possibly because the model did not account for the effects of temperature-salinity stratification. The model was run with wave input estimated from a nearby buoy and current input from four to six years of measurements at thirteen sites on the 35- and 65-m isobaths on the PV and San Pedro shelves. Sediment characteristics and erodibility were based on gentle wet-sieve analysis and erosion-chamber measurements. Modeled flow and sediment transport were mostly alongshelf toward the northwest on the PV shelf with a significant offshore component. The 95th percentile of bottom shear stresses ranged from 0.09 to 0.16 Pa at the 65-m sites, and the lowest values were in the middle of the PV shelf, near the Whites Point sewage outfalls where the effluent-affected layer is thickest. Long-term mean transport rates varied from 0.9 to 4.8 metric tons m-1 yr-1 along the 65-m isobaths on the PV shelf, and were much higher at the 35-m sites. Gradients in modeled alongshore transport rates suggest that, in the absence of a supply of sediment from the outfalls or PV coast, erosion at rates of ???0.2 mm yr-1 might occur in the region southeast of the outfalls. These rates are small compared to some estimates of background natural sedimentation

  20. Hillslope runoff and sediment transport in south east Spain

    Science.gov (United States)

    Bracken (Nee Bull), L. J.; Kirkby, M. J.

    2003-04-01

    Runoff from semi-arid hillslopes in SE Spain is generated very selectively at all scales. Site response at the 1 m2 scale may be described by the dynamics of local infiltration and crusting, defining Hydrologically Similar Surfaces (HYSS), which are strongly associated with soil type and vegetation cover. This study reports the use of several reconnaissance methods to define HYSS consistently. These methods are (1) the use of small sediment traps which disturb the surface minimally,(2) the use of painted lines and (3) the identification of Morphological Zones associated with different levels of runoff and sediment transport. Five monitoring sites were established on hillslope concavities in two semi-arid catchments in South East Spain. Rainfall data were also collected from the nearest gauge established during previous research. Results show that a storm event in the Rambla de Nogalte on the 30th of June of 83.0 mm was responsible for a maximum runoff depth of 12 cm and a maximum hillslope sediment transport of 1886 cm3 m-1. The same storm in the Rambla de Torrealvilla produced 53.4 mm of rainfall on the 1st of July 2002, had a maximum runoff depth of 26 cm and was responsible for a maximum hillslope sediment transport of 2311 cm3 m-1. In general sediment transport rate and sediment travel distance increased with the distance downslope into the hillslope hollow, and these were related to the maximum depth of flow produced over the hillside. Very little sediment movement occurred directly downslope of bushes as was expected. No significant relationships were established between sediment transport and slope angle or vegetation cover. However, sediment transport and depth of runoff varied with lithology, with marl sites producing the most runoff and sediment transport. The site located on red schist was particularly unresponsive to rainfall and did not experience much sediment transport. Initial models for the response of larger areas suggest that runoff is controlled

  1. Application of tracer techniques in studies of sediment transport in Vietnam

    International Nuclear Information System (INIS)

    Hai, P.S.; Quang, N.H.; Xuan, N.M.; Chuong, P.N.; Hien, P.Z.

    1997-01-01

    As a consequence of intensive erosion processes typical of the humid tropical one, as well as of human activities destroying tropical forests, grasslands and protective mangrove swamps, etc, most navigable estuaries in Vietnam suffer seriously from sedimentation. In order to maintain the necessary depth for the 7.000 ton vessels entering and leaving ports, a large amount of money is spent annually on dredging operation. A lot of hydraulic and sedimentary surveys were carried out in the past by different groups of researchers. However, owing to the complexity of sediment processes in estuarine areas under the hydrometeorological conditions typical of the southwest Pacific, the use of just any modelling approach is not suitable. In many cases, the conclusions inferred from mathematical models have been the controversial matter. The tracer techniques, which have been employed in the country since 1991, have provided a very efficient tool to obtain a dynamic idea of sediment transport. Many investigations of bedload transport using Sc-46 labelled glass and Ir-192 glass as radioactive tracers were carried out from 1992 to 1996 at Haiphong harbour area. Bedload transport rates under effect of northeast monsoon and southeast monsoon at 5 zones located on both sides of the navigation channel were estimated. In bedload transport studies, apart from conventional methods for assessment of transport thickness, a new method using the ratio of photoelectric peak to Compton region of spectra acquired directly on the sea bed was put forward and applied. The influence of dredging materials at two dumping sites under different tidal phases on in fill rate in the access channel was assessed by radioactive tracers. The qualitative and quantitative information on sediment transport at some experimental sites given by tracers was used by modelling specialists who have undertaken hydraulic and sedimentary surveys in this region

  2. Sediment transport through self-adjusting, bedrock-walled waterfall plunge pools

    Science.gov (United States)

    Scheingross, Joel S.; Lamb, Michael P.

    2016-05-01

    Many waterfalls have deep plunge pools that are often partially or fully filled with sediment. Sediment fill may control plunge-pool bedrock erosion rates, partially determine habitat availability for aquatic organisms, and affect sediment routing and debris flow initiation. Currently, there exists no mechanistic model to describe sediment transport through waterfall plunge pools. Here we develop an analytical model to predict steady-state plunge-pool depth and sediment-transport capacity by combining existing jet theory with sediment transport mechanics. Our model predicts plunge-pool sediment-transport capacity increases with increasing river discharge, flow velocity, and waterfall drop height and decreases with increasing plunge-pool depth, radius, and grain size. We tested the model using flume experiments under varying waterfall and plunge-pool geometries, flow hydraulics, and sediment size. The model and experiments show that through morphodynamic feedbacks, plunge pools aggrade to reach shallower equilibrium pool depths in response to increases in imposed sediment supply. Our theory for steady-state pool depth matches the experiments with an R2 value of 0.8, with discrepancies likely due to model simplifications of the hydraulics and sediment transport. Analysis of 75 waterfalls suggests that the water depths in natural plunge pools are strongly influenced by upstream sediment supply, and our model provides a mass-conserving framework to predict sediment and water storage in waterfall plunge pools for sediment routing, habitat assessment, and bedrock erosion modeling.

  3. Sediment and contaminant transport in a marine environment

    International Nuclear Information System (INIS)

    Onishi, Y.; Thompson, F.L.

    1986-01-01

    The finite-element model FETRA is an unsteady, verically averaged two-dimensional model to simulate the transport of sediment and contaminants (radionuclides, heavy metals, pesticides, etc.) in coastal and estuarine water. The model, together with the hydrodynamic model CAFE-I, was applied to the Irish Sea to predict the migration and accumulation of sediment (both cohesive and noncohesive) and of a radionuclide (dissolved and sediment-sorbed) in a tide- and wind-driven system. The study demonstrated that FETRA is a useful tool for assessing sediment and toxic contaminant transport in a marine environment

  4. Sediment Transport Dynamic in a Meandering Fluvial System: Case Study of Chini River

    Science.gov (United States)

    Nazir, M. H. M.; Awang, S.; Shaaban, A. J.; Yahaya, N. K. E. M.; Jusoh, A. M.; Arumugam, M. A. R. M. A.; Ghani, A. A.

    2016-07-01

    Sedimentation in river reduces the flood carrying capacity which lead to the increasing of inundation area in the river basin. Basic sediment transport can predict the fluvial processes in natural rivers and stream through modeling approaches. However, the sediment transport dynamic in a small meandering and low-lying fluvial system is considered scarce in Malaysia. The aim of this study was to analyze the current riverbed erosion and sedimentation scenarios along the Chini River, Pekan, Pahang. The present study revealed that silt and clay has potentially been eroded several parts of the river. Sinuosity index (1.98) indicates that Chini River is very unstable and continuous erosion process in waterways has increase the riverbank instability due to the meandering factors. The riverbed erosional and depositional process in the Chini River is a sluggish process since the lake reduces the flow velocity and causes the deposited particles into the silt and clay soil at the bed of the lake. Besides, the bed layer of the lake comprised of cohesive silt and clayey composition that tend to attach the larger grain size of sediment. The present study estimated the total sediment accumulated along the Chini River is 1.72 ton. The HEC-RAS was employed in the simulations and in general the model performed well, once all parameters were set within their effective ranges.

  5. Spatial variability of sediment transport processes over intra‐ and subtidal timescales within a fringing coral reef system

    Science.gov (United States)

    Pomeroy, Andrew; Lowe, Ryan J.; Ghisalberti, Marco; Winter, Gundula; Storlazzi, Curt D.; Cuttler, Michael V. W.

    2018-01-01

    Sediment produced on fringing coral reefs that is transported along the bed or in suspension affects ecological reef communities as well as the morphological development of the reef, lagoon, and adjacent shoreline. This study quantified the physical process contribution and relative importance of incident waves, infragravity waves, and mean currents to the spatial and temporal variability of sediment in suspension. Estimates of bed shear stresses demonstrate that incident waves are the key driver of the SSC variability spatially (reef flat, lagoon, and channels) but cannot not fully describe the SSC variability alone. The comparatively small but statistically significant contribution to the bed shear stress by infragravity waves and currents, along with the spatial availability of sediment of a suitable size and volume, is also important. Although intra‐tidal variability in SSC occurs in the different reef zones, the majority of the variability occurs over longer slowly varying (subtidal) time scales, which is related to the arrival of large incident waves at a reef location. The predominant flow pathway, which can transport suspended sediment, consists of cross‐reef flow across the reef flat that diverges in the lagoon and returns offshore through channels. This pathway is primarily due to subtidal variations in wave‐driven flows, but can also be driven alongshore by wind stresses when the incident waves are small. Higher frequency (intra‐tidal) current variability also occur due to both tidal flows, as well as variations in the water depth that influence wave transmission across the reef and wave‐driven currents.

  6. Data processing in studies of diffusion for seawage disposal and of sediment transportation

    International Nuclear Information System (INIS)

    Szulak, C.; Agudo, E.G.

    1974-01-01

    The radiotracer applications on diffusion studies for sewage disposal in sea waters, as well as some large scale experiments on sediments transportation, are characterized by the bulky amount data obtained in the field. Data processing and plotting is a very time consuming task if they are to be handled manually, as may occurs in small research institutes. In order to overcome this difficulty, a program suitable for a 9810-A, Model Hewlett Packard calculator with plotter, was been developed. Through this program the following sequence of operations is performed: 1 - Background and decay corrections on activity measurements; 2 - conversion of angular position data taken with sextants, to rectangular coordinates; 3 - Position corrections as a function of the mean transport velocity of the radioactive cloud; 4 - Interpolation and plotting for each cloud section; of the points belonging ro preselected values of isoactivity curves; 5 - Interpolation and plotting between maximum activity points from two consecutive trajectories of the points belonging to preselected isoactivity curves. As a result of each data processing and plotting, a definition of shape of the radioactive, as well as the instantaneous concentration distribution are obtained. Interpolating a curve through the points with same activity, the preselected isoactivity lines are easily drawn [pt

  7. Biogeochemical reactive-diffusive transport of heavy metals in Lake Coeur d'Alene sediments

    International Nuclear Information System (INIS)

    Sevinc Sengoer, S.; Spycher, Nicolas F.; Ginn, Timothy R.; Sani, Rajesh K.; Peyton, Brent

    2007-01-01

    Decades of runoff from precious-metal mining operations in the Lake Coeur d'Alene Basin, Idaho, have left the sediments in this lake heavily enriched with toxic metals, most notably Zn, Pb and Cu, together with As. The bioavailability, fate and transport of these metals in the sediments are governed by complex biogeochemical processes. In particular, indigenous microbes are capable of catalyzing reactions that detoxify their environments, and thus constitute an important driving component in the biogeochemical cycling of these metals. Here, the development of a quantitative model to evaluate the transport and fate of Zn, Pb and Cu in Lake Coeur d'Alene sediments is reported. The current focus is on the investigation and understanding of local-scale processes, rather than the larger-scale dynamics of sedimentation and diagenesis, with particular emphasis on metal transport through reductive dissolution of Fe hydroxides. The model includes 1-D inorganic diffusive transport coupled to a biotic reaction network including consortium biodegradation kinetics with multiple terminal electron acceptors and syntrophic consortium biotransformation dynamics of redox front. The model captures the mobilization of metals initially sorbed onto hydrous ferric oxides, through bacterial reduction of Fe(III) near the top of the sediment column, coupled with the precipitation of metal sulfides at depth due to biogenic sulfide production. Key chemical reactions involve the dissolution of ferrihydrite and precipitation of siderite and Fe sulfide. The relative rates of these reactions play an important role in the evolution of the sediment pore-water chemistry, notably pH, and directly depend on the relative activity of Fe and SO 4 reducers. The model captures fairly well the observed trends of increased alkalinity, sulfide, Fe and heavy metal concentrations below the sediment-water interface, together with decreasing terminal electron acceptor concentrations with depth, including the

  8. Oscillatory infragravity wave contribution to surf zone sediment transport

    DEFF Research Database (Denmark)

    Aagaard, Troels; Greenwood, Brian

    2008-01-01

    . It is shown that infragravity sediment transports are onshore directed at the landward side of relative (incident) wave height maxima, and offshore directed at the seaward side of such maxima. If a longshore infragravity wave structure exists, such as in the case of standing edge waves, the advection process...

  9. Modeling sediment transport in Qatar: Application for coastal development planning.

    Science.gov (United States)

    Yousif, Ruqaiya; Warren, Christopher; Ben-Hamadou, Radhouan; Husrevoglu, Sinan

    2018-03-01

    Hydrodynamics and sediment transport are key physical processes contributing to habitat structure within the marine environment. Coastal development that results in the alteration of these processes (e.g., changing water flushing and/or sedimentation rates) can have detrimental impacts on sensitive systems. This is a current, relevant issue in Qatar as its coastal regions continue to be developed, not only around the capital of Doha, but in many areas around this Arabian Gulf peninsula. The northeastern Qatari coast is comprised of diverse and sensitive flora and fauna such as seagrass and macroalgae meadows, coral reefs and patches, turtles, and dugongs that tolerate harsh environmental conditions. In the near future, this area may see a rise in anthropogenic activity in the form of coastal development projects. These projects will add to existing natural stresses, such as high temperature, high salinity, and low rates of precipitation. Consequently, there is a need to characterize this area and assess the potential impacts that these anthropogenic activities may have on the region. In the present study, a novel sediment transport model is described and used to demonstrate the potential impact of altering hydrodynamics and subsequent sediment transport along the northeastern Qatar nearshore marine environment. The developed models will be tested using potential scenarios of future anthropogenic activities forecasted to take place in the area. The results will show the effects on water and sediment behavior and provide a scientific approach for key stakeholders to make decisions with respect to the management of the considered coastal zone. Furthermore, it provides a tool and framework that can be utilized in environmental impact assessment and associated hydrodynamic studies along other areas of the Qatari coastal zone. Integr Environ Assess Manag 2018;14:240-251. © 2017 SETAC. © 2017 SETAC.

  10. Tidal and meteorological forcing of sediment transport in tributary mudflat channels.

    Science.gov (United States)

    Ralston, David K; Stacey, Mark T

    2007-06-01

    Field observations of flow and sediment transport in a tributary channel through intertidal mudflats indicate that suspended sediment was closely linked to advection and dispersion of a tidal salinity front. During calm weather when tidal forcing was dominant, high concentrations of suspended sediment advected up the mudflat channel in the narrow region between salty water from San Francisco Bay and much fresher runoff from the small local watershed. Salinity and suspended sediment dispersed at similar rates through each tidal inundation, such that during receding ebbs the sediment pulse had spread spatially and maximum concentrations had decreased. Net sediment transport was moderately onshore during the calm weather, as asymmetries in stratification due to tidal straining of the salinity front enhanced deposition, particularly during weaker neap tidal forcing. Sediment transport by tidal forcing was periodically altered by winter storms. During storms, strong winds from the south generated wind waves and temporarily increased suspended sediment concentrations. Increased discharge down the tributary channels due to precipitation had more lasting impact on sediment transport, supplying both buoyancy and fine sediment to the system. Net sediment transport depended on the balance between calm weather tidal forcing and perturbations by episodic storms. Net transport in the tributary channel was generally off-shore during storms and during calm weather spring tides, and on-shore during calm weather neap tides.

  11. Water induced sediment levitation enhances downslope transport on Mars.

    Science.gov (United States)

    Raack, Jan; Conway, Susan J; Herny, Clémence; Balme, Matthew R; Carpy, Sabrina; Patel, Manish R

    2017-10-27

    On Mars, locally warm surface temperatures (~293 K) occur, leading to the possibility of (transient) liquid water on the surface. However, water exposed to the martian atmosphere will boil, and the sediment transport capacity of such unstable water is not well understood. Here, we present laboratory studies of a newly recognized transport mechanism: "levitation" of saturated sediment bodies on a cushion of vapor released by boiling. Sediment transport where this mechanism is active is about nine times greater than without this effect, reducing the amount of water required to transport comparable sediment volumes by nearly an order of magnitude. Our calculations show that the effect of levitation could persist up to ~48 times longer under reduced martian gravity. Sediment levitation must therefore be considered when evaluating the formation of recent and present-day martian mass wasting features, as much less water may be required to form such features than previously thought.

  12. Isotopic provenance analysis and terrane tectonics: a warning about sediment transport distances

    International Nuclear Information System (INIS)

    Bassett, K.N.

    1999-01-01

    Full text: In the last 10 years the field of provenance analysis has undergone a revolution with the development of single-crystal isotopic dating techniques, the most common being U/Pb zircon and 40Ar/39Ar techniques. These have allowed age determination of single crystals thus providing more detail about probable provenance of each individual grain rather than an averaged population of grains. The usefulness for resolving complex terrane accretion and translation histories was immediately obvious and there have been many studies in many different regions aimed at tracking terrane motions by provenance of individual grains upward through the stratigraphy of a basin. Recent research in the North American Cordilleran terranes and in the New Zealand Torlesse Superterrane show how widely used and powerful these provenance analysis techniques are. However, isotopic provenance analysis has often been presented as key information to resolve controversies around terrane translation histories with very little discussion of the context of sedimentary facies and sediment transport mechanisms. An example is the recent use of U/Pb detrital zircon ages as the supposedly controversy-ending evidence for the amount of lateral translation of the Insular Superterrane in British Columbia (Baja BC) (Mahoney et al., 1999). The zircon grains were separated from fine-grained turbidite deposits and could easily have been transported over very large distances by a variety of mechanisms; yet they were presented as definitively resolving the Baja BC controversy. Modern examples illustrate the problem of using the provenance of fine grained sediment to constrain terrane tectonics. Sediment in the tip of the Bengal submarine fan was transported ∼3000 km from source, first by fluvial processes then by sediment gravity flow in the submarine fan. The detrital isotopic ages of single grains are the same as the depositional ages indicating a very rapid unroofing and transport rate with minimal

  13. Modeling of sediment transport along Mangalore coast using mike 21

    Digital Repository Service at National Institute of Oceanography (India)

    Babu, K.S.; Dwarakish, G.S.; Jayakumar, S.

    in the coastal system. However, large gaps remain in our knowledge of sediment transport processes, and a continuing need exists for the development of reliable, well- validated, practical modeling systems. To this end the coastal processes ofManga10re Coast..., Thiruvananthapuram, India, Vol. 1,578-585. [3] Danish Hydraulic Institute (2000), "MIKE 21 User Guide and manual". [4] Davies A.G., Van Rijn L.e., Damgaard I.S., Van de Graff 1. and Ribberink I.S. (2002), "Intercomparison of Research and Practical Sand Transport...

  14. Longshore sediment transport model for the Indian west coast

    Digital Repository Service at National Institute of Oceanography (India)

    Chandramohan, P.; Nayak, B.U.

    Longshore sediment transport rates for the Indian west coast from Cochin to Porbandar are estimated from ship observed wave data (1968 to 1986). The sediment transport rate is relatively high during the southwest monsoon period from June...

  15. The influence of sediment transport rate on the development of structure in gravel bed rivers

    Science.gov (United States)

    Ockelford, Annie; Rice, Steve; Powell, Mark; Reid, Ian; Nguyen, Thao; Tate, Nick; Wood, Jo

    2013-04-01

    Although adjustments of surface grain size are known to be strongly influenced by sediment transport rate little work has systematically explored how different transport rates can affect the development of surface structure in gravel bed rivers. Specifically, it has been well established that the transport of mixed sized sediments leads to the development of a coarser surface or armour layer which occurs over larger areas of the gravel bed. Armour layer development is known to moderate overall sediment transport rate as well as being extremely sensitive to changes in applied shear stress. However, during this armouring process a bed is created where, smaller gain scale changes, to the bed surface are also apparent such as the development of pebble clusters and imbricate structures. Although these smaller scale changes affect the overall surface grain size distribution very little their presence has the ability to significantly increase the surface stability and hence alter overall sediment transport rates. Consequently, the interplay between the moderation of transport rate as a function of surface coarsening at a larger scale and moderation of transport rate as a function of the development of structure on the bed surface at the smaller scale is complicated and warrants further investigation. During experiments a unimodal grain size distribution (σg = 1.30, D50 = 8.8mm) was exposed to 3 different levels of constant discharge that produced sediment transport conditions ranging from marginal transport to conditions approaching full mobility of all size fractions. Sediment was re-circulated during the experiments surface grain size distribution bed load and fractional transport rates were measured at a high temporal resolution such that the time evolution of the beds could be fully described. Discussion concentrates on analysing the effects of the evolving bed condition sediment transport rate (capacity) and transported grain size (competence). The outcome of this

  16. Non-equilibrium flow and sediment transport distribution over mobile river dunes

    Science.gov (United States)

    Hoitink, T.; Naqshband, S.; McElroy, B. J.

    2017-12-01

    Flow and sediment transport are key processes in the morphodynamics of river dunes. During floods in several rivers (e.g., the Elkhorn, Missouri, Niobrara, and Rio Grande), dunes are observed to grow rapidly as flow strength increases, undergoing an unstable transition regime, after which they are washed out in what is called upper stage plane bed. This morphological evolution of dunes to upper stage plane bed is the strongest bed-form adjustment during non-equilibrium flows and is associated with a significant change in hydraulic roughness and water levels. Detailed experimental investigations, however, have mostly focused on fixed dunes limited to equilibrium flow and bed conditions that are rare in natural channels. Our understanding of the underlying sedimentary processes that result into the washing out of dunes is therefore very limited. In the present study, using the Acoustic Concentration and Velocity Profiler (ACVP), we were able to quantify flow structure and sediment transport distribution over mobile non-equilibrium dunes. Under these non-equilibrium flow conditions average dune heights were decreasing while dune lengths were increasing. Preliminary results suggest that this morphological behaviour is due to a positive phase lag between sediment transport maximum and topographic maximum leading to a larger erosion on the dune stoss side compared to deposition on dune lee side.

  17. Organic matter accumulation and degradation in subsurface coastal sediments: a model-based comparison of rapid sedimentation and aquifer transport

    Directory of Open Access Journals (Sweden)

    J. M. Holstein

    2010-11-01

    Full Text Available The redox succession in shallow marine sediments generally exhibits a predictable pattern. Pore water profiles from a back barrier tidal flat in the German Wadden Sea depart from the expected redox zoning. Instead, a sulfate minimum zone associated with a sulfate-methane-sulfate double interface and a distinct ammonium peak at 1.5 m below sea floor (mbsf is displayed. Such evidence for significant degradation of organic matter (OM in subsurface layers is challenging our understanding of tidal flat biogeochemistry as little is known about processes that relocate reactive OM into layers far distant from the sediment-water interface. The objectives of our model study were to identify possible mechanisms for the rapid transport of organic matter to subsurface layers that cause the reversed redox succession and to constrain several important biogeochemical control parameters. We compared two scenarios for OM transfer: rapid sedimentation and burial of OM as well as lateral advection of suspended POM. Using a diagenetic model, uncertain process parameters, in particular those connected to OM degradation and (vertical or lateral transport, are systematically calibrated using field data.

    We found that both scenarios, advection and sedimentation, had solutions consistent with the observed pore water profiles. For this specific site, however, advective transport of particulate material had to be rejected since the reconstructed boundary conditions were rather improbable. In the alternative deposition set-up, model simulations suggested the deposition of the source OM about 60 yrs before cores were taken. A mean sedimentation rate of approximately 2 cm yr−1 indicates substantial changes in near coast tidal flat morphology, since sea level rise is at a much lower pace. High sedimentation rates most probably reflect the progradation of flats within the study area. These or similar morphodynamic features also occur in other coastal areas

  18. Generation of net sediment transport by velocity skewness in oscillatory sheet flow

    Science.gov (United States)

    Chen, Xin; Li, Yong; Chen, Genfa; Wang, Fujun; Tang, Xuelin

    2018-01-01

    This study utilizes a qualitative approach and a two-phase numerical model to investigate net sediment transport caused by velocity skewness beneath oscillatory sheet flow and current. The qualitative approach is derived based on the pseudo-laminar approximation of boundary layer velocity and exponential approximation of concentration. The two-phase model can obtain well the instantaneous erosion depth, sediment flux, boundary layer thickness, and sediment transport rate. It can especially illustrate the difference between positive and negative flow stages caused by velocity skewness, which is considerably important in determining the net boundary layer flow and sediment transport direction. The two-phase model also explains the effect of sediment diameter and phase-lag to sediment transport by comparing the instantaneous-type formulas to better illustrate velocity skewness effect. In previous studies about sheet flow transport in pure velocity-skewed flows, net sediment transport is only attributed to the phase-lag effect. In the present study with the qualitative approach and two-phase model, phase-lag effect is shown important but not sufficient for the net sediment transport beneath pure velocity-skewed flow and current, while the asymmetric wave boundary layer development between positive and negative flow stages also contributes to the sediment transport.

  19. Numerical Modelling of Sediment Transport in Combined Sewer Systems

    DEFF Research Database (Denmark)

    Schlütter, Flemming

    A conceptual sediment transport model has been developed. Through a case study a comparison with other numerical models is performed.......A conceptual sediment transport model has been developed. Through a case study a comparison with other numerical models is performed....

  20. Sediment transport by runoff on debris-mantled dryland hillslopes

    Science.gov (United States)

    Michaelides, Katerina; Martin, Gareth J.

    2012-09-01

    Hillslopes supply sediment to river channels, and therefore impact drainage basin functioning and evolution. The relationship between hillslope attributes and sediment flux forms the basis of geomorphic transport laws used to model the long-term topographic evolution of drainage basins, but their specific interactions during individual storm events are not well understood. Runoff-driven erosion of coarse particles, prevalent in dryland environments, presents a particular set of conditions for sediment transport that is poorly resolved in current models. In order to address this gap, we developed a particle-based, force-balance model for sheetwash sediment transport on coarse, debris-mantled hillslopes within a rainfall-runoff model. We use the model to examine how the interplay between hillslope attributes (gradient, length and grain size distribution) and runoff characteristics affects sediment transport, grain-size changes on the hillslope, and sediment supply to the slope base. The relationship between sediment flux and hillslope gradient was found to transition from linear above a threshold to sigmoidal depending on hillslope length, initial grain sizes, and runoff characteristics. Grain sizes supplied to the slope base vary in a complex manner with hillslope attributes but an overall coarsening of the hillslopes is found to occur with increasing gradient, corroborating previous findings from field measurements. Intense, short duration storms result in within-hillslope sediment redistribution and equifinality in sediment supply for different hillslope characteristics, which explain the lack of field evidence for any systematic relationships. Our model findings provide insights into hillslope responses to climatic forcing and have theoretical implications for modeling hillslope evolution in dry lands.

  1. Quantifying postfire aeolian sediment transport using rare earth element tracers

    Science.gov (United States)

    Dukes, David; Gonzales, Howell B.; Ravi, Sujith; Grandstaff, David E.; Van Pelt, R. Scott; Li, Junran; Wang, Guan; Sankey, Joel B.

    2018-01-01

    Grasslands, which provide fundamental ecosystem services in many arid and semiarid regions of the world, are undergoing rapid increases in fire activity and are highly susceptible to postfire-accelerated soil erosion by wind. A quantitative assessment of physical processes that integrates fire-wind erosion feedbacks is therefore needed relative to vegetation change, soil biogeochemical cycling, air quality, and landscape evolution. We investigated the applicability of a novel tracer technique—the use of multiple rare earth elements (REE)—to quantify soil transport by wind and to identify sources and sinks of wind-blown sediments in both burned and unburned shrub-grass transition zone in the Chihuahuan Desert, NM, USA. Results indicate that the horizontal mass flux of wind-borne sediment increased approximately threefold following the fire. The REE tracer analysis of wind-borne sediments shows that the source of the horizontal mass flux in the unburned site was derived from bare microsites (88.5%), while in the burned site it was primarily sourced from shrub (42.3%) and bare (39.1%) microsites. Vegetated microsites which were predominantly sinks of aeolian sediments in the unburned areas became sediment sources following the fire. The burned areas showed a spatial homogenization of sediment tracers, highlighting a potential negative feedback on landscape heterogeneity induced by shrub encroachment into grasslands. Though fires are known to increase aeolian sediment transport, accompanying changes in the sources and sinks of wind-borne sediments may influence biogeochemical cycling and land degradation dynamics. Furthermore, our experiment demonstrated that REEs can be used as reliable tracers for field-scale aeolian studies.

  2. Constraining the relative importance of raindrop- and flow-driven sediment transport mechanisms in postwildfire environments and implications for recovery time scales

    Science.gov (United States)

    McGuire, Luke; Kean, Jason W.; Staley, Dennis M.; Rengers, Francis K.; Wasklewicz, Thad A.

    2016-01-01

    Mountain watersheds recently burned by wildfire often experience greater amounts of runoff and increased rates of sediment transport relative to similar unburned areas. Given the sedimentation and debris flow threats caused by increases in erosion, more work is needed to better understand the physical mechanisms responsible for the observed increase in sediment transport in burned environments and the time scale over which a heightened geomorphic response can be expected. In this study, we quantified the relative importance of different hillslope erosion mechanisms during two postwildfire rainstorms at a drainage basin in Southern California by combining terrestrial laser scanner-derived maps of topographic change, field measurements, and numerical modeling of overland flow and sediment transport. Numerous debris flows were initiated by runoff at our study area during a long-duration storm of relatively modest intensity. Despite the presence of a well-developed rill network, numerical model results suggest that the majority of eroded hillslope sediment during this long-duration rainstorm was transported by raindrop-induced sediment transport processes, highlighting the importance of raindrop-driven processes in supplying channels with potential debris flow material. We also used the numerical model to explore relationships between postwildfire storm characteristics, vegetation cover, soil infiltration capacity, and the total volume of eroded sediment from a synthetic hillslope for different end-member erosion regimes. This study adds to our understanding of sediment transport in steep, postwildfire landscapes and shows how data from field monitoring can be combined with numerical modeling of sediment transport to isolate the processes leading to increased erosion in burned areas.

  3. Remediation scenarios for attenuating peak flows and reducing sediment transport in Fountain Creek, Colorado, 2013

    Science.gov (United States)

    Kohn, Michael S.; Fulton, John W.; Williams, Cory A.; Stogner, Sr., Robert W.

    2014-01-01

    The U.S. Geological Survey (USGS) in cooperation with the Fountain Creek Watershed, Flood Control and Greenway District assessed remediation scenarios to attenuate peak flows and reduce sediment loads in the Fountain Creek watershed. To evaluate these strategies, the U.S. Army Corps of Engineers Hydrologic Engineering Center (HEC) hydrologic and hydraulic models were employed. The U.S. Army Corps of Engineers modeling system HEC-HMS (Hydrologic Modeling System) version 3.5 was used to simulate runoff in the Fountain Creek watershed, Colorado, associated with storms of varying magnitude and duration. Rain-gage precipitation data and radar-based precipitation data from the April 28–30, 1999, and September 14–15, 2011, storm events were used in the calibration process for the HEC-HMS model. The curve number and lag time for each subwatershed and Manning's roughness coefficients for each channel reach were adjusted within an acceptable range so that the simulated and measured streamflow hydrographs for each of the 12 USGS streamgages approximated each other. The U.S. Army Corps of Engineers modeling system HEC-RAS (River Analysis System) versions 4.1 and 4.2 were used to simulate streamflow and sediment transport, respectively, for the Fountain Creek watershed generated by a particular storm event. Data from 15 USGS streamgages were used for model calibration and 7 of those USGS streamgages were used for model validation. The calibration process consisted of comparing the simulated water-surface elevations and the cross-section-averaged velocities from the model with those surveyed in the field at the cross section at the corresponding 15 and 7 streamgages, respectively. The final Manning’s roughness coefficients were adjusted between –30 and 30 percent at the 15 calibration streamgages from the original left, right, and channel-averaged Manning's roughness coefficients upon completion of calibration. The U.S. Army Corps of Engineers modeling system HEC

  4. Instantaneous sediment transport model for asymmetric oscillatory sheet flow.

    Directory of Open Access Journals (Sweden)

    Xin Chen

    Full Text Available On the basis of advanced concentration and velocity profiles above a mobile seabed, an instantaneous analytical model is derived for sediment transport in asymmetric oscillatory flow. The applied concentration profile is obtained from the classical exponential law based on mass conservation, and asymmetric velocity profile is developed following the turbulent boundary layer theory and the asymmetric wave theory. The proposed model includes two parts: the basic part that consists of erosion depth and free stream velocity, and can be simplified to the total Shields parameter power 3/2 in accordance with the classical empirical models, and the extra vital part that consists of phase-lead, boundary layer thickness and erosion depth. The effects of suspended sediment, phase-lag and asymmetric boundary layer development are considered particularly in the model. The observed instantaneous transport rate proportional to different velocity exponents due to phase-lag is unified and summarised by the proposed model. Both instantaneous and half period empirical formulas are compared with the developed model, using extensive data on a wide range of flow and sediment conditions. The synchronous variation in instantaneous transport rate with free stream velocity and its decrement caused by increased sediment size are predicted correctly. Net transport rates, especially offshore transport rates with large phase-lag under velocity skewed flows, which existing instantaneous type formulas failed to predict, are predicted correctly in both direction and magnitude by the proposed model. Net sediment transport rates are affected not only by suspended sediment and phase-lag, but also by the boundary layer difference between onshore and offshore.

  5. Studies on sediment transport along Kerala Coast, south west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Sajeev, R.; Chandramohan, P.; Josanto, V.; Sanakaranarayanan, V.N.

    Longshore sediment transport characteristics of the Kerala Coast have been examined to delineate various physical processes affecting the different coastal environments. Monthly averages of the daily LEO (Littoral Environmental Observation) data...

  6. A Tidally Averaged Sediment-Transport Model for San Francisco Bay, California

    Science.gov (United States)

    Lionberger, Megan A.; Schoellhamer, David H.

    2009-01-01

    A tidally averaged sediment-transport model of San Francisco Bay was incorporated into a tidally averaged salinity box model previously developed and calibrated using salinity, a conservative tracer (Uncles and Peterson, 1995; Knowles, 1996). The Bay is represented in the model by 50 segments composed of two layers: one representing the channel (>5-meter depth) and the other the shallows (0- to 5-meter depth). Calculations are made using a daily time step and simulations can be made on the decadal time scale. The sediment-transport model includes an erosion-deposition algorithm, a bed-sediment algorithm, and sediment boundary conditions. Erosion and deposition of bed sediments are calculated explicitly, and suspended sediment is transported by implicitly solving the advection-dispersion equation. The bed-sediment model simulates the increase in bed strength with depth, owing to consolidation of fine sediments that make up San Francisco Bay mud. The model is calibrated to either net sedimentation calculated from bathymetric-change data or measured suspended-sediment concentration. Specified boundary conditions are the tributary fluxes of suspended sediment and suspended-sediment concentration in the Pacific Ocean. Results of model calibration and validation show that the model simulates the trends in suspended-sediment concentration associated with tidal fluctuations, residual velocity, and wind stress well, although the spring neap tidal suspended-sediment concentration variability was consistently underestimated. Model validation also showed poor simulation of seasonal sediment pulses from the Sacramento-San Joaquin River Delta at Point San Pablo because the pulses enter the Bay over only a few days and the fate of the pulses is determined by intra-tidal deposition and resuspension that are not included in this tidally averaged model. The model was calibrated to net-basin sedimentation to calculate budgets of sediment and sediment-associated contaminants. While

  7. Thermal, chemical, and mass transport processes induced in abyssal sediments by the emplacement of nuclear wastes: Experimental and modelling results

    International Nuclear Information System (INIS)

    McVey, D.F.; Erickson, K.L.; Seyfried, W.E. Jr.

    1983-01-01

    In this chapter the authors discuss the current status of heat and mass transport studies in the marine red clay sediments that are being considered as a nuclear waste isolation medium and review analytical and experimental studies. Calculations based on numerical models indicate that for a maximum allowable sediment-canister interface temperatures of 200 0 to 250 0 C, the sediment can absorb about 1.5kW initial power from waste buried 30 m in the sediment in a canister that is 3 m long and 0.3 m in diameter. The resulting fluid displacement due to convections is found to be small, less than 1 m. Laboratory studies of the geochemical effects induced by heating sediment-seawater mixtures indicate that the canister and waste form should be designed to resist a hot, relatively acidic oxidizing environment. Since the thermally altered sediment volume of about 5.5 m/sup 3/ is small relative to the sediment volume overlying the canister, the acid and oxidizing conditions should significantly affect the properties of the far field only if thermodiffusional process (Soret effect) prove to be significant. If thermodiffusional effects are important, however, near-field chemistry will differ considerably from that predicted from results of constant temperature sediment-seawater interaction experiments

  8. Methane Bubbles Transport Particles From Contaminated Sediment to a Lake Surface

    Science.gov (United States)

    Delwiche, K.; Hemond, H.

    2017-12-01

    Methane bubbling from aquatic sediments has long been known to transport carbon to the atmosphere, but new evidence presented here suggests that methane bubbles also transport particulate matter to a lake surface. This transport pathway is of particular importance in lakes with contaminated sediments, as bubble transport could increase human exposure to toxic metals. The Upper Mystic Lake in Arlington, MA has a documented history of methane bubbling and sediment contamination by arsenic and other heavy metals, and we have conducted laboratory and field studies demonstrating that methane bubbles are capable of transporting sediment particles over depths as great as 15 m in Upper Mystic Lake. Methane bubble traps were used in-situ to capture particles adhered to bubble interfaces, and to relate particle mass transport to bubble flux. Laboratory studies were conducted in a custom-made 15 m tall water column to quantify the relationship between water column height and the mass of particulate transport. We then couple this particle transport data with historical estimates of ebullition from Upper Mystic Lake to quantify the significance of bubble-mediated particle transport to heavy metal cycling within the lake. Results suggest that methane bubbles can represent a significant pathway for contaminated sediment to reach surface waters even in relatively deep water bodies. Given the frequent co-occurrence of contaminated sediments and high bubble flux rates, and the potential for human exposure to heavy metals, it will be critical to study the significance of this transport pathway for a range of sediment and contaminant types.

  9. The SPACE 1.0 model: a Landlab component for 2-D calculation of sediment transport, bedrock erosion, and landscape evolution

    Science.gov (United States)

    Shobe, Charles M.; Tucker, Gregory E.; Barnhart, Katherine R.

    2017-12-01

    Models of landscape evolution by river erosion are often either transport-limited (sediment is always available but may or may not be transportable) or detachment-limited (sediment must be detached from the bed but is then always transportable). While several models incorporate elements of, or transition between, transport-limited and detachment-limited behavior, most require that either sediment or bedrock, but not both, are eroded at any given time. Modeling landscape evolution over large spatial and temporal scales requires a model that can (1) transition freely between transport-limited and detachment-limited behavior, (2) simultaneously treat sediment transport and bedrock erosion, and (3) run in 2-D over large grids and be coupled with other surface process models. We present SPACE (stream power with alluvium conservation and entrainment) 1.0, a new model for simultaneous evolution of an alluvium layer and a bedrock bed based on conservation of sediment mass both on the bed and in the water column. The model treats sediment transport and bedrock erosion simultaneously, embracing the reality that many rivers (even those commonly defined as bedrock rivers) flow over a partially alluviated bed. SPACE improves on previous models of bedrock-alluvial rivers by explicitly calculating sediment erosion and deposition rather than relying on a flux-divergence (Exner) approach. The SPACE model is a component of the Landlab modeling toolkit, a Python-language library used to create models of Earth surface processes. Landlab allows efficient coupling between the SPACE model and components simulating basin hydrology, hillslope evolution, weathering, lithospheric flexure, and other surface processes. Here, we first derive the governing equations of the SPACE model from existing sediment transport and bedrock erosion formulations and explore the behavior of local analytical solutions for sediment flux and alluvium thickness. We derive steady-state analytical solutions for

  10. Sediment transport in an active erodible channel bend

    Indian Academy of Sciences (India)

    Local variation of sediment transport is primarily controlled by active bank erosion, land spur and sand bar formation. Vertical distribution of suspended sediment concentration follows a power function with normalized depth. Average bed-material concentration at the reach level is computed from observed sediment profiles, ...

  11. Sediments in Arctic sea ice: Implications for entrainment, transport and release

    Science.gov (United States)

    Nurnberg, D.; Wollenburg, I.; Dethleff, D.; Eicken, H.; Kassens, H.; Letzig, T.; Reimnitz, E.; Thiede, Jorn

    1994-01-01

    Despite the Arctic sea ice cover's recognized sensitivity to environmental change, the role of sediment inclusions in lowering ice albedo and affecting ice ablation is poorly understood. Sea ice sediment inclusions were studied in the central Arctic Ocean during the Arctic 91 expedition and in the Laptev Sea (East Siberian Arctic Region Expedition 1992). Results from these investigations are here combined with previous studies performed in major areas of ice ablation and the southern central Arctic Ocean. This study documents the regional distribution and composition of particle-laden ice, investigates and evaluates processes by which sediment is incorporated into the ice cover, and identifies transport paths and probable depositional centers for the released sediment. In April 1992, sea ice in the Laptev Sea was relatively clean. The sediment occasionally observed was distributed diffusely over the entire ice column, forming turbid ice. Observations indicate that frazil and anchor ice formation occurring in a large coastal polynya provide a main mechanism for sediment entrainment. In the central Arctic Ocean sediments are concentrated in layers within or at the surface of ice floes due to melting and refreezing processes. The surface sediment accumulation in central Arctic multi-year sea ice exceeds by far the amounts observed in first-year ice from the Laptev Sea in April 1992. Sea ice sediments are generally fine grained, although coarse sediments and stones up to 5 cm in diameter are observed. Component analysis indicates that quartz and clay minerals are the main terrigenous sediment particles. The biogenous components, namely shells of pelecypods and benthic foraminiferal tests, point to a shallow, benthic, marine source area. Apparently, sediment inclusions were resuspended from shelf areas before and incorporated into the sea ice by suspension freezing. Clay mineralogy of ice-rafted sediments provides information on potential source areas. A smectite

  12. Sediment movement along the U.S. east coast continental shelf—II. Modelling suspended sediment concentration and transport rate during storms

    Science.gov (United States)

    Lyne, Vincent D.; Butman, Bradford; Grant, William D.

    1990-05-01

    Long-term near-bottom wave and current observations and a one-dimensional sediment transport model are used to calculate the concentration and transport of sediment during winter storms at 60-80 m water depth along the southern flank of Georges Bank and in the Mid-Atlantic Bight. Calculations are presented for five stations, separated by more than 600 km alongshelf, that have different bottom sediment texture, bedforms and current conditions. A modified version of the sediment transport model presented by GRANT and GLENN (1983, Technical Report to the American Gas Association), GLENN (1983, D.Sc. Thesis, M.I.T.), and GLENN and GRANT (1987, Journal of Geophysical Research, 92, 8244-8264) is used to examine the influence of wave-current interaction, sediment stratification, and limitations on the erodibility of the bottom sediments on the concentration of sediment in the water column and on transport. Predicted suspended sediment concentrations are higher than observed, based on beam transmissometer measurements, unless an erosion limit of order a few millimeters for sediments finer than 94 μm is imposed. The agreement between predicted and measured beam attenuation is better at stations that have significant amounts of silt plus clay in the surficial sediments than for stations with sandy sediments. Sediment concentrations during storms estimated by MOODYet al. (1987, Continental Shelf Research, 7, 609-628) are within 50% of the model predictions. Sediment transport rates for sediments 94 μm and finer are determined largely by the concentrations in the surficial sediment and the erosion depth limit. Large alongshelf transports in the direction of storm-driven currents are inferred for stations in the Mid-Atlantic Bight. During a 115-day period in winter 1979-1980, the net transport of sediment along the shelf was westward; benthic storms (defined as periods when the bottom wave stress exceeded the current stress by 2 dyn cm -2) occurred between 23 and 73% of the

  13. Rainfall, runoff and sediment transport in a Mediterranean mountainous catchment.

    Science.gov (United States)

    Tuset, J; Vericat, D; Batalla, R J

    2016-01-01

    The relation between rainfall, runoff, erosion and sediment transport is highly variable in Mediterranean catchments. Their relation can be modified by land use changes and climate oscillations that, ultimately, will control water and sediment yields. This paper analyses rainfall, runoff and sediment transport relations in a meso-scale Mediterranean mountain catchment, the Ribera Salada (NE Iberian Peninsula). A total of 73 floods recorded between November 2005 and November 2008 at the Inglabaga Sediment Transport Station (114.5 km(2)) have been analysed. Suspended sediment transport and flow discharge were measured continuously. Rainfall data was obtained by means of direct rain gauges and daily rainfall reconstructions from radar information. Results indicate that the annual sediment yield (2.3 t km(-1) y(-1) on average) and the flood-based runoff coefficients (4.1% on average) are low. The Ribera Salada presents a low geomorphological and hydrological activity compared with other Mediterranean mountain catchments. Pearson correlations between rainfall, runoff and sediment transport variables were obtained. The hydrological response of the catchment is controlled by the base flows. The magnitude of suspended sediment concentrations is largely correlated with flood magnitude, while sediment load is correlated with the amount of direct runoff. Multivariate analysis shows that total suspended load can be predicted by integrating rainfall and runoff variables. The total direct runoff is the variable with more weight in the equation. Finally, three main hydro-sedimentary phases within the hydrological year are defined in this catchment: (a) Winter, where the catchment produces only water and very little sediment; (b) Spring, where the majority of water and sediment is produced; and (c) Summer-Autumn, when little runoff is produced but significant amount of sediments is exported out of the catchment. Results show as land use and climate change may have an important

  14. Modeling transport and deposition of the Mekong River sediment

    Science.gov (United States)

    Xue, Zuo; He, Ruoying; Liu, J. Paul; Warner, John C.

    2012-01-01

    A Coupled Wave–Ocean–SedimentTransport Model was used to hindcast coastal circulation and fine sedimenttransport on the Mekong shelf in southeastern Asian in 2005. Comparisons with limited observations showed that the model simulation captured the regional patterns and temporal variability of surface wave, sea level, and suspended sediment concentration reasonably well. Significant seasonality in sedimenttransport was revealed. In summer, a large amount of fluvial sediments was delivered and deposited near the MekongRiver mouth. In the following winter, strong ocean mixing, and coastal current lead to resuspension and southwestward dispersal of a small fraction of previously deposited sediments. Model sensitivity experiments (with reduced physics) were performed to investigate the impact of tides, waves, and remotely forced ambient currents on the transport and dispersal of the fluvial sediment. Strong wave mixing and downwelling-favorable coastal current associated with the more energetic northeast monsoon in the winter season are the main factors controlling the southwestward along-shelf transport.

  15. Sediment and toxic contaminant transport modeling in coastal waters

    International Nuclear Information System (INIS)

    Onishi, Yasuo; Mayer, D.W.; Argo, R.S.

    1982-01-01

    Models are presented to estimate the migration of toxic contaminants in coastal waters. Ocean current is simulated by the vertically-averaged, finite element, two-demensional model known as CAFE-I with the Galerkin weighted residual technique. The refraction of locally generated waves or swells is simulated by the wave refraction model, LO3D. Using computed current, depth, and wave characteristics, the finite element model, FETRA, simulated sediment and contaminant transport in coastal waters, estuaries and rivers. Prior to the application of these models to the Irish Sea and other coastal waters, the finite element model, FETRA, was tested to demonstrate its ability to simulate sediment and contaminant interaction, and the mechanism governing the transport, deposition, and resuspension of contaminated sediment. Several simple equations such as the unsteady, advection-diffusion equation, the equation for noncohesive-sediment load due to wind-induced waves in offshore and surf zones, and the equation for sediment-radionuclide transport simulation were solved during the preliminary testing of the model. (Kato, T.)

  16. Final Report, University of California Merced: Uranium and strontium fate in waste-weathered sediments: Scaling of molecular processes to predict reactive transport (DE-SC0007095)

    Energy Technology Data Exchange (ETDEWEB)

    O' Day, Peggy Anne [University of California Merced; Chorover, Jon [University of Arizona; Steefel, Carl [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mueller, Karl [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Um, Wooyong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-06-30

    Objectives of the Project: 1. Determine the process coupling that occurs between mineral transformation and contaminant (U and Sr) speciation in acid-uranium waste weathered Hanford sediments. 2. Establish linkages between molecular-scale contaminant speciation and meso-scale contaminant lability, release and reactive transport. 3. Make conjunctive use of molecular- to bench-scale data to constrain the development of a mechanistic, reactive transport model that includes coupling of contaminant sorption-desorption and mineral transformation reactions. Hypotheses Tested: Uranium and strontium speciation in legacy sediments from the U-8 and U-12 Crib sites can be reproduced in bench-scale weathering experiments conducted on unimpacted Hanford sediments from the same formations; Reactive transport modeling of future uranium and strontium releases from the vadose zone of acid-waste weathered sediments can be effectively constrained by combining molecular-scale information on contaminant bonding environment with grain-scale information on contaminant phase partitioning, and meso-scale kinetic data on contaminant release from the waste-weathered porous media; Although field contamination and laboratory experiments differ in their diagenetic time scales (decades for field vs. months to years for lab), sediment dissolution, neophase nucleation, and crystal growth reactions that occur during the initial disequilibrium induced by waste-sediment interaction leave a strong imprint that persists over subsequent longer-term equilibration time scales and, therefore, give rise to long-term memory effects. Enabling Capabilities Developed: Our team developed an iterative measure-model approach that is broadly applicable to elucidate the mechanistic underpinnings of reactive contaminant transport in geomedia subject to active weathering.

  17. Earth's portfolio of extreme sediment transport events

    Science.gov (United States)

    Korup, Oliver

    2012-05-01

    Quantitative estimates of sediment flux and the global cycling of sediments from hillslopes to rivers, estuaries, deltas, continental shelves, and deep-sea basins have a long research tradition. In this context, extremely large and commensurately rare sediment transport events have so far eluded a systematic analysis. To start filling this knowledge gap I review some of the highest reported sediment yields in mountain rivers impacted by volcanic eruptions, earthquake- and storm-triggered landslide episodes, and catastrophic dam breaks. Extreme specific yields, defined here as those exceeding the 95th percentile of compiled data, are ~ 104 t km- 2 yr- 1 if averaged over 1 yr. These extreme yields vary by eight orders of magnitude, but systematically decay with reference intervals from minutes to millennia such that yields vary by three orders of magnitude for a given reference interval. Sediment delivery from natural dam breaks and pyroclastic eruptions dominate these yields for a given reference interval. Even if averaged over 102-103 yr, the contribution of individual disturbances may remain elevated above corresponding catchment denudation rates. I further estimate rates of sediment (re-)mobilisation by individual giant terrestrial and submarine mass movements. Less than 50 postglacial submarine mass movements have involved an equivalent of ~ 10% of the contemporary annual global flux of fluvial sediment to Earth's oceans, while mobilisation rates by individual events rival the decadal-scale sediment discharge from tectonically active orogens such as Taiwan or New Zealand. Sediment flushing associated with catastrophic natural dam breaks is non-stationary and shows a distinct kink at the last glacial-interglacial transition, owing to the drainage of very large late Pleistocene ice-marginal lakes. Besides emphasising the contribution of high-magnitude and low-frequency events to the global sediment cascade, these findings stress the importance of sediment storage

  18. Principles and Approaches for Numerical Modelling of Sediment Transport in Sewers

    DEFF Research Database (Denmark)

    Mark, Ole; Appelgren, Cecilia; Larsen, Torben

    1995-01-01

    A study has been carried out with the objectives of describing the effect of sediment deposits on the hydraulic capacity of sewer systems and to investigate the sediment transport in sewer systems. A result of the study is a mathematical model MOUSE ST which describes sediment transport in sewers....... This paper discusses the applicability and the limitations of various modelling approaches and sediment transport formulations in in MOUSE ST. Further, the paper presents a simple application of MOUSE ST to the Rya catchment in Gothenburg, Sweden....

  19. Principles and approaches for numerical modelling of sediment transport in sewers

    DEFF Research Database (Denmark)

    Mark, Ole; Larsen, Torben; Appelgren, Cecilia

    1994-01-01

    model MOUSE ST which describes the sediment transport in sewers. This paper discusses the applicability and the limitations of various modelling approaches and sediment transport formulations in MOUSE ST. The study was founded by the Swedish Water and Waste Works Association and the Nordic Industrial......A study has been carried out at the University of Aalborg, Denmark and VBB VIAK, Sweden with the objectives to describe the effect of sediment deposits on the hydraulic capacity of sewer systems and to investigate the sediment transport in sewer systems. A results of the study is a mathematical...

  20. Entrainment, transport and deposition of sediment by saline gravity currents

    Science.gov (United States)

    Zordan, Jessica; Juez, Carmelo; Schleiss, Anton J.; Franca, Mário J.

    2018-05-01

    Few studies have addressed simultaneously the feedback between the hydrodynamics of a gravity current and the geomorphological changes of a mobile bed. Hydrodynamic quantities such as turbulent and mean velocities, bed shear stress and turbulent stresses undoubtedly govern the processes of entrainment, transport and deposition. On the other hand, the incorporation of entrained sediment in the current may change its momentum by introducing extra internal stresses, introducing thus a feedback process. These two main questions are here investigated. Laboratory experiments of saline gravity currents, produced by lock-exchange, flowing over a mobile bed channel reach, are here reported. Different initial buoyancies of the current in the lock are tested together with three different grain sizes of the non-coherent sediment that form the erodible bed. Results from velocity measurements are combined with the visualization of the sediment movement in the mobile reach and with post-test topographic and photo surveys of the geomorphology modifications of the channel bed. Mean and turbulent velocities are measured and bed shear stress and Reynolds stresses are estimated. We show that the mean vertical component of the velocity and bed shear stress are highly correlated with the first instants of sediment entrainment. Vertical turbulent velocity is similarly related to entrainment, although with lower correlation values, contributing as well to the sediment movement. Bed shear stress and Reynolds shear stress measured near the bed are correlated with sediment entrainment for longer periods, indicating that these quantities are associated to distal transport as well. Geomorphological changes in the mobile bed are strongly related to the impulse caused by the bed shear stress on the sediment. On the other hand, we show that the nature of the grain of the mobile bed reach influences the hydrodynamics of the current which means that a feedback mechanisms between both occurs during

  1. Sediment transport during the snow melt period in a Mediterranean high mountain catchment

    Energy Technology Data Exchange (ETDEWEB)

    Alvera, B.; Lana-Renault, N.; Garcia-Ruiz, J. M.

    2009-07-01

    Transport of suspended sediment and solutes during the snow melt period (May-June, 2004) in the Izas catchment (Central Pyrenees) was studied to obtain a sediment balance and to assess the annual importance of sediment transport. The results showed that most sediment was exported in the form of solutes (75,6% of the total); 24.4% was exported as suspended sediment and no bed load was recorded. Sediment transport during the snow melt period represented 42.7% of the annual sediment yield. (Author) 7 refs.

  2. Sediment transport during the snow melt period in a Mediterranean high mountain catchment

    International Nuclear Information System (INIS)

    Alvera, B.; Lana-Renault, N.; Garcia-Ruiz, J. M.

    2009-01-01

    Transport of suspended sediment and solutes during the snow melt period (May-June, 2004) in the Izas catchment (Central Pyrenees) was studied to obtain a sediment balance and to assess the annual importance of sediment transport. The results showed that most sediment was exported in the form of solutes (75,6% of the total); 24.4% was exported as suspended sediment and no bed load was recorded. Sediment transport during the snow melt period represented 42.7% of the annual sediment yield. (Author) 7 refs.

  3. Distribution of biologic, anthropogenic, and volcanic constituents as a proxy for sediment transport in the San Francisco Bay Coastal System

    Science.gov (United States)

    McGann, Mary; Erikson, Li H.; Wan, Elmira; Powell, Charles; Maddocks, Rosalie F.; Barnard, P.L.; Jaffee, B.E.; Schoellhamer, D.H.

    2013-01-01

    Although conventional sediment parameters (mean grain size, sorting, and skewness) and provenance have typically been used to infer sediment transport pathways, most freshwater, brackish, and marine environments are also characterized by abundant sediment constituents of biological, and possibly anthropogenic and volcanic, origin that can provide additional insight into local sedimentary processes. The biota will be spatially distributed according to its response to environmental parameters such as water temperature, salinity, dissolved oxygen, organic carbon content, grain size, and intensity of currents and tidal flow, whereas the presence of anthropogenic and volcanic constituents will reflect proximity to source areas and whether they are fluvially- or aerially-transported. Because each of these constituents have a unique environmental signature, they are a more precise proxy for that source area than the conventional sedimentary process indicators. This San Francisco Bay Coastal System study demonstrates that by applying a multi-proxy approach, the primary sites of sediment transport can be identified. Many of these sites are far from where the constituents originated, showing that sediment transport is widespread in the region. Although not often used, identifying and interpreting the distribution of naturally-occurring and allochthonous biologic, anthropogenic, and volcanic sediment constituents is a powerful tool to aid in the investigation of sediment transport pathways in other coastal systems.

  4. Transport of Sr 2+ and SrEDTA 2- in partially-saturated and heterogeneous sediments

    Science.gov (United States)

    Pace, M. N.; Mayes, M. A.; Jardine, P. M.; McKay, L. D.; Yin, X. L.; Mehlhorn, T. L.; Liu, Q.; Gürleyük, H.

    2007-05-01

    Strontium-90 has migrated deep into the unsaturated subsurface beneath leaking storage tanks in the Waste Management Areas (WMA) at the U.S. Department of Energy's (DOE) Hanford Reservation. Faster than expected transport of contaminants in the vadose zone is typically attributed to either physical hydrologic processes such as development of preferential flow pathways, or to geochemical processes such as the formation of stable, anionic complexes with organic chelates, e.g., ethylenediaminetetraacetic acid (EDTA). The goal of this paper is to determine whether hydrological processes in the Hanford sediments can influence the geochemistry of the system and hence control transport of Sr 2+ and SrEDTA 2-. The study used batch isotherms, saturated packed column experiments, and an unsaturated transport experiment in an undisturbed core. Isotherms and repacked column experiments suggested that the SrEDTA 2- complex was unstable in the presence of Hanford sediments, resulting in dissociation and transport of Sr 2+ as a divalent cation. A decrease in sorption with increasing solid:solution ratio for Sr 2+ and SrEDTA 2- suggested mineral dissolution resulted in competition for sorption sites and the formation of stable aqueous complexes. This was confirmed by detection of MgEDTA 2-, MnEDTA 2-, PbEDTA 2-, and unidentified Sr and Ca complexes. Displacement of Sr 2+ through a partially-saturated undisturbed core resulted in less retardation and more irreversible sorption than was observed in the saturated repacked columns, and model results suggested a significant reservoir (49%) of immobile water was present during transport through the heterogeneous layered sediments. The undisturbed core was subsequently disassembled along distinct bedding planes and subjected to sequential extractions. Strontium was unequally distributed between carbonates (49%), ion exchange sites (37%), and the oxide (14%) fraction. An inverse relationship between mass wetness and Sr suggested that

  5. Littoral Hydrodynamics and Sediment Transport Around a Semi-Permeable Breakwater

    Science.gov (United States)

    2015-09-18

    Australasian Coasts & Ports Conference 2015 15 - 18 September 2015, Auckland , New Zealand Li, H et al. Littoral Hydrodynamics and Sediment...Coasts and Ports 2015, Auckland , New Zealand, 15-18 September, 2015, 7 pp. Littoral Hydrodynamics and Sediment Transport Around a Semi...Conference 2015 15 - 18 September 2015, Auckland , New Zealand Li, H et al. Littoral Hydrodynamics and Sediment Transport 2 The bathymetric and side

  6. Sediment supply versus local hydraulic controls on sediment transport and storage in a river with large sediment loads

    Science.gov (United States)

    Dean, David; Topping, David; Schmidt, John C.; Griffiths, Ronald; Sabol, Thomas

    2016-01-01

    The Rio Grande in the Big Bend region of Texas, USA, and Chihuahua and Coahuila, Mexico, undergoes rapid geomorphic changes as a result of its large sediment supply and variable hydrology; thus, it is a useful natural laboratory to investigate the relative importance of flow strength and sediment supply in controlling alluvial channel change. We analyzed a suite of sediment transport and geomorphic data to determine the cumulative influence of different flood types on changing channel form. In this study, physically based analyses suggest that channel change in the Rio Grande is controlled by both changes in flow strength and sediment supply over different spatial and temporal scales. Channel narrowing is primarily caused by substantial deposition of sediment supplied to the Rio Grande during tributary-sourced flash floods. Tributary floods have large suspended-sediment concentrations, occur for short durations, and attenuate rapidly downstream in the Rio Grande, depositing much of their sediment in downstream reaches. Long-duration floods on the mainstem have the capacity to enlarge the Rio Grande, and these floods, released from upstream dams, can either erode or deposit sediment in the Rio Grande depending upon the antecedent in-channel sediment supply and the magnitude and duration of the flood. Geomorphic and sediment transport analyses show that the locations and rates of sand erosion and deposition during long-duration floods are most strongly controlled by spatial changes in flow strength, largely through changes in channel slope. However, spatial differences in the in-channel sediment supply regulate sediment evacuation or accumulation over time in long reaches (greater than a kilometer).

  7. Modelling of Sediment Transport in Beris Fishery Port

    Directory of Open Access Journals (Sweden)

    Samira Ardani

    2015-06-01

    Full Text Available In this paper, the large amount of sedimentation and the resultant shoreline advancements at the breakwaters of Beris Fishery Port are studied. A series of numerical modeling of waves, sediment transport, and shoreline changes were conducted to predict the complicated equilibrium shoreline. The outputs show that the nearshore directions of wave components are not perpendicular to the coast which reveals the existence of longshore currents and consequently sediment transport along the bay. Considering the dynamic equilibrium condition of the bay, the effect of the existing sediment resources in the studied area is also investigated. The study also shows that in spite of the change of the diffraction point of Beris Bay after the construction of the fishery port, the bay is approaching its dynamic equilibrium condition, and the shoreline advancement behind secondary breakwater will stop before blocking the entrance of the port. The probable solutions to overcome the sedimentation problem at the main breakwater are also discussed.

  8. Spatial glyphosate and AMPA redistribution on the soil surface driven by sediment transport processes - A flume experiment.

    Science.gov (United States)

    Bento, Célia P M; Commelin, Meindert C; Baartman, Jantiene E M; Yang, Xiaomei; Peters, Piet; Mol, Hans G J; Ritsema, Coen J; Geissen, Violette

    2018-03-01

    This study investigates the influence of small-scale sediment transport on glyphosate and AMPA redistribution on the soil surface and on their off-site transport during water erosion events. Both a smooth surface (T1) and a surface with "seeding lines on the contour" (T2) were tested in a rainfall simulation experiment using soil flumes (1 × 0.5 m) with a 5% slope. A dose of 178 mg m -2 of a glyphosate-based formulation (CLINIC ® ) was applied on the upper 0.2 m of the flumes. Four 15-min rainfall events (RE) with 30-min interval in between and a total rainfall intensity of 30 mm h -1 were applied. Runoff samples were collected after each RE in a collector at the flume outlet. At the end of the four REs, soil and sediment samples were collected in the application area and in four 20 cm-segments downslope of the application area. Samples were collected according to the following visually distinguished soil surface groups: light sedimentation (LS), dark sedimentation (DS), background and aggregates. Results showed that runoff, suspended sediment and associated glyphosate and AMPA off-site transport were significantly lower in T2 than in T1. Glyphosate and AMPA off-site deposition was higher for T2 than for T1, and their contents on the soil surface decreased with increasing distance from the application area for all soil surface groups and in both treatments. The LS and DS groups presented the highest glyphosate and AMPA contents, but the background group contributed the most to the downslope off-site deposition. Glyphosate and AMPA off-target particle-bound transport was 9.4% (T1) and 17.8% (T2) of the applied amount, while water-dissolved transport was 2.8% (T1) and 0.5% (T2). Particle size and organic matter influenced the mobility of glyphosate and AMPA to off-target areas. These results indicate that the pollution risk of terrestrial and aquatic environments through runoff and deposition can be considerable. Copyright © 2017 Elsevier Ltd

  9. Distribution of basic sediments (bedload transport) on changes in coastal coastline Donggala, Central Sulawesi Province, Indonesia

    Science.gov (United States)

    Amiruddin

    2018-03-01

    This study entitled "Distribution of Bedload Transport Against Coastline Changes in Donggala Coast", the formulation of the problem (1) how much of the estimated bedload transport in Donggala Bodies; (2) where were the location of erosion and sedimentation strong point based on the estimation of bed load transport; (3) the extent to which the prediction of shoreline change rate of transport of sediments in coastal areas Donggala. This study aims to: (1) the calculation of estimated bed load transport in Donggala waters; (2) determining the location of the point of erosion and sedimentation strong basis of estimated bedload transport; (3) the prediction of shoreline change rate of transport of sediments in coastal areas Donggala.The survey method used in this research to collect primary data include: (1) decision point waypoint coordinates of each location of measurement; (2) measurement of height, period and direction of the waves; (3) a large measurement of sediment transport; (4) The angle measurement coastline, angle of attack and wave direction, and secondary data include: (1) information from the public; (2) the physical condition data field. The results showed that: (1) general estimate sediment transport base in each location data collection is varied. This is due to the different points of the coastline as well as the angle of attack of the shoreline waters broke Donggala; (2) strong abrasion at the study site occurs at the point Ts4 (622.75 m3/yr) and TS11 (755.25 m3/yr) located in the Village Tosale and point Tw7 and Tw17 (649.25 m3/yr) in Village of Towale. As for the strong sedimentation occurs at the point Ts3 (450.50 m3/yr) located in the Village Tosale and Tg3 point (357.75 m3/yr) located in the Village Tolonggano; (3) of the predicted outcome coastline changes based on the input data estimate sediment transport, beaches and waves parameters is seen that the changes in the location prophyl coastline tends toward research into or undergo a process of

  10. Numerical Simulation of Plume Transport in Channel Bend with Different Sediment Diameters

    Science.gov (United States)

    Kim, H. S.; Chen, H. C.

    2017-12-01

    The flow and transport of suspended sediment particles, in the form of plume, were simulated using an in-house Computational Fluid Dynamics (CFD) solver FANS3D (Finite Analytic Navier-Stokes code for 3D flow). The motivation for this investigation is to provide a means to simulate and visualize dispersal systems in a complex flow environment. The physical domain considered is a 90-degrees channel bend with wingwall abutments, which induces complex, three-dimensional flow characteristics. At the inlet of the channel, a sediment plume with the volumetric concentration of 1,000 parts per million (ppm) was constantly supplied. For simplicity, it was assumed that neither deposition nor erosion takes place inside the channel and settling sediment was made to pass through the bed surface. The effect of the sediment particle size was also analyzed using two different median diameters: 0.10 mm and 0.20 mm. It was shown that flow acceleration and vortices cause strong mixing inside the channel. The three-dimensional time series from the simulation captured increasing suspended sediment concentration downstream of the abutments, along the outer bank. When the median diameter was varied, the sediment concentration at certain locations differed by orders of magnitude, indicating that the settling velocity dominates the transport process for larger diameters.

  11. Numerical Simulation of Flow and Suspended Sediment Transport in the Distributary Channel Networks

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2014-01-01

    Full Text Available Flow and suspended sediment transport in distributary channel networks play an important role in the evolution of deltas and estuaries, as well as the coastal environment. In this study, a 1D flow and suspended sediment transport model is presented to simulate the hydrodynamics and suspended sediment transport in the distributary channel networks. The governing equations for river flow are the Saint-Venant equations and for suspended sediment transport are the nonequilibrium transport equations. The procedure of solving the governing equations is firstly to get the matrix form of the water level and suspended sediment concentration at all connected junctions by utilizing the transformation of the governing equations of the single channel. Secondly, the water level and suspended sediment concentration at all junctions can be obtained by solving these irregular spare matrix equations. Finally, the water level, discharge, and suspended sediment concentration at each river section can be calculated. The presented 1D flow and suspended sediment transport model has been applied to the Pearl River networks and can reproduce water levels, discharges, and suspended sediment concentration with good accuracy, indicating this that model can be used to simulate the hydrodynamics and suspended sediment concentration in the distributary channel networks.

  12. Sediment and toxic contaminant transport modeling in coastal waters

    International Nuclear Information System (INIS)

    Onishi, Y.; Mayer, D.W.; Argo, R.S.

    1982-02-01

    A hydrodynamic model, CAFE-I, a wave refraction model, LO3D, and a sediment and contaminant transport model, FETRA, were selected as tools for evaluating exposure levels of radionuclides, heavy metals, and other toxic chemicals in coastal waters. Prior to the application of these models to the Irish Sea and other coastal waters, the finite element model, FETRA, was tested to demonstrate its ability to simulate sediment and contaminant interactions (e.g., adsorption and desorption), and the mechanisms governing the transport, deposition, and resuspension of contaminated sediments

  13. Climate Change Impacts on Sediment Transport In a Lowland Watershed System: Controlling Processes and Projection

    Science.gov (United States)

    al Aamery, N. M. H.; Mahoney, D. T.; Fox, J.

    2017-12-01

    Future climate change projections suggest extreme impacts on watershed hydrologic systems for some regions of the world including pronounced increases in surface runoff and instream flows. Yet, there remains a lack of research focused on how future changes in hydrologic extremes, as well as relative hydrologic mean changes, impact sediment redistribution within a watershed and sediment flux from a watershed. The authors hypothesized that variations in mean and extreme changes in turn may impact sediments in depositional and erosional dominance in a manner that may not be obvious to the watershed manager. Therefore, the objectives of this study were to investigate the inner processes connecting the combined effect of extreme climate change projections on the vegetation, upland erosion, and instream processes to produce changes in sediment redistribution within watersheds. To do so, research methods were carried out by the authors including simulating sediment processes in forecast and hindcast periods for a lowland watershed system. Publically available climate realizations from several climate factors and the Soil Water Assessment Tool (SWAT) were used to predict hydrologic conditions for the South Elkhorn Watershed in central Kentucky, USA to 2050. The results of the simulated extreme and mean hydrological components were used in simulating upland erosion with the connectivity processes consideration and thereafter used in building and simulating the instream erosion and deposition of sediment processes with the consideration of surface fine grain lamina (SFGL) layer controlling the benthic ecosystem. Results are used to suggest the dominance of erosional and depositional redistribution of sediments under different scenarios associated with extreme and mean hydrologic forecasting. The results are discussed in reference to the benthic ecology of the stream system providing insight on how water managers might consider sediment redistribution in a changing climate.

  14. Sediment Transport Capacity of Turbidity Currents: from Microscale to Geological Scale.

    Science.gov (United States)

    Eggenhuisen, J. T.; Tilston, M.; Cartigny, M.; Pohl, F.; de Leeuw, J.; van der Grind, G. J.

    2016-12-01

    A big question in sedimentology concerns the magnitude of fluxes of sediment particles, solute matter and dissolved gasses from shallow marine waters to deep basins by turbidity current flow. Here we establish sediment transport capacity of turbidity current flow on three levels. The most elementary level is set by the maximum amount of sediment that can be contained at the base of turbidity currents without causing complete extinction of boundary layer turbulence. The second level concerns the capacity in a vertical column within turbidity currents. The third level involves the amount of sediment that can be transported in turbidite systems on geological timescales. The capacity parameter Γ compares turbulent forces near the boundary of a turbulent suspension to gravity and buoyancy forces acting on suspended particles. The condition of Γ>1 coincides with complete suppression of coherent boundary layer turbulence in Direct Numerical Simulations of sediment-laden turbulent flow. Γ=1 coincides with the upper limit of observed suspended particle concentrations in flume and field measurements. Γ is grainsize independent, yet capacity of the full vertical structure of turbidity currents becomes grainsize dependent. This is due to the appearance of grainsize dependent vertical motions within turbulence as a primary control on the shape of the vertical concentration profile. We illustrate this dependence with experiments and theory and conclude that capacity depends on the competence of prevailing turbulence to suspend particle sizes. The concepts of capacity and competence are thus tangled. Finally, the capacity of turbidity current flow structure is coupled to geological constraints on recurrence times, channel and lobe life cycles, and allogenic forcing on system activity to arrive at system scale sediment transport capacity. We demonstrate a simple model that uses the fundamental process insight described above to estimate geological sediment budgets from

  15. A regional sediment transport modeling for fluvial influx and redistribution of suspended radionuclide in the Fukushima coast

    International Nuclear Information System (INIS)

    Uchiyama, Yusuke; Yamanishi, Takafumi; Tsumune, Daisuke; Miyazawa, Yasumasa

    2014-01-01

    Fluvial discharge from the rivers is viewed as a missing piece for the inventory of the radionuclides in the ocean during the accident at the Fukushima Daiichi Nuclear Power Plant. The land-derived input introduces a time lag behind the direct release through hydrological process because these radionuclides mostly attach to suspended particles (sediments) that are transported quite differently to the dissolved matter in the ocean. We therefore develop a regional sediment transport model consisting of a multi-class non-cohesive sediment transport module, a wave-enhanced bed boundary layer model and a stratigraphy model proposed by Blaas et al. (2007) based on ROMS. (author)

  16. The timing of sediment transport down Monterey Submarine Canyon, offshore California

    DEFF Research Database (Denmark)

    Stevens, Thomas; Paull, C.K.; Ussler, W., III

    2014-01-01

    luminescence (OSL) ages of quartz sand deposits and accelerator mass spectrometry 14C ages measured on benthic foraminifera to examine the timing of sediment transport through the axial channel of Monterey Submarine Canyon and Fan, offshore California. The OSL ages date the timing of sediment entry...... dates with water depth provides evidence of mixing and temporary storage of sediment as it moves through the canyon system. The ages also indicate that the frequency of sediment transport events decreases with distance down the canyon channel system. The amalgamated sands near the canyon head yield OSL......While submarine canyons are the major conduits through which sediments are transported from the continents out into the deep sea, the time it takes for sediment to pass down through a submarine canyon system is poorly constrained. Here we report on the first study to couple optically stimulated...

  17. Tracing cohesive sediment transportation at river mouths around Tokyo, Japan by Cesium originated from Fukushima Daiichi Power Plant

    Science.gov (United States)

    koibuchi, Y.

    2012-12-01

    Sediment transport at river mouths, which consists of suspended-load and bed-load, has not been fully understood, since bed-load transport of cohesive sand is difficult to observe. Especially, the impact of sediment transport on the total amount of fine-grained cohesive sediment has not been elucidated. Cesium-134 and cesium-137 were spread from the Fukushima Daiichi Nuclear Power Plant (FDNPP) after the earthquake of March 11 of 2011, and attached to the fine-grained sand on the land. The contaminated sand flowed into the river mouths through the rivers possibly due to the complex physical processes in estuarine areas. To evaluate the fine-grained sediment transport around Tokyo and Tokyo Bay, field observations were carried out utilizing radionuclide originated from FDNPP as an effective tracer. The cohesive sediment transport at three different river mouths around Tokyo was successfully quantified. The cohesive sediment transport deposited in the estuary was found to be greatly dependent on the land use, geometry, river discharge and salinity. In addition,the transport driven by the rainfall was minute, and its behavior was quite different from suspended solids. Although further field observations of radionuclide are necessary, it is clear that fine-grained sediment in the bay from rivers already settled on the river mouth by aggregation. The settled sand will not move even in rainfall events. Consequently, the transport of radionuclide to the Pacific Ocean may not occur.; Cesium distribution around Tokyo Bay ; Cesium Concentration in Edogawa river

  18. Radiotracer investigations for sediment transport in ports of India

    International Nuclear Information System (INIS)

    Pant, H.J.; Sharma, V.K.; Goswami, Sunil; Singh, Gursharan

    2013-01-01

    The knowledge of mixing and transport of sediments in coastal region is of vital importance for evaluating suitability of dumping site for dredged sediments produced during maintenance of shipping channels, expansion of existing projects and construction of new projects. Gamma-emitting radiotracers are commonly used for investigation of movement of sediments on seabed using Scandium-46 (scandium glass powder) as radiotracer. The radiotracer is injected on seabed at a desired location and its movement followed over a period of time using waterproof NaI(Tl) scintillation detectors. The recorded data is analyzed to obtain transport parameters and utilized for assessing the suitability of the dumping sites and optimization of the dredging operations. About 70 large-scale investigations have been carried out in different ports in India leading to significant economical benefits to the Ports. Present paper discusses various aspects of the radiotracer technique for sediment transport, methodology of data analysis and a specific case study. (author)

  19. Residual fluxes and suspended sediment transport in the lower reaches of Muvattupuzha River, southwest coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Revichandran, C.; Balachandran, K.K.; Xavier, J.K.; Rejendran, N.C.

    Spatial and seasonal variation of different physical processes governing the transport of salt and sediment of the Muvattupuzha River, in Kerala, India are discussed. Salt and suspended sediment due to tidal pumping was directed upstream, salt...

  20. State-of-the-art in modeling solute and sediment transport in rivers

    International Nuclear Information System (INIS)

    Sayre, W.W.

    1980-01-01

    This overview is structured around a comprehensive general model based on the conservation of mass principle as applied to dissolved and particulate constituents in rivers, with a few restricted but more specific examples that illustrate the state-of-the-art in modeling typical physical, chemical, and biological processes undergone by selected constituents in rivers. These examples include: simplified one- and two-dimensional formulations focusing on the hydrodynamic advection and dispersion mechanisms; a two-dimensional biochemial oxygen demand-dissolved oxygen model; a one-dimensional polychlorinated biphenyl model that includes uptake and release of constituent by suspended sediment, and deposition and erosion of contaminated particles; and a one-dimensional sediment transport model that accounts for interactions between the flow and the bed, and is capable of tracking dispersing slugs of sediment through cycles of erosion, entrainment, transport in suspension and as bed load, and burial and storage in the bed

  1. Networks of Interacting Processes: Relationships Between Drivers and Deltaic Variables to Understand Water and Sediment Transport in Wax Lake Delta, Coastal Louisiana

    Science.gov (United States)

    Sendrowski, A.; Passalacqua, P.; Wagner, W.; Mohrig, D. C.; Meselhe, E. A.; Sadid, K. M.; Castañeda-Moya, E.; Twilley, R.

    2017-12-01

    Studying distributary channel networks in river deltaic systems provides important insight into deltaic functioning and evolution. This view of networks highlights the physical connection along channels and can also encompass the structural link between channels and deltaic islands (termed structural connectivity). An alternate view of the deltaic network is one composed of interacting processes, such as relationships between external drivers (e.g., river discharge, tides, and wind) and internal deltaic response variables (e.g., water level and sediment concentration). This network, also referred to as process connectivity, is dynamic across space and time, often comprises nonlinear relationships, and contributes to the development of complex channel networks and ecologically rich island platforms. The importance of process connectivity has been acknowledged, however, few studies have directly quantified these network interactions. In this work, we quantify process connections in Wax Lake Delta (WLD), coastal Louisiana. WLD is a naturally prograding delta that serves as an analogue for river diversion projects, thus it provides an excellent setting for understanding the influence of river discharge, tides, and wind on water and sediment in a delta. Time series of water level and sediment concentration were collected in three channels from November 2013 to February 2014, while water level and turbidity were collected on an island from April 2014 to August 2015. Additionally, a model run on WLD bathymetry generated two years of sediment concentration time series in multiple channels. River discharge, tide, and wind measurements were collected from the USGS and NOAA, respectively. We analyze this data with information theory (IT), a set of statistics that measure uncertainty in signals and communication between signals. Using IT, the timescale, strength, and direction of network links are quantified by measuring the synchronization and direct influence from one

  2. Transport of Water, Carbon, and Sediment Through the Yukon River Basin

    Science.gov (United States)

    Brabets, Timothy P.; Schuster, Paul F.

    2008-01-01

    during peak- and low-flow conditions as part of synoptic sampling campaigns. Although the synoptic data do not provide a complete picture of water quality of a particular river through the year, the data do provide a snapshot of water-quality conditions at a particular time of year. Two constituents of interest are suspended sediment and dissolved organic carbon (DOC). Suspended sediment is important because elevated concentrations can adversely affect aquatic life by obstructing fish gills, covering fish spawning sites, and altering habitat of benthic organisms. Metals and organic contaminants also tend to adsorb onto fine-grained sediment. Permafrost thawing has major implications for the carbon cycle. It is critical to understand the processes related to the transport of DOC to surface waters and how long-term climatic changes may alter these processes (Schuster and others, 2004).

  3. How tides and waves enhance aeolian sediment transport at the sand motor mega-nourishment

    NARCIS (Netherlands)

    Hoonhout, B.M.; Luijendijk, A.P.; de Vries, S.; Roelvink, D.; Aagaard, T.; Deigaard, R.; Fuhrman, D.

    2017-01-01

    Expanding knowledge concerning the close entanglement between subtidal and subaerial processes in coastal environments initiated the development of the open-source Windsurf modeling framework that enables us to simulate
    multi-fraction sediment transport due to subtidal and subaerial processes

  4. Near-bed observations of high-concentration sediment transport in the Changjiang Estuary

    Science.gov (United States)

    Zhou, Z.; Ge, J.; Ding, P.

    2017-12-01

    The North Passage, the core of turbidity maximum in the Changjiang Estuary, is now under the strong sedimentation due to the abundant sediment supply from the upstream Changjiang River and the river-tide interacted dynamics. Recent studies suggested that strong siltation could be attributed to bottom high-concentration sediment transport, which however is very difficult to be detected and observed by vessel-anchored survey methods. To better understand the mechanisms of sediment transport and deposition in the channel region of the North Passage and its adjacent areas, we conducted continuous field observations which covered spring and neap tide period in the wintertime of 2016, the summertime of 2015 and 2017, focusing on near-bottom sediment transport. Tripods mounted with multiple instruments, including up-looking and down-looking Acoustic Doppler Current Profilers(ADCP), Vector Current Meter(ADV), Optical Backscatter Sensor(OBS), ASM, ALEC and RBR were used to observe the near-bottom physical process and its induced sediment dynamics. Results of these observations clearly described the current-wave-sediment interaction, which produced different patterns of bottom mud suspension at different tripods. Both hydrodynamic features and suspended sediment showed variations between spring and neap tide. Taking data of 2016 as an example, averaged suspended sediment concentration(SSC) at two tripods was 1.52 g/L and 2.13 g/L during the neap tide, 4.51 g/L and 5.75 g/L with the peak value reaching 25 g/L during the spring tide. At the tripod which was closer to the channel region, three peaks of SSC during the spring tide occurred near the flood slack with notable salinity increase, indicating the impact of saltwater intrusion on the bottom hydrodynamics. The results showed the occurrence of high-concentration suspended sediment was probably related to combined effects of bottom salinity intrusion, turbulent kinetic energy(TKE) and local stratification due to density

  5. Modeling of soil erosion and sediment transport in the East River Basin in southern China

    Science.gov (United States)

    Wu, Yping; Chen, Ji

    2012-01-01

    Soil erosion is a major global environmental problem that has caused many issues involving land degradation, sedimentation of waterways, ecological degradation, and nonpoint source pollution. Therefore, it is significant to understand the processes of soil erosion and sediment transport along rivers, and this can help identify the erosion prone areas and find potential measures to alleviate the environmental effects. In this study, we investigated soil erosion and identified the most seriously eroded areas in the East River Basin in southern China using a physically-based model, Soil and Water Assessment Tool (SWAT). We also introduced a classical sediment transport method (Zhang) into SWAT and compared it with the built-in Bagnold method in simulating sediment transport process along the river. The derived spatial soil erosion map and land use based erosion levels can explicitly illustrate the identification and prioritization of the critical soil erosion areas in this basin. Our results also indicate that erosion is quite sensitive to soil properties and slope. Comparison of Bagnold and Zhang methods shows that the latter can give an overall better performance especially in tracking the peak and low sediment concentrations along the river. We also found that the East River is mainly characterized by sediment deposition in most of the segments and at most times of a year. Overall, the results presented in this paper can provide decision support for watershed managers about where the best management practices (conservation measures) can be implemented effectively and at low cost. The methods we used in this study can also be of interest in sediment modeling for other basins worldwide.

  6. Modeling of soil erosion and sediment transport in the East River Basin in southern China.

    Science.gov (United States)

    Wu, Yiping; Chen, Ji

    2012-12-15

    Soil erosion is a major global environmental problem that has caused many issues involving land degradation, sedimentation of waterways, ecological degradation, and nonpoint source pollution. Therefore, it is significant to understand the processes of soil erosion and sediment transport along rivers, and this can help identify the erosion prone areas and find potential measures to alleviate the environmental effects. In this study, we investigated soil erosion and identified the most seriously eroded areas in the East River Basin in southern China using a physically-based model, Soil and Water Assessment Tool (SWAT). We also introduced a classical sediment transport method (Zhang) into SWAT and compared it with the built-in Bagnold method in simulating sediment transport process along the river. The derived spatial soil erosion map and land use based erosion levels can explicitly illustrate the identification and prioritization of the critical soil erosion areas in this basin. Our results also indicate that erosion is quite sensitive to soil properties and slope. Comparison of Bagnold and Zhang methods shows that the latter can give an overall better performance especially in tracking the peak and low sediment concentrations along the river. We also found that the East River is mainly characterized by sediment deposition in most of the segments and at most times of a year. Overall, the results presented in this paper can provide decision support for watershed managers about where the best management practices (conservation measures) can be implemented effectively and at low cost. The methods we used in this study can also be of interest in sediment modeling for other basins worldwide. Published by Elsevier B.V.

  7. Sediment processes modelling below hydraulic mining: towards environmental impact mitigation

    Science.gov (United States)

    Chalov, Sergey R.

    2010-05-01

    Placer mining sites are located in the river valleys so the rivers are influenced by mining operations. Frequently the existing mining sites are characterized by low contribution to the environmental technologies. Therefore hydraulic mining alters stream hydrology and sediment processes and increases water turbidity. The most serious environmental sequences of the sediment yield increase occur in the rivers populated by salmon fish community because salmon species prefer clean water with low turbidity. For instance, the placer mining in Kamchatka peninsula (Far East of Russia) which is regarded to be the last global gene pool of wild salmon Oncorhynchus threatens the rivers ecosystems. System of man-made impact mitigation could be done through the exact recognition of the human role in hydrological processes and sediment transport especially. Sediment budget of rivers below mining sites is transformed according to the appearance of the man-made non-point and point sediment sources. Non-point source pollution occurs due to soil erosion on the exposed hillsides and erosion in the channel diversions. Slope wash on the hillsides is absent during summer days without rainfalls and is many times increased during rainfalls and snow melting. The nearness of the sources of material and the rivers leads to the small time of suspended load increase after rainfalls. The average time of material intake from exposed hillsides to the rivers is less than 1 hour. The main reason of the incision in the channel diversion is river-channel straightening. The increase of channel slopes and transport capacity leads to the intensive incision of flow. Point source pollution is performed by effluents both from mining site (mainly brief effluents) and from settling ponds (permanent effluents), groundwater seepage from tailing pits or from quarries. High rate of groundwater runoff is the main reason of the technological ponds overfilling. Intensive filtration from channel to ponds because of

  8. Coarse and fine sediment transportation patterns and causes downstream of the Three Gorges Dam

    Science.gov (United States)

    Li, Songzhe; Yang, Yunping; Zhang, Mingjin; Sun, Zhaohua; Zhu, Lingling; You, Xingying; Li, Kanyu

    2017-11-01

    Reservoir construction within a basin affects the process of water and sediment transport downstream of the dam. The Three Gorges Reservoir (TGR) affects the sediment transport downstream of the dam. The impoundment of the TGR reduced total downstream sediment. The sediment group d≤0.125 mm (fine particle) increased along the path, but the average was still below what existed before the reservoir impoundment. The sediments group d>0.125 mm (coarse particle) was recharged in the Yichang to Jianli reach, but showed a deposition trend downstream of Jianli. The coarse sediment in the Yichang to Jianli section in 2003 to 2007 was above the value before the TGR impoundment. However, the increase of both coarse and fine sediments in 2008 to 2014 was less than that in 2003 to 2007. The sediment retained in the dam is the major reason for the sediment reduction downstream. However, the retention in different river reaches is affected by riverbed coarsening, discharge, flow process, and conditions of lake functioning and recharging from the tributaries. The main conclusions derived from our study are as follows: 1) The riverbed in the Yichang to Shashi section was relatively coarse, thereby limiting the supply of fine and coarse sediments. The fine sediment supply was mainly controlled by TGR discharge, whereas the coarse sediment supply was controlled by the duration of high flow and its magnitude. 2) The supply of both coarse and fine sediments in the Shashi to Jianli section was controlled by the amount of total discharge. The sediment supply from the riverbed was higher in flood years than that in the dry years. The coarse sediment tended to deposit, and the deposition in the dry years was larger than that in the flood years. 3) The feeding of the fine sediment in the Luoshan to Hankou section was mainly from the riverbed. The supply in 2008 to 2014 was more than that in 2003 to 2007. Around 2010, the coarse sediments transited from depositing to scouring that was

  9. 3D Airflow patterns over coastal foredunes: implications for aeolian sediment transport

    Science.gov (United States)

    Jackson, Derek W. T.; Cooper, Andrew G.; Baas, Andreas C. W.; Lynch, Kevin; Beyers, Meiring

    2010-05-01

    A fundamental criterion for the development of coastal sand dunes is usually highlighted as a significant onshore wind component of the local wind field. The presence of large sand dune systems on coasts where the predominant wind blows offshore is therefore difficult to explain and usually they are attributed to the past occurrence of onshore winds and, by implication, subsequent changes in climate. Recent studies have shown that offshore winds can be deflected or 'steered' by existing dunes so that their direction changes. This can occur to such an extent that a process known as 'flow reversal' can arise, whereby the initially offshore wind actually flows onshore at the beach. This process is important because it can cause sand to be blown from the beach and into the dunes, causing them to grow. This may be central in explaining the presence of extensive dunes on coasts where the dominant wind is offshore, but is also important in how dunes recover after periods of wave erosion during storms. Offshore winds have traditionally been excluded from sediment budget calculations for coastal dunes, but when they do transport sand onshore, this may have been an important oversight leading to significant underestimates of the volume of sand being transported by wind. This work investigates the controls on the processes and the mechanisms involved in deformation of the flow and resulting sediment transport at coastal foredunes in Northern Ireland. We use a combination of field measurement of wind and sediment transport coupled with state-of-the-art aerodynamic modelling using computational fluid dynamics (CFD) and 3-D sonic anemometry. Our working hypothesis is that offshore winds contribute substantially to foredune behaviour on leeside coasts. Preliminary results show strong reverse flow eddies in the seaward side of the foredunes during offshore wind events. These secondary flow reversals have been above velocity threshold and are transport capable. Using CFD modelling

  10. Modeling of Sediment Transport and Self-Cleansing in Sea Outfalls

    DEFF Research Database (Denmark)

    Larsen, Torben; Ibro, I.

    2011-01-01

    The paper describes an on-going project on modeling of sediment transport in outfalls with special focus on the self-cleansing problem occurring due to the daily flow variations seen in outfalls. The two central elements of the project is the development of the numerical model and a matching...... physical model in the laboratory. The numerical model covers both sediment transport over bed accumulations as well as transport over clean bottom. The physical modeling emphasizes on measurement of the non-steady removal and transport of welldefined and limited accumulations along the pipe. The paper...

  11. Transport of perfluoroalkyl acids in a water-saturated sediment column investigated under near-natural conditions

    International Nuclear Information System (INIS)

    Vierke, Lena; Möller, Axel; Klitzke, Sondra

    2014-01-01

    The aim of this study was to gain an understanding of the transport of C 4–10 perfluoroalkyl carboxylic acids (PFCAs) and C 4,6,8 perfluoroalkyl sulfonic acids (PFSAs) in a water-saturated sediment column representing a riverbank filtration scenario under near-natural conditions. Short-chain PFCAs and PFSAs with up to six C-atoms showed complete tracer-like breakthrough. Longer chain ones were retarded due to sorption to the sediment or due to other processes in the aqueous phase. The study reports the first column derived sediment–water partition coefficients ranging from 0.01 cm 3 g −1 to 0.41 cm 3 g −1 for C 4,6 PFSAs and from 0.0 cm 3 g −1 to 6.5 cm 3 g −1 for C 4,5,6,8,9 PFCAs. The results clearly indicate that short-chain PFCAs and PFSAs may pose a problem if contaminated surface waters are used for drinking water production via riverbank filtration. Highlights: • Transport of per- and polyfluorinated compounds in a riverbank filtration scenario. • Investigations under near-natural conditions with a water-saturated sediment column. • Processes in water and sediment control the transport of analytes. • Short chain PFCAs and PFSAs are not retarded in the water-saturated sediment column. • First column derived sediment–water partition coefficients. -- Quantification of breakthrough of perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonic acids (PFSAs) under conditions simulating a riverbank filtration scenario

  12. Transport and deposition of plutonium-contaminated sediments by fluvial processes, Los Alamos Canyon, New Mexico

    International Nuclear Information System (INIS)

    Graf, W.L.

    1996-01-01

    Between 1945 and 1952 the development of nuclear weapons at Los Alamos National Laboratory, New Mexico, resulted in the disposal of plutonium into the alluvium of nearby Acid and (to a lesser degree) DP Canyons. The purpose of this paper is to explore the connection between the disposal sites and the main river, a 20 km link formed by the fluvial system of Acid, Pueblo, DP, and Los Alamos Canyons. Empirical data from 15 yr of annual sediment sampling throughout the canyon system has produced 458 observations of plutonium concentration in fluvial sediments. These data show that, overall, mean plutonium concentrations in fluvial sediment decline from 10,000 fCi/g near the disposal area to 100 fCi/g at the confluence of the canyon system and the Rio Grande. Simulations using a computer model for water, sediment, and plutonium routing in the canyon system show that discharges as large as the 25 yr event would fail to develop enough transport capacity to completely remove the contaminated sediments from Pueblo Canyon. Lesser flows would move some materials to the Rio Grande by remobilization of stored sediments. The simulations also show that the deposits and their contaminants have a predictable geography because they occur where stream power is low, hydraulic resistance is high, and the geologic and/or geomorphic conditions provide enough space for storage. 38 refs., 13 figs., 1 tab

  13. Size graded sediment dynamics: from the processes characterization to the transport modelling in the English Channel; Dynamique sedimentaire multiclasse: de l'etude des processus a la modelisation en Manche

    Energy Technology Data Exchange (ETDEWEB)

    Blanpain, O.

    2009-10-15

    The purpose of this work is the implementation of a sediment transport model in the English Channel. The design of such a model requires the identification of the physical processes, their modelling and their in-situ validation. Because of the sedimentary particularities of the study area, modelling of the mechanical behaviour of a non uniform mixture of sediments and particularly of the fine grains within a coarse matrix is required. This study focused on the characterization of the relevant processes by acquisition of experimental and in-situ data. Data acquired in hydro-sedimentary conditions comparable to those found in the English Channel are scarce. A new instrument and image processing technique were specifically conceived and implemented in-situ to observe and measure, with a high temporal resolution, the dynamics of a strongly heterogeneous mixture of particles in a grain-size scale. The data collected compared well with several existing formulations. One of these formulations was chosen to be adapted. The transfer dynamics of fine grains in coarse sediments and their depth of penetration were acquired from stratigraphic samples. The sediment transport model deals with multi-size grains and multi sedimentary layers, it is forced by swell and currents, and accounts for bead load and suspended load transports. It was applied to realistic scenarios for the English Channel. (author)

  14. A Hydrodynamic and Sediment Transport Model for the Waipaoa Shelf, New Zealand: Sensitivity of Fluxes to Spatially-Varying Erodibility and Model Nesting

    Directory of Open Access Journals (Sweden)

    Julia M. Moriarty

    2014-04-01

    Full Text Available Numerical models can complement observations in investigations of marine sediment transport and depositional processes. A coupled hydrodynamic and sediment transport model was implemented for the Waipaoa River continental shelf offshore of the North Island of New Zealand, to complement a 13-month field campaign that collected seabed and hydrodynamic measurements. This paper described the formulations used within the model, and analyzed the sensitivity of sediment flux estimates to model nesting and seabed erodibility. Calculations were based on the Regional Ocean Modeling System—Community Sediment Transport Modeling System (ROMS-CSTMS, a primitive equation model using a finite difference solution to the equations for momentum and water mass conservation, and transport of salinity, temperature, and multiple classes of suspended sediment. The three-dimensional model resolved the complex bathymetry, bottom boundary layer, and river plume that impact sediment dispersal on this shelf, and accounted for processes including fluvial input, winds, waves, tides, and sediment resuspension. Nesting within a larger-scale, lower resolution hydrodynamic model stabilized model behavior during river floods and allowed large-scale shelf currents to impact sediment dispersal. To better represent observations showing that sediment erodibility decreased away from the river mouth, the seabed erosion rate parameter was reduced with water depth. This allowed the model to account for the observed spatial pattern of erodibility, though the model held the critical shear stress for erosion constant. Although the model neglected consolidation and swelling processes, use of a spatially-varying erodibility parameter significantly increased export of fluvial sediment from Poverty Bay to deeper areas of the shelf.

  15. Effects of episodic sediment supply on bedload transport rate in mountain rivers. Detecting debris flow activity using continuous monitoring

    Science.gov (United States)

    Uchida, Taro; Sakurai, Wataru; Iuchi, Takuma; Izumiyama, Hiroaki; Borgatti, Lisa; Marcato, Gianluca; Pasuto, Alessandro

    2018-04-01

    Monitoring of sediment transport from hillslopes to channel networks as a consequence of floods with suspended and bedload transport, hyperconcentrated flows, debris and mud flows is essential not only for scientific issues, but also for prevention and mitigation of natural disasters, i.e. for hazard assessment, land use planning and design of torrent control interventions. In steep, potentially unstable terrains, ground-based continuous monitoring of hillslope and hydrological processes is still highly localized and expensive, especially in terms of manpower. In recent years, new seismic and acoustic methods have been developed for continuous bedload monitoring in mountain rivers. Since downstream bedload transport rate is controlled by upstream sediment supply from tributary channels and bed-external sources, continuous bedload monitoring might be an effective tool for detecting the sediments mobilized by debris flow processes in the upper catchment and thus represent an indirect method to monitor slope instability processes at the catchment scale. However, there is poor information about the effects of episodic sediment supply from upstream bed-external sources on downstream bedload transport rate at a single flood time scale. We have examined the effects of sediment supply due to upstream debris flow events on downstream bedload transport rate along the Yotagiri River, central Japan. To do this, we have conducted continuous bedload observations using a hydrophone (Japanese pipe microphone) located 6.4 km downstream the lower end of a tributary affected by debris flows. Two debris flows occurred during the two-years-long observation period. As expected, bedload transport rate for a given flow depth showed to be larger after storms triggering debris flows. That is, although the magnitude of sediment supply from debris flows is not large, their effect on bedload is propagating >6 km downstream at a single flood time scale. This indicates that continuous bedload

  16. Clinton River Sediment Transport Modeling Study

    Science.gov (United States)

    The U.S. ACE develops sediment transport models for tributaries to the Great Lakes that discharge to AOCs. The models developed help State and local agencies to evaluate better ways for soil conservation and non-point source pollution prevention.

  17. Determination of chemical solute transport parameters effecting radiostrontium interbed sediments

    International Nuclear Information System (INIS)

    Hemming, C.; Bunde, R.L.; Rosentreter, J.J.

    1993-01-01

    The extent to which radionuclides migrate in an aquifer system is a function of various physical, chemical, and biological processes. A measure of this migration rate is of primary concern when locating suitable storage sites for such species. Parameters including water-rock interactions, infiltration rates, chemical phase modification, and biochemical reactions all affect solute transport. While these different types of chemical reactions can influence solute transport in subsurface waters, distribution coefficients (Kd) can be send to effectively summarize the net chemical factors which dictate transport efficiency. This coefficient describes the partitioning of the solute between the solution and solid phase. Methodology used in determining and interpreting the distribution coefficient for radiostrontium in well characterized sediments will be presented

  18. Modeling erosion and sedimentation coupled with hydrological and overland flow processes at the watershed scale

    Science.gov (United States)

    Kim, Jongho; Ivanov, Valeriy Y.; Katopodes, Nikolaos D.

    2013-09-01

    A novel two-dimensional, physically based model of soil erosion and sediment transport coupled to models of hydrological and overland flow processes has been developed. The Hairsine-Rose formulation of erosion and deposition processes is used to account for size-selective sediment transport and differentiate bed material into original and deposited soil layers. The formulation is integrated within the framework of the hydrologic and hydrodynamic model tRIBS-OFM, Triangulated irregular network-based, Real-time Integrated Basin Simulator-Overland Flow Model. The integrated model explicitly couples the hydrodynamic formulation with the advection-dominated transport equations for sediment of multiple particle sizes. To solve the system of equations including both the Saint-Venant and the Hairsine-Rose equations, the finite volume method is employed based on Roe's approximate Riemann solver on an unstructured grid. The formulation yields space-time dynamics of flow, erosion, and sediment transport at fine scale. The integrated model has been successfully verified with analytical solutions and empirical data for two benchmark cases. Sensitivity tests to grid resolution and the number of used particle sizes have been carried out. The model has been validated at the catchment scale for the Lucky Hills watershed located in southeastern Arizona, USA, using 10 events for which catchment-scale streamflow and sediment yield data were available. Since the model is based on physical laws and explicitly uses multiple types of watershed information, satisfactory results were obtained. The spatial output has been analyzed and the driving role of topography in erosion processes has been discussed. It is expected that the integrated formulation of the model has the promise to reduce uncertainties associated with typical parameterizations of flow and erosion processes. A potential for more credible modeling of earth-surface processes is thus anticipated.

  19. Recent sediment transport and deposition in the Nazaré Canyon, Portuguese continental margin.

    NARCIS (Netherlands)

    de Stigter, H.C.; Boer, W.; de Jesus Mendes, P.A.; Jesus, C.C.; Thomsen, L.; van den Bergh, G.D.; van Weering, T.C.E.

    2007-01-01

    Processes, pathways and fluxes of sediment transport and deposition in the Nazaré submarine canyon, Portuguese continental margin, were investigated by water column profiling of suspended particulate matter, recording of near-bottom currents and suspended particulate matter fluxes with benthic

  20. Sediment transport in headwaters of a volcanic catchment—Kamchatka Peninsula case study

    Science.gov (United States)

    Chalov, Sergey R.; Tsyplenkov, Anatolii S.; Pietron, Jan; Chalova, Aleksandra S.; Shkolnyi, Danila I.; Jarsjö, Jerker; Maerker, Michael

    2017-09-01

    Due to specific environmental conditions, headwater catchments located on volcanic slopes and valleys are characterized by distinctive hydrology and sediment transport patterns. However, lack of sufficient monitoring causes that the governing processes and patterns in these areas are rarely well understood. In this study, spatiotemporal water discharge and sediment transport from upstream sources was investigated in one of the numerous headwater catchments located in the lahar valleys of the Kamchatka Peninsula Sukhaya Elizovskaya River near Avachinskii and Koryakskii volcanoes. Three different subcatchments and corresponding channel types (wandering rivers within lahar valleys, mountain rivers within volcanic slopes and rivers within submountain terrains) were identified in the studied area. Our measurements from different periods of observations between years 2012-2014 showed that the studied catchment was characterized by extreme diurnal fluctuation of water discharges and sediment loads that were influenced by snowmelt patterns and high infiltration rates of the easily erodible lahar deposits. The highest recorded sediment loads were up to 9•104 mg/L which was related to an increase of two orders of magnitude within a one day of observations. Additionally, to get a quantitative estimate of the spatial distribution of the eroded material in the volcanic substrates we applied an empirical soil erosion and sediment yield model-modified universal soil loss equation (MUSLE). The modeling results showed that even if the applications of the universal erosion model to different non-agricultural areas (e.g., volcanic catchments) can lead to irrelevant results, the MUSLE model delivered might be acceptable for non-lahar areas of the studied volcanic catchment. Overall the results of our study increase our understanding of the hydrology and associated sediment transport for prediction of risk management within headwater volcanic catchments.

  1. Sediment transport and mixing depth on a coral reef sand apron

    Science.gov (United States)

    Vila-Concejo, Ana; Harris, Daniel L.; Power, Hannah E.; Shannon, Amelia M.; Webster, Jody M.

    2014-10-01

    This paper investigates the mechanics of sediment transport on a subtidal sand apron located on a coral reef environment. In this environment 100% of the sediment is carbonate bioclasts generated in situ. The sand apron is located on the back reef and only affected by waves during high tides. It is commonly accepted in the literature that sand aprons are features that prograde lagoonwards and that most of the progradation occurs during high-energy events. Measurements of water depths, waves, currents and near bed suspended sediment concentrations (all at 10 Hz) on the sand apron were undertaken over a nine day intensive field campaign over both spring and neap tides; waves and tides were also measured in the lagoon. The topography and bathymetry of the sand apron were measured and mixing depth was obtained on three transects using depth of disturbance rods. We found that sediment transport on sand aprons is not solely restricted to high-energy events but occurs on a daily basis during spring tides. The main factor controlling the sediment transport was the water depth above the bed, with depths of 2-2.3 m allowing waves to promote the most sediment transport. This corresponds to a depth over the reef crest of 1.6-1.9 m. The second most important control was waves; transport was observed when Hs on the apron was 0.1 m or greater. In contrast, current magnitude was not a controlling mechanism for sediment entrainment but did affect sediment transport. The morphology of the sand apron was shown to affect the direction of currents with the currents also expected to influence the morphology of the sand apron. The currents measured during this field campaign were aligned with a shallow channel in the sand apron. Mixing depths were small (< 2.5 cm) yet they were larger than the values predicted by empirical formulae for gentle siliciclastic ocean beaches.

  2. Regional Sediment Management (RSM) Modeling Tools: Integration of Advanced Sediment Transport Tools into HEC-RAS

    Science.gov (United States)

    2014-06-01

    sediment transport within the USACE HEC River Analysis System ( HEC - RAS ) software package and to determine its applicability to Regional Sediment...Management (RSM) challenges. HEC - RAS SEDIMENT MODELING BACKGROUND: HEC - RAS performs (1) one- dimensional (1D) steady and unsteady hydraulic river ...Albuquerque (SPA)), and recently, the USACE RSM Program. HEC - RAS is one of several hydraulic modeling codes available for river analysis in the

  3. Theories of transporting processes of Cu in Jiaozhou Bay

    Science.gov (United States)

    Yang, Dongfang; Su, Chunhua; Zhu, Sixi; Wu, Yunjie; Zhou, Wei

    2018-02-01

    Many marine bays have been polluted along with the rapid development of industry and population size, and understanding the transporting progresses of pollutants is essential to pollution control. In order to better understanding the transporting progresses of pollutants in marine, this paper carried on a comprehensive research of the theories of transporting processes of Cu in Jiaozhou Bay. Results showed that the transporting processes of Cu in this bay could be summarized into seven key theories including homogeneous theory, environmental dynamic theory, horizontal loss theory, source to waters transporting theory, sedimentation transporting theory, migration trend theory and vertical transporting theory, respectively. These theories helpful to better understand the migration progress of pollutants in marine bay.

  4. Spatial glyphosate and AMPA redistribution on the soil surface driven by sediment transport processes – A flume experiment

    NARCIS (Netherlands)

    Bento, Célia P.M.; Commelin, Meindert C.; Baartman, Jantiene E.M.; Yang, Xiaomei; Peters, Piet; Mol, Hans G.J.; Ritsema, Coen J.; Geissen, Violette

    2018-01-01

    This study investigates the influence of small-scale sediment transport on glyphosate and AMPA redistribution on the soil surface and on their off-site transport during water erosion events. Both a smooth surface (T1) and a surface with “seeding lines on the contour” (T2) were tested in a rainfall

  5. Transport of sediment through a channel network during a post-fire debris flow

    Science.gov (United States)

    Nyman, P.; Box, W. A. C.; Langhans, C.; Stout, J. C.; Keesstra, S.; Sheridan, G. J.

    2017-12-01

    Transport processes linking sediment in steep headwaters with rivers during high magnitude events are rarely examined in detail, particularly in forested settings where major erosion events are rare and opportunities for collecting data are limited. Yet high magnitude events in headwaters are known to drive landscape change. This study examines how a debris flow after wildfire impacts on sediment transport from small headwaters (0.02 km2) through a step pool stream system within a larger 14 km2 catchment, which drains into the East Ovens River in SE Australia. Sediment delivery from debris flows was modelled and downstream deposition of sediment was measured using a combination of aerial imagery and field surveys. Particle size distributions were measured for all major deposits. These data were summarised to map sediment flux as a continuous variable over the drainage network. Total deposition throughout the stream network was 39 x 103 m3. Catchment efflux was 61 x 103 m3 (specific sediment yield of 78 ton ha-1), which equates to 400-800 years of background erosion, based on measurements in nearby catchments. Despite the low gradient (ca. 0.1 m m-1) of the main channel there was no systematic downstream sorting in sediment deposits in the catchment. This is due to debris flow processes operating throughout the stream network, with lateral inputs sustaining the process in low gradient channels, except in the most downstream reaches where the flow transitioned towards hyper-concentrated flow. Overall, a large proportion ( 88%) of the eroded fine fraction (<63 micron) exited the catchment, when compared to the overall ratio (55%) of erosion to deposition. The geomorphic legacy of this post-wildfire event depends on scale. In the lower channels (steam order 4-5), where erosion was nearly equal to deposition, the event had no real impact on total sediment volumes stored. In upper channels (stream orders < 3) erosion was widespread but deposition rates were low. So

  6. Sediment Resuspension and Transport During Bora in the Western Adriatic Coastal Current

    Science.gov (United States)

    Mullenbach, B. L.; Geyer, W. R.; Sherwood, C. R.

    2004-12-01

    The Western Adriatic Coastal Current (WACC) is an important agent for along-shelf transport of sediment and fresh water in the western Adriatic Sea. The WACC is driven by a combination of buoyancy forcing from the Po River (northern Adriatic) and wind forcing from northeasterly Bora winds. The large seasonal pulse of freshwater (during the winter) from the Po River influences WACC strength; however, preliminary results from current measurements and model runs indicate that the WACC responds quickly and strongly to Bora wind events, with a strengthening of the current moving southward. Along-margin sediment transport to the south is significantly increased as a result of Bora wind events, presumably because of enhanced wave resuspension and WACC velocity. Elevated sediment fluxes have been observed in both the upper water column (i.e., core of the WACC) and bottom boundary layer (BBL) during these events, which suggests that wind-driven currents may be coupled with the near-bottom transport. This study addresses the interaction of the WACC with the BBL and the impact of this interaction on sediment transport in the western Adriatic. Two benthic tripods were deployed from November 2002 to June 2003 on an across-shelf transect near the Chienti River (at 10 and 20-m water depth), in the region where WACC begins to intensify (200 km south of Po River). Continuous measurements of suspended sediment concentration and current velocity were recorded in the upper-water column and BBL to document sediment transport events. A time series of sediment fluxes and shear velocities (from currents only, u*c; from waves and currents, u*wc) were calculated from these data. Results show that suspended sediment concentrations near the seabed (few cmab) during Bora wind events are strongly correlated with u*wc, which supports a previous hypothesis that wave resuspension (rather than direct fluvial input) is responsible for much of the suspended sediment available for transport southward

  7. Sediment transport and capacity change in three reservoirs, Lower Susquehanna River Basin, Pennsylvania and Maryland, 1900-2012

    Science.gov (United States)

    Langland, Michael J.

    2015-01-01

    The U.S. Geological Survey (USGS) has conducted numerous sediment transport studies in the Susquehanna River and in particular in three reservoirs in the Lower Susquehanna River Basin to determine sediment transport rates over the past century and to document changes in storage capacity. The Susquehanna River is the largest tributary to Chesapeake Bay and transports about one-half of the total freshwater input and substantial amounts of sediment and nutrients to the bay. The transported loads are affected by deposition in reservoirs (Lake Clarke, Lake Aldred, and Conowingo Reservoir) behind three hydropower dams. The geometry and texture of the deposited sediments in each reservoir upstream from the three dams has been a subject of research in recent decades. Particle size deposition and sediment scouring processes are part of the reservoir dynamics. A Total Maximum Daily Load (TMDL) for nitrogen, phosphorus, and sediment was established for Chesapeake Bay to attain water-quality standards. Six states and the District of Columbia agreed to reduce loads to the bay and to meet load allocation goals for the TMDL. The USGS has been estimating annual sediment loads at the Susquehanna River at Marietta, Pennsylvania (above Lake Clarke), and Susquehanna River at Conowingo, Maryland (below Conowingo Reservoir), since the mid-1980s to predict the mass balance of sediment transport through the reservoir system. Using streamflow and sediment data from the Susquehanna River at Harrisburg, Pennsylvania (upstream from the reservoirs), from 1900 to 1981, sediment loads were greatest in the early to mid-1900s when land disturbance activities from coal production and agriculture were at their peak. Sediment loads declined in the 1950s with the introduction of agricultural soil conservation practices. Loads were dominated by climatic factors in the 1960s (drought) and 1970s (very wet) and have been declining since the 1980s through 2012. The USGS developed a regression equation to

  8. Measurements of Sediment Transport in the Western Adriatic Sea

    Science.gov (United States)

    Sherwood, C. R.; Hill, P. S.

    2003-12-01

    Instrumented bottom tripods were deployed at two depths (10 and 20 m) off the mouth of the Chienti River in the western Adriatic Sea from November 2002 to May 2003 as part of the EuroSTRATAFORM Po and Apennine Sediment Transport and Accumulation (PASTA) Experiment. Waves, currents, and proxies for suspended-sediment concentrations were measured with upward-looking acoustic Doppler current meters, downward looking pulse-coherent acoustic Doppler profilers, single-point acoustic Doppler velocimeters, and acoustic and optical backscatter sensors. Flow was dominated by the western Adriatic coastal current (WACC) during the experiment. Mean southward alongshore velocity 2 m below the surface was 0.10 m/s at the 10-m site and 0.23 m/s at the 20-m site, and flow was modulated by tides, winds, and fluctuating riverflow. The largest waves (3 m significant height) were generated by winds from the southeast during a Sirocco event in late November that generated one of the few episodes of sustained northward flow and sediment transport. Most of the time, however, sediment resuspension and transport was dominated by Bora events, when downwelling-favorable winds from the northeast generated waves that resuspended sediment and simultaneously enhanced southward flow in the WACC. Mean flow near the bottom was slightly offshore at the 20-m site (0.01 m/s at 3 m above the bottom), but there was no significant correlation between downwelling and wave-induced resuspension, and cross-shelf sediment fluxes were small. The combination of persistent southward flow with low rates of cross-shelf leakage makes the WACC an efficient conduit for sediment past the Chienti region. If these observations are representative of typical winter conditions along the entire western Adriatic, they may help explain the enigmatic development of Holocene shelf-edge clinoforms that have formed hundreds of kilometers south of the Po River, which provides most of the sediment to the Adriatic Sea. Future data

  9. Simulating Landscape Sediment Transport Capacity by Using a Modified SWAT Model.

    Science.gov (United States)

    Bonumá, Nadia B; Rossi, Colleen G; Arnold, Jeffrey G; Reichert, José M; Minella, Jean P; Allen, Peter M; Volk, Martin

    2014-01-01

    Sediment delivery from hillslopes to rivers is spatially variable and may lead to long-term delays between initial erosion and related sediment yield at the watershed outlet. Consideration of spatial variability is important for developing sound strategies for water quality improvement and soil protection at the watershed scale. Hence, the Soil and Water Assessment Tool (SWAT) was modified and tested in this study to simulate the landscape transport capacity of sediment. The study area was the steeply sloped Arroio Lino watershed in southern Brazil. Observed sediment yield data at the watershed outlet were used to calibrate and validate a modified SWAT model. For the calibration period, the modified model performed better than the unaltered SWAT2009 version; the models achieved Nash-Sutcliffe efficiency (NSE) values of 0.7 and -0.1, respectively. Nash-Sutcliffe efficiencies were less for the validation period, but the modified model's NSE was higher than the unaltered model (-1.4 and -12.1, respectively). Despite the relatively low NSE values, the results of this first test are promising because the model modifications lowered the percent bias in sediment yield from 73 to 18%. Simulation results for the modified model indicated that approximately 60% of the mobilized soil is deposited along the landscape before it reaches the river channels. This research demonstrates the modified model's ability to simulate sediment yield in watersheds with steep slopes. The results suggest that integration of the sediment deposition routine in SWAT increases accuracy in steeper areas while significantly improving its ability to predict the spatial distribution of sediment deposition areas. Further work is needed regarding (i) improved strategies for spatially distributed sediment transport measurements (for improving process knowledge and model evaluation) and (ii) extensive model tests in other well instrumented experimental watersheds with differing topographic configurations

  10. Turbulent Flow and Sand Dune Dynamics: Identifying Controls on Aeolian Sediment Transport

    Science.gov (United States)

    Weaver, C. M.; Wiggs, G.

    2007-12-01

    Sediment transport models are founded on cubic power relationships between the transport rate and time averaged flow parameters. These models have achieved limited success and recent aeolian and fluvial research has focused on the modelling and measurement of sediment transport by temporally varying flow conditions. Studies have recognised turbulence as a driving force in sediment transport and have highlighted the importance of coherent flow structures in sediment transport systems. However, the exact mechanisms are still unclear. Furthermore, research in the fluvial environment has identified the significance of turbulent structures for bedform morphology and spacing. However, equivalent research in the aeolian domain is absent. This paper reports the findings of research carried out to characterise the importance of turbulent flow parameters in aeolian sediment transport and determine how turbulent energy and turbulent structures change in response to dune morphology. The relative importance of mean and turbulent wind parameters on aeolian sediment flux was examined in the Skeleton Coast, Namibia. Measurements of wind velocity (using sonic anemometers) and sand transport (using grain impact sensors) at a sampling frequency of 10 Hz were made across a flat surface and along transects on a 9 m high barchan dune. Mean wind parameters and mass sand flux were measured using cup anemometers and wedge-shaped sand traps respectively. Vertical profile data from the sonic anemometers were used to compute turbulence and turbulent stress (Reynolds stress; instantaneous horizontal and vertical fluctuations; coherent flow structures) and their relationship with respect to sand transport and evolving dune morphology. On the flat surface time-averaged parameters generally fail to characterise sand transport dynamics, particularly as the averaging interval is reduced. However, horizontal wind speed correlates well with sand transport even with short averaging times. Quadrant

  11. Downstream mixing of sediment and tracers in agricultural catchments: Evidence of changing sediment sources and fluvial processes?

    Science.gov (United States)

    Ralph, Timothy; Wethered, Adam; Smith, Hugh; Heijnis, Henk

    2014-05-01

    Land clearance, soil tillage and grazing in agricultural catchments have liberated sediment and altered hydrological connectivity between hillslopes and channels, leading to increased sediment availability, mobilisation and delivery to rivers. The type and amount of sediment supplied to rivers is critical for fluvial geomorphology and aquatic ecosystem health. Contemporary sediment dynamics are routinely investigated using environmental radionuclides such as caesium-137 (Cs-137) and excess lead-210 (Pb-210ex), which can provide information regarding sediment source types and fluvial processes if sediment sources can be distinguished from one another and mixing models applied to representative samples. However, downstream transport, mixing and dilution of radionuclide-labelled sediment (especially from sources with low initial concentrations) can obliterate the tracer signal; sometimes before anything of geomorphological importance happens in the catchment. Can these findings be used as evidence of sediment source variations and fluvial processes when the limits of detection (of Cs-137 in particular) are being exceeded so rapidly downstream? Sediment sources and downstream sediment dynamics were investigated in Coolbaggie Creek, a major supplier of sediment to the Macquarie River in an agricultural catchment with temperate to semi-arid climate in Australia. Radionuclides were used to discriminate between the banks and gullies (Cs-137 1.45 +/- 0.47 Bq/kg; Pb-210ex 4.67 +/- 1.93 Bq/kg). Within the trunk stream, suspended sediment, organic matter and Cs-137 and Pb-210ex concentrations declined downstream. Results from a mixing model suggest that agricultural topsoils account for 95% of fine sediment entering the channel in the upper reach (200 m2) downstream, with channel expansion and gullies contributing fine sediment to the system. A lack of topsoil being supplied to the channel suggests minimal lateral connectivity between the catchment and the trunk stream in all

  12. Impact of Bacterial NO>3- Transport on Sediment Biogeochemistry

    DEFF Research Database (Denmark)

    Nielsen, Lars Peter

    2005-01-01

    Experiments demonstrated that Beggiatoa could induce a H2S-depleted suboxic zone of more than 10 mm in marine sediments and cause a divergence in sediment NO3- reduction from denitrification to dissimilatory NO3- reduction to ammonium. pH, O2, and H2S profiles indicated that the bacteria oxidized H......2S with NO3- and transported S0 to the sediment surface for aerobic oxidation....

  13. Simulation of the fate of faecal bacteria in estuarine and coastal waters based on a fractionated sediment transport model

    Science.gov (United States)

    Yang, Chen; Liu, Ying

    2017-08-01

    A two-dimensional depth-integrated numerical model is refined in this paper to simulate the hydrodynamics, graded sediment transport process and the fate of faecal bacteria in estuarine and coastal waters. The sediment mixture is divided into several fractions according to the grain size. A bed evolution model is adopted to simulate the processes of the bed elevation change and sediment grain size sorting. The faecal bacteria transport equation includes enhanced source and sink terms to represent bacterial kinetic transformation and disappearance or reappearance due to sediment deposition or re-suspension. A novel partition ratio and dynamic decay rates of faecal bacteria are adopted in the numerical model. The model has been applied to the turbid water environment in the Bristol Channel and Severn estuary, UK. The predictions by the present model are compared with field data and those by non-fractionated model.

  14. Clay mineralogy and source-to-sink transport processes of Changjiang River sediments in the estuarine and inner shelf areas of the East China Sea

    Science.gov (United States)

    Zhao, Yifei; Zou, Xinqing; Gao, Jianhua; Wang, Chenglong; Li, Yali; Yao, Yulong; Zhao, Wancang; Xu, Min

    2018-02-01

    We examined the source-to-sink sediment transport processes from the Changjiang River to the estuarine coastal shelf area by analyzing the clay mineral assemblages in suspended sediment samples from the Changjiang River catchment and surface samples from the estuarine coastal shelf area following the impoundment of the Three Gorges Dam (TGD) in 2003. The results indicate that the clay mineral compositions throughout the study area are dominated by illite, with less abundant kaolinite and chlorite and scarce smectite. The clay minerals display distinct differences in the tributaries and exhibit obvious changes in the trunk stream compared with the periods before 2003, and the source of sediment has largely shifted to the mid- to lower reaches of the river after 2003. Spatially, the clay mineral assemblages in the estuarine area define two compositionally distinct provinces. Province I covers the mud area of the Changjiang River estuary and the Zhe-Min coastal region, where sediment is primarily supplied by the Changjiang River. Province II includes part of the Changjiang River estuary and the southeastern portion of the study area, where the sediment is composed of terrestrial material from the Changjiang River and re-suspended material from the Huanghe River carried by the Jiangsu coastal current. Moreover, the other smaller rivers in China (including the Oujiang and Minjiang rivers of mainland China and the rivers of West Taiwan) also contribut sediments to the estuarine and inner shelf areas. In general, the clay mineral assemblages in the Changjiang River estuarine area are have mainly been controlled by sediment supplied from upstream of the Changjiang River tributaries. However, since the completion of the TGD in 2003, the mid- to downstream tributaries have become the main source of sediments from the Changjiang catchment into the East China Sea. These analyses further demonstrate that the coastal currents and the decrease in the sediment load of the river

  15. Sediment-associated transport and redistribution of Chernobyl fallout radionuclides

    International Nuclear Information System (INIS)

    Walling, D.E.; Rowan, J.S.; Bradley, S.B.

    1989-01-01

    Fallout of Chernobyl-derived radionuclides over the United Kingdom evidenced marked spatial variation. Relatively high levels were recorded in central Wales, but they declined rapidly to the east. As a result the headwaters of the River Severn received significant inputs of fallout, whereas only low levels were recorded over the middle and lower reaches. Measurements of the caesium-137 content of suspended sediment transported by the River Severn and of channel and floodplain sediments collected from various locations within the basin have been used to assess the importance of fluvial transport and redistribution of Chernobyl-derived radionuclides. High concentrations of caesium-137 (up to 1450 mBqg -1 ) were recorded in suspended sediment collected from the lower reaches of the river shortly after the Chernobyl incident and substantial accumulations of Chernobyl-derived radionuclides have been detected in floodplain and channel sediments collected from areas which received only low levels of fallout directly. (author)

  16. The effect of sediment transport on eelgrass development – and vice versa

    NARCIS (Netherlands)

    Dijkstra, J.T.

    2007-01-01

    By changing flow patterns and sediment transport, aquatic vegetation can affect the development of estuarine bed topography. Besides, since the sediment transport also determines the amount of light available for photosynthetic growth, the presence of vegetation can also affect its own development.

  17. Testing the effects of in-stream sediment sources and sinks on simulated watershed sediment yield using the coupled U.S. Army Corps of Engineers GSSHA Model and SEDLIB Sediment Transport Library

    Science.gov (United States)

    Floyd, I. E.; Downer, C. W.; Brown, G.; Pradhan, N. R.

    2017-12-01

    The Gridded Surface Subsurface Hydrologic Analysis (GSSHA) model is the US Army Corps of Engineers' (USACE)'s only fully coupled overland/in-stream sediment transport model. While the overland sediment transport formulation in GSSHA is considered state of the art, the existing in-stream sediment transport formulation is less robust. A major omission in the formulation of the existing GSSHA in-stream model is the lack of in-stream sources of fine materials. In this effort, we enhanced the in-stream sediment transport capacity of GSSHA by linking GSSHA to the SEDLIB sediment transport library. SEDLIB was developed at the Coastal and Hydraulics Laboratory (CHL) under the System Wide Water Resources Program (SWWRP) and Flood and Coastal (F&C) research program. It is designed to provide a library of sediment flux formulations for hydraulic and hydrologic models, such as GSSHA. This new version of GSSHA, with the updated in-stream sediment transport simulation capability afforded by the linkage to SEDLIB, was tested in against observations in an experimental watershed that had previously been used as a test bed for GSSHA. The results show a significant improvement in the ability to model in-stream sources of fine sediment. This improved capability will broaden the applicability of GSSHA to larger watersheds and watersheds with complex sediment dynamics, such as those subjected to fire hydrology.

  18. The timing of sediment transport down Monterey Submarine Canyon, offshore California

    Science.gov (United States)

    Stevens, Thomas; Paull, Charles K.; Ussler, William III; McGann, Mary; Buylaert, Jan-Pieter; Lundsten, Eve M.

    2013-01-01

    While submarine canyons are the major conduits through which sediments are transported from the continents out into the deep sea, the time it takes for sediment to pass down through a submarine canyon system is poorly constrained. Here we report on the first study to couple optically stimulated luminescence (OSL) ages of quartz sand deposits and accelerator mass spectrometry 14C ages measured on benthic foraminifera to examine the timing of sediment transport through the axial channel of Monterey Submarine Canyon and Fan, offshore California. The OSL ages date the timing of sediment entry into the canyon head while the 14C ages of benthic foraminifera record the deposition of hemipelagic sediments that bound the sand horizons. We use both single-grain and small (∼2 mm area) single-aliquot regeneration approaches on vibracore samples from fining-upward sequences at various water depths to demonstrate relatively rapid, decadal-scale sand transport to at least 1.1 km depth and more variable decadal- to millennial-scale transport to a least 3.5 km depth on the fan. Significant differences between the time sand was last exposed at the canyon head (OSL age) and the timing of deposition of the sand (from 14C ages of benthic foraminifera in bracketing hemipelagic sediments) are interpreted as indicating that the sand does not pass through the entire canyon instantly in large individual events, but rather moves multiple times before emerging onto the fan. The increased spread in single-grain OSL dates with water depth provides evidence of mixing and temporary storage of sediment as it moves through the canyon system. The ages also indicate that the frequency of sediment transport events decreases with distance down the canyon channel system. The amalgamated sands near the canyon head yield OSL ages that are consistent with a sub-decadal recurrence frequency while the fining-upward sand sequences on the fan indicate that the channel is still experiencing events with a 150

  19. Fluvial sediment transport in a glacier-fed high-mountain river (Riffler Bach, Austrian Alps)

    Science.gov (United States)

    Morche, David; Weber, Martin; Faust, Matthias; Schuchardt, Anne; Baewert, Henning

    2017-04-01

    High-alpine environments are strongly affected by glacier retreat since the Little Ice Age (LIA). Due to ongoing climate change the hydrology of proglacial rivers is also influenced. It is expected that the growing proportions of snow melt and rainfall events will change runoff characteristics of proglacial rivers. Additionally, the importance of paraglacial sediment sources in recently deglaciating glacier forefields is increasing, while the role of glacial erosion is declining. Thus complex environmental conditions leading to a complex pattern of fluvial sediment transport in partly glaciated catchments of the European Alps. Under the umbrella of the joint PROSA-project the fluvial sediment transport of the river Riffler Bach (Kaunertal, Tyrol, Austria) was studied in 3 consecutive ablation seasons in order to quantify sediment yields. In June 2012 a probe for water level and an automatic water sampler (AWS) were installed at the outlet of the catchment (20km2). In order to calculate annual stage-discharge-relations by the rating-curve approach, discharge (Q) was repeatedly measured with current meters and by salt dilution. Concurrent to the discharge measurements bed load was collected using a portable Helley-Smith sampler. Bed load samples were weighted and sieved in the laboratory to gain annual bed load rating curves and grain size distributions. In total 564 (2012: 154, 2013: 209, 2014: 201) water samples were collected and subsequently filtered to quantify suspended sediment concentrations (SSC). Q-SSC-relations were calculated for single flood events due to the high variability of suspended sediment transport. The results show a high inter- and intra-annual variability of solid fluvial sediment transport, which can be explained by the characteristics of suspended sediment transport. Only 13 of 22 event-based Q-SSC-relations show causal dependency. In 2012, during a period with multiple pluvial-induced peak discharges most sediment was transported. On the

  20. Intensity of soil loss and sediment transport in Sirocina River basin and their modeling in GIS

    International Nuclear Information System (INIS)

    Kondrlova, E.

    2009-01-01

    The paper is focused on the application of GIS tools in determining the intensity of erosion-sedimentation processes in the basin of water flow Sirocina (Nitra region). Average long-term soil loss was calculated using the generalized use of the universal soil loss equation - USLE. These values were reduced by sediment delivery ratio, since not all of eroded soil particles are transported up to the water recipients. Modelling was performed in ArcView 3.2 and ArcGIS 9.2 (ESRI products) with extensions Spatial Analyst and Hydrotools 1.0. On the basis of these calculations, we have set a benchmark of the total amount of transported sediments for 3 small ponds located in the basin Sirocina (MVN Great Vozokany, Nevidzany MVN and MVN Nemcinany). (author)

  1. Long distance electron transport in marine sediments: Microbial and geochemical implications

    DEFF Research Database (Denmark)

    Risgaard-Petersen, Nils; Larsen, Steffen; Pfeffer, Christian

    and promotes the formation of Mg-calcite and iron oxides in the oxic zone. Oxygen seems to be the major electron acceptor, and more than 40% of the oxygen consumption in sediments can be driven by long distance electron transfer from distant electron donors. The major e-donor is sulfide, which is oxidized......Anaerobic oxidation of organic matter in marine sediment is traditionally considered to be coupled to oxygen reduction via a cascade of redox processes and transport of intermittent electron donors and acceptors. Electric currents have been found to shortcut this cascade and directly couple...... oxidation of sulphide centimeters down in marine sediment to the reduction of oxygen at the very surface1 . This electric coupling of spatially separated redox half-reactions seems to be mediated by centimeter long filamentous Desulfubulbus affiliated bacteria with morphological and ultra...

  2. Geomorphology and sediment transport on a submerged back-reef sand apron: One Tree Reef, Great Barrier Reef

    Science.gov (United States)

    Harris, Daniel L.; Vila-Concejo, Ana; Webster, Jody M.

    2014-10-01

    Back-reef sand aprons are conspicuous and dynamic sedimentary features in coral reef systems. The development of these features influences the evolution and defines the maturity of coral reefs. However, the hydrodynamic processes that drive changes on sand aprons are poorly understood with only a few studies directly assessing sediment entrainment and transport. Current and wave conditions on a back-reef sand apron were measured during this study and a digital elevation model was developed through topographic and bathymetric surveying of the sand apron, reef flats and lagoon. The current and wave processes that may entrain and transport sediment were assessed using second order small amplitude (Stokes) wave theory and Shields equations. The morphodynamic interactions between current flow and geomorphology were also examined. The results showed that sediment transport occurs under modal hydrodynamic conditions with waves the main force entraining sediment rather than average currents. A morphodynamic relationship between current flow and geomorphology was also observed with current flow primarily towards the lagoon in shallow areas of the sand apron and deeper channel-like areas directing current off the sand apron towards the lagoon or the reef crest. These results show that the short-term mutual interaction of hydrodynamics and geomorphology in coral reefs can result in morphodynamic equilibrium.

  3. Neural network-genetic programming for sediment transport

    Digital Repository Service at National Institute of Oceanography (India)

    Singh, A.K.; Deo, M.C.; SanilKumar, V.

    The planning, operation, design and maintenance of almost all harbour and coastal engineering facilities call for an estimation of the longshore sediment transport rate. This is currently and popularly done with the help of empirical equations...

  4. Suspended-sediment transport from the Green-Duwamish River to the Lower Duwamish Waterway, Seattle, Washington, 2013–17

    Science.gov (United States)

    Senter, Craig A.; Conn, Kathleen E.; Black, Robert W.; Peterson, Norman; Vanderpool-Kimura, Ann M.; Foreman, James R.

    2018-02-28

    The Green-Duwamish River transports watershed-derived sediment to the Lower Duwamish Waterway Superfund site near Seattle, Washington. Understanding the amount of sediment transported by the river is essential to the bed sediment cleanup process. Turbidity, discharge, suspended-sediment concentration (SSC), and particle-size data were collected by the U.S. Geological Survey (USGS) from February 2013 to January 2017 at the Duwamish River, Washington, within the tidal influence at river kilometer 16.7 (USGS streamgage 12113390; Duwamish River at Golf Course at Tukwila, WA). This report quantifies the timing and magnitude of suspended-sediment transported in the Duwamish River. Regression models were developed between SSC and turbidity and SSC and discharge to estimate 15- minute SSC. Suspended-sediment loads were calculated from the computed SSC and time-series discharge data for every 15-minute interval during the study period. The 2014–16 average annual suspended-sediment load computed was 117,246 tons (106,364 metric tons), of which 73.5 percent or (86,191 tons; 78,191 metric tons) was fine particle (less than 0.0625 millimeter in diameter) suspended sediment. The seasonality of this site is apparent when you divide the year into "wet" (October 16– April 15) and "dry" (April 16–October 15) seasons. Most (97 percent) of the annual suspended sediment was transported during the wet season, when brief periods of intense precipitation from storms, large releases from the Howard Hanson Dam, or a combination of both were much more frequent.

  5. A hybrid model of swash-zone longshore sediment transport on refelctive beaches

    NARCIS (Netherlands)

    Jiang, A.W.; Hughes, M.; Cowell, P.; Gordon, A.; Savioli, J.C.; Ranasinghe, R.W.M.R.J.B.

    2010-01-01

    The hydrodynamics and sediment transport in the swash zone is currently outside the domain of coastal-area models, which is a significant limitation in obtaining littoral sediment-transport estimates, especially on steep reflective beaches where the waves practically break on the beachface. In this

  6. Runoff, sediment transport, and landform modifications near Sheffield, Illinois

    International Nuclear Information System (INIS)

    Gray, J.R.; deVries, M.P.

    1984-01-01

    Relations among precipitation, runoff, sediment transport, and landform modifications are being evaluated at an 8.1-hectare, low-level radioactive waste disposal site near Sheffield, IL. Rainfall, runoff, and sediment discharge are measured in three basins comprising two-thirds of the site area and in a 1.10-hectare basin in undisturbed terrain 0.5 kilometer south of the site. The effects of slope, land use, and the physical characteristics of surficial material on runoff and sediment transport are evaluated at four 0.001-hectare plots - two on site and two on the undisturbed watershed. Preliminary results indicate that 890 millimeters of precipitation from July 1, 1982, through June 30, 1983, produced 230 millimeters of runoff from the site, compared to 50 millimeters of runoff from the undisturbed basin. Storm-sediment yields from the site consistently exceed yields from the undisturbed area. Runoff and sediment yields from burial-trench covers are consistently lower than yields from the site. Over 110 collapse holes were documented at the site from December 1978 through December 1982. More than 70% of these collapses formed along the periphery of trenches

  7. Runoff, sediment transport, and landform modifications near Sheffield, Illinois

    International Nuclear Information System (INIS)

    Gray, J.R.

    1984-01-01

    Relations among runoff, sediment transport, landform modifications, and precipitation are being evaluated at a 20-acre, low-level radioactive-waste disposal site near Sheffield, Ill. Rainfall, runoff, and sediment discharge are measured in three basins comprising two-thirds of the site area and in a 3.5-acre basin in undisturbed terrain 0.3 mile south of the site. The effects of slope, land use, and the physical characteristics of surficial material on runoff and sediment transport are evaluated at four 110-square-foot plots - two on site and two on the undisturbed basin. Preliminary results indicate the mean annual precipitation of 35 in. from July 1, 1982, through June 30, 1984, produced a mean of 8 in. of runoff annually from the site, compared to less than 2 in. of runoff annually from the undisturbed basin. Storm-sediment yields from the site consistently exceed yields from the undisturbed basin. Runoff and sediment yields from burial-trench covers are consistently lower than yields from the site. Two hundred and forty-four collapse holes were documented at the site from November 7, 1978, through June 7, 1984. More than 70% of these collapses formed along the periphery of trenches

  8. "Smart pebble" designs for sediment transport monitoring

    Science.gov (United States)

    Valyrakis, Manousos; Alexakis, Athanasios; Pavlovskis, Edgars

    2015-04-01

    Sediment transport, due to primarily the action of water, wind and ice, is one of the most significant geomorphic processes responsible for shaping Earth's surface. It involves entrainment of sediment grains in rivers and estuaries due to the violently fluctuating hydrodynamic forces near the bed. Here an instrumented particle, namely a "smart pebble", is developed to investigate the exact flow conditions under which individual grains may be entrained from the surface of a gravel bed. This could lead in developing a better understanding of the processes involved, focusing on the response of the particle during a variety of flow entrainment events. The "smart pebble" is a particle instrumented with MEMS sensors appropriate for capturing the hydrodynamic forces a coarse particle might experience during its entrainment from the river bed. A 3-axial gyroscope and accelerometer registers data to a memory card via a microcontroller, embedded in a 3D-printed waterproof hollow spherical particle. The instrumented board is appropriately fit and centred into the shell of the pebble, so as to achieve a nearly uniform distribution of the mass which could otherwise bias its motion. The "smart pebble" is powered by an independent power to ensure autonomy and sufficiently long periods of operation appropriate for deployment in the field. Post-processing and analysis of the acquired data is currently performed offline, using scientific programming software. The performance of the instrumented particle is validated, conducting a series of calibration experiments under well-controlled laboratory conditions.

  9. Physical modelling of sediment transport in mountain torrents upstream of open check dams

    Science.gov (United States)

    Schwindt, Sebastian; Franca, Mario J.; Schleiss, Anton J.

    2015-04-01

    Dynamic morphological processes in mountain torrents do not only attract the attention of many contemporary researchers, but are also a relevant issue for the design of flood protection measures in the downstream sections where dwellers may be threatened by the important potential of flows with high concentration of sediments. Events which have a morphodynamic effect are simulated at the Laboratory of Hydraulic Constructions (LCH) in order to optimize the design of a flood protection measure, notably open check dams. Different scenarios with a fix bed consisting of boulders as well as mobile beds are studied and the influence of flow constrictions, i.e. distinct geometric configurations of open check dams are analysed. Three varying water pumped discharges in the order of 5 to 20 l/s are tested with progressively increasing solid discharges of 1, 3 and 6 % of the liquid discharge according to the transport capacity. The moistened sediments are introduced via a system of conveyor belts and are then mixed with the liquid discharge in an about 3 m long rough trapezoidal channel with a base width of 24 cm. The mean diameter Dm of the injected sediments is 0.86 cm and the dimensionless grain size distribution is in line with a normalized shape derived from over 60 streams in the Alps. A wide range of frequent floods in morphologically diverging types of mountain torrents is covered, in particular regarding the sediment availability in the catchment area and along the river. A basic assumption here is considering that the frequent floods are floods with return periods between 1 to 5 years and are the most important process in terms of amounts of sediment transport. This may be arguable for some mountain torrents and landscape effective processes which are driven by floods with return periods of more than several decades. In order to identify benchmarks for hydraulic parameters which lead to the obstruction of flow restrictions at mountain torrents, the water depth is

  10. Modified finite element transport model, FETRA, for sediment and radionuclide migration in open coastal waters

    International Nuclear Information System (INIS)

    Onishi, Y.; Arnold, E.M.; Mayer, D.W.

    1979-08-01

    The finite element model, FETRA, simulates transport of sediment and radionuclides (and other contaminants, such as heavy metals, pesticides, and other toxic substances) in surface water bodies. The model is an unsteady, two-dimensional (longitudinal and lateral) model which consists of the following three submodels coupled to include sediment-contaminant interactions: (1) sediment transport submodel, (2) dissolved contaminant transport submodel, and (3) particulate contaminant (contaminant adsorbed by sediment) transport submodel. Under the current phase of the study, FETRA was modified to include sediment-wave interaction in order to extend the applicability of the model to coastal zones and large lakes (e.g., the Great Lakes) where wave actions can be one of the dominant mechanisms to transport sediment and toxic contaminant. FETRA was further modified to handle both linear and quadratic approximations to velocity and depth distributions in order to be compatible with various finite element hydrodynamic models (e.g., RMA II and CAFE) which supply hydrodynamic input data to FETRA. The next step is to apply FETRA to coastal zones to simulate transport of sediment and radionuclides with their interactions in order to test and verify the model under marine and large lacustrine environments

  11. Simulation of Flow, Sediment Transport, and Sediment Mobility of the Lower Coeur d'Alene River, Idaho

    Science.gov (United States)

    Berenbrock, Charles; Tranmer, Andrew W.

    2008-01-01

    A one-dimensional sediment-transport model and a multi-dimensional hydraulic and bed shear stress model were developed to investigate the hydraulic, sediment transport, and sediment mobility characteristics of the lower Coeur d?Alene River in northern Idaho. This report documents the development and calibration of those models, as well as the results of model simulations. The one-dimensional sediment-transport model (HEC-6) was developed, calibrated, and used to simulate flow hydraulics and erosion, deposition, and transport of sediment in the lower Coeur d?Alene River. The HEC-6 modeled reach, comprised of 234 cross sections, extends from Enaville, Idaho, on the North Fork of the Coeur d?Alene River and near Pinehurst, Idaho, on the South Fork of the river to near Harrison, Idaho, on the main stem of the river. Bed-sediment samples collected by previous investigators and samples collected for this study in 2005 were used in the model. Sediment discharge curves from a previous study were updated using suspended-sediment samples collected at three sites since April 2000. The HEC-6 was calibrated using river discharge and water-surface elevations measured at five U.S. Geological Survey gaging stations. The calibrated HEC-6 model allowed simulation of management alternatives to assess erosion and deposition from proposed dredging of contaminated streambed sediments in the Dudley reach. Four management alternatives were simulated with HEC-6. Before the start of simulation for these alternatives, seven cross sections in the reach near Dudley, Idaho, were deepened 20 feet?removing about 296,000 cubic yards of sediments?to simulate dredging. Management alternative 1 simulated stage-discharge conditions from 2000, and alternative 2 simulated conditions from 1997. Results from alternatives 1 and 2 indicated that about 6,500 and 12,300 cubic yards, respectively, were deposited in the dredged reach. These figures represent 2 and 4 percent, respectively, of the total volume of

  12. Mineral-leaching chemical transport with runoff and sediment from severely eroded rare-earth tailings in southern China

    Science.gov (United States)

    Lu, Huizhong; Cao, Longxi; Liang, Yin; Yuan, Jiuqin; Zhu, Yayun; Wang, Yi; Gu, Yalan; Zhao, Qiguo

    2017-08-01

    Rare-earth mining has led to severe soil erosion in southern China. Furthermore, the presence of the mineral-leaching chemical ammonium sulfate in runoff and sediment poses a serious environmental threat to downstream water bodies. In this paper, the characteristics of mineral-leaching chemicals in surface soil samples collected in the field were studied. In addition, NH4+ and SO42- transport via soil erosion was monitored using runoff and sediment samples collected during natural rainfall processes. The results demonstrated that the NH4+ contents in the surface sediment deposits increased from the top of the heap (6.56 mg kg-1) to the gully (8.23 mg kg-1) and outside the tailing heap (13.03 mg kg-1). The contents of SO42- in the different locations of the tailing heaps ranged from 27.71 to 40.33 mg kg-1. During typical rainfall events, the absorbed NH4+ concentrations (2.05, 1.26 mg L-1) in runoff were significantly higher than the dissolved concentrations (0.93, 1.04 mg L-1), while the absorbed SO42- concentrations (2.87, 1.92 mg L-1) were significantly lower than the dissolved concentrations (6.55, 7.51 mg L-1). The dissolved NH4+ and SO42- concentrations in runoff displayed an exponentially decreasing tendency with increasing transport distance (Y = 1. 02 ṡ exp( - 0. 00312X); Y = 3. 34 ṡ exp( - 0. 0185X)). No clear trend with increasing distance was observed for the absorbed NH4+ and SO42- contents in transported sediment. The NH4+ and SO42- contents had positive correlations with the silt and clay ratio in transported sediment but negative correlations with the sand ratio. These results provide a better understanding of the transport processes and can be used to develop equations to predict the transport of mineral-leaching chemicals in rare-earth tailings, which can provide a scientific foundation for erosion control and soil management in rare-earth tailing regions in southern China.

  13. Quantifying Sediment Transport in a Premontane Transitional Cloud Forest

    Science.gov (United States)

    Waring, E. R.; Brumbelow, J. K.

    2013-12-01

    Quantifying sediment transport is a difficult task in any watershed, and relatively little direct measurement has occurred in tropical, mountainous watersheds. The Howler Monkey Watershed (2.2 hectares) is located in a premontane transitional cloud forest in San Isidro de Peñas Blancas, Costa Rica. In June 2012, a V-notch stream-gaging weir was built in the catchment with a 8 ft by 6 ft by 4 ft concrete stilling basin. Sediment captured by the weir was left untouched for an 11 month time period. To collect the contents of the weir, the stream was rerouted and the weir was drained. The stilling basin contents were systematically sampled, and samples were taken to a lab and characterized using sieve and hydrometer tests. The wet volume of the remaining sediment was obtained, and dry mass was estimated. Particle size distribution of samples were obtained from lab tests, with 96% of sediment trapped by the weir being sand or coarser. The efficiency of the weir as a sediment collector was evaluated by comparing particle fall velocities to residence time of water in the weir under baseflow conditions. Under these assumptions, only two to three percent of the total mass of soil transported in the stream is thought to have been suspended in the water and lost over the V-notch. Data were compared to the Universal Soil Loss Equation (USLE), a widely accepted method for predicting soil loss in agricultural watersheds. As expected, application of the USLE to a tropical rainforest was problematic with uncertainty in parameters yielding a soil loss estimate varying by a factor of 50. Continued monitoring of sediment transport should yield data for improved methods of soil loss estimation applicable to tropical mountainous forests.

  14. Sediment sources and transport in Kings Bay and vicinity, Georgia and Florida, July 8-16, 1982

    Science.gov (United States)

    Radtke, D.B.

    1985-01-01

    Water quality, bottom-material, suspended-sediment, and current velocity data were collected during July 1982 in Kings Bay and vicinity to provide information on the source and transport of estuarine sediments. Kings Bay and Cumberland Sound, the site of the Poseidon Submarine Base in southeast Georgia, are experiencing high rates of sediment deposition and accumulation, which are causing serious navigational and operational problems. Velocity, bathymetry, turbidity, and bottom-material data suggest sediment transported from lower Kings Bay is accumulating deposits of suspended sediment transported from Cumberland Sound on the floodtide and from upper Kings Bay and the tidal march drained by Marianna Creek on the ebbtide. Suspended-sediment discharges computed for consecutive 13-hr ebbtides and floodtides showed that a net quantity of suspended sediment was transported seaward from upper Kings Bay and Marianna Creek. A net landward transport of suspended sediment computed at the St. Marys Entrance indicated areas seaward of St. Marys Entrance may be supplying sediment to the shoaling areas of the estuary, including lower Kings Bay. (USGS)

  15. Hydrogeomorphic linkages of sediment transport in headwater streams, Maybeso Experimental Forest, southeast Alaska

    Science.gov (United States)

    Gomi, Takashi; Sidle, Roy C.; Swanston, Douglas N.

    2004-03-01

    Hydrogemorphic linkages related to sediment transport in headwater streams following basin wide clear-cut logging on Prince of Wales Island, southeast Alaska, were investigated. Landslides and debris flows transported sediment and woody debris in headwater tributaries in 1961, 1979, and 1993. Widespread landsliding in 1961 and 1993 was triggered by rainstorms with recurrence intervals (24 h precipitation) of 7.0 years and 4.2 years respectively. Occurrence, distribution, and downstream effects of these mass movements were controlled by landform characteristics such as channel gradient and valley configuration. Landslides and channelized debris flows created exposed bedrock reaches, log jams, fans, and abandoned channels. The terminus of the deposits did not enter main channels because debris flows spread and thinned on the unconfined bottom of the U-shaped glaciated valley. Chronic sediment input to channels included surface erosion of exposed till (rain splash, sheet erosion, and freeze-thaw action) and bank failures. Bedload sediment transport in a channel impacted by 1993 landslides and debris flows was two to ten times greater and relatively finer compared with bedload transport in a young alder riparian channel that had last experienced a landslide and debris flow in 1961. Sediment transport and storage were influenced by regeneration of riparian vegetation, storage behind recruited woody debris, development of a streambed armour layer, and the decoupling of hillslopes and channels. Both spatial and temporal variations of sediment movement and riparian condition are important factors in understanding material transport within headwaters and through channel networks.

  16. Sedimentation processes in a coral reef embayment: Hanalei Bay, Kauai

    Science.gov (United States)

    Storlazzi, C.D.; Field, M.E.; Bothner, Michael H.; Presto, M.K.; Draut, A.E.

    2009-01-01

    Oceanographic measurements and sediment samples were collected during the summer of 2006 as part of a multi-year study of coastal circulation and the fate of terrigenous sediment on coral reefs in Hanalei Bay, Kauai. The goal of this study was to better understand sediment dynamics in a coral reef-lined embayment where winds, ocean surface waves, and river floods are important processes. During a summer period that was marked by two wave events and one river flood, we documented significant differences in sediment trap collection rates and the composition, grain size, and magnitude of sediment transported in the bay. Sediment trap collection rates were well correlated with combined wave-current near-bed shear stresses during the non-flood periods but were not correlated during the flood. The flood's delivery of fine-grained sediment to the bay initially caused high turbidity and sediment collection rates off the river mouth but the plume dispersed relatively quickly. Over the next month, the flood deposit was reworked by mild waves and currents and the fine-grained terrestrial sediment was advected around the bay and collected in sediment traps away from the river mouth, long after the turbid surface plume was gone. The reworked flood deposits, due to their longer duration of influence and proximity to the seabed, appear to pose a greater long-term impact to benthic coral reef communities than the flood plumes themselves. The results presented here display how spatial and temporal differences in hydrodynamic processes, which result from variations in reef morphology and orientation, cause substantial variations in the deposition, residence time, resuspension, and advection of both reef-derived and fluvial sediment over relatively short spatial scales in a coral reef embayment.

  17. Modelling the transport of radioactive cesium released from the Fukushima Dai-ichi NPP with sediments through the hydrologic system

    Science.gov (United States)

    Kinouchi, T.; Omata, T.; Wei, L.; Liu, T.; Araya, M.

    2013-12-01

    Due to the accident of the Fukushima Dai-ichi Nuclear Power Plant on March 2011, a huge amount of radionuclides including Cesium-134 and Cesium-137 was deposited over the main island of Japan and the Pacific Ocean, resulting in further transfer and diffusion of Cesium through the atmospheric flow, watershed hydrological processes, and terrestrial ecosystem. Particularly, for the transfer of Cesium-134 and Cesium-137, sediments eroded and transported by the rainfall-runoff processes play an important role as Cesium tends to be strongly adsorbed to soil particles such as clay and silt. In this study, we focus on the transport of sediment and adsorbed Cesium in the watershed-scale hydrologic system to predict the long-term change of distribution of Cesium and its discharge to rivers and ocean. We coupled a physically-based distributed hydrological model with the modules of erosion and transport of sediments and adsorbed Cesium, and applied the coupled model to the Abukuma River watershed, which is located over the area of higher deposition of Cesium. In the model, complex land use and land cover distributions, and the effect of human activities such as irrigation, dam control and urban drainage system are taken into accounts. Simulation was conducted for the period of March 2011 until August 2012, with initial spatial distribution of Cesium-134 and Cesium-137 obtained by the airborne survey. Simulated flow rates and sediment concentrations agreed well with observed, and found that since the accident, two major storms in July and September 2011 transported about 50% of total sediments transported during the simulated periods. Cesium concentration in the sediment was reproduced well except for the difference in the initial periods. This difference is attributable to the uncertainty arisen from the initial distribution of Cesium in the soil and the transfer of Cesium from the forest canopy.

  18. Windblown sediment transport and loss in a desert-oasis ecotone in the Tarim Basin.

    Science.gov (United States)

    Pi, Huawei; Sharratt, Brenton; Lei, Jiaqiang

    2017-08-10

    The Tarim Basin is regarded as one of the most highly erodible areas in China. Desert comprises 64% of the land use in the Basin, but the desert-oasis ecotone plays a prominent role in maintaining oasis ecological security and stability. Yet, little is known concerning the magnitude of windblown sediment transport in a desert-oasis ecotone. Therefore, aeolian sediment transport and loss was assessed from a desert-oasis experimental site located near Alaer City in the northwestern Tarim Basin. Sediment transport and factors governing transport were measured during three high wind events in 2012 and four events in 2013. Sediment transport was measured to a height of 10 m using passive aeolian airborne sediment samplers. The mass flux profile over the eroding surface was well represented by the power-law (R 2  > 0.77). Sediment loss from the site ranged from 118 g m -2 for the 20-24Apr 2012 wind event to 2925 g m -2 for the 31Mar-11Apr 2012 event. Suspension accounted for 67.4 to 84.8% of sediment loss across all high wind events. Our results indicate the severity of wind erosion in a desert-oasis ecotone and thus encourage adoption of management practices that will enhance oasis ecological security.

  19. The Effect of Suspended Sediment Transport and Deposition on Streambed Clogging Under Losing and Gaining Flow Conditions

    Science.gov (United States)

    Fox, A.; Packman, A. I.; Preziosi-Ribero, A.; Li, A.; Arnon, S.

    2017-12-01

    Sediment transport and deposition in streams can affect streambed hydraulic characteristics due to clogging, reduce water fluxes through the hyporheic zone, and thus expected to affect biogeochemical processes. Processes affecting deposition of suspended particles were systematically studied under various overlying velocities but without taking into account the interactions with groundwater. This is despite the fact that the interaction with groundwater were shown to play an important role in deposition patterns of fine sediments in field studies. The objective of this study was to evaluate the effect of losing and gaining fluxes on suspended sediment depositional patterns and on hyporheic exchange fluxes. Experiments were conducted in a laboratory flume system (640 cm long and 30 cm wide) that has a capacity to enforce losing or gaining flow conditions. The flume was packed with homogenous sand, while suspended sediment deposition was evaluated by adding kaolinite particles to the water and following the deposition rate by particle disappearance from the bulk water. Consecutive additions of kaolinite were done, while hyporheic exchange fluxes were evaluated by conducting NaCl tracer experiments between each kaolinite additions. Furthermore, dye injections were used to visualize the flow patterns in the streambed using time-lapse photography through the transparent sidewalls of the flume. Hyporheic exchange and particle tracking simulations were done to assess the results of particle deposition and feedbacks between hyporheic flow, particle transport, and streambed clogging. Experimental results showed that the deposition of clay decreases with increasing amount of clay concentration in the sediment. Hyporheic exchange flux decreases linearly with increasing amount of clay added to the system and the region of active hyporheic exchange was confined to the upper part of the sediment. Understanding the particle deposition mechanisms under losing and gaining flow

  20. The rheology of non-suspended sediment transport mediated by a Newtonian fluid

    Science.gov (United States)

    Pähtz, Thomas; Durán, Orencio

    2017-04-01

    Using a coupled DEM/RANS numerical model of non-suspended sediment transport in a Newtonian fluid (Durán et al., POF 103306, 2012), we find that the gas-like part of the granular transport flow can be described by a universal condition that constrains the average geometry of interparticle collisions. We show that this condition corresponds to a constant sliding friction coefficient μ at an appropriately defined bed surface, thus explaining the success of Bagnold's old idea to describe the sediment transport in analogy to sliding friction. We are currently exploring whether this rheology applies to gas-like granular flows in general. We further find a transition of the gas-like flow to either a solid-like flow (solid-to-gas transition), which is typical for aeolian sediment transport ('saltation'), or a liquid-like flow (liquid-to-gas transition), which is typical for subaqueous sediment transport ('bedload'). The transition occurs at about the location of maximal particle collision frequency. If there is a liquid-like flow below the transition, we find that it can be described by a μ(I) rheology, where I is the visco-intertial number, an appropriately defined average of the viscous and intertial number.

  1. Calibration of an estuarine sediment transport model to sediment fluxes as an intermediate step for simulation of geomorphic evolution

    Science.gov (United States)

    Ganju, N.K.; Schoellhamer, D.H.

    2009-01-01

    Modeling geomorphic evolution in estuaries is necessary to model the fate of legacy contaminants in the bed sediment and the effect of climate change, watershed alterations, sea level rise, construction projects, and restoration efforts. Coupled hydrodynamic and sediment transport models used for this purpose typically are calibrated to water level, currents, and/or suspended-sediment concentrations. However, small errors in these tidal-timescale models can accumulate to cause major errors in geomorphic evolution, which may not be obvious. Here we present an intermediate step towards simulating decadal-timescale geomorphic change: calibration to estimated sediment fluxes (mass/time) at two cross-sections within an estuary. Accurate representation of sediment fluxes gives confidence in representation of sediment supply to and from the estuary during those periods. Several years of sediment flux data are available for the landward and seaward boundaries of Suisun Bay, California, the landward-most embayment of San Francisco Bay. Sediment flux observations suggest that episodic freshwater flows export sediment from Suisun Bay, while gravitational circulation during the dry season imports sediment from seaward sources. The Regional Oceanic Modeling System (ROMS), a three-dimensional coupled hydrodynamic/sediment transport model, was adapted for Suisun Bay, for the purposes of hindcasting 19th and 20th century bathymetric change, and simulating geomorphic response to sea level rise and climatic variability in the 21st century. The sediment transport parameters were calibrated using the sediment flux data from 1997 (a relatively wet year) and 2004 (a relatively dry year). The remaining years of data (1998, 2002, 2003) were used for validation. The model represents the inter-annual and annual sediment flux variability, while net sediment import/export is accurately modeled for three of the five years. The use of sediment flux data for calibrating an estuarine geomorphic

  2. On the influence of suspended sediment transport on the generation of offshore sand waves

    NARCIS (Netherlands)

    Sterlini-Van der Meer, Fenneke; Hulscher, Suzanne J.M.H.; van den Berg, J.; Geurts, Bernardus J.; Clercx, H.J.H.; Uijttewaal, Wim

    2007-01-01

    Sand waves are bed-forms occurring in shallow seas. Although their characteristics are mainly affected by bed load transport, during rough weather suspended sediment transport can influence their characteristics. As a first step to model these influences, we added suspended sediment transport to a

  3. Microbial Transport, Survival, and Succession in a Sequence of Buried Sediments

    International Nuclear Information System (INIS)

    Kieft, T.L.; Murphy, E.M.; Haldeman, D.L.; Amy, P.S.; Bjornstad, B.N.; McDonald, E.V.; Ringelberg, D.B.; White, D.C.; Stair, J.; Griffiths, R.P.; Gsell, T.C.; Holben, W.E.; Boone, D.R.

    1995-01-01

    Two chronosequence of unsaturated buried loess sediments ranging in age from and lt;10,000 years to and gt;1 million years were investigated to reconstruct patterns of microbial ecological succession that have occurred since sediment burial. The relative importance of microbial transport and survival to succession were inferred from sediment ages, porewater ages, patterns of abundance (measured by direct counts, counts of culturable cells, and total phospholipid fatty acids), activities (measured by radiotracer and enzyme assays), and community composition (measured by phospholipid fatty acid patterns and Biolog substrate usage). Samples were collected by coring at two sites 40 km apart in the Palouse region of eastern Washington State near the towns of Washtucna and Winona. The Washtucna site was flooded multiple times during the Pleistocene by glacial outburst floods; the elevation of the Winona site is above flood stage. Sediments at the Washtucna site were collected from near surface to 14.9 m depth, where the sediment age was(approx)250 ka and the porewater age was 3700 years; sample intervals at the Winona site ranged from near surface to 38 m (sediment age:(approx)1 Ma; porewater age: 1200 years). Microbial abundance and activities declined with depth at both sites; however, even the deepest, oldest sediments showed evidence of viable microorganisms. Sediments of equivalent age had equal quantities of microorganisms, but differing community types. Differences in community make-up between the two sites can be attributed to differences in groundwater recharge and paleoflooding. Estimates of the ages of the microbial communities can be constrained by porewater and sediment ages. In the shallower sediments ( and lt;9 m at Washtucna, and lt;12 m at Winona), the microbial communities are likely similar in age to the groundwater; thus, microbial succession has been influenced by recent transport of microorganisms from the surface. In the deeper sediments, the

  4. Microbial Transport, Survival, and Succession in a Sequence of Buried Sediments

    Energy Technology Data Exchange (ETDEWEB)

    Kieft, T.L.; Murphy, E.M.; Haldeman, D.L.; Amy, P.S.; Bjornstad, B.N.; McDonald, E.V.; Ringelberg, D.B.; White, D.C.; Stair, J.; Griffiths, R.P.; Gsell, T.C.; Holben, W.E.; Boone, D.R.

    1995-01-05

    Two chronosequence of unsaturated buried loess sediments ranging in age from <10,000 years to >1 million years were investigated to reconstruct patterns of microbial ecological succession that have occurred since sediment burial. The relative importance of microbial transport and survival to succession were inferred from sediment ages, porewater ages, patterns of abundance (measured by direct counts, counts of culturable cells, and total phospholipid fatty acids), activities (measured by radiotracer and enzyme assays), and community composition (measured by phospholipid fatty acid patterns and Biolog substrate usage). Samples were collected by coring at two sites 40 km apart in the Palouse region of eastern Washington State near the towns of Washtucna and Winona. The Washtucna site was flooded multiple times during the Pleistocene by glacial outburst floods; the elevation of the Winona site is above flood stage. Sediments at the Washtucna site were collected from near surface to 14.9 m depth, where the sediment age was {approx}250 ka and the porewater age was 3700 years; sample intervals at the Winona site ranged from near surface to 38 m (sediment age: {approx}1 Ma; porewater age: 1200 years). Microbial abundance and activities declined with depth at both sites; however, even the deepest, oldest sediments showed evidence of viable microorganisms. Sediments of equivalent age had equal quantities of microorganisms, but differing community types. Differences in community make-up between the two sites can be attributed to differences in groundwater recharge and paleoflooding. Estimates of the ages of the microbial communities can be constrained by porewater and sediment ages. In the shallower sediments (<9 m at Washtucna, <12 m at Winona), the microbial communities are likely similar in age to the groundwater; thus, microbial succession has been influenced by recent transport of microorganisms from the surface. In the deeper sediments, the populations may be

  5. Sediment transport along the Cap de Creus Canyon flank during a mild, wet winter

    Directory of Open Access Journals (Sweden)

    J. Martín

    2013-05-01

    Full Text Available Cap de Creus Canyon (CCC is known as a preferential conduit for particulate matter leaving the Gulf of Lion continental shelf towards the slope and the basin, particularly in winter when storms and dense shelf water cascading coalesce to enhance the seaward export of shelf waters. During the CASCADE (CAscading, Storm, Convection, Advection and Downwelling Events cruise in March 2011, deployments of recording instruments within the canyon and vertical profiling of the water column properties were conducted to study with high spatial-temporal resolution the impact of such processes on particulate matter fluxes. In the context of the mild and wet 2010–2011 winter, no remarkable dense shelf water formation was observed. On the other hand, the experimental setup allowed for the study of the impact of E-SE storms on the hydrographical structure and the particulate matter fluxes in the CCC. The most remarkable feature in terms of sediment transport was a period of dominant E-SE winds from 12 to 16 March, including two moderate storms (maximum significant wave heights = 4.1–4.6 m. During this period, a plume of freshened, relatively cold and turbid water flowed at high speeds along the southern flank of the CCC in an approximate depth range of 150–350 m. The density of this water mass was lighter than the ambient water in the canyon, indicating that it did not cascade off-shelf and that it merely downwelled into the canyon forced by the strong cyclonic circulation induced over the shelf during the storms and by the subsequent accumulation of seawater along the coast. Suspended sediment load in this turbid intrusion recorded along the southern canyon flank oscillated between 10 and 50 mg L−1, and maximum currents speeds reached values up to 90 cm s−1. A rough estimation of 105 tons of sediment was transported through the canyon along its southern wall during a 3-day-long period of storm-induced downwelling. Following the veering of the wind

  6. Modeling and measuring the relationships between sediment transport processes, alluvial bedforms and channel-scale morphodynamics in sandy braided rivers.

    Science.gov (United States)

    Nicholas, A. P.; Ashworth, P. J.; Best, J.; Lane, S. N.; Parsons, D. R.; Sambrook Smith, G.; Simpson, C.; Strick, R. J. P.; Unsworth, C. A.

    2017-12-01

    Recent years have seen significant advances in the development and application of morphodynamic models to simulate river evolution. Despite this progress, significant challenges remain to be overcome before such models can provide realistic simulations of river response to environmental change, or be used to determine the controls on alluvial channel patterns and deposits with confidence. This impasse reflects a wide range of factors, not least the fact that many of the processes that control river behaviour operate at spatial scales that cannot be resolved by such models. For example, sand-bed rivers are characterised by multiple scales of topography (e.g., dunes, bars, channels), the finest of which must often by parameterized, rather than represented explicitly in morphodynamic models. We examine these issues using a combination of numerical modeling and field observations. High-resolution aerial imagery and Digital Elevation Models obtained for the sandy braided South Saskatchewan River in Canada are used to quantify dune, bar and channel morphology and their response to changing flow discharge. Numerical simulations are carried out using an existing morphodynamic model based on the 2D shallow water equations, coupled with new parameterisations of the evolution and influence of alluvial bedforms. We quantify the spatial patterns of sediment flux using repeat images of dune migration and bar evolution. These data are used to evaluate model predictions of sediment transport and morphological change, and to assess the degree to which model performance is controlled by the parametrization of roughness and sediment transport phenomena linked to subgrid-scale bedforms (dunes). The capacity of such models to replicate the characteristic multi-scale morphology of bars in sand-bed rivers, and the contrasting morphodynamic signatures of braiding during low and high flow conditions, is also assessed.

  7. Climate-sensitive feedbacks between hillslope processes and fluvial erosion in sediment-driven incision models

    Science.gov (United States)

    Skov, Daniel S.; Egholm, David L.

    2016-04-01

    Surface erosion and sediment production seem to have accelerated globally as climate cooled in the Late Cenozoic, [Molnar, P. 2004, Herman et al 2013]. Glaciers emerged in many high mountain ranges during the Quaternary, and glaciation therefore represents a likely explanation for faster erosion in such places. Still, observations and measurements point to increases in erosion rates also in landscapes where erosion is driven mainly by fluvial processes [Lease and Ehlers (2013), Reusser (2004)]. Flume experiments and fieldwork have shown that rates of incision are to a large degree controlled by the sediment load of streams [e.g. Sklar and Dietrich (2001), Beer and Turowski (2015)]. This realization led to the formulation of sediment-flux dependent incision models [Sklar and Dietrich (2004)]. The sediment-flux dependence links incision in the channels to hillslope processes that supply sediment to the channels. The rates of weathering and soil transport on the hillslopes are processes that are likely to respond to changing temperatures, e.g. because of vegetation changes or the occurrence of frost. In this study, we perform computational landscape evolution experiments, where the coupling between fluvial incision and hillslope processes is accounted for by coupling a sediment-flux-dependent model for fluvial incision to a climate-dependent model for weathering and hillslope sediment transport. The computational experiments first of all demonstrate a strong positive feedback between channel and hillslope processes. In general, faster weathering leads to higher rates of channel incision, which further increases the weathering rates, mainly because of hillslope steepening. Slower weathering leads to the opposite result. The experiments also demonstrate, however, that the feedbacks vary significantly between different parts of a drainage network. For example, increasing hillslope sediment production may accelerate incision in the upper parts of the catchment, while at

  8. Beach-dune dynamics: Spatio-temporal patterns of aeolian sediment transport under complex offshore airflow

    Science.gov (United States)

    Lynch, K.; Jackson, D.; Delgado-Fernandez, I.; Cooper, J. A.; Baas, A. C.; Beyers, M.

    2010-12-01

    This study examines sand transport and wind speed across a beach at Magilligan Strand, Northern Ireland, under offshore wind conditions. Traditionally the offshore component of local wind regimes has been ignored when quantifying beach-dune sediment budgets, with the sheltering effect of the foredune assumed to prohibit grain entrainment on the adjoining beach. Recent investigations of secondary airflow patterns over coastal dunes have suggested this may not be the case, that the turbulent nature of the airflow in these zones enhances sediment transport potential. Beach sediment may be delivered to the dune toe by re-circulating eddies under offshore winds in coastal areas, which may explain much of the dynamics of aeolian dunes on coasts where the dominant wind direction is offshore. The present study investigated aeolian sediment transport patterns under an offshore wind event. Empirical data were collected using load cell traps, for aeolian sediment transport, co-located with 3-D ultrasonic anemometers. The instrument positioning on the sub-aerial beach was informed by prior analysis of the airflow patterns using computational fluid dynamics. The array covered a total beach area of 90 m alongshore by 65 m cross-shore from the dune crest. Results confirm that sediment transport occurred in the ‘sheltered’ area under offshore winds. Over short time and space scales the nature of the transport is highly complex; however, preferential zones for sand entrainment may be identified. Alongshore spatial heterogeneity of sediment transport seems to show a relationship to undulations in the dune crest, while temporal and spatial variations may also be related to the position of the airflow reattachment zone. These results highlight the important feedbacks between flow characteristics and transport in a complex three dimensional surface.

  9. Distribution of longshore sediment transport along the Indian coast based on empirical model

    Digital Repository Service at National Institute of Oceanography (India)

    Chandramohan, P.; Nayak, B.U.

    An empirical sediment transport model has been developed based on longshore energy flux equation. Study indicates that annual gross sediment transport rate is high (1.5 x 10 super(6) cubic meters to 2.0 x 10 super(6) cubic meters) along the coasts...

  10. Cobalt and tantalum tracers measured by activation analysis in sediment transport studies

    Energy Technology Data Exchange (ETDEWEB)

    Groot, A.J. de [Institute for Soil Fertility, Haren (Netherlands); Allersma, E [Delft Hydraulics Laboratory, Delft (Netherlands); Bruin, M de; Houtman, J P.W. [Reactor Institute, Delft (Netherlands)

    1970-09-15

    The paper proposes certain principles of research to be used in investigating the origin and transport of fine-grained sediments in rivers and sea arms in connection with siltation problems of harbours and navigation channels. An element, which either does not occur in the sediment or only occurs in minute quantities, is fixed to the mud from the river or sea arm. After the material is marked it is returned to the water course where it mixes with the solids moving naturally. At specified points throughout the water course sediment samples are taken to determine the marking element by activation analysis. This gives an insight into the flow path of the suspended matter. The selection and successful application of tracers that can be measured by activation analysis depends on the sensitivity of detection, the natural occurrence of the relevant elements in the sediments under investigation and the fixation capacity of the tracer to the various grain size fractions. Further, the influence of the added element on the sedimentation behaviour of the mud in suspension and on the desorption properties must be considered. The irradiation of Co and Ta with thermal neutrons gives rise to a very sensitive evaluation of the original elements present. The fixation process of Co is restricted to sediments with special characteristics; Ta, however, can adhere tightly to any sediment. Tantalum also has the advantage that its natural content in sediments is very low. Large quantities (several per cent by weight) can adhere to the sediment without changing the sedimentation properties to an appreciable extent. Hardly any losses occur during leaching experiments simulating natural conditions. A detailed treatment is given of the chemical aspects of the method, including the behaviour of the elements used in the light of the general environmental processes of sediment constituents in deltaic systems. Finally, the scope and limits of the method are discussed. (author)

  11. Cobalt and Tantalum Tracers Measured by Activation Analysis in Sediment Transport Studies

    Energy Technology Data Exchange (ETDEWEB)

    Groot, A.J. de [Institute for Soil Fertility, Haren (Netherlands); Allersma, E. [Delft Hydraulics Laboratory, Delft (Netherlands); Bruin, M. de; Houtman, J. P.W. [Reactor Institute, Delft (Netherlands)

    1970-09-15

    The paper proposes certain principles of research to be used in investigating the origin and transport of fine-grained sediments in rivers and sea arms in connection with siltation problems of harbours and navigation channels. An element, which either does not occur in the sediment or only occurs in minute quantities, is fixed to the mud from the river or sea arm. After the material is marked it is returned to the water course where it mixes with the solids moving naturally. At specified points throughout the water course sediment samples are taken to determine the marking element by activation analysis. This gives an insight into the flow path of the suspended matter. The selection and successful application of tracers that can be measured by activation analysis depends on the sensitivity of detection, the natural occurrence of the relevant elements in the sediments under investigation and the fixation capacity of the tracer to the various grain size fractions. Further, the influence of the added element on the sedimentation behaviour of the mud in suspension and on the desorption properties must be considered. The irradiation of Co and Ta with thermal neutrons gives rise to a very sensitive evaluation of the original elements present. The fixation process of Co is restricted to sediments with special characteristics; Ta, however, can adhere tightly to any sediment. Tantalum also has the advantage that its natural content in sediments is very low. Large quantities (several per cent by weight) can adhere to the sediment without changing the sedimentation properties to an appreciable extent. Hardly any losses occur during leaching experiments simulating natural conditions. A detailed treatment is given of the chemical aspects of the method, including the behaviour of the elements used in the light of the general environmental processes of sediment constituents in deltaic systems. Finally, the scope and limits of the method are discussed. (author)

  12. Numerical experiment on tsunami deposit distribution process by using tsunami sediment transport model in historical tsunami event of megathrust Nankai trough earthquake

    Science.gov (United States)

    Imai, K.; Sugawara, D.; Takahashi, T.

    2017-12-01

    A large flow caused by tsunami transports sediments from beach and forms tsunami deposits in land and coastal lakes. A tsunami deposit has been found in their undisturbed on coastal lakes especially. Okamura & Matsuoka (2012) found some tsunami deposits in the field survey of coastal lakes facing to the Nankai trough, and tsunami deposits due to the past eight Nankai Trough megathrust earthquakes they identified. The environment in coastal lakes is stably calm and suitable for tsunami deposits preservation compared to other topographical conditions such as plains. Therefore, there is a possibility that the recurrence interval of megathrust earthquakes and tsunamis will be discussed with high resolution. In addition, it has been pointed out that small events that cannot be detected in plains could be separated finely (Sawai, 2012). Various aspects of past tsunami is expected to be elucidated, in consideration of topographical conditions of coastal lakes by using the relationship between the erosion-and-sedimentation process of the lake bottom and the external force of tsunami. In this research, numerical examination based on tsunami sediment transport model (Takahashi et al., 1999) was carried out on the site Ryujin-ike pond of Ohita, Japan where tsunami deposit was identified, and deposit migration analysis was conducted on the tsunami deposit distribution process of historical Nankai Trough earthquakes. Furthermore, examination of tsunami source conditions is possibly investigated by comparison studies of the observed data and the computation of tsunami deposit distribution. It is difficult to clarify details of tsunami source from indistinct information of paleogeographical conditions. However, this result shows that it can be used as a constraint condition of the tsunami source scale by combining tsunami deposit distribution in lakes with computation data.

  13. A Field Exercise in Fluvial Sediment Transport.

    Science.gov (United States)

    Tharp, Thomas M.

    1983-01-01

    Describes an investigation which introduces the mathematical principles of stream hydraulics and fluvial sediment in a practical context. The investigation has four stages: defining hydrology of the stream; defining channel hydraulics in a study reach; measuring grain size; and calculating transportable grain size and comparing measure stream-bed…

  14. Direct sampling during multiple sediment density flows reveals dynamic sediment transport and depositional environment in Monterey submarine canyon

    Science.gov (United States)

    Maier, K. L.; Gales, J. A.; Paull, C. K.; Gwiazda, R.; Rosenberger, K. J.; McGann, M.; Lundsten, E. M.; Anderson, K.; Talling, P.; Xu, J.; Parsons, D. R.; Barry, J.; Simmons, S.; Clare, M. A.; Carvajal, C.; Wolfson-Schwehr, M.; Sumner, E.; Cartigny, M.

    2017-12-01

    Sediment density flows were directly sampled with a coupled sediment trap-ADCP-instrument mooring array to evaluate the character and frequency of turbidity current events through Monterey Canyon, offshore California. This novel experiment aimed to provide links between globally significant sediment density flow processes and their resulting deposits. Eight to ten Anderson sediment traps were repeatedly deployed at 10 to 300 meters above the seafloor on six moorings anchored at 290 to 1850 meters water depth in the Monterey Canyon axial channel during 6-month deployments (October 2015 - April 2017). Anderson sediment traps include a funnel and intervalometer (discs released at set time intervals) above a meter-long tube, which preserves fine-scale stratigraphy and chronology. Photographs, multi-sensor logs, CT scans, and grain size analyses reveal layers from multiple sediment density flow events that carried sediment ranging from fine sand to granules. More sediment accumulation from sediment density flows, and from between flows, occurred in the upper canyon ( 300 - 800 m water depth) compared to the lower canyon ( 1300 - 1850 m water depth). Sediment accumulated in the traps during sediment density flows is sandy and becomes finer down-canyon. In the lower canyon where sediment directly sampled from density flows are clearly distinguished within the trap tubes, sands have sharp basal contacts, normal grading, and muddy tops that exhibit late-stage pulses. In at least two of the sediment density flows, the simultaneous low velocity and high backscatter measured by the ADCPs suggest that the trap only captured the collapsing end of a sediment density flow event. In the upper canyon, accumulation between sediment density flow events is twice as fast compared to the lower canyon; it is characterized by sub-cm-scale layers in muddy sediment that appear to have accumulated with daily to sub-daily frequency, likely related to known internal tidal dynamics also measured

  15. Mineral-leaching chemical transport with runoff and sediment from severely eroded rare-earth tailings in southern China

    Directory of Open Access Journals (Sweden)

    H. Lu

    2017-08-01

    Full Text Available Rare-earth mining has led to severe soil erosion in southern China. Furthermore, the presence of the mineral-leaching chemical ammonium sulfate in runoff and sediment poses a serious environmental threat to downstream water bodies. In this paper, the characteristics of mineral-leaching chemicals in surface soil samples collected in the field were studied. In addition, NH4+ and SO42− transport via soil erosion was monitored using runoff and sediment samples collected during natural rainfall processes. The results demonstrated that the NH4+ contents in the surface sediment deposits increased from the top of the heap (6.56 mg kg−1 to the gully (8.23 mg kg−1 and outside the tailing heap (13.03 mg kg−1. The contents of SO42− in the different locations of the tailing heaps ranged from 27.71 to 40.33 mg kg−1. During typical rainfall events, the absorbed NH4+ concentrations (2.05, 1.26 mg L−1 in runoff were significantly higher than the dissolved concentrations (0.93, 1.04 mg L−1, while the absorbed SO42− concentrations (2.87, 1.92 mg L−1 were significantly lower than the dissolved concentrations (6.55, 7.51 mg L−1. The dissolved NH4+ and SO42− concentrations in runoff displayed an exponentially decreasing tendency with increasing transport distance (Y = 1. 02 ⋅ exp( − 0. 00312X; Y = 3. 34 ⋅ exp( − 0. 0185X. No clear trend with increasing distance was observed for the absorbed NH4+ and SO42− contents in transported sediment. The NH4+ and SO42− contents had positive correlations with the silt and clay ratio in transported sediment but negative correlations with the sand ratio. These results provide a better understanding of the transport processes and can be used to develop equations to predict the transport of mineral-leaching chemicals in rare-earth tailings, which can provide a scientific foundation for erosion control and soil management in rare

  16. Numerical modelling of hydro-morphological processes dominated by fine suspended sediment in a stormwater pond

    Science.gov (United States)

    Guan, Mingfu; Ahilan, Sangaralingam; Yu, Dapeng; Peng, Yong; Wright, Nigel

    2018-01-01

    Fine sediment plays crucial and multiple roles in the hydrological, ecological and geomorphological functioning of river systems. This study employs a two-dimensional (2D) numerical model to track the hydro-morphological processes dominated by fine suspended sediment, including the prediction of sediment concentration in flow bodies, and erosion and deposition caused by sediment transport. The model is governed by 2D full shallow water equations with which an advection-diffusion equation for fine sediment is coupled. Bed erosion and sedimentation are updated by a bed deformation model based on local sediment entrainment and settling flux in flow bodies. The model is initially validated with the three laboratory-scale experimental events where suspended load plays a dominant role. Satisfactory simulation results confirm the model's capability in capturing hydro-morphodynamic processes dominated by fine suspended sediment at laboratory-scale. Applications to sedimentation in a stormwater pond are conducted to develop the process-based understanding of fine sediment dynamics over a variety of flow conditions. Urban flows with 5-year, 30-year and 100-year return period and the extreme flood event in 2012 are simulated. The modelled results deliver a step change in understanding fine sediment dynamics in stormwater ponds. The model is capable of quantitatively simulating and qualitatively assessing the performance of a stormwater pond in managing urban water quantity and quality.

  17. Modeling radiocesium transport from a river catchment based on a physically-based distributed hydrological and sediment erosion model.

    Science.gov (United States)

    Kinouchi, Tsuyoshi; Yoshimura, Kazuya; Omata, Teppei

    2015-01-01

    The accident at the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) in March 2011 resulted in the deposition of large quantities of radionuclides, such as (134)Cs and (137)Cs, over parts of eastern Japan. Since then high levels of radioactive contamination have been detected in large areas, including forests, agricultural land, and residential areas. Due to the strong adsorption capability of radiocesium to soil particles, radiocesium migrates with eroded sediments, follows the surface flow paths, and is delivered to more populated downstream regions and eventually to the Pacific Ocean. It is therefore important to understand the transport of contaminated sediments in the hydrological system and to predict changes in the spatial distribution of radiocesium concentrations by taking the land-surface processes related to sediment migration into consideration. In this study, we developed a distributed model to simulate the transport of water and contaminated sediment in a watershed hydrological system, and applied this model to a partially forested mountain catchment located in an area highly contaminated by the radioactive fallout. Observed discharge, sediment concentration, and cesium concentration measured from June 2011 until December 2012 were used for calibration of model parameters. The simulated discharge and sediment concentration both agreed well with observed values, while the cesium concentration was underestimated in the initial period following the accident. This result suggests that the leaching of radiocesium from the forest canopy, which was not considered in the model, played a significant role in its transport from the catchment. Based on the simulation results, we quantified the long-term fate of radiocesium over the study area and estimated that the effective half-life of (137)Cs deposited in the study area will be approximately 22 y due to the export of contaminated sediment by land-surface processes, and the amount of (137)Cs remaining in the

  18. Transport of bedload sediment and channel morphology of a southeast Alaska stream.

    Science.gov (United States)

    Margaret A. Estep; Robert L. Beschta

    1985-01-01

    During 1980-81, transport of bedload sediment and channel morphology were determined at Trap Bay Creek, a third-order stream that drains a 13.5-square kilometer watershed on Chichagof island in southeast Alaska. Bedload sediment was sampled for 10 storms: peak flows ranged from 0.6 to 19.0 cubic meters per second, and transport rates ranged from 4 to 4400 kilograms per...

  19. Sediment Transport and Slope Stability of Ship Shoal Borrow Areas for Coastal Restoration of Louisiana

    Science.gov (United States)

    Liu, H.; Xu, K.; Bentley, S. J.; Li, C.; Miner, M. D.; Wilson, C.; Xue, Z.

    2017-12-01

    Sandy barrier islands along Louisiana coast are degrading rapidly due to both natural and anthropogenic factors. Ship Shoal is one of the largest offshore sand resources, and has been used as a borrow area for Caminada Headland Restoration Project. Our knowledge of sediment transport and infilling processes in this new sandy and dynamic borrow area is rather limited. High resolution sub-bottom seismic data, side scan sonar images, multi-beam bathymetry and laser sediment grain size data were used to study seafloor morphological evolution and pit wall stability in response to both physical and geological processes. The multi-beam bathymetry and seismic profiling inside the pit showed that disequilibrium conditions led to rapid infilling in the pits at the beginning, but this process slowed down after the pit slope became stable and topography became smooth. We hypothesize that the erosion of the adjacent seabed sediment by energetic waves and longshore currents, the supply of suspended sediment from the rivers, and the erodible materials produced by local mass wasting on pit walls are three main types of infilling sediments. Compared with mud-capped dredge pits, this sandy dredge pit seems to have more gentle slopes on pit walls, which might be controlled by the angle of repose. Infilling sediment seems to be dominantly sandy, with some mud patches on bathymetric depressions. This study helps us better understand the impacts of mining sediment for coastal restoration and improves sand resource management efforts.

  20. A preliminary appraisal of sediment sources and transport in Kings Bay and vicinity, Georgia and Florida

    Science.gov (United States)

    McConnell, J.B.; Radtke, D.B.; Hale, T.W.; Buell, G.R.

    1983-01-01

    Water-quality, bottom-material, suspended-sediment, and current-velocity data were collected during November 1981 in Kings Bay and vicinity to provide information on the sources and transport of estuarine sediments. Kings Bay and Cumberland Sound , the site of the Poseidon Submarine Base in southeast Georgia, are experiencing high rates of sediment deposition and accumulation, which are causing serious navigational and operational problems. Velocity, bathymetry, turbidity, and bottom-material data suggest that the area in the vicinity of lower Kings Bay is accumulating deposits of suspended sediment transported from Cumberland Sound on the floodtide and from upper Kings Bay and the tidal marsh drained by Marianna Creek on the ebbtide. Suspended-sediment discharges computed for consecutive 13-hour ebbtides and floodtides showed that a net quantity of suspended sediment was transported seaward from upper Kings Bay and Marianna Creek. A net landward transport of suspended sediment computed at the St. Marys Entrance indicated areas seaward of St. Marys Entrance may be supplying sediment to the shoaling areas of the estuary, including lower Kings Bay. (USGS)

  1. Review of the Field-Data Base for Longshore Sediment Transport

    CSIR Research Space (South Africa)

    Schoonees, JS

    1993-02-01

    Full Text Available A literature search was undertaken to collect field data on longshore sediment transport. This yielded a large number of data sets (273 points for bulk transport rates) from a variety of sites around the world. Data are especially lacking...

  2. Coupling climate conditions, sediment sources and sediment transport in an alpine basin

    Science.gov (United States)

    Rainato, Riccardo; Picco, Lorenzo; Cavalli, Marco; Mao, Luca; Neverman, Andrew J.; Tarolli, Paolo

    2017-04-01

    In a fluvial system, mountain basins control sediment export to the lowland rivers. Hence, the analysis of the erosion processes and sediment delivery patterns that act in mountain basins is important. Several studies have investigated the alterations triggered by recent climatic change on the hydrological regime, whilst only a few works have explored the consequences on the sediment dynamics. Here we combined and analyzed the quasi-unique dataset of climatic conditions, landscape response, and sediment export produced, since 1986 in the Rio Cordon basin (5 km2, Eastern Italian Alps) to examine the sediment delivery processes occurring in the last three decades. The temperature, precipitation, and fluvial sediment fluxes in the basin were analyzed using continuous measurement executed by a permanent monitoring station, while the landscape evolution was investigated by three sediment source inventories established in 1994, 2006, and 2016. Thus, the analysis focused on the trends exhibited during the periods 1986-1993, 1994-2006, and 2007-2015. In terms of climatic conditions, three distinct climate forcing stages can be observed in the periods analyzed: a relatively stable phase (1986-1993), a period characterized by temperature and rainfall fluctuations (1994-2006), and a more recent warmer and wetter phase (2007-2015). In the 1986-1993 period, the fluvial sediment fluxes reflected the stable trend exhibited by the climatic conditions. In the subsequent 1994-2006 period, the average temperature and precipitation were in line with that previously observed, although with higher interannual variability. Notwithstanding the climate forcing and the occurrence of high magnitude/low frequency floods that strongly influenced the source areas, between 1994 and 2006 the Rio Cordon basin showed relatively limited erosion activity. Hence, the climatic conditions and the landscape response can only partially explain the strong increase of sediment export recorded in the 1994

  3. Sediment transport primer: estimating bed-material transport in gravel-bed rivers

    Science.gov (United States)

    Peter Wilcock; John Pitlick; Yantao Cui

    2009-01-01

    This primer accompanies the release of BAGS, software developed to calculate sediment transport rate in gravel-bed rivers. BAGS and other programs facilitate calculation and can reduce some errors, but cannot ensure that calculations are accurate or relevant. This primer was written to help the software user define relevant and tractable problems, select appropriate...

  4. EVALUATION OF THE STATE-OF-THE-ART CONTAMINATED SEDIMENT TRANSPORT AND FATE MODELING SYSTEM

    Science.gov (United States)

    Modeling approaches for evaluating the transport and fate of sediment and associated contaminants are briefly reviewed. The main emphasis is on: 1) the application of EFDC (Environmental Fluid Dynamics Code), the state-of-the-art contaminated sediment transport and fate public do...

  5. Sediment transport following water transfer from Yangtze River to Taihu Basin

    Directory of Open Access Journals (Sweden)

    Zheng Gong

    2011-12-01

    Full Text Available To meet the increasing need of fresh water and to improve the water quality of Taihu Lake, water transfer from the Yangtze River was initiated in 2002. This study was performed to investigate the sediment distribution along the river course following water transfer. A rainfall-runoff model was first built to calculate the runoff of the Taihu Basin in 2003. Then, the flow patterns of river networks were simulated using a one-dimensional river network hydrodynamic model. Based on the boundary conditions of the flow in tributaries of the Wangyu River and the water level in Taihu Lake, a one-dimensional hydrodynamic and sediment transport numerical model of the Wangyu River was built to analyze the influences of the inflow rate of the water transfer and the suspended sediment concentration (SSC of inflow on the sediment transport. The results show that the water transfer inflow rate and SSC of inflow have significant effects on the sediment distribution. The higher the inflow rate or SSC of inflow is, the higher the SSC value is at certain cross-sections along the river course of water transfer. Higher inflow rate and SSC of inflow contribute to higher sediment deposition per kilometer and sediment thickness. It is also concluded that a sharp decrease of the inflow velocity at the entrance of the Wangyu River on the river course of water transfer induces intense sedimentation at the cross-section near the Changshu hydro-junction. With an increasing distance from the Changshu hydro-junction, the sediment deposition and sedimentation thickness decrease gradually along the river course.

  6. An Eulerian two-phase flow model for sediment transport under realistic surface waves

    Science.gov (United States)

    Hsu, T. J.; Kim, Y.; Cheng, Z.; Chauchat, J.

    2017-12-01

    Wave-driven sediment transport is of major importance in driving beach morphology. However, the complex mechanisms associated with unsteadiness, free-surface effects, and wave-breaking turbulence have not been fully understood. Particularly, most existing models for sediment transport adopt bottom boundary layer approximation that mimics the flow condition in oscillating water tunnel (U-tube). However, it is well-known that there are key differences in sediment transport when comparing to large wave flume datasets, although the number of wave flume experiments are relatively limited regardless of its importance. Thus, a numerical model which can resolve the entire water column from the bottom boundary layer to the free surface can be a powerful tool. This study reports an on-going effort to better understand and quantify sediment transport under shoaling and breaking surface waves through the creation of open-source numerical models in the OpenFOAM framework. An Eulerian two-phase flow model, SedFoam (Cheng et al., 2017, Coastal Eng.) is fully coupled with a volume-of-fluid solver, interFoam/waves2Foam (Jacobsen et al., 2011, Int. J. Num. Fluid). The fully coupled model, named SedWaveFoam, regards the air and water phases as two immiscible fluids with the interfaces evolution resolved, and the sediment particles as dispersed phase. We carried out model-data comparisons with the large wave flume sheet flow data for nonbreaking waves reported by Dohmen-Janssen and Hanes (2002, J. Geophysical Res.) and good agreements were obtained for sediment concentration and net transport rate. By further simulating a case without free-surface (mimic U-tube condition), the effects of free-surface, most notably the boundary layer streaming effect on total transport, can be quantified.

  7. Influence of turbulent horseshoe vortex and associated bed shear stress on sediment transport in front of a cylinder

    DEFF Research Database (Denmark)

    Li, Jinzhao; Qi, Meilan; Fuhrman, David R.

    2018-01-01

    -normal distribution for uniform channel-open flows. The comparisons of sediment transport rates where turbulent fluctuations in the bed shear stress are, or are not, taken into account show that the sediment transport rates calculated by the mean bed shear stress are under-predicted. Furthermore, a new sediment......This study concerns the flow and associated sediment transport in front of a cylinder in steady currents. The study comprises (i) flow characteristics induced by the turbulent horseshoe vortex (THV), (ii) bed shear stress within the THV region, and (iii) predicted sediment transport rates...

  8. Coupling a basin erosion and river sediment transport model into a large scale hydrological model: an application in the Amazon basin

    Science.gov (United States)

    Buarque, D. C.; Collischonn, W.; Paiva, R. C. D.

    2012-04-01

    This study presents the first application and preliminary results of the large scale hydrodynamic/hydrological model MGB-IPH with a new module to predict the spatial distribution of the basin erosion and river sediment transport in a daily time step. The MGB-IPH is a large-scale, distributed and process based hydrological model that uses a catchment based discretization and the Hydrological Response Units (HRU) approach. It uses physical based equations to simulate the hydrological processes, such as the Penman Monteith model for evapotranspiration, and uses the Muskingum Cunge approach and a full 1D hydrodynamic model for river routing; including backwater effects and seasonal flooding. The sediment module of the MGB-IPH model is divided into two components: 1) prediction of erosion over the basin and sediment yield to river network; 2) sediment transport along the river channels. Both MGB-IPH and the sediment module use GIS tools to display relevant maps and to extract parameters from SRTM DEM (a 15" resolution was adopted). Using the catchment discretization the sediment module applies the Modified Universal Soil Loss Equation to predict soil loss from each HRU considering three sediment classes defined according to the soil texture: sand, silt and clay. The effects of topography on soil erosion are estimated by a two-dimensional slope length (LS) factor which using the contributing area approach and a local slope steepness (S), both estimated for each DEM pixel using GIS algorithms. The amount of sediment releasing to the catchment river reach in each day is calculated using a linear reservoir. Once the sediment reaches the river they are transported into the river channel using an advection equation for silt and clay and a sediment continuity equation for sand. A sediment balance based on the Yang sediment transport capacity, allowing to compute the amount of erosion and deposition along the rivers, is performed for sand particles as bed load, whilst no

  9. Transport and redistribution of Chernobyl fallout radionuclides by fluvial processes: some preliminary evidence

    International Nuclear Information System (INIS)

    Walling, D.E.; Bradley, S.B.

    1988-01-01

    Several measurements of 137 Cs concentrations in suspended sediment transported by the River Severn during the post-Chernobyl period and in recent channel and floodplain deposits along the river emphasise the potential significance of fluvial processes in the transport and concentration of fallout radionuclides. (author)

  10. Water and sediment transport modeling of a large temporary river basin in Greece.

    Science.gov (United States)

    Gamvroudis, C; Nikolaidis, N P; Tzoraki, O; Papadoulakis, V; Karalemas, N

    2015-03-01

    The objective of this research was to study the spatial distribution of runoff and sediment transport in a large Mediterranean watershed (Evrotas River Basin) consisting of temporary flow tributaries and high mountain areas and springs by focusing on the collection and use of a variety of data to constrain the model parameters and characterize hydrologic and geophysical processes at various scales. Both monthly and daily discharge data (2004-2011) and monthly sediment concentration data (2010-2011) from an extended monitoring network of 8 sites were used to calibrate and validate the Soil and Water Assessment Tool (SWAT) model. In addition flow desiccation maps showing wet and dry aquatic states obtained during a dry year were used to calibrate the simulation of low flows. Annual measurements of sediment accumulation in two reaches were used to further calibrate the sediment simulation. Model simulation of hydrology and sediment transport was in good agreement with field observations as indicated by a variety of statistical measures used to evaluate the goodness of fit. A water balance was constructed using a 12 year long (2000-2011) simulation. The average precipitation of the basin for this period was estimated to be 903 mm yr(-1). The actual evapotranspiration was 46.9% (424 mm yr(-1)), and the total water yield was 13.4% (121 mm yr(-1)). The remaining 33.4% (302 mm yr(-1)) was the amount of water that was lost through the deep groundwater of Taygetos and Parnonas Mountains to areas outside the watershed and for drinking water demands (6.3%). The results suggest that the catchment has on average significant water surplus to cover drinking water and irrigation demands. However, the situation is different during the dry years, where the majority of the reaches (85% of the river network are perennial and temporary) completely dry up as a result of the limited rainfall and the substantial water abstraction for irrigation purposes. There is a large variability in the

  11. Using a Near-Bed Sediment Flux Sensor to Measure Wave Formed Bedform Migrations and Formation Processes

    National Research Council Canada - National Science Library

    Traykovski, Peter A

    2007-01-01

    My research program focuses on identifying and quantifying sediment erosion, transport, and deposition processes on the continental shelf through state of the art observational techniques in both fine...

  12. Sediment transport in the San Francisco Bay Coastal System: An overview

    Science.gov (United States)

    Barnard, Patrick L.; Schoellhamer, David H.; Jaffe, Bruce E.; Lester J. McKee,

    2013-01-01

    The papers in this special issue feature state-of-the-art approaches to understanding the physical processes related to sediment transport and geomorphology of complex coastal-estuarine systems. Here we focus on the San Francisco Bay Coastal System, extending from the lower San Joaquin-Sacramento Delta, through the Bay, and along the adjacent outer Pacific Coast. San Francisco Bay is an urbanized estuary that is impacted by numerous anthropogenic activities common to many large estuaries, including a mining legacy, channel dredging, aggregate mining, reservoirs, freshwater diversion, watershed modifications, urban run-off, ship traffic, exotic species introductions, land reclamation, and wetland restoration. The Golden Gate strait is the sole inlet connecting the Bay to the Pacific Ocean, and serves as the conduit for a tidal flow of ~ 8 x 109 m3/day, in addition to the transport of mud, sand, biogenic material, nutrients, and pollutants. Despite this physical, biological and chemical connection, resource management and prior research have often treated the Delta, Bay and adjacent ocean as separate entities, compartmentalized by artificial geographic or political boundaries. The body of work herein presents a comprehensive analysis of system-wide behavior, extending a rich heritage of sediment transport research that dates back to the groundbreaking hydraulic mining-impact research of G.K. Gilbert in the early 20th century.

  13. Deciphering Equatorial Pacific Deep Sea Sediment Transport Regimes by Core-Log-Seismic Integration

    Science.gov (United States)

    Ortiz, E.; Tominaga, M.; Marcantonio, F.

    2017-12-01

    Investigating deep-sea sediment transportation and deposition regimes is a key to accurately understand implications from geological information recorded by pelagic sediments, e.g. climate signals. However, except for physical oceanographic particle trap experiments, geochemical analyses of in situsediments, and theoretical modeling of the relation between the bottom currents and sediment particle flux, it has remained a challenging task to document the movement of deep sea sediments, that takes place over time. We utilized high-resolution, multichannel reflection seismic data from the eastern equatorial Pacific region with drilling and logging results from two Integrated Ocean Drilling Program (IODP) sites, the Pacific Equatorial Age Transect (PEAT) 7 (Site U1337) and 8 (Site U1338), to characterize sediment transportation regimes on 18-24 Ma oceanic crust. Site U1337, constructed by a series of distinct abyssal hills and abyssal basins; Site U1338, located 570 km SE from Site U1337 site and constructed by a series of ridges, seamounts, and abyssal hills. These sites are of particular interest due to their proximity to the equatorial productivity zone, areas with high sedimentation rates and preservation of carbonate-bearing sediment that provide invaluable insights on equatorial Pacific ecosystems and carbon cycle. We integrate downhole geophysical logging data as well as geochemistry and physical properties measurements on recovered cores from IODP Sites U1337 and U1338 to comprehensively examine the mobility of deep-sea sediments and sediment diagenesis over times in a quasi-3D manner. We also examine 1100 km of high resolution underway seismic surveys from site survey lines in between PEAT 7 and 8 in order to investigate changes in sediment transportation between both sites. Integrating detailed seismic interpretations, high resolution core data, and 230Th flux measurements we aim to create a detailed chronological sedimentation and sediment diagenesis history

  14. Formation and development of a breaker bar under regular waves. Part 2: Sediment transport and morphology

    DEFF Research Database (Denmark)

    Jacobsen, Niels Gjøl; Fredsøe, Jørgen

    2014-01-01

    In Part 2 of this work, the hydrodynamic model described in Part 1 is applied for the simulation of sediment transport and the associated morphological development of breaker bars. The sediment description is split into bed load and suspended load, and like the hydrodynamics the sediment transport...

  15. Suspended sediment transport in the Gulf of Lions (NW Mediterranean): Impact of extreme storms and floods

    NARCIS (Netherlands)

    Ulses, C.; Estournel, C.; Durrieu de Madron, X.; Palanques, A.

    2008-01-01

    In situ observations were combined with 3D modeling to gain understanding of and to quantify the suspended sediment transport in the Gulf of Lions (NW Mediterranean Sea). The outputs of a hydrodynamic–sediment transport coupled model were compared to near-bottom current and suspended sediment

  16. Formulating Fine to Medium Sand Erosion for Suspended Sediment Transport Models

    Directory of Open Access Journals (Sweden)

    François Dufois

    2015-08-01

    Full Text Available The capacity of an advection/diffusion model to predict sand transport under varying wave and current conditions is evaluated. The horizontal sand transport rate is computed by vertical integration of the suspended sediment flux. A correction procedure for the near-bed concentration is proposed so that model results are independent of the vertical resolution. The method can thus be implemented in regional models with operational applications. Simulating equilibrium sand transport rates, when erosion and deposition are balanced, requires a new empirical erosion law that involves the non-dimensional excess shear stress and a parameter that depends on the size of the sand grain. Comparison with several datasets and sediment transport formulae demonstrated the model’s capacity to simulate sand transport rates for a large range of current and wave conditions and sand diameters in the range 100–500 μm. Measured transport rates were predicted within a factor two in 67% of cases with current only and in 35% of cases with both waves and current. In comparison with the results obtained by Camenen and Larroudé (2003, who provided the same indicators for several practical transport rate formulations (whose means are respectively 72% and 37%, the proposed approach gives reasonable results. Before fitting a new erosion law to our model, classical erosion rate formulations were tested but led to poor comparisons with expected sediment transport rates. We suggest that classical erosion laws should be used with care in advection/diffusion models similar to ours, and that at least a full validation procedure for transport rates involving a range of sand diameters and hydrodynamic conditions should be carried out.

  17. Technetium-99m: From nuclear medicine applications to fine sediment transport studies

    Directory of Open Access Journals (Sweden)

    Bandeira Jefferson V.

    2017-12-01

    Full Text Available The present work is a contribution to rescue the history of development of the application of 99mTc, widely used in nuclear medicine, to its use as tracer for the study of the transport of fine sediment in suspension, in water environment. It addresses the usefulness of its application in obtaining important parameters in environmental studies, illustrating them with some applications already performed and the results obtained. This kind of study, when associated with information on hydrodynamic parameters, for example, river, tidal, wind and wave currents, are powerful tools for the understanding and quantification of fine sediment transport in suspension. Fine sediment is an important vector in the transportation of heavy metals, organic matter and nutrients in water environment, and the quantitative knowledge of its behaviour is mandatory for studies of environmental impacts. Fine sediment labelled with 99mTc, can also be used to study the effect of human interventions, such as dredging of reservoirs, access channels and harbours, and the dumping of dredged materials in water bodies. Besides that, it can be used to optimize dredging works, evaluating the technical and economic feasibility of dumping sites and their environmental impact. It is a valuable support in the calibration and validation of mathematical models for sediment dynamics.

  18. Sediment transport in two mediterranean regulated rivers.

    Science.gov (United States)

    Lobera, G; Batalla, R J; Vericat, D; López-Tarazón, J A; Tena, A

    2016-01-01

    Mediterranean climate is characterized by highly irregular rainfall patterns with marked differences between wet and dry seasons which lead to highly variable hydrological fluvial regimes. As a result, and in order to ensure water availability and reduce its temporal variability, a high number of large dams were built during the 20th century (more than 3500 located in Mediterranean rivers). Dams modify the flow regime but also interrupt the continuity of sediment transfer along the river network, thereby changing its functioning as an ecosystem. Within this context, the present paper aims to assess the suspended sediment loads and dynamics of two climatically contrasting Mediterranean regulated rivers (i.e. the Ésera and Siurana) during a 2-yr period. Key findings indicate that floods were responsible for 92% of the total suspended sediment load in the River Siurana, while this percentage falls to 70% for the Ésera, indicating the importance of baseflows on sediment transport in this river. This fact is related to the high sediment availability, with the Ésera acting as a non-supply-limited catchment due to the high productivity of the sources (i.e. badlands). In contrast, the Siurana can be considered a supply-limited system due to its low geomorphic activity and reduced sediment availability, with suspended sediment concentration remaining low even for high magnitude flood events. Reservoirs in both rivers reduce sediment load up to 90%, although total runoff is only reduced in the case of the River Ésera. A remarkable fact is the change of the hydrological character of the River Ésera downstream for the dam, shifting from a humid mountainous river regime to a quasi-invariable pattern, whereas the Siurana experiences the opposite effect, changing from a flashy Mediterranean river to a more constant flow regime below the dam. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Mathematical simulation of sediment and contaminant transport in surface waters. Annual report, October 1977--September 1978

    International Nuclear Information System (INIS)

    Onishi, Y.; Arnold, E.M.; Serne, R.J.; Cowan, C.E.; Thompson, F.L.; Mayer, D.W.

    1979-01-01

    Various pathways exist for exposure of humans and biota to radioactive materials released from nuclear facilities. Hydrologic transport (liquid pathway) is one element in the evaluation of the total radiation dose to man. Mathematical models supported by well-planned field data collection programs can be useful tools in assessing the hydrologic transport and ultimate fate of radionuclides. Radionuclides with high distribution coefficients or radionuclides in surface waters with high suspended sediment concentrations are, to a great extent, adsorbed by river and marine sediments. Thus, otherwise dilute contaminants are concentrated. Contaminated sediments may be deposited on the river and ocean beds creating a significant pathway to man. Contaminated bed sediment in turn may become a long-term source of pollution through desorption and resuspension. In order to assess migration and accumulation of radionuclides in surface waters, mathematical models must correctly simulate essential mechanisms of radionuclide transport. The objectives of this study were: (1) to conduct a critical review of (a) radionuclide transport models as well as sediment transport and representative water quality models in rivers, estuaries, oceans, lakes, and reservoirs, and (b) adsorption and desorption mechanisms of radionuclides with sediments in surface waters; (2) to synthesize a mathematical model capable of predicting short- and long-term transport and accumulation of radionuclides in marine environments

  20. Planning for a National Community Sediment Transport Model

    Science.gov (United States)

    2002-01-01

    modeling project. The workshop did not develop a NOPP proposal because NOPP had not yet announced funding opportunities for a coastal community modeling...2002, titled “NOPP / USGS Coastal Community Sediment-Transport Model”. Dr. Sherwood presented status reports at the NOPP Nearshore Annual meeting in

  1. Modern sedimentation processes in a wave-dominated coastal embayment: Espírito Santo Bay, southeast Brazil

    Science.gov (United States)

    Bastos, Alex Cardoso; Costa Moscon, Daphnne Moraes; Carmo, Dannilo; Neto, José Antonio Baptista; da Silva Quaresma, Valéria

    2015-02-01

    Sediment dynamics in wave-dominated coastal embayments are generally controlled by seasonal meteorological conditions, storms having a particularly strong influence. In the present study, such hydrodynamic processes and associated deposits have been investigated in a coastal embayment located along the southeast coast of Brazil, i.e. Espírito Santo Bay, in the winter (June/July) of 2008. The bay has undergone a series of human interventions that have altered the local hydrodynamic processes and, consequently, the sediment transport patterns. Facies distribution and sediment dynamics were examined by acoustic seabed mapping, sediment and core sampling, hydrodynamic measurements and sand transport modelling. The results show that sediment distribution can be described in terms of nearshore and offshore zones. The offshore bay sector is predominantly composed of "palimpsest" lithoclastic medium-coarse sands deposited in the course of the early Holocene transgression that peaked about 5,000 years ago. In the inner bay or nearshore zone (up to depths of 4-8 m), these older transgressive deposits are today overlain by a thin (up to 30-cm-thick) and partly patchy blanket of younger regressive fine sand/muddy fine sands. Both coarse- and fine-grained facies are being reworked during high-energy events (Hs>1.5 m) when fine sediment is resuspended, weak tide-induced drift currents causing the sand patches to be displaced. The coarser sediment, by contrast, is mobilized as bedload to produce wave ripples with spacings of up to 1.2 m. These processes lead to a sharp spatial delimitation between a fine sand/mud facies and a rippled coarse sand facies. The fine sand patches have a relief of about 20-30 cm and reveal a typical internal tempestite depositional sequence. Fair-weather wave-induced sediment transport (Hs<1 m), supported by weak tidal currents, seems to only affect the fine sediment facies. Sediment dynamics in Espírito Santo Bay is thus essentially controlled by

  2. UTMTOX, Toxic Chemical Transport in Atmosphere, Ground Water, Sediments

    International Nuclear Information System (INIS)

    1988-01-01

    A - Description of program or function: UTMTOX is a unified transport model for toxic materials. It combines hydrologic, atmospheric, and sediment transport in one computer code and extends the scope to predict the transport of not only trace metals but also many chemical compounds, including organics. UTMTOX is capable of calculating 1) the atmospheric dispersion of up to 20 chemicals from a maximum of 10 point, 10 line, and 10 area sources; 2) deposition of one chemical at a time in both wet and dry form on foliage or the surface of the earth; 3) surface flow and erosion; 4) percolation through the soil to a stream channel; and 5) flow in the stream channel to the outfall of a watershed. B - Method of solution: UTMTOX calculates rates of flux of chemicals from release to the atmosphere, through deposition on a watershed, infiltration, and runoff from the soil to flow in the stream channel and the associated sediment transport. From these values, mass balances can be established, budgets for the chemical can be made, and concentrations in many environmental compartments can be estimated. Since the coupling is established among three major submodels, they can share data

  3. Use of sediment rating curves and optical backscatter data to characterize sediment transport in the Upper Yuba River watershed, California, 2001-03

    Science.gov (United States)

    Curtis, Jennifer A.; Flint, Lorraine E.; Alpers, Charles N.; Wright, Scott A.; Snyder, Noah P.

    2006-01-01

    Sediment transport in the upper Yuba River watershed, California, was evaluated from October 2001 through September 2003. This report presents results of a three-year study by the U.S. Geological Survey, in cooperation with the California Ecosystem Restoration Program of the California Bay-Delta Authority and the California Resources Agency. Streamflow and suspended-sediment concentration (SSC) samples were collected at four gaging stations; however, this report focuses on sediment transport at the Middle Yuba River (11410000) and the South Yuba River (11417500) gaging stations. Seasonal suspended-sediment rating curves were developed using a group-average method and non-linear least-squares regression. Bed-load transport relations were used to develop bed-load rating curves, and bed-load measurements were collected to assess the accuracy of these curves. Annual suspended-sediment loads estimated using seasonal SSC rating curves were compared with previously published annual loads estimated using the Graphical Constituent Loading Analysis System (GCLAS). The percent difference ranged from -85 percent to +54 percent and averaged -7.5 percent. During water year 2003 optical backscatter sensors (OBS) were installed to assess event-based suspended-sediment transport. Event-based suspended-sediment loads calculated using seasonal SSC rating curves were compared with loads calculated using calibrated OBS output. The percent difference ranged from +50 percent to -369 percent and averaged -79 percent. The estimated average annual sediment yield at the Middle Yuba River (11410000) gage (5 tons/mi2) was significantly lower than that estimated at the South Yuba River (11417500) gage (14 tons/mi2). In both rivers, bed load represented 1 percent or less of the total annual load throughout the project period. Suspended sediment at the Middle Yuba River (11410000) and South Yuba River (11417500) gages was typically greater than 85 percent silt and clay during water year 2003, and

  4. Sediment Buffering and Transport in the Holocene Indus River System

    Science.gov (United States)

    Clift, P. D.; Giosan, L.; Henstock, T.; Tabrez, A. R.; Vanlaningham, S.; Alizai, A. H.; Limmer, D. R.; Danish, M.

    2009-12-01

    Submarine fans are the largest sediment bodies on Earth and potentially hold records of erosion that could be used to assess the response of continents to changing climate in terms of both physical erosion and chemical weathering. However, buffering between the mountain sources and the abyssal plain may make detailed correlation of climate and erosion records difficult. We investigated the nature of sediment transport in the Indus drainage in SW Asia. Through trenching in the flood plain, drilling in the delta and new seismic and coring data from the shelf and canyon we can now constrain sediment transport from source to sink since the Last Glacial Maximum (LGM). The Indus was affected by intensification of the summer monsoon during the Early Holocene and subsequent weakening since ca. 8 ka. Sediment delivery to the delta was very rapid at 12-8 ka, but slowed along with the weakening monsoon. At the LGM erosion in the Karakoram dominated the supply of sandy material, while the proportion of Lesser Himalayan flux increased with strengthening summer rainfall after 12 ka. Total load also increased at that time. Since 5 ka incision of rivers into the upper parts of the flood plain has reworked Lower Holocene sediments, although the total flux slowed. Coring in the Indus canyon shows that sediment has not reached the lower canyon since ca. 7 ka, but that sedimentation has recently been very rapid in the head of the canyon. We conclude that variations in sealevel and terrestrial climate have introduced a lag of at least 7 k.y. into the deep sea fan record and that monsoon strength is a primary control on whether sediment is stored or released in the flood plain.

  5. Uncertanity Analysis in Parameter Estimation of Coupled Bacteria-Sediment Fate and Transport in Streams

    Science.gov (United States)

    Massoudieh, A.; Le, T.; Pachepsky, Y. A.

    2014-12-01

    E. coli is widely used as an fecal indicator bacteria in streams. It has been shown that the interaction between sediments and the bacteria is an important factor in determining its fate and transport in water bodies. In this presentation parameter estimation and uncertainty analysis of a mechanistic model of bacteria-sediment interaction respectively using a hybrid genetic algorithm and Makov-Chain Monte Carlo (MCMC) approach will be presented. The physically-based model considers the advective-dispersive transport of sediments as well as both free-floating and sediment-associated bacteria in the water column and also the fate and transport of bacteria in the bed sediments in a small stream. The bed sediments are treated as a distributed system which allows modeling the evolution of the vertical distribution of bacteria as a result of sedimentation and resuspension, diffusion and bioturbation in the sediments. One-dimensional St. Venant's equation is used to model flow in the stream. The model is applied to sediment and E. coli concentration data collected during a high flow event in a small stream historically receiving agricultural runoff. Measured total suspended sediments and total E. coli concentrations in the water column at three sections of the stream are used for the parameter estimation. The data on the initial distribution of E. coli in the sediments was available and was used as the initial conditions. The MCMC method is used to estimate the joint probability distribution of model parameters including sediment deposition and erosion rates, critical shear stress for deposition and erosion, attachment and detachment rate constants of E. coli to/from sediments and also the effective diffusion coefficients of E. coli in the bed sediments. The uncertainties associated with the estimated parameters are quantified via the MCMC approach and the correlation between the posterior distribution of parameters have been used to assess the model adequacy and

  6. Sensitivity and spin-up times of cohesive sediment transport models used to simulate bathymetric change: Chapter 31

    Science.gov (United States)

    Schoellhamer, D.H.; Ganju, N.K.; Mineart, P.R.; Lionberger, M.A.; Kusuda, T.; Yamanishi, H.; Spearman, J.; Gailani, J. Z.

    2008-01-01

    Bathymetric change in tidal environments is modulated by watershed sediment yield, hydrodynamic processes, benthic composition, and anthropogenic activities. These multiple forcings combine to complicate simple prediction of bathymetric change; therefore, numerical models are necessary to simulate sediment transport. Errors arise from these simulations, due to inaccurate initial conditions and model parameters. We investigated the response of bathymetric change to initial conditions and model parameters with a simplified zero-dimensional cohesive sediment transport model, a two-dimensional hydrodynamic/sediment transport model, and a tidally averaged box model. The zero-dimensional model consists of a well-mixed control volume subjected to a semidiurnal tide, with a cohesive sediment bed. Typical cohesive sediment parameters were utilized for both the bed and suspended sediment. The model was run until equilibrium in terms of bathymetric change was reached, where equilibrium is defined as less than the rate of sea level rise in San Francisco Bay (2.17 mm/year). Using this state as the initial condition, model parameters were perturbed 10% to favor deposition, and the model was resumed. Perturbed parameters included, but were not limited to, maximum tidal current, erosion rate constant, and critical shear stress for erosion. Bathymetric change was most sensitive to maximum tidal current, with a 10% perturbation resulting in an additional 1.4 m of deposition over 10 years. Re-establishing equilibrium in this model required 14 years. The next most sensitive parameter was the critical shear stress for erosion; when increased 10%, an additional 0.56 m of sediment was deposited and 13 years were required to re-establish equilibrium. The two-dimensional hydrodynamic/sediment transport model was calibrated to suspended-sediment concentration, and despite robust solution of hydrodynamic conditions it was unable to accurately hindcast bathymetric change. The tidally averaged

  7. Sediment transport and deposition on a river-dominated tidal flat: An idealized model study

    Science.gov (United States)

    Sherwood, Christopher R.; Chen, Shih-Nan; Geyer, W. Rockwell; Ralston, David K.

    2010-01-01

    A 3-D hydrodynamic model is used to investigate how different size classes of river-derived sediment are transported, exported and trapped on an idealized, river-dominated tidal flat. The model is composed of a river channel flanked by sloping tidal flats, a configuration motivated by the intertidal region of the Skagit River mouth in Washington State, United States. It is forced by mixed tides and a pulse of freshwater and sediment with various settling velocities. In this system, the river not only influences stratification but also contributes a significant cross-shore transport. As a result, the bottom stress is strongly ebb-dominated in the channel because of the seaward advance of strong river flow as the tidal flats drain during ebbs. Sediment deposition patterns and mass budgets are sensitive to settling velocity. The lateral sediment spreading scales with an advective distance (settling time multiplied by lateral flow speed), thereby confining the fast settling sediment classes in the channel. Residual sediment transport is landward on the flats, because of settling lag, but is strongly seaward in the channel. The seaward transport mainly occurs during big ebbs and is controlled by a length scale ratio Ld/XWL, where Ld is a cross-shore advective distance (settling time multiplied by river outlet velocity), and XWL is the immersed cross-shore length of the intertidal zone. Sediment trapping requires Ld/XWL stratification and reducing tidal range both favor sediment trapping, whereas varying channel geometries and asymmetry of tides has relatively small impacts. Implications of the modeling results on the south Skagit intertidal region are discussed.

  8. Transport zonation limits coupled nitrification-denitrification in permeable sediments

    DEFF Research Database (Denmark)

    Kessler, Adam John; Glud, R.N.; Cardenas, M.B.

    2013-01-01

    - and N-15-N-2 gas. The measured two-dimensional profiles correlate with computational model simulations, showing a deep pool of N-2 gas forming, and being advected to the surface below ripple peaks. Further isotope pairing calculations on these data indicate that coupled nitrification......-denitrification is severely limited in permeable sediments because the flow and transport field limits interaction between oxic and anoxic pore water. The approach allowed for new detailed insight into subsurface denitrification zones in complex permeable sediments....

  9. Storm-induced inner-continental shelf circulation and sediment transport: Long Bay, South Carolina

    Science.gov (United States)

    Warner, John C.; Armstrong, Brandy N.; Sylvester, Charlene S.; Voulgaris, George; Nelson, Tim; Schwab, William C.; Denny, Jane F.

    2012-01-01

    Long Bay is a sediment-starved, arcuate embayment located along the US East Coast connecting both South and North Carolina. In this region the rates and pathways of sediment transport are important because they determine the availability of sediments for beach nourishment, seafloor habitat, and navigation. The impact of storms on sediment transport magnitude and direction were investigated during the period October 2003–April 2004 using bottom mounted flow meters, acoustic backscatter sensors and rotary sonars deployed at eight sites offshore of Myrtle Beach, SC, to measure currents, water levels, surface waves, salinity, temperature, suspended sediment concentrations, and bedform morphology. Measurements identify that sediment mobility is caused by waves and wind driven currents from three predominant types of storm patterns that pass through this region: (1) cold fronts, (2) warm fronts and (3) low-pressure storms. The passage of a cold front is accompanied by a rapid change in wind direction from primarily northeastward to southwestward. The passage of a warm front is accompanied by an opposite change in wind direction from mainly southwestward to northeastward. Low-pressure systems passing offshore are accompanied by a change in wind direction from southwestward to southeastward as the offshore storm moves from south to north.During the passage of cold fronts more sediment is transported when winds are northeastward and directed onshore than when the winds are directed offshore, creating a net sediment flux to the north–east. Likewise, even though the warm front has an opposite wind pattern, net sediment flux is typically to the north–east due to the larger fetch when the winds are northeastward and directed onshore. During the passage of low-pressure systems strong winds, waves, and currents to the south are sustained creating a net sediment flux southwestward. During the 3-month deployment a total of 8 cold fronts, 10 warm fronts, and 10 low

  10. Geometry of tidal inlet systems : A key factor for the net sediment transport in tidal inlets

    NARCIS (Netherlands)

    Ridderinkhof, W.; de Swart, H. E.; van der Vegt, M.; Alebregtse, N. C.; Hoekstra, P.

    2014-01-01

    The net transport of sediment between the back-barrier basin and the sea is an important process for determining the stability of tidal inlet systems. Earlier studies showed that in a short basin, tidal flats favor peak ebb-currents stronger than peak flood currents, implying export of coarse

  11. Sediment-driven mercury transport in post-fire storm runoff

    Science.gov (United States)

    Burke, M. P.; Ferreira, M.; Hogue, T. S.; Jay, J.; Rademacher, L. K.

    2009-12-01

    Wildfire alters terrestrial stores of mercury (Hg) within a watershed, releasing Hg to the atmosphere and creating conditions that can be conducive to Hg export in streamwater. Hg transport to terrestrial waters is often associated with suspended sediments and organic matter, and particulate-bound Hg delivery to downstream water bodies may be enhanced following wildfire. Burned watersheds experience increased overland flow, soil erosion, sediment transport, and, consequently, transport of sediment bound contaminants during early post-fire storm events. Southern California’s September 2006 Day Fire consumed 660km2 and almost 50% of the 512km2 Piru Creek watershed. Piru Creek drains into Pyramid Lake, a storage reservoir for the California State Water Project, which provides drinking water for Los Angeles. Streamwater was collected from Piru Creek watershed over a 1.5 year period following the Day Fire, on a monthly basis during low flow periods, and every two hours during storm events using an automated sampler. Samples were analyzed for both dissolved and total Hg, total suspended solids, and basic anions and cations. Low Hg concentrations (> 1ng Hg/ L dissolved and > 5ng Hg/L total) were measured in inter-storm samples. The first winter (2006-07) following the Day Fire was one of the driest on record, with precipitation totals (130mm) less than one third of normal. The only significant storm measured total Hg concentrations just slightly higher than the inter-storm samples, while no change was observed in the dissolved Hg concentrations. However, these total Hg concentrations were well correlated to TSS measurements (r2 = 0.91) and followed the storm hydrograph. The following winter (2007-08) brought higher precipitation totals (370mm) and more intense storms. Elevated, turbid stream flow was observed in Piru Creek during many of the 2007-08 storms. Little change was observed in the dissolved Hg concentrations of the storm samples; however, a two-order magnitude

  12. Statistical description of flume experiments on mixed-size bed-load transport and bed armoring processes

    Science.gov (United States)

    Chen, D.; Zhang, Y.

    2008-12-01

    The objective of this paper is to describe the statistical properties of experiments on non-uniform bed-load transport as well as the mechanism of bed armoring processes. Despite substantial effort made over the last two decades, the ability to compute the bed-load flux in a turbulent system remains poor. The major obstacles include the poor understanding of the formation of armor lays on bed surfaces. Such a layer is much flow-resistible than the underlying material and therefore significantly inhibits sediment transport from the reach. To study the problem, we conducted a flume study for mixed sand/gravel sediments. We observed that aggregated sediment blocks were the most common characters in armor layers - the largest sizes resist hydraulic forces, while the smaller sizes add interlocking support and prevent loss of fine material through gaps between the larger particles. Fractional transport rates with the existing of armor layers were measured with time by sediment trapping method at the end of flume. To address the intermittent and time-varying behavior of bed-load transport during bed armoring processes, we investigated the probability distribution of the fractional bed-load transport rates, and the underlying dynamic model derived from the continuous time random walk framework. Results indicate that it is critical to consider the impact of armor layers when a flow is sufficient to move some of the finer particles and yet insufficient to move all the larger particles on a channel bed.

  13. The role of suspension events in cross-shore and longshore suspended sediment transport in the surf zone

    Science.gov (United States)

    Jaffe, Bruce E.

    2015-01-01

    Suspension of sand in the surf zone is intermittent. Especially striking in a time series of concentration are periods of intense suspension, suspension events, when the water column suspended sediment concentration is an order of magnitude greater than the mean concentration. The prevalence, timing, and contribution of suspension events to cross-shore and longshore suspended sediment transport are explored using field data collected in the inner half of the surf zone during a large storm at Duck, NC. Suspension events are defined as periods when the concentration is above a threshold. Events tended to occur during onshore flow under the wave crest, resulting in an onshore contribution to the suspended sediment transport. Even though large events occurred less than 10 percent of the total time, at some locations onshore transport associated with suspension events was greater than mean-current driven offshore-directed transport during non-event periods, causing the net suspended sediment transport to be onshore. Events and fluctuations in longshore velocity were not correlated. However, events did increase the longshore suspended sediment transport by approximately the amount they increase the mean concentration, which can be up to 35%. Because of the lack of correlation, the longshore suspended sediment transport can be modeled without considering the details of the intensity and time of events as the vertical integration of the product of the time-averaged longshore velocity and an event-augmented time-averaged concentration. However, to accurately model cross-shore suspended sediment transport, the timing and intensity of suspension events must be reproduced.

  14. A Physically—Based Geometry Model for Transport Distance Estimation of Rainfall-Eroded Soil Sediment

    Directory of Open Access Journals (Sweden)

    Qian-Gui Zhang

    2016-01-01

    Full Text Available Estimations of rainfall-induced soil erosion are mostly derived from the weight of sediment measured in natural runoff. The transport distance of eroded soil is important for evaluating landscape evolution but is difficult to estimate, mainly because it cannot be linked directly to the eroded sediment weight. The volume of eroded soil is easier to calculate visually using popular imaging tools, which can aid in estimating the transport distance of eroded soil through geometry relationships. In this study, we present a straightforward geometry model to predict the maximum sediment transport distance incurred by rainfall events of various intensity and duration. In order to verify our geometry prediction model, a series of experiments are reported in the form of a sediment volume. The results show that cumulative rainfall has a linear relationship with the total volume of eroded soil. The geometry model can accurately estimate the maximum transport distance of eroded soil by cumulative rainfall, with a low root-mean-square error (4.7–4.8 and a strong linear correlation (0.74–0.86.

  15. Assessment of bridge abutment scour and sediment transport under various flow conditions

    Science.gov (United States)

    Gilja, Gordon; Valyrakis, Manousos; Michalis, Panagiotis; Bekić, Damir; Kuspilić, Neven; McKeogh, Eamon

    2017-04-01

    Safety of bridges over watercourses can be compromised by flow characteristics and bridge hydraulics. Scour process around bridge foundations can develop rapidly during low-recurrence interval floods when structural elements are exposed to increased flows. Variations in riverbed geometry, as a result of sediment removal and deposition processes, can increase flood-induced hazard at bridge sites with catastrophic failures and destructive consequences for civil infrastructure. The quantification of flood induced hazard on bridge safety generally involves coupled hydrodynamic and sediment transport models (i.e. 2D numerical or physical models) for a range of hydrological events covering both high and low flows. Modelled boundary conditions are usually estimated for their probability of occurrence using frequency analysis of long-term recordings at gauging stations. At smaller rivers gauging station records are scarce, especially in upper courses of rivers where weirs, drops and rapids are common elements of river bathymetry. As a result, boundary conditions that accurately represent flow patterns on modelled river reach cannot be often reliably acquired. Sediment transport process is also more complicated to describe due to its complexity and dependence to local flow field making scour hazard assessment a particularly challenging issue. This study investigates the influence of flow characteristics to the development of scour and sedimentation processes around bridge abutments of a single span masonry arch bridge in south Ireland. The impact of downstream weirs on bridge hydraulics through variation of downstream model domain type is also considered in this study. The numerical model is established based on detailed bathymetry data surveyed along a rectangular grid of 50cm spacing. Acquired data also consist of riverbed morphology and water level variations which are monitored continuously on bridge site. The obtained data are then used to compare and calibrate

  16. ANALYSIS OF POTENTIAL INTENSITY OF SEDIMENT TRANSPORT ON SELECTED REACH OF THE NER RIVER

    Directory of Open Access Journals (Sweden)

    Ewelina Szałkiewicz

    2015-11-01

    Full Text Available The aim of this study was to perform a simulation of sediment transport for the section of the river Ner, while also utilizing GIS tools. Using the ArcGIS numerical model of channel and stream valleys were developed, and motion simulations and sediment transport set for 5 ten-year periods were performed in HEC-RAS. Updated geometries after the simulations were created using the tools of RAS Mapper. ArcGIS was used again for analysing the results. It was used to generate ordinates of bottom in the initial state and final. The difference between them illustrated the magnitude of erosion and accumulation. The process of erosion occurred in 13 sections of the analysed model (the standard differential ordinates negative, while the accumulation in 53 sections. The maximum value of shallowing bottom was 1.24 m (cross-section at km 18 + 868, while the largest deepening occurred at km 8 + 654 (– 0.76 m. All values, using ArcGIS, were marked on othophotomap.

  17. Hyporheic zone as a bioreactor: sediment heterogeneity influencing biogeochemical processes

    Science.gov (United States)

    Perujo, Nuria; Romani, Anna M.; Sanchez-Vila, Xavier

    2017-04-01

    Mediterranean fluvial systems are characterized by frequent periods of low flow or even drought. During low flow periods, water from wastewater treatment plants (WWTPs) is proportionally large in fluvial systems. River water might be vertically transported through the hyporheic zone, and then porous medium acts as a complementary treatment system since, as water infiltrates, a suite of biogeochemical processes occurs. Subsurface sediment heterogeneity plays an important role since it influences the interstitial fluxes of the medium and drives biomass growing, determining biogeochemical reactions. In this study, WWTP water was continuously infiltrated for 3 months through two porous medium tanks: one consisting of 40 cm of fine sediment (homogeneous); and another comprised of two layers of different grain size sediments (heterogeneous), 20 cm of coarse sediment in the upper part and 20 cm of fine one in the bottom. Several hydrological, physicochemical and biological parameters were measured periodically (weekly at the start of the experiment and biweekly at the end). Analysed parameters include dissolved nitrogen, phosphorus, organic carbon, and oxygen all measured at the surface, and at 5, 20 and 40 cm depth. Variations in hydraulic conductivity with time were evaluated. Sediment samples were also analysed at three depths (surface, 20 and 40 cm) to determine bacterial density, chlorophyll content, extracellular polymeric substances, and biofilm function (extracellular enzyme activities and carbon substrate utilization profiles). Preliminary results suggest hydraulic conductivity to be the main driver of the differences in the biogeochemical processes occurring in the subsurface. At the heterogeneous tank, a low nutrient reduction throughout the whole medium is measured. In this medium, high hydraulic conductivity allows for a large amount of infiltrating water, but with a small residence time. Since some biological processes are largely time-dependent, small water

  18. A three-dimensional cohesive sediment transport model with data assimilation: Model development, sensitivity analysis and parameter estimation

    Science.gov (United States)

    Wang, Daosheng; Cao, Anzhou; Zhang, Jicai; Fan, Daidu; Liu, Yongzhi; Zhang, Yue

    2018-06-01

    Based on the theory of inverse problems, a three-dimensional sigma-coordinate cohesive sediment transport model with the adjoint data assimilation is developed. In this model, the physical processes of cohesive sediment transport, including deposition, erosion and advection-diffusion, are parameterized by corresponding model parameters. These parameters are usually poorly known and have traditionally been assigned empirically. By assimilating observations into the model, the model parameters can be estimated using the adjoint method; meanwhile, the data misfit between model results and observations can be decreased. The model developed in this work contains numerous parameters; therefore, it is necessary to investigate the parameter sensitivity of the model, which is assessed by calculating a relative sensitivity function and the gradient of the cost function with respect to each parameter. The results of parameter sensitivity analysis indicate that the model is sensitive to the initial conditions, inflow open boundary conditions, suspended sediment settling velocity and resuspension rate, while the model is insensitive to horizontal and vertical diffusivity coefficients. A detailed explanation of the pattern of sensitivity analysis is also given. In ideal twin experiments, constant parameters are estimated by assimilating 'pseudo' observations. The results show that the sensitive parameters are estimated more easily than the insensitive parameters. The conclusions of this work can provide guidance for the practical applications of this model to simulate sediment transport in the study area.

  19. Empirical relations of sediment transport prediction in Polish multibanks shore

    International Nuclear Information System (INIS)

    Pruszak, Z.

    1995-01-01

    Qualitative and quantitative description of various elements of bottom sediment movement in Polish multibanks coastal region has been down. Empirical relations linking transport velocity, thickness of the drag layer and the transport volume with the generating wave-current background have been presented. Practical engineering advices on performance of various reports concerning coastal engineering or coastal zone ecology. (author)

  20. Modelling post-depositional transport of PAHs in aquatic bed sediments using CoReTranS

    Energy Technology Data Exchange (ETDEWEB)

    Go, Jason [Imperial College London, London (United Kingdom). Dept. of Earth Science and Engineering; Stegemann, Julia A. [Imperial College London, London (United Kingdom). Dept. of Civil, Environmental and Geomatic Engineering

    2012-12-15

    Purpose: Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous and persistent contaminants in aquatic bed sediments. A better understanding of their in-bed fate and transport is therefore key in minimising the risk to the environment over time through various remediation and monitoring strategies. Since ecological effects and risks are related to contaminant concentrations, this study developed CoReTranS, a predictive model that simulates one-dimensional organic contaminant reaction and transport in bed sediments. Materials and methods: CoReTranS was benchmarked against analytical solutions of simplified reactive transport models and validated using a published study of marsh sediments contaminated with petroleum-derived hydrocarbons from Wild Harbour, West Falmouth, MA, USA. Results and discussion: The CoReTranS model effectively predicted the vertical distribution of PAHs in the Wild Harbour sediments as confirmed by the modelling results from the published study. The CoReTranS model was also used to interpret results from a published study of PAH-contaminated fjord sediments from Kitimat Arm in British Columbia, Canada. Specific insights into the post-depositional fate and transport of selected PAHs in the Kitimat fjord sediments were obtained by comparing the measured concentration-depth profiles with the numerical results from the CoReTranS model. Key parameters such as effective diffusivity of contaminants and burial velocities of sediment particles were shown to possibly account for the predicted concentrations-depth profiles in the Kitimat fjord sediments. Conclusions: As demonstrated, CoReTranS can simulate reactive transport models in order to predict PAH concentration profiles in porewater under site-specific conditions. The information derived from the use of the CoReTranS model highlighted practical application of such information by engineers to site-specific risk assessment and remediation. (orig.)

  1. Interactions Between Channel Topography and Hydrokinetic Turbines: Sediment Transport, Turbine Performance, and Wake Characteristics

    Science.gov (United States)

    Hill, Craig Steven

    Accelerating marine hydrokinetic (MHK) renewable energy development towards commercial viability requires investigating interactions between the engineered environment and its surrounding physical and biological environments. Complex and energetic hydrodynamic and morphodynamic environments desired for such energy conversion installations present difficulties for designing efficient yet robust sustainable devices, while permitting agency uncertainties regarding MHK device environmental interactions result in lengthy and costly processes prior to installing and demonstrating emerging technologies. A research program at St. Anthony Falls Laboratory (SAFL), University of Minnesota, utilized multi-scale physical experiments to study the interactions between axial-flow hydrokinetic turbines, turbulent open channel flow, sediment transport, turbulent turbine wakes, and complex hydro-morphodynamic processes in channels. Model axial-flow current-driven three-bladed turbines (rotor diameters, dT = 0.15m and 0.5m) were installed in open channel flumes with both erodible and non-erodible substrates. Device-induced local scour was monitored over several hydraulic conditions and material sizes. Synchronous velocity, bed elevation and turbine performance measurements provide an indication into the effect channel topography has on device performance. Complimentary experiments were performed in a realistic meandering outdoor research channel with active sediment transport to investigate device interactions with bedform migration and secondary turbulent flow patterns in asymmetric channel environments. The suite of experiments undertaken during this research program at SAFL in multiple channels with stationary and mobile substrates under a variety of turbine configurations provides an in-depth investigation into how axial-flow hydrokinetic devices respond to turbulent channel flow and topographic complexity, and how they impact local and far-field sediment transport characteristics

  2. User's Guide for Mixed-Size Sediment Transport Model for Networks of One-Dimensional Open Channels

    Science.gov (United States)

    Bennett, James P.

    2001-01-01

    This user's guide describes a mathematical model for predicting the transport of mixed sizes of sediment by flow in networks of one-dimensional open channels. The simulation package is useful for general sediment routing problems, prediction of erosion and deposition following dam removal, and scour in channels at road embankment crossings or other artificial structures. The model treats input hydrographs as stepwise steady-state, and the flow computation algorithm automatically switches between sub- and supercritical flow as dictated by channel geometry and discharge. A variety of boundary conditions including weirs and rating curves may be applied both external and internal to the flow network. The model may be used to compute flow around islands and through multiple openings in embankments, but the network must be 'simple' in the sense that the flow directions in all channels can be specified before simulation commences. The location and shape of channel banks are user specified, and all bedelevation changes take place between these banks and above a user-specified bedrock elevation. Computation of sediment-transport emphasizes the sand-size range (0.0625-2.0 millimeter) but the user may select any desired range of particle diameters including silt and finer (user may set the original bed-sediment composition of any number of layers of known thickness. The model computes the time evolution of total transport and the size composition of bed- and suspended-load sand through any cross section of interest. It also tracks bed -surface elevation and size composition. The model is written in the FORTRAN programming language for implementation on personal computers using the WINDOWS operating system and, along with certain graphical output display capability, is accessed from a graphical user interface (GUI). The GUI provides a framework for selecting input files and parameters of a number of components of the sediment-transport process. There are no restrictions in the

  3. Sediment Sources and Transport Pathway Identification Based on Grain-Size Distributions on the SW Coast of Portugal

    Directory of Open Access Journals (Sweden)

    Xiaoqin Du

    2015-01-01

    Full Text Available Espichel-Sines is an embayed coast in SW Portugal, consisting of two capes at both extremities, a tidal inlet and associated ebb tidal delta, a barrier spit, sandy beaches, sea cliffs, and a submarine canyon. Beach berm, backshore, near shore and inner shelf sediment samples were taken. Samples were analyzed for their grain-size compositions. This study ranks the hypothetical sediment sources influences on the sediment distributions in the study area using the multivariate Empirical Orthogonal Function (EOF techniques. Transport pathways in this study were independently identified using the grain size trend analysis (GSTA technique to verify the EOF findings. The results show that the cliff-erosion sediment is composed of pebbles and sand and is the most important sediment source for the entire embayment. The sediment at the inlet mouth is a mixture of pebbles, sand, silt, and clay, which is a minor sediment source that only has local influence. The overall grain-size distributions on the shelf are dominated by the sand except for the high mud content around the tidal delta front in the northern embayment. Sediment transport patterns on the inner shelf at the landward and north sides of the canyon head are landward and northward along the barrier spit, respectively. On the south side of the canyon head, the prevailing sediment transport is seaward. Sediment transport occurs in both directions along the shore.

  4. Design of a fuzzy differential evolution algorithm to predict non-deposition sediment transport

    Science.gov (United States)

    Ebtehaj, Isa; Bonakdari, Hossein

    2017-12-01

    Since the flow entering a sewer contains solid matter, deposition at the bottom of the channel is inevitable. It is difficult to understand the complex, three-dimensional mechanism of sediment transport in sewer pipelines. Therefore, a method to estimate the limiting velocity is necessary for optimal designs. Due to the inability of gradient-based algorithms to train Adaptive Neuro-Fuzzy Inference Systems (ANFIS) for non-deposition sediment transport prediction, a new hybrid ANFIS method based on a differential evolutionary algorithm (ANFIS-DE) is developed. The training and testing performance of ANFIS-DE is evaluated using a wide range of dimensionless parameters gathered from the literature. The input combination used to estimate the densimetric Froude number ( Fr) parameters includes the volumetric sediment concentration ( C V ), ratio of median particle diameter to hydraulic radius ( d/R), ratio of median particle diameter to pipe diameter ( d/D) and overall friction factor of sediment ( λ s ). The testing results are compared with the ANFIS model and regression-based equation results. The ANFIS-DE technique predicted sediment transport at limit of deposition with lower root mean square error (RMSE = 0.323) and mean absolute percentage of error (MAPE = 0.065) and higher accuracy ( R 2 = 0.965) than the ANFIS model and regression-based equations.

  5. Transport and deposition of plutonium in the ocean: Evidence from Gulf of Mexico sediments

    International Nuclear Information System (INIS)

    Scott, M.R.; Salter, P.F.; Halverson, J.E.

    1983-01-01

    A study of sediments in the Gulf of Mexico shows dramatic gradients in Pu content and isotope ratios from the continental shelf to the Sigsbee Abyssal Plain. In terms of predicted direct fallout inventory of Pu, one shelf core contains 745% of the predicted inventory, while abyssal plain sediments contain only 15-20% of the predicted value. Absolute Pu concentrations of shelf sediments are also conspicuously high, up to 110 dpm/kg, compared to 13.5 dpm/kg in Mississippi River suspended sediment. There is no evidence of Pu remobilization in Gulf of Mexico shelf sediments, based on comparison of Pu profiles with Mn/Al and Fe/Al profiles. Horizontal transport of fallout nuclides from the open ocean to removal sites in ocean margin sediments is concluded to be the source of both the high concentrations and high inventories of Pu reported here. The shelf sediments show 240 Pu/ 239 Pu ratios close to 0.179, the average stratospheric fallout value, but the ratios decrease progressively across the Gulf to low values of 0.06 in abyssal plain sediments. The source of low-ratio Pu in deep-water sediments may be debris from low yield tests transported in the troposphere. Alternatively, it may represent a fraction of the Pu from global stratospheric fallout which has been separated in the water column from the remainder of the Pu in the ocean. In either case, the low-ratio material must have been removed rapidly to the sea floor where it composes a major fraction of the Pu in abyssal plain sediments. Pu delivered by global atmospheric fallout from the stratosphere has apparently remained for the most part in the water or has been transported horizontally and removed into shallow-water sediments. (orig.)

  6. Spatial and temporal correlation between beach and wave processes: implications for bar-berm sediment transition

    Science.gov (United States)

    Joevivek, V.; Chandrasekar, N.; Saravanan, S.; Anandakumar, H.; Thanushkodi, K.; Suguna, N.; Jaya, J.

    2018-06-01

    Investigation of a beach and its wave conditions is highly requisite for understanding the physical processes in a coast. This study composes spatial and temporal correlation between beach and nearshore processes along the extensive sandy beach of Nagapattinam coast, southeast peninsular India. The data collection includes beach profile, wave data, and intertidal sediment samples for 2 years from January 2011 to January 2013. The field data revealed significant variability in beach and wave morphology during the northeast (NE) and southwest (SW) monsoon. However, the beach has been stabilized by the reworking of sediment distribution during the calm period. The changes in grain sorting and longshore sediment transport serve as a clear evidence of the sediment migration that persevered between foreshore and nearshore regions. The Empirical Orthogonal Function (EOF) analysis and Canonical Correlation Analysis (CCA) were utilized to investigate the spatial and temporal linkages between beach and nearshore criterions. The outcome of the multivariate analysis unveiled that the seasonal variations in the wave climate tends to influence the bar-berm sediment transition that is discerned in the coast.

  7. Spatial and temporal correlation between beach and wave processes: implications for bar-berm sediment transition

    Science.gov (United States)

    Joevivek, V.; Chandrasekar, N.; Saravanan, S.; Anandakumar, H.; Thanushkodi, K.; Suguna, N.; Jaya, J.

    2017-06-01

    Investigation of a beach and its wave conditions is highly requisite for understanding the physical processes in a coast. This study composes spatial and temporal correlation between beach and nearshore processes along the extensive sandy beach of Nagapattinam coast, southeast peninsular India. The data collection includes beach profile, wave data, and intertidal sediment samples for 2 years from January 2011 to January 2013. The field data revealed significant variability in beach and wave morphology during the northeast (NE) and southwest (SW) monsoon. However, the beach has been stabilized by the reworking of sediment distribution during the calm period. The changes in grain sorting and longshore sediment transport serve as a clear evidence of the sediment migration that persevered between foreshore and nearshore regions. The Empirical Orthogonal Function (EOF) analysis and Canonical Correlation Analysis (CCA) were utilized to investigate the spatial and temporal linkages between beach and nearshore criterions. The outcome of the multivariate analysis unveiled that the seasonal variations in the wave climate tends to influence the bar-berm sediment transition that is discerned in the coast.

  8. Modelling the cohesive sediment transport in the marine environment: the case of Thermaikos Gulf

    Directory of Open Access Journals (Sweden)

    Y. N. Krestenitis

    2007-01-01

    Full Text Available The transport of fine-grained sediments in the marine environment entails risks of pollutant intrusions from substances absorbed onto the cohesive flocks' surface, gradually released to the aquatic field. These substances include nutrients such as nitrate, phosphate and silicate compounds from drainage from fertilization of adjacent cultivated areas that enter the coastal areas through rivers and streams, or trace metals as remainders from urban and industrial activities. As a consequence, knowledge on the motion and distribution of sediment particles coming from a given pollutant source is expected to provide the 'bulk' information on pollutant distribution, necessary for determining the region of influence of the source and to estimate probable trophic levels of the seawater and potential environmental risks. In that aim a numerical model has been developed to predict the fate of the sediments introduced to the marine environment from different pollution sources, such as river outflows, erosion of the seabed, aeolian transported material and drainage systems. The proposed three-dimensional mathematical model is based on the particle tracking method, according to which matter concentration is expressed by particles, each representing a particular amount of sedimentary mass, passively advected and dispersed by the currents. The processes affecting characteristics and propagation of sedimentary material in the marine environment, incorporated in the parameterization, apart from advection and dispersion, include cohesive sediment and near-bed processes. The movement of the particles along with variations in sedimentary characteristics and state, carried by each particle as personal information, are traced with time. Specifically, concerning transport processes, the local seawater velocity and the particle's settling control advection, whereas the random Brownian motion due to turbulence simulates turbulent diffusion. The

  9. A Numerical Study of Hydrodynamics and Sediment Transport in Fourleague Bay, Louisiana

    Science.gov (United States)

    Hu, K.; Chen, Q. J.; Xu, K.; Bentley, S. J.; WANG, J.

    2017-12-01

    Fourleague Bay is a shallow and vertically well-mixed estuary in south-central Louisiana. This estuary is highly impacted by wind (e.g., cold fronts and tropical storms), river discharge from the Atchafalaya River and tides from the Gulf of Mexico, and is being used as an analog site to study impacts of sediment-diversion restoration strategies in the Mississippi River Delta. In this study, a coupled flow-wave Delft3D model was setup and applied to study hydrodynamics and sediment transport in this area. The model grid size is 1071x631 with a 50-m resolution in the bay. Vegetation is considered by rigid cylinders in both flow and wave modules. The offshore water level boundary conditions were provided by a Gulf-scale Delft3D model. Model parameters, especially for cohesive sediment transport such as settling velocity, erosion rate and critical bottom shear stress, were calibrated using the field observation data during three seasons from May 2015 to March 2016. The modeled water levels, currents, significant wave heights and suspended sediment concentrations agreed fairly well with measurements, which suggests a reasonable model performance. Seasonal variations were analyzed based on different scenarios. A series of numerical experiments were set up to quantify the contributions of different factors, such as river discharge, tides and waves to sediment transport in this area. This model will be further applied to be part of a landscape ecosystem model to test landscape and population change over time with manipulations to sediment delivery. This study was funded by the National Science Foundation (SEES-1427389 and CCF-1539567).

  10. When do plants modify fluvial processes? Plant-hydraulic interactions under variable flow and sediment supply rates

    Science.gov (United States)

    Manners, Rebecca B.; Wilcox, Andrew C.; Kui, Li; Lightbody, Anne F.; Stella, John C.; Sklar, Leonard S.

    2015-02-01

    Flow and sediment regimes shape alluvial river channels; yet the influence of these abiotic drivers can be strongly mediated by biotic factors such as the size and density of riparian vegetation. We present results from an experiment designed to identify when plants control fluvial processes and to investigate the sensitivity of fluvial processes to changes in plant characteristics versus changes in flow rate or sediment supply. Live seedlings of two species with distinct morphologies, tamarisk (Tamarix spp.) and cottonwood (Populus fremontii), were placed in different configurations in a mobile sand-bed flume. We measured the hydraulic and sediment flux responses of the channel at different flow rates and sediment supply conditions representing equilibrium (sediment supply = transport rate) and deficit (sediment supply plant species and configuration. Species-specific traits controlled the hydraulic response: compared to cottonwood, which has a more tree-like morphology, the shrubby morphology of tamarisk resulted in less pronation and greater reductions in near-bed velocities, Reynolds stress, and sediment flux rates. Under sediment-deficit conditions, on the other hand, abiotic factors dampened the effect of variations in plant characteristics on the hydraulic response. We identified scenarios for which the highest stem-density patch, independent of abiotic factors, dominated the fluvial response. These results provide insight into how and when plants influence fluvial processes in natural systems.

  11. Conceptual model of sediment processes in the upper Yuba River watershed, Sierra Nevada, CA

    Science.gov (United States)

    Curtis, J.A.; Flint, L.E.; Alpers, Charles N.; Yarnell, S.M.

    2005-01-01

    This study examines the development of a conceptual model of sediment processes in the upper Yuba River watershed; and we hypothesize how components of the conceptual model may be spatially distributed using a geographical information system (GIS). The conceptual model illustrates key processes controlling sediment dynamics in the upper Yuba River watershed and was tested and revised using field measurements, aerial photography, and low elevation videography. Field reconnaissance included mass wasting and channel storage inventories, assessment of annual channel change in upland tributaries, and evaluation of the relative importance of sediment sources and transport processes. Hillslope erosion rates throughout the study area are relatively low when compared to more rapidly eroding landscapes such as the Pacific Northwest and notable hillslope sediment sources include highly erodible andesitic mudflows, serpentinized ultramafics, and unvegetated hydraulic mine pits. Mass wasting dominates surface erosion on the hillslopes; however, erosion of stored channel sediment is the primary contributor to annual sediment yield. We used GIS to spatially distribute the components of the conceptual model and created hillslope erosion potential and channel storage models. The GIS models exemplify the conceptual model in that landscapes with low potential evapotranspiration, sparse vegetation, steep slopes, erodible geology and soils, and high road densities display the greatest hillslope erosion potential and channel storage increases with increasing stream order. In-channel storage in upland tributaries impacted by hydraulic mining is an exception. Reworking of stored hydraulic mining sediment in low-order tributaries continues to elevate upper Yuba River sediment yields. Finally, we propose that spatially distributing the components of a conceptual model in a GIS framework provides a guide for developing more detailed sediment budgets or numerical models making it an

  12. Reducing uncertainty in dust monitoring to detect aeolian sediment transport responses to land cover change

    Science.gov (United States)

    Webb, N.; Chappell, A.; Van Zee, J.; Toledo, D.; Duniway, M.; Billings, B.; Tedela, N.

    2017-12-01

    Anthropogenic land use and land cover change (LULCC) influence global rates of wind erosion and dust emission, yet our understanding of the magnitude of the responses remains poor. Field measurements and monitoring provide essential data to resolve aeolian sediment transport patterns and assess the impacts of human land use and management intensity. Data collected in the field are also required for dust model calibration and testing, as models have become the primary tool for assessing LULCC-dust cycle interactions. However, there is considerable uncertainty in estimates of dust emission due to the spatial variability of sediment transport. Field sampling designs are currently rudimentary and considerable opportunities are available to reduce the uncertainty. Establishing the minimum detectable change is critical for measuring spatial and temporal patterns of sediment transport, detecting potential impacts of LULCC and land management, and for quantifying the uncertainty of dust model estimates. Here, we evaluate the effectiveness of common sampling designs (e.g., simple random sampling, systematic sampling) used to measure and monitor aeolian sediment transport rates. Using data from the US National Wind Erosion Research Network across diverse rangeland and cropland cover types, we demonstrate how only large changes in sediment mass flux (of the order 200% to 800%) can be detected when small sample sizes are used, crude sampling designs are implemented, or when the spatial variation is large. We then show how statistical rigour and the straightforward application of a sampling design can reduce the uncertainty and detect change in sediment transport over time and between land use and land cover types.

  13. Radionuclides deposition and fine sediment transport in a forested watershed, central Japan

    Science.gov (United States)

    Nam, S.; Gomi, T.; Kato, H.; Tesfaye, T.; Onda, Y.

    2011-12-01

    We investigated radionuclides deposition and fine sediment transport in a 13 ha headwater watershed, Tochigi prefecture, located in 98.94 km north of Tokyo. The study site was within Karasawa experimental forest, Tokyo University of Agriculture and Technology. We conducted fingerprinting approach, based on the activities of fallout radionuclides, including caesium-134 (Cs-134) caesium-137 (Cs-137) and excess lead-210 (Pb-210ex). For indentifying specific sources of fine sediment, we sampled tree, soil on forested floor, soil on logging road surface, stream bed and stream banks. We investigated the radionuclides (i.e., as Cs-134, Cs-137 and Pb-210ex) deposition on tree after accident of nuclear power plants on March 11, 2011. We sampled fruits, leaves, branches, stems, barks on Japanese cedar (Sugi) and Japanese cypress (Hinoki). To analyze the samples, gammaray spectrometry was performed at a laboratory at the University of Tsukuba (Tsukuba City, Japan) using n-type coaxial low-energy HPGe gamma detectors (EGC-200-R and EGC25-195-R of EURYSIS Co., Lingolsheim, France) coupled with a multichannel analyzer. We also collected soil samples under the forest canopy in various soil depths from 2, 5, 10, 20, 30 cm along transect of hillslopes. Samples at forest road were collected road segments crossing on the middle section of monitoring watersheds. Fine sediment transport in the streams were collected at the outlet of 13 ha watersheds using integrated suspended sediment samplers. This study indicates the some portion of radio nuclide potentially remained on the tree surface. Part of the deposited radionuclides attached to soil particles and transported to the streams. Most of the fine sediment can be transported on road surface and/or near stream side (riparian zones).

  14. U- and Th-series nuclides in settling particles: implications to sediment transport through surface waters and interior ocean

    International Nuclear Information System (INIS)

    Sarin, M.M.

    2012-01-01

    The Bay of Bengal is a unique ocean basin receiving large quantities of fresh water and sediment supply from several rivers draining the Indian subcontinent. The annual flux of suspended sediments discharged into the Bay of Bengal is one billion tons, about one-tenth of the global sediment discharge into the ocean. The water and sediment discharge to the Bay, show significant seasonal variation, with maximum transport coinciding with the SW-monsoon (July-September). Earlier studies on the distribution of clay minerals in sediments have led to the suggestion that the sediments of the western Bengal Fan are mainly derived from the Peninsular rivers, whereas rest of the Fan sediments is influenced by the Himalayan rivers. Settling fluxes of particulate matter through the water column of the Bay of Bengal show seasonal trends resulting from monsoon enhanced sediment supply via rivers and biological processes in the water column. It is, thus, important to understand the influence of the seasonally varying particle fluxes on the solute-particle interactions and chemical scavenging processes in the surface and deep waters of the Bay of Bengal. In this context, measurements of U- and Th-series nuclides in the settling particles are most relevant. The radionuclide fluxes ( 230 Th, 228 Th and 210 Pb) in the settling particles provide insight into the role of their removal by vertical particle flux and/or lateral transport (removal at the ocean boundaries). A study carried out in the Northern Bay of Bengal documents that the authigenic flux of 230 Th, as measured in sediment trap samples from deep waters, is balanced by its production in the overhead water column. The sediment mass flux, Al and 228 Th fluxes are similar in the settling particles through shallow and deep waters, suggesting predominant removal by vertical particle flux in the North Bay of Bengal. In the Central Bay, particulate mass, Al and 228 Th fluxes are higher in the trap material from deep waters relative

  15. Transport of poly(acrylic acid) coated 2-line ferrihydrite nanoparticles in saturated aquifer sediments for environmental remediation

    Science.gov (United States)

    Xiang, Aishuang; Zhou, Sheng; Koel, Bruce E.; Jaffé, Peter R.

    2014-04-01

    Groundwater remediation using iron oxide and zero-valent iron nanoparticles (NPs) can be effective, but is limited in many applications due to the NP strong retention in groundwater-saturated porous media after injection, the passivation of the porous surface, and the high cost of nanomaterials versus macro scale iron. In this study, we investigated transport of bare and polymer-coated 2-line ferrihydrite NPs (30-300 nm) in saturated aquifer sediments. The influence of poly(acrylic acid) (PAA) polymer coatings was studied on the colloidal stability and transport in sediments packed column tests simulating groundwater flow in saturated sediments. In addition, the influence of calcium cations was investigated by transport measurements using sediments with calcium concentrations in the aqueous phase ranging from 0.5 (typical for most sediments) to 2 mM. Measurements were also made of zeta potential, hydrodynamic diameter, polymer adsorption and desorption properties, and bio-availability of PAA-coated NPs. We found that NP transport through the saturated aquifer sediments was improved by PAA coating and that the transport properties could be tuned by adjusting the polymer concentration. We further discovered that PAA coatings enhanced NP transport, compared to bare NPs, in all calcium-containing experiments tested, however, the presence of calcium always exhibited a negative effect on NP transport. In tests of bioavailability, the iron reduction rate of the coated and bare NPs by Geobacter sulfurreducens was the same, which shows that the PAA coating does not significantly reduce NP Fe(III) bioavailability. Our results demonstrate that much improved transport of iron oxide NP can be achieved in saturated aquifer sediments by introducing negatively charged polyelectrolytes and optimizing polymer concentrations, and furthermore, these coated NPs retain their bioavailability that is needed for applications in bio-environmental remediation.

  16. SIMULATION OF SEDIMENT TRANSPORT IN THE JEZIORO KOWALSKIE RESERVOIR LOCATED IN THE GLOWNA RIVER

    Directory of Open Access Journals (Sweden)

    Joanna Jaskuła

    2015-07-01

    Full Text Available The purpose of the presented research is the analysis of bed elevation changes caused by sediment accumulation in the Jezioro Kowalskie reservoir. The Jezioro Kowalskie reservoir is a two stage reservoir constructed in such a way that the upper preliminary zone is separated from the main part of the reservoir. The split of the reservoir parts is done with a small pre-dam, located in Jerzykowo town. The analysis of such a construction impact on changes of bed elevations in the reservoir in different flow conditions is presented. The HEC-RAS 5.0 Beta model is used for simulations. The sediment transport intensity is calculated from England-Hansen and Meyer-Peter and Muller formulae. The results showed the processes of sediment accumulation and slight erosion occuring in the preliminary zone of the reservoir. The choice of the flow intensity does not have a huge importance. Similar results are obtained for low as well as high flows. The results confirm, that two stage construction with separated preliminary zone is effective method preventing from the sedimentation of the reservoir.

  17. Fluid flow and sediment transport in evolving sedimentary basins

    Science.gov (United States)

    Swenson, John Bradley

    This thesis consists of three studies that focus on groundwater flow and sediment transport in evolving sedimentary basins. The first study considers the subsurface hydrodynamic response to basin-scale transgression and regression and its implications for stratiform ore genesis. I demonstrate that the transgressive sequence focuses marginward-directed, compaction-driven discharge within a basal aquifer during progradation and deposition of the overlying regressive sequence, isolates the basal aquifer from overlying flow systems, and serves as a chemical sink for metal-bearing brines. In the second study, I develop a new theory for the shoreline response to subsidence, sediment supply, and sea level. In this theory, sediment transport in a fluvio-deltaic basin is formally equivalent to heat transfer in a two-phase (liquid and isothermal solid) system: the fluvial system is analogous to a conduction-dominated liquid phase, the shoreline is the melting front, and the water depth at the delta toe is equivalent to the latent heat of fusion. A natural consequence of this theory is that sediment-starved basins do not possess an equilibrium state. In contrast to existing theories, I do not observe either strong phase shifting or attenuation of the shoreline response to low-frequency eustatic forcing; rather, shoreline tracks sea level over a spectrum of forcing frequencies, and its response to low-frequency forcing is amplified relative to the high-frequency response. For the third study, I use a set of dimensionless numbers from the previous study as a mathematical framework for providing a unified treatment of existing stratigraphic theories. In the limit of low-amplitude eustatic forcing, my study suggests that strong phase shifting between shoreline and sea level is a consequence of specifying the sedimentation rate at the shoreline; basins free of this constraint do not develop strong phase shifts.

  18. SedFoam-2.0: a 3-D two-phase flow numerical model for sediment transport

    Directory of Open Access Journals (Sweden)

    J. Chauchat

    2017-11-01

    Full Text Available In this paper, a three-dimensional two-phase flow solver, SedFoam-2.0, is presented for sediment transport applications. The solver is extended from twoPhaseEulerFoam available in the 2.1.0 release of the open-source CFD (computational fluid dynamics toolbox OpenFOAM. In this approach the sediment phase is modeled as a continuum, and constitutive laws have to be prescribed for the sediment stresses. In the proposed solver, two different intergranular stress models are implemented: the kinetic theory of granular flows and the dense granular flow rheology μ(I. For the fluid stress, laminar or turbulent flow regimes can be simulated and three different turbulence models are available for sediment transport: a simple mixing length model (one-dimensional configuration only, a k − ε, and a k − ω model. The numerical implementation is demonstrated on four test cases: sedimentation of suspended particles, laminar bed load, sheet flow, and scour at an apron. These test cases illustrate the capabilities of SedFoam-2.0 to deal with complex turbulent sediment transport problems with different combinations of intergranular stress and turbulence models.

  19. SedFoam-2.0: a 3-D two-phase flow numerical model for sediment transport

    Science.gov (United States)

    Chauchat, Julien; Cheng, Zhen; Nagel, Tim; Bonamy, Cyrille; Hsu, Tian-Jian

    2017-11-01

    In this paper, a three-dimensional two-phase flow solver, SedFoam-2.0, is presented for sediment transport applications. The solver is extended from twoPhaseEulerFoam available in the 2.1.0 release of the open-source CFD (computational fluid dynamics) toolbox OpenFOAM. In this approach the sediment phase is modeled as a continuum, and constitutive laws have to be prescribed for the sediment stresses. In the proposed solver, two different intergranular stress models are implemented: the kinetic theory of granular flows and the dense granular flow rheology μ(I). For the fluid stress, laminar or turbulent flow regimes can be simulated and three different turbulence models are available for sediment transport: a simple mixing length model (one-dimensional configuration only), a k - ɛ, and a k - ω model. The numerical implementation is demonstrated on four test cases: sedimentation of suspended particles, laminar bed load, sheet flow, and scour at an apron. These test cases illustrate the capabilities of SedFoam-2.0 to deal with complex turbulent sediment transport problems with different combinations of intergranular stress and turbulence models.

  20. Annual variation in the net longshore sediment transport rate

    CSIR Research Space (South Africa)

    Schoonees, JS

    2000-05-01

    Full Text Available The annual variation in the net long shore sediment transport rates at three South African and at one North African site is investigated. The net rates at these sites, given in the first table, showed large variations. It was found that measurements...

  1. Virus Dynamics Are Influenced by Season, Tides and Advective Transport in Intertidal, Permeable Sediments.

    Science.gov (United States)

    Vandieken, Verona; Sabelhaus, Lara; Engelhardt, Tim

    2017-01-01

    Sandy surface sediments of tidal flats exhibit high microbial activity due to the fast and deep-reaching transport of oxygen and nutrients by porewater advection. On the other hand during low tide, limited transport results in nutrient and oxygen depletion concomitant to the accumulation of microbial metabolites. This study represents the first attempt to use flow-through reactors to investigate virus production, virus transport and the impact of tides and season in permeable sediments. The reactors were filled with intertidal sands of two sites (North beach site and backbarrier sand flat of Spiekeroog island in the German Wadden Sea) to best simulate advective porewater transport through the sediments. Virus and cell release along with oxygen consumption were measured in the effluents of reactors during continuous flow of water through the sediments as well as in tidal simulation experiments where alternating cycles with and without water flow (each for 6 h) were operated. The results showed net rates of virus production (0.3-13.2 × 10 6 viruses cm -3 h -1 ) and prokaryotic cell production (0.3-10.0 × 10 5 cells cm -3 h -1 ) as well as oxygen consumption rates (56-737 μmol l -1 h -1 ) to be linearly correlated reflecting differences in activity, season and location of the sediments. Calculations show that total virus turnover was fast with 2 to 4 days, whereas virus-mediated cell turnover was calculated to range between 5-13 or 33-91 days depending on the assumed burst sizes (number of viruses released upon cell lysis) of 14 or 100 viruses, respectively. During the experiments, the homogenized sediments in the reactors became vertically structured with decreasing microbial activities and increasing impact of viruses on prokaryotic mortality with depth. Tidal simulation clearly showed a strong accumulation of viruses and cells in the top sections of the reactors when the flow was halted indicating a consistently high virus production during low tide. In

  2. Characteristics of Sediment Transportation in Two Contrasting Oak Forested Watersheds in the Lesser Central Himalaya, India

    Science.gov (United States)

    Qazi, N. U. Q.; Bruijnzeel, S., Sr.; Rai, S. P., Sr.

    2015-12-01

    Sediment transfer from mountainous areas to lowland areas is one of the most important geomorphological processes globally with the bulk of the sediment yield from such areas typically deriving from mass wastage processes. This study presents monthly, seasonal and annual variations in sediment transport (both suspended load and bedload) as well as dissolved loads over three consecutive water years (2008-2011) for two small forested watersheds with contrasting levels of forest disturbance in the Lesser Himalaya of Northwest India. Seasonal and annual suspended sediment yields were strongly influenced by amounts of rainfall and streamflow and showed a 10-63 fold range between wet and dry years. Of the annual load, some 93% was produced on average during the monsoon season (June-September). Sediment production by the disturbed forest catchment was 1.9-fold (suspended sediment) to 5.9-fold (bedload) higher than that for the well-stocked forest catchment. By contrast, dissolved loads varied much less between years, seasons (although minimal during the dry summer season), and degree of forest disturbance. Total mechanical denudation rates were 1.6 times and 4.6 times larger than chemical denudation rates for the little disturbed and the heavily disturbed forest catchment, respectively whereas overall denudation rates were estimated at 0.69 and 1.04 mm per 1000 years, respectively.

  3. Dynamics of Cohesive Sediments

    DEFF Research Database (Denmark)

    Johansen, Claus

    The present thesis considers the transport processes of cohesive sediments. The cohesive sediment used in the laboratory experiments was kaolinite, a clay mineral, in order to be able to reproduce the individual experiments. In the first part of the thesis, the theoretical considerations regarding...

  4. Radiotracer method to study the transport of mercury(II)chloride from water to sediment and air

    International Nuclear Information System (INIS)

    Karaca, F.; Aras, N.K.

    2004-01-01

    The fate of dissolved Hg(II) in surface waters is an important component of the Hg cycle. A simple experimental methodology was used to understand and measure the transport of Hg(II) from water to air and sediment. The use of radioactive dissolved Hg tracer for the determination of evasion and deposition is found to be a very useful technique. The evasion of mercury was investigated during a 140-hour period. It was observed that about a quarter of mercury chloride remained in the water phase, the other quarter was emitted via the evasion process and half of it deposited in sediment. (author)

  5. Determining the Role of Sediment Deposition and Transport in the Formation and Maintenance of Tree Islands in the Florida Everglades

    Science.gov (United States)

    Mitchell-Bruker, S.; Childers, D.; Ross, M.; Leonard, L.; Solo-Gabriel, H.; Stothoff, S.

    2002-05-01

    Tree islands are a prominent feature in the Everglades ridge and slough wetlands. These tree islands are believed to be a remnant of the historical pre-drainage flow system. Within Everglades National Park, hardwood hammock and bayhead tree islands commonly form as teardrop-shaped mounds, rising above the sawgrass marsh. These tree islands are usually oriented along the direction of surface water flow, with the highest elevation and widest part of the island at the upstream head. The island narrows as it descends into the marsh at the downstream end, terminating in a tail that sometimes includes a zone of dead or dying sawgrass. The shape and orientation of the tree islands suggests that surface water flow has been instrumental in their formation, however occasional flow measurements indicate that the slow moving water of the Everglades does not provide sufficient energy to transport even moderate amounts of suspended sediment. This low flow velocity, coupled with the extremely low turbidity of the Everglades water suggests that if sediment transport and deposition processes are instrumental in forming tree islands, the process is probably occurring over short distances and long time intervals. It is also possible that concentration and transport of nutrients is an important element in tree island formation. Because the Everglades marsh is a low nutrient environment, processes that create areas of increased phosphorous concentration result in changes in the vegetation. Because many hardwood hammock and bayhead tree islands have heads that are situated on bedrock highs, the higher and drier elevation of the head allows for trees to grow. These trees could concentrate phosphorous either by acting as wildlife attractors, or by acting as \\x8Dphosphorous pumpsŒ, transporting groundwater with high concentrations of phosphorous through the roots to the tree. We are characterizing vegetation, litter fall, sediments, surface water flow, hydrologic gradients and nutrient

  6. Thermal, chemical, and mass-transport processes induced in abyssal sediments by the emplacement of nuclear waste: experimental and modeling results

    International Nuclear Information System (INIS)

    McVey, D.F.; Erickson, K.L.; Seyfried, W.

    1980-01-01

    This paper discusses heat and mass transport studies of marine red clay sediments being considered as a nuclear waste isolation medium. Numerical models indicate that for a maximum allowable sediment/canister interface temperature of 200 to 250 0 C, the sediment can absorb about 1.5 kW initial power from waste in a 3 m long by 0.3 m dia canister buried 30 m in the sediment. Fluid displacement due to convection is found to be less than 1 m. Laboratory studies of the geochemical effects induced by heating sediment/seawater mixtures indicate that the canister and waste form must be designed to resist a hot, acid (pH 3 to 4) oxidizing environment. Since the thermally altered sediment volume of about 5.5 m 3 is small relative to the sediment volume overlying the canister, the acid and oxidizing conditions are not anticipated to effect the properties of the far field. Using sorption coefficient correlations, the migration of four nuclides 239 Pu, 137 Cs, 129 I, and 99 Tc were computer for a canister buried 30 m deep in a 60 m thick red clay sediment layer. It was found that the 239 Pu and 137 Cs are essentially completely contained in the sediments, while 129 I and 99 Tc broke through the 30 m of sediment in about 5000 years. The resultant peak injection rates of 4.6 x 10 -5 μCi/year-m 2 for 129 I and 1.6 x 10 -2 μCi/year-m 2 for 99 Tc were less than the natural radioactive flux of 226 Ra (3.5 to 8.8 x 10 -4 μCi/year-m 2 ) and 222 Rn

  7. Sediment transport to and from small impoundments in northeast Kansas, March 2009 through September 2011

    Science.gov (United States)

    Foster, Guy M.; Lee, Casey J.; Ziegler, Andrew C.

    2012-01-01

    The U.S. Geological Survey, in cooperation with the Kansas Water Office, investigated sediment transport to and from three small impoundments (average surface area of 0.1 to 0.8 square miles) in northeast Kansas during March 2009 through September 2011. Streamgages and continuous turbidity sensors were operated upstream and downstream from Atchison County, Banner Creek, and Centralia Lakes to study the effect of varied watershed characteristics and agricultural practices on sediment transport in small watersheds in northeast Kansas. Atchison County Lake is located in a predominantly agricultural basin of row crops, with wide riparian buffers along streams, a substantial amount of tile drainage, and numerous small impoundments (less than 0.05 square miles; hereafter referred to as “ponds”). Banner Creek Lake is a predominantly grassland basin with numerous small ponds located in the watershed, and wide riparian buffers along streams. Centralia Lake is a predominantly agricultural basin of row crops with few ponds, few riparian buffers along streams, and minimal tile drainage. Upstream from Atchison County, Banner Creek, and Centralia Lakes 24, 38, and 32 percent, respectively, of the total load was transported during less than 0.1 percent (approximately 0.9 days) of the time. Despite less streamflow in 2011, larger sediment loads during that year indicate that not all storm events transport the same amount of sediment; larger, extreme storms during the spring may transport much larger sediment loads in small Kansas watersheds. Annual sediment yields were 360, 400, and 970 tons per square mile per year at Atchison County, Banner, and Centralia Lake watersheds, respectively, which were less than estimated yields for this area of Kansas (between 2,000 and 5,000 tons per square mile per year). Although Centralia and Atchison County Lakes had similar percentages of agricultural land use, mean annual sediment yields upstream from Centralia Lake were about 2.7 times

  8. Coastal sea-ice processes in Alaska and their relevance for sediment dynamics and coastal retreat (Invited)

    Science.gov (United States)

    Eicken, H.; Kapsch, M.; Johnson, M. A.; Weyapuk, W. U., Jr.

    2009-12-01

    Sea ice plays an important, complicated role in Arctic coastal sediment dynamics. It helps protect the shoreline from wave action and constrains coastal permafrost thaw; at the same time, sea ice is a highly effective sediment erosion and transport agent. For the coastline of (sub-)Arctic Alaska we have examined key processes that govern the role of sea ice as a geologic agent. Based on passive microwave satellite data for the time period 1979 to 2008 and augmented by field measurements and observations conducted by local sea-ice experts in coastal communities from 2006 onwards, we determined the onset of coastal ice spring break-up and fall freeze-up. These two events define the start and end of the open-water season during which the coast is rendered most vulnerable to thermal and dynamic processes promoting erosion. Satellite data show significant trends toward later fall freeze-up in many locations and moreover provide a picture of the statistical significance and variability of such trends in great spatio-temporal detail. Coastal ice observations suggest that important sea-ice processes (such as formation of ice berms) that precede freeze-up as detected by passive microwave data need to be taken into consideration in evaluating the vulnerability of the coastline and the specific threat of individual storms. Field observations, satellite data and local knowledge also highlight the substantial change in winter sea-ice regimes over the past two decades, with a much more mobile ice cover enhancing winter sediment transport. Ultimately, the shorter sea-ice season and the greater mobility and the lack of stability of winter coastal sea ice work in concert to increase the vulnerability of the coastline to erosion and flooding. At the same time, these changes provide a mechanism for effective redistribution and cross-shelf transport of sediments that prepares the stage for further erosive action in subsequent seasons.

  9. Pesticide transport to tile-drained fields in SWAT model – macropore flow and sediment

    DEFF Research Database (Denmark)

    Lu, Shenglan; Trolle, Dennis; Blicher-Mathiesen, Gitte

    2015-01-01

    Tool (SWAT) to simulate transport of both mobile (e.g. Bentazon) and strongly sorbed (e.g. Diuron) pesticides in tile drains. Macropore flow is initiated when soil water content exceeds a threshold and rainfall intensity exceeds infiltration capacity. The amount of macropore flow is calculated...... to macropore sediment transport. Simulated tile drain discharge, sediment and pesticide loads are calibrated against data from intensively monitored tile-drained fields and streams in Denmark....

  10. Long-distance electron transport by cable bacteria in mangrove sediments

    NARCIS (Netherlands)

    Burdorf, L.D.; Hidalgo-Martinez, S.; Cook, P.L.M.C.; Meysman, F.

    2016-01-01

    Cable bacteria are long, filamentoussulphur-oxidizing bacteria that induce long-distanceelectron transport in aquatic sediments. They turnthe seafloor into an electro-active environment, characterizedby currents and electrical fields, and whenpresent, they exert a strong impact on the

  11. Sediment dynamics in Alpine basins

    Science.gov (United States)

    Habersack, Helmut; Liébault, Fred; Comiti, Francesco

    2017-08-01

    In rivers and streams and of the European Alps, sediment transport processes are of great relevance due to their ecological (e.g. aquatic habitats), energy (e.g. reservoir sedimentation) and risk-related (floods and debris flows) consequences. In fact, sediment fluxes are crucial to maintain a good ecological status of watercourses (required by the EU ;Water Framework Directive;, WFD, 2000), as they provide the hydromorphological conditions supporting dynamic aquatic ecosystems (Fryirs and Brierley, 2013; Wohl et al., 2015; Gurnell et al., 2016). Indeed, the key issue to ameliorate river hydrogeomorphological - and thus ecological - status and to comply with WFD provisions lies in allowing the natural processes of sediment and wood supply and transport to take place as much as possible, given the constraints imposed by the non-eliminable uses of each river (Comiti, 2012; Liébault et al., 2013). Specifically river continuity is mentioned in the WFD not only for biota but also sediments, which is hardly discussed in river management so far and almost no concrete measures to improve sediment continuity have been implemented so far (Habersack et al., 2016).

  12. Sediment Transport on Continental Shelves: Storm Bed Formation and Preservation in Heterogeneous Sediments

    Science.gov (United States)

    2012-01-01

    occurred during the Cretaceous period. The simulated storm bed for such an extratropical cyclone that lasts 4 days was deposited as deep as 75 m and had...Int. Assoc. Sedimentol. Spec. Publ. (2012) 44, 295-310 Sediment transport on continental shelves: storm bed formation and preservation in...xDept. of Earth Science, Memorial University of Newfoundland, St. Johns, Newfoundland, Canada ABSTRACT Many storm beds are constructed of silt/sand

  13. Past, present and prospect of an Artificial Intelligence (AI) based model for sediment transport prediction

    Science.gov (United States)

    Afan, Haitham Abdulmohsin; El-shafie, Ahmed; Mohtar, Wan Hanna Melini Wan; Yaseen, Zaher Mundher

    2016-10-01

    An accurate model for sediment prediction is a priority for all hydrological researchers. Many conventional methods have shown an inability to achieve an accurate prediction of suspended sediment. These methods are unable to understand the behaviour of sediment transport in rivers due to the complexity, noise, non-stationarity, and dynamism of the sediment pattern. In the past two decades, Artificial Intelligence (AI) and computational approaches have become a remarkable tool for developing an accurate model. These approaches are considered a powerful tool for solving any non-linear model, as they can deal easily with a large number of data and sophisticated models. This paper is a review of all AI approaches that have been applied in sediment modelling. The current research focuses on the development of AI application in sediment transport. In addition, the review identifies major challenges and opportunities for prospective research. Throughout the literature, complementary models superior to classical modelling.

  14. Influence of basin connectivity on sediment source, transport, and storage within the Mkabela Basin, South Africa

    Directory of Open Access Journals (Sweden)

    J. R. Miller

    2013-02-01

    Full Text Available The management of sediment and other non-point source (NPS pollution has proven difficult, and requires a sound understanding of particle movement through the drainage system. The primary objective of this investigation was to obtain an understanding of NPS sediment source(s, transport, and storage within the Mkabela Basin, a representative agricultural catchment within the KwaZulu–Natal Midlands of eastern South Africa, by combining geomorphic, hydrologic and geochemical fingerprinting analyses.

    The Mkabela Basin can be subdivided into three distinct subcatchments that differ in their ability to transport and store sediment along the axial valley. Headwater (upper catchment areas are characterized by extensive wetlands that act as significant sediment sinks. Mid-catchment areas, characterized by higher relief and valley gradients, exhibit few wetlands, but rather are dominated by a combination of alluvial and bedrock channels that are conducive to sediment transport. The lower catchment exhibits a low-gradient alluvial channel that is boarded by extensive riparian wetlands that accumulate large quantities of sediment (and NPS pollutants.

    Fingerprinting studies suggest that silt- and clay-rich layers found within wetland and reservoir deposits of the upper and upper-mid subcatchments are derived from the erosion of fine-grained, valley bottom soils frequently utilized as vegetable fields. Coarser-grained deposits within these wetlands and reservoirs result from the erosion of sandier hillslope soils extensively utilized for sugar cane, during relatively high magnitude runoff events that are capable of transporting sand-sized sediment off the slopes. Thus, the source of sediment to the axial valley varies as a function of sediment size and runoff magnitude. Sediment export from upper to lower catchment areas was limited until the early 1990s, in part because the upper catchment wetlands were hydrologically disconnected from

  15. GPS based surface displacements – a proxy for discharge and sediment transport from the Greenland Ice Sheet

    DEFF Research Database (Denmark)

    Hasholt, Bent; Khan, Shfaqat Abbas; Mikkelsen, Andreas Bech

    2014-01-01

    winter precipitation correlated fairly well with surface depression (R2=0.69). The relationships are based on seven years of runoff and sediment transport observations from the Watson River (2007–2013), winter precipitation from Kangerlussuaq Airport and GPS observations at Kellyville. GPS recordings...... of surface subsidence and uplift from 1996–2013 are used to calculate 18 years time series of annual runoff, sediment and solute transport and 10 winter precipitation. Runoff and related transport of sediment and solutes increase over the period, while winter precipitation (land depression) tends to decrease......The elastic respond of the Earth’s surface to mass changes has been measured with Global Positioning System (GPS). Mass loss as accumulated runoff and sediment transport from a 10000 km2 segment of the Greenland Ice Sheet (GrIS) correlated very well (R2=0.83) with GPS measured uplift. Accumulated...

  16. Spatial Modelling of Sediment Transport over the Upper Citarum Catchment

    Directory of Open Access Journals (Sweden)

    Poerbandono

    2006-05-01

    Full Text Available This paper discusses set up of a spatial model applied in Geographic Information System (GIS environment for predicting annual erosion rate and sediment yield of a watershed. The study area is situated in the Upper Citarum Catchment of West Java. Annual sediment yield is considered as product of erosion rate and sediment delivery ratio to be modelled under similar modeling tool. Sediment delivery ratio is estimated on the basis of sediment resident time. The modeling concept is based on the calculation of water flow velocity through sub-catchment surface, which is controlled by topography, rainfall, soil characteristics and various types of land use. Relating velocity to known distance across digital elevation model, sediment resident time can be estimated. Data from relevance authorities are used. Bearing in mind limited knowledge of some governing factors due to lack of observation, the result has shown the potential of GIS for spatially modeling regional sediment transport. Validation of model result is carried out by evaluating measured and computed total sediment yield at the main outlet. Computed total sediment yields for 1994 and 2001 are found to be 1.96×106 and 2.10×106tons/year. They deviate roughly 54 and 8% with respect to those measured in the field. Model response due to land use change observed in 2001 and 1994 is also recognised. Under presumably constant rainfall depth, an increase of overall average annual erosion rate of 11% resulted in an increase of overall average sediment yield of 7%.

  17. The natural sediment regime in rivers: broadening the foundation for ecosystem management

    Science.gov (United States)

    Wohl, Ellen E.; Bledsoe, Brian P.; Jacobson, Robert B.; Poff, N. LeRoy; Rathburn, Sara L.; Walters, David M.; Wilcox, Andrew C.

    2015-01-01

    Water and sediment inputs are fundamental drivers of river ecosystems, but river management tends to emphasize flow regime at the expense of sediment regime. In an effort to frame a more inclusive paradigm for river management, we discuss sediment inputs, transport, and storage within river systems; interactions among water, sediment, and valley context; and the need to broaden the natural flow regime concept. Explicitly incorporating sediment is challenging, because sediment is supplied, transported, and stored by nonlinear and episodic processes operating at different temporal and spatial scales than water and because sediment regimes have been highly altered by humans. Nevertheless, managing for a desired balance between sediment supply and transport capacity is not only tractable, given current geomorphic process knowledge, but also essential because of the importance of sediment regimes to aquatic and riparian ecosystems, the physical template of which depends on sediment-driven river structure and function.

  18. Nonlocal Sediment Transport on Steep Lateral Moraines, Eastern Sierra Nevada, California, USA

    Science.gov (United States)

    Doane, Tyler H.; Furbish, David Jon; Roering, Joshua J.; Schumer, Rina; Morgan, Daniel J.

    2018-01-01

    Recent work has highlighted the significance of long-distance particle motions in hillslope sediment transport. Such motions imply that the flux at a given hillslope position is appropriately described as a weighted function of surrounding conditions that influence motions reaching the given position. Although the idea of nonlocal sediment transport is well grounded in theory, limited field evidence has been provided. We test local and nonlocal formulations of the flux and compare their ability to reproduce land surface profiles of steep moraines in California. We show that nonlocal and nonlinear models better reproduce evolved land surface profiles, notably the amount of lowering and concavity near the moraine crest and the lengthening and straightening of the depositional apron. The analysis provides the first estimates of key parameters that set sediment entrainment rates and travel distances in nonlocal formulations and highlights the importance of correctly specifying the entrainment rate when modeling land surface evolution. Moraine evolution associated with nonlocal and nonlinear transport formulations, when described in terms of the evolution of the Fourier transform of the moraine surface, displays a distinct behavior involving growth of certain wave numbers, in contrast to the decay of all wave numbers associated with linear transport. Nonlinear and nonlocal formulations share key mathematical elements yielding a nonlinear relation between the flux and the land surface slope.

  19. Parameter estimation for a cohesive sediment transport model by assimilating satellite observations in the Hangzhou Bay: Temporal variations and spatial distributions

    Science.gov (United States)

    Wang, Daosheng; Zhang, Jicai; He, Xianqiang; Chu, Dongdong; Lv, Xianqing; Wang, Ya Ping; Yang, Yang; Fan, Daidu; Gao, Shu

    2018-01-01

    Model parameters in the suspended cohesive sediment transport models are critical for the accurate simulation of suspended sediment concentrations (SSCs). Difficulties in estimating the model parameters still prevent numerical modeling of the sediment transport from achieving a high level of predictability. Based on a three-dimensional cohesive sediment transport model and its adjoint model, the satellite remote sensing data of SSCs during both spring tide and neap tide, retrieved from Geostationary Ocean Color Imager (GOCI), are assimilated to synchronously estimate four spatially and temporally varying parameters in the Hangzhou Bay in China, including settling velocity, resuspension rate, inflow open boundary conditions and initial conditions. After data assimilation, the model performance is significantly improved. Through several sensitivity experiments, the spatial and temporal variation tendencies of the estimated model parameters are verified to be robust and not affected by model settings. The pattern for the variations of the estimated parameters is analyzed and summarized. The temporal variations and spatial distributions of the estimated settling velocity are negatively correlated with current speed, which can be explained using the combination of flocculation process and Stokes' law. The temporal variations and spatial distributions of the estimated resuspension rate are also negatively correlated with current speed, which are related to the grain size of the seabed sediments under different current velocities. Besides, the estimated inflow open boundary conditions reach the local maximum values near the low water slack conditions and the estimated initial conditions are negatively correlated with water depth, which is consistent with the general understanding. The relationships between the estimated parameters and the hydrodynamic fields can be suggestive for improving the parameterization in cohesive sediment transport models.

  20. Inverse modelling of fluvial sediment connectivity identifies characteristics and spatial distribution of sediment sources in a large river network.

    Science.gov (United States)

    Schmitt, R. J. P.; Bizzi, S.; Kondolf, G. M.; Rubin, Z.; Castelletti, A.

    2016-12-01

    Field and laboratory evidence indicates that the spatial distribution of transport in both alluvial and bedrock rivers is an adaptation to sediment supply. Sediment supply, in turn, depends on spatial distribution and properties (e.g., grain sizes and supply rates) of individual sediment sources. Analyzing the distribution of transport capacity in a river network could hence clarify the spatial distribution and properties of sediment sources. Yet, challenges include a) identifying magnitude and spatial distribution of transport capacity for each of multiple grain sizes being simultaneously transported, and b) estimating source grain sizes and supply rates, both at network scales. Herein, we approach the problem of identifying the spatial distribution of sediment sources and the resulting network sediment fluxes in a major, poorly monitored tributary (80,000 km2) of the Mekong. Therefore, we apply the CASCADE modeling framework (Schmitt et al. (2016)). CASCADE calculates transport capacities and sediment fluxes for multiple grainsizes on the network scale based on remotely-sensed morphology and modelled hydrology. CASCADE is run in an inverse Monte Carlo approach for 7500 random initializations of source grain sizes. In all runs, supply of each source is inferred from the minimum downstream transport capacity for the source grain size. Results for each realization are compared to sparse available sedimentary records. Only 1 % of initializations reproduced the sedimentary record. Results for these realizations revealed a spatial pattern in source supply rates, grain sizes, and network sediment fluxes that correlated well with map-derived patterns in lithology and river-morphology. Hence, we propose that observable river hydro-morphology contains information on upstream source properties that can be back-calculated using an inverse modeling approach. Such an approach could be coupled to more detailed models of hillslope processes in future to derive integrated models

  1. Sediment Trapping in Estuaries

    Science.gov (United States)

    Burchard, Hans; Schuttelaars, Henk M.; Ralston, David K.

    2018-01-01

    Estuarine turbidity maxima (ETMs) are generated by a large suite of hydrodynamic and sediment dynamic processes, leading to longitudinal convergence of cross-sectionally integrated and tidally averaged transport of cohesive and noncohesive suspended particulate matter (SPM). The relative importance of these processes for SPM trapping varies substantially among estuaries depending on topography, fluvial and tidal forcing, and SPM composition. The high-frequency dynamics of ETMs are constrained by interactions with the low-frequency dynamics of the bottom pool of easily erodible sediments. Here, we use a transport decomposition to present processes that lead to convergent SPM transport, and review trapping mechanisms that lead to ETMs at the landward limit of the salt intrusion, in the freshwater zone, at topographic transitions, and by lateral processes within the cross section. We use model simulations of example estuaries to demonstrate the complex concurrence of ETM formation mechanisms. We also discuss how changes in SPM trapping mechanisms, often caused by direct human interference, can lead to the generation of hyperturbid estuaries.

  2. Sediment transport and channel morphology of small, forested streams.

    Science.gov (United States)

    Marwan A. Hassan; Michael Church; Thomas E. Lisle; Francesco Brardinoni; Lee Benda; Gordon E. Grant

    2005-01-01

    This paper reviews sediment transport and channel morphology in small, forested streams in the Pacific Northwest region of North America to assess current knowledge of channel stability and morphology relevant to riparian management practices around small streams. Small channels are defined as ones in which morphology and hydraulics may be significantly influenced by...

  3. Improving Sediment Transport Prediction by Assimilating Satellite Images in a Tidal Bay Model of Hong Kong

    Directory of Open Access Journals (Sweden)

    Peng Zhang

    2014-03-01

    Full Text Available Numerical models being one of the major tools for sediment dynamic studies in complex coastal waters are now benefitting from remote sensing images that are easily available for model inputs. The present study explored various methods of integrating remote sensing ocean color data into a numerical model to improve sediment transport prediction in a tide-dominated bay in Hong Kong, Deep Bay. Two sea surface sediment datasets delineated from satellite images from the Moderate Resolution Imaging Spectra-radiometer (MODIS were assimilated into a coastal ocean model of the bay for one tidal cycle. It was found that remote sensing sediment information enhanced the sediment transport model ability by validating the model results with in situ measurements. Model results showed that root mean square errors of forecast sediment both at the surface layer and the vertical layers from the model with satellite sediment assimilation are reduced by at least 36% over the model without assimilation.

  4. Modelling the transport of sediments and plutonium from the Mururoa lagoon

    International Nuclear Information System (INIS)

    Rajar, R.; Zagar, D.

    1999-01-01

    The paper deals with the three-dimensional simulation of resuspension and transport of sediments from the Mururoa lagoon into the Pacific Ocean. These sediments were contaminated mainly by plutonium during French nuclear tests (from 1966 to 1996). Two cases were simulated: 'Normal conditions', taking into account permanent action of trade winds and tides and 'storm conditions', where the effect of a tropical cyclone with maximum wind velocity of 150 km/h and with a frequency of 1 storm per 10 years is simulated. The final results show, that the normal conditions cause an annual outflow of 8 x 10 4 tons of sediment and 8 GBq of plutonium, while one tropical cyclone would cause outflow of 3.9 x 10 6 tons of sediment and about 0.7 TBq of plutonium. (author)

  5. Sediment transport and development of banner banks and sandwaves in an extreme tidal system: Upper Bay of Fundy, Canada

    Science.gov (United States)

    Li, Michael Z.; Shaw, John; Todd, Brian J.; Kostylev, Vladimir E.; Wu, Yongsheng

    2014-07-01

    Multibeam sonar mapping and geophysical and geological groundtruth surveys were coupled with tidal current and sediment transport model calculations to investigate the sediment transport and formation processes of the complex seabed features off the Cape Split headland in the upper Bay of Fundy. The Cape Split banner bank, composed of coarse to very coarse sand, is a southwest-northeast oriented, large tear-drop shaped sand body with superimposed sand waves that show wavelengths from 15 to 525 m and heights from 0.5 to 19 m. Isolated and chains of barchan dunes occur on top of a shadow bank to the southeast of the banner bank. The barchan dunes are composed of well-sorted medium sand and are oriented northwest-southeast. Their mean height and width are 1.5 and 55 m, respectively. A gravel bank, with an elongated elliptical shape and west-east orientation, lies in the Minas Passage erosional trough east of the headland to form the counterpart to the sandy Cape Split banner bank. The southern face is featureless but the northern face is covered by gravel megaripples. Tidal model predictions and sediment transport calculations show that the formation of the banner bank and the gravel bank are due to the development of the transient counter-clockwise and clockwise tidal eddies respectively to the west and east of the headland. The formation of barchan dunes is controlled by the nearly unidirectional flow regime in outer Scots Bay. Sand waves on the flanks of the Cape Split banner bank show opposite asymmetry and the barchan dunes are asymmetric to the northeast. The tidal current and sediment transport predictions corroborate bedform asymmetry to show that sand wave migration and net sediment transport is to southwest on the northern flank of the banner bank but to northeast on the southern bank. Long-term migration of the Scots Bay barchan dunes is to the northeast. Spring-condition tidal currents can cause frequent mobilization and high-stage transport over the

  6. The contribution of bank and surface sediments to fluvial sediment ...

    African Journals Online (AJOL)

    The contribution of bank and surface sediments to fluvial sediment transport of the Pra River. ... the relative contribution of surface and bank sediments to the fluvial sediment transport. ... EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  7. A 2-D process-based model for suspended sediment dynamics: a first step towards ecological modeling

    Science.gov (United States)

    Achete, F. M.; van der Wegen, M.; Roelvink, D.; Jaffe, B.

    2015-06-01

    In estuaries suspended sediment concentration (SSC) is one of the most important contributors to turbidity, which influences habitat conditions and ecological functions of the system. Sediment dynamics differs depending on sediment supply and hydrodynamic forcing conditions that vary over space and over time. A robust sediment transport model is a first step in developing a chain of models enabling simulations of contaminants, phytoplankton and habitat conditions. This works aims to determine turbidity levels in the complex-geometry delta of the San Francisco estuary using a process-based approach (Delft3D Flexible Mesh software). Our approach includes a detailed calibration against measured SSC levels, a sensitivity analysis on model parameters and the determination of a yearly sediment budget as well as an assessment of model results in terms of turbidity levels for a single year, water year (WY) 2011. Model results show that our process-based approach is a valuable tool in assessing sediment dynamics and their related ecological parameters over a range of spatial and temporal scales. The model may act as the base model for a chain of ecological models assessing the impact of climate change and management scenarios. Here we present a modeling approach that, with limited data, produces reliable predictions and can be useful for estuaries without a large amount of processes data.

  8. A 2-D process-based model for suspended sediment dynamics: A first step towards ecological modeling

    Science.gov (United States)

    Achete, F. M.; van der Wegen, M.; Roelvink, D.; Jaffe, B.

    2015-01-01

    In estuaries suspended sediment concentration (SSC) is one of the most important contributors to turbidity, which influences habitat conditions and ecological functions of the system. Sediment dynamics differs depending on sediment supply and hydrodynamic forcing conditions that vary over space and over time. A robust sediment transport model is a first step in developing a chain of models enabling simulations of contaminants, phytoplankton and habitat conditions. This works aims to determine turbidity levels in the complex-geometry delta of the San Francisco estuary using a process-based approach (Delft3D Flexible Mesh software). Our approach includes a detailed calibration against measured SSC levels, a sensitivity analysis on model parameters and the determination of a yearly sediment budget as well as an assessment of model results in terms of turbidity levels for a single year, water year (WY) 2011. Model results show that our process-based approach is a valuable tool in assessing sediment dynamics and their related ecological parameters over a range of spatial and temporal scales. The model may act as the base model for a chain of ecological models assessing the impact of climate change and management scenarios. Here we present a modeling approach that, with limited data, produces reliable predictions and can be useful for estuaries without a large amount of processes data.

  9. Magnitude-Frequency Analysis of Sediment Transport in the Lower Mississippi River

    National Research Council Canada - National Science Library

    Biedenharn, David

    1999-01-01

    .../s. This lies within an effective range of channel-forming flows between 17,000 and 40,000 cu m/s, which are responsible for transporting a disproportionately large percentage of the sediment load...

  10. Biological processes influencing contaminant release from sediments

    International Nuclear Information System (INIS)

    Reible, D.D.

    1996-01-01

    The influence of biological processes, including bioturbation, on the mobility of contaminants in freshwater sediments is described. Effective mass coefficients are estimated for tubificid oligochaetes as a function of worm behavior and biomass density. The mass transfer coefficients were observed to be inversely proportional to water oxygen content and proportional to the square root of biomass density. The sediment reworking and contaminant release are contrasted with those of freshwater amphipods. The implications of these and other biological processes for contaminant release and i n-situ remediation of soils and sediments are summarized. 4 figs., 1 tab

  11. A study of sediment transport in the Herbert River, Australia, using plutonium AMS

    International Nuclear Information System (INIS)

    Everett, S.E.; Tims, S.G.; Fifield, L.K.; Hancock, G.J.

    2005-01-01

    The ANU and CSIRO have begun a new collaboration to study the human impacts of sediment transport into the Great Barrier Reef (GBR) lagoon. The project aims to use fallout plutonium for essentially the first time, as an isotopic tracer of soil and sediment movement. The study aims to assess how recent human activity in the river catchments that feed the GBR lagoon is influencing the distribution and quantity of sediment entering the lagoon. 2 figs

  12. Residual circulation and suspended sediment transport in the Dutch Wadden Sea

    Science.gov (United States)

    Duran-Matute, Matias; Sassi, Maximiliano; de Boer, Gerben; Grawë, Ulf; Gerkema, Theo; van Kessel, Thijs; Cronin, Katherine

    2014-05-01

    The Dutch Wadden Sea (DWS), situated between continental Europe and the Dutch Wadden Islands, is a semi enclosed basin connected to the North Sea by a series of tidal inlets and composed mainly of tidal flats and sea gullies. The DWS is of high ecological importance due to its biodiversity and has been declared a World Heritage site by UNESCO. It is a dynamic area subject to regional relative sea level rise due to global sea level rise, postglacial rebound and gas exploitation. For intertidal areas to continue to serve as feeding ground for migratory birds, a net import of sediment is required. Observations are crucial but provide only scarce information in space and time. Hence, to estimate the net influx of suspended sediment into the DWS, realistic high resolution three-dimensional numerical simulations have been carried out using the General Estuarine Transport Model (GETM). The hydrodynamics are mainly governed by the tides, the fresh water discharge from several sluices into the DWS and wind variability. It is expected that the transport of suspended particulate matter (SPM) is governed by the same factors, too, in combination with sediment sink and source terms. For validation, the results are compared against different observational data sets, such as tidal gauges, temperature and salinity at a fixed station, and the volumetric flux rate through one of the inlets obtained from an acoustic Doppler current profiler (ADCP) attached to a ferry. SPM transport is modeled for four different sediment classes each of which is defined by the critical shear stress and the settling velocity. Results show a clear net import of SPM through one of the inlets, which is in agreement with the observations. First estimates of the total sediment fluxes through the different inlets are presented together with an analysis on their variability and sensibility to the external forcing. Of particular importance is the net export of SPM during storms as well as the role of storms on

  13. Measurements of Two-Phase Suspended Sediment Transport in Breaking Waves Using Volumetric Three-Component Velocimetry

    Science.gov (United States)

    Ting, F. C. K.; LeClaire, P.

    2016-02-01

    Understanding the mechanisms of sediment pickup and distribution in breaking waves is important for modeling sediment transport in the surf zone. Previous studies were mostly concerned with bulk sediment transport under specific wave conditions. The distribution of suspended sediments in breaking waves had not been measured together with coherent flow structures. In this study, two-phase flow measurements were obtained under a train of plunging regular waves on a plane slope using the volumetric three-component velocimetry (V3V) technique. The measurements captured the motions of sediment particles simultaneously with the three-component, three-dimensional (3C3D) velocity fields of turbulent coherent structures (large eddies) induced by breaking waves. Sediment particles (solid glass spheres diameter 0.125 to 0.15 mm, specific gravity 2.5) were separated from fluid tracers (mean diameter 13 µm, specific gravity 1.3) based on a combination of particle spot size and brightness in the two-phase images. The interactions between the large eddies and glass spheres were investigated for plunger vortices generated at incipient breaking and for splash-up vortices generated at the second plunge point. The measured data show that large eddies impinging on the bottom was the primary mechanism which lift sediment particles into suspension and momentarily increased near-bed suspended sediment concentration. Although eddy impingement events were sporadic in space and time, the distributions of suspended sediments in the large eddies were not uniform. High suspended sediment concentration and vertical sediment flux were found in the wall-jet region where the impinging flow was deflected outward and upward. Sediment particles were also trapped and carried around by counter-rotating vortices (Figure 1). Suspended sediment concentration was significantly lower in the impingement region where the fluid velocity was downward, even though turbulent kinetic energy in the down flow was

  14. Sediment transport modelling in wadi Chemora during flood flow events

    Directory of Open Access Journals (Sweden)

    Berghout Ali

    2016-12-01

    Full Text Available The sediment transport is a complex phenomenon by its intermittent nature, randomness and by its spatiotemporal discontinuity. By reason of its scale, it constitutes a major constraint for development; it decreases storage capacity of dams and degrades state of ancillary structures.

  15. Correlation of aeolian sediment transport measured by sand traps and fluorescent tracers

    Science.gov (United States)

    Cabrera, Laura L.; Alonso, Ignacio

    2010-03-01

    Two different methods, fluorescent tracers and vertical sand traps, were simultaneously used to carry out an aeolian sediment transport study designed to test the goodness of fluorescent tracers in aeolian environments. Field experiments were performed in a nebkha field close to Famara beach at Lanzarote Island (Canary Islands, Spain) in a sector where the dunes were between 0.5 and 0.8 m height and 1-2 m wide and the vegetal cover was approximately 22%. In this dune field the sediment supply comes from Famara beach and is blown by trade winds toward the south, where the vegetation acts as natural sediment traps. Wind data were obtained by means of four Aanderaa wind speed sensors and one Aanderaa vane, all them distributed in a vertical array from 0.1 to 4 m height for 27 h. The average velocity at 1 m height during the experiment was 5.26 m s - 1 with the wind direction from the north. The tracer was under wind influence for 90 min at midday. During this period two series of sand traps (T1 and T2) N, S, E and W oriented were used. Resultant transport rates were 0.0131 and 0.0184 kg m - 1 min - 1 respectively. Tracer collection was performed with a sticky tape to sample only surface sediments. Tagged grains were visually counted under UV light. The transport rate was computed from the centroid displacement, that moved 0.875 m southwards, and the depth of the active layer considered was the size of one single grain. Taking into account these data the transport rate was 0.0072 kg m - 1 min - 1 . The discrepancy in results between both methods is related to several factors, such as the thickness of the active layer and the grain size difference between the tagged and the native material.

  16. Hybrid sediment transport model for the “linguado” channel, state of Santa Catarina, Brazil

    Directory of Open Access Journals (Sweden)

    Edison Conde Perez dos Santos

    2017-12-01

    Full Text Available This study involves an assessment of various artificial intelligence-related techniques which aim to produce a more robust system for sediment transport modeling. The intelligent systems developed in this research are directly applicable to academic knowledge and use data from a report on "water circulation assessment in the “Linguado” Channel and Babitonga Bay ,”Santa Catarina”, Brazil, developed by  Military Engineering Institute (IME. The solution employed for sediment transport was built using an intelligent system from the conception of two hybrid models. The first was a Neuro-Fuzzy (ANFIS hybrid model for the study of hydrodynamic behavior, aiming to determine flow rate in the channel. The second was a fuzzy genetic model, able to assess sediment transport in the “Linguado” Channel. The study's conclusion compares the different effects involved in the dredging equilibrium in the “Linguado” Channel according to this hybrid model with the results obtained using a finite element model in the MIKE21® software.

  17. Laboratory observations of sediment transport using combined particle image and tracking velocimetry (Conference Presentation)

    Science.gov (United States)

    Frank, Donya; Calantoni, Joseph

    2017-05-01

    Improved understanding of coastal hydrodynamics and morphology will lead to more effective mitigation measures that reduce fatalities and property damage caused by natural disasters such as hurricanes. We investigated sediment transport under oscillatory flow over flat and rippled beds with phase-separated stereoscopic Particle Image Velocimetry (PIV). Standard PIV techniques severely limit measurements at the fluid-sediment interface and do not allow for the observation of separate phases in multi-phase flow (e.g. sand grains in water). We have implemented phase-separated Particle Image Velocimetry by adding fluorescent tracer particles to the fluid in order to observe fluid flow and sediment transport simultaneously. While sand grains scatter 532 nm wavelength laser light, the fluorescent particles absorb 532 nm laser light and re-emit light at a wavelength of 584 nm. Optical long-pass filters with a cut-on wavelength of 550 nm were installed on two cameras configured to perform stereoscopic PIV to capture only the light emitted by the fluorescent tracer particles. A third high-speed camera was used to capture the light scattered by the sand grains allowing for sediment particle tracking via particle tracking velocimetry (PTV). Together, these overlapping, simultaneously recorded images provided sediment particle and fluid velocities at high temporal and spatial resolution (100 Hz sampling with 0.8 mm vector spacing for the 2D-3C fluid velocity field). Measurements were made under a wide range of oscillatory flows over flat and rippled sand beds. The set of observations allow for the investigation of the relative importance of pressure gradients and shear stresses on sediment transport.

  18. Sediment Transport Study in Haeundae Beach using Radioisotope Labelled Compound

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Seop; Kim, Jong Bum; Jung, Sung Hee [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Lee, Jong Sup [Pukyong National Univ., Busan (Korea, Republic of)

    2005-07-01

    Haeundae beach is one of the most famous resorts in Korea and plays an important role as a special tourism district. However, the length and width of the beach are being reduced continuously, which would have bad influence on the regional economy and be the financial burden to the local authority considering that a large amount of budget is spent in the beach nourishment annually. Hence, it is necessary to understand the dynamic behavior of sediments in the coast for the systematic preservation plan of coastal environment. Lately a monitoring system using radioactive isotope as tracers is considered as a novel technique in understanding the dynamic transport of sediments. The objective of this study is to investigate the possible variations in sedimentary distribution and quantify the characteristics of sediments using radiotracer.

  19. Sediment Transport Study in Haeundae Beach using Radioisotope Labelled Compound

    International Nuclear Information System (INIS)

    Kim, Jin Seop; Kim, Jong Bum; Jung, Sung Hee; Lee, Jong Sup

    2005-01-01

    Haeundae beach is one of the most famous resorts in Korea and plays an important role as a special tourism district. However, the length and width of the beach are being reduced continuously, which would have bad influence on the regional economy and be the financial burden to the local authority considering that a large amount of budget is spent in the beach nourishment annually. Hence, it is necessary to understand the dynamic behavior of sediments in the coast for the systematic preservation plan of coastal environment. Lately a monitoring system using radioactive isotope as tracers is considered as a novel technique in understanding the dynamic transport of sediments. The objective of this study is to investigate the possible variations in sedimentary distribution and quantify the characteristics of sediments using radiotracer

  20. Sediment mobility and bedload transport rates in a high-elevation glacier-fed stream (Saldur river, Eastern Italian Alps)

    Science.gov (United States)

    Dell'Agnese, A.; Mao, L.; Comiti, F.

    2012-04-01

    The assessment of bedload transport in high-gradient streams is necessary to evaluate and mitigate flood hazards and to understand morphological processes taking place in the whole river network. Bedload transport in steep channels is particularly difficult to predict due to the complex and varying types of flow resistance, the very coarse and heterogeneous sediments, and the activity and connections of sediment sources at the basin scale. Yet, bedload measurements in these environments are still relatively scarce, and long-term monitoring programs are highly valuable to explore spatial and temporal variability of bedload processes. Even fewer are investigations conducted in high-elevation glaciarized basins, despite their relevance in many regions worldwide. The poster will present bedload transport measurements in a newly established (spring 2011) monitoring station in the Saldur basin (Eastern Italian Alps), which presents a 3.3 km2 glacier in its upper part. At 2100 m a.s.l. (20 km2 drainage area), a pressure transducer measures flow stage and bedload transport is monitored continuously by means of a hydrophone (a cylindrical steel pipe with microphones registering particle collisions) and by 4 fixed antennas for tracing clasts equipped with PITs (Passive Integrated Transponders). At the same location bedload samples are collected by using both a "Bunte" bedload trap and a "Helley-Smith" sampler at 5 positions along a 5 m wide cross-section. Bedload was measured from June to August 2011 during daily discharge fluctuations due to snow- and ice- melt flows. Samples were taken at a large range of discharges (1.1 to 4.6 m3 s-1) and bedload rates (0.01 to 700 g s-1 m-1). As expected, samples taken using the two samplers are not directly comparable even if taken virtually at the same time and at the same location across the section. Results indicate that the grain size of the transported material increases with the shear stress acting on the channel bed and with the

  1. Nanoscale Titanium Dioxide (nTiO2) Transport in Water-Saturated Natural Sediments: Influence of Soil Organic Matter and Fe/Al Oxyhydroxides

    Science.gov (United States)

    Fisher-Power, L.; Cheng, T.

    2017-12-01

    Transport of engineered nanoparticles (ENP) in subsurface environments has important implications to water quality and soil contamination. Although extensive research has been conducted to understand the effects of water chemistry on ENP transport, less attention has been paid to influences from the transport medium/matrix. The objective of this research is to investigate the effects of natural organic matter (NOM) and Fe/Al oxyhydroxides in a natural sediment on ENP transport. A sediment was collected and separated into four portions, one of which was unmodified, and the others treated to remove specific components (organic matter, Fe/Al oxyhydroxides, or both organic matter and Fe/Al oxyhydroxides). Transport of nanoscale titanium dioxide (nTiO2) in columns packed with quartz sand and each of the four types of the sediment under water-saturated conditions was studied. Our results showed that nTiO2 transport was strongly influenced by pH and sediment composition. When influent pH = 5, nTiO2 transport in all the sediments was low, as positively-charged nTiO2 was attracted to negatively charged NOM, quartz, and other minerals. nTiO2 transport was slightly enhanced in columns packed with untreated sediment or Fe/Al oxyhydroxides removed sediment due to dissolved organic matter generated by the partial dissolution of NOM, which adsorbed onto nTiO2 surface and reversed its zeta potential to negative. When influent pH = 9, nTiO2 transport was generally high since negatively-charged nTiO2 was repelled by negatively charged transport medium. However, in columns packed with the organic matter removed sediment or the Fe/Al oxyhydroxides removed sediment, nTiO2 transport was low. This was attributable to pH buffering by the sediment, which decreased pore water pH in the column, resulting in zeta potential change and electrostatic attraction between Fe/Al oxyhydroxides and nTiO2. This research demonstrates that electrostatic forces between nTiO2 and mineral/organic components

  2. Sediment transport of streams tributary to San Francisco, San Pablo, and Suisun Bays, California, 1909-66

    Science.gov (United States)

    Porterfield, George

    1980-01-01

    A review of historical sedimentation data is presented, results of sediment-data collection for water years 1957-59 are summarized, and long-term sediment-discharge estimates from a preliminary report are updated. Comparison of results based on 3 years of data to those for the 10 water years, 1957-66, provides an indication of the adequacy of the data obtained during the short period to define the long-term relation between sediment transport and streamflow. During 1909-66, sediment was transported to the entire San Francisco Bay system at an average rate of 8.6 million cubic yards per year. The Sacramento and San Joaquin River basins provided about 83% of the sediment inflow to the system annually during 1957-66 and 86% during 1909-66. About 98% of this inflow was measured or estimated at sediment measuring sites. Measured sediment inflow directly to the bays comprised only about 40% of the total discharged by basins directly tributary to the bays. About 90% of the total sediment discharge to the delta and the bays in the San Francisco Bay system thus was determined on the basis of systematic measurements. (USGS)

  3. The mountain-lowland debate: deforestation and sediment transport in the upper Ganga catchment.

    Science.gov (United States)

    Wasson, R J; Juyal, N; Jaiswal, M; McCulloch, M; Sarin, M M; Jain, V; Srivastava, P; Singhvi, A K

    2008-07-01

    The Himalaya-Gangetic Plain region is the iconic example of the debate about the impact on lowlands of upland land-use change. Some of the scientific aspects of this debate are revisited by using new techniques to examine the role of deforestation in erosion and river sediment transport. The approach is whole-of-catchment, combining a history of deforestation with a history of sediment sources from well before deforestation. It is shown that deforestation had some effect on one very large erosional event in 1970, in the Alaknanda subcatchment of the Upper Ganga catchment, but that both deforestation and its effects on erosion and sediment transport are far from uniform in the Himalaya. Large magnitude erosional events occur for purely natural reasons. The impact on the Gangetic Plain of erosion caused by natural events and land cover change remains uncertain.

  4. Spatially resolved data on sediment transport: 1) field application examining fluorescent soil particle movement from tillage

    Science.gov (United States)

    Quinton, John; Hardy, Robert; Pates, Jacqueline; James, Michael

    2017-04-01

    Understanding where sediment originates from and where it travels to, in what quantities and at which rate is at the heart of many questions surrounding sediment transport. Progress towards unravelling these questions and deepening our understanding has come from a wide range of approaches, including laboratory and field experiments conducted at a variety of scales. In seeking to understand the connectivity of sources and sinks of sediment scientists have spent considerable energy in developing tracing technologies. These have included numerous studies that have relied on the chemical properties of the soil and sediment to establish source-sink connectivity, and the use of 137Ceasium, from radioactive fall-out, to map sediment redistribution. More recently there has been an upsurge in interest in the use of artificially applied soil tracers, including rare earth element oxides and magnetic minerals. However all these tracing methods have a significant drawback: they rely on the collection of samples to assess their concentration. This means that their spatial distribution cannot easily be established in situ and that the environment that is being studied is damaged by the sampling process; nor can data be collected in real time which allows a dynamic understanding of erosion and transport processes to be developed. Here we report on the field application of a fluorescent sand sized tracer at the hillslope scale during a tillage erosion experiment. Here we trialled both intensity based and particle counting methodologies for tracer enumeration. After simulating seven years of tillage on a hillslope we were able to precisely determine the distribution of the fluorescent tracer and also its incorporation and distribution within the soil profile. Single grains of tracer could be found over 35 m from the insertion point. In a second abstract we report on an application that combines novel fluorescent videography techniques with custom image processing to trace the

  5. Minimization of gully erosion on reclaimed surface mines using the stable slope and sediment transport computer model

    International Nuclear Information System (INIS)

    McKenney, R.A.; Gardner, T.G.

    1992-01-01

    Disequilibrium between slope form and hydrologic and erosion processes on reclaimed surface coal mines in the humid temperate northeastern US, can result in gully erosion and sediment loads which are elevated above natural, background values. Initial sheetwash erosion is surpassed by gully erosion on reclamation sites which are not in equilibrium with post-mining hydrology. Long-term stability can be attained by designing a channel profile which is in equilibrium with the increased peak discharges found on reclaimed surface mines. The Stable Slope and Sediment transport model (SSAST) was developed to design stable longitudinal channel profiles for post-mining hydrologic and erosional processes. SSAST is an event based computer model that calculates the stable slope for a channel segment based on the post-mine hydrology and median grain size of a reclaimed surface mine. Peak discharge, which drives post-mine erosion, is calculated from a 10-year, 24-hour storm using the Soil Conservation Service curve number method. Curve number calibrated for Pennsylvania surface mines are used. Reclamation sites are represented by the rectangle of triangle which most closely fits the shape of the site while having the same drainage area and length. Sediment transport and slope stability are calculated using a modified Bagnold's equation with a correction factor for the irregular particle shapes formed during the mining process. Data from three reclaimed Pennsylvania surface mines were used to calibrate and verify SSAST. Analysis indicates that SSAST can predict longitudinal channel profiles for stable reclamation of surface mines in the humid, temperate northeastern US

  6. Great expectations: Flow restoration and sediment transport in the Waimea River, Kaua'i

    Science.gov (United States)

    Gomez, Basil

    2018-04-01

    Conventional and novel observations made in the Waimea River basin between 1960 and 1995 permit the total riverine mass flux to be estimated and the influence that flow restoration will have on sediment dynamics in the river's lower reaches to be assessed. Flows between the threshold for sediment transport ( 6.0 m3 s-1) and the most effective flow (80.7 m3 s-1) recur annually and transport 60% of the Waimea River's suspended sediment load. Discharges of this magnitude essentially were unaffected by plantation era agricultural diversions of 2.3 ± 0.7 m3 s-1. The modern-day mass flux from the Waimea River basin is 155 ± 38 t km-2 y-1, and comparison with an independent cosmogenic nuclide-based estimate implies that it has remained at about this level for the past 10 ky. Previous work indicated that: (i) most of the sand the Waimea River transports to the coast is derived from steep, rapidly eroding, sparsely vegetated, bedrock-dominated hillslopes; and (ii) the sediment transport regime of the Waimea River is supply-limited at very high discharges (recurrence interval > 2.5 years). Consequently, major floods tend to remove sand from the estuary. Climate change has caused a statewide decline in heavy rainfall, and a commensurate decline in the magnitude of peak flows in the basin's pristine, undiverted headwaters over the past 97 years. The effect this secular change in climate presently is having on streamflow was foreshadowed in the late 1970s by a naturally occurring, warm Pacific Decadal Oscillation phase reduction in the magnitude of flows with low exceedance probabilities. Additionally, the controlling base level at the river mouth has risen and been displaced seaward. Simple proportionality approximations show that, for a constant sediment supply, aggradation will occur if either the magnitude of flows with a low exceedance probability declines and/or base level rises. Thus, anthropogenic stresses on Waimea River's lower reaches are not derived from the

  7. Application of sediment characteristics and transport conditions to resource management in selected main-stem reaches of the Upper Colorado River, Colorado and Utah, 1965-2007

    Science.gov (United States)

    Williams, Cory A.; Schaffrath, Keelin R.; Elliott, John G.; Richards, Rodney J.

    2013-01-01

    The Colorado River Basin provides habitat for 14 native fish, including 4 endangered species protected under the Federal Endangered Species Act of 1973. These endangered fish species once thrived in the Colorado River system, but water-resource development, including the building of numerous diversion dams and several large reservoirs, and the introduction of non-native fish, resulted in large reductions in the numbers and range of the four species through loss of habitat and stream function. Understanding how stream conditions and habitat change in response to alterations in streamflow is important for water administrators and wildlife managers and can be determined from an understanding of sediment transport. Characterization of the processes that are controlling sediment transport is an important first step in identifying flow regimes needed for restored channel morphology and the sustained recovery of endangered fishes within these river systems. The U.S. Geological Survey, in cooperation with the Upper Colorado River Endangered Fish Recovery Program, Bureau of Reclamation, U.S. Fish and Wildlife Service, Argonne National Laboratory, Western Area Power Administration, and Wyoming State Engineer’s Office, began a study in 2004 to characterize sediment transport at selected locations on the Colorado, Gunnison, and Green Rivers to begin addressing gaps in existing datasets and conceptual models of the river systems. This report identifies and characterizes the relation between streamflow (magnitude and timing) and sediment transport and presents the findings through discussions of (1) suspended-sediment transport, (2) incipient motion of streambed material, and (3) a case study of sediment-transport conditions for a reach of the Green River identified as a razorback sucker spawning habitat (See report for full abstract).

  8. Developing of Watershed Radionuclide Transport Model DHSVM-R as Modification and Extension of Distributed Hydrological and Sediment Dynamics Model DHSVM

    Science.gov (United States)

    Zheleznyak, M.; Kivva, S.; Onda, Y.; Nanba, K.; Wakiyama, Y.; Konoplev, A.

    2015-12-01

    The reliable modeling tools for prediction wash - off radionuclides from watersheds are needed as for assessment the consequences of accidental and industrial releases of radionuclides, as for soil erosion studies using the radioactive tracers. The distributed model of radionuclide transport through watershed in exchangeable and nonexchangeable forms in solute and with sediments was developed and validated for small Chernobyl watersheds in 90th within EU SPARTACUS project (van der Perk et al., 1996). New tendency is coupling of radionuclide transport models and the widely validated hydrological distributed models. To develop radionuclide transport model DHSVM-R the open source Distributed Hydrology Soil Vegetation Model -DHSVM http://www.hydro.washington.edu/Lettenmaier/Models/DHSVM was modified and extended. The main changes provided in the hydrological and sediment transport modules of DHSVM are as follows: Morel-Seytoux infiltration model is added; four-directions schematization for the model's cells flows (D4) is replaced by D8 approach; the finite-difference schemes for solution of kinematic wave equations for overland water flow, stream net flow, and sediment transport are replaced by new computationally efficient scheme. New radionuclide transport module, coupled with hydrological and sediment transport modules, continues SPARTACUS's approach, - it describes radionuclide wash-off from watershed and transport via stream network in soluble phase and on suspended sediments. The hydrological module of DHSVM-R was calibrated and validated for the watersheds of Ukrainian Carpathian mountains and for the subwatersheds of Niida river flowing 137Cs in solute and with suspended sediments to Pacific Ocean at 30 km north of the Fukushima Daiichi NPP. The modules of radionuclide and sediment transport were calibrated and validated versus experimental data for USLE experimental plots in Fukushima Prefecture and versus monitoring data collected in Niida watershed. The role

  9. Interactions and feedbacks among phytobenthos, hydrodynamics, nutrient cycling and sediment transport in estuarine ecosystems

    Science.gov (United States)

    Bergamasco, A.; De Nat, L.; Flindt, M. R.; Amos, C. L.

    2003-11-01

    Phytobenthic communities can play an active role in modifying the environmental characteristics of the ecosystem in which they live so mediating the human impact on Coastal Zone habitats. Complicated feedbacks couple the establishment of phytobenthic communities with water quality and physical parameters in estuaries. Direct and indirect interactions between physical and biological attributes need to be considered in order to improve the management of these ecosystems to guarantee a sustainable use of coastal resources. Within the project F-ECTS ("Feedbacks of Estuarine Circulation and Transport of Sediments on phytobenthos") this issue was approached through a three-step strategy: (i) Monitoring: detailed fieldwork activities focusing on the measurement and evaluation of the main processes involving hydrodynamics, sediments, nutrients, light and phytobenthic biomass; (ii) Modeling: joint modeling of the suspended particulate matter erosion/transport/deposition and biological mediation of the hydrodynamics and (iii) GIS: development of GIS-based practical tools able to manage and exploit measured and modeled data on the basis of scientific investigation guidelines and procedures. The overall strategy is described by illustrating results of field measurements, providing details of model implementation and demonstrating the GIS-based tools.

  10. Investigating transport capacity equations in sediment yield modelling for the Cariri semi-arid region of Paraiba-PB/Brazil

    Directory of Open Access Journals (Sweden)

    E. E. De Figueiredo

    2015-03-01

    Full Text Available In the semi arid Cariri region of the state of Paraiba, Brazil, runoff is of the Hortonian type generated by excess of rainfall over infiltration capacity, and soil erosion is governed by rainfall intensity and sediment size. However, the governing sediment transport mechanism is not well understood. Sediment transport generally depends on the load of sediment provided by soil erosion and on the transport capacity of the flow. The latter is mainly governed by mechanisms such as water shear stress, or stream power. Accordingly, the load of sediment transported by the flow may vary depending on the mechanism involved in the equation of estimation. Investigation of the sediment transport capacity of the flow via a distributed physically-based model is an important and necessary task, but quite rare in semi-arid climates, and particularly in the Cariri region of the state of Paraíba/Brazil. In this study, the equations of Yalin, Engelund & Hansen, Laursen, DuBoys and Bagnold have been coupled with the MOSEE distributed physically based model aiming at identifying the mechanisms leading to the best model simulations when compared with data observed at various basin scales and land uses in the study region. The results obtained with the investigated methods were quite similar and satisfactory suggesting the feasibility of the mechanisms involved, but the observed values were better represented with Bagnold’s equation, which is physically grounded on the stream power, and we recommend it for simulations of similar climate, runoff generation mechanisms and sediment characteristics as in the study region.

  11. Glacimarine environments: processes and sediments

    National Research Council Canada - National Science Library

    Dowdeswell, J. A; Scourse, James D

    1990-01-01

    This volume examines the processes responsible for sedimentation in modern glaciomarine environments, and how such modern studies can be used as analogues in the interpretation of ancient glaciomarine sequences...

  12. Suspended sediment fluxes in a tropical estuary, west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    AnilKumar, N.; DineshKumar, P.K.; Srinivas, K.

    Annual transport processes of suspended sediments in Beypore estuary - a tropical estuary along the south west coast of India - were investigated based on time series measurements within the system. It's observed that the sediment transport...

  13. Challenges in transferring knowledge between scales in coastal sediment dynamics

    Directory of Open Access Journals (Sweden)

    Shari L Gallop

    2015-10-01

    Full Text Available ‘Packaging’ coastal sediment transport into discrete temporal and spatial scale bands is necessary for measurement programs, modelling, and design. However, determining how to best measure and parameterize information, to transfer between scales, is not trivial. An overview is provided of the major complexities in transferring information on coastal sediment transport between scales. Key considerations that recur in the literature include: interaction between sediment transport and morphology; the influence of biota; episodic sediment transport; and recovery time-scales. The influence of bedforms and landforms, as well as sediment-biota interactions, varies with spatio-temporal scale. In some situations, episodic sediment dynamics is the main contributor to long-term sediment transport. Such events can also significantly alter biogeochemical and ecological processes, which interact with sediments. The impact of such episodic events is fundamentally influenced by recovery time-scales, which vary spatially. For the various approaches to scaling (e.g., bottom-up, aggregation, spatial hierarchies, there is a need for fundamental research on the assumptions inherent in each approach.

  14. Evaluating sediment transport in flood-driven ephemeral tributaries using direct and acoustic methods.

    Science.gov (United States)

    Stark, K.

    2017-12-01

    One common source of uncertainty in sediment transport modeling of large semi-arid rivers is sediment influx delivered by ephemeral, flood-driven tributaries. Large variations in sediment delivery are associated with these regimes due to the highly variable nature of flows within them. While there are many sediment transport equations, they are typically developed for perennial streams and can be inaccurate for ephemeral channels. Discrete, manual sampling is labor intensive and requires personnel to be on site during flooding. In addition, flooding within these tributaries typically last on the order of hours, making it difficult to be present during an event. To better understand these regimes, automated systems are needed to continuously sample bedload and suspended load. In preparation for the pending installation of an automated site on the Arroyo de los Piños in New Mexico, manual sediment and flow samples have been collected over the summer monsoon season of 2017, in spite of the logistical challenges. These data include suspended and bedload sediment samples at the basin outlet, and stage and precipitation data from throughout the basin. Data indicate a complex system; flow is generated primarily in areas of exposed bedrock in the center and higher elevations of the watershed. Bedload samples show a large coarse-grained fraction, with 50% >2 mm and 25% >6 mm, which is compatible with acoustic measuring techniques. These data will be used to inform future site operations, which will combine direct sediment measurement from Reid-type slot samplers and non-invasive acoustic measuring methods. Bedload will be indirectly monitored using pipe-style microphones, plate-style geophones, channel hydrophones, and seismometers. These instruments record vibrations and acoustic signals from bedload impacts and movement. Indirect methods for measuring of bedload have never been extensively evaluated in ephemeral channels in the southwest United States. Once calibrated

  15. Jokulhlaups and sediment transport in Watson River, Kangerlussuaq, West Greenland

    DEFF Research Database (Denmark)

    Mikkelsen, A. B.; Hasholt, Bent; Knudsen, N. T.

    2013-01-01

    For 3 years, during a 4-year observation period (2007-2010), jokulhlaups were observed from a lake at the northern margin of Russells Gletscher. At a gauging station located on a bedrock sill near the outlet of Watson River into Sdr Stromfjord, discharge and sediment transport was monitored during...

  16. Continental-scale transport of sediments by the Baltic Ice Stream elucidated by coupled grain size and Nd provenance analyses

    Science.gov (United States)

    Boswell, Steven M.; Toucanne, Samuel; Creyts, Timothy T.; Hemming, Sidney R.

    2018-05-01

    We introduce a methodology for determining the transport distance of subglacially comminuted and entrained sediments. We pilot this method on sediments from the terminal margin of the Baltic Ice Stream, the largest ice stream of the Fennoscandian Ice Sheet during the Last Glacial Maximum. A strong correlation (R2 = 0.83) between the εNd and latitudes of circum-Baltic river sediments enables us to use εNd as a calibrated measure of distance. The proportion of subglacially transported sediments in a sample is estimated from grain size ratios in the silt fraction (investigations of Fennoscandinavian erosion, and is consistent with rapid ice flow into the Baltic basins prior to the Last Glacial Maximum. The methodology introduced here could be used to infer the distances of glacigenic sediment transport from Late Pleistocene and earlier glaciations.

  17. Zeroing of the TL signal of sediment undergoing fluvial transportation: a laboratory experiment

    International Nuclear Information System (INIS)

    Gemmell, A.M.D.

    1985-01-01

    Rates of bleaching of suspended sediment undergoing fluvial transportation in a closed laboratory flume beneath a u.v. lamp were measured. It was found that the speed of zeroing is inversely related to the speed of flow. This is attributed to the effects of flow turbulence in keeping sediment in suspension, thereby reducing the penetration of u.v. radiation, and to the re-entrainment of partially bleached or unbleached sediment into the flow. The time required to reduce TL to the residual levels indicated by sunlamp bleaching experiments are such as to suggest that at faster flows sediments in a heavily-laden stream may never attain a complete bleaching. (author)

  18. Sediment transport investigations in Hugli estuary using radiotracer technique

    International Nuclear Information System (INIS)

    Sharma, V.K.; Pant, H.J.; Kulkarni, U.P.; Pendharkar, A.S.; Chakraborty, Kalyan; Mukhopadhyay, Suman; Chaudhuri, Bikas

    2006-01-01

    This paper describes sediment transport investigations carried out at two different locations in Hugli estuary along the shipping channel leading to Haldia Dock Complex of the Kolkata Port Trust, Kolkata. The objectives of these investigations were to evaluate the suitability of the proposed dumping sites for optimizing the dredging operation and implementing the recommendations of the River Regulatory Measures, Kolkata Port Trust, Kolkata

  19. Contrasts in Sediment Delivery and Dispersal from River Mouth to Accumulation Zones in High Sediment Load Systems: Fly River, Papua New Guinea and Waipaoa River, New Zealand

    Science.gov (United States)

    Ogston, A. S.; Walsh, J. P.; Hale, R. P.

    2011-12-01

    The relationships between sediment-transport processes, short-term sedimentary deposition, subsequent burial, and long-term accumulation are critical to understanding the morphological development of the continental margin. This study focuses on processes involved in formation and evolution of the clinoform in the Gulf of Papua, Papua New Guinea in which much of the riverine sediment accumulates, and comparison to those processes active off the Waipaoa River, New Zealand that form mid-shelf deposits and export sediment to the slope. In tidally dominated deltas, sediment discharged from the river sources must transit through an estuarine region located within the distributary channels, where particle pathways can undergo significant transformations. Within the distributaries of the Fly River tidally dominated delta, near-bed fluid-mud concentrations were observed at the estuarine turbidity maximum and sediment delivery to the nearshore was controlled by the morphology and gradient of the distributary. El Niño results in anonymously low flow and sediment discharge conditions, which limits transport of sediment from the distributaries to the nearshore zone of temporary storage. Because the sediment stored nearshore feeds the prograding clinoform, this perturbation propagates throughout the dispersal system. In wave-dominated regions, transport mechanisms actively move sediment away from the river source, separating the site of deposition and accumulation from the river mouth. River-flood and storm-wave events each create discrete deposits on the Waipaoa River shelf and data has been collected to determine their form, distribution, and relationship to factors such as flood magnitude or wave energy. In this case, transport pathways appear to be influenced by structurally controlled shelf bathymetry. In both cases, the combined fluvial and marine processes can initiate and maintain gravity-driven density flows, and although their triggers and controls differ vastly

  20. Geodynamics of sediments in stream and river environments. Value of a policy for regional management of sediments

    International Nuclear Information System (INIS)

    Quelennec, R.E.

    1984-01-01

    The description of processes associated with the genesis, mobilization and transport of sediments in catchments and in hydrographic networks makes it easier to understand, from the ''hydrosedimentary'' viewpoint, the part played by sediments in the build-up and transport of radioactive pollutants in continental waters. In order to evaluate the flux of sediments passing through a watercourse, the author puts forward a number of semi-empirical equations and established mathematical models, while specifying the conditions under which they should be applied. The paper ends with a reminder of the principal objectives of a policy for ''regional management of sediments'' as defined by the author and presented during the Propriano Seminar (France) in May 1981. (author)

  1. Tidal and longshore sediment transport associated to a coastal structure

    Science.gov (United States)

    Cuadrado, Diana G.; Gómez, Eduardo A.; Ginsberg, S. Susana

    2005-01-01

    In order to understand the subtidal marine dynamics relative to the coastal engineering works in the Bahía Blanca Estuary (Argentina), the balance of sediment transport caused by tidal currents was estimated in the Puerto Rosales area and compared with the predicted potential littoral transport. The breaking wave height used in the littoral drift calculation was estimated after applying different wave transforming procedures over the deepwater wave which was predicted by the occurrence of predominant wind, blowing long enough in an essentially constant direction over a fetch. The effect of a breakwater on currents and circulation was studied by bathymetric and side-scan sonar records, sedimentology, and tidal current measurements. Different modes of transport occur on either sides of the breakwater. On the east side, longshore transport is the principal mode, and on the west side, tidal transport is predominant.

  2. Mass Transfer Behavior of Perfluorinated Chemicals in Saturated Clay-rich Sands: A Laboratory-based Study on Fate and Transport in Groundwater and Sediments

    Science.gov (United States)

    Greenberg, R. R.; Tick, G. R.; Abbott, J. B., III; Carroll, K. C.

    2017-12-01

    Perfluoroalkyl substances (PFAS) are a class of emerging contaminants that pose a threat to the human health and the quality of groundwater, surface water, and drinking water supplies. This study aims to elucidate the primary physicochemical factors controlling the fate and transport of the PFAS contaminants, perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), in groundwater. Physicochemical processes of intercalation, adsorption, and desorption were investigated for the retention of PFAS at different initial aqueous-phase concentrations in modified-natural sediments composed of sand (40/50 accusand; foc = 0.04% unmodified) with low, medium, and high organic carbon contents (foc = 10, 20, and 50%) and various pre-conditioned clay-fractions. Diffusional mass-transfer limitations were evaluated based on initial PFAS concentration, specific clay structure, and resulting contaminant intercalation (d-spacing changes). A series of short- (48 hr), medium- (7 day) and long-term (30 day) batch and column experiments were conducted to determine physicochemical processes as a function of compound chemistry, sediment geochemistry, sorbent crystalline structure, and contaminant/sediment contact-time. Physicochemical parameters, PFAS concentrations, and sediment characterization were conducted using high performance liquid chromatography (HPLC), X-ray diffraction (XRD), and furnace combustion analytical techniques. The results of PFAS contaminant transport, under the different conditions tested, provide a scientific contribution with application to the development of improved risk assessments, predictions of fate and transport, and more effective remediation strategies for emerging perfluorinated contaminants in soil and groundwater.

  3. Phase transition behavior of sediment transport at the sand-mud interface, across scales from flumes to the large rivers

    Science.gov (United States)

    Ma, H.; Nittrouer, J. A.; Wu, B.; Zhang, Y.; Mohrig, D. C.; Lamb, M. P.; Wang, Y.; Fu, X.; Moodie, A. J.; Naito, K.; Parker, G.

    2017-12-01

    Sediment dispersal and deposition creates deltaic landscapes, establishes coastlines, and produces fertile floodplains, all of which serve as critical landforms inhabited by a large proportion of humankind. If poorly managed, sediment loads in these environments can elevate and clog channels, thereby enhancing hazards such as severe flooding. Predictive descriptions of sediment loads, however, are not well constrained, especially for fine-grained (silt and very-fine sand) dispersal systems, which often include river deltas and coastlines. Here, we show efforts to collect and analyze an extensive sediment load database for fine-grained channels, spanning from small flume experiments to large rivers, in order to evaluate the nature of sediment flux. Our analyses determined that sediment transport exhibits two distinct transport phases, separated by a discontinuous transition, whereby sediment flux differs by one to two orders of magnitude. It is determined that the transition responds to the bed material grain size, and we propose a phase diagram based on this metric alone. These findings help elucidate why previous theories of sediment transport at the sand-silt interface, which are typically continuous, are not able to give satisfactory predictions across different scales and environments. Our work serves to help evaluate anthropic influences on rivers, deltas, and coastlines, and can be applied to better constrain sediment flux of paleo-fluvial systems found on Earth and Mars. For example, in situ measurements of sediment flux for the silty-sandy bed of the lower Yellow River, China, validate the aforementioned phase transition behavior, and illustrate that the channel resides near the transition of high to low efficiency transport modes. Recent dam construction and resulting downstream coarsening of the bed via armoring, however, might lead to the unintended consequence of enhancing flood risk by driving the system to a low efficiency transport mode with high

  4. Sediment transport patterns in the San Francisco Bay Coastal System from cross-validation of bedform asymmetry and modeled residual flux

    Science.gov (United States)

    Barnard, Patrick L.; Erikson, Li H.; Elias, Edwin P.L.; Dartnell, Peter; Barnard, P.L.; Jaffee, B.E.; Schoellhamer, D.H.

    2013-01-01

    The morphology of ~ 45,000 bedforms from 13 multibeam bathymetry surveys was used as a proxy for identifying net bedload sediment transport directions and pathways throughout the San Francisco Bay estuary and adjacent outer coast. The spatially-averaged shape asymmetry of the bedforms reveals distinct pathways of ebb and flood transport. Additionally, the region-wide, ebb-oriented asymmetry of 5% suggests net seaward-directed transport within the estuarine-coastal system, with significant seaward asymmetry at the mouth of San Francisco Bay (11%), through the northern reaches of the Bay (7–8%), and among the largest bedforms (21% for λ > 50 m). This general indication for the net transport of sand to the open coast strongly suggests that anthropogenic removal of sediment from the estuary, particularly along clearly defined seaward transport pathways, will limit the supply of sand to chronically eroding, open-coast beaches. The bedform asymmetry measurements significantly agree (up to ~ 76%) with modeled annual residual transport directions derived from a hydrodynamically-calibrated numerical model, and the orientation of adjacent, flow-sculpted seafloor features such as mega-flute structures, providing a comprehensive validation of the technique. The methods described in this paper to determine well-defined, cross-validated sediment transport pathways can be applied to estuarine-coastal systems globally where bedforms are present. The results can inform and improve regional sediment management practices to more efficiently utilize often limited sediment resources and mitigate current and future sediment supply-related impacts.

  5. Link between concentrations of sediment flux and deep crustal processes beneath the European Alps.

    Science.gov (United States)

    Garefalakis, Philippos; Schlunegger, Fritz

    2018-01-09

    Large sediment fluxes from mountain belts have the potential to cause megafans to prograde into the neighbouring sedimentary basins. These mechanisms have been documented based from numerical modelling and stratigraphic records. However, little attention has been focused on inferring temporal changes in the concentrations of supplied sediment from coarse-grained deposits. Here, we extract changes of this variable in the field from a Late Oligocene, c. 4 km-thick suite of fluvial conglomerates situated in the North Alpine foreland basin, which evolved in response to the tectonic and erosional history of the Alps. We measure a decrease in channel depths from >2 m to 20 cm from the base to the top of the suite. These constraints are used to calculate an increase in fan surface slopes from 1.0° based on the Shields criteria for sediment entrainment. We combine slope and bulk grain size data with the Bagnold equation for sediment transport to infer higher concentrations of the supplied sediment. We use these shifts to propose a change towards faster erosion and a steeper landscape in the Alpine hinterland, driven by mantle-scale processes beneath the Alps.

  6. Understanding controls on redox processes in floodplain sediments of the Upper Colorado River Basin

    Energy Technology Data Exchange (ETDEWEB)

    Noël, Vincent; Boye, Kristin; Kukkadapu, Ravi K.; Bone, Sharon; Lezama Pacheco, Juan S.; Cardarelli, Emily; Janot, Noémie; Fendorf, Scott; Williams, Kenneth H.; Bargar, John R.

    2017-12-15

    River floodplains, heavily used for water supplies, housing, agriculture, mining, and industry, may have water quality jeopardized by native or exogenous metals. Redox processes mediate the accumulation and release of these species in groundwater. Understanding the physicochemical, hydrological, and biogeochemical controls on the distribution and variability and variability of redox conditions is therefore critical to developing conceptual and numerical models of contaminants transport within floodplains. The distribution and intensity of redox activity at the Rifle, CO, site within the Upper Colorado River Basin (UCRB), are believed to be controlled by textural and compositional heterogeneities. Regionally, the UCRB is impacted by former uranium and vanadium ore processing, resulting in contaminations by U, Mo, V, As, Se, and Mn. Floodplains throughout the UCRB share sediment and groundwater characteristics, making redox activity regionally important to metal and radionuclide mobility. In this study, Fe and S speciation were used to track the distribution and stability of redox processes in sediment cores from three floodplain sites covering a 250 km range in the central portion of the UCRB. The results of the present study support the hypothesis that Fe(III) and sulfate reducing sediments are regionally important in the UCRB. The presence of organic carbon together with pore saturation were the key requirements for reducing conditions, dominated by sulfate-reduction. Sediment texture moderated the response of the system to external forcing, such as oxidant infusion, making fine-grain sediments resistant to change in comparison to coarser-grained sediments. Exposure to O2 and NO3- mediates the reactivity and longevity of freshly precipitated sulfides creating the potential for release of sequestered radionuclides and metals. The physical and chemical parameters of reducing zones evidenced in this study are thus thought to be key parameters on the dynamic exchange

  7. Sediment tracing by `customised' magnetic fingerprinting: from the sub-catchment to the ocean scale

    Science.gov (United States)

    Maher, B.

    2009-04-01

    Robust identification of catchment suspended sediment sources is a prerequisite both for understanding sediment delivery processes and targeting of effective mitigation measures. Fine sediment delivery can pose management problems, especially with regard to nutrient run-off and siltation of water courses and bodies. Suspended sediment load constitutes the dominant mode of particulate material loss from catchments but its transport is highly episodic. Identification of suspended sediment sources and fluxes is therefore a prerequisite both for understanding of fluvial geomorphic process and systems and for designing strategies to reduce sediment transport, delivery and yields. Here will be discussed sediment ‘fingerprinting', using the magnetic properties of soils and sediments to characterise sediment sources and transport pathways over a very wide variety of spatial scales, from Lake Bassenthwaite in the English Lake District to the Burdekin River in Queensland and even the North Atlantic Ocean during the last glacial maximum. The applicability of magnetic ‘fingerprinting' to such a range of scales and environments has been significantly improved recently through use of new and site-appropriate magnetic measurement techniques, statistical processing and sample treatment options.

  8. Filtering mountain landscapes and hydrology through sediment transport

    Science.gov (United States)

    Phillips, C. B.; Jerolmack, D. J.

    2013-12-01

    Long-term denudation of landscapes is balanced, and sometimes limited by, the sediment mass flux leaving the system through rivers. Suspended sediment represents the largest fraction of mass exiting the landscape, however coarse bed load transport may be the rate-limiting process of landscape denudation through its control on bedrock channel erosion and incision. We present research linking particle mechanics for a coarse alluvial gravel stream at the flood scale to particle dynamics at the annual timescale, and examine the implications of these results on channel geometry and the hydrology of mountain rivers. We examine the transport dynamics of individual cobbles tagged with passive radio transponder tags from the Mameyes River in the Luquillo Mountains of Puerto Rico, in both bedrock and alluvial stretches. These data are composed of measured 'flight' lengths for each transported particle, the fraction of tagged particles mobilized, and high-resolution river stage measurements. At the single flood scale, measured tracer particle flight lengths are exponentially distributed, and modal flight lengths scale linearly with excess shear velocity (U*-U*c). This is in quantitative agreement with recent theory and laboratory experiments, suggesting that moving particles' velocity is determined by momentum balance with the fluid. Examining tracer displacement at long timescales we use a dimensionless impulse (I*) - obtained by integrating the cumulative excess shear velocity over the duration of a flood (normalized by grain size) - and find that the mean travel distance collapses onto a linear relationship. Data show that partial bed load transport with intermittent motion is the dominant mode for the duration of record. Examining flood statistics, we find that the frequency-magnitude distribution of shear velocity is a power law; however, this scaling is truncated at the threshold of motion, beyond which it displays exponential scaling. The thin-tailed scaling of (U

  9. What one knows is unknown to others: A sediment transport study and its policy application

    CSIR Research Space (South Africa)

    Meissner, Richard

    2017-09-01

    Full Text Available and the Mpumalanga Tourism and Parks Agency. The need for the study emanated from the deteriorating quality of the river’s water of which sediment transport is an important factor (Van Vuuren, 2010). River sediments are imperative components of aquatic ecosystems...

  10. Source Apportionment of Suspended Sediment Sources using 137Cs and 210Pbxs

    Science.gov (United States)

    Lamba, J.; Karthikeyan, K.; Thompson, A.

    2017-12-01

    A study was conducted in the Pleasant Valley Watershed (50 km 2) in South Central Wisconsin to better understand sediment transport processes using sediment fingerprinting technique. Previous studies conducted in this watershed showed that resuspension of fine sediment deposited on the stream bed is an important source of suspended sediment. To better understand the role of fine sediment deposited on the stream bed, fallout radionuclides,137Cs and 210Pbxs were used to determine relative contribution to suspended sediment from in-stream (stream bank and stream bed) and upland sediment sources. Suspended sediment samples were collected during the crop growing season. Potential sources of suspended sediment considered in this study included cropland, pasture and in-stream (stream bed and stream bank). Suspended sediment sources were determined at a subwatershed level. Results of this study showed that in-stream sediment sources are important sources of suspended sediment. Future research should be conducted to better understand the role of legacy sediment in watershed-level sediment transport processes.

  11. Comparative Sediment Transport Between Exposed and Reef Protected Beaches Under Different Hurricane Conditions

    Science.gov (United States)

    Miret, D.; Enriquez, C.; Marino-Tapia, I.

    2016-12-01

    Many world coast regions are subjected to tropical cyclone activity, which can cause major damage to beaches and infrastructure on sediment dominated coasts. The Caribbean Sea has on average 4 hurricanes per year, some of them have caused major damage to coastal cities in the past 25 years. For example, Wilma, a major hurricane that hit SE Mexico in October 2005 generated strong erosion at an exposed beach (Cancun), while beach accretion was observed 28 km south at a fringing reef protected beach (Puerto Morelos). Hurricanes with similar intensity and trajectory but different moving speeds have been reported to cause a different morphological response. The present study analyses the morphodynamic response to the hydrodynamic conditions of exposed and reef protected beaches, generated by hurricanes with similar intensities but different trajectories and moving speeds. A non-stationary Delft3D Wave model is used to generate large scale wind swell conditions and local sea wind states and coupled with Delft3D Flow model to study the connection between the continental shelf and surf zones exchanges. The model is validated with hydrodynamic data gathered during Wilma, and morphological conditions measured before and after the event. Preliminary results show that erosion appears at the exposed beach and a predominant exchange between north and south dominates the shelf sediment transport (figure 1). Onshore driven flows over the reef crest input sediment in the reef protected beach. It is expected that for a same track but faster moving speed, southward sediment transport will have less time to develop and accretion at the reef protected site would be less evident or inexistent. The study can be used as a prediction tool for shelf scale sediment transport exchange driven by hurricanes.

  12. Sediment transport modelling in the Gulf of Lion with the perspective of studying the fate of radionuclides originated by the Rhone River

    International Nuclear Information System (INIS)

    Dufois, Francois

    2008-01-01

    Among the various contaminants introduced in the environment, artificial radionuclides appear particularly important to consider because of their chemical toxicity and / or of their radio-toxicity. Some radionuclides present a high affinity with particles so that the study of the sediment dynamics is a useful preliminary to the study of their dispersion on the open sea. This thesis is focused on the fate of sediments in the Gulf of Lion (NW Mediterranean sea) and in particular on the impact of the Rhone River, which is the main source of particulate matter in the Gulf of Lion. In order to study the sediment transport mechanisms on various space and time scales, this thesis is based on mathematical modelling. The hydro-sedimentary model set up in the Gulf of Lion, which takes into account the gathered effect of waves and currents, was supported by recent hydro-sedimentary data analyses. CARMA (winter 2006/2007) and SCOPE (winter 2007/2008) experiments were used to better understand the physical processes which control the sediment transport on the Rhone pro-delta and to validate the model. The period of the centennial Rhone River flood of December 2003 was also simulated in order to determine the impact of such extreme events on the fate of sediments. Both observations and simulations of the studied periods highlight the high capacity of erosion and transport induced by south-eastern storms on the pro-delta

  13. Spatio-temporal scaling effects on longshore sediment transport pattern along the nearshore zone

    Science.gov (United States)

    Khorram, Saeed; Ergil, Mustafa

    2018-03-01

    A measure of uncertainties, entropy has been employed in such different applications as coastal engineering probability inferences. Entropy sediment transport integration theories present novel visions in coastal analyses/modeling the application and development of which are still far-reaching. Effort has been made in the present paper to propose a method that needs an entropy-power index for spatio-temporal patterns analyses. Results have shown that the index is suitable for marine/hydrological ecosystem components analyses based on a beach area case study. The method makes use of six Makran Coastal monthly data (1970-2015) and studies variables such as spatio-temporal patterns, LSTR (long-shore sediment transport rate), wind speed, and wave height all of which are time-dependent and play considerable roles in terrestrial coastal investigations; the mentioned variables show meaningful spatio-temporal variability most of the time, but explanation of their combined performance is not easy. Accordingly, the use of an entropy-power index can show considerable signals that facilitate the evaluation of water resources and will provide an insight regarding hydrological parameters' interactions at scales as large as beach areas. Results have revealed that an STDDPI (entropy based spatio-temporal disorder dynamics power index) can simulate wave, long-shore sediment transport rate, and wind when granulometry, concentration, and flow conditions vary.

  14. Hurricane-induced Sediment Transport and Morphological Change in Jamaica Bay, New York

    Science.gov (United States)

    Hu, K.; Chen, Q. J.

    2016-02-01

    Jamaica Bay is located in Brooklyn and Queens, New York on the western end of the south shore of the Long Island land mass. It experienced a conversion of more than 60% of the vegetated salt-marsh islands to intertidal and subtidal mudflats. Hurricanes and nor'easters are among the important driving forces that reshape coastal landscape quickly and affect wetland sustainability. Wetland protection and restoration need a better understanding of hydrodynamics and sediment transport in this area, especially under extreme weather conditions. Hurricane Sandy, which made landfall along east coast on October 30, 2012, provides a critical opportunity for studying the impacts of hurricanes on sedimentation, erosion and morphological changes in Jamaica Bay and salt marsh islands. The Delft3D model suit was applied to model hydrodynamics and sediment transport in Jamaica Bay and salt marsh islands. Three domains were set up for nesting computation. The local domain covering the bay and salt marshes has a resolution of 10 m. The wave module was online coupled with the flow module. Vegetation effects were considered as a large number of rigid cylinders by a sub-module in Delft3D. Parameters in sediment transport and morphological change were carefully chosen and calibrated. Prior- and post-Sandy Surface Elevation Table (SET)/accretion data including mark horizon (short-term) and 137Cs and 210Pb (long-term) at salt marsh islands in Jamaica Bay were used for model validation. Model results indicate that waves played an important role in hurricane-induced morphological change in Jamaica Bay and wetlands. In addition, numerical experiments were carried out to investigate the impacts of hypothetic hurricanes. This study has been supported by the U.S. Geological Survey Hurricane Sandy Disaster Recovery Act Funds.

  15. Interactions of solutes and streambed sediment: 1. An experimental analysis of cation and anion transport in a mountain stream

    Science.gov (United States)

    Bencala, Kenneth E.; Kennedy, Vance C.; Zellweger, Gary W.; Jackman, Alan P.; Avanzino, Ronald J.

    1984-01-01

    An experimental injection was performed to study the transport of stream water solutes under conditions of significant interaction with streambed sediments in a mountain pool-and-riffle stream. Experiments were conducted in Little Lost Man Creek, Humboldt County, California, in a period of low flow duringwhich only a part of the bank-full channel held active surface flow. The injection of chloride and several trace cations lasted 20 days. In this report we discuss the results of the first 24 hours of the injection and survey the results of the first 10 days. Solute-streambed interactions of two types were observed. First, the physical transport of the conservative tracer, chloride, was affected by intergravel flow and stagnant watt, zones created by the bed relief. Second, the transport of the cations (strontium, potassium, and lithium) was appreciably modified by sorption onto streambed sediment. In the stream the readily observable consequence of the solute-streambed interactions was an attenuation of the dissolved concentration of each of the tracers. The attenuation in the stream channel occurred concurrently with the storage of tracers in the streambed via both physical and chemical processes. All tracers were subsequently present in shallow wells dug several meters from the wetted part of the channel. Sediment samples collected approximately 3 weeks after the start of the injection contained increased concentrations of the injected cations.

  16. Numerical Modelling of Suspended Transport and Deposition of Highway Deposited Sediments

    DEFF Research Database (Denmark)

    Bentzen, Thomas Ruby; Larsen, Torben; Bach, Christine

    Good data for calibration and validation of numerical models are of high importance. In the natural environment data can be hard to archive and the stochastic nature have governing influence on the data archived. Hence for modelling of suspended transport and deposition of particles, originating ...... from the highway surfaces, in highway detention ponds, four experiments are carried out. To simplify the complexity of a real pond and for easy control and measurement the sediment transports where carried out in two rectangular channels....

  17. Rheology of sediment transported by a laminar flow

    Science.gov (United States)

    Houssais, M.; Ortiz, C. P.; Durian, D. J.; Jerolmack, D. J.

    2016-12-01

    Understanding the dynamics of fluid-driven sediment transport remains challenging, as it occurs at the interface between a granular material and a fluid flow. Boyer, Guazzelli, and Pouliquen [Phys. Rev. Lett. 107, 188301 (2011)], 10.1103/PhysRevLett.107.188301 proposed a local rheology unifying dense dry-granular and viscous-suspension flows, but it has been validated only for neutrally buoyant particles in a confined and homogeneous system. Here we generalize the Boyer, Guazzelli, and Pouliquen model to account for the weight of a particle by addition of a pressure P0 and test the ability of this model to describe sediment transport in an idealized laboratory river. We subject a bed of settling plastic particles to a laminar-shear flow from above, and use refractive-index-matching to track particles' motion and determine local rheology—from the fluid-granular interface to deep in the granular bed. Data from all experiments collapse onto a single curve of friction μ as a function of the viscous number Iv over the range 3 ×10-5 ≤Iv≤2 , validating the local rheology model. For Ivcreeping regime where we observe a continuous decay of the friction coefficient μ ≤μs as Iv decreases. The rheology of this creep regime cannot be described by the local model, and more work is needed to determine whether a nonlocal rheology model can be modified to account for our findings.

  18. Sediment transport direction in fluviatile Karharbari sandstone, Giridih Basin, Bihar

    Energy Technology Data Exchange (ETDEWEB)

    Tewari, R C; Casshyap, S M

    1978-01-01

    The sandstone is pebbly, very coarse grained in the lower part, and coarse to medium grained in the upper part. Shale and coal respectively constitute 9 and 5% of the strata Small and large erosional channels and successive sets of large scale cross-bedding characterize the sandstone. Palaeo- currents reveal that the paleodrainage and sediment transport were dominantly directed from SSW to NNE.

  19. Proposal of industrialization process of dredged sediments

    Directory of Open Access Journals (Sweden)

    Rachid Hadj Sadok

    2018-01-01

    Full Text Available Our study will focus on life cycle assessment (LCA of dredged sediments in its environment from sediment extraction to waste treatment. This tool is part of an environmental management approach, to compare the environmental loads of the different stages of the life cycle of the same product and to deduce which stage of the scenario is the most polluting in environmental terms. Optimize the modeling of industrialization process of dredged sediments using the SimaPro 8.2.3 software to propose a model that is the most respectful of the environment. We will focus on the environmental impacts; we will try to propose the most environmentally friendly scenario to exploit these dredged sediments in the field of building construction.

  20. A systematic study of wave conditions and sediment transport near Mormugao harbour

    Digital Repository Service at National Institute of Oceanography (India)

    Reddy, M.P.M.

    Wave conditions and the nature of sediment transport in the Mormugao Harbour area have been evaluated in view of the proposed development project of this harbour It has been found from this study that generally high waves will be experienced...

  1. Quantifying solute transport processes: are chemically "conservative" tracers electrically conservative?

    Science.gov (United States)

    Singha, Kamini; Li, Li; Day-Lewis, Frederick D.; Regberg, Aaron B.

    2012-01-01

    The concept of a nonreactive or conservative tracer, commonly invoked in investigations of solute transport, requires additional study in the context of electrical geophysical monitoring. Tracers that are commonly considered conservative may undergo reactive processes, such as ion exchange, thus changing the aqueous composition of the system. As a result, the measured electrical conductivity may reflect not only solute transport but also reactive processes. We have evaluated the impacts of ion exchange reactions, rate-limited mass transfer, and surface conduction on quantifying tracer mass, mean arrival time, and temporal variance in laboratory-scale column experiments. Numerical examples showed that (1) ion exchange can lead to resistivity-estimated tracer mass, velocity, and dispersivity that may be inaccurate; (2) mass transfer leads to an overestimate in the mobile tracer mass and an underestimate in velocity when using electrical methods; and (3) surface conductance does not notably affect estimated moments when high-concentration tracers are used, although this phenomenon may be important at low concentrations or in sediments with high and/or spatially variable cation-exchange capacity. In all cases, colocated groundwater concentration measurements are of high importance for interpreting geophysical data with respect to the controlling transport processes of interest.

  2. Assessing saltmarsh resilience to sea-level rise by examining sediment transport trends in the Great Marsh, MA.

    Science.gov (United States)

    Hughes, Z. J.; Georgiou, I. Y.; Gaweesh, A.; Hanegan, K.; FitzGerald, D.; Hein, C. J.

    2017-12-01

    Under accelerating sea-level rise (SLR), marshes are vulnerable to increased inundation, dependent on their ability to accrete vertically or expand into upland areas. Accretion is a function of organic and inorganic contributions from plant biomass and suspended sediment deposition, respectively. Along the east coast of the US, present rates of SLR are higher than they have been for over 1000 years and are expected to increase in the near future. To predict the resilience of saltmarshes, we urgently need improved understanding of spatial patterns of sediment transport and deposition within these systems. This study examines time-series of suspended sediment concentration and flow collected using ADCP-OBS units, deployed throughout the Great Marsh System. We compare the data to model results and observations of short and long term deposition throughout the system. Field observations show that tidal amplitude and phase vary throughout the Great Marsh. Tidal asymmetry increases inland from the estuary mouth, and the maximum phase lag is 2 hours. This effect is strongest during low slack tide; with a delay of only 30-45 minutes at high tide. Tidal velocities exhibit strong asymmetry, reflected in pulses of sediment movement. Sediment transport initiates at mid ebb, peaking 1.5-2.5 hours later, decreasing through low slack tide for 7-9 hours until high slack tide. The results have broad implications for the potential input of inorganic sediment to the marsh platform. Results from a validated Delft3D model reproduce field observations and expand spatial sediment transport trends. We experiment by releasing sediment in different parts of the estuary, mimicking marsh edge or tidal flat erosion, and tracking mud and sand transport trajectories. Sands remains proximal to the erosion site, whereas mud is more mobile and travels farther, reaching the inlet within days of erosion. Longer simulations suggest that despite higher mobility, muds remain mostly in the channels and

  3. Evidence of transport, sedimentation and coagulation mechanisms in the relaxation of post-volcanic stratospheric aerosols

    Directory of Open Access Journals (Sweden)

    D. Fussen

    2001-09-01

    Full Text Available Spatio-temporal distributions of stratospheric aerosols, measured by the ORA instrument from August 1992 until May 1993, are presented in the latitude range (40° S–40° N. Particle total number density, mode radius and distribution width are derived and interpreted. The respective roles of advection, sedimentation and coagulation are discussed. We also identify clear transport/sedimentation patterns and we show the enhancement of coagulation in stagnation regions. Efficient transport of aerosol particles up to 50 km is suggested.Key words. Atmospheric composition and structure (aerosols and particles; middle atmosphere-composition and chemistry; volcanic effects

  4. Transport of phosphorus, wash load and suspended sediment in the River Varde A in southwest Jutland, Denmark

    DEFF Research Database (Denmark)

    Thodsen, Hans; Hasholt, Bent; Pejrup, Morten

    2004-01-01

    Total phosphorus (TP) concentrations, suspended sediment concentrations (SSC) and wash load have been measured at three river monitoring stations in the River Varde Angstrom system since 1998. This provides the possibility of studying the link between SSC and wash load and concentrations of TP...... at the end of a small impoundment. Transport rates at the upstream stations were 57% higher for suspended sediment and 27% higher for wash load than at the downstream station, while transport of TP was the same. This indicates that phosphorus is transported adhered to the finest grain size fractions that do...

  5. Investigation of sediment transport and optimization of dredging operations in Indian ports using radiotracer technique

    International Nuclear Information System (INIS)

    Pant, H.J.

    2012-01-01

    India has a long coastline of about 7,515 km and there are twelve major ports situated on the coastline. Out of them, six are situated on the West Coast whereas other six are situated on the East Coast. In addition to this, there are more than 140 minor ports and other marine establishments situated along the coastline. Each port and marine project has a navigation channel and depth of this navigation channel needs to be maintained to a level of at least 12-15 meters for smooth sailing of ships. Sediments continuously move along the coast due to alongshore currents generated by the waves and tides; and get deposited in navigation channels. For maintaining the required depth of the channels, the dredging operation is carried out. throughout the year or as and when required. Development of a new port or harbour also involves huge capital dredging. The dredged sediments generated during maintenance or capital dredging needs to be dumped at a suitable location, so that it does not find its way back to the channel and obstruct sailing of ships. Moreover the selected site should be such that the turn around time of the dredger is kept minimum to economize the dredging operation. In order to meet the above requirements, the knowledge of transport parameters such as the general direction of movement, extent of lateral and longitudinal movement, transport velocity, transport thickness and bed load movement rate is required. Radiotracer techniques are commonly used to investigate sediment transport on seabed and evaluate the suitability of the proposed dumping sites. Scandium-46 (half-life: 84 days, Gamma energies: 0.89 MeV (100%), 1.12 MeV (100%)) in the form of scandium glass powder is the most suitable radiotracer for tracing sediments on seabed. The activity used in an investigation ranges from 75-300 GBq (2-8 Ci). The suitably prepared particulate radiotracer is injected on seabed at the proposed site using a specially designed injection system and its movement is

  6. Importance of isotopes for understanding the sedimentation processes

    International Nuclear Information System (INIS)

    Manjunatha, B.R.

    2012-01-01

    Isotopes of either radioactive or stable depending upon radiation emitted or not respectively which have wide applications in understanding not only the history of sedimentation, but also provide information about paleoclimate. Stable isotope mass difference occurs due to changes in physicochemical conditions of the ambient environment, for instance temperature, evaporation, precipitation, redox processes, and changes in the mobility of elements during weathering processes, biological uptake, metabolism, re-mineralization of biogenic material, etc. In contrast, radionuclides emit radiation because of excess of neutrons present in the nucleus when compared to protons of an atom. The decay of radioactive isotopes is unaffected despite changes in physicochemical variations; hence, they are useful for determining ages of different types of materials on earth. The radioisotopes can be classified based on origin and half life into primordial or long-lived, cosmogenic and artificial radionuclides or fission products. In this study, the importance of 137 Cs artificial radionuclides will be highlighted to understand short-term sedimentation processes, particularly in estuaries, deltas/continental shelf of west coast of India. The distribution of 137 Cs in sediments of south-western continental margin of India indicates that coastal marginal environments are filters or sinks for fall-out radionuclides. The sparse of 137 Cs in the open continental shelf environment indicates that most of sediments are either older or sediments being diluted by components generated in the marine environment

  7. Cyclic Sediment Trading Between Channel and River Bed Sediments

    Science.gov (United States)

    Haddadchi, A.

    2015-12-01

    Much of the previous work on sediment tracing has focused on determining either the initial sources of the sediment (soils derive from a particular rock type) or the erosion processes generating the sediment. However, alluvial stores can be both a source and sink for sediment transported by streams. Here geochemical and fallout radionuclide tracing of river-bed and alluvial sediments are used to determine the role of secondary sources, sediment stores, as potential sources of sediment leaving Emu Creek catchment, southeastern Queensland, Australia. Activity concentrations of 137Cs on the river sediments are consistent with channel erosion being the dominant source at all sites sampled along the river. To characterise the deposition and remobilisation cycles in the catchment, a novel geochemical tracing approach was used. Successive pockets of alluvium were treated as discrete sink terms within geochemical mixing models and their source contributions compared with those of river bed sediments collected adjacent to each alluvial pocket. Three different size fractions were examined; silts and clays (banks indicates a high degree of 'trading' between the fluvial space and the alluvial space. Hence, management works aimed at primarily reducing the supply of sediments to the outlet of Emu Creek should focus on rehabilitation of channel banks in the lower catchment.

  8. Modeling flow, sediment transport and morphodynamics in rivers

    Science.gov (United States)

    Nelson, Jonathan M.; McDonald, Richard R.; Shimizu, Yasuyuki; Kimura, Ichiro; Nabi, Mohamed; Asahi, Kazutake

    2016-01-01

    Predicting the response of natural or man-made channels to imposed supplies of water and sediment is one of the difficult practical problems commonly addressed by fluvial geomorphologists. This problem typically arises in three situations. In the first situation, geomorphologists are attempting to understand why a channel or class of channels has a certain general form; in a sense, this is the central goal of fluvial geomorphology. In the second situation, geomorphologists are trying to understand and explain how and why a specific channel will evolve or has evolved in response to altered or unusual sediment and water supplies to that channel. For example, this would include explaining the short-term response of a channel to an unusually large flood or predicting the response of a channel to long-term changes in flow or sediment supply due to various human activities such as damming or diversions. Finally, geomorphologists may be called upon to design or assess the design of proposed man-made channels that must carry a certain range of flows and sediment loads in a stable or at least quasi-stable manner. In each of these three situations, the problem is really the same: geomorphologists must understand and predict the interaction of the flow field in the channel, the sediment movement in the channel and the geometry of the channel bed and banks. In general, the flow field, the movement of sediment making up the bed and the morphology of the bed are intricately linked; the flow moves the sediment, the bed is altered by erosion and deposition of sediment and the shape of the bed is critically important for predicting the flow. This complex linkage is precisely what makes understanding channel form and process such a difficult and interesting challenge.

  9. Release of Aged Contaminants from weathered sediments: Effects of sorbate speciation on scaling of reactive transport

    Energy Technology Data Exchange (ETDEWEB)

    Chorover, Jon [Univ. of Arizona, Tucson, AZ (United States); Perdrial, Nico [Univ. of Arizona, Tucson, AZ (United States); Mueller, Karl [Pennsylvania State Univ., University Park, PA (United States); Strepka, Caleb [Pennsylvania State Univ., University Park, PA (United States); O' Day, Peggy [Univ. of California, Merced, CA (United States); Rivera, Nelson [Univ. of California, Merced, CA (United States); Um, Wooyong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chang, Hyun-Shik [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Steefel, Carl [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Thompson, Aaron [Univ. of Georgia, Athens, GA (United States)

    2012-08-14

    Hanford sediments impacted by hyperalkaline high level radioactive waste have undergone incongruent silicate mineral weathering concurrent with contaminant uptake (Chorover et al., 2008). In this project, we studied the impact of background pore water (BPW) on strontium, cesium and iodine desorption and transport in Hanford sediments that were experimentally weathered by contact with simulated hyperalkaline tank waste leachate (STWL) solutions. Using those lab-weathered Hanford sediments (HS) and model precipitates formed during nucleation from homogeneous STWL solutions (HN), we (i) provided thorough characterization of reaction products over a matrix of field-relevant gradients in contaminant concentration, PCO2, and reaction time; (ii) improved molecular-scale understanding of how sorbate speciation controls contaminant desorption from weathered sediments upon removal of caustic sources; and (iii) developed a mechanistic, predictive model of meso- to field-scale contaminant reactive transport under these conditions. Below, we provide some detailed descriptions of our results from this three year study, recently completed following a one-year no cost extension.

  10. Release of aged contaminants from weathered sediments: Effects of sorbate speciation on scaling of reactive transport

    Energy Technology Data Exchange (ETDEWEB)

    Chorover, Jon; Perdrial, Nico; Mueller, Karl; Strepka, Caleb; O’Day, Peggy; Rivera, Nelson; Um, Wooyong; Chang, Hyun-Shik; Steefel, Carl; Thompson, Aaron

    2012-11-05

    Hanford sediments impacted by hyperalkaline high level radioactive waste have undergone incongruent silicate mineral weathering concurrent with contaminant uptake. In this project, we studied the impact of background pore water (BPW) on strontium, cesium and iodine desorption and transport in Hanford sediments that were experimentally weathered by contact with simulated hyperalkaline tank waste leachate (STWL) solutions. Using those lab-weathered Hanford sediments (HS) and model precipitates formed during nucleation from homogeneous STWL solutions (HN), we (i) provided thorough characterization of reaction products over a matrix of field-relevant gradients in contaminant concentration, partial pressure of carbon dioxide, and reaction time; (ii) improved molecular-scale understanding of how sorbate speciation controls contaminant desorption from weathered sediments upon removal of caustic sources; and (iii) developed a mechanistic, predictive model of meso- to field-scale contaminant reactive transport under these conditions. In this final report, we provide detailed descriptions of our results from this three-year study, completed in 2012 following a one-year no cost extension.

  11. Origin and processing of terrestrial organic carbon in the Amazon system: lignin phenols in river, shelf, and fan sediments

    Science.gov (United States)

    Sun, Shuwen; Schefuß, Enno; Mulitza, Stefan; Chiessi, Cristiano M.; Sawakuchi, André O.; Zabel, Matthias; Baker, Paul A.; Hefter, Jens; Mollenhauer, Gesine

    2017-05-01

    The Amazon River transports large amounts of terrestrial organic carbon (OCterr) from the Andean and Amazon neotropical forests to the Atlantic Ocean. In order to compare the biogeochemical characteristics of OCterr in the fluvial sediments from the Amazon drainage basin and in the adjacent marine sediments, we analysed riverbed sediments from the Amazon mainstream and its main tributaries as well as marine surface sediments from the Amazon shelf and fan for total organic carbon (TOC) content, organic carbon isotopic composition (δ13CTOC), and lignin phenol compositions. TOC and lignin content exhibit positive correlations with Al / Si ratios (indicative of the sediment grain size) implying that the grain size of sediment discharged by the Amazon River plays an important role in the preservation of TOC and leads to preferential preservation of lignin phenols in fine particles. Depleted δ13CTOC values (-26.1 to -29.9 ‰) in the main tributaries consistently correspond with the dominance of C3 vegetation. Ratios of syringyl to vanillyl (S / V) and cinnamyl to vanillyl (C / V) lignin phenols suggest that non-woody angiosperm tissues are the dominant source of lignin in the Amazon basin. Although the Amazon basin hosts a rich diversity of vascular plant types, distinct regional lignin compositions are not observed. In the marine sediments, the distribution of δ13CTOC and Λ8 (sum of eight lignin phenols in organic carbon (OC), expressed as mg/100 mg OC) values implies that OCterr discharged by the Amazon River is transported north-westward by the North Brazil Current and mostly deposited on the inner shelf. The lignin compositions in offshore sediments under the influence of the Amazon plume are consistent with the riverbed samples suggesting that processing of OCterr during offshore transport does not change the encoded source information. Therefore, the lignin compositions preserved in these offshore sediments can reliably reflect the vegetation in the Amazon

  12. The role of geology in sediment supply and bedload transport patterns in coarse-grained streams

    Science.gov (United States)

    Sandra E. Ryan

    2007-01-01

    This paper compares gross differences in rates of bedload sediment moved at bankfull discharges in 19 channels on national forests in the Middle and Southern Rocky Mountains. Each stream has its own "bedload signal," in that the rate and size of materials transported at bankfull discharge largely reflect the nature of flow and sediment particular to that...

  13. The Association of Cryptosporidium parvum With Suspended Sediments: Implications for Transport in Surface Waters

    Science.gov (United States)

    Searcy, K. E.; Packman, A. I.; Atwill, E. R.; Harter, T.

    2003-12-01

    Understanding the transport and fate of microorganisms in surface waters is of vital concern in protecting the integrity and safety of municipal water supply systems. The human pathogen Cryptosporidium parvum is a particular public health interest, as it is ubiquitous in the surface waters of the United States, it can persist for long periods in the environment, and it is difficult to disinfect in water treatment plants. Due to its small size (5 um), low specific gravity (1.05 g/cm3), and negative surface charge, C. parvum oocysts are generally considered to move through watersheds from their source to drinking water reservoirs with little attenuation. However, the transport of the oocysts in surface waters may be mediated by interactions with suspended sediments. Batch experiments were conducted to determine the extent of C. parvum oocyst attachment to several inorganic and organic sediments under varying water chemical conditions, and settling column experiments were performed to demonstrate how these associations influence the effective settling velocity of C. parvum oocysts. Results from these experiments showed that C. parvum oocysts do associate with inorganic and organic sediments and often settle at the rate of the suspended sediment. The size and surface charge of the host suspended sediment influenced the extent of oocyst attachment as oocysts preferentially associated with particles greater than 3 um, and fewer oocysts associated with particles having a highly negative surface charge. Background water chemical conditions including ionic strength, ion composition, and pH did not have a significant effect on oocyst attachment to suspended sediments.

  14. Human impact on erosion patterns and sediment transport in the Yangtze River

    NARCIS (Netherlands)

    Sun, Xilin; Li, Chang'an; Kuiper, K. F.; Zhang, Zengjie; Gao, Jianhua; Wijbrans, J. R.

    2016-01-01

    Sediment load in rivers is an indicator of erosional processes in the upstream river catchments. Understanding the origin and composition of the sediment load can help to assess the influence of natural processes and human activities on erosion. Tectonic uplift, precipitation and run-off, hill

  15. Climate change and the impact of increased rainfall variability on sediment transport and catchment scale water quality

    Science.gov (United States)

    Hancock, G. R.; Willgoose, G. R.; Cohen, S.

    2009-12-01

    Recently there has been recognition that changing climate will affect rainfall and storm patterns with research directed to examine how the global hydrological cycle will respond to climate change. This study investigates the effect of different rainfall patterns on erosion and resultant water quality for a well studied tropical monsoonal catchment that is undisturbed by Europeans in the Northern Territory, Australia. Water quality has a large affect on a range of aquatic flora and fauna and a significant change in sediment could have impacts on the aquatic ecosystems. There have been several studies of the effect of climate change on rainfall patterns in the study area with projections indicating a significant increase in storm activity. Therefore it is important that the impact of this variability be assessed in terms of catchment hydrology, sediment transport and water quality. Here a numerical model of erosion and hydrology (CAESAR) is used to assess several different rainfall scenarios over a 1000 year modelled period. The results show that that increased rainfall amount and intensity increases sediment transport rates but predicted water quality was variable and non-linear but within the range of measured field data for the catchment and region. Therefore an assessment of sediment transport and water quality is a significant and complex issue that requires further understandings of the role of biophysical feedbacks such as vegetation as well as the role of humans in managing landscapes (i.e. controlled and uncontrolled fire). The study provides a robust methodology for assessing the impact of enhanced climate variability on sediment transport and water quality.

  16. Sediment exchange between groin fields and main-stream

    Science.gov (United States)

    Qin, Jie; Zhong, Deyu; Wu, Teng; Wu, Lingli

    2017-10-01

    Sediment exchange between groin fields and the main-stream influences the transport and distribution of polluted sediment that represents a hazard for rivers and neighboring floodplains. Despite its practical significance, little research has been done on the sediment exchange process itself, and existing studies used to estimate the sediment exchange by morphological change. The sediment exchange process, however, differs from morphological variation and includes two behaviors: the entrance of main-stream sediment into groin fields and the movement of groin field sediment out of groin fields. Therefore, this study aims at examining this exchange process and exploring the mechanisms of different exchange phenomena. Experiments were conducted in a mobile-bed laboratory flume by using a novel experimental method that successfully separates the movement of groin fields sediment from that of main-stream sediment. In addition to traditional measurements, such as measurements of morphological changes, surface flow velocities, and bed-form propagation, the deposition of main-stream sediment in groin fields is measured in detail. The results demonstrate that morphological change cannot reflect the sediment exchange process. The deposition of main-stream sediment in groin fields is determined by the dynamics of sediment movement, in which bedload- and suspended-sediment-dominated processes exhibit different deposition patterns. The movement of groin field sediment out of groin fields is determined mainly by local scouring around groins.

  17. Quantification of soil erosion and transport processes in the in the Myjava Hill Land

    Science.gov (United States)

    Hlavcová, Kamila; Kohnová, Silvia; Velisková, Yvetta; Studvová, Zuzana; Socuvka, Valentin; Németová, Zuzana; Duregová, Maria

    2017-04-01

    The aim of the study is a complex analysis of soil erosion processes and proposals for erosion control in the region of the Myjava Hill Land located in western Slovakia. The Myjava Hill Land is characteristic of quick runoff response, intensive soil erosion by water and related muddy floods, which are determined by both natural and socio-economic conditions. In this paper a case study in the Svacenický Creek catchment, with a focus on the quantification of soil loss from the agriculturally arable lands and sediment transport to the dry water reservoir (polder) of the Svacenický Creek is presented. Erosion, sediment transport, and the deposition of sediments in the water reservoir represent a significant impact on its operation, mainly with regard to reducing its accumulation volume. For the analysis of the soil loss and sediment transport from the Svacenický Creek catchment, the Universal Soil Loss Equation, the USLE 2D, and the Sediment Delivery Ratio (SDR) models were applied. Because the resulting values of the soil loss exceeded the values of the tolerated soil loss, erosion control measures by strip cropping were designed. Strip cropping is based on altering crop strips with protective (infiltration) strips. The effectiveness of the protective (infiltration) strips for reducing runoff from the basin by the SCS-CN method was estimated. Monitoring the morphological parameters of bottom sediments and their changes over time is crucial information in the field of water reservoir operations. In September 2015, the AUV EcoMapper was used to gather the data information on the Svacenický Creek reservoir. The data includes information about the sediment depths and parameters of the water quality. The results of the surveying are GIS datasets and maps, which provide a higher resolution of the bathymetric data and contours of the bottom reservoir. To display the relief of the bottom, the ArcMap 10.1. software was used. Based on the current status of the bottom

  18. 3D Modelling of Transport, Deposition and Resuspension of Highway Deposited Sediments in wet Detention Ponds

    DEFF Research Database (Denmark)

    Bentzen, Thomas Ruby

    2010-01-01

    concrete channel with width of 0.8m and a water depth of approximately 0.8m and in circular flume experiments in order to reproduce near-bed specific processes such as resuspension and consolidation. With a fairly good agreement with measurements, modelling of hydrodynamics, transport of dissolved...... pollutants and particles in wet detention ponds is possible with application of a three dimensional RANS model and the advection/dispersion equation taken physical phenomena like wind, waves, deposition, erosion and consolidation of the bottom sediment into account....

  19. Reservoir Sedimentation and Upstream Sediment Sources: Perspectives and Future Research Needs on Streambank and Gully Erosion

    Science.gov (United States)

    Fox, G. A.; Sheshukov, A.; Cruse, R.; Kolar, R. L.; Guertault, L.; Gesch, K. R.; Dutnell, R. C.

    2016-05-01

    The future reliance on water supply and flood control reservoirs across the globe will continue to expand, especially under a variable climate. As the inventory of new potential dam sites is shrinking, construction of additional reservoirs is less likely compared to simultaneous flow and sediment management in existing reservoirs. One aspect of this sediment management is related to the control of upstream sediment sources. However, key research questions remain regarding upstream sediment loading rates. Highlighted in this article are research needs relative to measuring and predicting sediment transport rates and loading due to streambank and gully erosion within a watershed. For example, additional instream sediment transport and reservoir sedimentation rate measurements are needed across a range of watershed conditions, reservoir sizes, and geographical locations. More research is needed to understand the intricate linkage between upland practices and instream response. A need still exists to clarify the benefit of restoration or stabilization of a small reach within a channel system or maturing gully on total watershed sediment load. We need to better understand the intricate interactions between hydrological and erosion processes to improve prediction, location, and timing of streambank erosion and failure and gully formation. Also, improved process-based measurement and prediction techniques are needed that balance data requirements regarding cohesive soil erodibility and stability as compared to simpler topographic indices for gullies or stream classification systems. Such techniques will allow the research community to address the benefit of various conservation and/or stabilization practices at targeted locations within watersheds.

  20. Concentration and chiral signature of chlordane in soils and sediments of the Central Tibetan Plateau, China: Transformation in the surficial process

    International Nuclear Information System (INIS)

    Yuan, Guo-Li; Wu, Ming-Zhe; Sun, Yong; Li, Jun; Han, Peng; Wang, Gen-Hou

    2015-01-01

    The fraction of trans-chlordane (TC) in chlordane was used to indicate racemic degradation while the enantiomer fractions (EFs) indicated enantioselective depletion. In 44 soils of the Central Tibetan Plateau, the fractions of TC ranged from 0.368 to 0.411. The EFs ranged from 0.174 to 0.696 for TC and from 0.483 to 0.672 for cis-chlordane (CC). (−) enantiomer excess (ee) was found to be 80.0% in the soils for TC and (+) ee was 86.5% for CC. The fraction of TC changed with the clay content while the EFs changed with the soil organic carbon. Meanwhile, the fractions of TC and the EFs were determined for the surficial sediments in Yamzhog Yumco Lake, which were compared with those in the soils at its catchment area. The composition and chiral signature of chlordane did not vary between soils and sediments. Our results will help to elucidate the transformation of chlordane in soils and in surficial transport. - Highlights: • F TC and EFs were determined for TC and CC in soil and sediment of CTP. • F TC of racemic degradation changed with the content of clays in soils. • EFs of enantioselective depletion changed with SOC in soils. • F TC and EFs were maintained during the surficial transport process. - The racemic and enantioselective transformation of chlordane were investigated in soils and sediments to characterize the surficial soil-to-sediment transport in the CTP.

  1. Characterizing Feedbacks Between Environmental Forcing and Sediment Characteristics in Fluvial and Coastal Systems

    Science.gov (United States)

    Feehan, S.; Ruggiero, P.; Hempel, L. A.; Anderson, D. L.; Cohn, N.

    2016-12-01

    Characterizing Feedbacks Between Environmental Forcing and Sediment Characteristics in Fluvial and Coastal Systems American Geophysical Union, 2016 Fall Meeting: San Francisco, CA Authors: Scott Feehan, Peter Ruggiero, Laura Hempel, and Dylan Anderson Linking transport processes and sediment characteristics within different environments along the source to sink continuum provides critical insight into the dominant feedbacks between grain size distributions and morphological evolution. This research is focused on evaluating differences in sediment size distributions across both fluvial and coastal environments in the U.S. Pacific Northwest. The Cascades' high relief is characterized by diverse flow regimes with high peak/flashy flows and sub-threshold flows occurring in relative proximity and one of the most energetic wave climates in the world. Combining analyses of both fluvial and coastal environments provides a broader understanding of the dominant forces driving differences between each system's grain size distributions, sediment transport processes, and resultant evolution. We consider sediment samples taken during a large-scale flume experiment that simulated floods representative of both high/flashy peak flows analogous to runoff dominated rivers and sub-threshold flows, analogous to spring-fed rivers. High discharge flows resulted in narrower grain size distributions while low flows where less skewed. Relative sediment size showed clear dependence on distance from source and the environments' dominant fluid motion. Grain size distributions and sediment transport rates were also quantified in both wave dominated nearshore and aeolian dominated backshore portions of Long Beach Peninsula, Washington during SEDEX2, the Sandbar-aEolian-Dune EXchange Experiment of summer 2016. The distributions showed spatial patterns in mean grain size, skewness, and kurtosis dependent on the dominant sediment transport process. The feedback between these grain size

  2. Colloid Genesis/Transport and Flow Pathway Alterations Resulting From Interactions of Reactive Waste Solutions and Hanford Vadose Zone Sediments

    International Nuclear Information System (INIS)

    Wan, Jiamin; Tokunaga, Tetsu K.

    2001-01-01

    Leakage of underground tanks containing high-level nuclear waste solutions has been identified at various DOE facilities. The Hanford Site is one the main facilities of concern, with about 2,300 to 3,400 m3 of leaked waste liquids. Radionuclides and other contaminants have been found in elevated concentrations in the vadose zone and groundwater underneath single shell tank farms. We do not currently know the mechanisms responsible for the unexpected deep migration of some contaminants through the vadose zone, and such understanding is urgently needed for planning remediation. Due to the extreme chemical conditions of the tank waste solutions (very high pH, aluminum concentration, and ionic strength), interactions between the highly reactive waste solutions and sediments underneath the tanks can result in dissolution of primary minerals of the sediments and precipitation of secondary phases including colloidal particles. Contaminants can sorb onto and/or co-precipitate with the secondary phases. Therefore transport of strongly associated contaminants on mobile colloids can be substantially greater than without colloids. The overall objective of this research is to improve our understanding on the effects of interactions between the tank waste solution and sediments on deep contaminant migration under Hanford Site conditions. This objective will be achieved through the following four tasks: (1) colloid generation and transport studies, (2) studies on sediment permeability and chemical composition alterations, (3) quantifying associations of contaminants with secondary colloids, and (4) studies on the combined effects of the aforementioned processes on deep contaminant migration

  3. Sediment transport dynamics in the Central Himalaya: assessing during monsoon the erosion processes signature in the daily suspended load of the Narayani river

    Science.gov (United States)

    Morin, Guillaume; Lavé, Jérôme; Lanord, Christian France; Prassad Gajurel, Ananta

    2017-04-01

    The evolution of mountainous landscapes is the result of competition between tectonic and erosional processes. In response to the creation of topography by tectonics, fluvial, glacial, and hillslope denudation processes erode topography, leading to rock exhumation and sediment redistribution. When trying to better document the links between climate, tectonic, or lithologic controls in mountain range evolution, a detailed understanding of the influence of each erosion process in a given environment is fundamental. At the scale of a whole mountain range, a systematic survey and monitoring of all the geomorphologic processes at work can rapidly become difficult. An alternative approach can be provided by studying the characteristics and temporal evolution of the sediments exported out of the range. In central Himalaya, the Narayani watershed presents contrasted lithologic, geochemical or isotopic signatures of the outcropping rocks as well as of the erosional processes: this particular setting allows conducting such type of approach by partly untangling the myopic vision of the spatial integration at the watershed scale. Based on the acquisition and analysis of a new dataset on the daily suspended load concentration and geochemical characteristics at the mountain outlet of one of the largest Himalayan rivers (drainage area = 30000 km2) bring several important results on Himalayan erosion, and on climatic and process controls. 1. Based on discrete depth sampling and on daily surface sampling of suspended load associated to flow characterization through ADCP measurements, we were first able to integrate sediment flux across a river cross-section and over time. We estimate for 2010 year an equivalent erosion rate of 1.8 +0.35/-0.2 mm/yr, and over the last 15 years, using past sediment load records from the DHM of Nepal, an equivalent erosion rate of 1.6 +0.3/-0.2 mm/yr. These rates are also in close agreement with the longer term ( 500 yrs) denudation rates of 1.7 mm

  4. Sediment fluxes and the littoral drift along northeast Andhra Pradesh Coast, India: estimation by remote sensing.

    Science.gov (United States)

    Kunte, Pravin D; Alagarsamy, R; Hursthouse, A S

    2013-06-01

    The littoral drift regime along the northeastern coast of India was investigated by analyzing coastal drift indicators and shoreline changes based on multitemporal satellite images. The study of offshore turbidity patterns and quantitative estimation of suspended sediments was undertaken to understand the magnitude and direction of movement of sediment fluxes. The study revealed that: (1) the character of coastal landforms and sedimentation processes indicate that the sediment transport is bidirectional and monsoon dependent; (2) multidate, multitemporal analysis of satellite images helps to show the nature of sediment transport along the coast. The dominant net sediment transport is in a NE direction along the eastern coast of India. Finally, this assessment demonstrates the potential of remote sensing technology in understanding the coastal morphometric changes, long-term sediment transport, shoreline changes, and offshore turbidity distribution pattern and the implications for the transport of sediment-associated pollutants.

  5. Variation in flow and suspended sediment transport in a montane river affected by hydropeaking and instream mining

    Science.gov (United States)

    Béjar, M.; Vericat, D.; Batalla, R. J.; Gibbins, C. N.

    2018-06-01

    The temporal and spatial variability of water and sediment loads of rivers is controlled by a suite of factors whose individual effects are often difficult to disentangle. While land use changes and localised human activities such as instream mining and hydropeaking alter water and sediment transfer, tributaries naturally contribute to discharge and sediment load of mainstem rivers, and so may help compensate upstream anthropogenic factors. The work presented here aimed to assess water and the sediment transfer in a river reach affected by gravel extraction and hydropeaking, set against a backdrop of changes to the supply of water and sediment from tributaries. Discharge and suspended sediment transport were monitored during two average hydrological years at three cross-sections along a 10-km reach of the upper River Cinca, in the Southern Pyrenees. Water and sediment loads differed substantially between the reaches. The upper reach showed a largely torrential discharge regime, controlled mainly by floods, and had high but variable water and sediment loads. The middle reach was influenced markedly by hydropeaking and tributary inflows, which increased its annual water yield four-fold. Suspended sediment load in this reach increased by only 25% compared to upstream, indicating that dilution predominated. In the lowermost section, while discharge remained largely unaltered, sediment load increased appreciably as a result of changes to sediment availability from instream mining and inputs from tributaries. At the reach scale, snowmelt and summer and autumn thunderstorms were responsible for most of the water yield, while flood flows determined the magnitude and transport of the sediment load. The study highlights that a combination of natural and human factors control the spatial and temporal transfer of water and sediment in river channels and that, depending on their geographic location and effect-size, can result in marked variability even over short downstream

  6. Determination of biodegradation process of benzene, toluene, ethylbenzene and xylenes in seabed sediment by purge and trap gas chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Han, Dongqiang [Key Lab. for Atomic and Molecular Nanosciences of Education Ministry, Tsinghua Univ., Beijing (China). Dept. of Physics; China Pharmaceutical Univ., Nanjing (China). Physics Teaching and Research Section, Dept. of Basic Sciences; Ma, Wanyun; Chen, Dieyan [Key Lab. for Atomic and Molecular Nanosciences of Education Ministry, Tsinghua Univ., Beijing (China). Dept. of Physics

    2007-12-15

    Benzene, toluene, ethylbenzene, and xylenes (BTEX) are commonly found in crude oil and are used in geochemical investigations as direct indicators of the presence of oil and gas. BTEX are easily volatile and can be degraded by microorganisms, which affect their precise measurement seriously. A method for determining the biodegradation process of BTEX in seabed sediment using dynamic headspace (purge and trap) gas chromatography with a photoionization detector (PID) was developed, which had a detection limit of 7.3-13.2 ng L{sup -1} and a recovery rate of 91.6-95.0%. The decrease in the concentration of BTEX components was monitored in seabed sediment samples, which was caused by microorganism biodegradation. The results of BTEX biodegradation process were of great significance in the collection, transportation, preservation, and measurement of seabed sediment samples in the geochemical investigations of oil and gas. (orig.)

  7. Water-quality conditions and suspended-sediment transport in the Wilson and Trask Rivers, northwestern Oregon, water years 2012–14

    Science.gov (United States)

    Sobieszczyk, Steven; Bragg, Heather M.; Uhrich, Mark A.

    2015-07-28

    In October 2011, the U.S. Geological Survey began investigating and monitoring water-quality conditions and suspended-sediment transport in the Wilson and Trask Rivers, northwestern Oregon. Water temperature, specific conductance, turbidity, and dissolved oxygen were measured every 15–30 minutes in both streams using real-time instream water-quality monitors. In conjunction with the monitoring effort, suspended-sediment samples were collected and analyzed to model the amount of suspended sediment being transported by each river. Over the course of the 3-year study, which ended in September 2014, nearly 600,000 tons (t) of suspended-sediment material entered Tillamook Bay from these two tributaries. 

  8. Decadal-scale Evolution of Sediment Flux in the Aulne Estuary

    Science.gov (United States)

    Moskalski, S. M.; Deschamps, A.; Floc'h, F.; Verney, R.; Piete, H.; Fromant, G.; Delacourt, C.

    2013-12-01

    Estuarine sediment transport processes have the potential to evolve over time in response to alterations in various factors both internal and external to the estuary, such as sediment supply, river discharge, tidal forcing, or changes to bathymetry. Changes in sediment transport can affect many estuarine processes (e.g. budgets of sediment-adsorbed contaminants or nutrients) and ecosystem services, such as aquaculture, primary production and the need to dredge shipping channels. Most studies of decadal-scale changes in estuaries focus on geomorphology or bathymetry, or are performed using models calibrated by a limited set of observational studies. Because of the potential for sediment flux to both affect and be affected by geomorphology and bathymetry, observational studies oriented to sediment flux evolution are needed. This study focuses on two intensive observational studies separated by 30 years to quantify change in suspended sediment concentration (SSC) in the Aulne river, a shallow macrotidal estuary in western Brittany. Moored and vessel-mounted acoustic Doppler current profilers and YSIs were deployed over a three-week period in the winter of 2013 to examine hydrodynamic and sediment transport processes. The results of the modern study were compared to a 1977 investigation of currents, suspended sediment concentration, and erosion/deposition. The 1977 study found that SSC during spring tide and average river discharge was less than 30 mg/L near the mouth and above 300 mg/L landward, with near-bottom concentrations in the turbidity maximum zone occasionally greater than 1000 mg/L. SSC was highest during low tide and remained elevated throughout, in the upstream part of the estuary. Sediment deposition was stronger after flood tide due to a longer slack period, which implies landward sediment transport in the estuary. In the 2013 study, near-bottom SSC during spring tide and average river discharge was also highest during low tide, but SSC was above 1000 mg

  9. Holocene sediment distribution on the inner continental shelf of northeastern South Carolina: implications for the regional sediment budget and long-term shoreline response

    Science.gov (United States)

    Denny, Jane F.; Schwab, William C.; Baldwin, Wayne E.; Barnhardt, Walter A.; Gayes, Paul T.; Morton, R.A.; Warner, John C.; Driscoll, Neal W.; Voulgaris, George

    2013-01-01

    inner shelf suggest that there is sufficient sediment to balance the sediment budget and provide a source of sediment to the shoreline. Although the processes controlling cross-shelf sediment transport are not fully understood, in sediment-limited environments such as the Grand Strand, erosion of the inner shelf likely contributes significant sediment to the beach system.

  10. Transport processes in intertidal sand flats

    Science.gov (United States)

    Wu, Christy

    2010-05-01

    Methane rich sulfate depleted seeps are observed along the low water line of the intertidal sand flat Janssand in the Wadden Sea. It is unclear where in the flat the methane is formed, and how it is transported to the edge of the sand flat where the sulfidic water seeps out. Methane and sulfate distributions in pore water were determined along transects from low water line toward the central area of the sand flat. The resulting profiles showed a zone of methane-rich and sulfate-depleted pore water below 2 m sediment depth. Methane production and sulfate reduction are monitored over time for surface sediments collected from the upper flat and seeping area. Both activities were at 22 C twice as high as at 15 C. The rates in sediments from the central area were higher than in sediments from the methane seeps. Methanogenesis occurred in the presence of sulfate, and was not significantly accelerated when sulfate was depleted. The observations show a rapid anaerobic degradation of organic matter in the Janssand. The methane rich pore water is obviously transported with a unidirectional flow from the central area of the intertidal sand flat toward the low water line. This pore water flow is driven by the pressure head caused by elevation of the pore water relative to the sea surface at low tide (Billerbeck et al. 2006a). The high methane concentration at the low water line accumulates due to a continuous outflow of pore water at the seepage site that prevents penetration of electron acceptors such as oxygen and sulfate to reoxidize the reduced products of anaerobic degradation (de Beer et al. 2006). It is, however, not clear why no methane accumulates or sulfate is depleted in the upper 2 m of the flats.

  11. A review and re-assessment of sediment transport along the Goa Coast, India

    Digital Repository Service at National Institute of Oceanography (India)

    Kunte, P.D.; Wagle, B.G.; Yasuhiro Sugimori

    Although, a variety of methods have been employed to determine sediment transport along Goa coast, India, the results differ in some sections. Fifteen studies have been reviewed, compared, re-assessed and a corrected shore drift map of the Goa coast...

  12. Long-term environmental and health implications of morphological change and sediment transport with respect to contaminants

    Science.gov (United States)

    Sneddon, Christopher; Copplestone, David; Tyler, Andrew; Hunter, Peter; Smith, Nick

    2014-05-01

    The EPSRC-funded Adaptation and Resilience of Coastal Energy Supply (ARCoES) project encompasses four research strands, involving 14 institutions and six PhD studentships. ARCoES aims to determine the threats posed to future energy generation and the distribution network by flooding and erosion, changing patterns of coastal sedimentation, water temperature and the distribution of plants and animals in the coastal zone. Whilst this research has direct benefits for the operation of coastal power stations, ARCoES aims to have a wider stakeholder engagement through assessing how the resilience of coastal communities may be altered by five hundred years of coastal evolution. Coastal evolution will have substantial implications for the energy sector of the North West of England as former waste storage sites are eroded and remobilised within the intertidal environment. The current intertidal environmental stores of radioactivity will also experience reworking as ocean chemistry changes and saltmarsh chronologies are reworked in response to rising sea levels. There is a duel requirement to understand mass sediment movement along the North West coast of England as understanding the sediment transport dynamics is key to modelling long term coastal change and understanding how the environmental store of radioactivity will be reworked. The University of Stirling is researching the long-term environmental and health implications of remobilisation and transport of contaminated sediments around the UK coastline. Using a synergy of hyperspectral and topographic information the mobilisation of sediment bound contaminants within the coastal environment will be investigated. Potential hazards posed by contaminants are determined by a set of environmental impact test criteria which evaluate the bio-accessibility and ionising dose of contaminants. These test criteria will be used to comment on the likely environmental impact of modelled sediment transport and anticipated changes in

  13. Natural equilibria and anthropic effects on sediment transport in big river systems: The Nile case

    Science.gov (United States)

    Garzanti, Eduardo; Andò, Sergio; Padoan, Marta; Vezzoli, Giovanni; Villa, Igor

    2014-05-01

    The Nile River flows for ~ 6700 km, from Burundi and Rwanda highlands south of the Equator to the Mediterranean Sea at northern subtropical latitudes. It is thus the longest natural laboratory on Earth, a unique setting in which we are carrying out a continuing research project to investigate changes in sediment composition associated with a variety of chemical and physical processes, including weathering in equatorial climate and hydraulic sorting during transport and deposition. Petrographic, mineralogical, chemical, and isotopic fingerprints of sand and mud have been monitored along all Nile branches, from the Kagera and White Nile draining Archean, Paleoproterozoic and Mesoproterozoic basements uplifted along the western branch of the East African rift, to the Blue Nile and Atbara Rivers sourced in Ethiopian volcanic highlands made of Oligocene basalt. Downstream of the Atbara confluence, the Nile receives no significant tributary water and hardly any rainfall across the Sahara. After construction of the Aswan High Dam in 1964, the Nile ceased to be an active conveyor-belt in Egypt, where the mighty river has been tamed to a water canal; transported sediments are thus chiefly reworked from older bed and levee deposits, with minor contributions from widyan sourced in the Red Sea Hills and wind-blown desert sand and dust. Extensive dam construction has determined a dramatic sediment deficit at the mouth, where deltaic cusps are undergoing ravaging erosion. Nile delta sediments are thus recycled under the effect of dominant waves from the northwest, the longest Mediterranean fetch direction. Nile sands, progressively enriched in more stable minerals such as quartz and amphiboles relative to volcanic rock fragments and pyroxene, thus undergo multistep transport by E- and NE-directed longshore currents all along the coast of Egypt and Palestine, and are carried as far as Akko Bay in northern Israel. Nile mud reaches the Iskenderun Gulf in southern Turkey. A full

  14. Uranium (VI) Sorption and Transport in Unsaturated, Subsurface Hanford Site Sediments - Effect of Moisture Content and Sediment Texture: Final Report for Subtask 2b

    International Nuclear Information System (INIS)

    Gamerdinger, A.P.; Resch, C.T.; Kaplan, D.I.

    1998-01-01

    A series of experiments were conducted in fiscal year 1998 at the Pacific Northwest National Laboratory as part of the Immobilized Low-Activity Waste-Performance Assessment. These experiments evaluated the sorption and transport of uranium, U(VI), under conditions of partial moisture saturation that are relevant to arid region burial sites and vadose-zone far-field conditions at the Hanford Site. The focus was on measuring breakthrough curves (from which distribution coefficient [K d ] values can be calculated) for U(W) in three Hanford Site sediments that represent different texture classes in two unsaturated moisture conditions. Previous research showed that K d values measured during transport in unsaturated sediments varied with moisture saturation

  15. Sediment and solute transport in a mountainous watershed in Valle del Cauca, Colombia

    Science.gov (United States)

    Guzman, Christian; Hoyos Villada, Fanny; Morales Vargas, Amalia; Rivera, Baudelino; Da Silva, Mayesse; Moreno Padilla, Pedro; Steenhuis, Tammo

    2015-04-01

    Sediment samples and solute concentrations were measured from the La Vega micro watershed in the southwestern region of the Colombian Andes. A main goal of this study was to improve prediction of soil surface and soil nutrient changes, based on field measurements, within small basin of the Aguaclara watershed network receiving different types of conservation measures. Two modeling approaches for stream discharge and sediment transport predictions were used with one of these based on infiltration-excess and the other on saturation-excess runoff. These streams are a part of a recent initiative from a water fund established by Asobolo, Asocaña, and Cenicaña in collaboration with the Natural Capital Project to improve conservation efforts and monitor their effects. On-site soil depth changes, groundwater depth measurements, and soil nutrient concentrations were also monitored to provide more information about changes within this mountainous watershed during one part of the yearly rainy season. This information is being coupled closely with the outlet sediment concentration and solute concentration patterns to discern correlations between scales. Lateral transects in the upper, middle, and lower part of the hillsides in the La Vega micro watershed showed differences in soil nutrient status and soil surface depth changes. The model based on saturation-excess, semi-distributed hydrology was able to reproduce discharge and sediment transport rates as well as the initially used infiltration excess model indicating available options for comparison of conservation changes in the future.

  16. Interaction of fine sediment with alluvial streambeds

    Science.gov (United States)

    Jobson, Harvey E.; Carey, William P.

    1989-01-01

    More knowledge is needed about the physical processes that control the transport of fine sediment moving over an alluvial bed. The knowledge is needed to design rational sampling and monitoring programs that assess the transport and fate of toxic substances in surface waters because the toxics are often associated with silt- and clay-sized particles. This technical note reviews some of the past research in areas that may contribute to an increased understanding of the processes involved. An alluvial streambed can have a large capacity to store fine sediments that are extracted from the flow when instream concentrations are high and it can gradually release fine sediment to the flow when the instream concentrations are low. Several types of storage mechanisms are available depending on the relative size distribution of the suspended load and bed material, as well as the flow hydraulics. Alluvial flow tends to segregate the deposited material according to size and density. Some of the storage locations are temporary, but some can store the fine sediment for very long periods of time.

  17. Numerical Coupling of River Discharge to Shelf/Slope Sedimentation Models

    National Research Council Canada - National Science Library

    Syvitski, James

    1997-01-01

    Scientific objectives of this project are: (1) Develop a nested set of models to study the interactions of sedimentation processes on the shelf, including the effects of river supply, plume transport and initial deposition of sediments; (2...

  18. Eddy-driven sediment transport in the Argentine Basin: Is the height of the Zapiola Rise hydrodynamically controlled?

    NARCIS (Netherlands)

    Weijer, Wilbert; Maltrud, Mathew E.; Homoky, William B.; Polzin, Kurt L.; Maas, Leo R. M.

    In this study, we address the question whether eddy-driven transports in the Argentine Basin can be held responsible for enhanced sediment accumulation over the Zapiola Rise, hence accounting for the existence and growth of this sediment drift. To address this question, we perform a 6 year

  19. Electric currents couple spatially separated biogeochemical processes in marine sediment

    DEFF Research Database (Denmark)

    Nielsen, Lars Peter; Risgaard-Petersen, Nils; Fossing, Henrik

    2010-01-01

    Some bacteria are capable of extracellular electron transfer, thereby enabling them to use electron acceptors and donors without direct cell contact 1, 2, 3, 4 . Beyond the micrometre scale, however, no firm evidence has previously existed that spatially segregated biogeochemical processes can...... be coupled by electric currents in nature. Here we provide evidence that electric currents running through defaunated sediment couple oxygen consumption at the sediment surface to oxidation of hydrogen sulphide and organic carbon deep within the sediment. Altering the oxygen concentration in the sea water...... in the sediment was driven by electrons conducted from the anoxic zone. A distinct pH peak in the oxic zone could be explained by electrochemical oxygen reduction, but not by any conventional sets of aerobic sediment processes. We suggest that the electric current was conducted by bacterial nanowires combined...

  20. Understanding transport pathways in a river system - Monitoring sediments contaminated by an incident

    Science.gov (United States)

    Dietrich, S.; Kleisinger, C.; Hillebrand, G.; Claus, E.; Schwartz, R.; Carls, I.; Winterscheid, A.; Schubert, B.

    2016-12-01

    Experiments to trace transport of sediments and suspended particulate matter on a river scale are an expensive and difficult venture, since it causes a lot of official requirements. In spring 2015, polychlorinated biphenyls (PCB) were released during restoration works at a bridge in the upper part of the Elbe River, near the Czech-German border. In this study, the particle-bound PCB-transport is applied as a tracer for monitoring transport pathways of suspended solids (SS) along a whole river stretch over 700 km length. The incident was monitored by concentration measurements of seven indicator PCB congeners along the inland part of the Elbe River as well as in the Elbe estuary. Data from 15 monitoring stations (settling tanks) as well as from two longitudinal campaigns (grab samples) along the river in July and August 2015 are considered. The total PCB load is calculated for all stations on the basis of monthly contaminant concentrations and daily suspended sediment concentrations. Monte-Carlo simulations assess the uncertainties of the calculated load. 1D water levels and GIS analysis were used to locate temporal storage areas for the SS. It is shown that the ratio of high versus low chlorinated PCB congeners is a suitable tracer to distinguish the PCB load of the incident from the long-term background signal. Furthermore, the reduction of total PCB load within the upper Elbe indicates that roughly 24% of the SS were transported with the water by wash load. Approximately 600 km downstream of the incident site, the PCB-marked wash load was first identified in July 2015. PCB load transported intermittently in suspension was detected roughly 400 km downstream of the incident site by August 2015. In the Elbe Estuary, PCB-marked SS were only found upstream of the steep slope of water depth (approx. 4 to 15 m) within Hamburg harbor that acts as a major sediment sink. Here, SS from the inland Elbe are mixed with lowly contaminated marine material, which may mask the

  1. Exploring the role of flood transience in coarse bed load sediment transport

    Science.gov (United States)

    Phillips, C. B.; Singer, M. B.; Hill, K. M.; Paola, C.

    2015-12-01

    The rate of bed load transport under steady flow is known to vary both spatially and temporally due to various hydrologic and granular phenomena. Grain size distributions and riverbed properties (packing, imbrication, etc.) are known to affect flux for a particular value of applied flow stress, while hydrology is mainly assumed to control the magnitude of the applied bed stress above the threshold for bed material entrainment. The prediction of bed load sediment transport in field settings is further complicated by the inherent transience in flood hydrology, but little is known about how such flood transience influences bed load flux over a range of applied bed stress. Here we investigate the role of flood transience for gravel bed load transport through controlled laboratory experiments in a 28 m long 0.5 meter wide flume. We explore transient flow as the combination of unsteady and intermittent flow, where unsteady flow varies in magnitude over a given duration, and intermittent flow is characterized by turning the flow on and off. We systematically vary these details of flood hydrographs from one experiment to the next, and monitor the bed load as it varies with water discharge in real time by measuring sediment flux and tracking particles. We find that even with a narrow unimodal grain size distribution and constant sediment supply we observe hysteresis in bed load flux, different thresholds for entrainment and distrainment for the rising and falling limbs of a flood, and a threshold of entrainment that can vary one flood hydrograph to the next. Despite these complex phenomena we find that the total bed load transported for each flood plots along a linear trend with the integrated excess stress, consistent with prior field results. These results suggest that while the effects of transient flow and the shape of the hydrograph are measurable, they are second-order compared to the integrated excess stress.

  2. Ammonia gas transport and reactions in unsaturated sediments: Implications for use as an amendment to immobilize inorganic contaminants

    International Nuclear Information System (INIS)

    Zhong, L.; Szecsody, J.E.; Truex, M.J.; Williams, M.D.; Liu, Y.

    2015-01-01

    Highlights: • Ammonia transport can be predicted from gas movement and equilibrium partitioning. • Ammonia diffusion rate in unsaturated sediment is a function of water contents. • High pH induced by ammonia causes mineral dissolution and sequential precipitation. • Ammonia treatment effectively immobilized uranium from contaminated sediments. - Abstract: Use of gas-phase amendments for in situ remediation of inorganic contaminants in unsaturated sediments of the vadose zone may be advantageous, but there has been limited development and testing of gas remediation technologies. Treatment with ammonia gas has a potential for use in treating inorganic contaminants (such as uranium) because it induces a high pore-water pH, causing mineral dissolution and subsequent formation of stable precipitates that decrease the mobility of some contaminants. For field application of this treatment, further knowledge of ammonia transport in porous media and the geochemical reactions induced by ammonia treatment is needed. Laboratory studies were conducted to support calculations needed for field treatment design, to quantify advective and diffusive ammonia transport in unsaturated sediments, to evaluate inter-phase (gas/sediment/pore water) reactions, and to study reaction-induced pore-water chemistry changes as a function of ammonia delivery conditions, such as flow rate, gas concentration, and water content. Uranium-contaminated sediment was treated with ammonia gas to demonstrate U immobilization. Ammonia gas quickly partitions into sediment pore water and increases the pH up to 13.2. Injected ammonia gas advection front movement can be reasonably predicted by gas flow rate and equilibrium partitioning. The ammonia gas diffusion rate is a function of the water content in the sediment. Sodium, aluminum, and silica pore-water concentrations increase upon exposure to ammonia and then decline as aluminosilicates precipitate when the pH declines due to buffering. Up to 85% of

  3. Pleniglacial sedimentation process reconstruction on laminated lacustrine sediments from lava-dammed Paleolake Alf, West Eifel Volcanic Field (Germany)

    Science.gov (United States)

    Eichhorn, Luise; Pirrung, Michael; Zolitschka, Bernd; Büchel, Georg

    2017-09-01

    Differentiating between regularly seasonal, irregular and event-based clastic sedimentation is difficult if sedimentation structures resemble and dating methods are imprecise. In this study - clastic light and dark laminae from lava-dammed Paleolake Alf in the Late Pleistocene in the Quaternary West Eifel Volcanic Field are analyzed to clarify how they formed and if they are of annual origin and comparable to assumed periglacial varves from neighboring Lake Holzmaar. Therefore, a multiproxy approach is applied combining sediment thin section analysis which focuses on composition and structure with 14C dates. The results are compared to recently-formed annually-laminated clastic sediments of, e.g., the High Canadian Arctic. Observed sedimentation structures reveal sediment delivery by over- and interflows and deposition from suspension forming two characteristic microfacies: Type I graded laminae and Type II laminae with graded sublayers. Additionally, erosional bases and event deposits indicate episodic underflows. Thus, lamination is potentially seasonal but is significantly veiled by extreme runoff causing erosion and resuspension processes or a mixed water body preventing sediment delivery into the lake basin. However, sedimentation processes between watershed and lake could be reconstructed by comparing recent and paleosediment structures.

  4. Radionuclide content of Las Vegas wash sediments

    International Nuclear Information System (INIS)

    Rudin, M.J.; Meyers, A.M.; Johnson, W.H.

    1996-01-01

    The Las Vegas Wash is an excavated waterway channel which drains all surface water and effluent discharge from sewage-treatment facilities from the greater Las Vegas Metropolitan Area to Lake Mead. Runoff and erosion processes are expected to transport man-made radioactivity that was deposited over the past several decades in the Las Vegas Valley. Additionally, radionuclides disposed of via the city's sanitary system are expected to accumulate in the Wash sediments. Fine and coarse sediment samples were collected at 100 m intervals and analyzed to determine the distribution of alpha- and gamma-emitting radionuclides in the lower 5,500 in of the Las Vegas Wash. Results indicate little accumulation of long-lived fission products in upstream Wash sediments. However, trace amounts of fission products measured in downstream sediments suggest the resuspension and transport of radioactive particulate matter within the Wash. Levels of naturally-occurring radionuclides found in Wash sediments were found to be consistent with levels typically found in southeast Nevada soils

  5. A Spatially Distributed Conceptual Model for Estimating Suspended Sediment Yield in Alpine catchments

    Science.gov (United States)

    Costa, Anna; Molnar, Peter; Anghileri, Daniela

    2017-04-01

    Suspended sediment is associated with nutrient and contaminant transport in water courses. Estimating suspended sediment load is relevant for water-quality assessment, recreational activities, reservoir sedimentation issues, and ecological habitat assessment. Suspended sediment concentration (SSC) along channels is usually reproduced by suspended sediment rating curves, which relate SSC to discharge with a power law equation. Large uncertainty characterizes rating curves based only on discharge, because sediment supply is not explicitly accounted for. The aim of this work is to develop a source-oriented formulation of suspended sediment dynamics and to estimate suspended sediment yield at the outlet of a large Alpine catchment (upper Rhône basin, Switzerland). We propose a novel modelling approach for suspended sediment which accounts for sediment supply by taking into account the variety of sediment sources in an Alpine environment, i.e. the spatial location of sediment sources (e.g. distance from the outlet and lithology) and the different processes of sediment production and transport (e.g. by rainfall, overland flow, snowmelt). Four main sediment sources, typical of Alpine environments, are included in our model: glacial erosion, hillslope erosion, channel erosion and erosion by mass wasting processes. The predictive model is based on gridded datasets of precipitation and air temperature which drive spatially distributed degree-day models to simulate snowmelt and ice-melt, and determine erosive rainfall. A mass balance at the grid scale determines daily runoff. Each cell belongs to a different sediment source (e.g. hillslope, channel, glacier cell). The amount of sediment entrained and transported in suspension is simulated through non-linear functions of runoff, specific for sediment production and transport processes occurring at the grid scale (e.g. rainfall erosion, snowmelt-driven overland flow). Erodibility factors identify different lithological units

  6. Effects of Wildfire on Fluvial Sediment Regime through Perturbations in Dry-Ravel

    Science.gov (United States)

    Florsheim, J. L.; Chin, A.; Kinoshita, A. M.; Nourbakhshbeidokhti, S.; Storesund, R.; Keller, E. A.

    2015-12-01

    In steep chaparral ecosystems with Mediterranean climate, dry ravel is a natural process resulting from wildfire disturbance that supplies sediment to fluvial systems. When dense chaparral vegetation burns, sediment accumulated on steep hillslopes is released for dry-season transport (dry ravel) down steep hillslopes during or soon after the wildfire. Results of a field study in southern California's Transverse Ranges illustrate the effect of wildfire on fluvial sediment regime in an unregulated chaparral system. Big Sycamore Canyon in the steep Santa Monica Mountains burned during the May 2013 Springs Fire and experienced one small sediment-transporting stormflow during the following winter. We conducted pre- and post-storm field campaigns during the fall and winter following the fire to quantify the effect of wildfire on the fluvial sediment regime. We utilized a sediment mass balance approach in which: 1) sediment supply, consisting primarily of dry ravel-derived deposits composed of relatively fine grained-sediment, was measured in the upstream basin and in the hillslope-channel margin adjacent to the study reach; 2) changes in storage in the study reach were quantified by analyzing the difference between pre- and post-storm channel topography derived from Terrestrial LiDAR Scanning (TLS) and field surveys; and 3) transport from the study reach was estimated as the difference between supply and change in storage where uncertainty is estimated using calculated sediment transport as a comparison. Results demonstrate channel deposition caused by changes in the short-term post-wildfire sediment regime. The increased sediment supply and storage are associated with significant changes in morphology, channel bed-material characteristics, and ecology. These results suggest that dry-ravel processes are an important factor to consider in post-wildfire sediment management.

  7. Evaluation of 10 cross-shore sediment transport morphological models

    CSIR Research Space (South Africa)

    Schoonees, JS

    1995-05-01

    Full Text Available .S. Schoonees, A.K. Theron/Coastal Engineering 25 (1995) 141 11 0.99 m transport rate above mean sea level during the storm < 123 m3/m 0 m < storm surge < 3.2 m 4.2 h..., are beach and dune erosion that occurs under storm waves and high water levels, prediction of set-back lines, adjustment of beach-fill to long-term wave action and the prediction of sediment build-up or beach profile...

  8. An application of sedimentation simulation in Tahe oilfield

    Science.gov (United States)

    Tingting, He; Lei, Zhao; Xin, Tan; Dongxu, He

    2017-12-01

    The braided river delta develops in Triassic low oil formation in the block 9 of Tahe oilfield, but its sedimentation evolution process is unclear. By using sedimentation simulation technology, sedimentation process and distribution of braided river delta are studied based on the geological parameters including sequence stratigraphic division, initial sedimentation environment, relative lake level change and accommodation change, source supply and sedimentary transport pattern. The simulation result shows that the error rate between strata thickness of simulation and actual strata thickness is small, and the single well analysis result of simulation is highly consistent with the actual analysis, which can prove that the model is reliable. The study area belongs to braided river delta retrogradation evolution process, which provides favorable basis for fine reservoir description and prediction.

  9. Lack of cross-shelf transport of sediments on the western margin of India: Evidence from clay mineralogy

    Digital Repository Service at National Institute of Oceanography (India)

    Ramaswamy, V.; Nair, R.R.

    transported long distances along the shelf, cross-shelf transport appears to be minimal. Confirmatory evidence of qualitative differences in outer and inner shelf clays is provided by sediment trap clay mineralogy on the outer shelf. Clay bound pollutant...

  10. 3D Numerical Modelling of Transport, Deposition and Resuspension of Highway Deposited Sediments in Wet Detention Ponds

    DEFF Research Database (Denmark)

    Bentzen, Thomas Ruby

    2009-01-01

    concrete channel with width of 0.8 m and a water depth of approximately 0.8 m and in circular flume experiments in order to reproduce near-bed specific processes such as resuspension and consolidation. With good agreement with measurements, modelling of hydrodynamics, transport of dissolved pollutants...... and particles in wet detention ponds is possible with application of a three dimensional RANS model and the advection/dispersion equation taken physical phenomena like wind, waves, deposition, erosion and consolidation of the bottom sediment into account....

  11. Final Project Report: Release of aged contaminants from weathered sediments: Effects of sorbate speciation on scaling of reactive transport

    Energy Technology Data Exchange (ETDEWEB)

    Jon Chorover, University of Arizona; Peggy O' €™Day, University of California, Merced; Karl Mueller, Penn State University; Wooyong Um, Pacific Northwest National Laboratory; Carl Steefel, Lawrence Berkeley National Laboratory

    2012-10-01

    Hanford sediments impacted by hyperalkaline high level radioactive waste have undergone incongruent silicate mineral weathering concurrent with contaminant uptake. In this project, we studied the impact of background pore water (BPW) on strontium, cesium and iodine desorption and transport in Hanford sediments that were experimentally weathered by contact with simulated hyperalkaline tank waste leachate (STWL) solutions. Using those lab-weathered Hanford sediments (HS) and model precipitates formed during nucleation from homogeneous STWL solutions (HN), we (i) provided detailed characterization of reaction products over a matrix of field-relevant gradients in contaminant concentration, PCO2, and reaction time; (ii) improved molecular-scale understanding of how sorbate speciation controls contaminant desorption from weathered sediments upon removal of caustic sources; and (iii) developed a mechanistic, predictive model of meso- to field-scale contaminant reactive transport under these conditions.

  12. Sediment Transport and erosion modeling at Heaundae Beach in Korea.

    Science.gov (United States)

    Do, K.; Yoo, J.; McCall, R. T.

    2016-12-01

    The sand pocket beaches with two headlands are global features, but it's not easy to predict berm and dune erosion due to alongshore variation of water depth. This study investigates the sediment transport and morphological change using available wave and beach profile data, as well as to assess the applicability of the XBeach morphological model (Roelvink et al., 2009). The Haeundae is small pocket beach, 1.4 km long, located in the southern corner of the Korean Peninsula. The Korea Institute of Ocean Science and Technology (KIOST) measured beach profile along 27 survey lines. The beach profiles were surveyed five times from 17 June 2014 to 10 October 2014. For this duration, a wave gauge (AWAC) was installed at a depth about 23 m off the coast of Haeundae Beach. Severe four storms attacked Haeundae Beach for this duration and these storms lasted about 1 2 days with a peak significant wave height of 2.5 4.0 m. The placed sand is fairly sorted and its median diameter is 0.23 mm. 2DH coastal morphological model, XBeach developed to simulate dune erosion due to storm impacts. The model is based on the nonlinear shallow water equation and resolves nearshore hydrodynamics by employing a 2DH description of wave groups and infragravity motions. In this study, the numerical model XBeach was compared with the field data and used to estimate the sediment transport pattern on the sand pocket beach. The numerical model resulted in a comparable prediction in the west-part, but the east-part cannot reproduce the erosion and accretion of the sand, partly due to complex bathymetry and the lack of sediment. This limitation needs to be improved to use measured sand thickness data in future study

  13. Effects of oil dispersants on settling of marine sediment particles and particle-facilitated distribution and transport of oil components.

    Science.gov (United States)

    Cai, Zhengqing; Fu, Jie; Liu, Wen; Fu, Kunming; O'Reilly, S E; Zhao, Dongye

    2017-01-15

    This work investigated effects of three model oil dispersants (Corexit EC9527A, Corexit EC9500A and SPC1000) on settling of fine sediment particles and particle-facilitated distribution and transport of oil components in sediment-seawater systems. All three dispersants enhanced settling of sediment particles. The nonionic surfactants (Tween 80 and Tween 85) play key roles in promoting particle aggregation. Yet, the effects varied with environmental factors (pH, salinity, DOM, and temperature). Strongest dispersant effect was observed at neutral or alkaline pH and in salinity range of 0-3.5wt%. The presence of water accommodated oil and dispersed oil accelerated settling of the particles. Total petroleum hydrocarbons in the sediment phase were increased from 6.9% to 90.1% in the presence of Corexit EC9527A, and from 11.4% to 86.7% for PAHs. The information is useful for understanding roles of oil dispersants in formation of oil-sediment aggregates and in sediment-facilitated transport of oil and PAHs in marine eco-systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Coastal currents and mass transport of surface sediments over the shelf regions of Monterey Bay, California

    Science.gov (United States)

    Wolf, S.C.

    1970-01-01

    In Monterey Bay, the highest concentrations of medium and fine sands occur nearshore between ten and thirty fathoms. Silt and clay accumulate in greater depths. Contours of median diameter roughly parallel the isobaths. Fine-grained materials are supplied to the bay region from erosion of cliffs which partly surround Monterey Bay, from sediment laden river discharge, and from continual reworking of widespread Pleistocene and Recent sea floor sediments. These sediments in turn are picked up by coastal currents and distributed over the shelf regions by present day current regimes. Studies of bottom currents over the shelf regions and in Monterey Canyon have revealed patterns which vary with seasonal changes. Current patterns during August and September exhibit remarkable symmetry about the axis of Monterey Submarine Canyon. Central Shelf currents north and south of Monterey Canyon flowed northwest at an average rate of 0.2 knots and south at 0.3 knots respectively. On the North Shelf between January and March currents flowed east to southeast at 0.3-0.5 knots with mirror image patterns above the South Shelf during the same period. Irregular current flow in the canyon indicates a complex current structure with frequent shifts in counterclockwise and clockwise direction over very short periods of time. Bottom topography of the canyon complex often causes localization of canyon currents. One particular observation at a depth of 51 fathoms indicated up-canyon flow at a rate of 0.2 knots. Most of the observed currents are related to seasonal variations, upwelling, ocean swell patterns, and to changes in the California and Davidson currents. Changes in current regimes are reflected in the patterns of sediment distribution and transport. Sediment transport is chiefly parallel to the isobaths, particularly on the North and South Shelf regions. Complex dispersal patterns are observed near Monterey Canyon and Moss Landing Harbor jetties. Longshore currents move sediments

  15. Development of Sediment Deposition Height Capacity Equation in Sewer Networks

    Science.gov (United States)

    Song, Yangho; Jo, Deokjun; Lee, Jungho

    2017-04-01

    Sediment characteristics and transport processes in sewers are markedly different from river. There is a wide range of particle densities and smaller particle size variation in sewers. Sediment supply and the available erodible material are more limited in sewers, and the diverse hydraulic characteristics in sewer systems are more unsteady. Prevention of sewer sediment accumulation, which can cause major sewer operational problems, is imperative and has been an immense concern for engineers. The effects of sediment formation in sewer systems, an appropriate sediment transport modelling with the ability to determine the location and depth of sediment deposit is needed. It is necessary to design efficiently considering the transfer and settling phenomena of the sediment coming into the sewer systems. During transport in the sewer, the minimum shear flow velocity and possible shear stress at which the sediment is transported smoothly. However, the interaction of sediment and fluid within the sewer systems has been very complex and the rigorous theoretical handling of this problem has not been developed. It is derived from the empirical values obtained from the river bed. The basic theory that particles float is based on the balance between sedimentation of particles by gravity and turbulent diffusion of fluids. There are many variables related. Representative parameters include complex phenomena due to collisions between particles, particles and fluids, and interactions between particles and tube walls. In general, the main parameters that form the boundary between the main transport and sediment are particle size, density, volume fraction, pipe diameter and gravity. As the particle size and volume concentration increase, the minimum feed rate increases and the same tendency is observed for the change of the capillary diameter. Based on this tendency, this study has developed a sediment deposition height capacity formula to take into consideration the sewer discharge

  16. ESTIMATION OF THE WANDA GLACIER (SOUTH SHETLANDS SEDIMENT EROSION RATE USING NUMERICAL MODELLING

    Directory of Open Access Journals (Sweden)

    Kátia Kellem Rosa

    2013-09-01

    Full Text Available Glacial sediment yield results from glacial erosion and is influenced by several factors including glacial retreat rate, ice flow velocity and thermal regime. This paper estimates the contemporary subglacial erosion rate and sediment yield of Wanda Glacier (King George Island, South Shetlands. This work also examines basal sediment evacuation mechanisms by runoff and glacial erosion processes during the subglacial transport. This is small temperate glacier that has seen retreating for the last decades. In this work, we examine basal sediment evacuation mechanisms by runoff and analyze glacial erosion processes occurring during subglacial transport. The glacial erosion rate at Wanda Glacier, estimated using a numerical model that consider sediment evacuated to outlet streams, ice flow velocity, ice thickness and glacier area, is 1.1 ton m yr-1.

  17. Assimilation of remote sensing observations into a sediment transport model of China's largest freshwater lake: spatial and temporal effects.

    Science.gov (United States)

    Zhang, Peng; Chen, Xiaoling; Lu, Jianzhong; Zhang, Wei

    2015-12-01

    Numerical models are important tools that are used in studies of sediment dynamics in inland and coastal waters, and these models can now benefit from the use of integrated remote sensing observations. This study explores a scheme for assimilating remotely sensed suspended sediment (from charge-coupled device (CCD) images obtained from the Huanjing (HJ) satellite) into a two-dimensional sediment transport model of Poyang Lake, the largest freshwater lake in China. Optimal interpolation is used as the assimilation method, and model predictions are obtained by combining four remote sensing images. The parameters for optimal interpolation are determined through a series of assimilation experiments evaluating the sediment predictions based on field measurements. The model with assimilation of remotely sensed sediment reduces the root-mean-square error of the predicted sediment concentrations by 39.4% relative to the model without assimilation, demonstrating the effectiveness of the assimilation scheme. The spatial effect of assimilation is explored by comparing model predictions with remotely sensed sediment, revealing that the model with assimilation generates reasonable spatial distribution patterns of suspended sediment. The temporal effect of assimilation on the model's predictive capabilities varies spatially, with an average temporal effect of approximately 10.8 days. The current velocities which dominate the rate and direction of sediment transport most likely result in spatial differences in the temporal effect of assimilation on model predictions.

  18. The Cenozoic western Svalbard margin: sediment geometry and sedimentary processes in an area of ultraslow oceanic spreading

    Science.gov (United States)

    Amundsen, Ingrid Marie Hasle; Blinova, Maria; Hjelstuen, Berit Oline; Mjelde, Rolf; Haflidason, Haflidi

    2011-12-01

    The northeastern high-latitude North Atlantic is characterised by the Bellsund and Isfjorden fans on the continental slope off west Svalbard, the asymmetrical ultraslow Knipovich spreading ridge and a 1,000 m deep rift valley. Recently collected multichannel seismic profiles and bathymetric records now provide a more complete picture of sedimentary processes and depositional environments within this region. Both downslope and alongslope sedimentary processes are identified in the study area. Turbidity currents and deposition of glacigenic debris flows are the dominating downslope processes, whereas mass failures, which are a common process on glaciated margins, appear to have been less significant. The slide debrite observed on the Bellsund Fan is most likely related to a 2.5-1.7 Ma old failure on the northwestern Barents Sea margin. The seismic records further reveal that alongslope current processes played a major role in shaping the sediment packages in the study area. Within the Knipovich rift valley and at the western rift flank accumulations as thick as 950-1,000 m are deposited. We note that oceanic basement is locally exposed within the rift valley, and that seismostratigraphic relationships indicate that fault activity along the eastern rift flank lasted until at least as recently as 1.5 Ma. A purely hemipelagic origin of the sediments in the rift valley and on the western rift flank is unlikely. We suggest that these sediments, partly, have been sourced from the western Svalbard—northwestern Barents Sea margin and into the Knipovich Ridge rift valley before continuous spreading and tectonic activity caused the sediments to be transported out of the valley and westward.

  19. Potential Carbon Transport: Linking Soil Aggregate Stability and Sediment Enrichment for Updating the Soil Active Layer within Intensely Managed Landscapes

    Science.gov (United States)

    Wacha, K.; Papanicolaou, T.; Abban, B. K.; Wilson, C. G.

    2014-12-01

    Currently, many biogeochemical models lack the mechanistic capacity to accurately simulate soil organic carbon (SOC) dynamics, especially within intensely managed landscapes (IMLs) such as those found in the U.S. Midwest. These modeling limitations originate by not accounting for downslope connectivity of flowpathways initiated and governed by landscape processes and hydrologic forcing, which induce dynamic updates to the soil active layer (generally top 20-30cm of soil) with various sediment size fractions and aggregates being transported and deposited along the downslope. These hydro-geomorphic processes, often amplified in IMLs by tillage events and seasonal canopy, can greatly impact biogeochemical cycles (e.g., enhanced mineralization during aggregate breakdown) and in turn, have huge implications/uncertainty when determining SOC budgets. In this study, some of these limitations were addressed through a new concept, Potential Carbon Transport (PCT), a term which quantifies a maximum amount of material available for transport at various positions of the landscape, which was used to further refine a coupled modeling framework focused on SOC redistribution through downslope/lateral connectivity. Specifically, the size fractions slaked from large and small aggregates during raindrop-induced aggregate stability tests were used in conjunction with rainfall-simulated sediment enrichment ratio (ER) experiments to quantify the PCT under various management practices, soil types and landscape positions. Field samples used in determining aggregate stability and the ER experiments were collected/performed within the historic Clear Creek Watershed, home of the IML Critical Zone Observatory, located in Southeastern Iowa.

  20. Geological evidence and sediment transport modelling for the 1946 and 1960 tsunamis in Shinmachi, Hilo, Hawaii

    Science.gov (United States)

    Chagué, Catherine; Sugawara, Daisuke; Goto, Kazuhisa; Goff, James; Dudley, Walter; Gadd, Patricia

    2018-02-01

    The Japanese community of Shinmachi, established on low-lying land between downtown Hilo and Waiakea, Hawaii, was obliterated by the 1946 Aleutian tsunami but was rebuilt, only to be destroyed again by the 1960 Chilean tsunami. The aim of this study was to find out if any geological evidence of these well documented events had been preserved in the sedimentary record in Wailoa River State Park, which replaced Shinmachi after the 1960 tsunami. This was achieved by collecting cores in the park and performing sedimentological, chronological and geochemical analyses, the latter also processed by principal component analysis. Sediment transport modelling was carried out for both tsunamis, to infer the source of the sediment and areas of deposition on land. The field survey revealed two distinct units within peat and soil, a thin lower unit composed of weathered basalt fragments within mud (Unit 1) and an upper unit dominated by fine volcanic sand within fine silt exhibiting subtle upward fining and coarsening (Unit 2, consisting of Unit 2A and Unit 2B), although these two anomalous units only occur on the western shore of Waiakea Mill Pond. Analysis with an ITRAX core scanner shows that Unit 1 is characterised by high Mn, Fe, Rb, La and Ce counts, combined with elevated magnetic susceptibility. Based on its chemical and sedimentological characteristics, Unit 1 is attributed to a flood event in Wailoa River that occurred around 1520-1660 CE, most probably as a result of a tropical storm. The sharp lower contact of Unit 2 coincides with the appearance of arsenic, contemporaneous with an increase in Ca, Sr, Si, Ti, K, Zr, Mn, Fe, La and Ce. In this study, As is used as a chronological and source material marker, as it is known to have been released into Wailoa River Estuary and Waiakea Mill Pond by the Canec factory between 1932 and 1963. Thus, not only the chemical and sedimentological evidence but also sediment transport modelling, corroborating the historical record

  1. Distribution and transportation of suspended sediment

    International Nuclear Information System (INIS)

    Schubel, J.R.

    1975-01-01

    A number of studies of the distribution and character of suspended matter in the waters of the Atlantic shelf have documented the variations in the concentration of total suspended matter in both time and space. Very little is known, however, about the ultimate sources of inorganic suspended matter, and even less is known about the routes and rates of suspended sediment transport in shelf waters. Suspended particulate matter constitutes a potential vehicle for the transfer of energy-associated contaminants, radionuclides and oil, back to the coast and therefore to man. The concentrations of total suspended matter in shelf waters are typically so low, however, that the mechanism is ineffective. Studies of suspended particulate matter have a high scientific priority, but in this investigator's opinion the state of knowledge is adequate for preparation of the environmental impact statements that would be required for siting of offshore nuclear power plants and for oil drilling on the Atlantic Continental Shelf

  2. Soil aggregate stability and rainfall-induced sediment transport on field plots as affected by amendment with organic matter inputs

    Science.gov (United States)

    Shi, Pu; Arter, Christian; Liu, Xingyu; Keller, Martin; Schulin, Rainer

    2017-04-01

    Aggregate stability is an important factor in soil resistance against erosion, and, by influencing the extent of sediment transport associated with surface runoff, it is thus also one of the key factors which determine on- and off-site effects of water erosion. As it strongly depends on soil organic matter, many studies have explored how aggregate stability can be improved by organic matter inputs into the soil. However, the focus of these studies has been on the relationship between aggregate stability and soil organic matter dynamics. How the effects of organic matter inputs on aggregate stability translate into soil erodibility under rainfall impacts has received much less attention. In this study, we performed field plot experiments to examine how organic matter inputs affect aggregate breakdown and surface sediment transport under field conditions in artificial rainfall events. Three pairs of plots were prepared by adding a mixture of grass and wheat straw to one of plots in each pair but not to the other, while all plots were treated in the same way otherwise. The rainfall events were applied some weeks later so that the applied organic residues had sufficient time for decomposition and incorporation into the soil. Surface runoff rate and sediment concentration showed substantial differences between the treatments with and without organic matter inputs. The plots with organic inputs had coarser and more stable aggregates and a rougher surface than the control plots without organic inputs, resulting in a higher infiltration rate and lower transport capacity of the surface runoff. Consequently, sediments exported from the amended plots were less concentrated but more enriched in suspended particles (selective sediment transport. In contrast to the amended plots, there was an increase in the coarse particle fraction (> 250 µm) in the runoff from the plots with no organic matter inputs towards the end of the rainfall events due to emerging bed-load transport

  3. Modeling Input Errors to Improve Uncertainty Estimates for Sediment Transport Model Predictions

    Science.gov (United States)

    Jung, J. Y.; Niemann, J. D.; Greimann, B. P.

    2016-12-01

    Bayesian methods using Markov chain Monte Carlo algorithms have recently been applied to sediment transport models to assess the uncertainty in the model predictions due to the parameter values. Unfortunately, the existing approaches can only attribute overall uncertainty to the parameters. This limitation is critical because no model can produce accurate forecasts if forced with inaccurate input data, even if the model is well founded in physical theory. In this research, an existing Bayesian method is modified to consider the potential errors in input data during the uncertainty evaluation process. The input error is modeled using Gaussian distributions, and the means and standard deviations are treated as uncertain parameters. The proposed approach is tested by coupling it to the Sedimentation and River Hydraulics - One Dimension (SRH-1D) model and simulating a 23-km reach of the Tachia River in Taiwan. The Wu equation in SRH-1D is used for computing the transport capacity for a bed material load of non-cohesive material. Three types of input data are considered uncertain: (1) the input flowrate at the upstream boundary, (2) the water surface elevation at the downstream boundary, and (3) the water surface elevation at a hydraulic structure in the middle of the reach. The benefits of modeling the input errors in the uncertainty analysis are evaluated by comparing the accuracy of the most likely forecast and the coverage of the observed data by the credible intervals to those of the existing method. The results indicate that the internal boundary condition has the largest uncertainty among those considered. Overall, the uncertainty estimates from the new method are notably different from those of the existing method for both the calibration and forecast periods.

  4. Dynamic of Mud Banks In French Guiana : An Experimental Investigation of Sediment Settling Processes

    Science.gov (United States)

    Gratiot, N.; Lefebvre, J. P.

    The coast of French Guiana is characterized by the periodic northwestward migration of mud banks originated from the Amazone mouth. From previous studies, the char- acteristical size of banks has been estimated by remote sensing processing as well as their mean rate of alongshore transport. However, the physical mecanisms leading to their displacements are not yet fully quantified. The present work aimed at investigating different processes known to be involved in coastal and estuarine dynamics and expected to occur during the migration of mud banks. The relative magnitudes of flocculation, hindered settling and consolidation have been determined. The material tested has been sampled during a field survey of the french National Pro- gram of Coastal Environment (PNEC-Chantier Guyane). Settling column experiments have been performed under quiescent condition for various mean sediment concen- trations in the range of 2-110g/l. The time dependent vertical profiles of suspended sediment concentration were monitored by mean of a 32 pre-calibrated optical sen- sors device. The corresponding settling velocity was deduced from the conservation of mass equation. This study yields usefull information for a better understanding of settling processes related to the fluid mud layer observed on the forepart of the bank. Time scales of hindering and consolidation processes are larger than these of mixing mecanisms such as tides or propagating waves. Therefore, it prevents any consolidation to occur. At the opposite, the individual floc settling velocity is too small to counterbalance the turbulent mixing induced by breaking waves. The experiments also pointed out that additional flocculation by differential settling should enhance sedimentation during slack water conditions.

  5. Field experimental observations of highly graded sediment plumes

    DEFF Research Database (Denmark)

    Hjelmager Jensen, Jacob; Saremi, Sina; Jimenez, Carlos

    2015-01-01

    A field experiment in the waters off the south-eastern coast of Cyprus was carried out to study near-field formation of sediment plumes from dumping. Different loads of sediment were poured into calm and limpid waters one at the time from just above the sea surface. The associated plumes......-bed positions gives unique insight into the dynamics of the descending plume and near-field dispersion processes, and enables good understanding of flow and sediment transport processes involved from-release-to-deposition of the load in a non-scaled environment. The high resolution images and footages...... are available through the link provided herein. Observations support the development of a detailed multi-fractional sediment plume model....

  6. Physical and logistical considerations of using ultrasonic anemometers in aeolian sediment transport research

    Science.gov (United States)

    Walker, Ian J.

    2005-05-01

    Recently, ultrasonic anemometers (UAs) have become available for precise, high-frequency measurement of three-dimensional velocity and turbulence properties. Except for a few wind tunnel and computational fluid dynamics (CFD) simulations, advances in aeolian sediment transport and bedform research have been limited to field studies using instrumentation that is either incapable of measuring turbulence (e.g., cup anemometers) or unable to withstand sediment-laden airflow (e.g., hotfilms). In contrast, extensive progress has occurred in fluvial research where turbulence instrumentation has been available for some time. This paper provides a pragmatic discussion on using UAs in aeolian research. Recent advances using this technology are reviewed and key physical and logistical considerations for measuring airflow properties and near-surface shear stress using UAs over complex terrain are discussed. Physical considerations include limitations of applying boundary layer theory to flow over natural surfaces such as non-logarithmic velocity profiles resulting from roughness- and topographically induced effects and the inability of instrumentation to measure within the thin constant-stress region. These constraints hinder accurate shear velocity ( u*), shear stress and sand transport estimation. UAs allow measurement of turbulent Reynolds stress (RS) that, in theory, should equal profile-derived shear stress. Discrepancies often exist between these quantities however due to three-dimensional (spanwise) flow components and rapid distortion effects (i.e., unbalanced production and dissipation of turbulence) common in flow over complex terrain. While the RS approach yields information on turbulent contributions to near-surface stress generation, little evidence exists showing that RS is a better measure of forces responsible for sediment transport. Consequently, predictive equations for sediment transport using RS do not exist. There is also a need to identify the role of

  7. Evaluation of the 226Ra transport by rivers sediments surroundings the brazilian uraniums mining and milling

    International Nuclear Information System (INIS)

    Azevedo, H.L.; Amaral, E.C.S.; Godoy, J.M.

    1989-01-01

    A study of the 226 Ra contamination of the rivers sediments surroundings the Brazilian uranium mining and milling was carried out. The total and mondetrital 226 Ra concentrations was determined as well as some preliminary speciations measurements. It was not observed increments in the nondetrital fraction when comparing with the pre operational results. The values indicated that the soluble form could be the main path of 226 Ra transport. However the critical sampling point supplied to influence from the chemical processing effluent show increments tht indicate to be mainly due to the presence of 226 Ra bound with barium sulphate. (author) [pt

  8. Sediment and radionuclide transport in rivers. Summary report, field sampling program for Cattaraugus and Buttermilk Creeks, New York

    International Nuclear Information System (INIS)

    Walters, W.H.; Ecker, R.M.; Onishi, Y.

    1982-11-01

    A three-phase field sampling program was conducted on the Buttermilk-Cattaraugus Creek system to investigate the transport of radionuclides in surface waters as part of a continuing program to provide data for application and verification of Pacific Northwest Laboratory's (PNL) sediment and radionuclide transport model, SERATRA. Phase 1 of the sampling program was conducted during November and December 1977; Phase 2 during September 1978; and Phase 3 during April 1979. Bed sediment, suspended sediment, and water samples were collected over a 45-mile reach of the creek system. Bed sediment samples were also collected at the mouth of Cattaraugus Creek in Lake Erie. A fourth sampling trip was conducted during May 1980 to obtain supplementary channel geometry data and flood plain sediment samples. Radiological analysis of these samples included gamma ray spectrometry analysis, and radiochemical separation and analysis of Sr-90, Pu-238, Pu-239,240, Am-241 and Cm-244. Tritium analysis was also performed on water samples. Based on the evaluation of radionuclide levels in Cattaraugus and Buttermilk Creeks, the Nuclear Fuel Services facility at West Valley, New York, may be the source of Cs-137, Sr-90, CS-134, Co-60, Pu-238, Pu-239,240, Am-241, Cm-244 and tritium found in the bed sediment, suspended sediment and water of Buttermilk and Cattaraugus Creeks

  9. Sediment and Vegetation Controls on Delta Channel Networks

    Science.gov (United States)

    Lauzon, R.; Murray, A. B.; Piliouras, A.; Kim, W.

    2016-12-01

    Numerous factors control the patterns of distributary channels formed on a delta, including water and sediment discharge, grain size, sea level rise rates, and vegetation type. In turn, these channel networks influence the shape and evolution of a delta, including what types of plant and animal life - such as humans - it can support. Previous fluvial modeling and flume experiments, outside of the delta context, have addressed how interactions between sediment and vegetation, through their influence on lateral transport of sediment, determine what type of channel networks develops. Similar interactions likely also shape delta flow patterns. Vegetation introduces cohesion, tending to reduce channel migration rates and strengthen existing channel banks, reinforcing existing channels and resulting in localized, relatively stable flow patterns. On the other hand, sediment transport processes can result in lateral migration and frequent switching of active channels, resulting in flow resembling that of a braided stream. While previous studies of deltas have indirectly explored the effects of vegetation through the introduction of cohesive sediment, we directly incorporate key effects of vegetation on flow and sediment transport into the delta-building model DeltaRCM to explore how these effects influence delta channel network formation. Model development is informed by laboratory flume experiments at UT Austin. Here we present initial results of experiments exploring the effects of sea level rise rate, sediment grain size, vegetation type, and vegetation growth rate on delta channel network morphology. These results support the hypothesis that the ability for lateral transport of sediment to occur plays a key role in determining the evolution of delta channel networks and delta morphology.

  10. Sediment and Fecal Indicator Bacteria Loading in a Mixed Land Use Watershed: Contributions from Suspended and Bed Load Transport

    Science.gov (United States)

    Water quality studies that quantify sediment and fecal bacteria loading commonly focus on suspended contaminants transported during high flows. Fecal contaminants in bed sediments are typically ignored and need to be considered because of their potential to increase pathogen load...

  11. Sediment storage and transport in Pancho Rico Valley during and after the Pleistocene-Holocene transition, Coast Ranges of central California (Monterey County)

    Science.gov (United States)

    Garcia, A.F.; Mahan, S.A.

    2009-01-01

    Factors influencing sediment transport and storage within the 156??6 km2 drainage basin of Pancho Rico Creek (PRC), and sediment transport from the PRC drainage basin to its c. 11000 km2 mainstem drainage (Salinas River) are investigated. Numeric age estimates are determined by optically stimulated luminescence (OSL) dating on quartz grains from three sediment samples collected from a 'quaternary terrace a (Qta)' PRC terrace/PRC-tributary fan sequence, which consists dominantly of debris flow deposits overlying fluvial sediments. OSL dating results, morphometric analyses of topography, and field results indicate that the stormy climate of the Pleistocene-Holocene transition caused intense debris-flow erosion of PRC- tributary valleys. However, during that time, the PRC channel was backfilled by Qta sediment, which indicates that there was insufficient discharge in PRC to transport the sediment load produced by tributary-valley denudation. Locally, Salinas Valley alluvial stratigraphy lacks any record of hillslope erosion occurring during the Pleistocene-Holocene transition, in that the alluvial fan formed where PRC enters the Salinas Valley lacks lobes correlative to Qta. This indicates that sediment stripped from PRC tributaries was mostly trapped in Pancho Rico Valley despite the relatively moist climate of the Pleistocene-Holocene transition. Incision into Qta did not occur until PRC enlarged its drainage basin by c. 50% through capture of the upper part of San Lorenzo Creek, which occurred some time after the Pleistocene-Holocene transition. During the relatively dry Holocene, PRC incision through Qta and into bedrock, as well as delivery of sediment to the San Ardo Fan, were facilitated by the discharge increase associated with stream-capture. The influence of multiple mechanisms on sediment storage and transport in the Pancho Rico Valley-Salinas Valley system exemplifies the complexity that (in some instances) must be recognized in order to correctly

  12. Colorado River sediment transport: 2. Systematic bed‐elevation and grain‐size effects of sand supply limitation

    Science.gov (United States)

    Topping, David J.; Rubin, David M.; Nelson, Jonathan M.; Kinzel, Paul J.; Corson, Ingrid C.

    2000-01-01

    processes that couple changes in bed‐sediment grain size to changes in sand‐transport rates.

  13. Longshore sediment transport in the Tróia-Sines Littoral Ribbon (SW Portugal).

    OpenAIRE

    Gama, Cristina; Taborda, Rui; Andrade, César

    2006-01-01

    Longshore sediment transport in the Tróia-Sines litoral ribbon was evaluated by map comparison and applying energy flux method using numerical models. Results yielded a longshore transport residual rate in the order of 10 5 m3y-1 towards north. The comparison of the results with the ones obtained thought the analysis of the secular coastline evolution show that the empirical coefficient between the energy flux and the longshore drift is equal to 0.28 and is apparently independent with grain ...

  14. On the hydrology and fluvial sediment transport of the proglacial river Riffler Bach (Weißseeferner, Ötztal Alps, Tyrol)

    Science.gov (United States)

    Morche, David; Baewert, Henning; Weber, Martin; Schmidt, Karl-Heinz

    2013-04-01

    The hydrology of proglacial rivers is strongly affected by glacier melting. With ongoing glacier retreat the proportion of glacier meltwater in proglacial rivers is declining over longer time periods. Snow melt or rain fall events will play a more important role as water source. Due to glacial erosion the glacier system is also an important player in the orchestra of sediment sources/processes contributing to proglacial sediment budgets. The consequence of increasing deglaciation is a growing importance of other sediment sources/processes, mainly known as paraglacial, for sediment budgets in glacier forefields. The sediment export out of proglacial areas is mainly done by solid river load. Knowledge on the quantity of the exported sediments is important for reservoir management and torrent control. In order to measure fluvial sediment transport in the catchment area of the Gepatsch reservoir in the Ötztal Alps (Tyrol/Austria) we have installed a gauging station at the proglacial river Riffler Bach in June 2012. The catchment area of this station is about 20 km² with an altitudinal range from 1929 m to 3518 m. The higher altitudes in the southern part of the area are covered by the glacier Weißseeferner. Our station is equipped with an automatic water sampler (AWS 2002) and probes for water level, turbidity and electrical conductivity. All parameters are recorded in 5-15 minute intervals during the ablation period. Discharge is measured with current meters during wadable stages and salt dilution during higher floods. Bed load is measured concurrent to discharge measurements using a Helley-Smith sampler. In 2012, 189 water samples were taken and will be analyzed for suspended sediment concentration and ion content. Additionally, the grain size distribution will be determined using a Malvern laser diffractometer. Rating-curves will be used to calculate discharge from stage recordings. Solid load of the Riffler Bach will be quantified using the discharge data and

  15. Sediment yield model implementation based on check dam infill stratigraphy in a semiarid Mediterranean catchment

    Directory of Open Access Journals (Sweden)

    G. Bussi

    2013-08-01

    Full Text Available Soil loss and sediment transport in Mediterranean areas are driven by complex non-linear processes which have been only partially understood. Distributed models can be very helpful tools for understanding the catchment-scale phenomena which lead to soil erosion and sediment transport. In this study, a modelling approach is proposed to reproduce and evaluate erosion and sediment yield processes in a Mediterranean catchment (Rambla del Poyo, Valencia, Spain. Due to the lack of sediment transport records for model calibration and validation, a detailed description of the alluvial stratigraphy infilling a check dam that drains a 12.9 km2 sub-catchment was used as indirect information of sediment yield data. These dam infill sediments showed evidences of at least 15 depositional events (floods over the time period 1990–2009. The TETIS model, a distributed conceptual hydrological and sediment model, was coupled to the Sediment Trap Efficiency for Small Ponds (STEP model for reproducing reservoir retention, and it was calibrated and validated using the sedimentation volume estimated for the depositional units associated with discrete runoff events. The results show relatively low net erosion rates compared to other Mediterranean catchments (0.136 Mg ha−1 yr−1, probably due to the extensive outcrops of limestone bedrock, thin soils and rather homogeneous vegetation cover. The simulated sediment production and transport rates offer model satisfactory results, further supported by in-site palaeohydrological evidences and spatial validation using additional check dams, showing the great potential of the presented data assimilation methodology for the quantitative analysis of sediment dynamics in ungauged Mediterranean basins.

  16. Cohesive and mixed sediment in the Regional Ocean Modeling System (ROMS v3.6 implemented in the Coupled Ocean–Atmosphere–Wave–Sediment Transport Modeling System (COAWST r1234

    Directory of Open Access Journals (Sweden)

    C. R. Sherwood

    2018-05-01

    Full Text Available We describe and demonstrate algorithms for treating cohesive and mixed sediment that have been added to the Regional Ocean Modeling System (ROMS version 3.6, as implemented in the Coupled Ocean–Atmosphere–Wave–Sediment Transport Modeling System (COAWST Subversion repository revision 1234. These include the following: floc dynamics (aggregation and disaggregation in the water column; changes in floc characteristics in the seabed; erosion and deposition of cohesive and mixed (combination of cohesive and non-cohesive sediment; and biodiffusive mixing of bed sediment. These routines supplement existing non-cohesive sediment modules, thereby increasing our ability to model fine-grained and mixed-sediment environments. Additionally, we describe changes to the sediment bed layering scheme that improve the fidelity of the modeled stratigraphic record. Finally, we provide examples of these modules implemented in idealized test cases and a realistic application.

  17. Flocculation Dynamics of cohesive sediment

    NARCIS (Netherlands)

    Maggi, F.

    2005-01-01

    Cohesive sediment suspended in natural waters is subject not only to transport and deposition processes but also to reactions of flocculation, \\textit{i.e.} aggregation of fine particles, and breakup of aggregates. Although aggregation and breakup occur at small and very small length scales compared

  18. Sediment and radionuclide transport in rivers. Phase 3. Field sampling program for Cattaraugus and Buttermilk Creeks, New York

    International Nuclear Information System (INIS)

    Ecker, R.M.; Walters, W.H.; Onishi, Y.

    1982-08-01

    A field sampling program was conducted on Cattaraugus and Buttermilk Creeks, New York during April 1979 to investigate the transport of radionuclides in surface waters as part of a continuing program to provide data for application and verification of Pacific Northwest Laboratory's (PNL) sediment and radionuclide transport model, SERATRA. Bed sediment, suspended sediment and water samples were collected during unsteady flow conditions over a 45 mile reach of stream channel. Radiological analysis of these samples included gamma ray spectrometry analysis, and radiochemical separation and analysis of Sr-90, Pu-238, Pu-239, 240, Am-241 and Cm-244. Tritium analysis was also performed on water samples. Based on the evaluation of radionuclide levels in Cattaraugus and Buttermilk Creeks, the Nuclear Fuel Services facility at West Valley, New York, may be the source of Cs-137, Sr-90, Cs-134, Co-60, Pu-238, Pu-239, 240, Am-241, Cm-244 and tritium found in the bed sediment, suspended sediment and water of Buttermilk and Cattaraugus Creeks. This field sampling effort was the last of a three phase program to collect hydrologic and radiologic data at different flow conditions

  19. Contribution of radioactive tracers to sediment transport study in fluvial flows

    International Nuclear Information System (INIS)

    Wilson Junior, G.

    1995-01-01

    The uses of radioactive tracers in sediment transport studies are presented in this report to evidence the importance of: Open channel researches, to describe field applications in waterways; Simultaneous utilization of classical methods and radiotracer techniques, in fluvial and estuarine environments; Development of radiotracers techniques applied in dynamic sedimentology. The report illustrated with some experiments carried out in Brazil and France, in open channel and natural flows. (author). 5 refs, 4 figs

  20. LABORATORY STRATEGIES FOR HYDRATE FORMATION IN FINE-GRAINED SEDIMENTS

    KAUST Repository

    Lei, L.; Santamarina, Carlos

    2018-01-01

    Fine‐grained sediments limit hydrate nucleation, shift the phase boundary and hinder gas supply. Laboratory experiments in this study explore different strategies to overcome these challenges, including the use of a more soluble guest molecule rather than methane, grain‐scale gas‐storage within porous diatoms, ice‐to‐hydrate transformation to grow lenses at predefined locations, forced gas injection into water saturated sediments, and long‐term guest molecule transport. Tomographic images, thermal and pressure data provide rich information on hydrate formation and morphology. Results show that hydrate formation is inherently displacive in fine‐grained sediments; lenses are thicker and closer to each other in compressible, high specific surface area sediments subjected to low effective stress. Temperature and pressure trajectories follow a shifted phase boundary that is consistent with capillary effects. Exo‐pore growth results in freshly formed hydrate with a striped and porous structure; this open structure becomes an effective pathway for gas transport to the growing hydrate front. Ice‐to‐hydrate transformation goes through a liquid stage at pre‐melt temperatures; then, capillarity and cryogenic suction compete, and some water becomes imbibed into the sediment faster than hydrate reformation. The geometry of hydrate lenses and the internal hydrate structure continue evolving long after the exothermal response to hydrate formation has completely decayed. Multiple time‐dependent processes occur during hydrate formation, including gas, water and heat transport, sediment compressibility, reaction rate and the stochastic nucleation process. Hydrate formation strategies conceived for this study highlight the inherent difficulties in emulating hydrate formation in fine‐grained sediments within the relatively short time‐scale available for laboratory experiments.

  1. LABORATORY STRATEGIES FOR HYDRATE FORMATION IN FINE-GRAINED SEDIMENTS

    KAUST Repository

    Lei, L.

    2018-04-02

    Fine‐grained sediments limit hydrate nucleation, shift the phase boundary and hinder gas supply. Laboratory experiments in this study explore different strategies to overcome these challenges, including the use of a more soluble guest molecule rather than methane, grain‐scale gas‐storage within porous diatoms, ice‐to‐hydrate transformation to grow lenses at predefined locations, forced gas injection into water saturated sediments, and long‐term guest molecule transport. Tomographic images, thermal and pressure data provide rich information on hydrate formation and morphology. Results show that hydrate formation is inherently displacive in fine‐grained sediments; lenses are thicker and closer to each other in compressible, high specific surface area sediments subjected to low effective stress. Temperature and pressure trajectories follow a shifted phase boundary that is consistent with capillary effects. Exo‐pore growth results in freshly formed hydrate with a striped and porous structure; this open structure becomes an effective pathway for gas transport to the growing hydrate front. Ice‐to‐hydrate transformation goes through a liquid stage at pre‐melt temperatures; then, capillarity and cryogenic suction compete, and some water becomes imbibed into the sediment faster than hydrate reformation. The geometry of hydrate lenses and the internal hydrate structure continue evolving long after the exothermal response to hydrate formation has completely decayed. Multiple time‐dependent processes occur during hydrate formation, including gas, water and heat transport, sediment compressibility, reaction rate and the stochastic nucleation process. Hydrate formation strategies conceived for this study highlight the inherent difficulties in emulating hydrate formation in fine‐grained sediments within the relatively short time‐scale available for laboratory experiments.

  2. Numerical modelling of suspended radioactive sediment transport in a stream using matlab

    International Nuclear Information System (INIS)

    Sarpong, Linda

    2017-07-01

    The use of materials that contain radioactive substances has gained grounds in Ghana due to numerous benefits derived from them. These radioactive materials can be found in the areas of medicine, agriculture and industries such as mining. Though there are strict measures to ensure such material do not find its way into the environment, improper management of the waste poses a threat to the environment. To be able to understand the impact the radioactive material has on the environment, mathematical models play a very relevant role in tracking the level of pollution in any medium. This thesis was concerned with the numerical modelling for the transport of the radioactive solute material that suspends in a stream using Matlab at different velocities as a result of flooding or an accident for research purposes. The modelling was done by using partial differential equations describing relevant physical processes evolution which includes water level, dissolved and suspended substances concentration and velocities. The equation system basis are the mass conservation and momentum laws, state equation and state transport equations. The implicit finite difference scheme was used to evaluate the transport equation, Advection-Dispersion Equation (ADE) with respect to time and space. Solution algorithms for Matlab programming were developed and implemented for generating results for analysis. The results obtained showed that the model was able to simulate accurately the various levels of suspended radioactive sediment concentration changes in the flowing stream longitudinally. (au)

  3. A sandpile model of grain blocking and consequences for sediment dynamics in step-pool streams

    Science.gov (United States)

    Molnar, P.

    2012-04-01

    Coarse grains (cobbles to boulders) are set in motion in steep mountain streams by floods with sufficient energy to erode the particles locally and transport them downstream. During transport, grains are often blocked and form width-spannings structures called steps, separated by pools. The step-pool system is a transient, self-organizing and self-sustaining structure. The temporary storage of sediment in steps and the release of that sediment in avalanche-like pulses when steps collapse, leads to a complex nonlinear threshold-driven dynamics in sediment transport which has been observed in laboratory experiments (e.g., Zimmermann et al., 2010) and in the field (e.g., Turowski et al., 2011). The basic question in this paper is if the emergent statistical properties of sediment transport in step-pool systems may be linked to the transient state of the bed, i.e. sediment storage and morphology, and to the dynamics in sediment input. The hypothesis is that this state, in which sediment transporting events due to the collapse and rebuilding of steps of all sizes occur, is analogous to a critical state in self-organized open dissipative dynamical systems (Bak et al., 1988). To exlore the process of self-organization, a cellular automaton sandpile model is used to simulate the processes of grain blocking and hydraulically-driven step collapse in a 1-d channel. Particles are injected at the top of the channel and are allowed to travel downstream based on various local threshold rules, with the travel distance drawn from a chosen probability distribution. In sandpile modelling this is a simple 1-d limited non-local model, however it has been shown to have nontrivial dynamical behaviour (Kadanoff et al., 1989), and it captures the essence of stochastic sediment transport in step-pool systems. The numerical simulations are used to illustrate the differences between input and output sediment transport rates, mainly focussing on the magnification of intermittency and

  4. Monitoring and evaluation of plant and hydrological controls on arsenic transport across the water sediment interface

    Science.gov (United States)

    Jaffe, P. R.; MacDonald, L. H.; Paull, J.

    2009-12-01

    Plants and hydrology influence the transport of arsenic in wetlands by changing the dominant redox chemistry in the subsurface, and different plant and hydrological regimes can serve as effective barriers or promoters of metal transport. Inorganic arsenic, especially arsenate, binds to iron oxides in wetlands. In flooded wetland sediments, organic carbon from plants consumes oxygen and promotes reductive iron dissolution, which leads to arsenic release, while plants simultaneously create microoxic regimes around root hairs that oxidize and precipitate iron, promoting arsenic capture. Hydrology influences arsenic mobility by promoting wetting and drying cycles. Such cycles can lead to rapid shifts from anaerobic to aerobic conditions, and vice versa, with lasting impact on the oxidation state of iron and, by extension, the mobility of arsenic. Remediation strategies should take these competing conditions into account, and to help inform these strategies this study examines the chemistry of an industrially contaminated wetland when the above mechanisms aggregate. The study tests whether, in bulk, plants promote iron reduction or oxidation in intermittently flooded or consistently flooded sediments, and how this impacts arsenic mobility. This research uses a novel dialysis-based monitoring technique to examine the macro-properties of arsenic transport at the sediment water interface and at depth. Dialysis-based monitoring allows long-term seasonal trends in anaerobic porewater and allows active hypothesis testing on the influence of plants on redox chemistry. This study finds that plants promote iron reduction and that iron-reducing zones tend to correlate with zones with mobile arsenic. However, one newly reported and important finding of this study is that a brief summer drought that dried and oxidized sediments with a long history of iron-reduction zone served to effectively halt iron reduction for many months, and this corresponded to a lasting decline in

  5. Co-evolution of Vegetation, Sediment Transport and Infiltration on semi-arid hillslopes

    Science.gov (United States)

    Harman, C. J.; Troch, P. A.; Lohse, K. A.; Sivapalan, M.

    2011-12-01

    Soils in semi-arid landscapes can vary over very small distances, with a great deal of variation associated with 'resource islands' created and maintained by woody vegetation. The distinct physical and hydraulic properties that arise in these islands can lead to spatial patterns of infiltration that have been implicated in the maintenance of the vegetation populating the island. Less well understood are the roles that the small-scale variability in soils plays in determining the transport of sediments, water and sediment-bound carbon and nitrogen across hillslopes. Here we explore these relationships using a coupled field and modeling approach. Detailed field data from hillslopes underlain by both granite and schist parent materials in the Santa Catalina mountains (part of the JSC Critical Zone Observatory) suggest that soils under individual velvet mesquite (latin name) contain higher concentration of soil organic matter and have higher hydraulic conductivity and water holding capacity. Greater infiltration and increased roughness under the canopy appears to lead to the formation of mounds that alter overland flow lines around the area under the canopy, particularly in the finer schist soils. This diversion leads to a complex distribution of shear stresses across the hillslope, creating systematic patterns in the transport of carbon and nitrogen rich soils under the canopies. The relationship between the small scale mechanism and the emergent pattern dynamics in the temporal variability of materials delivered to the stream from the hillslope are also examined, and the implications of these results for the modeling of water, sediment and nutrient fluxes at hillslope scales will be discussed.

  6. Towards real time spatially resolved data on sediment transport: 1) tracing the motion of the fluorescent soil particles under rainfall

    Science.gov (United States)

    Quinton, John; Hardy, Rob; Pates, Jackie; James, Mike

    2017-04-01

    Understanding where sediment originates from and where it travels to, in what quantities and at which rate is at the heart of many questions surrounding sediment transport, including the connectivity problem. Progress towards unravelling these questions and deepening our understanding has come from a wide range of approaches, including laboratory and field experiments conducted at a variety of scales. In seeking to understand the connectivity of sources and sinks of sediment scientists have spent considerable energy in developing tracing technologies. These have included numerous studies that have relied on the chemical properties of the soil and sediment to establish source-sink connectivity, and the use of 137Ceasium, from radioactive fall-out, to map sediment redistribution. More recently there has been an upsurge in interest in the use of artificially applied soil tracers, including rare earth element oxides and magnetic minerals. However all these tracing methods have a significant drawback: they rely on the collection of samples to assess their concentration. This means that their spatial distribution cannot easily be established in situ and that the environment that is being studied is damaged by the sampling process; nor can data be collected in real time which allows a dynamic understanding of erosion and transport processes to be developed. In this paper we present a methodology for use with a commercially available fluorescent tracer. The tracer is produced in a range of sizes and fluorescent signatures and can be applied to the soil surface. Here we report on an application that combines novel fluorescent videography techniques with custom image processing to trace the motion of the fluorescent soil particles under rainfall. Here we demonstrate the tracking of multiple sub-millimetre particles simultaneously, establishing their position 50 times a second with submillimetre precision. From this we are able to visualise and quantify parameters such as

  7. Dynamics of river sediments in forested headwater streams: Plynlimon

    Directory of Open Access Journals (Sweden)

    G. J. L. Leeks

    1997-01-01

    Full Text Available Long term studies of fluvial sediment processes in the Plynlimon catchments have contributed to the assessment and quantification of plantation forestry impacts in British upland catchments, at all stages of the forest cycle. The results from the Plynlimon studies are placed in the context of the observed impacts of particular forest practices and studies of forestry effects on sediment transport elsewhere in the world. The effects associated with drain excavation, ploughing, track construction, ground and channel disruption are outlined for both bedload and, particularly, for suspended load. Finally, recent data on sediment yields from 1995 to 1997 at Plynlimon are reported and discussed in the light of longer-term sediment yield estimates. This paper also provides background information relevant to other sediment process studies which use data from the main Plynlimon sediment monitoring network.

  8. Characteristics Of Basaltic Sand: Size, Shape, And Composition As A Function Of Transport Process And Distance

    Science.gov (United States)

    Craddock, R. A.; Needell, Z. A.; Rose, T. R.

    2012-04-01

    Overview: The chemical and physical characteristics of sedimentary material can provide valuable clues about transport processes, distance traveled, and provenance, all of which are aspects of Martian geography that we would like to better understand. For a typical sedimentary deposit on Earth, for example, it has been shown that the ratio of feldspar to quartz can be used to assess the maturity (or transport distance) of a terrestrial deposit, because feldspar is more vulnerable to weathering than quartz. Further, chemical analysis can also be used to determine potential sediment sources, and grain-size sorting can be used to distinguish aeolian sediments (typically well-sorted) from fluvial sediments (poorly sorted in high energy environments). It is also common to use the shapes of individual quartz particles to determine transport process and distance, all of which can help us better understand the history of a sample of sedimentary material and the geological processes that created and emplaced it. These traditional sedimentological concepts are now being applied to our interpretation of Martian surface materials. Sullivan et al. [2008], for example, used grain-size and shape to assess eolian processes and to qualify transport distances of deposits found at the Spirit landing site in Gusev Crater. Stockstill-Cahill et al. [62008 used variations in mineral abundances observed in multispectral data to determine the provenance of dark dunes found in Amazonis Planitia craters. While applying our understanding of terrestrial sedimentary materials to Martian surface materials is intuitively sound and logical, the problem is that most of our current understanding is based on sediments derived from felsic materials (e.g., granite) primarily because that is the composition of most of the landmass on the Earth. However, the Martian surface is composed primarily of mafic material, or basalt, which generates much different sedimentary particles as it weathers. Instead of

  9. IMPLICATIONS OF NON-LOCALITY OF TRANSPORT IN GEOMORPHIC TRANSPORT LAWS: HILLSLOPES AND LANDSCAPE EVOLUTION MODELING

    Science.gov (United States)

    Foufoula-Georgiou, E.; Ganti, V. K.; Dietrich, W. E.

    2009-12-01

    Sediment transport on hillslopes can be thought of as a hopping process, where the sediment moves in a series of jumps. A wide range of processes shape the hillslopes which can move sediment to a large distance in the downslope direction, thus, resulting in a broad-tail in the probability density function (PDF) of hopping lengths. Here, we argue that such a broad-tailed distribution calls for a non-local computation of sediment flux, where the sediment flux is not only a function of local topographic quantities but is an integral flux which takes into account the upslope topographic “memory” of the point of interest. We encapsulate this non-local behavior into a simple fractional diffusive model that involves fractional (non-integer) derivatives. We present theoretical predictions from this nonlocal model and demonstrate a nonlinear dependence of sediment flux on local gradient, consistent with observations. Further, we demonstrate that the non-local model naturally eliminates the scale-dependence exhibited by any local (linear or nonlinear) sediment transport model. An extension to a 2-D framework, where the fractional derivative can be cast into a mixture of directional derivatives, is discussed together with the implications of introducing non-locality into existing landscape evolution models.

  10. Sediment pore-water interactions associated with arsenic and uranium transport from the North Cave Hills mining region, South Dakota, USA

    International Nuclear Information System (INIS)

    Larson, Lance N.; Kipp, Gregory G.; Mott, Henry V.; Stone, James J.

    2012-01-01

    The extent of historical U mining impacts is well documented for the North Cave Hills region of Harding County, South Dakota, USA. While previous studies reported watershed sediment and surface water As and U concentrations up to 90× established background concentrations, it was unclear whether or how localized changes in sediment redox behavior may influence contaminant remobilization. Five pore-water equilibration samplers (peepers) were spatially and temporally deployed within the study area to evaluate seasonal solid–liquid As and U distributions as a function of sediment depth. Pore-water and solid phase As and U concentrations, Fe speciation, Eh and pH were measured to ascertain specific geochemical conditions responsible for As and U remobilization and transport behavior. At a mine overburden sedimentation pond adjacent to the mine sites, high total aqueous As and U concentrations (4920 and 674 μg/L, respectively) were found within surface water during summer sampling; however pond dredging prior to autumn sampling resulted in significantly lower aqueous As and U concentrations (579 and 108 μg/L, respectively); however, both As and U still exceeded regional background concentrations (20 and 18 μg/L, respectively). At a wetlands-dominated deposition zone approximately 2 km downstream of the sedimentation pond, pore-water geochemical conditions varied seasonally. Summer conditions promoted reducing conditions in pore water, resulting in active release of As(III) to the water column. Autumn conditions promoted oxidizing conditions, decreasing pore-water As (As pw ) 5× and increasing U pw 10×. Peak U pore-water concentrations (781 μg/L) were 3.5× greater than determined for the surface water (226 μg/L), and approximately 40× background concentrations. At the Bowman–Haley reservoir backwaters 45 km downstream from the mine sites, As and U pore-water concentrations increased significantly between the summer and autumn deployments, attributed to

  11. A Numerical Modeling Framework for Cohesive Sediment Transport Driven by Waves and Tidal Currents

    Science.gov (United States)

    2012-09-30

    for sediment transport. The successful extension to multi-dimensions is benefited from an open-source CFD package, OpenFOAM (www.openfoam.org). This...linz.at/Drupal/), which couples the fluid solver OpenFOAM with the Discrete Element Model (DEM) solver LIGGGHTS (an improved LAMMPS for granular flow

  12. Waves, currents and sediment transport modelling at the Wave Hub site

    OpenAIRE

    Gonzalez-Santamaria, Raul

    2013-01-01

    Primary supervisory team: Qingping Zou and Shunqi Pan This research project uses an integrated modelling system to investigate the effects of a wave farm on nearshore sediment transport at the Wave Hub site. The Wave Hub project is a large scale demonstration site for the development of the operation of arrays of wave energy generation devices located at the southwest coast of the UK where multiple field measurements took place. Particular attention of this study was paid to th...

  13. Preliminary study of the chronology of the sedimentation process in lakes

    International Nuclear Information System (INIS)

    Patrocinio Junior, Antonio C.; Andrello, Avacir C.

    2009-01-01

    The soil erosion accelerated which produces the presence of sediment in rivers is one of the main environmental problems and represents a challenge for the sustainable use of soil and water resources. The problems associated with the increased sediments production are mainly related to the rivers siltation, reduced storage capacity of dams and reservoirs and reduction in the quality of aquatic environment. Thus, further information on sedimentation rates in lakes and reservoirs are required, as a parameter for estimating the chronology of production rates of sediment. Therefore, methods to establish the chronology of recent sediments are central base for such research. The cesium-137 is an artificial radionuclide with a half life of 30.2 years, inserted in the environment through the 'fallout' radioactive between the 1950's and 1970's, with two predominant peaks of deposition in 1959 and 1964. The basis for using the cesium-137 in this context (chronology of sediments) is that the cesium-137 is rapidly and strongly adsorbed to fine particles of soil and its distribution in the sediment profile directly reflects the chronology of sediment deposition. The purpose of this work is to use the cesium-137 profile in lake sediments to assess the history of deposition and to obtain information about the erosive process. For this, lake sediments of a mini-hydroelectric power plant built in the 1940's in the city of Londrina-PR were analyzed, showing that cesium-137 can be used as a source of data for chronological assessment of erosive processes occurring in the vicinity of the lake. (author)

  14. Importance of measuring discharge and sediment transport in lesser tributaries when closing sediment budgets

    Science.gov (United States)

    Griffiths, Ronald E.; Topping, David J.

    2017-11-01

    Sediment budgets are an important tool for understanding how riverine ecosystems respond to perturbations. Changes in the quantity and grain size distribution of sediment within river systems affect the channel morphology and related habitat resources. It is therefore important for resource managers to know if a river reach is in a state of sediment accumulation, deficit or stasis. Many sediment-budget studies have estimated the sediment loads of ungaged tributaries using regional sediment-yield equations or other similar techniques. While these approaches may be valid in regions where rainfall and geology are uniform over large areas, use of sediment-yield equations may lead to poor estimations of loads in regions where rainfall events, contributing geology, and vegetation have large spatial and/or temporal variability. Previous estimates of the combined mean-annual sediment load of all ungaged tributaries to the Colorado River downstream from Glen Canyon Dam vary by over a factor of three; this range in estimated sediment loads has resulted in different researchers reaching opposite conclusions on the sign (accumulation or deficit) of the sediment budget for particular reaches of the Colorado River. To better evaluate the supply of fine sediment (sand, silt, and clay) from these tributaries to the Colorado River, eight gages were established on previously ungaged tributaries in Glen, Marble, and Grand canyons. Results from this sediment-monitoring network show that previous estimates of the annual sediment loads of these tributaries were too high and that the sediment budget for the Colorado River below Glen Canyon Dam is more negative than previously calculated by most researchers. As a result of locally intense rainfall events with footprints smaller than the receiving basin, floods from a single tributary in semi-arid regions can have large (≥ 10 ×) differences in sediment concentrations between equal magnitude flows. Because sediment loads do not

  15. A Non-Equilibrium Sediment Transport Model for Dam Break Flow over Moveable Bed Based on Non-Uniform Rectangular Mesh

    Directory of Open Access Journals (Sweden)

    Gangfeng Wu

    2018-05-01

    Full Text Available The use of multiple-level non-uniform rectangular mesh in coupled flow and sediment transport modeling is preferred to achieve high accuracy in important region without increasing computational cost greatly. Here, a robust coupled hydrodynamic and non-equilibrium sediment transport model is developed on non-uniform rectangular mesh to simulate dam break flow over movable beds. The enhanced shallow water and sediment transport equations are adopted to consider the mass and momentum exchange between the flow phase and sediment phase. The flux at the interface is calculated by the positivity preserving central upwind scheme, which belongs to Godunov-type Riemann-problem-solver-free central schemes and is less expensive than other popular Riemann solvers while still capable of tracking wet/dry fronts accurately. The nonnegative water depth reconstruction method is used to achieve second-order accuracy in space. The model was first verified against two laboratory experiments of dam break flow over irregular fixed bed. Then the quantitative performance of the model was further investigated by comparing the computational results with measurement data of dam break flow over movable bed. The good agreements between the measurements and the numerical simulations are found for the flow depth, velocity and bed changes.

  16. Inter- and intra-annual variability of fluvial sediment transport in the proglacial river Riffler Bach (Weißseeferner, Ötztal Alps, Tyrol)

    Science.gov (United States)

    Baewert, Henning; Weber, Martin; Morche, David

    2015-04-01

    The hydrology of a proglacial river is strongly affected by glacier melting. Due to glacier retreat the effects of snow melt and rain storms will become more important in future decades. Additionally, the development of periglacial landscapes will play a more important role in the hydrology of proglacial rivers. The importance of paraglacial sediment sources in sediment budgets of glacier forefields is increasing, while the role of glacial erosion is declining. In two consecutive ablation seasons the fluvial sediment transport of the river Riffler Bach in the Kaunertal (Tyrol/Austria) was quantified. The catchment area of this station is 20 km² with an altitudinal range from 1929 m to 3518 m above msl. The "Weißseeferner" glacier (2.34 km² in 2012) is the greatest of the remaining glaciers. An automatic water sampler (AWS 2002) and a probe for water level were installed were installed at the outlet of the catchment. In order to calculate annual stage-discharge-relations, discharge (Q) was repeatedly measured with current meters. Concurrent to the discharge measurements bed load was collected using a portable Helley-Smith sampler. Bed load (BL) samples were weighted and sieved in the laboratory to gain annual bed load rating curves and grain size distributions. In 2012, 154 water samples were sampled during 7 periods and subsequently filtered to quantify suspended sediment concentrations (SSC). A Q-SSC-relation was calculated for every period due to the high variability in suspended sediment transport. In addition, the grain size distribution of the filtered material was determined by laser diffraction analysis. In 2013, the same procedure was performed for 232 water samples which were collected during 9 periods. Meteorological data were logged at the climate station "Weißsee", which is located in the centre of the study area. First results show a high variability of discharge and solid sediment transport both at the inter-annual as well as at the intra

  17. The influence of turbulent bursting on sediment resuspension under unidirectional currents

    Directory of Open Access Journals (Sweden)

    S. Salim

    2017-07-01

    Full Text Available Laboratory experiments were conducted in an open channel flume with a flat sandy bed to examine the role of turbulence on sediment resuspension. An acoustic Doppler velocimeter (ADV was used to measure the instantaneous three-dimensional velocity components and acoustic backscatter as a proxy to suspended sediment concentration. Estimates of sediment transport assume that there is a mean critical velocity that needs to be exceeded before sediment transport is initiated. This approach does not consider the turbulent flow field that may initiate sediment resuspension through event-based processes such as the bursting phenomenon. In this paper, laboratory measurements were used to examine the sediment resuspension processes below and above the mean critical velocity. The results within a range above and below the measured mean critical velocity suggested that (1 the contribution of turbulent bursting events remained identical in both experimental conditions, (2 ejection and sweep events contributed more to the total sediment flux than up-acceleration and down-deceleration events, and (3 wavelet transform revealed a correlation between the momentum and sediment flux in both test conditions. Such similarities in conditions above and below the measured mean critical velocity highlight the need to re-evaluate the accuracy of a single time-averaged mean critical velocity for the initiation of sediment entrainment.

  18. Estimating sediment discharge: Appendix D

    Science.gov (United States)

    Gray, John R.; Simões, Francisco J. M.

    2008-01-01

    Sediment-discharge measurements usually are available on a discrete or periodic basis. However, estimates of sediment transport often are needed for unmeasured periods, such as when daily or annual sediment-discharge values are sought, or when estimates of transport rates for unmeasured or hypothetical flows are required. Selected methods for estimating suspended-sediment, bed-load, bed- material-load, and total-load discharges have been presented in some detail elsewhere in this volume. The purposes of this contribution are to present some limitations and potential pitfalls associated with obtaining and using the requisite data and equations to estimate sediment discharges and to provide guidance for selecting appropriate estimating equations. Records of sediment discharge are derived from data collected with sufficient frequency to obtain reliable estimates for the computational interval and period. Most sediment- discharge records are computed at daily or annual intervals based on periodically collected data, although some partial records represent discrete or seasonal intervals such as those for flood periods. The method used to calculate sediment- discharge records is dependent on the types and frequency of available data. Records for suspended-sediment discharge computed by methods described by Porterfield (1972) are most prevalent, in part because measurement protocols and computational techniques are well established and because suspended sediment composes the bulk of sediment dis- charges for many rivers. Discharge records for bed load, total load, or in some cases bed-material load plus wash load are less common. Reliable estimation of sediment discharges presupposes that the data on which the estimates are based are comparable and reliable. Unfortunately, data describing a selected characteristic of sediment were not necessarily derived—collected, processed, analyzed, or interpreted—in a consistent manner. For example, bed-load data collected with

  19. Constraints on aeolian sediment transport to foredunes within an undeveloped backshore enclave on a developed coast

    Science.gov (United States)

    Kaplan, Kayla L.; Nordstrom, Karl F.; Jackson, Nancy L.

    2016-10-01

    Landforms present in undeveloped beach enclaves located between properties developed with houses and infrastructure are often left to evolve naturally but are influenced by the human structures near them. This field study evaluates how buildings and sand-trapping fences change the direction of wind approach, reduce wind speed, and restrict fetch distances for sediment entrainment, thereby reducing the potential for aeolian transport and development of dunes in enclaves. Field data were gathered in an 80 m long, 44 m deep beach enclave on the ocean shoreline of New Jersey, USA. Comparison of wind characteristics in the enclave with a site unaffected by buildings revealed that offshore winds in the enclave are reduced in strength and altered in direction by landward houses, increasing the relative importance of longshore winds. Vertical arrays of anemometers on the foredune crest, foredune toe and berm crest in the enclave revealed increasing wind speed with distance offshore, with strongest winds on the berm crest. Vertical cylindrical traps on the foredune crest, foredune toe, mid-backshore, berm crest and upper foreshore revealed the greatest rate of sediment transport on the berm crest. Sediment samples from the beach and from traps revealed limited potential for aeolian transport because of coarse grain sizes. Strong oblique onshore winds are common in this region and are normally important for transporting sand to dunes. The length of an enclave and the setback distance on its landward side determine the degree to which sediment delivered by oblique winds contributes to dune growth. The landward edge of the enclave (defined by a sand fence near the dune toe) is sheltered along its entire length from winds blowing at an angle to the shoreline of 25° or less. A foredune set back this distance in an enclave the length of an individual lot (about 20 m) would be sheltered at an angle of 57° or less, reducing the opportunity for dune building by onshore winds

  20. Comparative analysis of several sediment transport formulations applied to dam-break flows over erodible beds

    Science.gov (United States)

    Cea, Luis; Bladé, Ernest; Corestein, Georgina; Fraga, Ignacio; Espinal, Marc; Puertas, Jerónimo

    2014-05-01

    Transitory flows generated by dam failures have a great sediment transport capacity, which induces important morphological changes on the river topography. Several studies have been published regarding the coupling between the sediment transport and hydrodynamic equations in dam-break applications, in order to correctly model their mutual interaction. Most of these models solve the depth-averaged shallow water equations to compute the water depth and velocity. On the other hand, a wide variety of sediment transport formulations have been arbitrarily used to compute the topography evolution. These are based on semi-empirical equations which have been calibrated under stationary and uniform conditions very different from those achieved in dam-break flows. Soares-Frazao et al. (2012) proposed a Benchmark test consisting of a dam-break over a mobile bed, in which several teams of modellers participated using different numerical models, and concluded that the key issue which still needs to be investigated in morphological modelling of dam-break flows is the link between the solid transport and the hydrodynamic variables. This paper presents a comparative analysis of different sediment transport formulations applied to dam-break flows over mobile beds. All the formulations analysed are commonly used in morphological studies in rivers, and include the formulas of Meyer-Peter & Müller (1948), Wong-Parker (2003), Einstein-Brown (1950), van Rijn (1984), Engelund-Hansen (1967), Ackers-White (1973), Yang (1973), and a Meyer-Peter & Müller type formula but with ad-hoc coefficients. The relevance of corrections on the sediment flux direction and magnitude due to the bed slope and the non-equilibrium hypothesis is also analysed. All the formulations have been implemented in the numerical model Iber (Bladé et al. (2014)), which solves the depth-averaged shallow water equations coupled to the Exner equation to evaluate the bed evolution. Two different test cases have been

  1. Potential Activity of Subglacial Microbiota Transported to Anoxic River Delta Sediments

    DEFF Research Database (Denmark)

    Cameron, Karen A.; Stibal, Marek; Olsen, Nikoline S.

    2017-01-01

    -related organisms. Later, a reduction in methane was observed to be paired with the depletion of sulphate, and we hypothesise that sulphate reduction out competed hydrogenotrophic methanogenesis. The structure and diversity of the original CO2/H2-amended incubation communities changed dramatically with a major......The Watson River drains a portion of the SW Greenland ice sheet, transporting microbial communities from subglacial environments to a delta at the head of Søndre Strømfjord. This study investigates the potential activity and community shifts of glacial microbiota deposited and buried under layers...... of sediments within the river delta. A long-term (12-month) incubation experiment was established using Watson River delta sediment under anaerobic conditions, with and without CO2/H2 enrichment. Within CO2/H2-amended incubations, sulphate depletion and a shift in the microbial community to a 52% predominance...

  2. Modelling detrital coral grain-size and age: Insights from sediment abrasion process of Yongle Atoll of South China Sea

    Science.gov (United States)

    Li, Y.; Zou, X.; Ge, C.; Tan, M.; Wang, C.

    2017-12-01

    Reef islands situated on the rims of atolls are composed almost exclusively of bioclastic materials locally supplied from adjacent coral reefs. Major skeletal component of these islands include coral, coralline algae, mollusks and foraminifera, produced in adjacent reefs. As the island builder, the bioclastic material is the sedimentary products, which also is the point of penetration to decipher the process. The bioclast of coral islands decrease in size with the transportation process. The grain-size provides a proxy record for the abrasion history of the unconsolidated sediment. The 230Th age of coral record the abrasion time. We hereby present a model to calculate the abrasion rate based on the data of 230Th age and grain-size of Yongle Atoll of Xisha Island, South China Sea. The grain size pattern in Yongle Atoll environment have confirm that the coral article diminution behave exponentially. The sediment composition of Yongle Atoll is identified, coral is dominant sediment constituent and the Th230 age is shown to exert an age distribution characteristics of coral detritus. We illustrate this approach by calculate the coral debris age of Xude Atoll, which located near the Yongle Atoll and then by comparing actual measured age and calculated age and to explore the dependence of the model. Observed 230 Th ages are well matched by predicted ages for medium age sediment. A poorer match for young and old sediment may result from some combination of large analytical uncertainties in the detrital ages and inhomogeneous erosion rates within the atoll. Such mismatches emphasize the need for more accurate kinematic models and for sampling strategies that are adapted to atoll-specific geologic and geomorphic conditions. Results presented constitute important new insights into regional sediment abrasion processed and on the evolution of coral atoll islands.

  3. An approximate analytical solution for describing surface runoff and sediment transport over hillslope

    Science.gov (United States)

    Tao, Wanghai; Wang, Quanjiu; Lin, Henry

    2018-03-01

    Soil and water loss from farmland causes land degradation and water pollution, thus continued efforts are needed to establish mathematical model for quantitative analysis of relevant processes and mechanisms. In this study, an approximate analytical solution has been developed for overland flow model and sediment transport model, offering a simple and effective means to predict overland flow and erosion under natural rainfall conditions. In the overland flow model, the flow regime was considered to be transitional with the value of parameter β (in the kinematic wave model) approximately two. The change rate of unit discharge with distance was assumed to be constant and equal to the runoff rate at the outlet of the plane. The excess rainfall was considered to be constant under uniform rainfall conditions. The overland flow model developed can be further applied to natural rainfall conditions by treating excess rainfall intensity as constant over a small time interval. For the sediment model, the recommended values of the runoff erosion calibration constant (cr) and the splash erosion calibration constant (cf) have been given in this study so that it is easier to use the model. These recommended values are 0.15 and 0.12, respectively. Comparisons with observed results were carried out to validate the proposed analytical solution. The results showed that the approximate analytical solution developed in this paper closely matches the observed data, thus providing an alternative method of predicting runoff generation and sediment yield, and offering a more convenient method of analyzing the quantitative relationships between variables. Furthermore, the model developed in this study can be used as a theoretical basis for developing runoff and erosion control methods.

  4. Multi-dimensional rheology-based two-phase model for sediment transport and applications to sheet flow and pipeline scour

    International Nuclear Information System (INIS)

    Lee, Cheng-Hsien; Low, Ying Min; Chiew, Yee-Meng

    2016-01-01

    Sediment transport is fundamentally a two-phase phenomenon involving fluid and sediments; however, many existing numerical models are one-phase approaches, which are unable to capture the complex fluid-particle and inter-particle interactions. In the last decade, two-phase models have gained traction; however, there are still many limitations in these models. For example, several existing two-phase models are confined to one-dimensional problems; in addition, the existing two-dimensional models simulate only the region outside the sand bed. This paper develops a new three-dimensional two-phase model for simulating sediment transport in the sheet flow condition, incorporating recently published rheological characteristics of sediments. The enduring-contact, inertial, and fluid viscosity effects are considered in determining sediment pressure and stresses, enabling the model to be applicable to a wide range of particle Reynolds number. A k − ε turbulence model is adopted to compute the Reynolds stresses. In addition, a novel numerical scheme is proposed, thus avoiding numerical instability caused by high sediment concentration and allowing the sediment dynamics to be computed both within and outside the sand bed. The present model is applied to two classical problems, namely, sheet flow and scour under a pipeline with favorable results. For sheet flow, the computed velocity is consistent with measured data reported in the literature. For pipeline scour, the computed scour rate beneath the pipeline agrees with previous experimental observations. However, the present model is unable to capture vortex shedding; consequently, the sediment deposition behind the pipeline is overestimated. Sensitivity analyses reveal that model parameters associated with turbulence have strong influence on the computed results.

  5. A smoothed particle hydrodynamics (SPH) study on polydisperse sediment from technical activities on seabed

    Science.gov (United States)

    Tran-Duc, Thien; Phan-Thien, Nhan; Khoo, Boo Cheong

    2018-02-01

    Technical activities to collect poly-metallic nodules on a seabed are likely to disturb the top-layer sediment and re-suspend it into the ambient ocean water. The transport of the re-suspended polydisperse-sized sediment is a process in which particles' size variation leads to a difference in their settling velocities; and thus the polydispersity in sizes of sediment has to be taken into account in the modeling process. The sediment transport within a window of 12 km is simulated and analyzed numerically in this study. The sediment characteristic and the ocean current data taken from the Peru Basin, Pacific Ocean, are used in the simulations. More than 50% of the re-suspended sediment are found to return to the bottom after 24 h. The sediment concentration in the ambient ocean water does not exceed 3.5 kg/m3 during the observed period. The deposition rate steadily increases and reaches 70% of the sediment re-suspension rate after 24 h. The sediment plume created by the activities comprises mainly very fine sediment particles (clays and silts), whereas coarser particles (sands) are found in abundance in the deposited sediment within 1 km from the source location. It is also found that the deposition process of the re-suspended sediment is changed remarkably as the current velocity increases from 0.05 m/s (medium current) to 0.1 m/s (strong current). The strong sediment deposition trend is also observed as the sediment source moves continuously over a region due to the sediment scattering effect.

  6. (210)Pb as a tracer of soil erosion, sediment source area identification and particle transport in the terrestrial environment.

    Science.gov (United States)

    Matisoff, Gerald

    2014-12-01

    Although (137)Cs has been used extensively to study soil erosion and particle transport in the terrestrial environment, there has been much less work using excess or unsupported (210)Pb ((210)Pbxs) to study the same processes. Furthermore, since (137)Cs activities in soils are decreasing because of radioactive decay, some locations have an added complication due to the addition of Chernobyl-derived (137)Cs, and the activities of (137)Cs in the southern hemisphere are low, there is a need to develop techniques that use (210)Pbxs to provide estimates of rates of soil erosion and particle transport. This paper reviews the current status of (210)Pbxs methods to quantify soil erosion rates, to identify and partition suspended sediment source areas, and to determine the transport rates of particles in the terrestrial landscape. Soil erosion rates determined using (210)Pbxs are based on the unsupported (210)Pb ((210)Pbxs) inventory in the soil, the depth distribution of (210)Pbxs, and a mass balance calibration ('conversion model') that relates the soil inventory to the erosion rate using a 'reference site' at which neither soil erosion nor soil deposition has occurred. In this paper several different models are presented to illustrate the effects of different model assumptions such as the timing, depth and rates of the surface soil mixing on the calculated erosion rates. The suitability of model assumptions, including estimates of the depositional flux of (210)Pbxs to the soil surface and the post-depositional mobility of (210)Pb are also discussed. (210)Pb can be used as one tracer to permit sediment source area identification. This sediment 'fingerprinting' has been extended far beyond using (210)Pb as a single radioisotope to include numerous radioactive and stable tracers and has been applied to identifying the source areas of suspended sediment based on underlying rock type, land use (roads, stream banks, channel beds, cultivated or uncultivated lands, pasture lands

  7. Sediment transport in the lower Snake and Clearwater River Basins, Idaho and Washington, 2008–11

    Science.gov (United States)

    Clark, Gregory M.; Fosness, Ryan L.; Wood, Molly S.

    2013-01-01

    Sedimentation is an ongoing maintenance problem for reservoirs, limiting reservoir storage capacity and navigation. Because Lower Granite Reservoir in Washington is the most upstream of the four U.S. Army Corps of Engineers reservoirs on the lower Snake River, it receives and retains the largest amount of sediment. In 2008, in cooperation with the U.S. Army Corps of Engineers, the U.S. Geological Survey began a study to quantify sediment transport to Lower Granite Reservoir. Samples of suspended sediment and bedload were collected from streamgaging stations on the Snake River near Anatone, Washington, and the Clearwater River at Spalding, Idaho. Both streamgages were equipped with an acoustic Doppler velocity meter to evaluate the efficacy of acoustic backscatter for estimating suspended-sediment concentrations and transport. In 2009, sediment sampling was extended to 10 additional locations in tributary watersheds to help identify the dominant source areas for sediment delivery to Lower Granite Reservoir. Suspended-sediment samples were collected 9–15 times per year at each location to encompass a range of streamflow conditions and to capture significant hydrologic events such as peak snowmelt runoff and rain-on-snow. Bedload samples were collected at a subset of stations where the stream conditions were conducive for sampling, and when streamflow was sufficiently high for bedload transport. At most sampling locations, the concentration of suspended sediment varied by 3–5 orders of magnitude with concentrations directly correlated to streamflow. The largest median concentrations of suspended sediment (100 and 94 mg/L) were in samples collected from stations on the Palouse River at Hooper, Washington, and the Salmon River at White Bird, Idaho, respectively. The smallest median concentrations were in samples collected from the Selway River near Lowell, Idaho (11 mg/L), the Lochsa River near Lowell, Idaho (11 mg/L), the Clearwater River at Orofino, Idaho (13 mg

  8. Long-Term Impact of Sediment Deposition and Erosion on Water Surface Profiles in the Ner River

    Directory of Open Access Journals (Sweden)

    Tomasz Dysarz

    2017-02-01

    Full Text Available The purpose of the paper is to test forecasting of the sediment transport process, taking into account two main uncertainties involved in sediment transport modeling. These are: the lack of knowledge regarding future flows, and the uncertainty with respect to which sediment transport formula should be chosen for simulations. The river reach chosen for study is the outlet part of the Ner River, located in the central part of Poland. The main characteristic of the river is the presence of an intensive morphodynamic process, increasing flooding frequency. The approach proposed here is based on simulations with a sediment-routing model and assessment of the hydraulic condition changes on the basis of hydrodynamic calculations for the chosen characteristic flows. The data used include Digital Terrain Models (DTMs, cross-section measurements, and hydrological observations from the Dabie gauge station. The sediment and hydrodynamic calculations are performed using program HEC-RAS 5.0. Twenty inflow scenarios are of a 10-year duration and are composed on the basis of historical data. Meyer-Peter and Müller and Engelund-Hansen formulae are applied for the calculation of sediment transport intensity. The methodology presented here seems to be a good tool for the prediction of long-term impacts on water surface profiles caused by sediment deposition and erosion.

  9. Sediment Capping and Natural Recovery, Contaminant Transport Fundamentals With Applications to Sediment Caps

    National Research Council Canada - National Science Library

    Petrovski, David M; Corcoran, Maureen K; May, James H; Patrick, David M

    2005-01-01

    Engineered sediment caps and natural recovery are in situ remedial alternatives for contaminated sediments, which consist of the artificial or natural placement of a layer of material over a sediment...

  10. Risk of the residents, infrastructure and water bodies by flash floods and sediment transport - assessment for scale of the Czech Republic

    Science.gov (United States)

    Dostál, Tomáš; Krása, Josef; Bauer, Miroslav; Strouhal, Luděk; Jáchymová, Barbora; Devátý, Jan; David, Václav; Koudelka, Petr; Dočkal, Martin

    2015-04-01

    Pluvial and flash floods, related to massive sediment transport become phenomenon nowadays, under conditions of climate changes. Storm events, related to material damages appear at unexpected places and their effective control is only possible in form of prevention. To apply preventive measures, there have to be defined localities with reasonable reliability, which are endangered by surface runoff and sediment transport produced in the subcatchments, often at agriculturally used landscape. Classification of such localities, concerning of potential damages and magnitude of sediment transport shall be also included within the analyses, to design control measures effectively. Large scale project for whole territory of the Czech Republic (ca 80.000 km2) has therefore been granted b the Ministry of Interior of the Czech Republic, with the aim to define critical points, where interaction between surface runoff connected to massive sediment transport and infrastructure or vulnerable water bodies can occur and to classify them according to potential risk. Advanced GIS routines, based on analyses of land use, soil conditions and morphology had been used to determine the critical points - points, where significant surface runoff occurs and interacts with infrastructure and vulnerable water bodies, based exclusively on the contributing area - flow accumulation. In total, ca 150.000 critical points were determined within the Czech Republic. For each of critical points, its subcatchment had then been analyzed in detail, concerning of soil loss and sediment transport, using simulation model WATEM/SEDEM. The results were used for classification of potential risk of individual critical points, based on mean soil loss within subcatchment, total sediment transport trough the outlet point and subcatchment area. The classification has been done into 5 classes. The boundaries were determined by calibration survey and statistical analysis, performed at three experimental catchments area

  11. Investigating radionuclide bearing suspended sediment transport mechanisms in the Ribble estuary using airborne remote sensing

    International Nuclear Information System (INIS)

    Atkin, P.A.

    2000-10-01

    BNFL Sellafield has been authorised to discharge radionuclides to the Irish Sea since 1952. In the aquatic environment the radionuclides are adsorbed by sediments and are thus redistributed by sediment transport mechanisms. This sediment is known to accumulate in the estuaries of the Irish Sea. BNFL Springfields is also licensed to discharge isotopically different radionuclides directly to the Ribble estuary. Thus there is a need to understand the sediment dynamics of the Ribble estuary in order to understand the fate of these radionuclides within the Ribble estuary. Estuaries are highly dynamic environments that are difficult to monitor using the conventional sampling techniques. However, remote sensing provides a potentially powerful tool for monitoring the hydrodynamics of the estuarine environment by providing data that are both spatially and temporally representative. This research develops a methodology for mapping suspended sediment concentration (SSC) in the Ribble estuary using airborne remote sensing. The first hypothesis, that there is a relationship between SSC and 137 Cs concentration is proven in-situ (R 2 =0.94), thus remotely sensed SSC can act as a surrogate for 137 Cs concentration. Initial in-situ characterisation of the suspended sediments was investigated to identify spatial and temporal variability in grain size distributions and reflectance characteristics for the Ribble estuary. Laboratory experiments were then performed to clearly define the SSC reflectance relationship, identify the optimum CASI wavelengths for quantifying SSC and to demonstrate the effects on reflectance of the environmental variables of salinity and clay content. Images were corrected for variation in solar elevation and angle to give a ground truth calibration for SSC, with an R 2 =0.76. The remaining scatter in this relationship was attributed to the differences in spatial and temporal representation between sampling techniques and remote sensing. The second hypothesis

  12. Hyporheic flow and transport processes: mechanisms, models, and biogeochemical implications

    Science.gov (United States)

    Boano, Fulvio; Harvey, Judson W.; Marion, Andrea; Packman, Aaron I.; Revelli, Roberto; Ridolfi, Luca; Anders, Wörman

    2014-01-01

    Fifty years of hyporheic zone research have shown the important role played by the hyporheic zone as an interface between groundwater and surface waters. However, it is only in the last two decades that what began as an empirical science has become a mechanistic science devoted to modeling studies of the complex fluid dynamical and biogeochemical mechanisms occurring in the hyporheic zone. These efforts have led to the picture of surface-subsurface water interactions as regulators of the form and function of fluvial ecosystems. Rather than being isolated systems, surface water bodies continuously interact with the subsurface. Exploration of hyporheic zone processes has led to a new appreciation of their wide reaching consequences for water quality and stream ecology. Modern research aims toward a unified approach, in which processes occurring in the hyporheic zone are key elements for the appreciation, management, and restoration of the whole river environment. In this unifying context, this review summarizes results from modeling studies and field observations about flow and transport processes in the hyporheic zone and describes the theories proposed in hydrology and fluid dynamics developed to quantitatively model and predict the hyporheic transport of water, heat, and dissolved and suspended compounds from sediment grain scale up to the watershed scale. The implications of these processes for stream biogeochemistry and ecology are also discussed."

  13. Runoff and sediment transport in the arid regions of Argentina and India - a case study in comparative hydrology

    NARCIS (Netherlands)

    Sharma, K.D.; Menenti, M.; Huygen, J.; Fernandez, P.C.; Vich, A.

    1996-01-01

    The arid zones of Argentina and India have been compared. In both regions run-off is often generated by the Hortonian infiltration surplus overland flow, and run-off response to precipitation input tends to be rapid. The sediment transport is governedby the transport capacity of run-off rather than

  14. Use of Gas Transported Reactants for Uranium Remediation in Vadose Zone Sediments

    International Nuclear Information System (INIS)

    Szecsody, James E.; Zhong, Lirong; Truex, Michael J.; Resch, Charles T.; Williams, Mark D.

    2010-01-01

    This laboratory-scale investigation is focused on decreasing mobility of uranium in subsurface contaminated sediments in the vadose zone by in situ geochemical manipulation at low water content. This geochemical manipulation of the sediment surface phases included reduction, pH change (acidic and alkaline), and additions of chemicals (phosphate, ferric iron) to form specific precipitates. Reactants were advected into 1-D columns packed with Hanford 200 area U-contaminated sediment as a reactive gas (for CO2, NH3, H2S, SO2), with a 0.1% water content mist (for NaOH, Fe(III), HCl, PO4) and with a 1% water content foam (for PO4). Because uranium is present in the sediment in multiple phases, changes in U surface phases were evaluated with a series of liquid extractions that dissolve progressively less soluble phases and electron microbe identification of mineral phases. In terms of the short-term decrease in U mobility (in decreasing order), NH3, NaOH mist, CO2, HCl mist, and Fe(III) mist showed 20% to 35% change in U surface phases. The two reductive gas treatments (H2S and SO2) showed little change. For long-term decrease in U transport, mineral phases created that had low solubility (phosphates, silicates) were desired, so NH3, phosphates (mist and foam delivered), and NaOH mist showed the greatest formation of these minerals.

  15. Linking Arenicola marina irrigation behavior to oxygen transport and dynamics in sandy sediments

    DEFF Research Database (Denmark)

    Timmermann, Karen; Banta, Gary T.; Glud, Ronnie Nøhr

    2007-01-01

    In this study we examine how the irrigation behavior of the common lugworm Arenicola marina affects the distribution, transport and dynamics of oxygen in sediments using microelectrodes, planar optodes and diagenetic modeling. The irrigation pattern was characterized by a regular recurring period...... and only in rare situations with very high pumping rates (>200 ml h-1) and/or a narrow feeding funnel (water....... concentration in the burrow was high (80% air saturation) and oxygen was detected at distances up to 0.7 mm from the burrow wall. Volume specific oxygen consumption rates calculated from measured oxygen profiles were up to 4 times higher for sediments surrounding worm burrows as compared to surface sediments....... Model results indicated that oxygen consumption also was higher in the feeding pocket/funnel compared to the activity in surface sediments. An oxygen budget revealed that 49% of the oxygen pumped into the burrow during lugworm irrigation was consumed by the worm itself while 23% supported the diffusive...

  16. Hydrodynamics and sediment transport in a meandering channel with a model axial-flow hydrokinetic turbine

    Science.gov (United States)

    Hill, Craig; Kozarek, Jessica; Sotiropoulos, Fotis; Guala, Michele

    2016-02-01

    An investigation into the interactions between a model axial-flow hydrokinetic turbine (rotor diameter, dT = 0.15 m) and the complex hydrodynamics and sediment transport processes within a meandering channel was carried out in the Outdoor StreamLab research facility at the University of Minnesota St. Anthony Falls Laboratory. This field-scale meandering stream with bulk flow and sediment discharge control provided a location for high spatiotemporally resolved measurements of bed and water surface elevations around the model turbine. The device was installed within an asymmetric, erodible channel cross section under migrating bed form and fixed outer bank conditions. A comparative analysis between velocity and topographic measurements, with and without the turbine installed, highlights the local and nonlocal features of the turbine-induced scour and deposition patterns. In particular, it shows how the cross-section geometry changes, how the bed form characteristics are altered, and how the mean flow field is distorted both upstream and downstream of the turbine. We further compare and discuss how current energy conversion deployments in meander regions would result in different interactions between the turbine operation and the local and nonlocal bathymetry compared to straight channels.

  17. Sediment traps with guiding channel and hybrid check dams improve controlled sediment retention

    Science.gov (United States)

    Schwindt, Sebastian; Franca, Mário J.; Reffo, Alessandro; Schleiss, Anton J.

    2018-03-01

    Sediment traps with partially open check dams are crucial elements for flood protection in alpine regions. The trapping of sediment is necessary when intense sediment transport occurs during floods that may endanger urban areas at downstream river reaches. In turn, the unwanted permanent trapping of sediment during small, non-hazardous floods can result in the ecological and morphological degradation of downstream reaches. This study experimentally analyses a novel concept for permeable sediment traps. For ensuring the sediment transfer up to small floods, a guiding channel implemented in the deposition area of a sediment trap was systematically studied. The bankfull discharge of the guiding channel corresponds to a dominant morphological discharge. At the downstream end of the guiding channel, a permeable barrier (check dam) triggers sediment retention and deposition. The permeable barrier consists of a bar screen for mechanical deposition control, superposed to a flow constriction for the hydraulic control. The barrier obstructs hazardous sediment transport for discharges that are higher than the bankfull discharge of the guiding channel without the risk of unwanted sediment flushing (massive self-cleaning).

  18. Chloride, bromide and iodide distributions in Loch Lomond sediment interstitial water

    International Nuclear Information System (INIS)

    MacKenzie, A.B.; Shimmield, T.M.; Scott, R.D.; Davidson, C.M.; Hooker, P.J.

    1991-01-01

    The post glacial sediments of Loch Lomond contain a well defined band of marine deposited material which is overlain and underlain by freshwater deposited sediment. The chronology of the sedimentary sequence has been well established by radiocarbon dating and, in the southern basin of the Loch, the marine sediment band is of the order of 1 m thick and typically occurs at a depth of about 3 to 4 m beneath the sediment surface. Previous work has established that the marine deposited sediment contains enhanced concentrations of iodine and bromine relative to the contiguous freshwater sediments and that dissolution of halogen elements from the marine sediments generates a concentration gradient, with consequent diffusive transport, of these elements in the sediment interstitial water. This environment is thus highly suitable for investigation of the rate of transport of halogen elements through the sediment a topic of direct relevance to radioactive waste disposal in the context of far field migration of 129 I. Previous studies resulted in successful modelling of the diffusive transport of bromine in the interstitial water of the sediment on the basis of the observed concentration profile for total bromine in the water. This work was, however, of restricted value since (1) speciation was not determined (2) archived sediment was used and (3) samples were processed and analyzed under ambient laboratory conditions. The objective of the work described in this report was to collect a new core of Loch Lomond sediment and to carry out appropriate analyses to overcome the above limitations

  19. Shifting sources and transport paths for the late Quaternary Escanaba Trough sediment fill (northeast Pacific)

    Science.gov (United States)

    Zuffa, G.G.; De Rosa, R.; Normark, W.R.

    1997-01-01

    Escanaba Trough, which forms the southernmost part of the axial valley of the actively spreading Gorda Ridge, is filled with several hundred meters of sediment of presumed late Quaternary age. Surficial sediment samples from gravity cores, deeper samples (as much as 390 m) from Site 35 of the Deep Sea Drilling Program (Leg 5), and the acoustic character of the sediment fill observed on seismic-reflection profiles indicate that much of the sediment fill is of turbidite origin. Gross composition and heavy- mineral analyses of sand samples show that two distinct petrofacies comprise the sediment fill. The lower part of the fill was derived primarily from the Klamath River source of northern California while the younger fill, including the surficial sand beds, are from the Columbia River drainage much farther north. The Escanaba Trough sediment provides an opportunity to evaluate concepts for paleogeographic and paleotectonic reconstructions that are based on facies analysis and compositional and textural data for the volcanic components because both intrabasinal and extrabasinal sources are present as well as coeval (neovolcanic) and non coeval (paleovolcanic) sourcre This study of a modern basin shows, that although the sediment sources could be identified, it was useful to have some knowledge of the sediment pathway(s), the effects of diagenesis, and the possible effects of sediment sorting as a result of long transport distances from the source area for some components. Application of these same techniques to ancient deposits without benefit of the additional parameters will face limitations.

  20. Impacts of Cropland Changes on Water Balance, Sediment and Nutrient Transport in Eden River, UK

    Science.gov (United States)

    Huang, Yumei; Quinn, Paul; Liang, Qiuhua; Adams, Russell

    2017-04-01

    Water is the key to food and human life. Farming is the main part of economic and society in Eden, with approximately 2000 farms which covers 95% of under crops. However, with the growth of farming practice and global climate changes, Eden has presented great challenges and bringing uncertainty in the water quality caused by the agricultural diffuse pollution. This expected to reduce negative impacts of the water diffuse pollution from agriculture in Eden. Therefore, there is a high need to ensure effective water resource management to enhance water quality, to address the flow pathways and sediment transport in different farming practice and cropland changes. Hence we need to understand nutrient and the hydrological flow pathways from soil to Hillslope to channel. The aim of this research is to evaluate the impacts of different cropland changes on water balance, sediment and nutrient transport. By using the hydrological models Soil and Water Assessment Tool (SWAT) and the Catchment Runoff Attenuation Flux Tool (CRAFT), it can show the sediment and nutrient export from the load for each flow pathways (overland flow, soil water flow and ground water flow). We will show results from a small research catchment (10km2) area to the whole of Eden (800km2) at a daily time step.

  1. The influence of wave energy and sediment transport on seagrass distribution

    Science.gov (United States)

    Stevens, Andrew W.; Lacy, Jessica R.

    2012-01-01

    A coupled hydrodynamic and sediment transport model (Delft3D) was used to simulate the water levels, waves, and currents associated with a seagrass (Zostera marina) landscape along a 4-km stretch of coast in Puget Sound, WA, USA. A hydroacoustic survey of seagrass percent cover and nearshore bathymetry was conducted, and sediment grain size was sampled at 53 locations. Wave energy is a primary factor controlling seagrass distribution at the site, accounting for 73% of the variability in seagrass minimum depth and 86% of the variability in percent cover along the shallow, sandy portions of the coast. A combination of numerical simulations and a conceptual model of the effect of sea-level rise on the cross-shore distribution of seagrass indicates that the area of seagrass habitat may initially increase and that wave dynamics are an important factor to consider in predicting the effect of sea-level rise on seagrass distributions in wave-exposed areas.

  2. The iFlow modelling framework v2.4 : A modular idealized process-based model for flow and transport in estuaries

    NARCIS (Netherlands)

    Dijkstra, Y.M.; Brouwer, R.L.; Schuttelaars, H.M.; Schramkowski, G.P.

    2017-01-01

    The iFlow modelling framework is a width-averaged model for the systematic analysis of the water motion and sediment transport processes in estuaries and tidal rivers. The distinctive solution method, a mathematical perturbation method, used in the model allows for identification of the effect of

  3. Report on data from the Nearshore Sediment Transport Study experiment at Leadbetter Beach, Santa Barbara, California, January-February 1980 (NODC Accession 8200080)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — THIS DATA SET CONSISTS OF THE RESULTS OF THE NEARSHORE SEDIMENT Nearshore Sediment Transport Study at Leadbetter Beach, Santa Barbara, California. These data from 28...

  4. Ephemeral seafloor sedimentation during dam removal: Elwha River, Washington

    Science.gov (United States)

    Foley, Melissa M.; Warrick, Jonathan

    2017-01-01

    The removal of the Elwha and Glines Canyon dams from the Elwha River in Washington, USA, resulted in the erosion and transport of over 10 million m3 of sediment from the former reservoirs and into the river during the first two years of the dam removal process. Approximately 90% of this sediment was transported through the Elwha River and to the coast at the Strait of Juan de Fuca. To evaluate the benthic dynamics of increased sediment loading to the nearshore, we deployed a tripod system in ten meters of water to the east of the Elwha River mouth that included a profiling current meter and a camera system. With these data, we were able to document the frequency and duration of sedimentation and turbidity events, and correlate these events to physical oceanographic and river conditions. We found that seafloor sedimentation occurred regularly during the heaviest sediment loading from the river, but that this sedimentation was ephemeral and exhibited regular cycles of deposition and erosion caused by the strong tidal currents in the region. Understanding the frequency and duration of short-term sediment disturbance events is instrumental to interpreting the ecosystem-wide changes that are occurring in the nearshore habitats around the Elwha River delta.

  5. Ephemeral seafloor sedimentation during dam removal: Elwha River, Washington

    Science.gov (United States)

    Foley, Melissa M.; Warrick, Jonathan A.

    2017-11-01

    The removal of the Elwha and Glines Canyon dams from the Elwha River in Washington, USA, resulted in the erosion and transport of over 10 million m3 of sediment from the former reservoirs and into the river during the first two years of the dam removal process. Approximately 90% of this sediment was transported through the Elwha River and to the coast at the Strait of Juan de Fuca. To evaluate the benthic dynamics of increased sediment loading to the nearshore, we deployed a tripod system in ten meters of water to the east of the Elwha River mouth that included a profiling current meter and a camera system. With these data, we were able to document the frequency and duration of sedimentation and turbidity events, and correlate these events to physical oceanographic and river conditions. We found that seafloor sedimentation occurred regularly during the heaviest sediment loading from the river, but that this sedimentation was ephemeral and exhibited regular cycles of deposition and erosion caused by the strong tidal currents in the region. Understanding the frequency and duration of short-term sediment disturbance events is instrumental to interpreting the ecosystem-wide changes that are occurring in the nearshore habitats around the Elwha River delta.

  6. Uranium geochemistry in estuarine sediments: Controls on removal and release processes

    International Nuclear Information System (INIS)

    Barnes, C.E.; Cochran, J.K.

    1993-01-01

    Porewater uranium profiles from Long Island Sound (LIS) and Amazon shelf sediments and LIS sediment incubation experiments indicate that both removal and release processes control U geochemistry in estuarine sediments. Release of U from sediments occurs in association with Fe reduction. A correlation between U and Fe (and Mn) observed in sediment incubation experiments suggests that there is release of U from Fe-Mn-oxides as they are reduced, consistent with data from the Amazon shelf. In both sediment porewater profiles (LIS and Amazon) and sediment incubation experiments (LIS), there is removal of U from porewater under conditions of sulfate reduction. Sediment incubation experiments indicate that the removal rate is first-order with respect to U concentration, and the rate constant is linearly correlated to sulfate reduction rates. The link between U removal and sulfate reduction (a measure of diagenetic microbial activity) is consistent with a microbial mediation of U reduction. The diffusion flux of U into LIS sediments is estimated from porewater profiles. The inclusion of this estuarine removal term in the oceanic U balance increases the importance of the sediment sink. 62 refs., 12 figs., 2 tabs

  7. Modern limnology, sediment accumulation and varve formation processes in Lake Żabińskie, northeastern Poland: comprehensive process studies as a key to understand the sediment record

    Directory of Open Access Journals (Sweden)

    Alicja Bonk

    2014-12-01

    Full Text Available Reconstructions of paleoclimatic and paleoenvironmental data from sediment records require a thorough knowledge of the physical, chemical and biological factors that influence sediment-formation processes and signal preservation in lake sediments. Lake Żabińskie, an eutrophic hardwater lake located in northeastern Poland (Masurian Lake District, provides an unique environment for the investigation of processes that lead to the varve formation. During a two-year long observation period we investigated limnological and hydrochemical conditions within the water column, recent sediment fluxes and laminations preserved in the sediments of this lake to understand the relationship between the lake water properties and the sediment formation processes. We demonstrate that different mixing patterns may occur in Lake Żabińskie, from dimictic to meromictic depending on the meteorological conditions. Regardless of the water mixing pattern, the lake was stratified during much of the year which led to significant differences between surface and near-bottom water environments. The hypolimnion was characterized by higher conductivity and anoxic conditions with only short periods of better oxygenation, which created conditions ideal for the formation and preservation of biogenic varves. The material collected from the sediment trap revealed notable changes in sediment fluxes with characteristic spring maxima and, optionally, a second late fall maxima. Considerable variability was also observed for the fluxes of total organic carbon, biogenic silica and calcite. Microscopic investigation of the topmost sediments revealed a complex structure of the varves showing a distinct spring calcite lamina followed by several fine calcite laminae interbedded with diatom-rich laminae and, finally, by an organic-rich lamina with minerogenic admixtures deposited during winter. This seasonal variability was also reflected in the chemical composition inferred from high

  8. Coastal change from a massive sediment input: Dam removal, Elwha River, Washington, USA

    Science.gov (United States)

    Warrick, Jonathan A.; Gelfenbaum, Guy R.; Stevens, Andrew; Miller, Ian M.; Kaminsky, George M.; Foley, Melissa M.

    2015-01-01

    The removal of two large dams on the Elwha River, Washington, provides an ideal opportunity to study coastal morphodynamics during increased sediment supply. The dam removal project exposed ~21 million cubic meters (~30 million tonnes) of sediment in the former reservoirs, and this sediment was allowed to erode by natural river processes. Elevated rates of sand and gravel sediment transport in the river occurred during dam removal. Most of the sediment was transported to the coast, and this renewed sediment supply resulted in hundreds of meters of seaward expansion of the river delta since 2011. Our most recent survey in January 2015 revealed that a cumulative ~3.5 million m3 of sediment deposition occurred at the delta since the beginning of the dam removal project, and that aggradation had exceeded 8 m near the river mouth. Some of the newly deposited sediment has been shaped by waves and currents into a series of subaerial berms that appear to move shoreward with time.

  9. Regional Sediment Analysis of Mississippi River Sediment Transport and Hydrographic Survey Data

    National Research Council Canada - National Science Library

    Thorne, Colin

    2002-01-01

    ...s. Sediments generated through channel instability are carried downstream to cause sedimentation problems in flood control channels, destroy wetlands and lakes, adversely impact fish and wildlife...

  10. Climate and sea level controlled sedimentation processes in two submarine canyons off NW-Africa

    OpenAIRE

    Pierau, Roberto

    2008-01-01

    This study focuses on the trigger mechanisms of gravity-driven sediment transport in two submarine canyons at the passive continental margin off NW-Africa during the past 240 kyr. The sedimentary records allow to determine the turbidite emplacement times based on high resolution age models. The sediment textures of the turbidites were studied by using X-ray radiographies. The sedimentary properties like the terrigenous silt size distribution and XRF-core scanning element data allow to identif...

  11. [Sediment-water flux and processes of nutrients and gaseous nitrogen release in a China River Reservoir].

    Science.gov (United States)

    Chen, Zhu-hong; Chen, Neng-wang; Wu, Yin-qi; Mo, Qiong-li; Zhou, Xing-peng; Lu, Ting; Tian, Yun

    2014-09-01

    The key processes and fluxes of nutrients (N and P) and gaseous N (N2 and N2O) across the sediment-water interface in a river reservoir (Xipi) of the Jiulong River watershed in southeast China were studied. Intact core sediment incubation of nutrients exchange, in-situ observation and lab incubation of excess dissolved N2 and N2O (products of nitrification, denitrification and Anammox), and determination of physiochemical and microbe parameters were carried out in 2013 for three representative sites along the lacustrine zone of the reservoir. Results showed that ammonium and phosphate were generally released from sediment to overlying water [with averaged fluxes of N (479.8 ± 675.4) mg. (m2. d)-1 and P (4. 56 ± 0.54) mg. (m2 d) -1] , while nitrate and nitrite diffused into the sediment. Flood events in the wet season could introduce a large amount of particulate organic matter that would be trapped by the dam reservoir, resulting in the high release fluxes of ammonium and phosphate observed in the following low-flow season. No clear spatial variation of sediment nutrient release was found in the lacustrine zone of the reservoir. Gaseous N release was dominated by excess dissolved N2 (98% of total), and the N2 flux from sediment was (15.8 ± 12. 5) mg (m2. d) -1. There was a longitudinal and vertical variation of excess dissolved N2, reflecting the combined results of denitrification and Anammox occurring in anoxic sediment and fluvial transport. Nitrification mainly occurred in the lower lacustrine zone, and the enrichment of N2O was likely regulated by the ratio of ammonium to DIN in water.

  12. Potential effects of timber harvest and water management on streamflow dynamics and sediment transport

    Science.gov (United States)

    C. A. Troendle; W. K. Olsen

    1994-01-01

    The sustainability of aquatic and riparian ecological systems is strongly tied to the dynamics of the streamflow regime. Timber harvest can influence the flow regime by increasing total flow, altering peak discharge rate, and changing the duration of flows of differing frequency of occurrence. These changes in the energy and sediment transporting capability of the...

  13. Dissolved inorganic carbon and alkalinity fluxes from coastal marine sediments: Model estimates for different shelf environments and sensitivity to global change

    NARCIS (Netherlands)

    Krumins, V.; Gehlen, M.; Arndt, S.; Van Cappellen, P.; Regnier, P.

    2013-01-01

    We present a one-dimensional reactive transport model to estimate benthic fluxes of dissolved inorganic carbon (DIC) and alkalinity (AT) from coastal marine sediments. The model incorporates the transport processes of sediment accumulation, molecular diffusion, bioturbation and bioirrigation,

  14. Beach sediments drift study by means of radioactive tracers; L'etude du transport littoral par la methode des traceurs radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Hours, R [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires; Jaffry, P [Electricite de France (EDF), 78 - Chatou (France). Lab. National d' Hydraulique

    1959-07-01

    The present state of the sediments drift studies by means of radioactive tracers is exposed. Various processes of labelling, immersion and detection, used in France and other countries, are reviewed. A more extended analysis of some aspects of the problem by the same authors can be found in 'La Houille Blanche', number 3, may-june 1959 (Rapport C.E.A. number 1269). (author) [French] L'etude du transport littoral des sediments et galets par la methode des traceurs radioactifs est en plein developpement. Le present rapport precise l'etat actuel de la question. Les techniques de marquage, d'immersion et de detection utilisees en France et a l'etranger sont decrites; une analyse plus detaillee de certains aspects de la question est presentee par les memes auteurs dans 'La Houille Blanche', numero 3, mai-juin 1959 (Rapport C.E.A. numero 1269). (auteur)

  15. Nearshore waves and longshore sediment transport along Rameshwaram Island off the east coast of India

    Directory of Open Access Journals (Sweden)

    Rajamanickam Gowthaman

    2015-11-01

    Full Text Available Wave-induced Longshore Sediment Transport (LST play an important role in the dynamics of the Dhanushkodi sandspit located southeast of Rameshwaram. The LST along the Dhanushkodi coast is studied based on data collected simultaneously in Gulf of Mannar (GoM and Palk Bay (PB using directional waverider buoys. The numerical model REF/DIF1 was used to calculate the nearshore waves and the LST rate was estimated using three different formulae. The model validation was done based on the measured nearshore waves using InterOcean S4DW. Numerical model LITPACK was also used for simulating non-cohesive sediment transport and the LITLINE module was used to study the shoreline evolution over 5 years. Low net annual LST along PB (~0.01 × 106 m3 compared to the GoM region (0.3 × 106 m3 were due to the weak waves. Accretion in the region led to growth of the Dhanushkodi sandspit by 65 m during the period 2010-2015.

  16. Using sediment transport and river restoration to link research and education, and promote K-12 female involvement in STEM fields

    Science.gov (United States)

    Yager, E. M.; Bradley-Eitel, K.

    2011-12-01

    The focus of this CAREER award is to better understand and predict the mechanics of sediment transport, to link research and education through courses and shared field sites, and to increase female interest in STEM fields. To accomplish the education component of this proposal we have focused on the following three activities: 1) a Keystone course on the scientific method, 2) a Women Outside with Science (WOWS) camp and 3) a permanent field site for research and education on river processes. In the Keystone Course, students investigated the impact of roughness addition, in sediment-starved river reaches (e.g. downstream of dams), on the retention of gravel used for spawning. They developed research questions and hypotheses, designed and conducted a set of scaled laboratory flume experiments, analyzed their data and wrote a draft manuscript of their results. Student feedback was overwhelmingly positive on the merits of this course, which included hands-on learning of the following: basic sediment transport and fluvial geomorphology, applied statistics, laboratory methods, and scientific writing skills. Students sometimes struggled when flume experiments did not progress as planned, and in the analysis and interpretation of complex data. Some of the students in the course have reanalyzed data, conducted additional experiments and are currently rewriting the manuscript for submission to a peer-reviewed journal. Such a course fundamentally links research and teaching, and provides an introduction to research for advanced undergraduates or beginning graduate students. We have also run one summer WOWS camp, which was a ten day camping and inquiry based research experience for 20 female junior-high and high-school students. The girls studied climate change and water related issues, worked on a restoration project on the Little Salmon River, met with a fish biologist and did fish habitat surveys and studied water quality along the North Fork of the Payette River while on a

  17. Isotopic method for investigation of process of periodic sedimentation of argillaceous suspensions

    International Nuclear Information System (INIS)

    Kohman, L.; Woznicki, T.

    1976-01-01

    The process of periodic sedimentation of kaolinic suspension in water has been investigated, by isotopic tracer method. the tracer was either the irradiated matrix material or 198 Au, adsorbed on the kaolin grains. The velocity of suspension level lowering (the sedimentation curve) and the variation in density in vertical section of sediment layer have been determined. (author)

  18. Rotina computacional e equação simplificada para modelar o transporte de sedimentos num Latossolo Vermelho Distrófico Computational routine and simplified equation for modeling sediment transport capacity in a Dystrophic Hapludox

    Directory of Open Access Journals (Sweden)

    Gilmar E. Cerquetani

    2006-08-01

    Full Text Available Os objetivos do presente trabalho foram desenvolver rotina computacional para a solução da equação de Yalin e do diagrama de Shields e avaliar uma equação simplificada para modelar a capacidade de transporte de sedimento num Latossolo Vermelho Distrófico que possa ser utilizada no Water Erosion Prediction Project - WEPP, assim como em outros modelos de predição da erosão do solo. A capacidade de transporte de sedimento para o fluxo superficial foi representada como função-potência da tensão cisalhante, a qual revelou ser aproximação da equação de Yalin. Essa equação simplificada pôde ser aplicada em resultados experimentais oriundos de topografia complexa. A equação simplificada demonstrou acuracidade em relação à equação de Yalin, quando calibrada utilizando-se da tensão média cisalhante. Testes de validação com dados independentes demonstraram que a equação simplificada foi eficiente para estimar a capacidade de transporte de sedimento.The objectives of the present work were to develop a computational routine to solve Yalin equation and Shield diagram and to evaluate a simplified equation for modeling sediment transport capacity in a Dystrophic Hapludox that could be used in the Water Erosion Prediction Project - WEPP, as well as other soil erosion models. Sediment transport capacity for shallow overland flow was represented as a power function of the hydraulic shear stress and which showed to be an approximation to the Yalin equation for sediment transport capacity. The simplified equation for sediment transport could be applied to experimental data from a complex topography. The simplified equation accurately approximated the Yalin equation when calibrated using the mean hydraulic shear stress. Validation tests using independent data showed that the simplified equation had a good performance in predicting sediment transport capacity.

  19. Marine sediments as a sink, and contaminated sediments as a diffuse source of radionuclides

    International Nuclear Information System (INIS)

    Salbu, B.; Borretzen, P.

    1997-01-01

    Full text: Marine sediments may act as a sink for radionuclides originating from atmospheric fallout (e.g. Chernobyl accident), for radionuclides in discharges from nuclear installations (e.g. Sellafield, UK) for river transported radionuclides, and radionuclides released from nuclear waste dumped at sea (e.g. fjords at Novaya Zemlya). In order to assess short and long term consequences of radionuclides entering the marine ecosystem, the role of sediments as a relatively permanent sink and the potential for contaminated sediments to act as a diffuse source should be focused. The retention of radionuclides in sediments will depend on the source term, i.e. the physico-chemical forms of radionuclides entering the system and on interactions with various sediment components. Radionuclides associated with particles or aggregating polymers are removed from the water phase by sedimentation, while sorption to surface sediment layers is of relevance for ionic radionuclide species including negatively charged colloids. With time, transformation processes will influence the mobility of radionuclides in sediments. The diffusion into mineral lattices will increase fixation, while the influence of for instance red/ox conditions and bio-erosion may mobilize radionuclides originally fixed in radioactive particles. Thus, information of radionuclides species, surface interactions, transformation processes and kinetics is essential for reducing the uncertainties in marine transfer models. Dynamic model experiments where chemically well defined tracers are added to a sea water-marine sediment system are useful for providing information on time dependent interactions and distribution coefficients. When combined with sequential extraction techniques, information on mobility and rate of fixation is subsequently attained. In the present work experimental results from the Irish Sea and the Kara Sea will be discussed

  20. Evaluation of suspended sediment concentrations, sediment fluxes and sediment depositions along a reservoir by using laser diffraction and acoustic backscatter data

    Science.gov (United States)

    Lizano, Laura; Haun, Stefan

    2015-04-01

    The construction of dams and reservoirs disturb the natural morphological behavior of rivers. A natural settling effect occurs due to the reduced turbulences and flow velocities. As a consequence, reservoirs fill up with sediments which results in a reduction of storage volume, influences the operation of hydropower plants and leads in several cases to flood protection problems. The sediment depositions in reservoirs are standardly evaluated by using bathymetric data, obtained by a single beam sonar from pre-defined cross sections or by an extensive evaluation of the reservoir bed by a side scan sonar. However, a disadvantage of this method is that it is not possible to evaluate the pore water content of the depositions, which may lead as consequence to an uncertainty in the measured amount of deposited sediments. Given that a major part of sediments entering reservoirs are transported in suspension, sediment flux measurements along defined transects could give more reliable information on the settled amount of sediments and additional information on the sediment transport mechanism within the reservoir. An evaluation of the sediment fluxes is in practice often conducted by a single suspended sediment concentration (SSC) measurement in combination with a cross sectional calibration factor to take changes in the SSC along the transect into account. However, these calibration factors are often developed only for one specific in-situ condition and may give unreliable results in case that the boundaries change e.g. the hydraulic conditions. Hence an evaluation of the sediment fluxes along the whole transect would give a more reliable number for the amount of transported sediments through the reservoir. This information can afterwards be used to calculate the amount of settled sediments in different sections of the reservoir and the amount of sediments which will enter the intake. For this study the suspended sediment transport within the Peñas Blancas reservoir in